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Preface

This volume is written to mark the 60th birthday of Professor Georges Zaccour.
The contributors, who are either former Ph.D. students or successful research
collaborators and friends of Professor Zaccour, want to take this opportunity to
acknowledge his contributions and to honor his many scientific achievements.

It would be unrealistic and inadvisable to attempt to give a full account of
Georges Zaccour’s scientific achievements in a book preface. We hope, however,
that the few points below will help the reader appreciate the extent of his contribu-
tion to science.

All things considered, Georges Zaccour is one of the most prolific scholars of his
generation in the fields of operations research and management science. His work
covers theoretical developments as well as applications of dynamic optimization
and dynamic games in various fields including economics, energy, the environment,
marketing, and supply chain management. His work is published regularly in top-
ranked journals and is funded by the Natural Sciences and Engineering Research
Council of Canada and the Social Sciences and Humanities Research Council of
Canada. His publications include 4 books, 14 edited volumes, over 150 refereed
journal articles, and 24 chapters in edited books. His Google Scholar profile reflects
the impacts of his contributions in his research fields (close to 6000 citations and an
h indicator of 39). Among many scientific distinctions and awards, Georges Zaccour
is a fellow of the Royal Society of Canada and a recipient of the 2018 Isaacs Award
for his outstanding contribution to the theory and application of dynamic games. A
complete list of his publications is included in this book.

Service to and leadership in the scientific community have always been a
top priority for Georges Zaccour. Among other things, he is the editor in chief
of Dynamic Games and Applications, and the associate editor of International
Game Theory Review, Environmental Modeling & Assessment, Computational
Management Science, and INFOR, and he sits on the editorial boards of several other
prestigious journals in various fields. He is the holder of the Chair in Game Theory
and Management at HEC Montréal and a former president of the International
Society of Dynamic Games (ISDG, 2002–2006). He is also a former director of the
Group for Research in Decision Analysis (GERAD, 2001–2005), a world-renowned
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vi Preface

research center in operations research and management science that brings together
several universities in Montréal.

But perhaps Georges Zaccour’s most significant contribution to science is his
dedication to, passion for, and unparalleled skill at training graduate students and
his ability to help them develop into thriving researchers. Thanks to his outstanding
work in this area and his capacity to create a blossoming research environment,
the future of research in the field of differential games and their applications in
management science has never been as promising as it is today. Over the years,
Professor Zaccour has created a scientific family of more than 35 Ph.D. and post-doc
graduates, who are established in seven different countries across four continents.
This family will soon grow, with the additional 15 students currently working under
his supervision.

Professor Georges Zaccour with his Ph.D. students. From left to right: Pierre-Olivier Pineau, Sihem
Taboubi, Simon Sigué. 9th ISDG Symposium, Adelaide, South Australia, December 18–21, 2000.

We, the editors of this volume and the organizers of the 11th Workshop on
Dynamic Games and Management Science (Montréal, October, 24–25, 2019), being
held in his honor, were among Professor Zaccour’s first Ph.D. students (2000,
1999, and 2002, respectively). We have the privilege of publicly acknowledging the
extraordinary support and mentorship he has provided us, first during our training
at HEC Montréal, and later in our respective careers and personal lives. What we
have become, we owe to him. It goes without saying that we are very proud to be
part of Professor Zaccour’s multigenerational scientific family, which includes not
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only his extensive network of distinguished collaborators and friends worldwide,
but also, as of this volume, his daughter, Suzanne Zaccour. Suzanne, the youngest
contributor to this collection, is pursuing a Ph.D. with the Faculty of Law at Oxford
University. With Michèle Breton, she has co-authored a chapter that opens doors to
new applications of management science in the field of law.

Contents of the Book

This book collects 21 chapters reviewed according to international journal stan-
dards. The chapters cover theoretical developments in game theory and present a
broad spectrum of their applications in management science. These applications
include such areas as cyber defense, energy, and environmental management,
healthcare management, marketing, and supply chain management.

We have divided the volume into three parts. Part I, composed of six chapters, is
dedicated to Marketing and Supply Chain Games. In Chap. 1, S. Jørgensen and S. P.
Sigué investigate a differential game that takes place in a duopolistic market where
firms control their advertising and pricing decisions. A novel aspect of their study is
that they introduce price as an additional instrument used by competing firms in the
commonly used Lanchester model, which originally solely captured the effects of
advertising competition on the evolution of the firms’ market shares. In Chap. 2, G.
Martín-Herrán and S. Taboubi study the pricing of optional contingent products (i.e.,
a set of products that includes one that is useless without the other) and compare
prices and profits when these products are sold by the same company or by two
separate firms linked by the interdependency of their product demand. Their study
provides an interesting “logical experimental” perspective on marketing modeling
and game theory, two areas of expertise of Professor Zaccour. In Chap. 3, S. Karray
conducts one of the first studies to examine the efficiency of rebate programs
in marketing channels where competition is considered at both the manufacturer
and retailer levels. Rebate programs are price discounts that consumers acquire
by purchasing a product at an initial period and that they then use on the next
purchasing occasion. The author uses a two-period game, where manufacturers
decide in the first period whether or not to implement a rebate program, while
retailers react by fixing the rebate level and the price to consumers. Retailers
also set the retail prices in period 2 by taking into account the decisions made
in the first period. Backward induction is used to solve the games under three
scenarios, in which the rebate program can be implemented or not by one or both
manufacturers in the distribution channel. In Chap. 4, L. Lambertini deals with
the issue of channel coordination through the use of two-part tariffs. These are
price mechanisms that manufacturers can use in order to allow a decentralized
channel to replicate the results of a vertically integrated one. The author extends
the study of Zaccour (2008), on the efficiency of such mechanisms in a dynamic
setting, by introducing competition both upstream and downstream. In Chap. 5,
O. Rubel studies contractual agreements in the event of major crisis events from a

http://dx.doi.org/10.1007/978-3-030-19107-8_1
http://dx.doi.org/10.1007/978-3-030-19107-8_2
http://dx.doi.org/10.1007/978-3-030-19107-8_3
http://dx.doi.org/10.1007/978-3-030-19107-8_4
http://dx.doi.org/10.1007/978-3-030-19107-8_5
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channel’s perspective. He uses a stochastic differential game in a bilateral monopoly
to examine the impact of a product recall on the pricing strategies and profits of
both firms. The author investigates whether vendor agreements, which are signed
before any unit is sold, could aggravate the double-marginalization problem in
the channel, for two recall cost structures. In Chap. 6, P. De Giovanni and T. S.
Genc investigate a closed-loop supply chain where members can implement either a
traditional wholesale pricing contract or a revenue-sharing contract. Unlike previous
studies, where the return rate is solely affected by the manufacturer’s green efforts,
the authors introduce the retail prices set by the retailer into the dynamics, and
demonstrate that this variable plays a key role in identifying the best contract for
achieving coordination and for reaching environmental objectives.

Part II contains six chapters dedicated to Resources Games, which also includes
environmental and climate topics. In Chap. 7, O. Bahn and A. Haurie formulate
a steady-state game model with two types of production economy (“dirty” and
“clean”) and two types of emission-reduction technology (investment in carbon
capture and sequestration, and a technology of direct air capture). Their model
presents the results of negotiations among different coalitions of countries in
managing a net-zero Greenhouse Gas (GHG) emissions regime. The authors use
it to compute and compare various environmental and economic indicators (i.e.,
GHG emissions, capital stocks, labor allocation, consumption) obtained under a
Nash game and a cooperative game. In Chap. 8, H. Dawid, R. F. Hartl, and P.
M. Kort build a general dynamic model for a firm that uses as an input in its
production process an energy that can be delivered either conventionally or by
building a stock of green energy capital. The authors analyze variations of this
model and examine the impacts on the results. A key element is their explicit
modeling of the positive side effect of investing in green energy. This is done to
capture the fact that firms investing in green energy are positioning themselves as
“green firms,” which helps enhance the impact of their advertising efforts on their
goodwill and on demand. In Chap. 9, D. Tasneem and H. Benchekroun review the
experimental literature that analyzes the behavior of agents in dynamic common-
pool resource games (such as fisheries, forestry, and water). The authors propose
a classification of this literature into three groups: studies that compare behavior
to predictions of cooperative and noncooperative theoretical benchmarks in the
presence of dynamic externalities; studies that aim to find behavioral support for the
use of specific types of strategies; and studies that examine behaviors in a continuous
time setting. In Chap. 10, D. Claude and M. Tidball study vertical externalities and
strategic delegation, a topic that links two fields of research to which Professor
Zaccour has made significant contributions: interactions in marketing channels,
and environmental and resource economics. The authors consider a vertical market
structure with an upstream monopoly, which fixes the input price, and a downstream
quantity competition, where firms generate pollution emissions when they process
the intermediate product into a final good. They compute and compare the results of
their model under two scenarios, depending on whether the upstream monopolist is
able to pre-commit to a fixed input price or whether it relies on a flexible pricing
scheme. In Chap. 11, J. de Frutos and G. Martín-Herrán use a linear-quadratic

http://dx.doi.org/10.1007/978-3-030-19107-8_6
http://dx.doi.org/10.1007/978-3-030-19107-8_7
http://dx.doi.org/10.1007/978-3-030-19107-8_8
http://dx.doi.org/10.1007/978-3-030-19107-8_9
http://dx.doi.org/10.1007/978-3-030-19107-8_10
http://dx.doi.org/10.1007/978-3-030-19107-8_11
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transboundary pollution game to illustrate how nonlinear incentive strategies can
sustain an agreement over time. The authors use a less restrictive definition of
incentive equilibria with respect to the existing literature, in the sense that they
look for an incentive strategy equilibrium that allows the pollution stock under a
noncooperative mode of play to be close enough, but not necessarily identical, to its
value under cooperation. The authors compare the incentive equilibrium strategies,
their credibility, and the players’ payoff under open-loop and Markovian strategies.
In Chap. 12, F. J. André and L. M. Castro survey the literature on emission trading
under market power. They develop a unifying two-period model that allows them to
replicate some of the main results in this literature and to analyze the relationship
between permit prices and the degree of competition in the output and emissions
markets for different market structures (depending on which is the mainstream
market).

Finally, Part III deals with Social Games. It combines nine chapters on various
topics related to health, security, social norms, the law, etc., including some
theoretical developments in game theory. In Chap. 13, M. Breton and S. Zaccour
launch a new and original conversation between the law and game theory on the
personhood status of environmental entities. By granting personhood status to a river
suffering from a firm’s polluting activities, the authors allow the river to become an
active downstream player in a cooperative game. They show that cooperation with
environmental entities having a personhood status may be preferable to alternative
solutions such as laissez-faire, government regulation, and noncooperative or
cooperative solutions involving interested parties.

In Chap. 14, N. Van Long introduces the concept of a feedback Kant-Nash
equilibrium in a discrete time model of resource exploitation. The author revisits
the well-known dynamic model of the tragedy of the commons, where he considers
a subset of Kantian agents guided by a moral norm. This norm allows them
to explain their actions according to different rules than those used by rational
agents (i.e., Nashians). One of the main results obtained is that, even without
external punishment for violations of social norms, if a sufficiently large fraction
of the population consists of Kantian agents, the tragedy of the commons can be
substantially attenuated.

In Chap. 15, E. Billette de Villemeur and P. Pineau investigate the double
prisoner’s dilemma resulting from the fact that some individuals continue to
consume increasing amounts of oil, despite their high price, while at the same
time, environmental militants oppose production in the oil industry. The authors
examine the impacts on the individual and collective outcomes of two sets of
choices: being an environmental militant or not, and adopting for a frugal level
of energy consumption or not. One of their main results indicates that the highest
collective outcome is obtained when frugal behavior is adopted but militancy is
avoided. This result allows them to conclude that effective environmental action
should avoid opposing oil supply sources, while encouraging consumers to become
more frugal.

In Chap. 16, F. Cabo, A. Garcia-Gonzales, and M. Molpeceres-Abella study
compliance with social norms that are optimally established by a benevolent central

http://dx.doi.org/10.1007/978-3-030-19107-8_12
http://dx.doi.org/10.1007/978-3-030-19107-8_13
http://dx.doi.org/10.1007/978-3-030-19107-8_14
http://dx.doi.org/10.1007/978-3-030-19107-8_15
http://dx.doi.org/10.1007/978-3-030-19107-8_16
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planner as an evolutionary stable equilibrium. Compliance is analyzed in a two-
population evolutionary game, where individuals from one population play against
and imitate agents within their own, but also the other, population. The paper
distinguishes two types of agents, namely, the standard pro-self agents (Sanchos),
whose payoffs are defined by a prisoner’s dilemma game dominated by a noncom-
pliance strategy; and the pro-social Quixotes, who still have an incentive to free-ride,
although they prefer compliance over mutual defection, as in a snowdrift game.
The authors analyze the conditions under which the interaction with the population
of selfish Sanchos increases or decreases the compliance rate among altruistic
Quixotes. In Chap. 17, F. Ngendakuriyo and P. V. Reddy analyze a differential game
that takes place between an active civil society and a government. They examine the
conditions under which a country can switch from an initial situation of endogenous
corruption to a society with no, or little, corruption. The authors extend the
model initially examined in Ngendakuriyo and Zaccour (2013) by introducing the
effects of social inertia in the society, which induces positive (negative) feedback,
depending on the social perception of the prevailing institutional quality. Their study
demonstrates that an increase in optimism (pessimism) in the society leads it to
invest less (more) effort to fight corruption, whereas a corrupt government invests
more (less) effort in a repression policy.

In Chap. 18, A. Sokri discusses how game theory can be applied to cyber
defense problems. The author provides an extensive review of the literature in
this area and classifies it into three major categories: resource allocation, network
security, and cooperation models. Finally, he suggests replacing one assumption
used in the existing literature on security games, in order to capture more realistic
features in these problems. The assumption states that defenders and attackers are
able to accurately evaluate their own payoffs and those of their opponents. The
author proposes using new approach that introduces uncertainty into the model. He
ends by discussing the main challenges associated with the applicability of game-
theoretic methods in cyberspace and the avenues for future research. In Chap. 19,
A. Buratto, L. Grosset, and B. Viscolani investigate the recent problem related to
the increase in the number of unvaccinated people and study the effectiveness of
healthcare management policies on this issue. The authors formulate and solve a
differential game that takes place between the healthcare system, whose aim is to
minimize the number of unvaccinated people, and a pharmaceutical firm, which
produces and sells a given type of vaccine. To pursue their objectives, the two
players run appropriate vaccination advertising campaigns. The authors find that the
pharmaceutical firm’s communication policy helps the healthcare system decrease
the number of unvaccinated people. In Chap. 20, S. Debia analyzes the interaction
between international trade and pollution mitigation. While the traditional game-
theoretic literature on pollution mitigation found its analysis on homogeneous
goods, this study assumes a setup of intra-industry trade between two countries, each
producing a differentiated product. The author builds a bi-matrix noncooperative
game about the decision to cooperate (or not) in a nonbinding environmental
agreement (such as Paris COP 21) and shows that both countries cooperate if their
products are complements. This contradicts the traditional prisoner’s dilemma result

http://dx.doi.org/10.1007/978-3-030-19107-8_17
http://dx.doi.org/10.1007/978-3-030-19107-8_18
http://dx.doi.org/10.1007/978-3-030-19107-8_19
http://dx.doi.org/10.1007/978-3-030-19107-8_20
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for two-player noncooperative games with positive externalities (such as pollution
mitigation). Finally, in Chap. 21, E. Parilina and A. Sedakov examine the stability
problem of coalition structures. The authors use a dynamic competition model in
discrete time, where they consider that firms choose their outputs in each time
period. In their model, the market price is based on the firms’ decision and on
the price in the previous time period. They use two approaches to determine the
firms’ profits in the game: one approach where profits are not redistributed within the
coalition and one where profits are redistributed using a solution from cooperative
game theory. For each case, the authors study the stability of the coalition structure
and verify its dynamic stability.

Montréal, QC, Canada Pierre-Olivier Pineau
Athabasca, AB, Canada Simon Sigué
Montréal, QC, Canada Sihem Taboubi

The original version of this book was revised. The correction to this book is available at
https://doi.org/10.1007/978-3-030-19107-8_22

http://dx.doi.org/10.1007/978-3-030-19107-8_21
http://dx.doi.org/10.1007/978-3-030-19107-8_22
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A Lanchester-Type Dynamic Game
of Advertising and Pricing

Steffen Jørgensen and Simon Sigué

Abstract The paper studies a differential game played by two competing firms over
a finite time horizon. As the game progresses, the firms observe the position of the
game, i.e., the current time and the current market shares. Each firm uses pricing
and advertising in order to influence market shares. We suggest a generalization
of the Lanchester market share dynamics such that the rates at which firms attract
market share from each other are determined not only by their advertising efforts
but also by the consumer prices charged in the market. A full characterization of
Nash equilibrium price and advertising strategies is obtained.

Keywords Price and advertising competition · Duopoly · Differential game ·
Markovian Nash equilibrium

1 Introduction and Literature Review

The current research is devoted to the analysis of a dynamic noncooperative
game of advertising and pricing played by the firms in a duopolistic market. We
construct a differential game model which describes the evolution of market shares
in a duopolistic market. This model extends the well-known Lanchester model
of advertising competition by incorporating price competition. To the best of our
knowledge, this development is new.

The survey paper by Huang et al. (2012) provides a good account of dynamic
advertising research and may serve as an introduction to the problem to be dealt
with in the current research. Huang et al. organized their presentation according
to four different types of dynamics: Nerlove-Arrow advertising goodwill models,

S. Jørgensen
Department of Business and Economics, University of Southern Denmark, Odense, Denmark

S. Sigué (�)
Faculty of Business, Athabasca University, Athabasca, AB, Canada
e-mail: simon.sigue@fb.athabascau.ca

© Springer Nature Switzerland AG 2020
P.-O. Pineau et al. (eds.), Games in Management Science,
International Series in Operations Research & Management Science 280,
https://doi.org/10.1007/978-3-030-19107-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19107-8_1&domain=pdf
mailto:simon.sigue@fb.athabascau.ca
https://doi.org/10.1007/978-3-030-19107-8_1
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Vidale-Wolfe sales response models, new-product diffusion models, and Lanchester
market share models. For the first three types of models we provide some examples
of dynamic games in which competitors decide on their prices and advertising
efforts.

• Nerlove-Arrow Advertising Goodwill Models

Nair and Narasimhan (2006) studied duopolistic competition with investment in
quality, price, and advertising effort as the decision variables of a firm. A firm’s
sales depend on its own price and advertising goodwill. The right-hand sides of the
Nerlove-Arrow goodwill dynamics depend on quality investment and advertising
effort of both firms.

Erickson (2009) considered a differential game in the marketing and operations
interface. Evolution of advertising goodwill follows the Nerlove-Arrow model
while sales are a linear function of a firm’s price and advertising goodwill. The
competitor’s price and advertising, however, do not appear in the dynamics of a
specific firm.

Fruchter (2009) assumed that advertising goodwill signals quality and replaced
advertising with quality. Price and advertising appear linearly on the right-hand
side of the equations specifying the quality dynamics. The competitor’s price and
advertising are, however, absent in the dynamics for the quality variable of a specific
firm.

• Vidale-Wolfe Sales Response Models

Fruchter and Messinger (2003) studied a situation in which a “fringe” firm
enters the market of an incumbent firm. Prices and advertising efforts are a firm’s
decision variables and the right-hand side of fringe sales dynamics depend on all
four marketing decision variables. The authors consider two cases: (1) Fringe firms
are price-takers and advertise. (2) Fringe firms are not price-takers and advertise. In
the first case, the only one price to be determined is that of the price-leader.

Krishnamoorthy et al. (2010) studied optimal pricing and advertising in a
durable-good duopoly. The right-hand sides of the sales dynamics depend on a
firm’s own advertising and price.

• New Product Diffusion Models

Teng and Thompson (1984) studied price and advertising competition in a
dynamic oligopoly. The model is a combination of the Bass new product diffusion
model and the Vidale-Wolfe model. Due to the complex sales dynamics, the authors
assumed that—in the case of a duopoly—one of the firms is a price leader. Hence
one price only is to be determined.

• Lanchester Market Share Models

The simple Lanchester advertising model considers advertising as an offensive
marketing tool, the only purpose of which is to attract customers from a rival firm
(e.g., Erickson 1985; Jarrar et al. 2004). Some later extensions of the Lanchester
model suppose that firms also use defensive advertising. The purpose of this type
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of advertising is to protect a firm’s customer base (e.g., Erickson 1993; Martín-
Herrán et al. 2012). Prices are exogenously given in these models and market shares
are exclusively affected by advertising efforts (Huang et al. 2012). Jørgensen and
Sigué (2015) studied a Lanchester model with three types of advertising: offensive,
defensive, and generic. While the first two types of advertising are aimed at
customers who are already in the market, the third type aims at influencing potential
buyers with the aim of expanding demand for the product category. We have not
been able to find differential game models having both prices and advertising efforts
in the market share dynamics.1

Remark 1 In most of the literature, the market structure in Lanchester models is a
duopoly. See Kress et al. (2018) for a Lanchester model of a triopoly.

The model suggested in this paper extends the simple Lanchester model by
incorporating offensive advertising efforts as well as retail prices in the market share
dynamics. The retail price charged by a firm can play the role as a defensive as well
as an offensive marketing instrument that is used to (1) protect a firm’s own customer
base and (2) attract customers from the rival firm.

Clearly, in many real-life markets firms compete on both price and advertising
(as well as other marketing instruments) and we believe it makes good sense to
study a scenario that reflects this type of competition. It will be shown that there
is an inverse relationship between a firm’s price and its advertising effort (and
hence its advertising cost). Thus, when advertising is very costly, a firm will reduce
its advertising effort (and its cost) and reduce its retail price. Conversely, when
advertising is less costly, a firm will increase its advertising effort and increase its
price.

The remainder of the paper is organized as follows. Section 2 presents a
Lanchester-type differential game model of duopolistic competition on advertising
efforts as well as prices. The novelty is that the rate at which a firm attracts
market share from its rival (also known as the attraction rate) depends not only
on advertising effort but also on prices. Using standard techniques of differential
game theory, Sect. 3 derives a Markovian Nash equilibrium of the game and
characterizes explicitly the equilibrium advertising effort rates, prices, and optimal
profits. Section 4 concludes.

2 A Differential Game of Pricing and Advertising

In this section we construct a two-player differential game in which firms compete
on price and advertising. Market shares evolve according to two ordinary differential
equations that determine the current market share of a firm as a function of the
advertising and pricing decisions taken by both firms.

1This observation was also made in the survey by Huang et al. (2012).
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Time t is continuous and the planning period (being the same for both firms)
starts at t = 0 and ends at t = T . The horizon date T is fixed and finite. Firm i ∈
{1, 2} controls its rate of advertising efforts ai(t) and retail price pi(t). We suppose
that advertising efforts and prices have short-term effects on market shares only,
a hypothesis that is used in dynamic game literature dealing with sales response,
Lanchester, and new product diffusion models. Clearly, the assumption is plausible
in some, but certainly not all markets.

Remark 2 A stream of literature builds on the hypothesis that advertising efforts
have carry-over effects, that is, the effect of current advertising persists in (at least
part of) the future. One way to model this is to assume that as time progresses,
advertising efforts accumulate into a stock of “advertising goodwill.” An example
of this type of modelling is the Nerlove-Arrow model mentioned above.

Let Xi(t), i ∈ {1, 2}, represent the market share of firm i such that Xi(t) ∈ [0, 1]
and X1(t)+X2(t) = 1. Using a dot to represent time-derivatives, the latter implies
Ẋ1(t) = −Ẋ2(t). The evolution of market shares is described by an extension of
the Lanchester advertising model. In the basic Lanchester model, advertising is the
only marketing instrument of a firm and market shares typically evolve according to
the dynamics

Ẋ1(t) = ϕ1a1(t)X2(t)− ϕ2a2(t)X1(t)

Ẋ2(t) = ϕ2a2(t)X1(t)− ϕ1a1(t)X2(t)

in which ϕi is a positive parameter. The above equations state that the rate of
change of a firm’s market share is determined by two factors that work in opposite
directions. Consider, for example, the first equation: The first term on the right-hand
side is the gain in market share of firm 1, coming from market share attracted from
firm 2 and due to the advertising effort of firm 1. The second term is the loss of
market share of firm 1, caused by the advertising effort of firm 2. The term ϕiai(t)

will be referred to as an attraction rate, for the simple reason that it is the rate at
which a firm attracts market share from its rival.

Remark 3 The Lanchester dynamics can be expressed in terms of sales rates, say,
S1(t) and S2(t), instead of market shares. To do so, we need to assume that the
market is mature. This means that industry sales remain constant, i.e., S1(t) +
S2(t) = m where m > 0 is the fixed market potential. Let pi (t) be the price charged
by firm i. The revenue rate of firm i is then pi (t) Si(t). Clearly, mXi (t) = Si (t)

which means that the revenue rate can be expressed as pi (t)mXi (t). The value of
the constant m is of no significance to our analysis and we put it equal to one. Then
the revenue rate is pi (t)Xi(t).2

2In quite many games played with the Lanchester dynamics it is assumed that the revenue rate is
πiXi(t) where πi > 0 is the constant revenue per unit of market share. This formulation often
simplifies the analysis considerably.
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Researchers working with marketing applications of differential games have
experienced that games involving both advertising and pricing often cause analytical
difficulties. We analyzed quite many games using alternative specifications of the
attraction rates. Our original modelling assumption was that attraction rates are
functions of product prices and advertising efforts of the firms, in general

Ẋ1 (t) = f1(a1(t), a2(t), p1 (t) , p2 (t))
√
X2 (t)

−f2(a1(t), a2(t), p1 (t) , p2 (t))
√
X1 (t)

Ẋ2 (t) = f2(a1(t), a2(t), p1 (t) , p2 (t))
√
X1 (t)

−f1(a1(t), a2(t), p1 (t) , p2 (t))
√
X2 (t)

in which certain constraints have to be placed on functions fi. The assumption that
attraction rates depend on prices and advertising rates turned out to be too ambitious.
We examined a series of functional forms of fi to model the influence of prices and
advertising rates on market shares but all failed to provide usable results. It turned
out, however, that a quite straightforward modification of the Lanchester dynamics
is analytically tractable:

Ẋ1 (t) = a1(t)
p2 (t)

p1 (t)

√
X2 (t)− a2(t)

p1 (t)

p2 (t)

√
X1 (t) (1)

Ẋ2 (t) = a2(t)
p1 (t)

p2 (t)

√
X1 (t)− a1(t)

p2 (t)

p1 (t)

√
X2 (t).

As in the basic Lanchester model, advertising efforts enter linearly in the attraction
rates. On the right-hand sides, market shares appear nonlinearly.3 The implication is
that the marginal impact of current market share is diminishing. The novelty in the
dynamics are the relative price terms in the attraction rates. These terms state that
the ability of a firm to attract customers from its rival depends on its own pricing
decisions as well as the rival’s pricing decisions. Firm 1 tries to attack market share
of firm 2 through advertising and pricing; The latter can defend its market share
(customer base) by reducing her retail price.4 Note that while advertising of a firm
is purely offensive, i.e., intended to steal market share from the competitor, price is
both an offensive and a defensive marketing tool that can be used (1) to protect a
firm’s own customer base and (2) to attack the customer base of the rival.

Firms play a noncooperative game in which firms are supposed to use Markovian
strategies. A Markovian strategy makes a firm’s actions depend on the position of

3The idea of letting market shares enter the right-hand sides of the market share dynamics as√
Xi (t) most likely originated in Sorger (1989) and has gained some popularity in the literature.

4Erickson (1993) did not consider pricing but included defensive advertising in the attraction
rates. The purpose of defensive advertising is to defend a firm’s customer base against offensive
advertising done by the rival firm. In our model this is accomplished by pricing.
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the game, that is, the current time t as well as the current state (X1, X2). Note that
when a firm knows its own market share it will know the position of the game.
In what follows we characterize a Markovian Nash equilibrium and determine the
equilibrium advertising and pricing strategies as well as the resulting market shares
and profits.

Disregarding production costs—which are not important for our problem—the
objective functionals of the firms are

J1(p1, a1) =
∫ T

0

[
p1 (t)X1(t)− c1

2
a2

1(t)
]
dt + σ 1X1(T )

J2(p2, a2) =
∫ T

0

[
p2 (t)X2(t)− c2

2
a2

2(t)
]
dt + σ 2X2(T )

in which ci > 0 and σ i > 0, i ∈ {1, 2} are parameters.

Remark 4 The terms pi (t)Xi(t) should more correctly be p1 (t)mX1(t) where m

is the constant total market size. To simplify notation we have put m equal to one.
See also Remark 1 above.

Quadratic advertising costs quite have often been assumed in the literature and
have the implication that advertising efforts exhibit decreasing marginal returns to
advertising. The terms σ iXi(T ) are salvage values, used to truncate the horizon.
Parameters σ i represent the value to a firm of a unit of market share at time T .
Note that since salvage values are part of the objectives, the objective of a firm
is to maximize salvage value as well as its overall profits. For three reasons we
do not discount future profits. (1) The planning period normally is rather short in
advertising and pricing planning, (2) interest rates are low, and (3) we believe that
introducing discounting would not change, qualitatively speaking, our results.

The optimality conditions to be employed are based on Hamilton-Jacobi-Bellman
(HJB) equations. Denote the value functions by V1(X1, X2, t) and V2(X1, X2, t),

respectively. Omitting some technicalities, we need the existence of continuously
differentiable value functions that satisfy the HJB equations for all (X1, X2, t) such
that t ∈ [0, T ] , Xi ∈ [0, 1] and Vi(X1, X2, T ) = σ iXi(T ) for all (X1, X2) . These
conditions are sufficient for a Markovian Nash equilibrium.5

Omitting the arguments of the value functions, the HJB equations are

− ∂V1

∂t
= max

a1≥0,p1>0

{
p1X1 − c1

2
a2

1 +
∂V1

∂X1
Ẋ1 + ∂V1

∂X2
Ẋ2

}
(2)

−∂V2

∂t
= max

a2≥0,p2>0

{
p2X2 − c2

2
a2

2 +
∂V2

∂X2
Ẋ2 + ∂V2

∂X1
Ẋ1

}

5Rigorous statements of the optimality conditions can be found in, e.g., Dockner et al. (2000),
Haurie et al. (2012).
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in which Ẋi is given by (1). The chances of finding an explicit solution to these
partial differential equations are small and we shall use another approach to
determine the value functions. The idea is to guess what the value functions would
be and if the guess turns out to be right (i.e., the guessed value functions satisfy the
HJB equations) we are done.6 Our guess is that value functions are linear in market
shares:

V1 = γ 1(t)X1 + η1(t)X2, V2 = γ 2 (t)X2 + η2(t)X1

in which γ i(t) and ηi(t) are time-functions that will be determined later on.7 It
follows that

∂V1

∂X1
= γ 1(t),

∂V1

∂X2
= η1(t);

∂V2

∂X2
= γ 2(t),

∂V2

∂X1
= η2(t)

−∂V1

∂t
= −γ̇ 1(t)X1 − η̇1(t)X2; − ∂V2

∂t
= −γ̇ 2(t)X2 − η̇2(t)X1.

The coefficients γ i(t) and ηi(t) of the value functions have an interpretation as
shadow prices of market shares, that is, the marginal increase in value caused by a
marginal increase in market share. We expect γ i(t) > 0 and ηi(t) < 0.

Remark 5 In the sequel we omit the arguments of strategies, market shares, and
value function parameters whenever it is safe to do so.

To satisfy the terminal conditions Vi(X1, X2, T ) = σ iXi it must hold for all
pairs (X1, X2) that

V1(X1, X2, T ) = γ 1(T )X1 + η1(T )X2 = σ 1X1

V2(X1, X2, T ) = γ 2 (T )X2 + η2(T )X1 = σ 2X2

and hence we need to have

γ 1(T ) = σ 1 > 0, η1(T ) = 0 and γ 2(T ) = σ 2 > 0, η2(T ) = 0. (3)

The conditions ηi(T ) = 0 are intuitive. From the point of view of firm i, the ηi-
parameter is the shadow price of a unit of market share of the rival firm j . Clearly,
at the horizon date T the market share of firm j is irrelevant for the value of firm i.

6If the guess turned out to be wrong, we can make another guess.
7The above value functions also appear in Sorger (1989, p. 66).
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The terms in curly brackets on the right-hand sides of (2) can be written as

p1X1 − c1

2
a2

1 + γ 1

(
a1

p2

p1

√
X2 − a2

p1

p2

√
X1

)

+ η1

(
a2

p1

p2

√
X1 − a1

p2

p1

√
X2

)

and

p2X2 − c2

2
a2

2 + γ 2

(
a2

p1

p2

√
X1 − a1

p2

p1

√
X2

)

+ η2

(
a1

p2

p1

√
X2 − a2

p1

p2

√
X1

)

and performing the maximizations indicated in (2) yields the Markovian price and
advertising strategies

p̂1(X1, X2, t) =
(
γ 1 − η1

)3
X2

2

c2
(
γ 2 − η2

)
X2

1

+
(
γ 2 − η2

)2
X1

c1X2
(4)

p̂2(X1, X2, t) =
(
γ 2 − η2

)3
X2

1

c1
(
γ 1 − η1

)
X2

2

+
(
γ 1 − η1

)2
X2

c2X1

â1(X1, X2, t) =
(
γ 2 − η2

)
X1

c1
√
X2

; â2(X1, X2, t) =
(
γ 1 − η1

)
X2

c2
√
X1

.

We expect to find that γ i > ηi, that is, the value of a marginal increase in own
market share exceeds the value of a marginal increase of the rival’s market share.
This is intuitive. Clearly, price and advertising of a firm decrease if advertising
becomes more costly. The reason is that if advertising becomes more costly, it makes
sense to reduce advertising effort, and at the same time lower the price in order to
counterbalance the effects of the reduced advertising effort.

Inserting the price and advertising strategies from (4) on the right-hand sides of
(2) yields

p̂1X1 − c1

2
â2

1 +
∂V1

∂X1
Ẋ1 + ∂V1

∂X2
Ẋ2 = 3

(
γ 2 − η2

)2

2c1

X2
1

X2
> 0

p̂2X2 − c2

2
â2

1 +
∂V2

∂X2
Ẋ2 + ∂V2

∂X1
Ẋ1 = 3

(
γ 1 − η1

)2

2c2

X2
2

X1
> 0.

Using this result, and (2), shows that value function parameters γ i and ηi must be
chosen such that the following equations are satisfied:
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−γ̇ 1X1 − η̇1X2 = 3
(
γ 2 − η2

)2

2c1

X2
1

X2

−γ̇ 2X2 − η̇2X1 = 3
(
γ 1 − η1

)2

2c2

X2
2

X1
.

Writing these equations as

3
(
γ 2 − η2

)2

2c1
X2

1 + γ̇ 1X1X2 + η̇1X
2
2 = 0

3
(
γ 1 − η1

)2

2c2
X2

2 + γ̇ 2X2X1 + η̇2X
2
1 = 0

it follows that

(
3
(
γ 2 − η2

)2

2c1
− η̇2

)

X2
1 +

(
γ̇ 1 − γ̇ 2

)
X1X2 +

(

η̇1 −
3
(
γ 1 − η1

)2

2c2

)

X2
2 = 0.

To satisfy this equation for all X1, X2, the parameters γ i and ηi must be chosen
such that

η̇2 =
3
(
γ 2 − η2

)2

2c1
, γ̇ 1 = γ̇ 2, η̇1 =

3
(
γ 1 − η1

)2

2c2
. (5)

Remark 6 We shall consider solutions in which γ 1 and γ 2 are constant. Then γ̇ 1 =
0, γ̇ 2 = 0. On the other hand, if we assumed that γ 1 and γ 2 are time-dependent,
we would find that solving γ̇ 1(t) = γ̇ 2(t) yields γ 1(t) = γ 2(t)+C which satisfies
the transversality conditions γ 1(T ) = σ 1, γ 2(T ) = σ 2 if we set C = σ 1 − σ 2.

However, the equations in (5) cannot be solved as one equation is missing. This
problem does not arise if we look for a solution in which γ 1 and γ 2 are constant.
The interpretation of this situation is that the value of having an “extra unit of market
share” is the same, no matter at which time this happens.

Now we have four differential equations

η̇2 =
3
(
γ 2 − η2

)2

2c1
; η̇1 =

3
(
γ 1 − η1

)2

2c2
; γ̇ 1 = 0; γ̇ 2 = 0

that have solutions

1. η1 (t) = C21, η2 (t) = −2c1 − 3C15t + 2c1C15C19

3t − 2c1C19

γ 1 (t) = C21, γ 2 (t) = C15
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2. η1 (t) = −2c2 − 3C27t + 2c2C27C30

3t − 2c2C30
, η2 (t) = C15

γ 1 (t) = C27, γ 2 (t) = C15

3. η1 (t) = C27, η2 (t) = C15

γ 1 (t) = C27, γ 2 (t) = C15

4. η1 (t) = −2c2 − 3C21t + 2c2C21C25

3t − 2c2C25
, η2 (t) = −2c1 − 3C15t + 2c1C15C19

3t − 2c1C19

γ 1 (t) = C21, γ 2 (t) = C15

in which Cij are arbitrary constants.
Recall the boundary conditions on shadow prices from (3):

γ 1(T ) = σ 1 > 0, η1(T ) = 0, γ 2(T ) = σ 2 > 0, η2(T ) = 0.

These conditions must be satisfied. Solution 1 does not satisfy the requirement since
we must have η1 (T ) = C21 = 0 and then γ 1 (T ) = C21 = σ 1 > 0 is not satisfied.
Similar arguments apply to solutions 2 and 3. We are left with solution 4 and choose
C21 and C15 such that C21 = γ 1(T ) = σ 1 and C15 = γ 2(T ) = σ 2. Furthermore,
we must determine C19 and C25 to have ηi(T ) = 0, i = 1, 2. The terminal values
ηi(T ) are

η1 (T ) = −2c2 − 3σ 1T + 2c2σ 1C25

3T − 2c2C25
; η2 (T ) = −2c1 − 3σ 2T + 2c1σ 2C19

3T − 2c1C19
.

Solving these equations yields

C25 = −2c2 − 3T σ 1

2σ 1c2
; C19 = −2c1 − 3T σ 2

2σ 2c1

and hence

η1 (t) = − 3σ 2
1 (T − t)

2c2 + 3σ 1 (t − T )
; η2 (t) = − 3σ 2

2 (T − t)

2c1 + 3σ 2 (t − T )
.

These expressions show that η̇i (t) > 0 and we conclude that ηi(t) < 0 for all t < T

(because ηi(T ) = 0). This result is expected. For firm i it has a negative value if
firm j gets an extra unit of the market share, for the simple reason that if the rival’s
market share is increased by one unit, market share of firm i must decrease by one
unit.

What remains is to determine the time paths of equilibrium market shares. The
market share dynamics are given by (1) and equilibrium advertising efforts and
prices are given by (4). Using these formulas, the equilibrium attraction rate of firm
1 is
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â1
p̂2

p̂1
= X2

1

X
3
2
2 c1

(
γ 1 − η1

)
(
γ 2 − η2

)2

= 2

σ 1
σ 2

2
X2

1

X
3
2
2

c1

c2

2c2 − 3T σ 1 + 3tσ 1

(2c1 − 3T σ 2 + 3tσ 2)
2
.

Remark 7 Since X2 = 1−X1 it suffices to determine the equilibrium market share
of firm 1. Inserting the equilibrium price and advertising strategies and the shadow
prices into (1) yields

Ẋ1 = g1(t)
X2

1

1−X1
− g2(t)

(1−X1)
2

X1
(6)

where

g1(t) =
σ 2 + 3σ 2

2(T−t)

2c1+3σ 2(t−T )

c1

σ 2c1 (2c2 + 3σ 1 (t − T ))

σ 1c2 (2c1 + 3σ 2 (t − T ))

g2(t) =
σ 1 + 3σ 2

1(T−t)

2c2+3σ 1(t−T )

c2

σ 1c2 (2c1 + 3σ 2 (t − T ))

σ 2c1 (2c2 + 3σ 1 (t − T ))
.

The differential equation in (6) is highly nonlinear and does not have a closed-form
solution.

Total profits in equilibrium are given by

V1(x10, x20, 0) = σ 1x10 − 3σ 2
1T

2c2 − 3σ 1T
x20

V2(x10, x20, 0) = σ 2x20 − 3σ 2
2T

2c1 − 3σ 2T
x10

and to see which firm will earn the largest profits we have the following evaluation:

V1(x10, x20, 0)

(
>

<

)
V2(x10, x20, 0)

⇔ σ 1x10 − 3σ 2
1T

2c2 − 3σ 1T
x20

(
>

<

)
σ 2x20 − 3σ 2

2T

2c1 − 3σ 2T
x10.

Confirming intuition, the evaluation shows that a firm having a “large” initial market
share xi0 and a “high” unit salvage value σ i stands to earn the highest profits.
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Comparative statics with respect to selected parameters show that

∂

∂x10

(

σ 1x10 − 3σ 2
1T

2c2 − 3σ 1T
x20

)

= σ 1 > 0

∂

∂c2

(

σ 1x10 − 3σ 2
1T

2c2 − 3σ 1T
x20

)

= 6T σ 2
1x20

(2c2 − 3T σ 1)
2 > 0

∂

∂T

(

σ 1x10 − 3σ 2
1T

2c2 − 3σ 1T
x20

)

= − 6σ 2
1c2x20

(2c2 − 3T σ 1)
2 < 0

which means that equilibrium profits of, say, firm 1 would increase if its initial
market share or the rival’s advertising cost were increased, and decreases if the
planning period were increased. The two first observations are intuitive: A larger
initial market share and a higher advertising cost of the rival clearly are favorable
for a firm.

Finally, the equilibrium value functions are

V1(X1, X2, t) = σ 1X1 − 3σ 2
1 (T − t)

2c2 + 3σ 1 (t − T )
X2

V2(X1, X2, t) = σ 2X2 − 3σ 2
2 (T − t)

2c1 + 3σ 2 (t − T )
X1

which shows, as expected, that a firm’s value increases if own market share increases
and decreases if the rival’s market share increases.

3 Concluding Remarks

The current research has analyzed a dynamic noncooperative game of advertising
and pricing, played by the firms in a duopolistic market. We have suggested a differ-
ential game model that extends the Lanchester model of advertising competition by
taking into account price competition. Advertising effort is purely offensive, in the
sense that its single aim is to steal customers from the competitor while pricing is
both offensive and defensive, aimed at attracting new customers from the rival firm
and mitigating the effects of pricing and advertising efforts of the rival.

The main novelty of our work lies in the market share dynamics that depend on
both advertising efforts and price levels. With this starting point we constructed
a differential game model and characterized explicitly Markovian equilibrium
advertising efforts and prices.
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In particular, and consistent with previous works that focus exclusively on
offensive advertising, we found that a firm’s offensive advertising efforts increase
with its own market share (see, e.g., Jarrar et al. 2004). This finding differs from the
one of Erickson (1993) who considered both offensive and defensive advertising. In
this scenario, a firm’s offensive advertising decreases with its market share.

The impact of a firm’s market share on its optimal pricing strategy is not obvious,
most likely due to the dual role (offensive, defensive) of pricing in our model. We
found an inverse relationship between a firm’s price and offensive advertising efforts
(and costs). The implication is that when advertising is very (less) costly, a firm will
advertise less (more) and charge a smaller (larger) price.

Our results demonstrate that it is possible to include prices in the Lanchester
market share dynamics and still obtain closed-form results for the equilibrium
marketing instruments (prices and advertising efforts), market share dynamics,
and value functions. We leave it to future research to construct and analyze more
complex specifications of the market share dynamics, for instance by including both
offensive and defensive advertising.
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On the Modelling of Price Effects in the
Diffusion of Optional Contingent
Products

Guiomar Martín-Herrán and Sihem Taboubi

Abstract In this chapter, we study the pricing strategies of firms in a multi-product
diffusion model where we use a new formalization of the price effects. More
particularly, we introduce the impact of prices on one of the factors that affect the
diffusion of new products: the innovation coefficient. By doing so, we relax one of
the hypotheses in the existing literature stating that this rate is constant. In order to
assess the impact of this functional form on the pricing policies of firms selling
optional contingent products, we use our model to study two scenarios already
investigated in the multiplicative form model suggested by Mahajan and Muller
(M&M).

We follow a “logical experimentation” perspective by computing and comparing
the results of three models: (1) The M&M model, (2) a modified version of
M&M where the planning horizon is infinite, and (3) our model, where the new
formalization of the innovation effect is introduced. This perspective allows us to
attribute the differences in results to either the length of the planning horizon or
to our model’s formalization. Besides its contribution to the literature on pricing
and diffusion, this paper highlights the sensitivity of results to the hypothesis used
in product diffusion modelling and could explain the mixed results obtained in the
empirical validations of diffusion models.
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1 Introduction

This chapter contributes to the marketing modelling literature on products’ diffusion
and pricing. More particularly, we extend the existing literature that incorporated
the price effects in the Bass diffusion model (Bass 1969) by providing a new
functional form that captures the negative impact of prices on the innovation rate, a
key parameter in the diffusion process. By using this formalization, we investigate
the pricing strategies of firms in the case where contingent products are sold in the
market. Contingent products are products positively inter-related in their demands.
That is, an increase in the demand of one of them contributes the demand increase of
the other one. The marketing literature distinguishes between two types of product
contingency: The optional contingent products and the captive contingent ones
(Peterson and Mahajan 1978; Kotler 1988, pp. 516–517). The latter case captures
situations where none of the products can be used without the other, while the former
case describes situations where one of the products (i.e., the contingent) is useless
without the other, often denoted by “the base” (i.e., or primary) product.

In all cases, the interdependencies in products’ demands highlight the importance
of studying the influence of each product’s price on its diffusion and the diffusion
of the other product. Indeed, if a firm decides to fix a high (low) price at the
launch of a new primary product in order to skim (penetrate) the market, we expect
this price to have an impact on the adoption of the primary and the contingent
products. These effects depend necessarily on the sensitivity of consumers to prices,
which could differ depending on whether they belong to the innovators or the
imitators’ segments, as classified in the Bass model. Another important question
to be addressed when examining the pricing strategies for interdependent products
is related to the firms controlling the prices of these products: How pricing strategies
compare whenever both products are sold via a single firm versus separate firms?.
It has been often observed in practice and reported in the marketing literature
(Kotler 1988) that a single firm controlling the prices of two products with optional-
contingent interdependencies uses one of the products as a springboard to increase
the adoption of the second one (Kort et al. 2018). It is not clear in this case how
independent firms controlling each one of these products separately will fix their
pricing strategies for the product under their control.

The pricing of contingent products by a single versus two independent firms
is a topic that has been previously investigated in the study of Mahajan and
Muller (1991) (M&M). The authors used an extension of the Bass model where
prices affect the base and the contingent product’s demands while the diffusion
parameters (i.e., innovation and imitation) are considered constant. Hence, their
model does not capture the fact that prices could influence endogenously one or both
of these diffusion parameters, as suggested in the literature on products diffusion and
captured by the functional form that we propose in this chapter.

To the best of our knowledge, our study is one of the first to examine the pricing
strategies of firms in the complex case where the innovation parameter is price-
dependent, and imitation is taken into account. Indeed, the existing literature that
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introduced endogenously the price effect on the diffusion parameters considered
that diffusion is driven only by innovation. The imitation effect, which implies the
modelling of the interaction between the state variable representing the cumulative
number of adopters of the product, the number of non-adopters1 and the control
variable (i.e., price) was systematically omitted. With this simplifying assumption,
the diffusion process is represented by a dynamic function which is multiplicatively
separable in the state and the price, a feature that makes the model analytically
tractable. The new formulation that we suggest in this study provides solutions for
the more complex case where both innovation and imitation drive diffusion, and
innovation is a price-dependent parameter.

Besides extending the diffusion literature to capture additional features in the
diffusion process, our objectives are to assess the impact of using this new functional
form and modifying the length of the planning horizon on the previous results
obtained in the literature regarding the pricing policies of firms selling contingent
products. To achieve these objectives, we compute prices, cumulative sales and
profits for the base and the contingent products under the two scenarios investigated
in M&M: A scenario where both products are sold by the same monopolistic firm,
and a scenario where two distinct firms sell each one of the products. Our results are
then compared to those obtained in a modified version of the M&M model2 where
we consider an infinite planning horizon. This modified version of the M&M model
is used as a benchmark to assess the impact on results of two modelling hypotheses
in the diffusion literature: The formalization of the parameters’ effect and the length
of the planning horizon.

The chapter is organized as follows. Section 2 revisits the Bass model, while
Sect. 3 presents the M&M model and its original results under a finite-time horizon.
Section 4 presents our model, and Sect. 5 extends the results obtained by M&M to an
infinite-time horizon and compares the results obtained with this modified version
to those obtained under our formulation of the price effects. Section 6 concludes.

2 The Bass Model

The seminal paper of Bass (1969) is the first study that introduced an analytical
model of diffusion in the marketing literature. According to this model, the diffusion
of a new product in the market can be modelled as a dynamic process describing the
evolution in the number of adopters. According to the Bass model, buyers can be
either innovators or imitators. The innovators are the portion of the market potential

1The number of non-adopters depends also on the state variable. It captures the remaining potential
market at a particular time period. It is computed as the difference, in each time period, between
the total market potential and the cumulative number of adopters at that time period.
2In the M&M model, the authors study additional scenarios involving the two cases of contingency
described above (i.e., optional and captive). In order to focus on the main objective of our study,
we restrict our analysis to investigate only the case of optional contingent products.
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that adopt the new product after being exposed to external factors. The remaining
portion of the market is composed of imitators who adopt the new product because
they are sensitive to the word-of-mouth conveyed by those who already adopted
the innovation. Denoting by x (t) the cumulative number of adopters by time t ∈
[t0, T ], the diffusion process in Bass (1969) is captured by the following differential
equation

ẋ (t) =
(
a + b

M
x (t)

)
(M − x (t)) ,

where ẋ (t) denotes the adoption rate of the new product at time t , and M is a
positive parameter representing the market potential of the new product.3 In the
normalized Bass model, this equation can be rewritten as

ẋ (t)

1− x(t)
= a + bx (t)

which indicates that (a + bx (t)) is a hazard function representing the likelihood
of adoption of a new product at time t given that it has not yet been adopted. This
function, called also the conversion function, depends on the positive parameters
a and b, which correspond to the innovation and the imitation rates, as well as
the the cumulative number of adopters. In the early version of the Bass model, the
parameters a and b, and the market potential M , are considered constant, and the
model is solved by considering a finite time-horizon.

By solving the differential equation given in the Bass model, it is possible not
only to estimate the number of adopters at each time t , but also to compute the
timing and the magnitude of the peak sales (or adoptions).

Despite its performance to forecast the number of adopters for various durable
products, the Bass model has been criticized by many researchers in marketing
management because of some of its underlying hypotheses. Indeed, various authors
raised some concerns related to the use of constant parameters capturing the
innovation and the imitation rates, on top of considering that the market potential
of the new product does not change. Furthermore, the original version of the Bass
model did not account for the impacts of the marketing efforts deployed by the firm
launching the new product on its diffusion, nor the impacts of their competitors’
strategies or the other products available in the market.4

Hence, over the years, this model provided a basic framework for many exten-
sions in the product diffusion modelling literature. The main objective behind these

3The state dynamics of the cumulative number of adopters when the innovation rate parameter
a equals zero corresponds to the well-known logistic equation usually described by Ṗ = rP (1 −
P/k), where P is the population size, r a constant that defines the growth rate, and k is the carrying
capacity.
4For a detailed analysis of these limits, see Mahajan et al. (1990).
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developments was to enhance the model forecasting performance and to transform
it from a time-series model into an optimization tool for decision-making.

Introducing the effect of different decision variables, such as prices and advertis-
ing, is one of the developments investigated in the marketing science literature on
product diffusion. Considering the interactions between multiple products is another
important one. The multiple-products’ diffusion models encompass cases where (1)
products are sold by competing firms in the market; (2) one of the products is a
new generation of another one; and (3) products are complementary or contingent.
The extension of diffusion models to handle these various cases is justified by the
competitive environment of firms and the fact that most of them often face situations
where they have to manage various products interrelated in their demands (i.e., a
product mix).

As mentioned in the introduction, our paper is an extension of the Bass (1969)
model that takes into account the two development axes described above, in addition
of exploring the impact of extending the length of the planning horizon. We
investigate the product diffusion process by introducing prices as decision variables
in an innovative manner, and by considering the interactions between two products.
More particularly, we investigate the case of optional contingent products. This
paper goes in the same vein than the M&M study who examined the same issue
with a different model’s formalization of the price effects on diffusion. In the M&M
model, prices affect the diffusion dynamics in a multiplicative separable manner,
as suggested initially by Robinson and Lakhani (1975) and generalized through the
GBM5 by Bass et al. (1994). This formulation captures the fact that prices have an
effect on the probability of purchase of non-adopters, rather than on the model’s
key parameters, that is: The market potential and the innovation and imitation
rates. Hence, prices can shift the probability of purchase upward or downward,
and consequently, speed or slow down the adoption, but do not influence in an
endogenous manner the number of innovators or imitators, nor the total market
potential.

Because the multiplicative model formalization introduces the price effect in the
diffusion process without affecting the model’s parameters, the GBM model remains
analytically tractable, even when multiple firms selling competing or contingent
products are considered in the market. This mathematical convenience allowed this
functional form to be widely used in the diffusion literature (Jørgensen and Zaccour
2004, p. 73). The general result obtained with this formalization states that, when
the imitation effect is high, a firm should use a low price for the launch of its new

5I.e., GMB states for the General Bass Model. The GBM is an extension of the Bass model that
incorporates, in a multiplicative way, the effect of the marketing variables. According to this model,
diffusion is described by the following differential equation:

ẋ (t) = (a + bx (t)) (M − x (t)) g(V ),

with g(V ) representing a function capturing the impact of firms’ decision variables (e.g. advertis-
ing, price, etc.)
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product in order to attract innovators. The price can be increased later when the
product is established and then decreased again.

When the price effects in the diffusion model are introduced by varying the
market potential, a skimming strategy where prices are fixed at a high level at the
introductory phase is optimal when the imitation effect is low, while a penetration
strategy is recommended when the imitation effect is high (Horsky 1990).

As mentioned in the introductory section, our formalization of the price impact
on diffusion is introduced in our model through the innovation rate. We model this
parameter as a price-dependent function which drives an increase in the innovation
rate whenever a firm decides to lower its price (i.e., a penetration strategy) or a
decrease in the opposite case (i.e., a skimming strategy).

The choice of this formalization can be justified from a managerial point of view:
Firms often target innovators when they choose their marketing strategies since
innovators are the early adopters of the new product, and they have the power of
influencing the buying decisions of imitators (Jørgensen and Zaccour 2004, p. 49).
The study of Mesak (1996) provides an empirical validation of this hypothesis with
real data. Indeed, the author tested various diffusion models incorporating price,
advertising and distribution in order to identify which one fits better the data on
the diffusion of cable TV. One of its main findings is that, for this innovation, the
model that performs better is the one where price affects only the innovation rate,
advertising affects the diffusion rate,6 and distribution affects the market potential.

Most of the studies that considered the case where the diffusion model’s parame-
ters are endogenous focused on firms’ advertising strategies while only few of them
used a similar formulation for pricing decisions. The advertising effect, considered
as positive, has been introduced either through the innovation rate only (Horsky
and Simon 1983) or through both the innovation and the imitation rates (Dockner
and Jørgensen 1988; Teng and Thompson 1983). In Thompson and Teng (1984), the
authors introduced both the price and the advertising effects in the diffusion process.
They considered that advertising affects both the innovation and the imitation rates,
while prices have a multiplicative effect that shifts all the diffusion function as in
the BGM. Additional extensions of the Bass model incorporated also the impact
of economic conditions and marketing decision variables (e.g., distribution) on the
market potential (Mahajan et al. 1979; Jones and Ritz 1991; Kalish 1985).7

3 The Mahajan and Muller (1991) Model

The first adaptation of the Bass model to the multi-product context, and more
particularly to the case of contingent products’ demands is presented in Peterson
and Mahajan (1978). Mahajan and Muller (1991) provided an additional extension

6The effect here is found to be multiplicative, as in the GBM, meaning that advertising affects
equally the innovation and the imitation rates.
7See Peres et al. (2010) for a more recent review of diffusion models.
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of this model by introducing the price effects according to a multiplicative-form
model, as in the GBM.

The authors considered a market where two products i = {1, 2} are sold
at prices pi (t): Product 1 is a base (or primary) product that could be bought
independently by consumers, while product 2 is a contingent product purchased
only by consumers who already bought the base product. By letting x1 (t) and x2 (t)

denote the cumulative sales of the base and the contingent products respectively,
and M represent the market potential of these products. The instantaneous sales for
both products are described by the following dynamic equations:

ẋ1 (t) = (a1 + b1x1 (t)) (M − x1 (t)) e
−ε1p1(t), (1)

ẋ2 (t) = (a2 + b2x2 (t)) (x1 (t)− x2 (t)) e
−ε2p2(t), (2)

where ai and bi represent the product i’s innovation and imitation parameters,
respectively, and εi denote the price sensitivity parameter of product i.

The first differential equation is the standard diffusion equation used in the GBM,
where g(V ) is a price-dependent function. It describes the adoption process of the
base product (i.e., product 1) through the effects of innovation (a1), imitation (b1),
and retail price. The main feature of Eq. (1) is that it is independent from Eq. (2),
meaning that the diffusion of the base product is not affected by the diffusion of the
contingent product. This characteristic captures the one-way demand interdepen-
dencies between both products in the case of an optional contingency relationship.

The second equation describes a similar process for the contingent product (i.e.,
product 2), but features a dependence of the contingent-product’s diffusion on the
diffusion of the base product. We can clearly see that the market potential for
the contingent product is determined by the current cumulative sales volume of
the base product. As in Eq. (1), Eq. (2) indicates that, at each time t , the number
of potential buyers of the contingent product corresponds to the total number of
buyers of the base product who did not previously buy the contingent product.8

Here again, the adoption of the contingent product is subject to the impact of the
constant parameters of innovation and imitation, and the product’s retail price.

By considering a finite time horizon and a production cost (ci), the authors
computed and compared price trajectories, sales, and profits for both products under
the scenarios where they are controlled by the same9 or by different firms in order
to test the following propositions10:

8Hence, the maximum number of consumers who could buy the contingent product should not
exceed the maximum number of consumers who already bought the base product. (i.e. the market
potential M).
9We use the superscript m to denote the case of an integrated monopolist (i.e., a single firm selling
both products).
10Remark: In the case of captive contingency, the price effect is introduced by considering that
each one of the product diffusion processes is affected by not only its own price, but also by the
price of the other product.
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• Proposition A: When both products are sold by the same firm (i.e., an integrated
monopolist), the firm sets a lower price on the base product and a higher price
on the contingent one, with respect to the case where both products are sold by
independent firms. This translates into the following inequalities:

pm
1 (t) < p1 (t) and pm

2 (t) > p2 (t) .

• Proposition B: When both products are sold by the same firm, most of the profit
is earned from the contingent product rather than the base one, and the markup for
this product is set at a higher level. Hence, by using the notation zi to designate
the total profit generated by product i in the integrated monopolist scenario, this
proposition translates into the following inequalities:

z1/(z1 + z2) < z2/(z1 + z2) and (p1 − c1) < (p2 − c2).

To test these propositions, the authors solved both scenarios by using in the
first case an optimal control problem, where the unique decision maker (i.e., the
monopolistic firm) chooses the two control variables (p1, p2). His objective is to
maximize his total discounted profit while taking into account the dynamics of the
two state variables x1, x2. The optimality conditions are a system of four differential
equations with two initial conditions for the state variables x1 and x2 and two final
conditions for the corresponding costate variables.

In the case of the independent producers, on the one hand, the primary producer
solves a control problem, where he decides its control variable p1 with the objective
of maximizing his discounted cumulative profits while taking into account the state
variable x1. The optimality conditions are a system of two differential equations with
one initial condition for variable x1 and one final condition for the corresponding
costate variable. On the other hand, the contingent-product producer solves a
control problem where he decides his control variable p2 in order to maximize
his objective functional taking into account the state variables x1 and x2. The
optimality conditions in this case are a system of three differential equations with
two initial conditions for variables x1 and x2 and one final condition for one
costate variable. Putting together the optimality conditions for both firms (primary
and contingent products’ producers), these conditions constitute a system of four
differential equations with two initial conditions for variables x1 and x2 and two
final conditions for the corresponding costate variables. Both problems are solved
by considering a finite-horizon and the resolution is made numerically.

The numerical simulations are made by considering the following parameters’
values:

a1 = a2 = 0.015, b1 = b2 = 0.4/60,000, c1 = c2 = 60, r = 0.01, (3)

ε1 = ε2 = 0.01, M = 60,000, x10 = 6000, x20 = 0. (4)
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The authors analyzed the steady state of the different scenarios as well as the
optimal paths converging to the steady state. In the two scenarios, both x1 and x2
take the value M at the steady state. That is, along all the optimal paths both x1(t)

and x2(t) converge towards M (See note 8).
The results obtained by M&M provided only a partial validation of proposition

A and failed to support proposition B. Indeed, the authors were not able to prove,
for any instant of time t , that the integrated monopolist producer will fix a lower
price for the primary product and a higher price for the contingent one, while the
independent producers will do the opposite (i.e., proposition A). The analytical
results proved that pm

1 < p1 for the same level of penetration ( i.e., x1 = xm1 )
only when the time horizon T is large. Furthermore, they found an opposite result
with respect to the pricing of the contingent product. Indeed, their results indicate
that the integrated monopolist fixes a lower price for the contingent product, when
compared to the price that an independent firm would fix for that product. This result
is obtained for the same level of penetration, when T is large, and the discount rate
(r) is small.

Nevertheless, the authors proved that the diffusion of both the base and the
contingent products are faster when both products are controlled by the same firm.

Proposition B was tested by running numerous simulations. The results obtained
did not support anyone of the hypotheses in this proposition. Indeed, the authors
found that, in many solutions (for certain time periods), the markup for the primary
product was higher than for the contingent product, but it was also lower in other
cases.11 Furthermore, the base product is found to contribute more to total profits
with respect to the contingent one.

4 Our Model

In our model, we examine the same issue on the pricing of contingent products
and investigate the same scenarios as in the M&M’s model. The main difference is
that in M&M, the innovation rate is a constant parameter, while in our model, we
specify a functional form that allows the innovation rate to vary through the impact
of price decisions. Indeed, the functional form that we use takes explicitly into
account the negative effect of product’s price on early-adopters of the new product
(i.e., innovators). The innovation rate is then given by the following equation

ai (pi (t)) = αi − βipi (t) , (5)

11This result indicates that pm
1 can be greater or lower than pm

2 for some time periods because, as
mentioned above, M&M consider the symmetric scenario with respect to the parameters, including
the symmetry in production costs (i.e., c1 = c2).
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where αiand βi are positive parameters. Parameter αi can be interpreted as a price-
independent innovation rate (as in the original Bass model) that captures the fact that
a portion of innovators will adopt the new product regardless of its price. Parameter
βi reflects price-sensitivity of innovators. Notice that when β1 = 0, the original
Bass model is obtained, which ignores this price effect on innovators.

The dynamics of the cumulative adoption of the primary product, x1, and the
contingent product, x2, can be written as follows12:

ẋ1(t) = (α1 − β1p1(t)+ b1x1(t))(M − x1(t)), x1(0) = x10, (6)

ẋ2(t) = (α2 − β2p2(t)+ b2x2(t))(x1(t)− x2(t)), x2(0) = x20. (7)

Because the model is not analytically tractable when a finite-time horizon is
considered, we studied the problem with infinite horizon. Therefore, the objective
in the case of the integrated monopolist is to choose the prices, p1 and p2, in order
to maximize the following functional:

∫ ∞

0
e−rt [(p1(t)− c1)ẋ1(t)+ (p2(t)− c2)ẋ2(t)] dt

taking into account (6) and (7).
In the second scenario where two independent producers control the pricing

decisions of the primary and the contingent product, we have two objective
functionals: the objective of the primary-product producer and the objective of the
contingent-product producer.

The objective for the primary-product’s producer is to choose the price p1 in
order to maximize the following functional:

∫ ∞

0
e−rt (p1(t)− c1)ẋ1(t) dt

taking into account (6).
The contingent-product’s producer chooses the price p2 in order to maximize the

following objective functional

∫ ∞

0
e−rt (p2(t)− c2)ẋ2(t) dt

taking into account (6) and (7).
Hence, the problems that we examine are solved according to the same procedure

as the one used in the M&M model and described in the previous section. In

12Initially M&M assume x20 = 0, but in their numerical simulations it seems that they consider
other initial values for variable x2 positive but lower than the initial value for the variable x1.
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Appendix, we provide a detailed description of the different steps used in the
resolution of both scenarios.

As mentioned in the introduction, our study allows us to attain two objectives:
The primary objective is to assess the impact of using a new functional form
capturing the price effects on diffusion. A second objective is to investigate the
sensitivity of results to the length of the planning horizon. In order to remove any
confusion between the original M&M model solved under a finite horizon and
its counterpart when the planning horizon is infinite, we designate by “Modified
M&M model” all the results obtained when the M&M model is solved under an
infinite planning horizon. This modified version of the M&M model allowed us to
assess the impact of the length of the planning horizon. Indeed, by comparing the
results obtained in the original study of M&M where the time horizon is finite with
those obtained with the modified M&M model, and by using the same parameters’
values, we fulfill the secondary objective. The latter is an important step to fulfill
the primary objective. Indeed, by comparing the results of our model, where the
planning horizon is infinite, with the modified version of the M&M model, and by
using the same parameters’ values, we removed any explanation of the difference in
results between the M&M results and the results obtained with our model, which is
not related to the model’s functional form.

5 Results

In this section, we present the results obtained with the three models described
above, that is, the original M&M model, its modified version, and our suggested
model, where a price-dependent innovation parameter is introduced in the diffusion
process. We compare and contrast these results in order to assess the impact of using
a different planning horizon and a new model’s formalizations of the price-effects. In
all cases, we start by reporting in a bullet-point form the “technical” results about the
number of equilibria and the analytical tractability of the models; then present the
main managerial findings related to the comparisons of pricing strategies, products’
diffusion, and firms’ profits under the two investigated. All the results are compared
to the results obtained under the original version of the M&M model.

5.1 Results Under the Modified M&M Model

When the M&M model is solved under an infinite-time horizon, we find that, for
both scenarios investigated:

• The dynamical system of the optimality condition only presents a unique steady
state, and there is a unique optimal path converging to this steady state.
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• There are two possible cases depending on whether the Jacobian matrix of the
dynamical system evaluated at the steady state presents two different negative
eigenvalues or presents only one double negative eigenvalue. However, when we
follow the symmetry hypothesis in M&M to analyze the particular case where all
parameters are identical for both products, the Jacobian matrix of the dynamical
system evaluated at the steady state in this particular case presents only one
double negative eigenvalue.

• The steady-state values of the two scenarios can be analytically compared. The
result of the comparison at the steady state (denoted by the subscript ss) is as
follows:

xm1ss = x1ss; xm2ss = x2ss; pm
1ss < p1ss; pm

2ss = p2ss .

As in the original M&M model, we test propositions A and B by running
numerical simulations where we use the parameters’ values given in (3) and (4).
The state and price trajectories under both scenarios of the modified M&M model
can be illustrated in Figs. 1 and 2.13

Figure 1 indicates that, under both scenarios, the optimal cumulative adoption
paths for both products (i.e., x1(t) and x2(t)) increase monotonously towards the
market potential level M with x1(t) always higher than x2(t) for all t . As already
obtained in M&M in a finite horizon, our results indicate that, under an infinite time
horizon, the diffusion of the base and the contingent products are faster when they
are sold by the same firm.

Figure 2 shows that under the two scenarios, both the optimal price paths p1(t)

and p2(t) increase monotonously towards their steady state values. This result
differs from its counterpart in the original M&M model since the authors found
that the price of the primary product could drop when a finite planning horizon is
considered.

Furthermore, we can see from this figure that in the integrated monopolist case,
pm

2 (t) > pm
1 (t) for all t , while in the independent producers scenario p1(t) > p2(t)

for all t . Figure 2 shows also that p1(t) > pm
1 (t) for all t , and p2(t) < pm

2 (t) for all
t , except for a very short initial period of time. This indicates that the result on the
price comparisons for the contingent product provided in Proposition A is always
supported when an infinite time horizon is considered.

13Similar figures have been computed for the following cases:

• x20 = 3000, 6000;
• M = 40,000, 70,000, 80,000;
• ε1 = ε2 = 0.02.

showed qualitatively similar results.
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Fig. 1 Modified Mahajam & Muller’s model. Comparison cumulative adoption base and contin-
gent products under integrated monopolistic and independent producers

With the numerical results obtained under the modified M&M model, we
computed the markups and the relative profits of the base and the contingent
products under the two scenarios investigated. Our results were qualitatively similar
to those obtained under a finite-time horizon and did not support proposition B.

Hence, when compared to the original M&M model, the results obtained under
the modified M&M model allow us to conclude that moving from a finite to an
infinite planning horizon has an impact on firms strategies. Indeed, although the
results on adoption levels and profit markups seem to coincide under both settings,
the optimal pricing strategies of firms differ.

5.2 Results with Our Model

From a technical point of view (see Appendix for more details), our model indicates
that:

• For both scenarios, and by using the same configuration of the parameters,
the dynamical system of the optimality condition presents four different steady
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Fig. 2 Modified Mahajam & Muller’s model. Comparison retail prices of the base and contingent
products under integrated monopolistic and independent producers

states. Depending on the steady state, it can be either (1) a unique optimal
path converging to the steady state; (2) a one-parametric family of solutions
converging to the steady state; or (3) a bi-parametric family of solutions
converging to the steady state.

From the four possible steady states, we disregard three of them because one of
the following reasons:

• For one of the steady states, the family of solutions converging to this steady state
imposes that x1(t) = M,x2(t) = M for all t (which seems to be an uninteresting
case).

• A second steady state is removed from the analysis because, along the optimal
paths converging to this steady state, it imposes that x1(t) = M for all t .

• A third steady state is disregarded because a relationship among the initial values
of the state variables, x10 and x20 is needed to ensure the convergence of the
optimal paths to the steady state. This relationship can be viewed as a “knife-
edge condition.”



On the Modelling of Price Effects in the Diffusion of Optional Contingent Products 29

Therefore, we focus only on the fourth steady state for which there exists a unique
optimal path converging to this steady state.

The managerial results indicate that, at this steady-state, the price of the
contingent product under the integrated monopolist is identical to its price under
the independent firms’ scenario, while prices at the steady-state differ among the
scenarios when we turn to the primary product:

xm1ss = x1ss; xm2ss = x2ss;pm
1ss < p1ss;pm

2ss = p2ss .

That is, we have that in the long run (i.e., at the steady state) the comparison of
the two scenarios (integrated monopolist and independent producers) is qualitatively
similar with respect to the modified M&M model.14

As mentioned above, our numerical simulations are based on the same parame-
ters’ values as in the M&M’s paper. Furthermore, we have fixed the following values
of the parameters which are specific of our model’s functional form:

α1 = α2 = 30, β1 = β2 = 0.1. (8)

For these values of the parameters and in all the numerical simulations we have
carried out we have checked that the innovation rate described in Eq. (5) is between
zero and one for both products.

Figures 3 and 4 have been generated by solving our model and using the values of
the parameters in (3) and (4) when applicable together with the values of parameters
α’s and β’s above.15

From Fig. 3 we have that under the two scenarios, the optimal cumulative adop-
tion paths for both products increase monotonously towards the market potential
level for all t , and x1(t) is always higher than x2(t).

Figure 4 indicates that under the two scenarios, both the optimal price paths
p1(t) and p2(t) increase monotonously towards their steady-state values. In the
independent producers scenario p2(t) < p1(t) for all t ; while in the integrated
monopolist case, pm

1 (t) < pm
2 (t) for all t . Furthermore, Fig. 4 shows for our model

that p1(t) > pm
1 (t) and p2(t) < pm

2 (t) for all t . Therefore, the result of Proposition
A in M&M holds for the price of both the contingent and primary products.

14However, the transitional dynamics, that is, the transition towards these steady states could be
different.
15Qualitatively similar figures have been obtained for the following cases:

• x20 = 3000, 6000;
• M = 40,000, 80,000.
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Fig. 3 Our model. Comparison cumulative adoption base and contingent products under inte-
grated monopolistic and independent producers

Concerning the first hypothesis in Proposition B, which was rejected in both
the M&M and the modified M&M models, with our new formalization of the
price effect, we found that the same result as in these models is obtained (i.e.,
z1/(z1+z2) > z2/(z1+z2)). Indeed, we found that by keeping fixed the parameters
in (3), (4), and (8) and by changing the initial values of the cumulative adoption of
the contingent product (x20 ∈ {0, 3000, 6000}), Proposition B is always rejected.
Furthermore, we run some additional simulations by changing the value of the
market potential M and found that this value does not have an impact on this result.
Independently of the value of the market potential M (M = 40,000,M = 80,000)
Proposition B is rejected.

Hence, these results are qualitatively similar to those obtained in the modified
M&M model, which indicates that the introduction of a price-dependent innovation
parameter in the diffusion model does not have a qualitative impact on the previous
results obtained with diffusion models where the innovation effect is considered as
a constant parameter.
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6 Conclusion

In a paper on theoretical modeling in marketing, Moorthy (1993) provides a “logical
experimentation” perspective on the building of mathematical theories in this
field. This perspective is borrowed from the behavioral marketing research where
empirical experiments are used to test the cause-effects relationships that could be
observed between a phenomena under study, and other variables that could explain
it. This process starts by building a first theoretical model to capture and explain a
phenomena (i.e., the dependent variable) under a set of hypothesis. The latter could
have impacts on the results and can be seen as independent variables. By modifying
these hypotheses one by one, different models are tested as various treatments in
a series of experiments, and by comparing the results obtained under the different
models, one can understand the cause-effect relationship between the phenomena
under investigation and its hypotheses and assess their impacts.

In this paper, we contribute to the modeling literature in marketing by following
the logical experimentation perspective suggested by Moorthy (1993). By examin-
ing the same phenomena describing the diffusion of optional-contingent products
with the M&M model, we started by extending its results from a finite to an infinite
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time horizon in order to isolate the effects of the planning horizon on the results.
Then, we used this modified M&M model and compared its results to those obtained
with a model where the innovation rate is modeled as a price-dependent variable.
We were able to assess the impact of using this new model formalization on the
multi-product diffusion phenomena and the firms strategies and profits.

Diffusion models have been widely studied since the introduction of the Bass
model in the marketing science literature. Despite all the efforts to extend this
model and to relax some of its limiting assumptions, there are still many open
questions on the diffusion process. What marketing variables affect the adoption
of new products, and how to model their effects on adoption are some of these
open-questions. Mesak (1996) established this in a study where he classified most
of the models that incorporate the effects of marketing variables in the Bass model
and tested empirically the validity for some of them. He concluded his study by
stating that “The issue of how marketing mix variables such as price, advertising
and distribution affect the diffusion of innovations continues to be a debated issue
in the literature” (Mesak 1996, p. 1011). This paper can be seen as an additional
treatment in the product diffusion literature where the effect of modeling differently
the price impact on diffusion and extending the planning horizon are investigated.
An interesting extension of this study is to test the external validity of these multi-
product models as in Mesak (1996) by performing their empirical validation with
real market data on sales and prices of new products characterized by optional
contingencies in their demands.
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Appendix

In the scenario where the independent producers control the pricing decisions of the
primary and contingent products, the objective for the primary-product’s producer
is to choose the price p1 in order to maximize the following functional:

∫ ∞

0
e−rt (p1(t)− c1)ẋ1(t) dt

taking into account (6).
In order to find the first-order conditions necessary for optimality, we construct

the current value Hamiltonian:

H 1(x1, p1, λ1) = (p1 − c1)ẋ1 + λ1ẋ1 = (p1 − c1 + λ1)ẋ1,
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where λ1 denotes the costate variable associated with x1.
The maximization of H 1 with respect to p1 yields ∂H 1/∂p1 = 0, and assuming

x1 is different from M , from this condition one gets:

p1 = α1 + (c1 − λ1)β1 + b1x1

2β1
. (9)

The Maximum Principle optimality conditions also include

λ̇1 = rλ1 − ∂H 1

∂x1
, lim

t→∞ λ1(t)x1(t)e
−rt = 0,

ẋ1 = (α1 − β1p1 + b1x1)(M − x1), x1(0) = x10.

This boundary value problem taking into account expression (9) reads:

λ̇1 = 1

4β1

[
(3x1−2M)x1b

2
1+(α1−(c1−λ1)β1)

(α1−(c1−λ1)β1+2b1(2x1−M))+4rβ1λ1

]
,

ẋ1 = 1

2
(M − x1)(α1 − (c1 − λ1)β1 + b1x1).

Function H 1 is concave with respect to p1.
The objective for the contingent-product’s producer is to choose the price p2 in

order to maximize the following functional:

∫ ∞

0
e−rt (p2(t)− c2)ẋ2(t) dt

taking into account the differential equations describing the dynamics of the cumu-
lative adoption of the primary and contingent products (6) and (7), respectively.

The current value Hamiltonian reads:

H 2(x2, p2, λ2) = (p2 − c2)ẋ2 + λ2ẋ2 = (p2 − c2 + λ2)ẋ2,

where λ2 denotes the costate variable associated with x2.
Assuming that x1 is different from x2, from the optimality condition ∂H 2/∂p2 =

0, one gets:

p2 = α2 + (c2 − λ2)β2 + b2x2

2β2
. (10)

The Maximum Principle optimality conditions also include
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λ̇2 = rλ2 − ∂H 2

∂x2
, lim

t→∞ λ2(t)x2(t)e
−rt = 0,

ẋ2 = (α2 − β2p2 + b2x2)(x1 − x2), x2(0) = x20.

Substituting the expression of p2 given by (10) into this system of differential
equations we get:

λ̇2 = 1

4β2

[
(3x2−2x1)x2b

2
2+(α2−(c2−λ2)β2)

(α2−(c2−λ2)β2+2b2(2x2−x1))+4rβ2λ2

]
,

ẋ2 = 1

2
(x1 − x2)(α2 − (c2 − λ2)β2 + b2x2).

Function H 2 is concave with respect to p2.
The characterization of the optimal time paths of the cumulative sales and prices

of both products requires the solution of the differential equations for the state and
costate variables x1, x2, λ1 and λ2. First of all, we focus on the characterization of
the steady-state values and their asymptotically stability.

Because αi − βipi + bixi for i = 2, 2 are strictly positive, the unique steady-
state value of the cumulative sales is given by x1ss = M and x2ss = x1ss = M .
Taking these values into account, we compute the steady-state values of the costate
variables λ1 and λ2. It can be easily proved that the system of differential equations
admits the following four different steady-state values:

(x
(1)
1ss , λ

(1)
1ss , x

(1)
2ss , λ

(1)
2ss) = (M, λ

(1)
1 ,M, λ

(1)
2 ),

(x
(2)
1ss , λ

(2)
1ss , x

(2)
2ss , λ

(2)
2ss) = (M, λ

(1)
1 ,M, λ

(2)
2 ),

(x
(3)
1ss , λ

(3)
1ss , x

(3)
2ss , λ

(3)
2ss) = (M, λ

(2)
1 ,M, λ

(1)
2 ),

(x
(4)
1ss , λ

(4)
1ss , x

(4)
2ss , λ

(4)
2ss) = (M, λ

(2)
1 ,M, λ

(2)
2 ),

where

λ
(1)
i = − 1

βi

(
αi − ciβi + 2r + biM + 2

√
r(αi − ciβi + r + biM)

)
,

λ
(2)
i = − 1

βi

(
αi − ciβi + 2r + biM − 2

√
r(αi − ciβi + r + biM)

)
, i = 1, 2.

In order to analyze the stability of the steady states we compute the eigenvalues and
associated eigenvectors of the Jacobian matrix evaluated at each of the steady states.

At the first steady state (x
(1)
1ss , λ

(1)
1ss , x

(1)
2ss , λ

(1)
2ss) the Jacobian matrix has two

negative eigenvalues and it can be proved that there exists a bi-parametric family
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of solutions converging to this steady state. This family of solutions imposes that
x1(t) = M,x2(t) = M for all t .

At the second steady state (x
(2)
1ss , λ

(2)
1ss , x

(2)
2ss , λ

(2)
2ss) the Jacobian matrix has two

negative eigenvalues and it can be proved that there exists a one-parametric family
of solutions converging to this steady state. This family of solutions imposes that
x1(t) = M for all t .

At the third steady state (x
(3)
1ss , λ

(3)
1ss , x

(3)
2ss , λ

(3)
2ss) the Jacobian matrix has two

negative eigenvalues and it can be proved that a relationship among the initial values
of the state variables, x10 and x20 is needed to ensure the convergence of the optimal
paths to this steady state.

At the fourth steady state (x
(4)
1ss , λ

(4)
1ss , x

(4)
2ss , λ

(4)
2ss) the Jacobian matrix has two

negative eigenvalues and it can be proved that there exists a unique optimal path
converging to this steady state.

The numerical simulations carried out focus on this fourth scenario. In this case,
the two negative eigenvalues are given by

μi = r −√r(αi − ciβi + r + biM), i = 1, 2.

Following M&M, the values of the model parameters used in the numerical
simulations are assumed to be completely symmetric. Consequently, under this
assumption there is a double negative eigenvalue, μ = μi, i = 1, 2. We have
computed the associated generalized eigenvectors denoted by v̄1 = (v

(1)
1 , v

(2)
1 , 0, 1)

and v̄2 = (v
(1)
2 , v

(2)
2 , 1, 0), with v

(j)
i the j -th component of the i-th eigenvector

(omitted for brevity). The solution of the system of differential equations read:

x1(t) = (x10 −M)eμt +M,

λ1(t) = w
(2)
1 eμt + λ

(4)
1ss ,

x2(t) = (x20 −M)eμt + w
(3)
2 teμt +M,

λ2(t) = w
(4)
1 eμt + w

(4)
2 teμt + λ

(4)
1ss ,

where w
(k)
i is the k-th component of vector w̄i , with

w̄1 = ϕv̄1 + ηv̄2, w̄2 = (− μI4)w̄1,

and

ϕ = 1

v
(1)
1

(x10 −M − (x20 −M)v
(1)
2 ), η = x20 −M.

Matrices  and I4 denote the Jacobian matrix associated with the system of
differential equations evaluated at the steady state (x

(4)
1ss , λ

(4)
1ss , x

(4)
2ss , λ

(4)
2ss) and the

fourth-order identity matrix, respectively.
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The characterization of the optimal time-paths of the prices and cumulative
adoption of both products in the case of the integrated monopolist follows the same
steps as previously described for the scenario of two independent producers.

The objective in the case of the integrated monopolist is to choose the prices, p1
and p2, in order to maximize the following functional:

∫ ∞

0
e−rt [(p1(t)− c1)ẋ1(t)+ (p2(t)− c2)ẋ2(t)] dt

taking into account the differential equations (6) and (7).
The current-value Hamiltonian reads16:

Hm(x1, p1, x2, p2, λ
m
1 , λm2 ) = (p1 − c1)ẋ1 + (p2 − c2)ẋ2 + λm1 ẋ1 + λm2 ẋ2

= (p1 − c1 + λm1 )ẋ1 + (p2 − c2 + λm2 )ẋ2,

where λm1 and λm2 denote the costate variables associated with x1 and x2, respec-
tively.

The first-order optimality conditions for an interior solution read:

∂Hm

∂pi

= 0, i = 1, 2,

λ̇
m
i = rλmi −

∂Hm

∂x
, lim

t→∞ λmi (t)xi(t)e
−rt = 0 i = 1, 2,

ẋ1 = (α1 − β1p1 + b1x1)(M − x1), x1(0) = x10,

ẋ2 = (α2 − β2p2 + b2x2)(x1 − x2), x2(0) = x20.

Assuming that x1 and x2 are different from M and x1, respectively, from the two
first optimality conditions the following expressions from the prices can be derived:

pi = 1

2βi

(bixi + αi + βi(ci − λi)), i = 1, 2.

Substituting these expressions in the differential equations describing the time
evolution of the state and costate variables, these equations read:

ẋ1 = 1

2
(M − x1)(b1x1 + α1 − β1(c1 − λ1)),

ẋ2 = 1

2
(x1 − x2)(b2x2 + α2 − β2(c2 − λ2)),

16The superscript stands for “monopolistic scenario.”
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λ̇1= 1

4β1β2

[
β2

(
b2

1x1(3x1−2M)+(α1−β1(c1−λ1))

(α1−β1(c1−λ1)−2b1(M−2x1))+4rβ1λ1
)

−β1(b2x2 + α2 − β2(c2 − λ2))
2
]
,

λ̇2 = 1

4β2

[
b2

2x2(3x2−2x1)+(α2−β2(c2−λ2))

(α2−β2(c2−λ2)−2b2(x1−2x2))+4rβ2λ2
]
.

The characterization of the steady-states and the analysis of their stability follow
the same steps as the analysis developed in the case of the independent producers.
Four steady states can be characterized and the numerical simulations focus on the
only steady state for which there is a unique optimal path converging to this steady
state. This steady-state reads (x(m)

1ss , λ
(m)
1ss , x

(m)
2ss , λ

(m)
2ss ) with x

(m)
1ss = x

(m)
2ss = M , and

λ
(m)
1ss = − 1

β1β2

(
α1 − c1β1 + 2r + b1M − 2

√
r�
)
,

λ
(m)
2ss = − 1

β2

(
α2 − c2β2 + 2r + b2M − 2

√
r(α2 − c2β2 + r + b2M)

)
,

with � given by:

� = β2

[
(α2 − c2β2 + 2r + b2M − 2

√
r(α2 − c2β2 + r + b2M))β1

+(α1 − c1β1 + r + b1M)β2
]
.

The eigenvalues of the Jacobian matrix evaluated at this steady-state are

μ1 = r −√r(α2 − c2β2 + r + b2M),

μ2 = r − 1

β2

√
r�.

The eigenvectors associated are v̄m1 = (0, v(m2)
1 , v

(m3)
1 , 1) and v̄m2 =

(v
(m1)
2 , v

(m2)
2 , v

(m3)
2 , 1), with v

(mj)
i the j -th component of vector v̄mi (omitted for

brevity). The solution of the system of differential equations read:

x1(t) = (x10 −M)eμ2t +M,

λ1(t) = ξv
(m2)
1 eμ1t + ψv

(m2)
2 eμ2t + λ

(m)
1ss ,
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x2(t) = ξv
(m3)
1 eμ1t + ψv

(m3)
2 eμ2t +M,

λ2(t) = ξeμ1t + ψeμ2t + λ
(m)
2ss ,

where

ξ = (x20 −M)v
(m1)
2 − (x10 −M)v

(m3)
2

v
(m3)
1 v

(m1)
2

, ψ = x10 −M

v
(m3)
1

.

References

Bass, F. M. (1969). A new product growth for model consumer durables. Management Science,
15(5), 215–227.

Bass, F. M., Krishnan, T. V., & Jain, D. C. (1994). Why the bass model fits without decision
variables. Marketing Science, 13(3), 203.

Dockner, E., & Jorgensen, S. (1988). Optimal advertising policies for diffusion models of new
product innovation in monopolistic situations. Management Science, 34(1), 119–130.

Horsky, D. (1990). A diffusion model incorporating product benefits, price, income and informa-
tion. Marketing Science, 9(4), 279–365.

Horsky, D., & Simon, L. S. (1983). Advertising and the diffusion of new products. Marketing
Science, 2(1), 1–17.

Jones, J. M., & Ritz, C. J. (1991). Incorporating distribution into new product diffusion models.
International Journal of Research in Marketing, 8(2), 91–112.

Jørgensen, S., & Zaccour, G. (2004). Differential games in marketing. International series in
quantitative marketing. Boston: Kluwer Academic Publishers.

Kalish, S. (1985). A new product adoption model with price, advertising, and uncertainty.
Management Science, 31(12), 1569–1585.

Kort, P. M., Taboubi, S., & Zaccour, G. (2018). Pricing decisions in marketing channels in the
presence of optional contingent products. Central European Journal of Operations Research.
https://doi.org/10.1007/s10100-018-0527-x

Kotler, P. (1988). Marketing management (6th ed.). Englewood Cliffs: Prentice Hall.
Mahajan, V., & Muller, E. (1991). Pricing and diffusion of primary and contingent products.

Technological Forecasting and Social Change, 39, 291–307.
Mahajan, V., Muller, E., & Bass, F. M. (1990). New product diffusion models in marketing: A

review and directions for research. Journal of Marketing, 54(1), 1–22.
Mahajan, V., Peterson, R. A., Jain, A. K., & Malhotra, N. (1979). A new product growth model

with a dynamic market potential. Long Range Planning, 12(4), 51–58.
Mesak, H. I. (1996). Incorporating price, advertising and distribution in diffusion models of

innovation: Some theoretical and empirical results. Computers & Operations Research, 23(10),
1007–1023.

Moorthy, K. S. (1993). Theoretical modeling in marketing. Journal of Marketing, 57(2), 92–106.
Peres, R., Muller, E., & Mahajan, V. (2010). Innovation diffusion and new product growth models:

A critical review and research directions. International Journal of Research in Marketing,
27(2), 91–106.

Peterson, R. A., & Mahajan, V. (1978). Multi-product growth models. In S. Jagdish (Ed.), Research
in marketing (pp. 201–231). London: JAI Press.

https://doi.org/10.1007/s10100-018-0527-x


On the Modelling of Price Effects in the Diffusion of Optional Contingent Products 39

Robinson, B., & Lakhani, C. (1975). Dynamic price models for new product planning. Manage-
ment Science, 21(10), 1113–1122.

Teng, J., & Thompson, G. L. (1983). Oligopoly models for optimal advertising when production
costs obey a learning curve. Management Science, 29(9), 1087–1101.

Thompson, G. L., & Teng, J. (1984). Optimal pricing and advertising policies for new product
oligopoly models. Marketing Science, 3(2), 148–168.



The Effects of Consumer Rebates in a
Competitive Distribution Channel

Salma Karray

Abstract This research investigates the effectiveness of consumer rebates
offered by competing manufacturers in a distribution channel. We consider a
two-manufacturer, two-retailer channel and develop a two-period model where
consumers’ preferences are distributed along a Hotelling line. The rebate consists
in a price discount that can be redeemed on the second period. We solve three
Stackelberg games: a benchmark where no rebate is offered, a symmetric game
where both manufacturers offer rebates, and an asymmetric game where only one
manufacturer provides a rebate. Comparisons of equilibrium solutions show that
while manufacturers should not offer rebates, they could do so due to a prisoner
dilemma situation when their wholesale prices are high.

