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Preface

Tammy & Zvi Drezner © 2008 H.A. Eiselt

Few researchers can be considered as influential in several fields as Zvi Drezner.
In his main field of contributions, location theory, he is probably one of the most
prolific authors. In his 75th year, some of his coauthors and friends considered him
deserving of a book that synthesizes some of his contributions and highlight their
importance for different fields. Not less relevant is his work with colleagues and
students. He has collaborated with most researchers in the facility location field
and has taught numerous students that now follow his path. As a matter of fact,
following the nomenclature for the followers of the famous mathematician, who
obtain the so-called Erdös numbers, we would like to introduce “Drezner numbers.”
A Drezner number is simply the number of connections needed to connect oneself
with Zvi, given that each connection is a scientific paper. In other words, someone
who coauthored a paper with Zvi will have a Drezner number of 1, somebody who
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vi Preface

wrote a paper with someone who is among Zvi’s coauthors, has a Drezner number
of 2, and so forth. The two editors of this book are both proud to have a Drezner
number of 1. Then again, given the “six degrees of separation” and the fact that Zvi
is a very prolific writer, this may not be too surprising.

Other than Zvi’s academic achievements, which we will discuss below, the
birthday boy is also a character, something rare in this increasingly standardized
world. Some years ago, one of us was invited to his and his wife Tammy’s home.
They were very nice to pick us up at our hotel and get us back. The way back turned
out to be a lot longer. The reason was not the usual Los Angeles traffic, but when
they got us to our hotel, we sat for at least an hour in the car enjoying their repertoire
of Jewish jokes. That alone made for a wonderful evening. We also learned why Zvi
is so prolific. As most of his work involve heuristic algorithms and computational
testing, he had five computers running in parallel on different problems, crushing
numbers, and preparing new publications. One of those computers was in the trunk
of the car, making the daily commute a lot more productive than most of us will ever
be. That’s something to think about. We did another piece of education the next day.
Zvi and Tammy took us to a Neiman-Marcus store, where they showed us a purse,
suggesting this would be a great gift for my wife. I had to pass, though, as $5000
purses are not on my list of things to get. Only in California, I guess.

Back to computations and heuristics. Apparently, humor is in the blood in all of
Zvi’s family. I distinctly recall the European Working Group on Location meeting
in Barcelona in 2000, when Zvi’s wife, Tammy, presented a work by both of them
on genetic algorithms. They had introduced different genders in their algorithm,
which apparently worked out well computationally. Tammy commented that with
the words (a truism, I guess) that “apparently, it makes sense to have sex.” There is
nothing we can add to that.

Another amazing fact is Zvi’s ability to pull “well-known” facts from geometry,
trigonometry, and other fields out of a hat, whenever needed. I remember telling Zvi
about one of the problems I was working on. He listened, and when I was done,
he said something like “oh, that!” This reminded me of the well-publicized episode
of young G. B. Dantzig, who told John von Neumann about his results on linear
programming duality, which apparently sparked the same response.

It would be exceedingly difficult to pinpoint Zvi’s major contribution; also, this
is a highly personal assessment. To us, his 1982 paper in Regional Science and
Urban Economics, probably the first step toward competitive location models by an
operations researcher, will certainly be very close to the top of the list. The merging
process for the quadratic assignment problem in his 2003 paper in INFORMS
Journal on Computing was a breakthrough in developing heuristics for quadratic
assignment and other location problems. The 2004 paper on the “Big Triangle Small
Triangle” method coauthored with Atsuo Suzuki in Operations Research had many
follow-ups.

It would be impossible to include all Zvi’s work or the impact he has had on
other researchers in a single book.

We know that Zvi is knowledgeable in many fields, but we thought it would be
an excellent idea if we let him write about the topic he must know most about:
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his own achievements. He has summarized them in the first chapter of this book.
Starting with the story of how he received his degree, we learn about his first
paper in 1962 (many of those who have followed in his footsteps and are now
active in the field were not even born then!) in the Astronomer’s Bulletin, a story
vaguely reminiscent of Varignon and his gnomonics. This is followed by Zvi’s really
impressive curriculum vitae and some inspiring thoughts regarding teaching the
subject.

Richard L. Church has a fresh look at the Weber problem. He does away with the
usual view of Weber’s contribution, which looks not so much as Weber’s book but
as Georg Pick’s mathematical appendix, based on Launhard’s work. It turns out that
while Weber describes a very simple prototype of a location problem that goes little
beyond the usual Fermat and Torricelli models, his actual discussion is about much
more complex problems, a number of which sometimes are referred to by some of
his latter-day successors as “generalizations of the standard Weber problem,” even
though they were already described by Weber.

Jack Brimberg and Said Salhi investigate p-median problems in continuous
space. Based on Cooper’s original location—allocation method—they first review a
number of heuristic algorithms based on Cooper’s contribution, followed by the
introduction of a number of refinements. New algorithms, such as a depth-first
search method and a decomposition technique, are described, and computational
results are offered.

Atsuo Suzuki’s main interest concerns Weber problems, and his contribution in
this book is a Weber problem with a new twist. In particular, the piece discusses
a Weber problem on the sphere. The applications of such problems are found on
locations on a global scale. The formulation of this problem turns out to have a
nonconvex objective. As a result, the usual Weiszfeld algorithm will not necessarily
find an optimal solution. He employs a version of the big triangle-small triangle
method, developed by Zvi Drezner and the author.

Anita Schoebel’s work is on well-known continuous locations but with the
additional twist that the single new facility has to have integer coordinates. The
applications of this problem are found in robust decision-making. Her paper
delineates finite dominating sets for problems with �1, �2, and �∞ distances.

The chapter by George Wesolowsky also looks at the Weber problem with
particular focus on the many papers he and Zvi have written together on the
subject. This includes the usual minisum problem, continuous location problems
with minimax and maximin objectives (the latter in case of undesirable facilities),
covering models, hub problems, as well as different solution approaches, including
trajectory methods and a Demjanov-style algorithm.

Mozart Menezes’s work deal with voting methods, “wisdom of the crowd,” and
Condorcet points. In location and voting problems, he explores relations between
Weber solutions and Condorcet points and conducts numerical experiments regard-
ing the computation of Condorcet points for problems with Euclidean distances.
He uses the notion of a “benevolent dictator” to examine the relative efficiency of
Condorcet solutions.



viii Preface

Taly Drezner, a scientist in biogeography, discusses heuristics in her paper with a
focus on genetic algorithms. Her piece on biological principles in genetic algorithms
with male and female subsets is an original work. She subsequently describes some
statistical tests developed to verify computational results.

In her paper, Sibel Alumur reviews a variety of hub location and related problems
under special consideration of Zvi Drezner’s contributions to the individual field.
Besides hub location problems, she includes round trip location problems, transfer
point location problems, and collection depot location problems. Each of the
problems is formulated, and the impact of Zvi’s work on the specific field is
highlighted.

Tammy Drezner, best known for her work on attraction functions, presents
thoughts and results in her contribution to this book. Defining the concept of
attractiveness, she first addresses distance decay and different attraction func-
tions. She then explores different extensions, e.g., budget constraints, lost demand
(nonessential goods), and solution concepts (e.g., von Stackelberg’s famed leader-
follower model) along with properties, such as the consistency of rules. Some results
concerning solution techniques finish her chapter.

Pawel Kalczynski’s contribution concerns competitive location models in the
plane that are based on the concept of covering. He delineates spheres of influence,
defines purchasing power, and formulates a competitive model based on covering
ideas. Leader-follower algorithms and heuristics are offered alongside with bounds
and computational experience.

Xin and Wang examine a location problem with a median objective, in which the
weights, representing the customers, are random. The authors consider problems, in
which a “value-at-risk” constraint has been added. They develop an algorithm for
the problem, which they illustrate by means of a numerical example.

The last chapter in this book by Dawit Zerom is different from the others, in that
it deals with a new statistical distribution, viz., the bivariate exponential distribution
and its properties, which he and Zvi developed together. We are glad to include this
work, as it is one of the many examples in which Zvi has gone beyond location
models and shown that he is, indeed, a true Renaissance man.

Last, but certainly not least, we would like to express our thanks to the Springer
staff, who were great as usual: Camille Price for snuckering us into putting together
another book; Matthew Amboy, Neil Levine, and Faith Su for supporting us all
the way and facilitating the process; as well as Aparajita Srivastava and Christine
Crigler in production. All that is left for us to do is to wave to Zvi (and, of course,
Tammy) and wish them many happy returns and many more papers.

Professor Marianov acknowledges the support by grant FONDECYT 1160025
and by the Complex Engineering Systems Institute through grant CONICYT PIA
FB0816.

Fredericton, NB, Canada H. A. Eiselt
Santiago, Chile Vladimir Marianov
February 2019
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Chapter 1
My Career and Contributions

Zvi Drezner

1.1 Early Career

I started my career earning a BA in Mathematics in 1965 from the Technion,
Israel Institute of Technology. I then served a mandatory service in the military
for an extended period of time so I could serve at the newly established computer
center as a computer programmer. The first computer, Philco 212, had a 32K
memory and its machine language was TAC. Later on the computer language
ALTAC (Algebraic TAC) was designed. Some years later ALTAC was modified to
FORTRAN (FORmula TRANslator) which is still widely used today. Most of my
programs nowadays I code in Fortran.

I registered for a master’s degree in the Technion. One of the projects that I
was assigned in the military computer center was the planning of a new military
base. There were 57 buildings/units planned and there were many requirements
that certain pairs of buildings should be close to one another (with a weighted
importance) and some should be far from one another (for example, the intelligence
office and the cafeteria or the entrance) and had negative weights. I was told that
the project was given to an architectural firm and they could not find a satisfactory
layout.

At the time I was not familiar with Operations Research and did not know
anything about layout algorithms. The approach I used for its solution was based

Z. Drezner (�)
Steven G. Mihaylo College of Business and Economics, California State University-Fullerton,
Fullerton, CA, USA
e-mail: zdrezner@fullerton.edu

© Springer Nature Switzerland AG 2019
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2 Z. Drezner

on Physics concepts. I imagined each building to be a circle (some are bigger than
others) and the weights being springs connecting pairs of circles with their strength
proportional to the weight. After a few attempts using this approach, I put all the
circles at one point and “exploded” them while connected with springs. The system
of circles was spread out, so I stopped the explosion at some point and let the circles
move back maintaining the springs and requiring that they do not overlap. When
the architectural firm got my layout they could not believe their eyes. All pairs
of buildings that needed to be close to one another were indeed close and those
that needed to be far from one another were indeed far. My military friend David
Levenbaum, who later did a Ph.D. in Physics, coined the name “The Big Bang”
method.

I decided to propose this approach as the thesis for my master’s degree. My
advisor Prof. Ilan Amith came up with the name “Dispersion-Concentration,” in
short—DISCON. Believing that I am going to get my master’s degree I applied and
was accepted for a Ph.D. at Tel-Aviv University.

When I defended my thesis, the committee decided that this thesis is qualified
for a Ph.D. The committee considered my defense as a defense of a Ph.D. proposal.
They said, “come back in a year, submit it and get a Ph.D.” They found two
professors in the corridor (for a Ph.D. defense you need five faculty rather than
three) who signed my defense. The criterion for a Ph.D. is that the committee
members consider the dissertation suitable for publication in the top journal of
the field. Indeed, the main part of the dissertation was published in Operations
Research (Drezner 1980). Another part of the dissertation was published much later
(Drezner 2010a). Follow-up papers include Drezner (1987a) where an alternative
approach based on the eigenvectors of the weights matrix is used. Marcoulides and
Drezner (1993) applied this approach to convert an n-dimensional data into a two
dimensional plot. This conversion method was used in Marcoulides and Drezner
(1999) for cluster analysis and in Drezner and Marcoulides (2006) for illustrating
the convergence of genetic algorithms.

I called Tammy and told her what happened. I said that I am not sure I want
to do it because I was accepted for a Ph.D. at Tel-Aviv university with a TAship.
Also, I will not have a master’s degree. Tammy said that I “must be out of my
mind, take it!” I talked to the faculty at Tel-Aviv University and they were very nice
about it and even offered me to keep my TAship even though I withdrew from the
Ph.D. program. The committee asked me whether I wouldn’t mind to get my degree
in Computer Science because they just founded the department. So, I am the first
Ph.D. in Computer Science from the Technion (Drezner 1975).

Scholar.Google reminded me of a refereed paper I co-authored during my
military service (Almogy et al. 1968). The paper simulates the operation of a fleet.
The simulation comprises two major parts: (a) the schedule generator, which assigns
schedules to the fleet elements by considering cargo generations at the different ports
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and determining the most profitable route for a particular ship within the limits of
the policy constraints; (b) the voyage generator, which moves each ship along the
route assigned to it by the schedule generator. The simulation was written for the
Philco 212 unit of the Computer Center of the Israeli Ministry of Defense.

I thought that Almogy et al. (1968) was my first refereed paper until a colleague
Micha Hofri reminded me of a manuscript written in Hebrew (Drezner 1962), when
I was 19, on methods for calculating a satellite orbit. I translated it to English and
summarized some highlights below.

1.1.1 Highlights of Drezner (1962)

Drezner (1962) appeared in four parts in the “The Stars in Their Month” Bulletin of
the Israeli Amateur Astronomers Society: Volume 9 (1962) No. 12, pages 136–141;
Volume 10 (1963) No. 3, 29–37, No. 4, 49–53, and No. 5, 65–70. It was collected
by the Society and published as one paper of 27 pages. I thank Shimon Malin
for his constructive comments and the extensive work he invested in preparing the
manuscript for publication.

In Drezner (1962) I show methods for calculating the time to complete an orbit,
the precession velocity, the satellite inclination to the earth equator, measuring the
satellite’s altitude, its entering and exiting the sun’s shade and calculating its average
height. I applied each method on my actual observations of the satellite Echo-1
launched on Aug 12, 1960. Echo-1 was a 100 ft (30.5 m) diameter metal balloon
reflecting the sun’s rays that was easily observed by the naked eye. Echo-1 re-
entered Earth’s atmosphere, burning up on May 24, 1968.

A satellite orbit can be described as an ellipse with the earth as one of its
foci (Kepler’s first law, Russell 1964). However, this ellipse is not stationary in
space. While moving around the earth, its plane is slowly rotating so that the line
perpendicular to its plane depicts a cone originating at the earth’s center (this is
termed precession).

If the ellipse was not rotating, the satellite would have moved in a stationary
ellipse in space. When observing the satellite in a particular moment we ignore, for
the purpose of the mathematical formulation, the ellipse’s precession and discuss
the ellipse that the satellite is moving in at that moment. This ellipse is termed “the
belt.” We then correct the position of the satellite for the precession motion. We
can say, for example, that the belt is passing overhead at a certain moment, if the
zenith is one of the belt’s points, even if the satellite is not there. If, for example, we
observe the satellite west of the zenith, we can conclude, most of the time, that the
belt passed the zenith earlier. The velocity of the precession’s rotation is the velocity
of the belt movement in space.
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Summary of Notation

Symbol Units Description

R km Earth radius

H km Satellite’s distance from earth’s center

h km Altitude of the satellite above earth (H − R)

ξ deg Satellite’s angle above the horizon

x deg The angle observed from the earth center between us and the satellite

γ deg The angle between the belt and the equatorial plane

φ deg Northern latitude of the observer (my home was at 32◦03′)
T0 h Precession time after 24-T0 hours (see Sect. 1.1.2)

T min Satellite’s time to complete one orbit (the period)

y min The time difference that the satellite is observed earlier next day

n days Number of days that the satellite moves to a next orbit (Sect. 1.1.5)

K Integer number of complete orbits per day (rounded down)

δ deg Sun’s inclination (northern)+74′ (minutes of degrees)

H km Half the larger axis of the ellipse

We also define: the great circle connecting west to east through the zenith as “the
line”; the point where the satellite crosses our latitude φ is termed “the true point”
(see Sect. 1.1.4).

1.1.2 Measuring the Precession Rate

Suppose that in a particular day the satellite was overhead at 19:00. Next day it will
probably not pass overhead. There are two reasons for that: (1) the belt will not
pass again overhead at 19:00 because of the precession, and (2) the satellite will not
necessarily be at that point in the belt. Suppose that after 5 days the satellite passes
overhead at 18:00. This means that the belt is passing overhead 60

5 = 12 min earlier
every day. To find T0 we wait for a number of days until the satellite passes overhead
again and divide the difference by the number of days.

1.1.2.1 Measuring the Precession of Echo-1

In order to measure the daily precession we need to measure at least twice the time
the belt was at the zenith. It is sufficient to find its passing “the line” near the zenith
and estimate the passing overhead. In Table 1.1 we list actual measurements of
Echo-1 and the passing at the zenith corrected by (1.13) below.

We show how to calculate the precession based on the first two observations.
The time between July 5, 1961, and April 21, 1962, is 290 days. Echo-1 completed



1 My Career and Contributions 5

Table 1.1 Observations of Echo-1 passage

Date Time At “the line” Estimated zenith time

July 5, 1961 3 h 44 min 30 s 5◦ W of zenith 3.66 h

April 21, 1962 18 h 19 min 45 s At the zenith 18.33 h

June 15, 1962 3 h 8 min 37 s 2.5◦ W of zenith 3.10 h

November 26, 1962 4 h 41 min 50 s 1◦ W of zenith 4.68 h

Table 1.2 Measuring the precession rate

Period No. of days “Satellite days” Time T0

July 5, 1961–April 21, 1962 290 290 + 3 + 1 81.33 0.2766

April 21, 1962–June 15, 1962 55 55 15.23 0.2769

June 15, 1962–November 26, 1962 164 164 + 2 46.42 0.2796

three full precession rounds and therefore the cumulative precession time is 81.33 h
(3 × 24 = 72 h + 18.33–3.66 h). The precession rate T0 is the precession time of
the orbit after a “satellite day,” which is 24 − T0 hours. We therefore add 3 days
because there were three full precession rounds and one more because the change
from morning to evening. In total, there were 294 satellite days and thus T0 =
81.33
294 = 0.2766 h. In Table 1.2 we depict the three calculations.

I speculate that the relative large change in the third period might have been
caused by a nuclear test by the USA at high altitude of 300 km over Johnston island
on July 9, 1962, at 11:00 Israel time. I calculated that Echo-1 was close to that
location and might have been jolted by that explosion.

1.1.3 Measuring the Inclination of the Belt to the Equatorial
Plane

Suppose that our latitude is smaller than the satellite’s inclination to the equatorial
plane. Suppose that the satellite passes overhead northward and after t1 hours moves
overhead southward. Consider Fig. 1.1. O is the earth’s center, points C,D,B are
on the satellite’s orbit, L is the center of the circle (inside the earth) of latitude φ.
The angle between LB and LC is 15t1 (in degrees) and therefore the angle between
LB and LA is half of it. We get

cos(7.5t1) = AL

LB
= AL

LO
× LO

LB
= cot γ tan φ. (1.1)
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Fig. 1.1 Proof of Eq. (1.1)

1.1.3.1 Measuring the Inclination of Echo-1 to the Equatorial Plane

Two measurements are applied for this calculation:

(1) On April 21, 1962, Echo-1 passed the zenith in 18 h 19 min 45 s from the south-
west to the north-east.

(2) On May 5, 1962, it passed at 21 h 41 min 39 s 2◦ west of the zenith going from
the north-west to the south-east. By the time correction for precession the belt
passed the zenith 2 × 0.016 h earlier, i.e., at the time 21.662 h.

In the first measurement Echo-1 passed at the zenith. We use T0 = 0.2769.
Fourteen days have passed, therefore, the first point passed the zenith 14×0.2769 =
3.877 h earlier, i.e., at 18.329 − 3.877 = 14.452. The difference is 21.662 −
14.452 = 7.210. However, formula (1.1) does not consider the precession. We need
to incorporate the precession movement during these 7.210 h. During this time the
belt progressed 7.210 T0

24−T0
= 7.210 0.2769

24−0.2769 = 0.084 h. Therefore, we use in (1.1)
t1 = 7.210 + 0.084 = 7.294 h. Using φ = 32◦03′ we get γ = 47◦17′ ± 2′.

1.1.4 Measuring the Period (First Method)

In order to determine the time it takes for the satellite to complete one orbit, we
need to find a point in the orbit which is easy to determine when the satellite went
through it. We select the point it crosses our latitude φ. If it happens to be observed
at the zenith, it is clearly above φ. If not, it looks like it passes over φ when it crosses
the line west-zenith-east which we call “the line.” However, this is not accurate. In
Fig. 1.2 it crosses the line at point A but is above φ at point B which is north of the
line. This point is termed the “true point.” We find the time �T between the satellite
being at A and at B.

See Fig. 1.3. We first find the relationship between x and latitude φ1 where the
satellite is. The angle φ is between OA and OL. The circle QABP is “the line”
whose radius is OP . B is the satellite location. Consider the planes perpendicular
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Fig. 1.2 Proof of Eq. (1.4)

Fig. 1.3 Proof of Eq. (1.2)

to OP passing through A and B. The triangles AOL and BMU are similar, thus
BU
AL

= BM
AO

= BM
R

yielding BU
R

= AL
R

× BM
R

. Therefore,

sin φ1 = sin φ sin(90◦ − x) = cos x sin φ. (1.2)

Now consider Fig. 1.2. If we are at the northernmost point of the orbit C with
latitude γ and the satellite is passing overhead, it will rise in the west and set in the
east (because when it crosses our latitude it is at the northernmost point of its orbit
and thus crossing the longitude line in a right angle). Its orbit is along “the line.” Let
the angle between OC and OB be θ1 and the angle between OC and OA be θ2. By
Eq. (1.2) applied twice:

cos θ1 = sin φ

sin γ
; cos θ2 = sin φ1

sin γ
= cos x

sin φ

sin γ
. (1.3)

The angle between “the line” and the “true point” is θ2 −θ1. The time �T it takes
the satellite to travel between these two points satisfies θ2 − θ1 = 2π �T

T
. Thus:

sin

(
2π

�T

T

)
= sin(θ2 − θ1) = sin θ2 cos θ1 − sin θ2 cos θ1
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=
√

1 − cos2 x
sin2 φ

sin2 γ
× sin φ

sin γ
− cos x

sin φ

sin γ

√
1 − sin2 φ

sin2 γ

= cos x sin φ

sin2 γ

⎛
⎝
√

sin2 γ

cos2 x
− sin2 φ −

√
sin2 γ − sin2 φ

⎞
⎠

= sin φ sin x tan x√
sin2 γ − sin2 φ +

√
sin2 γ

cos2 x
− sin2 φ

. (1.4)

The angle x is small; therefore, we can use the approximation:

�T

T
≈ sin φ sin2 x

4π

√
sin2 γ − sin2 φ

. (1.5)

In order to apply (1.4) or (1.5) we need to determine the value of x. We measure
ξ , the angle of the satellite above the horizon, and we have

cos(x + ξ) = R

H
cos ξ. (1.6)

Ways to estimate H are discussed in Sects. 1.1.6 and 1.1.7.
In order to estimate the time of one orbit, we determine its passing over latitude

φ in different days. We measure it passing “the line” and correct for passing over
latitude φ using the correction by Eq. (1.4) or (1.5).

1.1.4.1 Measuring the Period of Echo-1 by the First Method

The two measurements of Echo-1 crossing “the line” were:

(1) On May 5, 1962, it passed at 21 h 41 min 39 s in the west at 88◦ above the
horizon.

(2) On May 10, 1962, it passed at 21 h 46 min 2 s in the west moving south at 27◦
above the horizon.

In order to know when Echo-1 passed the “true point,” we correct these times by
�T calculated by Eqs. (1.5) and (1.6). The correction for the first measurement is
negligible and the correction for the second measurement is 0.90 min. Echo-1 moved
southward; therefore, we subtract 0.9 min or 54 s yielding the time 21 h 45 min 8 s.
The time between the two measurements was 5 days, 3 min, 29 s or 7203.48 min.
Every day Echo-1 makes about 12.4 orbits; therefore, it completed 62 orbits and its
period is

T = 7203.48

62
= 116.185 min. (1.7)
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To calculate the time it appears after one day (see Sect. 1.1.5), if its period was
120 min, it will show up at the same time again after 24 h. Between these 2 days, in
12 orbits it will show up y = 12(120 − 116.185) = 45.78 min earlier the next day.

1.1.5 Measuring the Period (Second Method)

Ignore for a moment the precession assuming that the satellite moves in a stationary
ellipse in space. Because of the earth’s rotation, this ellipse will be observed rotating.
If today, for example, the satellite is passing a certain point such as the zenith, it will
pass in a “subsequent orbit,” meaning in its next orbit, far from that point. Suppose
now that its period is exactly 2 h (or any other time dividing to a whole number in
24 h). In this discussion we ignore the rotation of the earth around the sun. In such
a case it will pass the same point after 24 h. However, usually the period does not
divide exactly 24 h. Suppose that the period is 119 min, then the satellite will pass
the same point 12 min earlier next day. In about 10 days the “subsequent” orbit will
pass at the same point.

In general, suppose that the satellite is behind y minutes per day. How many
days will it take for the subsequent orbit to pass through the same point? Without
considering the precession, the time of one cycle is 1440−y

K
minutes. The cumulative

delay in n days is ny, the consecutive orbit will return to the same point if ny =
1440−y

K
. If the precession per day is T0, then the condition is n(y − T0) = 1440−y

K

leading to

n = 1440 − y

K(y − T0)
or y = T0 + 1440 − T0

Kn + 1
. (1.8)

We suggest the following approach based on this idea. If n is very close to an
integer number, we measure the passing time of the satellite at the same point n

days apart and divide the time difference by Kn + 1. If n is not close to an integer
we can select a multiple of n which is close to an integer. For example, if n = 3.48
we can measure the times 7 days apart.

1.1.5.1 Measuring the Period of Echo-1 by the Second Method

I measured twice the time Echo-1 crossed a certain wall (see Sect. 1.1.5). On April
29, 1962, it crossed it at 22 h 19 min 48 s and on May 11, 1962, it crossed the same
wall at 18 h 59 min 7 s. The accuracy of the measurements is ±3 s. The time between
the two measurements is 12 days minus 200.7 min or 17,079.3 min.

During this period the number of orbits per day was about 12.4. Therefore, Echo-
1 completed 147 orbits and thus

T = 17,079.3

147
= 116.186 min (1.9)
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which is very close to (1.7).
The belt passes y = 120(120 − 116.186) = 45.77 min earlier each day. To

calculate n (the number of days the consecutive orbit will show at the same time)
we apply in (1.8) T0 = 0.2769 h = 16.61 min and get n = 3.984 days.

We investigate the error in measuring T or y because n = 3.984 is less than 4. We
experimented with another case where the difference between n and a whole number
is larger. We calculate the error assuming that it is proportional to the difference from
a whole number.

The next measurement was at May 10, 1962. Echo-1 crossed the same wall at
19 h 46 min 54 s. 15,687.1 min passed since April 29, 1962. Echo-1 had 12×11+3 =
135 full orbits, meaning that it passed 3 times during 11 days to the subsequent
orbit. The calculated period is T1 = 15,687.1

135 = 116.201 min and y1 = 1440 − 12 ×
116.201 = 45.59 min.

These calculations were done assuming that when Echo-1 crossed the wall on
May 10 it completed indeed 12 × 11 + 3 = 135 complete orbits, i.e., it passed
3 consecutive orbits in 11 days, and thus n = 11

3 = 3.667. We got y − y1 =
0.18 min. Assuming that the difference is proportional to the deviation of n from an
integer number, then: 0.18

3.984−3.667 = �y
4−3.984 yielding �y = 0.009 min. Therefore,

the corrected y is 45.77 − 0.009 = 45.76 min. The value of T can be corrected
accordingly. We can see that the error is negligible.

1.1.6 Measuring the Satellite’s Altitude

We observe the satellite in “true points” on two occasions when one of the
observations is at the zenith. In the second observation it passes the true point
at angle ξ . The time difference between the two observations considering the
precession T0 (see Sect. 1.1.2) is t1. t is defined by

sin(7.5t) = sin t1 cos φ. (1.10)

The angle 15t is the angle originated at the earth’s center between the two
observations A and B (see Fig. 1.4). D is at the center between A and B and
therefore the angle between OB and OD is half that angle, 7.5t .

L is the satellite’s location, H is the length of OL, and R is the length of OA =
OB. Applying the sinuses theorem on the triangle OLA, we get

R

H
= cos(15t + ξ)

cos ξ
. (1.11)

The relation between the angle ξ of the satellite above the horizon and the angle
x seen from the earth’s center is given by Eq. (1.6). This formula can be written as
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Fig. 1.4 Proof of Eq. (1.10)

tan ξ = cos x − R
H

sin x
(1.12)

Note that it can also be measured by (1.6) directly: we can find ξ when the satellite
is at its lowest point in the north. This happens when the northernmost point in the
satellite orbit is to our north. In such an occasion x = γ −φ. Let �x be the distance
between two observers seeing the satellite at the same time. Suppose also that the
satellite is located in the plane determined by the two observers and the earth’s
center. What will be the difference between the two angles ξ that they measure?

In order to investigate the relationship between small differences in x to the
resulting differences in ξ we find the derivatives of the two sides of (1.12) by x:

(1 + tan2 ξ)
dξ
dx

= − sin2 x−cos2 x+cos x R
H

sin2 x
= −1+cos x R

H

sin2 x
. Substituting tan ξ by (1.12)

we get: dξ
dx

= R
H

cos x−1

1−2 R
H

cos x+
(

R
H

)2 = − 1
2 −

1
2

[
1−

(
R
H

)2
]

1+
(

R
H

)2−2 R
H

cos x

, yielding

�ξ = −
(

1

2
+

1
4

(
H
R

− R
H

)
1
2

(
H
R

+ R
H

) − cos x

)
�x. (1.13)

The negative sign means that when x increases ξ declines.
When two observers cooperate, it is possible to estimate dξ

dx
and get H . Also, this

formula can also be used when we measure ξ in a location different from the one we
usually use, and adjust ξ to the value that would be obtained at the usual location.

1.1.6.1 Measuring Echo-1 Altitude

The calculation of the height of Echo-1 on May 8, 1962, by Eqs. (1.10) and (1.11)
is based on two observations:
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(1) It passed at 18◦ in the east moving south at 18 h 25.9 min.
(2) The belt passed in the zenith that day at 20.84 h.

In the first measurement ξ = 18◦; thus, its deviation from “the line” is by (1.4)
�T = 1.5 min. The “true point” is always north of “the line” (see Sect. 1.1.4);
therefore, it was at the “true point” at 19 h 25.9 min − 1.5 min = 19 h 24.4 min.

In Fig. 1.7 we plotted the height difference between the height at “the line” ξ and
the height at the “true point.” Since the true point is north of the line and it moved
south we find on the graph a difference of 6.5◦. Therefore, its height at the “true
point” is 18◦ + 6.5◦ = 24.5◦. In summary, it passed the “true point” at 19.41 h,
which is 1.43 h before the belt crossed the zenith, at an angle of 24.5◦ above the
horizon.

For the second data point we need to adjust the time for the precession. We use
T0 = 0.277 h for a satellite day and therefore the correction for the precession
is 1.43×0.277

24−0.277 = 0.02 h. If there was no precession the belt would have passed the
zenith at 20.84 + 0.02 = 20.86 h.

We use t1 = 20.86 − 19.41 = 1.45 h; φ = 32◦03′ in (1.10) and get 15t = 18.4◦.
By (1.11) R

H
= 0.805. Since R = 6370 km, we get H = 7910 km. The altitude of

Echo-1 is h = H − R = 1540 ± 60 km. The error was calculated assuming an error
of ±1◦ in measuring ξ .

This measurement and three others are summarized in Table 1.3. The first three
measures were done on consecutive days. Their average is h = 1500 ± 40. On July
4th Echo-1 was 190 km higher at the same “true point.” It means that the perigee
and apogee are not stable in space. They complete a full cycle in about 110 days.

1.1.7 Measuring the Satellite’s Altitude by Its Entering or
Exiting the Sun’s Shade

Let δ be the northern inclination of the sun plus 74′ (with the appropriate sign). The
74′ is the refraction of the sun rays by the atmosphere. When the satellite disappears
(or appears) above latitude φ and the satellite’s location is t hours before or after
midnight (at midnight the sun is lowest below the horizon), then:

R

H
=

√
1 − (cos φ cos δ cos(15t) − sin φ sin δ)2. (1.14)

Table 1.3 Measuring the altitude of Echo-1

Date Passing “the line” At the “true point” Belt at (time in h) t1 h

(1962) ξ◦ Time (h m s) ξ◦ Time (h) Zenith Corrected (h) (km)

May 8 18 E 19 23 9 24.5 19.41 20.84 20.86 1.45 1540

May 9 16.5 W 22 32 23 12 22.51 20.56 20.54 1.97 1430

May 10 27 W 21 46 2 23.5 21.75 20.29 20.27 1.48 1530

July 4 34 E 4 1 53 38 04.02 05.07 05.08 1.06 1690
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Fig. 1.5 Proof of Eq. (1.15)

We first prove the formula for the case t = 0 (see Fig. 1.5). The satellite enters (or
leaves) the sun’s shade at point B so that the point under it is at midnight. OA is the
earth’s radius R and OB is the distance between the satellite and the earth’s center
H . The angle between CO and CB is 90◦ + ξ .

R

H
= OA

OB
= cos{90◦ − (φ + δ)} = sin(φ + δ)

=
√

(1 − cos2(φ + δ) =
√

1 − (cos φ cos δ − sin φ sin δ)2 (1.15)

For the general case consider Fig. 1.6. The satellite will enter the at above the

same point B so that AB = R. The distance H satisfies: R
H

= AB
OB

=
√

OB2−OA2

OB
=√

1 − (
OA
OB

)2
. OA is the projection of OB in the direction OD. In order to calculate

OA consider the vector OB as a sum of two vectors that are the projections of (1) on
the earth axis and (2) on the plane perpendicular to this axis. We calculate separately
the projection of each vector on OD:

(1) its length is OB sin φ and its projection is −OB sin φ sin δ,
(2) its length is OB cos φ. Its projection on OE is OB cos φ cos(15t) and its

projection on OD is OB cos φ cos(15t) cos δ.

Therefore,

OA

OB
= cos φ cos(15t) cos δ − sin φ sin δ

yielding Eq. (1.14).
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Fig. 1.6 Proof of Eq. (1.14)

Fig. 1.7 Correction between
“the line” and the “true point”
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To simplify the calculation of (1.14) define u by: cos u = cos φ cos(15t) cos δ −
sin φ sin δ and then R

H
= sin u (Eq. 1.14).

The error in calculating the height directly by this formula is quite small.
However, I found a convenient way to use it when the satellite is exactly over the
“true point” (above our latitude φ). The value of t used in (1.14) is the time that
passed since midnight until the satellite passed overhead when it disappeared. If
we ignore the precession, then the time between midnight and the belt passing the
zenith is the same in all places with the same latitude. Therefore, in order to obtain
t we can find the time that the belt passed overhead and take into account T0.
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Another method for measuring the height is to find its angle over the horizon
when it disappears (or appears) exactly to our north or south, i.e., at the same
longitude, at midnight. The formula is

R

H
= 1√

1 +
(

cos ξ
sin(90◦−ξ−φ−δ)

− cot(90◦ + ξ − φ − δ)
)2

. (1.16)

To prove this formula consider Fig. 1.5. Let the angle between OA and OB be
90◦ −u, then R

H
= sin u. The angle between OC and OA is 90◦ −φ − δ. Therefore,

the angle between OC and OB is u − φ − δ. Since the angles of a triangle add up
to 180◦ we get that the angle between BC and BO is 90◦ − ξ − u + φ + δ. By the
sine theorem

BO

sin(90◦ + ξ)
= CO

sin(90◦ + ξ + u − φ − δ)

1

sin u
= H

R
= BO

AO
= BO

CO
= sin(90◦ + ξ)

sin(90◦ + ξ + u − φ − δ)

sin u cos ξ = sin(90◦ + ξ + u − φ − δ) cos u + sin u cos(90◦ + ξ + u − φ − δ)

sin u[cos ξ − cos(90◦ + ξ + u − φ − δ)] = sin(90◦ + ξ + u − φ − δ) cos u

cot u = cos ξ − cos(90◦ + ξ + u − φ − δ)

sin(90◦ + ξ + u − φ − δ)

= cos ξ

sin(90◦ − ξ − φ − δ)
− cot(90◦ + ξ − φ − δ) (1.17)

therefore,

R

H
= sin u = 1√

1 + cot2 u

which is (1.16). For convenience we can find cot u by (1.17) and then R
H

= sin u.

1.1.7.1 Measuring the Period by Echo-1 Entering or Exiting the Sun’s
Shade

In Sect. 1.1.7 we showed how to use Eq. (1.14) if the satellite enters the shade at
the “true point.” In such a case the difference between midnight and the passage of
the belt overhead at that evening is t in (1.14). We show how we concluded that on
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May 4, 1962, at about 20:00 Echo-1 entered the shade at the “true point” (over our
latitude).

We rely on the following two measurements:

(1) On May 4, 1962, Echo-1 disappeared because it entered the shade at 22 h 27 min
29 s.

(2) On May 5, 1962, it disappeared at 21 h 42 min 23 s.

On May 5 I also had the time it crossed “the line” and it passed the “true point”
on 21 h 41 min 39 s. On May 4 I could not measure its passing the line because it
disappeared before reaching it. However, since the belt passes every day 45 min 46 s
earlier, I could figure out that the satellite passed the “true point” on May 4 at 21 h
41 min 39 s + 45 min 46 s = 22 h 27 min 25 s. Therefore, it disappeared on May 4
4 s after passing the true point (before getting to the line) and on May 5 44 s after
passing it. The shade retreated by 40 s in 23.2 h or 4 s in 2.3 h. The shade border was
about 4 s from the true point at around 22:30; therefore, at around 20:00 it was at
the true point.

We can substitute for t in (1.14) the difference between the astronomical
midnight (that was at 23.63 that day) and the belt passing above us at 21.94.
Correcting for the precession (see Sect. 1.1.6.1) we add 0.02 h and get 21.96 as the
time of the belt passing overhead.

To summarize, on May 4, 1962: t = 23.63−21.96 = 1.67h; δ = 15◦59′ +74′ =
17◦13′ (74′ is the correction of the sun’s rays refraction); φ = 32◦03′.

By (1.14) we get R
H

= 0.817. Since R = 6370 km we get H = 7800 km and
h = H − R = 1430 ± 10 km.

1.1.8 The Satellite’s Entrance to a “Long Day”

The satellite enters a “long day” when its orbit does not enter the sun’s shade. There
are usually two solutions to (1.16) one when the satellite enters the shade and one
when it exits it. A “long day” starts or ends when the enter and exit points are the
same.

Let p =
√

1 − (
R
H

)2
. Solving (1.14) for cos(15t) yields

cos(15t) = sin φ sin δ + p

cos φ cos δ
. (1.18)

The belt in the precession motion creates a 3D surface. Equation (1.18) represents
all the points of the different belts in which the satellite enters the sun’s shade. This
is, therefore, the line formula of the intersection between the surface and the shade
perimeter.

The belt formula in a particular moment is given by Eq. (1.1): cos(7.5t1) =
tan φ cot γ . The time between the satellite passing at its northernmost point and
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latitude φ is t1
2 . t in Eq. (1.18) is the time from midnight and passing over latitude

φ. Therefore, t − t0 = t1
2 , where t0 is the time between midnight and its passing the

northernmost point. By (1.1)

cos(15(t − t0)) = tan φ cot γ. (1.19)

The derivatives of (1.18) and (1.19) are

−15 sin(15t)
dt

dφ
= sin δ cos2 φ cos δ + cos δ sin φ(p + sin φ sin δ)

cos2 φ cos2 δ

−15 sin[15(t − t0)] dt

dφ
= cot γ

cos2 φ
.

When the satellite enters a “long day” its orbit is tangent to the surface of the sun’s
shade. The belt (1.19) and the intersection curve (1.18) are tangent to one another.
Therefore, dt

dφ
is the same in the two equations. Using sin(15t) from (1.18) and

sin(15(t − t0)) from (1.19), solve for dt
dφ

in both and equate them, we get

√
cos2 φ − sin2 φ cot2 γ (sin δ + p sin φ)

= cot γ
√

cos2 φ cosδ −p2 − 2p sin φ sin δ − sin2 φ sin2 δ. (1.20)

Extensive algebraic and trigonometric derivations using, for example, the identity

cos2 φ − sin2 φ cot2 γ = cos2 φ

sin2 γ
− cot2 γ, lead to the quadratic equation for sin φ:

p2 sin2 φ + 2p sin δ sin φ + sin2 δ − cos2γ

(
R

H

)2

= 0

whose solutions are

sin φ = ± cos γ R
H

− sin δ√
1 − (

R
H

)2
. (1.21)

Using (1.14) we get (1.18). Equation (1.18) indicates that the satellite will enter a
“long day” when the belt passes over latitude φ t hours after midnight at the point
under it.
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1.1.8.1 Measuring Echo-1 Entering a Long Day

We first determine by (1.21) the latitude φ1 at which Echo-1 enters the “long day.”
We calculate it for the end of June near the summer solstice. At this time δ =
23.2◦ + 1.2◦ = 24.4◦. Using R

H
= 0.82, γ = 47.3◦ we get φ1 = 14.5◦.

We now calculate t by (1.18). t is the time difference between midnight at the
point with latitude φ1 and the time the belt passes over it. When the satellite enters
a “long day,” this difference is the same for all points at latitude φ1 if we ignore
the precession. We therefore select the point with latitude φ1 at our longitude. We
get by (1.18) t = 2.66 h. The precession for this time period is 2.66×0.277

24−0.277 = 0.03.
We therefore use t = 2.63. In conclusion, the condition for Echo-1 entering a “long
day” is that it passes over latitude 14.5◦ and our longitude 2.63 h before midnight,
which is at 23.70 h, meaning at 21.07 in the evening.

Equation (1.1) determines t1 which is the time the belt crosses latitude φ1 until
the satellite gets to its northernmost point. For φ = 14.5◦ and γ = 47.3◦ we get
t1
2 = 5.08 h. The precession correction is 0.06 h so we use t1

2 = 5.02.
Rather than finding when the belt passes φ1 = 14.5◦ at 21.07, Echo-1 enters the

“long day” when the northernmost point crosses our longitude at 21.07 + 5.02 =
26.09 (2.09 on next day morning). The times the northernmost point passed to our
north are:

June 28, 1962 (evening) 26.86 which is June 29, 1962, 02.86 morning.
June 29, 1962 (evening) 26.59 which is June 30, 1962, 02.59 morning.
June 30, 1962 (evening) 26.31 which is July 1, 1962, 02.31 morning.
July 1, 1962 (evening) 26.03 which is July 2, 1962, 02.03 morning.
July 2, 1962 (evening) 25.76 which is July 3, 1962, 01.76 morning.

In conclusion, Echo-1 was expected to enter a “long day” on July 1, 1962. This
was confirmed by observations.

1.1.9 Determining the Average Height of a Satellite

In order to find the average distance from the earth center H , we apply the third
Kepler’s law (Russell 1964)

H
3

T 2 = c, (1.22)

where c is a constant for satellites rotating the earth. We can determine c by these
values for the moon. The moon’s mass cannot be ignored compared with the earth’s
mass. Therefore, the moon’s mass should be considered. We apply the moon’s mass
being 1

81 of the earth’s mass, the moon’s period is 39,343.2 min, and its average
distance is 384,393 km. We get log 3

√
c = 2.519755.
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H = 3
√

c
3
√

T 2 = 330.94
3
√

T 2 (1.23)

In order to determine the change in the average height �H by the change in the

period �T we get by the Taylor series �H

H
= 2

3
�T
T

− 1
9

(
�T
T

)2+ 4
81

(
�T
T

)3−+ . . . ...
For small changes it is sufficient to use the approximation

�H = 2H

3T
�T =

2
3

3
√

c

3
√

T
�T = 220.63�T

3
√

T
. (1.24)

1.1.9.1 Measuring the Average Height of Echo-1

On May 5, 1962, Echo-1 retreated 45.76 min per day and on May 12, 1962, it
retreated 45.82 min per day. The retreat increased by 0.06 min in 7 days and each
day it completes about 12 periods and therefore the period decreased in 7 days by
0.06
12 = 5 × 10−3 min. The period decreased each orbit compared with the previous

one by 5×10−3

84 = 6 × 10−5 min.
Using H = 7.9 × 106 meters and T = 116 min, by Eq. (1.24):

�H = 2 × 7.9 × 106

2 × 116
× 6 × 10−5 = 3 m.

During this time period Echo-1 went down 3 m each orbit.
Extensive observations and calculating the decline per period over almost 3 years

are depicted in Fig. 1.8. The graph is not so smooth in 1962. This may be due to the
improvement in the accuracy of the measurements. It is surprising that in some

Fig. 1.8 Satellite’s decline in meters/period
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months Echo-1 gained altitude. Is it related to the number of meteors? or may be to
sun activity?

1.2 Post-Doctoral Activity

I applied for Post-Doc positions and accepted an offer from George Wesolowsky at
McMaster University, Hamilton, Canada. The 2 years working with George were my
most influential and constructive educational experience. George was an outstanding
advisor. He taught me how to design research projects and report them in papers.
Following his wonderful advice and support I was prepared to continue and do
independent research, and write papers on my own. During those 2 years George
and I were able to produce about 15 papers, many appeared later on. George had a
wealth of ideas mostly on location models.

1.3 Non-location Research

Due to my training in mathematics I was able to design algorithms and solve
problems in a variety of fields. I summarize some of these papers especially if they
are useful to a general audience and not mentioned in other chapters.

1.3.1 The Fading Universe Theory

My early interest in Astronomy triggered an idea which replaces the “Big Bang
Theory” with an alternative explanation. The red shift phenomenon which is the
impetus for the theory can be explained by declining speed of light over the years
(Drezner 1984a). Calculations based on available data suggest that a decrease in the
speed of light by 1 km/s every 60,000 years will cause the red shift that we observe.
It is interesting that the same decline in the speed of light also explains the rate of
increase of the length of the day.

1.3.2 Statistics Topics

1.3.2.1 Multivariate Normal Probabilities

In one of my first papers with George Wesolowsky (Drezner and Wesolowsky 1981)
we needed the calculation of bivariate Normal probabilities. In Drezner (1978) the
probabilities were calculated by Gaussian Quadrature formulas (Abramowitz and
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Stegun 1972). George refused to add his name as a co-author claiming that he did
not contribute to it. A follow-up paper with George (Drezner and Wesolowsky 1990)
was published later. Papers on the calculation of trivariate and multivariate Normal
probabilities are Drezner (1992a, 1994). Anklasaria and Drezner (1986) applied the
calculation of the multivariate Normal probabilities to estimate the completion time
of a project consisting of a list of activities. Common approaches consider only the
sequence of activities leading to the largest expected completion time. However,
since completion times are normally distributed, sequences with lower expected
completion times may take the longest time to complete.

1.3.2.2 Selecting Variables in Multiple Regression

Commonly used statistical approaches are forward selection, backward elimination,
and step-wise selection. Said Salhi suggested tabu search for the selection process
(Drezner et al. 1999). Tabu search handily beat the commonly used approaches.
There are follow-up papers on variable selection with variations on this idea:
applying simulated annealing (Drezner and Marcoulides 1999); applying ant colony
optimization (Marcoulides and Drezner 2003); solving financial applications with
the variable selection method (Drezner et al. 2001); adding resource constraints to
the variable selection problem (Marcoulides and Drezner 2004).

1.3.2.3 Multirelation

Drezner (1995c) defines a multirelation between several variables as 1 − λ(R),
where λ(R) is the smallest eigenvalue of the correlation matrix. The multirelation
is between 0 and 1. For two variables the two eigenvalues are 1 − ρ and 1 + ρ. The
smaller eigenvalue is 1 − |ρ|. Therefore, the multirelation is equal to |ρ|. Dear and
Drezner (1997) analyzed the significance level of the multirelation.

1.3.2.4 Normality Test

Drezner et al. (2010b) improved the Kolmogorov–Smirnov test for normality
(Massey Jr. 1951). In the current implementation of the Kolmogorov–Smirnov test,
given data are compared with a Normal distribution that uses the sample mean and
the sample variance. Drezner et al. (2010b) proposed to select the mean and variance
of the Normal distribution that provide the best fit to the data.

Drezner and Turel (2011) analyzed the level of a too-frequent value in data
(such as many zeros), for which transformation to normality that passes tests for
normality is impossible. Analysts and researchers are often concerned with the
question: should we bother transforming a variable to normality, or should we revert
to other approaches not requiring a Normal distribution? Drezner and Turel (2011)
found the critical number of the frequency of a single value for which there is no
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feasible transformation to normality within a given α of the Kolmogorov–Smirnov
test.

1.3.2.5 Discretizing Continuous Distributions

Drezner and Zerom (2016) proposed a generally applicable discretization method
to approximate a continuous distribution with a discrete one. The method adopts
a criterion which is shown to be flexible in approximating higher order features
of the underlying continuous distribution while preserving its mean and variance.
Discretizing bivariate distributions is proposed in Drezner et al. (2018e).

1.3.2.6 Correlated Binomial and Poisson Distributions

A colleague, Herb Rutemiller, made a passing comment in the corridor. The
distribution of students’ exam grades seems to be bi-modal and does not follow
a binomial distribution. Nick Farnum and I thought of a “generalized binomial
distribution” (GBD). Consider a sequence of Bernoulli experiments where the initial
probability of success is p but the probability changes as successive experiments are
done. If the first experiment is a success, the probability that the second experiment
is a success increases, and if it is a failure it decreases (Drezner and Farnum 1993). If
students take a multiple choice exam, this is exactly what happens because of skill.
We found the same distribution for the number of wins of baseball teams at the end
of the season. Not all teams are “equally skilled.” The distribution of the number
of wins is not binomial. There are 162 games in a season and the probability of a
win is p = 0.5. The mean of the distribution is 81 but the distribution itself is not
binomial and its variance is greater than np(1 − p) = 40.5.

An association factor similar to the correlation coefficient θ is given. θ = 0 yields
the “standard” binomial distribution. Suppose that in n experiments, the number of
successes is r . The probability of success in the next experiment is (1 − θ)p + θ r

n
.

The mean of the distribution is np, the same as the binomial distribution, but the

variance is p(1 − p)
n− 1

B(n,2θ)

1−2θ
. We found that in baseball games θ = 0.397. For

complete details see Drezner and Farnum (1993).
In a follow-up paper (Drezner 2006b) it is proven that for θ ≤ 0.5 the limit to

the GBD, as the number of trials increases to infinity is the Normal distribution. In
other cases it can be bi-modal. It was also found, by analyzing real data, that the
grade distribution of 1023 exams yielded θ = 0.5921 and the number of wins of
NBA teams at the end of the season yielded θ = 0.5765.

In an interesting recent paper, the success of mutual funds over the years is
analyzed by the generalized binomial distribution. It is shown that the performance
is not random, i.e., it is skill and not luck (Bhootra et al. 2015).

For p → 0 and λ = np, the generalized binomial distribution defines the
correlated Poisson distribution (Drezner and Farnum 1994). The mean of the
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correlated Poisson distribution is λ but the variance is λ
1−2θ

for θ < 0.5 and is
infinite for θ ≥ 0.5. As examples Drezner and Farnum (1994) used the expected
number of demand points which are local optima for the Weber location problem
on the sphere using the data in Drezner (1989b). For this data set θ = 0.455. The
distribution of 402 sow bugs (Consul 1989) yielded θ = 0.5533 which means that
the bugs tend to cluster on the skin of a sow.

1.3.3 Queueing

In Drezner (1999) exact formulas for parameters of the queuing system when the
arrival process is not Poisson but correlated Poisson (Drezner and Farnum 1994) are
given. In a correlated Poisson distribution the variance of the arrival rate, σ 2

λ , can be
different from λ. It was shown that the Lq (expected length of the queue) is

Lq =
λ2σ 2 +

(
λ
μ

)2 + σ 2
λ −λ

μ

2
(

1 − λ
μ

)

which is the Pollaczek’s formula (Gelenbe et al. 1998) with a correction for σ 2
λ , the

variance of the arrival rate. In Poisson arrival σ 2
λ = λ and the formula reduces to

Pollaczek’s formula. For details see Drezner (1999).
Drezner and Zerom (2018) investigated a tandem queuing system of two single

servers with correlated service times. The effect of positively correlated service
times on system performance is examined. Using an intuitive dependence model
for service times, a new analytically tractable formula for the total expected waiting
time in the system is found. Positive correlation improves system performance due
to a reduction in the expected waiting time in queue for the second server.

Drezner et al. (1990) presented a queueing-location problem where a location of
a service station has to be determined. The objective is to minimize the sum of the
total travel time plus delay at the service station. The two main results of this article
are a convexity proof for general distances and a theorem that limits the area in the
plane where the solution can lie. Some solution procedures are proposed. Follow-up
papers that consider multiple servers are (Berman and Drezner 2007; Aboolian et al.
2009; Drezner and Drezner 2011a).

An efficient method for calculating the parameters of an M/M/k queueing system
is presented in Pasternack and Drezner (1998). It is especially effective when the
probability of zero customers in the system, P0, is very small. Floating point
representation may exceed the limit of a negative power and be calculated as 0.
The expressions in standard formulas have a P0 multiplier (Gelenbe et al. 1998;
Gnedenko and Kovalenko 1989) and fail to find the desired results. The approach
is to calculate vk for a given k, λ, and μ by the following sequence: v1 = μ

λ
and

vi+1 = (i+1)μ
λ

(vi + 1) obtaining vk . The expected length of the queue is
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Lq = λkμ

(kμ − λ)[(kμ − λ)vk + kμ] = ρ

(1 − ρ)[(1 − ρ)vk + 1] ,

where ρ = λ
kμ

< 1. The rest of the M/M/k queue parameters can be calculated.

1.3.4 Finding Whether a Point is in a Polygon

Drezner (1998a) designed an algorithm to check whether a point is inside a polygon
or not. The polygon does not have to be convex. It is represented by a sequence
of consecutive vertices ending at the first vertex. The angles between successive
vertices are calculated. If the sum of the angles is ±2π , the point is inside the
polygon. If the sum is zero, it is not. It is interesting that the proof is based on
complex number theory (Carathéodory 2001). Every point on the plane (x, y) is
represented as a complex number z = x + iy and the integral

∮ 1
iz

dz over the
circumference of an area, such as a polygon, is equal to ±2π if the “pole” (0,
0) is inside the area and zero if it is not. I do not think that there is another
operations research analysis based on complex number theory. For complete details
see Drezner (1998a).

1.3.5 Information Dissemination on a Network

Amnon Barak, one of my computer science colleagues, described the following
situation. Many (can be millions) computers are connected in a network and one
computer wishes to disseminate some information to all of them. He proposed
that the originating computer selects another computer at random and sends it
the message. Every time unit it selects another computer at random and sends it
the information. Every computer that received the information repeats the process
by randomly selecting a computer every time unit, sends it the message, and so
on. How long will it take to get the information to all computers? Even today,
computer scientists use a tree network and every computer sends the information
to two preassigned computers rather than random dissemination. For n computers,
it takes log2 n time units by applying a tree configuration. Drezner and Barak
(1986) proved that with high probability all computers will get it in about 1.7
times this value. However, if some computers are inactive, random dissemination
is not affected while a tree configuration is. To handle the possibility of failed
computers, computer scientists use a complicated acknowledgment system to verify
that the target computer indeed got the message which more than doubles the time
because a computer waits for some pre-specified time to be “sure” that there is no
acknowledgment coming. Amnon has difficulty selling this approach to computer
scientists because they expect 100% guarantee and if there is, say, 10−16 probability
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that not all active computers got it, it is not acceptable to them. We have many
follow-up papers with his colleagues and Ph.D. students (Hoefler et al. 2017; Barak
et al. 1986; Amar et al. 2009; Barak et al. 2015).

1.3.6 Genetic Algorithms

In the late 1990s Said Salhi visited us in California and introduced me to metaheuris-
tics, mainly tabu search (Glover and Laguna 1997; Glover 1977, 1986), simulated
annealing (Kirkpatrick et al. 1983), and genetic algorithms (Holland 1975; Goldberg
2006). I was especially fascinated by genetic algorithms because the design of the
specific algorithm depends on the problem to be solved.

A population of solutions is maintained. A starting population of members is
established. In the basic genetic algorithm the following is repeated for a given
number of generations:

1. Two population members are selected as parents.
2. The two parents are “merged” (mate) and produce an offspring.
3. If the offspring is better than the worst population member and is not identical

to another population member, it is added to the population and the population
member with the worst objective value is removed. Otherwise, the population
remains unchanged.

The best member of the final population is the result of the algorithm.
The first problem that I tried to solve was the one-way two-way network design

suggested by George Wesolowsky (Drezner and Wesolowsky 1997b). A network of
two-way roads is given. Some of the roads can be designed as one-way increasing
the speed on these roads. What is the best combination of one-way roads for a
given traffic flow between nodes? The most crucial part of a genetic algorithm is
the merging process. Selecting at random links from each parent does not exploit
the special structure of this problem. Drezner and Salhi (2002) suggested to draw
a virtual line and take the structure of one parent from one side of the line and the
structure of the other parent for the other side. If we are “lucky,” each half is a
good configuration for its links. Once an offspring is generated this way, a descent
algorithm is applied to fix the border links between the two parents. This intuitive
approach proved to be very successful and similar schemes were applied for the
quadratic assignment problem (Drezner 2003) and for the p-median on a network
(Alp et al. 2003).

I published with co-authors many modifications of the basic genetic algorithm
over the years. Drezner and Marcoulides (2003) suggested that rather than randomly
selecting two parents to mate, only the first parent is randomly selected. K (a
parameter) potential mates are then randomly selected and the one who is the most
dissimilar to the first parent is selected as a second parent. Drezner and Drezner
(2006) suggested to partition the population to males and females and mate one
male and one female. Drezner and Drezner (2018c) suggested to randomly select
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two population members and select the better one with a pre-specified probability
as the first parent. The second parent is then randomly selected. Drezner and Drezner
(2019d) proposed the alpha male parents selection rule. A pre-specified number of
alpha males is selected and the rest of the population are females. In a generation,
each female selects an alpha male and produces one offspring. Drezner (2005b)
suggested a different rule for removing population members. Drezner (2005a)
proposed to create small populations, evolve them by applying a genetic algorithm
on each one separately, and then combine them into one population and continue to
run the genetic algorithm. Drezner and Misevicius (2013) suggested to apply every
generation an improvement algorithm on a randomly selected population member.
If the population member is improved, it is replaced by the improved one. Then,
proceed with selecting two parents, etc.

1.3.7 Inventory and Supply Chain

My most cited paper (well over 2000 citations) is about the bullwhip effect (Chen
et al. 2000) in supply chain. David Simchi-Levi approached me in one of the
conferences and asked if I can develop an analytic expression for the ratio between
two variances which is termed the bullwhip effect. I came up with a closed form
expression for the ratio. David and his Ph.D. student Jeniffer Ryan compared it to
simulation results and found a perfect fit. Other inventory related papers include:
inventory models with two products that one can substitute for the other if the
need arises (Pasternack and Drezner 1991; Drezner et al. 1995); the videotape rental
model (Pasternack and Drezner 1999); models that combine inventory control and
location analysis (Drezner et al. 2003; Drezner and Scott 2013).

1.3.8 Robot Design

Shimon Nof suggested the problem of a robot arm that needs to pick items from
bins and place them in a set of destinations. The objective is to minimize the
total distance going back and forth by the robot’s arm. This can be modeled as
a traveling salesman problem with a stipulation that the salesman must alternate
between bins and destinations. All pairs of bins and all pairs of destinations are
assigned large distances between them to force the salesman to alternate between
bins and destinations (Drezner and Nof 1984). If each part in a bin must be placed
in a particular destination, the distance from a bin to other destinations is set to a
large number as well. Follow-up papers are Nof and Drezner (1986, 1993).
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1.3.9 Linear Inequalities

Drezner (1983b) considered the problem of finding a feasible solution to a set
of linear inequalities. There is a ball that can be determined a priori from the
problem data with the property that it contains a feasible solution if there is one.
The relaxation method (Agmon 1954; Motzkin and Schoenberg 1954) constructs
a sequence of shrinking balls that contain a feasible solution if there is one. It is
proven in Drezner (1983b) that if one of the smaller balls is nested inside the first
ball, then there is no feasible solution to the problem. This principle proved to be
superior to the existing stopping criterion. It is also shown that the principle cannot
be extended to the Russian method for linear programming (Khachian 1979).

1.3.10 The Repeated Partition Scheduling Problem

This scheduling problem was motivated by the conference site in Oberwolfach,
Germany. There are several tables in the dining room and the seating arrangement
is changed every meal so that every attendant meets all other attendants during
the conference. nk people are partitioned d times into k groups of n people each
(Drezner 1998b). It is required that each person meets every other person (being in
the same group) at least once. The objective is that each person meets with other
participants about the same number of times. There are other applications such as
arranging a golf tournament, personnel assignment, testing drugs, TV commercials,
etc. Goldstein and Drezner (2007) solved the repeated partition scheduling problem
by three metaheuristics: simulated annealing, tabu search, and genetic algorithms.

1.3.11 Solving Non-convex Programs by Sequential Linear
Programs

Drezner and Kalczynski (2018) found that non-convex programs such as the
maximization of a convex objective subject to constraints which are outside of
convex regions can be heuristically solved by a multi-start approach based on
solving a sequence of linear programs (termed MSLP). The concept of “Sequential
Linear Programming” (SLP) was introduced as early as the 1960s (Courtillot 1962)
but most attempts report convergence issues necessitating the ad hoc establishment
of moving limits and were not that efficient (John et al. 1987; Chen 1993). It is
interesting that this general approach is suitable for solving non-convex problems
but is not suitable for solving convex problems. Many non-convex problems are
solved by global optimization methods which exploit the special structure of the
problem and usually require excessive processing times that restrict the size of the
problems that can be practically solved. This iterative approach is faster than a direct
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multi-start approach and provided better results on four test problems (p-dispersion
or circle packing in a square, a newly defined p-dispersion covering problem, and
their three dimensional variants) for a total of 116 instances. A follow-up paper
is Kalczynski and Drezner (2019c). When the functions of a general non-linear
program, both the objective function and all the constraints, can be expressed as
a difference between two convex functions, one of the convex functions can be
replaced by a tangent plane at the present iteration point. The modified problem
is convex. The optimal solution to this modified program is the next iteration point.
The procedure is demonstrated on the special case when all functions are quadratic
(not necessarily convex).

Kalczynski and Drezner (2019a) propose to apply the MSLP algorithm (Drezner
and Kalczynski 2018) for the solution of two multiple obnoxious facility problems
on the plane. One problem considers obnoxious facilities and the other obnoxious
demand points. For obnoxious facilities the objective is maximizing the total
distance between demand points and their closest facility. For obnoxious demand
points the objective is maximizing the total distance between facilities and their
closest demand point. The algorithm is compared with the interior point and SNOPT
solvers in Matlab. The interior point solver performed quite poorly. The solutions by
SNOPT are of comparable quality to the MSLP algorithm but the MSLP algorithm
required much shorter computer times. The largest problem of locating 20 facilities
among 1000 demand points was solved by MSLP in 2 min compared with 40 min
by SNOPT.

1.3.12 Contributions to Education

The examples listed below can be used, and some were used, in class to demonstrate
various concepts.

In an advanced class I created an example of building a global FEDEX-like hub.
The 20 largest metropolitan areas in the world are given in a table. If we want to
deliver packages from each city to the other 19 cities we need a fleet of 380 planes.
However, if we find a hub so that all planes fly to the hub exchange packages and fly
back, we need only 20 planes. The objective is to minimize the maximum distance
to the hub so that the total time from source to destination is minimized. I created
an Excel file that solves the problem, then I switch to Google Maps or MapQuest
and find the location by entering the latitude and longitude of the solution. The hub
(that happens to be in the Mediterranean) is shown on the map. We also find the
location that minimizes the weighted sum of distances which minimizes total cost
and its actual location, happens to be in Russia.

To demonstrate the concepts of convexity and local optima I created an Excel file
(with VBA) that solves ten times packing six circles in a square with the maximum
possible radius. The program shows the randomly generated initial solution (usually
small circles with a diameter equal to the minimum distance between the pairs of
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points). The program waits for 3 s and the final configuration shows up. After 10
starting solutions, the optimal solution is usually found about 3 times out of 10.

Estrada and Drezner (2006) simulates the spread of a virus by an Excel program
and VBA. I suggested to my student Jay Estrada to submit it to the INFORMS
Journal of Education and we got very flattering reviews about the “neatness” of
the demonstration.

I show in class how to solve the PERT/CPM by hand and then I had an Excel
file that takes the data and finds “instantly” the solution (no VBA). A student, Kevin
Quinn, constructed a much nicer Excel file that basically produces the same results
but the data does not have to be organized in a certain way. It is published in Quinn
and Drezner (2017).

Drezner and Erickson (1997) showed statistically, based on real data, that the
common belief that “if the market goes up in January, it will go up for the whole
year” is indeed likely. Since January is part of the year, the two events are correlated
and even by random chance it happens 60% of the time. However, January also
“predicts” what will happen in the next 11 months as well. The p-value is 0.002.
It turns out that April and August are also good predictors (p-value = 0.04). In
October: if the market goes in one direction, it will go the opposite direction in the
next 11 months (p-value = 0.06 which is borderline).

Drezner (2001) calculated the maximum possible EVPI for any probability
distribution for the states of the world. This maximum EVPI is an upper bound
for the EVPI with given probabilities and thus an upper bound for any partial
information about the likelihood of each state of the world.

Drezner and Minh (2002) considered the problem of planning a mix of products
with a limited budget constraint. This problem is an extension of the well-known
product mix problem. The problem is easily formulated as a linear programming
problem. The optimal solution is found by an explicit formula without applying any
linear programming solution method. Therefore, very large problems can be easily
solved.

1.3.13 Programming “Tricks”

1.3.13.1 Breaking Ties

When coding descent algorithms or Tabu search, a list of solutions with correspond-
ing objective functions is generated and the “best” one selected. Which one should
be selected if there are ties? It is best to select one at random not to bias the search
by always selecting the first one or the last one. For years I was saving the list of all
tying solutions and eventually randomly selecting one from the list.

I found an efficient way of doing it: The kth tying move replaces the selected
move with probability 1

k
. By this rule, the first move (or a new best found move) is

always selected (k = 1). When a tying move is found, it replaces the selected move
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with probability 1
2 , and so on. When the process ends and K moves are tied for the

best one, each of the tying moves is selected with probability 1
K

(Drezner 2010b).
I thought that it must be known. I met Fred Glover at an INFORMS conference

and casually told him about it. He really liked it. He said that he struggled with this
problem for years. I was convinced to write it down and submit it.

1.3.13.2 Calculating Mean and Variance

Another programming “problem” is the calculation of the mean and variance of
many values (may be even millions). If we calculate the sum of the values and their
sum of squares, the formula for the variance may yield a large and unacceptable
rounding error. So I came up with the following idea which is easy to implement.
Let xk be the kth value, mk the average of all values x1, . . . , xk , and Vk be the
variance of these values.

1. Set m0 = V0 = 0.
2. For each k = 1, . . . calculate,

(a) �k = 1
k
(xk − mk−1).

(b) mk = mk−1 + �k .
(c) Vk = k−1

k

(
Vk−1 + k�2

k

)
.

Note that for every k the mean and variance of all the values so far are known and
the process can be stopped at any point. This is especially useful if a pre-specified
standard error is required.

Step 2c can be adjusted to calculate directly the standard error. Let Sk be the stan-
dard error of the first k values. Since Vk = kS2

k , kS2
k = k−1

k

[
(k − 1)S2

k−1 + k�2
k

]
which is

S2
k = k − 1

k

[
k − 1

k
S2

k−1 + �2
k

]
.

1.3.13.3 Variance Reduction

A simulation of a function F(X) when X is a Normal variable with a mean μ and
variance σ 2 is performed. The function F(X) may be a result of an optimization
problem with a parameter X and may not have an explicit expression. It may take
a relatively long time to calculate each value. The common way to perform such
simulation is to generate random Normal variates, calculate F(X) for each, and
calculate the mean of these values and their standard error. It is likely that the
simulated values have a significant variance. We propose to reduce such variance by
the following modification. Generate a random standard Normal variate z, evaluate
F(μ + zσ ) and F(μ − zσ ), rather than generating two standard Normal variates
z1, z2. This modification reduces significantly the standard error of the mean, thus
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requires fewer evaluations of F(X) to get the same standard error. The accuracy of
the mean is not compromised because if a large number of calculations of F(X) are
performed, both z and −z are equally likely to be selected.

1.3.13.4 Generating Random Numbers

Generating random points in a square so that it can be replicated for comparison
purposes in other papers can be done by generating sequences for the x-coordinates
and y-coordinates by the method proposed in Drezner et al. (2018g, 2019c). A
sequence rk of integer numbers in the open range (0, 100,000) is generated. A
starting seed r1, which is the first number in the sequence, and a multiplier λ which is
an odd number not divisible by 5, are selected. We used λ = 12,219. The sequence
is generated by the following rule for k ≥ 1:

rk+1 = λrk − 
 λrk

100,000
� × 100,000.

For example, the x coordinates were generated by r1 = 97 and for the y-coordinates
r1 = 367. The coordinates are then divided by 100,000. The sequence of coordinates
can be easily constructed in Excel. Enter r1 into cell A1. In cell A2 enter =
A1*12,219 - INT(A1*0.12219)*100,000 and copy it down in column A.
Column A can be replicated in column B for the y coordinates by replacing r1 in cell
B1. These sequences can be used to generate up to 5000 points because r5001 = r1.

1.4 Location Papers

I have location papers in many fields of location analysis. Many of these papers are
discussed in other chapters. I discuss below classes of papers that are not extensively
discussed in other chapters.

1.4.1 Objective Functions

1.4.1.1 Variations on the Weber Problems

The objective of the Weber problem (Weber 1909) is to find the best location X for
a facility which satisfies

min
X

{
n∑

i=1

widi(X)

}
,
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where n is the number of demand points, wi is the weight associated with demand
point i, di(X) is the distance between demand point i and the facility location X. For
a review of the Weber problem see Wesolowsky (1993) and Drezner et al. (2002b).

Drezner et al. (2009c) investigated a model where travel time is not necessarily
proportional to the distance. Every trip starts at speed zero, then the vehicle
accelerates to a cruising speed, stays at the cruising speed for a portion of the trip,
and then decelerates back to a speed of zero. A time equivalent distance which is
equal to the travel time multiplied by the cruising speed is defined. It is proved that
every demand point is a local minimum for the Weber problem defined by travel
time rather than distance.

For example, using a cruising speed of 900 km/h, flying from LA to Las
Vegas (about 400 km) should take less than half an hour using standard models
(400/900 h). Taking into account acceleration and deceleration the time is almost
doubled which is very close to the actual flying time. On the other hand, flying from
LA to NY (about 5000 km) is underestimated by existing models by only 8%.

Drezner and Wesolowsky (1989) considered the Weber problem when the
distance from point A to point B is not the same as distance from B to A.
This is common in rush hour traffic or for flights that in one direction have tail
winds and in the opposite direction have head winds. Drezner and Drezner (2018a)
analyzed location problems where the distance (time) to get to the destination by
air is affected by winds. Two models are proposed: the asymmetric Weber location
problem and the round trip Weber location problem.

These observations are especially important when evaluating hub location
models (Skorin-Kapov et al. 1996; O’kelly 1987; Campbell 1994; Contreras 2015).
When a flight has one or more stopovers, the underestimation of flight time is
increased (in addition to the waiting time at the stopover) because there are more
acceleration and deceleration periods. Therefore, when using distances rather than
flight times, hub location models may underestimate the decline in quality of service
due to stopovers at hubs.

Drezner et al. (2016c) considered the Weber problem on a network where
demand points can be on nodes of the network or anywhere in the plane off the
network. Distances for demand points located on nodes can be either network
distance or Euclidean distance, while distances to points off the network are
Euclidean. Travel time on the network is slower by a given factor. Applications
include building a hospital providing emergency services either by an ambulance
using network roads or by a helicopter flying directly to the patient, especially
when the patient is off the network. The facility can be located anywhere on
the network and the optimal solution is not necessarily on a node. The problem
is optimally solved by the “Big Segment Small Segment” global optimization
algorithm (Berman et al. 2011a).

Drezner (1979) considered the Weber problem when there is uncertainty in the
location of demand points. Each demand point can be located anywhere in a circle.
The set of all possible optimal points is found.

Farahani et al. (2009) investigated the Weber problem with multiple relocation
opportunities. The weight associated with each demand point is a known function
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of time. Relocations can take place at predetermined times. The objective function
is to minimize the total location and relocation costs.

Drezner and Scott (2010) considered the following problem. A facility needs to
be located in the plane to sell goods to a set of demand points. The cost for producing
an item and the transportation cost per unit distance are given. The planner needs to
determine the best location for the facility, the price charged at the source (mill
price), and the transportation rate per unit distance to be charged to customers.
Demand by customers is elastic and assumed to decline linearly in the total charge.

Drezner and Scott (2006) considered the location of a facility in the plane when
service availability is a convex decreasing function of the distance (distance decay).
The total cost of the system consists of three components: (1) the cost of waiting in
line for service by the M/M/1 queueing model, (2) the cost of providing the service,
and (3) the cost of lost demand. A generalized Weiszfeld algorithm (Drezner 2009)
and the Big Triangle Small Triangle (BTST) global optimization technique (Drezner
and Suzuki 2004) are applied and tested.

Drezner (1985b) found the sensitivity of the optimal site to the Weber problem to
changes in the locations and weights of the demand points. An approximate formula
for the set of all optimal sites is found when demand points are restricted to given
areas and weights are within given ranges.

Drezner and Goldman (1991) found the smallest set of points that may include
at least one optimal solution to the Weber problem for a given set of demand points
and any unknown set of weights.

Drezner and Scott (1999) found the set of feasible solution points to the Weber
location problem with squared Euclidean distances when the weights are limited
to intervals. The result is then used to solve the minimax regret objective when
individual scenarios can be any set of weights in a given set of intervals.

David Simchi-Levi posed the question: “can it be shown that when the number
of demand points increases, the probability that the Weber solution point is on a
demand point converges to 1?” Intuitively, there is no space left between demand
points when the number of demand points increases to infinity. Drezner and Simchi-
Levi (1992) showed that when n demand points are randomly generated in a unit
circle, with randomly distributed weights in [0, 1], then the probability that the
Weber solution with Euclidean distances is on a demand point is approximately 1

n
.

This counter-intuitive result was verified by simulation. Later on I realized that
a similar result holds for Manhattan (�1) distances (not published). The Weber
solution is found by drawing a grid of horizontal and vertical lines through the
demand points and the optimal solution is on one of the grid intersection points
(Francis et al. 1992; Love et al. 1988). There are n2 intersection points and n of
them are demand points. The probability that the optimal solution is on a demand
point is approximately 1

n
.

Drezner (1989b) investigated the Weber objective on a surface of a sphere when
the demand points and weights are randomly generated. It is proven that when the
number of demand points increases to infinity: (1) the ratio between the maximum
value of the objective function and the minimum value converges to one, and (2) the
expected number of points that are a local minimum is equal to one.
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Drezner and Wesolowsky (1991) considered the possibility that some of the
weights in the Weber problem can be negative. This problem is also termed “the
Weber problem with attraction and repulsion” (Maranas and Floudas 1993; Chen
et al. 1992; Plastria 1991). Drezner and Suzuki (2004) proposed the BTST global
optimization algorithm and used this problem to illustrate the procedure.

Drezner et al. (2018c) proposed the Weber obnoxious facility location problem.
The facility location is required to be at least a given distance from demand points
because it is “obnoxious” to them. A practical example is locating an airport
that generates noise and pollution but serves travelers and thus their total travel
distance to the airport should be minimized. Since in most applications the nuisance
generated by the facility “travels by air,” the analysis deals mainly with the case
where the required minimum distance between the facility and demand points is
Euclidean. The Weber objective distance can be measured by a different norm.
Very efficient branch-and-bound algorithms to optimally solve the single facility
problem and an algorithm based on creating a finite candidate set are developed.
The algorithms were tested on problems with up to 10,000 demand points using
Euclidean, Manhattan, and �p for p = 1.78 norms for the Weber objective. The
largest problems were optimally solved in a few seconds of computer time. Many
extensions to the basic Weber obnoxious facility location problem are proposed for
future research.

Drezner et al. (2003) analyzed the optimal location of a central warehouse, given
a fixed number and locations of local warehouses. They investigated whether the
solution determined by the traditional model that minimizes total transportation cost
differs from the one determined by a model that also takes into account the inventory
and service costs. Numerical results show that ignoring inventory costs may lead to
inferior location solutions. In a follow-up paper Drezner and Scott (2013) added to
the model the consideration of perishable products. The location of the distribution
center affects the inventory policy. Brimberg and Drezner (2019) considered the case
that the demand points can be partitioned into clusters and the number of facilities
allocated to each cluster is found by dynamic programming. They solved both the
p-median and p-center problems. The model was inspired by the idea presented in
Drezner et al. (2016a).

1.4.1.2 Minimax and Center Objectives

Drezner (2011) reviewed planar center problems and their history. The unweighted
one-center problem was proposed and solved by Sylvester (1857, 1860) more than
150 years ago.

Drezner (1981a) considered a variation on the weighted one-center problem
(minimizing the maximum weighted distance from the facility). The objective is
to find the maximum total weight of demand points within a given distance r from
the facility. An optimal procedure of complexity O(n2 log n) is proposed.

Drezner (1984c) suggested two heuristics and one optimal algorithm for the
solution of the weighted p-center problem. The two heuristic procedures are similar
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to the location-allocation algorithm (Cooper 1963, 1964). The optimal algorithm is
based on the property that the solution to the one-center problem is based on two
or three demand points (Elzinga and Hearn 1972). There are 1

6n(n2 + 5) possible
maximal sets. Based on a proof in Drezner (1981a), the number of relevant maximal
sets is bounded by n(n − 1). The proposed optimal algorithm is polynomial in n for
a fixed p. The extension of the modified center problem (Drezner 1981a) is also
solved in polynomial time.

Drezner (1982b) proved that in a convex minimax optimization problem in k

dimensions there exist a subset of k + 1 functions such that a solution to the
minimax problem with these k + 1 functions is a solution to the minimax problem
with all functions. Drezner (1987c) developed a procedure which is an extension
of the Elzinga and Hearn (1972) algorithm for k-dimensional problems. Drezner
and Shelah (1987) constructed a special configuration that shows that the Elzinga
and Hearn (1972) algorithm can have a complexity of at least o(n2) even though in
practice the complexity is linear for most tested problems.

Drezner (1984d) optimally solved the two-center and the two-median problems
on the plane. It is proved that in the optimal solution there is a line separating the set
of demand points into two subsets such that the single facility solution point for each
subset yields the optimal solution to the two facilities problem. There are at most
1
2n(n− 1) such lines. Once all separating lines are constructed, the optimal solution
is identified. A lower bound for each separating line reduces the effort required by
the algorithm.

Drezner (1987d) considered the (unweighted) p-center problem with Manhattan
(�1) distances. Algorithms that find the optimal solution of the 1-center and 2-center
problems in o(n) time and the 3-center problem in o(n log n) time are proposed. For
p ≥ 4, algorithms polynomial in n for a given p are proposed.

Drezner (1991) considered the problem of locating p facilities among n demand
points in an m-dimensional space. For each demand point i a value fi which is the
weighted sum of the distances to all facilities plus a setup cost is calculated. The
objective is to minimize the maximum value of fi among all demand points by the
best location of the facilities. For locating a single facility fi reduces to the weighted
distance plus a setup cost.

Drezner (1995e) suggested an iterative procedure to solve convex minimax
optimization problems. Each iteration, the functions are approximated by spheres
and the spherical minimax problem solved.

Rodríguez-Chía et al. (2010) presented a solution procedure based on a gradient
descent method for the p-center problem in the plane using Euclidean distances. The
solution approach is based on analytical expressions for the bisector lines separating
facilities’ locations.

Irawan et al. (2016) solved large-scale unconditional and conditional p-center
problems both heuristically and optimally.
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1.4.1.3 Obnoxious Facilities

Obnoxious facilities are facilities generating nuisance and the objective is to locate
such facilities as far as possible from demand points. Without constraints the
solution is at infinity. Therefore, such models require a location of the facility in a
finite area such as the convex hull of the demand points. The problem on a network
was proposed by Church and Garfinkel (1978).

Berman and Drezner (2000) found the best location for an obnoxious facility
on a network such that the least weighted distance to all nodes of the network is
maximized.

Drezner and Wesolowsky (1996) found the best location in the interior of a
network that is as far as possible from nodes and arcs of the network. Drezner et al.
(2009b) changed the objective to the sum of distances from nodes and arcs.

Welch et al. (2006) solved the planar p obnoxious facilities location problem
maximizing the minimum distance between facilities and demand points and
between facilities.

Drezner et al. (2018g) considered two multiple obnoxious facilities problems. A
given number of facilities are to be located in a convex polygon with the objective
of maximizing the minimum distance between facilities and a given set of demand
points. In one model the facilities have to be farther than a certain distance from
one another. In the second model the facilities have to be farther from one another
than the minimum distance to demand points multiplied by a given factor. The
proposed heuristic solution approach is based on Voronoi diagrams (Suzuki and
Okabe 1995; Okabe et al. 2000; Voronoï 1908). It has no random component and
needs to be applied only once. A binary linear program, which is applied iteratively,
was constructed and solved optimally. The results were compared with a multi-
start approach using interior point, genetic algorithm (GA), and sparse non-linear
optimizer (SNOPT) solvers in Matlab where each instance is solved using 100
randomly generated starting solutions and selecting the best one. It was found that
the heuristic results are much better and were found in a fraction of the computer
time. For example, one instance of locating 20 facilities among 1000 demand points
in a unit square was heuristically solved in 24 s compared with about 5 h of computer
time by Matlab using interior point or SNOPT solvers.

1.4.1.4 Equity Objectives

The minimax objective discussed in Sect. 1.4.1.2 can be viewed as an equity
objective. We wish to provide the best possible service to the demand that gets the
worst service. In such models we are not concerned with demand that gets excellent
service. In equity objectives we aim to minimize the difference between the worst
service and the best one. Eiselt and Laporte (1995) list 19 different equity objectives.

Drezner et al. (1986) investigated the location that minimizes the range of the
distances to all demand points. Drezner and Drezner (2007) investigated two equity
objectives: (1) minimizing the variance of the distances to the facility, and (2)
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minimizing the range of the distances. These problems were solved optimally using
the BTST global optimization algorithm (Drezner and Suzuki 2004).

Drezner et al. (2009a) investigated the location of facilities minimizing the Gini
coefficient of the Lorenz curve (Lorenz 1905; Gini 1921) calculated by service
distances to the closest facility. An algorithm that finds the optimal location of one
facility in a bounded area in the plane is constructed and optimally solved using the
BTST procedure (Drezner and Suzuki 2004).

Drezner et al. (2014) analyzed the single facility location problem minimizing
the quintile share ratio (Eurostat 2012) for continuous uniform demand in an area
such as a disk, a rectangle, and a line; when demand is generated at a finite set of
demand points; and when the facility can be located anywhere on a network. The
quintile share ratio is a measure of inequity. For income levels in a population it
is the ratio of total income received by the 20% of the population with the highest
income (top quintile) to that received by the 20% of the population with the lowest
income (lowest quintile). The concept is applied to distances rather than income.

Suzuki and Drezner (2009) analyzed the location of p facilities serving con-
tinuous area demand. They solved three objectives: (1) the p-center objective, (2)
equalizing the load service by the facilities, and (3) minimizing the maximum radius
from each point to its closest facility when each facility services the same load.

Berman et al. (2009d) solved the problem of minimizing the maximum load
(defined as the sum of weights of demand points closest to the facility) among p

facilities on a network.
Drezner and Drezner (2011b) assumed that the set of demand points is partitioned

into groups. These groups are not necessarily divided by their locations but by
characteristics such as poor neighborhoods and rich neighborhoods. The objective
is to provide equitable service to the groups by locating one or more facilities.
For example, poor neighborhoods should get comparable service level to rich
neighborhoods.

1.4.1.5 Cover Objectives

Cover location models are one of the main branches of location analysis. A demand
point is covered by a facility within a certain distance (Church and ReVelle 1974;
ReVelle et al. 1976). Facilities need to be located in an area to provide as much
cover as possible. Such models are used for cover provided by emergency facilities
such as ambulances, police cars, or fire trucks. They are also used to model cover
by transmission towers such as cell-phone towers, TV or radio transmission towers,
and others. For a review see Plastria (2002), García and Marín (2015), and Snyder
(2011).

Drezner (1986b) proposed efficient algorithms to cover as much demand as
possible by p facilities The distance norm is Manhattan (�1).

Drezner and Wesolowsky (1997a) considered the situation where an event may
occur anywhere in a planar area or on a linear region such as a route. One or more
detectors are to be located within this region with the objective of maximizing the
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smallest probability of the detection of an event anywhere in the region. In other
words, the minimum protection in the region is to be maximized. The probability
that an event is detected is a decreasing function of the distance.

Drezner et al. (2004) proposed the gradual cover model with linear decay. Rather
than abrupt switch from full cover to no coverage (for example, at distance 2.99
miles there is full cover, while at distance 3.01 miles there is zero cover) it is
proposed that cover declines gradually. For example, a demand point is fully covered
within a distance r and not covered at all for distance exceeding R > r . For
distances between r and R the proportion of cover declines linearly. In “standard”
cover models r = R. The single facility location problem maximizing total cover
is optimally solved by BTST (Drezner and Suzuki 2004). Drezner et al. (2010a)
modified the linear gradual cover by assuming that r and R are random variables.

Berman et al. (2009c) proposed a covering problem where the covering radius
of a facility is controlled by the decision-maker. The cost of achieving a certain
covering distance is assumed to be a monotonically increasing function of the
covering distance. The problem is to cover all demand points at a minimum cost
by finding optimal number, locations, and coverage radii for the facilities.

