
Chapter 12
Cover-Based Competitive Location
Models

Pawel Kalczynski

12.1 Introduction

In competitive location models a set of demand points, each with known buying
power exist in a market area. Competing for the buying power in the area are
several of one’s chain facilities and competing facilities. If an area has only
competitors’ facilities and no chain facilities are present in the area, then the
chain is considering an area. The competing facilities attract buying power from
demand points, yielding market share (the proportion of total buying power in the
area captured by one’s chain). The objective common to all competitive location
models is the maximization of market share. Usually, profit is assumed to be a
monotonically increasing function of market share. Therefore, maximizing profit
is associated with maximizing market share. Fernandez et al. (2007) and Redondo
et al. (2009) deal explicitly with maximizing profit. If there is a cost differential
between different locations, setup costs, as well as different pricing policies, which
may vary by location, account for such cost differentials. For a review of competitive
location models see Berman et al. (2009a).

Therefore, at the core of any competitive location model is the estimation of the
market share attracted by each of the competing facilities. All models assume that
the market share captured by a facility is dependent on (1) the distances between the
demand points and the facilities and (2) the attractiveness of the facilities, and (3)
the prices at the facilities. Estimating market share captured is typically done using
one of the following approaches.
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Hotelling (1929) suggested a rule that each customer patronizes the facility that
offers the lowest total cost (including the price of service and transportation cost).
Hotelling’s approach led to the “proximity” rule in which customers patronize the
closest facility (when the prices are equal at all facilities). Competitors compete
by setting different service price but, from customers’ perspective (total cost),
this rule implies that all competing facilities are equally attractive and that total
buying power concentrated at a demand point is spent at the same facility. Drezner
(1982) analyzed two problems on the plane: location of one competing facility and
the leader–follower model (Stackelberg’s equilibrium model, in which competitors
react to leader’s action). The proximity rule led to location-allocation models for
the location of several facilities in a competitive environment (Hakimi 1983, 1986,
1990; ReVelle 1986; Ghosh and Rushton 1987; Serra and ReVelle 1995).

Different attractiveness levels of different facilities are incorporated in the
proximity rule by defining a utility function (Drezner 1994a, 1995). Utility models
were extended to random utility models (Leonardi and Tadei 1984; Drezner and
Drezner 1996) or to the logit approach (Drezner et al. 1998).

Huff (1964, 1966) suggested applying the probabilistic gravity rule (Reilly 1931)
for estimating market share. Drezner (1994b, 1995) suggested a multi-start approach
to finding the best location for one new facility based on the gravity rule. Drezner
and Drezner (2004) solved this problem optimally. The simultaneous location of
multiple facilities according to the gravity rule was analyzed in Drezner et al.
(2002a). Drezner (1998) formulated and solved the problem of locating several
facilities, applying the gravity rule, when the attractiveness levels of new facilities
are not given but they are variables and a given budget is available for constructing
the facilities.

The abovementioned models assume that total demand is satisfied and divided
among the competing facilities with no lost demand. Drezner and Drezner (2008)
proposed a gravity-based model which considers lost demand. This happens when
customers have no facility close enough to them; thus, their demand is unsatisfied.
Such a model is realistic for non-essential services.

The problems discussed in this chapter are based on covering models. Covering
problems have been researched for many years (for reviews see Schilling et al. 1993;
Daskin 1995; Current et al. 2002; Plastria 2002). There are two types of covering
problems: (1) covering all the points with the minimum number of facilities (the set
covering problem, ReVelle et al. 1976) and (2) covering as many points (or total
weight when each demand point has a different weight) with a given number of
facilities (the max-covering problem). For network formulations see Church and
ReVelle (1974), Megiddo et al. (1983), ReVelle (1986), and Berman (1994), and for
planar problems see Drezner (1981), Watson-Gandy (1982), Drezner (1986), and
Canovas and Pelegrin (1992).

Our competitive location model is based on equal division of buying power
among facilities whose radius of influence captures that demand. A comprehensive
discussion of this rule is presented in Section 2 of our original paper Drezner et al.
(2011). Equal division may not be accurate for a single consumer but the aggregated
market share is estimated reasonably well. This rule is much simpler to implement
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than gravity models or utility-based models. We only need to estimate the catchment
area of competing facilities which yields their radius of influence. There are
established methods for estimating the radius of influence of a facility (Beaumont
1991; Toppen and Wapenaar 1994). For example, license plates of cars in the
parking lot are recorded and the addresses of the cars’ owners obtained. Drezner
(2006) conducted interviews with consumers patronizing different shopping malls
asking them to provide the zip code of their residence and whether they came from
home. Other approaches for estimating market share require numerous parameters
for their implementation. Our approach requires only the establishment of the
catchment area.

This chapter summarizes four papers on competitive location which are a result
of my collaborative work with Dr. Zvi Drezner and Dr. Tammy Drezner:

1. A Cover-Based Competitive Location Model (Drezner et al. 2011)
2. Strategic Competitive Location: Improving Existing and Establishing New Facil-

ities (Drezner et al. 2012)
3. A Leader-Follower Model for Discrete Competitive Location (Drezner et al.

2015)
4. The Multiple Markets Competitive Location Problem (Drezner et al. 2016).

Each of these papers is based on a new cover-based model for competitive
location. This new model assumes that each facility has its own radius of influence
(sphere of influence, catchment area) and that buying power of a demand point
located within the radius of several facilities is equally divided among these
facilities, while demand at demand points located outside of any facility’s influence
is lost.

Consider a demand point with buying power w. It is in the sphere of influence of
F one’s chain facilities and C competitors’ facilities. Here, C contains facilities of
all firms competing with one’s chain. Suppose that the demand point is in the sphere
of influence of q additional chain facilities. We calculate the additional market share
gained by the chain’s facilities from this demand point. Prior to the change in the
chain’s facilities, the buying power attracted by one’s chain is w F

F+C
. Note that

if F + C = 0, i.e., the demand point is outside the sphere of influence of all
competing facilities, no buying power is attracted. When the demand point is in
the sphere of influence of q additional facilities, the market share attracted by the
chain is w

F+q
F+C+q

. Simple algebraic manipulations lead to an increase in buying
power attracted to one’s chain of

w
qC

(F + C)(F + C + q)
. (12.1)

Note that: If q = 0, there is no increase in the market share regardless of the
values of F and C; if F = C = 0 and q > 0, then the gain in market share is w; if
only one new facility is located, then q can be either 0 or 1.
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Fig. 12.1 The example problem. Open circle: demand point; filled circle: one’s chain; open
triangle: competitor

As an illustrative example, consider the problem in Fig. 12.1 originally presented
in Drezner et al. (2011). There are 12 demand points located on a grid of size “1,”
one competitor C whose radius of influence is 0.8, and two more attractive (radius
of influence of 1.25) one’s chain facilities A and B. Assume that all demand points
have a buying power of one unit. One’s chain attracts demand points #7–#12, two-
thirds of demand point #6, and one-half of demand point #5 for a total market share
of 7 1

6 units.
Suppose that a new facility is to be located. If it has the same attractiveness as

the competitor’s (radius of 0.8), it can capture buying power from at most 4 demand
points when it is located at a center of a square whose vertices are demand points. A
quick inspection reveals that the best location for the new facility is at the center of
the leftmost square capturing buying power from demand points #1–#4. The buying
power of demand points #1–#2, which was lost before, is now fully captured. Half
of the buying power at demand points #3–#4 is captured. The total market share
is increased by 3 units leading to a total market share of 10 1

6 units. If the new
facility has the same attractiveness as do the other two chain facilities (radius of
1.25), it can attract 6 demand points and its best location is in the middle between
demand points #3 and #4. In that case, it will attract the same 3 units of buying
power (all buying power from demand points #1, #2 and half the buying power
from demand points #3, #4) and will increase the proportion of the buying power
captured from demand points #5 and #6. The buying power captured from demand
point #5 increases from one-half to two-thirds and the buying power captured from
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demand point #6 increases from two-thirds to three quarters for a gain of 3 1
4 units,

capturing market share of 10 5
12 units. The competitor attracts 1 7

12 units and a more
attractive facility cannot reduce this value. The maximum market share that can be
attracted by one’s chain by adding one chain facility is therefore 10 5

12 units.
In the remainder of this chapter, the summaries of the main contributions of the

four papers are presented, each in a separate section. The chapter ends with a brief
conclusion.

12.2 A Cover-Based Competitive Location Model

12.2.1 Locating New Facilities

The problem of locating one new facility in a competitive environment described in
the introduction can be converted to the standard max-covering problem with one
facility. Each demand point is evaluated and F , C are determined. The additional
potential market share is evaluated using q = 1 in (12.3). If this value is 0, the
demand point can be removed from the problem. The remaining demand points have
assigned buying power determined by (12.3) and the maximum covering problem
is solved by using, for example, the algorithm in Drezner (1981). This approach is
difficult to extend to the location of more than one new facility. The buying power
that needs to be assigned to each demand point depends on the number q of new
facilities that cover the demand point in their sphere of influence. Therefore, we
designed special algorithms for the location of multiple facilities.

Let S be the set of N potential sites either given as part of the problem definition
or calculated as in Drezner et al. (2007) when all points on the plane are potential
sites. Let aij for i = 1, . . . , n and j ∈ S be an incident matrix. aij = 1 if demand
point i is covered by potential location j , and aij = 0 otherwise. Let Fi be the
number of one’s chain facilities covering demand point i and Ci be the number of
the competitor’s facilities covering it. Let wi be the buying power at demand point
i. p new facilities are located at some candidate sites in S. Let xj for j ∈ S be a
0–1 variable. xj = 1 if a new facility is located at candidate point j and xj = 0
otherwise. The number of new facilities covering demand point i, qi , is

qi =
N∑

j=1

aij xj . (12.2)

The increase in the market share, �M(q), by one’s chain for a given vector q =
{qi} is

�M(q) =
n∑

i=1

wi

qiCi

(Fi + Ci)(Fi + Ci + qi)
. (12.3)



282 P. Kalczynski

where wi is the buying power at demand point i and qi is calculated by (12.2). Our
cover-based competitive location problem formulation is given by

max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
�M(X) =

n∑
i=1

wi
Ci

Fi+Ci

N∑
j=1

aij xj

Fi + Ci +
N∑

j=1
aij xj

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(12.4)

subject to:
∑
j∈P

xj = p

xj ∈ {0, 1}.

A special treatment is needed for the case Fi +Ci = 0. In this case, if qi = 0 the
increase in market share is 0, and if qi > 0, the increase in market share is wi . We
define two sets of demand points I1 and I2:

I1 = { i |Fi + Ci > 0} ; I2 = { i |Fi + Ci = 0} (12.5)

and rewrite (12.4):

max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
�M(X) =

∑

i∈I1

wi
Ci

Fi+Ci

N∑
j=1

aij xj

Fi + Ci +
N∑

j=1
aij xj

+
∑

i∈I2

wi min

⎧
⎨

⎩

N∑

j=1

aij xj , 1

⎫
⎬

⎭

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(12.6)

subject to:
∑

j∈P

xj = p

xj ∈ {0, 1}.