Keywords Rebates · Distribution channels · Competition · Pricing · Game
theory

1 Introduction

Price promotions are widely used marketing tools aiming at stimulating demand
and encouraging consumer purchase. In fact, it is estimated that about 310 billion
coupons were distributed in 2014 (NCH Marketing Services) resulting in $3.6
billion of consumer savings (Arya and Mittendorf 2013).

Firms have developed a variety of redemption policies and guidelines for these
price promotions. In particular, some promotions can instantly be redeemed by
customers on the same purchase occasion that they are obtained (Sigué 2008;
Martín-Herrán et al. 2010). Others, commonly denoted as rebates, offer delayed
price cuts that can only be redeemed on a future purchase occasion (Chen et al.
2005; Lu and Moorthy 2007). Both promotional offers are frequently used by CPG
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firms in a variety of categories such as grocery, apparel, hardware, and others. For
example, many manufacturers offer rebates in form of on-pack promotions. These
are price discounts printed on the product packaging, which can be redeemed after
the initial purchase (Dhar et al. 1996).

This research focuses on rebates offered by manufacturers as discounts on future
purchases (e.g., on-pack coupons). It evaluates the effectiveness of rebates for
competing distribution channel members and studies their implications for pricing
strategies and profits in the channel.

A large marketing literature has shown that price promotions are effective in
stimulating demand by inciting consumers whose reservation prices lie below the
retail price (Nijs et al. 2001; Ault et al. 2000; Arya and Mittendorf 2013). While
instant promotions can immediately boost sales, the delayed redemption of rebates
can lead to a different impact on demand over time. In particular, the literature points
to the importance of consumer slippage arising from the non-redemption of rebates
by those consumers who either forget or lose them (Gilpatric 2009; Liang et al.
2013).

Consumer slippage can make rebates attractive promotional tools to companies
for two main reasons. First, rebates can increase future demand by encouraging
repeat purchase. Second, rebates entice consumers to buy products for which there
is promise of a future discount, which can increase product purchase at the time
of rebate distribution. While rebates can be costly marketing initiatives, companies
can rely on consumer slippage to lower these costs. As a proportion of distributed
rebates are not redeemed on the next purchase, only a partial cost of the promotion
is incurred, which results in additional savings for the firm. For example, on-pack
coupons are found to generate positive effects on market share and profits that are
higher than the effects generated by instant coupons (Dhar et al. 1996).

Despite the positive effects of consumer rebates, there exist some drawbacks
associated with using such promotional tools. In particular, many studies point out
that retailers tend to raise prices when manufacturers offer rebates (Busse et al.
2006; Khouja and Zhou 2010; Martín-Herrán and Sigué 2011; Liang et al. 2013).
This is because, in a distribution channel context, rebates can impact not only the
manufacturers that offer them but also their retailers. In fact, the cost associated with
offering the rebate can lead manufacturers to adjust their transfer prices, which can
influence the retailers’ prices to consumers. Such arrangements can directly impact
firms’ margins and profits at each level of the channel. Further, rebates not only
affect the strategies of the manufacturers issuing them and those of their retailers,
but also those of firms in competing channels. For these reasons, it is important to
understand the strategic implications of rebates for firms’ profitability in a channel
context and when competitors’ actions are taken into account.

The literature that studied rebates in a distribution channel context has mainly
focused on markets where manufacturers and/or retailers hold monopolistic posi-
tions. Such a setup is restrictive since competition affects the strategies of firms
at both levels of the channel. It is important to address this knowledge gap since
opportunistic behaviors can lead to inefficiencies in the channel and competitive
interactions can significantly impact firms’ decisions, which can aggravate or
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diminish these inefficiencies. This research addresses these issues by analyzing
the strategic implications of rebates in a distribution channel with competition at
both levels of the channel. We aim to address the following research questions: Are
rebates profitable for manufacturers and for retailers? What are the implications of
manufacturers’ rebates for channel pricing over a two-period horizon?

The rest of the chapter is organized as follows. Section 2 explains the model
and assumptions. In Sect. 3, we present the equilibrium solutions for three games:
a benchmark where no rebates are offered, a symmetric game where both manufac-
turers offer rebates and an asymmetric game where only one manufacturer offers
the rebate. Section 4 compares equilibrium solutions across these games. Finally,
Sect. 5 concludes.

2 Model

Consider a market served by two competing distribution channels denoted by a

and b, each formed by one manufacturer and one retailer. In each channel, the
manufacturer can offer a rebate which consists in a price discount that consumers
acquire by purchasing the product and can redeem on the next purchasing occasion
(Chen et al. 2005). We then consider two purchasing periods in the model.

In this market, consumers are uniformly distributed over a Hotelling line and
each retailer is situated at the end of the linear market. The total market size is fixed
to one in each period and is totally served by the two channels, meaning that each
consumer buys one product in each period from either channel a or b. In each period,
consumers choose the product that maximizes their surplus given the prices charged
by each retailer, the rebate, if any, and the disutility or travelling cost incurred by
deviating from their preferred position on the Hotelling line. Each consumer buys
one unit of the product as long as his/her utility surplus is positive and the utility
of no consumption is normalized to zero. A summary of all notations used in the
chapter is included in Table 1.

2.1 Consumer Utility and Demand

Following the conventional Hotelling model, in the first period, consumer utility
surplus (CSi1) for purchasing product i (i = a, b) is affected by the retailers’
prices (pi1) and the mismatch (disutility) cost of deviating from the consumer’s
ideal location on the Hotelling line (txij ), where xij is the consumer location and
t is the positive per unit mismatch cost (Hotelling 1929; Vickers and Armstrong
2001). When manufacturers offer rebates that can be redeemed in the next period,
consumer surplus is increased by the discounted value of the rebate that will be
received in period 2 (pi2ri). pi2 is the price of product i in period 2 and ri is the
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Table 1 Notations

i Index for retailers and manufacturers, a = 1, 2

j Index for time period, j = 1, 2

xij Demand of retailer i in period j, xij ∈ (0, 1)

U Consumer utility, U ≥ 0

CSij Consumer surplus for product i in period j , CSij > 0

vi Baseline demand of product i,vi > 0

t Hotelling transportation cost parameter, t > 0

g Rebate redemption rate parameter, g ∈ (0, 1)

ri Rebate rate of manufacturer i, ri ∈ (0, 1)

wi Wholesale price of manufacturer i, wi > 0

pic Price of retailer i in period j, pij > wi

�i Total profit of manufacturer i, �i > 0

�ij Profit of manufacturer i in period j , �ij > 0

πi Total profit of retailer i, πi > 0

πij Profit of retailer i in period j , πij > 0

manufacturer i’s rebate rate. We assume that the consumers’ discount rate over the
two periods of purchasing is set to one. This is a reasonable assumption given that
there is usually a short period of time between purchase and receipt of the rebate
(Gilpatric 2009).

Consumers are strategic in our model since they take into account their expecta-
tions of the prices in period 2 when they maximize their utility surplus in period 1.
We assume that consumers have accurate expectations for the price in period 2. This
means that they can form rational expectations of the firms’ future prices and can
then correctly predict their values at equilibrium (Singh et al. 2008; Liu and Zhang
2013). Let vi be consumer valuation of product i (vi > 0). Consumers’ surplus for
product i in period 1 is then given by:

CSi1 = vi − xi1t − pi1 + pi2ri, i ∈ {a, b} .

The demand for each product in each period is given by its market share (xij for
product i). Since the market is fully served by both firms, the product k’s demand
in each period is formed by the market not served by product i such as xkj = 1 −
xij , i, k ∈ {a, b} , i �= k. In period 1, product i’s demand is obtained by the share
of consumers who get the highest surplus by buying product i. It is given by xi1 for
which CSi1 = CSk1 such as:

xi1 = vi − vk + pk1 − pi1 − (pk2rk − pi2ri)− t

2t
, i, k ∈ {a, b}, i �= k.

We follow Singh et al. (2008) and consider that when rebates are offered, there
is a probability g ∈ (0, 1) that consumers who bought in period 1 would redeem
the rebate in period 2. This is to represent the commonly observed consumer
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slippage effect due to the fact that consumers often forget or lose their coupons. The
parameter g is commonly denoted in the empirical literature as the redemption rate.
In the model, a percentage of consumers who bought in period 1 would buy from
the same firm and redeem their rebates in period 2. The rest of the market (1 − g)
represents the portion of switching consumers and captures the consumer slippage
effect. The latter can take different values depending on consumer characteristics
and on the product category. For example, Yang et al. (2010) note that slippage
rates (1− g) can vary and can reach high values (e.g., 60% for electronics 90% for
software).

In period 2, consumers who do not redeem their rebates will choose the product
that provides the highest surplus given the prices offered by each firm in the second
period. The surplus of these consumers located at point (ui2) for product i will then
be CSi2 = vi − tui2 − pi2. Product i’s share in the switching market in period 2
is then obtained at the indifferent consumer location such as CSi2 = CSk2 and is
given by ui2 = (pk2 − pi2 − t)/2t , and product k’s share in the switching market
is the remaining portion (uk2 = 1 − ui2). Note that we assume that the rebates are
designed in such a way that consumers do not have to pay a cost for redemption.
This is the case for rebates that can be redeemed at checkout in the retail store or
online and do not require considerable time or effort on the part of the consumer.

Each product i’s demand in period 2 is given by the portion of consumers who
redeem their rebates in period 2 (gxi1) and the additional consumers who do not
redeem ((1− g)ui2). Therefore the demands in period 2 are:

xi2 = gxi1 + (1− g)ui2, xk2 = 1− xi2, i, k ∈ {a, b}, i �= k.

2.2 Firms’ Decisions and Profits

Each manufacturer and each retailer makes decisions over two periods. For simplic-
ity, we assume that the manufacturers are dummy players. The retailers play Nash
and choose their strategies simultaneously knowing the manufacturers’ announced
(given) decisions.

In period 1, the manufacturers set the rebate program, if any (ra, rb ∈ (0, 1)).
Since rebates usually require some planning on the part of the issuing firm (e.g.,
printing of coupons or modification of packaging), they are usually set before the
regular retail pricing decisions. We also assume that the manufacturers’ wholesale
prices (wa and wb) are fixed, which is the case in channels with a long-term pricing
agreement. Once the rebate program is set, the retailers then react to the announced
rebates and decide of their retail prices in the first period (pi1). In the second period,
the retailers decide of their prices to consumers (pi2), knowing all decisions in
period 1.
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Table 2 Profit functions (i ∈ (a, b))

Manufacturers Retailers

Period 1 �i1 = wixi1 πi1 = (pi1 − wi)xi1

Period 2 �i2 = wixi2 − ripi2 (gxi1) πi2 = (pi2 − wi)xi2

Total profits �i = �i1 +�i2 πi = πi1 + πi2

We assume that the rebate decisions do not affect the retailers’ inventory levels to
avoid any influence of inventory hoarding on the effectiveness of the rebate program
(Ault et al. 2000). For tractability, we also assume that the marginal production costs
for both manufacturers are normalized to zero.

When manufacturers’ rebates are offered, the profit functions in each period and
overall are given in Table 2. In period 1, each manufacturer distributes the rebates.
We assume that they do so at no cost for simplicity and without loss of generality.
Manufacturers only pay the rebates to consumers who redeem in period 2, which
leads to a cost of rebates equal to (ripi2 (gxi1)) for each manufacturer i. We assume
that firms have the same discount rate than consumers, which is set to one. Finally,
we get the total profit of each manufacturer (�i) and retailer (πi) over both periods
of purchasing by summing up profits in periods 1 and 2.

3 Equilibrium Solutions

To assess the effects of rebates on the distribution channel firms’ profits, we solve
the model for three games. In each game and in each period, manufacturers are
dummy players and the retailers play Nash.

• Game NR: This is the benchmark game where no rebates are offered (ra = rb =
0). First, the retailers play Nash and set their first-period prices simultaneously.
Then, they play Nash again in the second period and decide simultaneously of
their prices given their first-period prices.

• Game SR: This is the symmetric rebate game where both manufacturers offer
rebates (ra, rb �= 0). First, the retailers play Nash and decide simultaneously of
their prices in the first period given the announced rebate rates. Then, retailers
play Nash again and set their prices simultaneously in the second period given
their first-period prices and the manufacturers rebate rates.

• Game AR: This is the asymmetric rebate game where manufacturer a offers
a rebate while manufacturer b does not (ra �= 0, rb = 0). First, the retailers
play Nash and decide simultaneously of their prices in the first period given the
announced rebate rate. Then, retailers play Nash to set their prices simultaneously
in the second period given their first-period prices and manufacturer a’s rebate
rate.
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Since the game is played over two periods, the subgame perfect equilibrium is
obtained by first solving the second-period problem then the first-period problem
given the second-period strategies. For simplicity, we only present results in case
manufacturers are symmetric, i.e., for vi = v and wi = w, and for t = 1. The
equilibrium solutions are summarized in the next three propositions.

Proposition 1 Assuming an interior solution, in game SR where both manufactur-
ers offer rebates to consumers, the unique equilibrium prices, market shares, and
profits for product i (i, k ∈ {a, b} , i �= k) in period j, for ri = r , are:

pSR
i1 = 3gr + 5g − 3

gr + 3g − 3
+ w,pSR

i2 = 1

1− gr − g
+ w,

xSRij = 1

2
,�SR

i1
= w

2
,

�SR
i2

= (gr − 1) (g + gr − 1) w − gr

2(1− gr − g)
,

�SR
i

= (gr − 2) (g + gr − 1) w − gr

2(1− gr − g)
,

πSR
i1

= 3gr + 5g − 3

2 (gr + 3g − 3)
, πSR

i2
= 1

2 (1− gr − g)
,

πSR
i

= (g − 1) (5g − 6)+ rg (8g + 3gr − 7)

2 (gr + 3g − 3) (gr + g − 1)
.

Proof To get a subgame perfect solution, we solve by backwards induction. The
first-order equilibrium conditions for the retailers’ problem in period 2 are ∂πa2

∂pa2
=

∂πb2
∂pb2

= 0. Each retailer’s Hessian is semi-definite negative for (gri + g − 1) < 0,
i = a, b. This condition is satisfied for ri < (1− g)/g for all g < 1. Assuming this
condition to be true, from ∂πi2

∂pi2
= 0, the following reaction functions can be derived

for i, k ∈ {a, b} , i �= k :

pi2 = g[pi1 − pk1 + w (2ri + rk + 1)] − 3 (w + 1)

3 (gri + g − 1)
. (1)

Next, we replace pi2 by their expressions in (1) in each firm’s market share in period
1. The first-order conditions of the retailers’ problem in period 1 are ∂πa

∂pa1
= ∂πb

∂pb1
=

0. Each retailer’s Hessian is semi-definite negative iff:

− rkg
2 (g + 3ri)− (1− g)

[(
9g + g2 − 9

)+ 6g (ri + rk)
]

9 (gra + g − 1) (grb + g − 1)
< 0.

Assuming this condition to be true, from ∂πi

∂pi1
= 0, we obtain the retailers’ prices

in period 1 as functions of the rebate rates ra and rb. These expressions are very
long, so we omit them here for simplicity. The symmetric solution in proposition 1
is obtained by setting ri = r. �
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The equilibrium solution in the symmetric case shows that the retail price in
the first period decreases with the rebate rate while the price in the second period
increases. Note also that the feasible domain for this equilibrium solution exists
only for low levels of the redemption rate (g) such as g < 0.5. This means that
the equilibrium prices, profits, and margins in each period are positive and that the
second-order conditions are verified when g is in this range.

Proposition 2 Assuming an interior solution, in game AR where manufacturer a

offers a rebate while manufacturer b does not, the unique equilibrium prices, market
shares, and profits for each product i (i, k ∈ {a, b} , i �= k) in period j, for ra = r ,
are:

(a) Equilibrium for channel a:

pAR
a1 = −D1 − 6r

(
3g + g2 − 3

)
(3g + 2gr − 3)+ w (3g + 2gr − 3)D4(

2g3r + 4g3 + 18g2r + 23g2 − 18gr − 54g + 27
)
(2gr + 3g − 3)

,

pAR
a2 = 54g + 24gr − 23g2 − 4g3 − 24g2r − 4g3r − 27+ wD5(

2g3r + 4g3 + 18g2r + 23g2 − 18gr − 54g + 27
)
(gr + g − 1)

,

xAR
a1 = D2 + wr (g − 1) (3g + 2gr − 3)2

2
(
2g3r + 4g3 + 18g2r + 23g2 − 18gr − 54g + 27

)
(gr + g − 1)

,

xAR
a2 = (g − 1)

[(
27g + 4g2 − 27

)+ wrg (3g + 2gr − 3)
]+ 4gr

(
6g + g2 − 6

)

2
(
2g3r + 4g3 + 18g2r + 23g2 − 18gr − 54g + 27

) ,

�AR
a1

= wD2 + w2r (g − 1) (3g + 2gr − 3)2

2 (gr + g − 1)
(
2g3r + 4g3 + 18g2r + 23g2 − 18gr − 54g + 27

) ,

πAR
ra2

=
[
(g − 1)

((
27g + 4g2 − 27

)+ wrg (3g + 2gr − 3)
)+ 4gr

(
6g + g2 − 6

)]2

2 (1− gr − g)
(
2g3r + 4g3 + 18g2r + 23g2 − 18gr − 54g + 27

)2 .

(b) Equilibrium for channel b:

pAR
b1 = − D1 + w (3g + 2gr − 3)D3(

2g3r + 4g3 + 18g2r + 23g2 − 18gr − 54g + 27
)
(2gr + 3g − 3)

,

pAR
b2 = w + gr (2 gr + 3 g − 3) w − 4 g2 − 12 gr − 27 g + 27

2g3r + 4g3 + 18g2r + 23g2 − 18gr − 54g + 27
,

xAR
b1 = (1− g)

[
(3g + 2gr − 3)2 rw +D6

]

2 (gr + g − 1)
(
2g3r + 4g3 + 18g2r + 23g2 − 18gr − 54g + 27

) ,

xAR
b2 = (1− g)

[
wrg (3g + 2gr − 3)− 4g2 − 12gr − 27g + 27

]

2
(
2g3r + 4g3 + 18g2r + 23g2 − 18gr − 54g + 27

) ,
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πAR
b2 = (1− g)

[
wrg (3g + 2gr − 3)− 4g2 − 12gr − 27g + 27

]2

2
(
2g3r + 4g3 + 18g2r + 23g2 − 18gr − 54g + 27

)2 ,

�AR
b1 = wxAR

b1 ,�AR
b2

= wxAR
b2 ,�AR

b = w(xAR
b1 + xAR

b2 ).

where

D1 = 339g2 − 27r − 81gr − 297g − 103g3 − 20g4 + 18gr2 + 315g2r

−189g3r − 26g4r + 36g2r2 − 72g3r2 − 6g4r2 + 81,

D2 = 81g − 9r + 63gr − 77g2 + 19g3 + 4g4 + 6gr2 − 101g2r + 41g3r

+6g4r − 24g2r2 + 20g3r2 + 2g4r2 − 27,

D3 = 54g + 9r − 23g2 − 4g3 − 6gr2 − 11g2r + 6g2r2 + 2g3r2 − 27,

D4 = 2r
(

7g2 − 6gr − 18g + 2g3 + 6g2r + g3r + 9
)
−D3,

D5 = D2 + r
(

17g2 − 6gr − 21g − 5g3 + 8g2r − 4g3r + 9
)
,

D6 = 2rg
(

16g + 12gr + 3g2 + 2g2r − 18
)
−D3.

The remaining profit expressions are very long so we omit them here for
simplicity.

Proof To get a subgame perfect solution, we solve by backwards induction. The
first-order equilibrium conditions for the retailers’ problem in period 2 are ∂πa2

∂pa2
=

∂πb2
∂pb2

= 0. Retailer a and b’s Hessians are semi-definite negative for (gr + g − 1) <
0 and g − 1 < 0. These conditions are satisfied for r < (1 − g)/g for all g < 1.
Assuming this condition to be true, from ∂πi2

∂pi2
= 0, the following reaction functions

can be derived for i, k ∈ {a, b} , i �= k :

pa2 = g[pa1 − pb1 + w (2r + 3)] − 3 (1+ w)

3 (gr + g − 1)
, (2)

pb2 = −g[pa1 − pb1 + w (r + 3)] − 3 (1+ w)

3 (g − 1)
. (3)

Next, we replace pi2 by their expressions in Eqs. (2) and (3) in each firm’s market
share in period 1. The first-order conditions of the retailers’ problem in period
1 are ∂πa

∂pa1
= ∂πb

∂pb1
= 0. Both retailers’ Hessians are semi-definite negative iff

(− g2+6gr+9g−9
gr+g−1 < 0) and (− g3r+g3+6g2r+8g2−6gr−18g+9

(gr+g−1)(g−1) < 0). Assuming these

conditions to be true, from ∂πi

∂pi1
= 0, we obtain the retailers’ prices in period 1

as functions of the rebate rate r . �
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The equilibrium solution in the asymmetric game is very complex. Therefore,
we cannot obtain any meaningful analytical insights in this case with regard to
sensitivity analyses.

Proposition 3 Assuming an interior solution, in game NR where manufacturers do
not offer rebates to consumers, the unique equilibrium prices, market shares, and
profits for product i (i, k ∈ {a, b} , i �= k) in period j, are:

pNR
ij = w + 1, xNR

ij = 1

2
,

�NR
i

= 2�NR
ij

= w, πNR
i

= 2πNR
ij

= 1.

Proof To get a subgame perfect solution, we solve by backwards induction.
The first-order equilibrium conditions for the retailers’ problem in period 2 are
∂πa2
∂pa2

= ∂πb2
∂pb2

= 0. Each retailer’s Hessian is semi-definite negative for all model’s

parameters. From ∂πi2
∂pi2

= 0, the following reaction functions can be derived for
i, k ∈ {a, b} , i �= k :

pi2 = g (pi1 − pk1)− 3

3 (g − 1)
+ w. (4)

Next, we replace pi2 by their expressions in (4) in each firm’s market share in period
1. The first-order conditions of the retailers’ problem in period 1 are ∂πa

∂pa1
= ∂πb

∂pb1
=

0. Each retailer’s Hessian is semi-definite negative iff g − 1 < 0, which is satisfied
for all g < 1. From ∂πi

∂pi1
= 0, we obtain the unique retailers’ equilibrium prices in

period 1. �
Proposition 3 shows that when no rebates are offered, the equilibrium solution is

the same in each period. This is an intuitive result because the channel members are
faced with the same optimization problem in each period. Note also that when the
baseline sales and wholesale prices are symmetric across manufacturers, we obtain
a symmetric equilibrium solution in each period and the market share is split in this
case between the two products.

4 The Effects of Rebates

We assess the effects of rebates on each channel member by comparing the obtained
equilibrium profits and strategies in the three games: no rebates (NR), symmetric
rebates (SR), and asymmetric rebate (AR). For tractability, we get all results for
the case where the firms are symmetric (va = vb = v and wa = wb = w). For
our comparisons to be meaningful, they must be made in a subset of parameters’
values (w, r and g) defined by the intersection of the three sets (feasible parameters
domains) that outlines a unique interior equilibrium in the three games. For each
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game and in each period, we define the feasible domain for the equilibrium solution
by the set of constraints on parameters that guarantee the positivity of the obtained
prices, margins, demands, and profits and that satisfy the concavity conditions for
the retailers’ problems.

Proposition 4 Assuming interior equilibrium solutions in the no rebate and sym-
metric rebate games, comparison of equilibrium strategies in each period gives:

pSR
i1 < pNR

i1 , pSR
i2 > pNR

i2 ,

�SR
i1

= �NR
i1

,�SR
i2

< �NR
i2

,�SR
i

< �NR
i

,

πSR
i1

< πNR
i1

,πSR
i2

> πNR
i2

,πSR
i

> πNR
i

.

Proof Assuming interior equilibrium solutions in games NR and SR, comparison
of equilibrium prices and profits leads to:

pSR
i1 − pNR

i1 = 2g (r + 1)

gr + 3g − 3
< 0,pSR

i2 − pNR
i2 = −g (r + 1)

gr + g − 1
> 0,

�SR
i1
−�NR

i1
= 0,�SR

i2
−�NR

i2
= −gr (grw + gw − 1− w)

2 (gr + g − 1)
< 0,

πSR
i1
− πNR

i1
= g (r + 1)

gr + 3g − 3
< 0,πSR

i2
− πNR

i2
= −g (r + 1)

2 (gr + g − 1)
> 0,

πSR
i
− πNR

i
= (gr − g + 1) (r + 1) g

2 (3g + gr − 3) (g + gr − 1)
> 0.

�
This proposition shows that the overall profit of each manufacturer decreases

with rebates. Hence, manufacturers should abstain from offering such promotional
offers. The manufacturers’ loss occurs mainly for two reasons. First, no matter the
level of rebate offered to consumers, the symmetry setting of the game makes it
impossible for the manufacturers to gain market share. Since their wholesale prices
are also fixed, the rebate translates in additional cost and no additional revenue,
which ultimately leads to losses. For the retailers, the rebate would be beneficial.
This is due to the increase in retail price which leads to higher retail margin in the
second period. This additional margin compensates for the lower retail margin in
the first period and overall leads to higher total retail profit.

This result is in line with some empirical observations about rebates. For
example, Dhar et al. (1996) note that package coupons, while usually redeemed
by higher number of consumers than other coupons, may not have a beneficial
profit impact. However, it contradicts the results in Arya and Mittendorf (2013) who
considered a bilateral monopolistic channel and found that both channel members
benefit from the rebate. It also contradicts results in Singh et al. (2008) who found
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that rebates can enhance the profits of competing firms (without channel effects).
The difference in the results could be due to pricing agreements in the channel and
asymmetric market structures.

Next, we compare equilibrium solutions obtained in games NR and AR. We
could not obtain analytical results in this case because the difference in profits is
given by a ratio with both the numerator and the denominator being highly non-
linear in parameters g, r and w. In fact, the numerators in these comparisons are
polynomials of degree 8 in these parameters. The next claim summarizes the main
results.

Claim 5 Assuming interior equilibrium solutions, comparison of equilibrium out-
put obtained in the asymmetric rebate (AR) and no rebate (NR) scenarios gives the
following results:

(a) When manufacturer a offers a rebate, his profit can increase or decrease while
manufacturer b’s profit always decreases,

(b) When manufacturer a offers a rebate, retailer a’s profit increases while retailer
b’s profit decreases.

Claim 5a shows that in the asymmetric game, the manufacturer who unilaterally
offers the rebate might benefit from such a strategy while the competing manu-
facturer always ends up losing. Figure 1 shows an implicit plot of the difference
in manufacturer a’s profits obtained in games AR and NR with three regions
represented as follows. “UF” denotes the region of the parameter domain for which
at least one of the interior equilibrium conditions in games AR or NR is not
satisfied. “R1” denotes the region where equilibrium solutions are interior and
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Fig. 1 Comparison of manufacturer a’s profits in the AR and NR games (�AR
a −�NR

a )
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�AR
a < �NR

a . “R2” denotes the region where equilibrium solutions are interior
and �AR

a > �NR
a .

As we can see, manufacturer a benefits from unilaterally offering a rebate (region
R2) when the wholesale price is low. Also, R2 is larger for higher levels of the
redemption rates (g) in the feasible domain and is smaller when higher rebate rates
are offered. Further investigation of retail prices at equilibrium shows that when
manufacturer a offers the rebate, the price of its product can increase or decrease
in period 1 while it increases in period 2. The retail price of manufacturer b’s
product decreases in period 1 and increases in period 2. Looking at the effect of
an asymmetric rebate on demand (market share), the rebate leads to higher demand
for product a in period 1 and can either increase or decrease in period 2 with high
levels of w, leading to lower demand and vice versa. These changes in demand and
prices over both periods lead ultimately to the results reported in Fig. 1. In fact, it
shows that the profitability of the rebate for manufacturer a is mainly driven by a
demand expansion effect.

Claim 5b explains the effect of the rebate on the retailers’ profits. It shows that the
retailer whose manufacturer is offering the rebate always gains from such a program
while the competing retailer does not. This shows that manufacturers’ rebates can
offer competitive advantage to retailers.

To interpret the results obtained so far in this section, we consider that the
manufacturers play a strategic game where each can choose whether to offer a rebate
or not. Table 3 summarizes this game in strategic form.

Claim 6 Assuming interior equilibrium solutions in the rebate game, both manu-
facturers do not offer rebates in region R1 of the parameters domain in Fig. 1. In
region R2, both manufacturers offer rebates and face a prisoner dilemma.

Proof Straightforward from Proposition 4 and Claim 5. �
Claim 6 shows that whether manufacturers offer rebates or not depends on the

values of the parameters; w, r and g. In particular, the pricing agreement in the
channel plays an important role in driving the profitability of rebates. When the
manufacturers have pre-set agreements that dictate high enough wholesale prices,
they should not offer rebates to consumers at equilibrium (R1 in Fig. 1). This is
especially true if the consumer redemption rate is very low. However, when low
wholesale pricing agreements exist in the channel, there is always an incentive for
each manufacturer to unilaterally offer the rebate and gain extra profits resulting
from demand cannibalization of the competitor’s market share. Ultimately, this
incentive leads to a prisoner dilemma as both manufacturers end up offering the
rebate at equilibrium and consequently gaining lower profits.

Table 3 Rebate game in
strategic form

Manufacturer a

No rebate Rebate

Manufacturer b No rebate
(
�NR

a ,�NR
b

) (
�AR

a ,�AR
b

)

Rebate
(
�AR

b ,�AR
a

) (
�SR

a ,�SR
b

)
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5 Conclusions

This research investigates the effectiveness of manufacturers’ rebates that are given
to consumers upon buying the product and can be redeemed on the next purchasing
occasion. We develop a two-period game-theoretic model for a two-manufacturer,
two-retailer channel. The market is formed by consumers distributed on a Hotelling
line and wholesale prices are fixed such as the case for long-term contractual
agreements in the channel. We solve three games; a first benchmark scenario where
no rebate is offered, a second game where both manufacturers provide rebates to
consumers, and a third game where one manufacturer offers a rebate to consumers
while the other manufacturer does not.

The findings indicate that whether rebates are offered at equilibrium by com-
peting manufacturers will depend mainly on the wholesale pricing agreement and
the consumer redemption rate. In particular, manufacturers should withhold rebates
when their wholesale prices are high. Alternatively, low wholesale prices combined
with high enough redemption rates lead to a prisoner dilemma situation for the
competing manufacturers. In these conditions, each manufacturer benefits from
unilaterally offering the rebate. This incentive leads both manufacturers to offer the
rebate at equilibrium and consequently lowering their overall profit. For the retailers,
the manufacturers’ rebate leads to losses in the first period due to shrinking margins,
followed by higher margins and profits in the second period. Overall, the retailers
benefit from manufacturers’ rebates.

This research can be extended in many ways. For tractability, we have made
the assumption that the manufacturers and retailers are symmetric. This assumption
can be relaxed to include asymmetry which will result in interesting competitive
reactions over market share. Further, we studied the case where the market is
represented by the Hotelling line. Future research can consider other market
configurations. In particular, the case where the total market size is not fixed can
lead to different insights as rebates could expand the market potential (see Martín-
Herrán and Sigué (2015) for an example of how to model such demand). Finally,
we considered a channel where long-standing wholesale pricing agreements are
implemented. Alternative pricing scenarios can be discussed in future research.
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On the Coordination of Static and
Dynamic Marketing Channels in a
Duopoly with Advertising

Luca Lambertini

Abstract A leitmotiv of the analysis of marketing channels’ behaviour is the
possibility of designing contractual relations so as to replicate the performance of
vertically integrated firms, whenever this is efficient for firms. This is particularly
relevant when the vertical externality provokes distortions in the firms’ incentives to
invest in R&D or advertising. The present model illustrates the possibility of using
two-part tariffs endogenously defined as linear functions of firms’ efforts to sterilize
the vertical externality altogether in a duopoly where firms’ invest in advertising to
increase brand equity. This is done first in a static model and then replicated in the
differential game based upon the same building blocks.

Keywords Supply chain · Vertical relations · Vertical integration · Advertising

1 Introduction

The structure of a firm or a supply chain has been traditionally characterized
as a nexus of contracts, in the literature belonging to both industrial economics
(Williamson 1971; Grossman and Hart 1986) and business and management (Zus-
man and Etgar 1981). This approach has produced its major efforts to understand
how to correct the distortion created by the hold-up problem affecting investment
incentives under vertical separation, either in R&D (Grout 1984; Rogerson 1992;
MacLeod and Malcomson 1993) or in advertising (Jeuland and Shugan 1983, 1988;
Moorthy 1987; Ingene and Parry 1995). Recent extensions rely on the adoption of
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revenue- or cost-sharing contracts (Giannoccaro and Pontrandolfo 2004; Cachon
and Lariviere 2005; Leng and Parlar 2010).1

The backbone of the analysis of supply chains’ strategic interplay in oligopolistic
models is in McGuire and Staelin (1983), Coughlan (1985) and Bonanno and
Vickers (1988). An essential feature of the model investigated in their contributions
is that industry-wide vertical integration (1) may not be the unique equilibrium,
and (2) may not be Pareto-efficient from the firms’ viewpoint. In particular, even
if unique, the pure vertically integrated industry structure can be the outcome of
a prisoner’s dilemma when goods are not sufficiently differentiated, in which case
vertical separation helps sustaining prices compensating the low degree of product
differentiation with double marginalization. If vertical integration is efficient for
firms (or, at least, for suppliers), its performance can be replicated via two-part
tariffs (TPTs).

While the early analysis of supply chains (and their coordination) has focussed
on setups involving the choice of wholesale and market prices, the ensuing literature
has frequently discussed the bearings of other strategic variables, such as, most
frequently, advertising activities. This has been done with elastic market demands
(from Lee and Staelin (1997) and Kim and Staelin (1999), onwards) and inelastic
market demands typically associated with spatial competition models (see Wang
et al. (2011) and Karray (2015), inter alia).

The present contribution is related with the optimal design of two-part tariffs
(TPTs) to coordinate supply chains operating in oligopolistic markets in which
elastic demand functions can be shifted outwards by firms via advertising efforts,
as in the model by Jeuland and Shugan (1983) and its follow-ups, including, in
particular, those of Zaccour (2008) and Lambertini (2014, 2018), where a single
supply chain operates in the market, with firms or divisions investing in advertising
to increase brand equity, through an outward shift of demand. The aim of the ensuing
analysis is to extend the results illustrated in these two papers to a scenario in which
competition is present both upstream and downstream. Indeed, it is shown that,
provided the vertically integrated outcome is efficient for firms, the adoption of a
TPT involving a wholesale price equal to marginal cost and a fixed fee defined as a
linear function of firms’ advertising effort allows a vertically separated supply chain
to replicate the performance of a vertically integrated firm. This holds in the static
and the differential game as well. Additionally, although the model is restricted to
duopolistic competition, this finding intuitively extends to the oligopoly case, with
a generic number of marketing channels supplying the market.

The remainder of the paper is structured as follows. The building blocks of the
model and the static game are illustrated in Sect. 2. Section 3 contains a compact
analysis of the differential game. Concluding remarks are in Sect. 3.

1Exhaustive accounts of the large debate on this matter can be found in Cachon (2003), Ingene and
Parry (2004), Nagarajan and Sošić (2008) and Ingene et al. (2012).
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2 The Static Game

The model describes a market served by two supply chains, in such a way that
there exist (at most) four firms, two upstream suppliers (manufacturers) and two
downstream sellers (retailers). Each supply chain identified by i = 1, 2 offers a
differentiated variety of the same good, whose inverse demand system is defined by

pi = ai − qi − sqj (1)

in which ai is the representative consumer’s reservation (or choke) price, and
s ∈ (0, 1] measures the degree of product substitutability, as in Singh and Vives
(1984). The wholesale price along supply chain i is wi, and the marginal and
average production cost is c ∈ (0, ai), the same in both supply chains. The demand
for variety i can be shifted up by advertising investments carried out by the firms
(under vertical separation) or divisions of the same firms (under vertical integration),
in such a way that

ai = a0 + kiU + kiD (2)

where kiJ , J = D,U is the effort exerted by each division or firm along supply
chain i. Hence, as in Zaccour (2008) and Lambertini (2014), (2) describes a scenario
in which advertising (if any) enhances brand equity by increasing the representative
consumer’s willingness to pay, as measured by the choke price; or, equivalently, by
shifting the demand function outwards, leaving the slope and the degree of product
differentiation unchanged. As in Zaccour (2008), Lambertini (2014) and Lambertini
and Zaccour (2015), the associated cost is C (kiJ ) = bk2

iJ , with b > 0, to guarantee
concavity and account for the presence of decreasing returns in the advertising
activity.2 Leaving aside for the moment the role of TPTs, the profit functions of
the firms/divisions are defined as follows:

πiU = (wi − c) qi − bk2
iU

πiD = (pi − wi) qi − bk2
iD

(3)

so that, under vertical integration, the profits of firm i are

�i = (pi − c) qi − b
(
k2
iU + k2

iD

)
(4)

2The same quadratic functional form is also adopted in several other models discussing advertising
campaigns (see Chu and Desai 1995; Jørgensen et al. 2001; Karray 2015, among many others). Of
course, a linear advertising cost coupled with a concave impact (usually, the square root of the
effort) also ensures concavity while at the same time accounting for decreasing returns (see Kim
and Staelin 1999; Karray and Zaccour 2006).
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Strategic variables are advertising efforts, the wholesale price (under vertical
separation) and the output level.3 Upstream (resp., downstream) firms or divisions
choose wi and kiU (resp., qi and kiD). There exist three possible scenarios: (1)
both channels are vertically integrated; (2) both channels are vertically separated;
(3) one channel is vertically integrated while the other is vertically separated. In
the first case, the game has two-stage structure: firms choose advertising efforts in
the first stage, and then compete in output levels in the second. In the second case,
the game consists of four stages: upstream firms set their own advertising efforts in
the first stage and wholesale prices in the second; then, downstream firms choose
their advertising efforts in the third stage and compete in outputs in the fourth. The
third case also has four stages, except that in the second there is a single player (the
upstream firm along the vertically separated channel) setting its wholesale price
in isolation. Independently of the vertical structure of both channels, the solution
concept is, as usual, subgame perfection attained through backward induction.

2.1 Vertical Integration

This case has the structure of a two-stage game. In the first, the two firms
noncooperatively and simultaneously choose their respective advertising efforts,4

in the second they compete on the market place à la Cournot-Nash. The first order
condition (FOC) for the maximization of (4) w.r.t. qi yields the coordinates of the
downstream equilibrium for any vector of efforts {kiU , kiD}:

qII
i = (a0 − c) (2− s)+ 2 (kiU + kiD)− s

(
kjU + kjD

)

(2+ s) (2− s)
(5)

where superscript II indicates that firms are vertically integrated. The above pair
of outputs must be plugged into the profit functions which are relevant at the first
stage, with each of the four divisions choosing the following symmetric advertising
effort:

kII = 2 (a0 − c)

b (2− s) (2+ s)2 − 4
> 0∀ b >

4

(2− s) (2+ s)2
(6)

with the same condition on b also ensuring qII
i > 0 and concavity. At the subgame

perfect equilibrium,

3I have intentionally assumed quantity to be the relevant market variable, for two unrelated reasons.
The first is that the resulting expressions are slightly more compact, while the second is that the
formal structure and properties of the model, in particular, the emergence of a prisoner’s dilemma,
do not depend on whether retailers (or downstream divisions) are price or quantity setters.
4Profit functions (3) are additively separable in the vector of advertising efforts. Therefore, the
simultaneous and sequential choice of kiU and kiD yield the same equilibrium outcome.
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aII = a0 + 4 (a0 − c)

b (2− s) (2+ s)2 − 4
(7)

and

�II =
b (a0 − c)2

[
b
(
4− s2

)2 − 8
]

[
b (2− s) (2+ s)2 − 4

]2 > 0∀ b >
8

(
4− s2

)2 (8)

Since

8
(
4− s2

)2 >
4

(2− s) (2+ s)2
(9)

for all s ∈ (0, 1], the solution of the vertically integrated case is summarized in the
following

Proposition 1 Provided b > 8/
(
4− s2

)2
, under industry-wide vertical integra-

tion the vector of profit-maximizing advertising efforts is identified by kII =
2 (a0 − c) /

[
b (2− s) (2+ s)2 − 4

]
.

Provided this outcome is the most efficient one for both marketing channels
(which, as we shall see below, may not be true), the task the ensuing analysis has
to perform is to outline the structure of at least one contract allowing the vertically
separated channel to perform as a vertically integrated entity.5

2.2 Vertical Separation

Here we examine the scenario in which both supply chains are vertically separated,
bypassing the detailed exposition of double marginalization for the sake of brevity.
If both supply chains aim at eliminating the vertical externality, they have to design
TPTs so as to replicate the vertically integrated outcome in full. However, unlike
what happens when a single marketing channel supplies the market, if the latter
is oligopolistic the presence of double marginalization might mean good news
from the firms’ standpoint. This fact is known since McGuire and Staelin (1983),
Coughlan (1985) and Bonanno and Vickers (1988), and can be quickly sketched
here on the basis of wholesale prices and outputs only, leaving advertising efforts
out of the picture for a moment.

5Additionally, a few words suffice to stress an aspect which is usually left aside: the presence of
decreasing returns to advertising, embodied in the convex cost functions, implies that it is surely
efficient to smooth investments onto divisions (or separated firms) by Jensen’s inequality.
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In this case, ai = a0 and the vertically integrated case coincides with the duopoly
equilibrium in (Singh and Vives 1984):

qII = a0 − c

2+ s
; π∗V I =

(a0 − c)2

(2+ s)2 (10)

When channels are vertically separated, the equilibrium outcome is

qSS = 2 (a0 − c)

(4− s) (2+ s)
; wSS = a0 (2− s)+ 2c

4− s
> c

πSS
iU + πSS

iD ≡ �SS = 2 (a0 − c)2 (6− s2
)

(4− s)2 (2+ s)2

(11)

where superscript SS indicates that both channels are vertically separated. A little
algebra suffices to verify that qII > qSS for all s ∈ (0, 1] while �II ≥ �SS

for all s ∈ (0, 2/3] and conversely outside this range. The first fact is a direct
consequence of double marginalization, which implies that downstream firms sell
less than vertically integrated entities, at a higher price. Yet, this output restriction
goes along with an increase in price, with pSS > pII for all s ∈ (0, 1]; as soon
as substitutability is large enough, the effect of the price increase outweighs the
corresponding impact of output restriction, thereby generating a reversal in the profit
ranking, in favour of vertical separation. In other words, when differentiation is
low, double marginalization is a remedy to the demand externality (or, equivalently,
to the intensity of market competition) and makes separation more profitable than
integration. This, except for the use of outputs instead of profits in the market stage,
replicates what we know from McGuire and Staelin (1983, p. 124) and Bonanno
and Vickers (1988, pp. 262–263): the adoption of wholesale prices above marginal
cost under vertical separation may represent a quasi-collusive device, which makes
the replication of vertical integration no longer desirable.

Resorting to numerical simulations, it can be shown that the same conclusion
extends to the case in which firms invest in advertising to increase the choke price,
although in such a case the threshold value of s endogenously depends on the
steepness of the advertising cost, i.e., on parameter b. For the sake of brevity, we
may confine ourselves to the equilibrium expressions of outputs and advertising
efforts:

qSS = a0 + kSSiU + kSSiD − wSS

2+ s
(12)

kSSU = 2 (a0 − c)
(
4− s2

) [
b
(
4− s2

)
�− 8

]

b4
(
4− s2

)
(4+ s) (2− s)4 (2+ s)5 + 16

(
12− s2

)+
(13)

kSSD = 4 (a0 − c)
[
b
(
4− s2

)
ϒ − 16

]

b4
(
4− s2

)
(4+ s) (2− s)4 (2+ s)5 + 16

(
12− s2

)+
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where

� ≡ 24+ b
(

4− s2
) [

b
(

4
(

8− 3s2
)
+ s4

)
− 24+ s2

]
(14)

ϒ ≡ 48+ b
(

4− s2
) [

b
(

4
(

16− 5s2
)
+ s4

)
− 48+ s2

]

 ≡ 16b
(

4− s2
)

[s (3s − 2)− 44]+ 2b2
(

4− s2
)2 [

480+ s
(

8 (6− 5s)+ s3
)]

+2b3
(

4− s2
)3

[288+ s (48− s (36+ s (1− s)))] (15)

The conditions for concavity and non-negativity of all the relevant magnitudes are
omitted for the sake of brevity. However, numerical calculations show that they are

systematically met if b > 8/
(
4− s2

)2
. In the same parameter range, it turns also

out that kSSU < kSSD < kII , i.e., the presence of double marginalization reduces the
channel’s incentives to invest, in particular those of the upstream firm.

2.3 The Mixed Case

The asymmetric case in which channel i is a single integrated firm with two
divisions while channel j is vertically separated is, intuitively, more involved,
having a four-stage structure with a single agent setting the wholesale price wj

at the second stage—with the unpleasant consequence that the expressions of all
equilibrium magnitudes are asymmetric and overlong. This subgame is entirely
omitted for brevity, although calculations are available upon request. For later
reference, we may label the resulting equilibrium profits as �IS (for the integrated
firm) and πSI

D + πSI
U ≡ �SI (for the separated channel).

2.4 The Upstream Stage

As in McGuire and Staelin (1983), one may complete the analysis by looking at a
pre-play stage taking place in discrete strategies, integration (I ) and separation (S).
This task can be performed from two alternative standpoints, that of supply chains
or that of upstream firms (or, manufacturers). The first case is portrayed by Matrix 1.

2
I S

1 I �II ,�II �IS,�SI

S �SI ,�IS �SS,�SS

Matrix 1
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Leaving aside the measure of initial market size (a0 − c) , which only exerts a
pure scale effect on all profits alike, numerical simulations on parameters b and s

accounting for concavity and non-negativity conditions show that �II > �SI and
�IS > �SS everywhere, while �II > �SS for all s ∈ (0, s̃) , while �II ≤ �SS

for all s ∈ [̃s, 1], as it appears from the relationship between channel profits and
product substitutability drawn in Fig. 1.

The critical threshold of substitutability increases in the steepness of the adver-
tising cost function, with s̃ ∈ [0.528, 2/3) for b ∈ [2,∞).6 These findings imply
the following:

Proposition 2 From the supply chains’ standpoint, (I, I ) is the unique pure-
strategy Nash equilibrium of the upstream stage, attained at the intersections of
dominant strategies. If product differentiation is high enough, it is also privately
efficient. Otherwise, it is the outcome of a prisoner’s dilemma.

The analysis of this case reveals that switching from price to quantity competition
makes a difference, generated by the softness of Cournot behaviour as compared to
Bertrand’s: in McGuire and Staelin (1983, p. 124) the fully integrated outcome is an
equilibrium for all degrees of differentiation, while vertical separation emerges as
an equilibrium when differentiation is low, the reason being that double marginal-
ization helps suppliers sustain higher prices when differentiation is insufficient.

Fig. 1 Channel profits and
product substitutability

6The lower bound to b has been chosen so as to satisfy all concavity and non-negativity
requirements. It is also worth noting that the asymptotic value of s̃ as b tends to infinity coincides
with that identified in Sect. 2.2 in absence of advertising. This is due to the fact that all equilibrium
advertising efforts are monotonically decreasing in b, with limb→∞ kII , kSSU , kSSD = 0.
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The second perspective is portrayed in Matrix 2, where the relevant players are
the two upstream firms and therefore profits are either those generated by the entire
supply chain when at least one firm is vertically integrated or those of the sole
supplier.

U2

I S

U1 I �II ,�II �IS, πSI
U

S πSI
U ,�IS πSS

U , πSS
U

Matrix 2

Here �II > πSI
U , �IS > πSS

U and �II > πSS
U for all b and s, implying

Proposition 3 From the suppliers’ standpoint, (I, I ) is the unique pure-strategy
Nash equilibrium of the upstream stage, attained at the intersections of dominant
strategies. It is privately efficient for all s ∈ (0, 1].

Also in this case, Cournot competition makes a difference (for the aforemen-
tioned reason) with respect to the findings illustrated in McGuire and Staelin (1983,
p. 123), whereby under Bertrand competition industry-wide vertical integration is
indeed the unique equilibrium but the upstream stage equivalent to Matrix 2 is a
prisoner’s dilemma when product substitutability is high.

2.5 The Two-Part Tariff

We are now in a position to deal with the case in which industry-wide vertical
integration is efficient for firms, in particular, when it is so from the supply chains’
standpoint. This happens for s ∈ (0, s̃), in which case vertically separated firms
would like to replicate the performance of vertically integrated firms through an
appropriate contractual design coordinating vertically separated channels. As shown
by Zaccour (2008), the classical TPT with wi = c accompanied by an exogenous
fixed fee F cannot do the job. Although this result was obtained in a model
envisaging the presence of a single marketing channel, it clearly holds true here
as well. Consequently, one may follow Lambertini (2014, 2018) and propose an
endogenous TPT defined by wi = c and Fi = xi + yikiU , in such a way that the
profits of the firms involved in supply chain i write as follows:

πiU = −bk2
iU + xi + yikiU

πiD = (pi − c) qi − bk2
iD − xi − yikiU

(16)

where auxiliary variables xi and yi are to be determined so as to (1) replicate the
performance of a vertically integrated supply chain and (2) assigning profits to firms
along the supply chain (thus reflecting the spirit of the original approach to TPTs).
Moreover, looking at πiU , it appears that the reason for adopting such a TPT is
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that of restoring the concavity of the upstream firm’s profit function and therefore
also the same firm’s incentive to invest in advertising, which would disappear
altogether should the traditional TPT be adopted. Last but not least, the effect of this
unconventional TPT has some elements in common with the concept of potential
function and its arising in potential games (Monderer and Shapley 1996), as here
the TPT has the task of reproducing the same FOCs and therefore also the same
equilibrium as under vertical integration. We may look at the optimal advertising
effort of upstream firms,

kT PT
iU = 1

2b

⎡

⎣yi + 4zi
(
1− b

(
4− s2

))

b
(
4− s2

) (
8− b

(
4− s2

)2)− 4

⎤

⎦ (17)

to find out that kT PT
iU = kII in correspondence of

y∗ = 4b (a0 − c)

b (2− s) (2+ s)2 − 4
(18)

which also ensures kT PT
iD = kII . Given that, by construction, equilibrium outputs

are defined as in (5), adopting y∗ allows firms to replicate also the sales volumes
and the total profits of vertically integrated firms with the same cost structure. As
anticipated above, the only remaining magnitude, xi, has to be negotiated upon
to distribute profits along the channel, as firms’ profits at the symmetric subgame
perfect equilibrium are

πTPT
U = 4b (a0 − c)2

[
b (2− s) (2+ s)2 − 4

]2 + x

πT PT
U =

b (a0 − c)2
[
b
(
4− s2

)2 − 12
]

[
b (2− s) (2+ s)2 − 4

]2 − x

(19)

The analysis carried out in this subsection boils down to

Proposition 4 For all s ∈ (0, s̃) , the vertically separated marketing channel may
replicate the performance of the vertically integrated firm through the adoption of a
TPT defined as an appropriate function of the upstream firm’s advertising effort.

Of course the same result can be reached along other routes, as already shown in
Lambertini (2014, 2018). An obvious one is to make the fixed fee a function of the
advertising effort of both firms along the same channel, whereby Fi = xi + yikiU +
zikiD, but the foregoing analysis implies that the presence of the downstream firm’s
investment is redundant.
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3 The Differential Game

If the game takes a properly dynamic structure, the building blocks of the model
remain the same as in the previous section, except that all the relevant functions
evolve over time, choke prices become state variables and the advertising tech-
nology (2) must be replaced by state equations. Assume the game unravels over
continuous time t ∈ [0,∞) , and the dynamics of state i is

·
ai (t) = kiU (t)+ kiD (t)− δai (t) (20)

where δ > 0 is a time-invariant decay rate common to both states. The above
dynamics states that both firms or divisions located along the marketing channel
may contribute to the increase in demand (or brand equity) by shifting up the
reservation price, and do so with the same effectiveness (since both efforts enter
(20) with the same coefficient, which is set equal to one by an appropriate choice of
units, and without further loss of generality).

Except for the presence of the time argument, instantaneous demand and profit
functions are defined as in (1) and (3)–(4), respectively. Firms (or divisions)
noncooperatively maximize their discounted profit flows using the same time-
invariant discount rate ρ, under the constraint posed by (20).7

As in the static setup, we may first take a look at the main features of the vertically
integrated case.

3.1 Vertical Integration

The Hamilton-Jacobi-Bellman (HJB) equation of firm i is

ρVi

(
ai (t) , aj (t)

) = max
qi (t),kiU (t),kiD(t)

{
[pi (t)− c] qi (t)− b

[
k2
iU (t)+ k2

iD (t)
]
+

V ′
ii

(
ai (t) , aj (t)

) ·
ai (t)+ V ′

ij

(
ai (t) , aj (t)

) ·
aj (t)

}
(21)

where V ′
ij ≡ ∂Vi

(
ai (t) , aj (t)

)
/∂aj (t), i, j = 1, 2. From (21), one obtains the

following FOCs:

ai (t)− c − 2qi (t)− sqj (t) = 0 (22)

V ′
ii

(
ai (t) , aj (t)

)− 2bkiU (t) = 0 (23)

7It is worth stressing that, should divisions along the same supply chain cooperate, i.e., maximize
joint profits, this would obviously replicate the outcome of the vertically integrated case.
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V ′
ii

(
ai (t) , aj (t)

)− 2bkiD (t) = 0 (24)

which of course imply that the resulting Cournot-Nash equilibrium has a quasi-static
nature:

q∗i (t) = 2ai (t)− saj (t)− c (2− s)

4− s2 (25)

and guessing a linear-quadratic value function (since the game has a linear-quadratic
form)

Vi

(
ai (t) , aj (t)

) = ε1a
2
i (t)+ ε2a

2
j (t)+ ε3ai (t) aj (t)+ ε4ai (t)+ ε5aj (t)+ ε6

(26)
one has that V ′

ii

(
ai (t) , aj (t)

) = 2ε1ai (t)+ε3aj (t)+ε4 and V ′
ij

(
ai (t) , aj (t)

) =
2ε2aj (t)+ ε3ai (t)+ ε5 and, therefore,

kV I
iJ (t) = 2ε1ai (t)+ ε3aj (t)+ ε4

2b
; J = D,U (27)

Then, plugging quantities (25) together with the optimal advertising efforts (27)
into the HJB equation (21) and simplifying the latter, one can write the system of
six algebraic Riccati equations whose solution identifies the vector of coefficients
{ε1, ε2, ε3, ε4, ε5, ε6}. As it commonly happens (except in special cases, as in Wirl
(2010)) in LQ games with more than one state variable, solving the system of
Riccati equations may require the use of trigonometric relations between pairs of
undetermined coefficients and this, in turn, heavily limits both the interpretation
and the application of the solution itself (see, e.g., Reynolds 1987). The source of
this problem can be briefly illustrated, as the system of Riccati equations is solvable
up to the coefficient ε3 pertaining to the product of the two states. The sequence of
solutions is

ε6 = ε4 (ε4 + 2ε5)+ 2bc2

2bρ (2+ s)2
(28)

ε5 = 2bcs + ε4 (2ε2 + ε3) (2− s) (2+ s)2

(2− s) (2+ s)2 [b (δ + ρ)− 2ε1]
(29)

ε4 = 2bc [2b (δ + ρ)− 4ε1 − sε3]

2ε1 [2ε1 + ε3 − 2b (δ + ρ)]− ε3 (2ε2 + ε3)+ b (δ + ρ) [b (δ + ρ)− ε3]
(30)

ε3 = 4bs
(
4− s2

)2
[2 (2ε1 + ε2)− b (2δ + ρ)]

(31)



On the Coordination of Static and Dynamic Marketing Channels in a Duopoly. . . 69

Then, the two remaining equations simplify as follows:

2a2
i

[

b

(
4+ ε1

(
4− s2

)2
(2δ + ρ)

)
+ 2

(
4− s2

)2
(

ε2
1 +

bs2�
(
4− s2

)2

)]

(32)

a2
j

[
−8ε1ε2

(
4− s2

)2 + 2b

(
ε2

(
4− s2

)2
(2δ + ρ)− s2 (1+�)

)]
(33)

where

� ≡ 8b
(
4− s2

)2
[2 (2ε1 + ε2)− b (2δ + ρ)]2

(34)

Now, noting that ε4
1 and ε3

2 appear, respectively, in (32) and (33), the analytical
solution can be drawn resorting to trigonometric functions as in Reynolds (1987);
otherwise, one may revert to numerical methods to solve (21). Either way, the
resulting solutions are not easy to interpret or to use.

However, the aim of the present analysis is not that of delivering the full
analytical characterization of feedback solutions for the vertically integrated and
separated industries, but rather that of showing how to design the TPT in order
to ensure that the two solutions coincide. As in the static setup, this shares some
essential features with the concept of potential game (see Dragone et al. 2015).
With this in mind, we may turn to the vertically separated case.

3.2 Vertical Separation

If the two marketing channels are vertically separated, the two firms operating along
channel i = 1, 2 must solve, respectively:

ρViU

(
ai (t) , aj (t)

) = max
wiU (t),kiU (t)

{
[wi (t)− c] qi (t)− bk2

iU (t)+

V ′
iUi

(
ai (t) , aj (t)

) ·
ai (t)+ V ′

iUj

(
ai (t) , aj (t)

) ·
aj (t)

}
(35)

ρViD

(
ai (t) , aj (t)

) = max
qiD(t),kiD(t)

{
[pi (t)− c] qi (t)− bk2

iD (t)+

V ′
iDi

(
ai (t) , aj (t)

) ·
ai (t)+ V ′

iDj

(
ai (t) , aj (t)

) ·
aj (t)

}
(36)

when playing noncooperatively. In (35)–(36), V ′
iJj ≡ ∂ViJ

(
ai (t) , aj (t)

)
/∂aj (t),

with i, j = 1, 2 and J = D,U .
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If instead they want to replicate the performance of the vertically integrated
firms—because it is privately efficient to do so—they may design a contract speci-
fying the two components of the TPT as wi (t) = c and Fi (t) = xi+yi (t) kiU (t)+
zi (t) kiD (t) and then solve the feedback game by backward induction, starting with
the characterization of the solution at the downstream stage, whose FOCs yield the
same output levels as in (25) and8

kT PT
iD = V ′

iDi

(
ai, aj

)− zi

2b
(37)

Since the wholesale price is set at marginal cost, the solution of the upstream stage
confines to finding the optimal advertising efforts, which correspond to

kT PT
iU = V ′

iUi

(
ai, aj

)− yi

2b
(38)

Given that optimal outputs (25) are defined in the same way in the two scenarios,
the replication of the vertically integrated equilibrium requires kT PT

iD = kT PT
iU =

kV I
iJ , which in turn implies V ′

iDi

(
ai, aj

) − zi = V ′
iUi

(
ai, aj

) − yi = V ′
ii

(
ai, aj

)
.

More explicitly, suppose

ViD

(
ai, aj

) = γ 1a
2
i + γ 2a

2
j + γ 3aiaj + γ 4ai + γ 5aj + γ 6 (39)

ViU

(
ai, aj

) = η1a
2
i + η2a

2
j + η3aiaj + η4ai + η5aj + η6 (40)

so that V ′
iDi

(
ai, aj

) = 2γ 1ai + γ 3ai + γ 4 and V ′
iUi

(
ai, aj

) = 2η1ai + η3ai + η4
and therefore (37)–(38) can be rewritten as follows:

kT PT
iD = 2γ 1ai + γ 3ai + γ 4 − zi

2b
kT PT
iU = 2η1ai + η3ai + η4 + yi

2b

(41)

Now it is immediate to check that

kV I
iJ − kT PT

iD = 2
(
ε1 − γ 1

)
ai +

(
ε3 − γ 3

)
aj + ε4 − γ 4 + zi

2b
= 0 (42)

in zi = γ 4 − 2
(
ε1 − γ 1

)
ai −

(
ε3 − γ 3

)
aj − ε4 and

kV I
iJ − kT PT

iU = 2
(
ε1 − η1

)
ai +

(
ε3 − η3

)
aj + ε4 − η4 − yi

2b
= 0 (43)

8Henceforth, the time argument will be omitted for the sake of brevity.
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in yi = 2
(
ε1 − η1

)
ai +

(
ε3 − η3

)
aj + ε4 − η4.

The analysis carried out in this section can be summarized by formulating the
following.

Proposition 5 In a dynamic duopoly with vertically separated firms investing in
advertising to increase choke prices, the vertically integrated outcome—if privately
efficient—can be reproduced through TPTs whose fixed fee is linear in advertising
controls.

Of course, once again the corresponding systems of algebraic Riccati equations
generated by the HJB equations of firms along either marketing channel might not
be solvable (as is the case here) unless one finds a suitable set of trigonometric
functions establishing pairwise relations between undetermined coefficients. How-
ever, the foregoing procedure illustrates the existence of a solution (possibly not
the only one, as is the case in the static game) to the problem generated by the
vertical externality created by double marginalization, irrespective of whether the
fully analytical solution of the HJB equations remains out of reach. Moreover, the
equivalent of system (42)–(43) can be replicated for a generic oligopoly, i.e., for
any number of marketing channels or vertically integrated firms.

4 Concluding Remarks

The models illustrated above show that the adoption of TPTs contemplating
endogenous fixed fees defined as a function of firms’ controls (as here) or states (as
in Lambertini 2014) may drive the replication of the vertically integrated outcome
also when oligopolistic competition takes place in an industry, although in such
settings double marginalization may be welcome on the part of firms when product
differentiation is low enough.

Leaving aside the existence of a contract (or a set of alternative contracts)
reproducing the vertically integrated equilibrium, two last considerations are in
order. On the one hand, the intrinsic limit of the analysis carried out in games like the
above one seems not to be the applicability of the remedy to double marginalization
and the resulting hold-up problem but, rather, the analytical treatment of the Bellman
equations of the feedback game, even in settings defined in a linear-quadratic
form, as the one used in this paper. On the other hand, however, the foregoing
analysis illustrates a method for designing TPTs able to eliminate (if necessary)
the vertical externality which is altogether independent of specific elements, for
instance, a given shape of the demand system, which may not be linear. That is,
the same procedure intuitively holds as well in case of parabolic (and therefore
isoelastic) demand functions, as in Lambertini (2010). Likewise, the assumption of
full symmetry could be abandoned to generalize the analysis to firms endowed with
asymmetric brand equity stocks or asymmetric advertising technologies (or state
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equations). Except for the unavoidable additional complication in calculations, the
procedure illustrated in Sects. 2 and 3 could be replicated step by step.
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Product Recalls and Channel Pricing

Olivier Rubel

Abstract We propose a stochastic differential game between a manufacturer and a
retailer to investigate how the risk of facing a product recall impacts pricing strate-
gies in marketing channels. By doing so, we analyze whether vendor agreements
between manufacturers and retailers, which are signed before any unit is sold, could
distort channel profits by aggravating double marginalization. We characterize the
equilibrium pricing strategies in closed form for both linear and quadratic costs of
recall. We find that the manufacturer and the retailer respond differently to certain
clauses of the vendor agreement, but that in equilibrium, such agreements do not
distort channel profit, even when costs of recall are quadratic.

Keywords Marketing channel · Pricing · Product recall · Stochastic differential
games

1 Introduction

Product recalls hurt not only manufacturers, but also the retailers that carry the
recalled products. To protect themselves against recall costs, retailers often require
sellers to sign vendor agreements that define ex ante how manufacturers will
reimburse retailers’ expenses related to recalls. In the USA for instance, Safeway
specifies that “Seller shall be responsible for all reasonable costs and expenses
associated with the recall.”1 Other retailers are even more specific and provide a
breakdown of recalls costs, which are usually divided into two categories, i.e., cost
of goods sold and other administrative and logistical costs. Albertsons companies,

1https://suppliers.safeway.com.
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for example, define the cost of goods as “number of units × cost,” whereas
Kroger details that “Cost of goods will be billed using the most recent FCB cost
times the number of retail units submitted through the Quick Recall application.”2

Meanwhile, Albertsons companies specify that recall/withdrawal logistics costs
include retailer labor fee ($40/store), reclamation fee ($0.84/unit), hazardous
material fee ($0.84/unit), and warehouse recovery fee ($40/case).

Even though such contractual agreements are common in practice, there is no
study, to the best of our knowledge, that investigates how they would impact channel
pricing strategies and most importantly profits. Despite being rich, the literature on
product recalls (e.g., Dawar and Pillutla 2000; Roehm and Tybout 2006; Van Heerde
et al. 2007; Rubel et al. 2011; Liu and Shankar 2015; Borah and Tellis 2016; Eilert
et al. 2017; Rubel 2017) does not provide any insight on how manufacturers and
retailers should strategically set prices in marketing channels when product recalls
can occur. In particular, it is unclear how contractual agreements demanded by
retailers from manufacturers improve or degrade profits.

To investigate such issues, we propose a stochastic differential game between
a manufacturer and a retailer. The game is stochastic because the time at which
the recall will take place is unknown. In such contexts, the manufacturer sets
the wholesale price and the retailer sets the retail price paid by consumers. The
proposed model considers two state variables. The first state variable is the number
of products that must be recalled when the crisis occurs, as in Rubel (2017), which
will determine the logistics costs faced by the manufacturer and the retailer. The
second state variable keeps tracks of the financial transfer that will take place
between the channel partners with respect to the “cost of goods” clause.

We derive the optimal pricing strategies and value functions in closed forms
for both linear and quadratic costs, which allows to obtain several insights. We
first find that the manufacturer and the retailer respond differently to clauses in
the vendor agreement. For instance, we find that the equilibrium retail price does
not vary whether the “cost of goods” clause is included or not in the vendor
agreement, whereas the wholesale price does. Furthermore, we find that when the
costs of recalls are linear, the optimal pricing strategies are constant over time and
do not depend on accumulation of units that would have to be recalled when a
crisis happens. Conversely, when the costs of recalls are quadratic, firms should
implement dynamic pricing strategies that vary with the number of units that would
have to be recalled when a crisis happens. We find, however, that in this case
the retailer and the manufacturer could respond differently. Specifically, while the
retailer would always increase the retail price as the number of units to be recalled
increases, we find that the manufacturer can increase or decrease the wholesale
price. Finally, we find that vendor agreements do not alter total channel profits,
but serve as a way to allocate costs between the two channel partners. Our results
thus add to the literature on product recalls by considering the decentralized channel
structure and its impact on pricing strategies when envisioning a product harm crisis.

2https://www.thekrogerco.com/.

https://www.thekrogerco.com/
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We also contribute to the differential games literature in marketing (e.g., Jørgensen
and Zaccour 2004; Breton et al. 2006; Martin-Herran et al. 2008; Rubel 2013) and
in particular on marketing channels (e.g., Jørgensen et al. 2000; Rubel and Zaccour
2007; Zaccour 2008) by investigating the interplay between pricing strategies and
uncertain product recalls.

In the next section, we present the model. In Sect. 3, we present our results when
costs of recall are linear and in Sect. 4, we provide new insights when costs of recall
are quadratic. Finally, we conclude in Sect. 5.

2 Model

We consider a dynamic marketing channel comprised of a manufacturer and a
retailer. Time (t) is continuous with t ∈ [0, T ], where T is the uncertain time
at which the manufacturer’s products have to be recalled because of the potential
harm products could impose on consumers. Thus T is a random variable that is
characterized by the stochastic process {�(t) : t ≥ 0} defined as follows:

lim
dt→0

P [�(t + dt) = 1|�(t) = 0]
dt

= χ, lim
dt→0

P [�(t + dt) = 0|�(t) = 1]
dt

= 0,

(1)
where χ is the intensity of the jump process governing T (see, e.g., Haurie and
Moresino 2006).

Demand for the manufacturer’s product q(p) is assumed to be linear such that

q(p) = v − α × p, (2)

with v > 0, α > 0 and where p is the retail price chosen by the retailer. Our first
state variable is the volume of units that must be recalled at the time of recall, i.e.
x(T ), such that its dynamics is

dx

dt
= q(p)− δx(t), (3)

with x(0) = 0. Similar to Rubel (2017), we note that the total number of units to be
recalled is not necessarily equal to cumulative sales due to possible attrition, which
we capture through δ > 0. The second state variable that we consider is the financial
transfer that the manufacturer will pay to the retailer to cover the costs of goods sold,
i.e., B(T ), such that

dB

dt
= q(p)× w × E(θ(t)), (4)

with B(0) = 0 and where w is the manufacturer’s wholesale price. Furthermore,
E(θ(t)) captures the expected proportion of goods sold at time t , i.e., q(.), that will
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be recalled. Specifically, due to the parameter δ in (3), not all products sold will be
recalled; the volume of goods recalled depends on δ and the uncertain time at which
the recall is issued such that θ(t) = q(p(t))× e−δ(T−t), where T and consequently
T − t is a random variable. As a result, E(θ(t)) = χ

δ+χ
, which is equal to 1 when

δ = 0, as it should be.
The manufacturer’s and retailer’s objective functions are defined as

�M(t, x, B) = E�

{∫ T

0
e−rt q(p)× (w − c)dt − (B(T )+ κMx(T )) e−rT

}
,

(5)
and

�R(t, x, B) = E�

{∫ T

0
e−rt q(p)× (p − w)dt − (−B(T )+ κRx(T )) e−rT

}
,

(6)
respectively, where r is the discount rate, c is the manufacturer’s marginal cost of
production, and κi is the cost parameter of player i = {M,R} related to the recall.
Recall that an important clause of vendor agreements pertains to the logistical costs
engendered by the recall of x units. Specifically, such clauses specify how much of
the retailer’s recall costs will be reimbursed by the manufacturer. Formally, such a
clause is equivalent to writing κM = kM +φkR and κR = (1−φ)kR , where kM and
kR are the actual costs incurred by both channel partners and where 0 < φ < 1 is
the share of the retailer’s costs that is reimbursed by the manufacturer. For instance,
setting φ to one, i.e., the manufacturer covers all the costs of the retailers, implies
that κR = 0.

To solve the stochastic problems faced by the manufacturer and the retailer,
we rewrite their respective objective functions as infinite horizon deterministic
problems via integration by parts (see, e.g., Haurie and Moresino 2006; Rubel 2013),
such that (5) and (6) become

�M(x,B) =
∫ ∞

0
e−(r+χ)t {q(p)× (w − c)− χ (B + κMx)} dt, (7)

and

�M(x,B) =
∫ ∞

0
e−(r+χ)t {q(p)× (p − w)− χ (−B + κRx)} dt, (8)

respectively. Assuming that the manufacturer and the retailer play Stackelberg, with
the retailer as the follower, we define the retailer’s value function as JR(x) =
Max

p
�R for any wholesale price w announced by the manufacturer. Consequently,

the retailer’s Hamilton-Jacobi-Bellman (HJB) equation is
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(r + χ)JR(x, B) = Max
p

{
q(p)× (p − w)− χ (−B + κRx)

+ ∂JR

∂B

(
q(p)w

χ

δ + χ

)
+ ∂JR

∂x
(q(p)− δx)

}
. (9)

Differentiating (9) with respect to p and equating the resulting equation to zero
yields that the retailer’s optimal pricing strategy is

p∗ = v + w × α

2α
− 1

2
×
(
w × χ

δ + χ
× ∂JR

∂B
+ ∂JR

∂x

)
, (10)

where v+w×α
2α is the static retail price and 1

2 ×
(
w × χ

δ+χ
× ∂JR

∂B
+ ∂JR

∂x

)
is the

additional term that adjusts the retail price in anticipation of the product recall. Next,
we replace the retailer’s pricing strategy (10) in the manufacturer’s value function
JM(x) = Max

w
�M , such that the manufacturer’s HJB equation is

(r + χ)JM(x, B) = Max
w

{
q(p∗)× (w − c)− χ (B + κMx)

+ ∂JM

∂B

(
(v − αp∗) wχ

δ + χ

)
+ ∂JM

∂x
(v − αp∗)

}
. (11)

Differentiating (11) with respect to w and equating the resulting expression to zero
yields that

w∗ =
v + α

(
c + ∂JR

∂x
− ∂JM

∂x

)
+ χ

δ+χ
×
(
∂JM
∂B

(
v + α ∂JR

∂x

)
+ α ∂JR

∂B

(
∂JM
∂x

− c
))

2α ×
(

χ
δ+χ

× ∂JR
∂B

− 1
)
×
(

χ
δ+χ

∂JM
∂B

+ 1
) .

(12)

3 Results

To characterize the retailer’s value function, we first replace (10) in (8), then replace
w by w∗ in the resulting expression. Similarly, to characterize the manufacturer’s
value function, we first replace (10) in (11), then replace w by w∗ in the resulting
expression. Next, owing to its structure, we note that the game played by the retailer
and the manufacturer is of the linear-state variety and thus conjecture that

JM(x, B) = M1 +M2B +M3x and JR(x, B) = R1 + R2B + R3x, (13)
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where M1, M2, M3, R1, R2, and R3 solve the following system of equations

(r + χ)M1 =

− (α(c(
χ

δ+χ
R2 − 1)+ χ

δ+χ
M2R3 + χ

δ+χ
M3(−R2)+M3 + R3)+ χ

δ+χ
M2v + v)2

8α( χ
δ+χ

M2 + 1)( χ
δ+χ

R2 − 1)

(r + χ)M2 = −χ

(r + χ)M3 = −M3δ − κMχ

(r + χ)R1 =
(α(c(

χ
δ+χ

R2 − 1)+ χ
δ+χ

M2R3 + χ
δ+χ

M3(−R2)+M3 + R3)+ χ
δ+χ

M2v + v)2

16α( χ
δ+χ

M2 + 1)2

(r + χ)R2 = χ

(r + χ)R3 = −R3δ − κRχ.

As a result, we obtain the following proposition.

Proposition 1 The manufacturer’s and retailer’s value functions are

JM(x, B) = M1 +M2B +M3x and JR(x, B) = R1 + R2B + R3x, (14)

with M1 = (αc(δ+ρ+χ)+αχ(κM+κR)−v(δ+ρ+χ))2

8α(ρ+χ)(δ+ρ+χ)2 , M2 = − χ
δ+χ

, M3 = − κMχ
δ+χ+ρ

, R1 =
M1
2 , R2 = χ

δ+χ
and R3 = − κRχ

δ+χ+ρ
.

As a result, the optimal wholesale and retail prices are

w∗ = (δ + χ)(ρ + χ)((v + αc)(δ + ρ + χ)+ αχ(κM − κR))

2α(δ + ρ + χ)(δ(ρ + χ)+ ρχ)
(15)

and

p∗ = αc(δ + ρ + χ)+ αχ(κM + κR)+ 3v(δ + ρ + χ)

4α(δ + ρ + χ)
, (16)

respectively.

Corollary 1 If the vendor agreement were not to include a clause on the cost of
goods sold, the manufacturer’s and retailer’s value functions would be such that
M2 = R2 = 0, and as a result, the optimal pricing strategies become
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w̃∗ = (v + αc)(δ + ρ + χ)+ αχ(κM − κR)

2α(δ + ρ + χ)
(17)

and

p̃∗ = αc(δ + ρ + χ)+ αχ(κM + κR)+ 3v(δ + ρ + χ)

4α(δ + ρ + χ)
. (18)

Proposition 1 and its corollary allow us to derive several insights. We first learn that
the manufacturer and the retailer respond differently to the clauses of the vendor
agreement since the optimal pricing strategies are such that the optimal retail price
should not change due to the inclusion of the cost of goods clause, whereas the
optimal wholesale price should; formally,

p̃∗ = p∗ whereas w̃∗ < w∗.

From a managerial perspective, these two relationships mean that even though the
manufacturer increases the wholesale price in response to the inclusion of the clause
on the cost the goods sold, the retailer does not. This result is surprising as economic
intuition would have suggested that the retailer should have instead increased the
retail price in response to a higher wholesale price.

The second new insight that Proposition 1 reveals is that the vendor agreement
does not distort the total channel profit JD = JM + JR . Instead, it only reallocates
profit (and costs) between the two channel partners in case of a recall, as it should
be. To see this point, we first consider the impact of clause related to the cost of
goods sold on the total channel profit. Specifically,

JD = 3

2
M1 − (kM + kR)

χ

δ + r + χ
x,

which implies that ∂JD
∂B

= 0. Furthermore, we recall that the second clause that is
usually included in vendor agreements pertains to the logistical costs engendered
by the recall of x units and how much of the retailer’s costs are supported by the
manufacturer, i.e., 0 < φ < 1. In equilibrium, it is interesting to note that

∂JD

∂φ
= dJD

dφ
= 0,

not only because ∂M1
∂φ

= 0, but also because ∂x
∂φ

= 0 since the equilibrium price
p∗ does not vary with φ. Therefore, one important finding from Proposition 1 and
its corollary is that vendor agreements do not distort channel profit by aggravating
double marginalization, a finding that is absent from the extant literature on channel.



82 O. Rubel

4 Equilibrium Under Quadratic Recall Costs

We now analyze the case where costs of recall are quadratic in x, i.e., κMx2 and
κRx

2. As a result, the retailer’s HJB equation, for any w, is

(r + χ)JR(x, B)

= Max
p

{
q(p)× (p − w)− χ

(
−B + κRx

2
)
+ ∂JR

∂B

dB

dt
+ ∂JR

∂x

dx

dt

}
.

(19)

The first order condition for (19) yields that

p∗ = v + w × α

2α
− 1

2
×
(
w × χ

δ + χ
× ∂JR

∂B
+ ∂JR

∂x

)
. (20)

We then write the manufacturer’s HJB as

(r + χ)JM(x, B) = Max
w

{
q(p∗)× (w − c)− χ

(
B + κMx2

)

+ ∂JM

∂B

(
(v − αp∗) wχ

δ + χ

)
+ ∂JM

∂x
(v − αp∗)

}
. (21)

The first order condition for the manufacturer’s optimal wholesale price yields that
w∗ is identical to (12), as it should be. We then replace the optimal strategies
in the HJB equations and note that owing to the linear-quadratic structure of the
Stackelberg game, we posit that

JM(x, B) = N0+N1x+N2

2
x2+N3B and JR(x, B) = S0+S1x+ S2

2
x2+S3B,

(22)
where (ρ + χ)S3 = χ �⇒ S3 = χ

χ+ρ
and (ρ + χ)N3 = −χ �⇒ N3 = − χ

χ+ρ
,

and where the other coefficients solve the system of equations

χ + ρ

2
N2 = α (N2 + S2)

2

8
− δN2 − κMχ (23)

χ + ρ

2
S2 = α (N2 + S2)

2

16
− δS2 − κRχ (24)

(χ + ρ)N1 = (N2 + S2) (v + α(N1 + S1 − c))

4
−N1δ (25)

(χ + ρ)S1 = (N2 + S2) (v + α(N1 + S1 − c))

8
− S1δ (26)
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(χ + ρ)N0 = (v + α (N1 + S1 − c))2

8α
(27)

(χ + ρ)S0 == (v + α (N1 + S1 − c))2

16α
. (28)

Proposition 2 Under quadratic costs, the value functions of the manufacturer and
the retailers are

JM(x, B) = N0+N1x+N2

2
x2+N3B and JR(x, B) = S0+S1x+ S2

2
x2+S3B,

(29)
respectively, with

N3 =− χ

r + χ
, S3 = −N3, N2 = αY 2 − 8κMχ

4 (2δ + r + χ)
, S2 = αY 2 − 16κRχ

8 (2δ + r + χ)
,

(30)

N1 =− 2(v − αc)
(
3αY 2 − 16χ(κM + κR)

)

9α2Y 2 − 16(4(δ + r + χ)(2δ + r + χ)+ 3αχ(κ1 + κ2))
(31)

S1 =N1

2
, N0 =

(
v − cα + α 3N1

2

)2

8α(r + χ)
, S0 = N0

2
, (32)

with Y =
4
(

2δ + r + χ −√3(κM + κR)αχ + (2δ + r + χ)2
)

3α
. (33)

As a result, the optimal pricing strategies are

w∗ = (2(v + cα)−N1α)(r + χ)

4αr
+ (S2 −N2)(r + χ)

2r
× x (34)

p∗ =6v + 2cα − 3N1α

8α
− N2 + S2

4
× x (35)

Proof Applying the method of undetermined coefficients to identify the values of
the coefficients revealed that Y could take two values, i.e.,

4
(

2δ + r + χ +√3(κM + κR)αχ + (2δ + r + χ)2
)

3α

and

4
(

2δ + r + χ −√3(κM + κR)αχ + (2δ + r + χ)2
)

3α
,

We keep the second root to ensure convergence to a stable steady state. �
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Proposition 2 displays how the manufacturer and the retailer should dynamically
vary their prices based on the volume of units that should be recalled in the event of
a crisis. Such pricing strategies depart from those obtained in Proposition 1 where
optimal pricing strategies were constant. Given the feedback structure of the pricing
strategies in Proposition 2, we learn that the manufacturer and the retailer could
respond differently to changes in x. Specifically, it is apparent from Proposition 2
that the optimal retail price always increases as x increases since N2 + S2 < 0, i.e.,
∂p∗
∂x

> 0. Conversely, however, the optimal wholesale price can either decrease or
increase as x increases, since

S2 −N2 =4
(
3αχ(κM − 2κR)− (2δ + r + χ)2

)

9α(2δ + r + χ)

+ 4
√
(2δ + r + χ)2 + 3αχ(κM + κR)

9α
,

which could be positive or negative depending on parameters’ values.3

Finally, Proposition 2 allows us to confirm that even when recall costs are
quadratic in the number of units, the vendor agreement does not distort the total
channel profit JD = JM + JR , since ∂JD

∂B
= ∂JD

∂φ
= 0.

5 Concluding Remarks

The proposed model informs how a manufacturer and a retailer should strategically
price a product that is likely to be recalled at a future, yet uncertain, date. The
proposed model allows us to analyze the role of vendor agreements on pricing
strategies and most importantly profits. We find that the manufacturer and the
retailer respond differently to the clauses found in such agreements. For instance,
when recall costs are linear in the number of units that have to be recalled, we
find that the retailer does not vary the retail price depending on whether the clause
on cost of goods sold is included or not in the agreement, while the manufacturer
does. When recall costs are quadratic, we find that the retailer always increases the
retail price, while the manufacturer can either decrease or increase the wholesale
price depending on parameters’ values. Meanwhile, we are also able to conclude,
based on the proposed model, that vendor agreements do not distort channel profits
whether costs are linear or quadratic. This result adds to the marketing channel
literature (see, e.g., Ingene et al. 2012) by considering how the risk of a major recall
might affect optimal pricing strategies by a manufacturer and a retailer.

3For instance, when χ = 0.001, ρ = 0.05, α = 1, δ = 0.01, κM = 0.1 and κR = 0.1, then
S2 −N2 < 0; however, changing κM from 0.1 to 0.15 yields S2 −N2 > 0.
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Coordination in Closed-Loop Supply
Chain with Price-Dependent Returns

Pietro De Giovanni and Talat S. Genc

Abstract This paper proposes two Closed-loop Supply Chain (CLSC) games in
which a manufacturer sets some green activity programs efforts and a retailer sets
the selling price. Both strategies influence the return rate, which is a state variable.
The pricing strategy plays a key role in the identification of the best contract to
achieve coordination as well as in achieving environmental objectives. The pricing
strategy influences the return rate negatively, as consumers delay the return of their
goods when the purchasing (and repurchasing) price is high. We then compare a
wholesale price contract (WPC) and a revenue sharing contract (RSC) mechanism
as both have interesting pricing policy implications. Our result shows that firms
coordinate the CLSC through a (WPC) when the sharing parameter is too low while
the negative effect of pricing on returns is too severe. In that case, the low sharing
parameter deters the manufacturer to accept any sharing agreements. Further, firms
coordinate the CLSC when the sharing parameter is medium independent of the
negative impact of pricing on returns. When the sharing parameter is too high the
retailer never opts for an RSC. We find that the magnitude of pricing effect on returns
determines the contract to be adopted: For certain sharing parameter, firms prefer an
RSC when the price effect on return is low and a WPC when this effect is high.
In all other cases, firms do not have a consensus on the contract to be adopted and
coordination is then not achieved.
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1 Introduction

A closed loop supply chain (CLSC) integrates forward and backward flows into a
unique system, including product acquisition, reverse logistics, points of use and
disposal, testing, sorting, refurbishing, recovery, recycling, re-marketing, and re-
selling. These activities have to be integrated in a classical forward system (Guide
and Van Wassenhove 2009; Fleischmann et al. 2001). The recent trend of closed-
loop supply chain (CLSC) has highlighted three main aspects that have the merit to
be investigated in such a framework: (1) the return rate is a dynamic phenomenon
and should be evaluated accordingly (2) consumers return end-of-life/end-of-use
products according to the purchasing price; (3) firms partnering in a CLSC always
look to the best contracts to be implemented so as to achieve higher economic
and environmental performance (see De Giovanni and Zaccour (2019) for a recent
survey).

Firms look for the implementation of a CLSC since the returns have some
residual value that contributes to the margins. For instance, producing by means
of virgin material is always more expensive than producing by means of returned
products. Savings vary according to the industry. In the car engines industry,
Volkswagen can save up to 70% of costs (Volkswagen 2011). Kodak saves 40–60%
of production costs because it manufacturers by means of returned cameras rather
than using raw material (Savaskan et al. 2004). Fleischmann et al. (2003) reported
that remanufacturing costs at IBM are much lower than those associated with buying
new parts, sometimes as much as 80% lower. Duracell saves 40% of the production
costs when producing by means of returned batteries (De Giovanni 2017). Xerox
saves 40–65% of its manufacturing costs by reusing parts, components, and
materials from returned products (Savaskan et al. 2004). Remanufactured cartridges
cost 30–60% less on a per- copy basis than non-remanufactured cartridges. TriNet
has been purchasing remanufactured toner cartridges, saving 25–60% in costs over
the price of new cartridges within 5 years (www.stopwaste.com). Interface, Inc.,
is the world’s largest provider of commercial carpet tile. To create efficiency in
the CLSC, the company has decided to lease carpets instead of selling them; the
ownership of off-lease products provides Interface motivations to close the loop
and recover the residual value of these products (Agrawal and Tokay 2010). Dell
saves 30% of the production cost when recycling their returns (De Giovanni and
Zaccour 2018). Manufacturers have high economic interests for performing the
backward logistics activities and closing the loop, because the residual value that
returns carried out positively contributes to their profits.

Our first contribution is in line with the investigation of the green activity
program (GAP) strategy as well as the selling price on returns. The latter represents
a novelty with respect to the earlier mentioned literature. The rationale behind this
approach is that when the selling price is high, consumers should make considerable
sacrifices to purchase it (De Giovanni 2018). Therefore, they delay the product
return to exploit the good as much as they can. This intuition fulfills a research gap
in the literature of dynamic games, in which the relationship between returns and

www.stopwaste.com
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pricing has been mainly disregarded. Rather, the static literature reports the negative
relationships between pricing and returns. For example, De Giovanni and Zaccour
(2018) show that a decision maker can be confronted with sophisticated consumers.
When introducing a new product in the market, consumers decide whether to return
their product and purchase the updated one according to the price: The higher the
price of a product, the lower the return rate, because the lower is the consumers’
willingness to return their product and purchase a new one. This model is based on
two cases, one from the automotive industry and one from the high-tech industry.
The findings obtained apply in both cases; therefore, the results in De Giovanni and
Zaccour (2018) corroborate our assumptions on the relationship between pricing
and returns. Finally, other research like Zhou et al. (2017), Ramani and De Giovanni
(2017), and Miao et al. (2017) model a trade-off between pricing and returns.

Following the early intuitions, we consider a benchmark CLSC setup where the
manufacturer optimally sets the green efforts and the retailer sets the selling price
in a dynamic framework. Notice that the retailer participates in determining the
return rate through the pricing strategy, but she does not really exploit its potentiality.
Then, we contrast the results of the benchmark (WPC) game with an RSC game
in which the retailer transfers a share of her revenues to the manufacturer while
paying no wholesale price. The manufacturer can find an RSC very interesting to
increase the return rate and enjoy the returns’ residual value even more. Further, the
manufacturer seeks to exploit the property of the RSC that leads to a price reduction
(Cachon and Lariviere 2005).

To recapitulate, we wish to answer the following research questions:

• how do firms in a CLSC set their pricing and GAP strategies when the return rate
depends on both pricing and green efforts?

• how do firms’ strategies and profits change when moving from a WPC to an RSC
setting?

• how do returns change when moving from one setting to another?

Our findings demonstrate that the manufacturer prefers an RSC when more
investments in green efforts under an RSC are needed. At the same time, the CLSC
performs higher returns as the green efforts have a dominant effect on pricing.
When fixing the sharing parameter at a high level, the manufacturer always prefers
the RSC. When the sharing parameter is low, its preferences are fully dependent
on the pricing effect on returns. When the latter is low, the manufacturer opts for
an RSC; otherwise, he will opt for a WPC. The retailer never prefers an RSC
when the sharing parameter is too high, because she transfers too much revenues
to the manufacturer. In contrast, when the sharing parameter is too low, the retailer’s
preferences mainly depend on the pricing effect on returns. When this is too severe,
she will opt for a WPC because the low sharing parameter is not sufficient to
properly involve the manufacturer to accept an RSC. Finally, we identify two
Pareto-improving regions in which firms reach coordination in CLSC. The first is
represented by a low sharing parameter and a high negative effect of pricing on
returns, according to which coordination is reached through a WPC. The second
region is represented by the case in which the sharing parameter is medium, which
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calls for the adoption of an RSC, independent of the negative effect of pricing
on returns. For certain sharing parameter values, the negative effect of pricing on
returns determines the contract to be adopted: An RSC, when this effect is low,
and a WPC when this effect is high. In all other cases, the firms have divergent
contractual preferences and therefore coordination is never reached.

The remaining of the paper is structured as follows. Section 2 proposes the
dynamic games to be analyzed. Section 3 proposes the solutions for all models,
while Sect. 4 compares the games’ outcomes. Section 5 briefly concludes.