Berman et al. (2010a) assumed that facilities “cooperate” in providing cover.
Each facility emits a signal that declines by distance and a demand point is covered
if the total signal exceeds a given threshold. For example, locating light posts in a
parking lot so that all points in the lot get a minimum strength of light. The discrete
version of the cooperative cover is analyzed in Berman et al. (2011b) and its network
variant is analyzed in Berman et al. (2013). Berman et al. (2010b) reviewed the three
models mentioned above: gradual cover, variable radius, and cooperative cover.

Berman et al. (2019) analyzed multiple facilities gradual cover models which
consider the possibility of partial cover. The issue of joint partial coverage by
several facilities in a multiple facilities location model is investigated. Theoretical
foundations for the properties of the joint coverage relationship to individual partial
covers are established. Models based on these theoretical foundations are developed.
The location problems are solved both heuristically and optimally within a pre-
specified percentage from the optimal solution. A follow-up paper is Drezner and
Drezner (2014). Berman et al. (2019)’s objective is to maximize the total cover,
while Drezner and Drezner (2014)’s objective is to maximize the minimum cover.

Drezner et al. (2019) propose, analyze, and test a new rule for calculating the
joint cover of a demand point which is partially covered by several facilities. It
is reasonable to assume that facilities are “points” because in most applications
the facilities occupy a small area compared to the demand area. However, in most
applications demand “points” generate demand from an area and each point in the
area may have a different distance to the facility. The total number of customers
covered by several facilities depends both on the distances of the facilities from
the demand area and their directions. For example, if two facilities are located
one to the north of the neighborhood and one to the south, one facility may cover
customers located at the northern part of the neighborhood, while the other one
covers customers in the south and the total number of customers is usually the sum
of the two. If the two facilities are located in the same direction, there will be a



1 My Career and Contributions 39

significant overlap, and the total number of customers covered is less than the sum
of the two. The algorithm is tested on a case study of locating cell-phone towers in
Orange County, California. The new approach provided better total cover than the
cover obtained by existing procedures. Follow-up papers propose and investigate:
the maximin objective (Drezner et al. 2019a); the continuous demand (Drezner and
Drezner 2019a); solving the models using genetic algorithms (Drezner et al. 2019b).

Kalczynski and Drezner (2019b) solved the problem of packing a given number
of ellipses with known shapes in the rectangle with the smallest area. The ellipses
can be rotated and do not have to be parallel to the sides of the rectangle.

Drezner et al. (2011, 2012a, 2015a, 2016a) proposed a competitive facilities
location models based on cover objectives. A follow-up paper we are working on is
Drezner et al. (2018). Rather than using the standard cover objective, the gradual
cover objective is applied. For recent reviews of competitive facilities’ location
problems see Berman et al. (2009a), Drezner (2014), Eiselt et al. (2015), Drezner
and Eiselt (2002), and Eiselt (2011).

1.4.1.6 Hub Location and Related Models

The round trip location problem (Drezner 1982a, 1985a; Drezner and Wesolowsky
1982) preceded the hub location problem (Skorin-Kapov et al. 1996; Sasaki et al.
1997; O’kelly 1987; Campbell 1994; Contreras 2015; Drezner and Drezner 2001)
and has similar features. n pairs of points are located in an area. The objective
function to be minimized is the maximum round trip between the facility to one
demand point, its paired demand point, and back.

Another related problem is the transfer point location problem (Berman et al.
2007, 2008, 2005). Demand is generated at a set of demand points who need the
services of a central facility. The service provided by the facility is provided through
transfer points, i.e., the total distance for a customer is the distance to the transfer
point plus the distance to the facility. Each distance may be multiplied by a different
weight to convert it to time. Locations for the central facility and the transfer points
are sought. Both minisum and minimax objectives can be applied. A similar setting
is used in Sasaki et al. (1997) where the transfer points are termed relay points.

Drezner and Wesolowsky (2001) proposed the collection depots location prob-
lem. A set of demand points and a set of collection depots are given. A facility that
minimizes total travel distance need to be located. Each service consists of a trip
to the customer, collecting materials, dropping the materials at one of the available
collection depots, and returning to the facility to wait for the next call. Berman et al.
(2002) solved the network version of the collection depots problem. Drezner et al.
(2019c) investigated the multiple collection depots problem in the plane.

Sasaki et al. (1999) considered the 1-stop multiple allocation p-hub median
problem. The problem is formulated as a p-median problem. A branch-and-bound
algorithm and a greedy-type heuristic are proposed. Suzuki and Drezner (1997)
considered the continuous version of this problem. Drezner and Drezner (2001)
considered the hub location problem where customers do not necessarily select the
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shortest route through a hub but split their selection according to the gravity rule
(Huff 1964, 1966; Reilly 1931).

1.4.2 The Environment

1.4.2.1 Location on a Sphere

Companies become increasingly global and demand points may be distributed all
over the world. It cannot be assumed that the area of interest is planar. Thus, the
importance of spherical models increases over the years.

Drezner and Wesolowsky (1978a) showed that spherical distances are convex up
to a distance of π

2 and if all demand points are in a spherical disk of a radius not
exceeding π

4 , then there is a unique local optimum which is the global one.
Drezner (1981b) showed that if all demand points on the sphere lie on a great

circle, such as the equator, then the optimal solution to the Weber problem is also
on that great circle and is located at one of the demand points.

Drezner (1983a) proposed (in addition to planar problems) a unified approach
for solving unweighted maximin and minimax problems on a sphere, subject to
constraints which are inside or outside a set of circles. The property that the sum
of distances to a point and its antipode on a unit sphere is equal to π is utilized. A
constraint outside a circle centered at a point can be converted to a constraint inside
the circle centered at its antipode. Maximin objective can be converted to minimax
objective by using the antipodes of demand points.

Drezner and Wesolowsky (1983) relied on the property that the sum of distances
to a point and its antipode is equal to π to solve the weighted minimax and
maximin problems. They developed an algorithm that finds the global optimum
of the weighted minimax problem. Since the maximin problem can be converted
to an equivalent minimax problem, this algorithm can be used to optimally solve
the maximin problem as well. Drezner (1985c) suggested to use the algorithm in
Drezner and Wesolowsky (1983) to optimally solve the Weber location problem on
a sphere.

A related paper is Drezner et al. (2016a) which deals with a competitive model
but can be applied to other models as well. Suppose that the set of demand points can
be divided into mutually exclusive clusters. For example, a cluster in New York, a
cluster in Tokyo, a cluster in London, and so on. A budget is available for investment
in these clusters to improve a well-defined objective. Suppose that, for a particular
cluster, the best solution and its objective function value for a given budget allocated
to this cluster can be found. The total budget can be divided, for example, to 1000
units, i.e., each unit has 0.1% of the available budget. The allocation in whole units
to each cluster to optimize the total value of the objective function can be found
by dynamic programming. The same idea can be implemented for other facilities’
location objectives. For example, suppose that in a p-median or a p-center model
the demand area can be partitioned into mutually exclusive subsets far enough from
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one another. The total number of facilities is given. The number of facilities in each
subset needs to be determined so that the objective function is minimized.

1.4.2.2 Continuous Demand

Drezner and Wesolowsky (1980a) solved the problem of locating a facility among
area demands rather than points. They solved the problem with general �p distances.
Drezner and Wesolowsky (1978b) pointed to a mistake in another paper (Bennett
and Mirakhor 1974) that found the best location of a facility when demand is
generated in areas rather than demand points. Drezner (1997) considered the reverse
problem of converting an area to a set of demand points.

Drezner (1986a) considered the Weber and p-median problems with Euclidean
and square-Euclidean distances. Both demand points and facilities are assumed to
have circular shapes with uniform demand and service origin.

Drezner and Erkut (1995) solved the p-dispersion problem in a square which is
equivalent to circle packing in a square (Szabo et al. 2007). p points need to be
located in a square so that the minimum distance between the points is maximized.
This problem can be generalized to any shape.

Suzuki and Drezner (1996) solved the p-center problem when demand is
generated in an area rather than demand points applying Voronoi diagrams (Suzuki
and Okabe 1995; Okabe et al. 2000; Voronoï 1908). Drezner and Suzuki (2010) used
a similar procedure to find the set of circles of a given radius that cover the most area
of a given shape. Suzuki and Drezner (2009) consider the problem of equalizing the
loads serviced by each facility which is formulated as minimizing the maximum
load serviced by the facilities.

Drezner et al. (2018d) propose and solve a competitive facility location model
when demand is continuously distributed in an area and each facility attracts
customers within a given distance. This distance is a measure of the facility’s
attractiveness level which may be different for different facilities. The market
share captured by each facility is calculated by two numerical integration methods.
These approaches can be used for evaluating functional values in an area for
other Operations Research models as well. The single facility location problem
is optimally solved by the BTST (Drezner and Suzuki 2004) global optimization
algorithm and the multiple facility problem is heuristically solved by the Nelder–
Mead algorithm (Nelder and Mead 1965).

1.4.2.3 Location in a Large Area

For covering a large demand area, there are three symmetric grids in the plane:
triangular grid, square grid, and hexagonal grid (see Fig. 1.9).

Drezner and Zemel (1992) considered the following question. There is an area
with uniform demand and we wish to build facilities in a pattern. There are three
symmetric grids in the plane: triangular grid, square grid, and hexagonal grid. Which
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of these grids protects best against a future competitor? (the leader–follower or
Stackelberg equilibrium problem, Stackelberg 1934; Drezner and Drezner 2017). It
turns out that a hexagonal grid is best. A future competitor can capture up to 51.27%
of the market share of one existing facility. In a square grid a competitor can capture
up to 56.25% of the market share and in a triangular grid it can capture 2

3 of it.
This is consistent with many other objectives (Suzuki and Drezner 1996; Drezner
and Suzuki 2010; Hilbert and Cohn-Vossen 1932; Szabo et al. 2007). We thought
at the time, but never pursued it, that a hexagonal road grid may be better than the
commonly used Manhattan (�1) grid.

Drezner and Drezner (2018b) investigated the total cover area of two, three, four,
and many facilities applying the cooperative cover model (Berman et al. 2010a). It
is shown that for many facilities located in a symmetric grid, the hexagonal grid is
best.

Taillard (1995) proposed the gray pattern problem which is a special case of
the quadratic assignment problem (QAP, Drezner 2015b). A square (it can be a
rectangle) of m by m points is given. k points out of the m2 points need to be
selected as “black” points (they play the role of facilities). A large area is covered
by a square grid with each square having an identical black points distribution. The
objective is to have the black points distributed as smoothly as possible so that the
area will look as uniform gray. To find the locations for the black points, distances
to the eight adjacent squares are considered in the objective function.

Drezner (2006a) proposed an efficient approach to solve the gray pattern
problem. Drezner et al. (2015d) improved the algorithm and optimally solved much
bigger problems. For example, the instance Tai64c, which is a QAP with n =
64 facilities (see the QAPLIB: http://anjos.mgi.polymtl.ca/qaplib/) was optimally
solved in 15 s.

Possible follow-up papers may include testing whether it is better to select black
points in a hexagon or a triangle forming a hexagonal or triangular grids, see
Fig. 1.9. Also, a color pattern structure may be of interest. Rather than black points,
several colors (for example, red, blue, and yellow) points at certain proportions need
to be selected with the objective of forming uniform patterns for the points of all
colors combined in addition to the points of each color separately.

Square Grid Hexagonal Grid Triangular Grid

Fig. 1.9 The three symmetric grids

http://anjos.mgi.polymtl.ca/qaplib/
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Two models incorporating the concept of creating a structure in one square
considering the structure in the adjacent squares were proposed. Drezner and
Kalczynski (2018) proposed the p-dispersion covering problem (p-DCP) which is
a generalization of the p-dispersion problem in a square (Drezner and Erkut 1995;
Kuby 1987). In the p-dispersion problem the objective is to maximize the minimum
distance between any two facilities located in a square. In the p-DCP, distances to
adjacent squares are included in the objective function so that if an area is covered
by many squares, the solution in each square is replicated and the minimum distance
between any two facilities is maximized. Drezner and Kalczynski (2017) considered
the gray pattern problem in a square when the points can be located anywhere in the
square and are not restricted to a pre-specified set of potential locations.

1.4.3 Conditional Location Problems

Conditional location problems are an extension of “standard” location problems
(Ogryczak and Zawadzki 2002; Minieka 1980; Chen and Handler 1993; Chen 1988;
Berman and Simchi-Levi 1990). Several facilities exist in the area and additional
facilities need to be located. Customers get the service from the closest facility,
regardless of whether it is existing or new.

Drezner (1989a) showed that conditional p-center problems can be solved by
solving o(log n) p-center problems, where n is the number of demand points.
Therefore, once an efficient algorithm exists for the p-center problem (by any metric
or on a network), then an efficient one can be constructed for the conditional version
of the problem.

Drezner (1995d) analyzed the conditional planar p-median problem when q

facilities exist in the area. The p = q = 1 case is optimally solved and heuristic
algorithms are proposed for the general case.

Berman and Drezner (2008a) proposed a new formulation for the conditional
p-median and p-center problems on a network. The new formulation can be used
to construct more efficient algorithms than those constructed by the best known
formulation.

1.4.4 Unreliable or Uncertain Data

Drezner (1987b) investigated the p-median and p-center problems when facilities
are unreliable and may become inactive. Demand points get their services from the
closest active facility.

Berman et al. (2003) assumed that the probability that a facility cannot provide
satisfactory service increases with the distance from the facility. They solved the
p-median problem on a network when failure to provide satisfactory service is
considered.



44 Z. Drezner

Drezner and Drezner (2017) reviewed various objectives in location problems
that are modeled as leader–follower also termed the Stackelberg equilibrium
problem (Stackelberg 1934).

Berman and Drezner (2003) considered the 1-center problem on a network when
the speeds on links are stochastic rather than deterministic. The objective is to find
the location for a facility such that the probability that all nodes are reached within
a given time threshold is maximized.

Berman et al. (2009b) considered the p-median problem on a network when one
of the links may become unusable either due to a terrorist attack or a natural disaster.
They formulated it as a leader–follower problem. The follower’s problem is to select
the most damaging link and the leader’s problem is to minimize total cost following
a link becoming unusable.

Berman and Drezner (2008b) proposed the p-median problem on a network
under uncertainty. p facilities are to be located but it is possible that up to q

additional facilities will have to be located in the future. The objective is to find
locations of p facilities such that the expected value of the objective function in
the future is minimized. A related problem is investigated in Drezner (1995a).
Demand is changing over time and additional facilities are built in the future to
serve an increasing demand. The objective is to determine the establishment times
and locations for future facilities.

Drezner and Guyse (1999) considered a location problem with future uncer-
tainties about the data. Several possible scenarios about the future values of the
parameters are postulated. Four rules utilized in decision theory are examined: the
expected value rule, the optimistic rule, the pessimistic rule, and the minimax regret
rule.

Demand at various demand points follows a multivariate distribution. There is
a desired threshold to be met. Drezner et al. (2002a) considered the objective of
minimizing the probability that the market share captured by a new facility does not
meet a given threshold. Drezner and Drezner (2011c) considered the same model
for the Weber objective not being below a certain threshold.

Many location problems can be expressed as ordered median objective (Nickel
and Puerto 2005). Drezner et al. (2012b) investigated the ordered median objective
when the demand points are generated in a circle. The mean and variance of the kth
distance from the center of the circle and the correlation matrix between all pairs
of ordered distances are found. By applying these values, the mean and variance of
any ordered median objective and the correlation coefficient between two ordered
median objectives can be calculated.

Drezner et al. (2018e) extend the gravity model by allowing attractiveness of
facilities to be randomly distributed. It was found that when facilities’ attractiveness
are random, facilities tend to lose some competitive advantage. The decrease in
attractiveness for a given mean is approximately proportional to the variance of the
attractiveness distribution. Drezner et al. (2018f) observed that more attractive facil-
ities attract shoppers from larger distances. They propose to estimate attractiveness
by the distances shoppers travel rather than by opinion surveys.
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1.4.5 Other Models

Drezner (1988a) considered the problem of locating satellites in orbits to maximize
their coverage of the sphere (earth). Each satellite covers a spherical disk at any
point in time but constantly moves in orbit.

The problem of maximizing the sight angles of shapes from a point located
anywhere in the plane is analyzed in Drezner (1988b). There are n points on the
plane that are to be observed from a location to be found. We wish to find the
observation point that has the best possible view of the points in the sense that if we
draw lines of sight from the observation point to the given points, the smallest angle
between the lines is maximized. Applications include an art display or surveillance
point when an object in the line of sight to a farther object may block its view. It is
a follow-up to Drezner and Wesolowsky (1980b) where the location of the facility
is restricted to arcs (or the whole circumference) on a circle surrounding all points.

Drezner and Wesolowsky (1998) considered the minisum (Weber) and minimax
location problem with rectilinear distances. However, the axes can be rotated to
provide the minimum value of the objective function. This problem can be used in
the planning phase of constructing roads or aisles with rectilinear distance but not
necessarily in north–south and east–west directions.

Drezner and Drezner (2013) suggested overlapping Voronoi diagrams. The
Voronoi regions do not partition the plane into disjoint regions. Rather, points may
belong to several regions as long as the distance to a Voronoi point does not exceed
a certain percentage over the shortest distance to all Voronoi points. The concept
is illustrated on a case study of delineating overlapping service areas for public
universities. If two campuses are at about the same distance from a potential student,
students can register to either of them.

Berman and Drezner (2007) introduced the multiple server location problem. A
given number of servers are to be assigned to nodes of a network. A subset of nodes
need to be selected for locating one or more servers in each. Each customer at a node
selects the closest server. The objective is to minimize the sum of the travel time and
the average time spent at the server calculated by the M/M/k queueing formulas.
An efficient method for calculating total time in M/M/k queues is presented in
Pasternack and Drezner (1998). Follow-up papers are (Aboolian et al. 2009; Drezner
and Drezner 2011a).

Drezner (2004, 2007a) introduced the casualty collection points (CCPs) location
problem. The CCPs are employed in cases of mass casualty incidents that require
delivering emergency medical care to a large number of victims. The underlying
assumption is that in a catastrophic event, such as a major earthquake, the area’s
civil infrastructure (freeways, roads, communications, emergency medical services,
etc.) will not be operational. Hospitals may themselves become victims or otherwise
inundated or inaccessible. Drezner et al. (2006) proposed a minimax regret multi-
objective formulation for the CCP location problem. The objective is to minimize
the maximum percent deviation of individual objectives from their best possible
objective function value. Five objectives are included in the model: (1) p-median,
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(2) p-center, (3) the p-Max Cover objective within two miles (walking distance),
(4) the p-Max Cover objective within three miles, and (5) the minimum variance as
a measure of equity.

Kalsch and Drezner (2010) considered the simultaneous scheduling-location
single machine model in the plane. The model combines both the location of the
machine and the scheduling of the jobs executed by the machine. Two objectives
are analyzed: the make span and the total completion time.

Drezner and Menezes (2016) compared the Condorcet voting procedure to the
Weber location problem. They analyzed the difference in location solutions as well
as the value of one objective at the solution point of the other. Menezes et al. (2016)
analyzed also approval voting in comparison with the cover objective.

Drezner and Brimberg (2014) considered the problem of fitting a given number
of concentric circles to a given set of points. This is a generalization of the problem
of fitting a set of points to one circle (Drezner et al. 2002c). Three objectives, to
be minimized, are considered: the least squares of distances from the circles, the
maximum distance from the circles, and the sum of the distances from the circles. In
a follow-up paper, Brimberg and Drezner (2015) considered a continuous location
problem for a given number of concentric circles serving a given set of demand
points. Each demand point is serviced by the closest circle. The objective is to
minimize the sum of weighted distances between demand points and their closest
circle.

Berman and Drezner (2006) investigated the problem of locating a given number
of facilities on a network. Demand generated at a node is distance dependent, i.e., it
decreases when the distance increases. The facilities can serve no more than a given
number of customers; thus, they are capacitated and congested when they reach that
limit. The objective function is to maximize the demand satisfied by the system
given these constraints.

Drezner and Drezner (2019b) assume that a budget is available for expansion of
chain facilities. The part of the budget invested in improving an existing facility or
constructing a new one is an integer multiple of a basic value such as 0.1% of the
available budget. The gravity model (Huff 1964, 1966) is used to estimate market
share captured by chain facilities. Both improvement of existing facilities and
construction of new facilities are considered in the model. The problem is optimally
solved by a branch-and-bound algorithm when the set of possible locations for the
new facilities is finite.

1.5 Solution Methods

1.5.1 Global Optimization Algorithms

Many non-convex planar single facility problems can be optimally solved by the
global optimization algorithms “Big Square Small Square” (BSSS, Hansen et al.
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1981) and “Big Triangle Small Triangle (BTST, Drezner and Suzuki 2004).
Methods that used this idea for other environments are Big Region Small Region
(BRSR, Hansen et al. 1995) for location on a sphere, Big Cube Small Cube
(BCSC, Schöbel and Scholz 2010) for higher dimensional space, Big Segment
Small Segment (BSSS, Berman et al. 2011a) for optimization on a network, Big
Arc Small Arc (BASA, Drezner et al. 2018c) for optimization on circumferences
of disks.

The BTST algorithm starts with a Delaunay triangulation (Lee and Schachter
1980) creating a list of triangles. The vertices are the feasible demand points and
the vertices of the feasible region if there is one. Upper bound and lower bounds for
each triangle in the list are calculated and UB is the best upper bound. Many of the
triangles in the list for which LB ≥ UB(1 − ε) for a given relative accuracy ε are
removed from the list. The process continues by selecting a triangle in the list with
the smallest LB as a “big triangle” and splitting it into four “small triangles.” The
best upper bound UB may be updated. The big triangle is removed from the list and
small triangles for which LB ≥ UB(1 − ε) are ignored. Small triangles which do
not satisfy this condition are added to the list. The process continues until the list of
triangles is empty. For complete details see Drezner and Suzuki (2004).

The BSSS algorithm starts with a list consisting of a “big square” enclosing the
feasible region. The upper bound in the big square, UB, is the best upper bound
found so far. The remainder of the process is very similar to the BTST algorithm.
A selected square in the list is divided into four small squares by connecting the
centers of the sides of the big square.

If the solution is restricted to the convex hull of the demand points, or any convex
polygon, the triangulation by BTST takes care of it automatically, while BSSS
requires an extra check whether the solution point is feasible or not. The lower and
upper bounds required for applying the BSSS algorithm may also be affected by the
feasibility issue.

Suzuki and Drezner (2013) extended the BTST (Drezner and Suzuki 2004)
algorithm to multiple facility location (in particular the location of two facilities).
Drezner (2007b) proposed a general approach for constructing bounds required for
the BTST algorithm for the solution of planar location problems. Optimization
problems, which constitute a sum of individual functions, each a function of the
Euclidean distance to a demand point, are analyzed and solved. The bounds are
based on expressing each of the individual functions in the sum as a difference
between two convex functions of the distance, which is not the same as convex
functions of the location. Drezner and Nickel (2009b,a) applied the method
proposed in Drezner (2007b) to a general ordered median formulation (Nickel and
Puerto 2005). For a review of these approaches see Drezner (2013).



48 Z. Drezner

1.5.2 Improvements to the Weiszfeld Algorithm

Several improvements on the Weiszfeld algorithm (Weiszfeld 1936; Weiszfeld and
Plastria 2009) were proposed. Drezner (1992b) proposed to multiply the change
between two consecutive iterations by a factor of 1.8. An “ideal” multiplier that
needs to be computed every iteration was also proposed. Drezner (1996) proposed
to accelerate the procedure by estimating the limit of a geometric series by the ratio
of the changes of two consecutive iterations. Drezner (2015a) proposed an algorithm
based on the values of the objective function at 9 points (the present iteration and
eight points around it on the vertices and sides’ centers of a square) and fitting a
paraboloid to these nine values by a least squares quadratic regression. The next
iterate is the minimum point of the paraboloid. We give here a convenient way to
calculate the next iterate in the fortified method (Drezner 2015a).

The present iterate is (x0, y0). For a given �, 8 values f = {f1, f2, . . . , f8} are
defined. These are the differences in the value of the objective function between
the eight points on the periphery of the square and the squares’ center (x0, y0). The
points are depicted in Fig. 1.10:

Two vectors are defined: α = {1, 1,−1,−1, 0, 0, 1,−1} and β =
{1,−1, 1,−1, 1,−1, 0, 0}. Then, fi = f (x0 + αi�, y0 + βi�) − f (x0, y0).
Calculate γi = f2i−1 + f2i; δi = f2i−1 − f2i for i = 1, . . . , 4. Then:
v1 = 4(γ1+γ2−2γ3+3γ4); v2 = 5(δ1−δ2); v3 = v1+20(γ3−γ4); v4 = γ1−γ2+δ4;
v5 = δ1 + δ2 + δ3.

The next iterate (x, y) is

x = x0 + �
v2v5 − v3v4

0.3(v1v3 − v2
2)

; y = y0 + �
v2v4 − v1v5

0.3(v1v3 − v2
2)

. (1.25)

Drezner (2009) considered Weber-like location problems where the objective
function is a sum of terms, each a function of the Euclidean distance from a demand
point. It is proved that a Weiszfeld-like iterative procedure, termed generalized
Weiszfeld, for the solution of such problems converges to a local minimum (or
a saddle point) when three sufficient conditions are met: the functions are twice
differentiable (except, possibly at the demand points), concave, and monotonically
non-decreasing with the distance.

Fig. 1.10 The square
configuration for the fortified
algorithm



1 My Career and Contributions 49

1.5.3 Heuristic Methods for Solving the p-Median Problem

Several papers suggested heuristic algorithms for the solution of the planar
p-median problem. Brimberg and Drezner (2013) proposed to find a good starting
solution by applying metaheuristics such as descent, tabu search, simulated
annealing on a grid. The location-allocation algorithm (Cooper 1963, 1964) is
then applied for finding the final solution. Brimberg et al. (2014) applied variable
neighborhood search on the grid starting solution. Drezner et al. (2015c) applied
variable neighborhood search and concentric tabu search (Drezner 2002) on the
starting solution and Drezner et al. (2015b) applied a specially designed genetic
algorithm. These methods were refined by Drezner and Salhi (2017). Brimberg
et al. (2017) and Drezner et al. (2016b) applied the reformulation local search
which switches between the continuous model and a discrete relaxation in order to
expand the search. In each iteration new points obtained in the continuous phase are
added to the discrete formulation. The best results to date are reported in Drezner
and Drezner (2018c). A genetic algorithm for solving the network p-median is
proposed in (Alp et al. 2003).

1.5.4 The Demjanov Algorithm

The Demjanov algorithm was proposed by Demjanov (1968) and applied in
Drezner and Wesolowsky (1997a, 1985). It is designed to solve the minimization
of f (X) = max

1≤i≤n
{fi(X)}, where X is a vector of p variables. It can be used to

solve heuristically, for example, the location of p facilities among n demand points
such as the p-center problem. For such an application the vector X = (xj , yj ) for
j = 1, . . . , p is a vector of locations which is a vector of 2p variables.

Random locations for the p facilities are selected and the solution is improved
by moving in the direction of steepest descent. The objective function is optimized
on the ray of steepest descent using a one dimensional optimization procedure such
as the golden section search (Zangwill 1969).

Calculation of the gradient is done as follows. A tolerance δ is selected defining
the set I (X) of demand points:

I (X) = { i | fi(X) ≥ f (X) − δ } .

The set I (X) is the set of “binding” demand points. If the function fi(X) is
reduced for all binding demand points when X is changed infinitesimally, then the
objective function is reduced. Consider changing location (xj , yj ) by (�xj ,�yj )

for j = 1, . . . , p. The steepest descent direction of f (X) is obtained by solving the
following positively definite quadratic programming problem:
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min
p∑

j=1

{
[�xj ]2 + [�yj ]2

}

subject to:
p∑

j=1

{
∂fi(X)

∂xj

�xj + ∂fi(X)

∂yj

�yj

}
≤ − 1 for i ∈ I (X). (1.26)

The Demjanov algorithm can also be used to heuristically solve maximin
(obnoxious) location problems. The definition of I (X) and the constraints in (1.26)
are reversed.

1.5.5 Other Solution Methods

Drezner and Gavish (1985) solved the weighted minimax k-dimensional 1-center
problem with n demand points within ε accuracy in o(n log ε) time for a fixed
dimensionality k using a variant of the “Russian method for solving linear program-
ming” (Khachian 1979).

Drezner (2019) proposes to capitalize on symmetry that exists in some quadratic
assignment instances when employing genetic or hybrid genetic algorithms to
solve such instances. Such symmetry usually exists when the potential sites for
the facilities are arranged in a rectangle. A simple and effective approach to
identify equivalent solutions if such symmetry exists is designed. Three variants of
this modification are proposed. Extensive computational experiments (performing
21,000 runs on instances with up to 150 facilities) show that the modified approach
performed significantly better without increasing the run times.

Drezner and Drezner (2019c) consider solving various location problems using a
trajectory solution approach (Drezner and Wesolowsky 1978c, 1982). For example,
in the gravity model (Huff 1964, 1966) with a distance decay function e−λd , it is
shown that when λ → 0 the solution for locating a new facility is the solution to the
Weber problem (Drezner et al. 2002b). Then, the trajectory of the solution points
from λ = 0 to the required λ is found by numerically solving a set of differential
equations by the Runge–Kutta method (Runge 1895; Ince 1926; Abramowitz and
Stegun 1972).

1.6 The Quadratic Assignment Problem

An early review of the quadratic assignment problem (QAP) is Drezner et al. (2005).
A recent book chapter, Drezner (2015b), summarizes many solution techniques of
the QAP. My Ph.D. dissertation (Drezner 1975) which concentrated on the layout
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problem, and was published in Drezner (1980), is closely related to the QAP. I
briefly summarize some of my contributions to this field.

– Drezner (1984b) found the optimal solution to the QAP Nug15 test problem
(Nugent et al. 1968).

– Resende et al. (1995) and Drezner (1995b) analyzed lower bounds for the QAP
based on linear programming.

– A new merging procedure in the genetic algorithm designed for the solution of
the QAP was introduced in Drezner (2003).

– A new tabu search termed “concentric tabu search” was introduced in Drezner
(2002). The concentric tabu search was applied on each offspring before
considering it for inclusion into the population. The concentric tabu search was
modified to the “extended concentric tabu” in Drezner (2005c). Drezner (2008a)
proposed the “simple tabu” and performed extensive experiments comparing it
to other genetic algorithms.

Recently, de Carvalho Jr. and Rahmann (2006) introduced a new class of
quadratic assignment instances that are extremely difficult to solve. There are 14
instances in this set. Seven of them are Border Length Minimization which are
denoted by BL followed by the number of facilities, and seven of them are Conflict
Index Minimization denoted by CI followed by the number of facilities. In Table 1.4
we show the progression of the quality of the solutions (percentage above the best
known solutions) in published papers.

Table 1.4 Results for de Carvalho Jr. and Rahmann (2006) instances

Instance Best known (1) (2) (3) (4) (5) (6) (7)

BL36 3296 1.699% 0% – 0% 0% 0% 0%

BL49 4548 2.463% 0.352% – 0% 0% 0% 0%

BL64 5988 3.540% 1.002% – 0% 0% 0% 0%

BL81 7532 4.886% 1.487% – 0.053% 0% 0% 0%

BL100 9256 4.624% 1.901% – 0.173% 0.086% 0.086% 0%

BL121 11,396 5.581% 2.141% – 0.140% 0.035% 0.035% 0%

BL144 13,432 5.688% 2.978% – 0.298% 0.208% 0% 0.179%

CI36 168,611,971 0.779% 0.240% 0.055% 0% 0% 0% 0%

CI49 236,355,034 1.060% 0.306% 0% 0% 0% 0% 0%

CI64 325,671,035 0.645% 0.315% 0.178% 0% 0% 0% 0%

CI81 427,447,820 1.607% 0.289% 0.095% 0% 0% 0% 0%

CI100 523,146,366 1.802% 0.431% – 0% 0% 0% 0%

CI121 653,409,588 1.642% 0.751% – 0.001% 0% 0% 0%

CI144 794,811,636 2.304% 1.078% – 0.025% 0% 0% 0%

(1) de Carvalho Jr. and Rahmann (2006); (2) Rodriguez et al. (2004); (3) Pelikan et al. (2007);
(4) Drezner (2008b); Drezner and Marcoulides (2009); (5) Drezner and Misevičius (2013);
(6) Drezner and Drezner (2018c); (7) Drezner and Drezner (2019d)
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1.7 My Record and Some Reflections

Recently, an interview as a luminary discussing my career was posted on the
INFORMS website: https://www.informs.org/Explore/History-of-O.R.-Excellence/
Biographical-Profiles/Drezner-Zvi#oral_hist. I took a snapshot of my record on my
75th birthday on February 23, 2018. I put my 75th birthday vita on my website
http://mihaylofaculty.fullerton.edu/sites/zdrezner/.

On that date I had 304 refereed publications: two books, 284 refereed journal
articles, and 18 peer reviewed book chapters. I had a total of 95 co-authors, see
Fig. 1.11, many contributing to this book. Two of my co-authors, Amnon Barak
and Saharon Shelah, have co-authored with Paul Erdos and are Erdos-1 which
makes me Erdos-2 and all my co-authors are Erdos-3 or higher. A list of Erdos-
2 authors is available in http://www.oakland.edu/enp/thedata.html. According to
Scholar.Google, one of my papers was cited 2189 times, 27 papers were cited at
least 100 times, 61 papers were cited at least 50 times, and 204 papers were cited
at least 10 times for a total of 14,468 citations of these 204 papers. I am deeply
indebted to my co-authors without whom I could not have compiled such a record.

1. Aboolian, Robert
2. Agsari, Nasrin
3. Akella, Ram
4. Almogy, Yoram
5. Alp, Osman
6. Amar, Lior
7. Anklesaria, K.P.
8. Averbakh, Igor
9. Balakrishnan, N.

10. Barak, Amnon
11. Berman, Oded
12. Bhootra, Ajay
13. Brimberg, Jack
14. Chen, Frank
15. Choi D.
16. Cung V.D.
17. da Silviera, G.J.C.
18. Dear, Roger
19. Drezner, Tammy
20. Drezner, Taly Dawn
21. Eiselt, H.A.
22. Erikson, John
23. Erkut, Erhan
24. Espejo, I.
25. Estrada, J.
26. Farahani, Reza
27. Farnum, Nicholas
28. Gavish, Ben
29. Goldman, Alan J.
30. Goldstein, Zvi
31. Gurevich, Yuri
32. Gurnani, Haresh

33. Guyse, Jeffrey
34. Hahn, Peter M.
35. Hamacher, Horst
36. Hoefler, Torsten
37. Hulliger, Beat
38. Irawan, C.A.
39. Jefferson, Thomas
40. Kalczynski, Pawel
41. Kalsch, Marcel T.
42. Klamroth, Kathryn
43. Krass, Dmitry
44. Levin, Chaim
45. Levy, Ely
46. Lieber, M.
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48. Marianov, Vladimir
49. Mehrez, Abraham
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52. Misevicius, Alfonsas
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55. Nickel, Stefan
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62. Ramakrishnan, K.G.
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71. Schwarz, C.
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75. Shiode, Shogo
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1.7.1 Reflections

Traditionally we instruct our graduate students to first study the literature in order to
know and understand available solution methods. I am not convinced this is the best
approach for generating novel ideas and developing new methods. This promotes
small, incremental changes or modifications rather than larger ideas. Sometimes, the
most important new ideas come from an “outsider” who has different perspectives
and background.

For example, the field of genetic algorithms can benefit from contributions of
researchers who are not familiar with Operations Research. Mimicking natural
processes is at the core of developing such algorithms (Drezner and Drezner 2005).
The founder of genetic algorithms, John Henry Holland, received a B.S. degree
in Physics from the Massachusetts Institute of Technology, then received an M.A.
in Mathematics and was the first Computer Science Ph.D. from the University of
Michigan. He did not get a “traditional” Operations Research training. The ideas of
mimicking natural animal behavior of an alpha male or female’s choice of a mate
in genetic algorithms were suggested by my daughter Taly, who is an ecologist with
no Operations Research training.

Many of my “off-location” papers have originated by talking to colleagues who
described their projects. My solution approaches were, in many cases, different from
“standard” approaches. Since I was thinking “outside the box,” at least some of these
ideas were superior to existing methods.

As mentors, we often give our students a problem and expect them to become
good technicians and solve it using existing approaches rather than be innovative.
When finding a new solution approach, one should then study the relevant literature
on the subject and not the other way around. My experience as a Ph.D. student
was different from what most Ph.D. students experience today. When I was given
the project that eventually became my Ph.D. dissertation, I was not familiar with
Operations Research and did not know anything about layout algorithms. Had I
known the literature on facility layout, I would have probably used one of the
available algorithms. My “out of the box” algorithm performed better than available
algorithms. Throughout my career there were many times that I was not sure
whether my ideas were already known or not. In most cases they were not.

In many of the papers we see today the author(s) take a problem, add some
constraints or variables, produce an “impressive” non-linear and/or integer program,
solve it with canned available software programs, report computational experiments,
and produce a paper. Sometimes the paper looks like a summary of a dissertation.
A competent modeler can create this formulation, then load it to available canned
software and get results. What is the contribution of such an exercise to our
knowledge-base or future work? This is the way we train most students who believe
that this is what research is all about.

Let me illustrate my point using a paper that Pawel Kalczynski, Said Salhi, and
I worked on (Drezner et al. 2018g). We investigate the multiple obnoxious facility
location problem. We analyze two versions of the problem and I illustrate one of
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them here. Suppose that n = 1000 communities are located in a 100 by 100 miles
square. p = 20 noisy or polluting factories or landfills need to be located in the
area. These facilities are required to be at least D = 16 miles from one another
to avoid cumulative nuisance to the communities. The objective is to maximize the
minimum distance between facilities and the surrounding communities.

The problem is formulated as a non-convex non-linear optimization problem. The
solutions are obtained by the interior point method in Matlab. The solution process is
repeated 100 times for each instance from randomly generated solutions and the best
one selected. Extensive computational experiments are reported for many values of
n and p. For the instance of 20 facilities among 1000 demand points, a minimum
distance of 0.38 miles between facilities and demand points is found. As part of
the presentation we drew a three dimensional graph of the surface of the shortest
distance to 100 demand points. See Fig. 1.12.

The three of us looked at the picture in amazement. There are 202 hilltops. It
seems to be a reasonable approach to find solutions where facilities are located on
hilltops! Recall that the objective is to maximize the “height” of the lowest point
where facilities are located. We realize that these hilltops are Voronoi points that
can be easily found by Mathematica. So, we formulated a problem of choosing
the p tallest hilltops that are at least 16 miles from one another. This leads to a
binary linear program (BLP). When these locations are found by optimally solving
the BLP, a minimum distance of 4.02 miles is obtained for p = 20, n = 1000.
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This objective value is more than ten times better than the one found by Matlab! In
addition, we solve the problem with the Voronoi heuristic in 24 s, while it takes over
5 h by interior point or SNOPT in Matlab.

We had difficulties in getting this paper published. It was finally accepted for
publication in the third journal. I think that had we stopped before generating the
3D diagram, the paper would have fit the mold of the type of papers I described.
The reviewers would have been happy with a solution of 0.38 miles. One referee
said that SNOPT is the “state of the art” for this type of problem and recommended
rejection. We tried SNOPT and got a solution of 1.6 miles. I am sure that if the
original paper (using the interior point in Matlab) had been published, a follow-up
paper reporting a fourfold improvement of the solution from 0.38 miles to 1.6 miles
could be published as well. Nobody would even know that there is a solution of
more than 4 miles.
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Chapter 2
Understanding the Weber Location
Paradigm

Richard L. Church

2.1 Introduction

Location Science as a field started with the developments of von Thünen (1826),
Launhardt (1872), Weber (1909), Christaller (1933), Hotelling (1990), Hoover
(1937), and Lösch (1940). It further expanded with the developments of Isard
(1949), Koopmans (1951a, b), Koopmans and Beckmann (1957), Moses (1958),
Cooper (1963), Hakimi (1964, 1965), Balinski (1965), and Beckmann (1968).
The problem of writing about Weber is that almost everyone in Location Science
knows something about his “model.” What could possibly be new that has not been
included in previous assessments, especially given that his book has been in print for
over 100 years? That being said, the objective of this paper is to demonstrate from
the perspective of the field of location science that Weber has been pigeonholed,
misunderstood, and under-appreciated.

Weber (1909) wrote that in each industry, there must be a “somewhere” as well as
a “somehow” in terms of production, distribution, and consumption. He constructed
a simple example that involved locating a factory that needed two raw materials that
are sourced at specific locations along with a market that will be supplied with what
is produced. This is depicted in Fig. 2.1, now known as a location triangle.

He assumed that transport costs for the two raw materials and the finished product
could be estimated as the amount that is transported times the distance that the
materials or product are carried (essentially weight times distance, e.g., ton-miles).
His objective was to locate the facility at a place where total transport costs would
be minimized. An underlying assumption is that transport distances were to be
estimated using Euclidean distance measure. This summarizes the view of what
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Fig. 2.1 Depiction of a
classic location triangle with
two raw materials and one
market

Weber accomplished by most people in Location Science. There are reasons for this
viewpoint and this will be explained below, however, before we describe a more
complete Weber location paradigm, it is instructive to first discuss the historical
roots of the “location triangle.” Following that will be a discussion of Ackoff’s
definition of the phases of OR as a science. We use Ackoff’s definition as a focal
lens to understand one way that we can analyze Weber’s book on industrial location.
With this approach, we present a more complete set of Weber-defined location
problems. We end with possible suggestions for research.

2.2 Historical Roots of the Planar Median Location Problem

Almost everyone credits Fermat as posing the following simple geometric problem
in the 1600s: given three points on the plane, find the position of a fourth point which
minimizes the sum of the distances from that fourth point to the three given points.
It is quite possible Cavalieri or someone else originally suggested this problem
(Wesolowsky 1993), but as Wesolowsky states: “the history of this problem is a bit
murky.” This mathematical puzzle has been solved a number of times with slightly
different assumptions. Torricelli has been given the credit for first having solved this
puzzle using several different geometric construction approaches. Simpson (1750)
in his book on fluxions posed a similar problem, except that each of the three given
points was assigned weights. Instead of finding a fourth point which minimized the
sum of distances to the other three points, he proposed locating the fourth point
so that the sum of the weighted distances to the other three points is minimized.
Simpson also proposed a geometric construction method in solving this problem.
Worth noting is that Krarup and Vajda (1997) provide an interesting discussion of
the Fermat problem with respect to Torricelli and Simpson. It is also important to
underscore the fact that these early geometric problems involved three given points
and the problem of seeking the location of a fourth point. It is also important to
note that Varignon (1687) proposed a mechanical frame of pulleys and weights that
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could be used to solve this problem. His apparatus is called a Varignon frame and a
drawing of that can be found in the book by Weber (1909).

From an entirely different perspective, Launhardt (1872) proposed a transporta-
tion problem that involves connecting three locations in the following example.
Suppose that there is a foundry that produces pig iron from coal and iron ore.
If iron ore is sourced from point A, coal is sourced from point B and the pig
iron is to be delivered to point C, where should the foundry be located in such a
manner as to minimize the costs of transportation. Launhardt (1872) described this
as both a transportation investment as well as a cargo hauling problem. Consider the
following notation:

U is the annual interest of the capital costs, the yearly maintenance costs per
kilometer, and all installation costs of the conveyance system (road or rail)

c symbolizes the transportation cost per ton per kilometer
di denotes the distance from point i to location at (x, y) where i = A, B, or C
wS

i is the volume (tons) of annual traffic needed to be hauled from source where
i = A or B

wM
C is the volume (tons) of annual traffic needed in supplying the market C

Using this notation, we can pose the following transportation design and location
problem: find the point (x, y) which minimizes:

Z =
(
U + cwS

A

)
dA +

(
U + cwS

B

)
dB +

(
U + cwM

C

)
dC (2.1)

The three points A, B, and C form the so-called location triangle mentioned in the
introduction. If we view the cost components as the weights associated with a given
source material or market demand, this is exactly the same problem that was solved
by Simpson (1750). Depending upon the relative value of the weights, the solution is
ether a point in the interior of the triangle or at the boundary of the triangle and could
even be at one of the original three points. Thus, it seems fitting to call the economic
version of this location problem associated with the triangle of points, the Launhardt
problem. Hidden in this literature is an analytic solution proposed by Launhardt that
has since been used in road network design in forestry (Greulich 1999).

Just where does Weber fit into this development? He too developed what was
depicted as a location triangle, but somewhat later. In 1909, Weber published a
treatise called “Theory of the Location of Industries.” In that work, Weber describes
a problem like that of Launhardt, except Weber ignores the cost of the infrastructure
(road or rail), but otherwise restates what Launhardt proposed years earlier. But,
there is more to this history than describing the location triangle, especially with
respect to Weber’s work. Before we dig into the details of Weber’s constructs, it is
important to first cover a bit more of the history of the development of the problem
of locating a point on a plane in order to minimize the lengths of connecting lines
or the costs of transport.
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Weiszfeld (1937) was the first to propose an algorithm to solve a problem that
was expanded to locating a point on the plane while minimizing the weighted
distances to n other points. The approach of Weiszfeld was later rediscovered
independently by Miehle (1958), Kuhn and Kuenne (1962), Cooper (1963), and
Vergin and Rogers (1967). A very nice presentation of this history, including the
works of Weber, Launhardt, and Weiszfeld and the developments which followed
Weiszfeld, can be found in Eckhardt (2008). Eckhardt (2008) describes in detail
various mathematical and geometric approaches that have been developed to solve
this problem.

Overall, this simple problem has been classified as the planar median location
problem. However, Kuhn and Kuenne (1962) formally stated that they were solving
a generalized form of the Weber problem, generalized in the sense that there were
n points as compared to what had been viewed as a three-point problem. Kuhn and
Kuenne’s designation seems to have stuck, as most subsequent work has called this
problem the Weber or generalized Weber problem. Wersan et al. (1962) suggested
an application for the planar median location problem where distances are measured
using the Manhattan metric (rectilinear or grid distance) in siting a municipal solid
waste incinerator and demonstrated that it could be formulated as a simple linear
programming problem. Vergin and Rogers (1967) proposed a simple algorithm that
can be used to solve this problem. Since then many variations for the planar median
problem have been proposed, including forms which contain generalized distance
metrics (Brimberg and Love 1993), line barriers (Klamroth 2001), forbidden regions
(Katz and Cooper 1981; Butt and Cavalier 1996), negative weights (Drezner and
Wesolowsky 1991), and an inclined plane (Drezner and Wesolowsky 1989), just
to name a few. There has also been innovative work on solution procedures (see,
for example, Rosing 1992; Brimberg et al. 2000; Salhi and Gamal 2003; Drezner
and Suzuki 2004). It seems fitting to mention here that Drezner is perhaps the most
well-known of the researchers that have worked on various forms of the Weber and
planar median problems since the late 1970s. Over the last 40 years, Drezner has
published 18 papers that detailed special algorithms and proposed new constructs
for planar median/Weber problems, and has garnered an average of 40 citations per
publication.

Most people in the field of Location Science who are somewhat familiar with
Weber seem to source material gleaned from an appendix of Weber’s book written
by Georg Pick or from some secondary source. Pick produced a geometrical
construct that can be used to solve the three-point problem. It is this part of Weber’s
book that gets into specific details of analytics rather than a discussion of all of
the elements and the issues involved in selecting a location. Outside of the purview
of economic geographers, most of the descriptive details have been ignored, and
Weber is viewed as having addressed only a three-point location triangle problem.
After all, that is why Kuhn and Kuenne called their problem the generalized Weber
problem because they had developed a solution approach that was not restricted to
three points, but generalized in the sense that it dealt with n points. Cooper (1963)
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made this distinction as well when he proposed siting multiple facilities among n-
demand points on the plane. He developed a heuristic to locate a fixed number of
facilities in order to minimize total weighted distance while assigning each demand
point to their closest located facility. Most would recognize this as the planar p-
median problem. Whereas the classic one-facility median location problem is a
pure location problem, the multi-facility location problem proposed by Cooper is
a more complex location-allocation problem. Cooper (1963) in his presentation of
this planar location problem makes several points when discussing the relationship
between his work and that of Weber. First, he states that Weber restricted his work to
three points, whereas his model contained a larger set, n, of demand points. Second,
he stated: “only a single source is considered” in Weber. Cooper viewed facilities
as sources (or suppliers), and he made the distinction that Weber located only one
facility within the location triangle paradigm. The assessments of both Cooper and
Kuhn and Kuenne about Weber are patently false and demonstrate a view that is
sourced primarily from reading Pick’s appendix and not the book itself.

Before moving on to a more complete presentation of the Weber paradigm, it
is fitting to discuss a bit more about Launhardt. Without doubt, there is a growing
understanding of what Launhardt accomplished. Many may ask why his important
work was overlooked, and the economic form of the location triangle problem was
not named in honor of Launhardt. First, Launhardt’s work was published in German,
and much of it was read or studied by civil engineers. Second, Weber appeared to
have not known about Launhardt when he wrote his book. Third, Weber’s book
although written in German was translated into English in 1929 and was published
by the University of Chicago press, making his work known to a much wider
audience than Launhardt’s. But, the importance of Launhardt’s work has not gone
completely un-noticed. Isard (1949), Beckmann (1955), Isard and Reiner (1962),
Kuhn and Kuenne (1962) all recognized and discussed Launhardt’s location triangle
problem. In wasn’t until Pinto (1977) wrote a lengthy article on Launhardt and
his neglected book, did others begin to take notice. More recently, Laporte et
al. (2015) in their introduction to a book on Location Science note Launhardt’s
development of the location triangle discussed above and discuss his approach
in solving it. Finally, to gain a better perspective between Launhardt and Weber,
one should consult the paper by Perreur (1998) in which there is a section titled:
“Should Weber be forgotten?” In answering this question, Perreur (1998) digs into
various elements of industrial location that were raised by Weber that clearly place
his thinking on certain elements, such as labor and the tendencies to agglomerate
specific activities, as advances over that of Launhardt. This paper addresses different
aspects of Weber’s industrial location work, which I will call here Weber’s Industrial
Location Paradigm, which is far more nuanced than relegating it to the so-called
location triangle. More importantly, my approach here is decidedly different than
Perreur (1998) and his comments and assessments can easily be added to what I
offer here.
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2.3 Location Science, Ackoff, and Weber

Location science is a discipline that has emerged principally in the fields of
operations research (OR), economics, geography, and engineering. Many of the
constructs are based upon a model and most normative constructs are cast as
mathematical programming problems, some as linear programming problems, most
as integer linear programming problems, and others involving bi-level program-
ming, quadratic programming, among others. Ackoff (1956) in his describing the
development of OR as a science noted that there were six phases of an OR project:

(1) “Formulating the problem,” a verbal statement of what is needed;
(2) “Constructing a mathematical model to represent the system being studied”;
(3) “Deriving a solution from the model”;
(4) “Testing the model and its solution, . . . . checking against reality”;
(5) “Establishing controls over the solution”, determining the conditions under

which the solution could be implemented; and
(6) “Putting the solution to work, implementation.”

Most professionals in the field of OR follow this approach in general, although
many may not see a problem being approached through all six phases. In fact, many
of the papers in the literature in the past 50 years describe only the first three phases:
problem exposition, model formulation, and model solution. Others concentrate on
proposing a new solution approach for an existing problem. That is, nearly all the
papers in our field involve contributing to one or perhaps more phases of Ackoff’s
paradigm. We can look back in the historical roots and see very good examples of
this. For example, Fermat is credited with proposing the initial location problem of
finding a fourth point which minimizes the combined distances to the other three
points. Torricelli has been credited with being the first to structure and solve this
problem geometrically. From my perspective, Weber’s work is more complex as he
described not just the simple location triangle problem but a series of interrelated
problems. His descriptions are quite illuminating with respect to Ackoff’s phase 1
of OR. That is, Weber’s work viewed through the lens of Ackoff was a leader in
the nascent field of location science, by having suggested a number of problems
that are faced by industry that are central to the decision as to where to place a
manufacturing plant. The remainder of this presentation is devoted to identifying
a set of location problems that were described by Weber, in essence phase 1 of
Ackoff’s paradigm. We also move from Weber’s verbal description to the next phase
of analysis, that of model construction. We will leave for others further development,
such as identifying appropriate solution techniques for these problems. Through this
approach, we will sketch out the Weber paradigm and see that his work has been
mostly “pigeonholed” as the Location Science community has not really looked
beyond what is now viewed as Launhardt’s location triangle.
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2.4 A More Complete Form of the Weber Location Paradigm

As stated before, Weber wrote that in each industry there must be a “somewhere” as
well as a “somehow” in terms of production, distribution, and consumption. Without
going into a detailed discussion that is provided by Weber, the central issue is to
determine how transportation costs influence the distribution of industries. Rather
than discuss the issue with respect to many companies, each making their own
decision, this discussion will assume that a company is making a decision on where
to locate one or more facilities. As Weber states, industries “will be drawn to those
locations which have the lowest costs of transportation” with regard to the transport
of materials that are needed in the manufacturing of an item as well as the transport
costs associated with shipping the product to market. Weber points out that shipping
rates are a function of weight, distance, volume, the transportation facility (rail,
road, etc.), and special properties. For example, if an item is bulky, more railcars
may be necessary with a concomitant increase in transport rates. Weber suggested
that many of the issues of transportation costs can be represented by the tonnage
being transported times the distance of that transport, and multiplied by a rate per
ton-mile. He recognized that there were nuances of transport costs that could not be
handled exactly by calculating costs as a transport rate times the ton-miles of travel,
but that this approach could cover many of the special circumstances one might
encounter. So, he boiled his main question down to “how will places of minimum
ton-miles actually distribute the production?”1

There are two types of raw materials needed in the production of something,
localized and ubiquitous. Localized materials are geographically present at specific
locations where ubiquitous materials are present everywhere. Ubiquitous materials
require no transport except what is present in the final product, whereas localized
raw materials (materials taken from local deposits) must be transported to the
industrial plant. So, transportation costs boil down to transporting localized raw
materials and the finished product for a problem involving a simple problem of
production. The location triangle of Fig. 2.1 depicts the problem of having two
localized raw materials and one market. Weber’s discussion covers the location
triangle at some depth, in terms of shape as well as characteristics that describe a
particular orientation for the industry, market orientation or material orientation. For
example, weight losing materials are those materials that have little of their initial
weight being incorporated into the finished product. Weber states that weight losing
materials “may pull production to their deposits.”2 The opposite is true perhaps for
“pure” raw materials in which no weight is lost in production or when a ubiquitous
material makes up a substantial proportion of the weight of the finished product. For
example, soft drink bottling plants are likely to be located close to the market, as
most of the weight and volume of the product is associated with the water that makes

1This quote can be found on page 48 of Weber’s Theory of the Location of Industries, translated
into English in 1929 by Carl J. Friedrich.
2See discussion on page 61, of the English translation of Weber (1929).
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up the product, and not the syrup. Thus, the location of different types of factories
will be based upon the relative values of material and product flows at the point of
production and depending upon these values, the ultimate location may likely be
oriented toward a market or some raw material.

More important is the fact that Weber acknowledges that there could be more
than two raw materials3 and even more than one market.4 The location triangle is in
some ways meant to be used as a construct to show the orientation that production
might take in a simple problem. He states that more complicated problems can be
addressed, e.g., more than two raw materials and one market, by Varignon’s frame
(see footnote 3). Consider the following notation which will be used throughout the
rest of this paper in this or modified form:

i is an index used to refer to different localized raw materials, i = 1, 2, . . . , m
j is an index used to refer to different locations of product consumption (markets),

j = 1, 2, . . . , n
wrmi denotes the weight of raw material i needed per unit of finished product

produced
wfp symbolizes the weight of finished product
ai is the amount of finished product needed at market j where A = ∑

j

aj

(xi, yi) is the location of raw material i
(xjyj) is the location of market j
(x, y) symbolizes the location of production plant (to be determined)
ti = ((x − xi)2 + (y − yi)2)½ is the Euclidean distance between the production

facility and raw material i
dj = ((x − xj)2 + (y − yj)2)½ is the Euclidean distance between the production

facility and market location j

Formally, we can define this pure location problem as:
Weber Model 1: The Classic Location Model with Multiple Source Materials and

Multiple Markets

Min Z = A

m∑
i=1

wrmi ti +
n∑

j=1

wfp ajdj (2.2)

The objective is to minimize all transportation (in ton-miles) of raw materials
being shipped to the production plant (first term) and the distribution of product to
various markets from the production plant (second term) by finding the best location
(x, y) for the production plant. If we have costs in terms of per ton-mile or costs
per unit product per mile of transport, we can introduce those cost factors into this
problem definition so that costs of transport are minimized instead of ton-miles of

3See figure 9 on page 64 and related discussion of the English translation, Weber (1929).
4See figure 18 on page 115, also note on page 71 of Weber (1929) where Weber notes that a
given raw material may be used by other production facilities serving other places of consumption.
Clearly, his view included multiple markets and multiple sources of raw material, given one product
type.
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transport. Technically speaking, if we have a problem in which there are no localized
raw materials to be shipped, the above form is essentially the same as that which
was solved by Weiszfeld (1937). That form would be equivalent as well to what
was solved by Kuhn and Kuenne (1962) and called the generalized Weber problem,
where the number of demand points was some number n. The Weiszfeld algorithm
and the approach by Kuhn and Kuenne can be used to solve Weber Model 1 as there
does not need to be a distinction between raw materials and markets in this simple
case, but the distinction is made here as other forms of Weber’s paradigm rest on
the distinction between the transportation of raw materials and the distribution of
finished product. When the problem is represented by two raw materials and one
market, it devolves to the Launhardt location triangle. But, note that what Kuhn
and Kuenne call the generalized Weber problem is really not a generalization when
formulating what Weber described within the context of Ackoff’s phase 1 of OR.

Weber almost always attempts to describe a given problem situation within the
simple context of two raw materials and one market (i.e., the locational figure) even
though he states that there could be more such materials and more markets. In fact,
he uses the term location(al) figure rather than triangle so that he hasn’t placed limits
on the number of resources and markets. He states: “while the locational figures
will always be individual or specific for a particular plant, these weight figures are
general, applying to all plants of the same production.”5 That is, he acknowledges
that the locational figures can be drawn about each plant, a sort of plant specific
resource and service area. But, he also acknowledges that there could be more
plants, each producing the same product, each with their own resource and service
area. The main focus appears to be on identifying the right place of each plant within
its own service area, but not formally stated is the fact that in this landscape of plants
there must be some process of location across all of the production. It is my belief
that if Weber were working in today’s environment of OR, the natural progression
would have been to locate multiple plants simultaneously.

2.4.1 Weber Model 2: Single Plant Location with Alternate
Sources of Raw Materials

Weber describes the case of having alternate sources of the same raw material and
within the context of two location triangles reasons that there could be two places of
production with equally low transport costs, where one potential production site
is served by one of the local sites for that raw material and the other potential
production site is served by the other local site for that raw material. With this, he
reasoned that production sites would source their raw materials from the cheapest
sources for that site and that these allocations would change depending on the
locations of a given type of raw material as well as plant location. For example,
wallboard in the USA is made of gypsum, a soft white mineral. It is mined in 19

5This quote can be found on page 55, Weber (1929).
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Fig. 2.2 Depiction of multiple sources of each raw material, where the source of a given raw
material is based upon the location of the factory. This requires an allocation component to the
associated model. Note the figure is a simple depiction as the problem could easily involve multiple
markets

states. If you were locating a wallboard manufacturing plant, to serve a given market
area, it is likely that you would find the closest/cheapest available supply of gypsum
for this needed raw material. Figure 2.2 depicts a problem with two raw materials
and one market, where each of the two raw materials can be sourced from several
different locations.

A production plant has been placed at a specific location and its raw materials are
assigned from its closest source for each raw material. To address this in a model, we
need to introduce allocation variables that represent the assignment of raw material
sources to the production plant. Consider then, the enhanced notation:

�i is the number of localized sources for raw material i
� denotes an index used to represent a given localized raw material, where � = 1,

2, . . . , �i(
x�
i , y

�
i

)
is the location of the � - th source location for raw material i

t�i =
((

x − x�
i

)2 +
(
y − y�

i

)2
) 1

2

s�
i =

{
1, if source � for raw material i is used to supply the factory

0, otherwise

Using this notation, we can define a new form of the Weber problem, where raw
material sourcing is a function of the plant location.
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Min A = A

m∑
i=1

�i∑
�=1

wrmi t�i s�
i +

n∑
j=1

wfp aj dj (2.3)

subject to:

�i∑
�=1

s�
i = 1 for each i = 1, 2, . . . , m (2.4)

s�
i ∈ {0, 1} for each i = 1, 2, . . . , m and l = 1, 2, . . . , �i (2.5)

The objective of the problem is to determine the location of the production
plant (x, y) along with assigning/allocating raw material sources to the production
plant while minimizing the total amount of ton-miles of transport in acquiring each
of the needed raw materials as well as transporting the finished product to the
markets. The first constraint requires that for each raw material, one of its sources
is assigned to supply the production plant. The second constraint lists the binary
restrictions on the raw material assignment variables. This problem is a discrete
nonlinear programming problem. The objective function is not nicely convex like
Model 1. Even though this problem was suggested as an issue by Weber in 1909
and discussed by Isard (1956), it appears to have been virtually ignored from an
algorithmic perspective. It should also be mentioned that this problem is related to
general production-location problems, although we are not attempting to substitute
various raw materials, as compared to selecting the sources of specific raw materials
(see Hurter and Martinich 2012).

2.4.2 Weber Model 3: Multi-Plant Location Problem

To develop a more general framework, one can combine the notion of alternate
sources and multiple facilities into a single model construct. This is certainly within
the confines of Weber’s original work as he addressed the issue of multiple facilities,
when stating that the “locational figures will always be individual or specific for a
particular plant. These weight figures are general, applying to all plants of the same
kind of production.” Essentially, his notion was that each production plant would
have sources of raw materials as well as a set of markets to serve, where each
plant can be represented by what he called a locational figure (like that given in
Fig. 2.1). Other plants of the same type would each have a locational figure, so he
was in a way arguing that each plant should be optimally placed within its market
and sourced raw materials. Just how each set of service areas are defined was not
raised by Weber in his book, but then again the techniques of resource allocation
within a mathematical and economic framework had not been formally proposed
or formulated until the works of Koopmans (1949) and Kantorovich (1939), work
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for which they jointly received the Nobel Prize in Economics in 1975. There are
two ways in which we might create a multi-plant location model with Weber’s
definition. The first approach would be based upon adding terms in the objective that
involve plant construction and operations where the number of facilities that would
be involved would be endogenously determined by minimizing the combined costs
of transportation, production, and plant construction. The second approach would
involve an imposed constraint on the number of plants that are to be located. This
second approach was used by Cooper (1964) in defining a location-allocation model
that involved minimizing weighted distances of facilities serving demand. We will
take this second approach here, although if Weber’s work had followed Koopmans
and Kantorovich, there is an equally likely chance the former approach would have
been taken over the latter. Consider then:

p is the number of factories that are to be located
k is an index for facilities, where k = 1, 2, . . . , p
(xk, yk) symbolize the coordinates of the k − th factory, where k = 1, 2, . . . , p

t�ik =
((

xk − x�
i

)2 +
(
yk − y�

i

)2
) 1

2

dkj =
((

xk − xj

)2 + (
yk − yj

)2
) 1

2

s�
ik =

{
1, if source � for raw material i is used to supply factory k

0, otherwise

rkj =
{

1, if demand at j is served by facility k

0, otherwise

Using this notation, we can now define a model, which involves the locating p
factories, allocating raw materials to factories, and distributing product to markets
while minimizing the transport of raw materials and minimizing the distribution of
product to markets.

Min Z =
p∑

k=1

m∑
i=1

�i∑
�=1

wrmit
�
ik

⎛
⎝ n∑

j=1

aj rkj

⎞
⎠ s�

ik +
p∑

k=1

n∑
j=1

wfp aj dkj rkj (2.6)

subject to:

p∑
k=1

rkj = 1 for each market j (2.7)
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�i∑
�=1

s�
ik = 1 for each raw material i and each factory k (2.8)

rkj ∈ {0, 1} for each factory k and each market j (2.9)

s�
ik ∈ {0, 1} for each source � of raw material type i and factory k (2.10)

The objective (2.6) seeks to minimize the total haulage of materials to factories
(first term) and the distribution of product to markets (second term). Note that the
amount of raw material of a given type that is transported to a specific factory is a
function of the need for that raw material based upon the amount of product that is
distributed from that factory to markets. This is reflected by the amount

∑n
j=1aj rkj

in the first term of the objective, which represents that amount of product produced
and shipped from factory k. Constraints (2.7) ensure that each market is served
by a factory, and constraints (2.8) ensure that each factory has been assigned a
source of each raw material. Constraints (2.9) and (2.10) list the needed binary
restrictions on the decision variables. Note that this model is based upon not just
the allocations of the raw materials and the distributions of product but also the
locations of the factories, (xk, yk). Note, too, all terms are nonlinear due to the
embedded distance functions, but they also all involve the use of integer variables,
where some terms even involve quadratic terms of integer variables. Altogether, this
problem presents significant challenges to solve to optimality. Some might call this
a “wicked” problem.

If we eliminated the terms of the objective that involve raw material allocation
and transportation along with constraints (2.8) and (2.10), the problem would
involve what many would think of as a multi-facility Weber location problem, like
that solved by Cooper (1964). But in an attempt to be as true to the original form
as possible, such terms should be included. Consequently, those who have worked
on the problem detailed by Cooper (1964) should now recognize that they worked
on a special case of Weber’s general problem. Weber from the outset stated that
production includes both the transport of raw materials as well as the distribution of
product. Virtually all locational figures in Weber’s book involve both raw materials
and distribution of product.6

6Note that depending upon the location of the plant, some of these transport terms can be zero.
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2.4.3 Weber Model 4: Multi-Plant Location with Resource
Constraints

In describing raw material sources, Weber stated that: “it can and will happen
that the normal output of the most favorable” raw material source7 “may not be
sufficient to supply the demand of the place of consumption.” “In that case less
favorable . . . .material deposits will be brought into play.”8 My assessment here is
that Weber was clearly stating that one must not only keep track of which local
deposits of raw materials will be used and transported, but that all of the needs
for that material must be met, even if it requires the use of raw material sources
that involve higher transport costs. Although we can introduce constraints on raw
materials by extending Model 2 that involves the location of one factory, I have
chosen to introduce resource constraints into the multi-plant Model 3, as it seems
logical that resource constraints play a larger role when there are several plants being
positioned. Consider then the following additional or modified notation:

C�
i is the capacity of the � - th source of raw material i

s�
ik signifies the fraction of demand for raw material i at factory k that is supplied

from the � - th location of that resource
rkj denotes the fraction of demand at market j that is met by facility k

Min Z =
p∑

k=1

m∑
i=1

�i∑
�=1

wrmi t�ik

⎛
⎝ n∑

j=1

aj rkj

⎞
⎠ s�

ik +
p∑

k=1

n∑
j=1

wfp aj dkj rkj (2.11)

Subject to:

p∑
k=1

rkj = 1 for each j (2.12)

�i∑
�=1

s�
ik = 1 for each raw material i and each factory k (2.13)

7I have chosen to use the word “source” here while Weber was referring to the locational figure
that contained the best, or least transport distant source.
8Again, my editing has eliminated the use of the terminology of “less favorable locational figure”
to emphasize the fact that alternate, more costly sources may come into play when a source cannot
handle unlimited levels of demand.
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p∑
k=1

n∑
j=1

wrmi aj rkj s�
ik ≤ C�

i for each material i and source � = 1, 2, . . . �i

(2.14)

1 ≥ rkj ≥ 0 for each factory k and each market j (2.15)

1 ≥ s�
ik ≥ 0 for each source � of raw material type i and each factory k

(2.16)

The objective function of Model 4 is essentially the same as that of Model 3,
except here some raw materials may not be sourced from only one location.
This is reflected in constraints (2.15) and (2.16) as the integer restrictions on the
allocation/transportation variables have been lifted. Note that it is possible that some
demands may not be entirely served by one factory, as resource constraints may
dictate costs that would be favorable to using another factory to meet some of the
demand for product at a given market. This would be especially true if there were
upper limits on the capacity of a given factory (not added here). Note, the addition of
constraint (2.14) which ensures that each raw material source supplies no more than
what is available at that source. This model is a nonlinear programming problem.

2.5 Multiple Stages of Production

Perhaps one of the more intriguing questions raised by Weber was the notion that
production of an item may not all take place at the same location. In Chap. 6, he
wrote:

Let us suppose that an industry is influenced only by the cost of transportation, and let
us neglect all of the deviating influence of labor and agglomeration. What, given such
assumptions, does it mean that the production process does need to be entirely performed at
one location, but split into a number of parts which may be completed at different locations?
The only cause which could lead to a resultant transfer of the parts to different locations
would obviously be that some ton-miles would be saved in the process . . . .

He explained this further with an example:

“Let us take a simple case, an enterprise with three raw materials” . . . and an enterprise
“which is capable of being split, technologically into two stages. In the first stage two
materials are combined into half-finished product; in the second stage the half finished
product is combined with the third material into the final product.”

When production of an item is somewhat complex, there can be many different
stages and plants involved in the production of an item. A cell phone, for example,
comprises many parts, many produced at different locations. Coffee goes through
a much simpler but staged production process. After it is harvested, the “coffee
cherries” are processed. There are several stages to this as it involves both drying and

http://dx.doi.org/10.1007/978-3-030-19111-5_6
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Fig. 2.3 Depiction of two
stages of production, each
taking place at a different
location. Note for simplicity
of presentation that multiple
sources of a given raw
material are not depicted as
well as multiple plants at a
given stage of production

removing the outer layers of the cherry which leaves the inner green bean. Through
the initial stage of processing, what is left weighs only 20% of the original weight of
the picked cherries. This initial stage of production takes place in the coffee-growing
region. After it is processed, the green beans are shipped to a market region, where
it is roasted and packaged, as roasted coffee does not have the same shelf life and
different market areas have different preferences for roasting. Figure 2.3 depicts a
simple two-stage production problem, where there are two raw materials involved
in the first stage of production, one additional raw material in the second stage of
production, and the distribution of the final product to three markets.

Rather than consider extending the multi-plant location Model 4 with the nuance
of a staged production process, let us return to the initial Weber Model 1 and
consider adding a second stage of production where there is one plant being
located for the first stage and one plant being located for the second stage. To do
this, consider the following additional/modified notation beyond what was used in
Model 1:

(xq, yq) is the location of production plant for stage q, where q = 1, 2
�q � {i : raw material i is required in stage q of production}
tiq = ((xq − xi)2 + (yq − yi)2)½ is the Euclidean distance between raw material i

and production stage q
dj = ((xq − xj)2 + (yq − yj)2)½ is the Euclidean distance between the production

stage q facility and market location j
eq, q + 1 = ((xq + 1 − xq)2 + (yq + 1 − yq)2)½ denotes the distance between stage q

facility and stage q + 1 facility
eq, q + 1 = ((xq + 1 − xq)2 + (yq + 1 − yq)2)½, and wip symbolizes the weight of the

first-stage product.

With this notation, we can now formulate a simple two-stage production problem,
where one factory is located in each of the two stages as:
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Min Z =
2∑

q=1

∑
i∈�q

n∑
j=1

wrmi aj tiq + wip

⎛
⎝ n∑

j=1

aj

⎞
⎠ e1,2 +

n∑
j=1

ajdj (2.17)

The above formulation appears deceptively simple in that only two facilities are
being located. A first-staged production facility makes an intermediate product from
a set of raw materials that are listed in set �1. The first-stage factory is located
at (x1, y1). The second stage of production involves transporting the output from
the first stage plus transporting an additional set of raw materials listed in the
set �2. The second-stage plant is located at (x2, y2). The variable e1, 2 represents
the transport distance of the intermediate product from the stage 1 factory to
the stage 2 factory. The first term of the objective sums up all of the weighted
distances associated with transporting raw materials to the factories, the second term
represents the weighted distance involved in transporting the intermediate product
between the two stages of manufacturing, and the third term of the objective sums
up all of the distribution costs (weighted distances) of shipping product to market.

This formulation is relatively simple and the notions of multiple facilities at each
stage and alternate sources of raw materials of a given type can easily be added. To
do this would require the introduction of resource assignment variables, distribution
flow variables between stages, and finally the assignment of demand to various final-
stage production sites. It is interesting to note that the one facility per stage problem
(like the two-stage problem formulated above) with no alternate resource sites has
fixed assignments between all points: raw material sites, staged production sites,
and demand. Thus, this problem is related to the work of Miehle (1958) which is of
great interest in the industrial engineering literature. It would appear that, the first
description of this type of problem is, in fact, due to Weber. This simple model is
a nonlinear optimization problem as well. Unfortunately, the techniques that have
been developed to solve Weber Model 1 (e.g., Weiszfeld (1937)) do not directly
apply to this problem.

2.6 Summary and Conclusions

Weber was constrained by the technology and mathematical reasoning of the time
in describing his theory of the location of industries. He developed and used a
“location triangle” to describe the location of an industry that required two localized
raw materials and supplied one market. The ultimate location was the position
which minimizes transport costs, the same structure as that described by Launhardt
nearly 30 years earlier. Launhardt defined an approach to solve his location triangle
problem, whereas Weber left this to a mathematician, Georg Pick, to provide details
on how that simple problem could be solved in an appendix to his book. Weber
concentrated on the details and properties that may give an “orientation” for a
given production plant (e.g., oriented toward a market and oriented toward raw
materials), the constraints that might involve labor availability, and the tendencies
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toward agglomeration of multiple industries. He was also interested in finding the
least cost feasible site and suggested the drafting of a contour map of isodapanes
(lines of equal transport cost), so that one could identify the feasible site on the
lowest cost isodapane. This is an approach that was heavily used by Isard (1956)
many years later in describing the location of industries.

A thorough review of Weber’s book reveals detailed elements of locating a
facility using the so-called location triangle whenever possible (actually Weber
preferred to call it a locational figure), but often those descriptions detail a larger
more complex problem. Through the lens of Ackoff, his descriptions can be thought
of as the first phase of OR as a science. In this paper, we have attempted to take these
descriptions and provide associated model formulations. These models represent the
second phase in OR as a science. More importantly, these models represent the deep
understanding and rich theory that Weber developed which has been overlooked for
more than a century. Clearly, his work is more than a location triangle, but a location
modeling paradigm.

Virtually all work in the last 50 years that have dealt with a “Weber” problem
have assumed that there were only demands or markets, not material flow from raw
material sources to production facilities, and finished product transport to markets.
The notion that raw materials can be varied and deposits and sources may be limited
gave rise to a rich modeling framework, even when only one facility is located. Even
though the work of Cooper (1963) was groundbreaking in locating multiple facilities
on the plane to serve a set of demands, this problem can be viewed as a special case
of the multi-facility Weber Problem (Model 3 in this paper) that Weber described
more than 50 years earlier. Further, Weber clearly realized that the production of a
product may involve stages, where one plant produces parts and that another plant
uses those parts and produces a finish product (and even perhaps requiring further
and different resource materials as well as extended stages of production). Two
stages or even multiple stages in production are common in today’s industry. Weber
was the first to describe this type of problem as a foundational location problem.

Finally, several of the models formulated here have not appeared in the literature
or if they have in some form they have not been attributed to Weber. It is time to not
only set the record straight, but to move onto Phase 3 of Ackoff’s “OR as a Science”
and begin the process of developing algorithms for his resource constrained and
multi-staged location problems on a plane. It should also be pointed out that there
are important elements in an industrial setting that Weber ignored; these include
pricing and competition. Weber assumed some level of demand and ignored that
demand is a function of price. Further, Weber ignored competition and even the
notion of a market threshold. That is, from an economics perspective, there is a
lot to be desired in Weber’s theory. But from an industrial engineering, business
management, and geographical perspective, one might ask where a factory should
be built and what would it cost to supply a given amount of product to one or more
markets? These are the very problems posed by Weber.
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Chapter 3
A General Framework for Local Search
Applied to the Continuous p-Median
Problem

J. Brimberg and S. Salhi

3.1 Introduction

The basic aim of continuous location problems is to generate facility sites in
a given continuous space, usually the Euclidean plane, in order to optimize
some performance measure relative to a set of given points (customers). From a
mathematical perspective, we may attribute the start of continuous location theory
to Fermat who suggested the problem of locating a point in the plane that minimizes
the sum of distances to three given points. The idea was generalized in an applied
sense by Weber (1909) a few centuries later by extending the problem to any number
“n” of given (or fixed) points representing markets and associating weights (or
demands) to these points. The objective function, a weighted sum of distances from
the facility to the given markets, now measured the cost of delivering goods to the
markets as a function of the facility location. This function is known to be convex
for any distance norm and hence amenable to solution by local descent methods.
One such method developed for Euclidean distance, the well-known single-point
iterative scheme by Weiszfeld (1936), has received much attention in the literature,
including for example, seminal papers by Kuhn (1973) and Katz (1974), which
studied the global and local convergence properties of this method. For further
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reading on the rich history of the continuous single-facility minisum (or 1-median)
location problem, see Wesolowsky (1993) and Drezner et al. (2002).

Cooper (1963, 1964) extended Weber’s problem for locating one new facility in
the plane to locating any given number, say p ≥ 1, new facilities. This important
practical extension made the problem much more difficult to solve, but at the same
time, much more interesting to researchers. This new multisource Weber problem
(also referred to as the uncapacitated continuous location-allocation problem or
continuous p-median problem) may be formulated as follows:

min F(X) =
n∑

i=1

wi min
1≤j≤p

{
d
(
Xj ,Ai

)}
(3.1)

where Xj = (xj, yj) denotes the unknown location of new facility j, j = 1, . . . ,
p; X = (X1, X2, . . . , Xp) is the vector containing the p new facility locations;
Ai = (ai, bi) is the given location of fixed point (also called demand point, existing
point, customer) i, i = 1, . . . , n; wi ≥ 0 is the given weight associated with customer
i, i = 1, . . . , n; and d(Xj, Ai) denotes the Euclidean distance between customer-
facility pair (i, j), that is,

d
(
Xj ,Ai

) =
√(

xj − ai

)2 + (
yj − bi

)2 ∀ (i, j) . (3.2)

We see that the objective function, F(X), is a weighted sum of distances from
the fixed points to their closest facilities. Thus, a basic assumption of the model is
that a customer is always served by the facility that is closest to it. Also note that
each term on the right-hand side of (3.1) is the product of a positive weight and the
minimum of p distances, in other words, the minimum of p convex functions which
itself is a highly nonconvex function.

An equivalent mathematical programming formulation of the multisource Weber
problem (MWP) is given by (e.g., see Love et al. 1988):

min G(X,W) =
n∑

i=1

p∑
j=1

wijd
(
Xj ,Ai

)
(3.3)

s.t.
p∑

j=1

wij = wi, i = 1, . . . , n (3.4)

wij ≥ 0, i = 1, . . . , n, j = 1, . . . , p. (3.5)

Here wij denotes the demand (or flow) from (or to) customer i that is allocated to
facility j, W = (wij) is the vector of flow allocation variables, and the remaining
notation is the same as defined for (3.1). A key point to observe is that the
minimization objective will automatically allocate flows to the nearest facilities in
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an optimal solution. Also note that the objective function (3.3) is now expressed as
a sum of nonconvex terms of the form u ∗ v and hence is nonconvex itself.

To illustrate the complicated nature of the objective function, consider the
following simplest of problems of locating two facilities on a line to serve three
customers with coordinates and weights given by: a1 = 0, a2 = 1, a3 = 2; w1 = 0.5,
w2 = 1.5, w3 = 1.0. Letting xj denote the position on the line of facility j, j = 1, 2,
the objective function in (3.1) may be written as:

F (x1, x2) = 0.5 min (|x1| , |x2|) + 1.5 min (|x1 − 1| , |x2 − 1|)
+ 1.0 min (|x1 − 2| , |x2 − 2|) .

Suppose an initial (random) solution is selected with x
(0)
1 = 0.5, x

(0)
2 = 1.2.

Holding facility 1 fixed at x
(0)
1 = 0.5, and observing the profile of F as x2 varies

(see Fig. 3.1), we see that a local search would move facility 2 from x
(0)
2 = 1.2 to

x
(1)
2 = 1.0. In a similar way, with facility 2 now fixed, facility 1would then move

to x
(1)
1 = 0, at which time a local minimum (x1, x2) = (0, 1) would be reached

with F(0, 1) = 1 (see Fig. 3.2). We may easily see that the global minimum occurs
at (x1, x2) = (1, 2) (or (2,1)) with F(1, 2) = 0.5, thus demonstrating that even for
such a trivial problem, a local search may fail to find an optimal solution. Another
interesting feature to observe is the saddle point in Fig. 3.2 at (x1, x2) = (1, 1). We
will return to saddle points later in the chapter.

The non-convexity of the objective function illustrated by the simple example
above suggests that a global optimization technique is needed if we wish to solve the
continuous p-median problem (MWP) exactly. There is more bad news—Megiddo
and Supowit (1984) show that MWP is NP-hard. Thus, there is no surprise that
many heuristics have been developed to solve it. Earlier heuristics include the

Fig. 3.1 Profile of F with
x1 = 0.5
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popular alternating locate-allocate algorithm by Cooper (1963, 1964), gradient-
based methods such as Murtagh and Niwattisyawong (1982) and Chen (1983), and
the projection method of Bongartz et al. (1994).These are all local search-based
methods and hence terminate at a local optimum (local minimum point) in the
solution space. It has been known for some time that the objective function of MWP
may contain a large number of local minima of varying quality.

For example, in their well-known 50 customer problem, Eilon et al. (1971) were
able to generate 61 local minima from 200 random restarts of Cooper’s method
when p = 5. It was proven much later (Krau 1997) that their best solution was indeed
the global optimum. The fact that the worst solution deviated from the best by some
40% showed quite dramatically the danger of being “trapped” in a local optimum.
The same problem is investigated by Brimberg et al. (2010) and Brimberg and
Drezner (2013) where in each case 10,000 runs of a Cooper-style algorithm (ALT)
are conducted from randomly generated initial solutions for different values of p.
Some salient results from Brimberg and Drezner (2013) are given in Table 3.1. The
first column of Table 3.1 gives the number p of facilities to locate; this is followed
by the number of times (out of 10,000) that the known optimal solution (Krau 1997)
was found, the average deviation of the found local solutions from the optimal
objective value, and the maximum deviation (i.e., the worst solution). These results,
which apply to relatively small instances by today’s standards, demonstrate quite
dramatically the tendency for the number of local minima to increase exponentially
with problem size. A significant positive correlation between the qualities of the
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Table 3.1 Summary results for ALT on n = 50 customer set (Brimberg and Drezner 2013)

p
# times optimum found
(out of 10,000 runs) # different local solutions Ave % dev Max % dev

5 674 261 4.89 51.31
10 54 4701 10.31 68.85
15 100 8727 17.95 60.38
20 0 9164 21.50 69.36
25 0 9035 27.37 81.94

initial and final solutions is also observed leading to the conclusion that one should
select the best among several random solutions as a starting initial solution.

Cooper’s alternating algorithm (ALT for short) uses a simple and elegant insight,
namely, that the two phases of the problem—locating the facilities and allocating
the customers to them—are easy to solve as separate sub-problems. That is, once
the facility sites are fixed, each customer should be assigned to its nearest facility;
and when the resulting partition of the customer set is fixed, the problem reduces to
p convex single-facility location problems to find the corresponding best locations
of the facilities. Thus we may view MWP in a strictly combinatorial sense where the
objective is to find an optimal partition of the customer set, and where facilities are
automatically located at corresponding 1-median points of their assigned customer
subsets. The ALT heuristic became very popular with various modifications being
introduced over the years (see the survey by Brimberg and Hodgson (2011) for a
historical overview). The current version typically begins by randomly locating the
p new facilities within the convex hull of the fixed points (or the smallest rectangle
enclosing the points) to obtain an initial solution and allocation of customers to
facilities. Also note that a random multi-start version of ALT is commonly used as
a benchmark for comparing other heuristics (e.g., see Brimberg et al. 2000).

Every iteration of ALT involves the solution of up to p independent single-facility
location problems, which is usually accomplished using the Weiszfeld procedure.
Hence it is very important to make this procedure as efficient as possible. When the
p-median problem occurs in the plane and Euclidean distances are being considered,
which is the standard case, earlier studies have suggested that the pre-set step-size
of the Weiszfeld procedure can be multiplied by a factor λ ∈ [1, 2] to speed up
convergence (e.g., see Ostresh 1978). Drezner (1992) recommends setting λ = 1.8
as a good compromise based on an empirical study, and also derives an effective
formula from a local approximation of the objective function that calculates a new
value of λ at each iteration. A different approach to speed up convergence is taken by
Drezner (1995) where it is assumed that the differences between successive iterates
form a geometric series. In most instances tested, the new procedure reduced run
time by a factor of 2, and in extreme cases of slow convergence by over 100,000.
Drezner (2015) develops a “fortified” Weiszfeld algorithm that uses a parabolic
approximation of the objective function and tests a few demand points for optimality
that lie near the sequence of iterates generated. This method is observed to work well
when the number of customers assigned to a facility is small (< 50), which typically
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applies to test instances of the p-median problem, and is related to the probability
of an optimal solution coinciding with a demand point that tends to be inversely
proportional to this number (Drezner and Simchi-Levi 1992).

A new approach referred to as “reformulation local search” (RLS) is proposed
by Brimberg et al. (2014). The main idea here is to exploit the relation between the
continuous model and a discrete approximation of that model. A local search, for
example using ALT, is carried out in the continuous space until a local optimum
is reached. The local search then switches to a discrete version of the problem and
tries to find an improved solution for the discrete p-median problem on an associated
graph. The process of switching between the two formulations is repeated until no
further improvement can be found in either space. The idea of solving a discrete
p-median problem as an approximation of the continuous p-median problem, with
n nodes on the graph corresponding to the set of fixed points, goes back as far as
Cooper (1963). Hansen et al. (1998) solve this discrete version exactly and then
apply one step of continuous adjustment (i.e., to locate each facility optimally with
respect to its assigned customers from the discrete solution) to get the final solution.
Excellent results are obtained even though the final solution is not guaranteed to
be a local optimum in the continuous space. A nice feature of the RLS approach is
its inherent flexibility. A choice of heuristics can be used in each phase (discrete
and continuous) allowing larger instances to be handled without limitations on size
imposed by exact algorithms. The discrete approximation is not restricted to the set
of fixed points but could be constructed interactively by the user. More importantly,
local solutions obtained in the continuous phase are added to the node set at each
iteration so that in theory the discrete approximation is able to ‘converge’ to the
continuous model.