Maximizing �M(X) as defined by (12.6) is a non-linear binary programming
problem with one constraint. The objective function is a sum of fractional terms.
The number of terms is equal to the number of demand points. Each term has
linear functions both in the nominator and the denominator. There is only one
linear constraint and all decision variables are binary. Therefore, the problem is
a generalized binary linear fractional programming problem (Barros 1998, p. 98).
Once the binary constraints are relaxed, the problem becomes the sum of linear
fractional functions (SOLF) problem (Chen et al. 2005), which is a generalization
of the classical linear fractional programming problem (Charnes and Cooper 1962).
The SOLF problem is known to be NP-complete when more than one ratio is
present in the objective function (Freund and Jarre 2001). The solution procedures
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for certain SOLF problems can be found in Chen et al. (2005), Nesterov and
Nemirovskii (1995), and Falk and Palocsay (1992). Calculating one upper bound
on the optimal solution to the generalized binary linear fractional programming
problem requires the solution of a SOLF problem. However, solving such a relaxed
problem requires significant computer time, especially when N constraints of the
type xj ≤ 1 need to be added to the problem. In Drezner et al. (2011) we proposed
an efficient upper bound, which exploits the special structure of our particular
problem. The problem can also be solved heuristically by various metaheuristics
such as tabu search, simulated annealing, genetic algorithms, or others.

12.2.2 Upper Bounds for the Cover-Based Competitive
Location Problem

In order to apply a branch and bound algorithm, tight upper bounds need to be
constructed. In Drezner et al. (2011) we suggested three upper bounds termed UB1,
UB2, and UB3. The second upper bound, UB2, is based on UB1. The third upper
bound UB3 is an improvement of UB2 and also depends on UB1. UB3 is always
tighter than the other two. The reader is referred to the original paper Drezner et al.
(2011) for proofs.

12.2.2.1 First Upper Bound (UB1)

Since
N∑

j=1
aij xj ≥ 0,

�M(X) ≤
∑

i∈I1

wiCi

N∑
j=1

aij xj

(Fi + Ci)
2 +

∑

i∈I2

wi

N∑

j=1

aij xj

=
N∑

j=1

⎧
⎨

⎩
∑

i∈I1

wiCiaij

(Fi + Ci)
2

+
∑

i∈I2

wiaij

⎫
⎬

⎭ xj =
N∑

j=1

γjxj , (12.7)

where γj =
n∑

i=1

wiCiaij

(Fi+Ci)
2 with the provision that if Fi + Ci = 0, substitute Ci = 1

(and Fi = 0).
The following knapsack problem yields an upper bound for the solution of (12.4)

or (12.6):
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max

{
N∑

j=1
γjxj

}
(12.8)

subject to:

N∑
j=1

xj = p

xj ∈ {0, 1}.

The solution to this knapsack problem, UB1, is the sum of the p largest values of
γj .

12.2.2.2 Second Upper Bound (UB2)

Since the arithmetic mean is greater than or equal to the geometric mean:

�M(X) ≤
∑

i∈I1

wiCi

N∑
j=1

aij xj

2(Fi + Ci)

√
(Fi + Ci)

N∑
j=1

aij xj

+
∑

i∈I2

wi

√√√√√
N∑

j=1

aij xj

=
n∑

i=1

wiCi

√
N∑

j=1
aij xj

2(Fi + Ci)
√

(Fi + Ci)
(12.9)

with the rule Ci

2(Fi+Ci)
√

(Fi+Ci)
= 1 when Fi + Ci = 0.

Consider the following identity:

n∑

i=1

wiCi

√
N∑

j=1
aij xj

2(Fi + Ci)
√

(Fi + Ci)
=
∑

i∈I1

1

2

√
wiCi

Fi + Ci

×

√
wiCi

N∑
j=1

aij xj

(Fi + Ci)

+
∑

i∈I2

√
wi ×

√√√√√wi

N∑

j=1

aij xj .
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It can be written as
n∑

i=1

wiCi

√
N∑

j=1
aij xj

2(Fi + Ci)
√

(Fi + Ci)
=

n∑

i=1

1

2

√
wiCi

Fi + Ci

×
√

wiCi

N∑
j=1

aij xj

(Fi + Ci)
with the rule that when Fi + Ci = 0, Ci

Fi+Ci
= 4 in the first

term and Ci = 1 in the second term.

By the Schwartz inequality (Hardy et al. 1952) (

{
n∑

i=1
aibi

}2

≤
n∑

i=1
a2
i

n∑
i=1

b2
i ):

n∑

i=1

wiCi

√
N∑

j=1
aij xj

2(Fi + Ci)
√

(Fi + Ci)
≤

√√√√√√1

4

n∑

i=1

wiCi

Fi + Ci

×
n∑

i=1

wiCi

N∑
j=1

aij xj

(Fi + Ci)
2

=

√√√√√
1

4

n∑

i=1

wiCi

Fi + Ci

×
N∑

j=1

γjxj

≤
√√√√
{

1

4

n∑

i=1

wiCi

Fi + Ci

}
UB1 (12.10)

with the rule that when Fi + Ci = 0, Ci

Fi+Ci
= 4.

To implement UB2 (12.10) in conjunction with UB1, i.e., to use as an upper

bound min{UB1, UB2}, calculate: UB1 and K =
n∑

i=1

wiCi

Fi+Ci
. If 1

4K < UB1 use as

upper bound 1
2

√
K × UB1; otherwise, use UB1 as the upper bound.

12.2.2.3 Third Upper Bound (UB3)

In developing UB2 we used inequalities based on a base of “2,” i.e., the arithmetic
mean is greater than or equal to the geometric mean and the Schwartz inequality.
We can develop formulas based on a base of θ > 1 (not necessarily integer) which
reduces to UB2 when θ = 2 is used. Once the best value of θ is found, UB3 must be
better than UB2 (or equal to UB2 when the best θ is equal to 2).

To find UB3, calculate UB1, α =
∑

i∈I1

wiCi
Fi+Ci

UB1
, and β =

∑
i∈I2

wi

UB1
. When 0 < β < 1

we need to find θ∗ that satisfies the equation θ = 1 + 1

α
μ

{
βμ

(θ−1)α+βμ

}

− βμ

α
. Then,

UB3 = λ(θ∗)UB1 is calculated by
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λ(θ) = 1

θ

{
(θ − 1)

[
α + θ

θ
θ−1

θ − 1
β

]} θ−1
θ

=
{

θ − 1

μ
α + β

}1− 1
θ

. (12.11)

Our original paper Drezner et al. (2011) describes an efficient technique for
finding θ∗ and the relationships among the three upper bounds.

12.2.3 Heuristic Algorithms

Four heuristic algorithms were constructed and tested: a greedy heuristic, an ascent
heuristic, tabu search (Glover 1986), and simulated annealing (Kirkpatrick et al.
1983). We also tested an “improved greedy” approach, i.e., the ascent algorithm was
applied to the solution of the greedy algorithm. Tabu search, simulated annealing,
and genetic algorithms were constructed in Alp et al. (2003); Drezner et al. (2005);
Berman and Drezner (2008) for the p-median and similar problems. The same
principles can be adopted for the construction of such algorithms for the solution
of our problem. The tabu search and simulated annealing algorithms tested were
adopted from these papers.

12.2.3.1 The Greedy Heuristic

The problem is to select a set P of p sites out of N potential locations. We select
the set P one facility at a time. The change in the value of the objective function
�M is calculated by Eq. (12.3) when adding one facility at each of the N potential
sites. The site with the largest increase in �M is selected for locating a new facility
and remains in P for the rest of the algorithm. The process continues until sites for
all p new facilities are selected.

12.2.3.2 The Ascent Algorithm

This algorithm is similar to the heuristic algorithm designed by Teitz and Bart (1968)
for the solution of the p-median problem.

1. A set P of p sites out of the N available sites are randomly selected.
2. All p(N − p) possible moves by removing one facility in P and adding one of

the N − p non-selected sites to P are evaluated.
3. If an improving move is found, the best improving move is executed.
4. If no improving move is found, the algorithm terminates with the last set P of p

sites as the solution.

Note that evaluating all p(N − p) moves can be done sequentially and thus
streamlined and performed in a shorter run time. All p selected sites are removed
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in order and �M calculated for each. For each of these sites all N − p possible
additions are evaluated and the total �M is the sum of the changes.

12.2.3.3 Tabu Search

Tabu search (Glover 1986; Glover and Laguna 1997) proceeds from the solution
found by the ascent algorithm in an attempt to escape local maxima and obtain
better local maxima or the global maximum.

The following simple tabu scheme was used. A node is in the tabu list if it was
recently removed from the selected set of nodes. It cannot re-enter the selected set
while in the tabu list (unless its inclusion improves the best known solution). When
the tabu list consists of N − p members, no exchange is possible. Therefore, we
opted to select the tabu tenure to be a fraction of N − p. Following extensive
experiments we randomly selected the tabu tenure in each iteration in the range
[0.05(N − p), 0.45(N − p)]. Since the run time of the ascent approach is relatively
long, we experimented with relatively few iterations of the tabu search. If the
number of the iterations of the ascent algorithm is h, then the number of extra tabu
search iterations is set to 19h, so the run time of the tabu search is about 20 times
the run time of the ascent algorithm.

12.2.3.4 The Tabu Search for the Cover-Based Competitive Location
Problem

1. A tenure vector consisting of an entry for each facility is maintained. The entry
for a facility in the tenure vector is either the last iteration number at which it was
removed from P or a large negative number when it was never removed from P .

2. Select the result of the ascent algorithm as a starting solution for the tabu search
and as the best found solution. The number of iterations in the ascent algorithm
is h.

3. Insert a large negative number (for example, −N ) for every facility in the tenure
vector.

4. Select the tabu tenure, T , in the range [0.05(N − p), 0.45(N − p)].
5. Evaluate all moves (one node to be removed, iout ∈ P , and one node to be

added, iin /∈ P ) and calculate the change in the value of the objective function
by moving the facility from iout to iin.

6. If a move yields a solution better than the best found one, continue to evaluate all
the moves and perform the best improving move. Update the best found solution
and go to Step 3.

7. If no move yields a solution better than the best found solution, select the move
which yields the best value of the objective function (whether improving or not)
as long as the difference between the current iteration and the entry of iin in the
tenure vector does not exceed T .
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8. Enter the current iteration number into entry iout in the tenure vector. Go to
Step 4.

9. Repeat Steps 4–8 for 19h iterations.

12.2.4 Computational Experiments

The branch and bound algorithm was coded in J�. It was run on a machine with 6
CPUs (each clocked at 1.86 GHz) with each processor tackling a different problem.
The greedy, ascent, tabu search, and simulated annealing algorithms were coded in
Fortran, compiled by Intel 9.0 Fortran compiler and ran on a desktop computer with
a 2.8 GHz Pentium IV processor and 256 MB RAM.

We experimented with the 40 Beasley (1990b) problems designed for testing p-
median algorithms. The problems tested ranged between 100 ≤ n ≤ 900 nodes and
5 ≤ p ≤ 200 new facilities. Chain facilities are located at the first ten nodes and
the competitors are located at the next 10 nodes. The remaining n − 20 nodes are
candidate locations for the facilities in one’s chain. The demand at node i is 1/i.
The same radius of influence was used for existing and new facilities.

Two sets of problems were run yielding a total of 80 problems. The two sets
differ in their radius of influence.