2 Dynamic Games

All notations that we use in this paper are listed in Table 1. A Closed-loop Supply
Chain (CLSC) is composed of one Manufacturer, firm M , and one Retailer, firm R.
Both firms are involved in the management of both the forward and the reverse
flows. M decides the green activity programs to be carried out, namely A (t) ,

which includes, among others, investments in green technologies, green process
innovation, green advertising, green marketing, and reverse logistics. R is a pure
seller that purchases goods from M at a wholesale price, ω (t) , and sets the optimal
selling price, p (t) , according to the WPC. R’s marginal profits are given by
πR = p (t)− ω (t) , while M’s marginal profits are given by πM = ω (t)+�r (t).
�r (t) represents the marginal benefit that M receives when collecting used-product
from the market. We assume that � > 0 otherwise M would not have any interest
in collecting used products. Thus, � is the per-return residual value while r (t) is
the fraction of sold goods that will be returned. r (t) is a dynamic stock that takes
the form:

Table 1 Notations Notation Description

M,R Manufacturer, retailer

t Time

ω (t) Wholesale price at time t

p (t) Price at time t

A (t) Green activity programs at time t

φ Revenue sharing parameter

πM, πR Marginal revenues for M and R

� Returns’ residual value

r (t) Return rate

k Green activity programs sensitivity to r

λ Price programs sensitivity to r

α Market potential

β Consumers sensitivity to price

D Demand

ρ Discount factor
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ṙ (t) = kA (t)− λp (t)
√
r (t)− δr (t) (1)

such that r (t) ∈ (0, 1) . When r (t) = 0, M does not enjoy any return, while
when r (t) = 1 all consumers return their good when it reaches the end-of-
use/life stage. De Giovanni and Zaccour (2013) and De Giovanni et al. (2016) have
investigated the return rate as a dynamic equation that mainly evolves according
to the GAP investments. Hereby, we introduce also the price effect in the state
dynamics following the idea that when consumers pay a high price for their goods,
they attempt to substitute it very late over time. First, they try to enjoy the product
for as long as they can after the economic sacrifice requested to purchase it. Second,
consumers will eventually need to purchase a new product to continue satisfying
their needs; therefore, they will again face an important sacrifice when purchasing
the product again. According to Eq. (1), firms can make consumers aware of their
green investments and sensibilize consumers in returning their products according
to the parameter k > 0, which exemplifies the return rate changes according to the
GAP investments that M affords. Further, consumers can delay their return because
of the pricing strategy according to the parameter λ > 0, which describes the return
rate changes according to R’s pricing strategy. Finally, there is a natural decay rate δ

affecting the return rate state, as consumers forget to send back their end-of-use/life
products if they are not exposed to the GAP efforts.

Both the returns and the pricing strategies have an effect on the demand, which
can be described as follows:

D (r (t) , p (t)) = α
√
r (t)− βp (t) (2)

where α is the market potential and explains the amount of consumers exposed to
the product and β > 0 is the consumers’ sensitivity to price. Interestingly, M’s gives
a positive contribution to both the state and the demand, while the opposite applies
for R’s strategy. We model the GAP efforts strategy using a classical quadratic cost

function, e.g., C (A (t)) = [A(t)]2

2 .

Following the same assumptions as in De Giovanni (2017), we start our analysis
from a Wholesale Price Contract (WPC) scenario, in which M sells some goods
to R at ω while R sets p (t) > ω causing an issue of double marginalization. We
will use the superscript W to refer to the WPC game. Accordingly, the firms’ profit
functions take the following forms:

JW
M = max

ωW (t),AW (t)

∫ +∞

0
e−ρt

[(
α

√
rW (t)− βpW (t)

)(
ωW (t)+�

√
rW (t)

)

− CW
(
AW (t)

)]
dt (3)

JW
R = max

pW (t)

∫ +∞

0
e−ρt

[(
α

√
rW (t)− βpW (t)

)(
pW (t)− ωW (t)

)]
dt (4)

where ρ is the discount factor that we assume to be the same for the two firms.
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One of the main novelties presented in Eq. (1) is the relationship between
the return rate, r (t), and the pricing strategy, p (t). Therefore, we evaluate the
effectiveness of an RSC within this framework. M’s wholesale price takes null
values, i.e., ω = 0, while R still sets the selling price. We use the superscript R
to refer to the RSC game. Accordingly, the firms marginal profits are given by
πR
M = pR (t) φ + �

√
rR (t) and πR

R = pR (t) (1− φ), where φ is the sharing
parameter and informs on the firms’ negotiation on how revenues are shared. Finally,
the firms’ profits in the R-game are given by:

JR
M = max

AR(t)

∫ +∞

0
e−ρt

[(
α

√
rR (t)− βpR (t)

)(
pR (t) φ +�

√
rR (t)

)

− CR
(
AR (t)

)]
dt (5)

JR
R = max

pR(t)

∫ +∞

0
e−ρt

[(
α

√
rR (t)− βpR (t)

)
pR (t) (1− φ)

]
dt (6)

Both the W-game and the R-game are played á la Stackelberg. We resolve
the game by assuming that the players use a stationary feedback strategy, which
is standard in differential games over the infinite time horizon (Dockner et al.
2000). When modeling CLSCs, one would resolve the game using an open-loop
strategy due to the complex relationships between controls and states (Genc and
De Giovanni 2017). Although we cannot obtain an analytical solution by using
feedback strategies, we can derive a time-consistent equilibrium. Moreover, the
value of the information obtained in the feedback strategy is much more appropriate
from a managerial perspective in both channel and supply chain management
studies.

3 Equilibria

In this section, we present the solutions for the dynamic games earlier introduced.
In both cases, we solve the games á la Stackelberg, where M is the leader. As for
conventional solutions in dynamic games with infinite time horizon, all strategies
and value functions are written as a function of the state.

3.1 A Dynamic CLSC Using a Wholesale Price Contract:
W-Scenario

In this section, we present the solution of the W -game. Hereby, M decides the green
efforts, A (t), along with the wholesale price, ω (t), when selling the products to R.
The latter charges a selling price, p (t), such that p (t) > ω (t). M announces that
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the chain uses a WPC to regulate the financial flow; R considers this announcement
and decides the optimal selling price, p (t); M takes p (t) into consideration and
optimally sets its controls. The firms’ strategies and profits are summarized in the
following proposition.

Proposition 1 The equilibrium strategies in the W-Scenario are given by:

ωW∗ =
(
λLW

1 − (�β + λBW
1

))

β

√
rW (7)

pW∗ =
(
α −�β − λBW

1

)

2β

√
rW (8)

AW∗ = kBW
1

μ
(9)

where the pairs
(
BW
i , LW

i

)
with i = 1, 2 are the coefficients of the value functions

VW
M

(
rW
)

and VW
R

(
rW
)
,which are given by:

VW∗
M = BW

1 rW + BW
2 (10)

VW∗
R = LW

1 rW + LW
2 (11)

These value functions describe the optimal profits along the optimal return rate
trajectory, rW (t) . The optimal time-path of the return rate reads as follows:

rW (t) =
(
r0 − rWSS

)
e−t[μ((α−�β−λBW

1

)
λ+2βδ

)] + rWSS (12)

where rWSS is the steady-state return rate and is given by:

rWSS =
2βBW

1 k2

μ
((
α −�β − λBW

1

)
λ+ 2βδ

) (13)

Proof See the Appendix. ��
From the equilibria, one can see that value functions are linear in the state

variable rW , although the state equation contains the square root of r . The reason is
that the present games is a special case of the framework dating back to Sethi (1983)
and also discussed in Sethi and Thompson (2000) and Dockner et al. (2000).

From the Appendix, we can see that BW
1 has two roots, specifically:

BW
1 =
(
(α −�β) λ+2β (δ + ρ)± 2

√
β (δ + ρ) ((α −�β) λ+ β (δ + ρ))−�αβλ2

)

λ2

(14)
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Both of them are positive as the price, p, is always larger than the returns’ value,
�. Thus, α − �β > 0. We can take the negative root out. This guarantees that
AW∗

SS > 0. Notice that the green efforts strategies are state independent, meaning
that M sets the green efforts while disregarding the value of the stock. Intuitively,
the impact of green efforts efficiency, exemplified by k in the state and μ in the cost
function, suggests that when M should increase or decrease these efforts. From the
Appendix, one can see that LW

1 is given as follows:

LW
1 = μ

(
α +�β + λBW

1

)2

4μ (αλ− β (δ + ρ))
(15)

This guarantees that pW∗ > ωW∗ always holds at the steady-state, as pW∗ −
ωW∗ =

(
α+�β+λBW

1 −2λLW
1

)

2β > 0. Both the price and wholesale price strategies
depend on the return rate. Therefore, when the CLSC performs the return rate, firms
know that the portfolio of consumers increases, generating more market potential.
In this case, increasing the prices will not be detrimental for sales. The latter takes
the following form:

DW =
(
α + (2�β + λBW

1

))

2

√
rW (16)

Interestingly, we can see that there is a trade-off between environmental per-
formance, given by rW , and the double marginalization effect, pW∗ − ωW∗, as
increasing the return rate is detrimental for consumers, who are subject to higher
prices. Since BW

1 > 0 and LW
1 > 0, both firms have a certain convenience in

increasing the returns. This result has a direct and positive effect on their profits,

given that
∂VW∗

M

∂rW
= BW

1 > 0 and
∂VW∗

R

∂rW
= LW

1 > 0. From the Appendix, we can
also see that

BW
2 and LW

2 are always positive, given that:

BW
2 = B2

1k
2

2μρ
and LW

2 = LR
1 BW

1 k2

μρ
(17)

Consequently, the CLSC business is economically interesting for both firms
even if the return rate is negligible. Finally, rWSS is globally asymptotically stable
because

(
α −�β − λBR

1

)
λ + 2βδ > 0. Accordingly, the return rate is positive at

the steady-state. Note that lim
λ−>0

rWSS = BW
1 k2

μδ
, thus highlighting the considerable

impact of pricing on the returns. These circumstances create the basis to evaluate
an alternative price-based mechanism to mitigate this negative effect.
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3.2 A Dynamic CLSC Using a Revenue Sharing Contract:
R-Scenario

Next we solve the R-game, in which firms use the revenue sharing contract to
coordinate their financial flows. The WPC earlier described leaves the issue of
double marginalization effect, as p (t) > ω (t) always holds. This can be very
detrimental for sales, as the double marginalization leads to lower sales. In addition,
since pricing is also influencing negatively the returns (e.g., Eq. (1)), there is a
further interest to look into a mechanism to mitigate the negative effects on the
return rate. In this setting, M only decides the green efforts, A (t) , while R charges a
selling price, p (t) without being subject to the constraint p (t) > ω (t) . In addition,
firms share the revenues generated by the business through the sharing parameter
φ ∈ (0, 1). M announces that the chain uses an RSC to regulate the financial flows;
R considers this announcement and decides the optimal selling price, p (t); M takes
p (t) into consideration and optimally sets A (t). The firms’ strategies and profits are
summarized in the following proposition.

Proposition 2 The equilibrium strategies in the R-Scenario are given by:

pR∗ = α (1− φ)− λLR
1

2β (1− φ)

√
r (18)

AR∗ = kBR
1

μ
(19)

where the pairs
(
BR
i , LR

i

)
are the coefficients of the value functions VR

M

(
rR
)

and
VR
R

(
rR
)
,which are given by:

VR
M = BR

1 rR + BR
2 (20)

VR
R = LR

1 rR + LR
2 (21)

These value functions describe the optimal profits along the optimal return rate
trajectory, rR (t) . The optimal time-path of the return rate reads as follows:

rR (t) =
(
r0 − rRSS

)
e−t[μ((αλ+2βδ)(1−φ)−λ2L1

)] + rRSS (22)

where rRSS is the steady-state return rate and is given by:

rRSS =
2 (1− φ) βB1k

2

μ
(
(αλ+ 2βδ) (1− φ)− λ2LR

1

) . (23)

Proof See the Appendix. ��
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From the Appendix, we can see that BR
1 has one unique solution, specifically:

BR
1 = μ

(
λLR

1 + α (1− φ)
) (

(2�β + αφ) (1− φ)− λφLR
1

)

2μ (1− φ)
(
(λα + 2β (δ + ρ)) (1− φ)− λ2LR

1

) . (24)

This is a positive expression, which guarantees that AR∗
SS > 0. Note that, even

in the revenue sharing setting, the green efforts strategies are state independent,
meaning that M always disregards the value of the stock when setting the green
efforts, independent of the contract the CLSC uses. Further, the green efforts
structure is similar to the one derived in the WPC contract, thus we can refer to
the previous discussion. From the Appendix, one can see that LW

1 has two roots,
one of which is positive and one of which is negative. To have positive returns, we
take the negative root out, which is given by:

LR
1 = (αλ+ 2β (δ + ρ)) (1− φ)− 2

√
β (1− φ)2 (δ + ρ) (αλ+ β (δ + ρ))

λ2
.

(25)
Further, this guarantees that rR ∈ (0, 1) and pR > 0. The price positively
depends on the return rate. Therefore, when the CLSC performs the return rate,
firms can charge a higher price. Interestingly, when firms enjoy high returns, they
also enjoy a higher market potential, which allows them to increase the price to
extract more economic value from the market. Also, this result informs researchers
on the importance of dynamic elements: the contribution that the state, rR (t),
gives to the firms’ profit function is more important than a single strategy, e.g.,
pricing. Therefore, CLSC is a dynamic phenomenon and should be studied as such.
Consequently, the sales under a revenue sharing contract are given by:

DR = α (1− φ)+ λLR
1

2 (1− φ)

√
rR (26)

Since BR
1 > 0 and LR

1 > 0, both firms have a certain convenience in contributing
for increasing the returns. This result has a direct and positive effect on their profits,

given that
∂VR∗

M

∂rR
= BR

1 > 0 and
∂VR∗

R

∂rR
= LR

1 > 0. From the Appendix, we can also

see that BR
2 and LR

2 are always positive, given that:

BR
2 = BR2

1 k2

2μρ
and LR

2 = LR
1 BR

1 k2

μρ
(27)

As in the WPC, the CLSC business is economically interesting for both firms
even if the return rate is negligible. Finally, rRSS is globally asymptotically stable
when μ

(
(αλ+ 2βδ) (1− φ)− λ2LR

1

)
> 0. Accordingly, the return rate is positive

at the steady-state. Note that lim
λ−>0

rRSS = BR
1 k2

δμ
, thus highlighting the considerable



Coordination in Closed-Loop Supply Chain with Price-Dependent Returns 97

impact of pricing on the returns. Interestingly, when the returns are not affected by
pricing, the return rate takes the same structure as in the W-game. We seek now to
evaluate the impact of the sharing parameter, φ, on the firms’ strategies and profits
as well as on the sales.

Numerically, we can see that
∂BR

1
∂φ

> 0 and
∂LR

1
∂φ

< 0. Figure 1 displays the

relationship between the coefficients and the sharing parameter, φ.1

Consequently, we can formulate the following corollary:

Corollary 1 The behavior of strategies, demand and profits with respect to the

sharing parameter, φ, is as follows:
∂AR

SS

∂φ
> 0,

∂rRSS
∂φ

> 0,
∂pR

SS

∂φ
> 0,

∂DR
SS

∂φ
>

0;
∂VR

MSS

∂φ
> 0 and

∂VR
RSS

∂φ
� 0, ∀φ ∈ (0, φ].

Proof See the Appendix. ��
The results of Corollary 1 are clearly displayed in Figs. 2 and 3.
Accordingly, we can leave the following remarks. The RSC does not provide the

usual benefits of decreased price as claimed by Cachon (2003). This is due to the
fact that the pricing influences the state variable, which decreases due to the higher
price. This implication calls M to invest more in green efforts, AR, given the fact
that he is receiving a share: higher share implies higher economic availability, and
thus a larger chance to increase the green efforts. At the same time, R needs more

Fig. 1 The relationship between the coefficients Bi, Li with respect to φ

1We carry out the numerical analysis by setting the parameters at the following values: α = 2,
β = 0.6, δ = 0.2, ρ = 0.1, λ = 0.2, μ = 1, � = 0.2, k = 0.5. Instead, we leave φ as free.
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Fig. 2 Price, green efforts, and returns with respect to φ

Fig. 3 The relationship between the VM and VR with respect to φ
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economic resources now, since a part of her revenues is transferred to M . The joint
effect of pricing and green efforts translates into higher returns and sales, thus we
assist to a positive reaction from the market that returns used goods and purchases
new ones. Finally, there is a tough negotiation to be carried out before starting the
game on the sharing parameter. While M is always happy to receive a share, R
benefits from it till a certain level. In fact, when the sharing parameter is too high,
e.g., φ > φ, R transfers too much revenues to M with the results that her profits
decrease. Interestingly, when φ = φ, the firms gain the same profits.

4 Comparison Between Games

In this section we compare the outcomes of both the WPC and the RSC games
to answer our initial research questions. We use the same benchmark parameters
that have been previously set while we focus in the (φ, λ) − space analysis. The
motivations for doing so are twofold. First, the analysis of the sharing parameter
will inform on the efficiency of an RSC with respect to a WPC in the exchange of
financial flows. Second, the sharing parameter has a direct effect on pricing. Thus,
the impact of pricing on the return rate adds new insights in this literature frame.

From Fig. 4, it is interesting to see that M adjusts the green efforts according
to both the sharing parameter value and the impact of pricing on returns. When
these two effects are low, M is not very much interested in the business; instead, he
does care about R’s power. Even when he gets a minimal revenue and/or there is

Fig. 4 Comparison between
green efforts, A
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no impact of R on the returns. When the sharing parameter is high, M has a large
incentive for investing in green efforts. When the share increases, he invests more
than in the WPC. We can see that when the pricing strategy becomes very severe
(for example, when the pricing strategy in revenue sharing is much larger than the
pricing strategy in the wholesale price contract) the manufacturer wishes to invest
more in green efforts in order to overcome the negative effect of the pricing strategy.
Nevertheless, this only happens when the business is interesting for M, that is, when
the sharing parameter is high. Otherwise, when the sharing parameter is low, M does
not invest more in green efforts when a revenue sharing contract is implemented.

Figure 5 displays the areas in which pR>pW . Intuitively, when the sharing
parameter is too large, R transfers a considerable amount to M; therefore, she
needs to set a higher price to make the business profitable. In this case, the CLSC
obtains the reverse effect of what we expect from an RSC, that is, the price reduction
compared to the WPC setting. We can see that this only happens when the sharing
parameter, φ, is sufficiently small. Further, R sets higher prices in RSC when the
negative impact of pricing on returns increases. This is a counter-intuitive result as
we expect R to lower the price for high values of λ. In fact, this happens only when
R retains a sufficiently large amount of revenues. For example, when the sharing
parameter is low, R retains more revenues than M , thus she sets an RSC price lower
than a WPC price. Nevertheless, when her fraction is low, she needs more economic
resources. Then, she opts for charging larger prices while expecting M to invest
more in green efforts.

Figure 6 displays the comparison between the return rate at the steady-state in
the two proposed games. Here, the returns most likely reflect the green efforts and

Fig. 5 Comparison between
pricing strategies
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Fig. 6 Comparison between
return rates, r

the pricing strategies. We can see that when the latter becomes more important, the
returns decrease more under an RSC. This also happens when the sharing rate is
low. Therefore, M does not invest too much in green activity efforts because the
business is not appealing, while the opportunities for building an effective reverse
flow are minimal. We can see that, in order to enjoy a very efficient CLSC, the
sharing parameters should be high while the impact of pricing on returns should be
minimal. Supply chains will be very much efficient in managing their own returns
if and only if the customers perceive that the pricing doesn’t affect the returns. In
this sense the CLSC can give an interesting rebate to customers to increase their
willingness to return the products and, therefore, have a lower pricing effect on
returns (Genc and De Giovanni 2017).

Figure 7 compares the sales in the two games that we investigate. Accordingly,
the adoption of an RSC allows the CLSC to sell more products in the market in
most of the cases. In this regard, an RSC is more socially sustainable as more people
access to the product. It is interesting to see that this happens also when pR>pW ,

thus firms can optimally adjust the green efforts to create a compensation effect
when the price is detrimental for both the sales and the returns. Finally, there is
only one case in which the sales under an RSC are lower than the sales under a
WPC, that is, when λ is very high. In this case, the negative effects generated by a
pricing strategy are too severe and the green efforts are not sufficiently high. Figure 8
displays the M’s preferences in the selection of the coordination mechanism. This
shape is very similar to the one in Fig. 4 and highlights a clear message. When
the sharing parameter is sufficiently large, M always supports the adoption of an
RSC. This is very much intuitive as the larger the sharing parameter, the higher
the fraction of revenues that goes in his pocket. Interestingly, this finding holds true
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Fig. 7 Comparison between
sales, D

Fig. 8 Comparison between
M’s profits, VM

independent of the negative effect that pricing has on returns. Therefore, under these
circumstances, M is always willing to invest more in green efforts to overcome the
negative effects generated by pricing, as he gains sufficiently large revenues to be
reinvested in green initiatives. Instead, when the sharing parameter is medium vs.
low, the convenience of adopting an RSC highly depends on λ: when λ is low,
M always opts for an RSC; when λ is high, M’s preferences for an RSC decrease
according to increasing values for λ. In the latter case, the negative impact of pricing
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Fig. 9 Comparison between
R’s profits, VR

on returns is too severe, and investing more in green efforts translates in a marginally
convenient option.

Figure 9 displays R’s preferences with respect to the coordination mechanism to
be adopted. We can mainly identify three regions:

1. The sharing parameter, φ, and the impact of pricing on returns, λ, are too
high and the RSC is a non-feasible (n.f.) option for R. Hereby, the revenues
transferred to M are too high and her profits become negative. So, when the
sharing parameter is too high, R will never be interested in the business if λ is
also high. In contrast, when λ is low, R profits are positive and she opts for the
adoption of an RSC. Therefore, the impact of pricing on returns plays a key role
in determining whether R finds an RSC convenient for coordinating the CLSC.

2. The sharing parameter, φ, is very low and the impact of pricing on returns, λ,
is high. In this region, R should be very much happy to coordinate the CLSC
through an RSC because her fraction of revenues is the largest. Nevertheless,
the negative impact of pricing on returns has a very detrimental effect on this
preference; thus, R opts for a WPC when the effect of pricing on returns is too
severe. Again, it is interesting to see that the negative effect that pricing exerts
on returns by delaying the moment in which consumers return the product has a
considerable weight on the R’s preferences.

3. In all cases that are not contemplated in 1 and 2, R always opt for an RSC,
independent of λ.

Finally, Fig. 10 informs on the regions in which a Pareto-improving situation is
realized. Four regions are identified.

1. The blue region highlights that both firms have a preference for an RSC. As
mentioned, the role of λ is vital to determine whether the adoption of an RSC
leads to a Pareto-improving situation.
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Fig. 10 Pareto-improving
region

2. The orange region indicates that both firms have a preference for a WPC. Hereby,
the sharing parameter is too low to engage M in investing in green efforts such
that the whole CLSC gets benefits. Also, the impact of pricing on returns is too
detrimental, thus backward activities simply become less important.

3. Firms have divergent preferences (d.f.), specifically: R opts for an RSC while
M would prefer a WPC. The sharing parameter seems to be too low for M to
convince him in implementing an RSC.

4. There exists a non-feasible (n.f.) region in which R would opt for a WPC while
M would select an RSC. The latter is not feasible for R, thus firms have divergent
preferences.

We would highlight the role that the parameter λ can have in moving firms’
preferences for a contract to another. Let’s take, for example, the case of φ = 0.2.
When λ is low, firms reach coordination through an RSC: although M receives a
low share, the marginal impact of pricing does not hurt the return rate. Thus, he
does not need to invest too much in green efforts to perform the return rate. When
λ is medium, firms have divergent preferences and coordination is never reached.
In this case, M gains through the R’s share of revenues is too low to induce higher
investments in green efforts. When λ is very high, both firms prefer the adoption
of a WPC; M will invest the minimum efforts in the return rate and, consequently,
backward activities and closing the loop become negligible targets.
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5 Conclusions

This paper studies a dynamic CLSC that is involved in managing both the backward
and the forward flows of goods. The firms being part of the CLSC, namely, manu-
facturer and retailer, coordinate their financial flows by choosing either a wholesale
price contract (WPC) or a revenue sharing contract (RSC). The manufacturer is the
chain leader and fully benefits from the returns’ residual value. Nevertheless, the
return rate, which consists of the fraction of past sold products that comes back to
the manufacturer’s plants to be either reused or recycled, is negatively influenced
by the pricing strategy. The latter is set by the retailer. This is the main contribution
to the literature of dynamic games in CLSC, which focuses on increasing the return
rate by some green efforts, generally set by a manufacturer. In addition to that,
we also model a return rate that is negatively influenced by the retailer’s pricing.
The motivations for this assumption lie on the relationship between consumers’
willingness to return a product and the product value. When consumers pay high
prices for purchasing goods, they will be more parsimonious in returning them. In
particular, they will postpone the return with the purpose of exploiting the returns
residual value as much as possible. According to this assumption, we first model
a WPC game, in which the manufacturer sets the green efforts along with the
wholesale price, while the retailer sets the pricing strategy. Later we model an RSC
game, in which the manufacturer does not set the wholesale price anymore, while
the firms share the revenues generated within the CLSC according to an exogenous
sharing parameter. The motivations for contrasting a wholesale price to a revenue
sharing contract lies in the fact that the implementation of an RSC generally leads
to a decrease of the selling price, with the purpose of increasing the demand, thus
generating more revenues. The reduction of the selling price in the CLSC can be a
driver to limit the negative effect of pricing on the return rate.

Our results show that the manufacturer invests more in a CLSC using an RSC
when the sharing parameter is sufficiently high. In fact, this investment fully
depends on the amount of money that the manufacturer receives. In such cases, the
negative effect of pricing on returns is not a problem. Nevertheless, when the latter
effect is severe, the manufacturer does not invest more in an RSC when the sharing
parameter is low. In that case, his revenues will be too low to allow the green efforts
to compensate for the negative effect of pricing. The CLSC enjoys the positive effect
of price reduction when the sharing parameter is not too high. Therefore, there is a
need to negotiate the sharing parameter before starting the game in order to get the
desired effect. In fact, when the sharing parameter is too high, the retailer needs
to charge a higher price than the WPC price because she needs more economic
resources to consider the business as interesting. The two strategies (green efforts
and pricing) contribute to the return rate with opposite sign. Nevertheless, we find
that the return rate shape follows the green efforts shape, which seems to have a
dominant effect with respect to the pricing strategy. Thus, any time the manufacturer
invests more due to the implementation of an RSC, the returns turn out to be higher
than the WPC case. Instead, the consumers enjoy an efficient combination of pricing
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and green efforts when an RSC is adopted. Thus, the RSC is socially sustainable
in most of the cases. The manufacturer prefers the adoption of an RSC any time
he invests more in green efforts under an RSC while the CLSC performs higher
returns. The sharing parameter plays a key role. It is sufficient to have a high sharing
parameter to make the manufacturer always prefers the RSC. When the sharing
parameter is low, his preferences will be fully dictated by the influence of pricing on
returns. When the latter effect is low, the manufacturer prefers an RSC; otherwise, he
will opt for a WPC. On her side, the retailer never opts for an RSC when the sharing
parameter is too high, because she transfers a fraction that is not economically viable
for her. In contrast, when the sharing parameter is too low, the retailer’s preferences
are mainly driven by the effect of pricing on returns. When this is too severe, she
will opt for a WPC because the sharing parameter will be too low to convince the
manufacturer to accept the deal. Finally, we identify two Pareto-improving regions,
which represent the areas in which firms reach coordination in CLSC. The first is
represented by a low sharing parameter and a high negative effect of pricing on
returns. In that case, both firms prefer a WPC. The second area is represented by the
case in which the sharing parameter is medium. In that case, both firms will prefer
an RSC, independent of the negative effect of pricing on returns. For certain sharing
parameter values, the target of coordination fully depends on the negative effect of
pricing on returns: when this is low, an RSC allows firms to reach coordination;
when this effect is high, a WPC allows firms to achieve coordination. In all other
cases, the firms have divergent contractual preferences and coordination is never
reached.

This research is not free of limitations, which are listed here to inspire future
research in this direction. We assume that the CLSC does not experience any
competitive effect within each tier. Introducing competition in the manufacturer
and/or at the retailer levels will probably change some of our results. We model coor-
dination while considering that the retailer never benefits of returns, as consumers
directly send back products to the manufacturer. Having the retailer involved in the
collection process will need a further reflection on the coordination mechanisms to
be adopted. We assume that the returns’ residual value is exogenous and fixed, while
it most likely depends on how consumers used the product during the residence
time. Therefore, the consumers’ behavior also matters in the determination of the
goods’ residual value. We have modeled a negative impact of pricing on returns.
Nevertheless, additional research can be carried out to show the positive effect of
pricing on a state variable like green goodwill and, consequently, modeling the
return rate as a function of the stock. This would definitely lead to completely
different results as pricing would positively influence the returns. This is an ongoing
research direction that the authors are exploring.
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Appendix

Proof of Proposition 1 We search for a pair of bounded and continuously differ-
entiable value functions VW

M (rW ) and VW
R (rW ) for which a unique solution for

rW (t) does exist, and the HJB equations:

ρVW
M =

(
α
√
rW − βpW

) (
ωW +�

√
rW
)
− μ

(
AW)2

2

+V
W ′
M

(
kAW − λpW

√
rW − δrW

)
(28)

ρVW
R =

(
α
√
rW − βpW

) (
pW − ωW

)
+ V

W ′
R

(
kAW − λpW

√
rW − δrW

)

(29)

are satisfied for any value of rW (t) ∈ (0, 1]. We solve the game á la Stakelberg,
where M is the leader. Therefore, we start by solving the R’s optimization problem.
The optimization of R’s HJB with respect to the pricing strategy leads to:

pW =
ωWβ −√rW

(
λV

W ′
R − α

)

2β
(30)

Substituting Eq. (30) in the M’s HJB gives:

ρVW
M =

⎛

⎝α
√
rW − β

ωWβ −√
rW
(
λV

W ′
R − α

)

2β

⎞

⎠

⎛

⎝
ωWβ −√rW

(
λV

W ′
R − α

)

2β
+�

√
rW

⎞

⎠− μ
(
AW)2

2

+V
W ′
M

⎛

⎝kAW − λ
ωWβ −√

rW
(
λV

W ′
R − α

)

2β

√
rW − δrW

⎞

⎠ (31)

Maximizing with respect to green efforts, AW , and wholesale price, ωW , gives:

AW = kV
W ′
M

μ
(32)

ωW =
(
λV

W ′
R −

(
�β + λV

W ′
M

))

β

√
rW (33)
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Plugging Eq. (33) in Eq. (30), we obtain the optimal price:

pW =
(
α −�β − λV

W ′
M

)

2β

√
rW (34)

Substituting the optimal strategies inside Eqs. (29) and (31) and simplifying we
obtain:

4βμρVW
M = μ

(
α +�β − λV

W ′
M

) (
α +�β + λV

W ′
M

)
rW + 2βV

W ′2
M k2

+2μV
W ′
M

(
λ
(
�β − α + λV

W ′
M

)
− 2βδ

)
rW (35)

4βμρVW
R = μ

((
α+�β + λV

W ′
M

)2− 4αλV
W ′
R

)
r + 4βV

W ′
R

(
k2V

W ′
M − δμrW

)

(36)

To solve the previous pair of equations, we can conjecture linear value functions
VW
M = BW

1 rW + BW
2 and VW

R = LW
1 rW + LW

2 . Substituting these conjectures
and their derivatives inside Eqs. (35) and (36) gives:

4βμρ
(
BW

1 rW+BW
2

) = μ
(
α+�β−λBW

1

) (
α+�β+λBW

1

)
rW

+2βB
W2
1 k2+2μBW

1

(
λ
(
�β−α+λBW

1

)−2βδ
)W

r

(37)

4βμρ
(
LW

1 rW + LW
2

) = μ
((

α +�β + λBW
1

)2 − 4αλLW
1

)
rW

+4βLW
1

(
k2BW

1 − δμrW
)

(38)

By identification, we obtain the following system of equations:

− 4βμρBW
1 + μ

(
α +�β − λBW

1

) (
α +�β + λBW

1

)

+ 2μBW
1

(
λ
(
�β − α + λBW

1

)
− 2βδ

)
= 0 (39)

− 4βμρBW
2 + 2β

(
B

W
1

)2
k2 = 0 (40)

− 4βμρLW
1 + μ

((
α +�β + λBW

1

)2 − 4αλLW
1

)
+ 4βLW

1 δμ = 0 (41)

− 4βμρLW
2 + 4βLW

1 k2BW
1 = 0 (42)

We can select the negative root of BW
1 , which is given by
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BW
1 =
(
(α −�β) λ+ 2β (δ + ρ)− 2

√
β (δ + ρ) ((α −�β) λ+ β (δ + ρ))−�αβλ2

)

λ2

(43)

Then, the remaining parameters are given by:

BW
2 =

(
B

W
1

)2
k2

2μρ
(44)

LW
1 = μ

(
α +�β + λBW

1

)2

4μ (αλ− β (δ + ρ))
(45)

LW
2 = LW

1 BW
1 k2

μρ
(46)

��
Proof of Corollary 1 The results in Corollary 1 follow the following derivatives:

•
∂AR

SS

∂φ
= k

μ

∂BR
1

∂φ
> 0

•
∂rRSS
∂φ

=
{

2βk2
(
−BR

1 + ∂BR
1

∂φ
(1− φ)

)
DEN [rRSS] + μNUM[rRSS]

(
(αλ+ 2βδ)+ λ2 ∂LR

1
∂φ

)}
/DEN [rRSS]2 > 0

•
∂pR

SS

∂φ
=

[(
−α− ∂LR1

∂φ
λ

)√
r+(α(1−φ)−λLR

1

)
√

∂rR
SS
∂φ

]

DEN [pR
SS ]+2βNUM[pR

SS ]

[2β(1−φ)]2 > 0;

•
∂DR

SS

∂φ
= α

√
∂rRSS
∂φ

− β
∂pR

SS

∂φ
> 0;

•
∂VR

MSS

∂φ
= ∂BR

1
∂φ

rRSS + ∂rRSS
∂φ

BR
1 + ∂BR

2
∂φ

> 0

•
∂VR

RSS

∂φ
= ∂LR

1
∂φ

rRSS + ∂rRSS
∂φ

LR
1 + ∂LR

2
∂φ

{� 0,∀φ ∈ (0, φ]
< 0, otherwise

.

��
Proof of Proposition 2 We search for a pair of bounded and continuously differen-
tiable value functions VR

M (rR) and VR
R (rR) for which a unique solution for rR(t)

does exist, and the HJB equations:

ρVR
M =

(
α
√
rR − βpR

) (
pRφ +�

√
rR
)

−μ
(
AR)2

2
+ V

R′
M

(
kAR − λpR

√
rR − δrR

)
(47)
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ρVR
R =

(
α
√
rR − βpR

)
pR (1− φ)+ V

R′
R

(
kAR − λpR

√
rR − δrR

)
(48)

are always satisfied for any value of rR (t) ∈ (0, 1]. We solve the game á la
Stakelberg, where M is the leader. Nevertheless, the pricing and green efforts
strategies are independent; therefore, solving the Stakelberg game corresponds to
solving the Nash game. In fact, the firms reaction functions are given by

∂VR
M

∂AR = kV
R′
M − ARμ (49)

∂VR
R

∂pR = pRβφ − pRβ −
√
rRλV

R′
R + (1− φ)

(√
rRα − pRβ

)
(50)

Therefore, the optimal strategies result as follows:

AR = kV
R′
M

μ
(51)

pR = α (1− φ)− λV
R′
R

2β (1− φ)

√
rR (52)

Substituting the optimal strategies inside the firms’ HJBs gives:

4μβ (1− φ)2 ρVR
M = μ

(
(1− φ) (2�β + αφ)− λφV

R′
R

) (
α (1− φ)+ λV

R′
R

)
rR

+2μ (1− φ) V
R′
M

(
−λ
(
α (1− φ)− λV

R′
R

)
− 2βδ (1− φ)

)
rR

+2β (1− φ)2 k2V
R′2
M (53)

4 (1− φ) βμρVR
R = μ

(
αφ − α + λV

R′
R

)2
rR + 4 (1− φ) βV

R′
R

(
k2V

R′
M − δμrR

)

(54)

To solve the previous pair of equations, we can conjecture linear value functions
VR
M = BR

1 rR + BR
2 and VR

R = LR
1 rR + LR

2 . Substituting these conjectures and
their derivatives inside Eqs. (53) and (54) gives:

4μβ (1−φ)2 ρ
(
BR

1 rR+BR
2

)
= μ

(
(1−φ) (2�β+αφ)−λφLR

1

)

(
α (1−φ)+λLR

1

)
rR+2μ (1−φ)BR

1 (55)

(
−λ
(
α (1− φ)− λLR

1

)
− 2βδ (1− φ)

)
r

+2β (1− φ)2 k2
(
B

R
1

)2
(56)
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4 (1− φ) βμρ
(
LR

1 rR + LR
2

)
= μ

(
αφ − α + λLR

1

)2
rR

+4 (1− φ) βLR
1

(
k2BR

1 − δμrR
)

(57)

By identification, the model parameters are:

−4μβ (1− φ)2 ρBR
1 + μ

(
(1− φ) (2�β + αφ)− λφLR

1

) (
α (1− φ)+ λLR

1

)

+2μ (1− φ)BR
1

(
−λ
(
α (1− φ)− λBR

1

)
− 2βδ (1− φ)

)
= 0 (58)

−4μβ (1− φ)2 ρBR
2 + 2β (1− φ)2 k2

(
BR

1

)2 = 0 (59)

−4 (1− φ) βμρLR
1 + μ

(
αφ − α + λLR

1

)2 − 4δμ (1− φ) βLR
1 = 0 (60)

−4 (1− φ) βμρBR
2 + 4 (1− φ) βLR

1 k2BR
1 = 0 (61)

We can see that there exists one solution only for BR
1 while we take the negative

root for RR
1 . The solution is given as follows:

BR
1 = μ

(
λLR

1 + α (1− φ)
) (

(2�β + αφ) (1− φ)− λφLR
1

)

2μ (1− φ)
(
(λα + 2β (δ + ρ)) (1− φ)− λ2LR

1

) (62)

BR
2 = k2

(
BR

1

)2

2μρ
(63)

LR
1 = (αλ+ 2β (δ + ρ)) (1− φ)− 2

√
β (1− φ)2 (δ + ρ) (αλ+ β (δ + ρ))

λ2
(64)

LR
2 = k2BR

1 LR
1

μρ
(65)

��

Pareto Analysis on Different Sets

Hereby, we carry out the Pareto analysis on two different parameter sets to
demonstrate the robustness of our findings. Specifically, we use the following two
parameter sets:

– high parameter values, by fixing the parameters as follows: α = 3, β = 0.8, k =
0.15,� = 0.3, δ = 0.3, ρ = 0.15 and μ = 1.5;
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– low parameter values, by fixing the parameters as follows: α = 1, β = 0.4, k =
0.05,� = 0.1, δ = 0.1, ρ = 0.05 and μ = 0.5.

As we display in Figs. 11 and 12, the findings that we obtain in Fig. 10 are
confirmed when taking different parameter sets.

Fig. 11 Pareto improving
region with high parameter
values

Fig. 12 Pareto improving
region with low parameter
values
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Abstract In this paper we propose a very simple steady-state game model that
represents schematically interactions between coalitions of countries in achieving
a necessary net-zero emission of GHGs in order to stabilize climate over the long
term. We start from a situation where m coalitions exist and behave as m players
in a game of sharing a global emission budget that can only be maintained by
negative emission activities. We compare a fully “cooperative” solution with a
Nash equilibrium solution implemented through an international emission trading
scheme. We characterize the fully cooperative and Nash equilibrium solutions for
this game in a deterministic context.
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1 Introduction

In a report published in 2016 (Shell-Corp 2016), Shell Corp. declared:

In spite of the many challenges, the practical details of providing enough energy for a better
life for everyone with net-zero emissions can be envisaged, and that is reassuring, even
inspiring.

This report has been updated in 2018 with an energy transition scenario where net-
zero emissions are envisaged as soon as 2070 (Shell-Corp 2018).

The UNFCCC Paris Agreement, negotiated at COP-21 and signed by a majority
of nations, is dedicated to limiting to less than 2 ◦C the surface average temperature
(SAT) rise in the twenty-first century. To achieve this goal the participating countries
must reduce their emissions of greenhouse gases (GHG). These emissions are
mostly related to the use of fossil energy as an economic production factor. Recent
research on climate policies has shown that a possible set of backstop technologies
could be “negative emission technologies” (EASAC 2018) and among them, more
specifically, carbon dioxide removal (CDR), which refers to technologies that reduce
the level of carbon dioxide in the atmosphere. Among such technologies one
finds, in particular, bio-energy with carbon capture and storage (BECCS), direct
air capture (DAC), ocean fertilization, etc. (Hallegatte et al. 2016; Mathesius et al.
2015; Meadowcroft 2013; Tavoni and Socolow 2013). On the other hand, recent
research on climate modeling tends to show that to limit the SAT rise to 2 ◦C with
sufficiently high probability, one should define a global limiting carbon budget of
about 1 trillion tons over the whole period starting from the Industrial Revolution to
the end of the twenty-first century (Allen et al. 2009; Knutti et al. 2016). After this
period the world economy should observe a “net-zero emission” regime.

In such a regime, there will still be technologies emitting GHGs, however
these emissions should be offset by negative emissions obtained somewhere on
the planet. In order to foster economic efficiency, an international emission trading
scheme could be established where each coalition of countries has an endowment
in emission rights which corresponds exactly to the level of negative emissions
obtained in this coalition. Then, the coalitions will use these emission rights in a
strategic way, in order to extract the most welfare benefits, taking into consideration
the actions of the other countries that intervene on the international market (see
Helm (2003) for a discussion of the strategic use of allowances).

In this paper we formulate a highly schematic net-zero emission climate regime
model, in asymptotic steady-state, with four coalitions of countries, two types of
production economy, “dirty” (carbon intensive) and “clean” (based on renewables),
a technology of carbon capture and sequestration that can be applied to reduce
emissions in the dirty economy and a technology of direct air capture (DAC), which
represents the CDR activities. Using parameters calibrated on the RICE model
(Nordhaus and Boyer 2000; Nordhaus and Yang 1996), we explore possible optimal
steady-state scenarios in a sustainable world economy.

The paper is organized as follows. In Sect. 2, we recall the characterization of
asymptotic steady-state in optimal economic growth models and we discuss the
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relevance of this concept for sustainable economic development. In Sect. 3, we
propose a simple steady-state model, with two types of productive economy, and
two types of emission reduction technology. In Sect. 4, we formulate the search of a
fully cooperative solution. In Sect. 5, we look at a Nash equilibrium solution when
the coalitions compete on an international emission trading system. In Sect. 6, we
analyze different scenarios using our simple model. Finally, we conclude in Sect. 7
and propose an agenda for further research.

2 Asymptotic Steady-State in Optimal Economic Growth
Models

In convex optimal control models with stationary dynamics, turnpike properties
establish an asymptotic convergence of state trajectories toward an extremal steady
state. This property is analyzed in detail in Carlson (1991). The theory has been
extended to open-loop Nash equilibrium models in Carlson and Haurie (1995).
The property will still hold for systems which are asymptotically stationary e.g.
the DICE and RICE models for global climate change (Nordhaus 1992, 1994;
Nordhaus and Boyer 2000). The relevance of the turnpike concept for sustainable
development models has been discussed in several papers; see, for instance, Haurie
(2002, 2003, 2005a,b) and Haurie and Moresino (2008). So, we believe it makes
sense to place our analysis of a net-zero emission climate regime at the turnpike
level. We further assume a zero discount rate,1 which is also compatible with a
sustainable development framework. Our analysis will therefore be developed with
a long-term steady-state model.

Remark 1 In doing so, we pay tribute to: (i) an ecological economics strand, which
advocates zero growth; (ii) a theory of justice principle, which would recommend
zero discount rate for issues affecting all future generations; and (iii) our desire to
keep the mathematics at elementary levels.

3 Long-Term Steady-State Model

We propose a simple steady-state economic model with carbon emissions due to the
use of fossil energy and possibility to invest in CCS (carbon capture and storage)
and in a CDR technology (of a DAC type). We assume that the emission budget is
shared among four coalitions of countries, which are calibrated as corresponding to:
(1) European-Union (EU-28) and Switzerland; (2) USA, Japan, Canada, Australia,

1Notice that in the archetypal DICE and RICE models of W. Nordhaus, a hyperbolic discount rate
is used which asymptotically converges to zero.



118 O. Bahn and A. Haurie

and New Zealand; (3) Brazil, Russia, India, and China (BRIC); and (4) the rest
of the World (ROW). As the model is supposed to represent the result of climate
negotiations, it is reasonable to assume that all regions are coalitions considered as
active players.

To model the economics of energy-environment, we adapt an approach that we
have introduced in Bahn et al. (2008) and exploited in several papers (Andrey et al.
2016; Bahn 2010; Bahn et al. 2012, 2015; Bahn and Haurie 2008, 2016; Bahn et al.
2009, 2017). In each coalition, economic output can come from a carbon-intensive
(“dirty”) production function or from a renewable-rich (“clean”) one.

3.1 List of Parameters and Variables

The following parameters and variables enter in the description of our model:

i = 1 : index of the “dirty” economy;
i = 2 : index of the “clean” economy;
i = 3 : index of the “CCS” sector;
i = 4 : index of the “CDR” sector;
j : index of the m coalitions (groups of countries);
A1(j) : total factor productivity in the “dirty” economy production function of

coalition j ;
A2(j) : total factor productivity in the “clean” economy production function of

coalition j ;
C(j) : total consumption of coalition j , in trillions (1012) of dollars;
Ei(j) : yearly GHG emissions in the economy i = 1, 2 of coalition j , in GtC

(109 tons of carbon);
IKi

(j) : investment in capital i = 1, . . . , 4 of coalition j , in trillions of dollars;
K1(j) : physical stock of “dirty” productive capital of coalition j , in trillions of

dollars;
K2(j) : physical stock of “clean” productive capital of coalition j , in trillions of

dollars;
K3(j) : physical stock of CCS capital of coalition j , in trillions of dollars;
K4(j) : physical stock of CDR capital of coalition j , in trillions of dollars;
L(j) : labor (exogenously defined world population) of coalition j , in millions

(106) of persons;
L1(j) : labor force in the “dirty” economy of coalition j , in millions of persons;
L2(j) : labor force in the “clean” economy of coalition j , in millions of persons;
L4(j) : labor force in the “CDR” sector of coalition j , in millions of persons;
p : price of the GHG emission rights;
W(j) : welfare of coalition j ;
Yi(j) : economic output in the economy i = 1, 2 of coalition j , in trillions of

dollars;
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α1(j) : elasticity of capital in the “dirty” economy production function of coali-
tion j ;

α2(j) : elasticity of capital in the “clean” economy production function of
coalition j ;

γ (j) : total factor productivity in the CDR production function of coalition j ;
δ(j) : elasticity of CDR capital in the CDR production function of coalition j ;
θ1(j) : elasticity of energy in the “dirty” economy production function of coali-

tion j ;
θ2(j) : elasticity of energy in the “clean” economy production function of

coalition j ;
π1(j) : energy price in the “dirty” economy of coalition j ;
π2(j) : energy price in the “clean” economy of coalition j ;
�(j) : proportion of dirty economy GHG emissions removed through CCS

activities;
υ(j) : maximum capture rate of CCS for coalition j ;
φ1(j) : energy efficiency of GHG emissions in the “dirty” economy of coalition

j ;
φ2(j) : energy efficiency of GHG emissions in the “clean” economy of coalition

j ;
ω̄(j) : atmospheric carbon removed by coalition j through CDR activities, in

GtC.

Remark 2 In the remainder of the paper we will put a “bar” on top of the variables
to remind the reader that we are dealing with the long-term asymptotic steady-state
of optimally growing economies.

3.2 Steady-State Production

In each coalition j = 1, . . . , m, economic output (Ȳ ) is obtained by the “dirty”
(i = 1) and “clean” (i = 2) economies, using capital (K̄i), labor (L̄i), and energy
(directly linked with emissions Ēi) as production factors:

Ȳ (j) = Ā1(j) K̄1(j)
ᾱ1(j) (φ̄1(j) Ē1(j))

θ̄1(j) L̄1(j)
1−ᾱ1(j)−θ̄1(j) (1)

+ Ā2(j) K̄2(j)
ᾱ2(j) (φ̄2(j) Ē2(j))

θ̄2(j) L̄2(j)
1−ᾱ2(j)−θ̄2(j).

In each coalition, total labor (L̄) is allocated to the two types of economies and the
CDR sector:

L̄(j) = L̄1(j)+ L̄2(j)+ L̄4(j), j = 1, . . . , m, (2)
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Table 1 Steady-state
population level (in millions)

j 1 2 3 4 Total

L̄(j) 521 721 3035 4422 8699

Table 2 Productivity factor
(Ā) and elasticities (ᾱ, θ̄)

j 1 2 3 4

Ā1(j) 0.08 0.09 0.04 0.03

ᾱ1(j) 0.3 0.3 0.3 0.3

θ̄1(j) 0.05 0.05 0.05 0.05

Ā2(j) 0.08 0.09 0.04 0.03

ᾱ2(j) 0.3 0.3 0.3 0.3

θ̄2(j) 0.05 0.05 0.05 0.05

Table 3 Energy prices (π̄ )
and efficiencies (φ̄)

j 1 2 3 4

π̄1(j) 0.425 0.425 0.425 0.425

π̄2(j) 0.65 0.65 0.65 0.65

φ̄1(j) 0.55 0.55 0.55 0.55

φ̄2(j) 5 5 5 5

where the steady-state population levels L̄ are assumed to be given as in Table 1,
below. These values are representative of some optimistic projections2 for 2100.
Parameters of the production functions are next given in Table 2, below. For
simplicity, we assume that elasticities are the same in all economies. Total factor
productivity (Ai) is higher in coalitions 1 and 2, and lower in coalitions 3 and
4. What distinguishes the “clean” economy from the “dirty” one is the energy
efficiency, defined as the quantity of energy obtained from one unit of emissions.
We also assume that the price of energy will be higher in the “clean” economy to
reflect the higher cost of renewable energy; see Eq. (8), below. These assumed values
are shown below in Table 3.

3.3 Steady-State Capital Levels

The steady-state value of capital is defined for each coalition j = 1, . . . , m as
follows, where the critical parameter is the depreciation rate (δK ) set to 10%3 per
year for all types of capital Ki :

0 = ĪKi
(j)− δKi

K̄i(j), i = 1, 2, 3, 4. (3)

In other words, investment ĪKi
must balance depreciation in a steady-state situation.

2Source: United Nations, World population prospects: The 2017 revision. Accessed on-line: http://
esa.un.org/unpd/wpp.
3A sensitivity analysis with a 5% depreciation rate per year will also be performed.

http://esa.un.org/unpd/wpp
http://esa.un.org/unpd/wpp


Steady-State Game Models 121

3.4 CDR and Steady-State Emission Budget

We assume that CDR is mainly done by direct air capture (DAC). This is a capital
intensive activity that we model through a production function. In coalition j , the
quantity ω̄ of DAC is obtained through a combination of two factors, a dedicated
capital K4 and a dedicated labor L4, according to the following Cobb-Douglas
production function:

ω̄(j) = γ (j)K̄4(j)
δ(j)L̄4(j)

1−δ(j), (4)

where the two critical parameters have been set to the values shown in Table 4.

Remark 3 We acknowledge the difficulty in calibrating a meaningful DAC produc-
tion function. The merit of the parameter values chosen here is that they enable
us to obtain numerical solutions with our model. Notice we have assumed that all
countries have access to the same technology with equal factor productivity and
efficiency.

3.5 Steady-State CCS

We assume that emissions in the “dirty” economy can be reduced through carbon
capture and sequestration (CCS). This is a capital intensive activity, where in each
coalition j the capital K̄3 for CCS is an add-on to “dirty capital” K̄1, so we posit:

K̄3(j) ≤ K̄1(j), (5)

and we also assume that the investment cost for K̄3 is a fraction of the investment
cost for K̄1, namely ĪK3(j) ≤ ζ I3

(j)ĪK1(j). (We have set parameter ζ I3
set to 0.01

for all coalitions.) We model the fraction �j(K̄3, K̄1) of emissions captured as the
simple function shown below:

�j(K̄3(j), K̄1(j)) = υ(j)
K̄3(j)

K̄1(j)
, (6)

where the maximum capture rate parameter υ is set to 50% in all coalitions j .

Table 4 CDR production
function parameters

j 1 2 3 4

γ (j) 0.001 0.001 0.001 0.001

δ(j) 0.3 0.3 0.3 0.3



122 O. Bahn and A. Haurie

Remark 4 This again corresponds to a rough estimate, given that it should apply to
the entire “dirty” economy, and not only to the power generation sector say, where
the capture efficiency is expected to be much higher (up to 90%).

3.6 Steady-State Carbon Market

Denote

Ē(j) = (1−�j(K̄3(j), K̄1(j))
)
Ē1(j)+ Ē2(j) (7)

the total emissions that have to be compensated in coalition j = 1, . . . , m. One
assumes that there exists an international market for emission permits. Given the
quantities ω̄(j) put on the market by each coalition j , a market clearing price p̄()

and the emission abatement decisions taken by the coalitions are determined by the
solution of a local optimization problem, defined below:

max
Ē1(j),Ē2(j)

⎧
⎨

⎩
Ȳ (j)−

∑

i=1,2

π̄ i(j)φ̄i(j)Ēi(j)−
4∑

i=1

ĪKi
(j)+ p̄()

(
ω̄(j)− Ē(j)

)
⎫
⎬

⎭
.

(8)

Here Ȳ is defined as in Eq. (1) and the permit price p̄() depends on the total permit
supply  = ∑m

j=1 ω̄(j). As the permit price is clearing the market, the following
condition holds:

0 =
m∑

j=1

(
ω̄(j)− Ē(j ; p̄())

)
, (9)

where Ē(j ; p̄()) is the emission response of coalition j to the permit price.
Besides, at equilibrium, the permit price is equal to the productivity of emissions
in both economies for each coalition. The permit price and emission response of
each coalition j are thus defined by:

0 = ∂Ȳ (j)

∂Ēi(j, p̄())
− π̄ i(j)φ̄i(j)− p̄(), i = 1, 2 (10)

0 =
m∑

j=1

Ē(j ; p̄())−. (11)

Following the same developments as in Helm (2003), we can express the marginal
influence of the supply of permits on the emission levels and market price. Taking
derivatives of Eqs. (10) and (11) w.r.t. , denoted ′, we obtain:
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0 = Ēi(j ; p̄())′ − p̄()′
∂2Ȳ (j)

∂Ēi (j ;p̄())2

, i = 1, 2 (12)

0 =
m∑

j=1

((
1−�j(K̄3(j), K̄1(j))

)
Ē1(j ; p̄())′ + Ē2(j ; p̄())′

)
− 1. (13)

Combining Eqs. (12) and (13), we get:

0 =
m∑

j=1

((
1−�j(K̄3(j), K̄1(j))

)
p̄()′
∂2Ȳ (j)

∂Ē1(j ;p̄())2

+ p̄()′
∂2Ȳ (j)

∂Ē2(j ;p̄())2

)
− 1. (14)

Therefore, the derivatives w.r.t.  of the permit price is given by:

d

d
p() = 1

∑m
j=1

(
1−�j (K̄3(j),K̄1(j))

∂2 Ȳ (j)
∂Ē1(j)

2

+ 1
∂2 Ȳ (j)
∂Ē2(j)

2

) (15)

where the partial derivatives of the production function are, respectively, given for
i = 1, 2 by:

∂Ȳ (j)

∂Ēi(j)
= θ̄ i (j)Āi(j) K̄i(j)

ᾱi (j)
(
φ̄i (j) Ēi(j)

)θ̄ i (j)−1
L̄i(j)

1−ᾱi (j)−θ̄ i (j) (16)

and

∂2Ȳ (j)

∂Ēi(j)2
= θ̄ i (j)

(
θ̄ i (j)−1

)
Āi(j) K̄i(j)

ᾱi (j)
(
φ̄i (j) Ēi(j)

)θ̄ i (j)−2
L̄i(j)

1−ᾱi (j)−θ̄ i (j).

(17)

3.7 Steady-State Consumption Level and Utility Function

In each coalition j , consumption is what is left from output after paying for energy
cost and investment, plus the revenue from selling emission permits (negative if
buying):

C̄(j) = Ȳ (j)−
∑

i=1,2

π̄ i(j)φ̄i(j)Ēi(j)−
4∑

i=1

ĪKi
(j)+ p̄

(
ω̄(j)− Ē(j)

)
. (18)
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We then assume that each coalition has the following utility function:

W̄ (j) = L̄(j) log

[
C̄(j)

L̄(j)

]
. (19)

4 Fully Cooperative Solution

Introduce the weighted performance criterion defined by:

W̄ =
m∑

j=1

r(j)W̄ (j), (20)

with r(j) > 0 and
∑

j r(j) = 1. The fully cooperative solution maximizes W̄ , as
defined in Eq. (20), under the condition that the total emissions, net of CCS, must
be compensated by DAC. That is, one has the following constraint set:

W̄ (j) = L̄(j) log

[
C̄(j)

L̄(j)

]
∀j

C̄(j) = Ȳ (j)−
∑

i=1,2

π̄ i(j)φ̄i(j)Ēi(j)−
4∑

i=1

ĪKi
(j) ∀j

�j = υ(j)
K̄3(j)

K̄1(j)
∀j

K̄3(j) ≤ K̄1(j) ∀j
ω̄(j) = γ (j)K̄4(j)

δ(j)L̄4(j)
1−δ(j) ∀j

0 = ĪKi
(j)− δKi

K̄i(j), i = 1, 2, 3, 4 ∀j
L̄(j) = L̄1(j)+ L̄2(j)+ L̄4(j) ∀j
Ȳ (j) = Ā1(j) K̄1(j)

ᾱ1(j) (φ̄1(j) Ē1(j))
θ̄1(j) L̄1(j)

1−ᾱ1(j)−θ̄1(j)

+Ā2(j) K̄2(j)
ᾱ2(j) (φ̄2(j) Ē2(j))

θ̄2(j) L̄2(j)
1−ᾱ2(j)−θ̄2(j) ∀j

Ē(j) = (1−�j)Ē1(j)+ Ē2(j) ∀j

0 =
m∑

j=1

(
ω̄(j)− Ē(j)

)
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5 Computing a Steady-State Nash Equilibrium

Assume that an international emission trading scheme is put in place. In a steady-
state net-zero emission regime, the total supply of emission permits should be equal
to the amount of negative emissions obtained through the use of DAC activities.
Each coalition, considered as a “big” player j , may then use the supply of emission
permits on the market as a strategic variable in order to maximize returns from
the emission budget share they control. The other strategic variable will be the
investment in CCS technologies in order to reduce the amount of emissions to offset
in the “dirty” economy.

A Nash equilibrium is obtained when each coalition has chosen its strategy as its
best reply to the choices made by the other coalitions, in an open-loop information
structure. A strategy s̄j for coalition j consists more precisely of:

• a level of investments
{
Ī1(j), Ī2(j), Ī3(j), Ī4(j)

}
in capital K1, K2, K3, and

K4, respectively;
• a level of labor allocations

{
L̄1(j), L̄2(j), L̄4(j)

}
in the two types of economies

and the CDR sector, respectively;
• and an amount of emission rights ω̄(j) put on the carbon market.

As indicated in Sect. 3, the supply of emission rights by coalition j must be equal
to the negative emissions produced by this coalition. Market clearing conditions
determine the price of emission rights and the emission levels in both economies of
each coalition.

To compute a Nash equilibrium, one can either use a formulation as a nonlinear
complementarity problem and solve it with the help of PATH algorithm (Ferris and
Munson 2000) or more simply use a cobweb approach, which in our case has always
converged, although convergence is not warranted.

6 Scenario Analysis

We are now ready to proceed with a numerical economics exercise. We will compare
the solutions obtained when assuming a fully cooperative approach (with equal
weight given to the different coalitions) and a non-cooperative approach (with an
international market for GHG emission rights).

6.1 Carbon Removed by DAC

Table 5 gives first the amount of carbon removed through DAC activities in each
coalition.
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Table 5 DAC activities Coalition 1 2 3 4

Cooperative solution 1.94 3.64 – –

Nash solution – – 2.13 2.98

Table 6 GHG emissions

Cooperative solution Nash solution

Coalition 1 2 3 4 1 2 3 4

Ē1 – – – – – – – –

Ē2 0.47 0.69 1.72 2.71 0.62 1.03 1.34 2.12

Table 7 Capital stocks with a 10% depreciation rate

Cooperative solution Nash solution

Coalition 1 2 3 4 1 2 3 4

K̄1 – – – – – – – –

K̄2 193.36 304.72 492.82 778.56 223.88 376.13 478.05 757.43

K̄3 – – – – – – – –

K̄4 21.31 45.01 – – – – 11.45 16.04

In the cooperative setting, the two lower-income coalitions (Coalition 3 and 4)
do not enter into DAC.

In the Nash setting, conversely, the most productive coalitions (Coalition 1 and 2)
do not enter into DAC, whereas Coalition 3 and 4 are engaged into DAC activities so
as to supply the carbon market with emission rights (the amount of carbon removed
in the atmosphere corresponds to the supply of permits).

6.2 Steady-State Carbon Emissions

Table 6 reports on GHG emissions for the two economies in each coalition.
In the cooperative and Nash settings, all coalitions switch to the “clean”

economy, and there is thus no emission from the “dirty” economy (Ē1 = 0) at
the steady-state.

6.3 Capital Stocks

Table 7 reports on capital stock levels in each coalition.
In the cooperative and Nash settings, we note that there is no need for CCS capital

(K̄3) since only the “clean” economy is in action. Besides, in all solution settings,
the accumulation of CDR capital (K̄4) is consistent with the DAC activities reported
in Table 5.
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Table 8 Capital stocks with a 5% depreciation rate

Cooperative solution Nash solution

Coalition 1 2 3 4 1 2 3 4

K̄1 – – – – – – – –

K̄2 532.15 838.72 1356.72 2000.00 616.29 1035.44 1315.65 2084.60

K̄3 – – – – – – – –

K̄4 58.64 123.79 – – – – 31.83 44.59

Table 9 Labor allocations

Cooperative solution Nash solution

Coalition 1 2 3 4 1 2 3 4

L̄1 – – – – – – – –

L̄2 423 563 2970 4692 473 652 2895 4587

L̄4 50 90 – – – – 75 105

Table 10 Consumption: total consumption C and per capita consumption c

Cooperative solution Nash solution

Coalition 1 2 3 4 1 2 3 4

C̄ 41.47 64.36 109.42 172.86 47.43 77.81 106.93 168.60

c̄ 0.08768 0.09871 0.03684 0.03684 0.10027 0.11934 0.03601 0.03593

In Table 8, we show the effect on capital stocks of lowering the capital
depreciation rate from 10% to 5%. As expected a lower capital cost induces higher
capital stocks.

6.4 Labor Allocation

Table 9 reports on labor allocations in each coalition.
In all solution settings, the allocation of labor to the productive economies is

consistent with the fact that only the “clean” economy is active in each case.
In the cooperative setting, we note that a substantial part of the work force is

allocated to the CDR sector of Coalition 1 and 2 (up to 14%). We refer to the caveat
of Remark 3; probably the productivity of labor in DAC activities is assumed too
low for these two coalitions. In the other cases, when active, the CDR sector requires
only a small fraction (2–3%) of the total work force.

6.5 Consumption

Table 10 reports on consumption in each coalition.
In the cooperative setting, the levels of consumption per capita are quite different

(by a factor 2 to 3) between Coalitions 1–2 and Coalitions 3–4. With these
consumption levels, the global weighted utility criterion is equal to −6288.
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In the Nash setting, the differences in per capita consumption levels between
Coalitions 1–2 and Coalitions 3–4 are slightly higher than in the cooperative setting.
In addition, per capita consumption levels for Coalition 1 and 2 are higher than in
the case of full cooperation, whereas it is the opposite for Coalition 3 and 4. With
these consumption levels the weighted utility criterion is equal to −9860, a lower
value than in the full cooperative case, which is consistent with theory.

7 Conclusion

In this paper we have worked with a “toy” economic model, representing possible
interactions of different coalitions of countries in managing a zero-net GHG
emission regime in a steady-state. Although the extreme simplicity of the model
prevents us from drawing any policy conclusion with sufficient confidence, we may,
however, emphasize a few interesting outcomes of this exercise in computational
economics.

1. If we believe in the Earth science that is supporting the UNFCCC Paris Agree-
ment, as we do, we must envision a long-term future with zero-net emissions. In
such a regime, all GHG emissions should be offset by negative emissions. Some
countries could have a comparative advantage in harnessing direct air capture
(DAC) or other carbon dioxide removal activities. Think, for instance, of the
Persian Gulf countries that have deserted lands and a lot of sunshine that could
be used to energize large DAC factories. Instead of selling oil and gas, these
countries could sell emission rights (or both. . . ).

2. In the computational economics experiment that we have developed, it appears
that the passage through an international emission trading scheme to implement
a zero-net emission regime does not lead to a Pareto optimal solution. Actually,
the solution computed (with all due caveats) within a Nash setting corresponds
to a lower weighted utility criterion value, with the lower income countries (our
Coalitions 3–4) being worse off compared to the cooperative setting.

3. The development of this very simple model is a first step toward a deeper and
more serious investigation of zero-net GHG emission regimes and exploration of
the welfare implications of international agreements leading to such regimes.
Further research must be done to assess the comparative advantages for the
different coalitions in developing DAC or CDR activities. Similarly, one should
evaluate the potential for carbon sequestration in different world regions. Then,
a dynamic model, with a non-zero discount rate and long-time horizon could be
envisioned. Uncertainty about the access to efficient DAC technologies could
be included in the model following the approach advocated in Bahn et al.
(2008, 2009). No doubt that game theory should play an important role in these
investigations. Prof. Georges Zaccour could help. . .
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Dynamic Models of the Firm with Green
Energy and Goodwill with a Constant
Size of the Output Market

Herbert Dawid, Richard F. Hartl, and Peter M. Kort

Abstract This paper analyzes a dynamic model of the firm. We focus on the effect
of investment in green energy. We explicitly take into account that green energy
has a positive side effect, namely that it contributes to the goodwill of the firm and
thus increases demand. Different models are proposed and the solutions range from
monotonic saddle point convergence to history-dependent Skiba behavior.

Keywords Green capital · Goodwill · Optimal investment · Skiba curve

1 Introduction

Georges Zaccour considerably contributed to the literature of environmental eco-
nomics using dynamic models; see, e.g., the edited volumes Breton and Zaccour
(1991), Carraro et al. (1994), Loulou et al. (2005), and the articles Breton et al.
(2010), Jørgensen et al. (2010), André et al. (2011), Domenech et al. (2011),
Masoudi and Zaccour (2013, 2014, 2017), Ben Youssef and Zaccour (2014), Eyland
and Zaccour (2014), and Masoudi et al. (2016). Therefore, the topic of our paper is
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green energy. A second reason for this research is that recently, more and more firms
are active producers of green energy as part of their Corporate Social Responsibility
(CSR) policy, e.g. Tesla or Google. We build a dynamic model of the firm in which
energy is the main input of the production process. This energy can be delivered
in a conventional way or by building a stock of green energy capital, e.g. by using
wind mills or solar panels. This is a topical subject; see, e.g., the recent article in
The Economist (2017). In addition, the firm can also reduce its energy bill using the
green capital or even sell energy making use of feed-in tariffs.

Our model belongs to a stream of literature, capturing the transition from
traditional to renewable resources for energy production. Wirl (1991, 2008) analyzes
the investment decisions of renewable energy producers. They compete with
incumbent producers with market power, which rely on production with exhaustible
resources. Tsur and Zemel (2011) are closer to our setup by studying the transition
from fossil fuels to solar energy within a firm. They characterize scenarios under
which solar energy is adopted and finally dominates the industry. Even more close
to our contribution is Amigues et al. (2015), taking into account that fossil resources
are exhaustible and showing that the optimal transition may be characterized
by different phases, starting with exclusive use of the non-renewable resource,
exhibiting then parallel use of both resources, and a final phase in which only
renewable resources are used. The investment into renewable energy may either
begin before actual production of renewable energy or be delayed to wait for a
sufficient increase of the energy price. Compared to Amigues et al. (2015), our
paper is different in that we analyze the dynamic implications of the interplay of
cost and goodwill considerations.

In fact, besides Amigues et al. (2015), another related paper in this area is Dawid
et al. (2018), which is the starting point of our analysis. As in Dawid et al. (2018)
we assume that the firm’s stock of goodwill, created by being “green,” pushes up the
consumers’ willingness to pay, but with a different inverse demand function than in
Dawid et al. (2018). In our setting the output price is proportional to the goodwill,
however, differently from Dawid et al. (2018), the market size is independent from
the stock of goodwill. We consider three different models. In our first model, the firm
is only able to use green energy. Numerically we find a solution with a unique saddle
point stable steady state to which the firm monotonically converges. The second
model analyzes a firm that, besides green energy, can also choose traditional energy
obtained from the energy market (modeled as a control). For this model, we also
find a unique saddle point stable steady state, but the difference with the previous
model is that convergence takes place in an oscillating way. These two findings are
qualitatively similar to those obtained in Dawid et al. (2018) for a different inverse
demand function. The main innovative contribution of this paper compared to Dawid
et al. (2018) is the consideration of the third model, in which we explicitly take into
account that the green capital stock should be of certain size before the firm really
can be considered as a green firm. To model this, we impose that green capital has
an S-shaped effect on the development of firm goodwill. Taking into account this
non-linear effect of green capital on goodwill accumulation gives rise to a history
dependent solution, under which the initial level of goodwill and green capital
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determines whether the firm ends up in a green steady state, with positive green
capital and goodwill stock, or both green capital and goodwill are fully depleted in
the long run.

The content of the paper is as follows: Sect. 2 describes the general model.
Section 3 analyzes the model where only green capital stock is used in the
production process, whereas Sect. 4 looks at the extension where the production
process has two possible inputs, green capital and traditional energy. In Sect. 5 we
analyze the implications of the S-shaped effect of green capital. Finally, Sect. 6
concludes.

2 The Model

In Dawid et al. (2018), we analyze a dynamic model of the firm with a production
process that has energy as input. Energy can be generated by either traditional
energy or green energy. The usage rate of traditional energy, e.g. oil or gas, is
modeled as a control variable, X. An alternative way of obtaining energy is to build
up a stock of green capital, K. Green capital stock can be represented by solar
panels or windmills. The evolution of the green capital stock over time follows the
traditional capital accumulation equation

K̇ = I − δK, K (0) = K0

in which I is investment in the green capital stock, whereas δ is the depreciation
rate.

The firm’s own energy infrastructure, K , generates a flow of green energy, h(K),

that adds to the energy bought on the energy grid/market, X, yielding E := X +
h(K). We assume that h(K) = K . Hence, the production factor energy, E, is given
by

E = K +X,

generating an output q (E) .

Investing in and using green energy makes that the firm exposes itself as a “green
firm.” This helps to create goodwill, G. Goodwill in turn helps to enhance the effect
of advertising, a. We get that the goodwill dynamics becomes

Ġ = f (K) a − δGG, G (0) = G0. (1)

where the effectiveness of advertising, f (K) , is an increasing function of the green
capital stock, and δG is the depreciation rate of goodwill.

The firm’s output can be sold on the market. The output price increases in
goodwill and decreases in quantity, i.e.
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p = p (G, q (E)) , pG > 0, pq < 0.

where p is the output price.
The firm incurs some costs. First, there are advertising costs denoted by Ca (a) .

Further we have (green energy) investment costs Cs (I ) , and a constant unit cost of
traditional energy that equals pX.

The resulting dynamic model of the profit maximizing firm then equals

max
I,a,X

∞∫

0

e−rt {p (G, q (E)) q (E)− Ca (a)− Cs (I )− pXX} dt, (2)

Ġ = f (K) a − δGG, G (0) = G0 (3)

K̇ = I − δK, K (0) = K0 (4)

E = K +X. (5)

We take into account that advertising is non-negative, i.e. a ≥ 0. On the other
hand, we allow disinvestments, but under the restriction that the stock of green
capital satisfies K ≥ 0. Note that the consumption of conventional energy, X, can
be positive or negative. Indeed, if the firm has a high green capital stock, K, and/or a
small production rate (proportional to E), then X = E−K can be negative and the
excess energy |E −K| can be sold making use of a feed-in tariff, which is assumed
to be equal to pX.

We depart from Dawid et al. (2018) in two different ways. First, where in Dawid
et al. (2018) we employ the linear inverse demand function p = max[g (G) −
αq (E) , 0], here we adopt the more multiplicative formulation

p = g (G)max [β − αq (E) , 0] .

where α and β are positive constants, and g (.) is an increasing function of goodwill
G. We chose this formulation because in this way the willingness to pay goes up
with goodwill, but the overall market size stays the same.1

Second, in Dawid et al. (2018), the effectiveness of advertising function f (K)

is linear in K. We also study the model with this functional form in the next
two sections. However, Sect. 5 contains an analysis where f (K) is S-shaped, the
motivation of which is that green energy capital should have reached some threshold
level before a firm is really recognized being a green firm.

1In the following analysis we will implicitly assume that the price is positive and drop the
maximum operator in the inverse demand. We have checked that along optimal paths we consider
in the numerical analysis this assumption is indeed correct.
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3 Analysis of the Model with Only Clean Input

Before we analyze the general model, we first look at a simplified variant, where the
traditional energy use is abolished, i.e., X = 0. Setting X = 0, the dynamic model
of the firm turns into

max
I,a

∞∫

0

e−rt {[g (G) (β − αq (K))] q (K)− Ca (a)− Cs (I )} dt

Ġ = f (K) a − δGG, G (0) = G0

K̇ = I − δK, K (0) = K0, K ≥ 0.

Following Grass et al. (2008), and Feichtinger and Hartl (1986), the current value
Hamiltonian equals

H = [g (G) (β − αq (K))] q (K)− Ca (a)− Cs (I )+ λ (f (K) a − δGG)

+μ (I − δK)+ νK.

This yields the following necessary optimality conditions of the maximum principle:

HI = 0 = −C′s(I )+ μ,

Ha = 0 = −C′a(a)+ λf (K) ,

λ̇ = (r + δG) λ− g′ (G) (β − αq (K)) q (K) ,

μ̇ = (r + δ) μ− g (G) q ′ (K) (β − 2αq (K))− λaf ′ (K)− ν.

To proceed with the analysis we use the following functional forms:

Ca (a) = ϕ

2
a2, (6)

Cs (I ) = γ

2
I 2, (7)

f (K) = K, (8)

q (K) = ηK, (9)

g (G) = θGρ, withθ > 0, 0 < ρ < 1. (10)

Combining these with the necessary optimality conditions, we get:

HI = 0 = −γ I + μ,

Ha = 0 = −ϕa + λK,
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λ̇ = (r + δG) λ− ρθGρ−1ηK (β − αηK) ,

μ̇ = (r + δ) μ− θGρη (β − 2αηK)− λa − ν,

with ν ≥ 0 and νK = 0. The optimal investment rate and advertising rate are given
by

I = μ

γ
,

a = λK

ϕ
.

Combining this with the dynamic equations for states and co-states, we obtain
the canonical system

λ̇ = (r + δG) λ− ρθGρ−1ηK (β − αηK) , (11)

μ̇ = (r + δ) μ− θGρη (β − 2αηK)− λ2 K

ϕ
− ν, (12)

Ġ = λK2

ϕ
− δGG, G (0) = G0, (13)

K̇ = μ

γ
− δK, K (0) = K0. (14)

Analyzing this canonical system leads to the following result:

Proposition 1 The canonical system (11)–(14) need not have a unique steady state.

Proof Assuming that K > 0 we set ν = 0. Hence, from (11), (13), and (14) we
obtain that in a possible steady state it must hold that

Ĝ = λ

ϕδG

(
μ

γ δ

)2

, (15)

K̂ = μ

γ δ
, (16)

λ̂ = ρθη

γ δ (r + δG)

(
λ̂

ϕδG

(
μ

γ δ

)2
)ρ−1

μ

(
β − αη

μ

γ δ

)
. (17)

From (17) we can explicitly solve for λ:

λ̂ =
(
ρθη (γ δ)1−2ρ (ϕδG)

1−ρ

(r + δG)

) 1
2−ρ

μ
2ρ−1
2−ρ

(
β − αη

μ

γ δ

) 1
2−ρ

. (18)



Dynamic Models of the Firm with Green Energy and Goodwill with a Constant. . . 137

We now substitute (15), (16), and (18) into (12) and setting ν = 0, μ̇ = 0. We
eventually obtain that

(r + δ) μ
2−4ρ
2−ρ =

⎡

⎣θη
(

1

ϕδGγ 2δ2

)ρ
(
ρθη (γ δ)1−2ρ (ϕδG)

1−ρ

(r + δG)

) ρ
2−ρ

⎤

⎦

×
(
β − αη

μ

γ δ

) ρ
2−ρ
(
β − 2αη

μ

γ δ

)

+
⎡

⎣ 1

γ δϕ

(
ρθη (γ δ)1−2ρ (ϕδG)

1−ρ

(r + δG)

) 2
2−ρ

⎤

⎦
(
β − αη

μ

γ δ

) 2
2−ρ

.(19)

This is an equation involving several nonlinear terms in μ, which possibly gives rise
to multiple steady states. �

Indeed, for the numerical values

β = 1; γ = 5; η = 1; θ = 0.6; ρ = 0.6;
α = 0.15; δG = 0.2; δ = 0.2; r = 0.02; ϕ = 30, (20)

we found two steady states with μ1 = 0.048 and μ2 = 2.469. The steady state
values of states and controls are given by

G∗
1 = 0.0006,

K∗
1 = 0.0481,

a∗1 = 0.0025,
I ∗1 = 0.0096,

G∗
2 = 1.971,

K∗
2 = 2.469,

a∗2 = 0.160,
I ∗2 = 0.493.

(21)

We now perform a stability analysis, in which we will show that only the larger
steady state, (G2,K2) , can be a stable equilibrium. To do so, we apply the formulas
of Dockner (1985) and the theory described in Feichtinger et al. (1994). This
involves determining the determinant of the Jacobian of the dynamic system and
Dockner’s K . This expression, which we denote by κ , is defined as

κ = det

(
∂Ġ
∂G

∂Ġ
∂λ

∂λ̇
∂G

∂λ̇
∂λ

)

+ det

(
∂K̇
∂K

∂K̇
∂μ

∂μ̇
∂K

∂μ̇
∂μ

)

+ 2 det

(
∂Ġ
∂K

∂Ġ
∂μ

∂λ̇
∂K

∂λ̇
∂μ

)

. (22)

After a long derivation, we obtain that the determinant of the Jacobian of the
canonical system (11)–(14) in a steady state is given by

det J = δGδ (r + δG) (r + δ)
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+δG2αη2θ (r + δG)
1

γ

(
1

ϕδG

(
μ

γ δ

)2
)ρ

λρ

−ηρθ

(
1

ϕδG

(
μ

γ δ

)2
)ρ−1 (

β − 2αη
μ

γ δ

) 2 μ
γ δ

γ ϕ
(r + 2δG) λ

ρ

+3 (1− ρ) ρθη

(
1

ϕδG

(
μ

γ δ

)2
)ρ−2 (

β − αη
μ

γ δ

)
(

μ
γ δ

)3

γ ϕ2
λρ

+ (1− ρ) ρθη (r + δ)

(
1

ϕδG

(
μ

γ δ

)2
)ρ−2 (

β − αη
μ

γ δ

)
δ

(
μ
γ δ

)3

ϕ
λρ−2

+ (1− ρ) ρθη

(
1

ϕδG

(
μ

γ δ

)2
)2ρ−2 (

β − αη
μ

γ δ

)
2αη2θ

(
μ
γ δ

)3

ϕγ
λ2ρ−2

− (ηρθ)2

(
1

ϕδG

(
μ

γ δ

)2
)2ρ−2 (

β − 2αη
μ

γ δ

)2
(

μ
γ δ

)2

ϕ

1

γ
λ2ρ−2

−δG (r + δG)
1

γ ϕ
λ2.

For κ from (22) we obtain in the steady state

κ = −δ (r + δ)− (2− ρ) (r + δG) δG

−2αη2θ

γ

(
1

γ δ

) 3ρ
2−ρ
(

ρθη

ϕδG (r + δG)

) ρ
2−ρ
(
β − αη

μ

γ δ

) ρ
2−ρ

μ
3ρ

2−ρ

+ 1

γ ϕ

(
ρθη (γ δ)1−2ρ (ϕδG)

1−ρ

(r + δG)

) 2
2−ρ (

β − αη
μ

γ δ

) 2
2−ρ

μ
4ρ−2
2−ρ . (23)

For the larger steady state (G2,K2) in (21), we obtain the following values for
the stability indicators:

det J2 = 0.00415 (24)

κ2 = −0.1346 (25)

det J2 − (κ2/2)2 = −0.00038. (26)

From Table 1 (respectively Figure 1) in Feichtinger et al. (1994) which builds on
Dockner (1985), we conclude that the steady state is a (locally) stable equilibrium
with monotonic convergence to the steady state. On the other hand, the determinant
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in the smaller steady state (G1,K1) in (21) is negative:

det J1 = −0.00073.

From Feichtinger et al. (1994) and from Dockner (1985), we conclude that this
steady state is unstable and cannot constitute an equilibrium.

4 Analysis of the Complete Model with Clean and
Conventional Input

In the complete model (2)–(5), the firm can use both, the conventional input, X, and
the green capital stock, K. To derive the optimality conditions we first define the
Hamiltonian

H = g (G) (β − αq (K +X)) q (K +X)− Ca (a)− Cs (I )− pXX

+λ (f (K) a − δGG)+ μ (I − δK)+ νK.

The necessary optimality conditions are

HI = 0 = −C′s(I )+ μ,

Ha = 0 = −C′a(a)+ λf (K) ,

HX = 0 = g (G) q ′ (K +X) (β − 2αq (K +X))− pX,

λ̇ = (r + δG) λ− g′ (G) (β − αq (K +X)) q (K +X) ,

μ̇ = (r + δ) μ− g (G) q ′ (K +X) (β − 2αq (K +X))− λaf ′ (K)− ν.

We again employ the special functions (6)–(10), to obtain

HI = 0 = −γ I + μ,

Ha = 0 = −ϕa + λK,

HX = 0 = θGρη (β − 2αη (K +X))− pX,

λ̇ = (r + δG) λ− ρθGρ−1 (β − αη (K +X)) η (K +X) ,

μ̇ = (r + δ) μ− θGρη (β − 2αη (K +X))− λa − ν.

It follows that the optimal controls are given by

I = μ

γ
,
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a = λK

ϕ
,

X = ηβ − pX

θGρ

2αη2 −K. (27)

The steady state values of the G and K are again given by (15) and (16). Since an
analytic approach of the stability analysis does not lead to anything, from now on we
use a numerical analysis. Solving the system of equations λ̇ = 0 and μ̇ = 0 allows to
determine the steady states and the stability indicators also for this extended model.
We keep the same parameter values as in (20) and in addition, we impose

pX = 0.1. (28)

Again a unique steady state in the relevant state space with the required saddle-point
property of the state/co-state dynamics can be identified2:

μ∗ = 2.016

λ∗ = 2.26

G∗ = 1.532

K∗ = 2.016

a∗ = 0.152

I ∗ = 0.403

X∗ = 0.89.

Concerning the stability indicators of this steady state, we obtain:

det J = 0.00288

κ = −0.07

det J − (κ/2)2 = 0.0016

Using again Table 1 (respectively Figure 1) in Feichtinger et al. (1994), we conclude
that the steady state is again locally stable. However, we now have complex
eigenvalues, implying that transient oscillations in the state dynamics occur before
convergence to the steady state. The result that the use of conventional input by the
firm induces non-monotone convergence towards the steady state is consistent with
findings obtained in Dawid et al. (2018) for a different inverse demand function.

2There exists also a steady state of the state/co-state dynamics with K∗ > 0 and X∗ < 0. However
for this steady state det J < 0 and it is not saddle point stable.
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5 Convex-Concave Effects of Green Capital on Goodwill

In our analysis so far we have assumed that the effect of green capital of the firm on
the effectiveness of advertisement for the build-up of goodwill is linear. However,
arguably below a certain minimal level of green capital stock the consumers hardly
recognize the activities of the firm and this does not generate substantial increase
of goodwill. Furthermore, a firm already perceived as being very environmentally
friendly can hardly improve its reputation by increasing its level of green capital. An
S-shaped form of the function f (K) determining the effectiveness of advertisement
for the increase of the goodwill stock (see (1)) is more appropriate to capture such a
situation than the linear form used so far. Therefore, in this section we analyze our
model (in the version with clean and conventional input) for the following form of
the function f (K)

f (K) = ζ 1

1+ Exp[−ζ 2(K − K̃)] .

which has an S-shaped form for appropriate values of the parameters ζ 1, ζ 2, K̃ . In
Fig. 1 we depict the function f (K) for

ζ 1 = 2, ζ 2 = 6.6 K̃ = 2,

which will be the default values in our following analysis.
Taking into account that under this formulation there exists an upper bound for

the returns on investment in the goodwill stock and that the marginal effort needed
to sustain a certain goodwill stock is increasing with respect to the level, we adapt
the parameters given in (20) such that the effect of the goodwill stock on demand
is now linear. In particular, in the following analysis we assume now ρ = 1, γ =
9, pX = 0.175, and otherwise stick to values in (20). In this scenario three steady

Fig. 1 The effect of green
capital on the increase of the
goodwill stock
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states of the canonical system can be found. Two of them are saddle points, namely

μ∗1 = 0 μ∗2 = 4.4
λ∗1 = 0 λ∗2 = 4.49
G∗

1 = 0 G∗
2 = 2.7

K∗
1 = 0 K∗

2 = 2.44
X∗

1 = 0 X∗
2 = 0.526

The first steady state corresponds to a scenario in which the firm stops producing
and essentially leaves the market, whereas the firm is an active producer in the
second steady state. Between these two there is an unstable node with μ∗3 =
3.35, λ∗3 = 3.66,G∗

3 = 0.198,K∗
3 = 1.86, X∗

3 = 0. In order to obtain deeper
insights concerning the global dynamics under optimal investment, in particular
about the basins of attraction of the two locally stable fixed points, we rely on a
global numerical analysis.

In particular, we determine two “local value functions” around the two saddle
points of the canonical system, i.e. value functions resulting from trajectories of
the state and control variables that are optimal, conditional on the assumption that
these trajectories converge to the upper or the lower steady state. To determine these
optimal value functions (and the corresponding investment functions) we rely on a
collocation method, in which an approximation based on Chebyshev polynomials
of the value function is determined such that the Hamilton-Jacobi-Bellman equation
associated with the control problem is solved on a suitably determined grid in the
state space. The optimal investment functions are then determined from the first
order conditions using this approximate value function for the problem. A more
detailed description of the method can be found, for example, in Dawid et al. (2015).

Using this approach we obtain the two local value functions shown in Fig. 2a,
where the blue function is the local value function corresponding to trajectories
converging to the lower steady state at zero and the orange function to that of the
upper steady state. It can be clearly seen that for low initial values of green capital
the firm’s value function is larger if it chooses a trajectory converging to the low
steady state. Convergence to the upper steady state is optimal for initial values above
the Skiba curve given by the intersection of the two local value functions. It can be
clearly seen that a certain minimal initial stock of green capital is necessary to make
convergence to the upper “green” steady state optimal and that this level increases
as the initial stock of goodwill becomes larger.

In Fig. 2b, two trajectories are depicted that both depart from one point on the
Skiba curve, namely, G(0) = 1.5,K(0) = 1.3. The red trajectory converges to the
origin, in which the firm gradually leaves the business. On the green trajectory, we
see that the green capital stock has to reach a sufficiently high level of green capital
before the firm’s goodwill starts increasing. Here, the firm stays in business forever,
because the trajectory converges to the steady state where both, green capital and
goodwill are positive.
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Fig. 2 (a) “Local value functions” corresponding to trajectories converging to the lower (blue)
and upper (yellow) steady state. The intersection between the two value functions is a Skiba curve
along which the firm is indifferent between choosing controls inducing convergence to the upper
and the lower steady state; (b) the two optimal trajectories for an initial point on the Skiba curve

Figure 3 takes a closer look at these two trajectories, distinguishing between
the dynamics of states, controls, and instantaneous profits. If the firm chooses the
trajectory converging to the lower steady state (red lines), it does not invest in
goodwill (a=0) and only initially invests small amounts (I ) in green capital. Both
of these stocks (K,G) monotonically decrease to zero. At the same time initially
the firm uses relatively large amounts of conventional energy (X) for production in
order to satisfy the relatively large demand induced by the high initial goodwill
stock. Since goodwill decreases over time, the same holds for the demand and,
therefore, the use of conventional energy quickly converges to zero. Due to the
decrease of demand over time, instantaneous profits (F ) are high in the first periods,
but then become zero in the long run. Intuitively, the firm exploits its high initial
goodwill stock using cost minimizing input factors without trying to keep the high
goodwill in the long run.

The same objective value can be obtained by the firm by choosing the green
trajectory converging to the high steady state with a positive long run level of green
capital and goodwill. Also in this scenario, the goodwill stock initially decreases,
because the initial level of green capital is so low that the firm’s advertising activities
have essentially no positive effect on the dynamics of its goodwill stock (see also
Fig. 1). Once the firm has built up sufficient green capital, the returns of investment
in the goodwill stock are sufficiently large such that this stock starts to increase and
converges to a relatively high positive level. For this trajectory, initial profits are
negative (when the firm invests in the build-up of the stock), but positive in the long
run. Also, it should be observed that a positive amount of conventional energy is
used in the long run under our parametrization.

Comparing these two trajectories highlights that under these initial conditions
the goodwill stock initially decreases no matter whether or not the firm plans to
build up green capital and keep a positive goodwill stock in the long run. If the firm
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Fig. 3 Dynamics under the optimal trajectories converging to the low steady state (red) and high
steady state (green) for G(0) = 1.5,K(0) = 1.3: (a) goodwill stock; (b) green capital stock; (c)
conventional input; (d) instantaneous profit; (e) investment in goodwill; (f) investment in green
capital
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targets the positive steady state it has to invest heavily in green capital during the
early periods in order to reach a part of the S-shaped curve f (K), determining the
effectiveness of advertising, that allows it to prevent through advertising activities
the goodwill stock from falling. If the initial stock of green capital is too low, then
the investments needed to push the stock of green capital to such a minimal level
are too costly. For such initial conditions it is always optimal for the firm to exploit
its initial stock of goodwill (mainly using conventional input). This explains why
in Fig. 2a the area with K ≤ 1 is completely below the Skiba curve, implying that
for such low levels of initial green capital the optimal trajectory leads to the lower
steady state no matter how large the initial goodwill stock is. Furthermore, it is
quite intuitive that the marginal value of an additional unit of green capital is more
valuable for a firm targeting the upper steady state compared to a firm targeting
the lower steady state. This is, because for a firm targeting the upper steady state
the higher level of green capital increases the future effectiveness of its advertising
activities, in addition to providing production input, whereas for a firm following a
trajectory to the lower steady state (without advertising) only the second of these
two effects is present. Hence, the “local value function” corresponding to the upper
steady state increases more steeply with respect to the level of green capital, which
explains that for high levels of green capital it is optimal for the firm to converge to
the positive steady state (see again Fig. 2a).