Noting the importance of having a “good” starting solution, Brimberg and
Drezner (2013) develop a composite heuristic consisting of a search on a grid
representation of the planar p-median problem using simulated annealing, followed
by an improved version of ALT (which we will discuss later) that takes the solution
from the first phase as the starting point. Again we see the use of a discrete
approximation of the original problem, but this time the goal is to find a good
starting solution. As a result, substantial improvement over ALT is obtained. For
example, referring to Table 3.1, and repeating 10,000 runs of the composite heuristic
from random initial solutions, the number of different local optima obtained is
reduced drastically to 1 (the global solution), 10, 16, 66, and 120, respectively, for
p = 5, 10, 15, 20, and 25. The average deviation from the optimal solution’s value
is also drastically reduced to slightly over 1% in the worst case.

The first heuristic approach to impose a neighborhood structure on the planar p-
median problem may be attributed to Love and Juel (1982). A given neighborhood is
defined here as the set of solutions (or points) surrounding the current solution that
are obtained by transferring a specified number of assignments of customers from
their current facilities to new ones. The one- and two-exchange neighborhoods are
only considered due to computational requirements. Facilities are always located
optimally with respect to their assigned customers. Important to note is that the
authors are able to show that a local optimum in the one-exchange neighborhood is
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not necessarily a local optimum in the two-exchange neighborhood. Hence, further
improvement is possible by adding the larger neighborhood search. Of course,
getting “trapped” in very deep troughs still poses the same problem as before.
Mladenović and Brimberg (1995) apply the exchange neighborhood as follows
in a fixed neighborhood (or iterated local) search. A certain number b of points
is selected at random in the k-exchange neighborhood of the current solution (a
local minimum point), where b and k are given parameters. Cooper’s method is
then applied to each of the selected points to obtain up to b new local minima.
A descent version of their heuristic only allows a move to one of them if it is
better than the current solution. A variable neighborhood approach where k is
allowed to vary over a specified range, 1, . . . , kmax (a parameter) is proposed
by Brimberg and Mladenović (1996b), while a simple Tabu search using the one-
exchange neighborhood is given by Brimberg and Mladenović (1996a). These two
papers may be considered the first attempts of solving MWP with a metaheuristic.

The one-exchange neighborhood is used in a special way in a transfer follow-
up step that is added to an ALT procedure by Brimberg and Drezner (2013). The
transfer follow-up switches the assignment of “border” customers that are almost
as near to their second-closest facility as the first, with the aim to move to a better
adjacent local minimum point. More will be said about this improved alternating
approach (IALT) in the next section.

A different neighborhood structure is applied by Brimberg et al. (2000) that is
based on the relocation of facilities to unoccupied fixed points (i.e., customers that
do not have facilities already coincident with them) instead of the reassignment
(reallocation or exchange) of customers between facilities. Note that this is similar
to the vertex exchange move originally developed by Teitz and Bart (1968) for
the discrete p-median problem. A few variants of local search are proposed which
examine selected points in the one-exchange relocation neighborhood followed by
an ALT procedure from these points. Much better results are obtained compared
to a standard ALT, and in a fraction of the time. Brimberg et al. (2000) also apply
relocation-based neighborhoods within a variable neighborhood search framework.
A point in the k-neighborhood of a current solution is obtained in the shaking
operation by relocating k facilities randomly at unoccupied fixed points.

Several metaheuristic-based methods have been applied over the last years to
solve MWP, including tabu, variable neighborhood, and genetic searches, as well as
some hybrid schemes; see, for example, the survey by Brimberg et al. (2008). More
recently, Drezner et al. (2015a) use a variable neighborhood search (VNS) with the
following modified structure:

1. The improved ALT procedure (IALT) from Brimberg and Drezner (2013) is used
in the local improvement step instead of a standard ALT.

2. b ≥ 1 points in the k-neighborhood (allocation type exchange) are randomly
selected one at a time in the shake operation. If a better solution is found by
IALT, a move is made, k is reset to 1 and the counter for b is reset to 0. If none of
the b local minima thus obtained is better than the current solution, k is increased
by 1 (up to a limit kmax).
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3. If m (another parameter) iterations of k from 1 to kmax fail to produce a better
solution, the algorithm returns the current solution (which is also the best found)
and stops.

Drezner et al. (2015a) also develop a new “concentric” search for solving MWP,
which is a modification of an approach known as concentric tabu search devised
by Drezner (2002, 2005) for the quadratic assignment problem. In their concentric
algorithm, the current solution (also the current best as in VNS) is referred to
as the center solution. Whereas in VNS, perturbations are always performed in
the shake operation starting from the center solution, the concentric algorithm
initiates the perturbation from the best solution in the smallest k-neighborhood of
the center solution whose flag = 0. The flag of a k-neighborhood is always reset to
0 when an improved solution in that neighborhood is obtained. The algorithm stops
when all such flags = 1. The two heuristics by Drezner et al. (2015a) performed
consistently well on a wide range of test instances, with a small edge in favor of
the concentric search. The study also showed that a front-end subroutine for finding
“good” starting solutions improved the overall performance of the heuristics, and
that a post-optimization routine that solves decomposed problems of three or four
facilities obtained by Delaunay triangulation, and their assigned customers, using
RLS (Brimberg et al. 2014) was able to improve some of the solutions.

Drezner et al. (2015b) propose a new variant of VNS termed distribution-based
VNS, or DVNS for short, and apply it to the MWP. The basic idea here involves a
variation of the shaking operation. Instead of systematically increasing the shake
(k = 1,..., kmax) to obtain points successively further away from the current solution,
the k-neighborhood in DVNS is selected randomly based on an empirically derived
distribution that places more weight on those neighborhoods that are more likely to
lead to an improved solution. A genetic algorithm is also developed and tested by
Drezner et al. (2015b). A simple and effective merging process is used to generate
offspring as follows: (1) two parents are selected randomly from the population;
(2) an imaginary line is drawn at a random angle through the center of the cluster
formed by the facilities; (3) the facilities on one side of the line that belong to one of
the parents are selected and combined with those on the other side belonging to the
other parent. The selection is adjusted to ensure that the new solution (the offspring)
contains exactly p facilities, with about half of them coming from each parent. The
two developed heuristics are also combined in a hybrid heuristic where the genetic
algorithm is applied first, and the output solution is then used as the starting solution
for the DVNS stage. All three heuristics performed very well on relatively large test
instances (n = 654 and 1060) taken from the literature, with the hybrid heuristic
performing the best of all. Also noteworthy is the fact that DVNS was comparable to
standard (or Basic) VNS (BVNS) in terms of solution quality, but considerably faster.
Both these heuristics achieved the best-known solutions about 90% of the time, and
were able to find new best solutions for two test instances ((n,p) = (654, 95) and
(1060, 150)).

Drezner and Salhi (2017) incorporated two simple but effective neighborhood
reduction schemes within a local search to speed up the search without significantly
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affecting the solution quality. The idea is to identify non-promising moves and
hence avoid carrying out unnecessary computations. The first rule is based on the
convex hull where a threshold is determined for each customer, whereas the second
rule focusses on the borderline customers (i.e., those that lie between their first-
and second-closest facilities). This implementation is tested on three problems with
n = 654, 1060, and 3038 from the TSP library (Reinelt 1991) with very good results,
such as problem instances with some 90% saving in computation time without loss
in solution quality. This fast local search is then embedded into a metaheuristic
based on GA/VNS where new best results are obtained. For more information on
neighborhood reduction, see Salhi (2017).

The remainder of the chapter is organized as follows. Section 3.2 reviews a
standard implementation of Cooper’s (1963, 1964) famous alternating algorithm
(ALT). It should be noted that there are many variants of Cooper’s algorithm,
and that this particular approach was incorporated later in a random multi-start
implementation of ALT which remained state-of-the-art for a number of years. Some
interesting extensions of ALT presented recently by Drezner et al. (2016) are also
discussed. Section 3.3 proposes a general framework for alternating locate-allocate
heuristics that encompasses these recent extensions and also allows us to construct
new ALT-based heuristics. Some preliminary computational results are given in
Sect. 3.4, followed in Sect. 3.5 by some discussion related to degenerate solutions
and saddle points. Section 3.6 contains a brief conclusion to the chapter.

3.2 Cooper’s Algorithm and Recent Extensions

Cooper (1963, 1964) is credited with the first formulation of the MWP. Recognizing
the non-convexity of the objective function, Cooper proposed several heuristics to
solve the problem. The best-known of these is an alternating locate-allocate heuristic
now referred to as Cooper’s algorithm. The general idea is as follows. Starting with
p given facility locations, we construct a partition of the customer set into p mutually
exclusive subsets by allocating each customer to its nearest facility. We then solve
the resulting p independent 1-median problems. Customers are then reallocated to
their closest facilities, and the process is repeated until a local minimum point is
reached (i.e., the partition remains the same). The basic steps of the procedure which
we call ALT (for alternating) may be summarized as follows.

Cooper’s Algorithm (ALT) Step 1 (Initial solution): Locate p facilities at random
and assign each customer to its nearest facility (with any ties broken arbitrarily).

Step 2: (Location phase) Keeping the customer assignments fixed, solve
p independent single-facility location problems.

Step 3: (Allocation phase) Re-assign customers to their nearest facilities. If there
are no changes, STOP (the current solution is a local minimum); else return to step 2.

The Cooper algorithm typically reaches a local minimum after only a small
number of iterations. Also, as observed above, the quality of the obtained solution
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can vary a lot. Brimberg and Drezner (2013) modify ALT by selecting one facility
at random at a time in the location phase (step 2). After re-locating the selected
facility optimally with respect to its assigned customer subset, the allocation phase
(step 3) is carried out over the entire customer set. A flag is used for each facility to
denote whether or not the facility is optimally located with respect to its currently
assigned customers. Note that this process results in a more gradual descent than
the standard ALT, and may lead to a different output solution when starting from the
same initial solution. Brimberg and Drezner (2013) also add a transfer follow-up
procedure once a local minimum is attained. This procedure re-assigns a customer
to an adjacent (second-closest) facility one at a time, and then relocates the two
affected facilities to their new median points. If the resulting solution is better, the
heuristic (which they call IALT (for improved alternating)) resumes its modified
ALT procedure to reach a new improved local solution, which is then followed by
a new round of transfer follow-up. The customers selected for transfer are always
those with the smallest difference in distance to their closest and second-closest
facilities. If a better solution cannot be found within a specified maximum number
of transfers, the heuristic stops. It is important to note that a local solution obtained
by IALT is always a local solution for ALT but not vice versa. This may be one of the
reasons why the average quality of local minima obtained by IALT is observed to
be better than with ALT. Another contributing factor may be the slower convergence
rate of the main loop due to the selection of one facility at a time for re-location.

Recently, Drezner et al. (2016) proposed several new local searches for solving
the MWP in the plane. One of these constructs an initial solution using a greedy-
add heuristic with a random component. The IALT algorithm is then applied on
the initial solution. A multi-start version of this hybrid procedure (termed START)
is observed to obtain significantly better solutions with much smaller variation in
quality than IALT with random starting solutions. We discuss two more heuristics
from Drezner et al. (2016) that can be easily modified to fit the general framework
for ALT-type heuristics presented in the next section.

3.2.1 A Decomposition Algorithm (DECOMP)

Step 1: Find an initial solution using a suitable heuristic (or random selection) to
locate p facilities. Let XC denote this solution.

Step 2: Perform a Delaunay triangulation on the set of p facilities to obtain a list
of triangles and associated quadrangles called LIST.

Step 3: If LIST is empty, stop and return XC; else:

(a) Select a polygon at random from LIST (triangles first followed by quadrangles).
(b) Determine the set U of all demand points served by the facilities at the vertices

of the selected polygon.
(c) Apply a suitable heuristic on the set U getting locations for q = 3 or 4 facilities.
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(d) If the new solution for the q facilities is better than the original configuration
serving U,

i. Update the locations of the q facilities,
ii. Apply IALT (or ALT) on the complete set of p facilities, update XC, and

iii. Return to step 2;

else remove the polygon from LIST and return to the top of step 3.
The use of a “suitable heuristic” in steps 1 and 3(c) allows a degree of flexibility

in building different variants of DECOMP. For example, in one application of this
algorithm, Drezner et al. (2016) use START in both these steps. Thus, the heuristic
solves the sub-problem in step 3(c) from scratch; i.e., the current locations of the q
facilities are not used for the initial solution.

If we select a random initial solution in step 1, use ALT on the sub-problem as the
suitable heuristic in step 3(c), and delete step 3(d)(ii), i.e., return directly to step 2
after updating the locations of the q facilities in current solution XC, we end up with
a variant of ALT that includes decomposition which will fit nicely in the framework
we discuss in the next section.

3.2.2 An Improvement Algorithm (IMP)

Another novel local search by Drezner et al. (2016) selects one facility (j) at a time
to relocate as in IALT. Except now instead of fixing the customer allocation and
solving the resulting 1-median problem, this new method known as IMP locates the
selected facility j optimally while keeping the remaining p – 1 facilities fixed at their
current locations; that is, the following problem is solved:

min
n∑

i=1

wi min
{
d
(
Xj ,Ai

)
,Di

}
, (3.6)

where Di = min
k �=j

{d (Xk,Ai)} is the distance from customer i at Ai to its closest

facility other than facility j. This problem is equivalent to the limited distance model
introduced by Drezner et al. (1991), and is solved here exactly using a branch-and-
bound algorithm known as the Big Square Small Square method (e.g., see Plastria
(1992)). The steps of IMP are outlined below.

Step 1: Obtain an initial solution.
Step 2: Repeat the following for each facility j selected one at a time in random

order:

(a) Calculate Di, i = 1, . . . , n
(b) Relocate facility j by solving the limited distance problem (3.6).

Step 3: If the location of at least one facility has changed, repeat step 2; else
return the current solution and stop.
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Note that IMP in effect reallocates customers to facilities simultaneously as
selected facility j is being moved to an optimal location with all other facilities fixed.
In the general framework below, we can adapt this idea at least in an approximate
sense by selecting the same facility (or facilities) in consecutive re-locations until the
assigned customer subset stops changing. Also note that the computational results
obtained with IMP by Drezner et al. (2016) are on average considerably better than
those obtained by ALT and IALT.

3.3 A General Framework for Location-Allocation Heuristics

We have seen that a key feature of Cooper’s algorithm and its variants is that
whenever the process of moving a facility or subset of facilities from the current
location(s) is taking place to improve the solution, the assigned subset of customers
to that facility or subset is fixed and unchangeable. What we want to do is propose a
general procedure that retains this fundamental property while unifying the variants
or extensions of Cooper’s algorithm, and that also allows us to construct new
location-allocation heuristics.

In the general framework presented next, we consider a list of sub-problems
denoted by {P1, P2, · · · , PK}, where K is a parameter, such that each sub-problem
Pt is fully specified by a given subset of facilities and their current locations, and
a subset of assigned customers for which these facilities are the closest (with ties
broken arbitrarily), and each facility is included in at least one sub-problem.

3.3.1 General Location-Allocation Local Search (G-ALT)

Step 1: Construct an initial solution (e.g., select p random facility locations in the
convex hull of the fixed points).

Step 2: Construct a list of sub-problems P = {P1, P2, · · · , PK}.
Step 3: Remove one of the sub-problems Pt from P according to a given rule,

and solve it approximately with ALT using the current configuration as the starting
solution.

Step 4: If the solution to Pt is improved, move the associated facilities to their
new locations and return to step 2; else the current configuration remains unchanged
and P ← P\{Pt}.

Step 5: If P is not empty, return to step 3; else stop.
The basic Cooper algorithm (ALT) may now be viewed as the simplest appli-

cation of G-ALT where a single sub-problem containing all p facilities is defined
in step 2. For IALT (without transfer follow-up) each sub-problem Pt defines a
1-median problem, and the selection rule in step 3 randomly draws the next sub-
problem. Meanwhile, the modified DECOMP discussed in the preceding section
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works with a list of sub-problems containing three or four adjacent facilities
obtained by Delaunay triangulation with their allocated customers.

We see that for any variant of G-ALT, each constructed sub-problem translates to
a location problem in a subspace defined by a selected subset of facilities and a fixed
subset of customers allocated to them. In the fundamental result below, we assume
that there are no ties in the output solution returned by G-ALT (i.e., no cases where a
demand point Ai has a choice between two or more facilities with the same smallest
distance to it and hence could be assigned to any one of them). Such solutions may
be associated with saddle points similarly as in Fig. 3.2 at (x1, x2) = (1, 1). That
is, a re-assigning of Ai to an alternate tied facility could lead to further descent
and a better solution. This unlikely situation can be handled by examining all such
possible re-assignments before a final solution is declared. Thus we may assume
that the terminal (or output) solution from G-ALT is always a local minimum point.

Property 3.1 Let X∗ be a terminal solution for some variant of G-ALT. Then X∗ is
also a terminal solution for any other variant of G-ALT.

Proof Consider two versions, say, G-ALT1 and G-ALT2, and let X∗ be a terminal
solution of G-ALT1. Now apply X∗ as the initial solution to G-ALT2. Since X∗ is
a local minimum point, it follows that each facility location must be a 1-median
point for any partition of the customer set obeying the ‘closest facility’ rule. Hence
applying ALT to any sub-problem Pt in G-ALT2 will not improve the current
configuration in Pt. We delete Pt from the list and continue in similar fashion until
the list is empty leaving X∗ as the final solution.

One might suspect as a result of Property 3.1 that all variants of G-ALT should
behave in the same way. We will show briefly in the next section that this is not true;
that is, different descent paths can affect the average quality of solutions obtained
by different versions of G-ALT. This result is already known in other contexts. For
example, Hansen and Mladenović (2006) demonstrate that first improvement and
best improvement strategies may lead to different average solution qualities.

3.3.2 Constructing New Heuristics Based on G-ALT

Using the G-ALT framework we derive two new heuristics below. The first one is
similar to the approach by Drezner et al. (2016) referred to as IMP that is based on
the single-facility limited distance model. However, instead of solving globally for
the optimal location of the selected facility keeping the remaining p – 1 facilities
fixed, we solve approximately by repeated applications of ALT on the selected
facility until no further improvement is possible. For this reason, we refer to the new
procedure as depth-first ALT. The second proposed heuristic is a modified version
of the decomposition algorithm (DECOMP) by Drezner et al. (2016). One of the
unique features here is the different (and more flexible) way that the decomposed
problems are constructed.
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3.3.2.1 Depth-First Alternating Local Search (D-ALT)

Step 1: Initial locations for p facilities are generated (randomly or otherwise).
Step 2: Each demand point is assigned to its closest facility, thus partitioning the

set of demand points into p disjoint subsets each attracted to a single facility.
Step 3: An assignment vector of length n is maintained along with an indicator

vector of length p associated with the facilities that is initially set to all zeroes
(flag(j) = 0, j = 1, . . . , p).

Step 4: A facility j with flag(j) = 0 is randomly selected.
Step 5: Relocate facility j to the 1-median point X∗

j relative to its assigned subset
of demand points. Set flag(j) = 1.

Step 6: All demand points are reallocated to their closest facilities. For each
demand point that changed an assignment, the two facilities involved in the change
(including possibly the facility that has just been relocated) have their flags reset
to 0.

Step 7: If all flags = 1, stop; elseif flag(j) of the facility j that was just selected = 0
again, re-select it and return to step 5 (following the depth-first strategy); else go to
step 4.

3.3.2.2 Decomposition ALT (DEC(q))

Steps 1 to 3: Same as for D-ALT.
Step 4: A facility j at current location Xj, and with flag(j) = 0, is randomly

selected.
Step 5: Perform ALT on the sub-problem defined by Xj and the q – 1 closest

facilities to Xj (where q < p is a parameter) using the subset of demand points
currently allocated to these facilities as a given fixed set of demand points. (Also
note that the q – 1closest facilities to Xj are selected irrespective of the value of
their indicator variables.) Set flag = 1 for each of the q facilities that have just been
relocated.

Step 6: All demand points are reallocated to their closest facilities. For each
demand point that changed an assignment, the two facilities involved in the change
(including possibly the facilities that have just been relocated) have their flags reset
to 0.

Step 7: If all flags = 1, stop, else go to Step 4.
Many variants of DEC(q) can be constructed and tested by varying the selected

sub-problem size q. We may also select q randomly from a specified range of values
each time step 5 is repeated, or gradually increase q to a limit p (or less), to add
further variety for testing purposes. The depth-first approach of D-ALT may be
incorporated as well by choosing Xj again if its flag is reset to 0 in step 6. Also
note that ALT can be replaced with IALT in any such variant of DEC(q).
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3.4 Preliminary Computational Results

We plan to do extensive testing of DEC(q) in the future, but for now, present some
preliminary results for D-ALT only. The experiments were coded in C++, and run
on a PC Intel Core i7-6700/4GHz CPU vPro computer with single thread and 16 GB
RAM. The results are summarized in Table 3.2 for a well-studied problem with
n = 1060 points from Reinelt (1991). The first column specifies the number of
facilities to be located, which varies in increments of 5 from p = 5 to 150, giving
30 problem instances in all. The next column gives the objective values of the best-
known solutions obtained from the literature (see Drezner et al. 2016). Columns 3
and 4 give the % deviation from best-known value (column 2) for the best-found
solution after 1000 runs of standard ALT and the new D-ALT, respectively. The
average % deviation for the 1000 runs is given next (columns 5 and 6) followed by
average CPU times (columns 7 and 8).

Initial solutions in step 1 are obtained by randomly selecting p demand points
to locate the p facilities at. Also note that the same initial solutions are used
for ALT and D-ALT. Based on the results in Table 3.2, we make the following
observations:

1. Comparing best solutions, we see that standard ALT outperformed D-ALT. This
may be due to the fact that ALT typically terminates after a small number of
iterations, and this fast convergence may be advantageous for some (higher-
quality) starting solutions.

2. Meanwhile D-ALT has a slight edge over ALT when we look at average
performance. This is in spite of the higher observed degeneracy rate (facilities
with no assigned customers) of D-ALT versus ALT, as shown in the next section.

3. D-ALT is roughly three times faster than ALT. This is a bit surprising as D-
ALT requires a reallocation of all customers each time a selected facility is
moved to a median point, whereas ALT performs this reallocation after solving
p-independent 1-median problems. The faster CPU time may be explained by
D-ALT having fewer calls to the Weiszfeld subroutine for solving 1-median
problems because the flags of some facilities are never reset to 0 (or reset to
0 only a relatively small number of times).

Overall we see that even though these two variants of G-ALT have the same set
of terminating solutions or local optima (Property 3.1), they follow different descent
paths and hence may obtain different solutions from the same starting point.

3.5 Some Discussion

In the first stage of experiments, the initial facility locations were generated as
random points within the smallest rectangle containing the set of demand points.
This led to very poor solutions where several facilities had no customer assignments
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Table 3.2 Summary results for large benchmark problem (n = 1060)

Dev_best (%) Dev_ave (%) CPU time (milsecs)
p F_best ALT D-ALT ALT D-ALT ALT D-ALT

5 1851877.3 0 0 0.696 0.657 41.071 20.514
10 1249564.8 0 0.006 2.134 1.701 55.411 24.502
15 980131.7 0.007 0.013 3.354 3.144 57.435 22.669
20 828685.7 0.045 0.338 3.691 3.544 62.6 23.427
25 721988.2 0.215 0.632 4.713 4.575 68.324 23.325
30 638212.3 0.926 0.551 6.213 6.167 73.701 24.058
35 577496.7 0.991 2.029 7.092 6.535 81.875 24.579
40 529660.1 1.208 2.115 7.666 7.367 86.338 25.357
45 489483.8 1.368 1.662 8.338 8.165 90.53 26.198
50 453109.6 3.111 2.616 9.407 9.227 94.805 26.829
55 422638.7 3.516 3.038 10.223 10.145 100.133 28.507
60 397674.5 4.258 3.81 11.059 10.755 104.33 29.599
65 376630.3 3.701 4.984 11.016 11.203 108.739 31.089
70 357335.1 4.333 5.683 11.723 11.482 114.546 32.407
75 340123.5 4.987 5.501 11.978 12.221 116.844 33.809
80 325971.3 4.682 6.285 12.304 12.388 118.508 34.791
85 313446.6 5.301 6.181 12.336 12.221 123.838 35.894
90 302479.1 4.708 6.501 12.042 11.984 121.848 37.214
95 292282.6 4.685 6.271 11.907 11.96 124.649 37.957
100 282536.5 5.297 5.74 12.247 12.458 127.231 38.216
105 273463.3 5.599 7.258 12.201 12.255 132.431 39.004
110 264959.6 5.344 5.999 12.543 12.674 132.561 38.906
115 256735.7 6.919 6.429 12.762 12.768 137.8 39.484
120 249050.5 6.196 8.443 13.156 12.945 139.895 40.69
125 241880.4 6.78 7.542 13.299 13.55 141.778 41.495
130 235203.4 7.581 8.373 13.753 13.692 144.396 42.62
135 228999.2 7.341 8.157 13.982 13.965 145.741 43.741
140 223062 8.64 7.663 14.395 13.865 151.364 45.43
145 217462.8 8.737 9.211 14.586 14.563 154.197 46.973
150 212230.5 9.234 8.396 14.839 14.406 155.99 48.744
Average 4.190 4.714 10.189 10.086 110.297 33.601

because they were not the closest among the p facilities to any of the demand points.
(See Table 3.3 for number of zeroes recorded under “Random I”). For this reason,
we tried in a repeat stage of experiments reported in Table 3.2 (only for n = 1060
for brevity) to restrict the random selection of initial facility locations to the set of
demand points. The results were much better (see “Random II”).

Such degenerate solutions are clearly undesirable because some facilities are
not being used and hence do not help at all in reducing the value of the objective
function. However, if there are t such facilities with no customers assigned to them,
we may have on the other hand a very good solution for the location problem with
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Table 3.3 Summary results on degenerate solutions (n = 1060)

No. of zeroes (random I) No. of zeroes (random II)

p
ALT_
ave

ALT_
best

D-ALT_
ave

D-ALT_
best

ALT_
ave

ALT_
best

D-ALT_
ave

D-ALT_
best

5 0.22 0 0.3 0 0 0 0 0
10 1.08 0 1.06 0 0 0 0 0
15 1.88 0 2.02 0 0 0 0 0
20 2.9 0 2.88 0 0 0 0 0
25 4.04 1 4.18 1 0 0 0 0
30 5.22 1 5.18 0 0 0 0 0
35 6.02 1 6.24 1 0 0 0 0
40 8.32 3 8.04 4 0 0 0 0
45 8.34 5 9 3 0 0 0.005 0
50 9.68 4 10.22 4 0 0 0.005 0
55 11.04 5 11.08 6 0 0 0.005 0
60 12.7 7 12.5 7 0.005 0 0.015 0
65 14.32 9 13.58 6 0.001 0 0.045 0
70 16 9 15.42 7 0.005 0 0.005 0
75 16.72 13 16.66 11 0.006 0 0.025 0
80 18.12 11 18.54 15 0.008 0 0.045 0
85 18.52 14 20.68 13 0.01 0 0.05 0
90 21.06 17 21.2 13 0.011 0 0.03 0
95 21.74 17 22.7 16 0.01 0 0.065 0
100 24.28 18 24.56 18 0.018 0 0.055 0
105 24.9 22 25.84 15 0.014 0 0.13 0
110 27.02 20 27.04 19 0.015 0 0.09 0
115 28.66 19 29.06 23 0.028 0 0.05 0
120 29.08 20 30.78 31 0.029 0 0.085 0
125 31.32 24 31.62 26 0.017 0 0.09 1
130 34.02 26 34.32 34 0.028 0 0.095 0
135 34.18 29 35.16 28 0.025 0 0.125 1
140 36.52 30 38.54 33 0.035 0 0.175 0
145 38.22 35 39.22 30 0.031 0 0.11 0
150 40.24 30 41.22 31 0.041 0 0.125 0
Ave 18.2120 13.0000 18.6280 13.1667 0.0112 0.0000 0.0475 0.0667

p – t facilities. An effective insertion strategy for the t ‘dormant’ facilities, combined
with the current configuration of the ‘active’ p – t facilities, could therefore lead
to a high-quality solution to the original problem. In other words, an undesirable
situation may be turned into a profitable one! Although some recognition of
degenerate solutions may be found in the literature (e.g., see Brimberg and Drezner
(2013) and Brimberg and Mladenović (1999)), we believe this topic deserves much
more attention.
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This preliminary study also confirms previous observations (e.g., see Brimberg
and Drezner 2013) on the importance of starting ALT with a ‘good’ initial solution.
For example, notice in Table 3.3 that the best solution found in the first stage of
experiments by ALT for p = 150 has 30 dormant facilities (or only 120 facilities in
use). The objective value for this solution is 323560.8, which equates to a 29.9%
deviation from the best-known solution for p = 120 (see Table 3.2). Meanwhile if
we compare the results in Table 3.2 with different initial solutions, we see that the
corresponding deviation for p = 120 is only 6.2%. Similar findings apply for the
other instances tested, for both ALT and D-ALT and best and average results. We
conclude that the way initial solutions are selected is an important component of
these heuristics.

A related topic to degenerate solutions is the existence of saddle points (e.g., see
Fig. 3.2), which to our best knowledge has not yet been recognized in the literature
on MWP. Saddle points may be obtained intentionally with ALT (or G-ALT) by
locating p – t points, where t is now a parameter. For example, the case with t = 1
is equivalent to locating p facilities where two of them coincide at the same point.
(Also note that this is equivalent to a degenerate solution where one of these two
facilities is ‘dormant’.) The idea then would be to explore the solution space in the
vicinity of the saddle point to find local minimum points that are nearby. We can
assume that the two coincident facilities are located at any one of the p – 1 current
sites, and in this way generate several local minima from the same configuration.
This too could be an exciting area for future research.

3.6 Conclusions

This chapter reviews some of the literature on the continuous p-median problem
also known as the multisource Weber problem (MWP) or the continuous location-
allocation problem, with a focus on some of the more recent contributions made
by Professor Zvi Drezner in this area. We then extend a key element in most local
searches applied to the MWP by providing a general framework for building variants
of the classical alternating locate-allocate heuristic originally developed by Cooper
(1963, 1964) and still popular to this date. This framework is then used to construct
two heuristics which share some traits of two highlighted heuristics from Drezner
et al. (2016).

Preliminary computational results confirm that although different heuristics
constructed within the presented framework share the same set of local optima,
they do not necessarily perform equally well. The computational tests also lead to
some discussion on possible future research related to the exploitation of degenerate
solutions and saddle points. Other directions for future research may include the
development and testing of a wide range of ‘alternating’ heuristics constructed
within the general framework presented here. This may also lead to a further
understanding of the underlying structure of the problem, and to further insights
on what makes such heuristics work well.
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Chapter 4
Big Triangle Small Triangle Method for
the Weber Problem on the Sphere

Atsuo Suzuki

4.1 Introduction

We propose the Big Triangle Small Triangle (BTST) Method for solving the Weber
problem on the sphere (WPS). It can also be applied to other single facility location
problems on the sphere. The WPS is a variation of the Weber problem which is
a classic and well-studied location problem. We assume that the demand points
are distributed on the surface of a sphere, and our problem is to find the location
of a facility so as to minimize the sum of the distances from demand points to the
facility. The distance is measured by the great circle distance. The objective function
of the WPS is not convex, and the Weiszfeld-type algorithm is not guaranteed to find
the facility’s optimal location. The BTST type algorithm divides the surface of the
sphere into spherical triangles and applies a branch-and-bound method. We show
that it finds the optimal solution within a short computational time.

As trade and services become global, there is an increased interest in location
problems on a sphere. Most location problems, that are usually formulated on the
plane, can also be formulated on the sphere. While planar distances are convex, great
circle distances on the sphere are not. Therefore, even planar convex problems are
not convex, in general, when formulated on the sphere. In order to find the global
optimum on the sphere, global optimization techniques need to be utilized. One
effective global optimization algorithm that was formulated on the plane is the “Big
Triangle Small Triangle” (BTST) algorithm (Drezner and Suzuki 2004). We develop
the spherical equivalent of the BTST algorithm.

The chapter is organized as follows: In Sect. 4.2 we review the BTST algorithm.
In Sect. 4.3, we introduce the WPS, and provide a short literature review. In Sect. 4.4
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we formulate the problem and list the properties we use for our algorithm. In
Sect. 4.5 we describe the algorithm in detail. In Sect. 4.6 we derive the lower bound.
In Sect. 4.7 we present the results of numerical experiments. We close the paper
with the conclusion in Sect. 4.8. The derivation of a lower bound is detailed in the
Appendix.

4.2 The Big Triangle Small Triangle Method

The Big Triangle Small Triangle method was proposed by Drezner and Suzuki
(2004). The method solves optimally location problems with non-convex objective
functions. Drezner and Suzuki (2004) solved the Weber problem with attraction and
repulsion (WAR) and an obnoxious location problem. These problems have non-
convex objective functions and unless we utilize the BTST method, it is difficult to
obtain a guaranteed optimal solution.

The outline of the BTST method for a given relative accuracy ε is as follows:

1. Triangulation: The feasible region of the problem is divided into triangles. We
utilize the Delaunay triangulation which is a dual graph of the Voronoi diagram
generated by the demand points.

2. Initial upper bound UB: We evaluate the objective function at the centroid of each
triangle and set the minimum of them as the initial upper bound.

3. Initial lower bound LB for each triangle: We evaluate a lower bound for each
triangle.

4. Branch-and-bound

(a) All triangles whose LB is greater than UB(1 − ε) are discarded.
(b) The triangle with the minimum LB (the “big triangle”) is divided into four

similar triangles (“small triangles”) and the UB and LB in each triangle are
evaluated. UB may be updated.

(c) If the minimum of LB of all triangles is greater than UB(1 − ε), then UB
is the minimum of the objective function within a given relative accuracy ε.
The solution is the centroid of the triangle which attains the UB.

The BTST method was motivated by the Big Square Small Square (BSSS)
method proposed by Hansen et al. (1981, 1985). They solved variations of the Weber
problem. The BTST method utilizes the triangulation of the feasible region into
many triangles, while the BSSS method divides the feasible region, embedded in
a big square, into small squares. The BSSS method is very simple and effective;
however, the BTST method is also effective and is superior to the BSSS method in
the following two points.

The first point is about the case when the feasible region is a polygon. In this
case, the BSSS method divides the rectangle which includes the feasible region
into rectangles which may have non-feasible areas. The BSSS method needs an
additional procedure to avoid non-feasible solutions. On the other hand, the BTST
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method divides the polygon into triangles and all triangles and their interiors are
feasible and the union of the triangles includes all feasible points.

The second point is that the triangles of the BTST method do not include demand
points in their interior. A demand point in the interior of a triangle may complicate
the derivation of an upper bound in a triangle. For example, in the Weber problem,
the partial derivatives of the objective function are infinite at the demand points.
In the BSSS method, some of the squares may include demand points and an upper
bound may be ineffective. The triangles in the BTST method do not include demand
points in their interior if we utilize the Delaunay triangulation described below.

The BTST method utilizes the Delaunay triangulation (Lee and Schachter 1980)
which is a dual graph of the Voronoi diagram (Sugihara and Iri 1992; Okabe et al.
2000; Suzuki and Okabe 1995) to triangulate the feasible region. As described
above, it is one of the reasons that BTST is better than BSSS. Voronoi diagrams
and the Delaunay triangulation have been studied in the field of the computational
geometry (Ohya et al. 1984; Sugihara and Iri 1992). The FORTRAN source program
is available to the public on the WEB site of Kokichi Sugihara. Figure 4.1 is an
example of the Voronoi diagram generated by randomly distributed 256 points on
the plane.

Drezner and Suzuki studied various location problems using the Voronoi dia-
gram. Examples include: the continuous p-center problem (Suzuki and Drezner
1996), the continuous hub model (Suzuki and Drezner 1997), the equitable radius
circle problem (Suzuki and Drezner 2009), and the covering problem (Drezner and
Suzuki 2010). They used the Delaunay triangulation (Lee and Schachter 1980) to
triangulate the feasible region effectively in the application of the BTST algorithm.

Drezner utilized the BTST method for various location problems. They are listed
in the introduction of Drezner (2007). After that Drezner has continued to apply
the BTST method to various location problems, such as the multi-Weber problem

Fig. 4.1 Voronoi diagram for
256 generators by the
program of Ohya et al. (1984)
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(Suzuki and Drezner 2013), Huff based competitive location model (Drezner and
Drezner 2004), and the network nuisance location problem (Drezner et al. 2009).
It is almost impossible to obtain a guaranteed optimal solution for these problems
without applying the BTST method.

4.3 The WPS Problem

The WPS problem is a variation of the Weber problem. The objective function of the
classic Weber problem is convex, and by the algorithm first proposed by Weiszfeld
(1936) and improved by Drezner (1996, 2015), the optimal solution is obtained. On
the other hand, as the objective function of the WPS is not convex, the Weiszfeld-
type algorithm cannot guarantee that the solution found is optimal. The WPS has
been studied by many researchers, and many heuristics have been proposed for its
solution. For example, Drezner and Wesolowsky (1978) proposed a heuristic based
on the Weiszfeld algorithm. Other heuristic algorithms are surveyed by Hansen et al.
(1995).

To the best of our knowledge, there are only two algorithms that obtain the
optimal solution of the WPS. Drezner (1985) proposed an iterative algorithm based
on the transformation of the problem into a series of minimax problems on the
sphere. The algorithm adds extra points on the sphere one by one, and solves the
minimax problem iteratively. The convergence of the algorithm to the optimal point
is proved. However, numerical examples are not presented, and the convergence is
expected to be slow.

Hansen et al. (1995) proposed another algorithm called the Big Region Small
Region (BRSR) method based on the BSSS method. The algorithm of the BRSR
divides the feasible region into spherical rectangles. It obtains a lower bound of the
objective function in each spherical region. By the branch-and-bound process, they
narrow the region where the solution exists. They implemented the algorithm and
present computational results.

We apply the BTST type method described in the former section for solving the
WPS. For the triangulation of the sphere, we utilize the algorithm of “spherical”
Voronoi diagram developed by Sugihara (2002). Figure 4.2 is an example of
the spherical Voronoi diagram drawn by the program available by Sugihara for
randomly distributed 50 generators on the surface of the sphere.

The BTST method performs better than the BRSR method for the same reasons
that the ordinary BTST method is superior to BSSS method. Furthermore, when
the BRSR method divides the sphere into spherical rectangles, it uses latitude and
longitude. As a result, it treats the regions near the north and south poles differently,
while the BTST method does not require such special treatment.
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Fig. 4.2 Perspective view of
a Voronoi diagram on the
sphere for randomly
distributed 50 generators by
the program in Sugihara
(2002)

4.4 Formulation of the Weber Problem on the Sphere

There are n demand points located on the sphere. Demand point i has an associated
weight wi > 0. The points on the sphere are represented by polar coordinates:

ai = (φi, θi),−π

2
≤ φi ≤ π

2
,−π ≤ θi ≤ π, i = 1, . . . , n.

φ is the longitude and θ is the latitude if we consider the sphere as the globe.
The distance between two points on the sphere is measured by the great circle

distance. The distance between s(φ, θ) and ai(φi, θi) is

d(s, ai) = arccos{cos φ cos φi cos(θ − θi) + sin φ sin φi}.

The great circle distance is the shortest distance from s to ai when traveling on
the surface of the globe. Note that 0 ≤ d(s, ai) ≤ π .

The objective function of the WPS is

F(s) =
n∑

i=1

wid(s, ai). (4.1)

We assume that wi > 0. If wi < 0 for some 1 ≤ i ≤ n, we replace ai by its
antipode with weight −wi . By Property 4.2 described below, we can transform the
case where wi < 0 for some values of i into problem (4.1). It means that if the WPS
can be solved, the Weber problem with attraction and repulsion on the sphere can
be solved as well.

As the WPS attracts significant interest, various properties have been studied.
They are listed by Hansen et al. (1995). We show several definitions and properties
which are utilized in our algorithm.



114 A. Suzuki

Definition 4.1 Given a center point and radius, a spherical circle is the set of the
points whose shortest distance from the center is equal to the radius.

Definition 4.2 A set on the surface of the sphere is convex if all the points on the
shortest arc connecting two points in the set are included in the set.

Definition 4.3 We define a function f on a convex set S on the surface of a sphere.
f is convex if and only if for any two points a and b in S, and all 0 ≤ λ ≤ 1,

f (λa + (1 − λ)b) ≤ λf (a) + (1 − λ)f (b).

Property 4.1 The distance from a given point s to a point on the sphere is a convex
function if the point is in the spherical circle whose center is s and radius is less than
or equal to π

2 .

Property 4.1 is proved in many papers such as Katz and Cooper (1980) and
Drezner and Wesolowsky (1978). We utilize this property to obtain the lower bound
in the BTST method.

Definition 4.4 The antipode of a point a(φ, θ) on the sphere is ā(−φ, θ − π) if
θ ≥ 0 or ā(−φ, θ + π) if θ ≤ 0.

The following property is easy to prove by the definition of the great circle distance
and Definition 4.4.

Property 4.2 The sum of the distances from s to a and from s to ā is equal to π .

Before describing the details of the algorithm, we re-write the objective function
to facilitate the derivation of the lower bound for the BTST method. We define
index sets of demand points. We consider a spherical triangle T whose vertices are
T k, k = 1, 2, 3. The polar coordinates of T k are (φk, θk), k = 1, 2, 3. I is the index
set of all demand points. We define the following:

I k = {i ∈ I |d(T k, ai) ≤ π

2
}, k = 1, 2, 3

Ī k = I \ I k.

I k is a set of demand points whose distance from a vertex T k of the triangle T is
less than or equal to π

2 .
We divide the objective function into three terms. The first term is the sum of the

weighted distances from the demand points whose distance from all three vertices
of the triangle is less than or equal to π

2 . The second term is the sum of the weighted
distances from the demand points whose distance from all three vertices of the
triangle is greater than or equal to π

2 . The third term is the sum for the rest of the
demand points
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F(s) =
∑
i∈I

wid(s, ai)

=
∑

i∈∩3
k=1I

k

wid(s, ai) +
∑

i∈∩3
k=1 Ī

k

wid(s, ai) +
∑

i∈I\(∩3
k=1I

k∪∩3
k=1 Ī

k)

wid(s, ai) (4.2)

≡ F1(s) + F2(s) + F3(s).

The first term is convex for any s in the triangle, and the second term is concave.
The third term is neither convex nor concave. We prove the convexity of the first
term and the concavity of the second term.

First, we show that the first term of (4.2) is convex. Consider a spherical circle
Ci whose center is ai and radius π

2 . By Property 4.1, d(t, ai) is a convex function in
Ci . Note that T k ∈ Ci . Let T ′ be a point on the edge T 1T 2. As d(t, ai) is a convex
function in Ci , and Ci is convex, by Definition 4.3,

d(T ′, ai) ≤ λd(T 1, ai) + (1 − λ)d(T 2, ai)) ≤ π

2
, 0 ≤ λ ≤ 1.

Let T ′′ be a point on the edge T ′T 3. By the same reason above,

d(T ′′, ai) ≤ λ′d(T ′, ai) + (1 − λ′)d(T 3, ai)) ≤ π

2
, 0 ≤ λ′ ≤ 1.

As T ′′ moves in T when λ and λ′ vary in their range,

d(s, ai) ≤ π

2
,∀s ∈ T

Then, by Property 4.1, d(s, ai) is convex function of ∀s ∈ T . As F1(s) is the
weighted sum of the convex functions and the weights are positive, F1(s) is a convex
function.

Next, we show that the second term of (4.2) is concave. By Property 4.2, the term
is rewritten as follows:

F2(s) =
∑

i∈∩3
k=1 Ī

k

wid(s, ai) =
∑

i∈∩3
k=1 Ī

k

wi{π − d(s, āi )}

= π
∑

i∈∩3
k=1 Ī

k

wi −
∑

i∈∩3
k=1 Ī

k

d(s, āi ). (4.3)

As the distance from s to ai is larger than π
2 for ai, i ∈ ∩3

k=1Ī
k , the distance from

s to the āi is less than or equal to π
2 . It means that the distance from s to the āi is

a convex function of s. As the second term of (4.3) is the sum of convex functions,
it is convex. The first term of (4.3) is constant. As F2 is a difference between a
constant and a convex function, it is a concave function. This can also be proved by
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observing that all the distances from the antipode are less than or equal to π
2 and in

general if F(X) is convex, then −F(X) is concave.

4.5 Outline of the BTST Method for the Weber Problem on
the Sphere

The outline of the algorithm is similar to the planar BTST method. In the algorithm,
we use spherical triangles rather than planar triangles. The calculation of the lower
bound is more complicated than the calculation for the planar BTST method. We
show the details in the next section.

1. Triangulation: The sphere is divided into spherical triangles. We utilize the
Delaunay triangulation of the sphere which is a dual graph of the Voronoi
diagram on the sphere.

2. Initial upper bound UB: We evaluate the objective function at the centroid of the
spherical triangles, and set the minimum of them as the initial upper bound.

3. Initial lower bound LB for each spherical triangle: We evaluate a lower bound of
the objective function for each spherical triangle.

4. Branch-and-bound

(a) All spherical triangles whose LB is greater than UB(1 − ε) are discarded.
(b) The spherical triangle with the minimum LB is divided into four similar

spherical triangles by connecting the middle points of the three edges of the
triangle. The UB and LB in these triangles are evaluated. UB may be updated.

(c) If the minimum of LB of all spherical triangles is greater than UB(1− ε), then
UB is the solution.

As the initial upper bound, we calculate the weighted sum of the distances from
the centroid of each spherical triangle to the demand points. The initial upper bound
UB is the minimum of these upper bounds. Note that if there are n demand points,
the number of the triangles in the initial triangulation is 2n − 4. The calculation of
the initial upper bound is calculated in linear time.

By our experience, the effectiveness of the algorithm strongly depends on the
quality of the lower bound like in any branch-and-bound method. In the next
section we describe the details of the calculation of the lower bound used in the
computational experiments.

In the branch-and-bound process, we use a heap with the key of the lower bound
of the spherical triangles. We scan the heap to discard spherical triangles with LB
greater than the UB(1 − ε). When we pick the spherical triangle with the smallest
LB, the spherical triangle is at the top of the heap, and we update the heap. Then we
add four spherical triangles to the heap. As the spherical triangle with minimum LB
is always on the top of the heap, comparing the minimum LB to UB(1 − ε) is quite
easy.
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4.6 Calculation of the Lower Bound

To obtain a lower bound, we need to consider the first term, which is convex, and
the third term of (4.2), which is neither convex nor concave. The second term is
concave. Therefore, its minimum should be attained at one of the vertices of the
spherical triangle T .

The first term of (4.2) is transformed as follows. A point s in T is represented as
a linear combination of the three vertices of the spherical triangle T 1, T 2, and T 3

G1(t1, t2, t3) ≡ F1(t1T
1 + t2T

2 + t3T
3),

where

T k = (φk, θk); s = t1T
1 + t2T

2 + t3T
3, t1 + t2 + t3 = 1. (4.4)

As F1 is convex in T , G1 is convex in the triangle defined by (4.4). For a lower
bound of a convex function, we propose the tangent plane method in Drezner and
Suzuki (2004). We calculate the tangent plane of the convex function and set the
minimum of the tangent plane values on the three vertices of the triangle as the
lower bound. In this case, the lower bound is obtained as follows:

G1(t1, t2, t3) =
∑

i∈∩3
k=1I

k

wi arccos{cos(t1φ
1 + t2φ

2 + t3φ
3) cos φi

× cos(t1θ
1 + t2θ

2 + t3θ
3 − θi)

+ sin(t1φ
1 + t2φ

2 + t3φ
3) sin φi}.

The tangent plane of G1(t1, t2, t3) at (t̄1, t̄2, t̄3) is

Ḡ1(t1, t2, t3) = G1(t̄1, t̄2, t̄3)

+ ∂G1

∂t1

∣∣∣∣
t1=t̄1,t2=t̄2,t3=t̄3

(t1 − t̄1) (4.5)

+ ∂G1

∂t2

∣∣∣∣
t1=t̄1,t2=t̄2,t3=t̄3

(t2 − t̄2)

+ ∂G1

∂t3

∣∣∣∣
t1=t̄1,t2=t̄2,t3=t̄3

(t3 − t̄3).

As the value of F1(s) is equal to that of G1(t1, t2, t3), s = t1T
1 + t2T

2 + t3T
3, and

G1(t1, t2, t3) ≤ Ḡ1(t1, t2, t3),

F1(s) ≥ Ḡ1(t1, t2, t3), s = t1T
1 + t2T

2 + t3T
3.

The derivation of ∂G1/∂tk, k = 1, 2, 3 is given in the Appendix.
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As mentioned above, F2(s) is concave. Therefore, F4(s) = F2(s)+ Ḡ1(t1, t2, t3)

is concave as a sum of a concave function and a linear function by Eq. (4.5). The
minimum of F4(s) is attained at a vertex of T

F4(s) =
∑

i∈∩3
k=1 Ī

k

wid(s, ai) + F1(s)

≥ LB1 = min
k=1,2,3

⎧⎪⎨
⎪⎩

∑
i∈∩3

k=1 Ī
k

wid(T k, ai) + Ḡ(k)

⎫⎪⎬
⎪⎭ ,

where G(1) = G1(1, 0, 0); G(2) = G1(0, 1, 0); G(3) = G1(0.0.1).
F3(s) is neither convex nor concave. The distance from a demand point to any

point in T is higher than the minimum distance from the demand point to the triangle
T . Therefore,

F3(s) =
∑

i∈I\(∩3
k=1I

k∪∩3
k=1 Ī

k)

wid(s, ai)

≥ LB2 =
∑

i∈I\(∩3
k=1I

k∪∩3
k=1 Ī

k)

wi min
s∈T

d(s, ai).

The details of the derivation of mins∈T d(s, ai) is given in the Appendix.
As the lower bound LB2 is a naïve one, its quality may not be very good.

However, the size of the triangles is relatively small as the algorithm progresses.
The number of demand points in I \ (∩3

k=1I
k ∪ ∩3

k=1Ī
k) becomes small. Therefore,

the quality of the lower bound improves as the algorithm progresses.
As the result,

F(s) ≥ LB1 + LB2.

4.7 Computational Experiments

We implemented the procedure in FORTRAN and tested randomly generated
demand points on the sphere. The computer used for the experiments has Intel Core
i5-4200U CPU (1.6 GHz clock), the operating system is Windows 10 Professional,
and the RAM is 4.00 GB. The FORTRAN Compiler we used is FORTRAN Power
Station version 4.
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We tested problems with 100, 200, 300, 400, and 500 demand points which are
randomly distributed on the sphere. All the weights are equal to 1. We compare the
effectiveness of our algorithm with the one in Hansen et al. (1995). As they used
ε = 10−3 as the stopping criterion, we used the same ε in our tests. We also used
ε = 10−6 to obtain more precise optimal function values. For every combination of
the number of demand points and ε, we solved 10 sample problems. We measure
the number of iterations and CPU time to obtain the optimum objective function
values. In Table 4.1 we report the average and standard deviation of the number of
iterations and the run times in seconds of the 10 runs. We also report the average
value of the objective function and for ε = 10−3 and report its percentage above the
average obtained using ε = 10−6. In Table 4.2 we give the details of the 10 results
for the n = 500 instances.

The computer (Hansen et al. 1995) used for the computational experiments is
SPARC 4/75-64 (28.5 MIPS, 64M RAM, 4.2 MFLOPS). The computer we used
has 4.84 GFLOPS (2.42 GFLOPS per one core and the CPU has two cores). The
ratio of the computer speeds is 1152 times. In Table 4.1, the average CPU times are
0.16, 0.41, 0.77, 1.09, and 1.26 s for 100, 200, 300, 400, and 500 demand points
sample problems, respectively, while in Hansen et al. (1995), the CPU times for the
same size of the sample problems are 517, 958, 2586, 3018, and 5233 s. The ratios
between these are 3230, 2320, 3360, 2740, and 4000. As the speed of the computers
increases 1152 times, the CPU time by our algorithm is at least twice as fast.

For more precise solutions, we use ε = 10−6 as the stopping rule of the
algorithm. It appears that the CPU times to obtain the solutions increase moderately.

Table 4.1 Summary results for ε = 10−3 and ε = 10−6

Iterations CPU time Objective value

n Mean S.D. Mean S.D. Mean a

ε = 10−3

100 212.6 76.7 0.17 0.05 145.4025 0.0019%

200 241.8 91.4 0.41 0.11 299.2156 0.0004%

300 292.5 158.4 0.78 0.28 454.1721 0.0005%

400 265.6 198.3 1.09 0.45 604.7062 0.0002%

500 190.5 75.4 1.26 0.22 757.1503 0.0003%

ε = 10−6

100 14555.3 28154.0 22.41 54.42 145.3997 –

200 20435.0 23103.1 41.21 51.96 299.2144 –

300 12837.4 24230.9 34.90 75.29 454.1697 –

400 8235.3 12164.0 23.30 36.79 604.7047 –

500 11040.1 26156.0 46.32 115.86 757.1481 –
a% above optimum
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Table 4.2 Results for n = 500

ε = 10−3 ε = 10−6

Case Iteration Time Value Iteration Time Value

1 245 1.44 770.8228 1524 5.05 770.8228

2 118 1.05 752.8868 2385 8.06 752.8784

3 157 1.14 757.7859 703 2.72 757.7853

4 254 1.44 765.9260 2631 8.30 765.9211

5 79 0.94 741.5615 310 1.61 741.5582

6 313 1.59 776.6203 1676 5.39 776.6203

7 259 1.47 752.1417 89327 393.50 752.1416

8 181 1.25 756.8979 1413 4.80 756.8967

9 212 1.33 761.8746 3460 10.98 761.8717

10 87 0.97 734.9853 6972 22.83 734.9851

Mean 190.5 1.26 757.1503 11040.1 46.32 757.1481

S.D. 75.4 0.22 12.01 26156.0 115.86 12.01

4.8 Conclusions

We proposed the spherical BTST algorithm for the Weber problem on a sphere
(WPS). It obtained the exact solution in a short CPU time. For the calculation of the
lower bound of the branch and bound process of the BTST, we divide the objective
function into three terms. The first one is the sum of the weighted distances from
the point in the triangle to the demand points whose distance is less than π

2 from all
the points in the spherical triangle. We show the term is convex and use a variation
of the tangent plane method to obtain the lower bound. The second one is the sum
of the weighted distances from the point in the triangle to the demand points whose
distance is larger than or equal to π

2 . We show that the second term is concave.
Therefore, the sum of the second term and the tangent plane constructed for the first
term is also concave. The lower bound for the sum is attained at one of the vertices
of the triangle. For the third one, we calculate the shortest distance from the demand
points which is neither less than π

2 nor larger than or equal to π
2 . We implemented

the algorithm and found that it obtained the solution in a short CPU time.
The methodology proposed in this paper can be used to optimally solve other

location problems on a sphere. Competitive facility location, forbidden regions
(such as bodies of water or enemy countries) using the Weber or the minimax
objective, finding the location that attracts the maximum weight within a given
distance, equity location models such as minimizing the range, the variance, and
other location models that were investigated in the plane.
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Appendix

Partial Derivatives of G1

The calculation of the partial derivatives of G1(t1, t2, t3) is as follows:

g1i (t1, t2, t3) ≡ cos(t1φ
1 + t2φ

2 + t3φ
3) cos φi × cos(t1θ

1 + t2θ
2 + t3θ

3 − θi)

+ sin(t1φ
1 + t2φ

2 + t3φ
3) sin φi.

Then

G1(t1, t2, t3) =
∑

i∈∩3
k=1I

k

wig1i (t1, t2, t3).

The partial derivatives of G1 are

∂G1

∂tk
= −

∑
i∈∩3

k=1I
k

wi(1 − g1i (t1, t2, t3)
2)

1
2

∂

∂tk
g1i (t1, t2, t3), k = 1, 2, 3.

The partial derivatives of g1k are calculated as follows:

∂

∂tk
g1i (t1, t2, t3) = cos φi{−φk sin(t1φ

1 + t2φ
2 + t3φ

3) · cos(t1θ
1 + t2θ

2 + t3θ
3 − θi)

− θk cos(t1φ
1 + t2φ

2 + t3φ
3) · sin(t1θ

1 + t2θ
2 + t3θ

3 − θi)}
+ sin φi{φk cos(t1φ

1 + t2φ
2 + t3φ

3)}.

Shortest Distance to the Triangle T

For the lower bound of F3(s), we need to calculate the shortest distance from
a demand point to the triangle T . The shortest distance from a demand point is
attained on the edges or the vertices of T . Therefore, we need to obtain the shortest
distance from the demand point P(ai) to an edge T 1T 2 of the triangle T . We
calculate the distance from the demand point to the three edges and set the minimum
of them as the shortest distance from the demand point to the triangle T .

For the calculation of the distance from the demand point P(ai) to an edge T 1T 2,
we need to consider two cases. Consider the spherical angles α = ∠PT 1T 2 and
β = ∠PT 2T 1 (see Fig. 4.3).



122 A. Suzuki

Fig. 4.3 The shortest
distance from a demand point
to the edge T 1T 2

The first case is that both α and β are less than π/2. In this case, the shortest
distance from P to T 1T 2 is attained at a point T ′ on T 1T 2 see Fig. 4.3. The distance
is calculated as

d(T ′, ai) = arccos(
−−→
OT ′ · −→

OP),

where

−−→
OT ′ =

−→
OP − k(

−−→
OT 1 × −−→

OT 2)

||−→
OP − k(

−−→
OT 1 × −−→

OT 2)||
,

k = (
−−→
OT 1 × −−→

OT 2) · −→
OP

||−−→OT 1 × −−→
OT 2||

.

The second case is that either α or β is greater than or equal to π
2 . If α ≥ π

2 , the
shortest distance is attained at T 1. If β ≥ π

2 , the shortest distance is attained at T 2.
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Chapter 5
Integer Location Problems

Anita Schöbel

5.1 Introduction

The goal of this paper is to introduce integer location problems. These are
continuous location problems in which we look for a new facility with integer
coordinates. We motivate why research on integer location problems is useful and
sketch an application within robust optimization. We then analyze the structure
of optimal integer locations: We identify integer location problems for which a
finite dominating set can be constructed and we identify cases in which the integer
problem can be solved by rounding the solution of the corresponding continuous
location problem. We finally propose a geometric branch-and-bound procedure for
solving integer location problems.

Planar location problems, the most prominent being the Weber problem, have a
long tradition in locational analysis and are by now well understood.

An instance of a planar median location problem (L) is given by a set
A1, . . . , Am ∈ R2 of m demand points in the plane. A weight wm ≥ 0 is assigned
to each demand point Ai, i = 1, . . . , m. The goal is to find a new facility x ∈ R2

which minimizes the weighted sum of distances

f (x) =
m∑

i=1

wid(x,Ai)
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to the existing facilities, i.e.,

(L) min
{
f (x) : x ∈ R2

}
. (5.1)

If the distance d(·, ·) is the Euclidean distance �2, the problem is called Fermat-
Torricelli or Weber problem. Many variations of the Weber problem have been
considered. We refer to numerous textbooks such as Love et al. (1988), Nickel and
Puerto (2005), or to compendiums, e.g., Drezner (1995), Hamacher and Drezner
(2002), Eiselt and Marianov (2011), Laporte et al. (2015), or to survey articles, e.g.,
Wesolowsky (1993), Drezner et al. (2002), ReVelle and Eiselt (2005) for details on
the Weber problem including its history, algorithms, applications, and extensions to
other location problems.

The planar median location problem has not only been studied with the Euclidean
distance, but also with other distances, e.g., with the squared Euclidean distance
�2

2 (White 1971), the Manhattan distance �1, with the Chebyshev distance �∞, or
with �p-distances (Drezner and Wesolowsky 1980; Brimberg and Love 1993), block
norms, or polyhedral gauges, see Thisse et al. (1984) and Ward and Wendell (1985).

As objective function, not only the sum of distances is used in location problems,
but also center location problems in which the maximum distance

g(x) = m
max
i=1

d(x,Ai)

to the existing facilities is to be minimized (Drezner 2011). More general variations
of the objective function of a location problem include ordered median location
problems (Eiselt and Laporte 1995; Nickel and Puerto 2005), obnoxious facility
location (Hansen et al. 1981; Drezner and Wesolowsky 1991), competitive facility
location (Drezner 2009; Drezner and Eiselt 2002; Eiselt 2011; Drezner 2014; Eiselt
et al. 2015), and various covering (García and Marín 2015; Snyder 2011) and equity
models (Berman and Kaplan 1990; Drezner and Drezner 2007).

Also different types of restrictions have been studied, e.g., that the new point
must not lie in a forbidden set (Hamacher and Nickel 1995), or there are barriers to
travel (Klamroth 2002). Different approaches are necessary if one does not locate a
new point x, but a line (Wesolowsky 1975), a circle (Drezner et al. 1996; Brimberg
et al. 2009), a line segment, or any other dimensional structure. We refer to Díaz-
Bánez et al. (2004) or Schöbel (2015) for surveys on the topic. The most prominent
and very well researched generalization looks for a set of p new facilities to be
located instead of just a single one. It is known as the p-median or the p-center
problem. Both have many applications, and are treated in many publications, see,
e.g., Brimberg et al. (2008), Mladenović et al. (2007) and the references therein.

Finally, the space may be varied from R2 to higher dimensions Rn. Only few
results are known here, straightforward generalizations are for the Manhattan and
also for the squared Euclidean distance. Results and approaches for arbitrary norms
in higher dimensions are known mainly for the location of hyperplanes (Martini and
Schöbel 1998).
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What has to the best of the author’s knowledge not been studied so far are integer
location problems restricting the location of the new facility to integer coordinates,
i.e., requiring that x ∈ Zn. This changes the space for the new location from the
continuous plane R2 to the grid points Z2. In this paper we mainly discuss integer
median location problems:

Given a set A1, . . . , Am ∈ R2 of m demand points in the plane with weights
wm ≥ 0, i = 1, . . . , m and a distance measure d : R2 × R2 → R, find a new point
x ∈ Z2 which minimizes the sum of weighted distances to the demand points, i.e.,

(IL) min
{
f (x) : x ∈ Z2

}
. (5.2)

Generalizations of integer median location problems to other location problems (as
described above) will be mentioned where appropriate.

Throughout the paper we use the following notation: Given an integer location
problem

(IL) min
{
f (x) : x ∈ Z2

}
,

its continuous relaxation

(L) min
{
f (x) : x ∈ R2

}

is called its corresponding continuous location problem.
There are different reasons and applications why integer location problems are

interesting. First, the new facilities might be restricted to be points on a grid, for
example, due to accuracy reasons, or because the new facility should be built at
a crossing (e.g. in Manhattan), or since a board can only be pinned at certain
points. Such reasons may directly come from the application at hand. There is also
another reason: optimal integer locations come in useful for solving robust integer
optimization problems. This will be described in Sect. 5.2.

Note that integer location problems are also interesting from a theoretical point
of view. It is well known that (general) integer optimization problems are harder
to solve than continuous optimization problems. This is in general also the case
for integer location problems, but as we will see in the following, there are integer
location problems which can still be solved in the same time complexity as their
corresponding continuous location problems. We believe that the structure which
allows to solve integer location problems can also be exploited for solving more
general integer programming problems.

The remainder of the paper is structured as follows. In Sect. 5.2 we start
with a brief excursion to robust optimization giving another motivation why
integer location problems are reasonable objects to be studied. We then discuss
different approaches on how to tackle integer location problems: In Sect. 5.3 we
first investigate the construction of a finite dominating (candidate) set for integer
location problems whose corresponding continuous location problems are piecewise
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quasiconcave on convex cells and in Sect. 5.4 we use the sublevel sets of the
corresponding continuous location problem and investigate in which cases their
structure helps to find a solution to the integer location problem. We illustrate both
approaches on the integer median location problem with rectangular distance �1,
but also show for which other location problems these approaches may be applied.
In Sect. 5.5 we finally propose a big-square-small-square method as a general
algorithmic scheme for solving integer location problems. The paper is ended with
some conclusions and suggestions for further research in Sect. 5.6.

5.2 Application in Robust Integer Optimization

In robust optimization, we consider optimization problems in which some (or all)
parameters are uncertain or unknown. This means, we do not have an optimization
problem with one fixed and given parameter set, but a different parameter set for
each scenario ξ ∈ U that may occur. U is called the uncertainty set and contains
all scenarios which should be taken into account. In most applications, U is an
infinite set.

Taking the uncertainty into account, the optimization problem under considera-
tion is specified as

P(ξ) min{fξ (x) : x ∈ Fξ },

showing that both the objective function fξ : Rn → R and the feasible set Fξ ⊆ Rn

may depend on the (unknown) scenario ξ ∈ U . The goal of robust optimization is
to find a solution which is “good” for all scenarios that may occur. There exist
many robustness concepts, each of them trying to define what “good” means in this
context. In the conservative approach of strict or minmax robustness one looks for
a solution which is feasible for all scenarios ξ ∈ U , and best possible in the worst
case. Such a solution can be found by solving the robust counterpart given as

min{max
ξ∈U

fξ (x) : x ∈ Fξ for all ξ ∈ U },

see Ben-Tal et al. (2009). More recent concepts argue that the solution need not
be good for all scenarios as long as it may be recovered (or repaired) quickly in
the moment when the real scenario becomes known. This idea was independently
proposed by Liebchen et al. (2009) and Erera et al. (2009). Unfortunately, finding
such a recovery-robust solution is in most cases hard.

However, the deterministic problem P(ξ) can usually be solved, i.e., an algo-
rithm for solving the optimization problem for a fixed scenario ξ ∈ U is known. In
Goerigk and Schöbel (2011, 2014) and Carrizosa et al. (2017), it is shown how such
an algorithm can be used to determine a recovery-robust solution to the uncertain
problem. The approaches developed in these papers basically work as follows.
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Step 1. (Sampling)
In the first step, many of the problems

P(ξ) min{fξ (x) : x ∈ Fξ }

are solved for fixed scenarios from a large, but finite set of sampled
scenarios U ⊆ U (maybe even for the whole set U if it is finite and
not too large). For each scenario ξ ∈ U one obtains a feasible solution
x(ξ) ∈ Rn.

Step 2. (Finding a representative point for the sample)
In the second step, a location problem is solved. It takes the sampled
solutions x(ξ), ξ ∈ U as demand points, and looks for a new facility
x ∈ Rn which is as close as possible to the given solutions x(ξ). The
distance d(x, x(ξ)) represents the costs to recover a solution x to a solution
x(ξ) and is defined such that it fits the application at hand. The demand
points can even be weighted if a probability distribution for the scenario
set U is known.

In the common situation that the problem P(ξ) is a discrete or an integer location
problem, it is required that the resulting solution x is integer, i.e., x ∈ Zn. In
Step 2 of the procedure we are hence left with solving a location problem, e.g.,
the following median location problem (as in Goerigk and Schöbel 2011, 2014),

min{
∑
ξ∈U

wξd(x, x(ξ)) : x ∈ Zn}.

Denoting the sampled scenarios U = {ξ1, . . . , ξm} and defining demand points
Ai := x(ξi), i = 1, . . . , m the problem to be solved in Step 2 turns out to be
an integer location problem (IL) in Zn. In Carrizosa et al. (2017) not median, but
center location problems are considered in Step 2.

5.3 Finding a Finite Dominating Set

For many location problems, finite dominating sets are known for a long time.
A finite dominating set for a location problem (L) consists of a finite set of
points (also called candidates) which contains an optimal solution to (L). Even
if finite dominating sets usually have little algorithmic consequences they help
understanding the structure of optimal locations and provide interesting properties.

Based on the Hakimi property, the probably best known finite dominating set
is for median network location problems: In a network location problem, we have
given a network G = (V ,E) where V is the set of demand points, and we are
allowed to locate the new facilities anywhere along the edges. For the 1-median
problem, Hakimi (1964, 1965) has shown that there always exists an optimal
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solution which is a node. This infers immediately that the set of nodes on the
network is a finite dominating set for the 1-median problem, and hence, also for
p-median problems on networks.

For planar location problems, a prominent finite dominating set is for the planar
median location problem with rectangular distance �1: it is known that there exists
an optimal solution which lies on the intersection of a vertical and a horizontal line,
both passing through one of the existing facilities. This also holds for the planar p-
median location problem: there exists a solution in which all p facilities lie on such
intersection points. The property was also generalized to planar median problems
with block norms or polyhedral gauges as distance measures (Durier and Michelot
1985): Here, the fundamental directions of the block norm or the gauge replace the
vertical and horizontal lines of the �1 norm. There also exist finite dominating sets
for location problems with restricted sets, e.g., in Hamacher and Nickel (1995) for
restricted median problems with block norms and in Hamacher and Schöbel (1997)
for center problems with Euclidean distance. Also for planar median line location
problems, i.e., finding the location of a line minimizing the sum of distances to
a set of given demand points, a finite dominating set is known. Namely, the set
of all lines passing through two of the existing facilities are a finite dominating
set whenever a norm is chosen as distance (Schöbel 1998). The property can be
extended to hyperplanes and even to center objective functions (Martini and Schöbel
1998).

We now discuss finite dominating sets for (IL). The basic property for deriving
a finite dominating set for continuous location problems (L) is quasiconcavity of
the objective function on a cell structure of convex cells. In the case of planar
median location problems with a block norms γB , these cells are defined by the grid
of fundamental directions of γB , see Fig. 5.2 as an illustration for the rectangular
distance (with horizontal and vertical lines as fundamental directions of the �1 block
norm). For location problems (L) which admit such a cell structure, we can construct
a finite dominating set for the integer case as follows:

Theorem 5.1 Let (L) be a location problem which can be decomposed into a finite
number of polyhedral cells C on which the objective function is quasiconcave. Then
a finite dominating set for (IL) is given by

⋃
C∈C

ext(conv(C ∩ Z2)),

where conv(A) denotes the convex hull of a set A ⊆ R2 and ext(A) denotes the
extreme points of a convex set A ⊆ R2.

Proof Let S = C∩Z2 be the set of feasible points in a cell C, then by quasiconcavity
of f we have that

min{f (x) : x ∈ S} = min{f (x) : x ∈ conv(S)}
= min{f (x) : x ∈ ext(conv(S))}
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Fig. 5.1 The extreme points
(not filled) of the convex hull
of feasible points (filled and
unfilled points)

a cell conv(feasible points)

Fig. 5.2 Left: The 12 polyhedral cells for a planar median location problem with rectangular
distance and three existing facilities (red balls). Right: The convex hull of the set of feasible points
(blue balls) in one of the cells

since it is known that a quasiconcave function attains a minimum at an extreme point
ext(S) of a convex set, and that ext(conv(S)) ⊆ S. The situation is shown in Fig. 5.1.
Moreover, due to Minkowski’s theorem on representation of polyhedra (see, e.g.,
Nemhauser and Wolsey 1988) it is known that the extreme points of conv(S) are a
finite set.

A finite dominating set can now be derived whenever the set of extreme points
of the convex hull of the feasible points within each cell can be determined. This
works well for integer median location problems with polyhedral gauges and is
shown exemplarily for the rectangular distance �1 and the Chebyshev-distance �∞
as illustrated below. Note that in this case the objective function is linear (and hence
quasiconcave).

5.3.1 Integer Median Location Problems with Rectangular
Distance

For the rectangular distance �1 and a location problem with m demand points, the
O(m2) cells are known to be rectangles bounded by horizontal and vertical lines
through the existing demand points, see the left side of Fig. 5.2.

The convex hull of the integer points in such a cell C is a smaller rectangle
contained in C as shown exemplarily on the right side of Fig. 5.2. Its extreme points
are its four vertices. These are the candidates see Fig. 5.3. They can be determined
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Fig. 5.3 The candidates for
the integer median location
problem with rectangular
distance (the corresponding
continuous location problem
is shown in Fig. 5.2) are
depicted as unfilled circles.
The picture also shows the
convex hulls of feasible
points for each of the 12 cells

conv(feasible points)

by taking the points in the finite dominating set of the continuous problem and
rounding their coordinates up and down, i.e., for each point x = (x1, x2) ∈ R2

which is a candidate for the continuous location problem, we receive at most four
candidates for the integer location problem, namely,

(
x1�, 
x2�), (
x1�, �x2�), (�x1�, 
x2�), (�x1�, �x2�).

Hence, the number of candidates we receive is of order O(m2).
Note that the finite dominating set constructed for the integer median location

problem with rectangular distance also is a finite dominating set for the integer p-
median problem with rectangular distance (since in an optimal solution to the integer
p-median location problem each new facility is a solution of the integer median
location problem with respect to a subset of the demand points).

5.3.2 Integer Median Location Problems with Chebyshev
Distance

For the Chebyshev distance �∞ the O(m2) cells are known to be rectangles shifted
by 45◦. The convex hull of the set of feasible points S = C ∩ Z2 within a cell C is
illustrated in Fig. 5.4.

Figure 5.5 shows how the extreme points of conv(S) can be constructed: These
are the points first met by the convex hull conv(S) if moving a horizontal or a
vertical line towards the cell from the outside. We obtain at most 8 candidates per
cell (unfilled circles) resulting in O(m2) candidates.

As for the rectangular distance, the finite dominating set constructed for the
integer median location problem with Chebyshev distance is also a finite dominating
set for the integer p-median location problem with Chebyshev distance.
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Fig. 5.4 The convex hull
conv(S) of the set of feasible
points S = C ∩Z2 in a cell C

of the integer median location
problem with Chebyshev
distance

Fig. 5.5 The unfilled circles are the candidates of the depicted cell for the integer median location
problem with Chebyshev distance. Left: construction of the candidates by moving vertical and
horizontal lines towards the feasible points in the cell. Right: the candidates are the extreme points
of the convex hull of the set of feasible points

5.3.3 Integer Median Location Problems with Polyhedral
Gauges

For polyhedral gauges this approach can also be used where the fundamental
directions of the gauge γB are needed to construct the extreme points of conv(C ∩
Z2) for the cells C ∈ C . The number of cells and the number of extreme points
within a cell both grow with the number G of fundamental directions of the gauge
γB . Overall, the cardinality of the finite dominating set hence is O(G2m2). The finite
dominating set is also valid for the planar p-median location problem with the same
polyhedral gauge γB .

5.3.4 Other Location Problems

We remark that Theorem 5.1 and hence the proposed approach for constructing a
finite dominating set also works for higher dimensions as well as for other types of
facilities to be located. For example, in the case of line location problems, we also
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receive a polyhedral cell structure in the called dual space (in which each line is
mapped to a point) with a quasiconcave (non-linear) objective function (see Schöbel
1999) and Theorem 5.1 can also be applied.

In the case that the objective function is linear on each of the polyhedral cells it
is also possible to use integer linear programming on each of the cells. For planar
location problems only two variables are needed; for this special case several fast
algorithms for integer linear programming exist (see, e.g., Feit 1984; Eisenbrand
and Rote 2001) that may be used. If r(m) is the runtime of such an algorithm for
minimizing over a cell for a location problem with m demand point, the overall
runtime for solving an integer location problem with polyhedral cells C adds up
to O(r(m)|C |); for an integer median location problem with a block norm with G

fundamental directions we hence receive a complexity of O(r(m)Gm2).

5.4 Using the Structure of the Sublevel Sets

For some integer optimization problems, an optimal solution can be found by
rounding a solution of their continuous relaxations (up or down). If this is the case,
the so-called rounding property holds, see Hübner and Schöbel (2014). We adapt
the notation given there to integer location problems:

Notation 5.2 (Compare Hübner and Schöbel (2014)) The integer location prob-
lem (IL) has the rounding property if for any optimal solution x = (x1, x2) to
its corresponding continuous location problem (L) there exists an optimal solution
x∗ = (x∗

1 , x∗
2 ) to (IL) such that

x∗
1 ∈ {
x1�, �x1�} and x∗

2 ∈ {
x2�, �x2�}.

The sublevel sets

L
f
≤(z) := {x ∈ R2 : f (x) ≤ z}

of the location problem (L) can be used to check if an integer optimization problem
admits the rounding property. In Hübner and Schöbel (2014), several conditions
have been identified in which this is the case. The one which can be applied to
location problems needs the definition of a box spanned by two points:

Let a = (a1, a2), b = (b1, b2) ∈ R2. Then

B(a, b) := [min{a1, b1}, max{a1, b1}] × [min{a2, b2}, max{a2, b2}]
= {x : �1(a, x) + �2(x, b) = �1(a, b)}.

Equivalently, B(a, b) is the box with the four vertices (a1, a2), (a1, b2), (b1, a2), (b1, b2).
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Fig. 5.6 Left: A set which is cross-shaped with respect to x0 (red point). Right: A convex set
which is not cross-shaped with respect to any point

Notation 5.3 (Hübner and Schöbel (2014)) A set M ⊆ Rn is called cross-shaped
w.r.t. x0 ∈ M if for any y ∈ M the box B(x0, y) ⊆ M .

Euclidean balls, axis-parallel rectangles and axis-parallel ellipsoids are convex
and cross-shaped sets. However, sets which have the shape of a cross (as shown in
Fig. 5.6, left side) are cross-shaped, but not convex. On the other hand, convexity
does not imply cross-shapedness, see Fig. 5.6, right side.

We use that box-shapedness of the sublevel sets guarantees the rounding
property:

Theorem 5.4 (Hübner and Schöbel (2014)) Let f be the objective function of a
location problem (L), and let x be an optimal solution to (L). If the sublevel sets of
f are cross-shaped w.r.t. the solution x, then (IL) has the rounding property.

In the following we identify a few planar location problems which have cross-
shaped level sets.

5.4.1 Integer Median Location Problems with Rectangular
Distance

In this section we show that the sublevel sets of the planar median location problem
with rectangular distance are cross-shaped.

Lemma 5.5 Let x be an optimal solution to the planar median location problem
with rectangular distance �1. Then for any z ∈ R the sublevel set L

f
≤(z) is a cross-

shaped set w.r.t. the solution x.

Proof Denote the demand points Ai = (ai1, ai2) for i = 1, . . . , m. If the sublevel
set L

f
≤(z) is empty, there is nothing to show. Otherwise let y ∈ L

f
≤(z). We want

to show that B(x, y) ⊆ L
f
≤(z), i.e., that for any point q ∈ B(x, y) we have that

f (q) ≤ z.
To this end, take any point q = (q1, q2) ∈ B(x, y). I.e., q1 lies between x1 and

y1 and q2 lies between x2 and w2. We obtain that
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f (q) =
m∑

i=1

wi�1(q,Ai)

=
m∑

i=1

wi |q1 − ai1| +
m∑

i=1

wi |q2 − ai2|

=: f1(q1) + f2(q2).

Note that f1 is a convex function and q1 = λ1x1 + (1 − λ1)y1 for some 0 ≤ λ1 ≤ 1
is a convex combination of x1 and y1. Furthermore, f1(x1) ≤ f1(y1) since x is an
optimal solution to (L). We hence have that

f1(q1) = f1(λ1x1 + (1 − λ1)y1)

≤ λ1f1(x1) + (1 − λ1)f1(y1)

≤ λ1f1(y1) + (1 − λ1)f1(y1) = f1(y1).

Analogously, f2(q2) ≤ f2(y2) and together we obtain that

f (q) = f1(q1) + f2(q2) ≤ f1(y1) + f2(y2) = f (y),

i.e., q ∈ L
f
≤(z).

Together with Theorem 5.4 we now conclude:

Theorem 5.6 The integer median location problem with rectangular distance �1
has the rounding property.

This theorem can be used algorithmically as follows:
Let an integer median location problem (IL) with rectangular distance �1 be given

and let (x1, x2) be an optimal solution to its corresponding planar median location
problem. Then an optimal solution to (IL) is contained in

(
x1�, 
x2�), (
x1�, �x2�), (�x1�, 
x2�), (�x1�, �x2�).

I.e., we only have to compute the objective function value of the four possible points
and choose the best of them. The integer location problem (IL) can hence be solved
in the same time complexity as its continuous counterpart (L).

5.4.2 Integer Median Location Problems with Chebyshev
Distance

Note that the rounding property does not hold for median location problems with
the Chebyshev-norm as the example depicted in Fig. 5.7 demonstrates. The figure
also shows that the sublevel sets of the problem need not to be cross-shaped.
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Fig. 5.7 The rounding
property does not hold for
integer median location
problems with Chebyshev
distance. The optimal
solution to (L) is depicted as
red point, the best integer
solution as the unfilled circle.
It can also be seen that the
sublevel set (which intersects
four different cells) is not
cross-shaped

best integer
point

planar solution

5.4.3 Integer Median Location Problems with Squared
Euclidean Distance

The squared Euclidean distance is not piecewise linear, not even quasiconcave,
hence it is not possible to derive a finite dominating set as in the first approach.
However, integer location problems with the squared Euclidean distance turn out
to be solvable easily in linear time by using the structure of the sublevel sets again.
Note that the optimal solution to a location problem with squared Euclidean distance
is unique and given as the center of gravity of its (weighted) demand points (White
1971).

Lemma 5.7 Let x be the optimal solution to the planar median location problem
with squared Euclidean distance �2

2. Then for any z ∈ R the sublevel set L
f
≤(z) is a

cross-shaped set w.r.t. x.

Proof Denote the demand points Ai = (ai1, ai2) for i = 1, . . . , m. If the sublevel
set L

f
≤(z) is empty, there is nothing to show. Otherwise let y ∈ L

f
≤(z). As in the

proof of Lemma 5.5 we show that B(x, y) ⊆ L
f
≤(z).

Again, if the sublevel set is not empty, take any point q = (q1, q2) ∈ B(x, y).
Separability of the objective function in the squared Euclidean case gives that

f (q) =
m∑

i=1

wi�
2
2(q,Ai)

=
m∑

i=1

wi(q1 − ai1)
2 +

m∑
i=1

wi(q2 − ai2)
2

=: f̃1(q1) + f̃2(q2),
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Fig. 5.8 The sublevel sets
about the center of gravity
(red point) for planar median
location problems with
squared Euclidean distance
are Euclidean balls. The
integer solution in the
example is the unfilled circle

and f̃1, f̃2 are both convex functions which obtain their (unique) minima in x1, and
x2, respectively. As in the proof of Lemma 5.5 we conclude

f̃1(q1) ≤ f̃1(y1), and

f̃2(q2) ≤ f̃2(y2)

and obtain the required result:

f (q) = f̃1(q1) + f̃2(q2) ≤ f̃1(y1) + f̃2(y2) = f (y).

Figure 5.8 shows an example of an integer median location problem with squared
Euclidean distance. The figure shows its (integer) solution as well as a sublevel set
of its corresponding continuous location problem about the center of gravity of the
demand points.

Theorem 5.8 The planar median location problem with squared Euclidean dis-
tance �2

2 has the rounding property.

This theorem can even be strengthened as follows: In Hübner and Schöbel
(2014) it is shown that box-shaped sublevel sets which are also coordinate axially
symmetric admit the strong rounding property as defined below.

Notation 5.9 (Compare Hübner and Schöbel (2014)) An integer location prob-
lem (IL) has the strong rounding property if for any optimal solution x = (x1, x2)

to (L) there exists an optimal solution x∗ = (x∗
1 , x∗

2 ) to (IL) with

x∗
1 = round(x1) and x∗

2 = round(x2),

where round(x) for some real number x means to round x to its closest integer
using any fixed rule, e.g. the round half up rule in order to break ties.

Since the sublevel sets of the planar median location problem with squared
Euclidean distance are Euclidean balls (see Hamacher 1995), they are coordinate
axially symmetric. We hence conclude:
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Corollary 5.10 The planar median location problem with squared Euclidean
distance �2

2 has the strong rounding property.

Since the strong rounding property holds, the approach for solving integer
location problems with squared Euclidean distance �2

2 is even easier as for the case of
the rectangular norm �1: We compute the solution to the corresponding continuous
problem, i.e., we determine its center of gravity x ∈ R2 by averaging the given
demand points. Rounding both components of x to their closest integers gives the
solution to the integer location problem.

5.4.4 Other Location Problems

As the example with the Chebyshev norm shows, the rounding property does not
hold for integer location problems with general polyhedral gauges. It is also not
satisfied for integer median location problems with the Euclidean distance.

On the other hand, the rounding property for the rectangular and for the squared
Euclidean distance can easily be generalized to high-dimensional location problems,
again using separability of the objective function into n convex functions as for the
two-dimensional case. The rounding property can also be shown for center problems
with the Euclidean distance �2 (also here the sublevel sets are cross-shaped), i.e.,
also in this case the corresponding integer location problem be solved by finding
an optimal solution, e.g., by the algorithm of Elzinga-Hearn, and rounding its
components up or down.

5.5 A Big-Square-Small-Square Approach

The big-square-small-square (BSSS) method is a geometric branch-and-bound
procedure which has been successfully applied to location theory since the paper
(Hansen et al. 1981). The method is interesting in itself, generalizations and the
construction of good bounds is treated, e.g., in Plastria (1992), Drezner (2007),
Blanquero and Carrizosa (2009), and Scholz and Schöbel (2010). A prominent mod-
ification is the big-triangle-small-triangle (BTST) method by Drezner and Suzuki
(2004). BSSS has been adapted to more dimensional problems to a big-cube-small-
cube method (BCSC) (Schöbel and Scholz 2010), generalized to mixed-integer
optimization (Schöbel and Scholz 2014) and to multiobjective problems (Scholz
2010, 2011; Niebling and Eichfelder 2018). The method has also been applied to
searching along segments (Berman et al. 2011) and recently, for searching on arcs,
called big-arc-small-arc method (BASA) (Drezner et al. 2018).