For Set#1 the radius of influence was set to the smallest possible radius that
ensures that every each node is attracted by at least one existing facility, whether
one’s chain facility or a competitor. This guarantees that there is no lost (unmet)
demand, thus β = 0. The radius for each problem is calculated as follows: For each
of the n−20 candidate nodes the distances to the first 20 nodes are calculated and the
smallest distance determined. The maximum among these distances for all n − 20
candidate locations is the radius of influence. For Set#2 the radius of influence was
set to R = 20. In this case there is lost demand prior to establishing new facilities.

12.2.4.1 Set#1

The branch and bound algorithm solved 20 of the 40 problems. The run of the
remaining 20 problems was stopped after about 2 days unless we observed that the
search is quite advanced after 2 days and was expected to finish in a reasonable
additional time. They all reached the best known solution when terminated. A
relative accuracy of 10−5 was used. For two problems the upper bound was within
this relative accuracy from the best known solution so they were instantly solved at
the root.

The greedy and ascent heuristic algorithms found the best known solution. The
greedy solution was obtained in a few seconds. The ascent algorithm was repeated
from 100 randomly generated starting solutions and found the best known solution
in all 100 runs. Since the greedy and ascent algorithms performed well for Set#1
we saw no need to experiment with tabu search and simulated annealing for the
problems in Set#1.
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The branch and bound algorithm solved 20 of the 40 problems in Set#1
to optimality illustrating that the upper bound UB3 is effective. The heuristic
algorithms performed extremely well on this set of problems. The best known
solution (for half of the problems it has been proven optimal) was found by all
runs in a short run time.

12.2.4.2 Set#2

As to Set#2, the branch and bound algorithm found the optimal solution for 16 of
the 40 problems. The heuristic algorithms were not as effective for Set #2 as they
were for Set #1 and therefore we also experimented with tabu search and simulated
annealing.

The ascent algorithm was run 100 times for each problem. It found the best
known solution at least once for 37 out of the 40 problems. It found the best known
solution in 54.6% of the runs and in all 100 runs for 12 problems.

The tabu search was run 10 times for each problem. It found the best known
solution (including 16 known optimal solutions) for all 40 problems. For 29
problems it found the best known solution in all 10 runs. It found the best known
solution in 88% of the runs. Run time, by design, was 20 times longer than that
for the descent algorithm. Therefore, total run time for 10 tabu solutions was about
double the time required for 100 runs of the ascent algorithm.

The results for simulated annealing were inferior to the other algorithms. Results
for simulated annealing generally improve when more iterations are allowed in
the algorithm. Therefore, longer run time was needed in order to obtain results
comparable to those obtained by tabu search. We experimented with run times of
more than six times those required for the ascent algorithm (average run time of
about 8500 s for 10 runs of the simulated annealing) and obtained the best known
results for only 27 of the problems, with the best result averaging 0.238% below
the best known result. The best known result was obtained in 5.8 out of 10 runs, on
the average. In 19 problems, though, simulated annealing obtained the best known
results in all 10 runs.

The reader is referred to our original paper Drezner et al. (2011) for full results
of the computational experiment.

12.3 Strategic Competitive Location

The new competitive location model originally proposed in Drezner et al. (2011)
and described in Sect. 12.2 of this chapter inspired the follow-up project on strategic
competitive location. In Drezner et al. (2011) the location of p new facilities with
a given radius is investigated. In the strategic competitive location model proposed
in our Drezner et al. (2012) paper, the radii of the facilities are variables, there is a
budget constraint, and—in addition to constructing new facilities—we also consider
an option to expand existing facilities.
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There is a finite set of potential locations for new facilities. Each of the existing
facilities has its radius of influence (sphere of influence, catchment area) which is
monotonically increasing with its attractiveness. Upgrading existing facilities entails
increasing their radius of influence, thereby increasing their catchment area. We do
not consider downgrading or closing facilities. A fixed cost plus a variable cost,
depending on the radius, is required for improvement. All potential locations for
new facilities are defined with a radius of zero. Establishing a new facility requires
a given fixed cost (usually greater than the fixed cost required for an improvement
of an existing facility) plus a variable cost that is increasing with the radius. These
three strategies were captured in a unified model presented in our paper Drezner
et al. (2012) where existing facilities and potential new locations are defined as
one set of locations, with corresponding radii and setup costs associated with each
location.

Models existing prior to our Drezner et al. (2012) paper considered either
improving existing facilities or constructing new ones. To the best of our knowledge
only Küçükaydın et al. (2011) had analyzed the combination of both options before
us, however, in a different context. In our paper an expansion of one’s chain is
achieved by one of the three strategies: (1) upgrading some or all of one’s existing
chain facilities, (2) constructing new chain facilities, (3) employing a combination
of both (1) and (2). A given budget is available for such expansion. The objective of
the chain is to attract the maximum market share (or to maximize additional market
share captured following the expansion) within the given budget.

12.3.1 The Three Strategic Competitive Location Models

We consider three strategies, all encompassed in one unified model.

Improvement Strategy: (IMP) Only improvement of existing chain facilities is
considered.

Construction Strategy: (NEW) Only construction of new facilities is considered.
Joint Strategy: (JNT) Both improvement of existing facilities and construction of

new facilities are considered.

All strategies are treated in a unified model by assigning a radius of zero to potential
locations for new facilities. Note that the NEW strategy is somewhat similar to the
variable radius covering model (Berman et al. 2009b) where a covering model with
no competition was proposed.

12.3.1.1 Notation

n The number of demand points
wi The buying power at demand point i, i = 1, . . . , n

Fi The number of facilities belonging to one’s chain that attract demand point i

Ci The number of competitor facilities attracting demand point i
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B The budget for increasing the attractiveness of existing facilities or creating
new ones

p The number of chain facilities including potential locations for new facilities
ro
j The existing radius of facility j for j = 1, . . . , p. For new facilities ro

j = 0
f (r) The cost of building a facility of radius r (a non-decreasing function of r)
rj The unknown assigned radius to facility j . rj > ro

j for existing facilities and
rj ≥ 0 for establishing new facilities

Sj The fixed cost if facility j is improved or established

12.3.1.2 Calculating the Increase in Market Share

In this section we evaluate the increase in buying power captured by the chain as
a result of an expansion. An expansion consists of increasing the attractiveness of
some chain facilities and/or constructing new ones. The catchment area of a facility
is a circle defined by its radius. Demand points in the facility’s catchment area are
attracted to the facility (are covered by the facility). If a demand point is in the
catchment area of several facilities, its buying power is equally divided among these
facilities (Drezner et al. 2011). There may exist extreme cases where such a rule can
be improved. However this rule provides an estimate for the captured market share
and such rare exceptions do not introduce a significant deviation to the estimate. As
we explained in Drezner et al. (2011), this rule is simple and robust.

Demand point i is in the catchment area of Fi chain facilities and Ci competitors’
facilities. Let qi be the number of additional chain facilities attracting demand point
i following an expansion of the chain. This means that following the expansion
demand point i is in the catchment area of Fi + qi chain facilities. Prior to
the expansion of chain facilities, the buying power attracted by one’s chain is
n∑

i=1
wi

Fi

Fi+Ci
. Note that if Fi +Ci = 0, demand point i is outside the catchment area

of all competing facilities, no buying power is captured, and the demand at demand
point i is lost. Following the change in attractiveness, the market share attracted by

the chain is
n∑

i=1
wi

Fi+qi

Fi+Ci+qi
. The increase in market share captured by one’s chain

for a given vector q = {qi}, �M(q) is given by Eq. (12.3).
Define αi(qi) as the proportion of the demand from demand point i added to

the chain’s market share when demand point i is attracted to qi additional chain
facilities:

αi(qi) = qiCi

(Fi + Ci)(Fi + Ci + qi)
. (12.12)

It follows that

�M(q) =
n∑

i=1

wiαi(qi). (12.13)
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It is easy to show that:

Property 12.1 0 ≤ αi(qi) ≤ 1.

Property 12.2 If qi = 0, there is no increase in the market share captured from
demand point i regardless of the values of Fi and Ci , thus αi(0) = 0.

Property 12.3 If Fi = Ci = 0 and qi > 0, then the gain in market share from
demand point i is wi , thus αi(qi) = 1.

12.3.1.3 Preliminary Analysis

When a new facility is established, one can assign a radius of zero to it so that
it attracts only the demand point at which it is located. However, the setup cost is
added to the total cost. In order to simplify the presentation we assume that potential
new locations have a radius of −ε for a very small ε > 0, and f (−ε) = 0.

If the radius of facility j is increased from ro
j to rj > ro

j , the cost of the increase
is f (rj ) − f (ro

j ) + Sj . Otherwise, the cost is zero. The objective is to maximize the
market share attracted to one’s chain by increasing some (or all) of the radii, subject
to the budget constraint:

p∑

j=1

{
f (rj ) − f

(
ro
j

)}
+
∑

rj >ro
j

Sj ≤ B.

The buying power at demand points that are attracted to one’s chain facilities
but are not attracted to any competitor is fully satisfied by the chain. Thus, the
contribution of these demand points to the chain’s market share cannot increase.
Such demand points can be removed from consideration when calculating the
increase in market share captured following the expansion.

Theorem 12.1 For each facility there is a finite number of radii that should be
considered for improvement. Consequently, there is a finite number of feasible
candidate solutions.

The reader is referred to our paper Drezner et al. (2012) for the proof.
Note that even though the number of feasible solutions is finite, it can be

very large. If the total increase in market share were an additive function of the
individual market share increases, a dynamic programming solution approach would
be possible. However, since this condition does not hold, we propose branch and
bound and heuristic algorithms rather than solving a non-linear program.

By Theorem 12.1 there is a list of improvement costs to be considered. To define
this list let dik be the distance between demand point i and facility k (existing or
new) and Bik be the cost (extra budget required) of increasing the radius of facility
k from ro

k to dik
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Bik =
⎧
⎨

⎩

f (dik) − f (ro
k ) + Sk when dik > ro

k

0 otherwise
. (12.14)

The set {Bik} for a given k may have tied values (when dik = dmk). The sorted
list of costs considered for improvement of facility k, following the removal of tied
values, consists of 0 (no improvement), and the remaining distinct values in the
vector {Bik}. It is defined as the sorted list of costs BK = {bik} of cardinality Mk so
that 0 = b1k < b2k < . . . < bMkk .

By Theorem 12.1, all feasible candidate solutions are bikk for 0 ≤ ik ≤ Mk such

that
p∑

k=1
bikk ≤ B. The additional market share captured by the chain by investing

bik for improving facility k can be calculated for each feasible solution by obtaining
qi , i = 1, . . . , n and applying Eq. (12.1).

12.3.2 A Branch and Bound Algorithm

The total enumeration of all feasible candidate solutions can be performed by first
evaluating bi11 for i1 = 1, . . . M1, then for each 1 ≤ i1 ≤ M1, evaluating all bi22
for 0 ≤ bi22 ≤ B − bi11, and so on. That means that for each 2 ≤ k ≤ p evaluating

0 ≤ bikk ≤ B −
p−1∑
m=1

bimm.

Since the number of candidate feasible solutions can be prohibitively large, an
upper bound on the possible increase in market share captured (once the first k radii
are set) is required for solving moderately sized problems.