Qualitatively similar observations about the properties of optimal trajectories
to those discussed above can be made when considering initial conditions in the
interior of the basins of attraction of the two locally stable steady states rather than
the one on the Skiba curve used here.

6 Conclusions

In this paper we consider a dynamic model of the firm whose main production
factor is energy. These days, firms have the choice between using conventional
energy and employing green energy by investing in windmills and/or solar panels.
We explicitly take into account that green energy has a positive side effect, namely
that it contributes to the goodwill of the firm and thus increases demand. The latter
happens only after the green capital stock has reached a significantly large size. We
show that this feature can lead to history-dependent Skiba behavior. We plan to do
future work in this area where, among others, we want to investigate the effect of
government intervention in the form of subsidies and investment grants.
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A Review of Experiments on Dynamic
Games in Environmental and Resource
Economics

Dina Tasneem and Hassan Benchekroun

Abstract This chapter reviews the existing experimental literature on the behav-
ioral outcomes in dynamic common pool resource games. We categorize the
contributions in three sections. The first group of contributions compares the
observed behavior to different cooperative and noncooperative theoretical bench-
marks. The second group covers contributions that design experiments that aim to
find behavioral support for the use of specific types of strategies. Both the first and
second groups exclusively use a discrete time framework. Finally, we discuss the
exceptions in this literature that study behavior in continuous time.

Keywords Resource economics · Environmental economics · Experiments ·
Dynamic games · Differential games · Common pool resources · Tragedy of the
common

1 Introduction

Environmental and natural resource economics have been fertile areas of applica-
tions of dynamic games (see, e.g., Jorgensen et al. 2010; Long 2011 or Benchekroun
and Long 2012 for surveys). Inefficiencies in the management of common pool
resources, such as the fisheries, forestry, grazing, water, or the climate, have been
extensively used to highlight the role of absent or ill-defined property rights in the
failure of the welfare theorems in economics. The payoff of each economic agent
typically depends on the actions of all the other agents involved in the economic
activity. Game theory is then a natural tool to model situations where the resource
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is exploited by a fixed number of strategic agents such as firms, municipalities,
regions, or countries. Natural resource and environmental games often share another
important characteristic: actions at a given date impact the future states of the game.
Clearly, extracting one barrel of oil today changes the states of the future reserves of
oil. On the climate change front, whether the global temperature will stay below the
critical thresholds as prescribed by the UN International Panel on Climate Change
(IPCC) will depend on the contemporaneous mitigation efforts undertaken by all
countries. Taking these intertemporal constraints into account requires the use of
a dynamic framework that captures the evolution of the states of the game and its
dependence on current actions.

While there is an extensive literature on dynamic resource or environmental
games, the experimental analysis of strategic behavior explicitly taking into account
the intertemporal dimension of the game is scarce. We review in this chapter
contributions that have examined agents behavior when facing a resource dynamics.

Game theoretic modeling makes assumptions regarding economic agent’s fun-
damental decision-making behavior, e.g., selfish behavior ignoring externalities
caused to others. The first group of the contributions we review examines, within
specific common pool resource dynamic games or dynamic pollution games,
whether the observed behavior supports cooperation, typically corresponding to the
Pareto optimal/first best outcome, or selfish behavior, typically corresponding to the
outcome of a noncooperative equilibrium of the game. Some of these experimental
studies also examine different institutional and environmental factors that can
induce a cooperative behavior that mitigates the “tragedy of the commons.” In
Sect. 2 we cover those studies that compare behavior to different cooperative and
noncooperative benchmarks.

Another important specification of a game is the definition of the strategy set
available to the players. In dynamic games, strategies can be history dependent
allowing retaliation or punishment such as trigger strategies, or can consist of an
action path (open-loop strategy) chosen at the start of the game or can consist of state
contingent plans such as Markovian strategies (Basar and Olsder 1999; Dockner
et al. 2000; Haurie et al. 2012; Basar and Zaccour 2018a,b). The equilibrium
outcome of the game may vary, sometimes substantially, depending on the strategy
space considered. In Sect. 3 we summarize the findings of experiments that examine
behavioral support for the use of specific types of strategies.

The papers reviewed in Sects. 2 and 3 model the dynamics of the common
property resource game using a discrete time framework (difference games), with
the dynamics of the system described with difference equations. In Sect. 4 we cover
in more detail the much less studied case where the dynamics of the resource is
modeled using a continuous time framework. The implication on the experimental
design is that in continuous time events evolve in an asynchronous fashion (differen-
tial games), and the dynamics are modeled with differential equations. In Sect. 4 we
present experiments implemented in continuous time involving dynamic externality
within the context of a common property renewable resource. Concluding remarks
are offered in Sect. 5.
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2 Equilibrium Prediction vs Behavior

In this section we discuss few experimental studies that compare behavior to the
predictions of noncooperative game theory in the presence of dynamic externalities.

Herr et al. (1997) is one of the early experimental studies to examine behavior in
the laboratory in a common-pool resource (CPR) game with and without dynamic
appropriation externalities. Time-dependent externalities arise when appropriation
of the resource by any player increases the cost of appropriation for all players
in the current and future periods, whereas under time-independent externalities
the appropriation by a player at a given time increases the cost of all players in
that moment only, the appropriation externality is of a static nature. The authors
compare behavior in these two settings. They consider behavioral observations to
three benchmark outcomes of the game, namely the Pareto optimal, the sub-game
perfect Nash equilibrium, and the outcome of myopic strategy. The myopic case
corresponds to the outcome of a game where agents fail to consider the impact
of their extraction on their own future costs of appropriation. Herr et al. (1997)
illustrate their results using a groundwater basin as the CPR, and consider a finite
time horizon dynamic where the depth-to-water is the unique state variable of the
game and for each player the cost of extraction depends on the depth of the aquifer.
The marginal cost of pumping a unit of water is assumed to be a linear increasing
function of the depth-to-water: it increases at a constant rate with each resource
unit extracted. When the depth-to-water is reset in each period the inter-temporal
externality feature of the problem is muted. The myopic outcome obtains when
players fail to take into account that current extraction impacts the future values of
depth-to-water, this corresponds to a game where agents completely discount future
payoffs. Such myopic behavior may be justified on the grounds of the difficulty to
compute the solution to the dynamic optimization problem facing an agent.1

In the experiment the resource extractors are subjects ordering “tokens.” A
subject’s monetary earnings depend on her token order and her cost is based on her
token order as well the group token order. The experiments delivered two important
findings:

– The cooperative outcomes are poor predictors of behavior relative to the non-
cooperative benchmark outcomes. This is true for the time-dependent and the
time-independent settings.

– In the time-dependent designs, the observed payoffs are significantly lower than
those in the time-independent designs. This is partly explained by the presence
of myopic behavior. The presence of myopic players might exacerbate the
aggressive extraction of non-myopic players and result in a more severe tragedy
of the commons.

1The possibility of myopic playing has been explicitly included in transboundary pollution
differential games (see, e.g., Benchekroun and Martín-Herrán 2016).
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Addressing myopic behavior could be an important part of policy interventions
in the management of CPRs and represents a promising line of future research.

Mason and Phillips (1997) also compared behavior under static vs dynamic
externality as part of their experimental study of common pool extraction. An
important specificity of their model with respect to the vast CPR literature is that
in addition to sharing access of an input, players, i.e., firms also share the market of
output: firms are oligopolists in the market of output. In this context Cornes et al.
(1986) show that the socially optimal industry size is larger than one but finite.
This feature is particularly relevant for resources that have no close substitutes and
therefore a substantial markup is to be expected, e.g., Gulf Coast oysters versus
Pacific Coast oysters, or West Coast refiners preference for Alaskan crude oil over
crude oil from the Middle East. The objective of Mason and Phillips (1997) is
to study the effect of industry size on behavior in the commons, in particular
the tendency of firms to collude. They ran experiments with markets (groups) of
two, three, four, or five harvesters, and examined collusive behavior under a static
externality only and in the presence of both a static and dynamic externality. A
benchmark scenario is the optimal industry size when the players compete à la
Cournot. Under a static externality only, they observed that firms tend to collude, i.e.
produce less than the Cournot equilibrium quantity, and that for the benchmark case
considered the empirically optimal industry size is four. However when a dynamic
externality is present the observed behavior of markets is no longer consistent with
a collusive behavior or cooperation between players. Then, the optimal industry size
is three, the same optimal size obtained when firms play à la Cournot.

The two papers discussed above compare behavior in the presence of static exter-
nality and both static and dynamic externalities (Herr et al. 1997) or only dynamic
externality (Mason and Phillips 1997). Both studies intend to test the hypothesis
that dynamic externalities exacerbate the tragedy of the commons and their findings
support this hypothesis. Giordana et al. (2010) also address a similar concern of
whether the delayed, rather than an immediate, realization of the consequences of
over exploitation exacerbates the problem of the commons. However they formulate
their question differently: they test whether adding immediacy of a static externality
in an otherwise dynamic environment can help mitigating the tragedy of the
commons, by increasing the salience of the problem to the players. Therefore, they
compare behavior in the presence of dynamic externality vs. static and dynamic
externalities. The common pool resources they examine are coastal groundwater
reservoirs where excessive pumping from the reservoirs increases the risk of natural
seawater intrusion into the aquifers, thereby rendering them useless for agricultural
and human consumption. Giordana et al. (2010) use a dynamic game with two
substitutable common pool resources with different exploitation costs. In one
treatment the common-pool resources generate only a dynamic externality, while in
the other treatment the common-pool resources generate both static and dynamic
externality. They compare behavior against three extraction paths, the sub-game
perfect, myopic and Pareto optimal. Their experimental design is such that sub-game
perfect and myopic benchmark extraction paths are same under both treatment.
As stated above, they hypothesize that users who faces both static and dynamic
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externality of their exploitation of the resource are likely to be more conservative
in their exploitation than users who experience only dynamic externalities. They
assume that the immediacy of the static externality may enhance awareness of the
consequences of their actions and encourage more socially beneficial behavior. The
experimental observations do not support this hypothesis. They also find in both of
their treatments behavior follow the myopic prediction more closely.

Noussair et al. (2015) test the canonical renewable resource model (Hardin 1968)
in a framed field experiment where experienced recreational fishers make decision
on their individual per period catch from an allowable catch for a four member
group. Given that the fishermen involved are experienced, they are well aware
of the negative externalities inflicted on the group when they choose to overfish.
Sixteen fishermen were assigned to groups of four with fixed membership. The
game repeats for four periods and each period lasts 1 h. The experiment poses
a social dilemma along three dimensions: duration of the game since the game
stops if the fish stock is exhausted, the number of fish caught, and the monetary
benefit associated with the catch. The allowable catch for the group was affected
negatively by the total catch of the group in the previous periods. The authors find
no evidence of cooperation and the results of this field experiment are consistent
with the predictions of noncooperative game theory which assumes selfish agents.

There have been a very few experimental studies specifically designed to
represent the climate change game. The main concern of these studies has been
the inherently dynamic nature of the problem and its effect on the ability of the
parties to cooperate. The principal effect of the accumulation of greenhouse gases
will be felt in the future and in some cases by different generations. In this context
one of the behavioral concerns is that decision-makers are myopic, therefore, much
worse at processing the future consequences of their actions than immediate ones
(Calzolari et al. 2016). Calzolari et al. (2016) compare cooperation in three different
environments with different degrees of persistence of greenhouse gas emissions.
They report similar levels of cooperation (in terms of average emission) in all
environments. But interestingly in the dynamic environment they find cooperation
levels deteriorate for high stocks of pollution. In this dynamic externality treatments
emission strategies seemed to be increasing in the stock of pollution. Based on this
result the authors warn that successful climate policy may require starting early
mitigation efforts while pollution stock is low enough. Otherwise too high of a
pollution stock may itself work against any possible cooperation among the parties.

Sherstyuk et al. (2016) compare behavior in intragenerational and intergener-
ational dynamic games of climate change with pollution generating production
and external cost from accumulated pollutant over time. In the intragenerational
treatment, the dynamic game is played throughout by the same group of subjects,
while in the intergenerational treatments, the dynamic game is played by several
groups (generations) of subjects. The authors designed the later treatment to
describe reality more closely where the countries’ decision-makers and citizens
may care more about their immediate welfare and care only partially about the
welfare of the future generations. They find while in the intragenerational treatment
a significant fraction of the groups show sign of cooperation and ability to approach
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socially optimal outcome, behavior in the intergenerational treatment, even when
caring for future generations is incentivized, resembles the noncooperative outcome
of the game. They speculate, this result arises from additional strategic uncertainty
imposed by different generations.

Pevnitskaya and Ryvkin (2013) present the result of a laboratory experiment on
a public bad dynamic game. In this game private production generates pollutant that
accumulates over time and imposes cost on all producers. This simple game captures
the basic structure of many social dilemmas such as the problems of local or global
pollution, and renewable or nonrenewable common pool resource exploitation. The
study compares the collective behavior to the Markov perfect equilibrium and Pareto
optimal solution of the game. In the laboratory the average accumulation of the
public bad is less than that of the Markov Perfect Nash equilibrium though it remains
above the social optimum. The authors report the effect of framing the problem
within an environmental context, that is framing the public bad as pollution. In
one of their treatment settings they find significant decrease in production decision
therefore lower pollution when the problem is explicitly framed as a pollution game.
They argue that the environmental context may have activated pro-environmental
behavior in the laboratory as well as to some extent worked as a proxy for
experience.

In considering the noncooperative equilibrium of a CPR game, very little to
no attention is actually given to the space of strategies considered. However in
dynamic game theory it is well known that the set of strategies considered can have
important implications on the equilibrium of the game (see, e.g., Dockner et al.
2000 or Haurie et al. 2012). The most important sets considered in the dynamic
game theory are the set of time (only)- dependent strategies (open-loop strategies),
state-dependent strategies (Markovian strategies), history-dependent strategies (e.g.,
trigger strategies that allow for punishments depending on the history of play).
There are a very few experimental studies that focus on behavioral assumption
of the strategy types used to solve dynamic games. In the next section we cover
contributions intended to address this issue.

3 Behavior and Strategy Types

In many occasions the set of sub-game perfect equilibria in a dynamic game can be
large and varied in nature (Vespa 2011). Experimental studies can play important
role in studying the issue of equilibrium selection in such games. For example,
Vespa (2011) presented their experiment participants with a dynamic common pool
game of two players who share a common resource that grows at an exogenous rate.
The efficient outcome of the game requires the players to let the resource grow such
that eventually they receive a large return from it. The game has both Markov perfect
equilibria and history- dependent grim-trigger strategy equilibrium in its set of sub-
game perfect Nash equilibria. While in their game the efficient outcome cannot be
supported by a Markov equilibrium, it can be supported by a sub-game perfect grim-
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trigger strategy. They use a large state space, but to make the environment simple
enough for the laboratory participants, they restrict the choice space to maximum
three points. Comparing behavior with a list of possible strategies they conclude that
Markov strategies can be a reasonable assumption for behavior in this environment.
The modal behavior in their experiment mostly agrees with a sub-game perfect
Markov equilibrium strategy. Though, if they increase the incentives for cooperation
the Markov-perfect equilibrium strategy loses its popularity to some extent.

Battaglini et al. (2016) study behavior in a dynamic public good game where
the public good accumulates over time. In these games again the set of sub-game
perfect Nash equilibria includes both stationary Markov perfect equilibrium and
non-Markovian equilibria. As Markovian strategies depend on the accumulated
level of the public good, an increase in current investment by one agent results in
reduction in future investment by all agents and there by leads to under provision of
the public good. Cooperative outcome of the game can be achieved using some form
of carrot-and-stick equilibrium strategies. The framework can be applied to issues
such as pollution abatement as well as many others. Their experiment includes the
case where players can make both positive or negative (reversible) contribution
to the public good account as well as the case where the contribution have to be
non-negative (irreversible). Theoretically in their model investment and therefore
steady state public good stock is higher in the irreversible case under the assumption
of symmetric Markov perfect strategy. Though under the assumption of history-
dependent strategies, involving punishments and rewards for past actions, they
prove that in case of reversibility the optimal investments can be achieved as a
sub-game perfect equilibrium. Considering the most efficient history- dependent
sub-game perfect Nash equilibrium in each case, they find that the investment
and therefore steady state public good stock is higher in the reversible case than
irreversible case. This stark difference in the comparative static predictions arising
from the behavioral assumption in their model allows them to design an experiment
to test the behavioral relevance of Markovian and history-dependent strategies. The
result of the experiment at the aggregate level supports the comparative statics of
the Markov perfect equilibrium that irreversible investment leads to higher public
good production than reversible investment. They show that the Markov perfect
equilibrium strategy they consider does not do such good job with the finer details
of the individual investing behavior. Though, they find evidence that their subjects’
investment choice responds to the evolution of the stock of the public good.

4 Continuous Time Games

In all the experimental studies we discussed till now and in most of the literature,
each participant takes her action on a period by period basis, as everyone has
made their decision in one period, the time moves on to the next, that is, decision
making happens in discrete time. In reality, decision making in dynamic settings
not necessarily happens in such orderly fashion (Janssen et al. 2010). Natural social
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systems unfold in real time, when decisions are made in an “asynchronous fashion”
with continuous updates of states and information (Huberman and Glance 1993).
Implementing laboratory experiments in continuous time is quite recent and one of
the focus of these studies is to compare behavior under continuous time interaction
and discrete time interaction in the lab (Friedman and Oprea 2012; Calford and
Oprea 2017; Oprea et al. 2014; Bigoni et al. 2015; Horstmann et al. 2016) . It is
quite rare to find experimental studies studying behavior in real time/continuous
time in an environment with dynamic externality. Janssen et al. (2010) and Tasneem
et al. (2017) are two exceptions.

The experimental design in Janssen et al. (2010) is based on field research on
governance of social-ecological systems and particularly keen to approximate the
field settings. For this purpose they present the experimental subjects (in group of
fives) with a 29-by-29 computer-simulated grid of cells with a shared renewable
resource (experimental tokens). The players harvest tokens from this simulated
resource field in real time for 4 min, where the resource’s renewal rate depends
on the density of the resource and therefore the players face both spatial and
temporal resource dynamics. The best collective outcome of this game can be
achieved if the players thoughtfully and patiently decide where and when to harvest.
Some of the experimental treatments allow costly punishment and/or written
communication among the players. Without any punishment or communication
possible the study replicates “tragedy of the commons” with fast resource depletion.
Only availability of costly punishment could not improve welfare of the players
in the game. Communication and communication paired with costly punishment
improves harvesting decision significantly. One of the interesting findings of this
paper is that communication by itself has a long-lasting effect on cooperative
behavior but as they pair communication with punishment that cooperative behavior
dissipates when communication and costly punishment is taken away.

The experimental design in Tasneem et al. (2017) is based on an infinite horizon
linear quadratic differential game. As it has been presented in the theoretical liter-
ature the game admits a linear Markov-perfect equilibrium as well as a continuum
of equilibria with strategies that are nonlinear functions of the state variable (see
Dockner and Van Long (1993) in the context of a transboundary pollution game,
Fujiwara (2008), Colombo and Labrecciosa (2013a,b), Lambertini and Mantovani
(2014, 2016) or Bisceglia (2018) in the case of a renewable resource oligopoly
and Kossioris et al. (2011) in the case of a shallow lake problem and Dockner
and Wagener (2014) for a more general treatment). The objective of this study
is to examine the empirical relevance of these linear and nonlinear equilibria in a
two-player common property renewable resource game. Given that this is the first
experimental study of a differential game, we describe it into a bit more detail.

The linear quadratic differential game framework is a workhorse model in
economics differential game literature because of its analytical tractability. In a
linear quadratic differential game the objective functions of the players are quadratic
and the system of state equations are linear. In this paper two identical agents i, j

share access to a renewable resource stock, denoted by S, with natural reproduction
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function of the stock given by F(S). The instantaneous payoff function of each
player is given by

ui(qi(t)) = qi(t)− qi(t)
2

2
.

where qi(t) is the extraction by player i at time t and the stock dynamics is given by

Ṡ(t) = F (S (t))− qi(t)− qj (t).

For the sake of simplicity they consider the range of stock where reproduction
function of the resource is given by F (S) = δS, where δ represents the intrinsic
growth rate of the resource. The instantaneous payoff function reaches its maximum
when q = 1. Therefore the cooperative strategy should support extraction of 1 for
each player at the steady state.

Note that in this problem there is no static externality per say, there is only
a dynamic externality. Nonlinear equilibria in the presence of static externalities
coming from an oligopolistic behavior (as in Mason and Phillips (1997) above) were
shown to exist in this game as well (see Fujiwara (2008), Colombo and Labrecciosa
(2013a,b), Lambertini and Mantovani (2014, 2016) or Bisceglia (2018)). Since the
focus is to investigate behavioral support for equilibria with nonlinear strategies, the
study is done in the simplest framework that generates those equilibria, i.e. without
static externalities.

To solve the game they focus on the set of stationary Markovian strategies,
such that at any point in time, the extraction decision of a player depends only
on the state of the stock at that moment. Each player i takes the other player’s
strategy as given and chooses a stationary Markovian strategy that maximizes the
discounted sum of his instantaneous payoff over infinite horizon. The game admits
a piecewise linear Markov-perfect equilibrium as well locally defined continuum
of nonlinear Markov-perfect equilibria.2 These Markovian equilibrium strategies
vary in the extent of aggressiveness of exploitation of the resource and therefore
support infinitely many stable steady states, varying from the best possible steady
state (linear Markovian strategy) to very low steady states portraying the tragedy
of the commons phenomena. We reproduce Fig. 1 from the paper that presents
several examples of equilibrium strategies in this game for the parameter values
chosen for the experiment. In the figure, the line called “Steady State” represents
steady state extractions at different stock levels. The intersection of this line with
a strategy represents the steady state corresponding to the strategy. The strategy
labeled “Linear” is the noncooperative linear strategy. In this game, in case of
the linear strategy, extraction of the players reaches the best possible steady state.

2A global Markov-perfect equilibrium strategy is defined over the whole state space. A local
Markov-perfect Nash equilibrium strategy is defined over an interval strictly included in the state
space (Tasneem et al. 2017).
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Fig. 1 Representative equilibrium strategies

The locally defined curves represent different nonlinear equilibrium strategies. The
nonlinear Markovian strategies may sustain many possible steady states, including
those that result from resource depletion. The graph also shows the cooperative
linear strategy called “Cooperative.”

The experiment is implemented in real/continuous time. That is all information
are updated every second and players can change their decision any time they
want as many times they want. The laboratory subjects are paired randomly in a
group at the beginning of the experimental session. Each group plays several rounds
of simulated common pool resource games.3 The experimenters set the initial
extraction rate and the starting stock level for each simulation. Within a session
there are four games for practice and six games for pay. For the practice game the
initial extraction rates are set according to the linear Markov perfect strategy for both
players. For the six games for pay, the first two games are set with linear strategy
initial extraction rate. For next two games, the initial extraction rate is set according

3They implemented the discount rate by applying it to instantaneous payoffs every second. To
implement infinite horizon each simulation of the game end with a continuation payoff for each
player computed as the discounted sum of payoffs for the player out to infinity. This computation
assumed that the extraction rate forever stayed the same as it was at the end of the simulation, and
it took into account whether the stock level would ever go to zero.
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Fig. 2 Predicted time paths for experimental parameters

to the nonlinear strategy labeled “Nonlinear” in Fig. 1. And for the last two the
initial extraction rate is set according to the nonlinear strategy labeled “High Stock
Aggressive.” A session either belongs to the low initial stock treatment (S0 = 7)
or high initial stock treatment (S0 = 14) . The theoretical time path predictions for
these strategies are shown in their Fig. 3 (reproduced here as Fig. 2).

The paper first tests the empirical relevance of the Markovian equilibrium
strategies by looking into whether any of the steady-states supported by the
equilibrium strategies has been frequently reached by the players. They use an
algorithm called MSER-5 commonly used in computer simulations literature to
identify the time of convergence of a process for the purpose of characterizing
steady states in their experimental data. For each group in each simulation of the
game the algorithm identifies if a steady state exists, if so the algorithm identifies
the extraction rates at the steady state. Table 3 in the paper (reproduced as Table 1
here) summarizes the findings.

According to their table, in every game in each treatment, the majority of
behaviors resulted in a steady state stock management. The table categorizes the
estimated steady state total extractions into those similar to linear equilibrium steady
state, the steady states with total extraction approximately 2, or those similar to any
of the steady states supported by nonlinear equilibrium strategies, the steady states
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Fig. 3 Distribution of steady states by treatment

with total extraction between 0 and 2. They also find some steady states that are not
consistent with either linear or nonlinear equilibrium strategies, for example, the
steady states that are significantly greater than 2.

To test the treatment effect they compare the distribution of steady state total
extraction rates under initial sock of 7 and 14. Their Figure 8 (reproduced as
Fig. 3 here) presents a density estimate of the distributions of steady state total
extraction rates for these two experimental treatments. Theoretically, increasing the
initial stock level eliminates a set of equilibrium strategies that exist at the lower
initial stock level. As the authors demonstrate in Fig. 1, when starting stock is 7,
one of the most aggressive strategies available is labeled “Low Stock Aggressive,”
but if the starting stock is 14, one of the most aggressive strategies available is
“High Stock Aggressive.” Therefore, the higher starting stock of 14 eliminates the
nonlinear strategies between those two strategies. When they compare the empirical
steady state distributions they find them significantly different from each other. A
two-sample Kolmogorov Smirnov test indicates that steady state total extraction
distribution in Treatment 2 (S0 = 14) contains larger values than that of Treatment
1 (S0 = 7). They conclude that starting with a healthy stock appears to improve
extraction behavior in terms of the steady states achieved. Given that symmetry of
the equilibrium strategies is a common assumption in the theoretical literature, they
look into symmetry of extraction rates at the steady states. Out of the 270 games
that reached steady state, 144 were symmetric by their criteria. The study does not
find any significant effect of different initial resource extraction rates on behavior.



160 D. Tasneem and H. Benchekroun

Next they compare the extraction behavior of the players against Markov
equilibrium strategies. The theoretical strategies suggest the more aggressive the
strategies are, the faster is the increase in extraction with increase in stock. Also
the more and more aggressive strategies get the smaller and smaller stock levels
will be subject to positive extraction. In their data actual extraction behavior varies
widely and deviates quite far from theoretical suggestions. A large fraction of the
play shows sign of over extraction of the resource at low level compared to even
the most aggressive theoretical strategy. A good share of actual extraction behavior
shows qualitative similarity with nonlinear strategies in terms of raising extraction
more and more as the stock grows. Also the players seem to adjust their extraction
later downward (upward) following initial over (under) extraction.

The authors also use general-to-specific modeling to find the empirical model
that best fit extraction behavior of each player in each play. One of the interesting
findings of this analysis is that, though most of the players condition their extraction
decision on the current stock level (in a continuous manner as suggested by the
Markovian strategies), in a small but significant fraction of cases, roughly 14%,
extraction did not condition on the stock level at all. The authors call these behavior
rule-of-thumb, as their investigation reveals that in most of these cases the player
extracts at a low rate, or zero, until the stock is built up enough for maximum or high
extraction rate. The average steady state extraction corresponding to these strategies
is significantly higher than that in other categories. Out of the plays that reached
the best steady states about 50% includes at least one player with rule-of-thumb
behavior. These rule-of-thumb behavior turned out to be quite efficient as it adjusted
quickly when the stock reached the level to support best extraction.

5 Conclusion

The chapter reviewed the relatively scarce literature on experiments examining
the behavioral outcomes in dynamic common pool resource games. The main
finding is that when the dynamics is taken into account there is even less evidence
of cooperation than in settings where the dynamics of the resource is muted.
There is support of myopic behavior where agents simply ignore the intertemporal
constraints. This myopic behavior tends to exacerbate the tragedy of the commons.
In the cases of resource extraction there is evidence that agents do cooperate more
when the resource stocks, with even agents refraining from extraction until the stock
reaches a certain threshold. In a differential game where the experiments allow for
continuous time settings, there is support for the use of rule-of-thumb strategies, that
is strategies that consist of refraining from extraction until the stock reaches a certain
threshold and extract at a constant rate. These strategies share the simplicity of
myopic strategies. However they do not imply an exacerbation of the tragedy of the
commons, and even result in outcomes that are closer to cooperative outcomes than
the noncooperative equilibrium outcome. The framing of the experimental setting
can also influence the outcome of the game.
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More research is needed to understand the implication of the resource dynamics
in the tragedy of the commons within full-fledged continuous time experiments,
including the case of more sophisticated games where agents exploit several species
(Vardar and Zaccour 2018). The lessons learned from these experiments are relevant
for policy making and the priorities that regulators need to have. Regulators should
pay particular attention to incentives that combat myopic behavior of agents facing
intertemporal constraints. Policies that set moratoriums on extraction until some
stock is reached bare obvious similarities with rule-of-thumb strategies which are
shown to be more conducive to cooperation. Future experiments that examine how
the design of these thresholds and the duration of a harvesting season impact the
cooperative behavior among players and how this impact depends on group sizes
would bring valuable insights into natural resource policy modeling.

Mastering the translation of differential games in laboratory or field experiments
will deliver important insights into the behavior of subjects within the context
of competition and intertemporal constraints in general. Building this know-how
will be very fruitful in addressing important questions in dynamic games in
general such as the behavior of subjects in the presence of a leader (Stackelberg
differential games), the (dis)advantage of a regulator in taking the lead, the impact
of dissemination of information regarding the states of the game. The behavioral
lessons learned in these important class of games will guide regulators and players
in general to design institutions that are more conducive to cooperation and that
reduce existing inefficiencies.

An experimental approach can be particularly useful when the theoretical
analysis of strategic interactions yields inconclusive outcomes. Such situation arises
when the game admits multiple equilibria, or when different behavioral assumptions
in defining strategies or objective functions of the players lead to different outcomes
in the game. For example, Tasneem et al. (2017) present a differential common
pool resource game with multiple Markov Perfect equilibria that are Pareto ranked.
Further insight into the outcome of this game can only be gained through an
experiment designed to study equilibrium selection. The equilibrium outcome of a
differential game typically depends on the space of strategies considered. These con-
texts warrant experimental studies to test the relevance of the underlying behavioral
assumptions of different strategy types. Vespa (2011) and Battaglini et al. (2016)
are two early examples of such attempts. Another promising line for future research
is to examine the role of social status in resource games. Benchekroun and Long
(2016) present a common pool renewable resource oligopoly incorporating social
status in the objective function of the players. Their analysis suggests existence of
social status based on relative harvest exacerbates the tragedy of the commons, while
social status based on relative profit can have an opposite effect in certain conditions.
It is difficult to know whether social status or relative output/payoff plays any role
in common pool resource exploitation decision in real life and if it does, through
what channel, output or profit. Experimental studies can shed light on the relative
importance of each channel (output versus profits) and by the same token provide
insights into the relevant policy interventions in the presence of status concerned
harvesters. The lessons learned from the response of strategic agents facing joint
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intertemporal constraints can be valuable in dynamic oligopolistic games in general
(Lambertini 2018; Basar and Zaccour 2018a,b), such as investment games (e.g.,
Huisman and Kort 2015), competition under price stickiness, branding decisions in
marketing (Crettez et al. 2018; Pnevmatikos et al. 2018). These lessons can help
narrow down the set of available strategies considered in a theoretical framework,
based on empirical observations, which in turn can make the theoretical analysis
more salient.
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Managerial Incentives and Polluting
Inputs Under Imperfect Competition

Denis Claude and Mabel Tidball

Abstract This paper explores the link between upstream input pricing and down-
stream strategic delegation decisions. It complements earlier contributions by
studying how environmental emissions and tax payments alter the incentives
business owners have to divert their managers from profit maximization in favor
of sales revenue generation. Two scenarios are compared depending on whether
the upstream supplier precommits to a fixed input price or adopts a flexible price
strategy. Corresponding Subgame-Perfect Nash-Equilibria are characterized and
elements of comparative statics analysis are presented. The analysis confirms that
previous results—showing that a price precommitment makes the upstream supplier
better off and downstream firms worse off—carry over to situations in which
production generates pollution.

Keywords Precommitment · Externality · Delegation · Vertical relations ·
Managerial incentives

1 Introduction

This chapter bridges two fields of research in which Georges Zaccour has been
active: the analysis of vertical relations and environmental and resource economics.
The former studies relations between firms that intervene successively along the
value chain whereas the latter deals with the relations between the economy and
the environment. We can trace back his interest for vertical relations to his early
contributions on the analysis of energy markets (Zaccour 1983, 1987; Breton et al.
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1990). Today this interest is mainly manifested in his work on marketing channels.1

But, it also comes up tangentially in a variety of contributions ranging from
environmental economics—where sustainable tourism development may require
tourism destinations to delegate expenditures in environmental remediation to a
regional authority (Claude and Zaccour 2009)—to institutional economics—where
good institutions are produced by the strategic precommitment of civil society to
fight corruption (Ngendakuriyo and Zaccour 2013).

Strategies of “delegation” and “precommitment” are at the heart of the literature
on strategic delegation to which this chapter contributes.2 Starting with Vickers
(1985), Fershtman and Judd (1987), and Sklivas (1987), this literature has examined
the incentives owners have to delegate production decisions. By hiring a manager,
the owner of a firm can credibly commit to pursue a goal that differs from
maximizing profit. The managerial compensation contract will then be designed
to convey the appropriate managerial incentives to guide the manager in his day-
to-day decisions. Its terms will provide for a variable target-based bonus that
rewards the manager’s performance in achieving some alternative goal to (pure)
profit maximization. This variable part may be based on any one or a combination
of the following criteria: profit, sales volume or revenue, market share, and corporate
social responsibility or environmental objectives. Since rational managers respond
to financial incentives conveyed by the variable part of their remuneration, they will
be encouraged to deviate from profit maximization.

As is well known, by choosing to reward sales revenue rather than profit, the
owner encourages the manager to adopt a more aggressive market behavior. Namely,
the managerial firm will produce more (for any level of production of its com-
petitors) than a profit-maximizing owner-managed firm. Financial disclosure rules
usually ensure that the incentives embedded in managerial compensation contracts
are common knowledge.3 Any change in the performance criteria presiding over
managerial compensation will then affect the expectations of competing firms. This
opens the door to a strategic manipulation of compensation contracts: each owner
attempting to alter the expectations of rival firms to its own advantage.

But deviating from profit maximization is only profitable when the deviation
is unilateral. And, since all owners face similar incentives to deviate, widespread
deviations are to be expected and excessive output supply will result into lower
profits for all. Hence, the opportunity to strategically delegate day-to-day production
decisions to a manager closes as a trap on firm owners who actually find themselves
confronted with a Prisoner’s Dilemma.

Strategic delegation provides a much needed rationale for observed deviations
from profit maximization. This rationale, however, assumes that firms are vertically
integrated and produce their own inputs. When this assumption is relaxed, the
vertical externality linked to input pricing appears to have a disciplining role on

1See Jorgensen and Zaccour (2004) and the references therein.
2For literature surveys, see Lambertini (2017), Kopel and Pezzino (2018), and Sengul et al. (2012).
3See Vural (2018) for the example of the ball bearing company SKF.
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downstream firms’ behavior. If duopolists buy in inputs from a common monopolist
supplier, Park (2002) shows that strategic delegation becomes unprofitable for
business owners. Wang and Wang (2010) reach the same conclusion by assuming
that managerial incentive contract rewards a combination of profit and market share
(rather than profit and sale revenues). On the contrary, Liao (2008, 2010) shows that
strategic delegation retains its strategic value if the input supplier precommits to a
fixed input price. This conclusion is backed by Wang (2015), who proves it true
when compensation contracts reward the manager’s performance relative to peers.4

Finally, Claude (2018) shows that Park (2002)’s main results no longer holds if we
consider a downstream market consisting of more than two—but a finite number
of—firms.

This paper re-examines the link between vertical externalities and strategic
delegation decisions. We consider an extended version of Park (2002)’s model
in which downstream firms generate pollution emissions when they process the
intermediate product into a final good. Specifically, we assume that the emission of
a firm, per unit of output produced, is inversely related to that firm’s productivity in
processing inputs. Since pollution emissions are assumed to be taxed, downstream
firms have an incentive to internalize them, at least in part.

Two papers have investigated the consequences of strategic delegation for
environmental policy-making. In a Cournot duopoly with homogeneous goods and
pollution emissions, Barcena-Ruiz and Garzon (2002) find that strategic delegation
is profitable. At the equilibrium, managerial firms produce and emit more than
profit-maximizing owner-managed firms. Consequently, the optimal environmental
tax is higher than that required to regulate a standard Cournot market. Pal (2012)
generalizes this result to differentiated industries. However, none of these papers
has investigated how factor market imperfections alter managerial incentives in
downstream markets, which is the main purpose of our paper. Since our model
encompasses those of Park (2002) and Claude (2018), we check the robustness of
their results.

The paper is organized as follows. Section 2 describes the model. Section 3 solves
the managerial sub-game. Sections 4 and 5 characterize the sub game perfect Nash
equilibrium (SPNE) depending on whether the upstream monopolist precommits to
a price. SPNE outcomes are compared in Sect. 6. The last section concludes.

2 The Model

We extend the model of Park (2002) to account for the existence of pollution
(or waste). Consider a vertical market structure with upstream monopoly and
downstream quantity competition. The single upstream monopolist (indexed by up)
produces at no cost a homogeneous input x that it sells at a non-discriminatory

4This form of strategic delegation was first studied by Fumas (1992) and Miller and Pazgal (2002).
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price k > 0. Let xi denote the input consumption of firm i (i = 1, 2, . . . , n) and
X = ∑n

i=1 xi the aggregate input demand. The upstream supplier’s profit function
is simply πup = k X.

Downstream firms rely on the same technology to turn the intermediate product
x into a final good y. Let yi denote the output of Firm i (i = 1, 2, . . . , n) and
Y = ∑n

i=1 yi the aggregate downstream output. Firm i’s production function is
yi = ε xi, where ε ∈ (0, 1] is a parameter measuring Firm i’s productivity.

Pollution emissions come as a by-product of production. More precisely, they are
inversely related to Firm i’s productivity and given by ei = (1− ε) xi .5 We assume
that the government levies a tax on pollution emissions at a rate τ ≥ 0. Obviously,
the more inefficient the firm is (the lower the value of ε), the higher is the quantity
of pollution emitted for each unit of the final good y produced and the higher is the
firm’s tax bill for a given level of output. Conversely, if ε is assumed equal to 1, then
the firm no longer emits pollution and its environmental tax bill is zero. Without
loss of generality, we assume that downstream firms face no other production cost
than that associated with input purchase. Demand for the final good y is represented
by the inverse demand function P(Y ) = a − bY with a, b > 0. Under the above
assumptions, Firm i’s profit function is given by

πi = P(Y )yi − kxi − (1− ε)τxi . (1)

Using the production function, the above can be expressed in terms of y only:

πi = P(Y )yi − A (k, τ , ε) yi, where A (k, τ , ε) = k + τ

ε
− τ , (2)

denotes firm i’s effective marginal cost of production; namely, the sum of the firm’s
input expenditure (k/ε) and environmental tax bill (τ (1− ε) /ε). Observe that
∂A/∂ε < 0, ∂A/∂τ > 0 and ∂A/∂k > 0, which is in accordance with intuition.
Indeed, an increase in the price of factors (τ for emissions, and k for the intermediate
product) leads to a corresponding increase in marginal cost, whereas an increase in
the productivity parameter ε translates into a reduced (effective) marginal cost.

The owners of downstream firms may hire managers to run their firms on their
behalf. The decision to hire a manager leads to the so-called divorce between

5We assume that the more efficient the firm is, the less input is used per unit of output and thus the
lower the level of waste or emission generated. This assumption conforms to empirical findings
by Shadbegian and Gray (2003). Examining the determinants of environmental performance at
paper mills, they found that high productivity plants pollute less. More precisely, a 10% higher
productivity level is associated with a 2.5% lower emission per unit of output. Furthermore, they
found that unexpectedly high productivity levels are associated with unexpectedly low levels of
emissions per unit of output. Shadbegian and Gray (2003) advance two main explanations for their
results. On the one hand, newer production plants may be more efficient in production but also
designed so as to reduce pollution emissions or waste. On the other hand, older, more inefficient,
firms may face less regulatory pressure and retrofitting their facilities may be extremely difficult
so that abatement possibilities are reduced.
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ownership and control. Indeed, when management and control functions are
divorced, agency problems arise if the manager’s interests diverge from those of
the owner (Sengul et al. 2012). In the remainder of this paper, we assume that all
agency problems have been resolved6 to focus our attention on the strategic value
of delegation decisions. Following Vickers (1985), Sklivas (1987), and Fershtman
and Judd (1987), we assume that owners hire managers in order to credibly commit
their businesses to objectives that differ from profit maximization. Here, we assume
that this objective is the maximization of a weighted sum of profits and sales
revenue; i.e.,

Fi = αiπi + (1− αi) [P(Y )yi] . (3)

The profit weight αi is chosen strategically by the owner of firm i in order to
manipulate the anticipations of rival firms to its own advantage (i.e., in a profitable
way). The corresponding departure from profit maximization is credible since the
inclusion of a target-based bonus in managerial compensation contracts ensures that
appropriate incentives are conveyed to managers.7 Depending on the value selected
for αi , owners can encourage a wide range of behaviors. To see this, let us rewrite
Eq. (3) as:

Fi = P (Y ) yi − αi A (k, τ , ε) yi . (4)

Then the performance measure has straightforward interpretation. By choosing
αi = 1, firm owners encourage pure profit maximization. However, if αi is set lower
than one, they direct their managers to pursue revenue generation at the expense of
profits and if αi is set greater than one they direct their managers to pursue cost
minimization at the expense of profit generation. We let �α = (α1, α2, . . . , αn)

denote the profile of profit weights chosen by downstream owners.

6After delegation, the manager may not act in the owner’s interest and engage in opportunistic
practices and other self-serving behaviors. Managerial opportunism arises from two main sources
(Eisenhardt 1989) : (a) the objectives of the owner and the manager may conflict and (b) the owner
may not be able to observe the behavior of the manager. The first is of little relevance in our
context. Indeed, we assume that the manager is offered a performance-based bonus which reduces
conflicts of interests and ensures that the manager will adhere to the owner’s supply strategy.
However, appropriate monitoring and governance mechanisms should be put in place in order
to treat the second source of managerial opportunism. Indeed, unobservable behaviors may result
in expropriation of the company funds (Shleifer and Vishny 1997). Common examples include the
excessive consumption of perquisites such as luxurious offices and company jets. More broadly,
managerial discretion may result in the allocation of company funds to the pursuit of pet projects
or that of an irrational expansion of the firm.
7Consider a two-part compensation contract wi = wF

i + wV
i Fi where wF

i ≥ 0 denotes the base
salary and wV

i > 0 denotes the bonus rate that rewards performance as measured by Fi . Given
this compensation contract, it is equivalent for manager i to maximize the compensation wi or the
target Fi . For more on this point, see Kopel and Pezzino (2018).
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We consider two scenarios depending on whether the upstream monopolist is
able to precommit to a fixed input price. In the first scenario, we assume that price is
difficult to change and communicate to customers. In this case, price commitments
are credible. The order of moves is then as follows. The upstream monopolist
moves first and sets the input price. After observing this price, downstream owners
design their managerial compensation contracts simultaneously and independently.
Obviously, the latter simply means setting the value of the profit weight αi . At the
last stage of the game, managers compete in quantities so as to maximize their
compensation, taking into account their target-based bonus and the input price.

In the second scenario, we assume that prices are easy to change and com-
municate and the upstream monopolist is unable (or unwilling) to make a price
precommitment. Without price commitment the upstream monopolist retains the
opportunity to adjust the input price to changes in the behavior of downstream firms.
The order of moves is then as follows. In the first stage of the game, firm owners
simultaneously and independently choose the compensation contracts that will be
offered to hired managers (i.e., they set αi, i = 1, 2, . . . , n). In the second stage,
when the profile of managerial incentives �α is known and common knowledge,
the upstream monopolist sets the input price k. Then, in the last stage, managers
compete in quantities so as to maximize their compensation taking into account
their target-based bonuses and the input price.

The difference between the timing of moves in the above two scenarios is
illustrated in Fig. 1. Both three stage games are solved by backward induction. Since
the last stage is common to both games, it will be analyzed separately in the next
section.

Throughout the paper, we make the following assumption:

Assumption 1 We assume that the efficiency of firms is sufficiently high, 1 ≥ ε >
τ

a+τ
, (or the price of energy is sufficiently low, aε

(1−ε)
> τ > 0) to ensure that all

firms are active at the equilibrium.

Fig. 1 Timing of the games: precommitment vs. flexible pricing
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3 The Managerial Subgame

At stage 3, given �α and k, each manager i simultaneously and independently chooses
a quantity yi so as to maximize Fi , i = 1, 2, . . . , n. Assuming an interior solution,
the resulting system of first-order conditions is

P(Y )+ P ′(Y )yi = αiA (k, τ , ε) , i = 1, 2, . . . , n. (5)

Obviously, these conditions repeat the standard provision that marginal revenue
must equal the marginal cost of production. However, when the manager strikes
the balance between marginal costs and revenue, he does not consider the firm’s
actual marginal cost of production A (k, τ , ε), but its depreciated (or inflated) value
by the weight factor αi . By solving the i-th equation in (5) for yi we obtain:

yi = αiA (k, τ , ε)− P(Y )

P ′(Y )
, i = 1, 2, . . . , n. (6)

If αi < 1, observe that the manager i is induced to produce more than a profit-
maximizing firm owner (for each output choice of its competitors). By choosing
profit weights that are lower than one, owners induce their managers to be more
aggressive on the output market.

Summing Eq. (6) over i results in:

Y = A (k, τ , ε)
∑n

i=1 αi

P ′(Y )
− n

P (Y )

P ′(Y )
, (7)

or, equivalently,

YP ′(Y )+ nP (Y ) = A (k, τ , ε)

n∑

i=1

αi. (8)

This last equation implicitly defines the equilibrium industry output Y " as a function
of a weighted sum of the marginal costs of production incurred by the firms
making up the industry. This result repeats the observation by Bergstrom and Varian
(1985a,b) that Cournot-Nash quantities depend solely on the sum of the firms’
characteristics and, especially, are independent of how those characteristics are
distributed. By substituting the inverse demand function P(Y ) = a − bY into the
fixed-point equation (8) and solving for the equilibrium industry output level, we
obtain:

Y " = na−A(k,τ ,ε)
∑n

i=1 αi

b(n+1) . (9)
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Now, by plugging this quantity back into Firm i’s (inclusive) reaction function (6),
we obtain:

y"i = a+A(k,τ ,ε)(
∑n

i=1 αi−(n+1)αi)
(n+1)b . (10)

The implied equilibrium price is:

P " := P(Y ") = a+A(k,τ ,ε)
∑n

i=1 αi

(n+1) . (11)

4 Price Precommitment

In this first scenario, the upstream monopolist precommits to an input price k.
So, at the time when owners design their managers’ compensation contracts, the
pricing policy of the upstream monopolist is known and common knowledge. The
timing of the game is depicted in Fig. 1. At Stage 2, each owner simultaneously
and independently chooses the incentives to provide to management (i.e., the profit
weight αi). At stage 1, the upstream supplier sets the input price k. Now, we resume
the backward induction procedure starting with the design of managerial incentive
contracts.

4.1 Choice of Managerial Incentive Contracts

Each owner i sets the profit weight αi so as to maximize its profit taking the input
price k as given; i.e., owner i solves

max
αi

πi =
[
P(Y ")− A (k, τ , ε)

]
y"i , i = 1, 2, . . . , n. (12)

Assuming an interior solution, we obtain the following system of n first-order
conditions for profit maximization:

P ′(Y ")
∂Y "

∂αi

y"i +
∂y"i

∂αi

[
P(Y ")− A (k, τ , ε)

] = 0, i = 1, 2, . . . , n. (13)

The first term on the left-hand side corresponds to a gain in sales revenue linked
to the price increase resulting from the reduction in total industry output. The
second term corresponds to a profit loss linked to the reduction in firm i’s supply.
Conditions (13) indicate that managerial incentive contracts should be designed so
as to balance these two countervailing effects.

From Eqs. (9) and (10), we obtain (See Appendix 1):

∂Y "/∂αi = −A/ (b (n+ 1)) , ∂y"i /∂αi = −nA/ (b (n+ 1))) . (14)
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Replacing in Eq. (13), P(Y ), P ′(Y ), ∂Y/∂αi, ∂yi/∂αi and yi by their respective
expressions, after straightforward calculations, we obtain:

− (n− 1)
(
a + A

∑n
i=1 αi

)− (n+ 1) A (αi − n) = 0, i = 1, 2, . . . , n. (15)

Solving each of the above equations, we find the expression of αi as a function of∑n
i=1 αi :

αi = n− (n−1)
(n+1)A

(
a + A

∑n
i=1 αi

)
, i = 1, 2, . . . , n. (16)

Summing Eq. (15) over i = 1, 2, . . . , n, results in

− (n− 1) na − (1+ n2
)
A
∑n

i=1 αi + n2 (n+ 1) A = 0, (17)

from which we extract the expression of the weighted sum of managerial incentives

∑n
i=1 αi = n((n+1)nA−(n−1)a)

(n2+1)A
. (18)

Plugging this sum back into Eq. (16) we find:

αc
i = n− (n−1)

(1+n2)A

(
a + n2A

)
, i = 1, 2, . . . , n. (19)

Plugging αc
i back into Eqs. (9)–(11) yields:

P (Y c) = a+n2A

(1+n2)
, Y c= n2(a−A)

b(1+n2)
, yci = n(a−A)

b(1+n2)
, πc

i = n(a−A)2

b(1+n2)
2 , (20)

i = 1, 2, . . . , n. For the time being, let us assume that k is given and fixed. Then,
equilibrium values are presented in (20). As expected the solution is symmetric.
Furthermore, the solution is admissible (i.e., prices and quantities are strictly
positive) provided that a > A. From Eq. (19), we obtain:

αc
i = αc = 1− (n−1)

(1+n2)
(a/A− 1) , i = 1, 2, . . . , n. (21)

Since admissibility implies a > A, it follows that ( a
A
− 1) > 0 and αc < 1. In

other words, equilibrium managerial compensation contracts provide that managers
will be rewarded for deviations from profit maximization that favor sales revenue
generation. Now, observe that A(k, τ , ε) > A (k, τ , 1) = k. Since ∂αc/∂A =
a (n− 1) /

(
A2
(
1+ n2

))
> 0, we find that the equilibrium profit weight αc reaches

a minimum when production generates no pollution (i.e., when ε = 1):

αc|ε=1 = 1− (n−1)
(1+n2)

(a/k − 1) . (22)
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This is the same expression as found by Claude (2018). Finally, still assuming that
k is given, we cannot exclude that αc might be negative for some parameter values.
Indeed, this could be the case for a > (n (n+ 1) A) / (n− 1). However, in the next
section it is shown that αc ranges in the interval [0, 1] when evaluated at the SPNE
price kc.

4.2 Monopoly Pricing

At stage 1, the upstream supplier sets the input price k so as to maximize its profit;
i.e., the monopolist solves

max
k

πc
up = kn (yc/ε) .

Assuming an interior solution exists, the first-order condition for profit maximiza-
tion is

yc + k

(
∂yc

∂k

)
= 0. (23)

Solving the above equation for k, after straightforward computations, we obtain
the following proposition.

Proposition 1 Suppose that the upstream monopolist precommits to a fixed input
price. There exists a unique Subgame-Perfect Nash-Equilibrium. Equilibrium out-
comes are, respectively,

kc = aε−τ(1−ε)
2 , αc = 1− 2(n−1) kc

(n2+1)(aε+τ(1−ε))
, yc = n kc

b(n2+1)ε
,

(24)

P c = aε
(
n2+2

)+n2(τ (1− ε))

2(n2+1)ε
, πc

up = n2(kc)2

b(n2+1)ε2 , πc
i = n(kc)2

b(n2+1)
2
ε2
.

(25)

Assumption 1 ensures that all the quantities given in the above proposition are
nonnegative at the SPNE.

Remark 1 If ε = 1, we obtain the managerial incentive as in Claude (2018),

αc|ε=1 = 1− (n− 1)
(
1+ n2

) ,

and the same equilibrium values. Moreover, as ε tends to τ/ (a + τ) the input price
kc tends to zero, αc tends to one, and both upstream and downstream profits tend to
zero.
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We obtain the following comparative statics results:

∂kc

∂ε
> 0,

∂y

∂ε

c

> 0,
∂α

∂ε

c

< 0,
∂πc

i

∂ε
> 0,

∂πc
up

∂ε
> 0. (26)

A reduction in pollution emissions or, equivalently in our model, an increase in the
productivity of downstream firms, allows the upstream supplier to charge a higher
input price k. Also, it provides firm owners with incentives to assign a lower weight
to profit maximization in managerial compensation contracts. This lower weight
encourages managers to adopt a more aggressive market behavior, which results in
higher firm and industry output levels. As a result, both upstream and downstream
profits rise. The opposite comparative statics hold for an increase in the tax rate τ .
This should come as no surprise given the inverse relationship between productivity
and pollution emissions in our model.

Finally, we have αc ∈ [0, 1], limn→+∞ αc = 1, and ∂αc

∂n
> 0, ∀n > 2. We

conclude that αc is monotonically increasing in n and converges to one as the
number of downstream firms becomes arbitrarily large. Indeed, as the number of
firms increases, the downstream market becomes more competitive implying that
aggregate output rises and market price falls. This in turn leads to a reduction in
marginal revenue that must be compensated by lower production volumes. Firm
owners achieve the required production cut by assigning a lower weight (1 − α) to
sales in managerial compensation schemes.

5 Flexible Pricing Mechanism

We now turn to the second scenario in which the order of firms’ moves is reversed.
At the time when the upstream monopolist sets the input price, it is assumed that the
terms of managerial compensation contracts are known and common knowledge.
The timing of the game is depicted in Fig. 1. In stage 1, firm owners choose
managerial incentives. In stage 2, the upstream monopolist sets the input price. We
now are in a position to resume the backward induction procedure starting with the
resolution of the monopolist pricing problem.

5.1 Input Pricing

In stage 2, the upstream monopolist sets the input price k so as to maximize its
profit: π"

up = k
∑n

i=1 x
"
i . Recall that y"i = εx"i so that x"i = y"i /ε

". The decision
problem of the upstream monopolist then writes as

max
k

π"
up = k

n∑

i=1

(
y"i /ε

"
)
.
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Assuming an interior solution exists, the optimal input price solves

n∑

i=1

y"i + k

[
∂

∂k

(
n∑

i=1

y"i

)]

= 0. (27)

Replacing y"i by its value from (10) and solving for the optimal input price k gives:

kf = naε − τ (1− ε)
∑n

i=1 αi

2
∑n

i=1 αi

. (28)

As we shall see below, Assumption 1 ensures that kf is positive for the SPNE value
of αi .

Note that

∂kf

∂αi

= − naε

2
(∑n

i=1 αi

)2 < 0. (29)

An increase in the weight downstream firms place on profits results in a decrease
in the output price. Alternatively, a greater sale orientation causes a reduction in
the input price. The economic intuition behind this result is straightforward. As
the profit weight decreases, downstream managers are induced to behave more
aggressively, producing more. The increase in input demand then explains the
increase in input price.

5.2 Strategic Delegation

In stage 1, each owner i simultaneously and independently sets the profit weight
αi so as to maximize its profit. In other words, each owner i solves the following
problem:

max
αi

π
f
i =

[
P(Yf )− A

(
kf , τ , ε

)]
y
f
i , i = 1, 2, . . . , n.

First-order conditions for profit maximization are:

(
b ∂Yf

∂αi
+ 1

ε
∂kf

∂αi

) (
P(Yf )−α

f
i A

f
)
+
(
Af+α

f
i

ε
∂kf

∂αi
+b ∂Yf

∂αi

) (
P(Yf )− Af

) = 0,

(30)
i = 1, 2, . . . , n. Assuming a symmetric equilibrium, it is shown in Appendix 2 that
condition (30) reduces to

g (α) := ω0 + ω1α + ω2α
2 + ω3α

3 = 0, (31)
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where

ω0 = a2n2(n+ 1)ε2, ω2 = −nτ(1− ε)(n(n+ 1)(aε + φ)− 2aε), (32)

ω1 = −a
(
n2 − 1

)
ε((n+ 2)φ − nτ(1− ε)), ω3 = −n

(
n2 + 1

)
τ 2(ε − 1)2,

(33)

with φ = (aε − τ (1− ε)).
The following proposition provides a characterization of equilibrium managerial

incentives:

Proposition 2 (Equilibrium Managerial Incentives) Suppose that the upstream
monopolist uses a flexible pricing mechanism. Then, there exists a unique symmetric
SPNE characterized as follows.

1. The equilibrium profit weight takes values on the interval (0, 1];
2. If production generates no pollution emission, then it is given by αf

∣∣
ε=1 =

n2

(n−1)(n+2) ;
3. It is equal to one—implying pure profit maximization—in two cases:

(a) if the downstream market consists in a duopoly and production generates no
pollution emission (n = 2, ε = 1) and,

(b) in the limit case where downstream firms are so inefficient that they prefer to
be inactive at the equilibrium (ε = τ/(a + τ)).

Proof See Appendix 3. ��
We remark that Points 3(a) and (b) in Proposition 2 include as special cases

results by Claude (2018) which correspond to the model without pollution (ε = 1).
Assuming that αi = αf for all i = 1, 2, . . . , n, and plugging (28) into Eqs. (9)–

(11) gives the following proposition:

Proposition 3 Equilibrium prices, quantities, and profit levels are, respectively,
given by

kf = aε−τ (1−ε) αf

2αf
, P f = aε(n+ 2)+nτ (1−ε) αf

2 (n+ 1) ε
, yf = αf kf

b (n+ 1) ε
,

(34)

π
f
up = nαf

(
kf
)2

b (n+ 1) ε2
, πf =αkf ((n+ 1)(aε + τ(ε − 1))− kf (αf n+ n+ 1))

b(n+ 1)2ε2
.

(35)

Under Assumption 1, it is straightforward to show that the prices kf and Pf and
the quantities yf and Yf are strictly positive.



178 D. Claude and M. Tidball

6 Comparing Equilibrium Outcomes

This section attempts to compare equilibrium outcomes depending on whether the
upstream monopolist makes a price precommitment. A major difficulty in doing this
is due to the complexity of the expression for αf . To begin with, we analyze how
the decision to precommit alters managerial incentives in the downstream market.
We are able to state the following proposition.

Proposition 4 (Comparison of Managerial Incentives)

1. The equilibrium profit weight is lower when the upstream monopolist precommits
to a fixed input price; i.e., αc < αf .

2. As the number of downstream firms becomes arbitrarily large and irrespective
of the pricing strategy adopted by the upstream monopolist, the equilibrium
profit weight converges to 1, implying that the behavior of managerial firms
is eventually identical to that of profit-maximizing owner-managed firms; i.e.,
limn→∞ αh = 1, h = c, f.

Proof See Appendix 4. ��
The above proposition extends previous results by Claude (2018) that were

established under the assumption that there is no pollution (ε = 1). It states that
downstream owners offer compensation schemes that favor sale orientation over
profit maximization if the upstream monopolist makes a price precommitment.

The intuition for this result can be traced back to the difference in the timing of
moves between the two games that we consider. In the precommitment scenario,
downstream owners set managerial incentives when the input price is known and
has become common knowledge. Accordingly, in their decision-making process,
they take the input price as fixed and given. By contrast, in the other scenario, the
upstream monopolist adjusts the input price to the observed degree of competition
on the downstream market (as proxied by managerial incentives). Then, downstream
owners recognize that the price they pay for the input x depends on the managerial
incentives they give to their managers. Specifically, they know that a greater sale ori-
entation (a lower value for αf ) results in higher total downstream production, which,
in turn, implies an increase in both input consumption and input price. The implied
surge in production costs reduces the extent to which firm owners find it profitable
to divert managers away from profit maximization; i.e., the value of (1− αf ).

Finally, as the number of firms rises, the downstream market becomes increas-
ingly competitive so that the strategic value of delegation vanishes. Then, the
behavior of managerial firms converges to that of profit-maximizing owner-managed
firms.

Next, we compare equilibrium input prices between the two scenarios. When the
downstream market structure is a duopoly and no environmental externality exists,
Liao (2008, 2010) showed that the upstream monopolist sets the same equilibrium
price irrespective of whether a price commitment was made. However, Claude
(2018) proved that precommitment results in a lower input price if more than two
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firms operate on the downstream market. The following proposition extends this
result to more general contexts in which production is polluting the environment:

Proposition 5 (Comparison of Input Prices) If the downstream industry (i) is a
duopoly which generates no pollution emission or (ii) consists of infinitely many
firms, then the upstream monopolist sets the same price in both scenarios (commit-
ment or no commitment). Otherwise, precommitment results in a lower equilibrium
input price.

Proof From Eqs. (24) and (34), we obtain

kc − kf = −aε
(
1− αf

)

2αf
≤ 0.

If n = 2 and ε = 1, then αf = 1 and kc = kf = a/2. Moreover, since αf tends
to 1 as the number of downstream firms becomes arbitrarily large, it follows that
limn→∞ kc − kf = 0. ��

Turning to the comparison of production levels, we are able to prove the
following proposition:

Proposition 6 (Comparison of Downstream Production Levels) Downstream
managers are encouraged to choose higher output levels if the upstream monopolist
precommits to a fixed input price; i.e., yc − yf > 0. Consequently, precommitment
results in more pollution.

Proof We have

�y = yc − yf = aε (n− 1)− (n2
(
1− αf

)+ n− αf
)
(1− ε) τ

2b (n+ 1)
(
n2 + 1

)
ε

. (36)

It is easy to see that yc − yf > 0 if and only if αf > α̃ where

α̃ = 1− (n−1)(aε−τ(1−ε))

(n2+1)τ(1−ε)
. (37)

From Proposition 4, recall that αf > αc. A little algebra shows that αc > α̃. Since
αf > α̃, it follows that yc > yf . ��

The intuition for this result can be understood by considering Propositions 4
and 5 above. The former shows that, in the precommitment scenario, firm owners
design compensation schemes so as to encourage a greater sale orientation (or,
equivalently, a more aggressive market behavior). Under the same assumption, the
latter proves that the upstream monopolist sets a lower input price. This, in turn,
implies that the final good y becomes less costly to produce. Then, the greater sale
orientation combines with reduced production costs to encourage greater production
and emissions of pollutant.



180 D. Claude and M. Tidball

Next, we turn to the comparison of downstream and upstream profit levels. In
the absence of environmental externalities, Claude (2018) showed the upstream
monopolist is strictly better off when committing to a fixed input price. The exact
opposite holds for downstream firms: if the upstream supplier engages in fixed price
contracts, they earn lower profits.

These result might seem surprising at first sight, since the upstream monopolist
charges a lower input price in the precommitment scenario. However, the basic
intuition for this result is simple. If the upstream monopolist adopts a flexible pricing
mechanism, downstream owners anticipate that a more aggressive market behavior
will result in a higher input price. Then, each owner provides his management with
lower sales incentives. In other words, each owner assigns a lower weight (1 − α)

to sales in managerial compensation schemes. This alleviates the problem of “over-
competition” among firms arising from strategic delegation.

However, by waiving the right to adjust the input price to changes in man-
agerial incentives, the upstream monopolist place firm owners back into their
initial “prisoner’s dilemma” situation. This strategic move creates the conditions
for an overproduction that is unprofitable only for downstream owners. Indeed,
precommitment makes the upstream monopolist better off since the surge in input
consumption implied by overproduction more than compensates for the loss in
revenue due to a reduced input price.

Unfortunately, if we relax the assumption that production causes no pollution,
it becomes difficult to sign the difference between profits in the two scenarios for
arbitrary parameter values. With that said, we are still able to shed some light on
how profits compare and offer interesting insights on this issue. Let us recall that the
admissible values of ε lie in the range τ/(a + τ) < ε < 1. By evaluating upstream
and downstream profits at both extremities, we obtain the following proposition.

Proposition 7 (Comparison of Profits)

1. If production causes no pollution, then the upstream monopolist is better off
committing to a fixed input price:

(
πc

up − π
f
up

)
|ε=1 > 0.

However, the precommitment decision of the upstream supplier is detrimental to
downstream firms:

(
πc
i − π

f
i

)∣∣∣
ε=1

< 0.

2. For a sufficiently high level of emission per unit of the final good produced (or
a sufficiently high environmental tax rate), downstream firms stop producing
implying zero-profits for all:

πc
up|ε= τ

a+τ
= π

f
up|ε= τ

a+τ
= 0 = πc

i |ε= τ
a+τ

= π
f
i |ε= τ

a+τ
, i = 1, 2, . . . , n.
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Proof By plugging the value of ε into the corresponding expressions. ��
We retrieve the same results as in Claude (2018). As a work around for

the difficulty in signing differences in upstream and downstream profits, we ran
numerical simulations. Despite extensive efforts, we found it impossible to find
even one numerical example that is admissible and reverses the ranking between
profits in Proposition 7. If production generates few pollution emissions (ε is close
to 1), numerical simulations confirm that the upstream firm is better-off when
committing to a fixed input price (i.e., πc

up > π
f
up). The opposite (i.e., πc

up < π
f
up)

was obtained only for so low values of ε that downstream firms produce nothing.
Finally, we confirmed numerically that downstream firms make lower profits in the
precommitment scenario. We conclude that previous results by Claude (2018) are
robust to the introduction of pollution emissions from productive activities.

7 Conclusion

Recent advances in the strategic delegation literature emphasize that factor market
imperfections reduce the incentive business owners have to manipulate the structure
of incentives embedded in managerial compensation contracts so as to encourage
managers to deviate from profit maximization. The purpose of this paper was to re-
examine this issue by allowing for pollution emissions and related environmental
tax payments.

Two scenarios were considered depending on whether the upstream monopolist
supplies the intermediate product through fixed price contracts or relies on a flexible
pricing scheme. The corresponding two games were solved by backward induction.
In both cases, we proved the existence of a unique Subgame-Perfect Nash-
Equilibrium (SPNE). Furthermore, we showed that the value of the equilibrium
profit weight is restricted to the range from 0 to 1. It was shown that equilibrium
managerial incentives encourage pure profit maximization only in limit cases.
Hence, non-profit managerial incentives are expected to be the norm rather than the
exception. Furthermore, except in limit cases, the following results hold. A price
precommitment results in a lower input price which encourages greater production
of the final good and greater pollution emissions. Moreover, it makes the upstream
supplier better off and downstream firms worse off. We conclude that upstream
suppliers will choose to sign fixed price contracts with their customers.

This paper has limitations. For tractability reason, we assumed identical firms.
Relaxing this assumption offers interesting challenges for future research. Fur-
thermore, our analysis has focused exclusively on how precommitment alters
managerial incentives in downstream market. Accordingly, the rate of environ-
mental taxation was regarded as exogenous and the welfare consequences of
precommitment were not investigated. Future research could examine the normative
question of optimal environmental policy.
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Appendix 1: Proof of Eq. (14)

Recall that Firm i’s equilibrium output level is

y"i = (a+A(k,τ ,ε)(
∑n

i=1 αi−(n+1)αi))
(n+1)b , (38)

whereas that of Firm j (j �= i) is

y"j = (a+A(k,τ ,ε)(
∑n

i=1 αi−(n+1)αj ))
(n+1)b . (39)

Differentiating Eqs. (38) and (39) yields :

∂y"i /∂αi= A(1−(n+1))
(n+1)b = − nA

(n+1)b , (40)

∂y"j /∂αi= A
(n+1)b , (41)

and

∑
j �=i

∂yj
∂αi

= (n−1)A
(n+1)b . (42)

Finally, we obtain:

∂Y

∂αi

=∑n
j=1

∂yj
∂αi

=∑j �=i

∂yj
∂αi

+ ∂yi
∂αi

, (43)

= ((n−1)A−nA)
(n+1)b = − A

(n+1)b . (44)

Appendix 2: Proof of Eq. (31)

Let us consider the first-order conditions for profit maximization which are given
by:

−
(
b ∂Y
∂αi

+ 1
ε

∂k
∂αi

)
+ ∂yi

∂αi
(P (Y )− A) = 0, i = 1, 2, . . . , n. (45)

From Eq. (7), observe that

yi = a−αiA
b

− Y, (46)
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so that

∂yi
∂αi

= −
[

1
b

(
A+ αi

ε
∂k
∂αi

)
+ ∂Y

∂αi

]
. (47)

Plugging yi and ∂yi/∂αi back into (45) results in

[
b ∂Y
∂αi

+ ∂Ai

∂αi

] (
a−αiA

b
− Y

)
+
(

1
b

(
A+ αi

ε
∂k
∂αi

)
+ ∂Y

∂αi

)
(P (Y )− A) = 0. (48)

Given that

b
(
a−αiA

b
− Y

)
= P(Y )− αiA, (49)

we obtain:

1
b

(
b ∂Y
∂αi

+ ∂A
∂αi

) (
b
(
a−αiA

b
− Y

))
+ 1

b

((
A+ αi

ε
∂k
∂αi

)
+ b ∂Y

∂αi

)
(P (Y )− A) = 0,

(50)

and, finally,

(
b ∂Y
∂αi

+ 1
ε

∂k
∂αi

)
(P (Y )− αiA)+

((
A+ αi

ε
∂k
∂αi

)
+ b ∂Y

∂αi

)
(P (Y )− A) = 0.

(51)

Differentiating Eqs. (9) and (10) with respect to αi yields

∂Y
∂αi

= − 1
b(n+1)

[
A+∑i

αi

ε
∂k
∂αi

]
, (52)

∂yi
∂αi

= − 1
(n+1)b

(
nA+ (n+ 1)

(
αi

ε
∂k
∂αi

)
−∑n

i=1
αi

ε
∂k
∂αi

)
. (53)

Plugging the following quantities

Y |sym= n(a−αA)
b(n+1) , yi |sym= (a−αA)

b(n+1) , k|sym= aε−τ(1−ε)α
2α , (54)

∂Y
∂αi

∣∣∣
sym

= − (a−αA)
b(n+1) ,

∂yi
∂αi

∣∣∣
sym

= − (na+αA)
b(n+1) , ∂k

∂αi

∣∣∣
sym

= − aε

2nα2 . (55)

into
(
b ∂Y
∂α
+ 1

ε
∂k
∂α

)
(P (Y )− αA)+ ((A+ α

ε
∂k
∂α

)+ b ∂Y
∂α

)
(P (Y )− A) = 0, (56)

yields the cubic equation (31).
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Appendix 3: Proof of Proposition 2

Let us consider the existence problem first. Let δ0 = ω2
2 − 3ω3ω1 and δ1 = 2ω3

2 −
9ω3ω2ω1 + 27ω2

3ω0. The discriminant of the third-degree polynomial g(α) can be
expressed as � = − (δ2

1 − 4δ3
0

)
/
(
27ω2

3

)
. Let us show that � < 0 so that Eq. (31)

has a unique real solution αf . To this end, it is convenient to express the discriminant
as � = η � where

η = −4a2n(n+ 1)τ 2(ε − 1)2ε2 < 0 and (57)

� = β0 + β1z+ β2z
2 + β3z

3 + β4z
4 with z = (ε − 1) < 0 and (58)

β0 = a4
(
n2 + n− 2

)2 (
(n− 1)n(n+ 2)2 − 2

)
ε4, (59)

β1 = −2a3(n(n(n(n(n(n(3n(n+ 2)− 5)+ 5)+ 19)− 31)−29)+16)+12)τε3,

(60)

β2 = a2(n+1)(n(n(n(n(n(n(11n−14)+31)−26)+ 13)+ 64)− 16)− 24)τ 2ε2,

(61)

β3 = −2a(n+ 1)2
(

2n2 − 1
) (

n2(n(2n− 3)+ 2)− 4
)
τ 3ε, (62)

β4 = n3(n+ 1)3
(

2n2 − 1
)
τ 4. (63)

Examining Eqs. (59)–(63), we find that βj is positive (resp., negative) if j is even
(resp., odd), for all j = 0, . . . , 4. Since z < 0, it follows that � > 0 and thus � < 0.

We proceed by showing that αf takes values on the interval (0, 1]. Since g(0) =
ω0 > 0, it follows that αf cannot be equal to zero. Moreover, when τ

a+τ
< ε ≤ 1

we find that

g(1) =
3∑

i=0

ωi = −(aε − τ (1− ε)) (a (n− 2) (n+ 1)ε + (n− 1)(1− ε)nτ) < 0.

(64)

It follows that g(α) has a sign change on the interval (0, 1). Finally, if ε = τ/(a+τ)

recall that (aε − τ (1− ε)) = 0, so that g(1) = 0. Hence, the unique real root αf

takes values on (0, 1].
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Appendix 4: Proof of Proposition 4

1. We proved that g(α) has a sign change on the interval (0, 1). Observe that
g(α) > 0 implies that α < αf . It follows that αc < αf if g(αc) > 0. Then,
the proof reduces to showing that g (αc) > 0.

Straightforward computations yield g(αc) = #h(t) where # =
2aε(aε−τ(1−ε))

(n2+1)
2
(aε+τ(1−ε))3

> 0 and h(t) = h0 + h1τ + h2τ
2 + h3τ

3, with

h0 = a3ε3(n+ 1)
(
n2 + 1

) (
n2 − 2n+ 2

)
> 0,

h1 = a2(2n+ 1)((n− 1)n+ 2)2(1− ε)ε2 > 0, (65)

h2 = a
(
n
(
n
(
n3 + 2n+ 4

)
+ 3
)
+ 2
)
(1− ε)2ε > 0,

h3 = n(n+ 1)2(1− ε)3 > 0. (66)

Let �(h) denote the discriminant of h(τ). By direct computation, we find that

�(h) = −a6(n− 1)6n(n+ 1)2(ε − 1)6ε6�, where (67)

� =
(

8n10−n9+6n8+59n7−48n6+156n5+64n4+28n3+96n2−68n−64
)
.

(68)

Since � is strictly positive, it follows that �(h) < 0. Hence, the cubic equation
h (τ) has a unique real solution. Since

h(τ)|τ=0 = a3(n+ 1)
(
n2 + 1

) (
n2 − 2n+ 2

)
ε3 > 0,

and h′(t) > 0, it follows that h(τ) > 0 for all τ ∈ [0, aε
1−ε

]. Then #>0 implies
that g (αc) > 0 so that αc < αf .

2. Since limn→∞ αc(n) = 1 and αc(n) < αf (n) ≤ 1, it follows that
limn→∞ αf (n) = 1.
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Non-linear Incentive Equilibrium
Strategies for a Transboundary Pollution
Differential Game

Javier de Frutos and Guiomar Martín-Herrán

Abstract In this paper we apply non-linear incentive strategies to sustain over
time an agreement. We illustrate the use of these strategies in a linear-quadratic
transboundary pollution differential game. The incentive strategies are constructed
in such a way that in the long run the pollution stock (the state variable) is close
to the steady state of the pollution stock under the cooperative mode of play. The
non-linear incentive functions depend on the emission rates (control variables) of
both players and on the current value of the pollution stock. The credibility of
the incentive equilibrium strategies is analyzed and the performance of open-loop
and feedback incentive strategies is compared in their role of helping to sustain an
agreement over time. We present numerical experiments to illustrate the results.

Keywords Incentive equilibria · Differential games · Credibility ·
Environmental Economics

1 Introduction

This paper revisits one of the mechanisms already proposed in the literature to
ensure the sustainability over time of an agreement reached at the starting date of a
game. An agreement will last for its whole intended duration if, at any intermediate
instant of time, each player stands to receive a greater payoff being part of the
agreement rather than leaving it. A first approach proposed in the literature to sustain
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over time an agreement is the design of an agreement which is time-consistent or
agreeable. In a time-consistent agreement the coordinated payoffs-to-go are greater
than the non-cooperative ones along the cooperative state trajectory, and hence, no
player finds it optimal to switch to his non-cooperative control at any intermediate
instant of time. An agreement is agreeable if the comparison condition holds along
any state trajectory. Time-consistent agreements are analyzed, among others, in
Petrosjan (1997), Petrosjan and Zenkevich (1996), Petrosjan and Zaccour (2003),
and Jørgensen and Zaccour (2001a, 2002); and agreeable agreements are studied,
for example, in Kaitala and Pohjola (1990, 1995) and Jørgensen et al. (2003, 2005).

The second approach that can be generally called equilibrium approach is
to embody the cooperative solution with an equilibrium property such that, by
definition each player will find individually rational to stick to his part of the
coordinated solution. One option to build a cooperative equilibrium is to use the
so-called trigger strategies (Tolwinski et al. 1986; Haurie and Pohjola 1987). These
are strategies based on the past actions in the game and they include a threat to
punish, credibly and effectively, any player who cheats on the agreement. These
strategies are non-Markovian because they are based on all past information of the
game evolution to the current time.

This paper examines the use of non-linear incentive strategies as another option
to implement cooperative solutions by means of non-cooperative play. Ehtamo and
Hämäläinen (1986, 1989, 1993, 1995), Jørgensen and Zaccour (2001b), Martín-
Herrán and Zaccour (2005, 2009), and De Frutos and Martín-Herrán (2015), among
others, propose incentive strategies to support the cooperative solution in two-player
differential games. The incentive is designed in such a way that a coordinated
outcome becomes a Nash equilibrium. Incentive strategies are functions of the
possible deviation of the other player and recommend to each player to implement
his part of the coordinated or agreed solution whenever the other player is doing
so. One important characteristic of the incentive strategies is their credibility. The
credibility property of incentive strategies requires that each player sticks to the
agreed-upon incentive strategy and does not revert to the cooperative solution, even
when the other player chooses to break the agreement. If the incentive strategies are
credible no player will be tempted to unilaterally deviate from the agreed decision.

Incentive strategies have been extensively used in the differential games literature
in different areas, especially environmental economics (Jørgensen and Zaccour
2001b; Martín-Herrán and Zaccour 2005, 2009; Breton et al. 2008; De Frutos and
Martín-Herrán 2015) and marketing (Jørgensen and Zaccour 2003; Martín-Herrán
and Taboubi 2005; Jørgensen et al. 2006; Buratto and Zaccour 2009; De Giovanni
et al. 2016; Taboubi 2019; De Giovanni 2018). Many of these works have not
addressed the analysis of the credibility of the incentive strategies. In general, this
property cannot be studied analytically, even for games that belong to the class of
solvable games such as linear-state and linear-quadratic differential games. All the
papers previously cited, except De Frutos and Martín-Herrán (2015), study games
belonging to these classes and the incentive strategies are constructed in such a way
that the incentive equilibrium is the cooperative solution. Furthermore, the strategies
are assumed to be linear and decision-dependent, i.e., each player makes his current
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decision contingent on the current decision of his opponent. When the credibility
property is analyzed the common conclusion is that credibility is assured only for
sufficiently small values of the deviation from the agreed solution.

This result led us to consider whether the definition of less restrictive strategies
could help to guarantee the sustainability of an agreement over time. In De Frutos
and Martín-Herrán (2015) we consider state-dependent and decision-dependent
equilibrium strategies defined as non-linear functions of the control variables of
both players and the current value of the state variable. More importantly, we look
for an incentive strategy equilibrium such that the steady state of the optimal state
trajectory is close enough but not necessarily identical to the steady state of the state
variable under the cooperative mode of play. We show that the incentive equilibrium
is credible in a larger region than the one associated with the usual linear incentive
strategies.

Incentive equilibrium strategies can be seen as the implementation of an implicit
social norm1 defined by the following stylized features. First, each player sticks to
the agreement if the other player does the same; second, a unilateral deviation by
one of the players is followed by a deviation of the other player. Furthermore, in
the approach proposed by De Frutos and Martín-Herrán (2015) the response to a
deviation is required only if the state variable is far from the cooperative solution
and becomes more stringent as the observed deviation from the cooperative solution
increases.

As far as we know De Frutos and Martín-Herrán (2015) is the first paper in
which a weaker concept of incentive strategies has been used. It is worth noticing
that this weaker concept of incentive strategies that implies more flexibility leads to
more credibility. The focus of this follow-up paper is to analyze non-linear incentive
strategies if the players use open-loop strategies instead of stationary Markovian
strategies as previously assumed. We compare the performance of open-loop and
feedback incentive strategies when maintaining an agreement over time and we
study the credibility of the incentive strategies when one of the players deviates
from the incentive equilibrium. The two information structures are compared for the
well-known linear-quadratic transboundary pollution differential game proposed in
Van der Ploeg and De Zeeuw (1992) and Dockner and Long (1993). We present
numerical experiments to illustrate the results.

The rest of the paper is organized as follows. In Sect. 2 we briefly recall the
formulation of the linear-quadratic transboundary pollution differential game, its
cooperative solution, the open-loop non-cooperative Nash strategies, as well as
the steady-state pollution stocks under cooperative and non-cooperative modes of
play. In Sect. 3 we define the incentive strategies and equilibrium, and in Sect. 4 we
analyze their credibility. Section 5 concludes.

1We are indebted to an anonymous reviewer for bringing this interpretation to our attention.
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2 A Linear-Quadratic Transboundary Pollution Differential
Game

For simplicity in the exposition and with the objective of comparing our results with
those obtained in De Frutos and Martín-Herrán (2015), we focus on a particular
linear-quadratic model that has been extensively studied in the environmental
economics literature. The formulation is borrowed from Van der Ploeg and De
Zeeuw (1992) and Dockner and Long (1993). Let player i’s optimization problem
be given by2:

max
ui

{
Wi(u1, u2, x0) :=

∫ ∞

0

[
ui

(
Ai − 1

2
ui

)
− 1

2
ϕix

2
]
e−ρt dt

}
(1)

s.t. : ẋ = β(u1 + u2)− αx, x(0) = x0, (2)

where β,Ai , and ϕi, i ∈ {1, 2} are positive parameters and 0 < α < 1. The control
variable ui is the emissions of player (country) i and the state variable x represents
the accumulated stock of pollution and its dynamics is defined by the linear ordinary
differential equation (2), where parameter α denotes the natural absorption rate.
The state dynamics says that the variation in the pollution stock level is the sum
of emissions, scaled by parameter β, minus what is absorbed by nature. Assuming
that emissions are a proportional by-product of industrial activities, the objective of
player i is given by the difference between revenues from industrial activities and

pollution damage costs. Function ui

(
Ai − 1

2ui

)
represents the concave revenue

function of player i. Pollution induces damage costs, given by 1
2ϕix

2, assumed to
depend on accumulated pollution. Parameter ρ is a positive constant discount rate.

If countries (players) use open-loop strategies they choose a time profile of
actions at the beginning of the game and commit themselves to retain these
preannounced profiles from the rest of the game. If countries choose state-dependent
decision rules as their strategies, they choose emission strategies that are functions
of the pollution stock. State-dependent Markovian strategies imply that, whenever
country i makes a decision that results in a change in the pollution stock, country
j immediately reacts. This action and reaction pattern implies more competitive
behavior and the outcome of the game is further from the cooperative level.

In this paper we assume that the players restrict themselves to open-loop
strategies (Haurie et al. 2012), meaning that the players base their decisions only
on time and an initial condition. An open-loop strategy selects the control action
according to a decision rule μi , which is a function of the initial state x0: ui(t) =
μi(x0, t). Because the initial state is fixed, there is no need to distinguish between
ui(t) and μi(x0, t). Using an open-loop strategy means that the player commits, at
the initial time, to a fixed time path for his control, i.e., his choice of control at each
instant of time is predetermined. More precisely, the set of admissible controls for

2To simplify the notation we will drop the explicit dependence on the time variable when no
confusion can arise.
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Player i, i = 1, 2, Ui is defined as the set of nonnegative absolutely continuous
functions ui = ui(t) defined in R+ = [0,+∞) with values in R+ such that if
(u1, u2) ∈ U = U1 ×U2, the initial value problem (2) possesses a unique solution
defined in R+. The pair (uN1 , uN2 ) ∈ U is an open-loop Nash equilibrium for the
differential game (1)–(2) if

W1(u
N
1 , uN2 ) ≥ W1(u1, u

N
2 ), W2(u

N
1 , uN2 ) ≥ W2(u

N
1 , u2)

for all u1 and u2 such that (u1, u
N
2 ) ∈ U and (uN1 , u2) ∈ U .

If players agree to cooperate they solve an optimal control problem in which they
jointly maximize the aggregate payoff

W1 +W2 =
∫ ∞

0

2∑

i=1

[
ui

(
Ai − 1

2
ui

)
− 1

2
ϕix

2
]
e−ρt dt,

subject to dynamics (2). Martín-Herrán and Zaccour (2009) proved that the cooper-
ative optimal controls read uci = Ai + β(acx + bc) where superscript c stands for
cooperation and coefficients ac and bc are the quadratic and linear coefficients of
the quadratic value function. These coefficients can be found in Martín-Herrán and
Zaccour (2009) (p. 272) and allow us to compute the steady-state pollution stock
under cooperation:

xcss =
β(ρ + α)(A1 + A2)

(ρ + α)α + 2β2(ϕ1 + ϕ2)
. (3)

The following proposition characterizes the Nash equilibrium if the players do
not cooperate and use open-loop strategies.

Proposition 1 Assuming interior solutions, the pair (uN1 (t), uN2 (t)) is an open-loop
Nash equilibrium of the differential game (1)–(2), where

uNi (t) = Ai − ϕix
N
ss

ρ + α
− β(x0 − xNss )

ϕi

ρ + α − ξ
eξt ,

ξ = ρ −√(ρ + 2α)2 + (ϕ1 + ϕ2)β2

2
,

and superscript N stands for Nash equilibrium.
The optimal state trajectory is

xN(t) = (x0 − xNss )e
ξt + xNss ,

where xNss denotes the steady state given by:

xNss =
(ρ + α)β(A1 + A2)

(ρ + α)α + β2(ϕ1 + ϕ2)
. (4)
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Proof We define the current-value Hamiltonian of player i

H i(x, u1, u2, λi) = ui

(
Ai − 1

2
ui

)
− 1

2
ϕix

2 + λi(β(u1 + u2)− αx),

where λi is the i-th player costate variable associated with the state variable, x.
Assuming interior solution, the sufficient conditions for optimality derived from

the Pontryagin maximum principle include

∂H i

∂ui
= Ai − ui + βλi = 0,

ẋ = β(u1 + u2)− αx, x(0) = x0,

λ̇i = ρλi − ∂H i

∂x
= (ρ + α)λi + ϕix, lim

t→∞ e−ρtλi(t) = 0.

Solving the system of linear ordinary differential equations and taking into account
the initial and transversality conditions, the expressions of uNi (t) and xN(t) in the
statement can be easily derived. ��

As usual in this kind of models the non-cooperative solution leads to emission
levels greater than those prescribed by the cooperative solution. The comparison
of (3) and (4) clearly shows that the steady state of the pollution stock is lower
if players cooperate than if they do not. Then, one can assume that if one player
deviates from the cooperative solution, he is choosing an emission level greater than
that corresponding to the cooperative solution. The general main objective of this
paper is the design of an incentive strategy implying that the players will not depart
importantly from their part of the coordinated solution. Specifically, the long-run
pollution stock will be near the long-run pollution stock attained under cooperation.

3 Incentive Equilibria

For the sake of completeness, let us recall the definition of an incentive equilibrium.
The admissible incentive strategies for Player i are functions ψi defined in R+ ×
R+ × R+ such that for every (u1, u2) ∈ U , ($1(·),$2(·)) ∈ U where $i(t) =
ψi(u1(t), u2(t), x(t)), i = 1, 2, with x(·) the solution of (2). We denote by �i the
set of admissible strategies for Player i.

Definition 1 A pair ψ1(v1, v2, x), ψ2(v1, v2, x) with ψi ∈ �i , i = 1, 2, is an
incentive equilibrium at (u∗1, u∗2) ∈ U = U1 × U2 when players use open-loop
information structure iff for all u1 ∈ U1 and u2 ∈ U2,

W1(u
∗
1, u

∗
2) ≥ W1(u1, ψ2(u1, u

∗
2, x̂)), W2(u

∗
1, u

∗
2) ≥ W2(ψ1(u

∗
1, u2, x̌), u2),
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where x̂ and x̌ satisfy, for almost all t ≥ 0, ˙̂x(t) = β(u1(t)+ψ2(u1(t), u
∗
2(t), x̂(t)))−

αx̂(t), and ˙̌x(t) = β(ψ1(u
∗
1(t), u2(t), x̌(t)) + u2(t)) − αx̌(t), respectively,

with x̂(0) = x̌(0) = x0. Furthermore, u∗1(t) = ψ1(u
∗
1(t), u

∗
2(t), x

∗(t)),
u∗2(t) = ψ2(u

∗
1(t), u

∗
2(t), x

∗(t)), where ẋ∗(t) = β(u∗1(t) + u∗2(t)) − αx∗(t),
with x∗(0) = x0.

From now on and for simplicity in the notation we use the term open-loop
(feedback) incentive equilibrium strategies to denote the incentive equilibrium
strategies when the players use open-loop (feedback) information structure.

An incentive equilibrium is thus characterized by the following pair of optimal
control problems

max
ui∈Ui

Wi(ui, u
∗
j ) =

∫ ∞

0

(
ui(t)

(
Ai − 1

2
ui(t)

)
− 1

2
ϕix

2(t)

)
e−ρt dt, (5)

s.t. :ẋ(t) = β(ui(t)+ ψj (ui(t), u
∗
j (t), x(t)))− αx(t), x(0) = x0, (6)

with u∗i = arg maxui Wi(ui, u
∗
j ), i, j = 1, 2, i �= j . The equilibrium condition

u∗i = ψi(u
∗
i , u

∗
j , x

∗), i, j = 1, 2, i �= j, has to be satisfied.
We would like to remark that the players use open-loop strategies, meaning that

each player looks for a function t �→ u∗i (t) satisfying u∗i = arg maxui Wi(ui, u
∗
j )

and the equilibrium condition u∗i (t) = ψi(u
∗
i (t), u

∗
j (t), x

∗(t)), i, j = 1, 2, i �= j . In
consequence, even if the incentive strategies explicitly depend on the state variable,
at t = 0 the players commit to the entire time-path of the controls. Conversely,
in De Frutos and Martín-Herrán (2015) the players use feedback strategies, that is,
they look for functions x �→ u∗i (x) with x denoting the state variable. In this paper
results under both information structures are compared.3

The linear incentive strategies previously proposed in the literature are a particu-
lar case of Definition 1. This literature (except De Frutos and Martín-Herrán 2015)
assumes that the incentive equilibrium is the cooperative solution, (uc1, u

c
2), and the

following affine function has been usually proposed as incentive strategy (see, for
example, Ehtamo and Hämäläinen 1986; Martín-Herrán and Zaccour 2005, 2009):

ψj (ui, uj , x) = ψj(ui) = ucj +Dj(ui − uci ), i, j = 1, 2, i �= j, (7)

with Dj, j = 1, 2, denoting an appropriate non-zero constant.
However, in this paper, as in De Frutos and Martín-Herrán (2015), we look for

an incentive strategy equilibrium (u∗1, u∗2) such that the steady state of the pollution
stock of the system when the incentive strategies are used, x∗ss , is greater but close
to this value under cooperation, xcss , and lower than the steady-state value under
non-cooperation, xNss .