The basic idea of BSSS is the following: Starting with a bounded box as feasible
set, in each iteration, a box is chosen and decomposed into smaller boxes. On each
box, a lower bound on the optimal objective value is computed. The bounds and the
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current best objective value are then used for pruning boxes which cannot contain
an optimal solution. The remaining boxes are further decomposed. We now show
how a BSSS algorithm can be refined in order to solve integer location problems
(IL). To this end, assume that a BSSS algorithm for the continuous version (L) is
given:

Input: (L) min{f (x) : x ∈ R2} and starting box B0, accuracy ε > 0.
Step 1. Initialization: List := {B0}, z := ∞, xinc := ∅.
Step 2. Stopping criterion: If List = ∅, Stop. Output: x∗ := xinc, z∗ := z.
Step 3. Selection:

3.1 Choose a box B̃ = B(ã, b̃) ∈ List; List := List \ {B̃}.
3.2 Compute the center of the box xB̃ := ã+b̃

2
3.3 Compute a lower bound LB on the box B̃.

Step 4. Pruning:

4.1. If f (xB̃) < z set z := f (xB̃) and xinc := xB̃ .
4.2. If LB > z, goto Step 2.
4.3. If f (xB̃) < LB + ε, goto Step 2.

Step 5. Branching: Decompose B̃ in four smaller boxes B1, B2, B3, B4 with B̃ =⋃4
k=1 Bk . Set List := List ∪ {B1, B2, B3, B4}. Goto Step 2.

Note that the objective function value of (IL) is larger or equal to the objective
function value of the corresponding location problem (L), i.e.,

z := min{f (x) : x ∈ R2} ≤ min{f (x) : x ∈ Z2} =: z∗.

In particular, a lower bound for (L) is also a lower bound for (IL). This means,
we can easily adapt BSSS to (IL) by using the same bounds as for the continuous
counterpart. We can even strengthen the bounds and the boxes. The modifications
we need are described below.

In Step 3.2 we need to compute an integer point instead of the center. This is
done by

3.2 Compute the center xB̃ := ã+b̃
2 . Check if any of the four points

(
xB̃
1 �, 
xB̃

2 �), (
xB̃
1 �, �xB̃

2 �), (�xB̃
1 �, 
xB̃

2 �), (�xB̃
1 �, �xB̃

2 �)

lies in B̃. If yes, set xB̃ as this point. Otherwise the box does not contain any
integer point and can be discarded, i.e., goto Step 2.

In Step 3.3 we can strengthen the lower bound LB by using integer rounding
(Nemhauser and Wolsey 1988). I.e., if the computation of the bound only involves
integer operations, then we can round LB up to the next integer, i.e., we receive
�LB� as stronger bound.
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Concerning the pruning in Step 4, note that in the modified Step 3.2 we already
discarded boxes which do not contain any integer point. We can furthermore choose
a small integer number ρ (e.g., ρ = 4) and prune boxes by optimality if they contain
less than ρ integer points. To this end, we can add the following step at the beginning
of Step 4:

4.0. If |B̃ ∩Z2| ≤ ρ evaluate the objective function for each of the ρ integer points
and choose the best of them. Let the corresponding optimal solution of the box
be xB̃ .

Note that Step 4.0 is not performed if the box contains more than ρ integer points.
In this case, xB̃ is the rounded center of the box computed in Step 3.2.

Finally, when decomposing a large box B = B(a, b) (with a = (a1, a2), b =
(b1, b2) and a1 ≤ b1, a2 ≤ b2) into smaller boxes this can be done by taking the
center q of the box, i.e., qi := ai+bi

2 for i = 1, 2 and defining the four new boxes as

B1 := B((a1, 
q1�), (a2, 
q2�)),
B2 := B((a1, �q2�), (
q1�, b2)),

B3 := B((�q1�, a2), (b1, 
q2�)),
B4 := B((�q1�, �q2�), (b1, b2)),

see Fig. 5.9 as illustration. Note that for q �∈ Z2 the sum of the areas of the four new
boxes is strictly smaller than the area of the original box (which further strengthens
BSSS for integer location problems compared to the continuous version).

The algorithm converges since the number of feasible points is finite and the new
boxes generated in Step 5 are strictly smaller than the box which is decomposed
such that eventually all points are enumerated.

Fig. 5.9 decomposing a
larger box (dashed line) into
four smaller boxes (red lines)
defined by the center of the
box q (red point). Note that
the sum of the areas of the
smaller boxes is strictly
smaller than the area of the
original box

q = center of box

a

b

B2

B1 B

B

3

4
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5.6 Conclusion and Further Research

In this paper we have introduced integer location problems. Apart from direct
applications we have motivated the usage of integer location problems for robust
optimization. We then have shown how a finite dominating set may be constructed
and how sublevel sets may be used to establish a rounding property. We also propose
a solution algorithm based on geometric branch-and-bound.

Research on integer location problems nevertheless is just at its beginning. In
particular higher-dimensional problems are of interest, as well as location problems
with restricted sets. Both extensions are important for finding recovery-robust
solutions as sketched in Sect. 5.2, or for the ongoing topic of integrated optimization
of interwoven systems as described in Klamroth et al. (2017).

We hope that this introductory paper triggers research towards integer location
problems including integer median as well as integer center problems with different
distance measures.
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Chapter 6
Continuous Location Problems

George O. Wesolowsky

6.1 Introduction

In this chapter I summarize many papers (out of 75) co-authored with Zvi mostly
on continuous location models in the plane. Other topics that are described in
other chapters include: production processes (Drezner et al. 1984; Drezner and
Wesolowsky 1989e), optimal control (Drezner and Wesolowsky 1989f,c, 1991a,c,
1995b), and statistical methods (Drezner and Wesolowsky 1989a, 1990; Drezner
et al. 1999).

Continuous location problems were some of the very earliest attempts at creating
a body of knowledge relating to the most efficient ways of utilizing the location of
facilities. These problems were shared among other disciplines such as mathematics,
economics, and industrial engineering. Location problems also provided a firm base
for more complex models and led to many problems of optimization which then
could be applied in these other fields.

I first met Zvi when he became a Postdoctoral Fellow at McMaster University
when he came to work with me. When he arrived, I set out to give him some ideas
for location problems. I expected to have peace and quiet for weeks or months, but
Zvi came back the next day with a sheaf of yellow note paper, on which he already
solved all the problems I had proposed. I knew at that time that I had met someone
special.
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6.2 Minisum Models

In this section, models in which the objective is minimizing the sum of weighted
distances between facilities and demand points are reviewed. This problem is
commonly termed in the literature as the “Weber Problem” (Weber 1909).

Wesolowsky (1993) and Drezner et al. (2002a) provide a comprehensive review
including historical background. The Weber problem has a long and convoluted
history. Many players, from many fields of study, stepped on its stage. The problem
seems simple, but is rich in possibilities. It has generated an enormous literature
dating back to the seventeenth century. Kuhn (1967) provided historical background.
It is usual to credit Pierre de Fermat (1601–1665) with proposing a basic form
of the unweighted Weber problem based on three points. Other credits are given
to Evangelista Torricelli (1608–1647), Battista Cavalieri (1598–1647), Thomas
Simpson (1710–1761), Jacob Steiner (1796–1863), in addition to the more recent
Alfred Weber (1868–1958).

As can be seen by perusing the references, some of the many names that
have been used are: the Fermat problem, the generalized Fermat problem, the
Fermat–Torricelli problem, the Steiner problem, the generalized Steiner problem,
the Steiner–Weber problem, the Weber problem, the generalized Weber problem,
the Fermat–Weber problem, the one median problem, the median center problem,
the minisum problem, the minimum aggregate travel point problem, the bivariate
median problem, and the spatial median problem.

The Weber problem is to find the best location X for a facility with the
objective of:

min
X

{
n∑

i=1

widi(X)

}
(6.1)

where n is the number of demand points, wi is the weight associated with demand
point i, di(X) is the distance between demand point i and the facility location X.
The original application of the Weber problem was the location of a distribution
center.

6.2.1 Extensions to the Weber Problem

Drezner and Wesolowsky (1978c, 1980c) solved the Weber problem when demand
is originated in areas rather than demand points (Love 1972; Wesolowsky and Love
1971). This is a more realistic model when demand is generated in neighborhoods
rather than at individual points.

Drezner and Wesolowsky (2000) investigated demand points clustered into
groups with a weight associated with each group rather than area demand. The
group-distance between the facility and a group of demand points is determined in
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three ways: the closest point in the group, the farthest one, and the average distance
to all members in the group. Three objectives are considered: minisum (minimize
the sum of weighted group-distances to the group), minimax, and maximin. There
are nine possible models. Some of them are equivalent to known models. For
example, the minisum objective with the average distance to the group is equivalent
to the Weber problem. Two of the nine possible models (maximal group-distance
using minisum objective, and average group-distance using minimax objective)
are analyzed in the paper. The network version of this problem was analyzed in
Berman et al. (2001). In Drezner and Drezner (2011) the equity objective (see
Eiselt and Laporte 1995) is considered. The set of demand points is divided into
two or more groups. For example, rich and poor neighborhoods and urban and rural
neighborhoods. The objective is to provide “equitable” service to the groups. The
objective function, to be minimized, is the sum of squares of differences between
all pairs of service distances between demand points in different groups.

Drezner and Wesolowsky (1991d) considered the possibility that some of the
weights can be negative. The facility may be obnoxious or “repulsive” to some
demand points. It is also termed “the Weber problem with attraction and repulsion”
(Maranas and Floudas 1993; Chen et al. 1992; Plastria 1991). Exact solution
procedures are given for rectilinear and squared Euclidean distances. A heuristic
is proposed for Euclidean distances. They proved that when the sum of the weights
is positive, the optimal location is finite while if the sum is negative the optimal
location is at infinity. When the sum of the weights is zero, the optimal location
can be either finite or infinite. Examples for both cases are given. This problem was
used as a test problem for global optimization procedures such as BTST (Drezner
and Suzuki 2004) or BSSS (Hansen et al. 1981), which can solve the Euclidean
distance problem optimally (see Sect. 6.7.2).

Drezner and Wesolowsky (1978a) investigated the Weber location problem on a
sphere. When the area of interest is relatively small, the curvature of the surface can
be ignored. However when the area of interest spans a large portion of the surface of
the globe, the Euclidean distance may be significantly different from the distance on
the surface of the earth. Using the shortest distances on a great circle, the problem
may be non-convex and many local optima may exist. It was proven in Drezner and
Wesolowsky (1978a) that the problem is convex when all demand points are located
in a circle of radius π

4 of the radius of the globe. In Drezner (1981b) it was shown
that when all demand points are located on a great circle, such as the equator, then
the optimal location is on a demand point. In a later paper (Drezner 1985) an optimal
procedure for solving the problem was proposed.

Drezner and Wesolowsky (1981) assumed that the weights associated with
demand points in the Weber problem follow a distribution with given means,
variances, and covariances. They found the probability that the optimal location is
at a given location or a given region in the plane. For Manhattan distances (�1 norm)
the probability that the optimal location is on a demand point is found. For general
�p distances an approximate expression for the probability that the optimal solution
is in a given region is developed. In a later paper, Drezner and Simchi-Levi (1992)
showed that for Euclidean distances the probability that the optimal solution is on a
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demand point is approximately 1
n

for the Weber problem with n demand points and
random weights.

Drezner et al. (1991) introduced the Weber and minimax problems with limited
distances. Up to a certain distance D, the distance is considered in the objective
function and beyond distance D, the value of D is considered as the distance in
the objective function. The distance di(X) in (6.1) is replaced by min{di(X),D}.
Drezner et al. (1991) proposed a heuristic algorithm for the solution of the problem.
It can be solved optimally by global optimization procedures detailed in Sect. 6.7.2,
see, for example, Drezner et al. (2016a). Such a solution procedure is an important
part of heuristic algorithms designed for the solution of the p-median problem
(Daskin 1995). Drezner et al. (2016a) proposed to repeat the following until
convergence. A facility is randomly selected and the optimal location of the selected
facility while holding all other facilities in their locations is found. This is the
Weber problem with limited distances. Let Di be the minimum distance to the other
facilities, then di(X) is replaced by min{di(X),Di}. This approach is more effective
than solving the Weber problem based only on the points closest to the selected
facility by the Weiszfeld algorithm (Weiszfeld 1936; Drezner 2015) as suggested
by Cooper (1963, 1964).

Most location models implicitly assume that travel time is proportional to the
distance. Drezner et al. (2009b) considered vehicles (such as cars, airplanes, and
trains) accelerating at the beginning of the trip and decelerating towards the end of
the trip. This consideration is important in dispatching emergency services where
time should be considered rather than distance. A heuristic approach employing the
generalized Weiszfeld algorithm (Drezner 2009) and an optimal approach applying
the big triangle small triangle global optimization method (Drezner and Suzuki
2004) are tested. These two approaches are very efficient and problems of 10,000
demand points are solved in about 0.015 s by the generalized Weiszfeld algorithm
(Drezner 2009) and in about 1 min by the BTST technique (Drezner and Suzuki
2004). When the generalized Weiszfeld algorithm was repeated 1000 times, the
optimal solution was found at least once for all test problems.

Drezner and Wesolowsky (1989b) considered the Weber problem and the
minimax objective when the distance from point A to point B is not the same as the
distance from B to A. This is common in rush hour traffic or for flights that in one
direction have tail winds and in the opposite direction have head winds. The Weber
problem with rectilinear distances is optimally solved and a heuristic procedure
is proposed for Euclidean distances. Drezner and Drezner (2018) analyzed the
asymmetric distance location problem where the distance (time) to get to the
destination by air is affected by winds. Two models are proposed: the asymmetric
Weber location problem and the round trip Weber location problem. The problems
are analyzed and solved.

Berman et al. (2002b) considered the location of new facilities which serve only a
certain proportion of the demand. The total weighted distances of the served demand
is minimized. The problem is investigated in the plane for the location of one facility
and on a network for the location of multiple facilities.
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6.2.2 Changing Costs

Drezner and Wesolowsky (1991b) investigated the Weber problem (as well as the
minimax objective) for locating one facility that serves a set of demand points over
a time period. Demand at demand points changes over time in a “known” way. The
facility can be relocated one or more times during the time horizon. The problem is
to find the best time breaks for relocating the facility and the best location for the
facility in each of the time windows. A follow-up paper is Farahani et al. (2009).

Berman et al. (2003d) considered the problem where there is a probability,
depending on the distance from the facility, that the facility may not be able to
provide satisfactory service to a customer. This probability is equal to 0 at distance
zero, and is a monotonically increasing function of the distance. This problem is
formulated and solved in a network environment. A given number of facilities need
to be located such that the expected service level for all demand points combined
will be maximized. Alternatively, one can state the problem as minimizing the
expected demand that will not get satisfactory service.

Several papers extend the location-allocation problem by assuming that the prices
charged to demand points depend on the demand and customers select the facility
with the lowest total cost (charge plus transportation cost). Drezner and Wesolowsky
(1996a) studied the case that demand points and facilities are located on a line
segment and demand is continuous and follows a given distribution. Drezner and
Wesolowsky (1999a) analyzed and solved the problem when demand is distributed
in a convex region. The problem of two facilities to be located in a square with
uniform demand is solved in detail. Drezner and Wesolowsky (1999b) analyzed and
solved the problem in the plane. These three papers are summarized in Drezner
and Wesolowsky (1996c). Extensions to these problems are proposed and solved in
Averbakh et al. (1998, 2007).

6.3 Minimax and Maximin Models

In this section we review papers that investigate minimizing the maximum distance,
maximizing the minimum distance, or a combination of both.

6.3.1 Minimax Objective

The basic minimax problem of finding the center of the smallest circle that encloses
a set of points is credited to the English mathematician James Joseph Sylvester
(1814–1897). Many papers discussed in Sect. 6.2 also investigated the minimax
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objective. Applications to the minimax objective include providing service so that
the farthest customer will be as close as possible to the facility. For example, locating
service stations for ambulances, fire trucks, and police depots. The following papers
investigated solely the minimax objective.

The unweighted Euclidean (�2) problem was proposed and solved by Sylvester
(1857, 1860). He showed that the problem is equivalent to finding the circle with
the smallest radius that covers a set of points. Drezner and Wesolowsky (1980e)
solved the weighted one facility minimax problem with �p distances for p ≥ 1. The
solution method is based on the property that the optimal point is the solution to a
problem based on a subset of two or three demand points. Elzinga and Hearn (1972)
proposed it for Euclidean distances. For a review see Drezner (2011). Drezner
(1987) solved the unweighted p-center problem with Manhattan (�1) distances. The
1-center and 2-center problems are optimally solved in o(n) time and the 3-center
problem is optimally solved in o(n log n) time.

Drezner and Wesolowsky (1985a) considered the location of facilities or “mov-
able” points on a planar area, on which there already exist fixed points. The
minimax criterion for optimality is used and distances among points are assumed
to be rectilinear. Two very efficient algorithms for the solution of the problem are
presented. One is based on a univariate search, and the other on a steepest descent
method.

Drezner et al. (2002b) found the circle whose circumference is as close as
possible to a given set of points. Three objectives are considered: minimizing the
sum of squares of distances, minimizing the maximum distance, and minimizing
the sum of distances. These problems are equivalent to minimizing the variance,
minimizing the range, and minimizing the mean absolute deviation, respectively.
These problems are formulated and heuristically solved as mathematical programs.
Follow-up papers for locating concentric circles are Drezner and Brimberg (2014)
and Brimberg and Drezner (2015).

Berman et al. (2003f) considered the weighted minimax (1-center) location
problem in the plane when the weights are not given but rather drawn from
independent uniform distributions. The problem is formulated and analyzed. For
certain parameters of the uniform distributions the objective function is proven to
be convex and thus can be easily solved by standard software such as the Solver in
Excel.

Berman et al. (2003b) introduced a new objective function for the minimax
location problem. Every demand point generates demand for service with a given
probability (during a given period of time) and the objective is to minimize the
expected maximum distance. The planar problem is proven to be convex and thus
standard solution techniques such as using the Solver in Excel can be applied for
its solution. Properties for the problem on the network are proven and an efficient
algorithm proposed for its solution.
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6.3.2 Maximin (Obnoxious) Objective

Maximizing the minimum distance from a set of demand points was introduced
by Church and Garfinkel (1978) as the obnoxious facility location problem. Their
model was proposed for the network environment.

Drezner and Wesolowsky (1980b) proposed, analyzed, and tested the problem
of locating a facility that maximizes the minimum weighted distance from a set
of demand points. The facility must be located within a certain distance from all
demand points. This condition restricts the set of potential locations to a finite set.
The non-weighted version of this problem without maximum distance constraints
was solved by Shamos and Hoey (1975) based on Voronoi diagrams (Suzuki and
Okabe 1995; Okabe et al. 2000; Voronoï 1908).

Berman et al. (2003c) considered the location of an obnoxious facility, such as
an airport, that serves only a certain proportion of the demand. Each demand point
can be bought by the developer at a given price. An expropriation budget is given.
Demand points closest to the facility are expropriated within the given budget. The
objective is to maximize the distance to the closest point not expropriated. The
problem is formulated and polynomial algorithms are proposed for its solution both
on the plane and on a network.

Drezner and Wesolowsky (1985b) considered the location of facilities that
are obnoxious in the sense that nearness of the facility to fixed points, which
may represent population centers or other installations, is undesirable. Two model
formulations are proposed. In the first formulation the maximum weighted distance
in the system is minimized subject to constraints which require that the distances
between the facilities and fixed points must exceed specified values. In the second
formulation, the smallest weighted “facility-to-fixed-point” distance in the system
must be maximized, given that every fixed point must be within “reach” of
the closest facility. Certain useful duality relationships are established between
these problems. A one-dimensional problem is solved using an algorithm that
incorporates a version of the set covering problem.

Drezner and Wesolowsky (1983a) considered the basic obnoxious facility model.
The minimum distance between demand points and the facility needs to be
maximized. Rectangular (�1) distances are considered. Two approaches to solving
the problem are proposed. In the first approach, the boundary and then the interior of
the feasible region are searched for the optimum. The search is restricted to certain
linear segments. The second algorithm essentially breaks down the problem into
linear programming problems, one of which must yield the optimal solution.

Drezner and Wesolowsky (1989d) considered the location of a route or path
through a set of given points in order to maximize the smallest weighted distance
from the given points to the route. Applications may include the planning of
pipelines carrying noxious material, and also certain problems in robotics. The
first algorithm finds a non-linear path by iteratively solving network minimal-cut
problems. A second algorithm solves the case where the route is restricted to be
linear.
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Drezner and Wesolowsky (1996b) considered the problem of locating a point
that is as far as possible from arcs and nodes of a network. Each arc or node may
have a different multiplicative factor (weight) for its distance. A graphical solution
approach, as well as a computational algorithm, is presented. In a follow-up paper,
Drezner et al. (2009a) also investigated the location of a facility anywhere inside
a planar network but a different objective is proposed. The objective is to locate a
facility where the total nuisance to links and nodes of the network is minimized.

Berman et al. (1996) find a location of a new facility on a network so that the
total number (weight) of nodes within a pre-specified distance R is minimized. This
problem is applicable when locating an obnoxious facility such as garbage dumps,
nuclear reactors, prisons, and military installations. The paper includes an analysis
of the problem, identification of special cases where the problem is easily solved,
an algorithm to solve the problem in general, and a sensitivity analysis of R. The
planar version with Euclidean distances is solved in Drezner (1981a).

Berman et al. (2000) considered the minimization of the impact of hazards
located on or near a network. Two situations are considered: (1) a hazard is located
on a network and affects off-network sites and (2) an off-network hazard which can
affect traffic on the network. Eight models aimed at optimizing different objectives
are developed and solved, including finding a route between two nodes on a network
which minimizes the hazard along it and finding a location on a network where the
hazard is minimized.

6.3.3 Incorporating Both Minimax and Maximin Objectives

Drezner and Wesolowsky (1983b) considered the following problem. There are n

demand points on a sphere. Each demand point has a weight which is a positive
constant. A facility must be located so that the maximum of the weighted distances
(distances are the shortest arcs on the surface of the sphere) is minimized; this is
called the minimax problem. Alternatively, in the maximin problem, the minimum
weighted distance is maximized. A setup cost associated with each demand point
may be added for generality. It is shown that any maximin problem can be re-
parametrized into a minimax problem. A method for finding local minimax points
is described and conditions under which these are global are derived. Finally, an
efficient algorithm for finding the global minimax point is constructed.

Berman et al. (2003a) considered the weighted minimax and maximin location
problems on the network when the weights are drawn from a uniform distribution.
In the minimax (maximin) problem with stochastic demand the probability that the
maximum (minimum) weighted distance between the facility and demand points
exceeding (falling short of) a given value T is minimized. Properties of the solution
points for both problems are proven and solution algorithms are presented.

Drezner et al. (1986) considered a new objective function for the placement of a
public facility with reference to variations in accessibility: the minimization of the
range between the maximal and the minimal distances to users (one of the equity
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objectives listed in Eiselt and Laporte 1995). Some properties of the solution are
given. Algorithms for the Euclidean and rectilinear distance cases are presented.
In the follow-up papers (Drezner and Drezner 2007; Drezner 2007) the global
optimization algorithm BTST (Drezner and Suzuki 2004) was applied to optimally
solve this problem, as well as other objectives.

6.4 Cover Models

Cover location models are one of the main branches of location analysis. In the
original models (Church and ReVelle 1974; ReVelle et al. 1976) as well as in many
follow-up models, a demand point is covered by a facility within a certain distance.
In maximum covering models (Church and ReVelle 1974), facilities need to be
located in an area to provide as much cover as possible. Set covering problems
(ReVelle et al. 1976) aim to cover all demand points with the minimum number
of facilities. Such models are used for cover provided by emergency facilities such
as ambulances, police cars, or fire trucks. They are also used to model cover by
transmission towers such as cell-phone towers, TV or radio transmission towers,
and radar coverage among others. For a review of cover models see Plastria (2002),
García and Marín (2015), and Snyder (2011).

Drezner et al. (2004) investigated the gradual covering problem. Within a certain
distance r from the facility the demand point is fully covered, and beyond another
specified distance R ≥ r the demand point is not covered. Between these two
given distances the coverage is linear in the distance from the facility. If R = r ,
the gradual cover reduces to the original model where the drop in cover is abrupt.
This formulation can be converted to the Weber problem by imposing a special
structure on its cost function. The cost is zero (negligible) up to a certain minimum
distance, and it is a constant beyond a certain maximum distance. Between these
two extreme distances the cost is linear in the distance. The problem is analyzed
and a branch and bound procedure is proposed for its solution. The gradual cover
concept, sometimes referred to as partial cover, is investigated in many follow-up
papers, including Berman et al. (2003e), Drezner et al. (2010), Drezner and Drezner
(2014, 2019), Karatas (2017), Bagherinejad et al. (2018), Drezner et al. (2019a),
Eiselt and Marianov (2009), and Berman et al. (2009e).

Berman et al. (2009d) investigated the maximal covering problem on a network
when some of the weights can be negative. Demand points with a negative weight
are demand points we do not wish to cover. For example, if all weights are negative,
we wish to cover as little weight as possible. Integer programming formulations are
proposed and tested with ILOG-CPLEX. Heuristic algorithms, an ascent algorithm,
and simulated annealing (Kirkpatrick et al. 1983) are proposed and tested. The
simulated annealing approach provided the best results.
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Drezner and Wesolowsky (2005) considered the problem of covering the most
probability of a multivariate normal distribution by selection of a given number of
hypercubes of a given size. The problem is formulated and meta heuristic procedures
proposed for its solution.

Berman et al. (2009b) proposed a covering problem where the covering radius
of a facility is controlled by the decision-maker. The cost of achieving a certain
covering distance is assumed to be a monotonically increasing function of the
distance (i.e., it costs more to establish a facility with a greater covering radius).
The problem is to cover all demand points at a minimum cost by finding the optimal
number, locations, and coverage radii for the facilities. Both, the planar and discrete
versions of the model are considered. Heuristic approaches are suggested for solving
large problems in the plane. Mathematical programming formulations are proposed
for the discrete problem, and a solution approach is suggested and tested.

Drezner and Wesolowsky (2014) analyzed the problem of locating facilities
in a feasible area covering some parts of network links within a given radius.
The feasible area can be the interior (convex hull of the nodes) of a planar
network or any union of convex polygons. Both minimization and maximization of
coverage are considered. The single facility location problem is solved by the global
optimization approach BTST (Drezner and Suzuki 2004). The multiple facility
maximization problem is solved by a specially designed heuristic algorithm. The
idea of the heuristic algorithm may prove to work well on other planar multiple
facility location problems. Computational experience with problems of up to 40,000
links demonstrates the effectiveness of the single facility and multiple facilities
algorithms. The largest single facility minimal cover problem is solved in about
1 min and the largest single facility maximal cover problem is solved in less than
4 min.

Drezner et al. (2016b) proposed a stochastic model for the location of emergency
facilities. The model is formulated and analyzed. The location of one facility in the
plane is optimally solved. Optimal algorithms are proposed for the location of mul-
tiple facilities on a network. Computational experiments illustrate the effectiveness
of these solution procedures.

Berman et al. (2009a) consider the situation where p facilities need to be located
by a leader, on the nodes of a network, to provide maximum coverage of demand
generated at nodes of the network. At some point in the future it is expected that one
of the links of the network will become unusable either due to a terrorist attack or
a natural disaster (referred to as the follower). The leader’s objective is to retain as
much cover as possible following the worst disruption. In case of a terrorist attack
the selected link is intentional and in case of a natural disaster the leader wants to
protect against the worst possible scenario. The follower’s objective is to remove the
link that causes the most damage. The leader’s objective is to cover the most demand
following such a damage to a link. The problem is formulated and analyzed from
the leader’s perspective. An efficient approach to solving the follower’s problem is
constructed. The leader’s problem is solved heuristically by an ascent algorithm,
simulated annealing (Kirkpatrick et al. 1983), and tabu search (Glover and Laguna
1997), using the efficient algorithm for the solution of the follower’s problem.
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Drezner and Wesolowsky (1994) considered a problem applicable to both
obnoxious facility location and problems in production where one has to select an
area of material with the least weight of defects. In the first version a boundary circle
containing weighted points is given. The objective is to find a location of an interior
covering circle of a given radius that encloses the smallest weight of points. In the
second version we need to find a rectangle inside a rectangle. Two objectives are
considered, minimizing the sum of weights or minimizing the maximum weight.
Algorithms are constructed for solving both problems. An earlier version of the
paper is Drezner and Wesolowsky (1993).

6.5 Hub Related Objectives

Berman et al. (2007) introduced the transfer point location problem. Demand for
emergency service is generated at a set of demand points which need the services
of a central facility (such as a hospital). Patients are transferred to a helicopter pad
(transfer point) at normal speed, and from there they are transferred to the facility
at increased speed. The general model involves the location of p helicopter pads
and one facility. The special case where the location of the facility is known and
the best location of one transfer point that serves a set of demand points is solved.
Both minisum and minimax versions of the models are investigated. Berman et al.
(2005) investigated the location of a facility and several transfer points. Heuristic
approaches were proposed for the solution of this problem. Berman et al. (2008)
applied the results of Berman et al. (2005) to solve the problem when the location
of the facility is known. Both minisum and minimax versions of the models are
investigated both in the plane and on the network.

Drezner and Wesolowsky (2001) investigated the problem of locating a new
facility servicing a set of demand points. A given set of collection depots is also
given. When service is required by a demand point, the server travels from the
facility to the demand point, then from the demand point to one of the collection
depots (which provides the shortest route back to the facility), and back to the
facility. Applications include a septic tank cleaning service, garbage collection, or
tree pruning. The service truck travels to the customer, collects the load, selects
the collection depot that provides the shortest route from the demand point back to
the facility to wait for the next call. When a depot must be included on the way
to the customer, the model is the same. This is the case of a service where the
vehicle collects some materials on the way to the customer and returns to the facility
empty. The problem is analyzed and properties of the solution point are formulated
and proved. The network version of this problem was investigated in Berman et al.
(2002a). Drezner et al. (2019b) investigated the multiple facilities collection depots
problem in the plane.
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6.6 Other Objectives

Berman et al. (2009c) considered the problem of finding locations for p facilities
such that the weights attracted to each facility will be as close as possible to one
another. The problem is modeled as minimizing the maximum among all the total
weights attracted to the various facilities. Solution procedures for the problem on a
network and for the special cases of the problem on a tree or on a path are proposed.

Drezner and Wesolowsky (1980a) find the expected value of perfect information
(EVPI) in a simple facility location problem where the weights, which summarize
cost and volume parameters, are random draws from a multivariate probability
distribution. A model with rectangular distances and one with squared Euclidean
(center of gravity) are used. The analysis is developed for a multivariate normal
distribution of weights but simulation is used to show that the expressions derived
are reasonably accurate for other distributions.

Drezner and Wesolowsky (1980d) introduced the following problem. There are
n points on the plane that are to be observed from some point on a circle of given
radius that encloses all of the points. We wish to find the observation point that has
the best possible view of the n points in the sense that if we draw lines of sight from
the observation point to the given points, the smallest angle between the lines is
maximized. Applications include the planning of photographs or displays. This is a
“maximin problem” in which the function to be maximized has many local optima.

Drezner and Wesolowsky (1998) considered the rectilinear minisum and mini-
max location problems from a different point of view in that the orientation of the
axes, which define the distances, is now also to be optimized. This corresponds to
the situation where the grid of roads or aisles which connects the demand points to
the facility can be designed at the same time as the location of the facility is chosen.

Drezner and Wesolowsky (1995a) considered two basic location problems: the
Weber problem, and the minimax problem on a regular grid of alternating one-way
routes or streets. Both the facility to be located and the demand points are restricted
to any point on the network. The one-way restriction is often used for efficiency in
traffic flow, but complicates the distances in the system.

Drezner and Wesolowsky (1997) considered the situation where an event may
occur anywhere in a planar area or on a linear region such as a route. One or more
detectors are to be located within this region with the objective of maximizing the
smallest probability of the detection of an event anywhere in the region. In other
words, the minimum protection in the region is to be maximized. The probability
that an event is detected by a detector is a decreasing function of the distance.

Drezner et al. (1985) investigated the location of a facility among n points where
the points are serviced by “tours” taken from the facility. Tours include m points
at a time and each group of m points may become active (may need a tour) with
some known probability. Distances are assumed to be rectilinear. For m ≤ 3, it
is proved that the objective function is separable in each dimension and an exact
solution method is given that involves finding the median of numbers appropriately
generated from the problem data. It is shown that the objective function becomes
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multi-modal when some tours pass through four or more points. A bounded heuristic
procedure is suggested for this latter case.

Drezner and Wesolowsky (1997) considered the following problem. An event
may occur anywhere in a planar area or on a linear region such as a route. One or
more detectors are to be located within this region with the objective of maximizing
the smallest probability of the detection of an event anywhere in the region. In other
words, the minimum protection in the region is to be maximized. The probability
that an event is detected by a detector is a decreasing function of the distance. Two
solution procedures are proposed for the problem on a line segment: a mathematical
programming model and a specially designed algorithm. The problem in an area
is solved by a univariate search, a Demjanov-type algorithm (see Sect. 6.7.3), a
mathematical programming model, and simulated annealing.

Drezner and Wesolowsky (2003) introduced new network design problems. A
network of potential links is given. Each link can be either constructed or not at a
given cost. Also, each constructed link can be constructed either as a one-way or
two-way link. The objective is to minimize the total construction and transportation
costs. Two different transportation costs are considered: (1) traffic is generated
between any pair of nodes and the transportation cost is the total cost for the users
and (2) demand for service is generated at each node and a facility is to be located on
a node to satisfy the demand. The transportation cost in this case is the total cost for a
round trip from the facility to each node and back. Two options in regard to the links
between nodes are considered. They can either be two-way only, or mixed, with
both two-way and one-way (in either direction) allowed. When these options are
combined with the two objective functions, four basic problems are created. These
problems are solved by a descent algorithm, simulated annealing (Kirkpatrick et al.
1983), tabu search (Glover and Laguna 1997), and a genetic algorithm (Goldberg
2006). A follow-up paper is Drezner and Salhi (2002).

Drezner et al. (1998) showed that the random utility model (Drezner and Drezner
1996; Leonardi and Tadei 1984) can be approximated by a logit model. The
proportion of the buying power at a demand point that is attracted to the new facility
can be approximated by a logit function of the distance to it. This approximation
demonstrates that using the logit function of the distance for estimating the market
share is theoretically found in the random utility model. A simplified random utility
model is defined and approximated by a logit function. An iterative Weiszfeld-type
algorithm is designed to find the best location for a new facility using the logit
model.

6.7 Solution Approaches

6.7.1 The Trajectory Approach

The idea of solving location problems by a trajectory approach is described in
three papers (Drezner and Wesolowsky 1978d,b, 1982). The idea is to use a known
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solution point for a similar model and calculate the trajectory of the solution by
changing a parameter and solving a set of differential equations numerically. For
example, the solution to the Weber problem with squared Euclidean distances is
the center of gravity which can be easily calculated. Consider the Weber problem
with the distances di(X) replaced by di(X)λ. For λ = 2 the solution point is known
(center of gravity), while the desired solution point is the solution for λ = 1. There
is a trajectory of solution points for 1 ≤ λ ≤ 2. A set of two differential equations of
the locations (x, y) by the parameter λ can be constructed and numerically solved
by, for example, Runge (1895, 1901), Kutta (1901), resulting in the desired solution
point for λ = 1.

6.7.2 Global Optimization Techniques

Many non-convex single facility non-convex problems can be optimally solved by
global optimization algorithms such as “big square small square” (BSSS, Hansen
et al. 1981) and “big triangle small triangle” (BTST, Drezner and Suzuki 2004).

The BSSS algorithm starts with a list consisting of a “big square” enclosing the
feasible region. The upper bound in the big square, UB, is the best upper bound
found so far. The big square is divided into four “small squares” and lower and
upper bounds established in each small square. UB is possibly updated. The big
square is removed from the list. If the lower bound LB in a small square satisfies
LB ≥ UB(1−ε) for a given relative accuracy ε, the small square is eliminated from
further consideration. Otherwise, the small square is added to the list of squares.
The process continues by selecting a square in the list with the smallest LB as a
“big square” and split it into four “small squares” until the list of squares is empty.

The BTST algorithm starts with a Delaunay triangulation (Lee and Schachter
1980) of the convex hull of the demand points and the vertices of the feasible region
as the initial list of triangles. An upper bound and a lower bound for each triangle
in the list are calculated and UB is the best one. Many of the triangles in the list
for which LB ≥ UB(1 − ε) are eliminated. The remainder of the process is very
similar to the BSSS algorithm. A selected triangle in the list is divided into four
small triangles by connecting the centers of the sides of the big triangle.

If the solution is restricted to the convex hull of the demand points, or any
convex polygon, the triangulation by BTST takes care of it automatically while
BSSS requires an extra check whether the solution point is feasible or not. The lower
and upper bounds required for applying the BSSS algorithm may also be affected
by the feasibility issue.

Extensions to these global optimization algorithms include big region small
region (BRSR, Hansen et al. 1995) for location on a sphere, big cube small cube
(BCSC, Schöbel and Scholz 2010) for three or more dimensional problems, big
segment small segment (BSSS, Berman et al. 2011) for location on a network, and
big arc small arc (BASA, Drezner et al. 2018) for location on circumferences of
circles.
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6.7.3 The Demjanov Optimization Technique

This method was proposed in Demjanov (1968) and applied in Drezner and
Wesolowsky (1997, 1985a). It is designed to solve the minimization of f (X) =
max

1≤i≤n
{fi(X)} where X is a vector of p variables. It can be used to solve

heuristically, for example, the location of p facilities among n demand points. For
such an application the vector X is a vector of locations, which is a vector of 2p

variables.
The Demjanov algorithm starts with a random location for the p variables and

improves the solution by moving in the direction of steepest descent. The objective
function is optimized on the ray of steepest descent using a one-dimensional
optimization procedure such as the golden section search (Zangwill 1969).

Calculation of the gradient is done as follows. A tolerance δ is selected defining
the set I (X):

I (X) = { i | fi(X) ≥ f (X) − δ }

The set I (X) is the set of “binding” variables. If the function fi(X) is reduced for
all binding variables when X is changed infinitesimally, then the objective function
is reduced. Consider changing variable j by �xj for j = 1, . . . , p. The steepest
descent direction of f (X) is obtained by solving the following problem:

min
p∑

j=1

�x2
j

subject to:
p∑

j=1

∂fi(X)

∂xj

�xj ≤ − 1 for i ∈ I (X)

References

Averbakh, I., Berman, O., Drezner, Z., & Wesolowsky, G. O. (1998). The plant location problem
with demand-dependent setup cost and centralized allocation. European Journal of Operational
Research, 111, 543–554.

Averbakh, I., Berman, O., Drezner, Z., & Wesolowsky, G. O. (2007). The uncapacitated facility
location problem with demand-dependent setup and service costs and flexible allocation.
European Journal of Operational Research, 179, 956–967.

Bagherinejad, J., Bashiri, M., & Nikzad, H. (2018). General form of a cooperative gradual maximal
covering location problem. Journal of Industrial Engineering International, 14, 241–253.

Berman, O., Drezner, T., Drezner, Z., & Wesolowsky, G. O. (2009a). A defensive maximal covering
problem on a network. International Transactions on Operational Research, 16, 69–86.



162 G. O. Wesolowsky

Berman, O., Drezner, Z., & Krass, D. (2011). Big segment small segment global optimization
algorithm on networks. Networks, 58, 1–11.

Berman, O., Drezner, Z., Krass, D., & Wesolowsky, G. O. (2009b). The variable radius covering
problem. European Journal of Operational Research, 196, 516–525.

Berman, O., Drezner, Z., Tamir, A., & Wesolowsky, G. O. (2009c). Optimal location with equitable
loads. Annals of Operations Research, 167, 307–325.

Berman, O., Drezner, Z., Wang, J., & Wesolowsky, G. O. (2003a). The minimax and maximin
location problems with uniform distributed weights. IIE Transactions, 35, 1017–1025.

Berman, O., Drezner, Z., & Wesolowsky, G. O. (1996). Minimum covering criterion for obnoxious
facility location on a network. Networks, 18, 1–5.

Berman, O., Drezner, Z., & Wesolowsky, G. O. (2000). Routing and location on a network with
hazardous threats. Journal of the Operational Research Society, 51, 1093–1099.

Berman, O., Drezner, Z., & Wesolowsky, G. O. (2001). Location models with groups of demand
points on a network. IIE Transactions, 33, 637–648.

Berman, O., Drezner, Z., & Wesolowsky, G. O. (2002a). The collection depots location problem
on networks. Naval Research Logistics, 49, 15–24.

Berman, O., Drezner, Z., & Wesolowsky, G. O. (2002b). Satisfying partial demand in facilities
location. IIE Transactions, 24, 971–978.

Berman, O., Drezner, Z., & Wesolowsky, G. O. (2003b). The expected maximum distance objective
in facility location. Journal of Regional Science, 43, 735–748.

Berman, O., Drezner, Z., & Wesolowsky, G. O. (2003c). The expropriation location problem.
Journal of the Operational Research Society, 54, 769–776.

Berman, O., Drezner, Z., & Wesolowsky, G. O. (2003d). Locating service facilities whose
reliability is distance dependent. Computers & Operations Research, 30, 1683–1695.

Berman, O., Drezner, Z., & Wesolowsky, G. O. (2005). The facility and transfer points location
problem. International Transactions in Operational Research, 12, 387–402.

Berman, O., Drezner, Z., & Wesolowsky, G. O. (2007). The transfer point location problem.
European Journal of Operational Research, 179, 978–989.

Berman, O., Drezner, Z., & Wesolowsky, G. O. (2008). The multiple location of transfer points.
Journal of the Operational Research Society, 59, 805–811.

Berman, O., Drezner, Z., & Wesolowsky, G. O. (2009d). The maximal covering problem with some
negative weights. Geographical Analysis, 41, 30–42.

Berman, O., Kalcsics, J., Krass, D., & Nickel, S. (2009e). The ordered gradual covering location
problem on a network. Discrete Applied Mathematics, 157, 3689–3707.

Berman, O., Krass, D., & Drezner, Z. (2003e). The gradual covering decay location problem on a
network. European Journal of Operational Research, 151, 474–480.

Berman, O., Wang, J., Drezner, Z., & Wesolowsky, G. O. (2003f). A probabilistic minimax location
problem on the plane. Annals of Operations Research, 122, 59–70.

Brimberg, J., & Drezner, Z. (2015). A location-allocation problem with concentric circles. IIE
Transactions, 47, 1397–1406.

Chen, P., Hansen, P., Jaumard, B., & Tuy, H. (1992). Weber’s problem with attraction and
repulsion. Journal of Regional Science, 32, 467–486.

Church, R. L., & Garfinkel, R. S. (1978). Locating an obnoxious facility on a network. Transporta-
tion Science, 12, 107–118.

Church, R. L., & ReVelle, C. S. (1974). The maximal covering location problem. Papers of the
Regional Science Association, 32, 101–118.

Cooper, L. (1963). Location-allocation problems. Operations Research, 11, 331–343.
Cooper, L. (1964). Heuristic methods for location-allocation problems. SIAM Review, 6, 37–53.
Daskin, M. S. (1995). Network and discrete location: Models, algorithms, and applications. New

York: Wiley.
Demjanov, V. F. (1968). Algorithms for some minimax problems. Journal of Computer and System

Sciences, 2, 342–380.
Drezner, T., & Drezner, Z. (1996). Competitive facilities: Market share and location with random

utility. Journal of Regional Science, 36, 1–15.



6 Continuous Location Problems 163

Drezner, T., & Drezner, Z. (2007). Equity models in planar location. Computational Management
Science, 4, 1–16.

Drezner, T., & Drezner, Z. (2011). A note on equity across groups in facility location. Naval
Research Logistics, 58, 705–711.

Drezner, T., & Drezner, Z. (2014). The maximin gradual cover location problem. OR Spectrum,
36, 903–921.

Drezner, T., & Drezner, Z. (2018). Asymmetric distance location model (in review).
Drezner, T., & Drezner, Z. (2019). Extensions to the directional approach to gradual cover (in

review).
Drezner, T., Drezner, Z., & Scott, C. H. (2009a). Location of a facility minimizing nuisance to or

from a planar network. Computers & Operations Research, 36, 135–148.
Drezner, T., Drezner, Z., & Schöbel, A. (2018). The Weber obnoxious facility location model: A

Big Arc Small Arc approach. Computers and Operations Research, 98, 240–250.
Drezner, T., Drezner, Z., & Goldstein, Z. (2010). A stochastic gradual cover location problem.

Naval Research Logistics, 57, 367–372.
Drezner, T., Drezner, Z., & Kalczynski, P. (2019a). A directional approach to gradual cover. TOP,

27, 70–93.
Drezner, T., Drezner, Z., & Kalczynski, P. (2019b). The planar multifacility collection depots

location problem. Computers and Operations Research, 102, 121–129.
Drezner, Z. (1981a). On a modified one-center model. Management Science, 27, 848–851.
Drezner, Z. (1981b). On location dominance on spherical surfaces. Operations Research, 29, 1218–

1219.
Drezner, Z. (1985). A solution to the Weber location problem on the sphere. Journal of the

Operational Research Society, 36, 333–334.
Drezner, Z. (1987). On the rectangular p-center problem. Naval Research Logistics Quarterly, 34,

229–234.
Drezner, Z. (2007). A general global optimization approach for solving location problems in the

plane. Journal of Global Optimization, 37, 305–319.
Drezner, Z. (2009). On the convergence of the generalized Weiszfeld algorithm. Annals of

Operations Research, 167, 327–336.
Drezner, Z. (2011). Continuous center problems. In H. A. Eiselt & V. Marianov (Eds.), Foundations

of location analysis (pp. 63–78). Berlin: Springer.
Drezner, Z. (2015). The fortified Weiszfeld algorithm for solving the Weber problem. IMA Journal

of Management Mathematics, 26, 1–9.
Drezner, Z., & Brimberg, J. (2014). Fitting concentric circles to measurements. Mathematical

Methods of Operations Research, 79, 119–133.
Drezner, Z., Brimberg, J., Mladenovic, N., & Salhi, S. (2016a). New local searches for solving the

multi-source Weber problem. Annals of Operations Research, 246, 181–203.
Drezner, Z., Drezner, T., & Wesolowsky, G. O. (2009b). Location with acceleration-deceleration

distance. European Journal of Operational Research, 198, 157–164.
Drezner, Z., Klamroth, K., Schöbel, A., & Wesolowsky, G. O. (2002a). The Weber problem. In

Z. Drezner & H. W. Hamacher (Eds.), Facility location: Applications and theory (pp. 1–36).
Berlin: Springer.

Drezner, Z., Marianov, V., & Wesolowsky, G. O. (2016b). Maximizing the minimum cover
probability by emergency facilities. Annals of Operations Research, 246, 349–362.

Drezner, Z., Mehrez, A., & Wesolowsky, G. O. (1991). The facility location problem with limited
distances. Transportation Science, 25, 183–187.

Drezner, Z., & Salhi, S. (2002). Using hybrid metaheuristics for the one-way and two-way network
design problem. Naval Research Logistics, 49, 449–463.

Drezner, Z., & Simchi-Levi, D. (1992). Asymptotic behavior of the Weber location problem on the
plane. Annals of Operations Research, 40, 163–172.

Drezner, Z., Steiner, G., & Wesolowsky, G. O. (1985). One-facility location with rectilinear tour
distances. Naval Research Logistics Quarterly, 32, 391–405.



164 G. O. Wesolowsky

Drezner, Z., Steiner, S., & Wesolowsky, G. O. (2002b). On the circle closest to a set of points.
Computers & Operations Research, 29, 637–650.

Drezner, Z., & Suzuki, A. (2004). The big triangle small triangle method for the solution of non-
convex facility location problems. Operations Research, 52, 128–135.

Drezner, Z., Szendrovits, A. Z., & Wesolowsky, G. O. (1984). Multi-stage production with variable
lot sizes and transportation of partial lots. European Journal of Operational Research, 17, 227–
237.

Drezner, Z., Thisse, J.-F., & Wesolowsky, G. O. (1986). The minimax-min location problem.
Journal of Regional Science, 26, 87–101.

Drezner, Z., & Wesolowsky, G. O. (1978a). Facility location on a sphere. Journal of the
Operational Research Society, 29, 997–1004.

Drezner, Z., & Wesolowsky, G. O. (1978b). A new method for the multifacility minimax location
problem. Journal of the Operational Research Society, 29, 1095–1101.

Drezner, Z., & Wesolowsky, G. O. (1978c). A note on optimal facility location with respect to
several regions. Journal of Regional Science, 18, 303.

Drezner, Z., & Wesolowsky, G. O. (1978d). A trajectory method for the optimization of the
multifacility location problem with lp distances. Management Science, 24, 1507–1514.

Drezner, Z., & Wesolowsky, G. O. (1980a). The expected value of perfect information in facility
location. Operations Research, 28, 395–402.

Drezner, Z., & Wesolowsky, G. O. (1980b). A maximin location problem with maximum distance
constraints. AIIE Transactions, 12, 249–252.

Drezner, Z., & Wesolowsky, G. O. (1980c). Optimal location of a facility relative to area demands.
Naval Research Logistics Quarterly, 27, 199–206.

Drezner, Z., & Wesolowsky, G. O. (1980d). The optimal sight angle problem. AIIE Transactions,
12, 332–338.

Drezner, Z., & Wesolowsky, G. O. (1980e). Single facility lp distance minimax location. SIAM
Journal of Algebraic and Discrete Methods, 1, 315–321.

Drezner, Z., & Wesolowsky, G. O. (1981). Optimum location probabilities in the lp distance Weber
problem. Transportation Science, 15, 85–97.

Drezner, Z., & Wesolowsky, G. O. (1982). A trajectory approach to the round trip location problem.
Transportation Science, 16, 56–66.

Drezner, Z., & Wesolowsky, G. O. (1983a). The location of an obnoxious facility with rectangular
distances. Journal of Regional Science, 23, 241–248.

Drezner, Z., & Wesolowsky, G. O. (1983b). Minimax and maximin facility location problems on a
sphere. Naval Research Logistics Quarterly, 30, 305–312.

Drezner, Z., & Wesolowsky, G. O. (1985a). Layout of facilities with some fixed points. Computers
& Operations Research, 12, 603–610.

Drezner, Z., & Wesolowsky, G. O. (1985b). Location of multiple obnoxious facilities. Transporta-
tion Science, 19, 193–202.

Drezner, Z., & Wesolowsky, G. O. (1989a). An approximation method for bivariate and multivari-
ate normal equiprobability contours. Communications in Statistics: Theory and Methods, 18,
2331–2344.

Drezner, Z., & Wesolowsky, G. O. (1989b). The asymmetric distance location problem. Trans-
portation Science, 23, 201–207.

Drezner, Z., & Wesolowsky, G. O. (1989c). Control limits for a drifting process with quadratic
loss. International Journal of Production Research, 27, 13–20.

Drezner, Z. & Wesolowsky, G. O. (1989d). Location of an obnoxious route. Journal of the
Operational Research Society, 40, 1011–1018.

Drezner, Z., & Wesolowsky, G. O. (1989e). Multi-buyer discount pricing. European Journal of
Operational Research, 40, 38–42.

Drezner, Z., & Wesolowsky, G. O. (1989f). Optimal control of a linear trend process with quadratic
loss. IIE Transactions, 21, 66–72.

Drezner, Z., & Wesolowsky, G. O. (1990). On the computation of the bivariate normal integral.
Journal of Statistical Computation and Simulation, 35, 101–107.



6 Continuous Location Problems 165

Drezner, Z., & Wesolowsky, G. O. (1991a). Design of multiple criteria sampling plans and charts.
International Journal of Production Research, 29, 155–163.

Drezner, Z., & Wesolowsky, G. O. (1991b). Facility location when demand is time dependent.
Naval Research Logistics, 38, 763–777.

Drezner, Z., & Wesolowsky, G. O. (1991c). Optimizing control limits under random process shifts
and a quadratic penalty function. Communications in Statistics: Stochastic Methods, 7, 363–
377.

Drezner, Z., & Wesolowsky, G. O. (1991d). The Weber problem on the plane with some negative
weights. Information Systems and Operational Research, 29, 87–99.

Drezner, Z., & Wesolowsky, G. O. (1993). Finding the circle or rectangle containing the minimum
weight of points. Studies in Locational Analysis, 4, 105–109.

Drezner, Z., & Wesolowsky, G. O. (1994). Finding the circle or rectangle containing the minimum
weight of points. Location Science, 2, 83–90.

Drezner, Z., & Wesolowsky, G. O. (1995a). Location on a one-way rectilinear grid. Journal of the
Operational Research Society, 46, 735–746.

Drezner, Z., & Wesolowsky, G. O. (1995b). Multivariate screening procedures for quality cost
minimization. IIE Transactions, 27, 300–304.

Drezner, Z., & Wesolowsky, G. O. (1996a). Location-allocation on a line with demand-dependent
costs. European Journal of Operational Research, 90, 444–450.

Drezner, Z., & Wesolowsky, G. O. (1996b). Obnoxious facility location in the interior of a planar
network. Journal of Regional Science, 35, 675–688.

Drezner, Z., & Wesolowsky, G. O. (1996c). Review of location-allocation models with demand-
dependent costs. Studies in Locational Analysis, 10, 13–24.

Drezner, Z., & Wesolowsky, G. O. (1997). On the best location of signal detectors. IIE Transac-
tions, 29, 1007–1015.

Drezner, Z., & Wesolowsky, G. O. (1998). Optimal axis orientation for rectilinear minisum and
minimax location. IIE Transactions, 30, 981–986.

Drezner, Z., & Wesolowsky, G. O. (1999a). Allocation of demand when cost is demand-dependent.
Computers & Operations Research, 26, 1–15.

Drezner, Z., & Wesolowsky, G. O. (1999b). Allocation of discrete demand with changing costs.
Computers & Operations Research, 26, 1335–1349.

Drezner, Z., & Wesolowsky, G. O. (2000). Location problems with groups of demand points.
Information Systems and Operational Research, 38, 359–372.

Drezner, Z., & Wesolowsky, G. O. (2001). On the collection depots location problem. European
Journal of Operational Research, 130, 510–518.

Drezner, Z., & Wesolowsky, G. O. (2003). Network design: Selection and design of links and
facility location. Transportation Research Part A, 37, 241–256.

Drezner, Z., & Wesolowsky, G. O. (2005). Maximizing cover probability by using multivariate
normal distributions. OR Spectrum, 27, 95–106.

Drezner, Z., & Wesolowsky, G. O. (2014). Covering part of a planar network. Networks and Spatial
Economics, 14, 629–646.

Drezner, Z., Wesolowsky, G. O., & Drezner, T. (1998). On the Logit approach to competitive
facility location. Journal of Regional Science, 38, 313–327.

Drezner, Z., Wesolowsky, G. O., & Drezner, T. (2004). The gradual covering problem. Naval
Research Logistics, 51, 841–855.

Drezner, Z., Wesolowsky, G. O., & Wiesner, W. (1999). A computational procedure for setting
cutoff scores for multiple tests. The Journal of Business and Management, 6, 86–98.

Eiselt, H. A., & Laporte, G. (1995). Objectives in location problems. In Z. Drezner (Ed.), Facility
location: A survey of applications and methods (pp. 151–180). New York, NY: Springer.

Eiselt, H. A., & Marianov, V. (2009). Gradual location set covering with service quality. Socio-
Economic Planning Sciences, 43, 121–130.

Elzinga, J., & Hearn, D. (1972). Geometrical solutions for some minimax location problems.
Transportation Science, 6, 379–394.



166 G. O. Wesolowsky

Farahani, R., Drezner, Z., & Asgari, N. (2009). Single facility location and relocation problem
with time dependent weights and discrete planning horizon. Annals of Operations Research,
167, 353–368.

García, S., & Marín, A. (2015). Covering location problems. In G. Laporte, S. Nickel, & F. S.
da Gama (Eds.), Location science (pp. 93–114). Heidelberg: Springer.

Glover, F., & Laguna, M. (1997). Tabu search. Boston: Kluwer Academic Publishers.
Goldberg, D. E. (2006). Genetic algorithms. Delhi: Pearson Education.
Hansen, P., Jaumard, B., & Krau, S. (1995). An algorithm for Weber’s problem on the sphere.

Location Science, 3, 217–237.
Hansen, P., Peeters, D., & Thisse, J.-F. (1981). On the location of an obnoxious facility. Sistemi

Urbani, 3, 299–317.
Karatas, M. (2017). A multi-objective facility location problem in the presence of variable gradual

coverage performance and cooperative cover. European Journal of Operational Research, 262,
1040–1051.

Kirkpatrick, S., Gelat, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220, 671–680.

Kuhn, H. W. (1967). On a pair of dual nonlinear programs. In J. Abadie (Ed.), Nonlinear
programming (pp. 38–45). Amsterdam: North-Holland.

Kutta, W. (1901). Beitrag zur näherungweisen integration totaler differentialgleichungen.
Zeitschrift für Angewandte Mathematik und Physik, 46, 435–453.

Lee, D.-T., & Schachter, B. J. (1980). Two algorithms for constructing a Delaunay triangulation.
International Journal of Computer & Information Sciences, 9, 219–242.

Leonardi, G., & Tadei, R. (1984). Random utility demand models and service location. Regional
Science and Urban Economics, 14, 399–431.

Love, R. F. (1972). A computational procedure for optimally locating a facility with respect to
several rectangular regions. Journal of Regional Science, 12, 233–242.

Maranas, C. D., & Floudas, C. A. (1993). A global optimization method for Weber’s problem with
attraction and repulsion. In W. W. Hager, D. W. Hearn, & P. M. Pardalos (Eds.), Large scale
optimization: State of the art (pp. 259–293). Dordrecht: Kluwer.

Okabe, A., Boots, B., Sugihara, K., & Chiu, S. N. (2000). Spatial tessellations: Concepts and
applications of Voronoi diagrams. Wiley series in probability and statistics. Hoboken: Wiley.

Plastria, F. (1991). The effects of majority in Fermat-Weber problems with attraction and repulsion.
Yugoslav Journal of Operations Research, 1, 141–146.

Plastria, F. (2002). Continuous covering location problems. In Z. Drezner & H. W. Hamacher
(Eds.), Facility location: Applications and theory (pp. 39–83). Berlin: Springer.

ReVelle, C., Toregas, C., & Falkson, L. (1976). Applications of the location set covering problem.
Geographical Analysis, 8, 65–76.

Runge, C. (1895). Über die numerische auflösung von differentialgleichungen. Mathematische
Annalen, 46, 167–178.

Runge, C. (1901). Über empirische funktionen und die interpolation zwischen äquidistanten
ordinaten. Zeitschrift für Mathematik und Physik, 46, 224–243.

Schöbel, A., & Scholz, D. (2010). The big cube small cube solution method for multidimensional
facility location problems. Computers & Operations Research, 37, 115–122.

Shamos, M., & Hoey, D. (1975). Closest-point problems. In Proceedings 16th Annual Symposium
on the Foundations of Computer Science (pp. 151–162).

Snyder, L. V. (2011). Covering problems. In H. A. Eiselt & V. Marianov (Eds.), Foundations of
location analysis (pp. 109–135). Berlin: Springer.

Suzuki, A., & Okabe, A. (1995). Using Voronoi diagrams. In Z. Drezner (Ed.), Facility location:
A survey of applications and methods (pp. 103–118). New York: Springer.

Sylvester, J. (1857). A question in the geometry of situation. Quarterly Journal of Mathematics, 1,
79.

Sylvester, J. (1860). On Poncelet’s approximate linear valuation of Surd forms. Philosophical
Magazine, 20(Fourth series), 203–222.



6 Continuous Location Problems 167

Voronoï, G. (1908). Nouvelles applications des paramètres continus à la théorie des formes
quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die
reine und angewandte Mathematik, 134, 198–287.

Weber, A. (1909). Über den Standort der Industrien, 1. Teil: Reine Theorie des Standortes.
English Translation: On the Location of Industries. Chicago, IL: University of Chicago Press.
Translation published in 1929.

Weiszfeld, E. (1936). Sur le point pour lequel la somme des distances de n points donnes est
minimum. Tohoku Mathematical Journal, 43, 355–386.

Wesolowsky, G. O. (1993). The Weber problem: History and perspectives. Location Science, 1,
5–23.

Wesolowsky, G. O., & Love, R. F. (1971). Location of facilities with rectangular distances among
point and area destinations. Naval Research Logistics Quarterly, 18, 83–90.

Zangwill, W. I. (1969). Nonlinear programming: A unified approach. Englewood Cliffs, NJ:
Prentice-Hall.



Chapter 7
Voting for Locating Facilities: The
Wisdom of Voters

Mozart B. C. Menezes

7.1 Introduction

In this chapter we discuss the quality of decisions made by stakeholders with voting
rights under some assumptions on their intention of maximising their own personal
utility rather than the common good. In especial, we focus on decisions made by a
particular social choice mechanism, Condorcet method, and how good are the voted
decisions when compared to those of a central decision maker. Thus, this chapter
brings to the front row the opposing views of centralised versus decentralised
decision making. It makes a review of the state of the art in this subject, and
highlights very recent results, in especial, the work presented in Menezes and Huang
(2015), Drezner and Menezes (2014), and Menezes et al. (2016).

We consider herein that each voter and each candidate has a particular position
and the closest candidate to the voter’s position gets her vote. The context we
develop our discussions and arguments below will be that of (desirable) facility
location. As an inspiring example, consider that voters live in neighbourhoods and
they all need to vote for the location of a new hospital. Candidate locations for
the hospitals that are closer to the voters’ neighbourhoods will have preference (the
vote) as opposed to further away candidate locations. The implied assumption is that
hospitals are desirable facilities to have nearby, possibly increasing the real estate
value in its proximity. Thus, each voter has an implicit (or explicit) ranked list of all
candidate locations, from the most preferred one (the closest) to the least preferred
one (the farthest). The distance is a measure of (dis)utility in this case. A voting
mechanism would then, based on those ranked lists, choose the winner through a
democratic process. A central decision maker, on the other hand, would choose a
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candidate location that minimises the sum of the weighted distances from the new
hospital to all neighbourhoods. There are cases where the objective function that
maximises the social welfare is not the weighted sum but something else. In this
chapter we consider only problems where the “ideal” objective is the weighted sum.

The comparison between the chosen locations, by vote or by a central actor, is
vital to this chapter. With some special care, one can go beyond traditional facility
location problems. For example, a voter could have beliefs in several dimensions
such as economic policy, social policy, human rights, and individual rights. The
distance from the candidate to the voters’ beliefs would give the disutility obtained
by the candidate. The underlying assumptions used herein are: (1) for any candidate
and any voter, there is always a way to quantitatively measure the utility the voter
gets from the candidate, that is, there is a function mapping the candidate to a
positive scalar for that voter; (2) voters know exactly their position and the position
of each candidate in the domain, and, no less important, they know how to calculate
the individual utility they get from each candidate; (3) a voter ranks candidates
according to the utility the candidate brings to her, thus, acting in a selfish manner;
(4) a central decision maker knows the position of each voter and the position of
each candidate, and equally important, the utility that each voter would get from
candidate; and finally, in the work herein, (5) all voters and the central decision
maker use a same utility function when evaluating candidates.

We present results regarding theoretical worst-case performance bounds for
choosing a solution through vote as opposed to via a central decision maker. We also
focus on algorithms for finding voted solutions computationally when all voters’
intentions are disclosed that allow us to understand beyond worst cases to average
cases when instances are of realistic sizes. That is, we contrast the theoretical results
and those originating from realistic settings. Finally, we discuss the implications of
those results and point directions for future research. In this process we hope to give
a good, although not comprehensive, review of the state of the art in this matter.

The wisdom of the crowd has been under the spotlight for a while (Galton 1907;
Surowiecki 2004; Rich 2010). When asked to guess some exact numerical figures,
under the right incentives, the average of the crowd’s answers beats (i.e., gets closer
to the correct answer) the best of the experts’ answers most of time (see Surowiecki
2004, for numerous real experiments). This is a very important result and, besides
making a good conversation in a party and be thought provoking, these are empirical
observations with no guaranteed regularity on the outcome. Moreover, for those
of us interested in decision making, saying that crowds are good in guessing is
not the same thing as saying that they are good at decision making. For example,
individual users of shared resources acting independently, and according to their
own self-interest, may end up depleting or spoiling those same resources through
their collective, and “greedy”, action. That behaviour, which is contrary to the
common good of all users, is known as the tragedy of the commons (Hardin 1968)
with examples that abound.

When shifting from guessing to voting, three problems arise. First is the issue of
self-interest, which is absent from the former but not from the latter in most cases.
When a decision is made by vote, it is reasonable to assume that voters are interested
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in the outcome of the election and have strong incentives toward making decisions
that maximise each voter’s individual utility.

Second, voting processes have their own issues; since Arrow’s (2012) work in
the 1950s it is well known that voting methods have severe limitations leading to
elections results not free from paradoxes such as winners not representing voters’
top preferences, or even no outright winners (see Knoblauch 2001; Alós-Ferrer and
Granić 2012; Balinski and Laraki 2014; Plassmann and Tideman 2014). Plassmann
and Tideman (2014) show that these paradoxes may occur with different methods,
and can either increase or decrease with the number of voters.

Hence, election planners need to invest in the hard task of identifying voting
mechanisms that maximise voters’ utility and simultaneously reduce chances of
paradoxical situations. For starters, there is a broad portfolio of election methods
and scoring systems to choose from (see, for example Balinski and Laraki 2014;
Plassmann and Tideman 2014). Moreover, the quality of a method measured by
how its results compare to an optimal, centralised solution by an “omniscient and
benevolent dictator” (Mueller et al. 1972, p. 66) may vary depending on contingency
issues such as number of candidates and voters (Arrow 2012; Plassmann and
Tideman 2014; Drezner and Menezes 2014; Pritchard and Slinko 2006).

Third, previous studies have brought negative results on the quality of the voted
solution when compared to that of the benevolent dictator. For example, when
locating a facility in a network that minimises the average distance from the facility
to each voter (the Median problem) using a network setting, the authors in Hansen
and Thisse (1981) derive upper bounds on the ratio between the Median objective
function at the voted solution and the optimal solution. They proved that when the
voting method used is the Condorcet method—a major voting method as discussed
in Taylor and Pacelli (2008)—that ratio is bounded by 3. That is, when trying
to minimise the distances from all voters to the facility, the distance induced by
selfish behaviour can be three times higher than the one obtained by the benevolent
dictator. Not an encouraging information about the quality of voted decisions. That
gap between the objective functions brought by the democratic solution and that of
the benevolent dictator could be referred to as the price of democracy, as the concept
of “benevolent dictator” is theoretically nice by providing a best-case scenario (i.e.,
a bound) but unfortunately such a creature does not seem to exist.

Given the three problems mentioned above, in special the latter, one is tempted
to stop short of further investigating this instigating issue and concede that a worst-
case bound of 3 is a sufficient reason to move on from this topic. Nonetheless, if
one removes some of the strong assumptions that make easy to construct contrived
instances, then that worst-case bound drops an order of magnitude. Furthermore,
by relaxing those somewhat restrictive assumptions, voters deciding through voting
processes are, statistically speaking, excellent decision makers, with solutions of
quality nearly indistinguishable from centralised systems, including expensive and
sophisticated computer systems. These results, albeit interesting by themselves from
the theoretical point of view, ask for further analysis and, perhaps, advocacy for
using more frequently social choice mechanisms as decision-making processes. It
should not be a bad idea to bypass dictators, benevolent, or not.
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This chapter is organised as follows: first we review and explain selected voting
mechanisms, on Sect. 7.3 we discuss the Weber and the Condorcet problems.
Section 7.4 focuses on the relative error worst-case bound, and Sect. 7.5 presents
a discussion on numerical methods. Section 7.6 discuss the use of different norms
as proxy for utility functions, and we conclude the chapter in Sect. 7.7.

7.1.1 On Voting Methods

In order to start advocating for direct and universal suffrage, we first need to
understand what the voting methods in discussion are and how they function: the
rules of the game.

Voting methods are set rules indicating how voters’ choices, or preferences, are
drawn out and ordered to selecting winners (Sinopoli 2000). In a multidimensional
spatial setting, being a network or continuous space, a voter’s preference for a
candidate is assumed to be directly proportional to their proximity, where the
different dimensions may represent different utility criteria (Merrill-III 1985; Gouret
et al. 2011; Henry and Mourifié 2013). The distances are weighted according to the
importance given by voters to each dimension. Ideally, the voting method of choice
would elicit a clear winner that maximised the products of voters’ preferences and
weights along each utility dimension (Bhadury et al. 1998).

In the Condorcet method, candidates are compared pairwise (Taylor and Pacelli
2008). Each voter provides a single ballot with an ordered list of preferred
candidates creating rankings. A candidate W beats candidate L when there is a
larger number of voters having candidate W higher ranked than L is in their ranked
lists or ballots. The (Condorcet) winner is a candidate who beats all other candidates.
If there are ties, then the winner is the candidate who beats all others after ties are
removed or, equivalently, the candidate who does not lose to any other candidate.
When after removing ties more than one candidate meets the criterion, then the
result is decided randomly. Note that when distances are taken from real numbers
then ties are unlikely to happen. There is a possibility to not have a winner, which
is known as the Condorcet paradox (Taylor and Pacelli 2008; Balinski and Laraki
2014; Plassmann and Tideman 2014).

The Condorcet method has most of the desirable features that one expects from
a social choice mechanism. These features are:

• Monotonicity: if a candidate choice W is a winner choice then by moving the
choice to a higher ranking in the ranked list of one or more voters and keeping
everything else the same, then W should be a winner if the voting process is
repeated.

• Pareto: if W is higher than L on every voter’s ballot, then L cannot be a winner.
• Independence of irrelevant alternatives: Assume that in a vote process W is

declared a winner and L is not. If some voters change ranks of one or more
candidates keeping the relative position between W and L in each list (i.e.,
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whether W is higher- or lower-ranked than L), then candidate L would not be
a winner in a repetition of the voting process.

• Condorcet winner criterion: if W is a candidate that the majority of voters prefer
over other candidates, then W should be the winner.

• Always a winner: after computing all ballots the voting mechanism will always
appoint a winner.

Arrow (2012) has shown that if a social choice procedure has no dictators
imposing her will, then there is no system with three or more candidates that
guarantees that the ranked preferences of individuals will map into a winner
candidate while meeting the desirable conditions of monotonicity, Pareto efficiency,
and independence of irrelevant alternatives.

The Condorcet method has many advantages but does not guarantee a winner—
see Taylor and Pacelli (2008) for more on the subject. For example, using the
notation “X � Y ” means that X is preferred to or higher ranked than Y , if 8 voters
have the following ballot (A � B � C), 9 have preferences (C � A � B), and
10 (B � C � A), then we can find that in a pairwise comparison: A would get 17
votes while B would get 10 votes so A beats B; B beats C in a direct confrontation
with 18 votes; and C beats A with 19 votes against 8 vote on A’s favour. In this case,
there is no candidate that beats all other candidates in a pairwise comparison, which
is known as the Condorcet paradox.

Recall that the Condorcet (solution) winner is the candidate that beats all other
candidates in a pairwise comparison. It is possible that there is no Condorcet winner
because the minimum for each candidate is less than one half. We assign the winner
to the candidate whose minimum number of votes is the highest; this modified
criterion is called a Simpson winner (a Simpson solution). We discuss this modified
version of the Condorcet method further down in this chapter.

Given the well-known failures, of voting methods (Balinski and Laraki 2014),
several studies compare their relative performance within different contexts. For
example, as we present in this chapter, Klamler and Pferschy (2007) relate a
classical optimisation problem with voting results comparing voting preferences for
local versus global “tours” (i.e., traveling through different nodes of a network)
using Approval Voting, Borda, Plurality, and Simple Majority rules, with mixed
results—for detailed explanation on each of these voting mechanisms, please refer
to Taylor and Pacelli (2008). Using methods similar to those just mentioned, plus
Relative Utilitarianism, Buenrostro et al. (2013) investigate necessary levels of
agreement between voters and leading to dominance-solvable games, suggesting
that Approval Voting had the best results.

Many studies focus in particular on the ability of a method to yield a Condorcet
winner. For example, Merrill-III (1985) performs a simulation study of six methods
to estimate the fraction of outcomes coinciding with the Condorcet winner. His
statistical analysis uses both L1 and L2 norms, which supports our interest in this
chapter in applying different norms in our matrix of (dis-)utility.

Brams and Fishburn (2001) compare results of the 1999 elections for President
and Council of the Social Choice and Welfare Society using Borda count and
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Approval Voting. Results of the former are somewhat inconclusive: although the
Borda count coincides with the Condorcet winner, they still see merits with
Approval Voting due to the small distance between first and second placed candi-
dates. More recently, Buechel (2014) finds that an optimisation approach based on
the Median problem should match the Condorcet winner. The study presented here
on explores this relationship in-depth via numerical experiments in a more general
setting.

Despite the important contributions of the studies above, many questions regard-
ing comparative advantages of methods remain unsolved. This occurs even with
commonly reviewed methods such as Condorcet and Approval Voting. In particular,
we want to answer some interesting questions that bring to light the efficacy of
democratic approaches lead by self-interested voters as problem-solving mech-
anisms when compared to central decision makers, also known as benevolent
dictators, maximising the total utility when solving those same problems; after
all, it is very hard to present examples of widely accepted benevolent dictators
(some don’t believe in their existence), but it is very easy to find voters exercising
their voting rights in a myopic fashion. Our interest is in answering questions such
as: How bad can solutions be when originating by voting mechanisms in general
and Condorcet method in particular? When democratic methods are as effective as
optimal solutions for Median and Maximum Coverage problems? Is there a worst-
case bound for the performance of a democratic method compared to an optimal
solution originating from a benevolent dictator? Recall that a worst-case bound
of 3 has already been mentioned above. How does voting methods compare when
using realistic-sized instances? Do parameters such as distance norm and number of
candidates influence the quality of a democratic method as compared to a centralised
method? Therefore, we need to understand better the facility location problems.

7.2 On Facility Location and Voting Problems

The comparison between the Weber solution (the Weber problem, a well-studied
facility location problem, Francis et al. 1992; Love et al. 1988; Drezner et al. 2002)
and voted solution has attracted interest in the past. When the problem uses either
the �∞ or the �1 norms, Wendel and Thorson (1974) have shown that the Condorcet
solution point is the Weber solution point. Rodríguez and Pérez (2008) present an
algorithm for finding Condorcet solutions when the solution is not a singleton but a
set of a given cardinality. For special topologies (i.e., tree network) Noltemeier et al.
(2007) provide insights on the case of single voting location problems on trees, and
optimisation algorithms are developed for the Condorcet and Simpson cases. As
algorithms were developed, with focus on network frameworks, there was also the
curiosity about the quality of the solution set when compared to a central decision
maker.

Demand points (voters) prefer a closer candidate (facility) to a farther one,
making distance a proxy for (dis-)utility. The Condorcet solution is the result of the
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democratic process. The Weber solution, on the other hand, is the result obtained
by a central decision maker (benevolent dictator) who selects the location based
on complete information. The leading question is whether democratic processes
lead to high-quality solutions. We measure the quality of the Condorcet solution by
evaluating the Weber objective function, at the Condorcet location, and comparing
that value to the optimal Weber objective function value.

The choice of measure for quality is the ratio between the two values of the
Weber objective which we call relative efficiency (RE) of the Condorcet solution.
Similarly, we can use another voting process and calculate the relative efficiency by
changing the numerator to reflect the new voting process. For example, Approval
Voting, a voting mechanism that we will also explore further below, specifies a
critical distance (or dis-utility) so that voters approve candidates within that critical
distance. Baron et al. (2005) studied parochial voting and found that when the
critical distance is short, only candidates with high utility to the voter or their group
will be approved, and when it is long, candidates with greater average utility to all
voters may also be approved.

The relative efficiency ratio is greater than or equal to one by the optimality of
the Weber solution. If this ratio is close to one, the Condorcet solution is almost as
good as the optimal Weber solution and is considered to be of “high quality”.

In Hansen and Thisse (1981), the authors frame the problem on a network and
present a worst-case bound where RE ≤ 3. That is, in a network setting, the quality
of the voted solution is very bad compared to that originating from the centralised
system; moreover, they show an instance on which the bound is tight. This implies
that average distance returned through voting (using the Condorcet method) can
be as bad as three times that of returned by the Weber solution. Further analysis
in Labbe (1985) leads to the derivation of a worst-case ratio, also bounded by 3,
as a function of the total population on the network. Bandelt and Labbe (1986)
investigate the worst-case bound for the Simpson solution instead of the Condorcet
solution.

Menezes and Huang (2015) provide theoretical results for the quality of the
Condorcet solution as a function of the solution set cardinality. They find that the
relative efficiency of Condorcet solutions approaches 1 as the number of potential
locations increases, and the relative efficiency of a Condorcet solution is

√
2 in

the worst case. Departing from previous models where the problems were framed
in networks, they use a continuous model and the Euclidean distance (�2 norm) as
proxy for dis-utility. We will discuss the findings brought up by Menezes and Huang
(2015) in detail and how it further motivates the studies on this matter.

Note that the Condorcet method solution is closely related to competitive location
models, where customers “vote” for the best retail facility by patronising it, where
best could be the lowest total cost for service as in Hotelling (1929) or just some
other criteria of attractiveness. In competitive facility location, depending on the
assumptions about consumer behaviour, there are two main branches. One employs
the gravity model suggested by Reilly (1931) and applied to a competitive retailing
environment by Huff (1964, 1966). Locating a facility by this model was first
introduced by Drezner (1994b). In the other branch, which we will focus hereon,
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customers patronise the facility with highest utility (Hotelling 1929; Drezner 1982;
Hakimi 1983, 1986), which in the case of Hotelling (1929) includes the price
of service/goods. Attractiveness impacts the customer selection of a facility to
patronise, which implies that the closest facility may not be the one getting the
demand (see Drezner 1994a). For a review of competitive facility location, the
reader is referred to Berman et al. (2009) and, more recently, Eiselt et al. (2015).

Rodríguez and Pérez (2000) present a variation of the classic approach to Con-
dorcet problems in location analysis through the introduction of a (in-)sensitivity
factor for voters when the difference between the distances to two candidate
locations is less than a threshold value of α. This may be the correct take when
utilities are almost equal to one another. Another way to model such situations is by
allocating their votes depending on the relative distances to the two competitors.
If the ratio between the distances is large, almost all voters vote for the closer
candidate. If distances are almost the same, the votes are divided more evenly among
the competitors. Such an approach is similar to the gravity model in competitive
facility location (Reilly 1931; Huff 1964, 1966; Drezner 1994a).

Drezner and Menezes (2014) focus on numerical approaches, in an attempt to
better understand the result presented in Menezes and Huang (2015). In that work
the authors perform sensitivity analysis on the variety of voters’ utility functions,
the number of candidates, and different topology, or level of “voter concentration”.

Menezes et al. (2016) follow up on the suggestions made in Drezner and Menezes
(2014) and expand the scope in three directions. The first is the analysis of different
distance norms, pushing beyond the Euclidean norm, used previously. The second
direction is the inclusion of Approval Voting as choice mechanism and brings, the
third direction, the comparison between Approval Voting and Maximum Coverage
Problem. In Approval Voting, each voter makes an unranked list of candidates they
approve. The candidates with the most approvals win. If ties occur, they are broken
randomly (Brams and Fishburn 1978; Rapoport and Felsenthal 1990; Brams and
Fishburn 2007; Taylor and Pacelli 2008).

Borrowing from Menezes et al. (2016), we propose the following leading
questions to lead this chapter:

• What is the worst-case bound for the Condorcet solution at the optimal Weber
point when distances are free from the network topology?

• How frequently is the Condorcet solution at the optimal Weber point?
• What is the average quality of the Condorcet solution?
• How important is the Euclidean norm assumption to our results? Would they hold

under another norm?
• What is the impact of restricting the number of candidate solutions to both the

Weber and Condorcet problems?
• What is the impact of node aggregation on the relative efficiency?
• Is the relative efficiency of the democratic approach comparable to the centralised

approach?
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The last question is, of course, of a very general nature, but important to be
discussed from the philosophical perspective. Thus, let’s start by looking into the
formulations that lead our discussion so far.

7.3 The Weber and the Condorcet Problems

7.3.1 The Weber Problem

The problem is framed using sets N and M of cardinalities n and m, respectively.
N is the set of demand points, while M is that of candidate solutions. Each node
i ∈ N has an associated weight wi representing the fraction of voters in i. That is,
n∑

i=1
wi = 1. The distance between i ∈ N and j ∈ M is dij . The Weber problem

does not consider the competing candidates. The objective of the Weber problem
(Francis et al. 1992; Love et al. 1988; Drezner et al. 2002) is minimising

W(X) =
∑
i∈N

widi(X) (7.1)

where di(X) is the distance between demand point i and point X anywhere in the
plane. Hence, W(X), called the Weber objective, brings the value of the Weber
objective at X. If XW is a point in the plane that minimises the Weber objective,
then we say that XW is a Weber solution.

The Weber problem is one of the most researched problems in location analysis.
Solving it can be done by making use of the Weiszfeld algorithm (Weiszfeld (1936)
translated by Plastria (Weiszfeld and Plastria 2009)) as accelerated by Drezner
(1996).

7.3.2 The Condorcet Problem

The Condorcet solution is defined by comparing all pairs of candidates where the
winner is a candidate who beats, or at most ties, all other candidates in a head-to-
head competition. A voter at node i prefers candidate X over candidate Y if di(X) <

di(Y ); that is, point X is the closest of the two to node i. In order to calculate a
Condorcet objective, we need to compute the minimum number (fraction) of votes
vj for j ∈ M against all competitors one by one. Thus,

vj = min
k �=j∈M

⎧⎨
⎩

∑
dij <dik

wi

⎫⎬
⎭ (7.2)
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A candidate located at j ∈ M is a Condorcet winner (solution) if and only if vj ≥ vk

for all k ∈ M and k �= j . This is equivalent to vj ≥ 0.5. If there is no vj ≥ 0.5,
then the maximum among all vj (for all j ∈ M) is termed a Simpson solution and
we may use that solution when desirable—of course, we will call attention to any
use of Simpson solution in substitution of a Condorcet solution.

When set M of candidates is finite, when distances are drawn from the set of real
numbers it would be unlikely to have ties, but possible. That is, when preference
between candidates is governed by distances, ties in distances may exist, especially
when M is the set of all points in the plane. We suggest two possible rules to deal
with ties between distances: (1) If there is a tie, all tying competitors lose that vote.
That means to apply dij < dik in (7.2); or, (2) if there is a tie, all tying competitors
win that vote. That means to apply dij ≤ dik in (7.2).

Let X to be a candidate anywhere in M . The Condorcet objective function, to
be maximised, depends on the rule being used. Let Fr(X) be the objective function
when Rule r ∈ {1, 2} is applied. The formulations are:

F1(X) = min
k∈M

⎧⎨
⎩

∑
di (X)<dik

wi

⎫⎬
⎭ (7.3)

F2(X) = min
k∈M

⎧⎨
⎩

∑
di (X)≤dik

wi

⎫⎬
⎭ (7.4)

7.4 On the Worst-Case Bound

In this section we discuss the worst-case bound for the relative efficiency, or relative
error (RE) of the Condorcet solution. We will only provide the sketch of the proof
for the worst-case bound, a complete analysis can be found in Menezes and Huang
(2015).

Let’s call XC ∈ M , for M being any point in the plane, to be the Condorcet win-
ner, when one exists, and XW the Weber solution. Then, RE = W(XC)/W(XW).
Use Fig. 7.1 as a visual aid to this discussion where each disc represents a node in
set N with a positive weight and two labeled nodes are solid circles. Given the set
N of nodes on the plane and their coordinates, we draw a line l that passes through
point XC and is perpendicular to the line passing through XC and XW . Let HL be
the closed half-plane on the left side of line l (including points on line l itself) and
HR be the open half-plane on the right side of line l (not including points on line l).
The situation just described can be seen in Fig. 7.1a.
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Fig. 7.1 (a) Line l divides the plane into two half-planes. (b) Surrogate nodes L and R represent
aggregation of nodes in each half-plane

We state without formal proof that

Property 7.1 The total population in the closed half-plane HL is no less than 1/2,
i.e.,

∑
i∈N∩HL

w(i) ≥ 1/2.

The intuition behind Property 7.1 is that a point located just next to the right of
XC in Fig. 7.1a would beat XC in a face-to-face competition if Property 7.1 were
not true.

In Fig. 7.1b, we define the equation system
∑

i∈HL
wi d(L, s) = ∑

i∈HL
wi d(i, s),

for s ∈ {XC, XM }. The solution of this system of equations defines point L. Using
the same arguments we can define a point R that could represent all nodes on the
right half-plane. The proof for the existence of both points L and R can be found
in Menezes and Huang (2015). Using the triangle inequality, one can show that
d(L,XW ) ≤ d(L,XC) + d(XC,XW).

Furthermore, one can also prove that d(R,XC) ≥ d(R,XW ), which is done
based on the fact that W(XW) ≤ W(XC) by the definition of the Weber objective,
and also by Property 7.1.

Using d(R,XC) ≥ d(R,XW ) and d(L,XW) ≤ d(L,XC) + d(XC,XW ), and
the knowledge that d(i,XC)+d(i,XW) ≥ d(XC,XW) for any i ∈ HR , it is possible

to carefully manipulate RE = W(XC)

W(XW )
until the result

RE ≤ d(L,XC) + d(R,XC)

d(L,XW ) + d(R,XW )
, follows. (7.5)

In order to prove the main result, one needs to inspect two cases that make a
difference. On the one hand, point R’s orthogonal projection onto the line (XC,XW)

is coinciding or to the left of point XW and, on the other hand, that projection is to
the right of it. We will show the bound for the first case and we leave to the reader
to consult the original proof for the complete discussion.
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Fig. 7.2 Points L and R are
projected on line l and on its
orthogonal, respectively,
generating L′ and R′, also
respectively. The projections
are made such that the
distances of both points to
point XC remain unchanged

Using Fig. 7.2, it is straightforward to verify that, following expression (7.5),

d(L,XC) + d(R,XC)

d(L,XW) + d(R,XW )
≤ d(L′, XC) + d(R′, XC)

d(L,XW )
≤ d(L′, XC) + d(R′, XC)

d(L′, XW )

≤ d(L′, XC) + d(R′, XC)

d(L′, R′)
(7.6)

Hence,

RE ≤ d(L,XC) + d(R,XC)

d(L,XW) + d(R,XW )
≤ d(L′, XC) + d(R′, XC)

d(L′, R′)
≤ √

2, (7.7)

where the last inequality is guaranteed by the fact that �(XC L′ R′) is a right
triangle—for a geometric proof of last inequality see Posamentier and Lehmann
(2012).