12.3.2.1 An Upper Bound

We construct an upper bound using a dynamic programming technique on upper
bounds for each facility.

Lemma 12.1 αi(qi + 1) ≤ αi(qi) + αi(1).

The proof of this lemma can be found in Drezner et al. (2012).
Let ei be the market share added when demand point i is covered by a single

additional chain facility. ei is calculated by (12.1) or (12.12) using the present Fi

and Ci for that demand point and qi = 1:

ei =

⎧
⎪⎪⎨

⎪⎪⎩

wiCi

(Fi + Ci)(Fi + Ci + 1)
when Fi + Ci > 0

wi when Fi + Ci = 0

. (12.15)
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Theorem 12.2 The market share added from one demand point when it is covered
by qi additional chain facilities is less than or equal to qiei .

Proof The theorem is trivially true for qi = 0 and qi = 1. The theorem follows
for every qi ≥ 0 by mathematical induction on the value of qi proven by applying
Lemma 12.1.

By Theorem 12.2, if we add ei for any instance of demand point i being covered
by an additional chain facility, the sum of these values is an upper bound on the
additional market share gained. This suggests an upper bound for the additional
market share that can be gained by facilities k, . . . , p once the radii for the first k−1
facilities are known. Note that both ei (12.15) and the lists Bk for k = 1, . . . , p can
be calculated in the preamble to the branch and bound process.

To make the upper bound simpler to calculate and use, a parameter H (for
example, H = 10,000) is selected. The budget B is then divided into H equal
parts. The upper bound is calculated only for an available remaining budget of h B

H

for integer 0 ≤ h ≤ H . If all values of the budget increase bik are integers, it is
convenient to select H = B. When calculating the upper bound for any remaining
budget, it is rounded up to the nearest h and the upper bound for this value is used.
We create a matrix U of p columns and H rows. Uhk is the upper bound for a
remaining budget of h B

H
available for improving facilities k, . . . , p.

We calculate the upper bound matrix U backward by applying a dynamic
programming approach starting from facility p. A matrix V of the same dimension
as matrix U is calculated. The value of Vhk is the additional market share that can
be obtained by using a budget h B

H
for 0 ≤ h ≤ H to improve facility k. To calculate

column k (Vhk for 0 ≤ h ≤ H ):

1. Set Vhk = 0 for h = 0, . . . , H .
2. Scan in order all demand points i = 1, . . . , n.
3. The market share added when demand point i is covered by one extra chain

facility, ei , is calculated by Eq. (12.15).
4. The extra budget needed to cover demand point i, bik is calculated by Eq. (12.14).
5. ei is added to all entries Vhk when the following two conditions hold:

(a) bik > 0, and
(b) h B

H
≥ bik which is the same condition as h ≥ H

B
bik .

Note that if bik = 0 no action is taken regarding demand point i because dik ≤ ro
k

and the demand point is already covered by facility k.

The matrix U is calculated by using a dynamic programming approach on the
matrix V . The last column p in U is identical to the last column p in V . The columns
from k = p − 1 down are updated in reverse order of the column number by the
following recursive formula:

Uhk = max
0≤s≤h

{
Vsk + U(h−s),(k+1)

}
.
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Uhk is calculated starting with h = H down to h = 0. Once Uhk is calculated, it
can replace Vhk because only smaller values of h are needed for the calculation of
the rest of the column. Therefore, the matrices V and U can occupy the same space
in memory.

12.3.2.2 The Algorithm

Suppose that the costs for the first k facilities are assigned. This is represented by a
vector t (1), t (2), . . . , t (k). The costs are bt(j)j for j = 1, . . . , k. This represents a

node in the tree. The budget used to expand the first k facilities is B0 =
k∑

j=1
bt(j)j

which leaves a budget of B − B0 for expanding the remaining facilities. The upper
bound on the additional market share captured by facilities k + 1, . . . , p is Uh,k+1,
where h = H

B−B0
B

rounded up. The additional market share captured by the first k

facilities is �k and �∗ is the best solution found so far.

1. Calculate U . Set k = 1, t (1) = 1, with a budget B0 = 0 (h = H ), �1 = 0,
and �∗ = 0. Note that �∗ ≥ 0 can be obtained by a heuristic approach (see
Sect. 12.3.3) such as a greedy approach.

2. If �k + Uh,k+1 ≤ �∗ + ε, the rest of the tree from this node is fathomed. Go to
Step 4.

3. Set k = k + 1.

(a) If k = p, calculate the extra market share by using B −B0 to expand facility
p. Update �∗ if necessary. Set k = p − 1 and go to Step 4.

(b) If k < p, set t (k) = 1. B0 is unchanged. No additional demand points are
covered; thus, all Fi do not change. Go to Step 2.

4. Set t (k) = t (k) + 1. B0 is changed to B0 + bt(k)k − bt(k)−1,k .

(a) If B0 > B, the search moves back to facility k − 1. Set k = k − 1.

If k > 0, go to Step 4.
If k = 0, stop with �∗ as the optimal solution within an accuracy of ε.

(b) If B0 ≤ B, calculate h = H
B−B0

B
rounded up. The Fi and �k are updated.

Go to Step 2.

The reader is referred to our paper Drezner et al. (2012), which offers some
interesting modifications to the branch and bound algorithm.

12.3.3 Heuristic Algorithms

We constructed a greedy heuristic, an ascent approach, and tabu search. We also
constructed a simulated annealing algorithm but it did not perform well. Tabu search
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performed best, while the greedy approach was the fastest. We detail the greedy
heuristic, the ascent approach (on which the tabu search is based), and tabu search.

For each existing facility or candidate location for a new facility, a list of all
possible improvements and their associated cost is compiled. The solution consists
of selecting one value from each list and finding the maximum increase in market
share among all feasible selections.

12.3.3.1 The Greedy Heuristic

Following extensive experiments with various strategies we found the following
approach the most effective:

1. Start with a cost of zero for each column.
2. Evaluate all feasible increases �B in the costs for each column and calculate the

market share increase �M for each.
3. Select the column and cost that maximizes �M/�B.
4. Steps 2 and 3 are repeated until no �B is feasible.

12.3.3.2 The Ascent Algorithm

The starting solution for the ascent approach is the greedy solution using either
the whole budget or a portion of it. Following extensive experiments, the following
search neighborhood was found to be most effective: For all combinations of two
columns, increases in cost are evaluated for one column combined with decreases in
cost for the other column. The neighborhood consists of all feasible combinations
based on pairs of columns. Only a partial set of feasible exchanges should be
considered in the neighborhood. In the ascent approach, the largest increase in
market share is selected until there is no improved combination in the neighborhood.

12.3.3.3 The Tabu Search

The tabu search (Glover 1986; Glover and Laguna 1997) extends the search once
the ascent approach terminates. The moves of the ascent approach are continued,
whether improving or not, for a pre-specified number of iterations (including the
ascent iterations). A tabu list is defined. It consists of columns whose cost was
decreased in recent moves. Increasing the cost of such columns is in the tabu
list. Each iteration, one of the two possible moves is selected. If a solution better
than the best found solution is found (regardless of the tabu list) it is selected.
Otherwise, the solution obtained by a move not in the tabu list with the maximum
market share (whether improving or not) is selected. The length of the tabu list is
randomly generated between tmin and tmax for every iteration, where tmin and tmax

are parameters of the algorithm.
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Our original paper Drezner et al. (2012) offers several time-saving measures.

12.3.4 Computational Experiments

All solution methods were programmed in Fortran using double-precision arith-
metic. The programs were compiled by the Intel 11.1 Fortran Compiler and seven
different computers were used for running the programs. All computers used were
multi-core computers and all cores, except one, were used on each computer with
no parallel processing. A total of 23 cores were used.

To enable an easy replication of our test problems for future comparison, we
experimented with the 40 Beasley (1990a) problems designed for testing p-median
algorithms. The problems ranged between 100 ≤ n ≤ 900 nodes. The number of
new facilities for these problems was ignored. Chain facilities are located on the
first ten nodes and the competitors are located on the next 10 nodes. The demand at
node i is 1/i and the cost function is f (r) = r2. Since all distances are integers,
the cost for improving a facility is integer; thus, we set H = B. The same radius
of influence was used for existing chain facilities and competing facilities. When
new facilities can be added (strategies NEW and JNT), the last n − 10 nodes are
candidate locations for the facilities in one’s chain and are assigned a radius of 0.
For each of the 40 problems, three sets of problems (strategies IMP, NEW, and JNT)
were run, yielding a total of 120 instances. We experimented with various values of
the coverage radius, a fixed cost for establishing a new facility, and an available
budget.

The branch and bound algorithm starts with a lower bound of zero. No heuristic
was run first to establish a tighter lower bound. An accuracy of ε = 10−5 was
employed in the branch and bound approach. Following extensive experiments with
the branch and bound and tabu algorithms we set the parameter L to 5 for IMP
problems and 0 for NEW and JNT problems. The following parameters were used
in the tabu search: The number of iterations was set to 1000, and the length of the
tabu tenure was randomly generated every iteration between tmin = 5 and tmax = 8.
The starting solutions for the tabu search are the results of the greedy algorithm
using between 10% and 100% (randomly generated) of the available budget.

Optimal solutions were found by the branch and bound algorithm for all 40 IMP
problems, 19 of the 40 NEW problems, and 15 of the 40 JNT problems. The average
IMP solution was 5.87% below the JNT solution and the average NEW solution was
5.96% below the JNT one.

The tabu search for the IMP problems was replicated 10,000 times, while it was
replicated 100 times for the other two strategies. The tabu search found the best
known solution at least once for all 120 problems. It is found in 96.2% of the runs
for the IMP strategy, 81.2% for the NEW strategy, and 75.9% of the time for the JNT
strategy. The percent of the average tabu solution was only 0.002% below optimum
for the IMP strategy, 0.320% below the best known NEW strategy solutions, and
0.116% below the best known JNT strategy solutions. The branch and bound results
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for the NEW strategy were 1.03% below the best known solution (obtained by tabu
search) and the JNT strategy solution were 0.27% below the best known solution.

The reader is referred to Drezner et al. (2012) for full results.

12.4 A Leader–Follower Model for Discrete Competitive
Location

Our next follow-up paper features a game-theoretical approach. The following two
extensions of Drezner et al. (2011) were incorporated in Drezner et al. (2015):

Budget Constraints: Combining the location decision with facility design (treat-
ing the attractiveness level of the facility as a variable) was recently investigated
in Aboolian et al. (2007), Drezner (1998), Drezner et al. (2011, 2012), Fernandez
et al. (2007), Plastria and Carrizosa (2004), Redondo et al. (2010), and Toth et al.
(2009). Drezner (1998) assumed that the facilities’ attractiveness are variables. In
that paper it is assumed that a budget is available for locating new facilities and
for establishing their attractiveness levels. One needs to determine the facilities’
attractiveness levels so that the available budget is not exceeded. Plastria and
Vanhaverbeke (2008) combined the limited budget model with the leader–
follower model. Aboolian et al. (2007) studied the problem of simultaneously
finding the number of facilities, their respective locations, and attractiveness
(design) levels.