3The pollution stock and emission time-paths for the Nash and incentive equilibria as well as the
payoffs when the players use feedback strategies presented later in this paper have been taken from
De Frutos and Martín-Herrán (2015).
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For the sake of completeness, let us recall the form of the incentive functions ψj ,
j = 1, 2, in Definition 1 we choose to attain the purpose:

ψj(ui, uj , x) = (ucj +Dj(ui − uci ))φ(x − xcss, ε)+ uj (1− φ(x − xcss, ε)), (8)

where ε > 0 is a small positive parameter and φ(x, ε) is a smooth function satisfying

φ(x, ε) = 0, if x ≤ ε; φ(x, ε) = 1, if x ≥ 2ε. (9)

The definition of the non-linear incentive in (8) and the cutoff function in (9)
show that the incentive strategy is exclusively implemented if one player deviates
from the cooperative outcome (and emits at a greater level) and, therefore, at some
time t the trajectory x(t) is above xcss . If x(t) is far from xcss , then the linear incentive
in (7) applies and pushes the players’ emissions in such a way that the pollution path
returns close to the steady-state value under cooperation, xcss . Conversely, the non-
linear incentive strategy (8) when x(t) is close enough to xcss (the distance measured
by parameter ε) allows the players to choose any time path.

We observe that in the limit ε → 0 the non-linear incentive strategy (8) reduces
to the linear incentive strategy defined in (7). In this case, x∗ss is equal to xcss .
Furthermore, u∗i = uci , i = 1, 2.

The following proposition characterizes the incentive equilibrium if the non-
linear incentive in (8) is used and the players restrict themselves to open-loop
strategies.

Proposition 2 If the incentive strategy is defined by (8), then the open-loop
interior incentive equilibrium (u∗1(t), u∗2(t)) satisfies the equilibrium conditions
u∗i = ψi(u

∗
i , u

∗
j , x

∗), i, j = 1, 2, i �= j together with the following set of optimality
conditions:

ui = Ai + β(1+Djφ(x − xcss, ε))ξi,

ẋ = β(ui + ψj (ui, u
∗
j , x))− αx, x(0) = x0, (10)

ξ̇i =
(
ρ + α − β

∂ψj

∂x
(ui, u

∗
j , x)

)
ξi + ϕix, lim

t→∞ e−ρt ξi(t) = 0, i = 1, 2, i �= j,

where ξi denotes the costate variable of player i.

Proof Let us define the Hamiltonian for player i as

Hi(ui, uj , ξ i, x) = ui

(
Ai − 1

2
ui

)
− 1

2
ϕix

2 + ξ i(β(ui + ψj (ui, uj , x))− αx).
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Assuming interior strategies, the maximum principle optimality conditions read:

∂Hi

∂ui
(ui, uj , ξ i, x) = 0,

ξ̇ i = ρξ i −
∂Hi

∂x
, lim

t→∞ e−ρt ξ i(t) = 0, i = 1, 2, i �= j,

ẋ = β(ui + ψj (ui, uj , x))− αx, x(0) = x0.

From these conditions, those in the statement of the proposition immediately
follow. ��

The non-linear incentive equilibrium cannot be analytically characterized and
numerical methods are required for the analysis of these incentive strategies. To
numerically solve the system of optimality conditions (10) we first introduce a
large T > 0 and substitute the transversality condition limt→∞ e−ρt ξ i(t) = 0
by the approximate boundary condition ξ i(T ) = 0, i = 1, 2. The resulting
boundary value problem is solved by means of a collocation method implemented
in the MATLAB subroutine bvp4c.m, see Kierzenka and Shampine (2001). The
procedure is repeated with a larger T until no differences between approximate
solutions are found.

For illustration purposes we consider a symmetric example and fix the following
values of the parameters: A1 = A2 = 0.5, ϕ1 = ϕ2 = 1, α = 0.2, β = 1, ρ = 0.1.
The threshold ε in the cutoff function in (9) is set to ε = 0.025 and the initial
pollution stock was set to x0 = 0. The parameter Dj in (8) was set to Dj = 1,
j = 1, 2 as in Martín-Herrán and Zaccour (2009).

Using the above parameters values, we have represented in Fig. 1 the phase
diagram of the optimality system (10) in the symmetric case. The variables are the
pollution stock in the abscissas axis and emissions in the ordinates axis. The system

Fig. 1 Pollution
stock-emissions phase
diagram in the symmetric
case. In red the stable variety
of the unique equilibrium
of (10). Parameters values
A1 = A2 = 0.5,
ϕ1 = ϕ2 = 1, α = 0.2,
β = 1, ρ = 0.1, ε = 0.025,
Dj = 1, j = 1, 2
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Fig. 2 Nash, incentive, and cooperative pollution stock and emission time-paths

possesses a unique steady state (represented by a circle in the figure) which is a
saddle point. In the figure the stable variety is highlighted in red color. This curve
represents, for a given initial condition, the unique non-linear symmetric open-loop
incentive equilibrium. Note that, for simplicity, in the figure the positivity conditions
on emissions have not been imposed.

Figure 2 shows the optimal pollution and emission time-paths for five different
modes of play. The solid red lines represent the cooperative state (left) and control
(right) optimal time-paths. The optimal time-paths corresponding to the non-
cooperative Nash equilibrium are represented using solid (black) and dashed (black)
lines for the feedback and open-loop information structures, respectively. Finally,
solid (green) and dashed (green) lines are the optimal time-paths for the feedback
and open-loop incentive equilibrium strategies, respectively. A first message from
Fig. 2 (left) is that the incentive strategies attain their objective of approaching
the long-run cooperative level of the pollution stock. Furthermore, for the same
threshold ε in the cutoff function the open-loop incentive equilibrium is closer to
the cooperative optimal time-paths than the feedback incentive equilibrium. The
transition to the steady state in the open-loop case is smoother than in the feedback
case. This effect is clearer in the case of emissions (right chart). The main difference
is in the short run. The emissions in the feedback incentive equilibrium are initially
very high, while they are much lower in the open-loop case. However, after a
very short period of time, the first ones decrease sharply, while the second ones
begin their fall later. The times at which the emissions start to decline towards
their stationary levels depend on the value of parameter ε in the cutoff function.
The smaller ε, the earlier the emissions should begin their fall in order to attain a
steady state closer to the cooperative steady state. In the long run the emissions in
both open-loop and feedback incentive equilibria are very similar to the cooperative
emissions.
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4 Credibility

In this section we focus on the study of the credibility of the incentive strategies. The
incentive strategies are credible if player j deviates unilaterally from his incentive
equilibrium action, uj = u∗j (·), then, it will be more beneficial for player i to follow
the incentive strategy, rather than to stick to ui = u∗i (·). Hence, if the credibility
property is satisfied, there will not be any temptation for unilateral deviation from
the pair uj = u∗j (·), j = 1, 2. It is understood that the function u∗i (·) is either a
function of the time variable t if players use open-loop strategies or a function of
the state variable x if players use feedback strategies.

Definition 2 A pair ψ1(v1, v2, x), ψ2(v1, v2, x), with ψi ∈ �i , i = 1, 2 of
incentive equilibrium strategies at (u∗1, u∗2) is credible in a set U1 × U2 ⊂ U1 ×U2
iff given u1 ∈ U1 and u2 ∈ U2 there exist û1 ∈ U1 and ǔ2 ∈ U2 such that

W1(ψ1(û1, u2, x̂), u2) ≥ W1(u
∗
1, u2), W2(u1, ψ2(u1, ǔ2, x̌)) ≥ W2(u1, u

∗
2),

(11)
where x̂ and x̌ satisfy ˙̂x = β(ψ1(û1, u2, x̂) + u2) − αx̂ and ˙̌x = β(u1 +
ψ2(u1, ǔ2, x̌))− αx̌, respectively, with x̂(0) = x̌(0) = x0.

A sufficient, although obviously not necessary, condition for credibility is that
for all u1 ∈ U1 and u2 ∈ U2

W1(ψ1(u
∗
1, u2, x̂), u2) ≥ W1(u

∗
1, u2); W2(u1, ψ2(u1, u

∗
2, x̌)) ≥ W2(u1, u

∗
2),

(12)

where x̂ and x̌ are defined as in Definition 2, with û1 = u∗1 and ǔ2 = u∗2. The
stricter condition (12) is not always the best possible option as a response to a
deviation even if the players restrict themselves to the use of incentive strategies
of the form ψi . The use of non-linear strategies allows the players to optimize their
response to deviations from the agreement while maintaining their commitment to
the implementation of incentive strategies. The examples below present some of the
practical consequences of the use of the weaker Definition 2.

Note that, in the case of linear incentive strategies, ψj is given by (7). Then,
Definition 2 reduces to Wi(ψi(uj ), uj ) ≥ Wi(u

∗
i , uj ), ∀uj ∈ Uj with u∗i = uci , for

i = 1, 2, which is the credibility definition usually proposed in the literature (see, for
example, Jørgensen and Zaccour 2003; Martín-Herrán and Zaccour 2005, 2009). A
set of general conditions ensuring the credibility of linear incentive strategies for the
model described by (1)–(2) has been characterized in Martín-Herrán and Zaccour
(2009). A comparison between the sets of deviations for which credibility can be
obtained under linear and non-linear incentive equilibrium strategies can be found
in De Frutos and Martín-Herrán (2015). In this last paper it is shown that the region
of credibility attained with the non-linear incentive contains and is considerably
greater than that reported for the linear incentive in Martín-Herrán and Zaccour
(2009). This result allows us to conclude that the introduction of flexibility can be a
useful device to facilitate the sustainability of an agreement over time.
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Table 1 Players’ payoffs under open-loop and feedback strategies

Wol
1 Wol

2 W
f

1 W
f

2

U1 = uN1 , U2 = uN2 3.14× 10−3 3.14× 10−3 −3.68× 10−1 −3.68× 10−1

U1 = u∗1, U2 = u∗2 1.68× 10−2 1.68× 10−2 3.91× 10−4 3.91× 10−4

U1 = u∗1, U2 = uN2 8.30× 10−4 2.16× 10−2 −5.81× 10−1 3.74× 10−1

U1 = ψ1(u
∗
1, u

N
2 , x), U2 = uN2 2.16× 10−3 2.39× 10−3 −3.72× 10−1 −3.79× 10−1

Player 2 deviates to uN2

Definition 2 requires conditions (11) to be checked in some subset of admissible
controls U1×U2 ⊂ U1×U2. In order to be able to analyze the credibility properties
of the non-linear incentive strategies we assume that the set of possible deviations
is restricted to convex combinations of the cooperative control uci and the non-
cooperative Nash equilibrium uNi : Ui = {ui = θuci + (1 − θ)uNi }. The following
tables allow us to illustrate the credibility of the non-linear incentive strategies and
to compare this property for the open-loop and feedback information structures.

Tables 1, 2, 3 and 4 show the players’ payoffs when they play either open-loop
(first two columns) or feedback (last two columns) strategies (superscripts ol and f ,
respectively). Each row presents the different strategies used by the players in each
case.

The first row in Table 1 shows the players’ payoffs when they do not cooperate
and play the open-loop or the feedback Nash equilibrium. The second row presents
these payoffs when they follow their open-loop or feedback incentive strategies.
Both players under both information structures improve their payoffs with respect to
the non-cooperative Nash levels. In the third row the payoffs are no longer identical
for both players, when player 1 continues to play his part of the incentive equilib-
rium, while player 2 deviates to his part of the non-cooperative Nash equilibrium.
Let us note that it could be considered irrational that player 2 implements a strategy
that would provide him a smaller payoff than that associated with the incentive
strategy. Table 1 shows that the deviation from the incentive equilibrium to uN2
provides a greater payoff to the deviating player, i.e. W2(u

∗
1, u

N
2 ) > W2(u

∗
1, u

∗
2).

The credibility of the incentive equilibrium requires the existence of a feasible u1
such that W1(ψ1(u1, u

N
2 , x), uN2 ) > W1(u

∗
1, u

N
2 ). The fourth row in Table 1 shows

that last inequality is satisfied in particular for u1 = u∗1. Furthermore, the deviating
player (player 2) is penalized because W2(ψ1(u

∗
1, u

N
2 , x), uN2 ) < W2(u

∗
1, u

∗
2).

In fact, deviating from the incentive strategy player 2 even worsens his payoff
compared to his payoff in the non-cooperative case: W2(ψ1(u

∗
1, u

N
2 , x), uN2 ) <

W2(u
N
1 , uN2 ). All these results apply when the players use either open-loop or

feedback strategies.
Table 1 also allows us to compare the relative improvement of the players’

payoffs when moving from their non-cooperative mode of play to the incentive
equilibrium as well as the relative loss with respect to the cooperative solution
both under open-loop and feedback strategies. Because we are analyzing a com-
pletely symmetric game, each player under cooperation receives half of the total
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cooperative payoff. The individual cooperative payoff is given by Wc
1 = Wc

2 =
2.64× 10−2. Let us denote by WNol

i and W
Nf
i the players’ payoffs when the open-

loop and feedback Nash equilibrium, respectively, is played (first row in Table 1).
Equivalently, let us denote by W ∗ol

i and W
∗f
i the players’ payoffs when the open-

loop and feedback incentive equilibrium, respectively, is implemented (second row
in Table 1).

The comparison of the Nash equilibrium payoffs WNol
i and W

Nf
i with the

individual cooperative payoff Wc
i shows that if the players implement the feedback

Nash equilibrium the payoffs are much smaller than if the open-loop Nash equi-
librium is played, which is, already, an 88.1% lower than the cooperative ones.
This loss of welfare is a well-known consequence of the non-cooperative mode
of play that can be mitigated if the players agree to follow incentive strategies
(either open-loop or feedback), as can be seen in the second row of Table 1. The
payoffs when the incentive equilibrium is played compared to the payoffs under
cooperation account for a fall of a 36.7% and a 98.5%, under open-loop and
feedback strategies, respectively. If the incentive equilibrium payoffs are compared
to the non-cooperative Nash payoffs, they show an increase of more than one
order of magnitude in both cases, being four times greater in the open-loop than
in the feedback case. These results clearly show that the players can find neatly
advantageous the use of non-linear incentive strategies.

Tables 2, 3 and 4 present the different payoffs when player 2 deviates from the
incentive equilibrium to different convex combinations of his cooperative control,
uc2, and his part of the non-cooperative Nash equilibrium, uN2 . In Tables 2, 3, and 4
the weight assigned to the non-cooperative part decreases from 0.75 to 0.5 and to
0.25, respectively. Concerning the rationality property of player 2, these tables show
that it is rational that player 2 deviates from the incentive equilibrium when he
changes to a strategy in which no-cooperation is weighted at least as cooperation.
However, Table 4 shows that it is irrational that player 2 deviates to u

(3)
2 = 0.75uc2+

0.25uN2 or to u
(3)
2 = uc2 not shown in the table. These results are applicable both for

the open-loop and feedback incentive strategies.
The last two rows in Tables 2, 3 and 4 allow to analyze the credibility of the

incentive strategies when player 2 deviates to u
(i)
2 , i = 1, 2, 3. Player 1 implements

Table 2 Players’ payoffs under open-loop and feedback strategies

Wol
1 Wol

2 W
f

1 W
f

2

U1 = u∗1, U2 = u∗2 1.68× 10−2 1.68× 10−2 3.91× 10−4 3.91× 10−4

U1 = u∗1, U2 = u
(1)
2 1.08× 10−2 2.01× 10−2 −3.58× 10−1 2.70× 10−1

U1 = ψ1(u
∗
1, u

(1)
2 , x), U2 = u

(1)
2 1.23× 10−2 1.22× 10−2 −1.14× 10−1 −1.54× 10−1

U1 = ψ1(u
N
1 , u

(1)
2 , x), U2 = u

(1)
2 1.36× 10−2 1.01× 10−2 −9.22× 10−2 −3.92× 10−1

Player 2 deviates to u
(1)
2 = 0.25uc2 + 0.75uN2
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Table 3 Players’ payoffs under open-loop and feedback strategies

Wol
1 Wol

2 W
f

1 W
f

2

U1 = u∗1, U2 = u∗2 1.68× 10−2 1.68× 10−2 3.91× 10−4 3.91× 10−4

U1 = u∗1, U2 = u
(2)
2 2.01× 10−2 1.76× 10−2 −1.54× 10−1 1.34× 10−1

U1 = ψ1(u
∗
1, u

(2)
2 , x), U2 = u

(2)
2 2.02× 10−2 1.75× 10−2 −3.02× 10−2 −4.75× 10−2

U1 = ψ1(u
N
1 , u

(2)
2 , x), U2 = u

(2)
2 2.26× 10−2 5.01× 10−3 1.23× 10−1 −4.46× 10−1

Player 2 deviates to u
(2)
2 = 0.5uc2 + 0.5uN2

Table 4 Players’ payoffs under open-loop and feedback strategies

Wol
1 Wol

2 W
f

1 W
f

2

U1 = u∗1, U2 = u∗2 1.68× 10−2 1.68× 10−2 3.91× 10−4 3.91× 10−4

U1 = u∗1, U2 = u
(3)
2 2.88× 10−2 1.44× 10−2 5.29× 10−2 −4.87× 10−2

U1 = ψ1(u
∗
1, u

(3)
2 , x), U2 = u

(3)
2 2.87× 10−2 1.45× 10−2 2.08× 10−2 −6.00× 10−3

U1 = ψ1(u
N
1 , u

(3)
2 , x), U2 = u

(3)
2 3.12× 10−2 −1.41× 10−4 2.91× 10−1 −5.19× 10−1

Player 2 deviates to u
(3)
2 = 0.75uc2 + 0.25uN2

U1 = ψ1(u1, u
(i)
2 , x) with either u1 = u∗1 (third row) or u1 = uN1 (fourth row).

Comparing the entries in the third (fourth) row with those in the second, it can be
deduced that the incentive equilibrium is credible in the same scenarios when it
is rational for player 2 to deviate (Tables 2 and 3) and is not credible when the
deviation is irrational for player 2 (Table 4). The results are qualitatively similar for
open-loop and feedback strategies.

Finally, from the comparison of W2(ψ1(u1, u
(i)
2 , x), u

(i)
2 ) and W2(u

∗
1, u

∗
2) for

u1 ∈ {u∗1, uN1 } in Tables 2 and 3 we can deduce that deviating from the incentive
strategy player 2 always worsens his payoff compared to his payoff in the incentive
equilibrium. More precisely, if u2 = u

(1)
2 = 0.25uc2 + 0.75uN2 both choices

for player 1, u1 = u∗1 or u1 = uN1 lead to a payoff for player 2 lower than
W2(u

∗
1, u

∗
2) regardless of whether players use open-loop or feedback strategies. If

u2 = u
(2)
2 = 0.5uc2 + 0.5uN2 , the same comment applies for the feedback case.

In the open-loop case the choice u1 = u∗1 for player 1, although being credible,
it does not penalize enough player 2 with respect to his payoff in the incentive
equilibrium. However, if player 1 optimizes his choice by moving to u1 = uN1 ,

then W1(ψ1(u
N
1 , u

(2)
2 , x), u

(2)
2 ) > W1(ψ1(u

∗
1, u

(2)
2 , x), u

(2)
2 ) > W1(u

∗
1, u

∗
2) and

W2(ψ1(u
N
1 , u

(2)
2 , x), u

(2)
2 ) < W2(u

∗
1, u

∗
2).

Figure 3 for the open-loop strategies and Fig. 4 for the feedback strategies show
the time paths of the emission rates and the pollution stock for the non-cooperative,
cooperative, and incentive strategies used by the players, as well as the strategies
when player 2 deviates to his part of the non-cooperative equilibrium, while player
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Fig. 3 Credibility open-loop incentive strategies
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Fig. 4 Credibility feedback incentive strategies

1 sticks to his part of the incentive equilibrium. These time paths allow us to
analyze the credibility of the incentive strategies. The optimal paths when the non-
cooperative Nash equilibrium or the cooperative solution is played are represented
using solid black and red lines, respectively. Those associated with the incentive
equilibrium are depicted using solid blue line. Finally, the solid green line shows
the time paths when player 2 deviates while player 1 plays the incentive strategy.

Figure 3 shows that when player 2 deviates from the incentive equilibrium and
follows his part of the non-cooperative Nash equilibrium the emission time-paths
are described by the black solid line starting around 0.1. When player 1 responds
using the incentive strategy U1 = ψ(u∗1, u

N
2 , x) his emission time-path initially

starts around 0.15 and follows the incentive equilibrium strategy, decreasing up to
a minimum level. When player 1 realizes that the pollution stock is far from the
pollution stock under cooperation departs from his part of the incentive equilibrium
and increases the emissions up to a level similar to the non-cooperative level. From
this point on the emission time-paths run very closely. This behavior translates into
a pollution stock time-path associated with the strategies U1 = ψ(u∗1, u

N
2 , x) and
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U2 = uN2 that initially evolves between the time-paths for the non-cooperative
Nash equilibrium and the incentive equilibrium. The time path initially increases
at a speed greater than that corresponding to the Nash equilibrium. From a time on
the incentive strategy used by player 1, U1 = ψ(u∗1, u

N
2 , x), allows to approximate

the pollution stock time-path under non-cooperation.
Figure 4 collects the different feedback strategies. The deviating player (player

2) initially follows the discontinuous green line starting around 0.22, corresponding
to the emission time-path for U1 = ψ(u∗1, u

N
2 , x) and U2 = uN2 . This time

path evolves quite close to the non-cooperative emission time-path. Let us note
that although in Fig. 4 we display the time paths associated with the different
strategies, the players are using feedback strategies, and as such they are taking
their optimal decisions depending on the value of the state variable (the pollution
stock). Hence, the discontinuous green line does not coincide with the continuous
black line because player 1 is playing U1 = ψ(u∗1, u

N
2 , x) instead of uN1 , implying

a different value of the pollution stock. Player 1’s emissions (continuous green line)
start around 0.33 and sharply decrease imitating the incentive equilibrium time-
path up to a point in time where the trajectory reaches the discontinuous green line.
From this time on the emission time-paths for both players coincide and evolve
close to the non-cooperative emission time-path. The main difference with respect
to the previous case is that in the case of open-loop strategies player 1 reduces his
emissions too sharply and then he has to raise them during an intermediate period
of time to follow a trajectory similar to the non-cooperative case. However, in the
case of feedback, the decrease in emissions towards values close to those of the non-
cooperative scenario is monotonous and smoother. As the right chart in Fig. 4 shows
the pollution stock when U1 = ψ(u∗1, u

N
2 , x) and U2 = uN2 is not far away from the

non-cooperative pollution stock even in the short term.

5 Concluding Remarks

This paper examines the use of non-linear incentive strategies as another option
to sustain over time an agreement by means of non-cooperative play. Incentive
strategies have been extensively used in the differential games literature in different
areas and have been proposed to support the cooperative solution in two-player
differential games. The incentive is designed in such a way that a coordinated
outcome becomes a Nash equilibrium. If the incentive strategies are credible, no
player will be tempted to unilaterally deviate from the agreed decision. As far as
we know all the previous literature on incentive strategies, except De Frutos and
Martín-Herrán (2015), study games belonging to the linear-state or linear-quadratic
classes and the incentive strategies are constructed in such a way that the incentive
equilibrium is the cooperative solution. Furthermore, the strategies are assumed
to be linear and decision-dependent, i.e., each player makes his current decision
contingent on the current decision of his opponent. Most of the previous works have
not addressed the analysis of the credibility of the incentive strategies.
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This paper is a follow-up of De Frutos and Martín-Herrán (2015) and assumes
state-dependent and decision-dependent equilibrium strategies defined as non-linear
functions of the control variables of both players and the current value of the state
variable. We relax the definition of incentive equilibrium in the sense that we look
for an incentive strategy equilibrium such that the steady state of the optimal state
trajectory is close enough, but not necessarily identical, to the steady state of the
state variable under cooperation. We show that the definition of less restrictive
strategies helps to guarantee the sustainability of an agreement over time. We
analyze a well-known linear-quadratic transboundary pollution differential game
and present numerical experiments to illustrate the results. We compare the incentive
equilibrium strategies, its credibility and the players’ payoff when players use open-
loop strategies and when they focus on stationary Markovian strategies.

The consideration of the incentive strategies as a social norm raises the question
of whether the use of evolutionary game concepts could give a new insight about the
use of incentive equilibrium strategies. One interesting idea could be to see whether
a more flexible social norm (non-linear incentive strategies) could survive when
confronted to a more efficient social norm (linear incentive strategies). We postpone
this study for further research.4
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Strategic Interaction Among Firms
in Output and Emission Markets:
A Unified Framework

Francisco J. André and Luis M. de Castro

Abstract Cap-and-trade (CAT) programs are nowadays a common tool used by
authorities to regulate polluting emissions and tackle environmental problems such
as Climate Change. In this chapter, we analyze the implications of firm’s strategic
behavior in product and emission permit markets for the success of these policies.
We survey the related literature focusing on the relevance of market structure and
firms’ competition. We develop a simple but unifying setting to revisit some of the
main academic results on the subject.

Keywords Emissions trading · Oligopoly · Market interaction · Cournot
model · Stackelberg model

1 Introduction and Literature Review

There are basically two ways of introducing a price that incorporates environmental
externalities in the markets: price-based and quantity-based regulations. A carbon
tax is a paradigmatic example of price-based regulation, while the quantity-based
approach usually takes the form of a cap-and-trade (CAT) program. Such a system
involves setting an aggregate cap for emissions that is lower than the business-
as-usual level and creating tradable emission rights that are distributed among the
polluters.

CAT programs represent nowadays an important tool commonly used by author-
ities to regulate pollution emissions. These programs are in place for several
pollutants at national and international levels. In the 1990s, the US established one
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of the best known and more successful CAT systems in the world for sulfur-dioxide
in the framework of the Clean Air Act (see, e.g., Ellerman 2000). The EU ETS
(European Union Emission Trading System) was implemented in 2005 for the entire
EU CO2 emissions, and it is nowadays considered the most important emissions
market in the world.

CAT programs change the nature of the regulatory process with respect to
traditional command-and-control policies by shifting the task of identifying the
appropriate pollution control strategies from the environmental authority to the
polluters. This is attractive for individual firms because they enjoy more flexibility
to comply with the regulation, either reducing emissions or acquiring permits from
other firms. More importantly, it is also attractive from a social perspective because,
as long as marginal abatement costs differ across polluters, the market can play a
positive role in achieving a specified environmental target in an efficient way.

Two of the most important aspects that have been addressed in the literature are
the existence of market imperfections and the different mechanisms to make the
initial allocation of permits. This work mainly focuses on the first one, imperfect
competition. Since a detailed analysis of the initial permit allocation is beyond the
scope of this study, we restrict ourselves to the allocation method that has been
traditionally more used in practice, which is called grandfathering and consists of
allocating the permits for free among firms based on business-as-usual emissions.1

At least two different issues regarding grandfathering have been investigated in
the literature: the effect of sequential versus simultaneous allocation and the impact
of related imperfect output markets. The sequential version typically takes places
in schemes with sovereign governments that are allowed to announce their permit
allocations at different dates. Such was the case in the early phases of the EU
ETS, when domestic permit allocations were often announced at separate times.
MacKenzie (2011) concludes that this option may result in strategic behavior of the
different countries involved, giving rise to an aggregate welfare loss.

One of the central results in the literature shows that a CAT system is cost-
effective under a set of assumptions. The first approach to the theory behind
emissions trading was formalized by Baumol and Oates (1971), who proposed a set
of arbitrary standards and charges on emissions sufficient to attain these standards.
Although they admitted that the system does not generally produce a Pareto-efficient
allocation of resources, it does result in a cost-effective result (i.e., achieving a
specified reduction in pollution levels at a minimum cost). In a static framework,
Montgomery (1972) showed that cost-effectiveness is achieved regardless of the
allocation rule chosen, as the initial allocation of emission permits does not affect
the market equilibrium. In a dynamic setting, Cronshaw and Kruse (1996) showed
that (static and dynamic) cost-effectiveness holds when permits are bankable in a

1Permit auctioning is progressively gaining more relevance as an alternative allocation method.
Alvarez and André (2015, 2016) and Alvarez et al. (2019) address the efficiency issues regarding
this method.
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competitive permit market with perfect foresight, but only if the firms are not subject
to profit regulations.

The desirable cost-effectiveness property of CAT systems crucially relies on
the permit market being perfect. If this is not the case, cost-effectiveness is not
guaranteed anymore. Moreover, the allocation method is not innocuous either.
Imperfect competition allows firms to pass pollution costs on to consumers. If firms
receive permits for free, they essentially get reimbursed for costs they never had
to incur, which is commonly known as windfall profits. According to Hintermann
(2011), existing firms favor freely allocated tradable permits not only because they
convey rents that represent a wealth transfer from consumers to firms but also for
the fact that it sets entry barriers, as long as the newcomers, unlike the incumbents,
have to purchase permits to operate.

Unfortunately, the perfect market assumption rarely holds in practice as permit
markets typically cover large firms (or countries) operating in highly concentrated
markets with market power, like electricity, cement or refining.2 When the markets
are not perfectly competitive, the strategic behavior of firms becomes a key issue
because the environmental policy aims at reducing pollution emissions at the
minimum cost while firms aim at maximizing profits, and both objectives are not
necessarily compatible. The most obvious consequences of the lack of perfect
competition are distorted prices and inefficient equilibrium allocations. Game theory
plays a central role in this area for studying, on the one hand, the interactions among
firms and their strategic behavior and, on the other hand, the interplay between the
product market and the permit market.

Market power has been studied in the literature under different approaches,
including static and dynamic settings and different market structures, such as
Cournot or Stackelberg.3 The results depend on whether there is market power in the
output market, in the permit market or in both. Therefore, we can split the related
literature in three different lines. In what follows, we present a short overview of
this literature.

2One rationale behind this fact is that operating a permit market with a large number of small firms
would involve an unbearable amount of transaction costs associated with monitoring, reporting,
and verifying emissions (see, e.g., Cason and Gangadharan 2003 or Montero 1997). So, markets
with a large number of firms have traditionally been regulated by means of taxes and emission
markets tend to be used in markets with a relatively small number of (typically large) participants.
3Note that the term “Stackelberg model” is used with, at least, two slightly different meanings.
In classic microeconomic theory, it refers to a very specific model with two firms in which one
of them acts as a leader in output quantity. In the differential games literature, on the other hand,
the term “Stackelberg game” is typically used to denote a sequential game whether there is one
or several leaders or dominant firms, one or many followers or price-taking firms and the strategic
variable can be either output or price.
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1.1 Market Power Only in the Permit Market

The ground-breaking paper in this line is Hahn (1984). Considering a single
dominant firm and a price-taking fringe, he stated that the efficiency loss due to
market power depends on the initial allocation of permits, and the permit price is an
increasing function of the leader’s allocation. The dominant firm will manipulate
the price (upwards if it is a seller and downwards if it is a buyer) unless the
initial allocation equals the cost-effective one, which requires a perfectly informed
regulator.4

Hagem and Westskog (1998) extended the Hahn setting in a dynamic two-period
model considering oligopolists and a competitive fringe in a Cournot-type game,
and found a non-optimal distribution of abatement in an imperfectly competitive
market with banking and borrowing.

1.2 Market Power Only in the Output Market

Different authors, such as Sartzetakis (2004), have shown that perfect competition in
the permit market is not sufficient to render a cost-effective outcome if the product
market is not competitive. Within the framework of a Cournot duopoly, Sartzetakis
(1997b) compares the efficiency of a competitive emissions market to a command-
and-control regulation. He shows that emissions trading modify the allocation of
emissions among firms and hence their production choices, and there is an output
redistribution effect that favors the less efficient firm.

Meunier (2011) analyzes the efficiency of permit trading between two imper-
fectly competitive markets and concludes that the integration of permit markets
(even if they are perfectly competitive) can decrease welfare because of imperfect
competition in product markets. Theoretically, if markets are perfectly competitive,
a unique global permit market that covers all polluting activities would be more
efficient, but under market power, several permit markets may be more efficient
than an integrated one.

Ehrhart et al. (2008) show that, if the output market is not perfectly competitive,
firms may have incentives to collude in the permit market since an increase in the
permit prices may decease output and lead to higher profits.

André and de Castro (2017) analyzed if the existence of scarcity rents can make
the firms agree on a more stringent policy and concluded that this event is more
likely to happen under Cournot than under Stackelberg competition, and the chances
increase if the firms are endowed with a large initial amount of permits.

4André and Arguedas (2018) extended the Hahn model to consider technology adoption and
showed that the initial distribution of permits (in particular, the amount of permits initially given
to the dominant firm) is crucial in determining, not only the allocation of emissions and abatement
but also the existence of over- or underinvestment in technology.
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1.3 Market Power in the Permit and the Output Market

Market interaction implies that one firm’s actions will influence, not only its
productions cost but also the costs of other firms and the market equilibrium. One
dominant firm may increase its profits by increasing the industry costs. In the
industrial organization literature, this strategy is known as “raising rivals’ costs.”

Misiolek and Elder (1989) concluded that a single dominant firm can manipulate
the permit market to drive up the fringe firm’s cost in the product market, what they
call exclusionary manipulation. The dominant firm will buy more (or sell fewer)
permits to increase its market share and profits relative to the fringe.

Eshel (2005) presents a model with a competitive fringe and a dominant firm
that simultaneously selects the set prices in both markets. The permit price is set
above the dominant firm’s marginal abatement cost if the profit decrease in the
permit market is overweighed by the profit increase in the product market. When
the dominant firm is not able to set a price mark-up in the product market and is a
buyer of permits, it sets the price below its marginal abatement cost.

Hintermann (2011) found that a firm that has a dominant position in both markets
will manipulate both prices to increase its profits at the expense of consumers
and tax payers, and overall efficiency cannot be achieved by means of permit
allocation alone. While Hahn (1984) stated that efficiency in the permit market can
be achieved when the initial allocation to the dominant firm equals the cost-effective
one, Hintermann shows that this is not the case when there is interaction between
the product and the permit market. Hintermann (2017), in a simplified version of his
2011 model, shows that it is not the presence of “double” market power per se, but
simply the transmission of input costs into output prices which leads to a failure of
Hahn’s prescription of full free allocation.

The result by De Feo et al. (2013) contrasts with the one by Eshel (2005). They
model the interaction between the tradable emissions permits market (upstream) and
the output market (downstream) by considering a three-stage game: in the first stage,
a dominant firm sets the price of permits, in the second stage permits are traded and,
in the third stage, firms compete “a la Cournot” in the output market. They found
that the dominant firm may set a permit price above its marginal abatement cost,
even when it is a net buyer of permits and cannot set the product price.

Within a two-stage game, Sartzetakis (1997a) considers a Cournot duopoly where
one of the two Cournot players has price setting power in the permits market. In the
first stage, the leader choses the permit price and, in the second one, both firms make
their output and abatement decisions taking permit price as given.

The main purpose of this paper is to present a unified view of the literature
on emissions trading under market power. It brings together different strands and
highlights some of the main results. For this purpose, in Sect. 2, we set up a simple
two-period model where two firms compete in the output and the emissions markets.
Within this model, we replicate some relevant results in the related literature, paying
more attention to those results concerning the cross-market links. In Sect. 3, we
set up a particular model to analyze the relationship between the level of permit
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price and the degree of competition in both markets. In Sect. 4, we set up a slightly
simplified version of this particular model to explore different market structures
depending on which is the mainstream market: output or permits. Finally Sect. 5
concludes.

2 A Unified Model

In this section, we develop a two-period partial equilibrium model with two markets.
The permit market allows for full banking and borrowing and can be linked to one
or several output sectors. We focus on one of those sectors, that is composed by two
firms producing a final good (energy, for instance) and emitting a global pollutant.
We consider different structures in both markets. Our aim is to offer a somewhat
general model that can give rise (with slight modifications) to some of the basic
results of the literature under different market structures.

2.1 Basic Elements

We consider two firms labeled as i = 1, 2 and two periods, j = 1, 2. We denote the
variables with two subscripts where the first subscript refers to the firm (i) and the
second to the period (j). The variables that are not firm-specific are denoted with a
single subscript for the period. Let xij be the output of firm i in period j and Xj the
total output in period j, with Xj = x1j + x2j. In period i firms face the inverse demand
function Pi(X), with Pi

’(X) < 0. Let eij denote the emissions, net of abatement, of
firm i in period j. Both firms have the same cost function so that the cost of firm i
is given by C(xi, ei), which depends on output and emissions and is continuous and
twice differentiable in both arguments with the following properties:

∂C

∂xi
> 0,

∂2C

∂x2
i

≥ 0,
∂C

∂ei
< 0,

∂2C

∂e2
i

> 0,
∂2C

∂xi∂ei
< 0. (1)

These common assumptions mean that the cost is increasing and convex with
respect to output and decreasing and convex with respect to emissions, i.e.,
producing dirty is cheaper than producing clean. They can also be thought of as
implying a positive and increasing marginal abatement cost. The fifth condition
implies that not only total cost but also marginal output cost is decreasing in
emissions.

We assume that the firms are subject to a CAT scheme so that they cannot emit
more than their holdings of permits, and emissions can be perfectly monitored
without cost by the regulatory authorities. Thus, emissions become a factor of
production that has to be paid for. As highlighted by Hahn (1984), the assumption
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that marginal abatement costs are increasing is equivalent to the assumption of
downward sloping demand curves for emission permits. This assumption implies
that the firms attain a regular minimum in solving its profit maximization problem.

The firms can receive an initial endowment of permits in each period, and they
can purchase additional required permits or sell the remaining ones in the market.
Let Sij be the initial endowment of permits of firm i at period j and Sj the total
number of permits issued in period j, so that Sj = S1j + S2j. Denote as yij the
purchases of permits by firm i at period j, where a positive value corresponds to
a purchase and a negative value to a sale. Unused permits may be sold or banked to
be used in the next period. Let Bij be the amount permits banked by firm i at period
j. By constructions, the following balance condition must hold at every period:

Bij = Sij + yij − eij (2)

which simply states that the amount of permits banked equals the difference between
the total amount of permits held by the firm (initial endowment plus purchases) and
its net emissions.

To have a flexible enough framework, output competition is modeled using the
conjectural variations approach.5 In oligopoly theory, a conjecture is a firm’s belief
about the rival’s response to its own strategy, i.e., firm i’s conjecture about firm
j’s reaction can be formally defined as the expectation formed by firm i about
∂xRj (xi) /∂xi , where xRj (xi) is the reaction function (or best reply function) of firm
j. Many of the standard economic models implicitly assume that this conjecture is
fixed. The conjectural variations literature investigates how the market equilibrium
changes when firms’ conjectures change or vary across different markets.

If we assume that both firms have constant and identical conjectural variations
equal to δ, it follows:

δ = ∂x2

∂x1
= ∂x1

∂x2
; dX

dx1
= dx1

dx1
+ dx2

dx1
= 1+ δ (3)

which means that, when one firm increases its own production by one unit, it
conjectures that total output in the market will increase by 1 + δ units.

The attractiveness of this approach is that it can be seen as a general framework
to include different well-known market structures as particular cases. The Cournot
equilibrium is obtained when δ = 0. The competitive (or Bertrand) model corre-
sponds to δ = − 1 and collusion is obtained when δ = 1.

We can also assume that firms have constant but different conjectural variations:

5The conjectural variation approach is typically viewed as a reduced form approximation to a
repeated dynamic game. The conjectural variations model includes monopolistic and competitive
behavior as special cases. This model is discussed by Bresnahan (1981) and Seade (1980) and is
surveyed by Dixit (1986).
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δi =
(
∂xk

∂xi

)
; dX

dxi
= dxi

dxi
+ dxk

dxi
= 1+ δi i �= k (4)

The Stackelberg model with firm 1 being a leader and firm 2 a follower
corresponds to δ1 = 0.5, δ2 = 0.

Both firms maximize their discounted profit in the two-period horizon with β

being the discount factor. To have a full description of the model, we need to
determine whether the output and the permit markets are competitive or not. In
what follows we study each case separately.

2.2 Competitive Output Market

Let us study first the case in which the output market is competitive, which, in turn,
gives raise to two different scenarios depending on whether the permit market is
competitive or not.

2.2.1 Competitive Permit Market

Each firm faces the following two-period profit maximization problem:

Max{x,e,y}P1(X)xi1 − C (xi1, ei1)− p1yi1 + β [P2(X)xi2 − C (xi2, ei2) cxi2 − p2yi2]

s.t. Bi1 = Si1 − ei1 + yi1

Bi2 = Si2 − ei2 + yi2 + Bi1

Bi1 ≥ 0
Bi2 ≥ 0

(5)

Let λj and μj (j = 1, 2) be the multipliers of the equality and inequality
constraints, respectively, corresponding to both periods. For the time being, we
restrict our analysis to the first-order conditions (FOCs) related to the emissions
permit market:

FOC (yi1)⇒ λ1 = p1 (6)

FOC (ei1)⇒ − ∂C

∂ei1
= λ1 ⇒ ei1 = f (p1) (7)

FOC (yi2)⇒ λ2 = βp2 (8)
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FOC (ei2)⇒ −β
∂C

∂ei2
= λ2 ⇒ ei2 = f (p2) (9)

FOC (Bi1)⇒ −λ1 + λ2 + μ1 = 0 (10)

FOC (Bi2)⇒ −λ2 + μ2 = 0 (11)

Bi1 ≥ 0; μ1 ≥ 0; Bi1μ1 = 0 (12)

Bi2 = 0;μ2 ≥ 0 (13)

Since the marginal abatement cost is positive and the model has only two
periods, clearly it is optimal for the firms not to bank any permit at period 2, so
in equilibrium, Bi2 = 0, i = 1, 2. That is the reason why condition (13) differs
from (12).

As we know from Montgomery (1972), in a competitive market, cost-
effectiveness is achieved regardless of the allocation rule chosen. In our case,
this result straightforwardly follows from Eqs. (7) and (9), which are the standard
conditions according to which the marginal cost of abatement equals the permit
price and therefore the marginal cost is equalized across firms for any initial
allocation of the permits.

Using Eqs. (6) and (8) into Eq. (10) and taking into account that the multiplier μ
is non-negative, we conclude that if the problem has a unique solution, the present
value permit prices are not decreasing over time. Formally,

p1 − βp2 = μ1 ≥ 0

In a similar way, it can be established by using Eqs. (7) and (9) into (10) that the
marginal abatement cost is not increasing over time in present value:

∂C

∂ei1
− β

∂C

∂ei2
= μ1 ≥ 0

According to Eqs. (12) and (13), the amount of banked permits in a period can be
positive only if the multiplier μ for that period is zero. This is in line with one of the
results in Cronshaw and Kruse (1996). They stated “Suppose that one of the firms
is not subject to profit regulation. Then, that firm is only willing to bank permits if
the futures price is the same in the two periods, or equivalently if the spot price rises
with the rate of interest” (Page 185). It should be also noted that in this case, the
present value of marginal abatement cost is also equated among periods.
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2.2.2 Imperfect Competition in the Permit Market

Now we assume that, although the output market is competitive, firm 1 acts as a
dominant firm and firm 2 as a follower in the permit market.6 The dominant firm
solves the following problem with regard to the emissions permit market:

Min{e11,y11,e12,y12,p1,p2}
C (x11, e11)+ p1y11 + β [C (x12, e12)+ p2y12]

s.t. B11 = S11 + y11 − e11

B12 = S12 + y12 − e12 + B11

y11 = −y21

y12 = −y22

(14)

The static one-period model can be seen as a particular case by considering β = 0
and not allowing for banking or borrowing. In this way, we can adapt our model to
represent Hahn’s (1984) static framework. The follower FOCs are Eqs. (6) and (7).
Now the problem of firm 1 can be stated as

Min
{p1}

C (x11, e11)+ p1y11

s.t. y11 = e11 − S11 = S21 − e21 (p1)
(15)

The FOC with respect to p yields

∂C

∂e11

∂e11

∂e21

∂e21

∂p1
+ ∂y11

∂e11

∂e11

∂e21

∂e21

∂p1
p1 + y11 = 0 (16)

This is the first result by Hahn (1984). He stated that if the dominant firm does
not receive an amount of permit equal to the number that it holds in equilibrium,
total abatement cost will exceed the cost-minimizing solution (Proposition 1, page
756).

Simple manipulation of Eq. (16) makes Hahn’s statement clear in our model:

∂e11

∂e21
= −1 ⇒

(
− ∂C

∂e11
− p1

)
∂e21

∂p
+ y11 = 0

Note that the dominant firm equals its marginal abatement cost to the permit price
only when there is no trade (y11 = 0).

The second Hahn’s result says that if a regular interior minimum exists, a transfer
of permits from any of the price takers to the dominant firm will increase the permit
price. This result can be immediately shown by differentiating the FOC (14).

6Qualitatively similar results can be obtained if firm 2 is replaced by a fringe of competitive firms.
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∂p

∂S11
=
[(
− ∂C

∂e11
− p1

)(
∂2e21

∂p2
1

)

+
(
∂2C

∂e2
11

)(
∂2e21

∂p2
1

)

− 2

(
∂e21

∂p1

)]−1

> 0

The expression in brackets is just the second-order condition and must be positive
to attain a minimum of problem (15). An immediate implication is that the number
of permits that the dominant firm demands increases with its initial allocation of
permits.

As we know from Montgomery (1972), when the permit market is competitive,
the distribution of permits is merely an equity issue without relevance for the sake
of efficiency or cost-effectiveness. But as soon as we relax the perfect competition
assumption, the distribution of permits matters, with regard not only to equity
considerations but also to the overall cost of the system.

Let us now consider a two-period framework with banking and borrowing. For
convenience, denote gross emissions (i.e., emissions in the absence of abatement
activities) as Z and the amount of emissions abated as q. Then, net emissions equal
the difference between gross emissions and abatement:

eij = Zij − qij (17)

Taking into account that it is optimal for both firms not to keep permits at the end
of the second period, firm 2 faces the following constraint:

q21 + q22 = Z21 + Z22 − S21 − S22 − (y21 + y22) (18)

We consider the situation where firm 2 is a net buyer of permits, which implies
y21 + y22 > 0. Firm 2 solves the following problem:

Min{q21,y21,q22,y22}
C (x21, q21)+ p1y21 + β [C (x22, q22)+ p2y22]

s.t. Eq.(16)
(19)

The FOCs of this problem are as follows:

FOC (y21)⇒ λ = p1 (20)

FOC (q21)⇒ ∂C

∂q21
= λ (21)

FOC (y22)⇒ λ = βp2 (22)

FOC (q22)⇒ β
∂C

∂q22
= λ (23)
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Equations (20) and (22) imply that the present value of the permit price must be
constant over time in equilibrium. Equations (21) and (23) show that it is optimal
for firm 2 in equilibrium to abate emissions until the present value of marginal
abatement costs equals the present value price of permits. These are again the
results by Cronshaw and Kruse (1996). From (20) to (23), the permit prices can
be expressed as a function of the correspondent abated quantities.

The dominant firm faces a constraint similar to that of the follower:

q11 + q12 = Z11 + Z12 − S11 − S12 − (y11 + y12) (24)

The leader minimizes the cost of abatement in both periods minus the income
from selling permits.

Min{q11,y11,q12,y12} C (x11, q11)− p1 (y21) y11 + β [C (x12, q12)+ p2 (y22) y12]
s.t. Eq.(24)

y1j = −y2j

(25)

From the first-order conditions, we get

∂C

∂q11
= ∂p1 (y21)

∂y21

∂y21

∂y11
y11 + p1 (y21) (26)

∂C

∂q12
= ∂p2 (y22)

∂y22

∂y22

∂y12
y12 + p2 (y22) (27)

According to these conditions, it is optimal for the dominant firm to abate
emissions until the present value of marginal abatement cost in each period equals
the present value of the marginal revenue from selling permits.

The follower’s marginal abatement costs will exceed the marginal abatement
costs of the dominant firm in each period. The dominant firm sells too few permits
and hence abates too little as compared to a cost-effective distribution of abatement
across agents. This result is equivalent to the one by Hagem and Westskog (1998).
According to them, “in the banking and borrowing system the monopolist extracts
the full monopoly rent from the total sale of permits over both periods” (Page 95).

2.3 Imperfect Competition in the Output Market

Consider now that the output market is imperfectly competitive. For the sake of
tractability, in this section we focus on the case in which the permit market is
competitive although the output market is not.
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2.3.1 Competitive Permit Market

Each firm solves (5). If the permit market is competitive, Eqs. (6)–(13) must hold in
equilibrium. With regard to the output market, we consider conjectural variations in
line with Eq. (3). The FOCs with respect to output result in

FOC (xi1)⇒ P1 + xi1
dP1

dX1
(1+ δ)− ∂C

∂xi1
= 0 (28)

FOC (xi2)⇒ P2 + xi2
dP2

dX2
(1+ δ)− ∂C

∂xi2
= 0 (29)

Several authors have stated that the output market structure matters when
considering the efficiency of CAT policies. Focusing on the EU ETS, Meunier
(2011) concluded that even if firms are price takers in permit markets, the integration
of different permit markets can decrease welfare because of imperfect competition
in product markets. A similar result can be obtained in our framework. To this
aim, let us consider that, instead of two individual firms, i = 1, 2 represent two
different emission markets with ni different firms in each of them, denoting by Xi the
aggregate quantity of goods produced at market i and by Pi(Xi) the inverse demand
function, which is assumed to satisfy the conditions required to ensure existence
and uniqueness of a Cournot equilibrium. Particularly the price function is not too
convex and quantities are strategic substitutes (see Meunier 2011 for details). To
replicate the Cournot case, we set δ = 0.

In each market, a CAT is implemented with the local price of emissions denoted
as pi. Let us assume the static version of our canonical model with β = 0 and assume
that there is no an initial free allocation of permits (i.e., Si = 0). Then (5) becomes

Max{xi ,ei }Pi (Xi) xi − C (xi, ei)− piyi

ei = yi
(30)

If we consider the same cost function for all agents, the equilibrium is symmetric
in the sense that output and emissions are equally distributed among firms on each
output market. Therefore, individual quantities are Xi/ni and individual emissions
are Ei/ni where Ei is the overall quantity of emissions in market i.

Total quantity produced can be written as a function of total emissions, say
X∗

i (Ei), as the unique solution of the following equation:

Pi + P ′
i

Xi

ni
= ∂Ci

∂xi

(
Xi
/

ni
,
Ei
/

ni

)
(31)

The demand for permits of each firm in market i as a function of the permit price,
say E∗

i (pi), is implicitly determined by the following condition:
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pi = −∂Ci

∂ei

(
X∗

i

(
E∗

i (pi)
)/

ni
,
E∗

i (pi)
/

ni

)
, i = 1, 2 (32)

The welfare implications of the interaction of a competitive market for emission
permits with an oligopolistic product market can be analyzed with the introduction
of the following welfare function:

W (X1, X2, E1, E2) =
∑

i

Z (Xi)− niCi

(
Xi
/

ni
,
Ei
/

ni

)
(33)

Welfare is the sum of surpluses net of production cost. Gross surplus from
consumption is V(X) with dV/dX = P(X). The optimal allocation of emissions
denoted (E1∗, E2∗) solves the following problem:

Max{E1,E2}
W (X1 (E1) ,X2 (E2) , E1, E2)

s.t.

E1 + E2 = E

(34)

On each market, an additional unit of emissions increases the local net surplus
by

dWi

dEi

=
(
Pi − ∂Ci

/

∂xi

)
∂X∗

i

/

∂Ei
− ∂Ci

/

∂ei
(35)

The first term is the market power effect. An additional permit increases
production and, due to the existence of market power, this has a positive effect on
welfare.

If the optimal allocation of emissions is interior, it satisfies the first-order
condition:
(
P1 − ∂C1

/

∂x1

)
∂X∗

1
/

∂E1
− ∂C1

/

∂e1
=
(
P2−∂C2

/

∂x2

)
∂X∗

2
/

∂E2
− ∂C2

/

∂e2
(36)

With an integrated permit market, local permit prices are equalized and the
marginal costs of emissions for each firm are equalized across output markets. If
the difference between the product price and the marginal cost is not the same in
both markets, then the market allocation does not satisfy Eq. (36) and welfare is
lower than in Eq. (34). This is the result of Meunier (2011), which says that the
integration of markets does not increase welfare in general. The inefficiency of an
integrated permit market arises from the divergence between price and marginal cost
and the sensitivity of production to emissions.

Ehrhart et al. (2008) investigate the effect of a permit price increase on firm’s
profit and consumer surplus under imperfect competition in the product market in
a symmetric setting (i.e., δ1 = δ2 = δ). The influence of a permit price increase on
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firms’ profit is ambiguous because there are two counteracting effects. A negative
effect is due to more expensive permit purchasing costs and a positive effect is due
to higher revenues. The latter is related to the imperfect competition product market
because a permit price increase will lead to a decreasing output level, and to an
increase in the output price, implying a revenue increase. Under certain conditions,
a higher permit price will increase firms’ profits but decrease social welfare.

To replicate these findings, we solve problem (30) in two stages by backward
induction. In the second stage, the cost minimization problem for firm i is

Min{ei }
C (xi, ei)+ pei (37)

The FOC states that the marginal cost of emissions equals the permit price. Based
on Eq. (1) conditions, the cost function is convex in emissions and the second-
order condition is always fulfilled. Let us denote as ei∗ the amount of emissions that
minimizes abatement costs.

In the first stage, we solve the profit maximization problem given by

Max{xi ,x−i ,p}
P (xi + x−i ) xi − T C

(
xi, e

∗
i (xi, p)

)
(38)

The FOC for maximization is

P (xi + x−i )+ (1+ δ)
∂P (xi + x−i )

∂X
xi − ∂T C (xi, p)

∂xi
= 0 (39)

Due to symmetry, in equilibrium we have xi = x−i = x∗ . Differentiating the profit
function and taking (39) into account yields

d

dp

(
P
(
2x∗
)
x∗ − T C∗

(
x∗, p

)) = (1− δ) x∗
∂P (2x∗)

∂X

∂x∗

∂p
− ∂T C∗

∂p
(40)

And the sign is ambiguous. The condition for Eq. (40) being positive is as
follows:

⎡

⎣
(1− δ) x∗∂P (2x∗)/

∂X

(3+ δ)
∂P (2x∗)/

∂X
− ∂T C∗ (x∗, p)/

∂xi∂xi

⎤

⎦ ∂e∗i
∂xi

− e∗i > 0

This is Ehrhart et al.’s (2008) result. They stated that “under certain parameter
ranges, a higher permits price induces higher firm profits for all types of expected
competition, with the exception of a monopoly scenario (δ = 1)” (Page 352).

As it was defined in (33), welfare is the sum of surpluses net of production cost.

W (x1, x2, p) =
∫ 2x∗

0
P(z)dz− 2T C∗

(
x∗, p

)
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Independent of the effects on firms’ profits, an increasing permit price never leads
to an increase in social welfare because the negative effect on the consumers’ surplus
always outweighs the possibly increasing profits. Analytically,

∂W (x1, x2, p)

∂p
=
[

2P
(
2x∗
)− 2

∂T C∗ (x∗, p)
∂x∗

]
dx∗

dp
− 2

∂T C∗ (x∗, p)
∂p

≤ 0

This is the second result by Ehrhart et al. (2008).

3 A Particular Model with Endogenous Permit Prices

In order to investigate a framework in which there is market power both in the permit
and in the output market, we need to introduce some more specific structures in the
model. To this end, we assume some specific production and abatement functions.
We adopt linear and linear-quadratic specifications for the sake of tractability. A
similar model can be found by Sartzetakis (1997b) or André and de Castro (2017).

In the output market we keep a duopolistic framework, with linear demand. The
inverse demand function is P = a − bX. The firms’ cost can be linearly separated
into output cost and abatement cost. On the production side, the firms face a constant
marginal cost, c. Gross emissions are assumed to be proportional to the firms’ output
(ei = rxi), r being the pollution intensity, which is common for both firms. Total
abatement cost is given by the linear-quadratic function (d + tqi)qi, where qi is total
abatement by firm i.7 In this section, we abstract from market power in the emission
market, but, in the next one, we use a simplified version of this model to consider
simultaneous market power in the output and in the emission market.

The profit maximization problem considered in (5) becomes

Max{yij ,xij ,qij ,Bij } (a − bxi1 − bx−i1) xi1 − cxi1 −
(
d + tqi1

)
qi1 − p1yi1+

+ β
[
P2 (xi2 + x−i2) xi2 − cxi2 −

(
d + tqi2

)
qi2 − p2yi2

]

s.t. Bi1 = Si1 − rxi1 + qi1 + yi1

Bi2 = Si2 − rxi2 + qi2 + yi2 + Bi1

Bi1 ≥ 0
Bi2 ≥ 0

(41)

The corresponding Kuhn Tucker conditions from Eqs. (6)–(13), (25), and (26)
take the following form:

7This cost function allows us to keep simple analytical expressions while, at the same time, second-
order conditions are guaranteed. As mentioned below, it is widely used in the literature, and it is
also very convenient for comparison purposes.
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FOC (yi1)⇒ λ1 = p1 (42)

FOC (qi1)⇒ d + 2tqi1 = p1 ⇒ qi1 = p1 − d

2t
(43)

FOC (xi1)⇒ P1 − bxi1 (1+ δ) = c + rp1 (44)

FOC (yi2)⇒ λ2 = βp2 (45)

FOC (qi2)⇒ −β
(
d + 2tqi2

) = λ2 ⇒ qi2 = p2 − d

2t
(46)

FOC (xi2)⇒ P2 − bxi2 (1+ δ) = c + rp2 (47)

FOC (Bi1)⇒ −λ1 + λ2 + μ1 = 0 (48)

FOC (Bi2)⇒ −λ2 + μ2 = 0 (49)

Bi1 ≥ 0;μ1 ≥ 0;Bi1μ1 = 0 (50)

Bi2 = 0;μ2 > 0 (51)

From Eqs. (44) and (47), it is trivial to see that the product price is increasing in
the permit price, as a simple algebraic manipulation yields the following values for
the output market equilibrium:

X1 = 2 · P1 − c − rp1

b (1+ δ)
⇒ P1 = (1+ δ) a + 2

(
c + rp1

)

3+ δ
(52)

As usual, the market is closed when total emissions net of abatement equal the
total amount of permits distributed in the market:

r (X1 +X2)− (q11 + q21)− (q12 + q22) = S1 + S2 (53)

Considering that total output in each period is
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Xj =
2
(
a − c − rpj

)

b (3+ δ)
(54)

From the first-order conditions, abatement is a function of the permit price, and
using (40) and (43) into (50) and (51) leads us to the permit price.

p2 = 8rt2 (a − c)− 2b (3+ δ)
[
(S1 + S2) t

2 − 2dt
]

(1+ β)
[
4r2t2 + 2bt (3+ δ)

] (55)

From this equation, we can analyze and compare the endogenous permit price
in the different market structures, represented by parameter δ. From (54), we know
that total output is decreasing in both the permit price and the conjectural variation
parameter.

Lemma 1 The quantities abated and the permit price decrease at a decreasing rate
as δ increases.

An increase in δ can be interpreted as a reduction in market competition.
Therefore, Lemma 1 states that, as the output market becomes less competitive,
firms tend to abate less and also to demand less permits, which causes the permit
price to decrease. Proposition 1 allows us to compare two important cases such as
the Stackelberg model and a collusive market.

Proposition 1 The price of permits is higher when the product market is controlled
by a Stackelberg leader than in the case of a cartel. Moreover, it is higher than in the
case of a Cournot duopoly. But it is lower than if the product market is competitive.

The permit price level under different market structures follows the same
behavior as the total quantities produced in each type of market. The rationale for
this result is that a higher output tends to generate more emissions and a higher
demand for permits, which pushes the permit price up. It is also worth noting that
the permit price depends on the output technology (parameter c) and the abatement
technology (parameters d and t), which are assumed to be the same for both firms.

4 Market Power in Both Markets

In this section, we address simultaneous power market in the output and permit
markets. For the sake of tractability, we focus on a version of the model introduced
in Sect. 3 with some additional simplifications in line with De Feo et al. (2013).
In this section, we aim to underline the relevance of the game timing in the role of
the permit market. Specifically, we show that qualitatively different results follow
depending on which market (output or emissions) is considered as the mainstream
market.
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Following De Feo et al. (2013), we assume that the inverse demand product
function is P = 1 − X = 1 − x1 − x2 and normalize the marginal output cost to
zero and the pollution intensity to 1. Therefore emissions equal product quantity.
The abatement cost function of firm i is now 1

2 tiqi
2 so that the marginal abatement

cost is tiqi. We assume that firm 1 is the leader in the permit market and it has the
most efficient abatement technology. In particular, we set t1 = 1; t2 > 1.

First, we assume that the leading mainstream market is the output one. We do so
by using a timing of the game in which firms interact first in the output market and
then in the permit market. As usual, in the last stage firm 2 solves its minimum cost
problem in terms of abatement and obtains the familiar first-order condition that
equates marginal abatement costs to the permit price. The dominant firm minimizes
its own costs anticipating the reaction of the follower and taking into consideration
the permit market clearing condition. In this case, we obtain the following values
for firm 2’s optimal abatement and demand for permits in equilibrium as a function
of output and the initial allocation of permits:

q2 = x1 + (1+ t) x2 − (1+ t) S2 − S1

1+ 2t
(56)

y2 = −y1 = (S1 − tS2)− (x1 − tx2)

1+ 2t
= 1

t

(
tq2 − q1

) = 1

t
(p − q1) (57)

Equation (54) shows that the dominant firm is a net buyer of permits (y1 > 0)
when the permit price is lower than its marginal abatement cost (p < q1). Similarly,
the dominant firm is a net seller of permits when the price exceeds its marginal
abatement cost. In both cases (whatever the output market structure), firm 1 will use
its dominant position to reduce its cost and increase its profit. Therefore, only the
dominant firm can take advantage of its strategic position in the permit market while
the competitive firm simply acts as a price taker.

De Feo et al. (2013) set the game in a different order. Firms decide first in
the permit market and then take output decisions based on the equilibrium permit
price. This timing gives the permit market more relevance as we show below. Using
backward induction and considering a Cournot model of oligopoly, firm 2 (solves
the following problem in stage 4):

Max
x2

(1− x1 − x2) x2 − 1
2 tq

2
2 − py2

s.t. q2 = x2 − y2 − S2

(58)

In stage 3, the leader solves

Max
x1

(1− x1 − x2) x1 − 1
2q

2
1 − py1

s.t. q1 = x1 + y2 − S1

(59)
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The reactions functions turn out to be

x2 = 1−x1+ty2+tS2
2+t

x1 = 1−x2−y2+S1
3

(60)

and equilibrium output is

x2 = 2+(3t+1)y2+3tS2−S1
3t+5

x1 = 1+t−(2t+2)y2−tS2+S1(2+t)
3t+5

(61)

In stage 2 the follower decides its demand of permits as a price taker, solving the
problem:

Max
y2

(
1− x∗1 − x∗2

)
x∗2 − 1

2 tq
2
2 − py2

s.t. q2 = x2 − y2 − S2

(62)

From the FOC we find

y2 = 4+ 14t + 6t2 − p(3t + 5)2 − S2
(
9t2 + 19t

)− S1
(
3t2 + 7t + 2

)

6t (2+ t)− 2
(63)

In stage 1 the dominant firm sets the permit price by solving the following
problem:

Max
p

(
1− x∗1 − x∗2

)
x∗1 − 1

2q
2
1 + py2

s.t. y2 = 4+14t+6t2−p(3t+5)2−S2
(
9t2+19t

)−S1
(
3t2+7t+2

)

6t(2+t)−2

(64)

Finally the permit price is obtained:

p = 54t4+294t3+498t2+274t+32
3(t+3)(3t+1)(3t+5)2 − S2

63t4+327t3+501t2+197t
3(t+3)(3t+1)(3t+5)2 −

− S1
27t4+183t3+381t2+245t−4

3(t+3)(3t+1)(3t+5)2

(65)

Equations (63) and (65) correspond to Eqs. (10) and (12) in De Feo et al. (2013).8

From these equations, they demonstrate in their Proposition 2 that the leader always
marks up the price of permits above its equilibrium marginal abatement cost,
whether it is a net seller or buyer of permits.9

8Apart from other differences in notation, S1 and S2 correspond to αS and (1 − α)S, respectively,
in DeFeo et al.
9The proof is quite cumbersome and is omitted here for simplicity of exposition.



Strategic Interaction Among Firms in Output and Emission Markets. . . 225

As indicated by De Feo et al. (2013), the above result is in contrast with Eshel
(2005), who considered a leader and a price-taking competitive fringe instead of a
Cournot duopoly in the output market and a dominant firm in the permits market
as De Feo et al. (2013) did. Nevertheless, we kept the same market structure model
but changed the mainstream market (by altering the timing) and also got a different
result. The reason of this difference is the fact that not only the leader but also the
follower adopts a “raise the rival’s cost” strategy in the permits market. In simple
terms, the strategic interaction in the output market generates additional distortions
in the permits market.

5 Conclusions

This chapter has described the role played by market competition within cap-
and-trade programs, paying special attention to the interaction between the output
market and the emission permits market. We have adapted a simple unifying
model to replicate some of the results in the related literature. The conjectural
variations approach provides such a unifying framework to make comparisons
between different oligopolistic structures.

We have analyzed how market power in the output market affects the price in
the emissions market. Our analysis shows that the permit price level under different
market structures tends to follow the same behavior as the quantities produced in the
output market. We have analyzed four different structures that we enumerate from
higher to lower equilibrium output quantities (and hence, from higher to lower price
of permits): a competitive market, a Stackelberg oligopoly, a Cournot oligopoly, and
a cartel.

We have also shown in a simplified model how the firm’s strategic behavior
changes as we change the timing of the game (which, according to our interpre-
tation, corresponds to changing the leading market). This result has been shown
previously in the literature using different market structures, but in this paper we
show that also keeping the same market structure the equilibrium permit price is
different as we set the game in a different timing, that is to say, when we change the
roles of markets as “the main market” and the secondary one.
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Appendix

Proof of Lemma 1 Consider the following changes of variables to simplify the
expression of the emissions permits price in period 2.

A = 8r (a − c) t2

B = 2b
[
(S1 + S2) t

2 − 2dt
]

C = (1+ β) 4r2t2

D = (1+ β) 2bt

where A must be positive to have a positive output in equilibrium (which requires
a − c − rp2 > 0). The sign of B is ambiguous while C and D are clearly positive.

Using this notation, (52) takes the form

p2 = 8r (a − c) t2 − 2b (3+ δ)
[
(S1 + S2) t

2 + 2dt
]

(1+ β)
[
4r2t2 + 2bt (3+ δ)

] ⇒ p2 = A− (3+ δ) B

C + (3+ δ)D

(66)

Differentiation with respect to δ gives

∂p2

∂δ
= −B [C + (3+ δ)D]− [A− (3+ δ) B]D

[C + (3+ δ)D]2 = −BC − AD

[C + (3+ δ)D]2 (67)

Using this value we can compute

q12 = p2 − d

2t
⇒ ∂q12

∂δ
= 1

2t

∂p2

∂δ
(68)

Assume (67) is positive. Therefore B must be negative and –BC > AD. If this is
the case, we have the following inequality:

−2b
[
(S1 + S2) t

2 − 2dt
]
(1+ β) 4r2t2 > 8r (a − c) t2 (1+ β) 2bt

− [(S1 + S2) t
2 − 2dt

]
r > (a − c) 2t

2rdt − (a − c) 2t > (S1 + S2) rt
2 ⇒ rd − (a − c) > 0

But the last expression must be negative if product quantity is positive because

a−c−rp2 > 0 ⇒ a−c−r
(
d+2tqi2

)
>0 ⇒ a−c−rd > 0 ⇒ rd − (a − c) < 0

Therefore, it must be AD > − BC and so (67) must be negative.
To see that is decreasing at a decreasing rate, we just take the second-order

derivative:

∂2p2

∂δ2
= 2D (BC + AD)

[C + (3+ δ)D]3
> 0
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Proof of Proposition 1 Let us consider firm 1 as the Stackelberg leader. The
conjectural variations are δ2 = 0 and δ1 = − 1/2. The total output for the first
period is

X1 = x11 + x21 = 2
(
P1 − c − rp1

)

b
+
(
P1 − c − rp1

)

b
= 3

(
P1 − c − rp1

)

b
(69)

And the corresponding product price is

P1 = a − bX1 = a + 3
(
c + rp1

)

4

leading to the standard Stackelberg result where the leader is producing a double
quantity than the follower as long as the marginal product cost is the same.

X1 = x11 + x21 = a − c − rp1

2b
+ a − c − rp1

4b
= 3

(
a − c − rp1

)

4b
(70)

The market clearing condition becomes

r

(
3
(
a − c − rp1

)

4b
+ 3

(
a − c − rp2

)

4b

)

− S1 − S2 − p1 − d

t
− p2 − d

t
= 0

And taking into account that p1 = βp2, the last expression leads us to

r

(
6 (a − c)

4b
− 3rp2 (1+ β)

4b

)
− S1 − S2 − (p2 (1+ β)− 2d)

t
= 0

Therefore, in the second period, the permit price is

p2 = 6rt (a−c)−4b [(S1+S2) t−2d]

(1+β)
[
3r2t+4b

] = 6rt2 (a−c)−4b
[
(S1+S2) t

2−2dt
]

(1+β)
[
3r2t2+4bt

]

(71)

Consider the following changes of variable to simplify the expression of the
emissions permit price in period 2.

A = rt2 (a − c)

B = b
[
(S1 + S2) t

2 − 2dt
]

C = (1+ β) r2t2

D = (1+ β) 2bt
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where A must be positive to have a positive output in equilibrium (which requires
a − c − rp2 > 0). The sign of B is ambiguous while C and D are clearly positive.
Using this notation, (71) becomes

pS
2 =

6A− 4B

(1+ β) [3C + 2D]
(72)

Now we proceed to compare the Stackelberg permit price with other oligopolistic
structures. The conjectural variation for a Cournot competition takes the value δ = 0
and the permit price simplified form is

pC
2 = 8A− 6B

(1+ β) [4C + 3D]
(73)

The comparison shows that the Stackelberg permit price is higher:

(6A− 4B) [4C + 3D] = 24AC + 18AD − 16BC − 12BD

(8A− 6B) [3C + 2D] = 24AC + 16AD − 18BC − 12BD

B > 0 ⇒ 18AD − 16BC > 16AD − 18BC

The result is also valid if B < 0 because we have AD > – BC, which implies

AD > −BC ⇒ 2AD > −2BC ⇒ 18AD − 16BC > 16AD − 18BC

We apply a similar procedure to prove the rest of comparisons in the proposition.
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Human vs River: Cooperation in
Environmental Games Through
Environmental Personhood

Michèle Breton and Suzanne Zaccour

Abstract This chapter opens a conversation between law and game theory on the
personhood status of environmental entities. Specifically, we consider the granting
of personhood status to a river that suffers from the production activity of a firm
creating economic value, but also pollution emissions as a by-product. If no one lives
downstream, for instance, traditional responses to the environmental problem are
unsatisfactory. We show that environmental personhood can help achieve efficient
bargaining solutions between polluters and environmental entities. We also report on
various approaches that have been taken in some countries to endow environmental
persons with means to protect their rights.

Keywords Environment · Game theory · Law · Personhood

1 Introduction

On October 18th, 1929, the Privy Council overturned the Supreme Court of
Canada’s decision that women were not “persons” for the purpose of the Constitu-
tion. In November of 2016, a court in Argentina ruled that Cecilia, a chimpanzee
detained at the zoo of Mendoza, was not a thing but a legal person, with legal
capacity. In 2017, New Zealand’s Whanganui River was declared to be a legal
person. It has been decades since the legal personhood of corporations has ceased
to be controversial. Since 1985, the Canada Business Corporations Act grants
corporations the rights and privileges of a natural person.
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In law, “person” and “human being” are not synonymous. Human beings can be
considered property, and objects can gain personhood status. In this article, we open
a conversation between law and game theory on the personhood status of environ-
mental entities. Specifically, we consider the granting of personhood status to a river
that is being polluted by one (or more) firms. While the literature on environmental
personhood has mostly focused on standing (the capacity to sue), we conceptualize
legal personhood as a vehicle to facilitate cooperation between the environment
and the polluters. We show that cooperation with environmental “persons” may be
preferable to alternative solutions such as laisser-faire, Government regulation, and
non-cooperative or cooperative solutions involving interested parties.

The inspiration for this work comes from Jørgensen and Zaccour (2001), which
considers two countries producing along a river and generating pollution. One of the
countries, being downstream, suffers the costs of both countries’ emissions. Similar
settings have also been considered in Fernandez (2009), Fanokoa et al. (2011),
and Shi et al. (2016), among others, where various cooperative game solutions are
analyzed in the context of downstream pollution. A first question that comes to
mind is the following: What if there is nobody downstream—should the upstream
polluter continue to pollute with impunity? Recent developments granting legal
status to rivers and other environmental entities give rise to a second question: Can
we envision a bargaining solution between the polluter and the river?

As pointed out in Sigman (2002), rivers should represent a good case for
cooperation, as they typically involve a limited number of players and well-defined
costs. Using water-quality data, the author however finds evidence of international
downstream pollution spillovers and concludes that cooperation is not effective
between countries sharing rivers.

The aim of this paper is twofold. First, we explore the recent literature on
environmental personhood. Second, we use a stylized model to illustrate cooperative
and regulatory approaches that could be taken to protect an environmental entity.
Our objective is to illustrate how environmental personhood can help resolve a
number of issues in the context of protection of the environment, namely:

• Legal standing
• Tragedy of the commons and inefficiency of non-cooperative solutions
• Enforcement of cooperative solutions.

It is worth mentioning that an important issue in the literature on downstream
pollution is the time consistency of cooperative solutions, as it is the case in
Jørgensen and Zaccour (2001). Here, for the sake of simplicity, we consider a static
game model, and do not address the time-consistency issue.

The rest of the paper is organized as follows: Sect. 2 presents a stylized model
involving a river, a polluting firm, a downstream resident, and a regulator, and
discusses the limitations of various approaches that can be taken to protect the river.
Section 3 introduces the concept of environmental personhood, and Sect. 4 discusses
practical implementation issues. Section 5 briefly concludes.
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2 The Model and the Players

2.1 The Polluting Firm

The problem we are concerned with starts with a polluting firm and a river. The
firm undertakes a production activity that creates not only economic value but also
pollution emissions as a by-product. We normalize the production technology in
such a way that the pollution level corresponding to the optimal production activity
of the firm when there is no environmental concern is equal to 1.

We assume that the firm may suffer from adverse consequences of its pollution
emissions and can use various mitigation mechanisms to reduce this environmental
cost (e.g., reduction in the production activity or filters). Let m1 represent the level
of mitigation by the firm. Environmental damage and mitigation costs are assumed
to be increasing and convex functions. We use a stylized model with a quadratic
specification, so that the cost incurred by the firm is

z1 = D1

2
E2 + M1

2
m2

1,

where D1 ≥ 0, M1 > 0, E = 1−m1 is the total pollution (after mitigation). The first
term of the right-hand side represents the environmental damage cost of pollution
and the second term is the cost of mitigation. Accordingly, the mitigation level that
minimizes the firm’s total cost is

mF
1 = D1

M1 +D1

and the corresponding cost and pollution level are then

zF1 = 1

2

M1D1

D1 +M1

EF = M1

D1 +M1
.

Note that when the firm does not suffer damages from pollution (D1 = 0), the
optimal mitigation level is 0.

2.2 The Downstream Resident

Now suppose that concerned citizens living downstream of the firm suffer damages
from its polluting emissions (e.g., loss of enjoyment of their property, damages to
their land, harm to their health). To simplify, we consider a single player (Player 2)
representing the group of downstream residents and assume that the environmental
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damage cost suffered by Player 2 is given by D2E
2, where D2 ≥ 0. Different

avenues can be envisioned to reduce the pollution in the river and the cost borne by
Player 2, among which traditional tort and property law, undertaking of additional
mitigation activities, and public law regulation.

2.2.1 Tort Law

One of the traditional legal responses to a polluted river is for the downstream
resident to sue the polluting firm under the law of tort (or extracontractual
obligations). A court can make the firm pay damages for the harm caused to the
resident. An injunction can even be granted in certain circumstances, forcing the
firm to change or stop its activities. Assuming that the firm expects to have to pay
the entirety of the damages borne by the downstream residents and that D2 > 0, the
optimal mitigation level of the firm becomes

mT
1 = D1 +D2

D1 +D2 +M1
> mF

1 ,

with the corresponding cost and pollution levels

zT1 = M1

2

D1 +D2

D1 +D2 +M1
> zF1

ET = M1

D1 +D2 +M1
< EF .

This solution, in which the firm internalizes the damage cost of its downstream
neighbors, results in a higher mitigation level (less pollution) and a higher cost for
the firm (not including the legal costs).

However, tort and property law responses to environmental damage face impor-
tant limitations, including litigation costs, issues of standing and enforcement
problems.

In some cases, the costs that the residents are entitled to recover, that is

zT2 = D2

2

(
M1

D1 +D2 +M1

)2

,

may not be sufficient to justify litigation. More importantly, these costs may result in
an underestimation of the environmental impact of polluting activities (O’Donnell
and Talbot-Jones 2018). For example, the plaintiffs may be able to recover the costs
necessary to improve the water quality to the relevant standard, but not those needed
to restore the river’s ecosystem. In any case, there is no guarantee that the plaintiffs
will use the amount they recover to undertake mitigation activities.
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The standing and underestimation problems are exacerbated if no one lives
downstream. In that case, no human being is directly harmed by the deterioration of
the river (other than by living on a more polluted planet). The ones to suffer are the
river, fish, and other non-human animals, which do not currently have rights or the
capacity to sue. Who, then, could sue the firm, and for how much?

We should note that many jurisdictions grant standing to concerned citizens or
organizations to bring suit in the public interest, even if they are not directly affected
by the dispute. This form of public interest litigation has been used for environmen-
tal purposes, and several jurisdictions even allow for wide interpretations of the
public interest (see, e.g., Bélanger and Halley (2017) on the Québec case). Even
then, however, practical and enforcement problems remain.

An important limitation to environmental lawsuits by concerned citizens is the
cost and uncertainty of tort litigation. This kind of action represents important
risks for a person who is not directly affected by the environmental degradation,
especially in jurisdictions where the losing party is liable for the costs incurred
by the winning party. In addition, a limited range of legal actions and remedies is
possible. While someone may demand an injunction to have the firm stop or modify
its activities, or contest the legality of a permit granted to the firm, one cannot
demand a financial reparation for the harm caused to the river. Finally, the lack
of pre-established representatives to take action to protect the river (the problem of
the commons) represents another hurdle. There is no guarantee that any concerned
citizen will be prompted to take on the battle personally.

2.2.2 Mitigation

Alternatively, suppose that the downstream resident decides to undertake mitigation
activities (e.g., adaptive measures, cleaning),1 so that the pollution level after
mitigation by both parties becomes

E = 1−m1 −m2.

We assume that the mitigation costs for Player 2 have the same functional form as
for Player 1, so that the total cost for the downstream resident is

z2 = D2

2
E2 + M2

2
m2

2,

where M2 > 0.
The best response of each player to the mitigation level of the other is then

1Using a representative player is equivalent to considering that the downstream residents agree to
coordinate their mitigation decisions and seek a cooperative solution, which minimizes the total
cost borne by the group. A noncooperative solution among n downstream residents can also be
envisioned.
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m1 = D1
1−m2

D1 +M1
(1)

m2 = D2
1−m1

M2 +D2
, (2)

where it is apparent that the mitigation levels of the firm and of the downstream
resident are strategic substitutes, and that no mitigation activity will be undertaken
by Player 2 if D2 = 0. Assuming that D2 > 0, the equilibrium solution is then

mN
1 = D1M2

N
< mF

1 < mT
1

mN
2 = D2M1

N
> 0

N = D1M2 +D2M1 +M1M2

and the corresponding pollution level and costs incurred by the players are

EN = M1M2

N
< EF (3)

zN1 = 1

2
D1M1M

2
2
D1 +M1

N2 < zF1 < zT1 (4)

zN2 = 1

2
D2M

2
1M2

D2 +M2

N2 (5)

ZN ≡ zN1 + zN2

= 1

2
M1M2

D2
1M2 +D2

2M1 +D1M1M2 +D2M1M2

N2
. (6)

This solution results in a lower pollution level and lower mitigation level and
cost for the polluting firm than the laissez-faire scenario, while the cost for the
downstream resident and the total cost can be higher or lower, depending on the
value of the parameters.

It is well known however that this non-cooperative equilibrium solution is
unsatisfactory, as it leads to over-exploitation of the environmental resources (the
so-called tragedy of the commons presented in the seminal paper by Hardin (1968))
and is generally not Pareto efficient. Indeed, it is easy to show that any increase θ in
the mitigation level of each player satisfying

0 < θ < min
j=1,2

{
2DjM1M2

N
(
4Dj +Mj

)

}

will lead to a decrease in the total costs of both players.
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In Jørgensen and Zaccour (2001), a cooperative solution is proposed, where the
downstream player is better off compensating the polluting firm for some of its
mitigation costs, rather than acting noncooperatively. However, the underestimation
problem remains: there is no reason for the cooperating players (the polluting firm
and the downstream resident) to consider environmental costs that are not affecting
them directly (e.g., the degradation of the river). Moreover, no one is specifically
habilitated to take decisions or negotiate with the firm on behalf of the river. For sure,
citizens and organizations can sign contracts or enter into settlement negotiations
with polluting firms, but this scenario is unlikely when, for instance, no one lives
downstream. Additionally, any contractual engagement will be undertaken toward
the party voluntarily attempting to protect the river, rather than towards the river
itself.

2.3 The Regulator

We now consider a third possibility to reduce the global environmental cost and/or
the pollution level of the river, that is, public law regulation (zoning laws, permit
granting, emissions taxes). In this scenario, we still assume that directly concerned
citizens interact noncooperatively with the polluting firm by undertaking mitigation
activities when D2 > 0.

Consider, for instance, the simplest approach to environmental legislation, that
is, a tax on polluting emissions.2 Assuming a tax rate of τ , the firm’s total cost
becomes

z1 = D1

2
E2 + M1

2
m2

1 + τ (1−m1)

and the mitigation level that minimizes the firm’s cost is then

m1(τ ,m2) = τ +D1 (1−m2)

D1 +M1
.

When D2 > 0, using Eq. (2), the equilibrium solution is then, for 0 < τ < M1,

mR
1 (τ ) =

τ (D2 +M2)+D1M2

N
> mN

1

mR
2 (τ ) = D2 (M1 − τ)

N
< mN

2

2Other policy instruments could be modeled similarly, for instance, subsidizing mitigation
activities undertaken to reduce the environmental damage to the river.
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ER (τ) = M2 (M1 − τ)

N
< EN. (7)

The impact of an emission tax on the noncooperative solution is an increase in the
mitigation level of the polluting firm and a decrease in that of the downstream
resident, resulting in an overall lower level of pollution. The corresponding envi-
ronmental costs are then

zR1 (τ ) = zN1 + 1

2
τ
(
D1M2 (2D2 +M2)+M1 (D2 +M2)

2
) 2M1 − τ

N2 (8)

zR2 (τ ) = zN2 − 1

2
τD2M2 (D2 +M2)

2M1 − τ

N2 . (9)

A feasible environmental tax will result in a higher cost for the firm and a lower cost
for the downstream resident.

There are many possibilities for deciding on an environmental tax rate. Let us
assume that the legislator selects a tax rate minimizing the sum of environmental
and mitigation costs, given by

Z (τ) = D3

2

(
ER (τ)

)2 + M1

2

(
mR

1 (τ )
)2 + M2

2

(
mR

2 (τ )
)2

,

where we assume that the environmental damage cost coefficient D3 used by the
legislator accounts for a large spectrum of social and environmental costs, including
those borne by the firm and the downstream residents, so that D3 > D1 +D2.

The optimal tax rate is then given by

τO =
{
M1 −M1 (D2 +M2)

D1M2+M1(D2+M2)
O

if D1 < D2 + M2(D3−D1)
D2

0 otherwise,

where

O = M2
2 (D3 +M1)+D2

2 (M1 +M2)+ 2D2M1M2.

Under an environmental tax designed to minimize the total environmental
damage and mitigation costs, the equilibrium solution is then

mO
1 = M2

D2
2 +D3M2

O
> mN

1

mO
2 = D2M1

D2 +M2

O
< mN

2

EO = M1M2
D2 +M2

O
< EN
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ZO = 1

2
M1M2

D2
2 +D3M2

O
.

This solution results in a reduction of the total pollution and of the total environ-
mental damage and mitigation costs with respect to the non-cooperative scenario.

However, environmental legislation famously faces considerable compliance
problems (see, e.g., Heyes 2000; Weiss and Jacobson 2000; Russell 2001; Wang
et al. 2003; Van Rooij 2006; Sparovek et al. 2010; Kim 2015). Moreover, as seen
in Eq. (8), an environmental tax is not Pareto-improving with respect to the non-
cooperative equilibrium. Since the regulator should consider all interested parties’
competing interests, we can wonder if this solution can be improved, in particular
by using cooperative game theory approaches. Finally, we show in Sect. 3.2.2 that
the first-best solution can generally not be attained using a constant tax rate.

This is where environmental personhood intervenes.3

3 Environmental Personhood

We contend that environmental personhood can solve the standing problem and
prompt efficient cooperative solutions. In this section, we first explore the legal
arguments for environmental personhood, and then show how environmental per-
sonhood allows to model the river as a player in a cooperative game.

Let us start by defining that a “legal person” is an entity capable of having
rights and obligations. As such, personhood can be characterized as merely a
rights-container into which different rights can be poured (Wise 2013). Certain
persons, such as adult human beings, possess the right to vote and a large array of
fundamental rights. Others, such as New Zealand’s Whanganui River, possess more
limited rights, such as the ownership of a riverbed (Hutchison 2014). Only legal
persons can appear in court and vindicate their rights. If an environmental entity has
rights, the standing problem disappears. A part of the environment that has become
a person can also presumably enter into contracts and out-of-court settlements.

But does it make (legal) sense to speak of a river as a person? Actually,
personhood is merely a policy decision. Personhood is the vehicle that the law uses
to identify whose’ interests are worthy of recognition, who counts (Fagundes 2001).
As such, enslaved people were denied personhood status despite being human
beings because they did not count in the eyes of the law. Thus, determinations of
personhood, be it for corporations, animals, fetuses, or rivers, “are strongly result
driven” (Fagundes 2001). For the cynical, “‘person’ might legally mean whatever
the law makes it mean” (Dewey 1926). When scholars ponder the personhood status
of fetuses or animals, they are speaking in terms of policy, not biology.

3Animal personhood, a hot topic in the law of persons, is another possible avenue for addressing
the problem under consideration.
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Likewise, deciding what environmental entities are deserving of personhood,
how their boundaries are to be defined, and what rights they will be granted is
a matter of policy. River rights will develop differently from mountain rights, for
example (Berry 2010). Precisely what kinds of rights a given entity would have is
likely to depend on context, ecology, and political compromise. As it is noted in
Stone (2010), “to say that the environment should have rights is not to say that it
should have every right we can imagine, or even the same body of rights as human
beings have. Nor is it to say that everything in the environment should have the
same rights as every other thing in the environment.” The Whanganui River, for
instance, can no longer be owned in its entirety; however, the parts of the river
that were privately owned before the change in its status remained so. Moreover,
existing public access rights and navigation rights were preserved, such that the
river does not have the power to exclude the public from accessing it (Hutchison
2014). Personhood, then, is a tool to recognize interests that may not be adequately
protected otherwise.

3.1 Intrinsic Interests

If personhood is a policy question, then the policy reasons for protecting the
environment abound. Pollution is one of our biggest global killers. Every year, more
than three million children under age five die from environmental factors (WHO
2018).

Water pollution alone costs Canadians $300 million annually in health expenses
(Government of Canada 2018). Reserving personhood status to humans and cor-
porations constructs non-human animals and nature as resources, as property
for humans to consume (Hutchison 2014). This anthropocentric and capitalist
framework is put under increasing pressure by environmentalist and animal rights
scholars who wish to allow non-humans to object to the abuse and degradation to
which they are routinely subjected.

Granting personhood status to a natural feature can serve as a recognition of
its intrinsic interests, that is, the river is protected independently of who lives
downstream. There is scholarly debate regarding whether the protection of the
environment should be subordinated to the interests of human beings (either
living humans or future generations), or whether the environment has independent
interests (Shelton 2015; Berg 2007; Feinberg 1984; Gordon 2018). More generally,
determinations of personhood can rest on the interests of the newly recognized entity
or on those of currently recognized persons. Some argue that an entity that does not
have interests evidenced by sentience, ability to form relationships and biological
life (for example) can only obtain legal personhood based on the interests of others.
This question can have practical interest: legal personhood based on the protection
of the interests of others is generally more limited. Tribe (1973) notes that “the
best interests of individual persons (and even of future human generations) are not
demonstrably congruent with those of the natural order as a whole.”
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In any case, long-term environmental wellbeing, whether for its sake or for the
sake of future generations, routinely conflicts with short-term interests of human
agents. States may not act in the best interest of nature or of future generations when
they compete for economic activities by attempting to pass the laxest environmental
legislation. According to Shelton (2015), “While rules governing standing may
already permit a government official or agency to represent a natural object as trustee
on behalf of the public trust, this representation may not serve to protect the intrinsic
value of the environment, especially where the government’s short term interests
conflict with more long term ecological interests.” More generally, governments
must balance a wide range of competing interests and cannot give priority to those of
the environment or a group of people. As for the protection of nature by individuals,
even if they can be granted standing, they must argue in anthropocentric terms, for
example showing that they suffer harm from being unable to see a rare animal if
its habitat is destroyed. Thus, nature-focused rights approaches differ from purely
human-centered duties.