The other case, when R′ is to the right of XW , is dealt with through small changes
in the manipulations leading to the same conclusion, implying that

Property 7.2 RE ≤ √
2.

7.5 Numerical Methods

7.5.1 Finding the Condorcet Solution Point

When the Condorcet solution belongs to a discrete set of potential locations; i.e., M

is a discrete and finite set and XC ∈ M , then finding the best Condorcet solution
point is straightforward and can be done by brute force. Evaluate all X ∈ M using
Fr(X) for either r = 1 or r = 2 depending on the rule used and keep the one
that maximises that objective. The search process requires O(mn) time and can be
reduced to O(m log n) when the distance matrix is pre-computed.
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When M can be any point in the plane, then the so-called Absolute Condorcet
Solution is found through more sophisticated search procedure. Let’s start that
explanation by supposing that m competitors exists, which for simplicity coincide
with the demand points. The distance between demand point i and the m competitors
named 1, . . . , m is given by d(i, j), j ∈ {1, . . . , m}, and is sorted such as
d(i, 1) ≤ d(i, 2) ≤ . . . ≤ d(i,m).

For each demand point i draw m concentric circles of radii d(i, j), for j =
1, . . . , m, that form m+1 regions: the interior of a circle of radius d(i, 1), m−1 rings
bounded by inner radius of d(i, j) and outer radius of d(i, j +1) for j = 1, . . . , m−
1, and the exterior of the circle of radius d(i,m) (see also Wendel and Thorson
1974). For each demand point there are m + 1 such regions. The intersection of all
these regions partitions the plane into regions bounded by arcs of circles resembling
polygons—see Fig. 7.3 as visual aid in which a convex polygon, labeled S, is shaded
and two points (X and Y ) are inside S. The three competitors and the three demand
points coincide. Each such region is the intersection of some interiors of circles and
exteriors of some other circles.

Let a circular polygon to be defined as the region enclosed by the intersection
of interiors or exteriors of circles with no other circle cutting through that region.
The sides of a circular polygon can be convex or concave (see Fig. 7.3) and thus,
the circular polygon itself can define a convex set (or not). Note that S is a convex
circular polygon.

An example of the intersection diagram of all circles is depicted in Fig. 7.3. There
are three points that define both demand and competitors’ location. Each demand
point defines two concentric circles centred on it and passing through the other two
demand points for a total of six circles. There are many circular polygons defined

Fig. 7.3 Diagram of
intersecting circles
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by these circles, and in general some are convex but most are not. There is only
one convex circular polygon in Fig. 7.3 denoted by S. Drezner and Menezes (2014)
show that convex circular polygons must be in the convex hull of the demand points.
Moreover, Drezner and Menezes (2014) prove that

Property 7.3 When using Rule 1 (induced by F1(•)) the Condorcet solution is an
interior point of a convex circular polygon, and when using Rule 2 (induced by
F2(•)), then the optimal solution solving the Condorcet problem is on a vertex of a
circular polygon.

In order to understand Property 7.3, allow X and Y as two potential locations for
a new competitor. If X and Y are inside a same circular polygon (as Fig. 7.3 shows),
then for all voters in any point i, d(i,X) and d(i, Y ) are in the same range between
two consecutive distances in that ordered list, and, thus, a voter at i votes the same
way for a new competitor located either at X or at Y (or to any competitor at any
point within the convex polygon). The objective function values at X and at Y are
the same when d(i,X) and d(i, Y ) are in the same range for all i ∈ N .

Furthermore, note that if the distances from the demand points (voters) to two
potential locations X and Y are inside or outside the same circles and if one is on
the circumference of a circle so is the other one, then Fr(X) = Fr(Y ) for Rule
r ∈ {1, 2}.

On the other hand, consider two adjacent polygons separated by an arc induced
by some demand point i. Point X is in the interior of a circular polygon and point
Y in the other. That means that a path from X to Y crosses an arc separating the
two circular polygons and when moving from X to Y one inequality involving
demand point i changes, implying that one weight is either lost or gained by the new
competitor. On the arc separating them the weight is lost and thus points located on
the arc are inferior to points in the circular polygon on the convex side of that arc.
Hence, when Rule 1 is applied and the set S is not empty, the value of the objective
function is the same at any point in the interior of S.

However, when Rule 2 is used then points on the arcs themselves become more
relevant. Consider, as before, two adjacent circular polygons and points X and Y in
the interior each. The path from X to Y crosses an arc separating the two circular
polygons, and on the arc separating them the weight is counted and thus points on
the arc cannot be inferior to points in the interior on the convex side of the arc. On a
vertex all weights associated with tying distances may be added to F2(X) and thus
are not inferior to non-vertex points. That insight leads us to say that when Rule 2 is
employed, an optimal solution exists on a vertex of a circular polygon. That implies
in the existence of a finite set of candidate points when Rule 2 is employed.

The same argument employed above can be used to demonstrate that if the
circular polygon has a concave arc there is a better or equal solution on a point
outside that polygon. Furthermore, if the circular polygon is convex, then an optimal
solution exists on the set of vertices of the convex circular polygon.

Property 7.4 An optimal solution by Rule 2 exists on a vertex of a convex circular
polygon.
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Drezner and Menezes (2014) use the result that for a convex norm, assuming X

be a point outside the convex hull (CH ) of the demand points, there exists a point
Y ∈ CH such that di(Y ) ≤ di(X) ∀ i. The proof of it is given in Wendell and Hurter
(1973). The result by Wendell and Hurter (1973) leads to the important property that
we present without proof.

Property 7.5 For a convex norm, an optimal solution to maximising Fr(X) exists
in CH .

The results presented in this subsection allow for solving the problem with
efficient numerical approach. An improvement of the Big Triangle Small Triangle
(BTST) technique makes it very efficient to find Condorcet solutions.

7.5.2 Numerical Experiments

Drezner and Menezes (2014) propose a mechanism to find the best Condorcet
location X anywhere in the plane by the global optimisation technique Big Triangle
Small Triangle (BTST) proposed by Drezner and Suzuki (2004). Complete details
can be found in Drezner and Suzuki (2004) and Drezner and Menezes (2014), so we
turn our attention to key insights unveiled by the approach.

The results presented below were programmed in Fortran using an Intel 11.1
Fortran Compiler. Only one thread was used on a desktop with the Intel 870/i7
2.93 GHz CPU Quad processor and 8 GB RAM. In order to calculate the relative
efficiency for various situations the following solution points are found.

XM The optimal Condorcet solution in M .

XW The optimal Weber solution anywhere in the plane (Drezner 1996).

XC The optimal Condorcet solution anywhere in the plane

(Drezner and Suzuki 2004)

XN The node with the lowest Weber objective function.

In this section several number of n demand points were tested. The range goes
over 10 values of n from n = 10, 20, . . . , 100 and then from n = 100 to n = 1000
values were increased by jumps of 100 demand points. For each value of n, 1000
randomly generated sets of points (nodes) were used to fill up the tables. Locations
were uniformly generated in a unit square and weights were uniformly generated in
the interval [0,1]. Weights were then divided by the sum of the weights so that the
sum of all weights is equal to one.

When constraining the solutions (Condorcet and Weber problems) to nodes,
when a Condorcet solution exits, more than 70% of the Condorcet solutions are
at a node with the minimum Weber objective for all values of n. The same result
holds for the combined count of both Condorcet and Simpson solutions. The result
suggests that the node with the best Weber value is a natural candidate for the
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Condorcet solution. A Condorcet solution may not exist only for instances where
there are small number of nodes but, as the number of nodes increases, the fraction
of Simpson solutions drops substantially and vanishes when n ≥ 200. Hence, the
Condorcet approach is very sensitive to aggregation and if the one person/one vote
maxim holds, then the existence of a Condorcet solution is nearly certain in large
groups. On the other hand, the likelihood of a Condorcet solution is reduced when
set individuals are represented by a single voter.

When the Weber optimal point is added to the set of nodes, the number of
Condorcet solutions at either the Weber point or the node with the minimum Weber
objective is significantly higher than these values reported when only demand points
are candidate locations. For values of n ≥ 100 there is always a Condorcet solution
and the relative efficiency of the Condorcet solution is very high since the Condorcet
solution is almost always on either the Weber solution point or on the minimum
Weber objective node.

The results above suggest that if the number of voters is sufficiently large (i.e.,
greater or equal to 100) there are Condorcet solutions. The issue is whether or not
those solutions are efficient (high values of relative efficiency). In order to address
that matter, Table 7.1 below presents RE, the ratio between the Weber objective
at the optimal Condorcet solution and the Weber optimum objective value. The
table reports the minimum, average, and maximum value of this ratio as well as
the standard error of the average (i.e., the standard deviation divided by

√
1000).

Table 7.1 Ratio of the
Weber objectives at
Condorcet solution and
Weber optimum

RE = W(XC)/W(XW )

n Min Ave Max SE

10 1.000002 1.018380 1.195200 0.000724

20 1.000000 1.006737 1.092617 0.000251

30 1.000000 1.004420 1.052084 0.000162

40 1.000000 1.002901 1.041940 0.000111

50 1.000004 1.002170 1.022142 0.000084

60 1.000001 1.001830 1.022557 0.000074

70 1.000002 1.001563 1.016696 0.000061

80 1.000001 1.001292 1.013861 0.000048

90 1.000003 1.001130 1.013073 0.000042

100 1.000002 1.001004 1.007504 0.000035

200 1.000000 1.000501 1.006499 0.000018

300 1.000000 1.000332 1.004933 0.000014

400 1.000000 1.000242 1.002998 0.000009

500 1.000000 1.000205 1.001870 0.000008

600 1.000000 1.000167 1.001327 0.000006

700 1.000000 1.000150 1.001170 0.000005

800 1.000000 1.000134 1.001233 0.000005

900 1.000000 1.000115 1.000999 0.000004

1000 1.000000 1.000116 1.001404 0.000004
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For n ≥ 50 the maximum gap is less than 3% and reduces to 0.1% as the value of
n increases. On average, it is very close to 1 even for values of n as small as 10
nodes. Hence, even if a large group of voters is represented by a single voter, or
if the number of voters is indeed small, the efficiency of the Condorcet solution is
very good. On average it is as good as the optimised solution. Clearly, if the “right”
candidate (represented by the Weber solution) is included in the set of candidate
solutions, the Condorcet location is almost as good as the one offered by a central
decision maker.

The result presented in Table 7.1 is an important one. Nowadays, abundance of
computers for processing data and the easiness of data collection provided by the
internet can make a powerful combination that would allow for making decisions
using only votes from voters with a stake on a particular decision. The results
suggest that if done so, the solution would be as good as one coming from a central
decision maker when that decision maker is honest in his/her intention to promote
the common good. Subsequent studies show that, even when the Weber solution
is not included in the candidate-solution set, for values on n ≥ 100, the relative
efficiency RE ≤ 10% on worst cases and less than 1% on average. Hence, even
when the right candidate is not available and we restrict candidates to the set of
nodes, with their own positions, the relative efficiency of the Condorcet solution
compared to the solution brought up by the unconstrained Weber solution (a
solution that is possible to be a point in the plane but not on the set of nodes) is
very good when the number of voters is sufficiently large.

The quality of the Condorcet solution improves (in both average and maximum
ratio) as the number n of nodes increases to a point of marginal difference to the
Weber objective value at the Weber point. A similar trend can be observed on all
experiments made, suggesting that aggregation is a factor that reduces the relative
efficiency of the Condorcet solution. Therefore, we need to further understand the
impact of aggregation.

Note that aggregation, in Facility Location discipline, can be just a way of
simplifying a problem, making it more tractable, but creating negative side effects
through what is known as “aggregation errors”. That is, differences between the
level of aggregation of choice and the correct solution when every unit of interest
(e.g., a single person) is the focal point. See Francis et al. (2009) for a recent
review of the topic. We assume herein that the level of aggregation of choice for
the centralised solution is a correct (or acceptable) level and it is the baseline for the
results presented.

Aggregation is the phenomenon of a large fraction of total voters with the same
voting position. It is in fact an extreme case of concentration, i.e., a high density,
or large fraction of voters, within a small area when contrasted to the density
elsewhere in the plane. These clustering of nodes could occur but most likely a
uniform distribution of nodes inside the 100 × 100 square will be observed.

The study conducted by Drezner and Menezes (2014) took the original 100
distance units “big” square and divide them into 100 smaller squares with side equal
to 10 distance units. The first 50% of the nodes are located in the big square by a
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two-dimensional uniform distribution as before. The other half of the demand nodes
are allocated to � smaller squares as described in Drezner and Menezes (2014):

1. Choose � different small squares with equal probability for each.
2. For i = (n/2) + 1 . . . n do

(a) Choose randomly one of the � small squares.
(b) Randomly locate demand point i in the selected square.

The experiments are conducted similarly to those reported in Table 7.1, with
additional parameter � ∈ {5, 10, 20, 50}. That approach allows for concentrating
50% of the demand in a small cluster defined by the small squares. The clustered
instances give a different perspective by generating different demand distributions.
As explained in Drezner and Menezes (2014), “When � = 5, at least 50% of
the demand points are in 5% of the total area. When � = 50 only a slightly
more clustered distribution of points is created. When � = 100 demand points
are uniformly distributed with no clustering structure”.

Table 7.2 reports the average relative efficiency of the Condorcet solution for
different combinations of values for n and �. We compare the values obtained
through clustering with those previously reported in Table 7.1 in order to have a
benchmark.

Table 7.2 Average ratios between the Weber objectives at the Condorcet solution and Weber
optimum for clustered instances

�

n 5 10 20 50 Uniform

10 1.017852 1.017967 1.017776 1.019618 1.018380

20 1.009563 1.009607 1.008909 1.009398 1.006737

30 1.007072 1.006084 1.006765 1.007463 1.004420

40 1.005458 1.005164 1.005224 1.004732 1.002901

50 1.004216 1.004105 1.004218 1.004243 1.002170

60 1.003397 1.003546 1.003550 1.003263 1.001830

70 1.003349 1.003625 1.003678 1.003098 1.001563

80 1.002975 1.002647 1.003200 1.002758 1.001292

90 1.002553 1.002753 1.002435 1.002786 1.001130

100 1.002496 1.002576 1.002562 1.002463 1.001004

200 1.001305 1.001739 1.001384 1.001507 1.000501

300 1.001190 1.001124 1.001153 1.001151 1.000332

400 1.000973 1.001006 1.000967 1.000956 1.000242

500 1.000786 1.000796 1.000874 1.000831 1.000205

600 1.000763 1.000671 1.000708 1.000708 1.000167

700 1.000613 1.000662 1.000699 1.000660 1.000150

800 1.000643 1.000644 1.000616 1.000643 1.000134

900 1.000622 1.000608 1.000536 1.000587 1.000115

1000 1.000531 1.000564 1.000521 1.000532 1.000116
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Table 7.2 shows a systematically dominance, although just slightly, of RE for
average ratios for clustered instances when comparing them to those presented in
Table 7.1 for uniform demand (reproduced in the last column of Table 7.2). As an
example, when � = 5 and n = 10 Table 7.2 shows that the ratio is 1.0178 which is
smaller than 1.018380 reported in the last column. The results suggest that there is
no significant impact of clustering, as designed in this experiment, on average ratios.

Similar to Table 7.2, Table 7.3 reports the maximum relative efficiency of the
Condorcet solution for different combinations of values for n and �.

For values of n and � relatively small, Table 7.3 shows that the maximum ratio
of the two cases presents significant differences. When n = 10 and � = 5 the
maximum ratio is 1.323328 while the maximum for uniform demand is 1.195200.
Nonetheless, when n and � are larger, the differences reduce. For example, when
n ≥ 100 or � ≥ 10, the differences in maximum ratios are not significant which
implies high quality of the democratic process’ output even in the worst case.

When clusters are present in the data (via �), it is somewhat similar to repre-
senting each cluster by one demand point with the total weight. In overall, the work
presented in Drezner and Menezes (2014) suggests that the impact of clustering is
similar to reducing the number of nodes keeping the diversity of candidate solutions.
Fewer number of demand points result in lower quality Condorcet solutions mostly
because there are less candidates to choose from.

Table 7.3 Maximum ratios between the Weber objectives at the Condorcet solution and Weber
optimum

�

n 5 10 20 50 Uniform

10 1.323328 1.254989 1.291172 1.405066 1.195200

20 1.169552 1.198324 1.179087 1.268093 1.092617

30 1.113245 1.121800 1.098894 1.146177 1.052084

40 1.093191 1.109401 1.100839 1.115800 1.041940

50 1.128883 1.102289 1.086627 1.113002 1.022142

60 1.074025 1.067920 1.061447 1.082114 1.022557

70 1.086514 1.077868 1.090157 1.045384 1.016696

80 1.078628 1.055699 1.070291 1.068326 1.013861

90 1.057687 1.053087 1.054615 1.078387 1.013073

100 1.088925 1.072415 1.055493 1.066915 1.007504

200 1.034408 1.044634 1.036045 1.051491 1.006499

300 1.026147 1.029063 1.029973 1.035478 1.004933

400 1.034228 1.032123 1.045251 1.032863 1.002998

500 1.018115 1.022193 1.028169 1.021884 1.001870

600 1.025932 1.014086 1.021058 1.033248 1.001327

700 1.018527 1.020085 1.017664 1.018127 1.001170

800 1.019652 1.028951 1.012851 1.021849 1.001233

900 1.027214 1.022277 1.021686 1.015512 1.000999

1000 1.017988 1.019875 1.017142 1.015455 1.001404
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7.6 The Effect of Different Norms as Proxy for Utility
Functions

Continuing with our quest for better understanding the difference (via our measure
RE) of a decision made through Condorcet voting process and that of a central
decision maker with full knowledge of all voters’ utility functions, calling attention
to result in Menezes et al. (2016). Using the same expressions for the Weber and
Condorcet problems previously defined, we introduce a variation on the notation
of function d(i, j), the distance from a demand point i ∈ N to a point j ∈ M ,
by adding an extra parameter p representing the norm utilised for calculating the
distance.

So far we have used �2 norm; that is, �p for p = 2, which is the Euclidean norm.
Now we turn our attention to different norms and will get support from Menezes
et al. (2016) for learning the effect of norms on our insights. Consider two points i

and j with positions Xi and Xj ; the element wise difference χij = (|Xit − Xjt | :
t = 1, . . . , u) in R

u+ represents the distance from node i to candidate j in each one
of the u dimensions. We define

dp(i, j) = p

√√√√ u∑
t=1

χ
p
ijt ;

that is, the �p norm.
When p = 1, the �1 norm is the sum of distances in all dimensions, equidistant

points from a given reference in this norm define a diamond in contrast to a circle
defined by the �2 norm. The �∞ norm is defined by d∞(i, j) = max{χijt : t =
1, . . . , u}. Its equidistant points define a square.

�p norms may have behavioural or cultural meaning in our context. For example,
when voters are very concerned to the overall utility of a particular solution the
�2 norm may be more appropriate. When each dimension has a significance above
the overall utility assessed from all dimensions together then voters use �1 norm,
that is, differences in each dimension add up. The Tchebychev norm, �∞, may be
a good way of representing voters assessing the utility of a candidate based on the
dimension that is the farthest from the voter’s position. In loosely terms, we can
say that the value p, in �p norm, captures how much importance the farthest of all
dimensional distances is important. As the value of p increase, the higher the weight
of the farthest dimensional distance is. It goes from p = 1, when all have the same
weight, to p = ∞, when only the farthest one counts. See Eiselt and Sandblom
(2014, pp. 166–167), for discussion on �p norms and “differences build up” in the
context of competitive models.

Menezes et al. (2016) report that changes �p norm for values of p ∈
{1, 2, 3, ∞}, there is very little change on the relative efficiency. Note that the
authors report a quality index Q = 1

/
RE which implies in relative efficiency

higher when the value of Q → 1 from below. Let the triple (μ
(p)
Q , σ

(p)
Q , n(p)) stand
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for mean and standard deviation of the values of Q, and the number of instances
solved respectively for a given value of p.

In those three cases, according to Menezes et al. (2016), (μ
(p)
Q , σ

(p)
Q , n(p)) =

(1.00, 0.01, n(p)) for p ∈ {1, 2, 3}; and n(1) = 481, n(2) = 511, and n(3) = 502.
Hence, Menezes et al. (2016) reinforce previous results on the quality of the
Condorcet method when compared to the benevolent dictator’s decision. Moreover,
it says that at least for those three values of p, the �p norm does not impact the
quality of the Condorcet solution.

Menezes et al. (2016) have also tested �∞ norm and (μ
(∞)
Q , σ

(∞)
Q , n(∞)) =

(0.99, 0.02, 474). A regression analysis on the value of Q as function p delivers
a regression coefficient of −0.081 (with statistical-p-value < 0.001). That is, a
negative regression coefficient but with little practical effect on the quality of the
solution.

Another interesting result from Menezes et al. (2016) is on the impact of
dimensionality of the utility function used in the problem. The authors have
tested location vectors with dimensionality {2, 3, 4}. And, in fact, the higher the
dimensionality of the utility function, the better the RE, i.e., the quality of the
Condorcet solution. When looking into the interaction between u and p, the authors
report a positive coefficient for p × u.

Menezes et al. (2016) also discuss the Approval Voting method and its relation
to the Weber problem. We do not discuss it here.

7.7 Conclusions

We presented studies on the relative efficiency of the Condorcet solution when
compared to the Weber solution. The relative efficiency, as defined in this work, is
the ratio between the value of the Weber objective function at the Condorcet solution
point and at the Weber (optimal) solution point. Previous work has shown that the
theoretical ratio can be as high as 3 when the problem is defined on a network.
However, the impact of topology is reduced when the problem is framed in the
plane and using Euclidean distances. Experiments, not based on contrived extreme
examples, were tested. Contrived instances are interesting from the theoretical point
of view to obtain bounds, but in the studies herein, we rather represent common
situations.

The experiments have shown that the Condorcet solution and the Weber solution
have a high level of coincidence, especially when the size of the set of nodes is large.
The experiments suggest that the number of solutions that satisfy the Condorcet
criteria is low for small values of n.

The best values of relative efficiency are obtained when the “right” candidate is
included. If the optimal Condorcet solution point obtained is included (the BTST
method is used herein, Drezner and Suzuki 2004), then the relative efficiency of the
Condorcet solution is 1 for many instances and on the average it is very close to
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one. The research has found that reducing the number of candidates does not affect
critically the quality of the Condorcet solution. When changing the baseline for
comparing the Condorcet solution to the node with the minimum Weber objective,
then the already high-quality Condorcet solution improves further.

As long as the number of candidate solutions is large, the Condorcet solution
is of high quality even when a different norm is used. In fact, aggregation seems
to be the main issue determining the quality of the Condorcet solution. When the
population is represented by a few voting representatives the quality of the solutions
deteriorates slightly, but when the reduction is on the number of potential candidates
then the reduction in quality may become dramatic.

Worst-case scenarios are more likely to happen when both the number of
candidates and that of the voters, are reduced suggesting that using surrogates each
representing a large number of voters, like members of Congress, is inferior to
systems that rely heavily on direct voting schemes. When the number of different
viewpoints (candidates’ profiles) is limited, such as in a bi-partisan model, then the
quality can be further decreased. Thus, a referendum of all voters, with plurality
of candidates, better predicts the will of the people than a vote in Congress or
Parliament. That brings the need of further looking into the efficiency of two-party
runs and voting mechanisms that increase relative efficiency in the case when they
are adopted.

In the USA, elections of the president are a two-stage process. First, an electoral
college is elected through the election of members of the electoral college in each
state where, in most cases, all members elected in a state support the same candidate
for president. Then, the electoral college elects the president. There are supporters
for the abolishment of the electoral college and elect the president by direct vote.
Reasons cited for such a change are that a president can be elected with fewer
votes than his opponent as it has recently happened when President Donald Trump
was elected with a smaller number of total “direct” votes received by his opponent
Hillary Clinton. Additionally, there is an issue of incentive to vote since some states
have a clear majority of voters supporting a certain candidate. Voters in such states
do not influence the outcome and are less likely to vote. Voters in states where
support for each candidate is about the same are more likely to affect the outcome
and thus are more likely to vote. Every vote counts the same when elections are
determined by plurality. Our results support such a change. Furthermore, a shift to
direct vote would also result in different ways presidential campaigns are conducted
by the candidates possibly affecting the relationship between candidates and some
minority groups.

Clearly, there are reasons for an electoral college process and its existence has
supporters. The main obvious reason for it is to reduce the weight of states highly
populated in an election, in comparison with those less populated. According to
Schulman (2018), “The Electoral College was created for two reasons. The first
purpose was to create a buffer between population and the selection of a President.
The second as part of the structure of the government that gave extra power to the
smaller states”. The author claims that the founding fathers were afraid that a tyrant
could manipulate public opinion and come to power. The fear of manipulation was
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certainly more grounded in the time of the founding fathers when someone in a
rural area of the mid-west was certainly less informed than someone in a larger city,
that fear, based of lack of access to information, is less real today. In any case, the
mechanism that could reduce the risk of manipulation may also bring the risk of
other types of manipulations.

The insights presented herein were not affected in the presence of clustering; that
is, when voters are grouped in the space discussed (the square) on a non-uniform
manner. The ratio between the Weber solution and the Weber objective function at
the Condorcet solution is similar to that found when there is no induced clustering
ceteris paribus. Even when half of all nodes are located in 5% of the total area,
which implies in few very dense regions, as could also be the case in real situations,
all insights discussed above hold with absolute differences in the ratio appearing
only beyond the second decimal place. In our work, we, the co-authors, note that
clustering impacts the variability of the quality of the solution obtained. Our results
show that the worst-case ratio is always inferior when clustering is present than
when it is not.

This line of research can move in the direction of addressing “obnoxious”
decisions (in the context of obnoxious facility location problems) for comparing
quality of results originating from centralised systems and voted decisions. This
particular line of research may have important practical application: in a political
system, elected officials are future candidates on next elections. As such, officials
avoid decisions that are reasonable but could lead to a “political suicide” that is,
making a logical decision that, although right, will not satisfy voters’ utility function
and, therefore, not being elected later. However, if an official knows that a voted
decision is optimal, or near-optimal, when compared to the reasonable decision the
political should make, then allowing the decision to voters is a win–win approach:
get the optimal solution without exposing herself to the risk of committing a political
suicide.

Another direction of research to be investigated is when voters cannot precisely
pinpoint the position of a candidate. It may be the case that candidates do not
pass clearly their standpoints, either intentionally or not, and voters have some
uncertainty about the impact of a candidate in his utility function.

The converse of the idea above is the positioning of a candidate when the exactly
location of some groups of voters is not well understood. In other words, candidates
do not fully understand the response of voters to some particular position taken by
a candidate. If a candidate wants to find the position that maximises her chance of
winning, then the stochastic problem gets interesting.

Also, the experiments, similar to those presented herein, can be expanded to
multiple facilities. In this case, different ways of valuing multiplicity of facilities
need to be carefully defined.

The model discussed herein can be easily generalised to higher dimensions.
Unfortunately, the numerical models presented on cited papers are developed to
work on the plane limiting their application to two possible dimensions. Problems
defined on multi-dimensions, beyond the limit of 2, can better reflect the true
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political scene in which several considerations affect the political decision-making
process making it an interesting line of research to pursue.

Another issue to investigate is related to the relationship in the way social
influence affects purchasing decisions and consequently market share. For example,
when one clicks on the symbol “Likes” presented in some social network websites
such as Facebook, then the “like” will influence other people perceptions on the
object. Social networks may bias the underlying distribution of demand for products
and services.
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Chapter 8
Neighbourhood Reduction in Global
and Combinatorial Optimization: The
Case of the p-Centre Problem

Said Salhi and Jack Brimberg

8.1 Introduction

The objective of the p-centre problem is to select p sites to locate new facilities in
order to minimise the maximum distance or travel time between a set of demand
points and the facilities closest to them. This problem, originally formulated on a
graph by Hakimi (1964), is usually categorised as either the vertex p-centre problem
or the absolute (or planar) p-centre problem. In the former, which is the discrete
case, the optimal facilities are selected from a given set of potential sites (vertices)
which can be either the demand points or other known sites. However, in the latter
case the facilities can be located anywhere in the plane. An interesting chapter on
continuous location analysis is given by Drezner (2011).

Neighbourhood reduction aims to eliminate moves or checks that cannot lead
to an optimal solution for the case of exact methods, or are unlikely to affect the
global best solution in the case of heuristics. It is challenging to design powerful
neighbourhood reduction schemes that can cut computing time as much as possible
without (or slightly) affecting the quality of the solution. Determining a good
balance between the depth of the cut and the retention of solution quality at a
reasonably high level is a challenging issue. Having good insight into the structure of
the problem is useful as this helps in defining and designing the right neighbourhood
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reduction scheme. This mechanism, also known as reduction test, can be either
dynamic which adapts as the search progresses, or deterministic which is usually
defined from the outset. For more information on this research design issue, see
Salhi (2017).

This chapter is organised into three parts:

1. A brief review of both vertex and planar p-centre problems with a focus on the
contributions by Drezner;

2. A review of some neighbourhood reductions that are observed to be very useful
for solving the vertex and planar p-centre problems; and

3. A discussion of some key research items on neighbourhood reduction that could
be worth exploring.

8.2 The P-Centre Problem

We organise this section into two subsections. The first deals with the (discrete)
vertex p-centre problem, while the second discusses the (continuous) planar p-centre
problem.

8.2.1 The Vertex p-Centre Problem

The vertex p-centre problem, also known as the multi-facility minimax location
problem, aims to optimally locate p facilities among a finite number of potential
sites and to assign demand points to these open facilities in order to minimise the
maximum distance between demand points and their nearest facility. There are two
main formulations, as a binary linear program (BLP), and as a set covering problem
(SCP).

8.2.1.1 The BLP Formulation

Let

(I, J): the set of demand points (or customers) (i ∈ I = {1, . . . , n}) and set of potential
facility sites (j ∈ J = {1, . . . , m}),

d(i, j): the distance between customer i and potential site j (Euclidian distance is
used in our study);

p: the required number of facilities;
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Yij =
{

1 if customer i is assigned to a facility at location j

0 otherwise

Xj =
{

1 if a facility is opened at location j

0 otherwise

Z: the maximum distance between the customers and their closest facilities.

The problem (BLP) is then formulated as follows:

Minimize Z (8.1)

Subject to

∑
j∈J

Yij = 1 ∀i ∈ I (8.2)

∑
j∈J

Xj = p (8.3)

Yij − Xj ≤ 0 ∀i ∈ I, j ∈ J (8.4)

Z ≥
∑
j∈J

d (i, j) Yij ∀i ∈ I (8.5)

Xj ∈ {0, 1} ∀j ∈ J (8.6)

Yij ∈ {0, 1} ∀i ∈ I, j ∈ J (8.7)

The objective (8.1) refers to the minimization of the maximum distance between
a customer and its nearest facility. Constraints (8.2) guarantee that each customer is
assigned to exactly one facility; constraint (8.3) limits the number of open facilities
to be p; while constraints (8.4) ensure that a customer can only be allocated to an
open facility. Constraints (8.5) define the maximum distance between a customer
and its closest facility. Constraints (8.6) and (8.7) refer to the binary type of the
decision variables. Note that the binary type constraints on the Yij in (8.7) can
be replaced by non-negativity constraints without affecting the optimal solution,
since the minimization objective will force customers to be assigned to their nearest
facilities.

The p-centre problem is known to be NP-hard (Kariv and Hakimi 1979).
Thus it follows that only small to medium size instances of this problem can be
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solved optimally using commercial optimization software such as CPLEX, LINDO,
GUROBI or Xpress-MP, and it becomes more difficult to tackle for relatively
large instances. One idea is to aggregate customers leading to a smaller problem
which is more manageable. However, it is worth noting that such an aggregation-
based approach, if not considered carefully, could lead to poorer quality solutions
due to the loss of information. Another approach is to address the problem in its
entirety by adopting powerful metaheuristics or mat-heuristics. For instance, Irawan
et al. (2016) develop a powerful hybridisation of VNS and ILP formulations by
embedding intelligent neighbourhood reduction schemes.

8.2.1.2 A Set Covering-Based Model

The minimax problem can also be solved optimally using a Set Covering Problem
(SCP)-based approach. Given a covering distance (or response time) D, SCP aims
to find the minimum number of facilities and their locations so that each customer
is served by a facility within D distance from it.

Let

aij =
{

1 if customer i ∈ I can be covered by a facility sited at j ∈ J (i.e., d (i, j) ≤ D)

0 otherwise

The SCP can be formulated as follows:
Minimise

∑
j∈J

Xj (8.8)

Subject to

∑
j∈J

aijXj ≥ 1 ∀i ∈ I (8.9)

Xj ∈ {0, 1} ∀j ∈ J (8.10)

The objective (8.8) is to minimise the number of opened facilities. Constraints
(8.9) guarantee that each customer is covered by at least one facility located within
the threshold D and constraints (8.10) refer to the binary variables.

The minimax problem is optimally tackled by recursively solving a sequence
of SCPs for given values of D using a binary search. For instance, Daskin (2000)
adopted this approach, initially presented by Minieka (1970), on a general graph
with all edge distances restricted to integers. Efficient exact algorithms for solving
the vertex p-centre problem include, for example, Ilhan and Pinar (2001), Elloumi
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et al. (2004), Al-Khedhairi and Salhi (2005), Salhi and Al-Khedhairi (2010), and
Irawan et al. (2016). The latter ones incorporate neighbourhood reductions which
are discussed in Sect. 8.3.2.

8.2.2 The Planar p-Centre Problem

Continuous location problems are about generating sites for one or more facilities in
the plane. Though the obtained solutions may not be feasible as some facilities may
end up in the middle of a city or a lake, they can still be used as greenfield solutions
(ideal solutions). Given that the continuous problem can be a good approximation of
its discrete counterpart especially when the network has a large number of potential
sites, getting the ideal solution could provide valuable information for decision
makers when selecting the final sites. As the data gathering task for a large network
can be very expensive to conduct, the continuous model may also be used to reduce
the number of potential sites to a few promising ones, thus making the problem
more manageable.

From a theoretical view point, the continuous p-centre problem is also interesting
as it has a geometrical interpretation. For example, the single unweighted facility
location problem (i.e., p = 1) reduces to finding the smallest circle that encloses all
the customers, with the centre of the circle being the location of the new facility.
In a similar way, the continuous p-centre problem with p > 1 may be interpreted as
finding the centres of p circles that encompass all the customers where the radius of
the largest circle is made as small as possible.

The (weighted) p-centre problem can also be described as a MinMaxMin type
problem with formulation given by Drezner (1984a):

Min Z(X) = Max
i=1,...,n

[
wi Min

j=1,...,p
d
(
Pi,Xj

)]

where the additional notation is defined as follows:

Pi = (ai, bi): the given location of demand point i (i = 1, . . . . , n)
wi > 0: the weight of demand point i (i = 1, . . . . , n)
Xj = (xj, yj): the unknown location of new facility j with Xj ∈ �2; j = 1, . . . , p
X = (X1, . . . . , Xp): the vector of decision variables containing these p facility

locations
d(Pi, Xj): the Euclidean distance between Pi and Xj(i = 1, . . . . , n; j = 1, . . . . , p)

Note that the unweighted model is normally considered as in the discrete p-centre
problem given above with equal weights (wi = 1, i = 1, . . . , n).

The single facility minimax location problem (1-centre) in continuous space has
a long history. The English mathematician James Joseph Sylvester (1814–1897)
first posed the problem in 1857, and then a few years later, in 1860, put forward
an algorithm to solve it. The problem was dormant for over a century until Elzinga
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and Hearn (1972) presented an optimal geometrical-based algorithm that runs in
polynomial time. Since then, other authors attempted some speed-up procedures,
such as Hearn and Vijay (1982), Xu et al. (2003), and Elshaikh et al. (2015), and
references therein. Some of these enhancements use simple but effective reduction
schemes, which are discussed in Sect. 8.4.1. For an informative review including
the history of this problem, see Drezner (2011) and references therein.

There is, however, a relative shortage of studies dealing with the problem for
larger values of p (see Plastria (2002) and Callaghan et al. (2018)). Chen (1983) is
among the first to tackle the p-centre problem in the plane. The problem is shown
to be NP-hard in Megiddo and Supowit (1984). For a fixed value of p, the problem
can be solved in polynomial time O(n2p) as shown by Drezner (1984a), though
it requires an excessive amount of computational effort for larger values of n and
p. Due to the non-convexity of the objective which is a function of the location
variables, this problem also falls in the realm of ‘global optimization’.

For the case of the 2-centre problem with Euclidean distances in the plane (i.e.,
p = 2), there is an interesting optimal algorithm by Drezner (1984b). The idea is that
the entire customer set can be split into two separate sub-problems by a straight line,
where each can be optimally solved as a 1-centre problem. However, as there n(n−1)

2
possibilities, the problem becomes difficult though still polynomial. The method can
be extended to larger p, where more than one line would be needed, but this problem
becomes much more difficult. A scheme on how to proceed from one set of p lines
(p clusters) to another is an exciting exercise that could be worth exploring.

Constructive heuristics were the first to emerge for larger values of p. These use
the iterative locate-allocate procedure initially proposed by Cooper (1964) for the
Weber problem for local improvement, and are based on the commonly used add,
drop and swap moves. For instance, Drezner (1984a), and Eiselt and Charlesworth
(1986) were among the first to develop such methods.

Drezner (1984a) also devised a nice optimal algorithm using the idea of Z-
maximal circles. For a given Z, all maximal circles are defined and either a
corresponding set covering problem or a feasibility problem is solved. Starting from
a lower bound for Z, successive problems are solved until a feasible solution is found
(i.e., the solution has p circles with each customer being encompassed by at least
one circle). This optimal algorithm was originally very slow but has since developed
into a fast and powerful approach that can solve large instances to optimality. This is
achieved by incorporating suitable neighbourhood reductions into the search which
are discussed in Sect. 8.4.3.1.

Several years later, Chen and Chen (2009) developed a relaxation method based
on Chen and Handler (1987) to optimally solve the problem. The idea is to start by
solving a reduced problem containing a subset of demand points from the original
problem and then gradually adding some points to the current subset until the
optimal solution is feasible for the original problem. This interesting relaxation-
based approach is also revisited and its efficiency is much enhanced in Sect. 8.4.3.2.
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8.3 Neighbourhood Reduction for the Vertex p-Centre
Problem

We first present basic reduction schemes which can be embedded efficiently into
the brute force approach, also known as the complete enumeration technique. These
are followed by those more advanced neighbourhood reductions that are adopted
primarily for optimal methods, metaheuristics and mat-heuristics for the case of the
p-centre problem.

8.3.1 Brute Force Approach

The idea is to evaluate all combinations of p possible facility sites out of the n
potential sites. For each combination allocate each customer to its nearest facility,
leading to p clusters, and choose the one that yields the maximum distance from the
allocated customers to the centre (their nearest facility). The optimal solution is one
with the minimum of these maxima. This complete enumeration technique (CET),
though naive, can be used to guarantee the optimal solution for small values of
p (< 5), even when n is around 100, without the use of commercial optimisers or even
the use of any heuristic. This simple and rudimentary approach if applied blindly
will evaluate all the Cn

p = n!
p!(n−p)! combinations, and will fail rapidly when p ≥ 5

even for n = 100.
However, with simple reduction rules, we can improve its efficiency drastically

still without recourse to advanced methods. The following four rules, which are
given in Al-Harbi (2010), are briefly discussed here.

(a) CET is coded in p nested loops (in an ordered fashion) leading to any two
successive configurations being different by one facility only. In the allocation
process, for a given customer i we have two options whether this customer
has lost its initial facility and hence needs to be checked against all p
facilities including the new one; otherwise one comparison between its original
assignment and the new one is evaluated. For example, the instance (Pmed1)
from the ORLIB with n = 100 and p = 5 required 506 s, whereas with this
simple reduction it needed only 348 s. The CET and simple reduction were
coded in C++ and performed on a PC i7 with 1.5 GHz processor and 512 MB
of RAM. However, for the instance Pmed6 (n = 200; p = 5), both versions
were unable to obtain the optimal solution after 5 h of CPU time. Here, the
blind approach exploited 42% of the total number of combinations, whereas
the enhanced one used 70% instead, leading to better chances of obtaining an
improved solution, though optimality cannot obviously be guaranteed.

(b) Besides (a), we can also record the second closest facility for each customer.
Though this adds extra computational storage, it reduces the overall computing
time. Using the same example with n = 100 and p = 5, this simple recording
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task enables the optimal solution to be found within 321 s. For n = 200 and
p = 5, though the optimal solution is still not guaranteed, 77% of combinations
were now evaluated.

(c) Note that both operators ((a) and (b)) are not only applicable to this problem
but are also commonly used in many other combinatorial problems where an
assignment is required. We take into account additional insights unique to the p-
centre problem. Given the objective is to minimise the maximum coverage, it is
clear that once we have one feasible solution with a value of Z, this can be used
to terminate the evaluation of a given configuration if one customer happens to
have its distance to its nearest facility larger than Z. In other words, there is no
need to continue checking the other customers for this particular configuration.
The upper bound Z can be updated as the search proceeds. This reduction
scheme systematically leads to rejecting several inferior configurations early
on leading to a massive reduction in the overall computing time. This basic
rejection scheme obtains the optimal solutions for both instances (Pmed1 and
Pmed6) within the maximum 5 h allowed (18,000 s), requiring only 54 s and
11,546 s, respectively.

(d) This is an extension of (c) where for each customer i = 1, . . . , n, a set of
facilities Fi = {j = 1, . . . , n � (d(i, j) ≤ Z} is constructed (usually updated as the
search goes on). If a given configuration does not contain at least one facility
in Fi, there is no need to continue the allocation of other customers as this
configuration is inferior. This dynamic reduction rule, which is based on the
current Z, renders the brute force even faster by obtaining the optimal solutions
for Pmed1 and Pmed6 in 47 s and 2634 s only, respectively. This rule dominates
the one that also states that for a given customer, a facility configuration that
includes one of its furthest (p − 1) facilities is systematically inferior and hence
needs to be discarded.

The above rules demonstrate that the information in a given problem may be
used to eliminate several redundant computations if appropriate neighbourhood
reductions are designed. However, even with such elimination rules, the brute force
approach is still limited to smaller values of n and p. Having said that, the effective
use of neighbourhood reduction is still able to reduce by as much as some 90% the
time attributed to unnecessary computations. The impact is even more significant
when these reduction schemes are embedded within powerful metaheuristics or
optimal algorithms as will be shown in the rest of this chapter.

8.3.2 Set Covering-Based Approach

The approach using SCP, as given by Daskin (2000), is shown in Fig. 8.1. In this
section, we revisit some of its steps to enhance its efficiency.
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Step 1- Set L = 0 and U = Max d(Pi, Pj). i, j

Step 2- Compute the coverage distance D =
2

L + U

Step 3- Solve the Set Covering Problem (SCP) using D as the covering distance and let v be

the optimal number of facilities obtained.

Step 5- If U − L ≤ 1, record U as the optimal solution and stop, otherwise  go to Step 2.

Step 4- If v ≤ p (i.e., the solution is feasible for the p-centre problem),  set U = D; else

             (ie., v > p, the solution is infeasible) set L=D.

Fig. 8.1 The basic SCP algorithm

8.3.2.1 Revisiting Steps 1 and 5

For instance, Al-Khedhairi and Salhi (2005) proposed some basic changes in Step 1
when initialising the bounds L and U by re-defining

L = Max
j

Min
i

d
(
Pi, Pj

)
and U = Min

i
Max

j
d
(
Pi, Pj

)
.

Also, to guarantee that the elements of the distance matrix in Step 2 are used
only, D is redefined slightly by setting D = G

(
L+U

2

)
where G(x) represents the

nearest value to x in the distance matrix.
In addition, to terminate the search as early as possible in Step 5 and avoid

redundant checks, the set S = {d(Pi, Pj) : L < d(Pi, Pj) < U} is introduced. If S = ∅

(i.e., there are no distance values between L and U), the search terminates even if
U − L > 1, with the optimal solution being U. In addition, if |S| = 1, there is one
element left to assess only, say D and go to step 3. The optimal solution remains
either at U or at D if the new SCP solution happens to be feasible. These schemes
are tested on all instances of the ORLib (n = 100 to 900 and p = 5 to 90) where
a 15% average reduction in the number of SCP calls is obtained. For the TSPLib
data set (n = 1060 and p = 10, 20, . . . , 150), a more significant average reduction
of over 28% is recorded.

8.3.2.2 Further Tightening of U and L in Step 1

In step 1, a simple tightening of U can be found easily just by running a multi-start

approach and choosing U = Min

(
Min

i
Max

j
d
(
Pi, Pj

)
, ZH

)
with ZH being the best

solution of all the runs. For instance, when Max(n, 500) multi starts are adopted, the
above results for the ORLib and TSPLib improved even more leading to an average
reduction in the number of iterations from the original implementation of 23% and
41%, respectively.
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A further tightening of U and L can be obtained by using the solution from a
powerful metaheuristic ZH as U leading to a potential lower bound L = αU with
α = 0.7 or 0.8. The tighter the ZH is, the closer the α is to 1. The power of this
setting is that even if αU fails to be a ‘true’ lower bound, its value will automatically
become the upper bound instead, and the lower bound is recomputed again as
L = αU with α kept the same or slightly reduced until a range (L, U) is derived.
It is worth noting that there are no redundant calculations when assessing the SCP
for L. Salhi and Al-Khedhairi (2010) proposed this implementation with interesting
results using a multi-level heuristic originally proposed by Salhi and Sari (1997).
Recently, Irawan et al. (2016) adopted the above methodology with two distinct
changes. The upper bound in step 1 is obtained by VNS instead (see Hansen et al.
2010), and also an ordered list of the distance matrix is constructed to easily identify
the elements in the set S. As the upper bound produced by VNS in Step 1 may be
close to the optimal solution, α can be set in the range [0.8–0.9] leading to an even
tighter L = αU. Note that the value of L must also exist in the distance matrix and
hence is set to the nearest such value to αU.

8.3.2.3 Other Tightening of L

An interesting two-phase approach which shares some similarities with the SCP
is based on solving the feasibility of the following covering problem (CP) instead
(Ilhan and Pinar 2001). Note that the notation remains as given in Sect. 8.2.1.

⎧⎨
⎩
∑
j∈J

aijXj ≥ 1 ∀i ∈ I ;
∑
j∈J

Xj ≤ p;Xj ∈ {0, 1} ∀j ∈ J

⎫⎬
⎭

The idea is that if a relaxed CP (i.e., 0 ≤ Xj ≤ 1 ∀ j ∈ J) which is much quicker
to solve does not provide a feasible solution for a given D, there is no need to solve
the integer problem. This phase one is similar to SCP in Fig. 8.1, except that Step 3
is based on solving the relaxed CP. Once a feasible solution is obtained in phase one,
phase two is activated where CP is solved with the corresponding D. If the integer
problem is not feasible, then a tight lower bound L = D can be used. Note that phase
two in Ilhan and Pinar (2001) does not follow the SCP algorithm given in Fig. 8.1
but attempts to solve the integer CP by gradually increasing D to the next minimum
in the distance matrix until an integer solution of CP is found.

8.3.3 The Local Search in VNS

Irawan et al. (2016) introduce some elimination rules to avoid computing unneces-
sary moves in both the shaking process and the local search of the VNS. The local
search, which is a vertex substitution heuristic, implements a swap move by closing
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D

Neighbourhood area

Customer C̃ j (the furthest customer from j)

C̃ j The facility j which serves C̃ j

0.5D

D

j

Fig. 8.2 The restricted but guided neighbourhood within VNS

an open facility and replacing it with a closed one. However, instead of removing a
facility randomly from the current facility configuration, the facility (say facility j)
whose radius (the distance between a facility and its furthest customer) is the largest,
say D, is chosen.

Let
Ej = {i = 1, . . . , n| d(i, j) ≤ D}: be the set of customers served by facility j and

C̃j = ArgMax
i∈Ej

(d (i, j)): be the customer whose distance is D from facility j, Vj =
Ej ∩

{
i = 1, . . . . , n|d

(
C̃j , i

)
≤ D ∧ d

(
C̃j , i

)
≥ D

2

}
: be the subset of potential

sites from which to randomly choose an open facility to replace facility j.
In this case, the location of the new open facility is restricted so as not to be

too close to customer C̃j . This concept of using forbidden regions is shown to be
effective when solving the multi-source Weber problem (Gamal and Salhi 2001)
and its capacitated version (Luis et al. 2009). Here, the threshold distance is set to
D
2 though this can vary; see Fig. 8.2 which is adapted from Irawan et al. (2016). This
reduction scheme considers a fraction of the customer sites only, which can in turn
reduce the search space considerably and lead to a substantial cut on the computing
time. This can be significant given the local search in VNS is applied a large number
of times.

This approach, when integrated as part of a matheuristic, shows to be effective
at tackling very large instances up to n = 71, 000 and p = 25, 50, 75 and 100 for
both the conditional and unconditional vertex p-centre problems, see Irawan et al.
(2016).

8.4 Reduction Schemes for the Planar p-Centre Problem

The planar p-centre problem has received relatively less attention compared to
its counterpart the vertex p-centre problem especially when it comes to optimal
methods. In this section, we first explore elimination techniques for the 1-centre
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problem though this can be solved optimally in polynomial time. We then present
speed-up procedures for the commonly used metaheuristics followed by those
devoted to the optimal and relaxation-based methods.

8.4.1 The 1-Centre Problem

The problem of determining the optimal location in continuous space for a given
cluster of customers turns into finding the centre of the smallest circle that
encompasses all the customers. As a circle can be identified by one, two or three
critical points only, Elzinga and Hearn (1972) used this concept to develop an O(n2)
geometrical-based optimal algorithm to solve the problem. The idea is to start with
two demand points chosen randomly and find the corresponding optimal centre and
the radius of the circle. If all demand points are encompassed by the circle, the
search terminates; otherwise another point is added and a new circle with the optimal
centre for the three points is constructed. If the circle does not cover all demand
points, a new uncovered point is added again while one of the three points that
becomes redundant is removed. This process continues until a circle that covers all
points is found. There are a few studies that looked at this issue. Recently, Elshaikh
et al. (2015) introduced two simple but effective reduction rules into the Elzinga and
Hearn (EH) algorithm.

(a) In the starting step, instead of choosing any two points, the four points that
make up the smallest rectangle that covers all the points are first identified. For
each pair, the corresponding circle is found and the largest one is chosen with
its critical points as the starting solution.

(b) When selecting the new point to add to the already existing circle with centre
X and radius Z, instead of choosing the new point randomly, the one with the
largest (weighted) distance to the current centre is selected instead, i.e., P ∗ =
Arg Max

i=1,...,n
(wid(Pi , X) > Z).

When tested on a set of randomly generated instances in a square
(0, 100) × (0, 100) with n = 100 to 1000, the enhanced EH algorithm required about
30% and 20% of the computing time of the original version for the unweighted and
the weighted cases, respectively. More details on the experiments including other
less promising rules can be found in Elshaikh (2014). One may assume that there
is no need to speed up such a quick polynomial procedure. This will be obviously
true if the aim is to solve the problem once or a small number of times only.
However, in the p-centre problem, this task embedded within a metaheuristic or
an optimal method will be called upon several times, and therefore, in our view
the enhancement is quite worthwhile. For example, to demonstrate the benefit of
these two reduction tests, Elshaikh et al. (2015) perform an extensive experiment
using a simple multi-start with 100 iterations on the n = 1002 TSPLib instance with
p = 5 to 25 in increments of 5. It is found that over 32% less updating within EH is
required leading to a reduction of over 25% in computational time.
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8.4.2 Reduction within Heuristic-Based Approaches

We discuss the recent neighbourhood strategies that have proved to be promising
when embedded within the powerful metaheuristics used for the p-centre problem.

8.4.2.1 VNS-Based Heuristics

In the shaking process within VNS, a certain number (Kmax) of neighbourhood
structures is defined (Nk(X); k = 1, . . . , Kmax). For the p-centre problem, these can
be either (a) customer based or (b) facility based.

In (a), Nk(X) can be defined by reallocating k demand points from their original
facilities to other ones either randomly or following a certain strategy. Due to the
characteristics of the planar p-centre problem, the number of critical points that
define the largest circle obtains Kmax ≤ 3. The reallocation of one of these points
will in most cases reduce the radius of the largest circle (except in the case of ties).
Note that other circles may increase their radii after this allocate-locate procedure,
but the solution is accepted as long as Z is reduced.

In (b), Nk(X) is defined by relocating k facilities (k = 1, . . . , Kmax = p) from the
current solution. Instead of randomly removing k facilities, the following removal
scheme that guides the search more effectively is performed. As the problem is
linked to the largest circle and its surrounding circles, it is therefore important to take
into account these characteristics when designing the neighbourhood reductions.
Two aspects are worth considering here. The first one is connected to the largest
circle and the second is linked to those facilities deemed non-promising. For
simplicity, consider the largest circle as C1 and let

CTk: the centre of circle Ck; k = 1, . . . , p
δs = d(CT1, CTs); s = 1, . . . , p: the distance between the centre of C1 and the centre

of Cs

γ (k) = ArgMin
s=1, . . . p

s �=γ (l), l=1, . . . k−1

δs and

Cγ (k): the kth nearest circle to C1 with γ (1) = 1 referring to C1.

The process starts removing the facility at CT1 (i.e., circle C1) and assign-
ing it somewhere else as will be discussed shortly. If after a local search the
solution is not improved, both facilities located at CT1 and CTγ (2) (i.e., both
circles C1 and Cγ (2)) are then removed, and the process continues until all facilities
(i. e., all circles Cγ (1), Cγ (2), . . . Cγ (p)) are removed if necessary. If the solution is
improved, the information is updated (i.e., CTk, γ (k), k = 1, . . . , p) and as in VNS,
we revert back to the removal of the facility at CT1 again.

The second aspect is based on identifying those non-promising facilities for
removal. In our case a facility is considered as non-promising if it encompasses
its critical points only (i.e., there are no interior points within the circle). This
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identification will lead to a saving of q (q << p) facilities which can then be added
around the critical points of the largest circle one at a time. For example, Elshaikh
et al. (2015) conducted an experiment for TSPLib with n = 439 and p = 10, 20, . . . ,
100, where a 9% average improvement was obtained. In particular, for the case of
p = 100, a 34% improvement was observed with seven facilities being identified as
non-promising. Most of the improvements were found with p ≥ 50.

In both cases, the re-assignment of facilities is also performed using the
characteristics of the p-centre problem. Instead of inserting a removed facility
either randomly anywhere in the plane or at fixed customer sites, the following
attractor scheme for insertion is adopted. Using the largest circle again with radius
Z, for each of its critical points (generally three or fewer), it can be shown that
there is no other facility within distance Z of any of these critical points. This
observation is important as it shows that at least one new facility has to be located
somewhere inside this region. This statement can be shown empirically, but it is
also mathematically proven in Mladenović et al. (2003). It is therefore important
to consider these areas where the new locations will be sited. Within VNS, each
time a facility is removed and relocated, the local search is adopted. If the solution
is improved, the following updating takes place by defining the largest circle, the
neighbourhood for removal and the new area where to locate. For example, when
the q non-promising facilities are saved, one facility at a time is located randomly
in those areas near the critical points of the largest circle, the reallocation process
is then used based on avoiding unnecessary repetition of computations. That is,
only affected circles have their centres and radii recalculated using their earlier
respective centres and radii as the starting solution. The allocation of customers
is also performed effectively by considering whether or not a customer lost his/her
original facility. The process is repeated until there are no non-promising facilities
remaining or the solution cannot improve anymore. This enhancement, when tested
for the n = 439 TSPLib data set, shows a significant improvement over its original
implementation.

The effect of this neighbourhood reduction has also helped to identify adaptively
the best value of Kmax as well as the best neighbourhood structures Nk(X) that are
worth examining. A VNS-based heuristic with all the above ingredients was able to
obtain for the first time optimal solutions for larger TSPLib instances, see Elshaikh
et al. (2015) for more details.

8.4.2.2 Perturbation-Based Metaheuristics

The idea is to perturb the current feasible solution by allowing it to have up to q
facilities over or below p. This up and down shifting, which is repeated several times,
has the tendency to retain those very promising facilities in the defined set. Salhi
(1997) originally put forward this approach for the p median problem which is now
successively adopted and extended for the p-centre problem (Elshaikh et al. 2016).
The operators ‘add’, ‘drop’ and ‘swap’ are adopted here. The first operator applies
when the solution has p − q or p facilities to reach p or p + q facilities, whereas
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Fig. 8.3 A perturbation-based metaheuristic

the second operator is used when the solution has p or p + q to reach p − q or p
facilities. The last operator is activated when the solution has exactly p facilities.
The ‘add’ and ‘drop’ moves are implemented based on the following neighbourhood
reductions.

We define the kth covering circle CCk = {P = (x, y) ∈ �2| d(P, CT1) ≤ δk},
k = 1, . . . , q with k facilities being either removed (the ‘drop’ move) from CCk or
added (the ‘add’ move) to CCk. Both the removal and the addition mechanisms are
performed using either k = q in one go or gradually adding or removing one facility
at a time until it reaches either p + q, p or p − q, see Fig. 8.3 for an illustration. Note
that the value of q can be made dynamic using some form of learning. Besides, this
value does not have to remain the same when the search goes over or under the value
of p (i. e., p − q1; p + q2).

In the swap move, a facility in CC1 is removed and relocated randomly in the
continuous space also in CC1 where a local search is then activated. Note that
the Elzinga-Hearn algorithm or its equivalent (see Sect. 8.4.1) is applied at each
solution to obtain the optimal centre for each cluster irrespective of whether or not
the solution is feasible in terms of the number of facilities. These guided schemes
reduce the computing time considerably enabling large TSPLib instances with over
1300 nodes and p = 10, . . . , 100 to be solved efficiently; see Elshaikh et al. (2016)
for these encouraging results.
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8.4.2.3 Guiding the Search through Forbidden Regions

In the local search, extra care is needed when locating the removed facilities in the
continuous space. Here, a new location chosen randomly on the plane may end up by
chance being too close to one of the already selected facilities. Given the search is on
the plane, one way forward is to construct a small area around each of the existing
locations and make them tabu or forbidden. The idea of using forbidden regions
is also adopted during the construction of the initial solution where the idea is to
avoid having facilities that are too close to each other. This is explored successfully
by Gamal and Salhi (2001) for the multi-source Weber problem (MSWP). In brief,
during the construction phase of the initial solution or during the local search, any
new continuous location, which lies in these forbidden regions, will be excluded
from being selected. This useful information guides the search by avoiding these
specified non-promising areas, thus reducing unnecessary computational efforts that
would have been wasted otherwise.

In our experiments, a forbidden region is defined as the area enclosed by a circle
with its centre at an already chosen location. The radius of the kth forbidden area(
R̃k

)
is defined as R̃k = αRk with Rk being the radius of its original circle and

parameter α set close to zero, say α = 0.05. This setting could also be made adaptive
by increasing α (say α → 2α) or decreasing it (say α → α/2) depending on whether
the number of rejections is low or high, respectively, as demonstrated by Luis et
al. (2009) for the capacitated MSWP. Elshaikh (2014) and Elshaikh et al. (2018)
adapted the reformulation local search (RLS) which was originally proposed by
Brimberg et al. (2014, 2017) for the MSWP by incorporating forbidden regions and
other attributes. For example, when tested on the n = 439 TSPLib instance with
p = 10, 20, . . . , 100, the best average deviation is reduced from 3.114% to 2.647%,
besides guaranteeing several optimal solutions, especially when p ≤ 40. In brief,
RLS is a new local search that aims to shift between discrete and continuous space
while augmenting the discrete problem with the newly found continuous points (see
Brimberg et al. (2014) for more details).

8.4.3 Optimal and Relaxation-Based Algorithms

We concentrate on two types of algorithms, namely the optimal method of Drezner
(1984a) and the reverse relaxation technique of Chen and Chen (2009). Neigh-
bourhood reductions are designed for each of these algorithms making them
more effective and suitable for solving larger instances either optimally or by
providing tight lower bounds which could also be used for benchmarking purposes
if necessary.
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8.4.3.1 Drezner’s Optimal Algorithm

Drezner (1984a) designed an optimal algorithm based on the idea of Z-maximal
circles. A circle is defined as maximal based on a given upper bound, Z.

Let the number of potential circles with n demand points be defined by
Nc(n) = �

∏
1(n) � + �

∏
2(n) � + �

∏
3(n)� with∏

1(n): set of null circles
(|∏1(n)| = Cn

1 = n
)
,∏

2(n): set of circles made up of two critical points
(|∏2(n)|=Cn

2 =n (n−1) /2
)
,

and∏
3(n): set of circles made up of three critical points making an acute triangle

(
|
∏

3
(n)| ≤ Cn

3 = n (n − 1) (n − 2) /6
)

Also let
Ej be the subset of customers encompassed by circle Cj and r(Ej) its radius.
Cj is said to be Z-maximal (or maximal for short) if its radius r(Ej) < Z and for

any demand point i �∈ Ej; r(Ej ∪ {i}) ≥ Z.
First, for a given value of Z the set of maximal circles is defined by

�Z = {
Cj ; j = 1, . . . , Nc(n)|r(Ej

)
< Z ∧ r

(
Ej ∪ {i}) ≥ Z∀i /∈ Ej

}
.

Drezner proposed two approaches; one uses the set covering problem, while the
other is based on a feasibility problem. In the former, the problem is similar to
the SCP given in Sect. 8.2.1.2(ii) except that for a given Z, the set of potential
circles becomes �Z , The feasibility problem (PF(Z)) on the other hand is defined as
follows:

Find

Xj ∈ {0, 1} , Cj ∈ �Z, such that
∑

Cj ∈�Z

aijXj ≥ 1∀i = 1, . . . . , n and
∑

Cj ∈�Z

Xj = p

With

Xj =
{

1 if maximal circle Cj is chosen
0 otherwise

and

aij =
{

1 if customer i is encompassed by maximal circle Cj

(
i.e., i ∈ Ej

)
0 otherwise

For both formulations when the solution is found, the new value of Z is set to
Z = Max (r(Ej)| Xj = 1) which then defines the new �Z . The process continues until
there is no feasible solution leading to the optimal solution having the last value of
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Z. It was found empirically that the use of (PF(Z)) is much more effective than using
the set covering problem. For instance, very recently Callaghan et al. (2017) showed
that for the n = 439 TSPLib instance with p = 90, the optimal solution was found in
just below 3 h (and using 393 calls to the model) using (PF(Z)), whereas the SCP-
based method needed about 38 h and 4580 calls. This observation was noted even
more emphatically for the n = 575 TSPLib instance where the optimal solution was
obtained after 30 h using PF(Z), whereas the former stopped after 2 days of running
with one feasible solution only and a 20% gap from the optimal solution. Callaghan
et al. (2017) were able to speed up considerably the optimal method of Drezner
(1984a), namely the one using PF(Z). This was achieved by incorporating efficient
neighbourhood reduction mechanisms, thereby enabling several larger instances to
be solved for the first time to optimality.

To respond to this challenge, a look-alike p-centre formulation Pop(Z), which
also considers (PF(Z)), is first proposed.

Minimize R

s.t. { ∑
Cj ∈�Z

aijXj ≥ 1∀i = 1, . . . . , n; ∑
Cj ∈�Z

Xj = p; Xj ∈ {0, 1} ; Cj ∈ �Z } ≡ (PF (Z))

and Xj r
(
Cj

) ≤ R for all j ∈ �Z

When testing the n = 439 TSPLib instance for p = 90 using Pop(Z), the optimal
solution was obtained about seven times faster than with PF(Z). Though it is
relatively harder to solve Pop(Z) than PF(Z), the former produces tighter Z values
leading to less calls, each requiring the long computational burden in defining �Z .
These results demonstrate that though a reduction in computing time is achieved,
there are two issues that could help to speed up the search. These include

1. An efficient identification of �Z from one iteration (or call) to the next and
2. A scheme to find a good compromise solution as a feasible solution may not

reflect the quality of the solution while an optimal solution may take too long to
find.

The following neighbourhood reductions aim to respond to (1) and (2).

(a) To check if Cj is Z-maximal we normally need to determine for every demand
point i if r(Ej ∪ {i}) ≥ Z by using the EH algorithm or similar. However, in our
situation if at any iteration k of EH the radius found, say r(Ej ∪ {i})k ≥ Z, then
we exit EH and check for the next i. There is no need to complete EH until the
end as r(Ej ∪ {i}) > r(Ej ∪ {i})k ≥ Z ∀ k. In addition, when EH is applied, in
our situation, the search starts with the critical points forming circle Cj instead.
This implementation cuts the computational burden considerably. These critical
points are stored in a data structure when determining circles in

∏
1,
∏

2 and
∏

3
at the very beginning, so no extra computational time is really required.

(b) It is also observed that a large number of Z-maximal circles remain maximal
from one iteration to the next. For instance, for n = 439 TSPLib and p = 100,
on average <20% of the circles need to be tested at each iteration (Callaghan et
al. 2017). It is therefore crucial to identify these circles as quickly as possible.
Let Zt be the value of Z at iteration t; then a maximal circle at iteration t
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remains maximal at iteration t + 1 if r(Ej) < Zt + 1 according to Lemma 1 in
Callaghan et al. (2017). This leads to not checking the expensive part which is
r(Ej ∪ {i}) ≥ Zt + 1 ∀ i as Zt + 1 < Zt.

(c) It is important to detect whether a circle is maximal or not quickly so as to avoid
performing an unnecessary full check. According to Lemma 2 in Callaghan et
al. (2017), if ∃i �∈ Ej � d(Pi, CTj) < Z then Cj is not Z-maximal. Also there
are some points that do not need to be checked. For instance if i �∈ Ej and
d(Pi, CTj) ≥ 2Z, there is no need to find r(Ej ∪ {i}) as r(Ej ∪ {i}) > Z (see
Lemma 3 in Callaghan et al. 2017). In other words, if d(Pi, CTj) ≥ 2Z ∀ i �∈ Ej,
Cj is systematically Z-maximal. This leads to performing the check for those
points in {i �∈ Ej| Z ≤ d(Pi, CTj) < 2Z} only. If this set is empty and Lemma 2
does not apply, then Cj is Z-maximal. In other words, there is no need to check
it.

(d) It is also useful to identify information from previous non-maximal circles.
For instance, if a circle Cj at iteration t is found non-maximal, it means there
was at least one point i1 �∈ Ej, say the qth point to be evaluated, that led to
r(Ej ∪ {i1}) < Zt. In the next iteration, it is important to start with i1 to check
whether or not r(Ej ∪ {i1}) < Zt + 1. This means the first (q − 1) points are
ignored leading to a saving of (q − 1) unnecessary checks each involving the
use of EH or its equivalent. This is considerable when applied to all circles.

For example, when these neighbourhood reduction schemes (a–d) are imple-
mented for the n = 439 TSPLib instance for p = 70, 80, 90 and 100, a massive
reduction in computational time is recorded. Individually (c) yields about 84%
reduction, followed by (d) with a similar amount of 83%, with (a) producing just
below 51% and finally (b) resulting in 26%. When all four are combined together
following the ranked order of their individual performances c-d-a-b, the following
cumulative percentage reductions of 84%, 90%, 96% and 97% are recorded. This
shows that only a tiny 3% of the total time is required there by demonstrating the
power of these neighbourhood reductions, which also enable the enhanced algorithm
to solve to optimality larger instances.

To tackle (b) a detailed analysis showed that CPLEX consumes approxi-
mately 30% and 80% on average of the CPU time (Callaghan et al. 2017) for
n = 439 TSPLib and n = 575 TSPLib, respectively. The higher values are found
with larger values of p, reaching 99% for the largest problem. This was also noted
to occur at the latter iterations mainly to guarantee optimality of Pop(Z) at a given
Z. In order to alleviate this issue, a scheme that adaptively guides the level of usage
of CPLEX is added. This scheme aims to terminate CPLEX earlier if a compromise
solution is considered to be good. To achieve this, a moving average over the last
m iterations is recorded for both the computing time for identifying the maximal
circles which we denote by CPU(max) and the time for running CPLEX denoted
by CPU(cplex). We define the ratio of these two times as λ = CPU(max)

CPU(cplex)
. If λ ≥ 1,

this shows that the time for identifying maximal circles is relatively higher. In this
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case, we solve the problem to optimality. However, if it is not the case, we set two

additional levels for the duality gap as GAP (%) =
⎧⎨
⎩

1.0 if λ ≤ 0.4
0.5 if 0.4 < λ < 1
0 otherwsie

.

The above reduction schemes have contributed significantly in determining
several optimal solutions for large instances up to n = 1323 and p = 10, 20, ....100
for the first time.

8.4.3.2 Relaxation-Based Approaches

The idea is to relax the original problem by successively solving small sub-problems
that gradually increase in size until an optimal solution is found. Handler and
Mirchandani (1979) originally discussed this idea of relaxation, but Chen and
Handler (1987) proposed an algorithm where at each iteration, a demand point
is added and the new augmented sub-problem is then solved again. The search
continues until an optimal solution for the sub-problem happens to be feasible for
the original problem. Chen and Chen (2009) revisited the problem by adding k
demand points at a time. Three relaxation-based algorithms known as the improved,
the binary and the reverse relaxation algorithms were presented. Callaghan (2016)
performed an extensive experiment and concluded that the reverse relaxation
algorithm is the most promising. This led to the design of three neighbourhood
reductions to speed up this algorithm, so it can be used to solve larger instances
either optimally or by providing tight lower bounds (Callaghan et al. 2018). For
convenience, the reverse relaxation algorithm is briefly summarised in Fig. 8.4 as
some of its steps form the basis of the following neighbourhood reductions.

(a) In Step 1, the initial subset is randomly chosen which may not be easy to
replicate and may lead to either fast or slow convergence. One way forward
is to construct such a subset deterministically reflecting the characteristics of
the p-centre problem. As shown by Chen and Handler (1987), the smallest

1-  Set the lower bound LB, the value of k, the set of potential circles J (| J | = Nc) and choose

     randomly a subset of demand points SUB (| SUB |<< n).

2-  Compute aij (i = 1,...,| SUB |; j = 1,...,Nc) based on LB and solve the corresponding set

     covering problem.

3-  If the solution X is feasible (i.e., ∑ Xj ≤ p) go to step 4; 
jϵJ

Otherwise set the new value of LB to the smallest radius of a circle in SUB that is larger

than LB, and go to Step 2.

4-  If X is feasible for the original problem, the optimal solution is X and stop.

Otherwise add k furthest demand points to SUB and go to step 2.

Fig. 8.4 Main steps of Chen and Chen’s algorithm (Chen and Chen 2009)
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possible value of �SUB� required to yield a solution of p circles is to have at
least MinSUB = Min

r≥3
Nc(r) ≥ p with Nc(r) = Cr

1 + Cr
2 + Cr

3.

The idea is to use the vertices of the convex hull as a guide and let CH denote
such a subset. It can be shown that these points are not all necessarily critical
points. We construct SUB as follows: Let i1 be the furthest point to CH and set
SUB = {i1}. If �SUB � < p, allocate all demand points to their nearest point in
SUB and identify the largest cluster. Choose the next point to add to SUB as
the furthest point from this largest cluster, say i2 and set SUB = SUB ∪ {i2}.
This mechanism is repeated until �SUB � = MinSUB where the construction of
the circles is performed. If the solution is not feasible in SUB (i.e., there are
not enough circles), continue the addition of new points in the same way until a
feasible solution is found.

(b) In Step 4, the added k points need not be necessarily the furthest points. For
instance in the worst scenario, all or most of the furthest k points may belong to
the same elongated cluster as shown in Fig. 8.5 where four points (P1, P2, P3,
P4) are close to each other forming a small cluster, denoted by cluster 1. Once
P1 (the furthest from the solution) is added (in bold), a new much improved
solution can be found showing that its contribution is important. However, the
addition of the other three points, P2, P3 and P4, will not affect this new solution
and their inclusion will only add unnecessary computations. It is therefore
important to identify such a cluster, so these three points do not need to be
part of SUB. This rule can be applied to other clusters to identify the more
representative points to add. The addition of the k new points can be performed
either by including one point at a time followed by the evaluation of the new
solution configuration or by adding all the k points in one go.

Fig. 8.5 Effect of point clusters and artificial circle in the addition of the new points
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To speed up the search even more, artificial circles are constructed whose
centres remain the centres of the existing circles but whose radii are increased
to Z. These are the dotted circles shown in Fig. 8.5. The checking is based on
those uncovered points away from the artificial circles instead of using all the
initial uncovered points. As an example when tested on the n = 439 TSPLib
instance for p = 10, 20, . . . . , 100, this neighbourhood reduction eliminates
over 10% of computing time.

(c) Also, the value of k in Step 4 does not have to remain constant at each iteration
and for all instances. This parameter can be made dynamic at a given iteration
t. Let Nt

unc denote the number of uncovered points at iteration t. We can then
define k(t) = f

(
p,Nt

unc

)
.

(d) In Step 3, LB is updated by taking the next radius larger than the current
value of LB. Though this is mathematically correct and will end up with the
final value, the search may use too many updates, many of which turn out to
be unnecessary. Instead of choosing the next largest, we adopt a jump-based
scheme to select the jumpth largest. A similar but simpler idea was initially
proposed and successfully implemented for the vertex p-centre problem by Al-
Khedhairi and Salhi (2005) where a jump of two was used. This is extended
by defining the jump as a function of a predefined maximum jump size, and

the ratio Nt
unc

n
. This jump-based scheme systematically learns as the search

progresses. Note that the obtained solution may provide an upper bound instead
of a lower bound. In this case, a backtracking is required by evaluating the
values of LB between LB(t) which was definitely a lower bound and LB(t + 1)
which happens to be an upper bound. Here at most (jump(t) − 1) jumps may be
required to guarantee optimality.

These neighbourhood reductions were found very promising when compared
to the original implementation. For instance, when tested on the n = 439 TSPLib
instance with p = 10, 20, . . . , 100, an average reduction in computing time of
nearly 90%, with the smallest being just over 50% and the largest nearly 97%, was
observed.

The incorporation of all the above reduction schemes enables the algorithm to
solve most of the larger instances optimally within 3 h of computing time. For those
instances where the optimal solution could not be guaranteed, a tight lower bound
was recorded, which may be used in the future for assessing new heuristics.

8.5 Neighbourhood Reduction Highlights and Conclusions

In this chapter, a brief review of both the vertex and planar p-centre problems
is given with an emphasis on contributions made by Zvi Drezner. Several neigh-
bourhood reductions especially designed for these two location problems are then
discussed with the aim to enhance the efficiency of existing algorithms or in
assisting at designing a more effective heuristic or optimal algorithm. For the vertex
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p-centre problem, a series of neighbourhood reduction rules are presented that
have enhanced the performance of existing optimal algorithms considerably thus
enabling the exact solution of well-known ORLib instances (n = 100 to 900) and
the n = 1060 TSPLib instance to be obtained in much faster time than before.
Similarly, for the continuous p-centre problem, four TSPLib instances varying in
size from n = 439 to 1323 with p = 10, 20, . . . , 100 are used as a platform to
demonstrate the effectiveness of the proposed neighbourhood reduction schemes.
Enhanced VNS and perturbation heuristics are now much more effective than
before. Also, Drezner’s optimal algorithm and the relaxation-based methods of
Chen and Chen are now able to provide optimal solutions for the first time for many
of the largest instances tested, and tight lower bounds for the rest.

The implementation of these exact methods using the neighbourhood reduction
schemes discussed in this chapter can be made even faster if a tighter initial
solution is provided, say by a powerful metaheuristic. In addition, as these schemes
tend to cut on computational time by avoiding time wastage, if the same allowed
computing time is used as the stopping criterion for the enhanced version, the new
solution might easily improve on the original one as many more iterations would be
performed leading to more moves being evaluated.

It is also interesting to observe that in Sect. 8.4.3.1(c), the checking area in
Lemma 3 and the recording of the points that define non-maximal circles can be
made slightly tighter as recently pointed out by Plastria (2017).

There exist a few variations of the p-centre problem. In the conditional p-
centre problem some (say q) facilities already exist and the objective is to locate
p new facilities in addition to the existing q facilities. Minieka (1980) presented the
problem while Drezner (1989, 1995) defined it formally as the (p, q) centre problem,
and put forward a binary search to solve it. Chen and Chen (2010) also adapted their
algorithm discussed in Sect. 8.4.3 to tackle this problem. Another related problem is
when each demand point needs to be covered by at least α facilities. This problem,
initially proposed by Krumke (1995), is known as the α-neighbourhood p-centre
problem, and has its applications in the case of facility disruption. Chen and Chen
(2013) used Minieka’s algorithm and modified their relaxation method described in
Sect. 8.4.3 to solve this problem. Very recently, Callaghan et al. (2018) studied both
variants by adapting the powerful reduction schemes discussed in Sect. 8.4.3 so that
larger problems can now be solved to optimality for the first time.

One possible extension is to adapt the neighbourhood reductions used for the
continuous problem in Sect. 8.4.3 that rely on maximal circles, cluster points
and artificial circles, to the discrete problem though this case can be solved by
other means. It is also worth noting that reduction schemes do exist for other
combinatorial and global optimisation problems. In general the more constrained
the problem is, the more significant the impact of neighbourhood reduction can be.
For example, in the vehicle routing problem, a saving on CPU time of up to 85%
was recorded without a significant loss in solution quality (Salhi and Sari 1997; Sze
et al. 2016, 2017).

It is necessary to mention in conclusion that the use of neighbourhood reduction
techniques may adversely affect the solution quality. The aim is therefore to
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construct such schemes which only exclude moves that have a high probability of
not harming the quality of the solution. This risk presents an exciting challenge
of finding the right balance between a strong neighbourhood reduction (remove as
much as possible) and maintaining solution quality.
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Chapter 9
Innovations in Statistical Analysis and
Genetic Algorithms

Taly Dawn Drezner

9.1 Opening: Background and a Role Model

I am very lucky to have Zvi Drezner as a father. He is a warm, dedicated,
and engaged dad, as well as a successful researcher and a true role model in
both life and work. Curious about the world, I followed his (and my mother’s)
footsteps into academia, though with a focus in ecology (more precisely, the life
science component of Geography, called biogeography). Through the years we
have conversed about many topics from natural history and science, to astronomy,
statistics, and genetic algorithms, among many others. From these conversations,
we were both exposed to new ideas through stimulating and fun conversations. I am
very fortunate to have these very special father–daughter times, which I cherish.

Zvi’s family discussions about research don’t end with wife Tammy and daughter
Taly; one day my 9-year old son sat on Grandpa Zvi’s lap looking at an image
on the computer of population and facility locations in Orange County, California,
which my son curiously asked about. After grandpa’s explanation, young Ryan said,
“There should be more facilities in denser areas!” Grandpa was so impressed, that
he developed and together we wrote up the answer to that comment, which was
published (Drezner et al. 2019) shortly after Ryan’s 10th birthday.
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9.2 Overview

Through the many conversations Zvi Drezner and I have had, several innovations
have emerged. Two papers represent the intersection of a biologically trained sci-
entist with genetic algorithm approaches that mimic biological principles, resulting
in new approaches and the identification of weaknesses such as terminology that
is used incorrectly in genetic algorithms relative to the biological counterparts that
those concepts mimic.

Our other innovations involve improvement in methods, data collection, and
statistics. I developed a new approach rather intuitively for collecting data to
estimate transition points in populations (Drezner 2008). Statistically unconfirmed,
my father and I developed the statistical foundation with the help of an order
statistics specialist. We also developed an improvement to the Bonferroni statistical
correction, which adjusts output for false positive results that are generated as a
byproduct of running multiple statistical tests, a common occurrence in ecology
and other disciplines. We updated the Bonferroni approach, creating a far less
conservative version for more practical use.

9.3 Innovations in Genetic Algorithms

Zvi Drezner has often focused on optimization problems that typically have too
many solutions to check individually or solve by a branch and bound algorithm.
Thus, heuristic approaches are needed to find good solutions so as to solve problems
with a reasonable amount of computing time and resources. There are several
commonly used heuristic approaches including tabu search (Glover and Laguna
1997), simulated annealing (Kirkpatrick et al. 1983), and variable neighborhood
search (Hansen and Mladenović 2001). All of these approaches select a starting
solution and then seek to improve that solution with a possibly better one in the
next iteration. By comparison, the genetic algorithm heuristic approach includes
multiple solutions at a time and seeks good solutions through a merging process
of other solutions, and isolating better solutions for further improvement. In many
cases, better results are obtained through a merging process.

Zvi Drezner has worked extensively with genetic algorithms (GAs). The GA
approach mimics biological processes for algorithm development to solve opti-
mization problems. GAs take a set of solutions and “mate” them to find improved
solutions. Mating involves combining elements of each parent to create a new
solution, the offspring. Each solution is an individual in the population. The process
of mating, producing offspring, and adding them into the population is repeated
a given number of times. Fitness in GAs is the value of the objective function
and the goal is to find the solution with the best objective function value. The
best population member is the GA outcome. All GAs include: (1) rules for parent
selection, (2) procedures for merging or combining the two parents and generating
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offspring, and (3) a decision rule to determine which offspring are to be kept (at the
expense of an existing member) and which should be removed (death or becoming
non-reproductive). Any of these three components can be modified to improve the
performance of the algorithm. Being biologically trained, I discussed biological
phenomena and applications with Zvi Drezner and we developed new approaches
for GAs based on biological principles. We also identify terms used in GAs that are
inconsistent with their usage in biology.

In both of our GA papers, we pursue new approaches for parent selection. Most
GAs select two parents at random, though in nature this is not a random process. My
parents (Drezner and Drezner 2006) first designated about half of the population as
males and half females. Parents are then selected randomly, one from each gender.
Although very basic, this replication of nature yielded improved results. Drezner and
Marcoulides (2003) suggested selecting one parent at random, and then selecting the
second parent that is most dissimilar to the first parent from a random subset. In our
work, we proposed two non-random parent selection rules, one mimicking the alpha
male phenomenon in nature (one male to several females). The other was inspired
by ideas of female choice, where one (the female) is randomly selected but the better
of two randomly selected males is chosen for mating with a pre-specified probability
of π .

9.3.1 Biological Background

A gene is a piece of DNA that influences a trait in that organism (Freeman et al.
2014). The same gene may have several forms, called alleles (Freeman et al. 2014).
For example, in Mendel’s famous pea experiments, the gene for seed shape included
an allele for round seeds and an allele for wrinkled seeds (Mendel 1866; Freeman
et al. 2014).

Every individual possesses a unique combination of genetically determined traits,
some of which may benefit it through its life. If those alleles translate into beneficial
traits that result in the production of more offspring, then more individuals in the
next generation will carry those traits (alleles). By comparison, other traits may
confer disadvantages that reduce an individual’s fitness. Fitness is the number of
offspring an individual can produce relative to other individuals (Freeman et al.
2014). If these disadvantages translate to reduced reproductive success, those traits
will be represented in proportionally fewer individuals in the next generation. Thus
the next generation will typically have more individuals that carry beneficial traits
and fewer individuals with the disadvantageous traits. Through generations and
time, the genetic make-up of a population changes. Natural selection occurs in
populations through time. These principles of inheritance and the success of more
fit individuals have been applied in GAs to solve optimization problems.
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9.3.2 The Female Choice Approach

In nature, females may choose their mate in a variety of ways, including through
visual cues such as coloring and appearance, as these can be signs of health and
access to food, or females may choose mates through preference of a particular
male’s territory (e.g., better resources) (Rosser 1992; McGraw and Ardia 2003).
In our female choice-inspired study (Drezner and Drezner 2018), two random
individuals (males) are selected. The better individual is selected as the first parent
at a pre-specified probability 0 ≤ π ≤ 1 of the time. Otherwise, the other individual
is selected as the first parent. When π = 1, the better population member is always
selected as the first parent, and when π = 0 the inferior one is always selected.
The other sampled individual is returned to the population, and then the second
parent (the female) is selected by the Drezner and Marcoulides (2003) principle
that selects a more dissimilar mate, also consistent with the biological principle
of inbreeding depression (Edmands 2007; Fenster and Galloway 2000). The GA
process then commences, mating these two parents to produce an offspring. This
was tested on π with values of 0, 25, 50, 75, and 100% to find the best value of π .

Extensive experiments were performed on the planar p-median problem (the
multi-source Weber problem) (Brimberg et al. 2000), and the quadratic assignment
problem (Drezner 2015). The planar p-median was tested on three problems with
n = 654, 1060, and 3038 demand points (Reinelt 1991) for a total of 57 instances.
Each instance was run 10 times and the best and average solution was recorded.
The best solutions were obtained for π = 0. For example, the best known solution
was found for the n = 654 instances for all 17 instances in all 10 runs. Unlike our
original biological premise, the quality of the solution generally deteriorates as π

increases. Four new best known solutions were obtained for the n = 3038 instances
(for p = 250, 350, 450, 500). The quadratic assignment problem was tested on the
(de Carvalho and Rahmann 2006) 14 instances. The best results were obtained for
π = 0.25. One new best known solution was obtained for quadratic assignment
problem instance BL144 (Drezner and Drezner 2018).

9.3.3 The Alpha Male Approach

In nature, many species have social structures with a dominant male that sires many
or all offspring in a group of females (Freeman et al. 2014). Species with dominant
males include various mammals such as baboons (Galbany et al. 2015), rodents
(Farentinos 1980), horses (Wolter et al. 2014), and seals (Hoelzel et al. 1999), as
well as other animal groups including birds (Polak 2006), insects (McDermott et al.
2014), and fish (Solomon-Lane et al. 2014). Male to male competition or combat
may determine which male gets to mate, sometimes with multiple females (Haley
et al. 1994). In such situations the stronger, healthier male is most likely to be the
victor. Initially, we followed this principle by selecting the best population members
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as alpha males in developing the approach. However, randomly selected alpha males
yielded better results. In Drezner and Drezner (2019) we began with a population
of 100 and randomly selected k individuals of the population as alpha males, with
the rest of the individuals defined as female (100 − k). The value of k is a parameter
of the algorithm. Each female was randomly paired with one of the alpha males
for mating and then an offspring was generated. Thus, 100 − k new offspring were
produced, resulting in 200 − k individuals (the original 100 plus 100 − k offspring).
The 100 best individuals were carried forward to constitute the next population. We
tested many values of k to find the best performing one. This process was repeated
and each time k members were randomly selected as alpha males (they may have
been, e.g., females, previously). This process was repeated a pre-specified number
of times so that run times are comparable to previous experiments (Drezner and
Misevičius 2013).