Leader–Follower: The leader–follower model (Stackelberg 1934) considers a
competitor’s reaction to the leader’s action. The leader decides to expand his
chain. The follower is aware of the action taken by the leader and expands his
facilities to maximize his own market share. The leader’s objective becomes
maximizing his market share following the follower’s reaction. The leader–
follower location model in a competitive environment was investigated in
Drezner and Drezner (1998), Drezner (1982), Küçükaydın et al. (2012), Plastria
and Vanhaverbeke (2008), Redondo et al. (2013, 2010), Saidani et al. (2012), and
Sáiz et al. (2009).

With these extensions, we were able to analyze and solve the leader–follower
model incorporating facilities’ attractiveness (design), subject to limited budgets for
both the leader and follower. We were also able to investigate what is the main
source of extra market share for the leader and the follower.

12.4.1 Formulation of the Leader–Follower Model

We adapted the cover-based model Drezner et al. (2011, 2012). In our first paper
on competitive location Drezner et al. (2011), the location of p new facilities with a
given radius is sought so as to maximize the market share captured by one’s chain.
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In our second paper, Drezner et al. (2012), three strategies were investigated: In
the improvement strategy (IMP) only the improvement of existing chain facilities
is considered; in the construction strategy (NEW) only the construction of new
facilities is considered; and in the joint strategy (JNT) both improvement of existing
chain facilities and construction of new facilities are considered. All three strategies
are treated in a unified model by assigning a radius of zero to potential locations of
new facilities.

In this new formulation, the leader employs one of the three strategies and the
follower also implements one of these three strategies. This setting gives rise to
nine possible models. Each model is a combination of the strategy employed by the
leader and the strategy employed by the follower. For example, the leader employs
the JNT model, i.e., considers both improving existing facilities and establishing
new ones, while the follower may employ the IMP model, i.e., only considers the
improvement of his existing facilities. The most logical model is to employ for
both the leader and the follower the JNT strategy which yields the highest market
share. However, constructing new facilities or improving existing ones may not be
a feasible option for the leader or the follower.

12.4.1.1 Notation

The set of potential locations for the facilities is discrete.

N The set of demand points of cardinality n

wi The buying power at demand point i, i = 1, . . . , n

Li The number of facilities that belong to the leader’s chain that attract
demand point i

Fi The number of follower’s facilities attracting demand point i

BL The budget available to the leader for increasing the attractiveness of
existing facilities or constructing new ones

BF The budget available to the follower for increasing the attractiveness of
existing facilities or constructing new ones

PL The set of the existing leader’s facilities including potential locations for
new facilities of cardinality pL

PF The set of the existing follower’s facilities including potential locations for
new facilities of cardinality pF

p The total number of facilities. p = pL + pF

dij The distance between demand point i and facility j

ro
j The present radius of facility j for j = 1, . . . , p. For new facilities ro

j =
−ε for a very small ε to guarantee that new facilities do not attract demand
at their potential location

f (r) The cost of building a facility of radius r (a non-decreasing function of r)
rj The unknown radius assigned to facility j for j = 1, . . . , p

R The set of unknown radii
{
rj
}

for j = 1, . . . , p
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Sj The fixed cost if facility j is improved or established, i.e., rj > ro
j for

existing facilities and rj ≥ 0 for establishing new facilities
C(rj ) The cost of improving facility j to a radius rj . It is zero if rj = ro

j , and
f (rj ) − f (ro

j ) + Sj , otherwise

Note that the radii rj are continuous variables. However, it is sufficient to
consider a finite number of radii in order to find the optimal solution. Consider
the sorted vector of distances between facility j and all n demand points. A radius
between two consecutive distances covers the same demand points as the radius
equal to the shorter of the two distances yielding the same value of the objective
function. Since the improvement cost is an increasing function of the radius, an
optimal solution exists for radii that are equal to a distance to a demand point.

12.4.1.2 Calculating the Market Share

For demand point i, the numbers Li and Fi can be calculated by counting the
number of leader’s facilities that cover demand point i, and the number of follower’s

facilities that cover it. Formally, let δij (R) =
{

1 dij ≤ rj

0 Otherwise
, then Li and Fi for a

given strategy R are

Li =
∑

j∈PL

δij (R); Fi =
∑

j∈PF

δij (R). (12.16)

The objective functions by the leader and the follower, before locating new
facilities, are then calculated (Drezner et al. 2011, 2012):

MSL =
n∑

i=1

wi

Li

Li + Fi

. (12.17)

MSF =
n∑

i=1

wi

Fi

Li + Fi

. (12.18)

Note that if Fi = Li = 0, then in (12.17) Li

Li+Fi
= 0 and in (12.18) Fi

Li+Fi
= 0 and

the demand wi associated with demand point i is lost.
Suppose the leader improves some of his facilities and establishes new ones. Note

that Fi does not depend on the actions taken by the leader. The follower’s problem
is thus well-defined following the leader’s action and can be optimally solved by the
branch and bound algorithm detailed in Drezner et al. (2012).

Once the follower’s optimal solution is known, the leader’s objective function is
well defined as his market share is calculated by (12.17) incorporating changes to
the follower’s facilities locations and radii.
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12.4.1.3 Calculating the Increase in Market Share

To solve the follower’s problem it is more efficient to maximize the increase in
market share rather than the market share itself. Upper bounds developed for the
increase in market share are tighter. Demand point i is in the catchment area of Li

leader’s facilities and Fi follower’s facilities. Suppose that a radius of some of the
follower’s facilities is increased and the number of follower’s facilities that cover
demand point i increased from Fi to Fi + �Fi . Let Q ⊆ N be the set of demand
points for which �Fi > 0. For i ∈ Q the buying power attracted by the follower was
wi

Fi

Fi+Li
and after the change it is wi

Fi+�Fi

Fi+Li+�Fi
leading to a market share increase

of wi
�FiLi

(Fi+Li)(Fi+Li+�Fi)
. The increase in market share is therefore:

�MF =
∑

i∈Q

wi

�FiLi

(Fi + Li)(Fi + Li + �Fi)
. (12.19)

Note that when Fi = Li = 0 for i ∈ Q, the ratio in (12.19) is equal to one and
for such demand points the follower’s market share is increased by wi . The demand
wi was lost before the increase because no facility attracted it but, following the
increase, the whole demand wi is captured by the follower.

12.4.1.4 The Objective Functions

The follower wishes to maximize the increase in his market share �MF calculated
by Eq. (12.19). The follower “knows” the values of Li for i = 1, . . . , n because
his competitor (the leader) has already taken action. The follower can increase the
radius of influence of his facilities subject to his available budget, thus increasing
some of his radii of influence defining the set Q of demand points that are covered
by at least one additional follower’s facilities. The leader anticipates the follower’s
reaction. Therefore, once the follower’s problem is solved, the values of Li, Fi

for i = 1, . . . n are all known and the leader’s value of the objective function is
calculated by (12.17).

12.4.1.5 The Constraints

The leader and follower cannot exceed their respective budgets. For a combined
strategy R = {rj } by both competitors the constraints are

∑

j∈PL

C(rj ) ≤ BL;
∑

j∈PF

C(rj ) ≤ BF . (12.20)
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12.4.1.6 The Two Formulations

Once the strategy of the leader is known and thus Li are defined, the follower’s
problem is

max
rj , j∈PF

⎧
⎪⎨

⎪⎩

n∑

i=1

wi

∑
j∈PF

δij (R)

Li + ∑
j∈PF

δij (R)

⎫
⎪⎬

⎪⎭

Subject to:
∑

j∈PF

C(rj ) ≤ BF . (12.21)

The leader’s problem needs to be formulated as a bi-level programming model (Gao
et al. 2005; Sun et al. 2008):

max
rj , j∈PL

⎧
⎪⎨

⎪⎩

n∑

i=1

wi

∑
j∈PL

δij (R)

∑
j∈PL

δij (R) + ∑
j∈PF

δij (R)

⎫
⎪⎬

⎪⎭

Subject to: (12.22)
∑

j∈PL

C(rj ) ≤ BL

rj for j ∈ PF = arg

⎡

⎢⎢⎢⎣

max
rj , j∈PF

{
n∑

i=1
wi

∑
j∈PF

δij (R)

∑
j∈PL

δij (R)+ ∑
j∈PF

δij (R)

}

subject to:
∑

j∈PF

C(rj ) ≤ BF .

⎤

⎥⎥⎥⎦

Note that the follower problem may have several optimal solutions (each
resulting in different leader’s objective) and the leader does not know which one
of these the follower will select. This issue exists in all leader–follower models.

12.4.2 Solution Algorithms

The follower’s problems are identical to the three problems analyzed in Drezner
et al. (2012) because market conditions are fully known to the follower. A branch
and bound algorithm as well as a tabu search (Glover 1977, 1986; Glover and
Laguna 1997) were proposed in Drezner et al. (2012) for the solution of each of
these three strategies.

The branch and bound algorithm is based on an upper bound on the increase
in market share which is calculated by dynamic programming. The set of possible
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locations of facilities is discrete. It is shown in Drezner et al. (2012) that, in order
to find an optimal solution, only a finite list of radii needs to be considered at
each location. Branching is performed on a tree whose nodes are combinations
of facilities’ locations and their possible radii. The same algorithms are used for
solving the three strategies. The follower’s problem should be solved by the branch
and bound algorithm because it is essential to get his optimal solution.

It may be problematic to develop an effective upper bound for the leader’s
problem. Even if such an upper bound could be constructed, the number of nodes to
be evaluated by the branch and bound procedure might be prohibitive. According
to the computational experiments reported in Drezner et al. (2012), solving the
simplest strategy problem (IMP) may require scanning more than 18,000 nodes for
n = 200 problems and almost 170 million nodes for one n = 300 problem. Such
a large number of nodes will severely restrict the size of the problems that can be
solved. In Drezner et al. (2015) we proposed to solve the leader’s problem by a tabu
search algorithm. Note, however, that evaluating each move in the neighborhood
requires finding an optimal solution to the follower’s problem, and thus it affects the
size of the neighborhood. For this reason, the number of iterations would be quite
limited as well. We proposed a tabu search algorithm for the solution of the leader’s
problem similar to the algorithm proposed in Drezner et al. (2012).

12.4.2.1 The Greedy-Type Heuristic for Generating Starting Solutions

For each of the three strategies there is a list of existing facilities (either existing
chain facilities with their given radii or potential locations for new facilities with
a radius of zero). For each such facility a feasible list of radii is constructed. As
explained in Drezner et al. (2012) this list consists of all the distances between the
facility and the demand points. A solution is represented by a radius assigned to
each facility (either no change in the radius or an increase in the radius with a setup
cost added to the total cost).

A leader’s starting solution satisfying the budget constraint is generated. No
reaction by the follower is considered in the greedy-type algorithm. Following
extensive experiments with various strategies, we found that the following approach
generates the best starting solutions for heuristic algorithms (such as tabu search)
applied for the solution of leader’s problem. The follower’s problem is solved by
a rigorous algorithm and a starting solution is not needed. To insert a random
component to the process (so that different starting solutions are generated when
the process is repeated), only a random percent, in a given range, of the budget is
used.

1. A budget of zero (i.e., the existing radius for the facility) is assigned to each
facility.

2. Evaluate all feasible increases �B in the budgets for each facility and calculate
the market share increase �M for each.