3.2 A Cooperative Solution

We have seen that environmental personhood allows the river to protect its own
rights independently of humans’ short-term interests. We will return to the practical
question of how a river can make decisions in the next section. For now, let us
identify the river with Player 2 and the polluting firm with Player 1 and see what
happens if, instead of one suing the other or relying on regulation, the two players
agree to coordinate their mitigation efforts in order to avoid legal costs and to
minimize the total environmental cost.4 We may assume that the damage cost
parameter D2 includes damages to the downstream residents, but also damages to
the river, non-human animals, etc. The cooperative solution minimizes

Z =
2∑

j=1

Dj

2
E2 + Mj

2
m2

j

and is given by

mC
1 = M2

D1 +D2

C

mC
2 = M1

D1 +D2

C
,

4To simplify, we assume that downstream residents do not participate in the coordination process
or in the mitigation effort.
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where

C = (D1 +D2) (M1 +M2)+M1M2.

The corresponding pollution level and the costs incurred by the players are then

EC = M1M2

C

zC1 = 1

2
M1M

2
2
(D1 +D2)

2 +D1M1

C2

zC2 = 1

2
M2

1M2
(D1 +D2)

2 +D2M2

C2

ZC = 1

2
M1M2

D1 +D2

C
.

It is obvious that the cooperative solution results in a lower global cost than
the non-cooperative solution in Eqs. (3)–(6) (this is due to the convexity of the
mitigation costs). The benefit of cooperation is given by

ZN − ZC = 1

2
M2

1M
2
2
(D1 +D2) (D1 −D2)

2 +D2
1M1 +D2

2M2

N2C2 > 0.

3.2.1 Individual Rationality and Side Payments

Now, it is not necessarily the case that the polluting firm benefits from adhering to
the cooperative solution when D1 << D2. In particular, when D1 = 0, the firm
does not suffer from pollution and does not mitigate in the non-cooperative solution
(zN1 = 0), so that all the environmental cost is borne by the river, while in the
cooperative solution, the firm abates and incurs mitigation costs.

The usual mechanism used to ensure that a cooperative solution is individually
rational consists of allowing for side payments or transfers between the cooperating
players. Various solution concepts have been proposed to distribute the benefits of
cooperation among players. For instance, bargaining solutions propose acceptable
ways (according to various desirable properties) in which two players can share
the benefits of cooperation (for instance, the Nash (1950), Kalai and Smorodinsky
(1975) and egalitarian (Kalai 1977) bargaining solutions).

As an illustration, assume that

zC1 − zN1 > 0

zC2 − zN2 < 0,

that is, the environmental cost for the polluting firm is higher under the cooperative
solution than under the non-cooperative one (and the reverse is true for the river).



Human vs River: Cooperation in Environmental Games Through. . . 243

The egalitarian bargaining solution involves a side payment

SP = zC1 − zN1 + zN2 − zC2

2
> 0

paid by the river to the firm. As a result, the total environmental cost for each player
becomes

zC1 − SP = zN1 + 1

2

(
ZC − ZN

)
< zN1

zC2 + SP = zN2 + 1

2

(
ZC − ZN

)
< zN2 .

3.2.2 Efficiency with Respect to Environmental Tax

It is worth mentioning that the cooperative solution, which optimizes the global
welfare, cannot in general be attained using an environmental tax. In our example,
for instance, setting D3 = D1+D2, it is not possible to find a solution to the system

mR
1 (τ ) = mC

1

mR
2 (τ ) = mC

2 ,

except when D1 = 0. When D1 = 0, then the optimal tax

τO = D2M1M2

D2 (M1 +M2)+M1M2

yields the cooperative solution. When D1 > 0, the total cost under an optimal
environmental tax is higher:

ZO − ZC = M2
1M

2
2D

2
1

2CO
.

3.2.3 Enforcement

While a cooperative solution with a side payment reduces the environmental cost
for both players, it is not self-enforcing; for instance, using (1), the best response of
the polluting firm to the river’s cooperative mitigation level is

m1 = D1
1−mC

2

D1 +M1

= mC
1 −

D2M1M2

C (D1 +M1)
,
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that is, a reduction in its mitigation level. In addition, there is nothing preventing the
firm to take the side payment before reverting to a lower mitigation level.

Environmental personhood provides a plausible solution to the enforcement
problem. As we have seen, if the river is a person, then it has rights and obligations,
and it can sue and be sued. Domestic contract law can serve as an enforcement
mechanism.

The river-person can enter into contracts. If a capable river undertook a contrac-
tual obligation to pay mitigation costs, for instance, such an obligation would be
enforceable directly against the river. We can likewise imagine mutual obligations
between neighboring capable rivers, who cooperate in conservation efforts. By
contrast, the polluting firm cannot conclude a contract with an object. It would
be possible for the firm to enter into contracts with environmental groups or the
government, but as we have already discussed, this scenario is unlikely, particularly
when no one lives downstream. Why would random citizens go to the trouble of
engaging their personal responsibility to convince a firm to pollute less a river whose
state does not affect them personally?

Another issue is that even if such a contract were signed, it would have to be
signed between two legal persons: the firm and an organization or human people.
What if the organization closes? What if its direction and purpose change? What if
the group of citizens dissolves or its members go bankrupt? There are legal solutions
to these problems, but the lack of personhood status of the river is a source of
legal risk and reduces the likelihood that cooperative solutions will emerge. The
river, by contrast, is (hopefully) permanent. Its rights and obligations will survive
a change of guardians. Assuming that the government has endowed the river with
some financial resources to undertake mitigation strategies and negotiate deals (or
that it has resources from other sources such as previous lawsuits against polluters),
dealing directly with the river is preferable for the firm.

4 Implementation

We have now seen that environmental personhood solves three practical problems:
the standing issue, the difficulty in protecting environmental interests when they
conflict with human interests, and the enforcement problem. There still remains the
problem of implementing environmental personhood in practice.

With or without standing, how can the river stand in court without any legs,
sign a contract without any hands, vindicate its rights without the ability to speak?
This problem is easy to solve, and indeed has already been solved. Infants, people
with severe cognitive disabilities, and patients in a coma all possess rights even as
they require help to vindicate them. Parents, family members and guardians decide
on their health care, manage their property, and make other decisions in their best
interest. Similarly for an environmental entity, guardians can be appointed to make
sure that its rights are respected, and, more importantly for our purposes, to engage
in negotiation and mutually beneficial cooperation with polluters.
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Observing the development of environmental personhood in New Zealand, India,
Ecuador, Bolivia, the United States and Columbia, two main approaches can be
discerned regarding actions taken by humans in the name of the environment. In
some instances, one or more specific guardians are appointed. In New Zealand, for
example, two people, appointed from nominations made by the State and by Māori
groups (iwi) with interests in the Whanganui River, become the “human face” of the
river that can speak on its behalf. The guardians of the river owe their responsibilities
to the river, not the appointors.

Another approach is to let any person intervene to protect an environmental
entity. The constitution of Ecuador, the first country to recognize nature as a
subject of rights, states that “All persons, communities, peoples and nations can call
upon public authorities to enforce the rights of nature” (article 71). The State also
permits “any natural person or legal entity, human community or group, to file legal
proceedings and resort to judicial and administrative bodies without detriment to
their direct interest, to obtain from them effective custody in environmental matters,
including the possibility of requesting precautionary measures that would make it
possible to end the threat or the environmental damage that is the object of the
litigation” (article 397). Citizens of Bolivia can also sue individuals and groups to
protect Mother Earth’s rights to life, to diversity of life, to water, to clean air, to
equilibrium, to restoration, and to live free of contamination (Ley de Derechos de la
Madre Tierra, Ley 071, 2010).

It is not necessary for our purpose to decide that one approach is superior to
the other. However, we can observe that for the protection of nature as a whole, all
citizens may be granted the right to take action, while for the protection of specific
natural features, such as a river, the practice seems to be to place this responsibility
within the hands of a small group of people. The choice of guardians for a river will
necessarily be context-specific. Granting decision-making abilities to a few heads
should facilitate negotiations with polluters (having polluters negotiate with the
whole of the country is impractical and brings us back to the problems of lawsuits
for the public interest) as well as avoid the risk of opening the floodgates to excessive
litigation. Note that the appointment of guardians can also have the added benefit of
involving indigenous groups in the protection of the environment and recognizing
specific indigenous nations’ connection with a given natural feature.

Now, there are two reasons why the situation of appointed guardians is superior
to relying on concerned citizens or organizations to step up as Player 2 and
voluntarily embrace the protection of the river. First, by assigning the responsibility
to defend the river’s interest to a specific person or group of people, a tragedy of the
commons scenario—where everyone expects someone else to undertake mitigation
activities—can be avoided. Second, a guardian would have fiduciary obligations
towards the river. That is, it would have actual enforceable legal obligations to act in
the river’s best interest. Of course, if all of the river’s guardians decide not to fulfill
these obligations, still a human being is needed to bring the situation to the attention
of the courts or the relevant regulatory body, making environmental personhood but
an imperfect solution.
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5 Conclusion

Game theory is not partial to the identity of players. By staging a dialogue between
law and game theory, we have proposed a fresh perspective on environmental
negotiation. Indeed, we have shown that environmental personhood can help in
achieving efficient “bargaining” solutions taking into account the economic interest
of production facilities generating pollution as a by-product along with the interest
of environmental entities, such as rivers, in preserving their integrity. We also
reported on various approaches that have been taken in some countries to endow
environmental persons with means to protect their rights.

Determinations of personhood, however, go well beyond the capacity to nego-
tiate. The project of environmental personhood will have implications for our
society and the extra-legal norms it values. Thus, while some scholars warn that
environmental rights could crowd out social norms of protection of the environment
(Gordon 2018) or legitimize the imperialistic project of further domesticating nature
(Livingston 2004), an alternative consequence is that environmental personhood
will strengthen our commitment towards its protection. Legal change has symbolic
and expressive value. In shaping “what society thinks of as human,” (Hutchison
2014), the law may raise the costs of disregard for the environment on the part
of polluters (e.g., through shareholder activism or customer retaliation), further
favoring cooperative solutions. While the environmental crisis is a political problem
(Cole 1992)—not an economic or a legal one—we propose that legal change can,
by altering the rules of the game, participate in shaping its outcome.
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A Dynamic Game with Interaction
Between Kantian Players and Nashian
Players

Ngo Van Long

Abstract This paper defines the concept of feedback Kant-Nash equilibrium for a
discrete-time model of resource exploitation by infinitely-lived Kantian and Nashian
players, where we define Kantian agents as those who act in accordance with the
categorical imperative. We revisit a well-known dynamic model of the tragedy of
the commons and ask what would happen if not all agents are solely motivated
by self interest. We establish that even without external punishment of violation of
social norms, if a sufficiently large fraction of the population consists of Kantian
agents, the tragedy of the commons can be substantially mitigated.

Keywords Kantian equilibrium · Rule of behavior · Categorical imperative

1 Introduction

Even though the theory of the tragedy of the commons (Gordon 1954; Hardin
1968) has issued a stern warning against the regime of resource management
under common access, economists have become increasingly acquainted with the
Ostrom facts: many communities have been able to manage their common property
resources in a sustainable way (Ostrom 1990). The key mechanism behind these
successful communities is the operation of social norms. There are a number
of dynamic models of common property resources where some subset of agents
observe social norms. This literature includes the interesting contributions of Sethi
and Somanathan (1996) and Breton et al. (2010). The former paper assumes that
agents are myopic, while the latter paper considers far-sighted agents. A common
feature of models with social norms is that some subset of agents is endowed with
the propensity to punish community members who violate norms.
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This paper takes a different approach. We introduce into a model of common
property resource a subset of players called Kantian agents and we enquire whether
even without punishment against violation, a society that has a sufficiently large
number of Kantians can attenuate the tragedy of the commons. For this purpose, we
define the concept of feedback Kant-Nash equilibrium in a discrete-time model of
resource exploitation by infinitely-lived Kantian and Nashian players.

Our research question is: In a dynamic game of exploitation of a common
property resource, does the presence of a group of Kantian agents lead to a higher
steady-state welfare and environmental quality? Using an adaptation of the fish-war
model of Levhari and Mirman (1980), we show that if Kantian agents constitute
a large share of the population, the resource stock can attain a steady state that is
sufficiently close to the social optimal.

2 A Brief Review of the Literature on the Role of Morality
and Kantian Behavior in Economics

The words “Kantian economics” first appeared in the title of an influential paper
by Laffont (1975). He asks “Why is it that (at least in some countries) people
do not leave their beer cans on the beaches?” This question is difficult to answer
using the Standard Model of Economic Behavior. The impact one’s own “welfare”
from leaving one’s beer cans on the beach is certainly negligible while the effort
to properly dispose of them is not. Yet many people would make the required
effort. Laffont’s explanation is very simple, yet compelling: “Every economic action
takes place in the framework of a moral or ethics.” He refers to Kant’s categorical
imperative. Kant wrote that “There is only one categorical imperative, and it is this:
Act only on the maxim by which you can at the same time will that it should become
a universal law” (Kant 1785; translated by Hill and Zweig 2002, p. 222). Other
eminent economists have also alluded to Kantian behavior in economics (Arrow
1973; Sen 1977).

Many economists have pointed out that the standard axiom of homo œconomicus
is clearly inadequate to explain economic behavior. In fact, as Smith (2003, p. 465)
pointed out, “the values to which people respond are not confined to those. . . based
on the narrowly defined canons of rationality.” This quoted sentence has its roots in
the work of Smith (1790), where the role of natural sympathies in human activities
was discussed at length.1 Smith (2003, p. 466) elaborates on this points2:

Research in economic psychology has prominently reported examples where “fairness”
considerations are said to contradict the rationality assumptions of the standard socioe-
conomic science model. But experimental economics have reported mixed results on
rationality: people are often better (e.g., in two-person anonymous interactions), in agree-

1Smith (2003) emphasizes these roots and the importance of Adam Smith’s moral philosophy.
2I thank a reviewer for drawing my attention to the article of Smith (2003), and the relevant quote.
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ment with (e.g., in flow supply and demand markets), or worse (e.g., in asset trading), in
achieving gains for themselves and others than is predicted by rational analysis. Patterns
of these contradictions and confirmations provide important clues to the implicit rules or
norms that people may follow, and can motivate new theoretical hypotheses for examination
in both the field and the laboratory. The pattern of results greatly modifies the prevailing,
and I believe misguided, rational SSSM, and richly modernizes the unadulterated message
of the Scottish philosophers.3

For the analysis of certain economic activities, Roemer (2010, 2015) has pro-
posed a useful mathematical formulation of the Kantian rule of behavior, admitting
the possibilities that agents have different cost functions or profit functions. This
formulation may be briefly described as follows. Consider an activity that yields
negative or positive externalities, such as playing loud music, or keeping the side
walk in front of your house clean and safe. Roemer suggests that, as a Kantian, your
current activity level x > 0 is morally appropriate if and only if any scaling up or
scaling down of that activity level by a factor λ �= 1 would make you worse off,
were everyone else to scale up or down their activity levels by the same proportion.
Clearly, Kantian agents are not optimizing in the standard economic sense. They are
acting according to a moral norm. As Roemer (2015) puts it, a Kantian agent would
explain her behavior as follows:

I hold a norm that says: “If I want to deviate from a contemplated action profile (of my
community’s members), then I may do so only if I would have all others deviate in like
manner.” (Roemer 2015, p. 46)

Is such a behavioral rule rational? Harsanyi (1980) gives an affirmative answer.
It is as if socially responsible individuals made a rational commitment to a
comprehensive joint strategy. According to Harsanyi (1980, p. 130), “behavior
based on a rational commitment must be classified as truly rational behavior.”
Harsanyi’s concept of rule-utilitarianism (1980) is similar in spirit to Roemer’s
concept of Kantian equilibrium, even though in philosophy the Kantian doctrine
is opposed to the consequentialism that utilitarians advocate (Russell 1945).

In Laffont (1975) and Roemer (2010, 2015), all individuals are Kantians. This
assumption must be relaxed in order to model real-world situations, where Kantians
and Non-Kantians interact. Papers dealing with such issues include Long (2016,
2017) and Grafton et al. (2017). The present paper belongs to this stream of
literature. Its main contribution is to provide an analysis of Kant-Nash equilibrium
in a discrete-time framework, where agents use feedback strategies. Specifically,
we use here the concept of a generalized Kant-Nash equilibrium. This concept
was defined in Long (2017) so that the two extreme cases (called exclusive Kant-
Nash equilibrium and inclusive Kant-Nash equilibrium) are special cases of this
more general concept. While this paper is not a place for a detailed philosophical
discussion, we feel it necessary to expand a bit more on these concepts.

The Kantian categorical imperative (CI for short), “Act only on the maxim by
which you can at the same time will that it should become a universal law,” seems

3For a fully articulate exposition of Adam Smith’s philosophical views, see Muller (1993).
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to suppose that one should do what one would wish everyone else to do. Therefore,
it could be argued that the most fundamental property of the CI is its universality.
The demand for universality is consistent with the notion of “inclusive Kantians”
introduced in Long (2017), where Kantians test the appropriateness of a proposed
action level by asking themselves: “what would the world be like if every human
being would deviate from this action level in the same way?” (Please refer to
Roemer’s concept of scaling up, or scaling down an activity level by a scalar λ > 0,
as mentioned above.)

At the same time, from a practical viewpoint, it would seem more realistic to ask:
“what would this community (at this time and this place) be like if all members of
the community were to deviate from the proposed action level in the same way?” In
asking this question (and bearing in mind that the words “this community” are not
unambiguous) it seems that certain subset of humanity or of the current society is
being excluded from consideration. This practical argument seems to be in line with
the notion of “exclusive Kantians” which was mentioned in Long (2017).

If one agrees that both notions of “inclusive Kantians” and “exclusive Kantians”
have certain merit (depending on the scope of application), it would seem natural to
encompass both notions in a generalized formulation. Thus, Long (2017) proposes
the concept of a generalized Kant-Nash equilibrium, in which Kantians would ask
themselves the following question: If I were to deviate from the proposed action
level x by scaling it up or down by a factor λ > 0, what would this community
(at this place and this time) be like if some members of society would deviate
by the same factor λ, while other members would deviate by a factor μ, where
μ = (λ−1)τ+1? Clearly, if τ = 0, this means that these members were supposed to
stay put (the exclusive case), and if τ = 1, all members are included in the thought
experiment (the inclusive case). Then by restricting τ to be in the interval [0, 1],
the generalized Kant-Nash equilibrium admits the exclusive Kant-Nash equilibrium
and the inclusive Kant-Nash equilibrium as special cases.4 While this formulation
clearly departs from the pure Kantian doctrine, it seems that one can find some
partial support among moral philosophers for not adhering to the pure Kantian
doctrine. The following paragraph from Johnson and Cureton (2018) may shed some
light on this issue5:

All specific moral requirements, according to Kant, are justified by this principle, which
means that all immoral actions are irrational because they violate the CI. Other philosophers,
such as Hobbes, Locke, and Aquinas, had also argued that moral requirements are based
on standards of rationality. However, these standards are either instrumental principles
of rationality for satisfying one’s desires, as in Hobbes, or external rational principles
that are discoverable by reason, as in Locke and Aquinas. Kant agreed with many of his

4A reviewer rightly points out that there is an issue about observability. How does a Kantian know
who is a Nashian and who is a Kantian? A partial reply to this criticism would be that, in a model
of common property resource exploitation, a Kantian needs to only know the population share
of Nashians. In this simple model, there is no need to know if a specific individual one meets is
Kantian or Nashian.
5I thank a reviewer for this quote.
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predecessors that an analysis of practical reason reveals the requirement that rational agents
must conform to instrumental principles. Yet he also argued that conformity to the CI (a
non-instrumental principle), and hence to moral requirements themselves, can nevertheless
be shown to be essential to rational agency.

3 A Dynamic Game with Kantian and Nashian Players

Consider a community consisting of m infinitely-lived individuals. Let M =
{1, 2, . . . , m} denote the set of individuals. Assume that a subset K of these individ-
uals behave according to the Kantian norm. Without loss, let K = {1, 2, . . . , k}. The
complementary set, denoted by N = {k + 1, k + 2, . . . , k + n}, where n = m − k,
consists of members that behave in a Nashian fashion.

Let St denote the stock of a natural asset (e.g., St is the biomass in the commu-
nity’s fishing ground). Let Qt denote the community’s aggregate exploitation from
the biomass for consumption, where Qt ≤ St . The dynamics of the biomass is given
by

St+1 = F(St ,Qt )

where FS > 0 and FQ < 0.
Let xit denote the resource exploitation effort by Kantian agent i in period t and

yjt the exploitation effort by Nashian agent j in period t . Define

Xt =
∑

i∈K
xit ,X−i,t = X − xit ,Yt =

∑

j∈N
yjt , Y−j,t = Yt − yjt

and

Qt = Xt + Yt

The utility level of Kantian agent i in period t is ui(xit ), where ui(.) is a strictly
concave and increasing function. Furthermore, we assume that

lim
xit→0

u′(xit ) = ∞

This ensures that the agent always wants to achieve a strictly positive level of
consumption, as long as St > 0. The same assumption is made for the utility
function uj (.) of Nashian agents.

At each date z = 1, 2, 3, . . ., the Nashian agent j seeks to maximize her
remaining life-time payoff starting from time z (denoted by jz), where
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jz =
∞∑

t=z

βt−zuj (yjt )

where β ∈ (0, 1) is the discount factor. In solving her problem, she takes as given
(her conjectures of) the feedback extraction rules ψh(.) of all other Nashian agents
h ∈ N − {j}, where

yht = ψh(St )

and the feedback extraction rules θf (.) of Kantian agents f ∈ K , where

xf t = θf (St )

(We assume that their conjectures are correct). Her optimal solution must satisfy the
Bellman equation

VNj (St ) = max
yjt

{
uj (yjt )+ βVNj (St+1)

}
(1)

where VNj (S) is her value function, and

St+1 = F

⎛

⎝St , yjt +
∑

h∈N−{j}
ψh(St )+

∑

f∈K
θf (St )

⎞

⎠

Kantian agents behave differently. In deciding whether she should choose an
exploitation level x∗it > 0 or a different level, a Kantian agent i would ask herself
the following question: If I deviate from x∗it by choosing some xit = λx∗it , where
λ > 0 and λ �= 1, what would happen to my payoff, assuming all other Kantians
would deviate in the same way?6 Then x∗it is her correct action level if and only if
any λ �= 1 would result in a lower life-time payoff. That is, x∗it must satisfy the
following condition:

1 = arg max
λ

{
ui(λx

∗
it )+ βVKi(St+1(λ))

}
(2)

where VKi(S) is her value function, and

St+1(λ) ≡ F

⎛

⎝St , λx
∗
it +

∑

h∈N
ψh(St )+

∑

f∈K−{i}
λθf (St )

⎞

⎠

6In this section, for the sake of expositional simplicity, we are assuming that Kantians are exclusive,
in the sense explained at the end of Sect. 2. In the next section, we will consider a slightly more
general hypothesis about the Kantians.
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Condition (2) yields the Kantian choice of exploitation level, x∗it = θi(St ). Then
the following equation holds for Kantians:

VKi(St ) = ui(φi(St ))+ βVKi(St+1) (3)

A Kant-Nash equilibrium is a strategy profile (θ1, . . . ., θk, ψk+1, . . . , ψk+n)

that satisfies Eqs. (1), (3), such that the action x∗it = θi(St ) satisfies the Kantian
rule (2), and usual transversality conditions hold.

4 An Application: Kant-Nash Equilibrium in a Modified
Levhari-Mirman Model

In this section, we apply the concept of Kant-Nash equilibrium to the Levhari-
Mirman model of fishery (Levhari and Mirman 1980). We consider a slightly more
general version of the Kantian behavior rule, using the concept of generalized Kant-
Nash equilibrium explained in Sect. 2. We assume that a Kantian agent would use
the following test to determine her extraction level.

The test for the appropriateness of an action level x∗i that each Kantian agent
must carry out consists of asking herself the following question:

If I were to scale up or scale down of my effort level by any non-negative factor
λ �= 1, and if all other Kantian agents in the community, j ∈ K − {i} , were to
scale up or down their effort levels by the same factor, while the Nashian agents
were to scale up or down their effort levels by a factor μ(λ), would my utility level
be (weakly) lower?

In the definition of a Kant-Nash equilibrium that we adopted in Sect. 3, μ(λ) = 1
identically. In this section, we allow μ(λ) to be different from unity. This means that
Kantians consider Non-Kantians as members of the community. How should μ(λ)

be specified? It seems sensible to suppose that μ(λ) �= λ if and only if λ �= 1. An
operational specification would be to introduce a parameter τ , such that

μ(λ) = (λ− 1)τ + 1 where 0 ≤ τ ≤ 1 (4)

so that μ′(λ) = τ ≤ 1. This means that if λ = 1 (neither scaling up nor down)
then μ = 1 too; if λ > 1, then μ(λ) ≥ 1, and μ(λ) ≤ λ; and if λ < 1 (scaling
down), then 1 ≥ μ(λ) ≥ λ. The resulting equilibrium may be called a generalized
Kant-Nash Equilibrium. The parameter τ may be called the Kantian’s degree of
inclusiveness.

Let S ∈ [0, 1] be the state variable representing a natural asset at the beginning
of the current period. The highest value that S can take is 1. Let S′ be the value of
S at the beginning of the next period. Extraction in any period is bounded above by
the stock level, i.e., Qt ≤ St . Following Levhari and Mirman (1980), we assume
that
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S′ = (S −Q)α where 0 < α < 1.

We assume the function u(.) is logarithmic, thus u(xi) = ln xi . Furthermore,
there is a scrap value function

Z(S) = ln(γ S), where γ ≥ 0.

In their paper, Levhari and Mirman (1980) derived the value function for their
infinite horizon game by solving finite-horizon games, and taking the limit as the
horizon tends to infinity. We will adopt the same solution procedure for our game.

4.1 Solution for the One-Period Horizon Game

Since all Nashians are identical, and all Kantians behave identically, we will focus
on the symmetric generalized Kant-Nash equilibrium. In the one-period-horizon
game, each Nashian agent j chooses yj to maximize

ln yj + g ln
(
S −Q−j − yj

)+ β
[
ln γ + α ln(S −Q−j − yj )

]

where 0 < β < 1 is the discount factor. Each Kantian agent i is in equilibrium if
and only if

1 = arg max
λ
{ln λxi + g ln [S − nμ(λ)y − kλxi]

β ln γ + αβ ln [S − nμ(λ)y − kλxi]}

where μ(λ) = (λ − 1)τ + 1. In this section, we set the parameter g to be equal to
zero. In Sect. 5, this parameter will take on a positive value, to reflect preferences
for amenity services.

To ensure the existence of a generalized Kant-Nash equilibrium for this specific
fishery model, we make the following assumption:

Assumption A1 1− τ(m− k) > 0.

To satisfy this assumption, we must rule out the case where τ = 1 and n ≥ 1.
In other words, if there is at least one Nashian, and if Kantians are inclusive (they
set τ = 1 in their test), then in this specific fishery model, there does not exist an
equilibrium. The intuition is as follows. If all agents are Kantians (k = m), then of
course an equilibrium exists: it is the cooperative solution. But as soon as an agent
changes her moral attitude (i.e., becoming a Nashian), she would want to increase
her fish harvest, and the remaining m − 1 inclusive Kantians (with τ = 1) would
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react by catching less, which would unfortunately induce the Nashian to catch more,
and so on, and this process does not converge to an equilibrium.7

Under Assumption A1, there exists a unique generalized Kant-Nash equilibrium
for the one-period-horizon game. The equilibrium extraction levels of Nashian and
Kantian agents are, respectively,

y = S

(m− k)(1− τ)+ (1+ b)
,b ≡ αβ (5)

x =
(

1− τ(m− k)

k

)(
S

(m− k)(1− τ)+ (1+ b)

)
(6)

For the one-period-horizon game, the equilibrium payoff function of a representative
Nashian is denoted by V

(1)
N , where the superscript indicates that there is only one

period to go. Then, using (1), (5), and (6), we obtain

V
(1)
N (S) = (1+ b) ln S + η

(1)
N + φ(1) + β ln γ (7)

where

η
(1)
N = ln

(
1

(m− k)(1− τ)+ (1+ b)

)

φ(1) = b ln

(
b

(m− k)(1− τ)+ (1+ b)

)

Note that φ(1) does not have a subscript because this term is the same for Nashian
and Kantian players. For Kantians, the equilibrium payoff function is obtained in a
similar fashion, using (3), (5), and (6):

V
(1)
K (S) = (1+ b) ln S + η

(1)
K + φ(1) + β ln γ (8)

where it can be shown that

η
(1)
K = ln

(
(1− τ(m− k))k−1

(m− k)(1− τ)+ (1+ b)

)

We observe that Nashians achieve higher payoffs than Kantians. The difference
between the payoff is

V
(1)
N (S)− V

(1)
K (S) = η

(1)
N − η

(1)
K = ln

(
k

1− τ(m− k)

)
> 0

7I am indebted to a reviewer for raising this pertinent issue.
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4.2 Solution for the Two-Period-Horizon Game

Now, consider the game where all agents have two periods to go. All agents
know their equilibrium payoffs of the one-period-to-go subgame: they are given
by Eqs. (7) and (8). Then, given the opening stock S, the Nashian agent i chooses
the current period extraction level yi to maximize

R
(2)
i = u(yi)+ βV

(1)
Ni (S

′)

And Kantians will be in equilibrium if and only if

1 = arg max
λ

u(λx)+ βV
(1)
Ki (S

′)

Thus, if T = 2, the Nashian agent’s equilibrium exploitation in the first period
when there are two periods to go is

y
(2)
N = S

(m− k)(1− τ)+ (1+ b)+ b2

and, for Kantians, their equilibrium exploitation is only a fraction of the Nashian
agent’s exploitation:

x
(2)
K =

(
1− τ(m− k)

k

)
y
(2)
N

The equilibrium payoff functions are as follows. For each Nashian,

V
(2)
N (S) = (1+ b + b2) ln S + A

(2)
N + B(2) + β2 ln γ

with

A
(2)
N = η

(2)
N + βη

(1)
N ,withη(2)N ≡ ln

(
1

(m− k)(1− τ)+ 1+ b + b2

)

and

B(2) = φ(2) + βφ(1)

where

φ
(2)
N ≡ (1+ b + b2 − 1) ln

(
1+ b + b2 − 1

(m− k)(1− τ)+ 1+ b + b2

)



A Dynamic Game with Interaction Between Kantian Players and Nashian Players 259

For each Kantian, the equilibrium payoff function is

V
(2)
K (S) = (1+ b + b2) ln S + A

(2)
K + B(2) + β2 ln γ

where

A
(2)
K = η

(2)
K + βη

(1)
K

η
(2)
K = ln

(
(1− τ(m− k))k−1

(m− k)(1− τ)+ 1+ b + b2

)

Thus the Nashian payoff exceeds the Kantian payoff by

V
(2)
N (S)− V

(2)
K (S) = A

(2)
N − A

(2)
K = (1+ β) ln

(
k

1− τ(m− k)

)

In other words, the Kantian payoff is equal to the Nashian payoff minus (1 +
β) ln [k/ (1− τ(m− k))].

4.3 Solution for the q-Period-Horizon Game

Given the opening stock S, Nashian agent i chooses the first period exploitation
level yi to maximize

R
(q)
i = u(yi)+ βV

(q−1)
Ni (S′)

And Kantians will be in equilibrium if and only if

1 = arg max
λ

u(λx)+ βV
(q−1)
Kj (S′)

For T = q, the Nashian agent’s equilibrium first period exploitation level is

y
(q)
N = S

(m− k)(1− τ)+
((∑q−1

s=0 bs
)
+ bq

)

and the Kantian agent’s exploitation in period 1 is

x
(q)
K =

(
1− τ(m− k)

k

)
y
(q)
N
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The value function for Nashians is

V
(q)
N (S) =

⎛

⎝

⎛

⎝
q−1∑

s=0

bs

⎞

⎠+ bq

⎞

⎠ ln x + A
(q)
N + B

(q)
N + βqγ

with

A
(q)
N = η

(q)
N + βη

(q−1)
N + β2η

(q−2)
N + . . . βq−1η

(1)
N

η
(q)
N ≡ ln

⎛

⎝ 1

(m− k)(1− τ)+
(∑q−1

s=0 bs
)
+ bq

⎞

⎠

and

B(q) = φ(q) + βφ(q−1) + . . .+ βq−1φ(1),

φ(q) ≡
⎛

⎝

⎛

⎝
q−1∑

s=0

bs

⎞

⎠+ bq − 1

⎞

⎠ ln

⎛

⎝

(∑q−1
s=0 bs

)
+ bq − 1

(m− k)(1− τ)+
(∑q−1

s=0 bs
)
+ bq

⎞

⎠

We can show the Kantian payoff is equal to the Nashian payoff minus (1+β+β2+
. . .+ βq−1) ln [k/ (1− τ(m− k))]

V
(q)
N (S)− V

(q)
K (S) = ln

(
k

1− τ(m− k)

)

Note that the difference is independent of S. This property is due to the logarithmic
function. We conjecture that if we assume a different utility function the difference
would depend on S. However, one would have to rely on numerical calculations, as
it is probably impossible to find simple closed form solutions.

4.4 The Infinite-Horizon Problem

Taking the limit as q tends to infinity, we obtain the equilibrium strategies of
Nashian and Kantian players for the infinite horizon problem. We find that the
equilibrium strategies of the Nashians and the Kantians depend only on the current
stock level, S, and are independent of the calendar time. For Nashians,

y = (1− b)S

(m− k)(1− τ)(1− b)+ 1
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and for Kantians,

x =
(

1− τ(m− k)

k

)
(1− b)S

(m− k)(1− τ)(1− b)+ 1

The value function of the representative Nashian is

VN(S) = 1

1− b
ln S + 1

1− β
ln

[
1− b

(m− k)(1− τ)(1− b)+ 1

]

+ 1

1− β

(
b

1− b

)
ln

(
b

(m− k)(1− τ)(1− b)+ 1

)

and the value function of the representative Kantian is

VK(S) = VN(S)− 1

1− β
ln

(
k

1− τ(m− k)

)

Along the equilibrium path,

St+1 =
(

b

(m− k)(1− τ)(1− b)+ 1

)α

Sα
t

The steady state level of the stock is

S∗ =
(

b

(m− k)(1− τ)(1− b)+ 1

) α
1−α

It is easy to verify that the steady state is stable: starting at any positive S0, the stock
will converge to S∗.

Using the above analysis, we obtain the following results. (Detailed proofs are
available upon request.)

Proposition 1 The Kant-Nash equilibrium in feedback strategies display the fol-
lowing properties.

(a) VN(S) is increasing in τ (in the Kantians’ degree of inclusiveness) and in k (the
population share of Kantians).

(b) A sufficient condition for VK(S) to increase in k is τm− 1 ≥ 0.
(c) Assume that τm − 1 > 0, and that k is sufficiently large such that 1 − τ(m −

k) > 0. Then as k increases from k to k + 1 or higher values, the gap between
VN(S)− VK(S) becomes smaller.

(d) The steady state stock increases in k.
(e) The steady state stock increases in τ provided that Assumption A1 is satisfied.
(f) The pure Nash steady state stock level , i.e., when n = m, is smaller than the

Kant-Nash steady state level if k ≥ 2.
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5 Extension: The Case Where the Resource Yields Amenity
Values

This section extends the model to the case where the resource has amenity values.
Assume that members of the community enjoy a public good: the amenity services
provided by the biomass. Assume that the amenity service level in period t depends
on both the stock level St and the exploitation activities, Qt

Gt = G(St ,Qt )

with GS > 0 and GQ < 0. The utility level of Kantian agent i in period t is

U(xit ,Gt ) = ui(xit )+ wi(Gt )

The same assumption is made for the utility function of Nashian agents. Assume
and the amenity service level is given by

Gt = G

⎛

⎝St , yjτ +
∑

h∈N−{j}
ψh(St )+

∑

f∈K
θf (St )

⎞

⎠

We now modify the model of Levhari and Mirman (1980) to allow for the enjoyment
of environmental quality (amenity services). The parameter for this enjoyment is
denoted by g ≥ 0. (In the model of Levhari and Mirman (1980), g = 0 identically,
and there are no Kantian agents.)

The level of environmental services delivered to the agents during period t is
assumed to be

Gt = G(St ,Xt ) = St −Qt

And we suppose that

U(xi,G) = ln xi + g lnG where g > 0.

The equilibrium for the one-period game is similar to the one described in the
preceding section, with only a minor modification, namely

y = S

(m− k)(1− τ)+ (1+ g + b)
, b ≡ αβ

x =
(

1− τ(m− k)

k

)(
S

(m− k)(1− τ)+ (1+ g + b)

)

V
(1)
N (S) = (1+ g + b) ln S + η

(1)
N + φ(1) + β ln γ
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η
(1)
N = ln

(
1

(m− k)(1− τ)+ (1+ g + b)

)

φ(1) = (g + b) ln

(
g + b

(m− k)(1− τ)+ (1+ g + b)

)

Similarly, for the two-period model, one makes only a few modifications, such as

R
(2)
i = U(yi,G(S,Q−i + yi))+ βV

(1)
N (S′)

Then, if T = 2, the Nashian agent’s equilibrium exploitation in the first period when
there are two periods to go is

y
(2)
N = S

(m− k)(1− τ)+ (1+ g)(1+ b)+ b2

and, for Kantians, their equilibrium exploitation is only a fraction of the Nashian
agent’s exploitation:

x
(2)
K =

(
1− τ(m− k)

k

)
y
(2)
N

The equilibrium payoff functions are as follows. For each Nashian,

V
(2)
N (S) = ((1+ g)(1+ b)+ b2) ln S + A

(2)
N + B(2) + β2 ln γ

with

A
(2)
N = η

(2)
N + βη

(1)
N , with η

(2)
N ≡ ln

(
1

(m− k)(1− τ)+ (1+ g)(1+ b)+ b2

)

and

B(2) = φ(2) + βφ(1)

where

φ
(2)
N ≡ ((1+ g)(1+ b)+ b2 − 1) ln

(
(1+ g)(1+ b)+ b2 − 1

(m− k)(1− τ)+ (1+ g)(1+ b)+ b2

)

For each Kantian, the equilibrium payoff function is

V
(2)
K (S) = ((1+ g)(1+ b)+ b2) ln S + A

(2)
K + B(2) + β2 ln γ

where
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A
(2)
K = η

(2)
K + βη

(1)
K

η
(2)
K = ln

(
(1− τ(m− k))k−1

(m− k)(1− τ)+ (1+ g)(1+ b)+ b2

)

Thus the Nashian payoff exceeds the Kantian payoff by

V
(2)
N (S)− V

(2)
K (S) = A

(2)
N − A

(2)
K = (1+ β) ln

(
k

1− τ(m− k)

)

In other words, the Kantian payoff is equal to the Nashian payoff minus (1 +
β) ln [k/ (1− τ(m− k))].

For T = q, the Nashian agent’s equilibrium first period exploitation level is

y
(q)
N = S

(m− k)(1− τ)+
((∑q−1

s=0 bs
)
+ bq

)

and the Kantian agent’s exploitation in period 1 is

x
(q)
K =

(
1− τ(m− k)

k

)
y
(q)
N

The value function for Nashians is

V
(q)
N (S) =

⎛

⎝(1+ g)

⎛

⎝
q−1∑

s=0

bs

⎞

⎠+ bq

⎞

⎠ ln x + A
(q)
N + B

(q)
N + βqγ

with

A
(q)
N = η

(q)
N + βη

(q−1)
N + β2η

(q−2)
N + . . . βq−1η

(1)
N

η
(q)
N ≡ ln

⎛

⎝ 1

(m− k)(1− τ)+ (1+ g)
(∑q−1

s=0 bs
)
+ bq

⎞

⎠

and

B(q) = φ(q) + βφ(q−1) + . . .+ βq−1φ(1),

φ(q) ≡
⎛

⎝(1+ g)

⎛

⎝
q−1∑

s=0

bs

⎞

⎠+ bq − 1

⎞

⎠ ln

⎛

⎝
(1+ g)

(∑q−1
s=0 bs

)
+ bq − 1

(m− k)(1− τ)+ (1+ g)
(∑q−1

s=0 bs
)
+ bq

⎞

⎠
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The Kantian payoff is equal to the Nashian payoff minus (1 + β + β2 + . . . +
βq−1) ln [k/ (1− τ(m− k))]

V
(q)
N (S)− V

(q)
K (S) = ln

(
k

1− τ(m− k)

)

By taking the limit as q tends to infinity, we can obtain the equilibrium strategies
of Nashian and Kantian players for the infinite horizon problem. The equilibrium
strategies depend only on S. For Nashians,

y = (1− b)S

(m− k)(1− τ)(1− b)+ (1+ g)

and for Kantians,

x =
(

1− τ(m− k)

k

)
(1− b)S

(m− k)(1− τ)(1− b)+ (1+ g)

The value function of the representative Nashian is

VN(S) = (1+ g)
1

1− b
ln S + 1

1− β
ln

[
1− b

(m− k)(1− τ)(1− b)+ (1+ g)

]

+ 1

1− β

(
g + b

1− b

)
ln

(
g + b

(m− k)(1− τ)(1− b)+ (1+ g)

)

and that of the representative Kantian is

VK(S) = VN(S)− 1

1− β
ln

(
k

1− τ(m− k)

)

Along the equilibrium path,

St+1 =
(

g + b

(m− k)(1− τ)(1− b)+ (1+ g)

)α

Sα
t

The steady state level of the stock is

S∗ =
(

g + b

(m− k)(1− τ)(1− b)+ (1+ g)

) α
1−α

Starting at any positive S0, the stock will converge to S∗.
We obtain the following result:
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Proposition 2 The Kant-Nash equilibrium in feedback strategies display all the
properties stated in Proposition 1, and the following additional property: Regardless
of the sign of τm − 1, if g is sufficiently great, then an increase in k will increase
social welfare.

6 Concluding Remarks

The idea that pro-socialness can help attenuate the tragedy of the commons has a
long history. One can find it discussed in the works of Smith (1790), Gordon (1954),
Laffont (1975), Ostrom (1990), Roemer (2010, 2015), and many others. Most of
these discussions have been set in a static framework. Our contribution is twofold:
First, we formalize the concept of interaction between Kantian agents and Nashian
agents. Second, we apply the concept of Kant-Nash equilibrium to a dynamic game
and show how it may shed light on games of common property resource exploitation
when not all agents are Nashian. We have been able to show that social welfare
increases with the Kantian population share: Given the total population, as the
percentage share of the Kantians increases, social welfare increases as a result. It
is hoped that our discussions of ethics could go some way to de-emphasize the
‘homo œconomicus’ conception of human behavior taught in standard economics
courses. Of course, we must be aware of Arrow’s caution: “One must not expect
miraculous transformations in human behavior. Ethical codes, if they are viable,
should be limited in scope.” (Arrow 1973, p. 316).

An interesting idea for future research is the study of evolutionary dynamics
toward a Kantian society.8 According to Clément et al. (2000), the process of
achieving universal justice is far from being straightforward for Kant (1795). It
would necessitate the establishment of a Society of Nations, in other words a global
social contract:

Kant asserts at the same time that the future of our species is ultimately the rule of law
and universal peace, and that, nevertheless, the establishment of public justice - the greatest
problem for the human species, the most difficult one - can never be considered as a settled
affair, and only the establishment of a “society of nations” subject to international law will
allow man access to peace and the rule of law (the condition for true autonomy) and truly
overcome his original savagery.9

8A small step in this direction has been taken in Long (2018), using an overlapping generation
models in which parents have incentives to transmit prosocialness to their children.
9The above paragraph is translated from the French text: “Kant affirme à la fois que le devenir de
notre espèce a pour finalité le règne de la loi et la paix universelle, et que, pourtant, l’établissement
de la justice publique- le “plus grand problème pour l’espèce humaine, le plus difficile- ne peut
jamais être considéré comme une affiare réglée. Seule l’établissement d’une “société des nations”
soumise à une législation internationale, permetra à l’homme d’accéder à la paix et à l’ordre
juridique (condition de toute véritable autonomie) et de surmonter véritablement sa sauvagerie
originelle.” I thank a reviewer for this reference.
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Frugals, Militants and the Oil Market

Etienne Billette de Villemeur and Pierre-Olivier Pineau

Abstract The oil market has often been modeled as an oligopoly where the
strategic players are producers. With climate change, a new sort of game appeared,
where environmental militants play a significant role by opposing some projects,
to contain oil production. At the same time, consumers continue to use increasing
amounts of oil, independently of oil price fluctuations. Should we oppose oil
projects, reduce demand or both? We investigate in this paper the double prisoner’s
dilemma in which individuals find themselves, with respect to oil consumption
and their environmental stance towards the oil industry. We find that the collective
outcome of such game is clearly better when a frugal behaviour is adopted, without
being militant. The Nash equilibrium, resulting from the individual strategies, leads
by contrast to the worst possible outcome: high prices, high consumption and high
environmental (negative) impact. An effective environmental action should avoid
opposing oil supply sources (a costly militant act) and help consumers becoming
more frugal.
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Fig. 1 World oil production and price, 2002–2017 (EIA 2018)

1 Introduction

A large consensus exists on the necessity to mitigate climate change. A reduction of
CO2 emissions is needed for this to happen, and as 65% of all greenhouse gases are
related to fossil fuel and industrial processes (IPCC 2014), fossil fuel consumption
has to decline and industrial processes have also to change. Emissions from the
combustion of coal and oil are particularly important (IEA 2017). But while coal
consumption and coal-related emissions have peaked in 2014, oil consumption con-
tinues to grow. So does oil production, as consumption and production follow each
other very closely—with only short term stocks and strategic reserves creating a
difference. As illustrated in Fig. 1, oil production is on an almost linearly increasing
path, from about 80 millions barrels per day in 2002 to close to 100 millions barrels
per day at the end of 2017 (EIA 2018). Oil prices, perhaps surprisingly, have no
apparent impact on consumption and production. Indeed, despite large swings in
oil prices in the 2002–2017 period, from $28 to $134 per barrel of Western Texas
Intermediate (WTI), oil demand and production continued their steady growth. This
translates in very inelastic measures of the price elasticity of oil and oil products
demands (usually around −0.2), as many econometric studies conclude. See, for
instance, (Labandeira 2017).

While high oil prices have not discouraged consumers to use oil, environmental
militants have been very active to oppose oil projects. Movements such as Keep It
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in the Ground try to “revoke the social license of the fossil fuel industry” and “fight
iconic battles against fossil fuel infrastructure” (350.org 2018). Their hope is that
by opposing oil development, hence by limiting supply, consumption will go down,
and so would emissions. Climate change would consequently be mitigated. Some
fossil fuel infrastructure can indeed be abandoned by promoters after a “successful”
opposition. In Canada, for instance, strong opposition to some major oil pipeline
projects (Energy East and TransMountain) has pushed their promoters to renounce
developing them.

Despite such opposition, however, oil consumption has not decreased. It is supply
that has been affected: some oil projects are removed from the supply mix, and more
expensive ones are selected. While it’s impossible to directly link the cancellation
of one project to the development of another, one could easily conjecture that when
oil investments are not made in, for instance, Alberta (Canada), because of some
strong local opposition, it will lead to some equivalent investments made in the
United States, Brazil, Iraq or Libya, where oil production can grow and is growing
(see, for instance, IEA (2018), for some current numbers and forecasts). In short,
oil production does not decline after some oil project opposition, but marginally
more expensive projects, with less opposition, are chosen. See Herfindahl (1967)
and the subsequent literature on the order of extraction of an exhaustible resource.
Such price increase indirectly makes renewable energy more competitive. However,
so far new renewable energy sources (such as wind or solar) are added to the global
production mix, especially in electricity generation, but aren’t substitute to oil in the
transportation sector, where most of the oil is consumed.

In many cases, when environmental militants oppose oil projects, they do not
directly call for a lower oil consumption from individuals. Greenpeace International,
for instance, asks its website visitors to “Join the wave of resistance against
pipelines”, but does not advise to use less oil products, to question friends about
their vehicle choice or to adopt a frugal energy consumption level (see Greenpeace
International 2018). Maybe they assume that displaying “resistance” is more self-
satisfying than not, while reducing oil consumption is too individually demanding.
Could it therefore be a better strategy to be an environmental militant than to adopt
(and possibly promote) a frugal lifestyle? Of course, the two are separate decisions
and can be done simultaneously. But given the price inelasticity of oil demand, as
illustrated before, supply side strategies of environmental militants may not have the
intended results.

This paper belongs to the family of papers dealing with pollution challenges
within a game theoretic framework, to which Georges Zaccour has significantly
contributed. See, for instance, Petrosjan and Zaccour (2003), Breton et al. (2010) or
Jørgensen et al. (2010), among many others. Our paper also considers the action of
the civil society (or environmental groups) in the absence of a central authority,
where strategic choices can be made to the benefit, or detriment, of all, as in
Ngendakuriyo and Zaccour (2017), which focuses on corruption. Contrary to these
papers, however, we limit ourselves to a static context.

More specifically, this paper attempts to disentangle the different aspects related
to our specific situation. Given the two sets of choices mentioned above, being an
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environmental militant or not and adopting a frugal level of energy consumption or
not, what are the individual and collective outcomes? What are the environmental
impacts of these choices, but also the price and welfare impacts?

We offer some answers to these questions, by studying the strategic situations
related to the two sets of choices. In both cases, individuals face a prisoner’s
dilemma: they would be better off with a lower consumption level (because of the
global environmental impact) and no opposition to oil projects (because of the lower
prices), only if all did the same. But gratification from higher consumption and
adopting a militant environmental stance creates incentives to defect.

While we make some simplifying assumptions, notably that oil demand is strictly
price-inelastic, our analysis shows that welfare gains come from lower consumption
levels. Militancy can be costly and benefit the oil industry in ways that may not
be fully understood by oil projects opponents. However, the assumption on price-
elasticity is made for the sake of clarity in the exposition, but would not change the
main results if relaxed.

We present the model in the next section, the individual strategies and the market
equilibrium. Then we investigate the four polar collective outcomes of the game, and
compare their price, quantity (equivalent to the environmental impact) and welfare
levels.

2 The Model

Consider a population with N identical individuals endowed with a utility

U (q, s;p,Q) = v (p, q)+ b (s)− e (Q) ,

where v (p, q) stands for the net utility from individual consumption q at price
p, b (s) stands for the benefits from environmental stance s and e (Q) for the
individual environmental costs, a function of total consumption Q.

Individual consumption q can be either average or frugal: q ∈ {a; f }. Environ-
mental stance is either militant or not: s ∈ {m; /O} . Collective consumption Q is
determined by the interplay of supply and demand.

2.1 The Game in Individual Strategies

Let N be the total number of players and denote by Nf and Nm the number of
“frugals” and the number of militants. The market equilibrium depends upon the
individual strategies of all players. We denote, respectively, by p∗ = p

(
Nf ,Nm

)

and Q∗ = Q
(
Nf ,Nm

)
the equilibrium price and quantity outcomes. As we

shall see—and as expected—Q∗ = Q
(
Nf ,Nm

)
is non-increasing in both of its

arguments.
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We make the following assumptions:

Assumption 1 In regard to their environmental impact, individuals find it individ-
ually too costly to adopt a frugal behaviour:

U
(
f, s,Q

(
Nf ;Nm

))
< U

(
a, s,Q

(
Nf − 1;Nm

))
,

for all Nf ∈ �1;N� and whatever the values of s ∈ {m; /O} and Nm ∈ �0;N� .

Assumption 2 Individuals find it individually profitable to adopt a stance of
environmental militant:

U
(
q,m,Q

(
Nf ;Nm

))
> U

(
q, /O,Q

(
Nf ;Nm − 1

))
,

for all Nm ∈ �1;N� and whatever the values of q ∈ {a; f } and Nf ∈ �0;N� .

Assumption 3 It would be collectively rational to adopt a frugal behaviour:

U (f, s,Q (N;Nm)) > U (a, s,Q (0;Nm)) ,

whatever the values of s ∈ {m; /O} and Nm ∈ �0;N� .

Given these assumptions it is clear that:

Lemma 1 The dominant individual strategies are

(q; s) = (a,m) .

2.2 The Market Equilibrium

As mentioned in the introduction, demand is pretty insensitive to prices. We assume
that total demand D thus depends only upon the number of frugals, so that

D
(
Nf

) = qa
(
N −Nf

)+ qfNf ,

where qa > qf . On the supply side, price matters. Moreover, it is directly impacted
by militancy. Again, for simplicity we suppose that:

S (p,Nm) = sup
{

0;β
[
p −

(
p + cNm

)]}
,

where β is the positive slope of the supply curve, p is the minimum price at
which production can take place with no militancy and c is the individual impact
of militancy on such minimum price.
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Fig. 2 The four polar
collective outcomes:
individually rational (IR),
unconcerned (U), cooperative
(C) and radical
environmentalist (RE). When
militants manage for the
projects associated to the grey
area to be cancelled, the
subsequent supply curve is
shifted to the left
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We assume competitive markets. By definition, at equilibrium D = S so that the
equilibrium price is given by

p
(
Nf ,Nm

) = p + cNm + β−1 [qa
(
N −Nf

)+ qfNf

]

= p + β−1Nqa − β−1 (qa − qf
)
Nf + cNm. (1)

This says that the price increases with the number of militants, Nm, but decreases
with the number of frugals, Nf . By contrast, the equilibrium quantity is a function
of the number of frugals only1:

Q
(
Nf ,Nm

) = qaN − (qa − qf
)
Nf , (2)

≡ Q
(
Nf

)
.

In words, the number of militants has an impact only on price (hence on consumer
welfare) but not on equilibrium demand—hence upon the environmental impact.
This is illustrated in Fig. 2, where Sm is the supply curve after militant have removed
some oil projects (the grey area). By shifting supply to the left, equilibrium prices
rise. The demand can either be frugal (Df ) or average (Da), depending on the
number of frugals. This leads to the four “polar” outcomes: individually rational
(IR), unconcerned (U), cooperative (C) and radical environmentalist (RE).

2.3 Discussion

2.3.1 Individual Cost of Militancy

Coming back to Assumption 2 upon the payoff of militancy, we assumed that

b (m)− b
(
/O
)
> v

(
p
(
Nf ;Nm − 1

)
, q
)− v

(
p
(
Nf ;Nm

)
, q
)
.

1This is a direct consequence of the assumption on demand inelasticity.
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Decomposing the net utility into gross utility net of spendings (that is substituting
w (q)− pq to v (p, q)) this amounts to:

b (m)− b
(
/O
)
>
[
p
(
Nf ;Nm

)− p
(
Nf ;Nm − 1

)]
q. (3)

This means that the monetary costs (through the price impact) to the consumers of
their militancy cannot counterweight the benefits from their environmental stance.
This is fully consistent with the (negligible) price inelasticity of their individual
demand.

2.3.2 Impact on the Oil Industry

Yet militancy increases consumer financial burden which directly profits the indus-
try. In fact, for any Nf , hence for any given level of total demand, the industry
revenues R are an increasing function of the number of militants:

R
(
Nf ;Nm

) = p
(
Nf ;Nm

)
Q
(
Nf

)

= R
(
Nf ; 0

)+ cNmQ
(
Nf

)
,

from Eqs. (1) and (2). Paradoxically, therefore, militancy is beneficial to the oil
industry, except of course for those producers who have been excluded from the
market. In fact, by reducing total supply, militancy is akin to the action of an oil
cartel. The main difference is that the production reduction is not evenly shared by
all producers, but obtained by excluding some specific oil production sites (which
corresponds to the grey area in Fig. 2).

2.3.3 Social Costs of Militancy

While the individual costs of militancy are smaller than its individual benefits (see
Eq. (3)), it is also borne by everyone, through the price increase it triggers. We
assume that the individual (psychological) benefits from taking a militant envi-
ronmental stance are smaller than the financial costs it imposes on all consumers.
Formally

Assumption 4 Individual (psychological) benefits from taking a militant environ-
mental stance are smaller than the financial costs it imposes on all consumers.

b (m)− b
(
/O
)
<
[
p
(
Nf ;Nm

)− p
(
Nf ;Nm − 1

)]
Q
(
Nf

)
,

for any Nm ≥ 1 and any Nf .
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3 Collective Outcomes

We now consider the collective outcomes of the strategic game. There is a double
prisoner’s dilemma, one in each of the strategic variables q ∈ {a, f } and s ∈{
m, /O

}
. We identify four polar collective outcomes.

3.1 Four Polar Collective Outcomes

Let Q = qaN and Q = qfN .

3.1.1 Individually Rational Outcome

As already mentioned in Lemma 1, it is a dominant strategy for individuals to be
an average consumer and a militant. Therefore, the individually rational outcome is(
Nf ;Nm

) = (0, N) and

QIR = Q, pIR = p + β−1Q+ cN

so that

U IR = w (qa)− pIRqa + b (m)− e
(
Q
)
.

3.1.2 Cooperative Outcome

If players were to cooperate, they would be frugal and abstain from militancy.
Therefore, the cooperative outcome is

(
Nf ;Nm

) = (N, 0) and

QC = Q pC = p + β−1Q

so that

U C = w
(
qf
)− pCqf + b

(
/O
)− e

(
Q
)
.

3.1.3 Outcome of an Unconcerned Population

If consumers are unconcerned so that they all maintain an average consumption and
do not bother to take a militant position, the collective outcome is

(
Nf ;Nm

) =
(0, 0) and

QU = Q pU = p + β−1Q
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so that

U U = w (qa)− pUqa + b
(
/O
)− e

(
Q
)
.

3.1.4 Outcome of a Radical Environmentalist Population

If individuals are all frugal and engaged in militancy, despite its costs, then(
Nf ;Nm

) = (N,N) and

QRE = Q pRE = p + β−1Q+ cN

so that

U RE = w
(
qf
)− pREqf + b (m)− e

(
Q
)
.

3.2 Discussion

3.2.1 Quantity and Price Comparisons

In terms of quantities, hence environmental impact, the comparison between the
four cases is pretty straightforward:

QRE = QC = Q < Q = QU = QIR.

There are also simple comparisons between some prices:

pRE < pIR and pC < pU ;
pC < pRE and pU < pIR;

Hence pC < pIR. However, the comparison pRE and pU is a priori ambiguous.
The difference between both prices depends upon the elasticity of supply and the

difference between the average and frugal demands. More precisely,

pRE − pU = cN − β−1
(
QU −QRE

)
=
[
c − β−1 (qa − qf

)]
N.

In words, the price will be higher with a population of Radical Environmentalists
than with an Unconcerned population if (and only if) the sole impact of their own
militancy upon the equilibrium price is sufficient to induce individuals to reduce
their demand by a larger amount than that associated to shifting from average to
frugal consumption. In all other cases, that is when

βc < qa − qf , (4)
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we have pRE < pU. It is thus fair to assume that

pC < pRE ≤ pU < pIR.

3.2.2 Welfare Comparisons

In terms of welfare, the pairwise comparison of the four polar outcomes is less
straightforward. We have

U IR −U RE =
[
w (qa)− pIRqa + b (m)− e

(
Q
)]−

[
w
(
qf
)− pREqf + b (m)− e

(
Q
)]

=
[
w (qa)− pIRqa

]
−
[
w
(
qf
)− pREqf

]
− [e (Q)− e

(
Q
)]

.

By Assumption 3 upon the collective rationality of frugal behaviour

v (p (0;Nm) , a)− v (p (N;Nm) , f ) < e [Q(0;Nm)]− e [Q(N;Nm)] = e
(
Q
)− e

(
Q
)
,

so that, substituting w (q)− pq to v (p, q)we have:

[w (qa)− p (0;Nm) qa]− [w (qf
)− p (N;Nm) qf

]
< e

(
Q
)− e

(
Q
)
,

for any Nm. Let Nm = N. We have p (0;N) = pIR and p (N;N) = pRE so that we
can conclude:

U IR −U RE < 0.

Moreover, Assumption 4 on the social cost of militancy says that

b (m)− b
(
/O
)
<
[
p
(
Nf ;Nm

)− p
(
Nf ;Nm − 1

)]
Q
(
Nf

) = cQ
(
Nf

)

which implies that b (m)− b
(
/O
)
<
[
p
(
Nf ;N

)− p
(
Nf ; 0

)]
Q
(
Nf

)
. What is of

more interest is that, for Nf = 0 and Nf = N it also states

b (m)− b
(
/O
)
< [p (0;Nm)− p (0;Nm − 1)] qaN = cNqa,

b (m)− b
(
/O
)
< [p (N;Nm)− p (N;Nm − 1)] qfN = cNqf .

As a consequence, we also have

U IR −U U =
[
w (qa)− pIRqa + b (m)− e

(
Q
)]−

[
w (qa)− pUqa + b

(
/O
)− e

(
Q
)]

= [b (m)− b
(
/O
)]−

(
pIR − pU

)
qa

= [b (m)− b
(
/O
)]− cNqa

< 0,

from Assumption 2.
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Similarly, we have

U RE −U C =
[
w
(
qf
)− pREqf + b (m)− e

(
Q
)]−

[
w
(
qf
)− pCqf + b

(
/O
)− e

(
Q
)]

= [b (m)− b
(
/O
)]−

(
pRE − pC

)
qf

= [b (m)− b
(
/O
)]− cNqf

< 0,

again from Assumption 2.
We now compare U U to both U RE and U C .
We have

U U −U C =
[
w (qa)− pUqa + b

(
/O
)− e

(
Q
)]−

[
w
(
qf
)− pCqf + b

(
/O
)− e

(
Q
)]

=
[
w (qa)− pUqa

]
−
[
w
(
qf
)− pCqf

]
− [e (Q)− e

(
Q
)]

.

Assumption 3 upon the collective rationality of frugal behaviour implies that

e
(
Q
)− e

(
Q
)
>
[
w (qa)− pUqa

]
−
[
w
(
qf
)− pCqf

]
,

so that we obtain

U U −U C < 0.

Finally

U U −U RE =
[
w (qa)− pUqa + b

(
/O
)− e

(
Q
)]−

[
w
(
qf
)− pREqf + b (m)− e

(
Q
)]

=
[
w (qa)−pUqa

]
−
[
w
(
qf
)−pREqf

]
− [b (m)−b

(
/O
)]− [e (Q)− e

(
Q
)]

.

Observe that pRE = p + β−1Q+ cN = pC + cN. It follows that

U U −U RE = {cNqf −
[
b (m)− b

(
/O
)]}

−
{[
e
(
Q
)− e

(
Q
)]−

[(
w (qa)− pUqa

)
− w

(
qf
)− pCqf

]}

where from Assumption 3 upon the collective rationality of frugal behaviour and
from Assumption 4 upon the social cost of militancy,

e
(
Q
)− e

(
Q
)
>
[
w (qa)− pUqa

]
−
[
w
(
qf
)− pCqf

]
,

cNqf > b (m)− b
(
/O
)
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so that both terms are positive and the sign of U U − U RE is indeterminate. It
depends upon the relative magnitude of the costs of militancy and the environmental
costs. If the latter dominates, U RE > U U , the converse otherwise.

To summarize

U IR < U RE < U C,

U IR < U U < U C.

4 Conclusion

The double prisoner’s dilemma leads, unsurprisingly, to the worst welfare outcome.
Demand policies, targeting individual behaviours, or simply individual action to
reduce demand, are more effective than supply strategies to improve environmental
outcomes. Supply strategies are not only ineffective but are beneficial to the industry
by raising its revenues. This is definitely something most environmental militants do
not intend.

This paper is a first step toward the analysis of the effects of militancy on oil
markets. Further developments could include the assessment of the impact of some
elasticity in oil demand on the these results and the study of distributional effects of
oil price increases induced by militancy. Indeed, many lower income oil consumers
already spend a higher percentage of their income on energy, despite using less of it,
than higher income ones. They bear a greater cost when oil becomes more expensive
and could be collateral victims of environmental militancy. On the other hand, if
higher income consumers became more frugal, it would provide both financial and
environmental relief to everyone—but especially for the poorest, who are often,
also, the most exposed to environmental problems.
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Compliance with Social Norms as an
Evolutionary Stable Equilibrium

Francisco Cabo, Ana García-González, and Mercedes Molpeceres-Abella

Abstract This paper analyzes the compliance with social norms optimally estab-
lished by a benevolent central planner. Since compliance is costly, agents have an
incentive to free-ride on others, in a public good game. We distinguish two types of
agents: standard pro-self agents (Sanchos) whose payoffs are defined by a prisoner’s
dilemma game dominated by the non-compliance strategy, and pro-social Quixotes,
who still have an incentive to free-ride, although prefer compliance over mutual
defection (as in a snowdrift game). Compliance is analyzed in a two-population
evolutionary game considering an imitative revision protocol. Individuals from one
population play against and imitate agents within their own but also the other
population. Inter-population interaction and imitation allow us to investigate under
which circumstances some Sanchos might imitate compliant Quixotes, so escaping
the non-compliance equilibrium characteristic of an isolated population of Sanchos.
Correspondingly, we analyze the conditions under which the interaction with the
population of selfish Sanchos increases or decreases the compliance rate among
altruistic Quixotes.

Keywords Two-population evolutionary game · Heterogeneous preferences ·
Prisoner’s dilemma game · Snowdrift game · Social norms

1 Introduction

Compliance with social norms can be analyzed as a collective action problem.
Although collective actions may be jointly beneficial, a classical result, as stated by
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Olson (1971), is that no self-interested person would contribute in the production
of a public good (except in the case of a very small group or under a mechanism
like coercion). This zero contribution thesis corresponds to the Nash equilibrium
in a prisoner’s dilemma game. For the public good game (the generalization of
the prisoner’s dilemma to a large number of players), defection is the dominant
strategy. Thus, classical game theory and also evolutionary game theory predict
zero contribution (see, for example, Miller and Andreoni 1991). Nevertheless,
experimental economics seems to contradict this zero contribution hypothesis. For
example, Andreoni (1988) and later Ostrom (2000) revise the literature on public
goods experiments, finding positive levels of contribution in one-shot and repeated
games. Many examples of collective actions also exist in everyday life: voting, not
cheating on taxes, contributions to voluntary associations, or recycling.

The literature provides alternative explanations to reconcile the standard theory
with the evidence of individual behavior. Andreoni (1988) suggests that individual
behavior, at least in the laboratory, is not exclusively oriented by self-interest but
also by factors like altruism, social norms, or bounded rationality. Here, we focus
on the idea that individuals, or at least some individuals, can derive enjoyment
from collaboration independently of how much their actions benefit others. This
effect is called intrinsic satisfaction in de Young (1996), or “warm-glow” in the
more standard terminology, like in Andreoni (1990). As long as social norms
are perceived as ideal forms of behavior, compliance provides a warm-glow to
each particular compliant agent, which is a supplementary benefit to the public
good.1 Alternatively, individuals get dis-utility from doing bad. Thus, as long as not
following social norms is perceived as doing bad, defection involves a cold-prickle,
following the terminology in Andreoni (1995), who highlighted the asymmetry
between doing good versus not doing bad.

An economy populated by different types of individuals, some more inclined
to collaborate than others was proposed by Ostrom (2000), from an evolutionary
perspective. The existence of “norm-using” individuals, unlike the standard rational
egoists, helps bring the theory closer to the findings in the laboratory.2 More
recently, Grafton et al. (2017) consider the society as a mixture of standard
“Nashian” individuals (who maximize their utility taking as given the strategies
of others) and “Kantian” individuals (who do not do anything that they would

1Other factors not analyzed here are inequity aversion, reciprocal altruism, sense of identity or
preference for efficiency (see Alger and Weibull 2013 and the references therein). The temporal
dimension can also make compliance more rewarding. For pollution problems, current abatement
activities can be beneficial when the future cleaner environment is taken into account. An
interesting example is Breton et al. (2010), who propose a dynamic game for international
environmental agreements that takes into account the pollution stock dynamics, as well as the
membership dynamics, defined by an evolutionary process.
2The mixture of rational egoists and norm-users results from an indirect evolutionary approach,
proposed by Güth and Yaari (1992) and Güth (1995). Preferences are also considered as strategies
subject to evolutionary selection in Alger and Weibull (2013), for whom natural selection has built
preferences as a convex combination between selfishness and morality.
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not like if everyone behaves in the same way). We consider a society composed
of two different types of agents: rational egoists or pro-self individuals, which
we call Sanchos; and norm-using or pro-social individuals, called Quixotes. Both
follow a “Nashian” behavior, and their strategic behavior changes according to the
evolutionary dynamics.

The preferences of rational egoist Sanchos are captured by a payoff matrix of the
prisoner’s dilemma type with a strong incentive to free-ride (the most widely used
paradigm to study human cooperation). In contrast, pro-social3 Quixotes experience
a warm-glow from compliance, together with a cold-prickle from defection. The
free-riding incentive still persists when the opponent complies, however, if the
opponent defects, compliance is their best strategy. Thus, for pro-social Quixotes
the compliance dilemma is relaxed, described as a snowdrift game (also known as
hawk-dove or chicken game), as proposed, for example, in Doebeli et al. (2004). Our
setting follows Cabo and García-González (2018) who analyze a two-population
evolutionary game in between a symmetric and an asymmetric game. Individuals
belonging to one population play against and imitate individuals within their own
and also the other population. The evolutionary dynamics converges towards a
mixed strategy equilibrium at which some Sanchos might find it attractive to
imitate the compliant behavior of Quixotes, though it is not in their best interest.
This answers the question which typically intrigues a reader of “The Ingenious
Gentleman Don Quixote of La Mancha”4: What led the pragmatic and rational
Sancho to follow the “madness” of the morally oriented Don Quixote? Or put
differently: under which circumstances does the existence of a population of pro-
social individuals induce standard pro-self individuals to comply with the social
rules when it is in their best interest not to do so? A positive answer requires a much
higher reward to compliance for Quixotes than for Sanchos.

We extend Cabo and García-González (2018) by relaxing the assumption that
the global population is equally divided between Sanchos and Quixotes. We analyze
how compliance decisions in either population are affected by their relative sizes.
Considering a pairwise imitation protocol, the relative size of each population
determines the likelihood of being paired with an individual within this particular
population. At the same time, it directly influences the share of compliance in
the global population and, in consequence, the incentives to free-ride when others
comply or to comply when others do not.

The analysis shows that the likelihood that some Sanchos imitate the compliant
behavior of Quixotes increases with the ratio of Sanchos in the overall population.5

Conversely, when the ratio of Sanchos is very small, they would certainly free-

3In the same way as Don Quixote sought to behave in accordance with his reading of chivalry,
pro-social individuals perceive social norms as ideal forms of behavior.
4Originally titled: El ingenioso hidalgo don Quijote de la Mancha, by Miguel de Cervantes
Saavedra (1605 Part I and 1615 Part II).
5Similar result is obtained in Bontems and Rotillon (2000), for pollution compliance in a
population divided between honest polluters (always comply) and opportunistic individuals.
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ride on compliant Quixotes, unless these latter get a very large warm-glow from
compliance. This warm-glow makes it more likely compliance among Sanchos, and
it also increases the actual compliance rates for both agents, Sanchos and Quixotes.

A larger ratio of Sanchos undoubtedly reduces the share of compliance in
the global population. However, its effect on the share of compliance within
the population of Quixotes is twofold. A snowdrift effect induces Quixotes to
increase compliance because the compliance rate in the global population is smaller.
Conversely, an imitation effect leads Quixotes to reduce compliance following the
non-compliant behavior of Sanchos. The positive effect becomes more important the
greater the warm-glow, making more likely that a higher ratio of Sanchos induces
higher compliance among Quixotes. On the other hand, the ratio of Sanchos first
raises compliance within this population although, with less and less Quixotes,
Sanchos hardly meet and imitate Quixotes and compliance rates decrease to zero.

The rest of the paper is organized as follows. Section 2 presents the preferences
of Sanchos and Quixotes. The two-population evolutionary game and the associated
dynamics are introduced in Sect. 3. The two types of equilibria with and without
compliance among Sanchos are computed in Sect. 4. Section 5 studies how com-
pliance in each population is affected by the discrepancy between Sanchos and
Quixotes, and by the relative sizes of these populations. It also presents some real-
life examples. Section 6 concludes.

2 Two Distinct Populations

This section explains the distinct behavior of pro-self Sanchos and norm-using
Quixotes when they face a collective action problem like compliance with social
norms. We assume that if the social norms are followed by all individuals, then they
all will be better off.6 The collective action problem is perceived as: a prisoner’s
dilemma game for Sanchos, and a snowdrift game for Quixotes.

The population of Sanchos represents the standard rational agents, whose payoff
matrix collects the canonical representation of a collective action problem:

C D

C (1, 1) (1− d, 1+ c − d)

D (1+ c − d, 1− d) (0, 0)

Net gains when both players comply are normalized to 1. Parameter c represents
the effort or the cost of compliance, and d is the damage caused by a non-compliant
player. Thus, the gap c − d > 0 determines the incentive to free-ride on the other,

6Norms are optimally chosen by a benevolent central planner, or they are the result of a social
learning process.
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which induces the agent to disobey as long as his opponent complies. Moreover,
in a prisoner’s dilemma game a player prefers defection also when the opponent
defects. This incentive is measured by 1− d < 0, which is less pronounced than the
free-riding incentive if the opponent complies:

σ ≡ c − d − (d − 1) > 0, with 1 < d < c. (1)

Notice that the restriction 1 < d < c ensures that defection is the dominant strategy
among Sanchos. The restriction σ > 0 is that the sum of the off-diagonal payoffs
is greater than the sum of the diagonal payoffs. Thus, in the population of Sanchos
the player’s gains from defection, as opposed to compliance, is greater when the
opponent complies, i.e. c− d > d − 1. Under this prisoner’s dilemma specification,
the unique Nash equilibrium is the standard situation of mutual defection.

The population of Quixotes attains a greater reward for compliance and a lower
reward for defection than the population of Sanchos. They attach a warm-glow to
compliance, wg ≥ 0, and a cold-prickle to defection, cp ≥ 0. Thus, their payoffs
can be computed as:

C D

C (1+ wg, 1+ wg) (1− d + wg, 1+ c − d − cp)

D (1+ c − d − cp, 1− d + wg) (−cp,−cp)

The warm-glow associated with compliance and the cold-prickle associated
with defection makes compliance more attractive and defection less so. The social
dilemma for the population of Quixotes is described as a snowdrift (Hawk-Dove or
chicken) game. This implies that the joint effect of the warm-glow and the cold-
prickle is not enough to counterbalance the free-riding incentive when the opponent
complies: wg + cp < c− d. In contrast, this joint effect is strong enough to induce
compliance when the opponent disobeys wg + cp > d − 1. In what follows, this
joint effect will be denoted as ε = wg + cp. In consequence, the warm-glow from
compliance and the cold-prickle from defection can be expressed as: wg = αε,
cp = (1 − α)ε, with α ∈ [0, 1]. While ε is a quantitative measure of the distance
between Sanchos and Quixotes, parameter α can be interpreted as a qualitative
measure of this distance that measures the relative importance of the warm-glow
over the cold-prickle. Note that wg/cp = α/(1 − α), and it moves between 0 and
∞ as α moves between 0 and 1. Given this notation, the snowdrift structure of this
matrix requires conditions in (1) together with:

d − 1 < ε < c − d. (2)
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For such a game, mutual defection is no longer a Nash equilibrium. It is character-
ized by a Nash equilibrium in mixed strategies7:

(Δ, 1−Δ) =
(
ε − (d − 1)

σ
,
c − d − ε

σ

)
∈ (0, 1)× (0, 1). (3)

The expression Δ represents a relative measure of the incentive to comply when
the opponent disobeys. Correspondingly, 1 − Δ provides the relative measure of
the free-riding incentive when the opponent complies. These two values are positive
under condition (2) and the assumption σ > 0. The greater the absolute distance
which separates Sanchos and Quixotes, ε, the greater the incentive to comply if the
opponent disobeys, and the lower the free-riding incentive if the opponent complies
(see Fig. 1). However, Δ is independent of α, i.e. of whether Quixotes attach a large
warm-glow to compliance or a strong cold-prickle to non-compliance.

In addition to the definition of Δ, we introduce two new expressions:

Δwg = αε − (d − 1)

σ
, Δcp = (1− α)ε − (d − 1)

σ
. (4)

These expressions can be positive or negative. A positive Δwg implies that the
warm-glow from compliance for Quixotes, αε, is by itself a strong enough incentive
to induce compliance when the opponent defeats. Likewise, a positive Δcp > 0
implies that the Quixote’s preference for compliance when the opponent defeats
could be based only on the cold-prickle she associates to defection (with no need of
warm-glow from compliance).

In what follows, unless said otherwise, the illustrative examples will consider the
following parameters’ values:

c = 1.6, d = 1.1, ε = 0.4. (5)

For these parameters it holds that σ = 0.4 > 0, Δ = 0.75, d− 1 = 0.1 < c− d =
0.5, satisfying conditions (1) and (2). Moreover, Δwg = α−1/4 and Δcp = 3/4−α.

Fig. 1 Incentives to
comply/free-ride

7As well as two asymmetric pure Nash equilibria, (1, 0), (0, 1).
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3 Interaction and Imitation Between and Within Populations

The first specificity of the two-population game analyzed here is that individuals in
one population play against individuals of their own kind but also of the other pop-
ulation. We assume a unit mass population divided between Sanchos and Quixotes.
The share of Sanchos in the overall population is represented by constant s ∈ (0, 1),
and hence 1−s represents the ratio of Quixotes. Both types of players have the same
set of two strategies: compliance and defection, {C,D}. Importantly, while they can
switch between strategies, their preferences do not vary, and hence, they remain
within their population. Thus, the set of social states in this two-population game can
be written as X = {x = (ps, (1− p)s, q(1− s), (1− q)(1− s)) : p, q ∈ [0, 1]},
with p (resp. q) the ratio of agents in the population of Sanchos (resp. Quixotes)
who comply.

For each social state, x, the payoff function for the two-population game can be
computed as Fx′ with

F =

⎛

⎜⎜
⎝

1 1−d 1 1−d

1+c−d 0 1+c−d 0
1+αε 1−d+αε 1+αε 1−d+αε

1+c−d−(1−α)ε −(1−α)ε 1+c−d−(1−α)ε −(1−α)ε

⎞

⎟⎟
⎠.

For simplicity we will refer to the total population which complies (adding up
Sanchos and Quixotes), denoted by y = ps + q(1 − s). Then the payoffs Fx′
for the two populations can be rewritten as a function of y8:

π(y) =

⎛

⎜⎜
⎝

π S
C(y)

π S
D(y)

πQ
C(y)

πQ
D(y)

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

1− d + dy

y(1+ c − d)

1− d + dy + αε

y(1+ c − d)− (1− α)ε

⎞

⎟⎟
⎠ . (6)

From (6) it is clear that the expected payoff for Quixotes surpasses the expected
payoff for Sanchos in the warm-glow, αε, while defection is less rewarding in the
cold-prickle, (1− α)ε.

πQ
C(y) = π S

C(y)+ αε, πQ
D(y) = π S

D(y)− (1− α)ε.

As α approaches 1, the differences between Sanchos and Quixotes particularize
on the warm-glow from compliance, and the payoff to defection converges for
the two populations. Conversely, when α tends to 0, the gap between populations

8Superscripts S and Q refer to Sanchos and Quixotes, respectively. Subscripts C and D to
compliance and defection.
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particularizes in the cold-prickle from non-compliance, while compliance is equally
valued by the two types of agents.

Comparing the payoffs between strategies for the same population it follows:

π S
D(y)− π S

C(y) = (d − 1)+ σy > 0, πQ
D(y)− πQ

C(y) = σ(y −Δ).

Within the population of Sanchos, defection always dominates compliance regard-
less of y. As for Quixotes, whether they prefer compliance or defection depends
on how the share of compliance in the global population compares to Δ. As shown
in expression (3), the expression Δ (which represents the NE or the ESS if only a
single population of Quixotes existed) takes values within the interval (0, 1), due to
the snowdrift structure of the payoff matrix for Quixotes. These later would prefer
to comply when few individuals comply, y < Δ, and would prefer to defect in the
opposite case.

A population game defined exclusively for the population of Sanchos would be
characterized by the convergence towards an evolutionary stable strategy of zero
compliance. Similarly, for a population of Quixotes, the compliance rate at the
equilibrium would be Δ. Our main interest is to analyze the equilibrium for the
two-population game proposed. With that aim, the imitation mechanism must be
specified. And it is this mechanism which constitutes the second main feature of the
proposed two-population game.

Considering an imitative revision protocol, the temporal evolution of the com-
pliance rate in each population is determined by the share of non-compliance times
the probability of switching to compliance, minus the share of compliance times the
probability of switching to defection:

ṗ = (1− p)ρS
DC − pρS

CD, (7)

q̇ = (1− q)ρQ
DC − qρQ

CD, (8)

where ρh
ij is the probability that an individual in population h ∈ {S,Q} playing

strategy i ∈ {C,D} switches to the alternative strategy j ∈ {C,D}, j �= i.
This probability is determined by the likelihood that a revising agent is paired
with an individual playing the alternative strategy, times the conditional imitation
rate, rhij . In the standard formulation of multi-population games (see, for example,
Sandholm 2010), when an individual in population h receives a revision opportunity,
she can only be paired with other individuals within her own population. Hence
the likelihood of meeting someone playing the alternative strategy is given by the
ratio of individuals in population h playing this alternative strategy j . Thus, for
Sanchos, the probability of switching from compliance to defection would read
ρS

CD = (1 − p)rS
CD, and the mirror probability of switching from defection to

compliance, ρS
DC = prS

DC (similarly for Quixotes, changing p by q, and rS

ij by r
Q

ij ).
Our proposal adds the possibility that she could also imitate the behavior of the
agents belonging to the alternative population. Thus the probabilities of switching
her strategy depend on the likelihood of being paired with someone in her own and
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also in the other population, who plays the alternative strategy. Hence, for Sanchos
and Quixotes, this probabilities read:

ρS
CD = (1− p)srSS

CD + (1− q)(1− s)rSQ
CD, ρS

DC = psrSS
DC + q(1− s)rSQ

DC, (9)

ρQ
CD = (1− p)srQS

CD + (1− q)(1− s)rQQ
CD , ρQ

DC = psrQS
DC + q(1− s)rQQ

DC , (10)

where rhkij , with h, k,∈ {S,Q}, and i, j ∈ {C,D}, represents the conditional
imitation rate of an agent in population h playing strategy i who is paired with
an agent in population k playing strategy j �= i.

Assuming a revision protocol governed by pairwise imitation, the conditional
imitation rate is proportional to the gap between the payoffs of the randomly chosen
opponent and the revising player. Thus, the conditional imitation rate of an i-player
in population h who meets a j -player in population k reads:

rhkij ≡ rhkij (y) = [πk
j (y)− πh

i (y)]+, (11)

where [z]+ = z if z > 0 and 0 otherwise. It is important to notice that imitation
is only driven by the gap between payoffs, and individuals in one population will
equally imitate agents from their same or the other population.9

A compliance individual, who can be a Sancho or a Quixote, can be paired
with non-compliant Sanchos or non-compliant Quixotes. This gives a matrix of
payoffs comparisons describing the conditional imitation rates from compliance
to defection, GCD(y) =

(
rhkCD (y)

)
2×2, with h, k ∈ {S,Q}. Likewise, the matrix

GDC(y) =
(
rhkDC (y)

)
2×2 collects the conditional imitation rates from defection to

compliance.10

GCD(y) =
⎛

⎝
[π S

D − π S
C]+ [πQ

D − π S
C]+

[π S
D − πQ

C]+ [πQ
D − πQ

C]+

⎞

⎠ = σ

⎛

⎝
y + d−1

σ

[
y −Δcp

]
+

[
y −Δwg

]
+ [y −Δ]+

⎞

⎠ .

(12)

GDC(y) =
⎛

⎝
[π S

C − π S
D]+ [πQ

C − π S
D]+

[π S
C − πQ

D]+ [πQ
C − πQ

D]+

⎞

⎠ = σ

⎛

⎝
0

[
Δwg − y

]
+

[
Δcp − y

]
+ [Δ− y]+

⎞

⎠ .

(13)

These matrices show the conditional imitation rates of a row individual belonging to
a given population that meets a column individual from her or the other population
playing the alternative strategy.

9One might introduce asymmetries, assuming that individuals are more willing to imitate their own
kind rather than individuals belonging to the other population. We restrict to the symmetric case
for simplicity of the exposition.
10The y argument in the payoffs functions is removed when no confusion can arise.
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Fig. 2 Regions

These matrices help distinguish five regions in the α − y plane (see Fig. 2). The
payoffs comparison is dependent on the share of the total population that complies,
y, and on whether Quixotes attain great warm-glow from compliance (α close to
one), or strong cold-prickle from rules transgression (α close to zero). The warm-
glow is relatively more important than the cold-prickle if α > 1/2, and vice versa.

From the prisoner’s dilemma structure of the game for Sanchos, compliant
Sanchos will always imitate non-compliant Sanchos and never the reverse: rSS

CD > 0
and rSS

DC = 0. As for the other matching pairs, Fig. 2 displays five different regions,
and highlights in each region when a non-compliant agent does worse than (and
hence imitate), a compliant individual, either belonging to her own or the alternative
population.11 From the snowdrift structure of the game for Quixotes, when the share
of compliance in the global population is small, y < Δ, non-compliance is highly
detrimental for Quixotes who will be willing to imitate compliant Quixotes, rQQ

DC > 0.
Conversely in region U, y > Δ and the opposite occurs: rQQ

CD > 0.
If the warm-glow from compliance for Quixotes is strong (Δwg > 0), and

if y < Δwg , non-compliant Sanchos might find attractive to imitate compliant
Quixotes, rSQ

DC > 0 (in regions R and B ). However, if y > Δwg , then compliant
Quixotes would imitate non-compliant Sanchos, rQS

CD > 0. On the other hand, if
the cold-prickle from defection is strong, (Δcp > 0) and compliance is small
y < Δcp, then non-compliant Quixotes would be inclined to imitate compliant
Sanchos, rQS

DC > 0. Conversely, for y > Δcp, compliant Sanchos would imitate non-
compliant Quixotes, rSQ

CD > 0.

11In the cases for which nothing is said, non-compliance provides a higher payoff.
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4 Two Asymptotically Stable Equilibria

The evolutionary dynamics is characterized by the mean dynamics in (7)–(8), the
probabilities of switching strategies in (9)–(10), and the conditional imitation rates
defined in (12)–(13). For this evolutionary dynamics in variables (p, q), presented
in (26)–(27) in the Appendix, next proposition characterizes the different possible
equilibria.

Proposition 1 The evolutionary dynamics in (26)–(27) presents two unstable
equilibria, characterized by either full compliance, (p∗, q∗) = (1, 1), or zero
compliance (p∗, q∗) = (0, 0). Moreover, under condition (2) there also exists
a unique asymptotically stable fixed point of the evolutionary dynamics. This
equilibrium can be of two types12:

1. Scenario Q can be characterized by an upper bound on the warm-glow from
compliance:

wg ≡ αε ≤ s(d − 1)+ (1− s)(c − d) ≡ α̂ε, (14)

or equivalently, in terms of the share of Sanchos in the overall population:

s ≤ 1− αε − (d − 1)

σ
≡ 1−Δwg ≡ ŝ. (15)

Under this condition, the equilibrium lies within regions L or M, with

p∗Q = 0, q∗Q =
1+Δ−√(1−Δ)2 + 4(1− α)sε/σ

2(1− s)
∈ (0, 1). (16)

2. The scenario SQ is characterized by the opposite condition:

wg ≡ αε > s(d − 1)+ (1− s)(c − d) ≡ α̂ε. (17)

or equivalently,

s > 1−Δwg ≡ ŝ. (18)

The equilibrium lies within regions R or B, with:

p∗SQ =
−2σ(1−s)−(d−1)+√[d−1]2 + 4σαε(1−s)

2σs
∈(0, 1), q∗SQ = 1.

(19)

12Subscript Q highlights that only Quixotes comply, while subscript SQ indicates that both
Quixotes and Sanchos comply.
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Proof See Appendix.

Under condition (14), (0, q∗Q ) is the unique asymptotically stable equilibrium,
while under condition (17), the unique asymptotically stable equilibrium is given by
(p∗SQ, 1). The evolution of the share of compliance for Sanchos and Quixotes towards
either of these two equilibria is depicted in Figs. 3 and 4, for the parameters’ values
in (5). Additionally, Fig. 3 considers (s = 0.5, α = 0.6) a lower ratio of Sanchos
and a smaller warm-glow than Fig. 4 (s = 0.8, α = 0.7).

Fig. 3 (p, q) for
s = 0.5, α = 0.6

Fig. 4 (p, q) for
s = 0.8, α = 0.7



Compliance with Social Norms as an Evolutionary Stable Equilibrium 295

Under condition (17), compliant Quixotes do better than non-compliant
Quixotes, and more importantly, also better than non-compliant Sanchos. And
this remains true no matter how large the ratio of compliant Quixotes. Therefore, all
Quixotes would end up complying. When non-compliant Sanchos who revise their
strategy are paired to compliant Quixotes, some switch to compliance, which leaves
a positive rate of compliance among formerly disobedient Sanchos, pSQ > 0. The
equilibrium in regions B or R is then characterized by a unitary compliance rate
for Quixotes and a positive compliance rate for Sanchos (see Fig. 4). Conversely,
under condition (14), there is a threshold above which non-compliant Sanchos do
better. Hence, as the number of compliant Quixotes increases, non-compliance
becomes more attractive and ends up being the dominant strategy in the population
of Sanchos.

Corollary 1 The threshold α̂ε ∈ (d − 1, c − d) tends to c − d when s tends to 0,
and to d − 1 when s tends to 1. Therefore, if αε < d − 1 < α̂ε, the equilibrium in
scenario Q is the only feasible equilibrium regardless of the value of s.

As Fig. 5 shows, scenario SQ involving compliance among Sanchos requires
Quixotes who attach a sufficiently large warm-glow to compliance, wg > α̂ε. The
greater the ratio of Sanchos in the overall population, s, the lower will be (as we
will see later on) the share of compliance in the total population, y, and hence
the stronger the reward that Quixotes obtain from compliance. Therefore, when
paired with them, non-compliant Sanchos will imitate their compliant behavior.
Conversely, if the ratio of Sanchos in the global population is very small, s → 0,
then the threshold α̂ε rises towards c − d. But since αε ≤ ε < c − d condition
wg > α̂ε becomes highly demanding.

According to this corollary, a solution SQ, with a positive compliance rate among
Sanchos, is never feasible, if the warm-glow associated to compliance is not enough,
by itself, to induce compliance among Quixotes (αε < d − 1, i.e. Δwg < 0). That
is, if the willingness to comply for Quixotes when many other do not require a
strong cold-prickle from defection, then the payoff to compliant Quixotes is never
large enough to induce imitation to non-compliant Sanchos. Therefore, Sanchos
stick to their non-compliant dominant strategy. This is true regardless of how large
the quantitative difference between Sanchos and Quixotes might be.