We tested the alpha male approach on the de Carvalho and Rahmann (2006)
14 instances of the quadratic assignment problem. We tested fixed values of k in
every iteration and randomly generated the value of k in a range in every generation.
Generating the value of k in a range provided better results than a fixed value of
k. The best results were obtained around k = 25 in a range of 5, for example,
20 ≤ k ≤ 25. For k = 25 there are, on average, about 3 females associated with
each alpha male. Values vary in the animal world, but are often one male to a single
digit number of females (Lukas and Clutton-Brock 2014). Two new best known
solutions were obtained for the quadratic assignment problem instances BL100 and
BL121 (Drezner and Drezner 2019). Our results show that randomly selected alpha
males rather than better fit ones yielded the best results for solving our quadratic
assignment instances. We also observed that when the female mates with an alpha
male that is more dissimilar to her, the results are better, consistent with biological
observations that breeding with close relatives produces less fit offspring, termed
inbreeding depression in populations (Freeman et al. 2014). We also observe that
when the number of females per alpha male fluctuates (e.g., over time), the results
are better than with a fixed number of females, which necessarily occurs in animal
populations.

9.3.4 Genetic Algorithm Terms and Parallel Biological
Principles

In biology, the term fitness refers to how many viable offspring any given individual
can produce relative to other members of the same species (Freeman et al. 2014).
Fitness is related to the environment and to interactions with other species, both
positively (e.g., mutualisms, facilitation) and negatively (e.g., competition). By
comparison, in GAs fitness is not related to offspring production (foundational in
biology) nor to the environment, as the environment is not a component of GAs.
Rather, in GAs fitness represents the value of the objective function and the goal is
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to find the most fit population member (best solution), i.e., how good an individual
is in its value of the objective solution. Thus the term fitness strongly diverges from
its biological origins.

The term invasion (or invasive species) relates to the establishment of a species
in a new place beyond its native range, where it negatively impacts (sometimes
dramatically) the native species and community (e.g., Kent et al. 2018). Introduced
species fall under a similar definition but their effect on the native community is less
destructive. Both of these refer to new species to an area. In contrast, immigration
is when individuals of the same species move from one population to another
already established population. Immigration is important for increasing gene flow
and fitness in recipient populations, while the term invasion is inherently negative
and involves new, competing species that do not contribute to the gene pool of
another species, in this case the one of interest (Whiteley et al. 2015). In GAs, a
few outsiders may be added to increase genetic diversity, akin to the process of
immigration in biology, but the term invasion (perhaps derived from the human idea
of an attack by a foreign army) has been misapplied to this process. Since GAs only
involve one species, they do not include interspecific (between species) interactions.

Both in biology and in common usage, the term generation refers to a large
segment of a population made up of similarly aged individuals, or a cohort. In GAs,
however, the term is essentially used in place of the term “birth” or to describe a
single offspring, which is “generated.” Thus a family with three children would be
described as being composed of two generations biologically (parents, children),
while in GAs, each child represents a different generation.

There are also examples of GA results that parallel biological phenomena
more closely. For example, individuals that are too similar or too different yield
poor offspring in both GA and in the natural world (inbreeding and outbreeding
depression). For example, fitness can decline when reproduction occurs between
genetically distant members of the same species (outbreeding depression) (Edmands
2007; Fenster and Galloway 2000). In GAs, the equivalents of both inbreeding and
outbreeding depression also show reduced success. Drezner and Drezner (2018)
review many of these applications and many more parallels between GAs and the
biological processes that inspire them.

9.4 Innovative Statistical Analysis

Zvi Drezner and I also have two statistical innovations. (1) We developed the
statistical underpinnings of a new field approach designed to estimate transition
points in a population (of any species). The principle is not specific to the life
sciences and can be used for numerous applications that require transition point
(from one stage to another) assessment or quantification in a population where
individual transition age is variable. (2) Inspired by our exposure to order statistics,
we developed a new and far less conservative approach for dealing with type I (false
positive) errors that result when multiple statistical tests are run.
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9.4.1 Estimating Transition Between Stages

Life cycle transition points (such as the age when juveniles transition to adults)
are foundational in ecology. I estimated the juvenile–adult transition age (when
reproduction begins) in a long-lived species (e.g., 150–250 years). Estimating the
mean age at which a population becomes reproductive is complicated; sampling
for the youngest reproductive individual yields an outlier (whose value is related
to sample size), thus not representing a measure of central tendency for the
population. Sampling individuals over many years can be difficult in long-lived
species. In a population of 400 individuals whose lifespans average 200 years, only
two individuals per year will transition, requiring decades of observations. Even
sample size, foundational in statistics, is itself difficult to establish as very young
juveniles are irrelevant, as are older adults. Distinguishing those individuals that
are statistically meaningful and which are not is unclear. I now briefly introduce
the species I used to develop the new approach for context and then I discuss the
methodology and its statistical foundations.

The saguaro (pronounced “swah-roh”) cactus (Carnegiea gigantea, Fig. 9.1) is a
keystone species and a charismatic plant that symbolizes the desert, with branches
(“arms”) that seem to reach up to the sky (Drezner 2014). The age of transition from
juvenile to reproductive adult varies with environmental conditions. Several of the

Fig. 9.1 Different life stages of the saguaro cactus (Carnegiea gigantea). Left: single-stemmed
reproductive adults (the two taller stems, each with reproductive structures visible at their apex).
Middle: juvenile, non-reproductive plant (no reproductive structures observed). Right: a plant
displaying the branched form, with reproductive structures visible on the branches as well. Image
taken by TD Drezner at the Kofa National Wildlife Refuge, Arizona, in the Sonoran Desert
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plants in Fig. 9.1 show the presence of fruits (irregular small features at the tops
of the plants). As individuals get older, branches eventually develop, where each
additional branch essentially doubles the number of seeds that can be produced each
season by that plant (Steenbergh and Lowe 1983). Just as the age when reproduction
starts varies over the species’ range, branching is also variable. For example, in dry
areas, plants tend to be under-branched, while where more water is available, plants
use that water to increase the number of seeds they produce by branching (Yeaton
et al. 1980).

In order to establish the age at which these plants begin to produce offspring,
the oldest juveniles (e.g., 5 oldest) with no reproductive structures (flowers, fruits),
and the same number of the youngest adults that are reproductive, were sampled
(Drezner 2008). These are the individuals that are near the transition point (Drezner
2008). Individual age was estimated from height using a site-specific model
developed for this particular species (Drezner 2003). I sampled the oldest pre-
transition and the youngest post-transition members in four environmentally distinct
populations for comparison. Each population was extensively searched such that the
number of plants examined to isolate the oldest pre- and youngest post-transition
individuals was large. The average age of these (e.g., 10) plants yielded the estimate
for the mean transition age in that population. This methodology was later employed
in a second study to find the transition from columnar form (no branches) to the
branched form (Drezner 2013b). In the juvenile–adult transition study, the five (k)
shortest flowering individuals and the five tallest non-flowering individuals were
extracted. For the follow-up study on the transition to branched form, I used k = 10
(Drezner 2013b). When originally published, this approach was presented as it was
carried out, but it was developed only intuitively (Drezner 2008) and was lacking
statistical justification. We developed the statistical underpinnings of the technique.
We assume the following (Drezner et al. 2015):

1. Once an individual has transitioned to the next stage, it does not revert back.
2. The transition age is normally distributed. Other distributions can be analyzed in

the same way.
3. There are about the same number of individuals at a given age in the range

covered by the 2k observations.

The total number of individuals observed in a population (typically identified as
the “sample size”), those assessed, and then included or excluded from the final 2k

list is not relevant to our analysis. For example, if a million very young juveniles or
very old adults were also present in the population of interest, it would not change
our analysis or our results. We found the transition distribution as follows:

Let the k expected smallest values of the standardized Normal distribution for
a sample of n be a1(n) ≤ a2(n) ≤ . . . ≤ ak(n). These values were found by
extensive simulations. The unknown mean and standard deviation of the distribution
of the transition age are μ and σ . The data consist of the k youngest post-transition
individuals with ages a1 ≤ . . . ≤ ak and k oldest pre-transition individuals with
ages b1 ≥ . . . ≥ bk .
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To fit the data for a specific sample size n to the order statistics requires finding
the μ and σ that satisfy the following set of equations as closely as possible:

aj (n)σ + μ = aj ;−aj (n)σ + μ = bj for j = 1, . . . , k. (9.1)

The solution that minimizes the sum of squares of errors in these equations can
be obtained by solving a simple linear regression where μ is the y−intercept and σ

is the slope. The solution to this simple linear regression is based on several values:

μ =

k∑
j=1

aj +
k∑

j=1
bj

2k
; Sx = 2

k∑
j=1

a2
j (n); Sy =

k∑
j=1

{
(aj − μ)2 + (bj − μ)2

}
;

Sxy =
k∑

j=1

aj (n)
(
aj − bj

)
. (9.2)

In addition to the mean μ calculated in (9.2)

σ = Sxy

Sx

. (9.3)

The standard errors of μ and σ are

SE(μ) =
√

Sy − σSxy

4k(k − 1)
; SE(σ) = SE(μ)

√
2k

Sx

. (9.4)

We calculated the correlation coefficient r and found the p-value of the regres-
sion

r = σ

√
Sx

Sy

. (9.5)

When the analysis is repeated for various values of n, the n that yields the
largest value of r is selected for calculating the values in Eqs. (9.2) and (9.3). A
spreadsheet that automatically calculates μ, σ , and their standard errors for the
transition distribution for any k ≤ 10 is available at http://onlinelibrary.wiley.com/
doi/10.1002/env.2351/suppinfo (Drezner et al. 2015). The spreadsheet calculates the
values by Eqs. (9.2)–(9.5) for every 10 ≤ n ≤ 200, selects the sample size resulting
in the largest value of the correlation coefficient r , and records the parameters of the
transition distribution for the selected n. Researchers can insert their observations
to obtain the results. For complete details see Drezner et al. (2015).

http://onlinelibrary.wiley.com/doi/10.1002/env.2351/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/env.2351/suppinfo
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The main results (Drezner et al. 2015) include:

1. The originally developed methodology is statistically sound and offers a new,
practical, and robust approach for estimating transition points such as in years of
age.

2. We calculated the underlying statistics and confirm that the measure of cen-
tral tendency originally estimated (Drezner 2008, 2013b) is indeed the mean
(Drezner et al. 2015).

3. While the original means were correct, the standard errors reported in the two
original studies were not, and interestingly, all eight erroneous values originally
reported (Drezner 2008, 2013b) were higher than the updated, correct values.
Even with means as high as 139 years, the updated SE values in all 8 field-
collected datasets were less than 1 year, including those based on only 5 pre- and
5 post-transition values (Drezner 2008; Drezner et al. 2015).

4. Despite the small number of values used in the final calculations (recognizing
that those are derived from a much larger number of measurements), the results
are robust and insensitive to changes in k. The start of branching study used
k = 10; we compared those results with k = 5, 6, 7, 8, and 9 individuals from
each stage. The estimated mean ages for the branching transition in the four sites
with k = 10 (k = 5 in parentheses following) were: 77.8 (79.1) years of age,
95.9 (97.2), 102.9 (102.8), and 139.2 (139.9) (Drezner et al. 2015).

5. This technique makes assessing transitions fast and efficient, requiring only
one field season, and can be easily calculated with our spreadsheet http://
onlinelibrary.wiley.com/doi/10.1002/env.2351/suppinfo (Drezner et al. 2015).

9.4.2 The Correlated Bonferroni Technique

Running multiple statistical tests yields multiple p-values, creating a statistical
challenge as the more tests that are run, the more likely a significant result will
be obtained by chance. Twenty results would be expected to have one significant
(p < 0.05) result by chance alone. In fact, there is a 64% chance that at least one
result in 20 would be statistically significant. The Bonferroni technique (BT) was
developed to correct for false positive (type I) errors. It approximately divides α

(e.g., 0.05) by the number of significant results (k), and only results with p-values
lower than the new threshold pass the test (Bonferroni 1936; Miller 1981). The
BT was updated by Holm (1979) who proposed the less conservative sequential
Bonferroni technique (SeqBT) (Rice 1989) where all significant p-values are placed
in ascending order, recalculating α

k
for each test anew in sequence. Thus, the tenth

smallest p-value must be less than approximately α
10 (see Table 9.1), the ninth

smallest p-value less than α
9 , etc. The SeqBT has since been adopted in many studies

(e.g., Drezner 2013a; Gittman et al. 2016; Snyder and Stepien 2017).
Concerns have been expressed about even the less conservative SeqBT. Not

only is it used inconsistently, but the decision-making process for applying it is

http://onlinelibrary.wiley.com/doi/10.1002/env.2351/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/env.2351/suppinfo
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Table 9.1 Critical values for 3 ≤ s ≤ 10 significant results compared with BT

k s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10 SeqBT/
ρ = 0.383 ρ = 0.677 ρ = 0.800 ρ = 0.862 ρ = 0.897 ρ = 0.919 ρ = 0.933 ρ = 0.943 BTa

1 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500

2 0.0263 0.0290 0.0320 0.0343 0.0359 0.0370 0.0378 0.0383 0.0253

3 0.0183 0.0221 0.0263 0.0294 0.0316 0.0331 0.0342 0.0349 0.0170

4 0.0179 0.0223 0.0256 0.0279 0.0294 0.0305 0.0313 0.0127

5 0.0195 0.0228 0.0250 0.0266 0.0276 0.0284 0.0102

6 0.0207 0.0229 0.0244 0.0254 0.0262 0.0085

7 0.0212 0.0227 0.0238 0.0245 0.0073

8 0.0214 0.0224 0.0232 0.0064

9 0.0214 0.0221 0.0057

10 0.0212 0.0051

aFor the BT the value for k = s significant results is used and for SeqBT the values up to k are
used

uncertain (Cabin and Mitchell 2000). For example, should two tables, each with 10
significant results, be pooled (thus k = 20), or does each set of analyses stand on
its own (Cabin and Mitchell 2000)? In a survey of editors of three highly respected
life science journals, there was no consensus on the usage and application of the
SeqBT (Cabin and Mitchell 2000). Also troubling is that more in-depth analysis is
discouraged with the SeqBT (Moran 2003). As more significant results are obtained,
the cut-off significance level declines, potentially eliminating results that had been
previously viable with a smaller k (Moran 2003). This is even more problematic in
cases where results are consistently significant, but in all cases they are very close
to α (e.g., 0.05) (Moran 2003). In such cases, the consistency across tests, rather
than demonstrating a reliable pattern worth reporting, instead becomes a liability
as many or all results are rejected by the SeqBT. If 5 of 10 tests are significant
(p < 0.05) but only marginally, the SeqBT will fail to reject all null hypotheses
(i.e., none would remain significant) (Moran 2003). However, the likelihood that 5
of 10 tests yield p < 0.05 by random chance is less than 1 in 10,000! Thus, some
of these 5 results must be significant, yet their significance would be reversed with
the BT or SeqBT corrections. The Bonferroni technique and its modifications have
been used to reduce false positive results, but at the cost of rejecting viable results.
The SeqBT remains rather conservative (Cabin and Mitchell 2000). The reduction
of potential false positive results should not lead to excessive false negative results
from BT-type corrections that may be too stringent.

The Bonferroni tests assume that these ordered statistics (p-values in ascending
order) are essentially independent, yet they are not. Even using randomly generated
data, the correlation coefficient ρ may be surprisingly high (e.g., for k=10, ρ is
greater than 0.9, Table 9.1) (Arnold et al. 1992). We developed the correlated BT
(CorBT) (Drezner and Drezner 2016) that incorporates the inherent correlation
that exists among ordered data. The CorBT can be used in place of the BT, or
it can be used sequentially in place of the SeqBT, as our proposed sequential
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correlated BT (SeqCorBT). When ρ = 0, the CorBT is equivalent to the BT, and
the SeqCorBT is equivalent to the SeqBT. The correlation values ρ and the cut-off
p-values for 3–10 significant results are given in Table 9.1. Note that for a different
value of α, the critical values can be approximated by multiplying by α

0.05 . By
adjusting for the natural correlation among p-values, much less conservative cut-
offs result, but researchers can soundly correct for false positive results associated
with multiple tests. For 10 significant (p = 0.05) results, the lowest significance
level must be lower than 0.0212 to be significant using our SeqCorBT, compared
to <0.0051 with the BT or SeqBT tests. We provide a user-friendly spreadsheet
at http://onlinelibrary.wiley.com/doi/10.1002/bes2.1214/suppinfo which is available
for readers who wish to apply this technique to their own research.

Drezner and Drezner (2016) found that for s significant results

ρ ≈ 1 − 1.329

s
+ 6.396

s
√

s
− 12.646

s2 , (9.6)

with significance 3.5 × 10−169 for the regression analysis.
Let θ(ρ, k) be the critical value for the kth significant result. If the smallest p-

value of k significant results is less than θ(ρ, k), the kth null hypothesis can be
rejected with significance α. It is shown in Drezner and Drezner (2016) that

θ(ρ, k) = α

k
+

(
α − α

k

)
ρλ(ρ,k), (9.7)

where λ(ρ, k) is

λ(ρ, k) ≈ 3.928+ 1

1 − ρ

(
1.101 − 3.811

k
+ 4.765

k2

)
−(1−ρ)2

(
3.009 + 1.783

k

)
.

(9.8)

9.5 Summary

We proposed new techniques in statistics and in genetic algorithms. We used
biological principles to innovate new approaches in genetic algorithms that yielded
improved solutions to optimization problems, finding improved best known results
for multiple instances. These mimicked patterns in the natural world, including
female choice of mates, as well as alpha male social structures. We also highlight
inconsistencies between biological processes and their genetic algorithm counter-
parts.

Two other innovations in methodology and statistics include our development of
the sequential correlated Bonferroni test which controls for false positive results
that occur from running multiple statistical tests. It incorporates the correlation

http://onlinelibrary.wiley.com/doi/10.1002/bes2.1214/suppinfo
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between significant p-values, thereby resulting in a less conservative filter. We
also developed the statistical underpinnings of a new approach for estimating
transition points (in species or any other defined population) between stages.
Transition from one stage to the next is a natural part of life, yet it can be
difficult to estimate, particularly in cases where only a few transitions occur in
every measurement period. We confirmed the validity and applicability of this new
approach demonstrating low standard errors and robust output.

Interacting with a researcher in a very different field resulted in unique problem
solving opportunities. The intersection of a genetic algorithm researcher with a life
scientist helped to expose inconsistencies and fuel new avenues of investigation,
while the mathematical and statistical foundations offered by a mathematician
helped to solidify novel approaches for scientists. Such free form and synergistic
collaborations are too few in research, but offer great potential for new directions
and perspectives.
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Chapter 10
Hub Location and Related Models

Sibel A. Alumur

10.1 Introduction

This chapter discusses hub location, round trip location, transfer point location,
and collection depots location problems. We define each problem and present
mathematical formulations. We aim to reflect upon Zvi Drezner’s contributions
to the literature in each of the problem settings. In particular, we highlight the
difference between hub location and classical facility location problems. We present
mathematical formulations of the single and multiple allocation p-hub median,
uncapacitated and capacitated hub location, and p-hub center problems.

We also define and present mathematical models for the round trip location,
collection depots location, and transfer point location problems. Moreover, for
each of these problems, we discuss its relation to the hub location problem and
reflect upon Zvi Drezner’s contributions. We lastly present some extensions to these
problems and offer research prospects.

10.2 Hub Location Problem

Hubs are facilities that serve as switching, sorting, connecting, consolidation, or
break-bulk points to transport traffic between many origins and destinations. The
advantages of using hubs stem from (a) lower transportation or transmission costs
from consolidated flows that exploit economies of scale, especially between hubs,
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(b) reduced costs from establishing a sparser network to connect many dispersed
origin–destination pairs, and (c) better service from allowing more frequent con-
nections (Alumur et al. 2019).

Hub location problems address the location of hub facilities. A distinguishing
feature of hub location problems from the classical facility location problems is
that demand is specified between origin–destination pairs, rather than at points
or nodes of a network. In hub location problems, each point/node may have
demand with every other point/node in the network. Demand can be for movement
of passengers, freight, or information. Having demand between pairs of nodes
necessitates interaction between the new facilities, i.e., hubs, to be located. It is
usually assumed in classical facility location problems that new facilities would not
interact with each other nor would they interact with the demand points assigned
to other new facilities. In other words, the classical location problems involve the
location of non-interacting new facilities.

Hub location problems have various applications in transportation and telecom-
munication network design such as airline passenger and freight transportation,
maritime transportation, public transportation, express shipment delivery, postal
operations, trucking (truckload and less-than-truckload), and computer networks
design. The common phenomenon in designing such networks is to determine where
to consolidate and distribute flows or data, i.e., to determine the locations of hubs.

Hub location problems link facility location and network design decisions; hence,
they are very challenging set of problems. Most of the classical hub location
problems are proved to be NP-Hard. The reader may refer to Campbell et al. (2002),
Alumur and Kara (2008), Campbell and O’Kelly (2012), Farahani et al. (2013),
Contreras (2015), and Alumur et al. (2019) for reviews and discussions on hub
location problems.

Hub location problems are introduced to the literature by O’Kelly (1986).
The first mathematical formulation of the problem is a quadratic integer program
presented in O’Kelly (1987). The decision variables of this model are

xij =
{

1, if node i is allocated to a hub at node j,

0, otherwise.

The quadratic formulation can then be stated as:

Min
∑
i∈N

∑
j∈N

wij

(∑
k∈N

cikxik +
∑
m∈N

cmjxjm +
∑
k∈N

∑
m∈N

αckmxikxjm

)
(10.1)

s.t.
∑
j∈N

xjj = p, (10.2)

∑
j∈N

xij = 1 i ∈ N, (10.3)
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xij ≤ xjj i ∈ N, j ∈ N, (10.4)

xij ∈ {0, 1} i ∈ N, j ∈ N, (10.5)

where N is the set of nodes, wij is the demand to be transported from node i to node
j , cij is the unit transportation cost from node i to node j , and α is the economies
of scale discount factor.

The objective function (10.1) calculates total cost of transportation. Con-
straint (10.2) ensures that exactly p hubs are to be located. By constraints (10.3)
each demand node is allocated to a single hub. Constraints (10.4) allow demand
nodes to be allocated only to located hubs and constraints (10.5) define the binary
decision variables. This model is referred as the (single allocation) p-hub median
problem in the literature.

Initial models of hub location were very much inspired from the facility location
literature. In addition to the median (minisum) version, center (minimax), and
covering type hub location problems have been defined and modeled (Campbell
1994). Moreover, uncapacitated and capacitated hub location models with fixed
costs have also been widely studied.

In addition to the location decisions, access network and inter-hub network
design decisions are to be made in hub location problems. Access network consists
of the connections that link demand points to hubs, whereas inter-hub network
consists of the network connections only between hubs. Another network design
decision can be for having direct connections between (non-hub) demand points.

Access network design options presented in the literature include single, multi-
ple, and r-allocation models. In single allocation, each demand node is connected to
a single hub, as stated in constraints (10.3). In multiple allocation, a demand node
can be allocated to as many hubs as necessary, and finally, in r-allocation models
each demand node can be allocated to at most r hubs.

We would like to note that for the single allocation version, assigning a demand
node to its nearest hub does not necessarily provide optimal solutions to the problem
unlike other uncapacitated facility location problems because allocation decision
depends on origin–destination flows. O’Kelly (1987) worked on a data set based on
the airline passenger interactions between 25 U.S. cities in 1970 as evaluated by
the Civil Aeronautics Board (CAB). In an optimal single allocation solution using
the CAB data set, for example, the city Denver is allocated to a hub at Chicago
located 907 miles away, rather than the hub at Dallas-Fort Worth located only 664
miles away. On the other hand, even though allocation to the nearest hub may not
be optimal, as noted in Alumur et al. (2019), the nearest hub may provide a good
approximation to the optimal single allocation solution which is a property used in
some heuristics.

Similar to the access network, different network topologies are possible for the
design of the inter-hub network, such as a star, tree, cycle, or a mesh network.
Most of the literature focuses on building complete hub networks in which each
hub has a direct connection with another. In most of the models though, this is an
implicit assumption of having triangle inequality in the distance (or cost) data and
also having no costs associated with establishing the inter-hub connections.
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After the introduction of the quadratic integer program by O’Kelly (1987),
different linear formulations of hub locations problems have been presented in the
literature. In the sequel, we present linear integer programming formulations for
single and multiple allocation p-hub median, uncapacitated and capacitated hub
location, and p-hub center problems. In addition to the previously defined decision
variables, we will use the following 4-index continuous variables:

xijkm = Fraction of flow from origin i to destination j that is routed via hubs at
locations k and m in that order.

The single allocation p-hub median problem can be modeled as (Skorin-Kapov
et al. 1996):

Min
∑
i∈N

∑
j∈N

∑
k∈N

∑
m∈N

wij cijkmxijkm (10.6)

s.t. (10.2) − (10.5),∑
m∈N

xijkm = xik i, j, k ∈ N, (10.7)

∑
k∈N

xijkm = xjm i, j,m ∈ N, (10.8)

xijkm ≥ 0 i, j, k,m ∈ N, (10.9)

where cijkm = cik + αckm + cmj .
Using the same set of decision variables, a linear integer programming for-

mulation of the multiple allocation p-hub median problem can be stated as
(Skorin-Kapov et al. 1996):

Min
∑
i∈N

∑
j∈N

∑
k∈N

∑
m∈N

wij cijkmxijkm

s.t. (10.2), (10.5), (10.9),∑
k∈N

∑
m∈N

xijkm = 1 i, j ∈ N, (10.10)

∑
m∈N

xijkm ≤ xkk i, j, k ∈ N, (10.11)

∑
k∈N

xijkm ≤ xmm i, j,m ∈ N. (10.12)

In the uncapacitated/capacitated hub location problem, total number of hubs to
be located is no longer restricted to p, instead, there is a fixed cost term in the
objective function associated with locating a hub. Let fk denote the cost of opening
a hub at node k, the objective function of the uncapacitated/capacitated hub location
problem can then be written as:
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Min
∑
i∈N

∑
j∈N

∑
k∈N

∑
m∈N

wij cijkmxijkm +
∑
k∈N

fkxkk. (10.13)

To model the uncapacitated hub location problem, constraint (10.2) is to be
removed from each of the single and multiple allocation p-hub median models and
objective function (10.13) is to be employed.

For the capacitated hub location problems, additional capacity constraints are
introduced into the models. If �k denote the capacity of hub k, the capacity
constraint on the total flow passing through a hub can be stated as:

∑
i∈N

∑
j∈N

∑
m∈N

wij (xijkm + xijmk − xijkk) ≤ �kxkk k ∈ N, (10.14)

where the third them in the parenthesis is included to avoid the double-count
(Campbell 1994).

Different types of capacity constraints are modeled in the literature such as
having a capacity constraint only on the total inflow/outflow to/from a hub. It is also
possible to have capacity constraints for limiting the flow on the access or inter-
hub network connections. Modeling of capacity constraints depends very much on
intended applications of the problem.

The p-hub center problems, on the other hand, are minimax type hub location
problems where the maximum cost is to be minimized. Different types of p-hub
center problems are defined in the literature (Campbell 1994). The most commonly
employed p-hub center objective is

min max
i,j,k,m∈N

{cijkmxijkm}. (10.15)

A number of different formulations, for example, with less number of decision
variables or tighter constraints, are presented in the literature for all versions of
hub location problems. For a comparison of formulations in terms of computational
efficiency and a list of effective solution methodologies, we refer the reader to the
abovementioned surveys and reviews on hub location.

Most of the literature has focused on network hub location problems where the
locations of the hubs are restricted to the nodes of the network, i.e., the set N . It is
possible to model and solve continuous hub location problems on the plane as well.
Initial work on planar hub location problems are by O’Kelly (1986, 1992), Aykin
(1988, 1995), Campbell (1990), and O’Kelly and Miller (1991).

Zvi Drezner’s contributions to hub location literature focused on a special case
of the multiple allocation p-hub median problem. Motivated from the operation of
a domestic airline network of a relatively small country such as Japan, Sasaki et al.
(1999) defined and studied the 1-stop multiple allocation p-hub median problem.
In this problem, each origin–destination flow can make at most one stop at a
hub facility, compared to having at most two hub-stops in classical hub location
problems. To have at most one hub-stop, each demand point needs to be connected
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to all hubs. This is a special case of the multiple allocation p-hub median problem
in the presence of triangle inequality and when there is no cost reduction due to
economies of scale (α = 1). Optimal solution of this problem provides a lower
bound on the objective function value of the multiple allocation p-hub median
problem.

Sasaki et al. (1997) referred the same problem as the relay point location
problem. Sasaki et al. (1999) formulated the problem as a p-median problem and
proposed a branch-and-bound algorithm and a greedy-type heuristic. Suzuki and
Drezner (1997), on the other hand, studied the continuous version of this problem
when the demand is evenly spread in a given area to provide insights on the solution
patterns.

An interesting approach to the 1-stop multiple allocation p-hub median problem
was later developed by Drezner and Drezner (2001). The authors modeled the case
where passengers do not necessarily select the hub providing the shortest distance.
The portion of the passengers who select a particular hub is taken to be inversely
proportional to a power of the total distance to the destination through that hub,
which is referred as the gravity rule (Huff 1964, 1966).

We would like to conclude this section by presenting a critical assessment of the
basic assumptions made in many hub location models. As noted before, exploiting
economies of scale is one of the major advantages of using hub networks. In
preliminary models of hub location, economies of scale is incorporated by using
a constant discount factor, usually referred as α, that is independent of flows.
However, as pointed out initially by O’Kelly and Bryan (1998), and later on by
Kimms (2006) among many others, that the reduction in costs due to economies
of scale should depend on the amount of flow carried and, hence, this simple cost
model is not valid in practice. Alternatives for better modeling economies of scale
in hub location models include modeling cost of flows on the links by using a
non-linear function dependent on flow (e.g., O’Kelly and Bryan 1998), allowing
for building incomplete hub networks (e.g., Alumur et al. 2009), and operating
different types of vehicles by incorporating fixed and variable costs of vehicles in the
models (e.g., Serper and Alumur 2016; Masaeli et al. 2018). The reader is referred
to Alumur et al. (2019) for an extensive discussion on this topic.

10.3 Round Trip Location Problem

The round trip location problem is to find the location of a facility that minimizes
the maximum weighted distance between the facility and pairs of demand points.
This is a minimax type single facility planar location problem introduced by Chan
and Hearn (1977).

There are n pairs of demand points with fixed locations denoted by Pi = (ai, bi)

and Qi = (ci, di), i = 1, . . . , n. X = (x, y) denotes the coordinates of the new
facility to be located. The ith trip, which is weighted by a positive constant wi ,
starts at the facility X, visits two demand points Pi and Qi sequentially, and returns
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to the facility. Alternatively, due to symmetrical distances, the ith trip can be deemed
between Pi and Qi that needs to go through facility X. The “cost” of each round
trip distance is therefore

Fi(X) = wi[d(Pi,X) + d(X,Qi) + gi], (10.16)

where d(X, Y ) is the distance between locations X and Y , and gi = d(Qi, Pi) or
any constant.

The cost function with the general (lp) distance norm can be written as:

Fi(X) = wi[(|x −ai |p +|y −bi |p)1/p + (|x − ci |p +|y −di |p)1/p +gi], (10.17)

where p ≥ 1.
The problem is to minimize the maximum round trip distance, that is,

min
X

max
1≤i≤n

{Fi(X)} . (10.18)

It is also possible to model the minisum version of this problem minimizing the
total distance traveled. However, we would like to note that the problem with the
minisum objective would be the same as the standard Weber problem.

The round trip location problem is equivalent to the single facility minimax hub
location problem on the plane (1-hub center problem on a network). In this setting,
the starting point, i.e., the origin, of delivery i is Pi and the receiving point, the
destination, is Qi . Each delivery needs to make a stop at the hub facility X which is
to be located. The weight wi may represent the demand between ith pair of demand
points or the average time to travel one unit distance.

Chan and Hearn (1977) modeled and solved this problem only for the rectilinear
distance case. Drezner and Wesolowsky (1982) proposed a solution method appli-
cable for the Euclidean as well as general (lp) distances. This method involves the
numerical solution of differential equations by standard means. Faster algorithms
with improved complexity were later on proposed by Drezner (1982) for general
distances, and Drezner (1985) for the rectilinear distance case.

O’Kelly and Miller (1991) studied the single facility minimax hub location
problem and visualized the “ellipse” enclosing the feasible locations for a hub to
serve pairs of demand points. The authors compared different solution techniques
and concluded through their computational experiments that the algorithm of
Drezner and Wesolowsky (1982) is extremely efficient. More recently, O’Kelly
(2009) extended this problem to three dimensional space, where the nodes are
permitted to be on different layers, by formulating and solving the 3-D single facility
minimax hub location problem.
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10.4 Collection Depots Location Problem

The collection depots location problem is to find the location of a facility that
minimizes total distance traveled to provide service to a given set of demand points
using known locations of collection depots. (Although the name of the problem
may imply that the facilities to be located are the “collection depots,” note that the
locations of the collection depots are fixed.) In this problem, each service consists
of a trip from the facility to the customer to collect materials, then dropping the
materials at one of the available collection depots, and returning to the facility to
wait for the next call. Alternatively, the first leg of the trip can be from the facility to
the collection depot, the second from the depot to the customer, and the last from the
customer to the facility to be located. If the distances are symmetrical, total distance
traveled would be the same.

The collection depots location problem is introduced by Drezner and
Wesolowsky (2001), where they also provided a number of potential applications of
the problem. Possible applications of the collection depots location problem include
a septic tank cleaning service, garbage collection or tree pruning service, a delivery
service that requires a stop at some available warehouse, a quality inspection of
delivered items on the way to the customers. If fueling is required either on the
way to the customer or on the way back, gas stations can be modeled as collection
depots as well.

The difference of this problem from the round trip location problem is that
the stops are not predetermined. Travel from/to the customer to/from the depot is
dependent on the location of the facility which is to be determined. More precisely,
each demand point is to be allocated to a collection depot and this allocation depends
on where the facility is located. Hence, each customer is not necessarily allocated
to its closest depot. In this sense, the round trip location problem is a special case
of the collection depots location problem where the allocations of demand points to
the collection depots are fixed.

A related problem, not involving return trips, is the traveling salesman location
problem (Berman et al. 1995). In this problem, a new facility needs to be built to
serve customers who are visited several at a time. The collection depots location
problem is different than the traveling salesman location problem because of the
need to allocate the nearest depot to one leg of each return trip.

Consider n demand points denoted by Pi , i = 1, . . . , n, and m collection depots
denoted by Cj , j = 1, . . . m, with fixed locations. Let wi be the weight of demand
point Pi and X denote the location of the new facility. The function d(X, Y ) denotes
the distance between locations X and Y . The collection depots location problem can
then be stated as:

min
X

n∑
i=1

wi

{
d(X, Pi) + min

1≤k≤m
{d(Pi, Ck) + d(Ck,X)}

}
. (10.19)
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Drezner and Wesolowsky (2001) extensively analyzed this problem and proved
a number of solution properties. Berman et al. (2002) investigated the collection
depots location problem on a network. The authors additionally considered the
minimax version of the problem. Minimax objective can be used for the same
potential applications when the decision maker wishes to minimize the largest
service time rather than the total. The minimax version of the problem is later on
referred as the round trip center problem by Tamir and Halman (2005). The minimax
collection depots location problem can be stated as:

min
X

max
1≤i≤n

{
wi

{
d(X, Pi) + min

1≤k≤m
{d(Pi, Ck) + d(Ck,X)}

}}
. (10.20)

Berman and Huang (2004) and, more recently, Drezner et al. (2018) studied the
multifacility collection depots location problem on a network and in the plane,
respectively. Multiple facilities are to be located in this problem setting. The
multifacility problem in the plane can be modeled as:

min
Xj ,j=1,...,p

n∑
i=1

wi min
1≤j≤p

{
d(Xj , Pi) + min

1≤k≤m

{
d(Pi, Ck) + d(Ck,Xj )

}}
,

(10.21)
where p facilities are to be located and Xj denotes the location of the j th facility.

The multifacility collection depots problem can be viewed as an extension of
the p-median problem (multi-source Weber problem). When there are no collection
depots (m = 0) or when all n demand points also serve as collection depots (m = n),
the objective function of the multifacility collection depots problem is two times that
of the p-median problem. Moreover, if the number of collection depots is the same
as the number of facilities (m = p), then the optimal solution is to locate depots
and facilities at the same locations and the problem again converts to the p-median
problem (Drezner et al. 2018).

Berman and Huang (2004) presented an integer programming formulation of this
problem on a network. The decision variables of the model are

xijk =

⎧⎪⎪⎨
⎪⎪⎩

1, if demand from node i is assigned to the facility at node j

and depot k is selected,

0, otherwise.

yj =
{

1, if there is a facility located at node j,

0, otherwise.

The multifacility collection depots location problem on a network can then be
formulated as follows:
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Min
n∑

i=1

n̄∑
j=1

m∑
k=1

wi[d(j, i) + d(i, k) + d(k, j)]xijk (10.22)

s.t.
n̄∑

j=1

yj = p, (10.23)

n̄∑
j=1

m∑
k=1

xijk = 1 i = 1, . . . , n, (10.24)

xijk ≤ yj i = 1, . . . n; j = 1, . . . , n̄; k = 1, . . . , m, (10.25)

xijk, yj ∈ {0, 1}, i = 1, . . . n; j = 1, . . . , n̄; k = 1, . . . , m. (10.26)

The objective function (10.22) minimizes the total weighted travel distance.
By constraint (10.23) exactly p facilities are to be located. Constraints (10.24)
ensure that each demand node is assigned to exactly one collection depot-facility
combination. Constraints (10.25) state that a demand node can only be assigned
to an open facility. Lastly, constraints (10.26) establish binary restrictions on the
decision variables.

The difference of the collection depots location problem from the hub location
problem is that there is no flow to be transported between the demand points,
collection depots, or facilities. Hence, we cannot talk about an origin–destination
flow in this problem setting. Thus, the collection depots location problem is not a
special case of the hub location problem.

10.5 Transfer Point Location Problem

Transfer point location problems are hierarchical type facility location problems
in which demand nodes are allocated to transfer points and transfer points are
connected to a central facility. An example of this problem setting is from
emergency services: The patients are first transferred to a transfer facility, such as
a helicopter pad, at normal speed and from there they are transferred to the central
facility, such as a hospital, at increased speed. Different types of the problem are
defined in the literature (Berman et al. 2007, 2008, 2005):

The Transfer Point Location Problem (TPLP): In this problem setting, the location
of the central facility is given and only one transfer point is to be located to serve a
given set of demand points.

The Multiple Transfer Points Location Problem (MTPLP): In this setting, the
location of the central facility is again given, and multiple transfer points are to
be located. Each demand point is to be served by a single transfer point and direct
connection of the demand points to the central facility is allowed.
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The Facility and Transfer Points Location Problem (FTPLP): This is the most
general setting where the MTPLP model is extended to also find the optimal location
for the central facility.

It is possible to model both minisum and minimax versions of all the above
problems. Berman et al. (2007) analyzed properties of the solutions to the TPLP
model. They studied both planar and network variants, as well as the minisum and
minimax objectives. Berman et al. (2008) investigate the MLTP model both in the
plane and on a network. Berman et al. (2005), on the other hand, propose heuristic
solution procedures for solving the FTPLP. Below, we present the FTPLP model
under both objective functions.

FTPLP involves the location of p transfer facilities and a single central facility.
There are n demand points to serve with known locations Pi , i = 1, . . . , n. Let wi be
the weight associated with demand point i. Let X denote the location of the central
facility and Hj the locations of the transfer points with j = 1, . . . , p. The function
d(X, Y ) denotes the distance between locations X and Y . The cost (or time) per unit
distance of traveling from the transfer point to the facility is to be multiplied by a
reduction factor of α < 1. The minisum FTPLP is then formulated as:

min
X;Hj ,j=1,...,p

{
n∑

i=1

wi min
{
d(Pi,X), [d(Pi,Hj ) + αd(Hj ,X)], j = 1, . . . , p

}}
.

(10.27)

The minimax FTPLP model is

min
X;Hj ,j=1,...,p

{
max

i=1,...,n

{
wi min

{
d(Pi,X), [d(Pi,Hj ) + αd(Hj ,X)], j = 1, . . . , p

}}}
.

(10.28)

Assuming that there are n nodes in the network and a facility or a transfer point
can be located at any node of the network, Berman et al. (2005) formulated the
minisum FTPLP on a network with the use of the following decision variables:

xijk =

⎧⎪⎪⎨
⎪⎪⎩

1, if demand from node i is assigned to a facility at node k via a

transfer point from node j,

0, otherwise.

xik =
{

1, if demand from node i is assigned directly to the facility at node k,

0, otherwise.

zk =
{

1, if the facility is located at node k,

0, otherwise.
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yj =
{

1, if the transfer point is located at node j,

0, otherwise.

Let Cijk = d(i, j) + αd(j, k), and Cik = d(i, k). The minisum FTPLP on a
network can then be formulated as follows:

Min
n∑

i=1

n∑
j=1

n∑
k=1

Cijkxijk +
n∑

i=1

n∑
k=1

Cikxik (10.29)

s.t. xijk ≤ yj i, j, k = 1, . . . , n, (10.30)

xijk ≤ zk i, j, k = 1, . . . , n, (10.31)

xik ≤ zk i, k = 1, . . . , n, (10.32)

n∑
j=1

n∑
k=1

xijk +
n∑

k=1

xik = 1 i = 1, . . . , n, (10.33)

n∑
j=1

yj = p, (10.34)

n∑
k=1

zk = 1, (10.35)

xijk, xik, yj , zk ∈ {0, 1}, i, j, k = 1, . . . , n. (10.36)

Objective function (10.29) minimizes total distance traveled. Constraints (10.30)
and (10.31) ensure together that a node can be assigned to the central facility at
node k via a transfer point at node j only if there is a facility located at node k

and a transfer point located at node j . By constraints (10.32) direct connection of
node i to central facility k is not possible unless there is a facility located at node k.
Constraints (10.33) ensure that a node is either assigned to a transfer point or has a
direct connection with the central facility. Constraint (10.34) establishes p transfer
points, and constraint (10.35) limits the number of central facilities to 1. Lastly,
constraints (10.36) define the domain of the binary decision variables.

The FTPLP can be considered to be a special case of the hierarchical hub
location problem where the demand originates from many origin points and all
destined to a single destination point, i.e., the central facility, which happens to
be a hub.

The hierarchical hub location problem was introduced by Yaman (2009) moti-
vated from the design of cargo delivery and telecommunication networks. The aim
is to serve the demand between every pair of nodes in the network with minimum
total cost. More specifically, given a set of demand nodes, a set of possible locations
for hubs, a set of possible locations for central hubs, the number of hubs and
central hubs to be opened, the traffic demand and the routing cost between pairs
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of nodes, and the discount factors due to economies of scale, the hierarchical hub
location problem determines the locations of hubs and central hubs, the assignment
of demand nodes to hubs, and the assignment of hubs to central hubs to minimize
the total routing cost in the network.

In a classical hub network, a path connecting an origin–destination pair visits
at most two hubs. In a hierarchical hub network, it is possible to have paths
visiting four hubs between origin–destination pairs. A version of the hierarchical
hub location problem considering multiple transportation modes and time-definite
deliveries has been studied by Alumur et al. (2012).

Lastly, we would like to note that although FTPLP reduces to the hierarchical
hub location problem, FTPLP should not be regarded as a hub location problem.
A distinguishing feature of hub location problems is to have flow between hub
facilities, whereas in transfer point location problems no flow is to be transported
between the transfer points as the demand is originated from many points but
destined to only one.

10.6 Extensions and Research Prospects

Travel distance or travel time is one of the most important input parameter used
in all location models. Many location problems implicitly assume symmetric travel
distances. However, as pointed out by Drezner and Wesolowsky (1989), distance
from point A to point B can be different than that of the distance from point B to
A. With this observation, Drezner and Wesolowsky (1989) introduced and solved
asymmetric Weber and minimax location problems with rectilinear and Euclidean
distances. A recent note by Drezner and Drezner (2019) addresses asymmetric
Weber and round trip Weber location problems when the distance or time to get
to a destination is affected by winds.

In many location models, distance and travel time are considered to be substi-
tutable. This is a consequence of having the implicit assumption of a constant travel
speed. However, travel speed is not constant in practice because there is acceleration
and deceleration portions involved in each trip. A more accurate modeling of
travel time, when it is not necessarily proportional to the distance, is proposed by
Drezner et al. (2009). They introduced and solved the Weber problem incorporating
Euclidean acceleration–deceleration distances.

If there is a discrete set of available facility locations, then it is possible to take
care of asymmetric travel distances or realistic travel times, taking acceleration–
deceleration into account, for example, by computing these parameters a priori for
each demand point–candidate location pair. Thus, for network location problems,
actual distances and travel times between each pair of nodes can be provided as an
input parameter. For planar location problems, on the other hand, this is not the case
as there are infinitely many possibilities for facility locations in the plane. Hence,
these issues need to be considered explicitly in planar location models as done in
Drezner and Wesolowsky (1989), Drezner et al. (2009), and Drezner and Drezner
(2019).
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Most hub location models focus on network models containing a discrete set of
available hub locations. However, as pointed out in Alumur et al. (2019), planar
hub location models may provide deeper geometric insights into the problem. Mul-
tifacility planar hub location problems have not received much attention compared
with single facility models. Solution techniques developed for other multifacility
planar location models may be useful in solving their hub location counterparts.
For example, algorithms provided for the round trip location problem (Drezner and
Wesolowsky 1982; Drezner 1982, 1985) may be useful in solving the multifacility
planar minimax hub center or hub covering problems.

As discussed before, one major drawback of many hub location models is having
simplified assumptions for modeling economies of scale, for example, using a
constant discount factor that is independent of flow (i.e., α). Given that economies
of scale is a raison d’etre for using hub networks, hub location research should
model economies of scale better. However, accurate models of economies of scale
that incorporate flow-dependent discounts may lead to non-linear formulations, and
consequently, to longer solution times and intractable models for large instances
(Alumur et al. 2019).

Another possible extension of hub location models is to incorporate the time
dimension such as by integrating frequency of service and scheduling considerations
into the models. How to incorporate time depends highly on intended applications of
the models, such as for passenger versus freight transportation networks. Modeling
the time dimension brings out synchronization issues which are generally very
challenging to model and solve as in service network design problems.

Accurate estimation of demand is very important in solving hub location
problems. Handling continuous demand (e.g., Campbell 1990; Suzuki and Drezner
1997) as well as modeling endogenous effects of hub locations on the demand (e.g.,
O’Kelly 1986) remains to be challenging, while such extensions will certainly make
hub location models more realistic.

Lastly, multifacility versions of the round trip location, collection depots loca-
tion, and facility and transfer points location problems offer further research
prospects.
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Chapter 11
Gravity Models in Competitive Facility
Location

Tammy Drezner

11.1 Introduction

I dedicate this chapter to my husband, Zvi Drezner, who has been the inspiration for
my work. As a Ph.D. student in Urban Planning, I was looking for a topic for my
dissertation. One evening, I asked Zvi to tell me more about his area of research. He
told me about facility location, a topic about which I knew little. The conversation
meandered through the different branches of location theory until Zvi mentioned
one of his papers about retail location and the “fact” that people patronize the
facility closest to them. I thought that this was not the case, people patronize a more
attractive facility at a greater distance, and a discussion about facility attractiveness
ensued. My advisor was intrigued by this new approach to modeling competitive
facility location. My dissertation was born. Zvi has been an inspiration ever since.
We have co-authored many papers about competitive facility location and other
location topics. It has been a pleasure and honor working with him.

The underlying theme running through all competitive location models is the
existence of an interrelationship between four variables: buying power (demand),
distance, facility attractiveness, and market share, with the first three variables
being independent variables and market share is the dependent variable. It is
implicitly assumed that revenue and profit are an increasing function of market
share. Therefore, maximizing market share is equivalent to maximizing revenue or
profit. Buying power, or effective buying income, is known (for example, in Sales
and Marketing Management magazine). Distance from demand points to facilities
can be measured. Attractiveness is usually estimated by surveys.
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Reilly (1931) suggested the gravity model. The model involves the hypothesis
that two cities attract retail trade from an intermediate town approximately in direct
proportion to the populations of the two cities and in inverse proportion to the square
of the distances from the two cities to the intermediate town (Buffa 1976). This rule
imitates the physics law of gravity. The city size represents the body mass. The
gravitational force declines by the square of the distance.

Huff (1964, 1966) proposed the use of the gravity model for estimating market
share suggesting that the probability that customers patronize a retail facility is
proportional to its attractiveness multiplied by a distance decay function f (d). The
distance decay is the rate at which facility attraction declines as a function of the
distance. Huff suggested the decay function 1

dλ , where λ is a parameter.
Another competitive facility model was suggested by Hotelling (1929). He

proposed that competitors compete by charging different mill prices and customers
select the facility that provides the lowest total price of mill prices plus the cost
of travel. This approach led to many papers (for example, Hakimi 1981; Drezner
1982; Hakimi 1983, 1986, 1990; ReVelle 1986; Ghosh and Rushton 1987; Serra
and ReVelle 1995) that apply the proximity rule, i.e., customers patronize the closest
facility. The proximity rule implies that all facilities charge the same price and thus
are equally attractive.

Drezner (1994a) assumed that customers are willing to travel an extra distance
to a more attractive facility. A utility function is defined and the customer selects
the facility with the highest utility. This is a generalization of the proximity rule
where only distance is considered in the utility function. These two approaches
were summarized in Drezner (1995). Drezner and Drezner (1996) generalized the
utility model to the random utility model. The components of the utility function
are assumed to have a random distribution. A similar approach was proposed by
Leonardi and Tadei (1984).

Drezner et al. (2011, 2012, 2015, 2016) proposed a new non-stochastic approach
for estimating market share captured by competing facilities. Each competing
facility has a “sphere of influence” determined by its attractiveness level. More
attractive facilities have a larger radius of the sphere of influence. The buying power
spent by a customer in the sphere of influence of several facilities is equally divided
among the competing facilities. The buying power of a customer in the sphere of
influence of no facility is lost. Lost demand is discussed in Sect. 11.3.3. Note that
ReVelle (1986) coined the term “sphere of influence.” However, ReVelle’s model is
based on the proximity rule, not on a “radius of influence.” In his model all demand
is satisfied and all the buying power is distributed among the facilities. The idea of
a radius of influence is at the core of central place theory (Lösch 1954; Christaller
1966). According to central place theory there is a maximum range of the good,
depending on retail category, that customers are willing to travel to obtain the good.
This concept is further considered by Zeller et al. (1980), Black (1984), and Ghosh
and Craig (1986, 1991) in the marketing literature and in Clark (1968) and Clark
and Rushton (1970) in the geographic literature. The reader is referred to Ghosh
and Craig (1991) for a comprehensive discussion of central place theory.
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There are many applications to competitive location models. The location
of shopping malls, grocery stores, general merchandise stores, specialty stores
(clothing, children apparel, shoes, men’s suits, jewelry, toys, appliances, computers
and computer supplies, books, gifts, hardware stores, office supplies, furniture
stores, food specialties, pharmacies, etc.), restaurants (fast food, coffee shops, ethnic
food, steak houses, ice cream parlors, sandwich places, etc.), gas stations, bank
branches, movie theaters, car dealerships, car repair shops, and many others. For
recent reviews of competitive facilities’ location problems see Berman et al. (2009),
Drezner (2014), Eiselt et al. (2015), Drezner and Eiselt (2002), and Eiselt (2011).

In Sect. 11.2 the gravity model formulation is presented. The three components
of the gravity model are the distance, the distance decay function, and the attractive-
ness. These components and variants thereof are discussed in detail.

In Sect. 11.3 many aspects of the gravity models are detailed.

1. The leader–follower model, also termed the Stackelberg equilibrium, is anchored
in game theory. The leader anticipates a follower’s reaction to his location
decision.

2. Allocating a given budget to facilities in order to maximize the increase in total
market share captured.

3. Most competitive facility location models assume that all available buying power
is partitioned among the competing facilities. Models that consider lost demand
are discussed.

4. Various scenarios in models that incorporate changing market conditions are
discussed. The minimax regret objective is minimized.

5. The threshold objective is minimizing the probability that a minimum threshold
market share is not met. If a facility fails to meet the threshold, it will have to be
closed.

6. Consistent and inconsistent rules. Whether a customer changes his/her mind on
the way to the selected facility when passing by another facility.

7. New facilities belonging to the same franchise cannibalize existing franchise
facilities.

8. The order of sequentially locating two facilities which belong to the same chain
is investigated.

In the following section I discuss gravity based models for non-competitive
location models. In Sect. 11.5, I describe four solution methods that concentrate
on competitive models but can be applied to many optimization models as well. I
conclude the chapter with ideas for future research.

11.2 The Gravity Competitive Facility Location Model

The gravity formulation for one new facility is as follows: Let n be the number of
demand points; the buying power at demand point 1 ≤ i ≤ n is bi ; p competing
facilities with attractiveness Aj are located at Xj = (xj , yj ) for 1 ≤ j ≤ p. The
distance decay function at a distance d from the facility is f (d).
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A new facility of attractiveness A is to be located at an unknown location X =
(x, y). The distance between demand point i and a location Z is di(Z). The market
share (total buying power attracted by the new facility) M(X) is

M(X) =
n∑

i=1

bi

Af [di(X)]
Af [di(X)] +

p∑
j=1

Ajf [di(Xj )]
(11.1)

This expression can be easily generalized to locating several new facilities and to
chain facilities where some of the existing facilities belong to one’s chain and are
not competitors. Drezner (1994b) found the best location for a new facility based on
the gravity rule using the decay function of f (d) = 1

d2 .
Implementing the gravity model requires the determination of (a) the distance

between demand points and facilities, (b) the distance decay function, and (c) the
attractiveness level of each competing facility.

11.2.1 The Distance

Hillsman and Rhoda (1978) and Hodgson and Neuman (1993) discussed three types
of errors in measuring distance from demand areas to facilities. Type A error is the
error in the estimation of distance between the demand point and the facility when
the facility is located outside the area represented by the demand point. Type B error
is the error in the estimation of distance between the demand point and the facility
when the facility is located inside the area represented by the demand point. Type
C error is the error caused by incorrect allocation of demand points to facilities.
Because the problem discussed below does not involve allocation of demand, only
Types A and B errors exist.

11.2.1.1 The Distance Correction

Drezner and Drezner (1997) proposed a distance correction to the gravity model
that may apply to other location models as well. In most location models demand is
represented by demand points. However, in reality, customers live in neighborhoods.
Data may be available by zip codes or census tracts. Listing all individual customers
is impractical. It is inaccurate to assume that all customers at a demand “point”
are at the same distance from a facility. The distance correction incorporates these
considerations. Drezner and Drezner (1997) suggested that if the area of a demand
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“point” is A, the distance to a facility from the center of the area (the demand
point) is d, then the corrected distance to be used in the gravity model is about√

d2 + 0.24A.
Drezner and Drezner (1997) used an example problem of 100 demand points in

a square of size 10 by 10 with seven existing facilities as depicted in Fig. 11.1. This
example problem was used in many papers (for example, O’Kelly 1995; Drezner
1995).

Each demand point has an area of 1. The market share captured by the new
facility is depicted in Fig. 11.2. On the left, the surface plot of the “standard” Huff
model using f (d) = 1

d2 as the decay function is depicted. On the right, the market
share captured when demand is continuous in the 10 by 10 square is depicted. When
demand is generated at demand “points” there are many peaks at various locations.
In the continuous case the surface is “smooth” with two local maxima. When a
decay function of f (d) = 1

d2+0.24
(distance correction) is used (as suggested in

Drezner and Drezner 1997), the surface is very close to the continuous surface with
two local maxima. See the figure in Drezner and Drezner (1997).
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11.2.2 The Distance Decay Function

The distance decay function represents the decline in the probability that a customer
patronizes a facility as a function of his distance from it. In the original gravity
model (Reilly 1931) it is assumed that the distance decay parallels gravity decay
and thus f (d) = 1

d2 . Huff (1964, 1966) suggested a decay function of f (d) = 1
dλ ,

where the power λ depends on the retail category. Huff found λ = 3 for grocery
stores (Huff 1966), λ = 3.191 for clothing, and λ = 2.723 for furniture stores (Huff
1964). Drezner (2006) found that for shopping malls λ = 1.27. This indicates that
distance is not as important when selecting a shopping mall as it is when selecting
a grocery store to patronize.

Wilson (1976) suggested an exponential decay e−λd which was used in many
subsequent papers (Fernandez et al. 2007; Sáiz et al. 2009; Aboolian et al. 2007a,b,
2009; Drezner and Drezner 2008; Hodgson 1981). Drezner (2006) compared power
and exponential decay on a real data set and showed that exponential decay fits
the data better. Other distance decay functions were successfully implemented. The
function f (d) = e−1.705d0.409

was used in Bell et al. (1998). A logit function f (d) =
1

1+eα+βd+γ d2 was used in Drezner et al. (1998b). A general decay function in the

context of gradual cover was analyzed in Berman and Krass (2002).

11.2.3 The Attractiveness

Huff (1964, 1966) suggested facility floor area as a surrogate for attractiveness. A
major improvement on Huff’s approach was suggested by Nakanishi and Cooper
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(1974) who introduced the multiplicative competitive interaction (MCI) model.
The MCI coefficient replaces the floor area with a product of factors, each an
attractiveness component. Each factor in the product is raised to a power. Thus,
the attractiveness of a facility is a composite of a set of attributes rather than
the floor area alone. The MCI model was elaborated on and applied by Jain and
Mahajan (1979) to food retailing using specific attractiveness attributes. Drezner
(2006) report on a study conducted by Drezner et al. (1998a) who surveyed 272
mall visitors. The survey asked respondents to rate the malls they were familiar
with on the nine mall attractiveness attributes that had been identified in previous
research:

1. Mall prices
2. Distance to mall
3. Adequate parking
4. Variety of stores
5. Mall safety
6. Food court/restaurants
7. Mall appearance
8. Favorite brand names
9. Movies/entertainment

Of the nine attributes, three were identified by a structural equations modeling
analysis (see Drezner et al. (1998a) for details) as predictors of malls’ overall
attractiveness: (a) variety of stores, (b) mall appearance, and (c) favorite brand
names. These three attributes were found to be comparable in their relative
importance.

Another extensive grocery stores study is by Bell et al. (1998) who interviewed
520 households over a 2 year period and recorded 30,012 shopping trips. Such
approaches to estimating the attractiveness level of competing facilities, based on
the MCI concept, require two surveys: one for determining the components of the
attractiveness level and a second one for estimating the weight of each component.

Two additional techniques, the inferred attractiveness and the derived attractive-
ness, were proposed (Drezner 2006; Drezner and Drezner 2000, 2002b). Both were
tested for estimating shopping malls’ attractiveness levels. Drezner and Drezner
(2000, 2002b) proposed the inferred attractiveness approach for estimating the
attractiveness of competing facilities, when locations of p existing competing
facilities in an area are known. The attractiveness levels are treated as p unknown
variables, one variable for each facility. The total buying power captured by each
facility is the facility’s total annual sales which is available in secondary data
sources. Each facility’s market share is a function of the attractiveness levels of
all competing facilities since all other parameters (buying power, distances to
demand points) are known and a specific distance decay function is assumed. The
attractiveness levels are then estimated by minimizing the sum of squares of the
differences between the actual market shares and the calculated ones. This is similar
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to the least squares multiple regression. Various distance decay functions were
tested in Drezner and Drezner (2002b) yielding comparable results for the facilities’
attractiveness levels.

Drezner (2006) proposed the derived attractiveness technique for estimating the
attractiveness of competing facilities using distance traveled to the facility. The
approach was tested on shopping malls in Orange County, California. 3112 shoppers
were intercepted in ten different malls. Shoppers were asked where they reside and
whether they came from home. All those who came from home were counted. A
list of the shoppers’ origin was constructed for each mall. In a manner similar to the
inferred attractiveness approach (Drezner and Drezner 2000, 2002b), each mall’s
attractiveness level was treated as an unknown variable and the expected number of
customers visiting each mall from each origin was estimated based on the population
at each origin and the distance between the origin and the mall.

To validate the findings of the inferred and derived attractiveness techniques,
two surveys were conducted: A survey of 272 respondents was reported in Drezner
and Drezner (2002b) and described above. A second survey was conducted in
conjunction with the derived attractiveness study (Drezner 2006). The 3112 patrons
who were intercepted at the ten malls were also asked to rate the mall they were
patronizing. They were asked to rate the mall on the three attributes: variety of
stores; mall appearance; and favorite brand names. An attractiveness level was then
calculated for each mall.

All four approaches (inferred attractiveness, derived attractiveness, and the two
surveys) are compared in Drezner (2006). All methods yielded similar attractiveness
level values confirming their validity. The derived attractiveness approach using
exponential decay function provided better results than the derived attractiveness
level using the power decay function.

Drezner et al. (2018c) introduced random attractiveness to the gravity model.
Customers’ attractiveness perception of a particular facility is likely to be varied
due to varying assessment of facilities’ attributes and varying levels of information
about the facilities. However, existing competitive facility location models assume
that facilities’ attractiveness levels are fixed.

Two solution methods are proposed. One method is based on discretizing
the attractiveness distribution (Drezner and Zerom 2016). A second method is
based on the concept of “effective” attractiveness of a facility. Effective facility
attractiveness is defined as the level of fixed attractiveness whose corresponding
optimal market share is approximately equal to the optimal expected market share
under random attractiveness. When a facility’s attractiveness is random, it tends to
lose some competitive advantage. The effective attractiveness of every facility is
lower than its average attractiveness. The decline in attractiveness for a given mean
is approximately proportional to the variance of the attractiveness distribution. The
accuracy of the results of both solution methods is confirmed by simulations.
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11.2.4 The Relationship Between Attractiveness and Distance
Decay

Drezner et al. (2018d) proposed a new gravity based competitive facility model
which is easier to implement than existing models. In existing gravity models, all
facilities have the same distance decay function. Drezner et al. (2018d) proposed
to replace attractiveness multipliers, see (11.1), by varying decay functions for
different facilities.

The model is based on the following observation: more attractive facilities attract
shoppers from larger distances. Facilities’ attractiveness is estimated by actual
customers’ behavior rather than by complex opinion surveys. For example, for the
exponential decay function f (d) = e−λd , facilities have different λs rather than the
same decay function for all facilities. Demand attracted by more attractive facilities
has a slower decay and thus has smaller λ values. No modifications are required
in order to apply existing solution algorithms to the new model. The effectiveness
of the new approach is demonstrated using a real data set. For complete details see
Drezner et al. (2018d).

11.3 Additional Considerations

In this section we present additional refinements to the basic competitive facility
location gravity model as well as investigate properties of competitive location
models. These considerations apply to gravity models as well as to other competitive
location models.

11.3.1 Leader–Follower Models

Drezner and Drezner (1998) considered the leader–follower problem which is
anchored in game theory and is also termed the Stackelberg equilibrium (Stackel-
berg 1934; Drezner and Drezner 2017). The leader plans to locate a facility knowing
that a competitor will locate his facility in the future at the best location for him,
knowing where the leader located his facility. The follower’s problem is identical to
the standard competitive location problem because the follower has all the necessary
information. The leader’s problem is more difficult. He needs to incorporate the
follower’s reaction in his location decision. For every possible leader’s strategy,
the follower’s problem has to be solved. The leader–follower location model in
a competitive environment was also investigated in Drezner (1982), Küçükaydın
et al. (2012), Plastria and Vanhaverbeke (2008), Redondo et al. (2013, 2010),
Saidani et al. (2012), Sáiz et al. (2009), Drezner et al. (2015), Eiselt (2011),
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and Eiselt et al. (2015). A recent review of leader–follower models is found in
Drezner and Drezner (2017).

Drezner and Drezner (1998) suggested three heuristic procedures for solving the
leader’s problem:

1. The brute force approach proposes to evaluate the market share on a dense
enough grid and hopefully identify the neighborhood of the global optimum.
Once this neighborhood is identified, a second finer grid search in this neighbor-
hood is performed.

2. The pseudo mathematical programming approach which consists of formulating
a different problem. The leader’s market share is maximized subject to the
derivative of the follower’s market share equal to zero.

3. The gradient search approach which finds a local maximum by applying a
gradient search from a randomly selected starting location for the leader’s new
facility. The gradient search requires the determination of the best location for
the follower’s competing facility in every evaluation of a possible location.

For complete details see Drezner and Drezner (1998). The computational
results indicate that the gradient search performed best. The pseudo mathematical
programming approach is recommended for users who do not wish to code a special
program but rather use standard software. The brute force approach is recommended
if the surface of the market share captured as a function of location is of value to the
user.

11.3.2 Budget Constraints

The location of several competing facilities with a given budget is considered in
several papers. Facility’s attractiveness depends on the investment allocated to it.
The attractiveness values of the facilities are variables. In addition to finding the
best locations, the purpose of this paper is to investigate a competitive location
problem to determine how to allocate a budget to expand company’s chain by
either adding new facilities, expanding existing facilities, or a combination of both
actions. Solving large problems may exceed the computational resources currently
available. The authors treat a special case when the market can be divided into
mutually exclusive sub-markets. These can be markets in cities around the globe or
markets far enough from each other so that it can be assumed that customers in one
market do not patronize retail facilities in another market, or that cross-patronizing
is negligible. The company has a given budget to invest in these markets. Three
objectives are considered: maximizing profit, maximizing return on investment
(ROI), and maximizing profit subject to a minimum ROI. An illustrative example
problem of 20 sub-markets with a total of 400 facilities, 4800 potential locations
for new facilities, and 5000 demand points is optimally solved in less than 2 h
of computing time or the facilities the planner also has to decide how to allocate
the budget to the facilities. The problem is also termed “location and design” of
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competing facilities (Aboolian et al. 2008, 2007a; Fernandez et al. 2007). A cover
based competitive model for this problem is in Drezner et al. (2012).

Drezner (1998) proposed the limited budget problem. The problem was for-
mulated in a continuous space. An interesting conclusion of the analysis is that
new franchises should invest the total budget in one new facility, while established
franchises should divide the budget about equally among several new facilities.

This conclusion is similar to the recommendations suggested in the Colonel
Blotto game (Roberson 2006). A given number of troops needs to be allocated
among several battlefields in order to win the most battlefields in a fight against
an enemy. Commanders/colonels with a small number of troops should put all their
resources in one battlefield, while commanders with many available troops should
allocate about the same number of troops to each battlefield.

Drezner et al. (2016) investigated a competitive location problem to determine
how to allocate a budget to expand company’s chain by either adding new facilities,
expanding existing facilities, or a combination of both actions. Solving large
problems may exceed the computational resources currently available. A special
case when the market can be divided into mutually exclusive sub-markets is
analyzed. These can be markets in cities around the globe or markets far enough
from each other so that it can be assumed that customers in one market do not
patronize retail facilities in another market, or that cross-patronizing is negligible.
The company has a given budget to invest in these markets. Three objectives
are considered: maximizing profit, maximizing return on investment (ROI), and
maximizing profit subject to a minimum ROI. An illustrative example problem of 20
sub-markets with a total of 400 facilities, 4800 potential locations for new facilities,
and 5000 demand points is optimally solved in less than 2 h of computing time. This
approach can be implemented in other facilities’ location objectives. For example,
suppose that in a p-median model, the demand area can be partitioned into mutually
exclusive subsets far enough from one another. The number of facilities in each
subset is determined so that the total cost is minimized.

11.3.3 Lost Demand

Most competitive location models assume that the whole buying power is distributed
among the competing facilities. In reality, if the closest facility is too far, customers
may select substitute facilities. For example, if a customer wishes to patronize
a Chinese restaurant and there is no such restaurant nearby, he may patronize a
different kind of restaurant or prefer to eat at home. His buying power is lost to
the competing Chinese restaurants. If the product is not essential, customers may
forgo the purchase rather than drive to a far location. The issue of lost demand was
analyzed in Berman et al. (2006). The decline in attracted buying power is modeled
as a declining step function.



264 T. Drezner

Drezner and Drezner (2008) considered two objectives. One of the objectives is
the minimization of the lost buying power, and the second is the maximization of
the buying power captured by one’s chain.

Drezner and Drezner (2012) suggested to model lost demand by establishing
a virtual competitor who is located at a distance D from all potential customers.
The virtual competitor is not located at a physical point. The distance D represents
the maximum distance customers are willing to travel to the competing facility.
The buying power captured by the virtual facility is actually the buying power lost
by “real” facilities. The virtual facility is closest to customers that have no “real”
facility within a distance D.

11.3.4 Changing Market Conditions

Drezner and Drezner (2002a) considered several ways in which market conditions
may change in the future. For example,

1. Buying power changing in time and can be different for different communities
which was also assumed in Drezner and Wesolowsky (1991), Farahani et al.
(2009, 2014, 2015), and Rezapour et al. (2011).

2. The attractiveness of one’s new facility may be different for different time
intervals.

3. A new competitor enters the market at some point in the future.
4. A competitor exits the market at some point in the future.
5. A competitor (or one’s own facility) is renovated at some point in the future,

thereby changing its overall attractiveness.

A scenario can incorporate more than one change in market conditions by com-
bining any number of the scenarios above. One can, for example, incorporate
continuous changes in buying power, entry of two competitors, and exit of another
competitor in one scenario. The objective is the minimax regret objective, see, for
example, Puerto et al. (2009).

Drezner (2009a) analyzed the model for a set of possible scenarios which may
exist in the future. The best location for a new retail facility such that the market
share captured at that location is as close to the maximum as possible regardless of
the future scenario is analyzed. This is also the minimax regret objective.

11.3.5 The Threshold Objective

The objective is minimizing the probability that the facility does not meet a given
market share, representing profit. This model is useful when a facility will have to
be closed if it does not reach a certain sales level.



11 Gravity Models in Competitive Facility Location 265

Drezner et al. (2002b) considered a new store is to be located. Demand at
each demand point follows some probabilistic distribution. The total market share
captured at a certain location has some probability density function. The problem is
formulated assuming that the generated demand (buying power) at various demand
points follows a multivariate normal distribution. It is possible that a correlation
exists between the actual demand generated at various demand points. For example,
if demand at one demand point is higher than average, then it is likely that it is higher
at other demand points because there may be a common cause for the demand to be
higher than average.

Drezner and Drezner (2011b) applied the threshold objective to the Weber
problem. The objective is to minimize the probability of exceeding a cost threshold.

11.3.6 Consistent and Inconsistent Rules

Drezner et al. (1996) analyzed whether customers can change their selection on
the way to a retail facility. Drezner et al. (1996) define a consistency property. A
selection rule is consistent if the selection of a facility to patronize does not change
along the way to the selected facility. A rule is inconsistent if the selection may
change along the way. The distances to the competing facilities change along the
way and at some point the selection dictated by the rule may be different.

A practical example is the location of a mom-and-pop store. If it is located on
the way to an attractive mall at the outskirts of town, customers who travel to the
mall may pass by the mom-and-pop store, change their mind and patronize it. The
mom-and-pop store attempts to capture the traffic flow of customers on the way to
the mall. However, the mom-and-pop store should not be located too close to the
mall. Customers may not change their mind since they are already close to the more
attractive mall.

11.3.7 Cannibalization

Cannibalization occurs at the retail level of chain facilities, especially in the case of
franchises. When opening a new retail outlet in close proximity to an existing outlet,
the new facility cannibalizes the sales of the existing one. Though not a franchise,
this applies to Starbucks coffee and other chain retailers. Unlike cannibalization in
new product development and introduction that is well researched, cannibalization
at the retail level has been overlooked for the most part. With the growth of fran-
chise operations, cannibalization emerges as an important and timely issue. Since
companies wish to grow and expand, managers are faced with the strategic decision
of optimally locating new, additional facilities such that cannibalization of existing
chain members is minimized. There are cases of lawsuits regarding cannibalization
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in fast food franchise systems such as Arby’s, Burger King, KFC, McDonald’s,
Subway, and Taco Bell. This phenomenon is referred to as encroachment.

A similar problem is observed and documented in the hospitality/lodging indus-
try for such franchise systems as Holiday Inn, Days Inn, Howard Johnson, Ramada,
Comfort Inn, and Quality Inn. Franchise contracts contain detailed provisions
governing the relationship between franchisors and franchisees for the conduct of
business at specific locations but they usually do not restrict the franchisor’s ability
to expand the franchise systems within a territory. Many franchisees believe they
have lost business as a result of cannibalization from new units in the same chain,
a phenomenon referred to in the lodging industry as “impact.” Disputes between
franchisees and franchisors over territorial encroachment have elicited responses
from state legislators, who enacted laws to protect franchisees from encroachment
and from franchisors themselves who institute policies for managing the impact of
system expansion on existing franchised units.

Cannibalization is analyzed in Drezner (2011) and in Plastria (2005). Drezner
(2011) found the efficient frontier of the market share versus the cannibalization.
The analysis is based on the theorem: “When the limit on the allowed cannibaliza-
tion is increased, the maximum market share cannot decrease.” First, the range of the
cannibalization limits is established. Then, an equally spaced list of cannibalization
limits in this range is constructed. The maximum value of the market share is found
for each cannibalization limit, thus establishing the efficient frontier.

11.3.8 Sequential Location

Drezner and Drezner (2016) investigated sequential location of two facilities
belonging to one chain. There are two strategies for locating the first facility:

1. locating it at its single facility optimum,
2. randomly locating it.

The second facility is then located at its optimal location given the first facility’s
location. Three objectives are tested: minisum, minimax, and market share captured
by the gravity rule (the competitive objective). For the competitive objective it was
found that optimally locating the first facility is better than locating it at random. On
the other hand, for the minisum and minimax objectives it is better to locate the first
facility at random.

11.4 Applying the Gravity Rule to Other Objectives

The gravity rule can be applied to other commonly used non-competitive location
objectives. Rather than assuming that a user gets services from the closest facility,
he chooses a facility according to the gravity rule. The probability of patronizing a
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facility is proportional to the facility’s attractiveness and to some decay function of
the distance.

11.4.1 Gravity p-Median

In the standard p-median model (Daskin 1995) it is assumed that each user travels to
the closest facility. This implicitly implies that facility choice is centrally controlled
or that all facilities charge the same price for the service. Drezner and Drezner
(2007) proposed the gravity p-median model. It is assumed that users choose from
among the facilities providing services according to the gravity rule rather than from
the closest facility. Users consider facilities’ attractiveness in their choice. Similar to
the standard p-median problem, the objective is to minimize the sum of the expected
weighted distances.

11.4.2 Gravity Hub Location

Drezner and Drezner (2001) applied the gravity rule to the hub location problem. A
traveler needs to fly from one airport to another. Several potential hubs are available.
If the origin or the destination is a hub airport, the traveler chooses a non-stop flight.
Otherwise, the probability that a certain hub is selected is proportional to the hub’s
attractiveness (price, walking distance from the arrival gate to the connecting one,
chance of inclement weather, etc.) and to a distance decay function such as the
total travel distance (or time) raised to a given inverse power. Such a model can be
generalized to selecting a sequence of two or more hubs.

11.4.3 Gravity Multiple Server

Drezner and Drezner (2011a) considered the gravity rule version of the multiple
server location problem (Berman and Drezner 2007). Total service time consists of
travel time to the facility, waiting time in line, and service time. There is a given
number of servers to be distributed among the facilities. Each facility acts as an
M/M/k queuing system. In Drezner and Drezner (2011a) customers select a server
with a probability proportional to its attractiveness and to a decay function of the
distance, not necessarily the closest one. Two models are proposed: a stationary one
and an interactive one. In the stationary model it is assumed that customers do not
consider the expected waiting time in line and service time at the facility in their
facility selection decision simply because they do not know these values. In the
interactive model it is assumed that customers know the expected waiting time in



268 T. Drezner

line and service time at the facility and do consider them in their facility selection
decision.

11.4.4 Planar Gravity Models

Drezner and Drezner (2006) considered two problems of locating p facilities in the
plane using the gravity rule for customers’ facility selection. The first problem is the
p median where the total distance traveled by customers is minimized. The second
problem focuses on equalizing demand across facilities by minimizing the variance
of total demand attracted to each facility. In addition, a multi-objective approach,
which combines the two objectives, is considered. Heuristic solution procedures are
proposed and tested.

11.5 Solution Approaches

11.5.1 Single Facility

Drezner and Drezner (2004) optimally solved the single facility competitive location
problem by applying the big triangle small triangle global optimization algorithm
(BTST, Drezner and Suzuki 2004). The procedure BTST requires an effective upper
bound on the market share captured when the facility is located anywhere in a
triangle. The procedure is very efficient and finds the optimal solution for 10,000
demand points in less than 6 min of computer time. The generalized Weiszfeld
algorithm (Drezner 2009b) repeated from 1000 different starting solutions required
about the same time for all 1000 runs. The optimum was obtained at least 17 times
(for n = 50) and the average for n = 10,000 problems is 726 times out of 1000.

11.5.2 Multiple Facilities

Drezner et al. (2002a) proposed five heuristic procedures (H1–H5) for the maxi-
mization of the market share by locating p new facilities with given attractiveness
levels using the gravity rule.

H1: Finding a good location for each facility, one at a time, by the generalized
Weiszfeld algorithm (Drezner 2009b). This is repeated 100 times from randomly
generated starting solutions and the best one is selected.

H2: Same as H1 but the 100 randomly generated starting solutions are generated
in sparse configurations considering the previous starting and final solutions
obtained so far. For complete details see Drezner et al. (2002a).
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H3: Selecting a grid of points that covers the demand area and applying a steepest
ascent algorithm when the locations of the new facilities are restricted to grid
points.

H4: Applying a simulated annealing approach (Kirkpatrick et al. 1983) for
locations restricted to grid points.

H5: Using the final solutions of H4 as starting solutions for the heuristic H1.

Following extensive computational experiments, heuristic H5 is recommended.

11.5.3 The TLA Method

The TLA (tangent line approximation) method (Aboolian et al. 2007b) can find
a solution to the gravity model within a given accuracy. For its implementation,
the objective function should be a concave function, twice differentiable, and non-
decreasing of a linear functional. These conditions hold for the gravity model. The
idea is to replace the objective function by a piece-wise linear function. The feasible
range is divided into segments and a tangent line is constructed in each segment
touching the objective function at the segment’s center. The objective function
is formulated by adding a binary variable for each segment and maintaining the
original constraints. Optimal solutions of the modified problem are then found by
non-linear solvers. The number of segments is determined by the pre-specified
accuracy. For complete details see Aboolian et al. (2007b).

11.5.4 Integrating over a Circular Area

The solution method described below can be useful for many optimization problems
that require integration over a circular area.

Drezner et al. (2018b) investigated the cover based competitive model (Drezner
et al. 2011, 2012) when demand is generated continuously in an area. In order
to evaluate the objective function for a particular disc, the area covered by the
intersection of several discs with the particular disc is needed. Furthermore, if an
intersection area is covered by k discs, the area is divided by k. Double integration
over the particular disc is not simple. We could not find an explicit formula for the
objective function which is discontinuous. However, calculating the value of the
objective function at any point is fast and easy.

Two approaches are proposed for estimating the integral. One is generating a
hexagonal pattern in the circle (for example, one of the options tested consists of
199 points, see Fig. 11.3). Each point covers some area. Points which are not near
the circle’s circumference cover an identical hexagonal area. The integral is esti-
mated by a weighted summation. This relatively simple approach is recommended
particularly when the demand in the circular area is not uniform.
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Fig. 11.3 199 points in a
circle
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A second approach, which was found to be more accurate using the same
computation time, is based on Gauss-Legendre quadrature (Abramowitz and Stegun
1972). K Gaussian-Legendre points are drawn on the x-axis through the center of
the disc and the integral over each vertical segment can be explicitly evaluated
and the one-dimensional integral calculated. In the website https://pomax.github.
io/bezierinfo/legendre-gauss.html parameters for all K ≤ 64 points are given. For
complete details see Drezner et al. (2018b).

11.6 Conclusions

There are several topics that are worth further investigation. Distance and buying
power at demand points are available. However, attractiveness and distance decay
functions are not fully understood. In addition, solution methods can be further
improved.

• In existing gravity models, all facilities have the same distance decay function.
Drezner et al. (2018d) proposed to replace attractiveness multipliers by varying
decay functions for different facilities. Demand attracted by more attractive
facilities has a slower distance decay.

• Drezner and Drezner (2019) suggested a new solution algorithm. They assume
that a budget is available for expansion of chain facilities. The part of the budget
invested in improving an existing facility or constructing a new one is an integer
multiplier of a basic value such as 0.1% of the available budget. The model is
applied to solving the gravity model (Huff 1964, 1966) by a branch and bound
algorithm.

https://pomax.github.io/bezierinfo/legendre-gauss.html
https://pomax.github.io/bezierinfo/legendre-gauss.html
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• A retail facility to be located may be obnoxious to some neighborhoods.
City zoning may disallow the location of commercial facilities in residential
neighborhoods. A similar model with the Weber objective is proposed and solved
in Drezner et al. (2018a).
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Chapter 12
Cover-Based Competitive Location
Models

Pawel Kalczynski

12.1 Introduction

In competitive location models a set of demand points, each with known buying
power exist in a market area. Competing for the buying power in the area are
several of one’s chain facilities and competing facilities. If an area has only
competitors’ facilities and no chain facilities are present in the area, then the
chain is considering an area. The competing facilities attract buying power from
demand points, yielding market share (the proportion of total buying power in the
area captured by one’s chain). The objective common to all competitive location
models is the maximization of market share. Usually, profit is assumed to be a
monotonically increasing function of market share. Therefore, maximizing profit
is associated with maximizing market share. Fernandez et al. (2007) and Redondo
et al. (2009) deal explicitly with maximizing profit. If there is a cost differential
between different locations, setup costs, as well as different pricing policies, which
may vary by location, account for such cost differentials. For a review of competitive
location models see Berman et al. (2009a).

Therefore, at the core of any competitive location model is the estimation of the
market share attracted by each of the competing facilities. All models assume that
the market share captured by a facility is dependent on (1) the distances between the
demand points and the facilities and (2) the attractiveness of the facilities, and (3)
the prices at the facilities. Estimating market share captured is typically done using
one of the following approaches.
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Hotelling (1929) suggested a rule that each customer patronizes the facility that
offers the lowest total cost (including the price of service and transportation cost).
Hotelling’s approach led to the “proximity” rule in which customers patronize the
closest facility (when the prices are equal at all facilities). Competitors compete
by setting different service price but, from customers’ perspective (total cost),
this rule implies that all competing facilities are equally attractive and that total
buying power concentrated at a demand point is spent at the same facility. Drezner
(1982) analyzed two problems on the plane: location of one competing facility and
the leader–follower model (Stackelberg’s equilibrium model, in which competitors
react to leader’s action). The proximity rule led to location-allocation models for
the location of several facilities in a competitive environment (Hakimi 1983, 1986,
1990; ReVelle 1986; Ghosh and Rushton 1987; Serra and ReVelle 1995).

Different attractiveness levels of different facilities are incorporated in the
proximity rule by defining a utility function (Drezner 1994a, 1995). Utility models
were extended to random utility models (Leonardi and Tadei 1984; Drezner and
Drezner 1996) or to the logit approach (Drezner et al. 1998).

Huff (1964, 1966) suggested applying the probabilistic gravity rule (Reilly 1931)
for estimating market share. Drezner (1994b, 1995) suggested a multi-start approach
to finding the best location for one new facility based on the gravity rule. Drezner
and Drezner (2004) solved this problem optimally. The simultaneous location of
multiple facilities according to the gravity rule was analyzed in Drezner et al.
(2002a). Drezner (1998) formulated and solved the problem of locating several
facilities, applying the gravity rule, when the attractiveness levels of new facilities
are not given but they are variables and a given budget is available for constructing
the facilities.

The abovementioned models assume that total demand is satisfied and divided
among the competing facilities with no lost demand. Drezner and Drezner (2008)
proposed a gravity-based model which considers lost demand. This happens when
customers have no facility close enough to them; thus, their demand is unsatisfied.
Such a model is realistic for non-essential services.

The problems discussed in this chapter are based on covering models. Covering
problems have been researched for many years (for reviews see Schilling et al. 1993;
Daskin 1995; Current et al. 2002; Plastria 2002). There are two types of covering
problems: (1) covering all the points with the minimum number of facilities (the set
covering problem, ReVelle et al. 1976) and (2) covering as many points (or total
weight when each demand point has a different weight) with a given number of
facilities (the max-covering problem). For network formulations see Church and
ReVelle (1974), Megiddo et al. (1983), ReVelle (1986), and Berman (1994), and for
planar problems see Drezner (1981), Watson-Gandy (1982), Drezner (1986), and
Canovas and Pelegrin (1992).

Our competitive location model is based on equal division of buying power
among facilities whose radius of influence captures that demand. A comprehensive
discussion of this rule is presented in Section 2 of our original paper Drezner et al.
(2011). Equal division may not be accurate for a single consumer but the aggregated
market share is estimated reasonably well. This rule is much simpler to implement
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than gravity models or utility-based models. We only need to estimate the catchment
area of competing facilities which yields their radius of influence. There are
established methods for estimating the radius of influence of a facility (Beaumont
1991; Toppen and Wapenaar 1994). For example, license plates of cars in the
parking lot are recorded and the addresses of the cars’ owners obtained. Drezner
(2006) conducted interviews with consumers patronizing different shopping malls
asking them to provide the zip code of their residence and whether they came from
home. Other approaches for estimating market share require numerous parameters
for their implementation. Our approach requires only the establishment of the
catchment area.