3. Select the facility that maximizes �M/�B.
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4. Update the budget for the selected facility and the remaining available budget.
5. Steps 2 and 3 are repeated until no �B is feasible.

12.4.2.2 The Tabu Search Algorithm

We used the tabu search algorithm to solve the leader’s problem. For each leader’s
solution the value of the leader’s objective function is calculated by optimally
solving the follower’s problem and evaluating the extra market share attracted by
the leader following the follower’s reaction. A tabu list is created. At the start it is
empty. A facility whose radius was recently reduced (note that it cannot be below
the existing radius) is in the tabu list meaning that its radius is not considered for
increase unless the best value of the objective function is improved by the move.
A facility remains in the tabu list for tabu tenure iterations and the tabu tenure is
randomly generated within a range every iteration. The process is continued for
a pre-specified number of iterations and the best solution encountered during the
search is the result of the tabu search.

12.4.2.3 The Neighborhood of the Tabu Search

We apply the neighborhood for solving the leader’s problem, that was successfully
employed in Drezner et al. (2012) for solving the follower’s problem, with all the
time-saving measures described there. For completeness we briefly describe the
neighborhood construction.

• The individual budget currently used to expand facility k be bk .

• In the current iteration a budget of B0 =
p∑

k=1
bk is used.

• The maximum budget used by any facility is Bmax = max
1≤k≤p

{bk}.
• Cost increases are considered for all k = 1, . . . , p up to a budget of

BL + Bmax − B0.
• For each such k and its cost increase, cost reductions are considered for all j �= k

as long as bj > 0. Let the budget B0 following the increase in the budget of
facility k be B ′

L. It is required that bj ≥ B ′
L − BL. In addition, decreases in

bj are considered sequentially starting from the smallest decrease and moving
up the line of decreases up to a decrease of bj guaranteeing that the radius of
facility j is not smaller than the existing radius.

• Once a decrease in bj leads to a budget not exceeding BL for the first time,
the solution is considered for the move. Consequently, for each pair of facilities
k, j , at most one radius for facility j is considered. Note that if the radius of a
facility is decreased and some demand points that were covered by the facility
are no longer covered, the same equation (12.19) can be used by defining Q as
the set of demand points whose cover was reduced and using as Fi the number
of facilities covering the demand point following the change.
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It should be emphasized the follower’s problem is optimally solved for each move
in the neighborhood yielding the leader’s objective function for that member of the
neighborhood. This is required for only one reduction in the budget of some j for
each increase in the budget for some k which limits the number of the follower’s
problems to be solved at each iteration of the tabu search to pL.

12.4.2.4 The Algorithm

Let F(X) = MSL(X) be the value of the leader’s objective function for a solu-
tion X.

1. Generate a feasible starting solution X = X0, empty the tabu list. The best
solution found so far is X∗ = X0 with the best value of the objective function
found so far F ∗ = F(X∗).

2. The tabu tenure is randomly generated in a pre-specified range [tmin, tmax].
3. The value of the objective function is evaluated at all solutions in the neighbor-

hood of X.
4. The best solution in the neighborhood is X′.
5. If F(X′) > F ∗, the next iterate is X = X′. The facility whose radius was reduced

is entered into the tabu list and X∗ and F ∗ are updated. Go to Step 7.
6. Otherwise, let X′′ be the best solution in the neighborhood for which the facility

whose radius is increased is not in the tabu list. The next iterate is X = X′′. The
facility whose radius was reduced is entered into the tabu list.

7. Increase the iteration number by one. Go to Step 2 unless the pre-specified
number of iterations is reached.

8. The result of the tabu search is X∗ with a value of the objective function F ∗.

An efficient way to handle the tabu list (especially when the tabu tenure is
randomly generated) is to maintain a tenure vector for all facilities. Initially, a large
negative number is recorded for all facilities. When a facility is entered into the
tabu list the iteration number is recorded for it. A facility is in the tabu list if the
difference between the current iteration number and its recorded value in the tenure
vector is less than or equal to the tabu tenure.

12.4.3 Computational Experiments

As in our previous papers, we experimented with the 40 Beasley (1990a) problem
instances designed for testing p-median algorithms in order to enable an easy
replication of our results. The problems ranged between 100 ≤ n ≤ 900 nodes.
The number of new facilities for these problems was ignored. The leader’s facilities
are located on the first ten nodes and the follower’s facilities are located on the next
10 nodes. The problems are those tested in Drezner et al. (2012). The demand at
node i is 1/i (for testing problems with no reaction by the competitor) and the cost
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function is f (r) = r2. The same radius of influence was used for existing leader’s
and follower’s facilities. When new facilities can be added (strategies NEW and
JNT), n − 10 nodes are candidate locations for the new facilities (nodes that occupy
one’s facilities are not candidates for new facilities) and are assigned a radius of 0.
We used r

j

0 = 20, and Sj = 0 for expanding existing facilities and the same Sj > 0
for establishing any new facility.

The programs for finding the optimal solution, with no reaction by the competi-
tor, were coded in Fortran and compiled by an Intel 11.1 Fortran Compiler with
no parallel processing, and run on a desktop with the Intel 870/i7 2.93 GHz CPU
Quad processor and 8 GB RAM. Only one thread was used. By the computational
experiments in Drezner et al. (2012) a budget of 5000 leads to very long com-
putational times. Therefore, in preparation for solving the leader–follower model,
we first experimented with a budget of 1500. For larger budgets run times may be
prohibitive and it may be necessary to replace the branch and bound procedure with
the effective tabu search described in Drezner et al. (2012).

The branch and bound optimal algorithm is used to solve the follower’s problem.
Since it is used numerous times in the solution procedure for the leader’s problem,
we opted to apply a budget of 1500 and a setup cost of 500 for both the leader
and the follower. Both the leader and the follower apply the JNT strategy. Tabu
search, which does not guarantee optimality, is used to solve the leader’s problem.
We therefore repeated the solution of each problem instance for at least 20 times to
assess the quality of the tabu search solutions. We were able to solve (in reasonable
run times) problems with up to 400 demand points.

12.4.3.1 Computational Experiments with No Competitor’s Reaction

In our “leader–follower” paper Drezner et al. (2015), we first reported experiments
with solving the leader’s problem with no reaction from the follower. This was
needed to establish a baseline and was performed by the branch and bound rigorous
algorithm. When solving the leader–follower problem, this algorithm is performed
to find the follower’s optimal solution and consequently the leader’s objective
function.

In Drezner et al. (2015), we also reported the analysis of the percent of market
share captured: by the chain (leader), by the competitor (follower), and from lost
demand as a function of the budget following the leader’s optimal action. The
follower takes no action. The setup cost is Sj = 300 and the JNT strategy is applied.
As expected, one’s chain market share increases and the competitor’s market share
declines. Some of the increase in the leader’s market share comes at the expense of
the competitor and some comes from capturing demand that is presently lost. It is
interesting that the proportion of the additional market share from the competitor
remains almost constant for all budgets tested. The average for all 40 problems is
44.2% for a budget of 1500, 44.2% for a budget of 2000, 44.9% for a budget of
2500, and 46.7% for a budget of 5000. A larger percentage of market share gained
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comes from lost demand. These percentages are the complements of the percentages
gained from competitors or about 55%.

For the branch and bound algorithm for the JNT strategy solving the leader’s
problem when the follower does not react, problems with up to 400 demand points
were solved in less than a quarter of a second. We then tested the three strategies
for a setup cost of Sj = 300. The lower setup cost provides more options for the
leader and, therefore, the run times (and number of nodes) are significantly higher,
especially for large values of n.

12.4.3.2 Computational Experiments for Solving the Leader–Follower
Problem

The tabu search procedure for finding the leader’s best solution after the follower’s
reaction was programmed in C#. Its effectiveness was first tested on 160 JNT
instances (40 instances for each budget) optimally solved, i.e., assuming no
follower’s reaction. Our tabu search was capable of finding optimal solutions to
148 out of 160 instances and sub-optimal solutions (avg. error: 0.11%, max error:
0.41%) to the remaining 12 instances. We also observed that, for the budget of
1500, only one instance (#31) was not solved optimally by tabu search and the
error was 0.04%. In the subsequent experiments reported in Drezner et al. (2015),
we considered a budget of 1500.

Next, we extended the leader’s solution by adding the branch and bound
procedure (the follower’s solution) to the tabu search. The original parameters used
for solving the leader’s problem

(
wi = 1

i

)
did not provide interesting results because

the weights declined as the index of the demand point increased and thus both the
leader and the follower concentrated their effort on attracting demand from demand
points with a low index (high wi) and “ignored” demand points with higher indices.
We therefore assigned equal weights of “1” to all demand points. We used a budget
of 1500 and a setup cost of 500 for both the leader and the follower.

As a result of extensive experiments, the following parameters were used in the
tabu search for solving the leader’s problem: The number of iterations was set to
1000, and the length of the tabu tenure was randomly generated every iteration
between tmin = 5 and tmax = 8. The starting solutions for the tabu search are
the results of the greedy algorithm described in Sect. 12.4.2.1 using between 10%
and 100% (randomly generated) of the available budget.

The optimal solution for the follower was found by using the Fortran program
that finds the optimal solution for the follower once the action taken by the leader
is known. Run times were quite long so we solved the first 20 problems up to
400 demand points. We solved the first 10 problems 100 times each, the next five
problems (n = 300) 50 times each, and the next 5 problems (n = 400) 20 times
each. Recall that the follower’s problem was solved optimally and thus these results
are valid.

The reader is referred to our paper Drezner et al. (2015) for details and
comprehensive discussion of the results.
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12.5 The Multiple Markets Competitive Location Problem

In our third follow-up paper Drezner et al. (2016), we consider a competitive
location model with a very large number of demand points and facilities. Applying
existing solution methods may, at best, provide a good heuristic solution.

The basic problem the company faces is how to invest its available budget in
order to expand chain facilities, either by improving the attractiveness of some
existing ones, by building new facilities, or by a combination of both actions. Such
problems cannot be optimally solved for large instances with currently available
computational resources. In Drezner et al. (2016), we investigated a special case
for which optimal solutions may be obtained for large problems, and illustrated this
approach by optimally solving a problem with 5000 demand points and 400 existing
facilities (200 chain facilities and 200 competing facilities).

It is quite common for large problems that a large market area consists of a
union of mutually exclusive sub-markets. An international corporation (for example,
McDonald’s) has facilities in many markets that are mutually exclusive, i.e.,
customers in one market area do not patronize outlets in other markets or cross-
patronizing between markets is negligible. This may well be the case even on a
smaller scale when the market can be partitioned to “almost” mutually exclusive
sub-markets when a large distance exists between clusters of demand points. For
example, urban areas in Texas such as Dallas, Houston, San Antonio, Austin, etc. are
mutually exclusive. Consumers residing in Dallas will rarely patronize a McDonald
outlet in San Antonio.

The contribution of our Drezner et al. (2016) paper was twofold: (1) dealing with
multiple mutually exclusive sub-markets, and (2) discretizing the budget so that its
allocation to each sub-market is not a continuous variable.