Fig. 5 Equilibrium type and warm-glow
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Corollary 2 A positive share of compliance among Quixotes requires:

ε > ε(s) ≡ d − 1

1− s(1− α)
, with ε(s) ∈

(
d − 1,

d − 1

α

)
, ε′(s) ≤ 0. (20)

Conditions in (2) are not enough to guarantee compliance in the two-population
game. If the share of Sanchos in the overall population, s, tends to 0, then ε tends
to d − 1 and the condition (20) coincides with the lower bound in (2). However, if
s → 1 condition (20) converges to the condition of a positive Δwg , i.e. the warm-
glow from compliance must be enough to induce compliance among Quixotes even
with no cold-prickle from defection. Thus, Δwg > 0 is a sufficient condition for
q∗Q > 0, regardless of the value of s.

The following proposition presents the main features of the two equilibria
described in Proposition 1 and depicted in Figs. 3 and 4.

Proposition 2 The equilibrium under scenario Q is characterized by y∗Q > Δwg ,
p∗Q = 0 and q∗Q given in (16) satisfying:

q∗Q � Δ⇔ wg ≡ αε � d − 1+ σΔ2(1− s), (21)

or equivalently

q∗Q � Δ⇔ s � 1− Δwg

Δ2 . (22)

The equilibrium under scenario SQ is characterized by y∗SQ < Δwg , q∗SQ = 1 and
p∗SQ ∈ (0, 1) given in (19).

Proof See Appendix.

To interpret this proposition in terms of the warm-glow, notice first that d − 1 ≤
d − 1 + σΔ2(1 − s) ≤ α̂ε. As represented in Fig. 6, if the warm-glow satisfies
wg ∈ (d−1, d−1+σΔ2(1−s)), only Quixotes comply, and the share of compliance
in this population remains below its equilibrium value in a single population of
Quixotes, Δ. A larger warm-glow, wg ∈ (d − 1 + σΔ2(1 − s), α̂ε), would push
their compliance rate above Δ, but Sanchos still refuse to comply. They will only

Fig. 6 Share of compliance among Quixotes and warm-glow
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Fig. 7 Share of compliance among Quixotes and s

start to imitate Quixotes if the warm-glow that these latter attach to compliance is
sufficiently strong, satisfying wg > α̂ε.

Proposition 2 can also be read in terms of the ratio of Sanchos in the overall
population, s, as shown in Fig. 7. Assuming Δwg > 0 (otherwise, scenario SQ is
never feasible), then, since Δ ∈ (0, 1), it is easy to see that:

1− Δwg

Δ2
< 1−Δwg(≡ ŝ) < 1.

If the ratio of Sanchos in the overall population is small, s < ŝ, only Quixotes
comply. They will comply above the equilibrium in the single population game,
q∗Q > Δ, if s ∈ (1−Δwg/Δ

2, ŝ), and they will comply below Δ if the ratio of Sancho
is smaller s < 1−Δwg/Δ

2. So, when the ratio of Quixotes is very large, they will be
more strongly inclined to imitate the non-compliant behavior of Sanchos, showing
a small share of compliance.

To better understand this dual possibility of over- and under-compliance, let
us start with a single population of Quixotes at the equilibrium q∗ = Δ. The
incorporation of some Sanchos within this population will have a twofold effect
on the compliance decision of Quixotes. Firstly, a positive snowdrift effect is
associated with the snowdrift nature of the game for Quixotes. Since we are in
an equilibrium with zero compliance among Sanchos, the share of compliance
in the global population immediately diminishes. Because each Quixote prefers
compliance over universal disobedience, then a lower compliance rate increases the
Quixote’s incentive to comply. Secondly, a negative imitation effect is linked to
the imitative revision protocol. With no Sanchos, compliant Quixotes only compare
their payoff against the lower payoff of non-compliant Quixotes. However, with
the entrance of some Sanchos who do not comply in this Q scenario, compliant
Quixotes can now be paired with non-compliant Sanchos who enjoy a larger
payoff (in regions L and M in Fig. 2). This negative imitation effect, given by
q(1−p)s[y−Δwg]+, is stronger the greater the ratio of Sanchos, s, and it is weaker
the stronger is the warm-glow from compliance.

In scenario Q, the share of compliance in the global population, y∗Q , is at least
as large as Δwg (according to Proposition 2, and also shown in Fig. 3). This ratio
grows with the wg. However, even when Quixotes comply above Δ, their over-
compliance is not enough to counterbalance the zero compliance among Sanchos.
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The compliance rate in the global population is always lower than the compliance
rate in a world without Sanchos13: y∗Q ≤ Δ.

In scenario SQ, the warm-glow surpasses α̂ε, satisfying condition (17), then all
Quixotes comply, and some Sanchos also imitate their compliant behavior. Now,
although Δwg is larger, it serves as an upper bound for the share of compliance
in the global population, y∗SQ ≤ Δwg ≤ Δ. Then, in this scenario, the share of
compliance in the global population is again lower than its value in the case of a
single population of Quixotes, y∗SQ ≤ Δ.

Propositions 1 and 2 suggest that large shares of compliance are associated
with a strong warm-glow and a large ratio of Sanchos in the overall population.
The following subsection analyzes whether this is a monotonous result. Does a
higher warm-glow/a larger ratio of Sanchos increase compliance among Quixote
and among Sanchos monotonously?

5 Differences Between Populations and Compliance Shares

This section analyzes how the share of compliance in each populations and the share
of compliance in the global population are affected by the degree of dissimilarity
between them. In particular we focus, on the one hand, on the gap that separates
payoffs between the two populations, the warm-glow from compliance and the cold-
prickle from defection experienced by Quixotes. On the other hand, we analyze how
compliance is affected by the relative size of each population.

5.1 The Distance Between Sanchos and Quixotes, (ε, α)

From condition (17) it follows that the feasibility of an equilibrium with positive
compliance among Sanchos increases with the absolute distance between Sanchos
and Quixotes, ε, and particularly, with the warm-glow that Quixotes associate to
compliance, rather than the cold-prickle to defection, measured by α. Furthermore,
as stated in the proposition below, the compliance rates for both types of agents and
in both types of equilibria also increase.

Proposition 3 Under scenario Q, p∗Q = 0 and

∂q∗Q
∂α

,
∂q∗Q
∂ε

> 0 ⇒
(
∂y∗Q
∂α

=(1−s)∂q
∗
Q

∂α
> 0,

∂y∗Q
∂ε

=(1−s)∂q
∗
Q

∂ε
> 0

)
, ∀s ∈ (0, 1).

13This can be immediately proved from (16), provided that y∗Q = q∗Q(1− s). Graphically, as shown
in Fig. 2, an equilibrium in region L or M always lies below the y∗Q = Δ line.
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Under scenario SQ, q∗SQ = 1 and

∂p∗SQ

∂α
,
∂p∗SQ

∂ε
> 0 ⇒

(
∂y∗SQ

∂α
= s

∂p∗SQ

∂α
> 0,

∂y∗SQ

∂ε
= s

∂p∗SQ

∂ε
> 0

)
, ∀s ∈ (0, 1).

Proof See Appendix.

At the equilibrium, the compliance rates for Sanchos (when they comply) and
for Quixotes (when only they comply) increase with the discrepancy between the
payoffs obtained by Sanchos and Quixotes, as measured by ε, and in particular, by
the warm-glow from compliance for Quixotes, εα. Consequently, also the share of
compliance in the global population rises with this discrepancy in payoffs between
Sanchos and Quixotes.

Figure 8 presents the level curves for the compliance rate in the global population
in the ε − α plane for two different values s = 0.25 and s = 0.8. The level curve
y∗ = 1 − s is the frontier delimiting the two scenarios and represents the case in
which all Quixotes comply, q = 1 but still no Sancho imitates this behavior, p = 0.
In the gray region above this dotted line, the figure plots the level curves when all
Quixotes comply together with some Sanchos, y∗SQ ≥ 1 − s; and below this dotted
line, the level curves when only Quixotes comply, y∗Q ∈ [0, 1 − s]. The region
below the curve y∗ = 0 represents (ε, α) combinations with null compliance among
Sanchos and Quixotes.

This figure also highlights the result in Proposition 1, according to which the
existence of an equilibrium with a positive compliance rate among Sanchos requires
a sufficiently large gap between the payoffs attained by Sanchos and Quixotes. To
reach this type of equilibrium, the less dissimilar the payoffs are (ε small), the more
strongly the Quixotes must value compliance (α large), and vice versa. If Quixotes
are not too distinct from Sanchos, the latter would not imitate the former and only
Quixotes would comply. In fact, if Quixotes attain roughly the same (but slightly
higher) satisfaction from compliance, then it is the Quixotes who imitate Sanchos,
ending up with a low, or even a zero compliance rate in the white region below the
y∗ = 0 curve.

Fig. 8 y∗ level curves for s = 0.25 (left); and s = 0.8 (right)
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By comparing the two graphs in Fig. 8, we observe three expected results. Firstly,
the share of compliance in the global population decreases with the percentage of
Sanchos in the global population. Any point in the ε − α plane is characterized by
a greater share of compliance in Fig. 8 (left) (with a lower ratio of Sanchos in the
overall population). Secondly, the warm-glow required to induce compliance among
Sanchos decreases with the ratio of Sanchos in the overall population. The gray area
above the curve y∗ = 1 − s is greater for s = 0.8 (right) than for s = 0.25 (left).
Finally, a greater ratio of Sanchos also makes it easier for some Quixotes to imitate
the non-compliant behavior of Sanchos. Thus, a situation with null compliance in
the overall population becomes more likely, represented by a greater white region
below the level curve y∗ = 0. The effect of the ratio of Sanchos in the overall
population is more deeply analyzed in the following subsection.

5.2 The Relative Size of Each Population

This section studies how the compliance rates in each population, as well as in the
global population, are affected by the size of the population of Sanchos.14 It is worth
recalling that we consider the size of the two populations as constant. Individuals
may change their strategies, but their preferences remain unchanged, i.e. they remain
within their population. We analyze how differences in populations’ sizes affect,
first the share of compliance in the global population, and second the shares of
compliance in each population.

Proposition 4 The share of compliance in the global population decreases with
the ratio of Sanchos in the overall population. This is true under scenario Q and
scenario SQ:

∂y∗Q
∂s

< 0,
∂y∗SQ

∂s
< 0. (23)

Proof Under scenario Q, the share of compliance in the global population is y∗Q =
q∗Q (1−s)+0s, with q∗Q given in (16). The derivative with respect to s is unequivocally
negative. Likewise, for scenario SQ, y∗Q = 1(1 − s)+ p∗SQs, with p∗SQ given in (19).
Again its derivative with respect to s is unequivocally negative.

The share of compliance in the global population decreases with the relative size
of the population of Sanchos. The reasoning is straightforward under scenario Q: the
larger the number of non-compliant individuals in the overall population, the lower
the share of compliance. Under scenario SQ, some Sanchos comply; meanwhile, all
Quixotes do comply. Hence, again, the greater the ratio of Sanchos, the lower must

14Because we have normalized the total population to 1, the ratio of Quixotes is just the
complementary of the ratio of Sanchos.
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be the share of compliance in the global population. Although the ratio of Sanchos
in the overall population has an undeniable discouraging effect in the share of
compliance in the global population, its effect in each population is not so clear-cut.

Proposition 5 The share of compliance within the population of Quixotes under
both scenarios can be expressed as a function of the ratio of Sanchos, s:

q∗(s) =
⎧
⎨

⎩

1+Δ−√(1−Δ)2 + 4(1− α)sε/σ

2(1− s)
if s ≤ ŝ (wg ≤ α̂ε),

1 if s > ŝ (wg > α̂ε).

This function satisfies q∗Q (0) = Δ, q∗Q (ŝ) = 1, and it reaches its minimum at:

sq = 1+ σ
2Δwg − (1+Δ)

√
Δwg

(1− α)ε
. (24)

Thus, three situation are feasible:

1. αε > d − 1, i.e. Δwg > 0 and, denoting by α̃ = 1−Δ(1−Δ)σ/ε:

(a) α < α̃. Then sq ∈ (0, 1) and (q∗)′(s) < 0 for s ∈ (0, sq) and (q∗)′(s) > 0
for s ∈ (sq, ŝ).

(b) α ≥ α̃. Then sq ≤ 0 and (q∗)′(s) > 0 for any s ∈ (0, ŝ).

2. αε < d − 1, i.e. Δwg < 0. Then sq is a complex number and (q∗)′(s) < 0 for all
s ∈ (0, 1).

Proof See Appendix.

As already mentioned, the relative size of the Sanchos’ population has a twofold
effect on the compliance decision of Quixotes: the snowdrift effect, which induces
Quixotes to increase compliance in a world with a lower compliance rate, due to
the enlargement of the portion of Sanchos; and the imitation effect, which induces
Quixotes to imitate the non-compliant behavior of Sanchos.

If the warm-glow is enough to induce compliance when others disobey, wg >

d − 1, then two situations are possible. For a relatively small α ∈ ((d − 1)/ε, α̃),
Fig. 9 shows that for an initially very small ratio of Sanchos the imitation effect is
stronger. An increment in this population’ size would reduce compliance among
Quixotes who tend to imitate the non-compliant behavior of Sanchos. As the
ratio of Sanchos rises, the share of compliance decreases (because there are more
Sanchos who do not comply, and because less Quixotes comply). In consequence,
the snowdrift effect becomes stronger than the imitation effect and compliance
start rising among Quixotes. Incidentally, when the ratio of Sanchos reaches ŝ, all
Quixotes comply. Conversely, if the warm-glow is relatively strong wrt the cold-
prickle, α ≥ α̃, then the snowdrift effect is stronger than the imitation effect even
when the size of the Sanchos’ population is very small. The share of compliance
among Quixotes increases monotonously with the number of Sanchos in the overall
population, up until every Quixote complies (see Fig. 10).
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Fig. 9 q∗(s) for
α = 0.4 < α̃ = 0.81

Fig. 10 q∗(s) for
α = 0.9 > α̃ = 0.81

By contrast, if the warm-glow is not enough to guarantee compliance when
others defect, then the share of compliance in the population of Quixotes decreases
monotonously with the ratio of Sanchos. The imitation effect is stronger regardless
of each population’s size. More and more Quixotes imitate the non-compliant
behavior of a larger population of non-compliant Sanchos, as shown in Fig. 11.

The following proposition analyzes how the share of compliance in the popula-
tion of Sanchos is affected by the relative size of this population.

Proposition 6 The share of compliance within the population of Sanchos in both
scenarios can be defined as a function of the ratio of Sanchos:

p∗(s)=

⎧
⎪⎨

⎪⎩

0 if s ≤ ŝ (wg ≤ α̂ε),

−2σ(1−s)−(d−1)+√[d − 1]2 + 4σαε(1− s)

2σs
if s > ŝ (wg > α̂ε).

This function satisfies p∗(ŝ) = 0, and it reaches its maximum at:

s̄p = −2σ(1−Δwg)+ (c − d + σ)
√

1−Δwg

αε
. (25)
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Fig. 11 q∗(s) for α = 0.2,
with Δwg < 0

Fig. 12 p∗(s) for different α

Proof Considering p∗SQ in (19) as a function of s, with the help of Mathematica, we
compute the values at which (p∗SQ)

′(s) = 0. This equation has a negative root and a
positive root given by s̄p in (25). From (19), we know that p∗SQ(ŝ) = p∗SQ(1) = 0, and
p∗SQ(s) is continuous and strictly positive within the interval (ŝ, 1). Moreover there
is a unique positive value s̄p satisfying (p∗SQ)

′(s̄p) = 0. In consequence, this value s̄p
must lie within the interval ∈ (ŝ, 1) and p∗SQ(s) must reach a maximum at this point.

As shown in Fig. 12, the relative size of the Sanchos’ population has a non-
monotonous effect on the compliance rate of these individuals. Again two forces
are at stake here. As the number of Sanchos in the overall population grows, and the
share of compliance in the global population decreases, also increases the reward
to compliant Quixotes. In consequence more Sanchos are boosted to imitate their
compliant behavior. This is the prevailing force up until s̄p. From this value on, a
second and negative force dominates. As the number of Quixotes decays, although
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all of them comply, it becomes less and less likely for Sanchos to be paired with and
to imitate their compliant behavior. Sanchos are more and more often paired to other
Sanchos and the non-compliant dominant strategy in this population starts growing
with p∗SQ(s) tending to zero as s goes to 1.

Corollary 3 The value s̄p decreases with the absolute distance which separates
Sanchos from Quixotes and with the relative importance of the warm-glow with
respect to the cold-prickle:

∂s̄p

∂α
< 0,

∂s̄p

∂ε
< 0,

for all α ∈ (0, 1) and ε satisfying condition (2).
The compliance rates increase with the absolute distance which separates

Sanchos from Quixotes and with the relative importance of the warm-glow with
respect to the cold-prickle:

∂p∗SQ(s̄p)

∂α
> 0,

∂p∗SQ(s̄p)

∂ε
> 0.

In particular, the maximum is higher.

Proof See Appendix.

According to this corollary, the more dissimilar the two populations, or the more
biased towards a greater warm-glow from compliance rather than a cold-prickle
from defection, the wider is the interval with positive compliance among Sanchos.
Moreover, the compliance rate among Sanchos, p∗SQ(s), reaches its maximum for a
lower ratio of Sanchos in the overall population. And this maximum is characterized
by a larger compliance rate, as shown in Figs. 12 and 13.

5.3 Real-Life Examples

In our everyday life decisions, we continuously compare our gains with those of
others implementing different options. We clearly do so when we take purchasing
decisions as: whether to try a new restaurant instead of our favorite one, where to
go on vacations, or whether to follow the fashion in order to look more attractive.
Likewise, we also observe other people satisfaction in activities like paying taxes,
contributing to voluntary associations, or recycling. We collect information from our
friends and acquaintances and, more and more, we share experiences with unknown
people through the use of the social networks and Internet. And we believe that
it is seldom the case that we share their same preferences. Indeed although (for
simplicity) we are assuming only two type of individuals, one could think that there
are not just but many. Indeed, going to the extreme, each individual could have
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Fig. 13 p∗(s) for different ε

his specific payoff matrix, which could be very similar or far dissimilar to his new
neighbor.

An example of how we imitate others and obtain different reward are marketing
campaigns. The fancy car or the pair of jeans that we buy will rarely lead us to
the success that actors pretend to enjoy in the commercials. More connected to
social norms, an example could be the fund-raising television gala for charitable
causes. We observe on TV how rewarding is donating for the celebrities, who act
as role models or influencers. This induces some people, who would have not done
otherwise, to collaborate. Marketing campaigns are often undertaken by the fiscal
service on tax collection, or by the traffic authorities on road safety.

Examples of individuals having different preferences can be more clear when
confronting people from clearly different cultures. An extreme example could be
the missionaries, who are relatively few, whose preferences are rather different
from the locals’, and find highly rewarding to comply with their moral precepts.15

Thus, as Proposition 1 predicts, it is very likely that some of the locals embrace the
missionaries’ religion.

To highlight the main findings of the paper, consider individuals who have
grown up in a pleasant neighborhood with a well-established culture of following
social norms, either because neighbors really obtain satisfaction from compliance,
or because they dislike or fear the penalty associated with defection. Assume that
some of them move to a dirty and noisy neighborhood where people do not find it
attractive to follow social rules. Then, some of the primitive neighbors might imitate
the compliant behavior of the newcomers. This is more likely the more different the
preferences of the new and the primitive neighbors are, and will only occur if these
latter observe that the newcomers enjoy compliance, rather than dislike defection.

15Please note that we do not mean any superiority of the missionaries’ morality over other religions.
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The compliance decisions of newcomers are influenced by two effects. Because
of the deteriorated living environment, the snowdrift effect induces them to comply.
Conversely, the inappropriate behavior of the primitive neighbors discourages
compliance. These two effects are stronger the smaller is the share of newcomers.
As stated in Proposition 5 and Figs. 9, 10, and 11, if the new neighbors dislike
defection, rather than enjoy compliance, the imitation effect is stronger and they
will reduce their effort, the smaller their relative size. Conversely, if they attain a
strong satisfaction from compliance, the snowdrift effect prevails and the lower their
numbers, the more they will comply.

Conventional neighbors also value a clean and quiet environment, but they prefer
others to pay the cost. As Proposition 6 and Figs. 12 and 13 state, if there are
many newcomers, conventional neighbors will free-ride on them and enjoy a better
neighborhood. Conversely, if the number of newcomers is sufficiently small, the
satisfaction of these latter is so large that some of the primitive neighbors will imitate
them, aiming at a higher welfare. However, with even less newcomers, primitive
neighbors seldom meet them, and therefore very few will imitate their compliant
behavior.

Both newcomers and conventional neighbors will comply higher the more the
newcomers’ preferences differ from the primitive neighbors’, and specially the
greater their inner satisfaction from compliance.

6 Conclusions

The paper analyzes the compliance with social norms as a social dilemma involving
two types of individuals. The dilemma for pro-self Sanchos is described by a
prisoner’s dilemma game. On the other hand, pro-social Quixotes still have an
incentive to free-ride when others comply, but are willing to pay the cost of
compliance when others deviate. For them, the social dilemma is described as a
snowdrift game.

We have analyzed the compliance decisions of pro-self and pro-social norm-
using individuals, when their populations are not isolated from each other. Indi-
viduals in one population play against and imitate individuals from their own and
from the other population. A two-population evolutionary game is defined involving
Sanchos, with a payoffs matrix characteristic of a prisoner’s dilemma game, and
Quixotes, who obtain warm-glow from compliance and cold-prickle from defection,
and whose payoffs matrix is characteristic from a snowdrift game.

Evolutionary dynamics is defined considering an imitative revision protocol,
in particular, pairwise imitation. The imitative dynamics admits a unique asymp-
totically stable equilibrium. The nature of this stable equilibrium depends on the
characteristics which describe the populations of Sanchos and Quixotes, as well
as on the size of these populations. If the warm-glow that Quixotes attach to
compliance is not too large, or equivalently if the ratio of Sanchos in the global
population is low, then this equilibrium is characterized by zero compliance among
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Sanchos and a positive compliance rate (but not complete compliance) for Quixotes.
Alternatively, if the warm-glow for Quixotes is high, then all Quixotes comply
together with some Sanchos. What determines this latter equilibrium is a high degree
of dissimilarity between Sanchos and Quixotes and particularly, a strong warm-glow
from compliance rather than a strong cold-prickle from defection. Moreover, the
size of the population of Sanchos also increases the likelihood that some Sanchos
imitate the compliant behavior of Quixotes.

In the first equilibrium type, where only Quixotes comply, they can comply above
or below their compliance in the case of a single population of Quixotes. Thus, at
the equilibrium, they could over-comply to compensate the disobedient behavior
of Sanchos, or imitate them and under-comply. Over-compliance would require
a strong warm-glow from compliance or a large ratio of Sanchos in the overall
population.

The absolute distance that separates Quixotes from Sanchos, or the relative size
of the warm-glow over the cold-prickle, facilitates an equilibrium with a positive
compliance rate among Sanchos. Moreover, the wider this gap, the higher the
compliance rate in each population, and consequently in the global population.
Conversely, the compliance rate in the global population decreases with the ratio
of (reluctant-to-comply) Sanchos in the overall population. However, although
compliance decreases globally with the percentage of Sanchos, its effect over the
share of compliance in each population is diverse. In the equilibrium where only
Quixotes comply, the ratio of Sanchos in the overall population may increase
compliance if the warm-glow is large, or reduce compliance if it is small. With a
moderate warm-glow, the share of compliance for Quixotes is a u-shaped function
of the ratio of Sanchos in the overall population. In the equilibrium with full
compliance among Quixotes and partial compliance among Sanchos, a larger
percentage of Sanchos increases their compliance rate initially. However, as this
ratio becomes close to one the non-compliant strategy becomes dominant and the
share of compliance among Sanchos decreases to zero.
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Appendix: Proof of Propositions

Proof of Proposition 1 The system dynamics reads:

ṗ

σ
=(1−p)q(1−s)[Δwg−y]+

−p
{
(1−p)s

(
y+ d − 1

σ

)
+(1−q)(1− s)[y −Δcp]+

}
, (26)
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q̇

σ
=(1−q)

{
q(1−s)[Δ−y]++ps[Δcp−y]+

}

−q {(1−q)(1−s)[y−Δ]++(1−p)s[y−Δwg]+
}
. (27)

From this system, the evolution of the compliance rates among Sanchos, p, and
Quixotes, q, is analyzed separately for each of the five regions in the α − y plane,
resumed in Fig. 2. We can distinguish two situations depending on whether α < 1/2
(Δwg < Δcp), or α > 1/2 (Δwg > Δcp). The possible equilibria in each region and
their stability are also studied.

U: y > Δ. The dynamics reads:

ṗ = −p {(1− y)(y −Δ)σ + [(1− p)s + (1− q)(1− s)α]ε]} ≤ 0, (28)

q̇ = −q {(1− y)(y −Δ)σ + (1− p)s(1− α)ε]} ≤ 0. (29)

ṗ < 0, except if p = 0 or p = q = 1, when ṗ = 0. Similarly, q̇ < 0, except
for q = 0 or p = q = 1, when q̇ = 0. The point (0, 0) /∈ U, while (1, 1) ∈ U.
Thus (1, 1) is the only equilibrium in this region and it is unstable.

M: max
{
Δwg,Δcp

}
< y ≤ Δ. The dynamics in this region reads:

ṗ = −p
{
(1− p)s[(y −Δ)σ + ε] + (1− q)(1− s)(y −Δcp)σ

} ≤ 0,

q̇ = q {(1− y)(Δ− y)σ − (1− p)s(1− α)ε} .

As in region U, ṗ < 0, except if p = 0 or p = q = 1, when ṗ = 0, but
(1, 1) /∈ M. Furthermore:

q̇ ≷ 0 ⇔ (1− y)(Δ− y)σ ≷ (1− α)(1− p)sε.

From this dynamics, the only possible equilibrium in this region must satisfy
p = 0. In this situation q̇ = 0 under equation:

[1− q(1− s)][Δ− q(1− s)] = (1− α)s
ε

σ
. (30)

Or equivalently, for p = 0, q̇/q is given by the second order polynomial in q:

q2(1− s)2 − q(1− s)(1+Δ)+Δ− (1− α)s
ε

σ
,

which has one stable and one unstable root. The stable root is given by (16).
L: Δwg < y ≤ Δcp ≤ Δ (α < 1/2). The dynamics in this region reads:

ṗ=−p(1−p)s[y + d − 1]σ ≤ 0,

q̇={(1−q)y +q(1−p)s} (Δ−y)σ−sε[α(p−q)+(1−p)q)].
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Still in this region ṗ < 0, except if p = 0 or p = 1, when ṗ = 0. For Quixotes:

q̇ ≷ 0 ⇔ {(1−q)y +q(1−p)s} (Δ−y)σ ≷sε[α(p−q)+(1−p)q)].

The equilibrium in this region also requires p = 0. Plugging this into the
dynamics of q̇ and equating to zero leads again to Eq. (30).

The equilibrium (0, q∗Q ) may lie within this region M or region L. It will be
located in region M if max

{
Δwg,Δcp

}
< q∗Q (1 − s) ≤ Δ, and it will lie in

region L if Δwg < q∗Q (1− s) ≤ Δcp ≤ Δ.
R: Δcp < y ≤ Δwg ≤ Δ (α > 1/2)

ṗ = {p(1−y)+(1−s)q(1−p)} (Δ− y)σ − ε {(1− p)y + (1− s)α(p − q)} ,
q̇ = (1− q)q(1− s)(Δ− y)σ ≥ 0.

In this region q̇ ≥ 0, and q̇ = 0 if q = 0 (which does not belong to R) or q = 1.
For Sanchos, ṗ ≷ 0 if and only if:

[
y + (1− s)p

1− q

1− p

]
(Δ− y)σ ≷ ε

[
y + (1− s)α

p − q

1− p

]
,

In the limiting case of a very small ratio of compliant Sanchos, ṗ can be
approximated by:

ṗ|p=0 = (1− s)qσ
[
Δwg − y

]
,

which in this region is positive, increasing in α and decreasing in s.
The equilibrium in this region requires q = 1, and hence y = ps + 1 − s.

Plugging this into the dynamics ṗ, it follows that p must be either equal to 1
(but p = q = 1 does not belong to R) or satisfy equation:

[ps + (1− s)](Δ− ps − (1− s))σ = ε[ps + (1− s)(1− α)]. (31)

Equivalently, when q = 1, the expression ṗ/((1− p)σ) is given by the second
order polynomial in p:

−p2s2 − ps [2(1− s)+ d − 1]+ (1− s)
[
Δwg − (1− s)

]
,

which has one stable and one unstable root. The stable root is given by (19).
B: y ≤ min

{
Δwg,Δcp

} ≤ Δ. The dynamics reads:

ṗ = (1− p) {(Δ− y)yσ − ε[y − q(1− s)α)]} ,
q̇ = (1− q)

{
psσ(Δcp − y)+ q(1− s)(Δ− y)σ

} ≥ 0.



310 F. Cabo et al.

Since y < Δcp then q̇ ≥ 0 except if q = 1 or p = q = 0, when q̇ = 0. For
Sanchos:

ṗ ≷ 0 ⇔ (Δ− y)yσ ≷ ε[y − q(1− s)α].

This system has three equilibria. Two unstable equilibria (p∗, q∗) = (0, 0),
(p∗, q∗) = (1, 1) (which does not belong to this region), and a stable
equilibrium with q = 1 and p given by Eq. (31).

The equilibrium
(
p∗SQ, 1

)
may belong to region R or region B. It will lie in

region R if Δcp < p∗SQs + (1 − s) ≤ Δwg ≤ Δ, and it will lie in region B if
p∗SQs + (1− s) ≤ min{Δcp,Δwg} ≤ Δ.

It is easy to see that q∗Q > 0 for all s ∈ (0, 1). Moreover, under condition s <

1−Δwg ≡ ŝ, it can be seen that q∗Q < 1.
It is also immediate to see that condition s < 1−Δwg implies p∗SQ > 0. Likewise,

p∗SQ < 1 under condition−αεs < c−d−αε. But this inequality is always true under
condition (2).

The proof of the asymptotic stability can be found in Cabo and García (2018).

Proof of Proposition 2 Conditions (21) and (22) are straightforward from the defi-
nition of q∗Q in (16).

Under scenario Q, condition y∗Q > Δwg is equivalent to q∗Q (1− s) > Δwg , or:

1+Δ−√(1−Δ)2 + 4(1− α)sε/σ

2
> Δ− (1− α)

ε

σ
,

or equivalently:

1−Δ+ 2(1− α)
ε

σ
>

√
(1−Δ)2 + 4(1− α)sε/σ .

The LHS is positive, hence, if we square both sides, after some algebra, we end up
with condition:

s < 1−Δwg,

which is equivalent to condition (14) that characterizes scenario Q.
Likewise, under scenario SQ, condition y∗SQ < Δwg is equivalent to p∗SQs + (1−

s) < Δwg . Following a similar analysis, we end up with condition s > 1 − Δwg ,
which is equivalent to condition (17) that characterizes scenario SQ.

Proof of Proposition 3 In the scenario with p∗Q = 0 and q∗Q > 0,

∂q∗Q
∂α

= sε

(1− s)σ
√
(1−Δ)2 + 4(1− α)sε/σ

> 0,



Compliance with Social Norms as an Evolutionary Stable Equilibrium 311

and

∂q∗Q
∂ε

=
√
(1−Δ)2 + 4(1− α)sε/σ + 1−Δ− 2(1− α)s

2σ(1− s)
√
(1−Δ)2 + 4(1− α)sε/σ

.

This latter derivative is positive if and only if:

√
(1−Δ)2 + 4(1− α)sε/σ > 2(1− α)s − (1−Δ).

If the RHS of this inequality was negative, ∂q∗Q /∂ε > 0. Conversely, if the RHS was
positive, raising both sides to the square, and rearranging terms,

sα > s −
[
1−Δ+ ε

σ

]
.

But according to (15), an equilibrium with no compliance among Sanchos requires
s < 1−Δ+ (1− α)ε/σ < 1−Δ+ ε/σ . Therefore, the RHS in inequation above
is negative and hence, it always holds, which proves ∂q∗Q /∂ε > 0.

In the scenario with q∗SQ = 1 and p∗SQ > 0,

∂p∗SQ

∂α
= (1− s)ε

s
√
(ε−σΔ)2+4σαε(1−s)

> 0,

∂p∗SQ

∂ε
= (1− s)α

s
√
(ε−σΔ)2+4σαε(1−s)

> 0.

The marginal effect of α and ε in the global compliance rates immediately follows,
provided that y∗Q = q∗Q (1− s) and y∗SQ = p∗SQs + (1− s).

Proof of Proposition 5 Considering q∗Q in (16) as a function of s, one can prove that
(q∗Q )′(s) � 0 if and only if:

(1− α)2(1− s)2
( ε
σ

)2 −Δwg

(
1−Δ2 + 4(1− α)

ε

σ

)
� 0. (32)

It is ease to see that αε < d − 1 implies that the expression in (32) is positive, and
therefore, (q∗Q )′(s) < 0, regardless of the value of s.

For the more general case of αε > d − 1, the expression in (32) vanishes for
two values of s, one greater than one and the other given by sq in (24). From
Proposition 1 we know that q∗Q < 1 for all s ∈ (0, ŝ) and q∗Q (ŝ) = 1.

• If sq ∈ (0, ŝ), then, being q∗Q (s) a continuous function, it must hold true that
(q∗Q )′(s) < 0 for s ∈ (0, sq) and (q∗Q )′(s) > 0 for s ∈ (sq, ŝ). Therefore, if
sq ∈ (0, ŝ), q∗Q (s) would start at q∗Q (0) = Δ, decrease to reach its minimum at
q∗Q (sq), and increase from that point till q∗Q (ŝ) = 1.
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• It is nonetheless possible that sq < 0 and in that case, q∗Q (s) would monotonously
increase from q∗Q (0) = Δ, for all s ∈ (0, ŝ), again to q(ŝ) = 1.

We can compute, with the help of Mathematica, the unique value of α at which
sq = 0, given by α̃ = 1 − Δ(1 − Δ)σ/ε. Moreover, after some algebra, it can be
proven that ∂sq/∂α < 0 if and only if:

(1+Δ)2(1− α)2
( ε
σ

)2 + 4(1−Δ)2ΔwgΔ > 0.

And this is true whenever αε > d − 1 and hence Δwg > 0. In consequence, if
α > α̃, sq < 0 and q∗Q (s) increases for all s ∈ (0, ŝ), while for α < α̃, sq > 0 and
q∗Q (s) shows a u-shape within (0, ŝ).

Proof of Corollary 3 The derivatives ∂s̄p/∂α and ∂s̄p/∂ε are both negative under
the same condition:

[2(c − d)− αε](c − d + σ) > 4(c − d)σ

√
(1−Δwg).

After some tedious algebra, this condition can be transformed to:

(1−Δwg)[(c − d − σ)2 + 2(c − d)] + 4αε(c − d) > 0,

which clearly holds.
Proving that ∂ŝ/∂wg < 0 is straightforward.
Finally, as stated in Proposition 3, ∂p∗SQ/∂α > 0 and ∂p∗SQ/∂ε >. Therefore, also

the maximum is reached at a higher value.
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Building Efficient Institutions: A
Two-Stage Differential Game

Fabien Ngendakuriyo and Puduru Viswanada Reddy

Abstract We consider a two-stage dynamic game with a corrupt government and
civil society as its players. We characterize open-loop Nash equilibria and an interior
switching time from a regime with high government corruption which persists in the
first stage (bad regime) to a free-corruption regime and greater institutional quality
(good regime, second stage). We found that an increase of optimism (pessimism)
in the society will lead the civil society to invest less (more) efforts to fight
corruption whereas a corrupt government will invest more (less) efforts in repression
policy. Overall, the numerical results show that the higher the efficiency of the civil
monitoring effort, the efficiency of institutions and the lower the discount rate; the
higher the inertia which will lead the economy to a much earlier switch to good
regime with low corruption as the jump occurs early.

Keywords Corruption · Differential games · Regime switching

1 Introduction

Several studies in economics literature demonstrated that institutions are key
factor determining growth and economic development (see, e.g., Acemoglu et al.
2005; De 2010; Bidner and François 2010). In a more comprehensive way, Lloyd
and Lee (2018) reviewed the recent (post-2000) literature on the institutional
economics analysis and pointed out that several theoretical and empirical studies
reminded us that institutions matter and are a significant determinant of the long-
run growth/prosperity performance of economies. In contrast, the factors leading to
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failure and poor institutions such as corruption are detrimental to economic develop-
ment and ultimately rise rent-seeking activities in the economy. It is in this context
that Ngendakuriyo (2013) and Ngendakuriyo and Zaccour (2013, 2017) analyzed
how to affect institutional change in the context where a corrupt government faces
an active civil society engaged in the fight against the institutionalized-corruption.
These papers analyzed dynamic interaction between citizens and government where
the civil society monitoring efforts strive to improve the quality of institutions
whereas the (corrupt) government’s repression has the opposite effect.

In particular, following Hirschman (1970) and Dowding et al. (2000), Ngen-
dakuriyo (2013) characterized a permanent interaction between an active civil
society and a corrupt government, where civil society may protest or not against
the government abuse and the government may retaliate or not any protest from
the citizens. Two set of strategies were differentiated: S1 for civil society, with S1 =
{V oice, Loyalty} and S2 for Government, with S2 = {Retaliate,Not Retaliate}.
Therefore, two cases were solved, namely a one-agent differential game (Voice, Not
Retaliate) and a two-agent open-loop differential game (Voice, Retaliate).

Furthermore, Ngendakuriyo and Zaccour (2013) extended the two-agent dif-
ferential game analysis (Voice, Retaliate) by characterizing the subgame-perfect
feedback equilibria and assessing the circumstances under which the players are bet-
ter off precommitting to a course of action (i.e., playing open-loop strategies) than
adopting state-dependent strategies (i.e., feedback or Markov-perfect strategies). In
addition, Ngendakuriyo and Zaccour (2017) extended the latter paper by introducing
citizens heterogeneity and sequential strategic interaction through a leader–follower
game, with the government acting as a leader while civil society organizations are
followers who may compete or coordinate their strategies.

These situations raise the question of how to ensure that a “best/optimum”
institutional level (free-corruption regime) is attained which will augment the
amount of labor devoted to the productive activities. Yet Argandona (1991) argued
that in the short term the institutional change may be efficient or not and that the
social evolution will bring an efficiency optimum in a very long time span when
experience can accumulate (and the opposition to the innovation may be defeated)
and low transaction costs associated with new (best) institution may prevail. In
addition, besides the policy or authority-induced institutional changes which can
not guarantee efficiency, the author highlighted that changes in values and attitudes
are also a causal factor of institutional change. Self-explanatory examples provided
are the growing popular attitude against slavery where many voices had protested
against it over centuries and the changing role of women in our society which is also
the result of a change in ideas and values. Obviously, the inertia in the society tends
to maintain the status-quo. In that sense, when the institutional quality is high the
inertia pushes it up and the initial prevailing institutions will improve. Conversely,
when the institutional quality tends to flow down the inertia pushes it down and the
initial prevailing institutions will further deteriorate.

Likewise, it is of great interest to address the following question in the context of
our institutional game: Under which circumstances a society with high prevalence
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of endogenous corruption may eradicate the corruption and switch to a society with
free or very low corruption in the process of building efficient institutions? For
example, the corruption perception index (CPI) of transparency international ranks
countries and territories based on how corrupt their public sector is perceived to be
on a scale of 0 to 100, where 0 means that a country is perceived as highly corrupt
and 100 means it is perceived as very clean.1 The scores and the ranks may change
in both directions, i.e., a country may lose or gain in terms of scores or ranks over
time. Intuitively, the countries with CPI scores above 50 may have more chances
to improve in corruption eradication while it may require tremendous efforts to
reduce the corruption in the countries with CPI scores below 50. It would be thus
interesting to assess under which circumstances a country can leave the group of
the most corrupt countries to be classified among the least corrupt countries as it is
well known that good governance and institutions are the key engine for growth and
economic development.

To answer the above research question, we extend the two-agent open-loop
differential game (Voice, Retaliate) characterized in Ngendakuriyo and Zaccour
(2013) by introducing the effects of inertia in the society which induce positive
(negative) feedback depending on the social perception of the prevailing institu-
tional quality. Throughout the paper, the government’s retaliation is considered as
government pressure to civil society through fighting back against the citizens’
initiatives in fight against government corruption. This will allow us to characterize
an equilibrium switching time where the equilibrium moves from a regime with
corruption to a free-corruption regime. Obviously, characterizing strategies which
exhibit multiple steady states reflects the Skiba phenomenon (see Skiba 1978;
Dawid et al. 2017), which is largely inherent to most dynamic optimization
problems displaying coexisting multiple stable steady states. Here the idea implies
a two-stage analysis where government corruption persists in the first stage (bad
regime) while questioning the level of efforts to be invested by the society to jump in
the second stage (good regime) with low corruption and greater institutional quality.

The rest of the paper is organized as follows. Section 2 introduces the model
and Sect. 3 discusses the equilibria. Section 4 presents the numerical results while
Sect. 5 briefly concludes.

2 The Economy

We slightly modify the model in Ngendakuriyo and Zaccour (2013) by introducing
the effects of optimism/pessimism in the society. We therefore consider that the
economy is populated by a continuum of identical consumers who inelastically

1Since 1995, the Non-Governmental Organization Transparency International (henceforth TI)
provides an index of perception of corruption for a number of countries across the world.
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supply labor to produce the output according to the following additive production
function for tractability purposes:

Y (t) = αq(t)+ θ(t)F (L (t)),

where L (t) is the amount of labor, q (t) is the institutional quality, and θ(t) is
the total factor productivity (TFP) at time t , with t ∈ [0,∞) and α is a positive
parameter measuring the external impact of the institutional quality in the economy.

We assume that the evolution of the institutions can be well approximated by the
following linear-differential equation:

q̇(t) =

⎧
⎪⎪⎨

⎪⎪⎩

bw(t)− βx(t)− a, q(t) < qth

bw(t)− βx(t), q(t) = qth

bw(t)− βx(t)+ a, q(t) > qth

, q(0) = q0 ≥ 0 (1)

where w(t) is the civil monitoring effort, x (t) is the government pressure, and b

and β are positive parameters. The parameter b captures the efficiency of the civil
society’s monitoring while β captures the impact of government pressure on the
institutional change and the term a captures the degree of inertia in the society
with a ≥ 0. If the perception of the institutional quality is too damaged, unless
a strong social activism, it will deteriorate even worse. More precisely, we assume
that if institutional quality improves beyond a certain threshold qth, then optimism
in the society sets in and the inertia will push it up that further improves institutional
quality. Likewise, if institutional quality deteriorates below the threshold qth, then
inertia will push it down and the institutional quality will continue decreasing.

The output produced is shared between a corrupt agent (Government) and a non-
corrupt one (Consumer). The corrupt agent takes a share φ of the public goods
production, where φ ∈ (0, 1) and the non-corrupt agent the share (1 − φ). In
our framework, we assume that corruption depends positively on the government
pressure such that φ = φ(x) with φ′(x) > 0.

The consumers’ participation in the civil society reduces the amount of labor
devoted to the production sector. Assuming that the time available to each consumer
is normalized to one, then the time-allocation constraint for consumers is L (t) +
w (t) = 1. Consequently, the level of consumption at time t is C (t) = (1 −
φ(x(t)))Y (t) and the production function becomes

Y (t) = αq(t)+ θF (1− w (t)).

To keep the model as simple as possible, without however much loss in
qualitative insight, we retain an additive specification of the production function
with an AK form for the second term with constant TFP, Y (t) = αq(t) + θL (t);

a quadratic cost function of civil monitoring effort f (w (t)) = w2 (t)

2
and a
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quadratic cost function of implementing punishment mechanisms g(x (t)) = x2(t)

2
.

Furthermore, linear utility functions for players, corresponding to their shares in
production, that is,

UG (t) = φ(x)[αq(t)+ θ (t) (1− w (t))],
UC (t) = (1− φ(x)) [αq(t)+ θ (t) (1− w (t))],

where G stands for Government and C for Consumer. Furthermore, we take a
linear corruption technology φ(x) = κx. Denoting by ρ the common discount rate,
the optimization problems of Government and a representative Consumer are as
follows:

VG = max
xt

∫ ∞

0
e−ρt [UG(t)− g (x (t))] dt,

VC = max
wt

∫ ∞

0
e−ρt [UC(t)− f (w (t))] dt,

subject to the dynamics in (1).
Omitting from now on the time argument when no ambiguity may arise and

substituting for UG, g (x) , UC , and f (w), the two players’ optimization problems
become

VG = max
xt

∫ ∞

0
e−ρt

[
κx(αq + θ(1− w))− x2

2

]
dt, (2)

VC = max
wt

∫ ∞

0
e−ρt

[
(1− κx)(αq + θ(1− w))− w2

2

]
dt. (3)

subject to the dynamics in (1).
To wrap up, by (1) and (2)–(3) we have defined a two-player two-stage

differential game with two control variables w(t), x(t) and one state variable q(t),
with w ∈ [0, 1] and 0 � x < 1

κ
.

3 Equilibria

We characterize and compare the open-loop Nash equilibria based on hybrid
maximum principle in the two regime, namely regime 1 where q(t) < qth and
regime 2 where q(t) > qth. We also characterize the equilibrium switching time
where the equilibrium moves from regime 1 to regime 2. Although an open-loop
equilibrium is not sub-game perfect, a Markov-perfect solution would make the
problem intractable.
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Let (w∗, x∗) represent the open-loop Nash equilibrium. The open-loop Nash
equilibria are obtained by solving simultaneously the following two hybrid optimal
control problems2:

(PC) VC(q(0), w
∗, x∗) ≥ VC(q(0), w, x∗), ∀w ∈ [0, 1]

subject to q̇(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(bw(t)− βx∗(t))− a, q(t) < qth

bw(t)− βx(t), q(t) = qth

(bw(t)− βx∗(t))+ a, q(t) > qth

, q(0) = q0 ≥ 0,

(PG) VG(q(0), w
∗, x∗) ≥ VG(q(0), w

∗, x), ∀x ∈ [0, 1/κ]

subject to q̇(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(bw∗(t)− βx(t))− a, q(t) < qth

bw(t)− βx(t), q(t) = qth

(bw∗(t)− βx(t))+ a, q(t) > qth

, q(0) = q0 ≥ 0.

In the interior of each regime the necessary conditions follow from the regular
maximum principle and at the switching instant, the necessary conditions are
patched using some consistency conditions. As is usual in an infinite-horizon
setting, we seek stationary strategies and focus the analysis on steady-state values.

Proposition 1 Assuming an interior solution in regime i, the unique stable steady-
state open-loop Nash equilibrium is given by

xssi = b(bα − θρ)+ aiρ

bκ(bα − θρ)+ βρ
,

wss
i = (bα − θρ)(β − aiκ)

bκ(bα − θρ)+ βρ

and the institutional quality by

qss
i = bκ2ρθ2 − αbβκθ + αβ2 − bρθ − βκρθ − βκρθ2 + aiκ

2ρθ2 + aiρ

ακρ (β − bκθ)

+ (β − aiκ)
(
b2 + 2κθbβ − β2

)

κ (β − bκθ) (bκ(bα − θρ)+ βρ)

where a1 = −a and a2 = a. The above steady-state values require that 0 < wss
i <

1, 0 < κxssi < 1 and qss
i > 0, for i = 1, 2, and qss

1 < qss
2 .

2See Tomiyama (1985), Makris (2001), Shaikh and Caines (2007), Seierstad and Stabrun (2010),
and Long et al. (2017) for a study of multi-stage or hybrid optimal control problems.
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Proof See the Appendix. �
It can be shown that equilibrium steady-state values are positive if bα− θρ > 0,

b(bα − θρ) > aρ and β > aκ implying that a ∈ [0,min(β
κ
,
b(bα−θρ)

ρ
)].

Furthermore, the condition wss
i < 1 is fulfilled for the values of parameter a such

that −A < a < A, with A =
[
b + βρ

κ(bα−θρ)
− β

κ

]
. Obviously one needs A > 0 to

guarantee that this condition holds for a > 0
Observe that the impact of the parameter a on the control policies is as follows:

∂xss1

∂a
< 0,

∂wss
1

∂a
> 0,

∂xss2

∂a
> 0,

∂wss
2

∂a
< 0

and hence, implying that increasing pessimism in the society lead the civil society to
invest more efforts to fight corruption whereas a corrupt government will invest less
effort as the prevailing worse environment is favorable to rent seeking and predatory
activities. Likewise, increasing optimism in the society lead the civil society to
invest less efforts to fight corruption and thus more time is allocated to productive
activities whereas a corrupt government will invest more effort as the prevailing
environment is detrimental to rent seeking and predatory activities.

In addition, it can be shown that the impact of the parameter a on the equilibrium
points of the institutional quality at steady state is given by

dqss
2

da
= −dqss

1

da
= ρκ2θ2 − αbκ2θ + αβκ + ρ

ακ(ακb2 − κρθb + βρ)
. (4)

implying that increasing values of the parameter a, the equilibrium points move
further away. Moreover, the parameters are chosen to satisfy ρκ2θ2−αbκ2θ+αβκ+
ρ > 0 to ensure that these steady-state values satisfy the separability condition
qss

1 < qss
2 meaning that more efficient institutions prevail in regime 2.

Proposition 2 Assume the equilibrium state trajectory q∗(.) undergoes a transition
from regime i to regime j at time τ , with i, j ∈ {1, 2} and i �= j , that is q∗(τ ) = qth
with τ ∈ [0,∞]. From the necessary conditions for optimality associated with the
hybrid optimal control problems (2) and (3), there exists an interior equilibrium
switching time τ for which the equilibrium state trajectory enters regime j from
regime i and ensures that the following Hamiltonian continuity conditions hold true:

Hi
C(q

∗(τ ), w∗(τ ), x∗(τ ), λiC(τ )) = H
j
C(q

∗(τ ), w∗(τ ), x∗(τ ), λjC(τ )), (5)

Hi
G(q

∗(τ ), w∗(τ ), x∗(τ ), λiG(τ)) = H
j
G(q

∗(τ ), w∗(τ ), x∗(τ ), λjG(τ)). (6)

Proof See the Appendix. �
It can be shown that under these matching conditions, an interior switching time,

i.e., τ > 0, exists and the jumps λjC(τ)−λiC(τ ) and λ
j
G(τ)−λiG(τ) can be calculated
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when the equilibrium state trajectory undergoes a transition from regime i to regime
j with i, j ∈ {1, 2} and i �= j .

At steady state, the Jacobian matrix associated with the dynamical system in both
the regimes (9) and (11) is given by:

⎡

⎢⎢
⎣

−ακ(β−bκθ)

κ2θ2+1
b(b+βκθ)

κ2θ2+1
β(β−bκθ)

κ2θ2+1
α2κ2

κ2θ2+1
ρ − αbκ2θ

κ2θ2+1
− αβκ

κ2θ2+1

− α2κ2

κ2θ2+1
αbκ2θ

κ2θ2+1
ρ + αβκ

κ2θ2+1

⎤

⎥⎥
⎦ .

The eigenvalues of the above Jacobian matrix are

ζ 1 = ρ,

ζ 2,3 =
ρ

2
±
√

4bακ2(bα − ρθ)+ 4βακρ + κ2ρ2θ2 + ρ2

2(κ2θ2 + 1)
.

This implies that the equilibrium (xssi , wss
i ), i = 1, 2 is a saddle point in the space

(q, λC, λG) since one eigenvalue among the three is negative and the two others
are positive. From the center manifold theorem, there exists a one dimensional
stable manifold in both the regimes. We denote Ws

1 and Ws
2 as the stable manifolds

associated with the equilibrium points in regimes 1 and 2, respectively. Next, the
equilibrium co-states can be parametrized uniquely, along the stable manifolds,
as functions of the equilibrium state q∗(t) as λiC(t) = P i

C(q
∗(t)) and λiG(t) =

P i
G(q

∗(t)) for i = 1, 2, so that Ws
i := {(q∗(t), P i

C(q
∗(t)), P i

G(q
∗(t))), t ∈ [0,∞)}

for i = 1, 2. The equilibrium state trajectory then satisfies

q̇∗(t) =

⎧
⎪⎪⎨

⎪⎪⎩

f (q∗(t), P 1
C(q

∗(t)), P 1
G(q

∗(t)))− a q∗(t) < qth

f (q∗(t), P 2
C(q

∗(t)), P 2
G(q

∗(t))) q∗(t) = qth

f (q∗(t), P 2
C(q

∗(t)), P 2
G(q

∗(t)))+ a q∗(t) > qth,

(7)

where the function f (.) is obtained by substituting for x and w in (1) using (8). Start-
ing at any initial quality q0 we denote V i

C(q0) and V i
G(q0) to be the objectives (5)

and (6) evaluated along the stable manifold Wi
s corresponding to regime i

V i
C(q0) =

∫ ∞

0
e−ρt

[
(
αq∗(t)+ θ(1− w∗(t))

)
(1− κx∗(t))− w∗2(t)

2

]

dt,

V i
G(q0) =

∫ ∞

0
e−ρt

[
(
αq∗(t)+ θ(1− w∗(t))

)
(κx∗(t))− x∗2(t)

2

]

dt.

Notice, here the equilibrium objectives may not exist for all the values of q0, that is
the equilibrium objectives may not be global functions of q0. This situation arises
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because the stable manifold Ws
j corresponding to regime j fails to have a suitable

extension in regime i and vice versa. These local functions capture the optimal
behavior of both players with the constraint that the equilibrium state trajectory
q∗(.) converges to a locally stable steady state.

Since there exist multiple steady states we are interested in which steady state
will be attained using the Nash equilibrium strategies. More pertinently, we are
interested in locating the initial conditions where these local equilibrium objective
functions intersect. It is clear that at these points3 the both players receive equal
values from the trajectories converging to different steady states. These initial
conditions are defined formally as follows:

Definition 3 (Indifference Point) Let qI ∈ [qmin, qmax] be such that there are two
equilibrium policies such that the associated state trajectories qa(.) and qb(.) satisfy
qa(0) = qb(0) = qI and qa(t) �= qb(t) for some t ∈ [0,∞). Furthermore, if the
equilibrium values satisfy the conditions V 1

C(qI ) = V 2
C(qI ) and V 1

G(qI ) = V 2
G(qI ),

then qI is called an indifference point.

Clearly, starting at these points the players are indifferent in choosing between the
equilibrium policies which are obtained along the stable manifolds W 1

s and W 2
s for

regime 1 and 2, respectively.

Definition 4 (Threshold Point) Let q̂ ∈ [qmin, qmax] be such that in the neigh-
borhood of q̂ there exist two equilibrium state trajectories qa(.) and qb(.) such that
limt→ qa(t) �= limt→ qb(t), that is, the trajectories converge to different limit sets.

As it is not possible neither to analytically solve for the interior switching time
τ nor to compare analytical expressions of the equilibrium steady-state values
obtained in the two regimes, we turn to numerical analysis.

4 Numerical Illustration

The model has eight parameters, namely b, β, α, κ , ρ, θ , a, and qth. Taking into
account non-negativity constraints on control and state variables and production, as
well as the stability condition of the steady state, we fix the base-case parameter
values as follows: b = β = 0.45, α = 0.3, κ = 0.2, ρ = 0.08, θ = 1. The
parameters a and qth are chosen so that there exist two saddles on either side of the
discontinuity line q = qth. This condition is met by setting qth = 1

2 (q
ss
1 + qss

2 ).
When a = 0 then qss

1 = qss
2 , and saddle points coincide. For the base-case scenario,

consider a = 0.15.

3In the optimal control context, such points are called Skiba points or DNSS points (see Skiba
1978; Sethi 1977; Dechert and Nishimura 1983).
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Table 1 Equilibrium results for the benchmark case

Regime wss xss qss Y SS VC VG

Regime 1 (bad regime) 0.6447 0.3114 5.7563 1.7900 21.7839 1.0126

Regime 2 (good regime) 0.5641 0.8974 18.5524 5.6607 59.5877 8.4386

4.1 Comparison

Now, we compare the two equilibrium steady-state values. For illustration purposes,
we provide in Table 1 the results in the benchmark case.

These results show that the regime 2 of low or free-corruption regime yields
a much higher institutional quality and output compared to regime 1 of high
government corruption. Furthermore, the civil society and the government obtain
higher payoffs in regime 2 than in regime 1. The rapacity of the government is
also higher in the good regime meaning that inertia allows the institutional quality
to grow faster and the government takes advantage by imposing a higher pressure
to steal a higher share of output, and still the institutional quality does not decay.
In addition, the civil society invests more monitoring efforts in regime 1 of high
government corruption and less efforts once the society is in the regime 2 of greater
institutional quality. In contrast, a corrupt government invests more efforts in its
repression policy in the latter regime as the environment is not favorable to rent-
seeking activities compared to the former. In all our numerical simulations, we
observe the same phenomena as in this benchmark case, and therefore, state the
following claim:

Claim 1 The equilibrium steady-state values compare as follows:

wss
2 < wss

1 , xss2 > xss1 , qss
2 > qss

1 ,

Y ss
2 > Yss

1 , V 2
C > V 1

C, V
2
G > V 1

G.

4.2 Sensitivity Analysis

Keeping b, β, α, κ , ρ, θ at their base-case values, the sensitivity analysis obviously
focuses on the parameters a and qth. From (4) the equilibrium points move further
away from qth for increasing values of a.

Figure 1 illustrates the equilibrium payoffs when the parameter a is set to its base-
case value, i.e., a = 0.15. Notice that both the payoffs V 1

C and V 2
C are local as they

are not defined for the entire state space. Here, the stable manifold corresponding to
saddle point in regime 2 could not be extended below q̂, and as a result V 2

C is not
defined for q(0) < q̂. Again, the stable manifold corresponding to regime 1 could
not be extended in regime 2. So, V 1

C is defined only for q(0) ∈ [0, qth]. Furthermore,
it was observed that for all the initial conditions q(0) ∈ [q̂, qth] V 2

C > V 1
C and
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Fig. 1 The dark bold curve represents the (local) function V 2
C(V

2
G) in regime 2 and the gray

bold curve represents the (local) function V 1
C(V

1
G) in regime 1. The dot-dashed dark bold curve

represents the local function V 2
C(V

2
G). Here, the stable manifold W 2

s could be extended to regime
1 for values of q(0) ∈ [q̂, qth]. The equilibrium points in regime 1 and regime 2 are illustrated by
the gray and dark dots, respectively, on the q-axis. The (local) functions V 2

C(V
2
G) is continuous and

has a kink at the discontinuity line qth. (a) V i
C represents the equilibrium payoff associated with

reaching the equilibrium in regime i. (b) V i
G represents the equilibrium payoff associated with

reaching the equilibrium in regime i

V 2
G > V 1

G. For these initial conditions, players are better off choosing the Nash
equilibrium strategy which results in the state variable converging to equilibrium
in regime 2. Whereas for all the initial conditions q(0) ∈ [0, q̂) the players are
better off choosing the Nash equilibrium strategies which results in the state variable
converging to the equilibrium in regime 1. Implicitly, the initial condition q̂ has a
threshold property as defined in the previous section. Furthermore, we notice that
the functions V 2

C and V 2
G are continuous but kinked at the discontinuity line qth,

which is a result of Hamiltonian continuity property also elaborated in the previous
section.

Intuitively, the above results suggest that as building efficient institutions is a
process, as long as the institutional quality is lower than a certain level far from the
threshold (here, q(0) ∈ [0, q̂)), the institutional inertia will prevail and the economy
will stick to bad regime with high corruption and social pessimism. In the contrary,
if the institutional quality is initial higher and exceeds a certain level approaching
the threshold (i.e., q(0) ∈ [q̂ qth]), institutional changes can accumulate towards the
threshold and the economy will switch to good regime with low/free corruption and
high social optimism.

Figure 2 illustrates the equilibrium payoffs when the parameter a is increased
to 0.25. We notice that the equilibrium points in the regimes exist and move further
apart. Again, there exists a threshold point q̂ and the qualitative behavior of the Nash
equilibrium strategies is similar to the case with a = 0.15.
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Fig. 2 With increasing values of the parameter a, the equilibrium points move further away. The
qualitative behavior of the value functions is similar to the case with a = 0.15. (a) V i

C represents
the equilibrium payoff associated with reaching the equilibrium in regime i. (b) V i

G represents the
equilibrium payoff associated with reaching the equilibrium in regime i

Fig. 3 With decreasing values of the parameter a, the equilibrium points move closer. The function
V 2
C is global as the stable manifold W 2

s could be extended to regime 1 for the values q(0) ∈ [0, qth].
Here, q̂ is both an indifference point and a threshold point. (a) V i

C represents the equilibrium payoff
associated with reaching the equilibrium in regime i. (b) V i

G represents the equilibrium payoff
associated with reaching the equilibrium in regime i

Figure 3 illustrates the equilibrium payoffs when the parameter a is decreased to
0.05. We notice that the stable manifold in regime 2 could be extended in regime
1 for all the values q ∈ [0 qth], and as a result V 2

C is defined globally, whereas the
stable manifold W 1

S could not be extended in regime 2. So, V 1
C is locally defined

for values q(0) ∈ [0, qth]. Furthermore, we observe that at q > 5.68, the value
functions V 2

C = V 1
C and V 2

G > V 1
G, so the players are better off choosing the

Nash equilibrium strategies which result in the state variable reaching equilibrium
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in regime 2. For initial conditions q = q̂ = 5.68 we notice that V 2
C = V 1

C and
V 2
G = V 1

G. This implies that players are indifferent to choosing Nash equilibrium
strategies which converge to the equilibrium points in both the regimes. Finally, for
the initial conditions q(0) < q̂ we notice that V 2

C < V 1
C and V 2

G ≈ V 1
G, implying

that players are better off choosing Nash equilibrium strategies which result in the
state variable converging to the equilibrium in regime 1. So, following Definitions 3
and 4 the initial condition q(0) = 5.68 is both an indifference and a threshold point.

4.3 Switching Time

Now, we study the effect of variation of the parameter a on the switching time of
the equilibrium strategies. Figures 4 and 5 illustrate the Nash equilibrium strategies
of players which result in the state variable converging to the equilibrium point in
regime 2. Here, the initial condition set as q(0) = q̂ + ε, ε > 0. The dark bold line
represents the strategy x∗(t) and the gray bold line represents the strategy w∗(t).

We notice that the equilibrium strategies experience a jump at the discontinuity
line q(t) = qth. Furthermore, for higher values of a the jump occurs early.
Following the non-negativity conditions of the equilibrium steady-state values, it
can be shown that the higher the efficiency of the civil monitoring effort b, the
efficiency of the institutions α and the lower the discount rate ρ; the higher the
inertia in the society and the economy will switch to the good regime much earlier.

Fig. 4 The Nash equilibrium strategies which result in state trajectories converging to the
equilibrium in regime 2. The equilibrium strategies experience a jump at the discontinuity line
q(t) = qth. For higher values of a the jump occurs early. (a) Nash equilibrium strategies with the
initial condition q0 = q̂ + ε = 6.9022, ε > 0 with a = 0.25. (b) Nash equilibrium strategies with
the initial condition q0 = q̂ + ε = 5.7, ε > 0 with a = 0.05
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Fig. 5 Variation of switching time with increasing values of the parameter a. For higher values of
a the jump occurs early. (a) a = 0.1. (b) a = 0.15. (c) a = 0.2

5 Conclusion

The paper builds upon the quasi-consensus that good governance and institutions
matter as key factor determining growth and economic development, whereas
factors leading to failure and poor institutions such as corruption are detrimental
to economic development and ultimately increase rent-seeking activities in the
economy.

Recognizing the previous work of Ngendakuriyo and Zaccour (2013) that
investigates the role of citizens in improving the institutional quality through the
fight against corruption, our research question was as follows: Under which circum-
stances a society with high prevalence of endogenous corruption may eradicate the
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corruption and switch to a society with free or very low corruption in her process of
building efficient institutions? To answer this question, we introduced the effects
of social inertia as a major parameter of institutional change and characterized
open-loop Nash equilibria for both the regimes with high and low corruption.
Furthermore, we characterized an optimal switching time where the equilibrium
moves from a regime with high corruption to a free/low corruption regime. The
open-loop strategies characterized reflected the Skiba phenomena as they exhibit
jumps in the state variable at steady state.

Our numerical results show that an increase of optimism (pessimism) in the
society will lead the civil society to invest less (more) efforts to fight corruption.
Similarly, an increase of optimism (pessimism) in the society will lead a corrupt
government to invest more (less) efforts in repression and rent-seeking activities.
Overall, the numerical results show that the higher the efficiency of the civil
monitoring effort and the efficiency of institutions, the higher the inertia which lead
to a much earlier switch to good regime of low or free corruption as the jump occurs
early.

A subsequent research avenue is of interest, namely the analysis of a game where
cooperation between government and civil society is possible. Here the idea would
be to set up a cooperative framework that is Pareto-improving and which prevents
the government to cheat and deviate from the cooperation platform.

Appendix

Proof of Proposition 1 Regime 1 The current value Hamiltonian associated with
problems PC and PG in regime 1 is given by:

H 1
C(q(t), w(t), x∗(t), λ1

C(t)) = λ1
C(t)

((
bw(t)− βx∗(t)

)− a
)

+
[
(αq(t)+ θ(1− w (t))) (1− κx∗(t))− w2(t)

2

]

H 1
G(q(t), w

∗(t), x(t), λ1
G(t)) = λ1

G(t)
((
bw∗(t)− βx(t)

)− a
)

+
[(

αq(t)+ θ(1− w∗(t))
)
(κx(t))− x2(t)

2

]

The first order conditions (assuming interior solutions) for the open-loop Nash
equilibrium are given by:
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(H 1
C)w = bλ1

C − θ(1− κx∗)− w∗ = 0,

(H 1
C)q = ρλ1

C − λ̇
1
C = α(1− κx∗)

(H 1
C)λ1

C
= (H 1

G)λ1
G
= q̇∗ = bw∗ − βx∗ − a

(H 1
G)x = −x∗ − βλ1

G + κ(αq∗ + θ(1− w∗)) = 0

(H 1
G)q = ρλ1

C − λ̇
1
C = ακx∗

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

The open-loop equilibrium dynamics, in (q, λ1
C, λ

1
G) coordinates, are given by:

⎡

⎢
⎣
q̇∗

λ̇
1
C

λ̇
1
G

⎤

⎥
⎦ =

⎡

⎢⎢
⎣

−ακ(β−bκθ)

κ2θ2+1
b(b+βκθ)

κ2θ2+1
β(β−bκθ)

κ2θ2+1
α2κ2

κ2θ2+1
ρ − αbκ2θ

κ2θ2+1
− αβκ

κ2θ2+1

− α2κ2

κ2θ2+1
αbκ2θ

κ2θ2+1
ρ + αβκ

κ2θ2+1

⎤

⎥⎥
⎦

⎡

⎣
q∗
λ1
C

λ1
G

⎤

⎦

+

⎡

⎢⎢
⎣

b − a − ((b+βκθ)(θ+1))
(κ2θ2+1)

(α(θκ2−1))
(κ2θ2+1)

− (ακ2θ(θ+1))
(κ2θ2+1)

⎤

⎥⎥
⎦ (9)

The steady-state value for the control policies and the state variable in regime 1 are

xss1 = b(bα − θρ)− aρ

bκ(bα − θρ)+ βρ
, wss

1 = (bα − θρ)(β + aκ)

bκ(bα − θρ)+ βρ
, and

qss
1 = bκ2ρθ2 − αbβκθ + αβ2 − bρθ − βκρθ − βκρθ2 − aκ2ρθ2 − aρ

ακρ (β − bκθ)

+ (β + aκ)
(
b2 + 2κθbβ − β2

)

κ (β − bκθ) (bκ(bα − θρ)+ βρ)
.

Regime 2 The current value Hamiltonian associated with problems PC and PG in
regime 2 is given by:

H 2
C(q(t), w(t), x∗(t), λ2

C(t)) = λ2
C(t)

((
bw(t)− βx∗(t)

)+ a
)

+
[
(αq(t)+ θ(1− w (t))) (1− κx∗(t))− w2(t)

2

]

H 2
G(q(t), w

∗(t), x(t), λ2
G(t)) = λ2

G(t)
((
bw∗(t)− βx(t)

)+ a
)

+
[(

αq(t)+ θ(1− w∗(t))
)
(κx(t))− x2(t)

2

]
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The first order conditions (assuming interior solutions) for the open-loop Nash
equilibrium are given by:

(H 2
C)w = bλ1

C − θ(1− κx∗)− w∗ = 0,

(H 2
C)q = ρλ2

C − λ̇
2
C = α(1− κx∗)

(H 2
C)λ2

C
= (H 2

G)λ2
G
= q̇∗ = bw∗ − βx∗ + a

(H 2
G)x = −x∗ − βλ2

G + κ(αq∗ + θ(1− w∗)) = 0

(H 2
G)q = ρλ2

C − λ̇
2
C = ακx∗

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

The open-loop equilibrium dynamics, in (q, λ2
C, λ

2
G) coordinates, are given by:

⎡

⎢
⎣
q̇∗

λ̇
2
C

λ̇
2
G

⎤

⎥
⎦ =

⎡

⎢⎢
⎣

−ακ(β−bκθ)

κ2θ2+1
b(b+βκθ)

κ2θ2+1
β(β−bκθ)

κ2θ2+1
α2κ2

κ2θ2+1
ρ − αbκ2θ

κ2θ2+1
− αβκ

κ2θ2+1

− α2κ2

κ2θ2+1
αbκ2θ

κ2θ2+1
ρ + αβκ

κ2θ2+1

⎤

⎥⎥
⎦

⎡

⎣
q∗
λ2
C

λ2
G

⎤

⎦+

⎡

⎢⎢
⎣

b + a − (b+βκθ)(θ+1)
κ2θ2+1

α(θκ2−1)
κ2θ2+1

−ακ2θ(θ+1)
κ2θ2+1

⎤

⎥⎥
⎦

(11)

The steady-state value for the control policies and state variable in regime 2 are

xss2 = b(bα − θρ)+ aρ

bκ(bα − θρ)+ βρ
, wss

2 = (bα − θρ)(β − aκ)

bκ(bα − θρ)+ βρ
, and

qss
2 = bκ2ρθ2 − αbβκθ + αβ2 − bρθ − βκρθ − βκρθ2 + aκ2ρθ2 + aρ

ακρ (β − bκθ)

+ (β − aκ)
(
b2 + 2κθbβ − β2

)

κ (β − bκθ) (bκ(bα − θρ)+ βρ)
.

�
Proof of Proposition 2 Using the (8) and (10) in (5) and (6) we obtain the following
equations:

Acλ
j
C

2
(τ )+ Bcλ

j
C(τ)λ

j
G(τ)+ Ccλ

j
G

2
(τ )+ (Dc + a)λ

j
C(τ)+ Ecλ

j
G(τ)+ Fc

= Acλ
i
C

2
(τ )+ Bcλ

i
C(τ )λ

i
G(τ)+ Ccλ

i
G

2
(τ )+ (Dc − a)λiC(τ )+ Ecλ

i
G(τ)+ Fc,

(12)

Agλ
j
C

2
(τ )+ Bgλ

j
C(τ)λ

j
G(τ)+ Cgλ

j
G

2
(τ )+Dgλ

j
C(τ)+ (Eg + a)λ

j
G(τ)+ Fg

= Agλ
i
C

2
(τ )+ Bgλ

i
C(τ )λ

i
G(τ)+ Cgλ

i
G

2
(τ )+Dgλ

i
C(τ )+ (Eg − a)λiG(τ)+ Fg.

(13)
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where
Ac = (b(2βκ3θ3+2βκθ+b))

2(κ2t2+1)2 , Bc = (β(βκ2θ2−bκθ+β))

(κ2θ2+1)2 , Cc = (β2κ2θ2)

2(κ2θ2+1)2 ,

Dc = b(θ+αqth)
θ

− b(θ2+θ+αqth)

θ(κ2θ2+1)2 − βκ(θ2+θ+αqth)

(κ2θ2+1)
, Ec = (βκ(θ2+θ+αqth))

(κ2θ2+1)2 , Fc =
(θ2+θ+αqth)

2

2θ2(κ2θ2+1)2 − (θ+αqth)
2

(2θ2)
,

Ag = (b2κ2θ2)

2(κ2θ2+1)2 , Bg = (b(bκ2θ2+βκθ+b))

(κ2θ2+1)2 , Cg = − (β(2bκ3θ3+2bκθ−β))

2(κ2t2+1)2 , Dg =
− (βκ2θ(θ2+θ+αqth))

(κ2θ2+1)2 ,

Eg = b(θ+αqth)
θ

− b(θ2+θ+αqth)

θ(κ2θ2+1)
− βκ(θ2+θ+αqth)

(κ2θ2+1)2 and Fg = κ2(θ2+θ+αqth)
2

2(κ2θ2+1)2 .

From (12) and (13), the switching time τ as well as the jumps λ
j
C(τ) − λiC(τ ) and

λ
j
G(τ)− λiG(τ) can be calculated when the equilibrium state trajectory undergoes a

transition from regime i to regime j . �
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Game Theory and Cyber Defense

Abderrahmane Sokri

Abstract The extensive use of information technology systems in military sector
has changed the face of the battlefield and the nature of war. A growing body of
literature argues that the game-theoretic reasoning is well-suited to many problems
in cyber defense. A game between a defender and an attacker trying to gain access
to computers remotely is a typical strategic interaction in this domain. This chapter
discusses how game theory can be applied in cyberspace. It offers a comprehensive
review of literature on the application of game theory in this area. It proposes and
illustrates a new game formulation combining game theory and other techniques.
The chapter highlights the recognized challenges associated with the applicability
of game theory in the cyber world. It discusses how the game-theoretic formalism
can be adapted to obtain sound solutions in a reasonable time.

Keywords Game theory · Cyber defense · Cyberattack · Cybersecurity ·
Common knowledge

[The] cyber threat is one of the most serious economic and national security challenges we
face as a nation. —President Barack Obama, 29 May 2009

1 Introduction

Revolutionary advancement in information and communication technologies (ICT)
has brought many changes to the nature of war. Cyberspace has become both a
crucial enabler and a critical vulnerability for military forces. It has become the new
battlefield, on par with air, land, and maritime, but with its own lot of complex and
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challenging problems. The cyber weapons could be social engineering, upgraded
viruses, Trojan horses, worms, flooding denial-of-service (DoS), distributed denial-
of-service (DDoS) or botnets, and advanced persistent threat (APTs) (Bernier et al.
2012; Aslanoglu and Tekir 2012).

In a social engineering attack, an attacker pieces together enough information to
infiltrate an organization’s network. The attacker can, for example, claim to be a new
employee, repair person, or researcher and ask questions to different sources about
an organization or its computer systems. A virus is a computer program designed to
deliberately damage files or spread to other computers. A Trojan horse is a computer
program with a good purpose that hides a damaging program that performs a
malicious action. A worm is a virus that can spread from a computer to another
without human interaction. It takes up memory, exhausts network bandwidth, and
causes a computer to stop responding. It can also allow attackers to gain access
to computers remotely. Most of these threats are included as attachments or links
contained in email messages.

A DoS attack occurs when an attacker prevents legitimate users from accessing
information or services such as email and online banking accounts. In this attack,
an attacker overloads a network or server with information or requests. In a DDoS
attack, an attacker takes advantage of security weaknesses to control multiple
computers. These computers are used afterward to launch a DoS attack (McDowell
2009). These attacks can cause public or private institutions to lose important
data, money, or their reputations (Liang and Xiao 2013). APTs use sophisticated
techniques to monitor and extract sensitive data from a specific target over a long
period of time while remaining undetected.

These cyber weapons are shaped based on the knowledge of target’s vul-
nerabilities. The National Institute of Standards and Technology (NIST) defines
vulnerability as a weakness in system security procedures, design, internal controls,
or implementation that could be exploited by a threat source (NIST 2002). A
vulnerability is exploitable when an attacker has the knowledge about it and the
skills to exploit it.

Vulnerabilities are characterized by their dynamic nature. When a vulnerability
is detected by the defender, the attacker’s weapon exploiting it becomes useless and
the target’s defense becomes upgraded. This refers to the two paradoxes of cyber
weapons. The first paradox states that cyber weapons are subject to time decay. The
second paradox states that cyber weapons usage may shortly enhance the target’s
defense (Podins and Czosseck 2012).

Without being directly lethal, cyberattacks can cause loss of data confiden-
tiality (e.g., unauthorized disclosure of information), integrity (e.g., unauthorized
modification of information), or availability (e.g., disruption of access) (Bowen
et al. 2006). It can also cause damage or destruction of equipment (Ziolkowski
2010; Podins and Czosseck 2012). The extent and severity of cyberattacks vary
from local (loss of email confidentiality) to nation-wide (Ottis 2008). But without
exploitable vulnerabilities, cyberattacks would be limited to DoS, DDOS, and social
engineering attacks (Moore et al. 2010; Podins and Czosseck 2012).



Game Theory and Cyber Defense 337

In 2007, Estonia was the subject of the first massive nation-wide cyberat-
tack in the world. A campaign of cyberattacks was conducted during 3 weeks
against government websites, banks, critical national infrastructure, newspapers,
and broadcasters. Attacks included massive DDoS, phishing, email spam, and
website defacing (Aslanoglu and Tekir 2012; van Vuuren et al. 2012; Podins and
Czosseck 2012).

In 2009, an APT exploited a previously unknown vulnerability in Internet
Explorer to compromise systems at Google, Adobe, and more than 30 large
companies. The main objective was to steal intellectual property from these security
and defense contractor companies (Aslanoglu and Tekir 2012).

In 2010, the Stuxnet worm against the Iranian nuclear program was considered
as the real start of cyber warfare (Adams et al. 2012). This unprecedented and
highly sophisticated attack infected more than 30,000 computers in Iran. The virus
continued to spread via Internet and infect about the same number of computers in
other countries including the USA, the UK, China, and Germany.

This attack has changed the face of the battlefield and has broken down a com-
mon belief stating that control systems are protected, if (1) nothing on computers
connects to the Internet, (2) new memory sticks are used for data exchange, and (3)
viruses are detectable by the unusual behavior of computers (Miyachi et al. 2011;
Aslanoglu and Tekir 2012; Podins and Czosseck 2012).

In 2013, Target Corporation came under an APT resulting in an unauthorized
access to credit card numbers and personal information of 40 million customers
(Acquaviva 2017). Since then, there has been a growing discussion about the best
ways to protect potential target areas against offensive cyberattacks (Bier et al.
2009). To overcome these problems, a variety of protective and reactive measures
have been employed. As shown in Table 1, traditional network security techniques
include (1) tamperproof techniques, (2) cryptography, (3) detection and prevention
techniques, (4) honeypots, and (5) technical attribution.

Although these techniques are crucial mechanisms for cybersecurity, they are
not a panacea (Roy et al. 2010). They may be sufficient against casual attackers
using well-known techniques, but the complex cybersecurity problem is still far
from being completely solved. There is a continuous race between attackers and
security specialists. When a smart security solution is proposed a smarter way to
circumvent, it is found. There will be an ongoing and challenging need to design
tools that protect our systems and networks against sophisticated and well-organized
adversaries (Roy et al. 2010).

Many researchers including Roy et al. (2010), Zakrzewska and Ferragut (2011),
Kiekintveld et al. (2015), and Tambe (2011) have argued that the game-theoretic
reasoning is well-suited to many problems in network security and cyber warfare.
This mathematical approach examines how agents or players might act when trying
to optimize a utility function (Acquaviva 2017). The United States Department
of Defense (DoD), for example, states that applying game theory techniques in
cyberspace may assist in analyzing an adversary’s preferred tactics (DoD 2011).
Game theory can also guide resource allocations to defend against intelligent
antagonists by explicitly taking into account the intelligent and adaptive nature of
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Table 1 Traditional protective and reactive measures in cyberspace

Technique Definition

Tamperproof Automated methods of identification based on unique measurable
physiological or behavioral characteristics such as voice, fingerprints,
or iris patterns (Matyas and Riha 2002)

Cryptography Techniques that merge words with images to hide data in transit or
storage. They are used for authentication of user and data.

Detection/prevention Techniques including antivirus software, firewalls, and intrusion
detection systems (IDS)
Antivirus programs scan the communication mediums and the storage
devices, detect signs of malware presence, and remove them. Firewalls
limit access to private networks connected to the Internet. IDS
algorithms detect suspected intrusions and alert the network
administrator in real time (Gueye 2011; Roy et al. 2010)

Honeypot A fake computer system used in network security to waste the
attacker’s time and resources. The network administrator can also use
the captured data from the attacker’s actions to better protect the
network. (McCarty 2003; Rowe et al. 2007; Carroll and Grosu 2011;
Pibil et al. 2012)

Attribution Attribution is the determination of the identity or the location of an
attacker or an attacker’s intermediary (Robinson et al. 2015; Wheeler
and Larsen 2003). The identity can be physical such as a geographical
address or digital such as an Internet Protocol (IP) address (Guan and
Zhang 2010). The information captured by attribution can be used to
improve defensive techniques and prevent future attacks (Nicholson et
al. 2012)

the threat (Bier et al. 2009). The arguments put forward to justify this approach are
numerous. They particularly include (but are not limited to) its ability to model the
non-cooperative and cooperative strategic interactions between multiple decision-
makers with conflicting goals. The analytical setting may be static or dynamic,
discrete or continuous, deterministic or stochastic, and linear or non-linear.

A cooperative game model examines how players might be working together to
optimize a collective utility function (Acquaviva 2017). Cooperative games describe
at high level the structure, strategies, and payoffs of subsets of players or coalitions.
They are generally characterized by a characteristic function describing the outcome
of each coalition.

A typical cooperative game in cyber domain may include a number of orga-
nizations or countries exchanging vulnerability information and attack detection
procedures. By exchanging information on vulnerabilities, each member of the
coalition will build new weapons using the newly learned vulnerabilities (Podins
and Czosseck 2012). The UK government, for example, has initiated a cybersecurity
hub that enables the exchange of information on cybersecurity threats between the
public and private sectors (van Vuuren et al. 2012).

In a non-cooperative game, players seek to optimize their individual utility
functions regardless of the utilities of the other players involved (Acquaviva 2017).
Non-cooperative games are more general than cooperative games. They describe in
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detail the individual strategies and payoffs of each player. They focus on analyzing
Nash equilibrium that no player can do better by unilaterally deviating from it
(Breton et al. 2008; Bachrach et al. 2013; Brandenburger 2007).

Interactions in cyberspace are generally adversarial and inherently selfish. A
game between a system administrator and an attacker trying to compromise or
destroy the system is a typical non-cooperative game in this domain. In this case, the
time spent controlling the system or the reward for destroying it may be the utility
function for the attacker. The reward for controlling the system may be the utility
function for the defender (Acquaviva 2017).

The aim of this chapter is to discuss the suitability of game theory to adversarial
interaction between attackers and defenders in cyberspace. The chapter also sheds
light on the main challenging issues surrounding its applicability in this domain.
A new game formulation combining simulation and game-theoretic approaches is
proposed to solve the problem of uncertain observability in the payoff matrix.

This chapter is organized into six sections. Following the introduction, Sect. 2
provides a comprehensive review of literature on the application of game theory
in the cyber domain. Section 3 presents a resource allocation problem to show
how the new approach can be used in cyberspace. In Sect. 4, a case study is
presented to illustrate the suggested approach. The main challenges associated with
the applicability of game-theoretic methods in cyberspace are discussed in Sect. 5.
Concluding remarks as well as future research directions are indicated in Sect. 6.

2 Literature Review

Game theory is a common formalized way to inspire the development of defense
algorithms in the physical world (Moisan and Gonzalez 2017; Coniglio 2013;
Tambe 2011; Roy et al. 2010). A growing body of literature recognizes game theory
as a sound theoretical foundation for modeling the strategic interactions between
selfish agents in the cyber world. This literature can be divided into three main
categories: resource allocation, network security, and cooperation models.

2.1 Resource Allocation

Game theory can guide resource allocations to defend against intelligent attacks
by explicitly taking into account the adaptive nature of the threat. In this game,
the defender seeks to find the optimal resource allocation that maximizes his
payoffs. The attacker seeks to minimize the risk of being traced back and punished
(Acquaviva 2017). This problem is known in the game-theoretic literature as the
allocation game (Bier et al. 2009).

Fielder et al. (2014), for example, proposed a game-theoretic model to optimally
allocate cybersecurity resources such as administrators’ time across different tasks.
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In this game, the defender’s solution is optimal independently from the attacker’s
strategy. The authors also found that a particular Nash equilibrium provides the most
effective defense strategy and used real-life statistics to validate their result. More
recently, Sokri (2018) used an allocation game to analyze the problem of common
knowledge in cyberspace. The author incorporated uncertainty on each imprecise
variable by changing its static value to a range of values.

Game theory is also used to determine the optimal investment in critical
infrastructures such as networked systems. In this case, defensive investment is
used to increase the effort needed by an attacker to achieve a certain probability
of success. It can also be used to reduce the success probability of an attack, rather
than increasing its effort. The game-theoretic framework determines the optimal
allocation of the total defensive budget over the various components of the system
in order to minimize the success probability of a potential attack or to maximize its
expected cost (Azaiez and Bier 2007).

Game theory can also be used to investigate the optimal strategies for managing
a sensitive security resource in response to APTs. Depending on the setting being
modeled, the resource may be a password or an entire infrastructure. FlipIt, for
example, is a two-player dynamic game where players may take control of the
resource at any time by executing a stealthy move (i.e., not immediately detected).
This idea implies that each player is allowed to move at arbitrary points in time, and
the timing of the moves may be kept hidden from the other player. The objective is
to maximize the fraction of time the player controls the resource while minimizing
the cumulative move cost. FlipIt is characterized by the idea of stealthy moves or
stealthy takeover (Rasouli et al. 2014; Hobbs 2015).

2.2 Network Security

Game theory has also been proposed by several studies to understand defense
strategies in network security. It offers a sound theoretical foundation for managing
information security, modeling the strategic interactions in intrusion detection, and
analyzing network defense mechanism design. It is useful for generalization of
problems, formalizing the existing ad-hoc schemes, and future research (Alpcan
and Basar 2004).

Bloem et al. (2006), for example, developed a stochastic and dynamic game
to examine intrusion detection in access control systems. The authors used a
game-theoretic approach to model the interaction between an attacker and a
distributed IDS. They introduced the sensor network as a third player with a fixed
probability distribution representing the output of the sensor network during the
attack. The authors discussed the properties of the resulting system analytically and
numerically.

Roy et al. (2010) presented a taxonomy for classifying the existing game-
theoretic solutions designed to enhance network security. The authors provided a
systematic description of how games can be played and what the outcomes might
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be. This information is used to define games with relevant concepts for network
security problems.

Jafarian et al. (2013) combined game theory and constraint satisfaction optimiza-
tion to proactively defend against denial-of-service attacks. In this static game, Nash
equilibrium is determined by players’ strategies and the cost associated with them.
The optimal strategy for attack deterrence is determined while satisfying security
and performance requirements of the network. Results showed that the method
improves the protection of flow packets from being attacked against persistent
attackers without causing any disruption for flows.

More recently, Musman and Turner (2018) described a game-oriented approach
to minimizing cybersecurity risks for a given investment level. The game formula-
tion uses the defender strategies to minimize the maximum cyber risk. The interested
reader is referred to Information Resources Management Association (2018) for
further information on this topic.

Game theory has also been used for studying the effects of deception on the
interactions between an attacker and a defender of a computer network (Baston
and Bostock 1988). In this literature, the defender can employ camouflage by
disguising, for example, a honeypot as a normal system. Deception increases the
attackers’ uncertainty and effort (e.g., time and money) to determine whether a
system is true or fake. Even long before computers existed, deception was widely
used for information protection (Cohen 1998; Rowe et al. 2007; Carroll and Grosu
2011). Rowe et al. (2007), for example, summarized some game-theoretic aspects of
introducing honeypots. The authors developed a mathematical model of deception
and counterdeception to see at what point people could detect deception. Results
show that attacks on honeypots decreased over time.

Carroll and Grosu (2011) performed a game-theoretical investigation of decep-
tion in network security. The authors used a dynamic game of incomplete infor-
mation to examine a scenario where a defender can disguise normal systems as
honeypots or honeypots as normal systems. The attacker observes the system
and decides whether or not to proceed compromising the system. The authors
determined and characterized the perfect Bayesian equilibria of the game. At an
equilibrium, the players do not have any incentives to unilaterally deviate by
changing their strategies.

2.3 Agent Cooperation

Cooperative game theory can determine how the collective reward can be shared
between selfish agents. It can also provide a mechanism to sustain the cooperative
solution which is not a self-enforcing contract (Breton et al. 2008). A typical
cooperative game in the existing literature may include a number of selfish agents
and a principal controlling a computer network. To allow a reliable connectivity
between a certain set of critical servers, the principal can incentivize the agents
to cooperate by offering them a certain reward (Bachrach et al. 2013). It can also
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consist of a multi-mode attack combining different types of warfare that are more
effective in tandem than when employed alone (Browne 2000).

Liu et al. (2005), for example, developed a preliminary game-theoretic formal-
ization to capture the interdependency between attacker and defender objectives and
strategies. The authors showed that the concept of incentives and utilities can be
used to model attacker objectives. Bachrach et al. (2013) modeled a communication
network where a failure of one node may disturb communication between other
nodes as a simple coalitional game. The authors showed how various game-theoretic
solution concepts can be used to characterize the fair share of the revenues an agent
is entitled to.

Shamshirband et al. (2014) combined a game-theoretic approach and a fuzzy
Q-learning algorithm in Wireless Sensor Networks. The authors implemented
cooperative defense counter-attack scenarios for the victim node and the base
station to operate as rational decision-maker players through a game theory strategy.
The proposed model’s attack detection and defense accuracy yield a greater
improvement than the existing machine learning methods.

A recent survey of the existing game-theoretic approaches for cybersecurity can
be found in Do et al. (2017).

3 Resource Allocation Game

In this section, we will show how a game-theoretic model can be used to optimally
allocate resources in the cyber domain. The main challenges and open research
questions associated with this formulation will be presented and discussed in Sect. 5.