This chapter summarizes four papers on competitive location which are a result
of my collaborative work with Dr. Zvi Drezner and Dr. Tammy Drezner:

1. A Cover-Based Competitive Location Model (Drezner et al. 2011)
2. Strategic Competitive Location: Improving Existing and Establishing New Facil-

ities (Drezner et al. 2012)
3. A Leader-Follower Model for Discrete Competitive Location (Drezner et al.

2015)
4. The Multiple Markets Competitive Location Problem (Drezner et al. 2016).

Each of these papers is based on a new cover-based model for competitive
location. This new model assumes that each facility has its own radius of influence
(sphere of influence, catchment area) and that buying power of a demand point
located within the radius of several facilities is equally divided among these
facilities, while demand at demand points located outside of any facility’s influence
is lost.

Consider a demand point with buying power w. It is in the sphere of influence of
F one’s chain facilities and C competitors’ facilities. Here, C contains facilities of
all firms competing with one’s chain. Suppose that the demand point is in the sphere
of influence of q additional chain facilities. We calculate the additional market share
gained by the chain’s facilities from this demand point. Prior to the change in the
chain’s facilities, the buying power attracted by one’s chain is w F

F+C
. Note that

if F + C = 0, i.e., the demand point is outside the sphere of influence of all
competing facilities, no buying power is attracted. When the demand point is in
the sphere of influence of q additional facilities, the market share attracted by the
chain is w

F+q
F+C+q

. Simple algebraic manipulations lead to an increase in buying
power attracted to one’s chain of

w
qC

(F + C)(F + C + q)
. (12.1)

Note that: If q = 0, there is no increase in the market share regardless of the
values of F and C; if F = C = 0 and q > 0, then the gain in market share is w; if
only one new facility is located, then q can be either 0 or 1.
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Fig. 12.1 The example problem. Open circle: demand point; filled circle: one’s chain; open
triangle: competitor

As an illustrative example, consider the problem in Fig. 12.1 originally presented
in Drezner et al. (2011). There are 12 demand points located on a grid of size “1,”
one competitor C whose radius of influence is 0.8, and two more attractive (radius
of influence of 1.25) one’s chain facilities A and B. Assume that all demand points
have a buying power of one unit. One’s chain attracts demand points #7–#12, two-
thirds of demand point #6, and one-half of demand point #5 for a total market share
of 7 1

6 units.
Suppose that a new facility is to be located. If it has the same attractiveness as

the competitor’s (radius of 0.8), it can capture buying power from at most 4 demand
points when it is located at a center of a square whose vertices are demand points. A
quick inspection reveals that the best location for the new facility is at the center of
the leftmost square capturing buying power from demand points #1–#4. The buying
power of demand points #1–#2, which was lost before, is now fully captured. Half
of the buying power at demand points #3–#4 is captured. The total market share
is increased by 3 units leading to a total market share of 10 1

6 units. If the new
facility has the same attractiveness as do the other two chain facilities (radius of
1.25), it can attract 6 demand points and its best location is in the middle between
demand points #3 and #4. In that case, it will attract the same 3 units of buying
power (all buying power from demand points #1, #2 and half the buying power
from demand points #3, #4) and will increase the proportion of the buying power
captured from demand points #5 and #6. The buying power captured from demand
point #5 increases from one-half to two-thirds and the buying power captured from
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demand point #6 increases from two-thirds to three quarters for a gain of 3 1
4 units,

capturing market share of 10 5
12 units. The competitor attracts 1 7

12 units and a more
attractive facility cannot reduce this value. The maximum market share that can be
attracted by one’s chain by adding one chain facility is therefore 10 5

12 units.
In the remainder of this chapter, the summaries of the main contributions of the

four papers are presented, each in a separate section. The chapter ends with a brief
conclusion.

12.2 A Cover-Based Competitive Location Model

12.2.1 Locating New Facilities

The problem of locating one new facility in a competitive environment described in
the introduction can be converted to the standard max-covering problem with one
facility. Each demand point is evaluated and F , C are determined. The additional
potential market share is evaluated using q = 1 in (12.3). If this value is 0, the
demand point can be removed from the problem. The remaining demand points have
assigned buying power determined by (12.3) and the maximum covering problem
is solved by using, for example, the algorithm in Drezner (1981). This approach is
difficult to extend to the location of more than one new facility. The buying power
that needs to be assigned to each demand point depends on the number q of new
facilities that cover the demand point in their sphere of influence. Therefore, we
designed special algorithms for the location of multiple facilities.

Let S be the set of N potential sites either given as part of the problem definition
or calculated as in Drezner et al. (2007) when all points on the plane are potential
sites. Let aij for i = 1, . . . , n and j ∈ S be an incident matrix. aij = 1 if demand
point i is covered by potential location j , and aij = 0 otherwise. Let Fi be the
number of one’s chain facilities covering demand point i and Ci be the number of
the competitor’s facilities covering it. Let wi be the buying power at demand point
i. p new facilities are located at some candidate sites in S. Let xj for j ∈ S be a
0–1 variable. xj = 1 if a new facility is located at candidate point j and xj = 0
otherwise. The number of new facilities covering demand point i, qi , is

qi =
N∑

j=1

aij xj . (12.2)

The increase in the market share, �M(q), by one’s chain for a given vector q =
{qi} is

�M(q) =
n∑

i=1

wi

qiCi

(Fi + Ci)(Fi + Ci + qi)
. (12.3)
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where wi is the buying power at demand point i and qi is calculated by (12.2). Our
cover-based competitive location problem formulation is given by

max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�M(X) =
n∑

i=1

wi
Ci

Fi+Ci

N∑
j=1

aij xj

Fi + Ci +
N∑

j=1
aij xj

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(12.4)

subject to: ∑
j∈P

xj = p

xj ∈ {0, 1}.

A special treatment is needed for the case Fi +Ci = 0. In this case, if qi = 0 the
increase in market share is 0, and if qi > 0, the increase in market share is wi . We
define two sets of demand points I1 and I2:

I1 = { i |Fi + Ci > 0} ; I2 = { i |Fi + Ci = 0} (12.5)

and rewrite (12.4):

max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�M(X) =
∑
i∈I1

wi
Ci

Fi+Ci

N∑
j=1

aij xj

Fi + Ci +
N∑

j=1
aij xj

+
∑
i∈I2

wi min

⎧⎨
⎩

N∑
j=1

aij xj , 1

⎫⎬
⎭

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(12.6)

subject to:∑
j∈P

xj = p

xj ∈ {0, 1}.

Maximizing �M(X) as defined by (12.6) is a non-linear binary programming
problem with one constraint. The objective function is a sum of fractional terms.
The number of terms is equal to the number of demand points. Each term has
linear functions both in the nominator and the denominator. There is only one
linear constraint and all decision variables are binary. Therefore, the problem is
a generalized binary linear fractional programming problem (Barros 1998, p. 98).
Once the binary constraints are relaxed, the problem becomes the sum of linear
fractional functions (SOLF) problem (Chen et al. 2005), which is a generalization
of the classical linear fractional programming problem (Charnes and Cooper 1962).
The SOLF problem is known to be NP-complete when more than one ratio is
present in the objective function (Freund and Jarre 2001). The solution procedures
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for certain SOLF problems can be found in Chen et al. (2005), Nesterov and
Nemirovskii (1995), and Falk and Palocsay (1992). Calculating one upper bound
on the optimal solution to the generalized binary linear fractional programming
problem requires the solution of a SOLF problem. However, solving such a relaxed
problem requires significant computer time, especially when N constraints of the
type xj ≤ 1 need to be added to the problem. In Drezner et al. (2011) we proposed
an efficient upper bound, which exploits the special structure of our particular
problem. The problem can also be solved heuristically by various metaheuristics
such as tabu search, simulated annealing, genetic algorithms, or others.

12.2.2 Upper Bounds for the Cover-Based Competitive
Location Problem

In order to apply a branch and bound algorithm, tight upper bounds need to be
constructed. In Drezner et al. (2011) we suggested three upper bounds termed UB1,
UB2, and UB3. The second upper bound, UB2, is based on UB1. The third upper
bound UB3 is an improvement of UB2 and also depends on UB1. UB3 is always
tighter than the other two. The reader is referred to the original paper Drezner et al.
(2011) for proofs.

12.2.2.1 First Upper Bound (UB1)

Since
N∑

j=1
aij xj ≥ 0,

�M(X) ≤
∑
i∈I1

wiCi

N∑
j=1

aij xj

(Fi + Ci)
2 +

∑
i∈I2

wi

N∑
j=1

aij xj

=
N∑

j=1

⎧⎨
⎩
∑
i∈I1

wiCiaij

(Fi + Ci)
2

+
∑
i∈I2

wiaij

⎫⎬
⎭ xj =

N∑
j=1

γjxj , (12.7)

where γj =
n∑

i=1

wiCiaij

(Fi+Ci)
2 with the provision that if Fi + Ci = 0, substitute Ci = 1

(and Fi = 0).
The following knapsack problem yields an upper bound for the solution of (12.4)

or (12.6):
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max

{
N∑

j=1
γjxj

}
(12.8)

subject to:

N∑
j=1

xj = p

xj ∈ {0, 1}.

The solution to this knapsack problem, UB1, is the sum of the p largest values of
γj .

12.2.2.2 Second Upper Bound (UB2)

Since the arithmetic mean is greater than or equal to the geometric mean:

�M(X) ≤
∑
i∈I1

wiCi

N∑
j=1

aij xj

2(Fi + Ci)

√
(Fi + Ci)

N∑
j=1

aij xj

+
∑
i∈I2

wi

√√√√√
N∑

j=1

aij xj

=
n∑

i=1

wiCi

√
N∑

j=1
aij xj

2(Fi + Ci)
√

(Fi + Ci)
(12.9)

with the rule Ci

2(Fi+Ci)
√

(Fi+Ci)
= 1 when Fi + Ci = 0.

Consider the following identity:

n∑
i=1

wiCi

√
N∑

j=1
aij xj

2(Fi + Ci)
√

(Fi + Ci)
=

∑
i∈I1

1

2

√
wiCi

Fi + Ci

×

√
wiCi

N∑
j=1

aij xj

(Fi + Ci)

+
∑
i∈I2

√
wi ×

√√√√√wi

N∑
j=1

aij xj .
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It can be written as
n∑

i=1

wiCi

√
N∑

j=1
aij xj

2(Fi + Ci)
√

(Fi + Ci)
=

n∑
i=1

1

2

√
wiCi

Fi + Ci

×
√

wiCi

N∑
j=1

aij xj

(Fi + Ci)
with the rule that when Fi + Ci = 0, Ci

Fi+Ci
= 4 in the first

term and Ci = 1 in the second term.

By the Schwartz inequality (Hardy et al. 1952) (

{
n∑

i=1
aibi

}2

≤
n∑

i=1
a2
i

n∑
i=1

b2
i ):

n∑
i=1

wiCi

√
N∑

j=1
aij xj

2(Fi + Ci)
√

(Fi + Ci)
≤

√√√√√√1

4

n∑
i=1

wiCi

Fi + Ci

×
n∑

i=1

wiCi

N∑
j=1

aij xj

(Fi + Ci)
2

=

√√√√√1

4

n∑
i=1

wiCi

Fi + Ci

×
N∑

j=1

γjxj

≤
√√√√

{
1

4

n∑
i=1

wiCi

Fi + Ci

}
UB1 (12.10)

with the rule that when Fi + Ci = 0, Ci

Fi+Ci
= 4.

To implement UB2 (12.10) in conjunction with UB1, i.e., to use as an upper

bound min{UB1, UB2}, calculate: UB1 and K =
n∑

i=1

wiCi

Fi+Ci
. If 1

4K < UB1 use as

upper bound 1
2

√
K × UB1; otherwise, use UB1 as the upper bound.

12.2.2.3 Third Upper Bound (UB3)

In developing UB2 we used inequalities based on a base of “2,” i.e., the arithmetic
mean is greater than or equal to the geometric mean and the Schwartz inequality.
We can develop formulas based on a base of θ > 1 (not necessarily integer) which
reduces to UB2 when θ = 2 is used. Once the best value of θ is found, UB3 must be
better than UB2 (or equal to UB2 when the best θ is equal to 2).

To find UB3, calculate UB1, α =
∑

i∈I1

wiCi
Fi+Ci

UB1
, and β =

∑
i∈I2

wi

UB1
. When 0 < β < 1

we need to find θ∗ that satisfies the equation θ = 1 + 1

α
μ

{
βμ

(θ−1)α+βμ

}
− βμ

α
. Then,

UB3 = λ(θ∗)UB1 is calculated by
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λ(θ) = 1

θ

{
(θ − 1)

[
α + θ

θ
θ−1

θ − 1
β

]} θ−1
θ

=
{

θ − 1

μ
α + β

}1− 1
θ

. (12.11)

Our original paper Drezner et al. (2011) describes an efficient technique for
finding θ∗ and the relationships among the three upper bounds.

12.2.3 Heuristic Algorithms

Four heuristic algorithms were constructed and tested: a greedy heuristic, an ascent
heuristic, tabu search (Glover 1986), and simulated annealing (Kirkpatrick et al.
1983). We also tested an “improved greedy” approach, i.e., the ascent algorithm was
applied to the solution of the greedy algorithm. Tabu search, simulated annealing,
and genetic algorithms were constructed in Alp et al. (2003); Drezner et al. (2005);
Berman and Drezner (2008) for the p-median and similar problems. The same
principles can be adopted for the construction of such algorithms for the solution
of our problem. The tabu search and simulated annealing algorithms tested were
adopted from these papers.

12.2.3.1 The Greedy Heuristic

The problem is to select a set P of p sites out of N potential locations. We select
the set P one facility at a time. The change in the value of the objective function
�M is calculated by Eq. (12.3) when adding one facility at each of the N potential
sites. The site with the largest increase in �M is selected for locating a new facility
and remains in P for the rest of the algorithm. The process continues until sites for
all p new facilities are selected.

12.2.3.2 The Ascent Algorithm

This algorithm is similar to the heuristic algorithm designed by Teitz and Bart (1968)
for the solution of the p-median problem.

1. A set P of p sites out of the N available sites are randomly selected.
2. All p(N − p) possible moves by removing one facility in P and adding one of

the N − p non-selected sites to P are evaluated.
3. If an improving move is found, the best improving move is executed.
4. If no improving move is found, the algorithm terminates with the last set P of p

sites as the solution.

Note that evaluating all p(N − p) moves can be done sequentially and thus
streamlined and performed in a shorter run time. All p selected sites are removed
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in order and �M calculated for each. For each of these sites all N − p possible
additions are evaluated and the total �M is the sum of the changes.

12.2.3.3 Tabu Search

Tabu search (Glover 1986; Glover and Laguna 1997) proceeds from the solution
found by the ascent algorithm in an attempt to escape local maxima and obtain
better local maxima or the global maximum.

The following simple tabu scheme was used. A node is in the tabu list if it was
recently removed from the selected set of nodes. It cannot re-enter the selected set
while in the tabu list (unless its inclusion improves the best known solution). When
the tabu list consists of N − p members, no exchange is possible. Therefore, we
opted to select the tabu tenure to be a fraction of N − p. Following extensive
experiments we randomly selected the tabu tenure in each iteration in the range
[0.05(N − p), 0.45(N − p)]. Since the run time of the ascent approach is relatively
long, we experimented with relatively few iterations of the tabu search. If the
number of the iterations of the ascent algorithm is h, then the number of extra tabu
search iterations is set to 19h, so the run time of the tabu search is about 20 times
the run time of the ascent algorithm.

12.2.3.4 The Tabu Search for the Cover-Based Competitive Location
Problem

1. A tenure vector consisting of an entry for each facility is maintained. The entry
for a facility in the tenure vector is either the last iteration number at which it was
removed from P or a large negative number when it was never removed from P .

2. Select the result of the ascent algorithm as a starting solution for the tabu search
and as the best found solution. The number of iterations in the ascent algorithm
is h.

3. Insert a large negative number (for example, −N ) for every facility in the tenure
vector.

4. Select the tabu tenure, T , in the range [0.05(N − p), 0.45(N − p)].
5. Evaluate all moves (one node to be removed, iout ∈ P , and one node to be

added, iin /∈ P ) and calculate the change in the value of the objective function
by moving the facility from iout to iin.

6. If a move yields a solution better than the best found one, continue to evaluate all
the moves and perform the best improving move. Update the best found solution
and go to Step 3.

7. If no move yields a solution better than the best found solution, select the move
which yields the best value of the objective function (whether improving or not)
as long as the difference between the current iteration and the entry of iin in the
tenure vector does not exceed T .
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8. Enter the current iteration number into entry iout in the tenure vector. Go to
Step 4.

9. Repeat Steps 4–8 for 19h iterations.

12.2.4 Computational Experiments

The branch and bound algorithm was coded in J�. It was run on a machine with 6
CPUs (each clocked at 1.86 GHz) with each processor tackling a different problem.
The greedy, ascent, tabu search, and simulated annealing algorithms were coded in
Fortran, compiled by Intel 9.0 Fortran compiler and ran on a desktop computer with
a 2.8 GHz Pentium IV processor and 256 MB RAM.

We experimented with the 40 Beasley (1990b) problems designed for testing p-
median algorithms. The problems tested ranged between 100 ≤ n ≤ 900 nodes and
5 ≤ p ≤ 200 new facilities. Chain facilities are located at the first ten nodes and
the competitors are located at the next 10 nodes. The remaining n − 20 nodes are
candidate locations for the facilities in one’s chain. The demand at node i is 1/i.
The same radius of influence was used for existing and new facilities.

Two sets of problems were run yielding a total of 80 problems. The two sets
differ in their radius of influence.

For Set#1 the radius of influence was set to the smallest possible radius that
ensures that every each node is attracted by at least one existing facility, whether
one’s chain facility or a competitor. This guarantees that there is no lost (unmet)
demand, thus β = 0. The radius for each problem is calculated as follows: For each
of the n−20 candidate nodes the distances to the first 20 nodes are calculated and the
smallest distance determined. The maximum among these distances for all n − 20
candidate locations is the radius of influence. For Set#2 the radius of influence was
set to R = 20. In this case there is lost demand prior to establishing new facilities.

12.2.4.1 Set#1

The branch and bound algorithm solved 20 of the 40 problems. The run of the
remaining 20 problems was stopped after about 2 days unless we observed that the
search is quite advanced after 2 days and was expected to finish in a reasonable
additional time. They all reached the best known solution when terminated. A
relative accuracy of 10−5 was used. For two problems the upper bound was within
this relative accuracy from the best known solution so they were instantly solved at
the root.

The greedy and ascent heuristic algorithms found the best known solution. The
greedy solution was obtained in a few seconds. The ascent algorithm was repeated
from 100 randomly generated starting solutions and found the best known solution
in all 100 runs. Since the greedy and ascent algorithms performed well for Set#1
we saw no need to experiment with tabu search and simulated annealing for the
problems in Set#1.
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The branch and bound algorithm solved 20 of the 40 problems in Set#1
to optimality illustrating that the upper bound UB3 is effective. The heuristic
algorithms performed extremely well on this set of problems. The best known
solution (for half of the problems it has been proven optimal) was found by all
runs in a short run time.

12.2.4.2 Set#2

As to Set#2, the branch and bound algorithm found the optimal solution for 16 of
the 40 problems. The heuristic algorithms were not as effective for Set #2 as they
were for Set #1 and therefore we also experimented with tabu search and simulated
annealing.

The ascent algorithm was run 100 times for each problem. It found the best
known solution at least once for 37 out of the 40 problems. It found the best known
solution in 54.6% of the runs and in all 100 runs for 12 problems.

The tabu search was run 10 times for each problem. It found the best known
solution (including 16 known optimal solutions) for all 40 problems. For 29
problems it found the best known solution in all 10 runs. It found the best known
solution in 88% of the runs. Run time, by design, was 20 times longer than that
for the descent algorithm. Therefore, total run time for 10 tabu solutions was about
double the time required for 100 runs of the ascent algorithm.

The results for simulated annealing were inferior to the other algorithms. Results
for simulated annealing generally improve when more iterations are allowed in
the algorithm. Therefore, longer run time was needed in order to obtain results
comparable to those obtained by tabu search. We experimented with run times of
more than six times those required for the ascent algorithm (average run time of
about 8500 s for 10 runs of the simulated annealing) and obtained the best known
results for only 27 of the problems, with the best result averaging 0.238% below
the best known result. The best known result was obtained in 5.8 out of 10 runs, on
the average. In 19 problems, though, simulated annealing obtained the best known
results in all 10 runs.

The reader is referred to our original paper Drezner et al. (2011) for full results
of the computational experiment.

12.3 Strategic Competitive Location

The new competitive location model originally proposed in Drezner et al. (2011)
and described in Sect. 12.2 of this chapter inspired the follow-up project on strategic
competitive location. In Drezner et al. (2011) the location of p new facilities with
a given radius is investigated. In the strategic competitive location model proposed
in our Drezner et al. (2012) paper, the radii of the facilities are variables, there is a
budget constraint, and—in addition to constructing new facilities—we also consider
an option to expand existing facilities.
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There is a finite set of potential locations for new facilities. Each of the existing
facilities has its radius of influence (sphere of influence, catchment area) which is
monotonically increasing with its attractiveness. Upgrading existing facilities entails
increasing their radius of influence, thereby increasing their catchment area. We do
not consider downgrading or closing facilities. A fixed cost plus a variable cost,
depending on the radius, is required for improvement. All potential locations for
new facilities are defined with a radius of zero. Establishing a new facility requires
a given fixed cost (usually greater than the fixed cost required for an improvement
of an existing facility) plus a variable cost that is increasing with the radius. These
three strategies were captured in a unified model presented in our paper Drezner
et al. (2012) where existing facilities and potential new locations are defined as
one set of locations, with corresponding radii and setup costs associated with each
location.

Models existing prior to our Drezner et al. (2012) paper considered either
improving existing facilities or constructing new ones. To the best of our knowledge
only Küçükaydın et al. (2011) had analyzed the combination of both options before
us, however, in a different context. In our paper an expansion of one’s chain is
achieved by one of the three strategies: (1) upgrading some or all of one’s existing
chain facilities, (2) constructing new chain facilities, (3) employing a combination
of both (1) and (2). A given budget is available for such expansion. The objective of
the chain is to attract the maximum market share (or to maximize additional market
share captured following the expansion) within the given budget.

12.3.1 The Three Strategic Competitive Location Models

We consider three strategies, all encompassed in one unified model.

Improvement Strategy: (IMP) Only improvement of existing chain facilities is
considered.

Construction Strategy: (NEW) Only construction of new facilities is considered.
Joint Strategy: (JNT) Both improvement of existing facilities and construction of

new facilities are considered.

All strategies are treated in a unified model by assigning a radius of zero to potential
locations for new facilities. Note that the NEW strategy is somewhat similar to the
variable radius covering model (Berman et al. 2009b) where a covering model with
no competition was proposed.

12.3.1.1 Notation

n The number of demand points
wi The buying power at demand point i, i = 1, . . . , n

Fi The number of facilities belonging to one’s chain that attract demand point i

Ci The number of competitor facilities attracting demand point i
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B The budget for increasing the attractiveness of existing facilities or creating
new ones

p The number of chain facilities including potential locations for new facilities
ro
j The existing radius of facility j for j = 1, . . . , p. For new facilities ro

j = 0
f (r) The cost of building a facility of radius r (a non-decreasing function of r)
rj The unknown assigned radius to facility j . rj > ro

j for existing facilities and
rj ≥ 0 for establishing new facilities

Sj The fixed cost if facility j is improved or established

12.3.1.2 Calculating the Increase in Market Share

In this section we evaluate the increase in buying power captured by the chain as
a result of an expansion. An expansion consists of increasing the attractiveness of
some chain facilities and/or constructing new ones. The catchment area of a facility
is a circle defined by its radius. Demand points in the facility’s catchment area are
attracted to the facility (are covered by the facility). If a demand point is in the
catchment area of several facilities, its buying power is equally divided among these
facilities (Drezner et al. 2011). There may exist extreme cases where such a rule can
be improved. However this rule provides an estimate for the captured market share
and such rare exceptions do not introduce a significant deviation to the estimate. As
we explained in Drezner et al. (2011), this rule is simple and robust.

Demand point i is in the catchment area of Fi chain facilities and Ci competitors’
facilities. Let qi be the number of additional chain facilities attracting demand point
i following an expansion of the chain. This means that following the expansion
demand point i is in the catchment area of Fi + qi chain facilities. Prior to
the expansion of chain facilities, the buying power attracted by one’s chain is
n∑

i=1
wi

Fi

Fi+Ci
. Note that if Fi +Ci = 0, demand point i is outside the catchment area

of all competing facilities, no buying power is captured, and the demand at demand
point i is lost. Following the change in attractiveness, the market share attracted by

the chain is
n∑

i=1
wi

Fi+qi

Fi+Ci+qi
. The increase in market share captured by one’s chain

for a given vector q = {qi}, �M(q) is given by Eq. (12.3).
Define αi(qi) as the proportion of the demand from demand point i added to

the chain’s market share when demand point i is attracted to qi additional chain
facilities:

αi(qi) = qiCi

(Fi + Ci)(Fi + Ci + qi)
. (12.12)

It follows that

�M(q) =
n∑

i=1

wiαi(qi). (12.13)
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It is easy to show that:

Property 12.1 0 ≤ αi(qi) ≤ 1.

Property 12.2 If qi = 0, there is no increase in the market share captured from
demand point i regardless of the values of Fi and Ci , thus αi(0) = 0.

Property 12.3 If Fi = Ci = 0 and qi > 0, then the gain in market share from
demand point i is wi , thus αi(qi) = 1.

12.3.1.3 Preliminary Analysis

When a new facility is established, one can assign a radius of zero to it so that
it attracts only the demand point at which it is located. However, the setup cost is
added to the total cost. In order to simplify the presentation we assume that potential
new locations have a radius of −ε for a very small ε > 0, and f (−ε) = 0.

If the radius of facility j is increased from ro
j to rj > ro

j , the cost of the increase
is f (rj ) − f (ro

j ) + Sj . Otherwise, the cost is zero. The objective is to maximize the
market share attracted to one’s chain by increasing some (or all) of the radii, subject
to the budget constraint:

p∑
j=1

{
f (rj ) − f

(
ro
j

)}
+

∑
rj >ro

j

Sj ≤ B.

The buying power at demand points that are attracted to one’s chain facilities
but are not attracted to any competitor is fully satisfied by the chain. Thus, the
contribution of these demand points to the chain’s market share cannot increase.
Such demand points can be removed from consideration when calculating the
increase in market share captured following the expansion.

Theorem 12.1 For each facility there is a finite number of radii that should be
considered for improvement. Consequently, there is a finite number of feasible
candidate solutions.

The reader is referred to our paper Drezner et al. (2012) for the proof.
Note that even though the number of feasible solutions is finite, it can be

very large. If the total increase in market share were an additive function of the
individual market share increases, a dynamic programming solution approach would
be possible. However, since this condition does not hold, we propose branch and
bound and heuristic algorithms rather than solving a non-linear program.

By Theorem 12.1 there is a list of improvement costs to be considered. To define
this list let dik be the distance between demand point i and facility k (existing or
new) and Bik be the cost (extra budget required) of increasing the radius of facility
k from ro

k to dik
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Bik =
⎧⎨
⎩

f (dik) − f (ro
k ) + Sk when dik > ro

k

0 otherwise
. (12.14)

The set {Bik} for a given k may have tied values (when dik = dmk). The sorted
list of costs considered for improvement of facility k, following the removal of tied
values, consists of 0 (no improvement), and the remaining distinct values in the
vector {Bik}. It is defined as the sorted list of costs BK = {bik} of cardinality Mk so
that 0 = b1k < b2k < . . . < bMkk .

By Theorem 12.1, all feasible candidate solutions are bikk for 0 ≤ ik ≤ Mk such

that
p∑

k=1
bikk ≤ B. The additional market share captured by the chain by investing

bik for improving facility k can be calculated for each feasible solution by obtaining
qi , i = 1, . . . , n and applying Eq. (12.1).

12.3.2 A Branch and Bound Algorithm

The total enumeration of all feasible candidate solutions can be performed by first
evaluating bi11 for i1 = 1, . . . M1, then for each 1 ≤ i1 ≤ M1, evaluating all bi22
for 0 ≤ bi22 ≤ B − bi11, and so on. That means that for each 2 ≤ k ≤ p evaluating

0 ≤ bikk ≤ B −
p−1∑
m=1

bimm.

Since the number of candidate feasible solutions can be prohibitively large, an
upper bound on the possible increase in market share captured (once the first k radii
are set) is required for solving moderately sized problems.

12.3.2.1 An Upper Bound

We construct an upper bound using a dynamic programming technique on upper
bounds for each facility.

Lemma 12.1 αi(qi + 1) ≤ αi(qi) + αi(1).

The proof of this lemma can be found in Drezner et al. (2012).
Let ei be the market share added when demand point i is covered by a single

additional chain facility. ei is calculated by (12.1) or (12.12) using the present Fi

and Ci for that demand point and qi = 1:

ei =

⎧⎪⎪⎨
⎪⎪⎩

wiCi

(Fi + Ci)(Fi + Ci + 1)
when Fi + Ci > 0

wi when Fi + Ci = 0

. (12.15)
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Theorem 12.2 The market share added from one demand point when it is covered
by qi additional chain facilities is less than or equal to qiei .

Proof The theorem is trivially true for qi = 0 and qi = 1. The theorem follows
for every qi ≥ 0 by mathematical induction on the value of qi proven by applying
Lemma 12.1.

By Theorem 12.2, if we add ei for any instance of demand point i being covered
by an additional chain facility, the sum of these values is an upper bound on the
additional market share gained. This suggests an upper bound for the additional
market share that can be gained by facilities k, . . . , p once the radii for the first k−1
facilities are known. Note that both ei (12.15) and the lists Bk for k = 1, . . . , p can
be calculated in the preamble to the branch and bound process.

To make the upper bound simpler to calculate and use, a parameter H (for
example, H = 10,000) is selected. The budget B is then divided into H equal
parts. The upper bound is calculated only for an available remaining budget of h B

H

for integer 0 ≤ h ≤ H . If all values of the budget increase bik are integers, it is
convenient to select H = B. When calculating the upper bound for any remaining
budget, it is rounded up to the nearest h and the upper bound for this value is used.
We create a matrix U of p columns and H rows. Uhk is the upper bound for a
remaining budget of h B

H
available for improving facilities k, . . . , p.

We calculate the upper bound matrix U backward by applying a dynamic
programming approach starting from facility p. A matrix V of the same dimension
as matrix U is calculated. The value of Vhk is the additional market share that can
be obtained by using a budget h B

H
for 0 ≤ h ≤ H to improve facility k. To calculate

column k (Vhk for 0 ≤ h ≤ H ):

1. Set Vhk = 0 for h = 0, . . . , H .
2. Scan in order all demand points i = 1, . . . , n.
3. The market share added when demand point i is covered by one extra chain

facility, ei , is calculated by Eq. (12.15).
4. The extra budget needed to cover demand point i, bik is calculated by Eq. (12.14).
5. ei is added to all entries Vhk when the following two conditions hold:

(a) bik > 0, and
(b) h B

H
≥ bik which is the same condition as h ≥ H

B
bik .

Note that if bik = 0 no action is taken regarding demand point i because dik ≤ ro
k

and the demand point is already covered by facility k.

The matrix U is calculated by using a dynamic programming approach on the
matrix V . The last column p in U is identical to the last column p in V . The columns
from k = p − 1 down are updated in reverse order of the column number by the
following recursive formula:

Uhk = max
0≤s≤h

{
Vsk + U(h−s),(k+1)

}
.



12 Cover-Based Competitive Location Models 295

Uhk is calculated starting with h = H down to h = 0. Once Uhk is calculated, it
can replace Vhk because only smaller values of h are needed for the calculation of
the rest of the column. Therefore, the matrices V and U can occupy the same space
in memory.

12.3.2.2 The Algorithm

Suppose that the costs for the first k facilities are assigned. This is represented by a
vector t (1), t (2), . . . , t (k). The costs are bt(j)j for j = 1, . . . , k. This represents a

node in the tree. The budget used to expand the first k facilities is B0 =
k∑

j=1
bt(j)j

which leaves a budget of B − B0 for expanding the remaining facilities. The upper
bound on the additional market share captured by facilities k + 1, . . . , p is Uh,k+1,
where h = H

B−B0
B

rounded up. The additional market share captured by the first k

facilities is �k and �∗ is the best solution found so far.

1. Calculate U . Set k = 1, t (1) = 1, with a budget B0 = 0 (h = H ), �1 = 0,
and �∗ = 0. Note that �∗ ≥ 0 can be obtained by a heuristic approach (see
Sect. 12.3.3) such as a greedy approach.

2. If �k + Uh,k+1 ≤ �∗ + ε, the rest of the tree from this node is fathomed. Go to
Step 4.

3. Set k = k + 1.

(a) If k = p, calculate the extra market share by using B −B0 to expand facility
p. Update �∗ if necessary. Set k = p − 1 and go to Step 4.

(b) If k < p, set t (k) = 1. B0 is unchanged. No additional demand points are
covered; thus, all Fi do not change. Go to Step 2.

4. Set t (k) = t (k) + 1. B0 is changed to B0 + bt(k)k − bt(k)−1,k .

(a) If B0 > B, the search moves back to facility k − 1. Set k = k − 1.

If k > 0, go to Step 4.
If k = 0, stop with �∗ as the optimal solution within an accuracy of ε.

(b) If B0 ≤ B, calculate h = H
B−B0

B
rounded up. The Fi and �k are updated.

Go to Step 2.

The reader is referred to our paper Drezner et al. (2012), which offers some
interesting modifications to the branch and bound algorithm.

12.3.3 Heuristic Algorithms

We constructed a greedy heuristic, an ascent approach, and tabu search. We also
constructed a simulated annealing algorithm but it did not perform well. Tabu search
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performed best, while the greedy approach was the fastest. We detail the greedy
heuristic, the ascent approach (on which the tabu search is based), and tabu search.

For each existing facility or candidate location for a new facility, a list of all
possible improvements and their associated cost is compiled. The solution consists
of selecting one value from each list and finding the maximum increase in market
share among all feasible selections.

12.3.3.1 The Greedy Heuristic

Following extensive experiments with various strategies we found the following
approach the most effective:

1. Start with a cost of zero for each column.
2. Evaluate all feasible increases �B in the costs for each column and calculate the

market share increase �M for each.
3. Select the column and cost that maximizes �M/�B.
4. Steps 2 and 3 are repeated until no �B is feasible.

12.3.3.2 The Ascent Algorithm

The starting solution for the ascent approach is the greedy solution using either
the whole budget or a portion of it. Following extensive experiments, the following
search neighborhood was found to be most effective: For all combinations of two
columns, increases in cost are evaluated for one column combined with decreases in
cost for the other column. The neighborhood consists of all feasible combinations
based on pairs of columns. Only a partial set of feasible exchanges should be
considered in the neighborhood. In the ascent approach, the largest increase in
market share is selected until there is no improved combination in the neighborhood.

12.3.3.3 The Tabu Search

The tabu search (Glover 1986; Glover and Laguna 1997) extends the search once
the ascent approach terminates. The moves of the ascent approach are continued,
whether improving or not, for a pre-specified number of iterations (including the
ascent iterations). A tabu list is defined. It consists of columns whose cost was
decreased in recent moves. Increasing the cost of such columns is in the tabu
list. Each iteration, one of the two possible moves is selected. If a solution better
than the best found solution is found (regardless of the tabu list) it is selected.
Otherwise, the solution obtained by a move not in the tabu list with the maximum
market share (whether improving or not) is selected. The length of the tabu list is
randomly generated between tmin and tmax for every iteration, where tmin and tmax

are parameters of the algorithm.
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Our original paper Drezner et al. (2012) offers several time-saving measures.

12.3.4 Computational Experiments

All solution methods were programmed in Fortran using double-precision arith-
metic. The programs were compiled by the Intel 11.1 Fortran Compiler and seven
different computers were used for running the programs. All computers used were
multi-core computers and all cores, except one, were used on each computer with
no parallel processing. A total of 23 cores were used.

To enable an easy replication of our test problems for future comparison, we
experimented with the 40 Beasley (1990a) problems designed for testing p-median
algorithms. The problems ranged between 100 ≤ n ≤ 900 nodes. The number of
new facilities for these problems was ignored. Chain facilities are located on the
first ten nodes and the competitors are located on the next 10 nodes. The demand at
node i is 1/i and the cost function is f (r) = r2. Since all distances are integers,
the cost for improving a facility is integer; thus, we set H = B. The same radius
of influence was used for existing chain facilities and competing facilities. When
new facilities can be added (strategies NEW and JNT), the last n − 10 nodes are
candidate locations for the facilities in one’s chain and are assigned a radius of 0.
For each of the 40 problems, three sets of problems (strategies IMP, NEW, and JNT)
were run, yielding a total of 120 instances. We experimented with various values of
the coverage radius, a fixed cost for establishing a new facility, and an available
budget.

The branch and bound algorithm starts with a lower bound of zero. No heuristic
was run first to establish a tighter lower bound. An accuracy of ε = 10−5 was
employed in the branch and bound approach. Following extensive experiments with
the branch and bound and tabu algorithms we set the parameter L to 5 for IMP
problems and 0 for NEW and JNT problems. The following parameters were used
in the tabu search: The number of iterations was set to 1000, and the length of the
tabu tenure was randomly generated every iteration between tmin = 5 and tmax = 8.
The starting solutions for the tabu search are the results of the greedy algorithm
using between 10% and 100% (randomly generated) of the available budget.

Optimal solutions were found by the branch and bound algorithm for all 40 IMP
problems, 19 of the 40 NEW problems, and 15 of the 40 JNT problems. The average
IMP solution was 5.87% below the JNT solution and the average NEW solution was
5.96% below the JNT one.

The tabu search for the IMP problems was replicated 10,000 times, while it was
replicated 100 times for the other two strategies. The tabu search found the best
known solution at least once for all 120 problems. It is found in 96.2% of the runs
for the IMP strategy, 81.2% for the NEW strategy, and 75.9% of the time for the JNT
strategy. The percent of the average tabu solution was only 0.002% below optimum
for the IMP strategy, 0.320% below the best known NEW strategy solutions, and
0.116% below the best known JNT strategy solutions. The branch and bound results
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for the NEW strategy were 1.03% below the best known solution (obtained by tabu
search) and the JNT strategy solution were 0.27% below the best known solution.

The reader is referred to Drezner et al. (2012) for full results.

12.4 A Leader–Follower Model for Discrete Competitive
Location

Our next follow-up paper features a game-theoretical approach. The following two
extensions of Drezner et al. (2011) were incorporated in Drezner et al. (2015):

Budget Constraints: Combining the location decision with facility design (treat-
ing the attractiveness level of the facility as a variable) was recently investigated
in Aboolian et al. (2007), Drezner (1998), Drezner et al. (2011, 2012), Fernandez
et al. (2007), Plastria and Carrizosa (2004), Redondo et al. (2010), and Toth et al.
(2009). Drezner (1998) assumed that the facilities’ attractiveness are variables. In
that paper it is assumed that a budget is available for locating new facilities and
for establishing their attractiveness levels. One needs to determine the facilities’
attractiveness levels so that the available budget is not exceeded. Plastria and
Vanhaverbeke (2008) combined the limited budget model with the leader–
follower model. Aboolian et al. (2007) studied the problem of simultaneously
finding the number of facilities, their respective locations, and attractiveness
(design) levels.

Leader–Follower: The leader–follower model (Stackelberg 1934) considers a
competitor’s reaction to the leader’s action. The leader decides to expand his
chain. The follower is aware of the action taken by the leader and expands his
facilities to maximize his own market share. The leader’s objective becomes
maximizing his market share following the follower’s reaction. The leader–
follower location model in a competitive environment was investigated in
Drezner and Drezner (1998), Drezner (1982), Küçükaydın et al. (2012), Plastria
and Vanhaverbeke (2008), Redondo et al. (2013, 2010), Saidani et al. (2012), and
Sáiz et al. (2009).

With these extensions, we were able to analyze and solve the leader–follower
model incorporating facilities’ attractiveness (design), subject to limited budgets for
both the leader and follower. We were also able to investigate what is the main
source of extra market share for the leader and the follower.

12.4.1 Formulation of the Leader–Follower Model

We adapted the cover-based model Drezner et al. (2011, 2012). In our first paper
on competitive location Drezner et al. (2011), the location of p new facilities with a
given radius is sought so as to maximize the market share captured by one’s chain.
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In our second paper, Drezner et al. (2012), three strategies were investigated: In
the improvement strategy (IMP) only the improvement of existing chain facilities
is considered; in the construction strategy (NEW) only the construction of new
facilities is considered; and in the joint strategy (JNT) both improvement of existing
chain facilities and construction of new facilities are considered. All three strategies
are treated in a unified model by assigning a radius of zero to potential locations of
new facilities.

In this new formulation, the leader employs one of the three strategies and the
follower also implements one of these three strategies. This setting gives rise to
nine possible models. Each model is a combination of the strategy employed by the
leader and the strategy employed by the follower. For example, the leader employs
the JNT model, i.e., considers both improving existing facilities and establishing
new ones, while the follower may employ the IMP model, i.e., only considers the
improvement of his existing facilities. The most logical model is to employ for
both the leader and the follower the JNT strategy which yields the highest market
share. However, constructing new facilities or improving existing ones may not be
a feasible option for the leader or the follower.

12.4.1.1 Notation

The set of potential locations for the facilities is discrete.

N The set of demand points of cardinality n

wi The buying power at demand point i, i = 1, . . . , n

Li The number of facilities that belong to the leader’s chain that attract
demand point i

Fi The number of follower’s facilities attracting demand point i

BL The budget available to the leader for increasing the attractiveness of
existing facilities or constructing new ones

BF The budget available to the follower for increasing the attractiveness of
existing facilities or constructing new ones

PL The set of the existing leader’s facilities including potential locations for
new facilities of cardinality pL

PF The set of the existing follower’s facilities including potential locations for
new facilities of cardinality pF

p The total number of facilities. p = pL + pF

dij The distance between demand point i and facility j

ro
j The present radius of facility j for j = 1, . . . , p. For new facilities ro

j =
−ε for a very small ε to guarantee that new facilities do not attract demand
at their potential location

f (r) The cost of building a facility of radius r (a non-decreasing function of r)
rj The unknown radius assigned to facility j for j = 1, . . . , p

R The set of unknown radii
{
rj
}

for j = 1, . . . , p



300 P. Kalczynski

Sj The fixed cost if facility j is improved or established, i.e., rj > ro
j for

existing facilities and rj ≥ 0 for establishing new facilities
C(rj ) The cost of improving facility j to a radius rj . It is zero if rj = ro

j , and
f (rj ) − f (ro

j ) + Sj , otherwise

Note that the radii rj are continuous variables. However, it is sufficient to
consider a finite number of radii in order to find the optimal solution. Consider
the sorted vector of distances between facility j and all n demand points. A radius
between two consecutive distances covers the same demand points as the radius
equal to the shorter of the two distances yielding the same value of the objective
function. Since the improvement cost is an increasing function of the radius, an
optimal solution exists for radii that are equal to a distance to a demand point.

12.4.1.2 Calculating the Market Share

For demand point i, the numbers Li and Fi can be calculated by counting the
number of leader’s facilities that cover demand point i, and the number of follower’s

facilities that cover it. Formally, let δij (R) =
{

1 dij ≤ rj

0 Otherwise
, then Li and Fi for a

given strategy R are

Li =
∑
j∈PL

δij (R); Fi =
∑
j∈PF

δij (R). (12.16)

The objective functions by the leader and the follower, before locating new
facilities, are then calculated (Drezner et al. 2011, 2012):

MSL =
n∑

i=1

wi

Li

Li + Fi

. (12.17)

MSF =
n∑

i=1

wi

Fi

Li + Fi

. (12.18)

Note that if Fi = Li = 0, then in (12.17) Li

Li+Fi
= 0 and in (12.18) Fi

Li+Fi
= 0 and

the demand wi associated with demand point i is lost.
Suppose the leader improves some of his facilities and establishes new ones. Note

that Fi does not depend on the actions taken by the leader. The follower’s problem
is thus well-defined following the leader’s action and can be optimally solved by the
branch and bound algorithm detailed in Drezner et al. (2012).

Once the follower’s optimal solution is known, the leader’s objective function is
well defined as his market share is calculated by (12.17) incorporating changes to
the follower’s facilities locations and radii.
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12.4.1.3 Calculating the Increase in Market Share

To solve the follower’s problem it is more efficient to maximize the increase in
market share rather than the market share itself. Upper bounds developed for the
increase in market share are tighter. Demand point i is in the catchment area of Li

leader’s facilities and Fi follower’s facilities. Suppose that a radius of some of the
follower’s facilities is increased and the number of follower’s facilities that cover
demand point i increased from Fi to Fi + �Fi . Let Q ⊆ N be the set of demand
points for which �Fi > 0. For i ∈ Q the buying power attracted by the follower was
wi

Fi

Fi+Li
and after the change it is wi

Fi+�Fi

Fi+Li+�Fi
leading to a market share increase

of wi
�FiLi

(Fi+Li)(Fi+Li+�Fi)
. The increase in market share is therefore:

�MF =
∑
i∈Q

wi

�FiLi

(Fi + Li)(Fi + Li + �Fi)
. (12.19)

Note that when Fi = Li = 0 for i ∈ Q, the ratio in (12.19) is equal to one and
for such demand points the follower’s market share is increased by wi . The demand
wi was lost before the increase because no facility attracted it but, following the
increase, the whole demand wi is captured by the follower.

12.4.1.4 The Objective Functions

The follower wishes to maximize the increase in his market share �MF calculated
by Eq. (12.19). The follower “knows” the values of Li for i = 1, . . . , n because
his competitor (the leader) has already taken action. The follower can increase the
radius of influence of his facilities subject to his available budget, thus increasing
some of his radii of influence defining the set Q of demand points that are covered
by at least one additional follower’s facilities. The leader anticipates the follower’s
reaction. Therefore, once the follower’s problem is solved, the values of Li, Fi

for i = 1, . . . n are all known and the leader’s value of the objective function is
calculated by (12.17).

12.4.1.5 The Constraints

The leader and follower cannot exceed their respective budgets. For a combined
strategy R = {rj } by both competitors the constraints are

∑
j∈PL

C(rj ) ≤ BL;
∑
j∈PF

C(rj ) ≤ BF . (12.20)
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12.4.1.6 The Two Formulations

Once the strategy of the leader is known and thus Li are defined, the follower’s
problem is

max
rj , j∈PF

⎧⎪⎨
⎪⎩

n∑
i=1

wi

∑
j∈PF

δij (R)

Li + ∑
j∈PF

δij (R)

⎫⎪⎬
⎪⎭

Subject to: ∑
j∈PF

C(rj ) ≤ BF . (12.21)

The leader’s problem needs to be formulated as a bi-level programming model (Gao
et al. 2005; Sun et al. 2008):

max
rj , j∈PL

⎧⎪⎨
⎪⎩

n∑
i=1

wi

∑
j∈PL

δij (R)

∑
j∈PL

δij (R) + ∑
j∈PF

δij (R)

⎫⎪⎬
⎪⎭

Subject to: (12.22)∑
j∈PL

C(rj ) ≤ BL

rj for j ∈ PF = arg

⎡
⎢⎢⎢⎣

max
rj , j∈PF

{
n∑

i=1
wi

∑
j∈PF

δij (R)

∑
j∈PL

δij (R)+ ∑
j∈PF

δij (R)

}

subject to:
∑

j∈PF

C(rj ) ≤ BF .

⎤
⎥⎥⎥⎦

Note that the follower problem may have several optimal solutions (each
resulting in different leader’s objective) and the leader does not know which one
of these the follower will select. This issue exists in all leader–follower models.

12.4.2 Solution Algorithms

The follower’s problems are identical to the three problems analyzed in Drezner
et al. (2012) because market conditions are fully known to the follower. A branch
and bound algorithm as well as a tabu search (Glover 1977, 1986; Glover and
Laguna 1997) were proposed in Drezner et al. (2012) for the solution of each of
these three strategies.

The branch and bound algorithm is based on an upper bound on the increase
in market share which is calculated by dynamic programming. The set of possible
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locations of facilities is discrete. It is shown in Drezner et al. (2012) that, in order
to find an optimal solution, only a finite list of radii needs to be considered at
each location. Branching is performed on a tree whose nodes are combinations
of facilities’ locations and their possible radii. The same algorithms are used for
solving the three strategies. The follower’s problem should be solved by the branch
and bound algorithm because it is essential to get his optimal solution.

It may be problematic to develop an effective upper bound for the leader’s
problem. Even if such an upper bound could be constructed, the number of nodes to
be evaluated by the branch and bound procedure might be prohibitive. According
to the computational experiments reported in Drezner et al. (2012), solving the
simplest strategy problem (IMP) may require scanning more than 18,000 nodes for
n = 200 problems and almost 170 million nodes for one n = 300 problem. Such
a large number of nodes will severely restrict the size of the problems that can be
solved. In Drezner et al. (2015) we proposed to solve the leader’s problem by a tabu
search algorithm. Note, however, that evaluating each move in the neighborhood
requires finding an optimal solution to the follower’s problem, and thus it affects the
size of the neighborhood. For this reason, the number of iterations would be quite
limited as well. We proposed a tabu search algorithm for the solution of the leader’s
problem similar to the algorithm proposed in Drezner et al. (2012).

12.4.2.1 The Greedy-Type Heuristic for Generating Starting Solutions

For each of the three strategies there is a list of existing facilities (either existing
chain facilities with their given radii or potential locations for new facilities with
a radius of zero). For each such facility a feasible list of radii is constructed. As
explained in Drezner et al. (2012) this list consists of all the distances between the
facility and the demand points. A solution is represented by a radius assigned to
each facility (either no change in the radius or an increase in the radius with a setup
cost added to the total cost).

A leader’s starting solution satisfying the budget constraint is generated. No
reaction by the follower is considered in the greedy-type algorithm. Following
extensive experiments with various strategies, we found that the following approach
generates the best starting solutions for heuristic algorithms (such as tabu search)
applied for the solution of leader’s problem. The follower’s problem is solved by
a rigorous algorithm and a starting solution is not needed. To insert a random
component to the process (so that different starting solutions are generated when
the process is repeated), only a random percent, in a given range, of the budget is
used.

1. A budget of zero (i.e., the existing radius for the facility) is assigned to each
facility.

2. Evaluate all feasible increases �B in the budgets for each facility and calculate
the market share increase �M for each.

3. Select the facility that maximizes �M/�B.
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4. Update the budget for the selected facility and the remaining available budget.
5. Steps 2 and 3 are repeated until no �B is feasible.

12.4.2.2 The Tabu Search Algorithm

We used the tabu search algorithm to solve the leader’s problem. For each leader’s
solution the value of the leader’s objective function is calculated by optimally
solving the follower’s problem and evaluating the extra market share attracted by
the leader following the follower’s reaction. A tabu list is created. At the start it is
empty. A facility whose radius was recently reduced (note that it cannot be below
the existing radius) is in the tabu list meaning that its radius is not considered for
increase unless the best value of the objective function is improved by the move.
A facility remains in the tabu list for tabu tenure iterations and the tabu tenure is
randomly generated within a range every iteration. The process is continued for
a pre-specified number of iterations and the best solution encountered during the
search is the result of the tabu search.

12.4.2.3 The Neighborhood of the Tabu Search

We apply the neighborhood for solving the leader’s problem, that was successfully
employed in Drezner et al. (2012) for solving the follower’s problem, with all the
time-saving measures described there. For completeness we briefly describe the
neighborhood construction.

• The individual budget currently used to expand facility k be bk .

• In the current iteration a budget of B0 =
p∑

k=1
bk is used.

• The maximum budget used by any facility is Bmax = max
1≤k≤p

{bk}.
• Cost increases are considered for all k = 1, . . . , p up to a budget of

BL + Bmax − B0.
• For each such k and its cost increase, cost reductions are considered for all j �= k

as long as bj > 0. Let the budget B0 following the increase in the budget of
facility k be B ′

L. It is required that bj ≥ B ′
L − BL. In addition, decreases in

bj are considered sequentially starting from the smallest decrease and moving
up the line of decreases up to a decrease of bj guaranteeing that the radius of
facility j is not smaller than the existing radius.

• Once a decrease in bj leads to a budget not exceeding BL for the first time,
the solution is considered for the move. Consequently, for each pair of facilities
k, j , at most one radius for facility j is considered. Note that if the radius of a
facility is decreased and some demand points that were covered by the facility
are no longer covered, the same equation (12.19) can be used by defining Q as
the set of demand points whose cover was reduced and using as Fi the number
of facilities covering the demand point following the change.
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It should be emphasized the follower’s problem is optimally solved for each move
in the neighborhood yielding the leader’s objective function for that member of the
neighborhood. This is required for only one reduction in the budget of some j for
each increase in the budget for some k which limits the number of the follower’s
problems to be solved at each iteration of the tabu search to pL.

12.4.2.4 The Algorithm

Let F(X) = MSL(X) be the value of the leader’s objective function for a solu-
tion X.

1. Generate a feasible starting solution X = X0, empty the tabu list. The best
solution found so far is X∗ = X0 with the best value of the objective function
found so far F ∗ = F(X∗).

2. The tabu tenure is randomly generated in a pre-specified range [tmin, tmax].
3. The value of the objective function is evaluated at all solutions in the neighbor-

hood of X.
4. The best solution in the neighborhood is X′.
5. If F(X′) > F ∗, the next iterate is X = X′. The facility whose radius was reduced

is entered into the tabu list and X∗ and F ∗ are updated. Go to Step 7.
6. Otherwise, let X′′ be the best solution in the neighborhood for which the facility

whose radius is increased is not in the tabu list. The next iterate is X = X′′. The
facility whose radius was reduced is entered into the tabu list.

7. Increase the iteration number by one. Go to Step 2 unless the pre-specified
number of iterations is reached.

8. The result of the tabu search is X∗ with a value of the objective function F ∗.

An efficient way to handle the tabu list (especially when the tabu tenure is
randomly generated) is to maintain a tenure vector for all facilities. Initially, a large
negative number is recorded for all facilities. When a facility is entered into the
tabu list the iteration number is recorded for it. A facility is in the tabu list if the
difference between the current iteration number and its recorded value in the tenure
vector is less than or equal to the tabu tenure.

12.4.3 Computational Experiments

As in our previous papers, we experimented with the 40 Beasley (1990a) problem
instances designed for testing p-median algorithms in order to enable an easy
replication of our results. The problems ranged between 100 ≤ n ≤ 900 nodes.
The number of new facilities for these problems was ignored. The leader’s facilities
are located on the first ten nodes and the follower’s facilities are located on the next
10 nodes. The problems are those tested in Drezner et al. (2012). The demand at
node i is 1/i (for testing problems with no reaction by the competitor) and the cost
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function is f (r) = r2. The same radius of influence was used for existing leader’s
and follower’s facilities. When new facilities can be added (strategies NEW and
JNT), n − 10 nodes are candidate locations for the new facilities (nodes that occupy
one’s facilities are not candidates for new facilities) and are assigned a radius of 0.
We used r

j

0 = 20, and Sj = 0 for expanding existing facilities and the same Sj > 0
for establishing any new facility.

The programs for finding the optimal solution, with no reaction by the competi-
tor, were coded in Fortran and compiled by an Intel 11.1 Fortran Compiler with
no parallel processing, and run on a desktop with the Intel 870/i7 2.93 GHz CPU
Quad processor and 8 GB RAM. Only one thread was used. By the computational
experiments in Drezner et al. (2012) a budget of 5000 leads to very long com-
putational times. Therefore, in preparation for solving the leader–follower model,
we first experimented with a budget of 1500. For larger budgets run times may be
prohibitive and it may be necessary to replace the branch and bound procedure with
the effective tabu search described in Drezner et al. (2012).

The branch and bound optimal algorithm is used to solve the follower’s problem.
Since it is used numerous times in the solution procedure for the leader’s problem,
we opted to apply a budget of 1500 and a setup cost of 500 for both the leader
and the follower. Both the leader and the follower apply the JNT strategy. Tabu
search, which does not guarantee optimality, is used to solve the leader’s problem.
We therefore repeated the solution of each problem instance for at least 20 times to
assess the quality of the tabu search solutions. We were able to solve (in reasonable
run times) problems with up to 400 demand points.

12.4.3.1 Computational Experiments with No Competitor’s Reaction

In our “leader–follower” paper Drezner et al. (2015), we first reported experiments
with solving the leader’s problem with no reaction from the follower. This was
needed to establish a baseline and was performed by the branch and bound rigorous
algorithm. When solving the leader–follower problem, this algorithm is performed
to find the follower’s optimal solution and consequently the leader’s objective
function.

In Drezner et al. (2015), we also reported the analysis of the percent of market
share captured: by the chain (leader), by the competitor (follower), and from lost
demand as a function of the budget following the leader’s optimal action. The
follower takes no action. The setup cost is Sj = 300 and the JNT strategy is applied.
As expected, one’s chain market share increases and the competitor’s market share
declines. Some of the increase in the leader’s market share comes at the expense of
the competitor and some comes from capturing demand that is presently lost. It is
interesting that the proportion of the additional market share from the competitor
remains almost constant for all budgets tested. The average for all 40 problems is
44.2% for a budget of 1500, 44.2% for a budget of 2000, 44.9% for a budget of
2500, and 46.7% for a budget of 5000. A larger percentage of market share gained
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comes from lost demand. These percentages are the complements of the percentages
gained from competitors or about 55%.

For the branch and bound algorithm for the JNT strategy solving the leader’s
problem when the follower does not react, problems with up to 400 demand points
were solved in less than a quarter of a second. We then tested the three strategies
for a setup cost of Sj = 300. The lower setup cost provides more options for the
leader and, therefore, the run times (and number of nodes) are significantly higher,
especially for large values of n.

12.4.3.2 Computational Experiments for Solving the Leader–Follower
Problem

The tabu search procedure for finding the leader’s best solution after the follower’s
reaction was programmed in C#. Its effectiveness was first tested on 160 JNT
instances (40 instances for each budget) optimally solved, i.e., assuming no
follower’s reaction. Our tabu search was capable of finding optimal solutions to
148 out of 160 instances and sub-optimal solutions (avg. error: 0.11%, max error:
0.41%) to the remaining 12 instances. We also observed that, for the budget of
1500, only one instance (#31) was not solved optimally by tabu search and the
error was 0.04%. In the subsequent experiments reported in Drezner et al. (2015),
we considered a budget of 1500.

Next, we extended the leader’s solution by adding the branch and bound
procedure (the follower’s solution) to the tabu search. The original parameters used
for solving the leader’s problem

(
wi = 1

i

)
did not provide interesting results because

the weights declined as the index of the demand point increased and thus both the
leader and the follower concentrated their effort on attracting demand from demand
points with a low index (high wi) and “ignored” demand points with higher indices.
We therefore assigned equal weights of “1” to all demand points. We used a budget
of 1500 and a setup cost of 500 for both the leader and the follower.

As a result of extensive experiments, the following parameters were used in the
tabu search for solving the leader’s problem: The number of iterations was set to
1000, and the length of the tabu tenure was randomly generated every iteration
between tmin = 5 and tmax = 8. The starting solutions for the tabu search are
the results of the greedy algorithm described in Sect. 12.4.2.1 using between 10%
and 100% (randomly generated) of the available budget.

The optimal solution for the follower was found by using the Fortran program
that finds the optimal solution for the follower once the action taken by the leader
is known. Run times were quite long so we solved the first 20 problems up to
400 demand points. We solved the first 10 problems 100 times each, the next five
problems (n = 300) 50 times each, and the next 5 problems (n = 400) 20 times
each. Recall that the follower’s problem was solved optimally and thus these results
are valid.

The reader is referred to our paper Drezner et al. (2015) for details and
comprehensive discussion of the results.
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12.5 The Multiple Markets Competitive Location Problem

In our third follow-up paper Drezner et al. (2016), we consider a competitive
location model with a very large number of demand points and facilities. Applying
existing solution methods may, at best, provide a good heuristic solution.

The basic problem the company faces is how to invest its available budget in
order to expand chain facilities, either by improving the attractiveness of some
existing ones, by building new facilities, or by a combination of both actions. Such
problems cannot be optimally solved for large instances with currently available
computational resources. In Drezner et al. (2016), we investigated a special case
for which optimal solutions may be obtained for large problems, and illustrated this
approach by optimally solving a problem with 5000 demand points and 400 existing
facilities (200 chain facilities and 200 competing facilities).

It is quite common for large problems that a large market area consists of a
union of mutually exclusive sub-markets. An international corporation (for example,
McDonald’s) has facilities in many markets that are mutually exclusive, i.e.,
customers in one market area do not patronize outlets in other markets or cross-
patronizing between markets is negligible. This may well be the case even on a
smaller scale when the market can be partitioned to “almost” mutually exclusive
sub-markets when a large distance exists between clusters of demand points. For
example, urban areas in Texas such as Dallas, Houston, San Antonio, Austin, etc. are
mutually exclusive. Consumers residing in Dallas will rarely patronize a McDonald
outlet in San Antonio.

The contribution of our Drezner et al. (2016) paper was twofold: (1) dealing with
multiple mutually exclusive sub-markets, and (2) discretizing the budget so that its
allocation to each sub-market is not a continuous variable.

Suppose that the market can be partitioned into m mutually exclusive sub-
markets. If we know the budget allocated to each sub-market, we may be able to find
the optimal solution (where to locate new facilities and which existing facilities to
expand) for each sub-market separately. This simplifies the formulation. However,
the resulting problem is intractable as well because m variables representing the
budget allocated to each sub-market are added to the formulation (in addition to
the decision variables in each sub-market). In addition, a constraint that the sum
of these individual budgets is equal to the available budget is added. A Lagrangian
approach (adding a Lagrange multiplier for the constraint on the total budget and
finding its value) is not applicable to this particular problem. The formula for the
profit obtained in a sub-market as a function of the budget allocated to that sub-
market is not an explicit expression.

Three objectives are investigated: (1) Maximizing firm’s profit, (2) maximizing
firm’s return on investment, and (3) maximizing profit subject to a minimum
acceptable return on investment. The last objective is similar in many ways to the
threshold concept where the objective is to minimize the probability of falling short
of a profit threshold or a cost overrun (Drezner et al. 2002b; Drezner and Drezner
2011). The first paper to introduce the threshold concept was Kataoka (1963) in
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the context of transportation problems. Frank (1966, 1967) considered a model of
minimizing the probability that the cost function in the Weber or minimax problems
(Love et al. 1988) on a network exceeds a given threshold. The threshold concept
has been employed in financial circles as a form of insurance on a portfolio, either
to protect the portfolio or to protect firm’s minimum profit (Jacobs and Levy 1996).

12.5.1 Multiple-Market Competitive Location Solution
Approach

There are m mutually exclusive sub-markets, each with given data about chain
facilities, competitors, and demand points. A budget B is available for an investment
in all m sub-markets. In order to diversify the investment, we can impose a
maximum budget of B0 in each of the sub-markets. The maximum budget can
be different for different sub-markets. Suppose that the budget B is divided into
K units, each unit is B

K
dollars. For example, we can use K = 1000 so that each

unit is 0.1% of the total budget. Since all m sub-markets are mutually exclusive we
can find the maximum profit for each individual sub-market by investing in sub-
market j = 1, . . . , m a budget of bj = i B

K
for some 0 ≤ i ≤ K . If the amount to be

invested in a particular sub-market cannot exceed B0 dollars, then i
K

B ≤ B0 leading

to 0 ≤ i ≤ K
B0
B

= imax. We assume that the maximum profit for a given investment
in a given sub-market can be found by an optimal algorithm or, if necessary, by a
good heuristic algorithm. The result is a matrix P of imax rows and m columns. The
element pij for 1 ≤ i ≤ imax and 1 ≤ j ≤ m in the matrix is the maximum profit
obtained by investing i B

K
in sub-market j . For i = 0 the profit is zero. The problem

is solved in two phases:

12.5.1.1 Phase 1: Calculating the Maximum Profit of a Sub-market for
All Possible Budgets

Since each sub-market is independent of the other sub-markets, the maximum profit
obtained in a sub-market for a given budget can be found by any existing competitive
location solution method. There are also heuristic approaches proposed for such
problems when a sub-market leads to a large problem. A problem consisting of 5000
demand points is too big for most published approaches. However, as we illustrate
below, if such a problem can be divided to 20 sub-markets consisting between
100 and 400 demand points each, it is tractable for most solution approaches. The
following are examples of competitive models and solution approaches that can be
applied to find the maximum profit for a sub-market for a given budget allocated to
that sub-market:

• Aboolian et al. (2007) solved the multiple facility location problem with a limited
budget in discrete space within a given α% of optimality.
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• Plastria and Vanhaverbeke (2008) solved the problem defined by Aboolian et al.
(2007) in a leader–follower modification. The leader–follower model is also
termed the Stackelberg’s equilibrium model (Sáiz et al. 2009; Stackelberg 1934).

• Fernandez et al. (2007) and Toth et al. (2009) solved the same problem as
Aboolian et al. (2007) in a planar environment.

• Drezner and Drezner (2004) solved optimally the single facility problem based
on the gravity formulation for a given budget (attractiveness).

• Drezner et al. (2012) solved optimally the multiple facilities problem with a
limited budget in discrete space. New facilities can be constructed and existing
facilities improved.

• Drezner et al. (2015) solved the leader–follower version of the formulation in
Drezner et al. (2012). The competitor (follower) is expected to improve his
facilities or build new ones in response to the leader’s action. The objective is
to maximize the leader’s market share following the follower’s action.

For K = 1000 (a parameter), a matrix P of up to 1001 rows corresponding to
the possible investments, and m columns corresponding to the m sub-markets can be
calculated by solving 1000m sub-problems. Of course, an investment of zero yields
zero profit and need not be solved.

12.5.1.2 Phase 2: Calculating the Total Profit for All Markets Combined

Once the matrix P is available, the distribution of B among the m sub-markets can
be found in two ways. One way is solving a binary linear program and the other way
is by dynamic programming.

12.5.1.3 Binary Linear Programming Formulation

Let xij for 1 ≤ i ≤ K and 1 ≤ j ≤ m be a binary variable that is equal to 1 if
a budget of i B

K
is invested in sub-market j and zero otherwise. The total profit is

imax∑
i=1

m∑
j=1

pij xij . The total investment is B
K

imax∑
i=1

m∑
j=1

ixij

max

⎧⎨
⎩

imax∑
i=1

m∑
j=1

pij xij

⎫⎬
⎭ (12.23)

Subject to:

imax∑
i=1

xij ≤ 1 for j = 1, . . . , m (12.24)
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imax∑
i=1

m∑
j=1

ixij ≤ K (12.25)

xij ∈ {0, 1} (12.26)

which is binary linear program with imax × m variables and m + 1 constraints.
The constraint (12.24) guarantees that only one budget value is selected for each
sub-market and if all xij = 0 for sub-market j , then no budget is allocated to sub-
market j .

12.5.1.4 Dynamic Programming

Row zero is added to matrix P with zero values. The stages in the dynamic
programming are the maximum profit for a budget i B

K
by investing only in the first j

sub-markets. Let the matrix Q = [qij ] be the maximum profit obtained by investing
a budget of i B

K
in the first j sub-markets. By definition qi1 = pi1. For 2 ≤ j ≤ m

the following recursive relationship holds:

qij = max
0≤r≤i

{
qr,j−1 + pi−r,j

}
.

The values qim are the maximum possible profit for spending a total budget i B
K

in
all sub-markets. Some sub-markets may be assigned no investment. One advantage
of dynamic programming over the binary linear programming approach is that the
maximum profit is obtained for each partial budget in one application of the dynamic
programming, while K solutions of the binary linear programming are required. In
addition, the maximum return on investment (ROI) is obtained for any partial budget
by one application of dynamic programming.

12.5.1.5 Maximizing Profit Subject to a Minimum ROI

Finding the maximum profit subject to a minimum ROI can be done using the results
obtained for maximizing the profit for a given budget. The ROI is the ratio between
the profit and the investment (budget). It can be calculated for each investment value
yielding a vector of ROI values. The maximum profit for a ROI greater than a certain
value is found by calculating the maximum profit for all investments whose ROI
exceeds the given value.

It can also be done by solving binary linear programs similar to the formulation
presented in Sect. 12.5.1.3. Only one additional constraint is added to the binary
linear programming formulation (12.23)–(12.26). By definition, the ROI is the ratio
between the profit and the investment. Therefore,
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ROI =

imax∑
i=1

m∑
j=1

pij xij

B
K

imax∑
i=1

m∑
j=1

ixij

.

Suppose that a minimum ROI of α is required. ROI ≥ α is equivalent to:

imax∑
i=1

m∑
j=1

{
pij − iα

B

K

}
xij ≥ 0 . (12.27)

Constraint (12.27), which is linear, is added to the formulation (12.23)–(12.26)
leading to a binary linear program with imax × m variables and m + 2 constraints.

12.5.2 An Illustrative Multiple Markets Example

Once the maximum profit for a given investment in an individual sub-market
is found, our general framework can be implemented. All the formulations and
solution procedures described in Sect. 12.5.1.1 can be used for this purpose. In
Drezner et al. (2016), we opted to apply the optimal branch and bound algorithm
proposed in Drezner et al. (2012) for finding the maximum profit by investing a
given budget in a single sub-market.

The networks selected for our sub-markets are the first 20 Beasley (1990a)
networks designed for the evaluation of algorithms for solving p-median problems.
Beasley (1990a) did not consider competitive models. Demand points, existing
facilities, and potential locations for new facilities are located at the nodes of the
network. Distances along links are measured in tenths of miles. These networks
are easily available for testing other models as well. They can be used for future
comparisons.

• 5000 demand points are located in 20 sub-markets. Each sub-market consists of
between 100 and 400 demand points.

• 200 chain facilities and 200 competing facilities presently operate in these sub-
markets.

• Each demand point has an available buying power to be spent at one’s facilities
or the competitors’ facilities.

• For simplicity of presentation, each sub-market has a total buying power of $150
million for a total of $3 billion.

• A budget of up to $100 million is available for improvements of existing facilities
and construction of new ones. No more than $30 million can be allocated to each
sub-market.
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• Existing facilities can be expanded and new facilities can be constructed at any
node of the network.

• Each facility has a “circle of influence” defined by a radius of influence inside
which they attract customers.

• For simplicity of presentation we assume that each existing facility has a radius
of influence of 2 miles.

• The cost of expanding a facility is proportional to the increase in the area of its
circle of influence. Expanding a facility from the existing radius of influence of
2 miles to a radius of influence of r miles costs r2 − 4 million.

• Building a new facility with radius of influence r entails a $5 million setup cost
plus a cost of r2 million.

We want to determine which, if any, of the 200 existing facilities should be
expanded and at which of the 4800 potential locations should new facilities be
constructed to maximize profit. Maximizing the return on investment (ROI) is also
considered, as well as maximizing profit subject to a minimum ROI value. The radii
of the expanded and new facilities are variables, for a total of 5000 variables.

The branch and bound optimal algorithm (Drezner et al. 2012) and the dynamic
programming procedure were programmed in Fortran using double-precision arith-
metic. The programs were compiled by the Intel 11.1 Fortran Compiler and run,
with no parallel processing, on a desktop with the Intel 870/i7 2.93 GHz CPU Quad
processor and 8 GB memory. Only one thread was used.

The matrix P contains 6020 values (301 rows for a budget of zero and between
$0.1 and $30 million, and 20 columns, one for each sub-market), each being the
maximum profit for a given budget invested in a given sub-market. Note that an
investment of $0 yields a profit of $0. All 6020 optimal solutions that are needed for
the construction of matrix P were obtained in about 103 min of computing time.

Once the matrix P is found, obtaining the maximum profit for all partial budgets
by solving binary linear programs using CPLEX 12.A took about 3 s for solving
each of the 300 problems. The 300 results using dynamic programming were
obtained in less than 1 s. Finding the maximum profit subject to a minimum ROI
requirement by solving the binary linear program required about 1.6 s. Once the 300
results found by dynamic programming are available, the solution to the maximum
profit for a minimum ROI is found by constructing a simple excel file.

In Table 12.1 we summarize the maximum possible profit along with the
maximum return on investment (ROI) and the corresponding investments leading
to these profits and ROIs. In five of the 20 sub-markets no profit is possible and no
investment should be made. If unlimited budget is available and the best investment
strategy is selected for each sub-market, then the total investment is $298.5 million
leading to a profit of $198.4 million and ROI of 0.665.

Sub-market #20 was selected for depiction of the profit and the ROI as a function
of the investment in that sub-market. In Fig. 12.2, these graphs are depicted. As
reported in Table 12.1, the maximum profit of $26.884 million dollars is obtained
for an investment of $24.1 million and a maximum ROI of 1.51 is achieved for an
investment of $14.5 million.
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Table 12.1 Individual sub-markets results

Maximizing profit Maximizing ROI

Sub- Demand
market points Million $ to invest Profit in million $ Million $ to invest Max ROI

1 100 0 0 0 0

2 100 0 0 0 0

3 100 0 0 0 0

4 100 0 0 0 0

5 100 0.5 0.056 0.5 0.112

6 200 0 0 0 0

7 200 24.1 1.741 0.5 0.237

8 200 0.9 0.210 0.9 0.233

9 200 1.7 0.541 1.3 0.397

10 200 29.7 3.561 25.3 0.140

11 300 22.5 18.558 13.7 0.961

12 300 26.3 12.131 2.8 0.781

13 300 24.1 20.592 17.2 1.161

14 300 29.5 6.762 1.3 0.430

15 300 28.5 18.956 19.1 0.844

16 400 24.4 22.230 11.3 1.517

17 400 22.1 22.499 5.7 1.582

18 400 22.1 25.716 14.5 1.476

19 400 18.0 18.010 9.7 1.228

20 400 24.1 26.884 14.5 1.510

In Fig. 12.3, we depict the profit and ROI for the total investment in all 20
sub-markets. These values were obtained using dynamic programming. The profit
increases as a function of total investment. However, ROI is quite erratic. ROI
reaches the maximum when $5.7 million is invested in sub-market #17 and no
investment made in other sub-markets.

In Fig. 12.4, the maximum profit for a minimum ROI value is plotted for an
investment of up to $100 million. As expected, when higher minimum ROI is
required the maximum profit declines.

12.6 Conclusions

This chapter summarized four papers on competitive location: Drezner et al. (2011,
2012, 2015, 2016). All four papers utilize the radius of influence and are based on
an assumption of equal division of buying power among facilities whose radius of
influence captures that power.

We presented efficient methods for locating multiple new, and expanding exist-
ing, facilities in such a competitive environment. We also presented a leader–
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Fig. 12.2 Profit and ROI as a function of the investment in sub-market #20

follower model in which initial actions of the leader (locate new and/or improve
existing facilities) are countered by follower’s response, along with a solution
method. Finally, we discussed a multiple disjoint markets problem with real-world
objectives and presented efficient solution techniques.

All these methods have a common objective: the maximization of the market
share. Since profit is (usually) a monotonically increasing function of market share
captured, this objective is associated with maximizing profit.

The original idea of locating new facilities based on their radii of influence
called for an extension allowing expanding existing facilities in addition to locating
new ones. This concept, however, was considered in a static context in which a
decision to locate new and expand existing facilities was based on the “ceteris
paribus” assumption from the classical economics, i.e., no reaction from the
competitors. This assumption is released in the leader–follower version of our
model, in which the leader’s decision takes into account the actions of competitors,
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Fig. 12.3 Profit and ROI as a function of the total investment

Fig. 12.4 Maximum profit subject to minimum ROI
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directly following the leader’s decision. Like in a game of chess, the leader must
carefully consider each move (locating new and expanding existing facilities) in
terms of the competitors’ counter-moves. Adding this new dimension to the problem
significantly increased the difficulty of finding a solution but it also made our model
more realistic.

Even in its original formulation, the competitive location problem is combinato-
rially explosive as its complexity increases much faster than the number of facilities
to be located or expanded. The practical considerations such as the concentration
of demand points in urban areas and the limited sphere of influence for most types
of facilities lead us to the model in which multiple disjoint markets are identified
and considered as separate environments for locating new and expanding existing
facilities. This new approach allows tackling large practical competitive location
problems which would be too difficult or impossible to solve without splitting them
into disjoint sub-markets.

Future research involving our competitive location model might consider down-
grading and closing existing facilities (together with opening and upgrading) as
a new strategy. Studying the effects of including this new strategy in the leader–
follower model is another interesting research avenue to explore. Also, additional
moves in the competitive game (e.g., leader’s move, follower’s response, leader’s
response) could be investigated, however, on a much smaller scale. Other game-
theoretical approaches such as forming coalitions with some competitors could be
investigated. Lastly, a gradual cover extension of our original model (with multiple
radii of influence) could be considered.

References

Aboolian, R., Berman, O., & Krass, D. (2007). Competitive facility location and design problem.
European Journal of Operations Research, 182, 40–62.

Alp, O., Drezner, Z., & Erkut, E. (2003). An efficient genetic algorithm for the p-median problem.
Annals of Operations Research, 122, 21–42.

Barros, A. I. (1998). Discrete and fractional programming techniques for location models. Boston:
Springer.

Beasley, J. E. (1990a). OR-library—Distributing test problems by electronic mail. Journal of the
Operational Research Society, 41, 1069–1072. Also available at http://people.brunel.ac.uk/~
mastjjb/jeb/orlib/pmedinfo.html

Beasley, J. E. (1990b). Or-library: Distributing test problems by electronic mail. Journal of the
Operational Research Society, 41(11), 1069–1072.

Beaumont, J. R. (1991). GIS and market analysis. In D. J. Maguire, M. Goodchild, & D. Rhind
(Eds.), Geographical information systems: Principles and applications (pp. 139–151). Harlow:
Longman Scientific.

Berman, O. (1994). The p-maximal cover - p-Partial center problem on networks. European
Journal of Operational Research, 72, 432–442.

Berman, O., & Drezner, Z. (2008). A new formulation for the conditional p-median and p-center
problems. Operations Research Letters, 36, 481–483.

Berman, O., Drezner, T., Drezner, Z., & Krass, D. (2009a). Modeling competitive facility location
problems: New approaches and results. In M. Oskoorouchi (Ed.), Tutorials in operations
research (pp. 156–181). San Diego: INFORMS.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html


318 P. Kalczynski

Berman, O., Drezner, Z., Krass, D., & Wesolowsky, G. O. (2009b). The variable radius covering
problem. European Journal of Operational Research, 196, 516–525.

Canovas, L., & Pelegrin, B. (1992). Improving some heuristic algorithms for the rectangular p-
cover problem. In J. A. Moreno-Perez (Ed.), Proceedings of the VI Meeting of the EURO
Working Group on Locational Analysis (pp. 23–31). Tenerife: Universidad de La Laguna.

Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval
Research Logistics (NRL), 9(3–4), 181–186.

Chen, D. Z., Daescu, O., Dai, Y., Katoh, N., Wu, X., & Xu, J. (2005). Efficient algorithms
and implementations for optimizing the sum of linear fractional functions, with applications.
Journal of Combinatorial Optimization, 9(1), 69–90.

Church, R. L., & ReVelle, C. S. (1974). The maximal covering location problem. Papers of the
Regional Science Association, 32, 101–118.

Current, J., Daskin, M., & Schilling, D. (2002). Discrete network location models. In Z. Drezner
& H. W. Hamacher (Eds.), Facility location: Applications and theory (pp. 81–118). Berlin:
Springer.

Daskin, M. S. (1995). Network and discrete location: Models, algorithms, and applications. New
York: Wiley.

Drezner, T. (1994a). Locating a single new facility among existing unequally attractive facilities.
Journal of Regional Science, 34, 237–252.

Drezner, T. (1994b). Optimal continuous location of a retail facility, facility attractiveness, and
market share: An interactive model. Journal of Retailing, 70, 49–64.

Drezner, T. (1995). Competitive facility location in the plane. In Z. Drezner (Ed.), Facility location:
A survey of applications and methods (pp. 285–300). New York: Springer.

Drezner, T. (1998). Location of multiple retail facilities with limited budget constraints—In
continuous space. Journal of Retailing and Consumer Services, 5, 173–184.

Drezner, T. (2006). Derived attractiveness of shopping malls. IMA Journal of Management
Mathematics, 17, 349–358.

Drezner, T., & Drezner, Z. (1996). Competitive facilities: Market share and location with random
utility. Journal of Regional Science, 36, 1–15.

Drezner, T., & Drezner, Z. (1998). Facility location in anticipation of future competition. Location
Science, 6, 155–173.

Drezner, T., & Drezner, Z. (2004). Finding the optimal solution to the Huff competitive location
model. Computational Management Science, 1, 193–208.

Drezner, T., & Drezner, Z. (2008). Lost demand in a competitive environment. Journal of the
Operational Research Society, 59, 362–371.

Drezner, T., & Drezner, Z. (2011). The Weber location problem: The threshold objective. INFOR:
Information Systems and Operational Research, 49, 212–220.

Drezner, T., Drezner, Z., & Kalczynski, P. (2011). A cover-based competitive location model.
Journal of the Operational Research Society, 62, 100–113.

Drezner, T., Drezner, Z., & Kalczynski, P. (2012). Strategic competitive location: Improving
existing and establishing new facilities. Journal of the Operational Research Society, 63, 1720–
1730.

Drezner, T., Drezner, Z., & Kalczynski, P. (2015). A leader-follower model for discrete competitive
facility location. Computers & Operations Research, 64, 51–59.

Drezner, T., Drezner, Z., & Kalczynski, P. (2016). The multiple markets competitive location
problem. Kybernetes, 45, 854–865.

Drezner, T., Drezner, Z., & Salhi, S. (2002a). Solving the multiple competitive facilities location
problem. European Journal of Operational Research, 142, 138–151.

Drezner, T., Drezner, Z., & Shiode, S. (2002b). A threshold satisfying competitive location model.
Journal of Regional Science, 42, 287–299.

Drezner, Z. (1981). On a modified one-center problem. Management Science, 27, 848–851.
Drezner, Z. (1982). Competitive location strategies for two facilities. Regional Science and Urban

Economics, 12, 485–493.



12 Cover-Based Competitive Location Models 319

Drezner, Z. (1986). The p-cover problem. European Journal of Operational Research, 26, 312–
313.

Drezner, Z., Hahn, P. M., & Taillard, É. D. (2005). Recent advances for the quadratic assignment
problem with special emphasis on instances that are difficult for meta-heuristic methods. Annals
of Operations Research, 139, 65–94.

Drezner, Z., Suzuki, A., & Drezner, T. (2007). Locating multiple facilities in a planar competitive
environment. Journal of the Operations Research Society of Japan, 50, 1001–1014.

Drezner, Z., Wesolowsky, G. O., & Drezner, T. (1998). On the logit approach to competitive facility
location. Journal of Regional Science, 38, 313–327.

Falk, J. E., & Palocsay, S. W. (1992). Optimizing the sum of linear fractional functions. In Recent
advances in global optimization (pp. 221–258). Princeton: Princeton University Press.

Fernandez, J., Pelegrin, B., Plastria, F., & Toth, B. (2007). Solving a Huff-like competitive location
and design model for profit maximization in the plane. European Journal of Operational
Research, 179, 1274–1287.

Frank, H. (1966). Optimum location on a graph with probabilistic demands. Operations Research,
14, 409–421.

Frank, H. (1967). Optimum location on a graph with correlated normal demands. Operations
Research, 15, 552–557.

Freund, R. W., & Jarre, F. (2001). Solving the sum-of-ratios problem by an interior-point method.
Journal of Global Optimization, 19(1), 83–102.

Gao, Z., Wu, J., & Sun, H. (2005). Solution algorithm for the bi-level discrete network design
problem. Transportation Research Part B: Methodological, 39, 479–495.

Ghosh, A., & Rushton, G. (1987). Spatial analysis and location-allocation models. New York: Van
Nostrand Reinhold Company.

Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision
Sciences, 8, 156–166.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence.
Computers & Operations Research, 13, 533–549.

Glover, F., & Laguna, M. (1997). Tabu search. Boston: Kluwer Academic Publishers.
Hakimi, S. L. (1983). On locating new facilities in a competitive environment. European Journal

of Operational Research, 12, 29–35.
Hakimi, S. L. (1986). p-Median theorems for competitive location. Annals of Operations Research,

6, 77–98.
Hakimi, S. L. (1990). Locations with spatial interactions: Competitive locations and games. In P.

B. Mirchandani & R. L. Francis (Eds.), Discrete location theory (pp. 439–478). New York:
Wiley-Interscience.

Hardy, G., Littlewood, J. E., & Pólya, G. (1952). Inequalities (2nd ed.). New York: Cambridge
University Press. First published in 1934.

Hotelling, H. (1929). Stability in competition. Economic Journal, 39, 41–57.
Huff, D. L. (1964). Defining and estimating a trade area. Journal of Marketing, 28, 34–38.
Huff, D. L. (1966). A programmed solution for approximating an optimum retail location. Land

Economics, 42, 293–303.
Jacobs, B. I., & Levy, K. N. (1996). Residual risk: How much is too much? Journal of Portfolio

Management, 22, 10–16.
Kataoka, S. (1963). A stochastic programming model. Econometrica, 31, 181–196.
Kirkpatrick, S., Gelat, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.