Suppose that the market can be partitioned into m mutually exclusive sub-
markets. If we know the budget allocated to each sub-market, we may be able to find
the optimal solution (where to locate new facilities and which existing facilities to
expand) for each sub-market separately. This simplifies the formulation. However,
the resulting problem is intractable as well because m variables representing the
budget allocated to each sub-market are added to the formulation (in addition to
the decision variables in each sub-market). In addition, a constraint that the sum
of these individual budgets is equal to the available budget is added. A Lagrangian
approach (adding a Lagrange multiplier for the constraint on the total budget and
finding its value) is not applicable to this particular problem. The formula for the
profit obtained in a sub-market as a function of the budget allocated to that sub-
market is not an explicit expression.

Three objectives are investigated: (1) Maximizing firm’s profit, (2) maximizing
firm’s return on investment, and (3) maximizing profit subject to a minimum
acceptable return on investment. The last objective is similar in many ways to the
threshold concept where the objective is to minimize the probability of falling short
of a profit threshold or a cost overrun (Drezner et al. 2002b; Drezner and Drezner
2011). The first paper to introduce the threshold concept was Kataoka (1963) in
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the context of transportation problems. Frank (1966, 1967) considered a model of
minimizing the probability that the cost function in the Weber or minimax problems
(Love et al. 1988) on a network exceeds a given threshold. The threshold concept
has been employed in financial circles as a form of insurance on a portfolio, either
to protect the portfolio or to protect firm’s minimum profit (Jacobs and Levy 1996).

12.5.1 Multiple-Market Competitive Location Solution
Approach

There are m mutually exclusive sub-markets, each with given data about chain
facilities, competitors, and demand points. A budget B is available for an investment
in all m sub-markets. In order to diversify the investment, we can impose a
maximum budget of B0 in each of the sub-markets. The maximum budget can
be different for different sub-markets. Suppose that the budget B is divided into
K units, each unit is B

K
dollars. For example, we can use K = 1000 so that each

unit is 0.1% of the total budget. Since all m sub-markets are mutually exclusive we
can find the maximum profit for each individual sub-market by investing in sub-
market j = 1, . . . , m a budget of bj = i B

K
for some 0 ≤ i ≤ K . If the amount to be

invested in a particular sub-market cannot exceed B0 dollars, then i
K

B ≤ B0 leading

to 0 ≤ i ≤ K
B0
B

= imax. We assume that the maximum profit for a given investment
in a given sub-market can be found by an optimal algorithm or, if necessary, by a
good heuristic algorithm. The result is a matrix P of imax rows and m columns. The
element pij for 1 ≤ i ≤ imax and 1 ≤ j ≤ m in the matrix is the maximum profit
obtained by investing i B

K
in sub-market j . For i = 0 the profit is zero. The problem

is solved in two phases:

12.5.1.1 Phase 1: Calculating the Maximum Profit of a Sub-market for
All Possible Budgets

Since each sub-market is independent of the other sub-markets, the maximum profit
obtained in a sub-market for a given budget can be found by any existing competitive
location solution method. There are also heuristic approaches proposed for such
problems when a sub-market leads to a large problem. A problem consisting of 5000
demand points is too big for most published approaches. However, as we illustrate
below, if such a problem can be divided to 20 sub-markets consisting between
100 and 400 demand points each, it is tractable for most solution approaches. The
following are examples of competitive models and solution approaches that can be
applied to find the maximum profit for a sub-market for a given budget allocated to
that sub-market:

• Aboolian et al. (2007) solved the multiple facility location problem with a limited
budget in discrete space within a given α% of optimality.
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• Plastria and Vanhaverbeke (2008) solved the problem defined by Aboolian et al.
(2007) in a leader–follower modification. The leader–follower model is also
termed the Stackelberg’s equilibrium model (Sáiz et al. 2009; Stackelberg 1934).

• Fernandez et al. (2007) and Toth et al. (2009) solved the same problem as
Aboolian et al. (2007) in a planar environment.

• Drezner and Drezner (2004) solved optimally the single facility problem based
on the gravity formulation for a given budget (attractiveness).

• Drezner et al. (2012) solved optimally the multiple facilities problem with a
limited budget in discrete space. New facilities can be constructed and existing
facilities improved.

• Drezner et al. (2015) solved the leader–follower version of the formulation in
Drezner et al. (2012). The competitor (follower) is expected to improve his
facilities or build new ones in response to the leader’s action. The objective is
to maximize the leader’s market share following the follower’s action.

For K = 1000 (a parameter), a matrix P of up to 1001 rows corresponding to
the possible investments, and m columns corresponding to the m sub-markets can be
calculated by solving 1000m sub-problems. Of course, an investment of zero yields
zero profit and need not be solved.

12.5.1.2 Phase 2: Calculating the Total Profit for All Markets Combined

Once the matrix P is available, the distribution of B among the m sub-markets can
be found in two ways. One way is solving a binary linear program and the other way
is by dynamic programming.

12.5.1.3 Binary Linear Programming Formulation

Let xij for 1 ≤ i ≤ K and 1 ≤ j ≤ m be a binary variable that is equal to 1 if
a budget of i B

K
is invested in sub-market j and zero otherwise. The total profit is

imax∑
i=1

m∑
j=1

pij xij . The total investment is B
K

imax∑
i=1

m∑
j=1

ixij

max

⎧
⎨

⎩

imax∑

i=1

m∑

j=1

pij xij

⎫
⎬

⎭ (12.23)

Subject to:

imax∑

i=1

xij ≤ 1 for j = 1, . . . , m (12.24)



12 Cover-Based Competitive Location Models 311

imax∑

i=1

m∑

j=1

ixij ≤ K (12.25)

xij ∈ {0, 1} (12.26)

which is binary linear program with imax × m variables and m + 1 constraints.
The constraint (12.24) guarantees that only one budget value is selected for each
sub-market and if all xij = 0 for sub-market j , then no budget is allocated to sub-
market j .

12.5.1.4 Dynamic Programming

Row zero is added to matrix P with zero values. The stages in the dynamic
programming are the maximum profit for a budget i B

K
by investing only in the first j

sub-markets. Let the matrix Q = [qij ] be the maximum profit obtained by investing
a budget of i B

K
in the first j sub-markets. By definition qi1 = pi1. For 2 ≤ j ≤ m

the following recursive relationship holds:

qij = max
0≤r≤i

{
qr,j−1 + pi−r,j

}
.

The values qim are the maximum possible profit for spending a total budget i B
K

in
all sub-markets. Some sub-markets may be assigned no investment. One advantage
of dynamic programming over the binary linear programming approach is that the
maximum profit is obtained for each partial budget in one application of the dynamic
programming, while K solutions of the binary linear programming are required. In
addition, the maximum return on investment (ROI) is obtained for any partial budget
by one application of dynamic programming.

12.5.1.5 Maximizing Profit Subject to a Minimum ROI

Finding the maximum profit subject to a minimum ROI can be done using the results
obtained for maximizing the profit for a given budget. The ROI is the ratio between
the profit and the investment (budget). It can be calculated for each investment value
yielding a vector of ROI values. The maximum profit for a ROI greater than a certain
value is found by calculating the maximum profit for all investments whose ROI
exceeds the given value.

It can also be done by solving binary linear programs similar to the formulation
presented in Sect. 12.5.1.3. Only one additional constraint is added to the binary
linear programming formulation (12.23)–(12.26). By definition, the ROI is the ratio
between the profit and the investment. Therefore,
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ROI =

imax∑
i=1

m∑
j=1

pij xij

B
K

imax∑
i=1

m∑
j=1

ixij

.

Suppose that a minimum ROI of α is required. ROI ≥ α is equivalent to:

imax∑

i=1

m∑

j=1

{
pij − iα

B

K

}
xij ≥ 0 . (12.27)

Constraint (12.27), which is linear, is added to the formulation (12.23)–(12.26)
leading to a binary linear program with imax × m variables and m + 2 constraints.

12.5.2 An Illustrative Multiple Markets Example

Once the maximum profit for a given investment in an individual sub-market
is found, our general framework can be implemented. All the formulations and
solution procedures described in Sect. 12.5.1.1 can be used for this purpose. In
Drezner et al. (2016), we opted to apply the optimal branch and bound algorithm
proposed in Drezner et al. (2012) for finding the maximum profit by investing a
given budget in a single sub-market.

The networks selected for our sub-markets are the first 20 Beasley (1990a)
networks designed for the evaluation of algorithms for solving p-median problems.
Beasley (1990a) did not consider competitive models. Demand points, existing
facilities, and potential locations for new facilities are located at the nodes of the
network. Distances along links are measured in tenths of miles. These networks
are easily available for testing other models as well. They can be used for future
comparisons.

• 5000 demand points are located in 20 sub-markets. Each sub-market consists of
between 100 and 400 demand points.

• 200 chain facilities and 200 competing facilities presently operate in these sub-
markets.

• Each demand point has an available buying power to be spent at one’s facilities
or the competitors’ facilities.

• For simplicity of presentation, each sub-market has a total buying power of $150
million for a total of $3 billion.

• A budget of up to $100 million is available for improvements of existing facilities
and construction of new ones. No more than $30 million can be allocated to each
sub-market.
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• Existing facilities can be expanded and new facilities can be constructed at any
node of the network.

• Each facility has a “circle of influence” defined by a radius of influence inside
which they attract customers.

• For simplicity of presentation we assume that each existing facility has a radius
of influence of 2 miles.

• The cost of expanding a facility is proportional to the increase in the area of its
circle of influence. Expanding a facility from the existing radius of influence of
2 miles to a radius of influence of r miles costs r2 − 4 million.

• Building a new facility with radius of influence r entails a $5 million setup cost
plus a cost of r2 million.

We want to determine which, if any, of the 200 existing facilities should be
expanded and at which of the 4800 potential locations should new facilities be
constructed to maximize profit. Maximizing the return on investment (ROI) is also
considered, as well as maximizing profit subject to a minimum ROI value. The radii
of the expanded and new facilities are variables, for a total of 5000 variables.

The branch and bound optimal algorithm (Drezner et al. 2012) and the dynamic
programming procedure were programmed in Fortran using double-precision arith-
metic. The programs were compiled by the Intel 11.1 Fortran Compiler and run,
with no parallel processing, on a desktop with the Intel 870/i7 2.93 GHz CPU Quad
processor and 8 GB memory. Only one thread was used.

The matrix P contains 6020 values (301 rows for a budget of zero and between
$0.1 and $30 million, and 20 columns, one for each sub-market), each being the
maximum profit for a given budget invested in a given sub-market. Note that an
investment of $0 yields a profit of $0. All 6020 optimal solutions that are needed for
the construction of matrix P were obtained in about 103 min of computing time.

Once the matrix P is found, obtaining the maximum profit for all partial budgets
by solving binary linear programs using CPLEX 12.A took about 3 s for solving
each of the 300 problems. The 300 results using dynamic programming were
obtained in less than 1 s. Finding the maximum profit subject to a minimum ROI
requirement by solving the binary linear program required about 1.6 s. Once the 300
results found by dynamic programming are available, the solution to the maximum
profit for a minimum ROI is found by constructing a simple excel file.

In Table 12.1 we summarize the maximum possible profit along with the
maximum return on investment (ROI) and the corresponding investments leading
to these profits and ROIs. In five of the 20 sub-markets no profit is possible and no
investment should be made. If unlimited budget is available and the best investment
strategy is selected for each sub-market, then the total investment is $298.5 million
leading to a profit of $198.4 million and ROI of 0.665.