Science, 220, 671–680.
Küçükaydın, H., Aras, N., & Altınel, I. (2012). A leader–follower game in competitive facility

location. Computers & Operations Research, 39, 437–448.
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Chapter 13
The Mean-Value-at-Risk Median
Problem on a Network with Random
Demand Weights

Chunlin Xin and Jiamin Wang

Dr. Zvi Drezner’s research career has touched on many areas of location analysis.
We devote the first part of this chapter to summarizing Zvi’s vast contributions
to the studies of the minimax and the maximum facility location problems. His
relevant publications are grouped in terms of the characteristics of the problems
investigated, including space, the number of facilities to locate, and completeness of
information. In particular, we provide an overview of Zvi’s work in the deterministic
planar minimax problems. The second part of the chapter is our own paper on a
network median problem when demand weights are independent random variables.
The objective of the model proposed is to locate a single facility so as to minimize
the expected total demand-weighted distance subject to a constraint on the value-at-
risk (VaR). The study integrates the expectation criterion with the VaR measure and
links different median models with random demand weights. Methods are suggested
to identify dominant points for the optimal solution. An algorithm is developed for
solving the problem.
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13.1 Zvi Drezner’s Contributions to the Minimax Location
Problems

Dr. Zvi Drezner is well known for his important contributions to various aspects
of the location theory. In this section, we attempt to summarize his studies in
the minimax and maximum facility location problems. The overview shows both
the width and the depth of his pioneer work in the field. The remainder of the
chapter is our own study on a median (minisum) location problem with random
demand weights. The study integrates the expectation criterion with the value-at-
risk (VaR) measure and links different probabilistic median problems. It is noted
that our study does intersect with Zvi’s interest in stochastic location analysis. We
are deeply grateful to Drs. H. A. Eiselt and Vladimir Marianov, the editors of the
present academic Festschrift, for giving us an opportunity to honor Zvi’s great
accomplishments in his research.

The minimax objective function seeks to improve the least payoff as much as
possible. It is thus widely adopted to model “fairness” in facility location analysis
(Eiselt and Laporte 1995), resulting in a large family of the minimax facility location
problems. The classical minimax problem, also referred to as the center problem, is
to locate facilities so that the maximum (weighted) distance between the farthest
demand and its closest facility is minimized. This model can be applied to site
public facilities such as fire stations and hospitals. The reader is referred to the
excellent reviews of Drezner (2011) and Tansel (2011) on the minimax facility
location problem in the plane and on a network, respectively.

The minimax criterion is appropriate for locating desirable facilities. But for
undesirable facilities such as prisons, nuclear power plants, and airports, it makes
sense to apply the maximin objective function so as to keep the demand away from
the facilities as far as possible (Eiselt and Laporte 1995). An overview of the earlier
work on the maximin facility location problem was given by Melachrinoudis (2011).

We now summarize Dr. Zvi Drezner’s vast contributions to the studies of the
minimax and the maximin problems. Tables 13.1 and 13.2 group a number of Zvi’s
relevant publications in terms of the characteristics of the problems investigated,
including space, the number of facilities to locate, and completeness of information
(a deterministic setting or a probabilistic setting). Note that a few publications
appear in two groups, which means that they possess the characteristics of both
groups. For instance, Drezner and Wesolowsky (2000) study both the single-facility
minimax and maximin problems in the plane where the demand points of interest
are aggregated into groups. The list of the publications in the tables is by no means
complete. However, we feel that it is sufficient to evidence the width of his work in
the field, which spans from continuous space to discrete space, from a single facility
to multiple facilities, from the deterministic setting to the probabilistic setting, as
well as from desirable facilities to undesirable ones.

We next present an overview of Zvi’s studies of the deterministic minimax
problems in the plane as this is the area that the majority of his publications focus on.
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Table 13.1 Publications on the continuous minimax and maximin problems

One facility Multiple facilities

Planar Deterministic minimax Deterministic minimax

Drezner et al. (1986) Drezner and Wesolowsky (1978)

Drezner and Shelah (1987) Drezner (1984a)

Drezner and Wesolowsky (1989) Drezner (1984b)

Drezner et al. (1991) Drezner (1989)

Drezner and Wesolowsky (1995) Suzuki and Drezner (1996)

Drezner and Wesolowsky (2000)

Berman et al. (2007)

Suzuki and Drezner (2009)

Probabilistic minimax Probabilistic minimax

Berman et al. (2003c) Drezner (1987)

Berman et al. (2003b)

Deterministic maximin Deterministic maximin

Drezner and Wesolowsky (1980) Drezner and Wesolowsky (1985)

Drezner and Wesolowsky (1996) Welch et al. (2006)

Drezner and Wesolowsky (2000)

Rd(d > 2) Deterministic minimax Deterministic minimax

Drezner and Gavish (1985) Drezner (1991)

Table 13.2 Publications on
the network minimax and
maximin problems

One facility Multiple facilities

Deterministic minimax Deterministic minimax

Berman et al. (2001) Berman et al. (2001)

Berman et al. (2003b) Berman et al. (2005)

Berman et al. (2007) Berman and Drezner (2008)

Berman et al. (2009)

Probabilistic minimax Probabilistic minimax

Berman and Drezner (2003) Aboolian et al. (2009)

Berman et al. (2003a)

Deterministic maximin

Berman and Drezner (2000)

Berman et al. (2003a)

It appears that Zvi’s earlier work was mainly concerned with the algorithms for
solving the classical minimax problem. In Drezner and Shelah (1987), it was proven
that the complexity of the Elzinga and Hearn (1972) algorithm for the Euclidean
unweighted single-facility minimax problem is O(n2), where n is the number of
demand points. Let m > 1 be the number of new facilities to locate. Drezner and
Wesolowsky (1978) proposed that the optimal solution to the m-facility weighted
minimax problem with the general lp norm distances could be found by solving a
set of ordinary differential equations via numerical integration.
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Drezner (1984a,b) considered the Euclidean m-facility minimax problem and
suggested a solution approach to partition the demand points into m distinctive
subsets, and then find the optimal location of a facility for each subset. In Drezner
(1984a), an exact solution method was developed that generates and evaluates all
two partitions of the demand points when m = 2. In Drezner (1984b), two heuristics
were suggested with an attempt to improve the demand point partitions iteratively
for m ≥ 2. A polynomial-time exact solution approach was also proposed that
partitions all demand points into m disjoint subsets such that the single-facility
minimax problem for each subset has an optimal objective function value no greater
than the known upper bound to the original problem. The partitioning results are
then used to update the upper bound iteratively, while the procedure terminates when
the upper bound cannot be reduced further.

Zvi also studied problems that can be viewed as direct extensions of the classical
minimax problem. Drezner et al. (1986) investigated the single-facility minimax-
min location problem with the objective to minimize the range of the weighted
distances. The proposed location analysis model can be applied in the public sector
for which smaller variations in accessibility of the potential user population shall
be preferred. Drezner (1989) considered the conditional multi-facility minimax
problem in which m new facilities are to be sited in additional to the q existing
facilities.

The distance function is not conventional in some other studies. Drezner
and Wesolowsky (1989) and Drezner et al. (1991) considered the single-facility
minimax problem with the rectilinear and Euclidean distances when the distance
between any two points is assumed to be, respectively, asymmetric and a constant
once it reaches some threshold. As the authors noted, the former model is valid in the
rush hour traffic, or the traffic on an inclined surface, while the latter is applicable to
exclude the customers who appear too far away from consideration. In Drezner and
Wesolowsky (1995), the single-facility minimax problem on alternating one-way
routes or streets was studied. The model presented in their study can be applied to
achieve a more efficient traffic flow. The authors derived the rectilinear distance
function between any two points on a one-way grid and developed an efficient
algorithm for solving the problem.

The minimax problem with groups of demand points or continuous area demand
as well as the transfer point location problem can be regarded as indirect extensions
of the classical minimax problem. Aggregating the demand points into groups,
Drezner and Wesolowsky (2000) generalized the single-facility minimax problem
as well as the maximin problem by using the group-distance between the facility
and a cluster of demand points instead of the traditional point-to-point distance.
An evident application of the model is to deal with demand points that are widely
dispersed in an area. Three group-distance measures were suggested and various
model formulations were developed.

It is common in the literature to assume that demand originates from a finite
number of demand points. But demand from a continuous area is more appropriate
for mobile demand such as cell phone or wireless coverage. Suzuki and Drezner
(1996) considered the m-minimax problem with area demand. It was suggested that
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the unweighted version of the problem is equivalent to covering the demand area
by a pre-chosen number of circles with the smallest possible radius. The authors
developed a heuristic solution procedure using the Voronoi diagram (Sugihara and
Iri 1992, 1994). In the procedure, after a set of m centers is randomly generated
in the area, the following two steps are repeated: a Voronoi diagram based on the
centers is constructed, and then the centers are updated for the Voronoi diagram.
Because the heuristic converges very slowly, it had to be terminated prematurely
by the authors and was replaced by a non-linear convex programming model to
improve the solution. In Suzuki and Drezner (2009), a solution method also based
on the Voronoi diagram was developed, which iteratively changes the m centers by
solving a linear programming model. It was reported that this procedure converges
very quickly and therefore is more efficient.

Berman et al. (2007) discussed the transfer point location problem in the plane
and on a network, where the trip from each demand point to the facility (such as a
hospital) has to go through the transfer point (such as a helicopter pad). Assuming
that the traveling speed is higher between the transfer point and the facility, they
developed models to optimize the location of the transfer point for a given facility
location. In the minimax model considered, the objective is to minimize the longest
travel time it takes to access the facility from the demand points via the transfer
point.

Dr. Zvi Drezner is a prolific and challenging intellectual with deep and wide-
ranging interests. This short overview highlights his notable contributions to the
studies of the minimax and the maximin facility location problems only. We note
that his work has not only moved location analysis to an advanced level, but also
had a transformative effect on the way scholars in the field conduct their studies. At
the age of 75, Zvi remains active in his intellectual exploration. We are delighted to
expect his continuing contributions to location analysis.

13.2 The Mean-Value-at-Risk Median Problem on a Network
with Random Demand Weights

The median problem (Hakimi 1964, 1965) is classical in location theory. In the
deterministic median problem, a weight is assigned to each demand point and the
objective is to locate facilities so as to minimize the total demand-weighted distances
between the facilities and the customers. The problem is equivalent to minimizing
the average distance from a customer to a closest facility. The median model can be
applied to site public and business facilities such as schools, libraries, hospitals, and
warehouses (Christofides 1975).

Stochastic location analysis considers the impact of uncertainties in customer
demand streams, travel times, and/or service times on location decisions. The reader
is referred to the reviews written by Snyder (2006) and Correia and Saldanha da
Gama (2015) on location analysis under uncertainty. In most of the stochastic
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location analysis literature the decision maker is assumed to be risk neutral. Take
the median problem with random demand weights as an example. The expected
total demand-weighted distance is minimized, but the risk, i.e., the possibility of the
actual total demand-weighted distance exceeding the expected value is disregarded
under the risk-neutral assumption.

There are studies in which risk was taken into consideration. For the median
problem, a probability measure was adopted by Frank (1966, 1967) and Berman
and Wang (2006) to evaluate the likelihood that the total demand-weighted distance
exceeds some pre-selected level. Variance was used in Frank (1966) to minimize
the volatility of the total demand-weighted distance. Wang (2007) and Wagner
et al. (2009) presented models to minimize the value-at-risk (VaR) of the total
demand-weighted distance. Daskin et al. (1997) and Chen et al. (2006), respectively,
developed models to minimize the VaR and the conditional value-at-risk (CVaR) of
the regret of the median problem decision-making due to random demand weights
and travel time under different scenarios.

In the above studies the risk measure in use served as the objective func-
tion, while the expectation of the total demand-weighted distance, a long-term
performance measure, was not considered. Though the mean-variance framework
(Markowitz 1959) was applied to solve the median problem by Jucker and Hodder
(1976), Hodder and Jucker (1985), and Berman et al. (2016), using variance or
standard deviation to measure risk has been criticized as it takes into account both
favorable and unfavorable deviations of a random distribution (Nawrocki 1999).

VaR is a quantile of a random loss distribution (Pflug 2000) for a given
confidence level. It is commonly believed to be superior to variance or standard
deviation as it focuses on the unfavorable tail of a distribution. In the current study,
we develop a mean-VaR model for the median problem on a network to balance a
short distance on average and the risk due to random demand weights. Note that
VaR is not a coherent risk measure because it does not always obey subadditivity
(Rockfella 2007). Lack of subadditivity violates the portfolio diversification theory,
which states that an investor can reduce risk by including multiple assets in a
portfolio (Wagner and Lau 1971), because the VaR of a portfolio can be higher than
the sum of the individual assets’ VaRs. But for the network median problem, this
simply implies that combining two sub-networks into one would not reduce risk,
which does not violate any principle. Therefore, VaR is an acceptable risk measure
for the median problem.

In Sect. 13.3, we introduce the mean-VaR model and motivate the study by
comparing it with the mean-variance model. In Sects. 13.4 and 13.5, we discuss
solving the mean-VaR model for continuous and discrete random demand weights.
In Sect. 13.6, an illustrative example is analyzed. Finally, we summarize the study
and discuss future research directions.



13 The Mean-Value-at-Risk Median Problem 327

13.3 Problem Statement

Let G = (N,L) be an undirected network with a set of nodes N (|N | = n) and a
set of links L (|L| = l). Denote by lij the length of link (i, j) ∈ L and by d(h, x)

the shortest distance between node h and some point x ∈ G. When there is no
ambiguity, the same notation x ∈ [0, lij ] represents both a point on link (i, j) and
the distance of the point from node i (in order to uniquely locate a point, we specify
the end-point of the link with the smaller node number to be node i and hence the
other end-point to be node j ).

We assume that demand generates from the nodes only. The demand weight
Whd(h, x) represents the total demand-weighted distance from the demand nodes to
point x. Denote by E the expectation operator. The expected median of the network,
xE , is a point such that E(D(xE)) ≤ E(D(x)) holds for any point x ∈ G. RE =
E(D(xE)) is referred to as the expected median length of the network.

It is natural to investigate the likelihood that the total demand-weighted distance
between the facility and the demand points does not exceed RE or some threshold
value as it assesses the risk of a location decision. The maximum probability median,
denoted by xP,T , is a point such that P(D(xP,T ) ≤ T ) ≥ P(D(x) ≤ T ) is true for
any point x ∈ G, where the pre-specified threshold value T can be regarded as an
aspiration level that is desirable to achieve.

Given point x, we can define the value-at-risk (VaR) of the total demand-
weighted distance at a given confidence level β ≥ 0.5 as follows:

tβ(x) = min{T |P(D(x) ≤ T ) ≥ β}.

tβ(x) can be interpreted as the lowest target level for the total demand-weighted
distance to fall below with a confidence level of at least β. The minimum VaR
median, denoted by xβ,VaR is a point such that tβ(xβ,VaR) ≤ tβ(x) holds at any
point x ∈ G (Wang 2007).

In the expected median problem, the maximum probability median problem, and
the minimum VaR median problems presented above, either the expected value or a
risk measure is considered only. Here we propose a model, namely the mean-VaR
median problem, which integrates both the expected value and the VaR for given T

and β ∈ [0, 1]:

Rβ,T = min
x∈G

E(D(x))

s.t.
P(D(x) ≤ T ) ≥ β.

(13.1)

If the weight Wh is constant for every node h, then the model (13.1) reduces to
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min
x∈G

D(x)

s.t.
D(x) ≤ T .

It follows that the model above can be regarded as a constrained deterministic
median problem, where the median of G is optimal if and only if the median length
is no longer than T , and there is no feasible solution otherwise. We can thus interpret
the model (13.1) as an immediate extension of the deterministic median problem.

Note that the model (13.1) is a constrained optimization problem. The constraint
is equivalent to tβ(x) ≤ T . Hence, the model is feasible for given β and T if the
minimum VaR tβ(xβ,VaR) ≤ T holds. In the sequel, we assume that the model is
feasible. This assumption is not so restrictive as parameters β and T can be adjusted
to enforce feasibility.

Let xβ,T be optimal to the model (13.1). We call xβ,T the mean-VaR median
and Rβ,T the mean-VaR median length of the network. By definition, tβ(x) is non-
decreasing in β. It follows that increasing β or decreasing T will make the constraint
in the model (13.1) more stringent and therefore Rβ,T is non-decreasing in β but
non-increasing in T .

It is evident that the mean-VaR median length is no shorter than the expected
median length, i.e., Rβ,T ≥ RE , while the equality holds, i.e., xE is optimal if and
only if tβ(xE) ≤ T (if there are multiple solutions to the expected median problem,
then we let xE denote the expected median with the smallest VaR). tβ(xE) can be
evaluated by definition (the reader may refer to the procedure developed in Wang
(2007) when demand weights follow discrete probability distributions or the normal
distribution). The lemma below presents a sufficient (but not necessary) condition
for xE to be optimal without calculating tβ(xE).

Lemma 13.1 xE is optimal to the model (13.1) (i) if β = 0 or T ≥ ∑
h∈N

bhd(h, xE)

when the demand weights follow independent continuous distributions; or (ii) if
β < P(W1 = a1,· · ·,Wn = an) or T >

∑
h∈N

bhd(h, xE) when the demand weights

follow independent discrete distributions, where ah and bh are the lower and upper
bounds (or the smallest and largest realizations) of the random weight Wh.

Conceptually, we can conclude that: (i) given β, the mean-VaR model is
infeasible if T is too small, or the expected median is also the mean-VaR median
if T is sufficiently large; (ii) given T , the mean-VaR model is infeasible if β is too
large, or the expected median is also the mean-VaR median if β is sufficiently small.

Next, we will connect the mean-VaR median xβ,T with the minimum VaR median
xβ,VaR and the maximum probability median xP,T . If there are ties, let xβ,VaR and
xP,T denote, respectively, the minimum VaR median and the maximum probability
median with the lowest expected total demand-weighted distance. The next two
lemmas are easy to prove.

Lemma 13.2 xβ,VaR is optimal to the model (13.1) if T = tβ(xβ,VaR).
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Table 13.3 Example 1:
demand weight distributions

Weight W1 W2

Probability 0.5 0.5 0.4 0.6

Demand 8 10 2 12

Table 13.4 Total weighted
distance distributions at
point x

Realization 1 2 3 4

Probability 0.2 0.3 0.2 0.3

Value 10 + 6x 60 − 4x 10 + 8x 60 − 2x

Lemma 13.3 xP,T is optimal to the model (13.1) if β = P(D(xP,T ) ≤ T ).

To motivate our study, consider a median problem on a segment of five units
long with two nodes A and B. The demand weights of the two nodes are assumed
to be independent, discrete random variables with the probability density functions
presented in Table 13.3.

Let S(y) be the standard deviation of a random variable y. It is easy to verify
E(W1) = 9, E(W2) = 8, S(W1) = 1, and S(W2) = 4.9. Suppose that a single
facility is located at point x on the segment. The total weighted distance has mean
E(D(x)) = 9x + 8(5 − x) = 40 + x, and standard deviation

S(D(x)) =
√∑

h∈N

[S(Wh)d(h, x)]2 =
√

x2 + 4.92(5 − x)2 =
√

25x2 − 240x + 600.

The probability density function of the weighted total distance over the segment
is available in Table 13.4.

Figure 13.1 shows how the total demand-weighted distance’s realizations (solid
lines), expected value, and standard deviation (dash lines) evolve with x. Polyline
c1c2c3 represents the VaR function tβ(x) when β = 0.7. We note that the
risk-neutral solution node A (xE = 0) that minimizes the expected total demand-
weighted distance has the largest standard deviation. The probability that the total
demand-weighted distance between the demand points and the expected median
exceeds the expected median length RE = 40, P(D(xE) > RE), is as high as 0.6.
In addition, the VaR value tβ(xE = 0) is 60, which is the highest value for β = 0.7.
It appears that the risk-neutral solution is not desirable and that assessing the risk of
a location decision is critical.

Let T = 50 and β = 0.7. Any point x at least 2.5 units away from node A is
a maximum probability median as P(D(x) ≤ T ) is 0.7. Though the maximum
probability median model takes risk into consideration, our example seems to
suggest that the model lacks the ability to discriminate satisfactory solutions.
Examining the VaR function tβ(x) in the figure, we observe that x = 4.17 is the
minimum VaR median with an expected value of 44.17 and a VaR of 43.33. We note
that any point between the minimum VaR median and node B is dominated as its
expected value and VaR are both higher than the minimum VaR median. The mean-
VaR median is the mid-point of the segment. The expected total demand-weighted
distance and the VaR at this point are 42.50 and 50, respectively.
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Fig. 13.1 A motivating example

Different from the mean-VaR model, the mean-variance model (Markowitz 1959)
for the median problem presented below

min
x∈G

E(D(x))

s.t.
S(D(x)) ≤ V ,

(13.2)

imposes a value V that bounds the standard deviation of the total demand-weighted
distance from above. Figure 13.1 shows that x = 3.54 optimizes the mean-variance
model with V = 8. We note that node optimality in general does not carry over to
the mean-VaR model or the mean-variance model.

Standard deviation actually quantifies dispersions caused by both desirable
and undesirable outcomes (Rockfella 2007). Therefore, good solutions may be
inappropriately classified as infeasible to the mean-variance model. For instance,
x = 2.5 would be deemed infeasible to the mean-variance median model with
V = 8 because the standard deviation of the total demand-weighted total distance
at that point is 12.5. In fact, the downside standard deviation (Nawrocki 1999) that
measures the variability of realizations above the expected value only at x = 2.5 is
7.98, smaller than V = 8.
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In the next two sections, solution approaches are developed for the model (13.1)
with random demand weights of continuous and discrete probability distributions
separately. Given β ≥ 0.5, we consider a general problem where tβ(xβ,VaR) <

T < tβ(xE) and assume that the random demand weights are independent. The
independence assumption will be relaxed later.

13.4 Continuous Random Weights

This section is devoted to solving the problem (13.1) when every demand weight
wh is a continuous random variable. It is sufficient to find an optimal point on every
link of the network. In the sequel, we examine link (i, j). If E(D(x)) is invariant
with x on the link, then the problem reduces to finding feasible points only. We thus
disregard this trivial case.

13.4.1 Dominant Points

Recall that E(D(x)) is concave in terms of x over the link and hence one of the two
nodes x = 0 and x = lij is the expected median of the link. Denote by x

(i,j)
E as

follows:

x
(i,j)
E =

⎧⎪⎨
⎪⎩

0, if E(D(0)) < E(D(lij ))

lij , if E(D(0)) > E(D(lij ))

arg min
x=0,lij

tβ(x), if E(D(0)) = E(D(lij ))

Furthermore, denote by x
(i,j)
E the other nodal point.

Note that x
(i,j)
E is optimal if tβ(x

(i,j)
E ) ≤ T . In the sequel, we assume tβ(x

(i,j)
E ) >

T . It is evident that x
(i,j)
E is not feasible. Let Z(i,j) = {x ∈ (i, j)|tβ(x) = T }.

That is, Z(i,j) is the collection of any point x on the link such that P(D(x) ≤
T ) = β. As the VaR function tβ(x) is continuous, the set Z(i,j) is empty when the
smallest VaR on the link is greater than T , and non-empty otherwise. Denote the qth
smallest element in the set Z(i,j) by z

(i,j)
q . For example, z

(i,j)

1 and z
(i,j)

|Z(i,j)| represent

the smallest element and largest element, respectively, when Z(i,j) is not empty. The
theorem below establishes a set of two dominant points, denoted by Q(i,j), in which
the one with the smaller objective function value is optimal.

Theorem 13.1 (i) The model (13.1) on link (i, j) is infeasible if Z(i,j) =
∅. (ii) If z

(i,j)

1 is the only element in Z(i,j), then the dominant point set
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Q(i,j) = {z(i,j)

1 , x
(i,j)
E }. (iii) If Z(i,j) has two or more elements„ then Q(i,j) =

{z(i,j)

1 , z
(i,j)

|Z(i,j)|} when tβ(x
(i,j)
E ) > T , and Q(i,j) = {z∗, x(i,j)

E } otherwise with

z∗ = arg max
z=z

(i,j)
1 ,z

(i,j)

|Z(i,j)|

|z − x
(i,j)
E |.

Proof (i) is straightforward. In case (ii), there is only one feasible interval on the
link. In case (iii), there exit multiple non-overlapping feasible intervals. Note that the
objective function is concave in terms of x. (ii) and (iii) follow because an optimal
solution must be either the smallest feasible point or the largest feasible point.

On the basis of the above theorem, we develop the following solution procedure.

Algorithm 1 Finding an optimal point on link (i, j)

Step1 Determine x
(i,j)
E and x

(i,j)
E . Compute tβ(x

(i,j)
E ). If tβ(x

(i,j)
E ) ≤ T , stop and

return x
(i,j)
E as the optimal solution.

Step 2 Construct the set Z(i,j).
Step 3 If Z(i,j) = ∅, the procedure terminates and the problem is infeasible on

link (i, j ).
Step 4 If Z(i,j) has only one element, then let Q(i,j) = {z(i,j)

1 , x
(i,j)
E } and go to

Step 6; if Z(i,j) has two or more elements, go to Step 5.
Step 5 If tβ(x

(i,j)
E ) > T , then Q(i,j) = {z(i,j)

1 , z
(i,j)

|Z(i,j)|}. Otherwise, let z∗ =
arg max

z=z
(i,j)
1 ,z

(i,j)

|Z(i,j)|

{|z − x
(i,j)
E |} and Q(i,j) = {z∗, x(i,j)

E }.

Step 6 Return the point in Q(i,j) with the smaller objective function value as the
optimal solution.

In the procedure presented above, it is essential to evaluate tβ(x) at a given point
x and construct the set Z(i,j). In the remainder of this section, we discuss these
issues for random demand weights following the normal distribution and general
probability distributions, respectively.

13.4.2 The Normal Distribution

Suppose that the demand weight Wh follows the normal distribution with a mean
μh and a standard deviation σh. Given x ∈ (i, j), D(x) is a normal random
variable with mean E(D(x)) = ∑

h∈N

μhd(h, x) and standard deviation S(D(x)) =
√ ∑

h∈N

σ 2
hd2(h, x).

Given a threshold value T , P(D(x) ≤ T ) can be computed as

P(D(x) ≤ T ) = �(
T − E(D(x))

S(D(x))
),
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where �(·) is the cumulative distribution function of the standard normal random
variable. Denote by �−1(·) the inverse function of �(·). It is easy to derive tβ(x) =
E(D(x)) + �−1(β)S(D(x)).

Now we consider finding roots to the equation tβ(x) = T . The shortest distance
from x to any node h ∈ N can be evaluated as

d(h, x) = min(d(h, i) + x, d(h, j) + lij − x).

An antipode ch on link (i, j) with respect to node h is such that the shortest distances
from it to h via nodes i or j are the same, i.e., ch = (d(h, j) + lij − d(h, i))/2. We
call a segment between two consecutive antipodes a primary region. As a node has
at most one antipode on the link, the number of primary regions over a link does not
exceed n − 1.

Note that the functional form of the distance function d(h, ·) ∀h ∈ N is identical
within a primary region. We arbitrarily select a primary region [c(m), c(m+1)] with
antipodes c(m) and c(m+1) as the end-points. For the primary region [c(m), c(m+1)],
N is divided into two subsets NL and NR , where

NL = {h ∈ N |d(h, i) + c(m+1) ≤ d(h, j) + lij − c(m+1)},

NR = N − NL.

Given x ∈ [c(m), c(m+1)], we have d(h, x) = d(h, i)+x if h ∈ NL and d(h, x) =
d(h, j) + lij − x otherwise. tβ(x) is thus expressed as

tβ(x) =
∑

h∈NL

μh [d(h, i) + x] +
∑

h∈NR

μh

[
d(h, j) + lij − x

]

+�−1(β)

√ ∑
h∈NL

σ 2
h [d(h, i) + x]2 +

∑
h∈NR

σ 2
h

[
d(h, j) + lij − x

]2.

(13.3)

It can be shown that a necessary condition for a point x within the primary region
to be a real root of the equation tβ(x) = T is that x solves F1x

2 + F2x + F3 = 0,
where

F1 = �−1(β)2(
∑

h∈NL

σ 2
h +

∑
h∈NR

σ 2
h ) − (

∑
h∈NL

μh −
∑

h∈NR

μh)
2,

F2 = 2�−1(β)2[
∑

h∈NL

σ 2
hd(h, i) −

∑
h∈NR

σ 2
h (d(h, j) + lij )] +

2(
∑

h∈NL

μh −
∑

h∈NR

μh)[T −
∑

h∈NL

μhd(h, i) −
∑

h∈NR

μh(d(h, j) + lij )],
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F3 = �−1(β)2[
∑

h∈NL

σ 2
hd(h, i)2 +

∑
h∈NR

σ 2
h (d(h, j) + lij )

2] −

[T −
∑

h∈NL

μhd(h, i) −
∑

h∈NR

μh(d(h, j) + lij )]2.

Solving the quadratic equation F1x
2 + F2x + F3 = 0, we may get zero, one, or

two real roots within the primary region. If F 2
2 − 4F1F3 < 0, the quadratic equation

has no real root and therefore there exists no point x within the primary region such
that tβ(x) = T . Otherwise, the roots of the quadratic equation are computed as

x1 =
−F2 +

√
F 2

2 − 4F1F3

2F1
,

x2 =
−F2 −

√
F 2

2 − 4F1F3

2F1
.

or

x1 = −F3

F2
if F1 = 0.

A root xt solves tβ(x) = T if (i) c(m) ≤ xt ≤ c(m+1); and (ii)
∑
h∈N

μhd(h, xt ) ≤ T

(because β ≥ 0.5).
Given the matrix of distances between nodes, it takes time O(n) to compute

tβ(x) at a given point x and solve the equation tβ(x) = T within each primary
region. There are at most n primary regions on the link. Hence the computational
complexity of Algorithm 1 is O(n2) under the normality distribution.

13.4.3 General Distributions

If the demand weights follow arbitrary continuous distributions, Algorithm 1 is still
applicable. If the closed-form expression of P(D(x) ≤ T ) can be developed or the
probability P(D(x) ≤ T ) can be evaluated numerically for given T and x, e.g.,
when the demand weights follow the uniform distribution (see Sect. 13.6), we may
use the line search approach to find the elements in the set Z(i,j), i.e., any point
x on the link (i, j) such that P(D(x) ≤ T ) = β. However, P(D(x) ≤ T ) may
not have a closed form or may be rather time-consuming to evaluate for networks
not sufficiently small. We thus suggest two approximation approaches when these
difficulties are present.
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According to the central limit theorem, when the number of nodes n

is sufficiently large the total demand-weighted distance
∑
h∈N

Whd(h, x) is

approximately normal with mean μ(x) =
n∑

h=1
μhd(x, h) and standard deviation

σ(x) =
√

n∑
h=1

σ 2
hd2(x, h). By normal approximation we can treat the demand

weight Wh of any node h as an independent normal random variable with mean μh

and standard deviation σh and apply the results derived for the normally distributed
demand weights to solve the problem.

Discretization, a univariate continuous density function, is a common method
used in decision and risk analysis (Miller and Rice 1983; Keefer 1994). We here
adopt the method suggested by Berman and Wang (2006) that approximates a
continuous random demand weight Wh by a discrete probability distribution. By
discrete approximation, each random weight becomes a discrete random variable
and the model (13.1) can be solved using the procedure developed in the next section
for random weights of discrete probability distributions.

We now consider approximating a continuous random demand weight Wh

distributed over a closed interval [ah, bh] by a discrete probability distribution
represented by a set of values wh[k] and probabilities ph[k] k = 1, 2, .., K . If bh is
infinite, we shall use a sufficiently large but finite value b

′
h to replace bh as the upper

limit. For example, b
′
h can be determined by solving the equation ϕh(b

′
h) = 0.99,

where ϕh() is the cumulative distribution function of Wh.
A popular method is to choose Chebyshev points as the sample points. Given K ,

wh[k] = ah +
(

bh − ah

2

)[
1 − cos

(2k − 1)π

2K

]
, k = 1, 2, . . . , K . (13.4)

The probability mass ph[k] at wh[k] is calculated as

ph[k] = ϕh(mh[k]) − ϕh(mh[k − 1]), k = 1, 2, . . . , K (13.5)

where

mh[k] =

⎧⎪⎨
⎪⎩

ah k = 0

ah +
(

bh−ah

2

) [
1 − cos kπ

K

]
1 ≤ k ≤ K − 1

bh k = K

Given z, ϕh(z) is approximated by
k∑

g=1
ph(g) if there exists k 1 ≤ k < K such that

wh[k] ≤ z < wh[k+1]. If z < wh[1] or z ≥ wh[K], ϕh(z) is respectively estimated
as 0 or 1.
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Table 13.5 Probability distribution for the example

k 1 2 3 4 5 6 7 8

wh[k] 0.88 7.76 20.47 37.07 55.03 71.63 84.34 91.22

ph[k] 0.1608 0.3298 0.2681 0.1414 0.0586 0.0218 0.0077 0.0119

As an example, consider a demand weight Wh following an exponential distri-
bution with parameter λh = 0.05. The cumulative distribution function is ϕh(z) =
1 − exp(−0.05z). Note ah = 0. Since ϕh(92.10) = 0.99, we have b′

h = 92.10. Let
K = 8. Applying (13.4) and (13.5), we obtain the discrete distribution shown in
Table 13.5.

13.5 Discrete Random Weights

In this section, the random weight Wh associated with every node h is assumed to
follow a discrete probability distribution with possible realizations wh[kh], kh =
1, 2, · · ·,Kh, where Kh is the number of realizations. Without loss of generality, we
assume 0 ≤ wh[1] < wh[2] < · · · < wh[Kh], ∀h ∈ N .

As in the previous section, we consider solving the problem (13.1) on link (i, j).
At a given point x ∈ G, the total demand-weighted distance D(x) is a discrete
random variable with

∑
h∈N

wh[1]d(h, x) and
∑
h∈N

wh[Kh]d(h, x) being the smallest

and largest realizations, respectively.
Let W = (W1,W2, . . . ,Wn) be the random vector of demand weights and S be

the set of all possible realizations of ŵ = (ŵ1, ŵ2, . . . , ŵn) of the random vector
W. It is easy to see that the cardinality of S is |S| = ∏

h∈N

Kh.

Any vector ŵ ∈ S corresponds to a total demand-weighted distance function
fŵ(·) = ∑

h∈N

ŵhd(h, ·). Given point x on the link, T > 0 and ŵ ∈ S, define

Yŵ(x, T ) =
{

1 if fŵ(x) ≤ T

0 otherwise.

The probability P(D(x) ≤ T ) is calculated as

P(D(x)) =
∑
ŵ∈S

Yŵ(x, T )Pŵ, (13.6)

where Pŵ = ∏
h∈N

P (Wh = ŵh).

Wang (2007) proved that determining whether the inequality P(D(x) ≤ T ) ≥ β

or, equivalently, tβ(x) ≤ T , holds for given x ∈ G, T > 0 and β > 0 is NP-
complete. It is natural to conclude that the model (13.1) is NP-hard.
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Given a point x, tβ(x) can be evaluated using the procedure developed by Wang
(2007). But for random weights of discrete probability distributions, we find it more
convenient to examine the function P(D(x) ≤ T ), instead of the function tβ(x).
Note that P(D(x) ≤ T ) changes its value only at a jump point x where there exists
at least a vector ŵ ∈ S such that

∑
h∈N

ŵhd(h, x) = T is true. Recall the definitions

of the primary regions and the sets NL and NR introduced in Sect. 13.4. Consider a
primary region [c(m), c(m+1)] on link (i, j). Given a vector ŵ ∈ S, the jump point

can be computed as x =
T − ∑

h∈NL

ŵhd(h,i)− ∑
h∈NR

ŵh(d(h,j)+lij )

∑
h∈L

ŵh− ∑
h∈R

ŵh
if

∑
h∈L

ŵh �= ∑
h∈R

ŵh and

c(m) ≤ x ≤ c(m+1). It is obvious that the maximum number of jump points within a
primary region is |S|.

Redefine the set Z(i,j) as the collection of any feasible jump points of the function
P(D(x) ≤ T ) on the link. Again denote the qth smallest element in the set Z(i,j)

by z
(i,j)
q . It is easy to see that the theorem presented in Sect. 13.4 is still valid.

A natural conclusion of the above analysis is that we can apply Algorithm 1 to
search for an exact optimal point on link (i, j). However, the computational com-
plexity of the algorithm is no longer polynomial time. The normal approximation
approach is thus recommended when the network becomes too large.

13.6 An Illustrative Example

To illustrate Algorithm 1 developed above, let’s solve the mean-VaR model (13.1)
on a line of four demand nodes that are one unit away from the neighboring nodes.
These nodes are labeled as 1–4 in sequence along the line. Assume that each demand
weight Wh follows a uniform distribution over interval (ah, bh). Table 13.6 presents
the parameters ah and bh.

Let β = 0.75 and T = 31.6. It is easy to verify that the expected median is node
3 with an expected median length of 17.00 and a VaR of 32.62. The minimum VaR
median is node 2 with an expected total demand-weighted distance of 18.5 and a
VaR of 27.62.

Berman and Wang (2006) derived P(D(x) ≤ T ) at point x as follows:

Table 13.6 Demand weight
distributions

h 1 2 3 4

ah 5 5 0 5

bh 10 10 5 10
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P(D(x) ≤ T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
v∈C

(sgn v)(T −d′a−α′v)n+

n!
n∏

h=1
α′

h

,
n∑

h=1
αhah < T <

n∑
h=1

αhbh

0, T ≤
n∑

h=1
αhah

1, T ≥
n∑

h=1
αhbh

(13.7)

where a = (a1, a2, . . . , an)
′, d = (d(x, 1), d(x, 2),. . ., d(x, n))′, α = (d(x, 1)(b1 −

a1), d(x, 2)(b2 − a2),. . . , d(x, n)(bn − an))
′, (y)n+ = yn if y ≥ 0 and (y)n+ = 0

if y < 0, and the set C is a collection of all n−tuple Cartesian products of the set
{0, 1}. Hence, any vector v = (v1, v2, . . ., vn)

′ in the set C consists of n elements
that are 0’s or 1’s.

We note that some of the elements in vector α may be zero at point x. Define
B = {h;α′

h = 0}. Denote by B̄ the complement of B and by |B̄| the number of
elements in B̄. Let C′ be the set that contains all |B̄|-tuple Cartesian products of the
set {0, 1}. P(D(x) ≤ T ) can be re-written as

P(D(x) ≤ T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
v∈C′

(sgn v)(T −αa−α′v)
|B̄|
+

|B̄|! ∏
h∈B̄

α′
h

,
n∑

h=1
αhah < T <

n∑
h=1

αhbh

0, T ≤
n∑

h=1
αhah

1, T ≥
n∑

h=1
αhbh

As an illustration, let’s compute P(D(x) ≤ T ) at point x = 0.83 on the segment
(2, 3). We have n = 4, a = (5, 5, 0, 5)′, d = (1.83, 0.83, 0.17, 1.17)′, α = (14.15,
9.15, 4.15, 5.85)′. Recall T = 31.6. Applying Eq. (13.7), we obtain P(D(x) ≤
T ) = β = 0.75. Consequently, x = 0.83 belongs to the set Z(2,3). In fact, it is the
only element in the set. On the segment (2, 3), node 3 is the median, but it is not
feasible to the mean-VaR model. Therefore, x

(i,j)
E = 0, i.e., node 2. By Algorithm

1, the dominant set Q(2,3) = {0, 0.83}. As x = 0.83 has a smaller expected total
demand-weighted distance of 18.36, it is the mean-VaR median on the segment.

13.7 Concluding Remarks

To the best of our knowledge, this is the first study to integrate both the expected
value criteria with the VaR measure in a location decision problem. The objective of
the model proposed in this study is to find the best location to site a facility, namely
the mean-VaR median, to minimize the expected total demand-weighted distance
subject to a constraint that bounds the VaR of the total demand-weighted distance
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from above. It is shown that the deterministic median problem, the maximum
probability median problem, and the minimum VaR median problem are all special
cases of the mean-VaR median problem. A solution approach is developed that
identifies the dominant points for the optimal solution. We also present the methods
to calculate the dominant points when the demand weights follow, respectively,
discrete and continuous probability distributions.

It is assumed in the study that all random demand weights are independent. When
the demand weights are not independent, scenario planning (Snyder et al. 2007) can
be applied where a number of scenarios of the demand weights are identified. Let’s
assume that there are M scenarios, w

′
hr denotes the demand weight at node h under

scenario r , and p′
r be the scenario probability r = 1, 2, · · ·M . It is easy to see

that P(D(x) ≤ T ) = ∑
h∈N

p
′
r sr , where sr = 1 if

∑
h∈N

w
′
hrd(h, x) ≤ T and sr = 0

otherwise.
In the current study, we consider the single-facility mean-VaR median problem

where the facility can be located anywhere in the network. We are investigating its
multi-facility version. However, because the dominant point set appears difficult to
construct if multiple facilities are located, we may have to limit the potential sites to
be the nodal points only.
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Chapter 14
A Bivariate Exponential Distribution

Dawit Zerom and Zvi Drezner

We introduce a new bivariate exponential distribution that is analytically tractable
and easily implementable. Some of its properties are discussed. Explicit expressions
of the expected value of the larger and of the smaller of a pair of correlated
exponentials are also provided. An application to tandem queues offers several
interesting implications.

We first review three of our papers that provide background to the main result of
this chapter—a new bivariate exponential distribution.

Drezner et al. (2010) improved the Kolmogorov–Smirnov test for normality
(Massey 1951). In the current implementation of the Kolmogorov–Smirnov test,
given data are compared with a normal distribution that uses the sample mean and
the sample variance. Drezner et al. (2010) proposed to select the mean and variance
of the normal distribution that provides the closest fit to the data. This is like shifting
and stretching the reference normal distribution so that it fits the data in the best
possible way.

Drezner and Zerom (2016) proposed a generally applicable discretization method
to approximate a continuous distribution on a real line with a discrete one, supported
by a finite set. The method adopts a criterion which is shown to be flexible in
approximating higher order features of the underlying continuous distribution while
preserving its mean and variance. In Table 14.1 the abscissas and probabilities of
discretizations of standardized normal, uniform, and exponential distributions using
K = 5 and K = 10 discrete points are given.

Drezner et al. (2018) proposed a competitive location model using the gravity
model for estimating market share assuming that attractiveness levels are random.
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One of the solution approaches is to discretize the normal distribution of the
attractiveness level using the approach in Drezner and Zerom (2016). In order to
perform the calculations, a bivariate normal distribution needs to be discretized.

When X1 and X2 are uncorrelated standardized normal distributions, Y1 and Y2
are standardized bivariate normal with a correlation ρ.

Y1 =
√

1 + √
1 − ρ2

2
X1 ±

√
1 − √

1 − ρ2

2
X2

Y2 =
√

1 + √
1 − ρ2

2
X2 ±

√
1 − √

1 − ρ2

2
X1 (14.1)

The sign between the terms is “+” for positive ρ and “−” for negative ρ. It is easy to
show that Y1 and Y2 have an average of 0, variance of 1, and a correlation ρ between
them. If we need non-standardized Y1 and Y2, we can use μ1 + σ1Y1 and similarly
for Y2.

When X1 and X2 are discretized using K points, then using Eq. (14.1) yields

Zij =
⎛
⎝
√

1 + √
1 − ρ2

2
xi ±

√
1 − √

1 − ρ2

2
xj ,

√
1 + √

1 − ρ2

2
xj ±

√
1 − √

1 − ρ2

2
xi

⎞
⎠

(14.2)

with probability pipj . The sign between the terms is “+” for positive ρ and “−”
for negative ρ. Note that if the marginal distributions are not standardized, each
coordinate can be adjusted by multiplying the corresponding σ and adding the
corresponding μ.

For example, a twenty-five point (K2 where K = 5) discretization of the stan-
dardized bivariate normal distribution is plotted in Fig. 14.1 for several correlation
values. Note that the discretization accurately captures the dependence structure of
the underlying bivariate normal random variables.

14.1 Introduction

The need for a bivariate exponential distribution may arise in many practical
settings. Consider a queueing system in which two servers process the same arriving
customer in tandem (or in sequence), i.e., each customer is serviced at the first
server and then proceeds to the second server before leaving the system. Since each
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Fig. 14.1 Distribution of points for bivariate normal

customer must be processed by both servers, service times at the two servers for
a given customer are likely to be correlated. For example, in the case of vehicles
passing through border crossing facilities, Cetin and List (2004) noted that if
processing a vehicle takes a long time at the primary inspection (first server), say,
because of a paperwork, it is reasonable to assume that the service times at the
secondary inspection (second server) will also be long, inducing positive correlation
between the two service times. A bivariate exponential distribution can be used to
model such correlation between service times.

Unlike the normal distribution, the exponential distribution does not have a
unique natural extension to the bivariate or the multivariate case. Thus, a variety of
bivariate exponential distributions have been introduced in the literature (for exam-
ple, Gumbel (1960), Downton (1970), and Arnold and Strauss (1988)). Recently,
Kim and Kim (2018) use the bivariate exponential distribution of Downton (1970)
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to model the correlation between inter-arrival and service times in an application
to queueing systems. Other applications of bivariate exponential distributions to
queueing include, among others, Mitchell et al. (1977) and Cetin and List (2004).

In this paper we introduce a new bivariate exponential distribution. For λ1 > 0,
λ2 > 0 and correlation coefficient 0 ≤ ρ ≤ 1, the joint probability density function
of the bivariate random vector (X, Y ) is given by

fX,Y (x, y) = λ1λ2

√
1 + ρ

1 − ρ
exp

(
−λxx + λyy√

1 − ρ

)
(14.3)

where λx and λy are simple functional of λ1, λ2, and ρ; see (14.3). Let μ1 = E(X),
μ2 = E(Y ), σ 2

1 = V ar(X1), and σ 2
2 = V ar(Y ). The parameters λ1 and λ2 are

shown to have exact functional relationship with μ1, μ2, and ρ. Therefore, when
sample data on (X, Y ) is available, the parameters λ1 and λ2 can computed quite
easily. Let the random vector (X̃, Ỹ ) be a special case of (X, Y ) when ρ = 0. In this
case, the marginals are exponential and their corresponding means are μ̃1 = 1/λ1
and μ̃2 = 1/λ2. Let δ = μ̃2/μ̃1. Further, let −π

2 ≤ θ ≤ π
2 such that sin θ = ρ. The

proposed bivariate exponential distribution has the following interesting properties
that can be useful in some applications.

1. E(X + Y ) = μ̃1 + μ̃2.
2. μ1

μ̃1
= 1 + sin θ/2√

1+ρ
(δ − 1) and μ2

μ̃2
= 1 + sin θ/2√

1+ρ
(δ−1 − 1).

Note that when δ ≥ 1, μ1
μ̃1

≥ 1 and μ2
μ̃2

≤ 1. When δ ≤ 1, μ1
μ̃1

≤ 1 and
μ2
μ̃2

≥ 1. Therefore, the role of positive correlation is to redistribute the means
while maintaining the total sum.

3. V ar(X + Y ) = μ̃2
1 + μ̃2

2.

4.
σ 2

1
μ̃2

1
= 1

1+ρ

[
1 + (sin θ/2)2 (δ2 − 1)

]
and

σ 2
2

μ̃2
2

= 1
1+ρ

[
1 + (sin θ/2)2 (δ−2 − 1)

]
.

Note that when δ ≥ 1,
σ 2

1
μ̃2

1
≥ 1

1+ρ
and

σ 2
2

μ̃2
2

≤ 1
1+ρ

. When δ ≤ 1,
σ 2

1
μ̃2

1
≤ 1

1+ρ

and
σ 2

2
μ̃2

2
≥ 1

1+ρ
. Again, the role of positive correlation is to redistribute the variances

while maintaining the total sum. In the case of δ = 1, both variances σ 2
1 and σ 2

2
are only 1/(1 + ρ) of their corresponding variances under zero correlation. Hence,
positive correlation reduces both. When correlation is non-zero, σ 2

1 +σ 2
2 ≤ μ̃2

1 +μ̃2
2.

The rest of the paper is organized as follows. In Sect. 14.2, we describe a general
framework for creating correlated bivariate random variables. In Sect. 14.3, we
provide the case of correlated exponentials. As a part of Sect. 14.3, we also provide
easy to use analytical expressions of the expected values of the maximum and the
minimum of the correlated exponentials. In Sect. 14.4, a brief application to tandem
queues is discussed.
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14.2 General Correlated Bivariate Random Variables

Consider a bivariate random vector (X̃, Ỹ ) where their correlation Cor(X̃, Ỹ ) = 0
and both X̃ and Ỹ are standardized to have mean 0 and variance 1. The goal is to
create an associated correlated bivariate random vector (X, Y ). To this end, let

X = αX̃ + βỸ and Y = αỸ + βX̃ (14.4)

where α and β are unknown parameters. It can be seen that E(X) = E(Y ) = 0.
Further,

V ar(X) = V ar(Y ) = α2 + β2 and Cor(X, Y ) = 2αβ

α2 + β2
. (14.5)

Suppose that (X, Y ) must satisfy the following properties:

V ar(X) = V ar(Y ) = 1 and Cor(X, Y ) = ρ (14.6)

where ρ ≥ 0. To simplify the presentation we define −π
2 ≤ θ ≤ π

2 such that

sin θ = ρ.

In the subsequent derivations, we exploit the following useful trigonometric identi-
ties:

ρ = 2 sin θ
2 cos θ

2 .

cos2 θ
2 = 1+

√
1−ρ2

2 ; sin2 θ
2 = 1−

√
1−ρ2

2 .

tan θ
2 = ρ

1+
√

1−ρ2
; cot θ

2 = 1+
√

1−ρ2

ρ
.

Solving for α and β in (14.5) that satisfy (14.6), (X, Y ) becomes

X = cos
θ

2
X̃ + sin

θ

2
Ỹ and Y = cos

θ

2
Ỹ + sin

θ

2
X̃. (14.7)

The reverse transformation of (14.7) is

X̃ = cos θ
2 X − sin θ

2 Y√
1 − ρ2

and Ỹ = cos θ
2 Y − sin θ

2 X√
1 − ρ2

(14.8)

Equations (14.7) and (14.8) imply that for any given pair (X̃ = x̃, Ỹ = ỹ) there is
only one corresponding pair (X = x, Y = y) and vice versa. Let fX,Y (x, y) denote
the joint probability density function (pdf) of (X, Y ). Then,



14 A Bivariate Exponential Distribution 349

fX,Y (x, y) = K f̃X̃

(
cos θ

2 x − sin θ
2 y√

1 − ρ2

)
× f̃Ỹ

(
cos θ

2 y − sin θ
2 x√

1 − ρ2

)
(14.9)

where K is the normalizing constant and f̃X̃(·) and f̃Ỹ (·) are the marginal pdf of
X̃ and Ỹ , respectively. Let fX(x) and fY (y) denote the marginal pdf of X and Y ,
respectively. It follows that

fX(x) ∝
∞∫

−∞
f̃X̃

(
cos θ

2 x − sin θ
2 Y√

1 − ρ2

)
× f̃Ỹ

(
cos θ

2 Y − sin θ
2 x√

1 − ρ2

)
dY. (14.10)

The pdf fY (y) is defined analogously.

14.3 Correlated Exponentials

Using the general framework outlined in Sect. 14.2, we introduce a new correlated
bivariate exponential distribution focusing on the case of ρ ≥ 0. The following
standardized exponential distribution leads to the desired result:

f̃X̃(x̃) = √
1 + ρe−√

1+ρx̃ , x̃ ≥ 0 (14.11)

and similarly for Ỹ . Using (14.10), such choice of marginals for the uncorrelated X̃

and Ỹ leads to

fX(x) ∝ e−x

and similarly for Y . Let U and V be two uncorrelated exponential random variables
with a λ = 1. Set X̃ = U

λ1
√

1+ρ
and Ỹ = V

λ2
√

1+ρ
. Using (14.7),

X = cos
θ

2
X̃+sin

θ

2
Ỹ = U

λ1
√

1 + ρ

√
1 + √

1 − ρ2

2
+ V

λ2
√

1 + ρ

√
1 − √

1 − ρ2

2

Y = cos
θ

2
Ỹ + sin

θ

2
X̃ = U

λ1
√

1 + ρ

√
1 − √

1 − ρ2

2
+ V

λ2
√

1 + ρ

√
1 + √

1 − ρ2

2

The reverse transformation is

X cos
θ

2
− Y sin

θ

2
= (cos2 θ

2
− sin2 θ

2
)X̃ =

√
1 − ρ2X̃
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= U

λ1
√

1 + ρ

√
1 − ρ2 = U

√
1 − ρ

λ1

leading to:

U = λ1
X cos θ

2 − Y sin θ
2√

1 − ρ
; V = λ2

Y cos θ
2 − X sin θ

2√
1 − ρ

Since the density function of U is e−u and similarly for V ,

fX,Y (x, y) = K e
−λ1

x cos θ
2 −y sin θ

2√
1−ρ × e

−λ2
y cos θ

2 −x sin θ
2√

1−ρ

= K e
− x

{
λ1 cos θ

2 −λ2 sin θ
2

}
+y

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ

where K is the normalizing constant. To obtain K , note that

1

K
=

∞∫
0

e
− x

{
λ1 cos θ

2 −λ2 sin θ
2

}
√

1−ρ

x cot θ
2∫

x tan θ
2

e
− y

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ dy dx

=
√

1 − ρ

λ2 cos θ
2 − λ1 sin θ

2

∞∫
0

e
− x

{
λ1 cos θ

2 −λ2 sin θ
2

}
√

1−ρ

⎧⎨
⎩e

− x tan θ
2

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ − e
− x cot θ

2

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ

⎫⎬
⎭ dx

= 1 − ρ

λ2 cos θ
2 − λ1 sin θ

2

{
1

λ1 cos θ
2 − λ2 sin θ

2 + tan θ
2

(
λ2 cos θ

2 − λ1 sin θ
2

)

− 1

λ1 cos θ
2 − λ2 sin θ

2 + cot θ
2

(
λ2 cos θ

2 − λ1 sin θ
2

)
}

= 1 − ρ

λ2 cos θ
2 − λ1 sin θ

2

{
cos θ

2

λ1
(
cos2 θ

2 − sin2 θ
2

) − sin θ
2

λ2
(
cos2 θ

2 − sin2 θ
2

)
}

= 1 − ρ

λ1λ2

√
1 − ρ2

.

Furthermore, because
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x cos
θ

2
− y sin

θ

2
≥ 0 and y cos

θ

2
− x sin

θ

2
≥ 0,

we require that

x tan
θ

2
≤ y ≤ x cot

θ

2
.

The joint pdf of (X, Y ) is given by

fX,Y (x, y) = λ1λ2

√
1 + ρ

1 − ρ
e
− x

{
λ1 cos θ

2 −λ2 sin θ
2

}
+y

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ (14.12)

for

x tan
θ

2
≤ y ≤ x cot

θ

2

and zero otherwise.

Theorem 14.1 E(X) =
[

cos θ
2√

1+ρ

]
1
λ1

+
[

sin θ
2√

1+ρ

]
1
λ2

; E(Y ) =
[

cos θ
2√

1+ρ

]
1
λ2

+[
sin θ

2√
1+ρ

]
1
λ1

.

Proof

E(X) = λ1λ2

√
1 + ρ

1 − ρ

∞∫
0

xe
− x

{
λ1 cos θ

2 −λ2 sin θ
2

}
√

1−ρ

x cot θ
2∫

x tan θ
2

e
− y

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ dy dx

= λ1λ2
√

1 + ρ

λ2 cos θ
2 − λ1 sin θ

2

∞∫
0

xe
− x

{
λ1 cos θ

2 −λ2 sin θ
2

}
√

1−ρ

⎧⎨
⎩e

− x tan θ
2

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ − e
− x cot θ

2

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ

⎫⎬
⎭ dx

= λ1λ2
√

1 + ρ

λ2 cos θ
2 − λ1 sin θ

2

{
1 − ρ[

λ1 cos θ
2 − λ2 sin θ

2 + tan θ
2

(
λ2 cos θ

2 − λ1 sin θ
2

)]2

− 1 − ρ[
λ1 cos θ

2 − λ2 sin θ
2 + cot θ

2

(
λ2 cos θ

2 − λ1 sin θ
2

)]2

}
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= λ1λ2
√

1 + ρ(1 − ρ)

λ2 cos θ
2 − λ1 sin θ

2

{
cos θ

2

λ1 cos θ
− sin θ

2

λ2 cos θ

}{
cos θ

2

λ1 cos θ
+ sin θ

2

λ2 cos θ

}

=
√

1 + ρ(1 − ρ)√
1 − ρ2

{
cos θ

2

λ1 cos θ
+ sin θ

2

λ2 cos θ

}

= λ2 cos θ
2 + λ1 sin θ

2

λ1λ2
√

1 + ρ
=

[
cos θ

2√
1 + ρ

]
1

λ1
+

[
sin θ

2√
1 + ρ

]
1

λ2

Similarly,

E(Y ) =
[

cos θ
2√

1 + ρ

]
1

λ2
+

[
sin θ

2√
1 + ρ

]
1

λ1

Theorem 14.2 V ar(X) = [E(X)]2− ρ
(1+ρ)λ1λ2

; V ar(Y ) = [E(Y )]2− ρ
(1+ρ)λ1λ2

.

Proof

E(X2) = λ1λ2

√
1 + ρ

1 − ρ

∞∫
0

x2e
− x

{
λ1 cos θ

2 −λ2 sin θ
2

}
√

1−ρ

x cot θ
2∫

x tan θ
2

e
− y

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ dy dx

= λ1λ2
√

1 + ρ

λ2 cos θ
2 − λ1 sin θ

2

∞∫
0

x2e
− x

{
λ1 cos θ

2 −λ2 sin θ
2

}
√

1−ρ

⎧⎨
⎩e

− x tan θ
2

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ − e
− x cot θ

2

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ

⎫⎬
⎭ dx

= λ1λ2
√

1 + ρ

λ2 cos θ
2 − λ1 sin θ

2

{
2(1 − ρ)

√
1 − ρ[

λ1 cos θ
2 − λ2 sin θ

2 + tan θ
2

(
λ2 cos θ

2 − λ1 sin θ
2

)]3

− 2(1 − ρ)
√

1 − ρ[
λ1 cos θ

2 − λ2 sin θ
2 + cot θ

2

(
λ2 cos θ

2 − λ1 sin θ
2

)]3

}

= 2λ1λ2

√
1 − ρ2(1 − ρ)

λ2 cos θ
2 − λ1 sin θ

2

{
cos θ

2

λ1 cos θ
− sin θ

2

λ2 cos θ

}

{
cos2 θ

2

λ2
1 cos2 θ

+ sin θ
2 cos θ

2

λ1λ2 cos2 θ
+ sin2 θ

2

λ2
2 cos2 θ

}
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= 2(1 − ρ)

{
cos2 θ

2

λ2
1 cos2 θ

+ sin θ
2 cos θ

2

λ1λ2 cos2 θ
+ sin2 θ

2

λ2
2 cos2 θ

}

= 2
λ2

2 cos2 θ
2 + λ1λ2 sin θ

2 cos θ
2 + λ2

1 sin2 θ
2

λ2
1λ

2
2(1 + ρ)

V ar(X) = 2λ2
2 cos2 θ

2 + 2λ1λ2 sin θ
2 cos θ

2 + 2λ2
1 sin2 θ

2

λ2
1λ

2
2(1 + ρ)

− λ2
2 cos2 θ

2 + 2λ1λ2 sin θ
2 cos θ

2 + λ2
1 sin2 θ

2

λ2
1λ

2
2(1 + ρ)

V ar(X) = λ2
2 cos2 θ

2 + λ2
1 sin2 θ

2

λ2
1λ

2
2(1 + ρ)

=
[

cos θ
2√

1 + ρ

]2
1

λ2
1

+
[

sin θ
2√

1 + ρ

]2
1

λ2
2

= [E(X)]2 − ρ

(1 + ρ)λ1λ2
.

Similarly,

V ar(Y ) = [E(Y )]2 − ρ

(1 + ρ)λ1λ2
.

Useful Reformulations Let μ1 and μ2 be the means of X and Y , respectively.
Using Theorem 14.1,

[
cos θ

2√
1 + ρ

]
1

λ1
+

[
sin θ

2√
1 + ρ

]
1

λ2
= μ1;

[
sin θ

2√
1 + ρ

]
1

λ1
+

[
cos θ

2√
1 + ρ

]
1

λ2
= μ2.

√
1 − ρ2 1

λ1
= √

1 + ρ(μ1 cos
θ

2
− μ2 sin

θ

2
)

λ1 =
√

1 − ρ

μ1 cos θ
2 − μ2 sin θ

2

; λ2 =
√

1 − ρ

μ2 cos θ
2 − μ1 sin θ

2

.

There is a limit to the ratio of the two means to yield a positive λ1 and λ2: tan θ
2 <

μ1
μ2

< cot θ
2 . Therefore, the unknown parameters λ1 and λ2 can be easily computed

when real data on (X, Y ) is available. Further, note that

λ1λ2 = 1 − ρ

μ1μ2 − ρ
2 (μ2

1 + μ2
2)
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and applying Theorem 14.2,

V ar(X) = μ2
1 − ρ

(1 + ρ)λ1λ2
= μ2

1 − ρ

1 − ρ2

[
μ1μ2 − ρ

2
(μ2

1 + μ2
2)
]

V ar(Y ) = μ2
2 − ρ

(1 + ρ)λ1λ2
= μ2

2 − ρ

1 − ρ2

[
μ1μ2 − ρ

2
(μ2

1 + μ2
2)
]
. (14.13)

14.3.1 Expected Maximum and Expected Minimum

We provide analytical expressions for the expected maximum and expected min-
imum for (X, Y ) that are generated from fX,Y (x, y) in (14.12). First, we prove
that for any two random variables (that may be correlated) the sum of the expected
minimum and expected maximum is equal to the sum of the means. This result
allows us to just develop a formula for the expected maximum and consequently
also obtain the formula for the expected minimum.

Theorem 14.3 E[min{X, Y }] + E[max{X, Y }] = E(X) + E(Y ).

Proof Consider two discrete probability distributions with n points each (xi, p
x
i )

and (yi, p
y
i ) which may be correlated so that the probability of (xi, yj ) is pij which

is not necessarily equal to px
i p

y
j . However,

n∑
i=1

pij = p
y
j ∀j and

n∑
j=1

pij = px
i ∀i.

Consider all pairs (xi, yj ). For each pair one of them is the minimum and the other
one is the maximum. Therefore, min{xi, yj } + max{xi, yj } = xi + yj . We get that

E[min{X, Y }] + E[max{X, Y }] = E[min{X, Y } + max{X, Y }]

=
n∑

i,j=1

[
min{xi, yj } + max{xi, yj }

]
pij

=
n∑

i,j=1

(xi + yj )pij

=
n∑

i=1

⎡
⎣ n∑

j=1

pij

⎤
⎦ xi +

n∑
j=1

[
n∑

i=1

pij

]
yj

=
n∑

i=1

px
i xi +

n∑
j=1

p
y
j yj = E(X) + E(Y )

The result is true for any continuous distribution as well. A continuous distri-
bution is a limit of a discrete probability distribution when n → ∞. For example,
Nadarajah and Kotz (2008) give exact formulas for the expected maximum value
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and minimum value of two correlated normal random variables. Let (X, Y ) have
means of (μ1, μ2) with standard deviations (σ1, σ2), and correlation coefficient ρ.

Define σ =
√

σ 2
1 + σ 2

2 − 2ρσ1σ2. Then,

E(max{X, Y }) = μ1�

(
μ1 − μ2

σ

)
+ μ2�

(
μ2 − μ1

σ

)
+ σφ

(
μ1 − μ2

σ

)

(14.14)

E(min{X, Y }) = μ1�

(
μ2 − μ2

σ

)
+ μ2�

(
μ1 − μ2

σ

)
− σφ

(
μ1 − μ2

σ

)

(14.15)
where φ(·) and �(·) are the density function and the cumulative distribution
of the standardized normal distribution. For example, if μ1 = μ2 = μ, then
E(max{X, Y }) = μ + σ√

2π
and E(min{X, Y }) = μ − σ√

2π
.

For a bivariate normal distribution E[min{X, Y }] + E[max{X, Y }] = μ1 + μ2
because �(a) + �(−a) = 1, confirming Theorem 14.3 in this case.

Now, we consider the case of correlated exponentials. The probability that the
maximum value max(X, Y ) ≤ t is equal to the probability that X ≤ t and Y ≤
t . This probability is the integral of the density function fX,Y (x, y) over the area
depicted in Fig. 14.2.

Let F(t) be Pr(max(X, Y ) ≤ t).

F(t) =
t tan θ

2∫
0

x cot θ
2∫

x tan θ
2

φ(x, y) dy dx +
t∫

t tan θ
2

t∫

x tan θ
2

φ(x, y) dy dx

Substituting the density function (14.12):

Fig. 14.2 The integration
area

�

�

���������������

�
�
�
�
�
�
�
�
�
�
�
�
�
��

x= t

y= t

y= x tan θ
2

y= xcot θ2

Area

t tan θ
2
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F(t) =
t tan θ

2∫
0

x cot θ
2∫

x tan θ
2

λ1λ2

√
1 + ρ

1 − ρ
e
− X

{
λ1 cos θ

2 −λ2 sin θ
2

}
+Y

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ dy dx

+
t∫

t tan θ
2

t∫

x tan θ
2

λ1λ2

√
1 + ρ

1 − ρ
e
− X

{
λ1 cos θ

2 −λ2 sin θ
2

}
+Y

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ dy dx

Once F(t) is found, then E[max(X, Y )] =
∞∫
0

t
dF (t)

dt
dt because

∞∫
0

dF(t)
dt

dt = 1.

In the Appendix we show that

E[max(X, Y )] = (
1

λ1
+ 1

λ2
)
1 + √

1 − ρ2

2
− 1

λ1 + λ2

⎧⎨
⎩

√
1 − ρ2

1 − ρ
λ2

1+λ2
2

2λ1λ2

⎫⎬
⎭

+ (
1

λ1
+ 1

λ2
)ρ2 (λ2

1 + λ2
2)

√
1 − ρ

4
√

1 + ρ(λ1λ2 − ρ
2 (λ2

1 + λ2
2))

(14.16)

E[min(X, Y )] = (
1

λ1
+ 1

λ2
)
1 − √

1 − ρ2

2
+ 1

λ1 + λ2

⎧⎨
⎩

√
1 − ρ2

1 − ρ
λ2

1+λ2
2

2λ1λ2

⎫⎬
⎭

− (
1

λ1
+ 1

λ2
)ρ2 (λ2

1 + λ2
2)

√
1 − ρ

4
√

1 + ρ(λ1λ2 − ρ
2 (λ2

1 + λ2
2))

(14.17)

The formulas are valid for λ1λ2 − ρ
2 (λ2

1 +λ2
2) > 0 or ρ < 2λ1λ2

λ2
1+λ2

2
= 1 − (λ1−λ2)

2

λ2
1+λ2

2
.

For example, when λ2 = 2λ1, ρ should be lower than 0.8.

14.3.1.1 Special Cases

When ρ = 0,

E[max(X, Y )] = 1

λ1
+ 1

λ2
− 1

λ1 + λ2
; E[min(X, Y )] = 1

λ1 + λ2

When λ1 = λ2 = λ:

E[max(X, Y )] = 1

λ

{
1 +

√
1 − ρ2 −

√
1 − ρ2

2(1 − ρ)
+ ρ2√1 − ρ

(1 − ρ)
√

1 + ρ

}
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= 1

λ

{
1 − 1

2

√
1 + ρ

1 − ρ
+

√
1 − ρ2 + ρ2√

1 − ρ2

}
= 1

λ

{
1 − 1

2

√
1 + ρ

1 − ρ
+ 1√

1 − ρ2

}

= 1

λ

{
1 + 1 − 1

2 (1 + ρ)√
1 − ρ2

}
= 1

λ

{
1 + 1

2

1 − ρ√
1 − ρ2

}
= 1

λ

{
1 + 1

2

√
1 − ρ

1 + ρ

}

and

E[min(X, Y )] = 1

λ

{
1 − 1

2

√
1 − ρ

1 + ρ

}

14.4 Correlated Service Times in Tandem Queues

To illustrate the possible application of the proposed bivariate exponential distribu-
tion, we consider a queueing system in which two servers process the same arriving
customer in tandem (or in sequence), i.e., each customer is serviced at the first
server and then proceeds to the second server before leaving the system. Since each
customer must be processed by both servers, service times at the two servers for
a given customer may become correlated. When service times follow (14.12), we
provide analytical expression for the total waiting time in the system.

An M/G/1 queue has an arrival rate λ, average service time μ with a variance σ 2.
Note that in most literature μ is defined as average service rate (1/service time). The
average time a customer spends in the system (time in queue plus service time) is
by Pollaczek’s formula Gelenbe et al. (1998):

W = μ + λσ 2 + λμ2

2(1 − λμ)
= μ

1 − λμ
+ μ − μ

1 − λμ
+ λσ 2 + λμ2

2(1 − λμ)

= μ

1 − λμ
+ λ

σ 2 − μ2

2(1 − λμ)
. (14.18)

Now consider two sequential servers. The arrival rate must be lower than the
slower service rate between the two servers. The arrival rate is the same for both
servers even when, for example, the first server is faster. Let the average service
time for the first server be μ1 with variance σ 2

1 and the second server has a mean
service time μ2 with variance σ 2

2 ,
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by (14.13):

σ 2
1 = μ2

1 − ρ

1 − ρ2

[
μ1μ2 − ρ

2
(μ2

1 + μ2
2)
]

= μ2
1 − ρ

1 − ρ2

[
(1 − ρ)μ1μ2 − ρ

2
(μ1 − μ2)

2
]

= μ2
1 − ρ

1 + ρ
μ1μ2 + ρ2

2(1 − ρ2)
(μ1 − μ2)

2

= σ 2
1 − μ2

1 = ρ

1 + ρ

{
ρ

2(1 − ρ)
(μ1 − μ2)

2 − μ1μ2

}

and thus the total time W1 is by (14.18):

W1 = μ1

1 − λμ1
+ ρλ

2(1 + ρ)(1 − λμ1)

{
ρ

2(1 − ρ)
(μ1 − μ2)

2 − μ1μ2

}

= μ1

1 − λμ1
+ ρλμ1μ2

2(1 − ρ2)(1 − λμ1)

{
ρ

2

(
μ1

μ2
+ μ2

μ1

)
− 1

}
(14.19)

and W1 + W2 is

W1 + W2 = μ1

1 − λμ1
+ μ2

1 − λμ2
+ ρλμ1μ2

2(1 − ρ2){
ρ

2

(
μ1

μ2
+ μ2

μ1

)
− 1

}{
1

1 − λμ1
+ 1

1 − λμ2

}
(14.20)

The waiting time in line for an uncorrelated server (1 or 2) is Wq = λμ2

1−λμ
. The

reduction in total time can be written as

ρλμ1μ2

2(1 − ρ2)

{
1 − ρ

2

(
μ1

μ2
+ μ2

μ1

)}{
1

1 − λμ1
+ 1

1 − λμ2

}

=
ρ
{

1 − ρ
2

(
μ1
μ2

+ μ2
μ1

)}
2(1 − ρ2)

{
μ1

μ2
Wq1 + μ2

μ1
Wq2

}

leading to:

W1 + W2 = μ1

1 − λμ1
+ μ2

1 − λμ2
−

ρ
{

1 − ρ
2

(
μ1
μ2

+ μ2
μ1

)}
2(1 − ρ2)

{
μ1

μ2
Wq1 + μ2

μ1
Wq2

}

(14.21)
If there are two sequential servers with means μ1 and μ2 and correlation ρ

between them satisfying tan θ
2 <

μ1
μ2

< cot θ
2 , then the total service time is given by

(14.20) or (14.21).
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Theorem 14.4 For tan θ
2 <

μ1
μ2

< cot θ
2 , ρ

2

(
μ1
μ2

+ μ2
μ1

)
< 1 and thus total service

time declines for ρ > 0.

Proof Consider μ1 ≥ μ2. Define φ = μ1
μ2

≥ 1. We get ρ
2

(
μ1
μ2

+ μ2
μ1

)
= ρ

2

(
φ + 1

φ

)
.

The function φ + 1
φ

increases when φ ≥ 1 increases and obtains its maximum value

at the largest possible φ which is φ = cot θ
2 . Therefore, for 1 ≤ φ < cot θ

2

ρ

2

(
φ + 1

φ

)
<

ρ

2

(
cot

θ

2
+ tan

θ

2

)

= sin
θ

2
cos

θ

2

(
cot

θ

2
+ tan

θ

2

)
= cos2 θ

2
+ sin2 θ

2
= 1,

which proves the theorem.

Lemma 14.1 ρ > tan θ
2 .

Proof ρ = 2 sin θ
2 cos θ

2 = 2 tan θ
2 cos2 θ

2 and cos θ
2 ≥

√
2

2 because θ ≤ π
2 .

Theorem 14.5 The maximum reduction in waiting time is obtained for
ρ = min{μ1,μ2}

max{μ1,μ2} .

Proof Define φ = μ1
μ2

. For a given φ the maximum reduction is obtained by:

d

dρ

ρ
{

1 − ρ
2

(
φ + 1

φ

)}
2(1 − ρ2)

=
2
[
1 − ρ

(
φ + 1

φ

)]
(1 − ρ2) + 4ρ2

{
1 − ρ

2

(
φ + 1

φ

)}
4(1 − ρ2)2 = 0.

Leading to:

1 − ρ

(
φ + 1

φ

)
− ρ2 + ρ3

(
φ + 1

φ

)
+ 2ρ2 − ρ3

(
φ + 1

φ

)
= 0.

1 − ρ

(
φ + 1

φ

)
+ ρ2 = 0.

ρ =
(
φ + 1

φ

)
±

√(
φ + 1

φ

)2 − 4

2
= φ or

1

φ
depending on whether φ ≥ 1 or φ ≤ 1.

By Lemma 14.1, the maximum reduction is obtained for ρ = φ or 1
φ

. Since

ρ ≤ 1, ρ = min{μ1,μ2}
max{μ1,μ2} .
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The maximum reduction in total waiting time for μ2 ≥ μ1 is

ρ
{

1 − ρ
2

(
ρ + 1

ρ

)}
2(1 − ρ2)

{
ρWq1 + 1

ρ
Wq2

}
= ρ

4

{
ρWq1 + 1

ρ
Wq2

}

= 1

4

{
ρ2Wq1 + Wq2

}
(14.22)

and in general for any μ1, μ2:

Maximum reduction is:
μ2

1Wq1 + μ2
2Wq2

4 max{μ1, μ2}2
(14.23)

obtained for ρ = min{μ1,μ2}
max{μ1,μ2} . The maximum reduction in waiting time in line is

greater for the server with the longer average service time.
In the special case of μ1 = μ2 = μ the waiting time in line for one server for

independent servers is λμ2

1−λμ
. Therefore, total time in the system is reduced by a

fraction 0.5ρ
1+ρ

of the waiting time in line for both servers combined. This fraction is
a monotonically increasing function of ρ with a maximum of 0.25 for ρ = 1. Note
that when μ1 = μ2 then the condition tan θ

2 <
μ1
μ2

< cot θ
2 is satisfied for every

ρ ≥ 0.

Appendix: Proofs of (14.16) and (14.17)

The first integral is

I1(t) = λ1λ2

√
1 + ρ

1 − ρ

t tan θ
2∫

0

e
− X

{
λ1 cos θ

2 −λ2 sin θ
2

}
√

1−ρ

x cot θ
2∫

x tan θ
2

e
− Y

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ dy dx

= λ1λ2
√

1 + ρ

λ2 cos θ
2 − λ1 sin θ

2

t tan θ
2∫

0

e
− X

{
λ1 cos θ

2 −λ2 sin θ
2

}
√

1−ρ

⎧⎨
⎩e

− x tan θ
2

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ − e
− x cot θ

2

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ

⎫⎬
⎭ dx

= λ1λ2
√

1 + ρ

λ2 cos θ
2 − λ1 sin θ

2

t tan θ
2∫

0

⎧⎨
⎩e

− xλ1

{
cos2 θ

2 −sin2 θ
2

}
√

1−ρ cos θ
2 − e

− xλ2

{
cos2 θ

2 −sin2 θ
2

}
√

1−ρ sin θ
2

⎫⎬
⎭ dx
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= λ1λ2
√

1 + ρ

λ2 cos θ
2 − λ1 sin θ

2

t tan θ
2∫

0

{
e
− xλ1

√
1+ρ

cos θ
2 − e

− xλ2
√

1+ρ

sin θ
2

}
dx

= λ1λ2
√

1 + ρ

λ2 cos θ
2 − λ1 sin θ

2⎧⎨
⎩

cos θ
2

λ1
√

1 + ρ

⎡
⎣1 − e

− t tan θ
2 λ1

√
1+ρ

cos θ
2

⎤
⎦ − sin θ

2

λ2
√

1 + ρ

[
1 − e

− tλ2
√

1+ρ

cos θ
2

]⎫⎬
⎭

The second integral is

I2(t) = λ1λ2

√
1 + ρ

1 − ρ

t∫

t tan θ
2

e
− X

{
λ1 cos θ

2 −λ2 sin θ
2

}
√

1−ρ

t∫

x tan θ
2

e
− Y

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ dy dx

= λ1λ2
√

1 + ρ

λ2 cos θ
2 − λ1 sin θ

2

t∫

t tan θ
2

e
− X

{
λ1 cos θ

2 −λ2 sin θ
2

}
√

1−ρ

⎧⎨
⎩e

− x tan θ
2

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ − e
− t

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ

⎫⎬
⎭ dx

= λ1λ2
√

1 + ρ

λ2 cos θ
2 − λ1 sin θ

2⎧⎪⎪⎨
⎪⎪⎩

t∫

t tan θ
2

e
− xλ1

√
1+ρ

cos θ
2 dx − e

− t
{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ

t∫

t tan θ
2

e
− X

{
λ1 cos θ

2 −λ2 sin θ
2

}
√

1−ρ dx

⎫⎪⎪⎬
⎪⎪⎭

= λ1λ2
√

1 + ρ

λ2 cos θ
2 − λ1 sin θ

2

⎧⎨
⎩

cos θ
2

λ1
√

1 + ρ

⎡
⎣e

− t tan θ
2 λ1

√
1+ρ

cos θ
2 − e

− tλ1
√

1+ρ

cos θ
2

⎤
⎦

−
√

1 − ρ

λ1 cos θ
2 − λ2 sin θ

2

e
− t

{
λ2 cos θ

2 −λ1 sin θ
2

}
√

1−ρ

⎡
⎣e

− t tan θ
2

{
λ1 cos θ

2 −λ2 sin θ
2

}
√

1−ρ − e
− t

{
λ1 cos θ

2 −λ2 sin θ
2

}
√

1−ρ

⎤
⎦
⎫⎬
⎭
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= λ1λ2
√

1 + ρ

λ2 cos θ
2 − λ1 sin θ

2

⎧⎨
⎩

cos θ
2

λ1
√

1 + ρ

⎡
⎣e

− t tan θ
2 λ1

√
1+ρ

cos θ
2 − e

− tλ1
√

1+ρ

cos θ
2

⎤
⎦

−
√

1 − ρ

λ1 cos θ
2 − λ2 sin θ

2

[
e
− tλ2

√
1+ρ

cos θ
2 − e−t (λ1+λ2)

]}

Therefore,

F(t) = I1(t) + I2(t) = λ1λ2
√

1 + ρ

λ2 cos θ
2 − λ1 sin θ

2

⎧⎨
⎩

cos θ
2

λ1
√

1 + ρ

⎡
⎣1 − e

− t tan θ
2 λ1

√
1+ρ

cos θ
2

⎤
⎦

− sin θ
2

λ2
√

1 + ρ

[
1 − e

− tλ2
√

1+ρ

cos θ
2

]

+ cos θ
2

λ1
√

1 + ρ

⎡
⎣e

− t tan θ
2 λ1

√
1+ρ

cos θ
2 − e

− tλ1
√

1+ρ

cos θ
2

⎤
⎦

−
√

1 − ρ

λ1 cos θ
2 − λ2 sin θ

2

[
e
− tλ2

√
1+ρ

cos θ
2 − e−t (λ1+λ2)

]}

= λ1λ2
√

1 + ρ

λ2 cos θ
2 − λ1 sin θ

2

{
cos θ

2

λ1
√

1 + ρ

[
1 − e

− tλ1
√

1+ρ

cos θ
2

]

− sin θ
2

λ2
√

1 + ρ

[
1 − e

− tλ2
√

1+ρ

cos θ
2

]

−
√

1 − ρ

λ1 cos θ
2 − λ2 sin θ

2

[
e
− tλ2

√
1+ρ

cos θ
2 − e−t (λ1+λ2)

]}

We get

dF(t)

dt
= λ1λ2

√
1 + ρ

λ2 cos θ
2 − λ1 sin θ

2

{
e
− tλ1

√
1+ρ

cos θ
2 − tan

θ

2
e
− tλ2

√
1+ρ

cos θ
2

+ λ2

√
1 − ρ2

(λ1 cos θ
2 − λ2 sin θ

2 ) cos θ
2

e
− tλ2

√
1+ρ

cos θ
2 −

√
1 − ρ(λ1 + λ2)

λ1 cos θ
2 − λ2 sin θ

2

e−t (λ1+λ2)

}

∞∫
0

dF(t)

dt
tdt = λ1λ2

√
1 + ρ

λ2 cos θ
2 − λ1 sin θ

2

{
cos2 θ

2

(1 + ρ)λ2
1

− tan θ
2 cos2 θ

2

(1 + ρ)λ2
2
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+
√

1 − ρ2 cos θ
2

(λ1 cos θ
2 − λ2 sin θ

2 )λ2(1 + ρ)
−

√
1 − ρ

(λ1 cos θ
2 − λ2 sin θ

2 )(λ1 + λ2)

}

E[max(X, Y )] = λ1λ2

(λ2 cos θ
2 − λ1 sin θ

2 )
√

1 + ρ

{
cos2 θ

2

λ2
1

− ρ

2λ2
2

}

+ λ1
√

1 − ρ cos θ
2

(λ2 cos θ
2 − λ1 sin θ

2 )(λ1 cos θ
2 − λ2 sin θ

2 )

− λ1λ2

√
1 − ρ2

(λ2 cos θ
2 − λ1 sin θ

2 )(λ1 cos θ
2 − λ2 sin θ

2 )(λ1 + λ2)

= λ1λ2

(λ2 cos θ
2 − λ1 sin θ

2 )
√

1 + ρ

{
cos2 θ

2

λ2
1

− ρ

2λ2
2

}

+ λ1
√

1 − ρ cos θ
2

λ1λ2 − ρ
2 (λ2

1 + λ2
2)

− λ1λ2

√
1 − ρ2

(λ1λ2 − ρ
2 (λ2

1 + λ2
2))(λ1 + λ2)

= 1

(λ1λ2 − ρ
2 (λ2

1 + λ2
2))

√
1 + ρ{

λ1 cos θ
2 − λ2 sin θ

2

λ1λ2

{
λ2

2 cos2 θ

2
− ρ

2
λ2

1

}

+λ1

√
1 − ρ2 cos

θ

2
− λ1λ2

√
(1 − ρ2)(1 + ρ)

(λ1 + λ2)

}

= 1

(λ1λ2 − ρ
2 (λ2

1 + λ2
2))

√
1 + ρ{

λ2 cos3 θ

2
− λ2

2

λ1
cos2 θ

2
sin

θ

2
− ρ

2

λ2
1

λ2
cos

θ

2
+ ρ

2
λ1 sin

θ

2

+λ1

√
1 − ρ2 cos

θ

2
− λ1λ2

√
(1 − ρ2)(1 + ρ)

(λ1 + λ2)

}

= 1

(λ1λ2 − ρ
2 (λ2

1 + λ2
2))

√
1 + ρ{

(λ1 + λ2) cos3 θ

2
− λ3

1 + λ3
2

λ1λ2
cos2 θ

2
sin

θ

2

−λ1λ2

√
(1 − ρ2)(1 + ρ)

(λ1 + λ2)

}
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= 1

(λ1λ2 − ρ
2 (λ2

1 + λ2
2)){

(λ1 + λ2) cos2 θ

2
− (λ2

1 + λ2
2)(λ1 + λ2)

λ1λ2
√

1 + ρ
cos2 θ

2
sin

θ

2

−λ1λ2

√
(1 − ρ2)

(λ1 + λ2)

}

= 1

(λ1λ2 − ρ
2 (λ2

1 + λ2
2))

{
(λ1 + λ2) cos2 θ

2

λ1λ2

[
λ1λ2 − (λ2

1 + λ2
2)√

1 + ρ
sin

θ

2

]

−λ1λ2

√
(1 − ρ2)

(λ1 + λ2)

}

= 1

(λ1λ2 − ρ
2 (λ2

1 + λ2
2))

{
(λ1 + λ2) cos2 θ

2

λ1λ2

[
λ1λ2 − ρ

2
(λ2

1 + λ2
2)

+(λ2
1 + λ2

2)
cos θ

2 sin θ
2

√
1 + ρ − sin θ

2√
1 + ρ

]
− λ1λ2

√
(1 − ρ2)

(λ1 + λ2)

}

= (
1

λ1
+ 1

λ2
)
1 + √

1 − ρ2

2

+ 1

(λ1λ2 − ρ
2 (λ2

1 + λ2
2))

{
(λ1 + λ2)(λ

2
1 + λ2

2)ρ
2√1 − ρ

4λ1λ2
√

1 + ρ

−λ1λ2

√
1 − ρ2

(λ1 + λ2)

}

E[max(X, Y )] = (
1

λ1
+ 1

λ2
)
1 + √

1 − ρ2

2
− 1

λ1 + λ2

⎧⎨
⎩

√
1 − ρ2

1 − ρ
λ2

1+λ2
2

2λ1λ2

⎫⎬
⎭

+ (
1

λ1
+ 1

λ2
)ρ2 (λ2

1 + λ2
2)

√
1 − ρ

4
√

1 + ρ(λ1λ2 − ρ
2 (λ2

1 + λ2
2))

The formulas are valid for λ1λ2 − ρ
2 (λ2

1 +λ2
2) > 0 or ρ < 2λ1λ2

λ2
1+λ2

2
= 1 − (λ1−λ2)

2

λ2
1+λ2

2
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By Theorem 14.3 E[max(X, Y )] + E[min(X, Y )] = 1
λ1

+ 1
λ2

and therefore:

E[min(X, Y )] = (
1

λ1
+ 1

λ2
)
1 − √

1 − ρ2

2
+ 1

λ1 + λ2

⎧⎨
⎩

√
1 − ρ2

1 − ρ
λ2

1+λ2
2

2λ1λ2

⎫⎬
⎭

− (
1

λ1
+ 1

λ2
)ρ2 (λ2

1 + λ2
2)

√
1 − ρ

4
√

1 + ρ(λ1λ2 − ρ
2 (λ2

1 + λ2
2))
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