Sub-market #20 was selected for depiction of the profit and the ROI as a function
of the investment in that sub-market. In Fig. 12.2, these graphs are depicted. As
reported in Table 12.1, the maximum profit of $26.884 million dollars is obtained
for an investment of $24.1 million and a maximum ROI of 1.51 is achieved for an
investment of $14.5 million.



314 P. Kalczynski

Table 12.1 Individual sub-markets results

Maximizing profit Maximizing ROI

Sub- Demand
market points Million $ to invest Profit in million $ Million $ to invest Max ROI

1 100 0 0 0 0

2 100 0 0 0 0

3 100 0 0 0 0

4 100 0 0 0 0

5 100 0.5 0.056 0.5 0.112

6 200 0 0 0 0

7 200 24.1 1.741 0.5 0.237

8 200 0.9 0.210 0.9 0.233

9 200 1.7 0.541 1.3 0.397

10 200 29.7 3.561 25.3 0.140

11 300 22.5 18.558 13.7 0.961

12 300 26.3 12.131 2.8 0.781

13 300 24.1 20.592 17.2 1.161

14 300 29.5 6.762 1.3 0.430

15 300 28.5 18.956 19.1 0.844

16 400 24.4 22.230 11.3 1.517

17 400 22.1 22.499 5.7 1.582

18 400 22.1 25.716 14.5 1.476

19 400 18.0 18.010 9.7 1.228

20 400 24.1 26.884 14.5 1.510

In Fig. 12.3, we depict the profit and ROI for the total investment in all 20
sub-markets. These values were obtained using dynamic programming. The profit
increases as a function of total investment. However, ROI is quite erratic. ROI
reaches the maximum when $5.7 million is invested in sub-market #17 and no
investment made in other sub-markets.

In Fig. 12.4, the maximum profit for a minimum ROI value is plotted for an
investment of up to $100 million. As expected, when higher minimum ROI is
required the maximum profit declines.

12.6 Conclusions

This chapter summarized four papers on competitive location: Drezner et al. (2011,
2012, 2015, 2016). All four papers utilize the radius of influence and are based on
an assumption of equal division of buying power among facilities whose radius of
influence captures that power.

We presented efficient methods for locating multiple new, and expanding exist-
ing, facilities in such a competitive environment. We also presented a leader–
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Fig. 12.2 Profit and ROI as a function of the investment in sub-market #20

follower model in which initial actions of the leader (locate new and/or improve
existing facilities) are countered by follower’s response, along with a solution
method. Finally, we discussed a multiple disjoint markets problem with real-world
objectives and presented efficient solution techniques.

All these methods have a common objective: the maximization of the market
share. Since profit is (usually) a monotonically increasing function of market share
captured, this objective is associated with maximizing profit.

The original idea of locating new facilities based on their radii of influence
called for an extension allowing expanding existing facilities in addition to locating
new ones. This concept, however, was considered in a static context in which a
decision to locate new and expand existing facilities was based on the “ceteris
paribus” assumption from the classical economics, i.e., no reaction from the
competitors. This assumption is released in the leader–follower version of our
model, in which the leader’s decision takes into account the actions of competitors,
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Fig. 12.3 Profit and ROI as a function of the total investment

Fig. 12.4 Maximum profit subject to minimum ROI
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directly following the leader’s decision. Like in a game of chess, the leader must
carefully consider each move (locating new and expanding existing facilities) in
terms of the competitors’ counter-moves. Adding this new dimension to the problem
significantly increased the difficulty of finding a solution but it also made our model
more realistic.

Even in its original formulation, the competitive location problem is combinato-
rially explosive as its complexity increases much faster than the number of facilities
to be located or expanded. The practical considerations such as the concentration
of demand points in urban areas and the limited sphere of influence for most types
of facilities lead us to the model in which multiple disjoint markets are identified
and considered as separate environments for locating new and expanding existing
facilities. This new approach allows tackling large practical competitive location
problems which would be too difficult or impossible to solve without splitting them
into disjoint sub-markets.

Future research involving our competitive location model might consider down-
grading and closing existing facilities (together with opening and upgrading) as
a new strategy. Studying the effects of including this new strategy in the leader–
follower model is another interesting research avenue to explore. Also, additional
moves in the competitive game (e.g., leader’s move, follower’s response, leader’s
response) could be investigated, however, on a much smaller scale. Other game-
theoretical approaches such as forming coalitions with some competitors could be
investigated. Lastly, a gradual cover extension of our original model (with multiple
radii of influence) could be considered.
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Küçükaydın, H., Aras, N., & Altınel, İ. K. (2011). A discrete competitive facility location model

with variable attractiveness. Journal of the Operational Research Society, 62, 1726–1741.
Leonardi, G., & Tadei, R. (1984). Random utility demand models and service location. Regional

Science and Urban Economics, 14, 399–431.
Love, R. F., Morris, J. G., & Wesolowsky, G. O. (1988). Facilities location: Models & methods.

New York: North Holland.



320 P. Kalczynski

Megiddo, N., Zemel, E., & Hakimi, S. L. (1983). The maximum coverage location problems. SIAM
Journal of Algebraic and Discrete Methods, 4, 253–261.

Nesterov, Y. E., & Nemirovskii, A. (1995). An interior-point method for generalized linear-
fractional programming. Mathematical Programming, 69(1–3), 177–204.

Plastria, F. (2002). Continuous covering location problems. In Z. Drezner & H. W. Hamacher
(Eds.), Facility location: Applications and theory (pp. 37–79). Berlin: Springer.

Plastria, F., & Carrizosa, E. (2004). Optimal location and design of a competitive facility.
Mathematical Programming, 100, 247–265.

Plastria, F., & Vanhaverbeke, L. (2008). Discrete models for competitive location with foresight.
Computers & Operations Research, 35, 683–700.

Redondo, J. L., Arrondo, A., Fernández, J., García, I., & Ortigosa, P. M. (2013). A two-level
evolutionary algorithm for solving the facility location and design (1|1)-centroid problem on
the plane with variable demand. Journal of Global Optimization, 56, 983–1005.

Redondo, J. L., Fernandez, J., Garcia, I., & Ortigosa, P. M. (2009). Solving the multiple competitive
facilities location and design problem on the plane. Evolutionary Computation, 17, 21–53.

Redondo, J. L., Fernández, J., García, I., & Ortigosa, P. M. (2010). Heuristics for the facility
location and design (1|1)-centroid problem on the plane. Computational Optimization and
Applications, 45, 111–141.

Reilly, W. J. (1931). The law of retail gravitation. New York: Knickerbocker Press.
ReVelle, C. (1986). The maximum capture or sphere of influence problem: Hotelling revisited on

a network. Journal of Regional Science, 26, 343–357.
ReVelle, C., Toregas, C., & Falkson, L. (1976). Applications of the location set covering problem.

Geographical Analysis, 8, 65–76.
Saidani, N., Chu, F., & Chen, H. (2012). Competitive facility location and design with reactions of

competitors already in the market. European Journal of Operational Research, 219, 9–17.
Sáiz, M. E., Hendrix, E. M., Fernández, J., & Pelegrín, B. (2009). On a branch-and-bound approach

for a Huff-like Stackelberg location problem. OR Spectrum, 31, 679–705.
Schilling, D. A., Vaidyanathan, J., & Barkhi, R. (1993). A review of covering problems in facility

location. Location Science, 1, 25–55.
Serra, D., & ReVelle, C. (1995). Competitive location in discrete space. In Z. Drezner (Ed.),

Facility location: A survey of applications and methods (pp. 367–386). New York: Springer.
Stackelberg, H. V. (1934). Marktform und Gleichgewicht. Vienna: Springer.
Sun, H., Gao, Z., & Wu, J. (2008). A bi-level programming model and solution algorithm for the

location of logistics distribution centers. Applied Mathematical Modelling, 32, 610–616.
Teitz, M. B., & Bart, P. (1968). Heuristic methods for estimating the generalized vertex median of

a weighted graph. Operations Research, 16, 955–961.
Toppen, F., & Wapenaar, H. (1994). GIS in business: Tools for marketing analysis. The Hague:

EGIS Foundation.
Toth, B., Fernandez, J., Pelegrin, B., & Plastria, F. (2009). Sequential versus simultaneous approach

in the location and design of two new facilities using planar Huff-like models. Computers &
Operations Research, 36, 1393–1405.

Watson-Gandy, C. (1982). Heuristic procedures for the m-partial cover problem on a plane.
European Journal of Operational Research, 11, 149–157.


	12 Cover-Based Competitive Location Models
	12.1 Introduction
	12.2 A Cover-Based Competitive Location Model
	12.2.1 Locating New Facilities
	12.2.2 Upper Bounds for the Cover-Based Competitive Location Problem
	12.2.2.1 First Upper Bound (UB1)
	12.2.2.2 Second Upper Bound (UB2)
	12.2.2.3 Third Upper Bound (UB3)

	12.2.3 Heuristic Algorithms
	12.2.3.1 The Greedy Heuristic
	12.2.3.2 The Ascent Algorithm
	12.2.3.3 Tabu Search
	12.2.3.4 The Tabu Search for the Cover-Based Competitive Location Problem

	12.2.4 Computational Experiments
	12.2.4.1 Set#1
	12.2.4.2 Set#2


	12.3 Strategic Competitive Location
	12.3.1 The Three Strategic Competitive Location Models
	12.3.1.1 Notation
	12.3.1.2 Calculating the Increase in Market Share
	12.3.1.3 Preliminary Analysis

	12.3.2 A Branch and Bound Algorithm
	12.3.2.1 An Upper Bound
	12.3.2.2 The Algorithm

	12.3.3 Heuristic Algorithms
	12.3.3.1 The Greedy Heuristic
	12.3.3.2 The Ascent Algorithm
	12.3.3.3 The Tabu Search

	12.3.4 Computational Experiments

	12.4 A Leader–Follower Model for Discrete Competitive Location
	12.4.1 Formulation of the Leader–Follower Model
	12.4.1.1 Notation
	12.4.1.2 Calculating the Market Share
	12.4.1.3 Calculating the Increase in Market Share
	12.4.1.4 The Objective Functions
	12.4.1.5 The Constraints
	12.4.1.6 The Two Formulations

	12.4.2 Solution Algorithms
	12.4.2.1 The Greedy-Type Heuristic for Generating Starting Solutions
	12.4.2.2 The Tabu Search Algorithm
	12.4.2.3 The Neighborhood of the Tabu Search
	12.4.2.4 The Algorithm

	12.4.3 Computational Experiments
	12.4.3.1 Computational Experiments with No Competitor's Reaction
	12.4.3.2 Computational Experiments for Solving the Leader–Follower Problem


	12.5 The Multiple Markets Competitive Location Problem
	12.5.1 Multiple-Market Competitive Location Solution Approach
	12.5.1.1 Phase 1: Calculating the Maximum Profit of a Sub-market for All Possible Budgets
	12.5.1.2 Phase 2: Calculating the Total Profit for All Markets Combined
	12.5.1.3 Binary Linear Programming Formulation
	12.5.1.4 Dynamic Programming
	12.5.1.5 Maximizing Profit Subject to a Minimum ROI

	12.5.2 An Illustrative Multiple Markets Example

	12.6 Conclusions
	References