Consider a security game between an attacker a and a defender d in a cyberinfras-
tructure system. Following Korzhyk et al. (2011), let A = {t1, t2, . . . , tn } be a set
of n targets that the attacker may choose to attack. The defender seeks
to prevent attacks by covering targets using cybersecurity resources from
the set R = {r1, r2, . . . , rm }. In the physical world, targets may be flights
and resources may be air marshals. In the cyber world, targets may be software
vulnerabilities and resources may be protective devices such as firewalls (Gueye
2011).

The set A corresponds to pure strategies for the attacker where each pure strategy
refers to a single target to attack. Let D be the set of all the possible resource
allocations over the set of targets. If at most one resource is assigned to a target,
there will be n Choose m combinations to allocate m resources to n targets (Jain et
al. 2010). The defender pure strategies are represented by these resource allocations.
The two players are allowed to play mixed strategies by assigning a probability
distribution over the set of pure strategies (Coniglio 2013; Jain et al. 2010). If a
player adopts his mixed strategy, the outcome of the game will be expressed as an
expected value.

Let δ be a leader’s mixed strategy consisting of a vector of the defender’s pure
strategies. Denote by δi the proportion of times assigned to the pure strategy i when
the defender plays the mixed strategy δ.
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Similarly, we denote by ρ a mixed strategy of the attacker (the follower) and
by ρj the probability of the pure strategy j when he plays the mixed strategy ρ.
Let E(Ud(i, j)) be the expected utility of the defender and E(Ua(i, j)) the expected
utility of the attacker when the defender plays pure strategy i and the attacker plays
pure strategy j.

One of the main challenging issues in security games is the problem of common
knowledge concept. It is generally assumed in these games that the players are
able to exactly evaluate their own payoffs and the payoffs of their opponents.
In most real-world cybersecurity problems, this assumption is not always true.
Using deterministic values of payoffs may make the committed strategies ineffective
(Coniglio 2013; Sokri 2018). In this paper, utilities are seen as random variables
generated by a stochastic simulation. Uncertainty is incorporated in the theoretical
framework using their expected values.

Fixing the policy of the defender to some mixed strategy δ, the first
problem to solve is to find the attacker’s best response to δ. This optimization
problem can be formulated as a linear program where the follower maxi-
mizes his expected utility given δ.

Maxρ
∑

i∈D
∑

j∈AδiρjE (Ua (i, j)) (1)

s.t.
∑

j∈Aρj = 1 (2)

ρj ≥ 0,∀j. (3)

While the constraints define the set of feasible solutions ρ as a probability
distribution over the set of targets A, it is straightforward to see that the optimal
strategy for the follower is a pure strategy ρj = 1 for a j that maximizes∑

j∈A δiE (Ua (i, j)) . This result can also be obtained using the corresponding dual
problem which has the same optimal solution value

Minv v (4)

s.t.v ≥
∑

i∈DδiE (Ua (i, j)) , j ∈ A. (5)

The corresponding complementary slackness condition is given by

ρj

(
v −

∑

i∈DδiE (Ua (i, j))
)
= 0, j ∈ A. (6)

This condition implies that the follower expected reward is maximal for any pure
strategy with ρj > 0.
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Denoting by ρ(δ) the follower’s best response to δ, the leader seeks to solve the
following problem:

Maxρ
∑

i∈D
∑

j∈Aδiρ(δ)jE (Ud (i, j)) (7)

s.t.
∑

i∈Dδi = 1 (8)

δi ∈ [0, 1] , ∀i ∈ D. (9)

The two constraints enforce the leader’s mixed strategy to be feasible.
If we complete the leader’s problem by including the follower’s optimality

conditions, the two programs can be formulated as a single mixed-integer quadratic
problem (MIQP).

Maxδ,ρ,v
∑

i∈D
∑

j∈AδiρjE (Ud (i, j)) (10)

s.t.
∑

i∈Dδi = 1 (11)

∑

j∈Aρj = 1 (12)

0 ≤
(
v −

∑

i∈DδiUa (i, j)
)
≤ (1− ρj

)
M, ∀j ∈ A (13)

δi ∈ [0, 1] , ∀i ∈ D (14)

ρj ∈ {0, 1} , ∀j ∈ A (15)

v ∈ R (16)

To simplify the complementary slackness condition represented by the rightmost
inequality in Eq. (13), the attacker plays only pure strategies. Equations (12) and
(15) characterize a feasible pure strategy for this player. In this formulation, v is the
follower’s maximum payoff value and M is a large number.
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4 Illustration

To illustrate the approach suggested in Sect. 3, consider the game in compact form
in Table 2 (Sokri 2018; Jain et al. 2010; An et al. 2011). In this example, there
are three targets and two defender resources. Each of defender’s resources can only
cover one target at a time. For each target, there are two payoffs: the payoff of the
attacker and the payoff of the defender. Each payoff consists of two parts: one when
the attacked target is covered and one when it’s uncovered.

Let Uc
d (t) be the defender’s payoff if the attacked target t is covered and Uu

d (t)

his payoff if the target is uncovered. Similarly, denote by Uu
a (t) the attacker’s payoff

if the attacked target t is uncovered and by Uc
a (t) the attacker’s payoff if the attacked

target t is covered. For each target t, the expected utilities of the defender and the
attacker are respectively given by

Ud(t) = ρt

(
δtU

c
d (t)+ (1− δt ) U

u
d (t)

)
(17)

Ua(t) = ρt

(
(1− δt ) U

u
a (t)+ δtU

c
a (t)

)
(18)

The expected utilities in Eqs. (17) and (18) depend simply on the attacked targets
and their coverage. Uncertainty can furthermore be placed on each payoff using
three-point estimates instead of single values.

This game has multiple equilibria of the form

〈δ = (δ1, δ2, 1) , ρ = (0, 0, 1)〉 . (19)

This standard solution indicates that the attacker would aim the most valuable
target no matter how defended it might be (Sokri 2018; Jain et al. 2010; An et
al. 2011). A solution for the defender–attacker Stackelberg game that satisfies the
constraints and the numerical convergence criterion is given by

〈δ = (0.75, 0.25, 1) , ρ = (0, 0, 1)〉 . (20)

To find a robust solution, further refinement is needed. The equilibrium refine-
ment may be based on some utility dominance criteria such as Pareto dominance
(An et al. 2011).

Table 2 Payoff table Defender Attacker
Covered uncovered uncovered Covered

Target 1 5 2 7 5
Target 2 2 1 4 4
Target 3 5 5 12 9
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5 Application of the Game in Cyberspace: Challenges
and Opportunities

Game theory has already produced several notable successes in numerous physical
security domains. It was applied, for example, to randomize checkpoints at the
Los Angeles International Airport (LAX), to assign federal air marshals to protect
flights (Jain et al. 2010; Kiekintveld et al. 2015; Acquaviva 2017). Researchers have
also used game theory to understand security and defense strategies in the cyber
world. The application of game theory to this domain presents at least three main
challenges: (1) the complexity of the cyber domain, (2) the dynamic nature of the
analyzed games, and (3) the validity of the adopted assumptions.

5.1 Complexity of the Cyber Domain

Cybersecurity is more complex than in physical security domains. In the cyber
domain, digital attacks are often sophisticated and imperceptible to the human
senses. They are highly dynamic overstepping all geographic and political bound-
aries (Moisan and Gonzalez 2017). To interact appropriately in the cyber domain
under dynamically changing real-world scenarios, it is important to understand the
entire cyberinfrastructure system. To this end, the holistic game inspired defense
architecture suggested by Shiva et al. (2012) would be a good starting point.

Shiva et al. (2012) proposed a four-layer decision-making framework inspired
by game theory. As illustrated in Fig. 1, the security scheme is organized into
four layers. The first and innermost layer in the framework contains self-checking
hardware and software components. The second layer consists of secure built-in
or bolt-on applications employing self-checking concepts and components. The

Fig. 1 Game inspired
decision model (Adapted
from Shiva et al. 2012)
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third layer is the security infrastructure consisting of intrusion detection system
(IDS), firewalls, and antivirus software. The fourth and outermost layer uses game-
theoretic analysis to provide the best action strategies. It receives input from the
inner three layers, evaluates the committed or probable attack information, and
elects the optimal decision for defense.

5.2 Static Versus Dynamic Perspectives

A static model is a model where the system state is independent of time. It is
an interaction where each player makes a single decision in isolation and under
imperfect information. The well-known prisoner’s dilemma falls under the category
of static games. Decisions in static games can be seen as made simultaneously. Real-
world security interactions are inherently dynamic where recent attacks are built
upon previous attacks. A dynamic model is a model where the system state changes
with time, and players are able to observe the outcome of previous moves before
responding. Stealthy move games are examples of dynamic games. The dynamic
perspective can be introduced to the suggested framework by playing the game
within a finite or infinite time horizon. Factors that determine the objective function
such as rewards and costs should be explicitly presented as functions of time. This
addition can, however, result in a more complex and challenging problem.

5.3 Validity of Assumptions

The game-theoretic framework in Sect. 3 relies on two main key assumptions. The
game considers (1) two rational players with certain observability and (2) limited
amount of homogeneous resources and targets with no explicit cost of moving.
In real world, the defender may face multiple rational or irrational attackers, and
the common knowledge on payoffs may be missing. The number of targets to
be protected can be large and the attacker may aim more than a single target.
The defender’s resources may also be numerous and with explicit cost of moving.
By making the formalism more realistic, the algorithm would not be able to find
an optimal solution in a reasonable time. It is, therefore, necessary to combine
game theory with other potential tools and techniques to enhance cyber conflict
analysis. Table 3, adapted from DoD (2011), presents the potential techniques, their
definitions, and their potential use in cyberspace.

Combining game theory with other techniques in cyberspace is still at its
beginnings, and many open issues are still to be tackled. The future combined
frameworks should be able:
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Table 3 Potential tools and techniques that may be combined in cyber conflict analysis

Technique Definition Use in cyberspace

Game
theory

The study of mathematical models of
conflict and cooperation between
intelligent rational decision-makers
(Myerson 1991)

Investigate security decisions in a
methodical manner

Computer
simulation

Computer representations that model
the real-world interactions

Process visualization
Variables and parameters
randomization
War gaming

Genetic
algorithms

A family of computational models
inspired by evolution

Searching for a sequence of steps that
will allow an adversary to achieve
their objective

Graph
theory

A graph is a set of nodes and links that
models pairwise relationships between
items

Network mapping
Bayesian network
Identification of strong and weak
links and nodes in the adversary’s
critical requirements

Reliability
modeling

The process of predicting the
likelihood that a component or system
will function prior to its
implementation

Analyze the availability of a critical
capability when resources and
conditions are deficient or absent

Cyber
forensic
analysis

Methods to recover and analyze
materials found in digital sources

Reconstructing events believed to be
malicious

IDS A device or software application that
monitors a computer network or
individual system for abnormal activity

Detect the step executed and initiate
mitigation measures

• To be dynamic where recent attacks are built upon previous ones;
• To model multiple self-interested agents (e.g., multiple unknown attackers from

multiple locations);
• To handle multiple uncertainties in adversary payoffs and observations;
• To deal with bounded rationality of human adversaries by introducing stochastic

actions.

6 Conclusion

The extensive use of ICT in military sector has changed the face of the battlefield
and made cybersecurity an increasingly important concern. Cyber weapons are
malicious software that exploit unknown vulnerabilities in the target’s defense. The
players in this new space can be individuals, devices, or software. Theirs interactions
are generally non-cooperative and their objectives are inherently conflicting.

The game-theoretic reasoning has been recognized as well-suited to many
problems in the cyber world.
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The arguments put forward to justify its use are abundant. Game theory uses
proven mathematics to investigate a large range of security decisions. It provides a
sound theoretical foundation for understanding the strategic interactions between
selfish agents and optimally allocating limited resources and sharing collective
rewards.

Defense algorithms inspired by game theory have become very popular in the
physical security world. Cyberinfrastructure systems are, however, more complex
and the corresponding security threats are highly dynamic and sophisticated.
Despite considerable effort from the research community, the application of game
theory in cyber defense is still at its beginnings and needs further adaptation to
deliver according to its potential.

Current cyber algorithms generally use static settings and rely on idealized
assumptions such as common knowledge about the payoff matrix. They also
assume that players are able to remember and process large amounts of information
accurately. Applying game theory under these simplified conditions may make
the resulting strategies ineffective. Scaling up the formalism to real-world-sized
problems would make it very complex and intractable.

To be able to make the formalism more realistic and obtain sound and effective
solutions in a reasonable time, we recommend combining game theory with
other techniques and tools. The suggested techniques include computer simulation,
genetic algorithms, graph theory, reliability modeling, and cyber forensic analysis.
Tools may consist of IDS, firewalls, and antivirus software. Using these techniques
and tools under a solid game-theoretic setting will provide huge potential to solve
many cybersecurity standard problems.
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A LQ Vaccine Communication Game

Alessandra Buratto, Luca Grosset, and Bruno Viscolani

Abstract The vaccination issue is a crucial problem nowadays. We see the presence
of an anti-vaccination movement, which takes actions to spread the idea that vac-
cines are ineffective and even dangerous. We propose a model for this public health
problem using the differential game framework and aspire to help understanding the
effectiveness of communication policies. One player of the game is the health-care
system, which aims to minimize the number of unvaccinated people at minimum
cost. The second player is a pharmaceutical firm, which produces and sells a given
type of vaccine, and wants to maximize its profit. To pursue their objectives, the
two players run suitable vaccination advertising campaigns. We study the open-
loop Nash equilibrium advertising strategies of the two players and observe that the
communication policy of the pharmaceutical firm helps the health-care system to
decrease the number of unvaccinated people.

Keywords Differential games · Vaccine communication policy · Advertising

1 Introduction

In recent times, the vaccination issue has become a crucial problem. This is a
consequence of actions by the anti-vaccination movement, aimed to spread the
idea that vaccines are ineffective and even dangerous (Carrillo-Santisteve and
Lopalco 2012; Hotez 2017). The main claimed danger concerns the onset of
severe neurological diseases caused by vaccinations, even if controlled studies have
excluded such causal relations (Gasparini et al. 2015). The fear for the claimed bad
consequences spreads easily and is difficult to contrast. Such a situation has caused
a substantial reduction of the fraction of vaccinated people in Italy, as alleged by
the “Istituto Superiore di Sanità” (Italian Higher Institute for Health) (Guerra et al.
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2017). One main spreading way of this vaccine policy resistance is the word-of-
mouth communication and the phenomenon is amplified by the presence of fake
information in social media. In fact, as observed by several scholars (see, e.g., El
Ouardighi et al. 2016), word-of-mouth has become a relevant phenomenon to take
into account.

Social benefits of vaccination should be easily recognized, but they are ques-
tioned in the case of diseases which have become rare. From a mere economic
viewpoint, it has been estimated that societies undergo heavy costs from vaccine-
preventable diseases, because of deaths, disabilities, and economic losses. The
observed financial burden which can be attributed to unvaccinated people indicates
the potential economic benefit of increasing people immunization (Ozawa et al.
2016).

We propose a model for this public health problem using the linear-quadratic
(LQ) differential game frameworks (Dockner et al. 2000; Haurie et al. 2012), and
aspire to help understanding the effectiveness of communication policies. To the
best of our knowledge no differential game model is present in the relevant scientific
literature, whereas the vaccination issue has been tackled through population-
scale models (Reluga and Galvani 2011). Quite naturally, we must admit that
communication is only one face of the vaccination problem. This requires also,
for example, coordination and management efforts to provide vaccination coverage
of populations moving through different geographical regions (Carrillo-Santisteve
and Lopalco 2012). However, the word-of-mouth communication among the anti-
vaccine people can only be contrasted through a fair communication campaign.

In Sect. 2 we present the model for the time evolution of the unvaccinated popula-
tion under the effects of the word-of-mouth, health care system, and pharmaceutical
firm communication. We treat the vaccine communication campaign as a dynamic
advertising process (Huang et al. 2012). Objectives of the two players are discussed
too. The health care system wants to minimize the number of unvaccinated people
at minimum cost. The pharmaceutical firm, who produces and sells a given type
of vaccine, aims at maximizing its profit, along with minimizing the number of
unvaccinated people. In Sect. 3, in order to study the open-loop Nash equilibrium
advertising strategies of the two players, we analyze the open-loop best response
strategies using Pontryagin Maximum Principle. In Sect. 4 we illustrate numerically
the results obtained. In Sect. 5 we conclude with some suggestions for further
research.

2 Unvaccinated Subpopulation and Its Contrast

Let us denote by x (t) > 0 the number of unvaccinated people at time t ; they spread
some negative information on vaccines and vaccination through the social media (a
word-of-mouth mechanism) with intensity proportional to their number. The effect
is represented by the motion equation
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ẋ (t) = γ x (t) , (1)

where γ > 0 represents the word-of-mouth effectiveness.
Two actors are present on the scene, the health-care system (S) which is commit-

ted to keep/obtain the herd immunity of the whole population, and a pharmaceutical
firm (f) which produces and sells the vaccines and looks for profit. Both the health-
care system and the pharmaceutical firm want to contrast the growth of unvaccinated
people, their vaccine hesitancy (World Health Organization 2016), and negative
communication activity. The communication rates us(t), uf (t), of players S and f,
respectively, affect the number of unvaccinated people as represented by the Cauchy
problem

ẋ (t) = γ x (t)− δsus (t)− δf uf (t) ,

x (0) = x0,
(2)

where δs, δf > 0 are the effectiveness of the system and firm flows, while x0 > 0
is the initial level of unvaccinated people. The terms in the r.h.s. of (2) represent the
word-of-mouth effect of the unvaccinated subpopulation and the communication
effects of the system and firm policies, respectively.

Let a time horizon T > 0 be given; we call (x(t), us(t), uf (t)) an admissible
solution if its state and control components are positive, x(t), us(t), uf (t) ≥ 0,
t ∈ [0, T ], and solve the Cauchy problem (2). We choose a finite time horizon
because S (the health-care system) has a mandate which depends on the political
vote. Moreover, f (the pharmaceutical firm) has to present a financial report, which
concerns also the vaccine communication activity. Both the political vote and the
financial report have precise time definitions.

The model represented by Eq. (2) is symmetric to the one presented in Jørgensen
and Zaccour (2004, p. 110) to explain the goodwill evolution depending on two
simultaneous advertising efforts and on a “natural decay.” Here we have a “natural
growth” contrasted by two simultaneous vaccine communication efforts made by
the health-care system and the pharmaceutical firm.

The two actors pursue different objectives, although they both want to minimize
the number of unvaccinated people.

The health-care system aims to minimize both the costs induced by the unvac-
cinated people (which are assumed to be quadratic in the number of unvaccinated
people) and the costs due to the communication campaign (which are assumed to
be quadratic in the communication flow). Its objective may be represented by the
functional

Js =
∫ T

0

(
β

2
x2 (t)+ κs

2
u2
s (t)

)
dt + η

2
x2 (T ) (3)

to be minimized over the finite programming interval [0, T ]. The parameters β > 0
and κs > 0 are the marginal penalty rate of the unvaccinated subpopulation level and
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the marginal cost rate of the health-care system communication effort, respectively.
The parameter η > 0 makes the residual value function a penalty which is as higher
as the final unvaccinated subpopulation x (T ) is larger.

The pharmaceutical firm seeks to increase its revenue and minimize its loss of
earnings. It also seeks to minimize its communication costs. Its objective may be
represented by the functional

Jf =
∫ T

0

(
ϑx (t)+ κf

2
u2
f (t)

)
dt (4)

to be minimized. The parameters ϑ > 0 and κf > 0 are the marginal revenue
loss rate of the unvaccinated subpopulation level and the marginal cost rate of the
pharmaceutical firm communication effort, respectively. Quadratic advertising costs
are widely used in the relevant literature, see, e.g., Jørgensen and Zaccour (2004).

Note that in the case of the firm objective functional (4), the cost rate for the
firm is only linear in x (t) because it is just a loss of income, whereas in the system
functional (3) it is quadratic. Note also that the firm is not interested in the final
value of x (T ) so that there is not any residual value in (4).

The model is an inhomogeneous linear-quadratic (LQ) differential game (Dock-
ner et al. 2000, pp. 171–187; Haurie et al. 2012, pp. 271 and 197).

3 Equilibrium Vaccine Communication Campaigns

Even though the two players of the vaccine communication game have rather similar
objectives, since they are both keen on diminishing the number of people who
distrust vaccination as a useful medical treatment, their motivations are essentially
different. The health-care system is moved mainly by social costs consideration,
whereas the pharmaceutical firm simply wants to reduce its revenue loss.

We assume that the open loop information structure (Dockner et al. 2000, pp. 29–
30) is available to both players, i.e., that the health-care system manager and the
pharmaceutical firm do not observe the level of the anti-vaccine subpopulation after
the initial time. We mean that both players S and f have to plan their communication
campaigns at the beginning of the programming interval. We have several reasons
for this choice. First, the number of unvaccinated people is not easy to measure,
and it can be obtained only with some delay. Then, both players want to control
the advertising expenditures and an open-loop solution allows to estimate the
advertising costs in advance.

In order to compute the Nash equilibrium we look for the best response
communication strategies of the system and the firm.
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3.1 Pharmaceutical Firm Best Response

The pharmaceutical firm minimizes the objective functional (4), subject to the
motion equation and initial condition (2) using the control uf (t) ≥ 0.

Here the function us(t) ≥ 0 can be assumed as a guess of player f on the
communication strategy of player S. This is a case of linear quadratic control
problem (Engwerda 2005, § 5.2).

The Hamiltonian function is

Hf (x, uf , pf , t) = −ϑx − κf

2
u2
f +

(
γ x − δsus(t)− δf uf

)
pf ; (5)

the Pontryagin Maximum Principle necessary conditions for an optimal open-loop
solution (see, e.g., Seierstad and Sydsæter 1987, p. 85) are the control rule

u∗f (t) = arg max
uf≥0

{
−κf

2
u2
f − δf pf (t)uf

}
= max

{
0, − δf

κf

pf (t)

}
, (6)

and the adjoint Cauchy problem

ṗf (t) = ϑ − γpf (t) , (7)

pf (T ) = 0 . (8)

We obtain that

pf (t) = ϑ

γ

(
1− eγ (T−t)

)
≤ 0 , t ∈ [0, T ] , (9)

so that player f ’s optimal communication rate is

u∗f (t) = ϑδf

γ κf

(
eγ (T−t) − 1

)
. (10)

It is important to observe that u∗f (t) is not affected by the information (or guess)
on the communication strategy us(t) of the health-care system.

3.2 Health-Care System Best Response

The health-care system managers minimize the objective functional (3), subject to
the motion equation and initial condition (2) using the control us(t) ≥ 0. Here
the function uf (t) ≥ 0 can be assumed as a guess of the system on the firm
communication strategy. Again, this is a case of linear quadratic control problem
(Engwerda 2005, § 5.2).
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The Hamiltonian function is

Hs(x, us, ps, t) = −β

2
x2 − κs

2
u2
s +

(
γ x − δsus − δf uf (t)

)
ps ; (11)

the Pontryagin Maximum Principle necessary conditions for an optimal open-loop
solution (see, e.g., Seierstad and Sydsæter 1987, p. 85) are the control rule

u∗s (t) = arg max
us≥0

{
−κs

2
u2
s − δsps(t)us

}
= max

{
0, − δs

κs

ps(t)

}
, (12)

and the adjoint Cauchy problem

ṗs(t) = βx(t)− γps(t) , (13)

ps(T ) = −ηx(T ) . (14)

In the following claims we introduce two guesses on the adjoint function sign
and structure. Hence, we will discuss existence and features of a solution compatible
with them.

Claim (Adjoint Function Sign) The adjoint function is always negative, ps(t) < 0,
t ∈ [0, T ], therefore

u∗s (t) = − δs

κs

ps(t) . (15)

Claim (Adjoint Function Structure) The adjoint function ps(t) can be expanded as

ps(t) = ϕ (t) x(t)+ χ (t) , (16)

for some continuously differentiable functions ϕ(t) and χ(t).

After substituting (15) into the motion equation (2) and in view of the initial
condition, we obtain

ẋ(t) = γ x (t)+ δ2
s

κs

ps(t)− δf uf (t) , (17)

x(0) = x0 . (18)

The candidate solutions are characterized by the two-point-boundary value problem
for state and co-state functions x(t) and p(t) given by Eqs. (17), (18) and (13), (14).

Using the expansion (16) in Eqs. (17), (18) and (13), (14), we characterize the
functions ϕ(t) and χ(t). First, we obtain that function ϕ(t) must satisfy the Cauchy
problem
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⎧
⎨

⎩
ϕ̇ (t)+ 2γ ϕ (t)+ δ2

s

κs

ϕ2 (t)− β = 0 ,

ϕ (T ) = −η ,

(19)

whose differential equation belongs to the Riccati type. Second, function χ(t) must
satisfy the problem

⎧
⎨

⎩
χ̇ (t) = −

(
δ2
s

κs

ϕ (t)+ γ

)
χ (t)+ δf ϕ (t) uf (t) ,

χ (T ) = 0 ,

(20)

which involves a first order linear equation.
We observe that any solution ϕ(t) to Cauchy problem (19) is invariant with

respect to the function parameter uf (t), whereas any solution χ(t) to Cauchy
problem (20) depends on it. We stress such dependence by calling χ

(
t; uf

)
a

solution to (20).
The above analysis can be synthesized by the statement that the unique open-loop

optimal control is given (in feedback form) by

us(t) = − δs

κs

(
ϕ (t) x(t)+ χ

(
t; uf

))
, (21)

where ϕ (t) and χ
(
t, uf

)
are continuously differentiable solutions of problems (19)

and (20).
We notice that u∗f does not depend on u∗s because the effect of the two advertising

flows on the state evolution is additive, and because the Hamiltonian (5) is linear in
the state variable x. On the other hand, the Hamiltonian (11) is quadratic in x, thus
making u∗s depend on u∗f .

Theorem 1 If solutions to problems (19) and (20) exist and the control function
us(t) provided by (21) is positive, i.e., if ϕ (t) x(t)+ χ

(
t; uf

) = ps(t) < 0,
then both claims hold and the control us(t) satisfies the necessary conditions to be
a best response.

The unique solution us(t) is optimal, because the Hamiltonian (11) is concave in
(x, u), and the function involved in the residual value definition,−ηx2/2, is concave
(see, e.g., Seierstad and Sydsæter 1987, The Mangasarian sufficiency theorem, p.
105).

Here we comment on the solutions to the two Cauchy problems (19) and (20).
In problem (19) we can verify that

ϕ (t) < 0 , t ∈ [0, T ] , (22)
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in fact, the Riccati ordinary differential equation in (19) has the two constant
solutions (equilibrium points)

ϕ1,2 =
−γ ∓

√
γ 2 + βδ2

s /κs

δ2
s /κs

, (23)

which have opposite signs, ϕ1 < 0 < ϕ2. The equilibrium point ϕ1 < 0 is unstable,
whereas ϕ2 > 0 is stable; it follows that the solution of the Cauchy problem with
ϕ(T ) = −η < 0 must necessarily satisfy

ϕ(t) ≤ max{ϕ1, −η} , for all t ∈ [0, T ] ,

which implies inequality (22). We observe in particular that ϕ(t) is monotonically
increasing if and only if η ≤ −ϕ1.

As far as problem (20) is considered, using the general formula (Alexéev et al.
1982, pp. 184–188) we determine the unique solution of problem (20),

χ(t) = −eω(t)
∫ T

t

δf ϕ (s) uf (s) e−ω(s) ds , ω(t) = −
∫ T

t

(
δ2
s

κs

ϕ (s)+ γ

)
ds ,

and, recalling that inequality (22) holds, while uf (t) ≥ 0 by assumption, we can
verify that

χ (t) ≥ 0 , t ∈ [0, T ] . (24)

Moreover, inequality (24) holds strictly for t < T , if uf (t) > 0 in a left
neighborhood of T .

Unfortunately, we cannot prove that u∗s (t) ≥ 0 for all t ∈ [0, T ] and for all
choices of the model parameters. Here we provide a condition for the existence of a
positive control over [0, T ], satisfying the necessary optimality conditions.

Theorem 2 Let (u∗s (t), x∗(t)) be an optimal solution. If x∗(t) > 0 for all t ∈
[0, T ), then u∗s (t) > 0 for all t ∈ [0, T ).

Proof See Appendix.

3.3 Open-Loop Equilibrium

From the analysis developed so far we can conclude that player f ’s best response
communication policy is invariant with respect to player S’s policy, and this fact
ensures that u∗f (t), as given by Eq. (10), is the unique player f ’s component of an
open-loop equilibrium, provided that an equilibrium exists. Therefore, we need to
determine player S’s component to obtain an equilibrium. From Theorem 2 and the
continuity of x(t), we can easily prove the following existence result.
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Theorem 3 If the time horizon T > 0 is small enough, then the pair

(u∗s (t) , u∗f (t)) = (u∗s
(
t; u∗f (t)

)
, u∗f (t)), whose second component is given by

Eq. (10), while the first one is given by Eq. (21), after solving problems (19) and (20)
with the use of u∗f (t), satisfies the necessary conditions to be an open-loop Nash
equilibrium.

In order to obtain a best response strategy u∗s (t; u∗f (t)) for player S we need
first to solve the Riccati equation in (19), which requires a numerical quadrature;
then to integrate the linear equation in (20), which can be done through numerical
quadrature; finally to use the results for the functions ϕ(t) and χ(t) in Eq. (21).
Solving the Cauchy problem (2) with the control functions u∗s (t; u∗f (t)) and u∗f (t)
will provide the associated state function.

We can compare the optimal communication effort of the health-care system
when it acts alone with its equilibrium communication effort in presence of the
pharmaceutical firm.

Corollary 1 The communication activity of player f in equilibrium implies a lower
communication effort by player S with respect to the one-actor policy.

Proof As uf (t) > 0, t < T , from (21) and (24) we obtain that the optimal control
u∗s (t) is smaller than the one associated with uf (t) ≡ 0, which (in feedback form)
is

u∗s (t) = − δs

κs

ϕ (t) x(t) . (25)

��

4 Numerical Example

In this section, we analyze numerically some instances of the game in order to
illustrate the results obtained.

Table 1 presents an overview of data common to all the game instances we
consider, whereas we let the parameters γ and δf take sundry values, so that

γ ∈ {0.01 , 0.05 , 0.1} , δf ∈ {0 , 0.3 , 0.6} .

The parameter δf = 0 sets a situation where player f ’s communication cam-
paign cannot have any effect; on the contrary, player f ’s communication cam-

Table 1 Fixed game parameters

β δs η ϑ κf κs x0 T

0.3 0.6 0.9 0.1 0.8 4 50 10
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paign is effective if δf > 0. The different values of the parameter γ repre-
sent low/intermediate/high effectiveness of the anti-vaccine word-of-mouth phe-
nomenon.

Sensitivity to Word-of-Mouth Effectiveness γ

From Eq. (10) it follows that the pharmaceutical firm does some communication
effort if and only if δf > 0, namely when it can have an effect on the state
evolution; for δf = 0.6 we can observe the behavior as in Fig. 1. We can observe
that the higher the word-of-mouth effectiveness γ , the stronger player f ’s contrasting
strategy. Moreover, the contribution of player f ’s action in a neighborhood of T is
vanishing, in fact uf (T ) = 0.

In Fig. 2, player S’s optimal communication strategy u∗s is plotted, for different
values of the parameter γ . Again, the higher the word-of-mouth effectiveness γ , the
stronger player S’s optimal communication strategy.

Fig. 1 f strategy for δf = 0.6

Fig. 2 S strategy for δf = 0.6
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Fig. 3 S strategy for γ = 0.05 and t ∈ [0, 1]

Fig. 4 Unvaccinated people for γ = 0.05 and t ∈ [8, 10]

Sensitivity to Communication Effectiveness δf

Player S’s strategy in equilibrium, given by Eq. (21), is shown in Fig. 3. We can
see that the effective presence of player f ’s communication effort (δf > 0) makes
player S’s communication effort weaker.

The evolution of the unvaccinated people is plotted in Fig. 4; we observe that
when the communication campaign of the pharmaceutical firm is effective (δf >

0) then the joint action of the two players causes a stronger reduction of the
unvaccinated people.

Equilibrium Costs and Final Level of Unvaccinated People
In Table 2 we display the equilibrium payoffs of the two players, together with the
associated level of the state function, for different values of the parameters γ (word-
of-mouth effectiveness) and δf (player f ’s communication effectiveness).
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Table 2 Players’ equilibrium costs and final state

δf = 0 δf = 0.3 δf = 0.6

Jf Js x(T ) Jf Js x(T ) Jf Js x(T )

γ

0.01 26.01 2358.75 13.27 26.06 2325.69 13.09 26.22 2228.42 12.53

0.05 26.27 2975.55 14.87 26.39 2927.55 14.66 26.75 2786.53 14.02

0.1 25.49 3924.96 15.80 25.75 3849.86 15.56 26.55 3629.74 14.84

From the results in Table 2, we observe in general that as γ increases the final
unvaccinated people level x(T ) and player S’s total cost increase. On the other hand,
as δf increases the final unvaccinated people level x(T ) and player S’s total cost
decrease. Finally, player f ’s total cost increases as δf increases, whereas it is a
quasi-concave function of γ .

5 Conclusion

The aim of this study was to shed some light on the importance of a pharmaceutical
firm information activity to build awareness of the vaccines role in the fight against
infectious diseases. We found relevant information on the health-care situation
and viewpoint in recent documents of health organizations, WHO, and of groups
of medical researchers. We have proposed a model with two actors, the health-
care system, S, and a pharmaceutical firm, f, who direct their communication
efforts to reduce the unvaccinated population, while such population tends to grow
spontaneously.

The main results of our model are the following: first, the presence of the pharma-
ceutical firm is useful for the health-care system because the firm’s communication
campaign helps to decrease the number of unvaccinated people at the end of the
programming interval. Second, the pharmaceutical firm invests to reduce the number
of unvaccinated people and this investment decreases the total expenditure of the
health-care system. Therefore, the presence of the pharmaceutical firm is useful
to society, because it shares with the health-care system the objective of reducing
the number of unvaccinated people. Finally, the real problem that emerges from
our model analysis is the effectiveness of the word-of-mouth communication of the
unvaccinated people: the stronger this phenomenon, the higher the expenditures of
both pharmaceutical firm and health-care system. Moreover, as far as the unvacci-
nated population exists, its final value is strictly increasing in the effectiveness of
the word-of-mouth phenomenon.

The study may be extended in different directions. On one hand, the defini-
tions (3) and (4) of the players objective functions could be modified in order to
consider semi-altruistic preferences of the agents (see Brekke et al. 2017, 2012). On
the other hand, it could be interesting to analyze a stochastic evolution of the number
of unvaccinated people. This goal could be obtained by introducing a stochastic



A LQ Vaccine Communication Game 365

effect in the communication campaigns and changing the ordinary differential
equation (2) into a stochastic one (see Grosset and Viscolani 2004; Buratto and
Grosset 2006). Moreover, a new definition of the objective functionals (3) and (4)
should be provided.

Acknowledgements The authors thank two anonymous referees for their interesting comments
and suggestions. The third author wants to thank D. Bonandini for instructive talks on the
vaccination problem in Italy.

Appendix

Proof (Theorem 2) Let us(t) ≥ 0, t ∈ [0, T ], be an admissible control of player S,
which determines the state function x(t) > 0 , t ∈ [0, T ). We recall that the function
uf (t) is a known parameter in the present context.

Let us assume that

us(t) = 0 , t ∈ [τ , τ + h) ,

for some τ ∈ [0, T − 2h], h > 0, and let us define the spike variation

uαs (t) =
{
α , t ∈ [τ , τ + h) ,

us(t) , t �∈ [τ , τ + h) ,

of the control us(t), where α > 0. Let the admissible control uαs (t), jointly with
uf (t), determine the state function xα(t) , t ∈ [0, T ], and assume that

xα(t) > 0 , t ∈ [τ , τ + 2h) .

Remark that

xα(τ) = x(τ) ,

xα(t) ≤ x(t) , t ∈ (τ , T ) ,

and

xα(t) < x(t)− δshα , t ≥ τ + h .

In order to compare the values of the objective functional Js associated with the
control pairs (us, uf ) and (uαs , uf ), let us define

�Js = Js[uαs , uf ] − Js[us, uf ]
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and look for an upper bound of it. We observe that

�Js ≤ �Js |[τ ,τ+h) + �Js |[τ+h,τ+2h)

= β

2

∫ τ+h

τ

(
(xα)2 (t)− x2 (t)

)
dt + κs

2

∫ τ+h

τ

α2 dt

+ β

2

∫ τ+2h

τ+h

(
(xα)2 (t)− x2 (t)

)
dt ,

because �Js |[0,τ ) = 0, �Js |[τ+2h,T ] ≤ 0, and because of the residual value
function negative variation. The upper bound just obtained is strictly less than

κs

2

∫ τ+h

τ

α2 dt + β

2

∫ τ+2h

τ+h

(
(xα)2 (t)− x2 (t)

)
dt ,

because

β

2

∫ τ+h

τ

(
(xα)2 (t)− x2 (t)

)
dt < 0 .

The last upper bound is strictly less than

κsh

2
α2 + β

2

∫ τ+2h

τ+h

(
(x(t)− δshα)

2 − x2 (t)
)

dt

= hα

2

{(
κs + βδ2

s h
2
)
α − 2βδs

∫ τ+2h

τ+h

x(t) dt

}
.

Now, the last expression is negative if and only if

α <
2βδs

κs + βδ2
s h

2

∫ τ+2h

τ+h

x(t) dt ,

which is true for suitably small α > 0, because the right-hand side of the above
inequality is strictly positive. ��
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On the Stability of a Two-Player
International Environmental Agreement
with Intra-Industry Trade

Sébastien Debia

Abstract An international environmental agreement is an unstable coalition by
nature, which results in a drive to design mechanisms to provide stability. This note
numerically shows that when an international environmental agreement is coupled
with intra-industry trade with complementary intermediate goods, then two-player
cooperation is a Nash equilibrium. This result may be of interest given that over half
the trade between developed countries is intra-industry.

Keywords International environmental agreement · Intra-industry trade ·
Cooperative game

1 Introduction

The solution to tackle anthropic global warming is well-known, as the main obstacle
to its implementation: when contemplating whether to sign an environmental
agreement, countries must consider that there is an incentive to free-ride. Pollution
abatement is a public good, and every country will profit from the effort of
one, resulting in a prisoner’s dilemma: non-cooperation is the equilibrium, while
cooperation is Pareto-dominant (Hardin 1982).

The game-theory literature about international environmental agreements bases
its analysis on a simplified representation of the economy. Countries produce a
pollution-emitting homogeneous good to increase their wealth (Dockner and Long
1993; Barrett 1994; Breton et al. 2010). Based on this assumption, the fundamental
situation is a non-cooperative equilibrium: the public good not provided by a
country can be supplied by another, thereby increasing the incentive to free-ride. The
literature accordingly focuses on the mechanisms allowing the cooperative solution
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to be stable. However, little attention has been given to trade, as the homogeneity
assumption implies that the goods are perfect substitutes.

The relationship between trade and environmental policy is complex. Countries
with homogeneous goods tend to soften their environmental policy as an indirect
means of subsidizing their exports (Barrett 1994). While this result is not fully
supported by empirical evidence, the literature generally agrees that when a country
has a strong environmental regulation, this is detrimental to its volume of exports
(Cherniwchan et al. 2017). Nevertheless, these authors emphasize the emergence of
a new empirical literature based on heterogeneous-firm models à la Melitz (Melitz
2003) to analyze the link between intra-industry trade and environmental policy.1

Because trade makes competition more intense, less-productive firms are pushed out
of the market, which then raises the economy’s overall productivity. Concomitantly,
we may see a reduction in emissions, since input use is reduced.

This note links two strands of the literature by bringing the structure of intra-
industry trade into the game-theoretic framework of coalition stability. Countries
produce differentiated intermediate goods used for the production of final goods in
each country, along a constant elasticity of substitution (CES) production function
(Melitz 2003; Arkolakis et al. 2012; Edmond et al. 2015). The consumption of the
final goods and the trading of the intermediate goods generate welfare for each
country, but they also generate environmental damage.

The stylized model considered in this note is a very simple two-player-two-
(intermediate)-good static game. The production of the intermediate goods gener-
ates transboundary pollution, while the production of the final goods does not. To
reduce the model to its simplest form in order to capture the main feature of intra-
industry trade, it is assumed that each country’s economy is small relative to the rest
of the world’s, so that they consider the international price of intermediate goods as
given. I compute the equilibrium of the economy, assuming that each country plays
either cooperatively or non-cooperatively, and design a bi-matrix game to determine
if cooperation is a Nash equilibrium (or not). I then determine the dominant strategy
for each player.

This framework is interpretable as a non-binding agreement, such as the Paris
COP 21. Countries agree on the principle of cooperation, but may deviate when it
comes to applying the agreement.

The contribution of this note is to numerically provide conditions on the
final-good-production function under which environmental cooperation is a Nash
equilibrium. While the equilibrium is the usual prisoner’s dilemma when the two
intermediate goods are substitutes, cooperation becomes the Nash equilibrium when
the two intermediate goods are relative complements. The latter case is far from

1Intra-industry trade refers to international trade between similar countries and within a particular
sector, such as car or computer manufacturing. It accounted for over half the total trade of
developed countries in the late 1990s (OECD 2002).
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insignificant, as most final goods require a precise quantity of intermediate goods
for their production.2

The main mechanism behind this result is that the increased cost of a stronger
environmental policy is reflected through the world prices. When goods are relative
complements, the demand for these goods is relatively inelastic because they are
needed for the production process. If a country deviates from cooperation, it reduces
the price of its domestic intermediate good, while the price of the imported good
remains high. In other words, a deviating country drastically reduces its terms of
trade, an effect that is detrimental to its wealth. This result provides support for
advocating that intra-industry trade might be beneficial for the environment, in that
it fosters environmental cooperation.

The note is organized as follows: Sect. 2 describes the economic structure of the
model. Section 3 defines the meta-game and the optimality conditions associated
with each subgame. Section 4 displays the numerical results. Section 5 briefly
concludes.

2 The Economic Structure

I consider a partial-equilibrium model with two countries indexed by i, i = 1, 2.
Each country produces a final good for local consumers and has an intermediate
goods sector used as an input in the production of the final good in either countries.
The intermediate good can be exported to the other country. Both countries
are symmetric, except for their respective demand function in the differentiated
intermediate goods.

Final Goods Each country produces a quantity of final goods qi for their local
consumers. Their inverse-demand functions Pi(qi) are as follows:

Pi(qi) = 100− qi.

The final goods are produced along a constant elasticity of substitution (CES) in
both countries:

qi =
(
y
ρi

i +m
ρi

i

) 1
ρi ,

where yi is the quantity of intermediate goods produced by country i, and mi is
the quantity of intermediate goods imported by country i from the other country.
The parameter ρi measures whether the two goods yi and mi are substitutes or
complements:

2For example, a computer needs a precise quantity of rare earth and other metal to be built. This
case is so relevant that Cherniwchan et al. (2017) exemplify the Melitz model with a Leontief
(perfect complement) function for the final goods’ production.
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ρi =
si − 1

si
,

where si is the elasticity of substitution between yi and mi . As ρi goes to −∞,
the two intermediate goods are perfect complements in the production of the final
good: the CES function approximates a Leontief function. Conversely, as ρi goes
to 1, the two intermediate goods are perfect substitutes in the production of the
final good. When ρi tends to 0, the CES function is equivalent to a Cobb–Douglas
function. Below this threshold, the two goods are considered relative complements,
and above it they are considered to be relative substitutes.

Intermediate Goods Both countries produce a differentiated intermediate good
that they can use locally and/or export. The variable yi is the quantity of intermediate
good produced by country i for local usage, and the variable xi is the quantity of
the same intermediate good for export. The intermediate good in each country is
costless to produce but generates a negative externality: transboundary pollution.
For simplicity, we assume that the emissions rate is equal to one and that this
pollution generates the same quadratic damage in both countries. Each intermediate-
good producer does not internalize the environmental damage but has to pay the
environmental tax set by the host country.

For each unit of exports, the transporter must be paid an iceberg transportation
cost τ , τ > 1, in kind by the exporter. That is, each country’s total production
amounts to yi + τxi .

Trading Prices In this two-player setting, the quantity of goods imported by
country i must match the quantity of goods exported by country j . This equality
defines the world price wj for the intermediate good produced in country j .
Formally:

R � wj ⊥ xj −mi = 0, j = 1, 2, i �= j.

The equilibrium condition is represented as a slackness condition, which states that
a world price is nonzero only if exports and imports match.

The imported goods must be paid at a market price including the transport cost
(CIF price). That is, country i must pay τwj per unit of import mi . The exporter
only receives the market price, excluding the transport cost (FOB price), wj for xj ,
while it has produced τ times the number of units sold.

To summarize, the exporter pays the transport cost in kind, while the importer
supports the transport cost financially. While questionable, this double accountancy
is usual in the international trade literature (Arkolakis et al. 2012; Edmond et al.
2015). In our framework, it is nevertheless interpretable as the pollution caused by
transport. We consider that each country is a price taker with respect to these prices.
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3 The Meta-Game

After a non-binding environmental agreement, such as the Paris COP 21, has been
signed, the question remains as to whether each party is willing to cooperate. Each
country’s cooperation is modeled such that its implicit tax rate takes full account of
the environmental marginal damage. On the other hand, a country is non-cooperative
if it considers only the local damage in setting the tax. This approach to cooperation
is relatively standard in the game theoretic literature about transboundary pollution
(Dockner and Long 1993). The environmental agreement being non-binding, each
country is free to decide whether it will play cooperatively or not. Hence, we may
face cases where one country implements a low production policy in order to limit
pollution, while the other country may want to free-ride and increase its production.
These cases will be referred to as deviation equilibria.

The Non-cooperative Subgame Equilibrium In the non-cooperative scenario,
each country maximizes its local welfare considering the other country’s actions and
the market price as given. Country i’s maximization program is written as follows,
for i �= j :

max
qi ,yi ,xi ,mi≥0

qi(100− qi/2)+ wixi − τwjmi − 1

2

(
2∑

k=1

yk + τxk

)2

, (1)

s.t. qi =
(
y
ρi

i +m
ρi

i

) 1
ρi , (pi).

(2)

Country i’s welfare consists of the consumer surplus plus the export benefits minus
the import costs minus the local environmental damage.

Note here that qi is only used to simplify the exposition, as is exactly defined by
yi and mi . The dual variable pi associated with the constraint (2) is interpretable
as the price of the intermediate good produced by country i. The Karush–Kuhn–
Tucker (KKT) conditions provide the necessary conditions for the game to be at
equilibrium. Deriving for each i and using some simple substitutions yields

R � wi ⊥ xi −mj = 0, i = 1, 2, i �= j, (3)

R � pi ⊥ qi −
(
y
ρi

i +m
ρi

i

) 1
ρi = 0, i = 1, 2, (4)

0 ≤ qi ⊥ pi − 100+ qi ≥ 0, i = 1, 2, (5)

0 ≤ yi ⊥
2∑

k=1

(yk + τxk)−
(
qi

yi

)1−ρi

pi ≥ 0, i = 1, 2, (6)

0 ≤ xi ⊥ τ

2∑

k=1

(yk + τxk)− wi ≥ 0, i = 1, 2, (7)
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0 ≤ mi ⊥ τwj −
(
qi

mi

)1−ρi

pi ≥ 0, i = 1, 2, i �= j, (8)

As previously discussed, (3) and (4) refer to the formation of intermediate and final
goods price by matching supply and demand. Despite the fact that these prices
are not formally constrained to be non-negative, the equality between price and
marginal utility described in (5), associated with a non-negative marginal cost,
implicitly constrains the prices to be non-negative. Equation (6) implies that for the
local sales of intermediate goods to be positive, its marginal environmental (local)
damage must equal its marginal productivity, evaluated along the price of the final
good. In the same vein, provided mi is nonzero, the association of (3), (7), and (8)
implies the same principle, where the environmental damage is augmented by the
transport cost:

0 < mi �⇒ τ 2
2∑

k=1

(yk + τxk) =
(
qi

mi

)1−ρi

pi, i = 1, 2, i �= j.

The Cooperative Subgame Equilibrium In the cooperative game, players max-
imize their joint payoff to set their strategy. That is, they maximize the following
objective function:

max
qi ,yi ,xi ,mi≥0

2∑

i=1

⎡

⎣qi(100− qi/2)+ wixi − τwjmi − 1

2

(
2∑

k=1

yk + τxk

)2⎤

⎦ ,

(9)
subject to the CES production functions (2) for each i. Compared to the non-
cooperative game, only KKT conditions (6) and (7) change:

0 ≤ yi ⊥ 2
2∑

k=1

(yk + τxk)−
(
qi

yi

)1−ρi

pi ≥ 0, i = 1, 2, (10)

0 ≤ xi ⊥ 2τ
2∑

k=1

(yk + τxk)− wi ≥ 0, i = 1, 2, (11)

As expected, the marginal environmental damage is augmented to take into account
the global effect of transboundary pollution.

The Deviation Subgames Equilibria The situation where one player cooperates
while the other does not is simply represented by each player adopting the
corresponding KKT conditions. That is, the non-cooperative player maximizes its
individual welfare, while the cooperative player maximizes the coalition welfare.

Proposition 1 The Cournot–Nash equilibrium exists and is unique for each sub-
game.
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Proof Using the optimality conditions of the supply for exported goods, px and py

are replaced by the marginal environmental damage. The existence of an equilibrium
is straightforward. For uniqueness, the concavity of the welfare function must be
shown.

1. Let us first show that a CES function is concave, such that its Hessian matrix is
negative semi-definite. Define

f (y,m) = (yρ +mρ
)1/ρ = g(y,m)1/ρ,

with y,m ≥ 0 and ρ ≤ 1. Denote by F the Hessian matrix of f (y,m), and by G
the Hessian matrix of g(y,m).

(a) When ρ ∈ (0, 1], g(y,m) is a concave function since G is a diagonal matrix
with negative terms.

(b) When ρ < 0, f is monotone decreasing in g(y,m). It is thus a monotone
increasing function of −g(y,m). Thus, −G is negative semi-definite, such
that −g(y,m) is concave.

(c) f being a monotone increasing function of a concave function, it must be
quasi-concave. A quasi-concave function that is homogeneous of degree 1 is
concave. Hence f (y,m, ) is concave, and F is negative semi-definite.

2. At equilibrium, the cost of the imported good is equal to τ times the marginal
damage, τ > 1. The Hessian matrix associated with the non-cooperative game
H is thus a negative translation of the CES Hessian matrix F , that is,

H = p × F − T = p ×
(
fyy fym

fmy fmm

)
−
(

f 2
y + 1 fyfm + τ

fmfy + τ f 2
m + τ 2

)

,

where p is the price, p ≥ 0. The second matrix T is positive definite: the diagonal
terms are positive and the determinant reduces to (fm − τfy)

2 > 0. Hence, −T

is negative definite, implying that H is negative definite and the welfare function
is strictly concave.

Thus, the Cournot–Nash equilibrium of the non-cooperation game is unique. The
equilibrium uniqueness of the other subgames is shown in a similar way. ��

Because of the CES function, a closed-form solution cannot be derived from the
necessary conditions of each subgame. It is however possible to characterize the
intensity of imports (yi/mi) at equilibrium for the different regimes. For interior
solutions, marginal productivity equals marginal cost for both yi and mi . Dividing
one by the other, you obtain the intensity of imports (yi/mi) for each i as a function
of its relative marginal cost. If both countries are cooperative or non-cooperative,
then

(
yi

mi

)1−ρi

= τ 2.
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In other words, if both countries use the same strategy regime, cooperating or not
will have the same impact on the intensity of trade. Then it is of course the case
that two cooperative countries will produce less, and thus import less, because of
higher environmental costs. However, if country i is cooperative while country j is
non-cooperative, then

(
yi

mi

)1−ρi

= τ 2

2
, and

(
yj

mj

)1−ρj

= 2τ 2.

That is, the cooperating country imports more intensively, while the deviating coun-
try does the opposite. Indeed, the stronger environmental policy of the cooperative
country decreases the volume of its intermediate goods. Such a scarcity always
increases the price, even more so as ρi moves away from 1. The effect of this
deviation on price is the main driver of the next section’s results.

4 Results

This section provides numerical solutions for the Nash equilibrium of the meta-
game under various assumptions about the production function’s elasticity parame-
ters. The game is solved by plotting the different KKT conditions into GAMS and
using the PATH solver. The transport cost is assumed to be τ = 1.1.

Figure 1 represents the impact of the elasticity parameters ρi on the Nash
equilibrium of the meta-game. Note that ρi can take values between −∞ and 1.
The range of parameter values in our experiment is chosen large enough to capture
the behavior of the solution when ρ tends to infinity.

When the two intermediate goods are relative complements in both final goods
production functions, then environmental cooperation is always the Nash equilib-
rium of the meta-game. For high elasticity values in both production functions,
the Nash equilibrium is the non-cooperative one and it is Pareto-dominated by
cooperation. If goods are relative substitutes for country i’s final goods production
but relative complements for country j ’s, i = 1, 2, j �= i, then:

1. If Country i’s CES production function has a low value of substitutability
(ρi → 0), and Country j ’s has a high value of complementarity (ρj → −1),
then cooperation is the Nash equilibrium.

2. If Country i’s CES production function has an intermediate value of substi-
tutability, then it tends to deviate from cooperation while Country j sticks to
cooperation at equilibrium.

3. If Country i’s CES production function has a high value of substitutability (close
to 1), then non-cooperation is the Nash equilibrium.

Along the diagonal of symmetric players (ρ1 = ρ2), there exists cases where the
elasticities are close to zero and there exists two Nash equilibria.
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Fig. 1 Nash equilibrium(-a) of the meta-game

(a) If ρi → 0− for all i, both intermediate goods are weak complements, and both
cooperation and non-cooperation are eligible to be a Nash equilibrium.

(b) If ρi → 0+ for all i, both intermediate goods are weak substitutes, and both
deviation solutions are eligible to be a Nash equilibrium.

Figure 2 represents the pattern of trade for each equilibrium in its respective
regime (cooperative, non-cooperative, and deviation equilibria). First, there is
bilateral trade when the two players are symmetric, along the diagonal, except when
the two intermediate goods are perfect substitutes. Intuitively, if country i’s CES
function exhibits the perfect substitution property, it does not import. However,
once this country’s function is of imperfect substitution, it imports. When the two
goods are complements (ρi, ρj < 0, j �= i), the imports of country i depend on
its relative complementarity w.r.t. the other country (ρi/ρj ). When the relative
complementarity of country i increases (ρi/ρj > 1), this country is exporting
unilaterally.3

This effect is explained by the pattern of production, represented in Fig. 3,
which corresponds almost exactly to the regime of trade. The only differences are
explained by the transport cost, which makes importing more costly. If one country

3Note that a numerical model is ill-conditioned for very low quantity of inputs and negative
elasticity parameters value ρi . To avoid numerical instability, quantities are restricted to be greater
than 10−5. Only interior variables are considered non-null.
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Fig. 2 Pattern of trade

Fig. 3 Pattern of production for local usage
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uses perfect substitutes, it allocates all its effort to less-costly local production. If
both goods are complements, the cases where there is production but no imports
occur for close-to-the-lower-bounds production: since imports are more expensive,
the volume of imports is below this lower bound and considered to be zero.

5 Conclusion

This note analyzes the stability of environmental cooperation in a simple two-player
game with tradable goods. It models a situation of intra-industry trade where a final
good is produced by combining two intermediate goods through a CES function. I
test the impact of the elasticity of substitution of these CES functions and find that
if the two intermediate goods are relative complements, then cooperation is a Nash
equilibrium. If cooperation is the equilibrium of the static game, then it might also
be the case for the dynamic game with pollution stock.

While an environmental agreement in a globalized economy is primarily a
general equilibrium problem among n players, this study is useful in providing
insights about the properties of intra-industry trade. In the current context, where
major players, such as the USA, disengage from the (non-binding) Paris agreement,
it offers hope that agreements concerning this specific structure of trade are
sustainable.

This study can be extended in many ways. In addition to the usual extensions
to n-players and higher degrees of parametrization of the analyzed function, an
extension in a dynamic framework seems achievable. Second, it would be interesting
to test the results’ robustness when the economy is subject to market power and/or
when the countries are able to anticipate world prices. Last but not least, the frontier
between cooperation and non-cooperation seems to be defined by a smooth function,
so that it would be interesting to find its analytical form in terms of the elasticities
of substitution.
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Stable Coalition Structures in Dynamic
Competitive Environment

Elena Parilina and Artem Sedakov

Abstract We consider a finite horizon dynamic competition model in discrete time
in which firms are not restricted from cooperation with each other and can form
coalitions of any size. For every coalition of firms, we determine profits of its
members by two approaches: without the redistribution of profits inside the coalition
and with such redistribution using a solution from cooperative game theory. Next,
for each approach we examine the stability of a coalition structure in the game.
When we find a stable coalition structure, we then verify whether it is dynamically
stable, that is, stable over time with respect to the same profit distribution method
chosen in the initial time period.

Keywords Dynamic competition · Coalition structure · Stability

1 Introduction

In the chapter we consider a dynamic competition model, in which firms choose
their outputs in each time period. The market price is formed based on the decision
of firms and on the price in the previous time period. We assume that the level
of influence of the previous period price depends on the market state. Having this
competitive model, we make an assumption that firms may cooperate in coalitions of
any size forming a coalition structure. If the coalition structure is formed, each firm
acts to maximize the profit of the coalition it belongs to. If the firms are supposed to
have non-transferable profits, they are paid by initially given payoff functions. But
if firms’ profits are transferable, a cooperative point solution which redistributes
the profits between firms is calculated. In both cases, a firm may have an interest
in deviating from a coalition it belongs by joining another coalition or becoming
a singleton. If no firm has a profitable deviation from its coalition, the coalition
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structure is called stable (Parilina and Sedakov 2014; Sedakov et al. 2013). The
stability of a coalition structure is determined with respect to a profit distribution
method. In the definition of a stable coalition structure one may find similarity
with the Nash equilibrium concept. The existence of a stable coalition structure
with respect to the Shapley value in three-person games is proved in Sedakov et al.
(2013). In four-person games the existence of a stable coalition structure is proved
for special classes of transferable utility games (TU games). It is shown that a stable
coalition structure may not exist in general (Sun and Parilina 2018).

The problem of stability of a coalition structure is actual in many applied
problems. When the coalition structure is unstable, it is difficult to keep it the
same over time and realize the game without changing the structure. There also
exist other approaches to determine the stability of a coalition structure (e.g., see
Carraro 1999). In the abovementioned paper, to be stable the coalition structure
should be (i) internally stable, i.e., each player loses if he leaves his coalition
becoming a singleton, (ii) externally stable, i.e., each player-singleton loses if he
joins any coalition or another singleton, and, finally, (iii) intracoalitionally stable,
i.e., each player from a coalition loses if he leaves his coalition and joins another
one. In Parilina and Sedakov (2015) a process of changing coalition structures over
time is considered. The authors introduce the concept of d-stability of a coalition
structure, which players would never change once it is reached.

Even if the coalition structure is stable in the whole game, i.e., the stability
conditions are satisfied in the initial time period, it may become unstable on
the corresponding equilibrium state trajectory in some intermediate time period.
Therefore, we define a dynamically stable coalition structure which is stable not
only in the game but in any subgame starting from any intermediate time period and
the corresponding state.

In this chapter we examine a competition model with finite time horizon and
linear-quadratic profit functions of firms-competitors (see Carlson and Leitmann
2005). The firms are allowed to cooperate by forming a coalition structure. We
determine the conditions for firms’ strategies to form an open-loop coalition
Nash equilibrium. By a coalition Nash equilibrium we mean a Nash equilibrium
among players-coalitions in the given coalition structure. There are two options to
determine firms’ profits in the game. If the profits are non-transferable, the firms
are paid according to their initially given payoff functions. If they are transferable,
we determine the characteristic function according to the concepts in Chander and
Tulkens (1997) and Rajan (1989). Based on the characteristic function, a cooperative
point solution is defined using the Shapley value adopted for the games with a given
coalition structure (Aumann and Dreze 1974; Shapley 1953). We determine a stable
coalition structure for the initial time period and a dynamically stable coalition
structure. As an example, a game with three firms is considered which admits five
possible coalition structures. Interestingly, in the case of non-transferable payoffs,
there are no stable coalition structures, but when firms redistribute their profits
according to the Shapley value, there exists a unique stable coalition structure which
is not the grand coalition. We then verify that this structure is also dynamically
stable.
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The chapter is organized as follows. Section 2 presents the theoretical model
of the dynamic game and the conditions of a coalition equilibrium. In Sect. 3, we
formulate the concept of stability for a coalition structure when profits are both
non-transferable or transferable. In the latter case, the Shapley value is chosen as a
cooperative point solution. We provide an illustrative example in Sect. 4, and briefly
conclude in Sect. 5.

2 The Model

We consider a market of firms composing a finite set N with |N | = n � 2.
Producing and selling a product, firms compete in quantities over a finite set of
periods T = {0, 1, . . . , T } with the initial market price p0 for the product. In each
period t ∈ T \ T , a firm i ∈ N selects its quantity qi(p0, t) ∈ R+ to be produced
for this period. A market price p(t) ∈ R+ satisfies the state equation

p(t + 1) = sp(t)+ (1− s)

(

a − b
∑

i∈N
qi(p0, t)

)

, t ∈ T \ T , (1)

with the initial state p(0) = p0. For a given s ∈ [0, 1], the first summand in the
r.h.s. of (1) represents the inertia in the market price while the second one reflects
the price change as a reaction on produced output for some positive constants a

and b. Under an open-loop information structure (Haurie et al. 2012), an open-loop
strategy of firm i is a profile of quantities qi(p0) = (qi(p0, 0), . . . , qi(p0, T − 1))
which i decides to produce during the planning horizon. Denote a strategy profile by
q(p0) = (q1(p0), . . . , qn(p0)). Each firm i aims to maximize its total discounted
profit of the form

πi(p0, q(p0)) =
T−1∑

t=0

't
[
p(t)qi(p0, t)− ci

2
q2
i (p0, t)

]

adopting its strategy qi(p0), where p(t) satisfies state equation (1) with initial state
p(0) = p0. A parameter ci > 0 reflects firm i’s unit cots and ' ∈ (0, 1] is a common
discount factor. In period T players have zero payoffs.

From now, we assume that firms are not restricted in cooperating with each other
and can form any coalition, which is a nonempty subset of N . A partition B =
{B1, . . . , Bm} of set N is called a coalition structure. A strategy profile under the
structure B will be denoted by qB(p0). A strategy of a coalition B ∈ B is a profile
qB
B (p0) = {qB

i (p0), i ∈ B}. Given a coalition structure B, a strategy profile can
then be written in terms of the structure, i.e., qB(p0) = {qB

B (p0), B ∈ B}. Under
the coalition structure, the aim of each firm is to maximize the profit of the coalition
to which it belongs. More formally, jointly selecting a profile qB

B (p0), all firms from
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coalition B ∈ B maximize the sum πB
B (p0, q

B(p0)) = ∑
i∈B πi(p0, q

B(p0))

subject to the state Eq. (1) with p(0) = p0.

Definition 1 A profile q̄B(p0) is an open-loop coalition Nash equilibrium (or
simply coalition Nash equilibrium) if

πB
B (p0, q̄

B(p0)) � πB
B (p0, (q

B
B (p0), q̄

B
N\B(p0)))

for any coalition B ∈ B and its strategy qB
B (p0). Alternatively, q̄B(p0) satisfies

q̄B
B (p0) = arg max

qB
B (p0)

πB
B (p0, (q

B
B (p0), q̄

B
N\B(p0)))

for any B ∈ B.

In particular, when B = {{1}, . . . , {n}}, that is, all coalitions in coalition structure
B are singletons, the coalition Nash equilibrium is a Nash equilibrium, while when
B = {N}, that is, all firms cooperate in one coalition, the coalition equilibrium
is a cooperative optimum. A sequence of market prices p̄B = {p̄B(0) ≡
p0, p̄

B(1), . . . , p̄B(T )} uniquely determined by coalition equilibrium q̄B(p0) and
state equation (1) is a coalition equilibrium trajectory. A coalition equilibrium
trajectory determined by a cooperative optimum q̄{N}(p0) is a cooperative trajectory
denoted by p̄{N}. Next, we can define the profit of firm i under a coalition equilib-
rium q̄B(p0), which is πi(p0, q̄

B(p0)). Similarly, we define firm i’s cooperative
profit πi(p0, q̄

{N}(p0)), i.e., its profit under a cooperative optimum q̄{N}(p0).
Let �B(p0) denote the dynamic game over the set of periods T with coalition

structure B starting in state p0. We now characterize an open-loop coalition Nash
equilibrium in this game. A similar infinite-horizon two-person non-cooperative
model is examined in Carlson and Leitmann (2005) for open-loop strategies. One
can study this problem also by assuming a feedback information structure. However,
to find the corresponding feedback coalition Nash equilibrium, one needs to assume
the form of value functions.

Theorem 1 Under a coalition structure B, an open-loop coalition Nash equilib-
rium q̄B is composed of the following strategies:

q̄B
i (p0, t) = 1

ci

[
p̄B(t)− 'b(1− s)μB

B (t + 1)
]
, i ∈ B, t ∈ T \ T , (2)

where p̄B(t) and μB
B (t), B ∈ B, satisfy the recursive relations:

p̄B(t) = sp̄B(t − 1)+ (1− s)

(

a − b
∑

i∈N
q̄B
i (p0, t − 1)

)

, t ∈ T \ 0,

μB
B (t) =

∑

i∈B
q̄B
i (p0, t)+ 'sμB

B (t + 1), t ∈ T \ {0, T },
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with p̄B(0) = p0 and μB
B (T ) = 0 for any B ∈ B.

Proof For a coalition B ∈ B, we define the Hamiltonian H B
B :

H B
B =

∑

i∈B
't
[
pB(t)qB

i (p0, t)− ci

2
(qB

i (p0, t))
2
]

+λB
B (t + 1)

[

spB(t)+ (1− s)

(

a − b
∑

i∈N
qB
i (p0, t)

)]

,

where λB
B (t+1) is a costate variable. From the maximum principle, for any coalition

B ∈ B, the following is true:

∂H B
B

∂qB
i (p0, t)

= 't
[
pB(t)− ciq

B
i (p0, t)

]
− (1− s)bλB

B (t + 1)

= 0, i ∈ B, t ∈ T \ T ,
∂H B

B

∂pB(t)
= 't

∑

i∈B
qB
i (p0, t)+ sλB

B (t + 1) = λB
B (t), t ∈ T \ {0, T },

λB
B (T ) = 0.

Replacing costate variables λB
B (t) with scaled ones μB

B (t) by μB
B (t) = '−t λB

B (t),
t ∈ T \ 0, and rewriting condition ∂H B

B /∂qB
i (p0, t) = 0, we obtain the

expressions from the statement of the theorem. ��

3 Stability of a Coalition Structure

Assuming the firms are exogenously organized in a coalition structure B, The-
orem 1 provides equilibrium outputs q̄B

i (p0) for each firm i ∈ N under a
coalition Nash equilibrium. Thus following the equilibrium profile q̄B(p0), a firm
i can determine its profit πi(p0, q̄

B(p0)) in the game. However under a different
coalition structure B′ resulting in a different coalition Nash equilibrium q̄B′

(p0),
firm i’s profit πi(p0, q̄

B′
(p0)) will not necessarily coincide with πi(p0, q̄

B(p0)).
If firms were to create a coalition structure themselves, they would do it in a way that
each firm would select the coalition which it does not want to leave, thus coming
to a stable coalition structure. This approach is quite natural, and of course we are
aware that there might be other reasons why firms should form a particular coalition
structure. Although firms in a coalition focus on the total profit of this coalition, at
the same time each firm also takes into account its individual profit in this coalition
to measure its “satisfaction” from being a member.
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In this section we consider two cases for determining a stable coalition structure:
when firms’ profits are either non-transferable or transferable.

For a given coalition structure B, let B(i) denote the coalition from B which
contains firm i. Let also for some B ∈ B denote B−B = B \ B.

3.1 Non-transferable Profits

We start with a case of non-transferable profits. This means that for a coalition
structure B, under the corresponding coalition Nash equilibrium q̄B , a coalition
B ∈ B receives its profit of πB

B (p0, q̄
B(p0)) while its member i ∈ B gets

πi(p0, q̄
B(p0)).

Definition 2 A coalition structure B is stable if for any firm i ∈ N it holds that

πi(p0, q̄
B(p0)) � πi(p0, q̄

B′
(p0)), (3)

where B′ = {B(i) \ {i}, B ∪ {i},B−B(i)∪B} for any B ∈ B ∪ ∅ and B �=
B(i). Otherwise, the coalition structure is unstable. Here we recall that q̄B(p0)

and q̄B′
(p0) are coalition Nash equilibria for coalition structures B and B′,

respectively.

The definition of the stable coalition structure assumes that a firm may leave a
coalition and become a singleton; it may also join any other coalition in the structure.
Moreover, if a firm i leaves B(i), the coalition B(i) \ {i} does not break up and
remains a part of the coalition structure. If firm i decides to leave B(i) in favor of
some other coalition B, then the members of B allow it to enter and form a coalition
B ∪ {i} not blocking B from the new member.

When a coalition structure, say B, is stable, no firm wishes to change a coalition,
i.e., each firm i ∈ N prefers to be a member of B(i) ∈ B. Here we stress the reader’s
attention that the proposed stability concept is related only to the initial game period
t = 0 when firms are supposed to follow a prescribed equilibrium profile q̄B(p0)

in the whole game under B. Indeed, for this coalition structure inequality (3)
holds true. However in some game period t ∈ T \ 0 under profile q̄B(p0)

on the coalition equilibrium trajectory p̄B in state p̄B(t), coalition structure B
may become unstable. Let q̄B(p̄B(t)) denote a coalition Nash equilibrium in the
subgame of game �B(p0) starting in period t in state p̄B(t). We denote this
subgame by �B(p̄B(t)). Thus firms’ profits in �B(p̄B(t)) are of the form:

πi(p̄
B(t), q̄B(p̄B(t))) =

T−1∑

τ=t

'τ−t
[
p̄B(τ )q̄B

i (p̄B(t), τ )− ci

2

(
q̄B
i (p̄B(t), τ )

)2]

with
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p̄B(τ +1) = sp̄B(τ )+ (1− s)

(

a − b
∑

i∈N
q̄B
i (p̄B(t), τ )

)

, τ ∈ {t, . . . , T −1}.

If firm i in this state leaves B(i), that is, changes current coalition structure B to
some other B′, this will lead to another coalition Nash equilibrium q̄B′

(p̄B(t)).
We notice that the equilibrium in the subgame with new coalition structure B′ will
depend upon the state p̄B(t) in which B has been changed. Let further

πi(p̄
B(t), q̄B′

(p̄B(t)))

=
T−1∑

τ=t

'τ−t

[
p̄B′

(τ )q̄B′
i (p̄B(t), τ )− ci

2

(
q̄B′
i (p̄B(t), τ )

)2
]

with

p̄B′
(τ+1) = sp̄B′

(τ )+(1−s)

(

a − b
∑

i∈N
q̄B′
i (p̄B(t), τ )

)

, τ ∈ {t, . . . , T−1},

and p̄B′
(t) ≡ p̄B(t) denote firm i’s profit in the subgame starting in period t in

state p̄B(t) in the new coalition structure B′ under coalition Nash equilibrium
q̄B′

(p̄B(t)). Thus we come to the definition.

Definition 3 A coalition structure B is dynamically stable if for any firm i ∈ N

and any game period t ∈ T it holds that

πi(p̄
B(t), q̄B(p̄B(t))) � πi(p̄

B(t), q̄B′
(p̄B(t))), (4)

where B′ = {B(i) \ {i}, B ∪ {i},B−B(i)∪B} for any B ∈ B ∪∅ and B �= B(i).

The dynamic stability of B means its stability in any game period along the coalition
equilibrium trajectory p̄B .

3.2 Transferable Profits

Now we move to the case of transferable profits. Here we assume that for a
coalition structure B under the corresponding coalition Nash equilibrium q̄B(p0)

a coalition B ∈ B receives its profit of πB
B (p0, q̄

B(p0)) while the profit of its
members from cooperation has to be determined by redistributing πB

B (p0, q̄
B(p0))

among them. We will determine the profits of firms by a cooperative solution of
a corresponding TU game with a coalition structure. A TU game with a coalition
structure is a triple (N, v0,B), where N is a player set (the set of firms), v0 is
a characteristic function measuring a worth of any coalition, and finally B is a
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coalition structure. When transiting from a normal-form game to the corresponding
TU game, there is no unique way in determining the characteristic function. We
define it in two steps. Given a coalition structure B, at the first step we define the
value v0(B,B) as the profit of the coalition of firms B ∈ B under a coalition
Nash equilibrium q̄B(p0) in the dynamic game between players-coalitions from B.
Thus v0(B,B) = πB

B (p0, q̄
B(p0)). Next, for a coalition S ⊂ B, we define the

value v0(S,B) as the total profit of its members under a coalition Nash equilibrium
q̂S,B(p0) in a dynamic game between players-firms from B when (i) firms from
coalition S jointly maximize the total profit of this coalition, (ii) each firm from B\S
maximizes its own profit, and (iii) each firm i ∈ N \B maximizes the total profit of
coalitions they belong to, given the state equation (1). In other words, q̂S,B(p0) is
of the form:

q̂
S,B
i (p0) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

arg max
q
S,B
S (p0)

πB
S (p0, (q

S,B
S (p0), q̂

S,B
N\S (p0))), i = S,

arg max
q
S,B
i (p0)

πB
i (p0, (q

S,B
i (p0), q̂

S,B
N\{i}(p0))), i ∈ B \ S,

arg max
q
S,B
B′ (p0)

πB
B ′(p0, (q

S,B
B ′ (p0), q̂

S,B
N\B ′(p0))), i = B ′, B ′ ∈ B−B.

Therefore, the characteristic function is given by

v0(S,B) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

πB
B (p0, q̄

B(p0)), S = B, B ∈ B,

πB
S (p0, q̂

S,B(p0)), S ⊂ B, B ∈ B,

0, S = ∅,∑

B∈B,
B⊆S

πB
B (p0, q̄

B(p0))+ ∑

B∈B,

B�S,B∩S �=∅

πB
B∩S(p0, q̂

B∩S,B (p0)), otherwise.

Theorem 2 Under a coalition structure B, for any S ⊂ B, an open-loop coalition
Nash equilibrium q̂S,B(p0) is composed of the following strategies:

q̂
S,B
i (p0, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

ci

[
p̂S,B(t)− 'b(1− s)μ

S,B
S (t + 1)

]
, i ∈ S,

1

ci

[
p̂S,B(t)− 'b(1− s)μ

S,B
i (t + 1)

]
, i ∈ B \ S,

1

ci

[
p̂S,B(t)− 'b(1− s)μ

S,B
B ′ (t + 1)

]
, i ∈ B ′, B ′ ∈ B−B,

t ∈ T \ T ,

where p̂S,B(t) and μ
S,B
S (t), μS,B

i (t), i ∈ B \ S, μS,B
B ′ (t), B ′ ∈ B−B , satisfy the

recursive relations:

p̂S,B(t) = sp̂S,B(t − 1)+ (1− s)

(

a − b
∑

i∈N
q̂
S,B
i (p0, t − 1)

)

, t ∈ T \ 0,
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μ
S,B
S (t) =

∑

i∈S
q̂
S,B
i (p0, t)+ 'sμ

S,B
S (t + 1), t ∈ T \ {0, T },

μ
S,B
i (t) = q̂

S,B
i (t)+ 'sμ

S,B
i (t + 1), i ∈ B \ S, t ∈ T \ {0, T },

μ
S,B
B ′ (t) =

∑

i∈B ′
q̂
S,B
i (p0, t)+ 'sμ

S,B
B ′ (t + 1), B ′ ∈ B−B, t ∈ T \ {0, T },

with p̂S,B(0) = p0, μS,B
S (T ) = 0, μS,B

i (T ) = 0, i ∈ B \ S, and μ
S,B
B ′ (T ) = 0,

B ′ ∈ B−B .

Proof For a coalition S ⊂ B, each firm i ∈ B \ S, and each coalition B ′ ∈ B−B we
define the Hamiltonians H S,B

S , H S,B
i , and H S,B

B ′ , respectively:

H S,B
S =

∑

i∈S
't
[
pS,B(t)q

S,B
i (p0, t)− ci

2
(q

S,B
i (p0, t))

2
]

+λ
S,B
S (t + 1)

[

spS,B(t)+ (1− s)

(

a − b
∑

i∈N
q
S,B
i (p0, t)

)]

,

H S,B
i = 't

[
pS,B(t)q

S,B
i (p0, t)− ci

2
(q

S,B
i (p0, t))

2
]

+λ
S,B
i (t + 1)

[

spS,B(t)+ (1− s)

(

a − b
∑

i∈N
q
S,B
i (p0, t)

)]

,

H S,B
B ′ =

∑

i∈B ′
't
[
pS,B(t)q

S,B
i (p0, t)− ci

2
(q

S,B
i (p0, t))

2
]

+λ
S,B
B ′ (t + 1)

[

spS,B(t)+ (1− s)

(

a − b
∑

i∈N
q
S,B
i (p0, t)

)]

,

where λ
S,B
S (t), λS,Bi (t), i ∈ B \ S, and λ

S,B
B ′ (t), B ′ ∈ B−B , are costate variables.

From the maximum principle the following is true:

∂H S,B
S

∂q
S,B
i (p0, t)

= 't
[
pS,B(t)− ciq

S,B
i (p0, t)

]
− (1− s)bλ

S,B
S (t + 1) = 0,

i ∈ S, t ∈ T \ T ,
∂H S,B

S

∂pS,B(t)
= 't

∑

i∈S
q
S,B
i (p0, t)+ sλ

S,B
S (t + 1) = λ

S,B
S (t), t ∈ T \ {0, T },

λ
S,B
S (T ) = 0,
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∂H S,B
i

∂q
S,B
i (p0, t)

= 't
[
pS,B(t)− ciq

S,B
i (p0, t)

]
− (1− s)bλ

S,B
i (t + 1) = 0,

i ∈ B \ S, t ∈ T \ T ,
∂H S,B

i

∂pS,B(t)
= 'tq

S,B
i (p0, t)+ sλ

S,B
i (t + 1) = λ

S,B
i (t), t ∈ T \ {0, T },

λ
S,B
i (T ) = 0,

∂H S,B
B ′

∂q
S,B
i (p0, t)

= 't
[
pS,B(t)− ciq

S,B
i (p0, t)

]
− (1− s)bλ

S,B
B ′ (t + 1) = 0,

i ∈ B ′, t ∈ T \ T ,
∂H S,B

B ′

∂pS,B(t)
= 't

∑

i∈B ′
q
S,B
i (p0, t)+ sλ

S,B
B ′ (t + 1) = λ

S,B
B ′ (t), t ∈ T \ {0, T },

λ
S,B
B ′ (T ) = 0.

First we replace costate variables λ
S,B
S (t), λS,Bi (t), i ∈ B \ S, and λ

S,B
B ′ (t), B ′ ∈

B−B , with scaled ones by μ
S,B
S (t) = '−t λ

S,B
S (t), μS,B

i (t) = '−t λ
S,B
i (t), i ∈ B \

S, and μ
S,B
B ′ (t) = '−t λ

S,B
B ′ (t). Next, rewriting conditions ∂H S,B

S /∂q
S,B
i (p0, t) =

0, i ∈ S, ∂H S,B
i /∂q

S,B
i (p0, t) = 0, i ∈ B \ S, and ∂H S,B

B ′ /∂q
S,B
i (p0, t) = 0,

i ∈ B ′, B ′ ∈ B−B , we obtain the expressions from the statement of the theorem.
��

A cooperative point solution to the game (N, v0,B) with a coalition structure
B is a map that assigns a profile ξ [v0,B] ∈ R

n to the TU game such that∑
i∈B ξ i[v0,B] = v0(B,B) for all B ∈ B. In this definition we relax the individ-

ual rationality condition as the characteristic function may not be superadditive by
its construction. As cooperative point solutions we may consider different ones, e.g.,
the Shapley value, the nucleolus, etc. (see Aumann and Dreze (1974) for cooperative
solutions of a TU game with a coalition structure).

Definition 4 A coalition structure B is stable with respect to a cooperative point
solution if for any firm i ∈ N it holds that ξ i[v0,B] � ξ i[v0,B′] where B′ =
{B(i) \ {i}, B ∪ {i},B−B(i)∪B} for any B ∈ B ∪ ∅ and B �= B(i). Otherwise the
coalition structure is unstable.

In a similar way, we can determine a dynamically stable coalition structure. For
this reason we have to determine the cooperative point solution in each subgame
starting in state p̄B(t), t ∈ T \ 0 on coalition equilibrium trajectory p̄B .
To do this, we first define a TU subgame (N, vt ,B) with coalition structure
B where vt is the characteristic function in this subgame. We let vt (B,B) =
πB
B (p̄B(t), q̄B(p̄B(t))) for any B ∈ B. And for a coalition S ⊂ B, we define
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the value vt (S,B) as the profit of the coalition of firms S under a coalition Nash
equilibrium q̂S,B(p̄B(t)) in a dynamic subgame similarly, i.e., when (i) firms from
coalition S jointly maximize the total profit of this coalition, (ii) each firm from B\S
maximizes its own profit, and (iii) each firm i ∈ N \B maximizes the total profit of
coalitions they belong to. In other words, q̂S,B(p̄B(t)) is of the form:

q̂
S,B
i (p̄B(t))

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

arg max
q
S,B
S (p̄B(t))

πB
S (p̄B(t), (q

S,B
S (p̄B(t)), q̂

S,B
N\S (p̄B(t)))), i = S,

arg max
q
S,B
i (p̄B(t))

πB
i (p̄B(t), (q

S,B
i (p̄B(t)), q̂

S,B
N\{i}(p̄B(t)))), i ∈ B \ S,

arg max
q
S,B
B′ (p̄B(t))

πB
B ′(p̄

B(t), (q
S,B
B ′ (p̄B(t)), q̂

S,B
N\B ′(p̄

B(t)))), i = B ′,

B ′ ∈ B−B.

Therefore the characteristic function is given by

vt (S,B) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

πB
B (p̄B(t), q̄B(p̄B(t))), S = B, B ∈ B,

πB
S (p̄B(t), q̂S,B(p̄B(t))), S ⊂ B, B ∈ B,

0, S = ∅,∑

B∈B,B⊆S

πB
B (p̄B(t), q̄B(p̄B(t)))

+ ∑

B∈B,B�S,B∩S �=∅
πB
B∩S(p̄B(t), q̂B∩S,B (p̄B(t))), otherwise.

Using the same cooperative point solution in the subgame (N, vt ,B), we get a
profile ξ [vt ,B] of firms’ cooperative profits.

Definition 5 We call a coalition structure B dynamically stable with respect to a
cooperative point solution in case of transferable profits if for any firm i ∈ N and
any game period t ∈ T it holds that

ξ i[vt ,B] � ξ i[vt ,B′], (5)

where B′ = {B(i) \ {i}, B ∪ {i},B−B(i)∪B} for any B ∈ B ∪ ∅ and B �=
B(i), meaning that B is stable at any time period along the coalition equilibrium
trajectory p̄B .

Remark 1 In Rajan (1989), the author proposes an alternative scheme of determin-
ing the characteristic function in TU oligopoly games. Following this approach,
(i) firms from coalition S jointly maximize the total profit of this coalition, (ii)
firms from B \ S jointly maximize the total profit of B \ S, and (iii) each firm
i ∈ N \ B maximizes the total profit of coalition B(i). In other words, the coalition
Nash equilibrium q̌S,B(p0) is given by:
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q̌
S,B
R (p0) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

arg max
q
S,B
S (p0)

πB
S (p0, (q

S,B
S (p0), q̂

S,B
N\S (p0))), R = S,

arg max
q
S,B
B\S (p0)

πB
B\S(p0, (q

S,B
B\S (p0), q̂

S,B
N\(B\S)(p0))), R = B \ S,

arg max
q
S,B
B′ (p0)

πB
B ′(p0, (q

S,B
B ′ (p0), q̂

S,B
N\B ′(p0))), R = B ′, B ′ ∈ B−B,

while the coalition Nash equilibrium q̌S,B(p̄B(t)) in subgame, starting in state
p̄B(t), t ∈ T \0, on coalition equilibrium trajectory p̄B , takes the following form:

q̌
S,B
R (p̄B(t))

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

arg max
q
S,B
S (p̄B(t))

πB
S (p̄B(t), (q

S,B
S (p̄B(t)), q̂

S,B
N\S (p̄B(t)))), R = S,

arg max
q
S,B
B\S (p̄B(t))

πB
B\S(p̄B(t), (q

S,B
B\S (p̄B(t)), q̂

S,B
N\(B\S)(p̄B(t)))), R = B \ S,

arg max
q
S,B
B′ (p̄B(t))

πB
B ′(p̄

B(t), (q
S,B
B ′ (p̄B(t)), q̂

S,B
N\B ′(p̄

B(t)))), R = B ′,

B ′ ∈ B−B.

Given the above coalition Nash equilibria, one can determine characteristic func-
tions vt (S,B), S ⊆ N , t ∈ T , under this approach:

v̌t (S,B) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

πB
B (p̄B(t), q̄B(p̄B(t))), S = B, B ∈ B,

πB
S (p̄B(t), q̌S,B(p̄B(t))), S ⊂ B, B ∈ B,

0, S = ∅,∑

B∈B,B⊆S

πB
B (p̄B(t), q̄B(p̄B(t)))

+ ∑

B∈B,B�S,B∩S �=∅
πB
B∩S(p̄B(t), q̌B∩S,B(p̄B(t))), otherwise,

with p̄B(0) ≡ p0. Then we are able to determine the corresponding cooperative
solutions ξ [v̌t ,B], t ∈ T , and verify whether the coalition structure B is
(dynamically) stable.

4 An Example

We consider a market of three firms, N = {1, 2, 3} competing in quantities over a
finite set of periods T = {0, 1, . . . , 10} with parameters: s = 0.8, a = 30, b = 1,
c1 = 1, c2 = 2, c3 = 3, a discount factor ' = 0.9 and the initial market price
p(0) = 10.

Five coalition structures can be formed by three firms: B1 = {{1}, {2}, {3}},
B2 = {{1, 2}, {3}}, B3 = {{1, 3}, {2}}, B4 = {{1}, {2, 3}}, B5 = {{1, 2, 3}}.
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First, for each coalition structure we calculate a coalition Nash equilibrium, the
corresponding price trajectory, and the profits of the firms under this equilibrium for
two cases: when the profits are non-transferable and when they are the components
of the Shapley value in the game with a given coalition structure. Non-transferable
profits are represented in Table 1. The analysis of these profits shows that all five
coalition structures are unstable if the firms are paid by the initially given payoff
functions:

• for B1, firm 1 benefits if it joins firm 2 which results in coalition structure B2;
• for B2, firm 2 has an incentive to become a singleton thus forming structure B1;
• for B3, firm 1 will benefit by joining firm 2;
• for B4, firm 1 will benefit by joining coalition {2, 3};
• and finally for B5, firm 2 has an incentive to deviate becoming a singleton.

Since in the case of non-transferable profits there is no stable coalition structure,
then there cannot be any dynamically stable coalition structure.

Now consider the case of transferable profits. We use the Shapley value Sh[vt ,B]
= (Sh1[vt ,B], . . . ,Shn[vt ,B]), t ∈ T , as a cooperative point solution in the game
and any subgame. Its components are given by

Shi[vt ,B] =
∑

S⊆B(i), i∈S

(|B(i)| − |S|)!(|S| − 1)!
|B(i)|!

(
vt (S,B)− vt (S \ {i},B)

)
, i ∈ N.

We note that the Shapley value for a TU game with a coalition structure (or the
Aumann–Dreze value (Aumann and Dreze 1974)) is defined by a so-called restricted
characteristic function. For any coalition B ∈ B and subcoalition S ⊆ B, the value
of the restricted characteristic function coincides with vt (S,B). The Shapley values
for all possible coalition structures and all subgames are represented in Table 2. The
analysis of firms’ profits in the transferable case shows that B2 is the only stable
coalition structure with respect to the Shapley value at t = 0 because there are no
profitable deviations for any firm. Other four coalition structures are unstable with
respect to the Shapley value. Indeed,

Table 1 Firms’ profits

B πB
1 (p0, q̄

B(p0)) πB
2 (p0, q̄

B(p0)) πB
3 (p0, q̄

B(p0))

B1 422.344 231.706 158.167

B2 446.836 223.418 186.940

B3 442.399 261.002 147.466

B4 454.596 235.079 156.719

B5 486.875 243.438 162.292

Non-transferable case
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• for B1, firm 1 will benefit if it joins firm 2;
• for B3, firm 1 can make a profitable deviation by joining firm 2 and therefore

forming a structure B2;
• for B4, firm 2 will benefit by joining firm 1;
• and finally for B5, firm 1 has an incentive to become a singleton.

Coalition equilibrium trajectories (equilibrium prices) for different coalition
structures are depicted in Fig. 1. For any t = 1, . . . , 10, the price p̄B1(t) for the
case when firms do not cooperate is the smallest, and the price p̄B5(t) for the case
of full cooperation is the largest as expected.

Moreover, the analysis of Table 2 shows that the structure B2 is also dynamically
stable, so it satisfies Definition 5, i.e., there are no profitable deviations of any firm
in any time period t = 0, . . . , 9 when the game is realized along the coalition
equilibrium trajectory p̄B2 calculated for the game with coalition structure B2.

Table 2 Firms’ profits (the Shapley values)

t B Sh1[vt ,B] Sh2[vt ,B] Sh3[vt ,B]
0 B1 422.344 231.706 158.167

B2 430.446 239.808 186.940

B3 427.021 261.002 162.844

B4 454.596 232.669 159.130

B5 452.758 258.405 181.441

1 B1 440.274 239.261 162.871

B2 448.325 247.312 190.187

B3 444.94 266.987 167.537

B4 470.542 240.335 163.945

B5 469.588 264.982 185.207

2 B1 433.687 233.943 158.893

B2 441.417 241.673 183.845

B3 438.182 259.186 163.388

B4 460.982 235.080 160.030

B5 460.929 257.827 179.542

3 B1 411.162 220.230 149.256

B2 418.359 227.426 171.183

B3 415.359 242.328 153.452

B4 434.787 221.384 150.409

B5 435.606 241.631 167.657

4 B1 378.076 200.926 135.856

B2 384.533 207.383 154.221

B3 381.852 219.350 139.632

B4 397.501 202.044 136.973

B5 399.088 219.280 151.529

t B Sh1[vt ,B] Sh2[vt ,B] Sh3[vt ,B]
5 B1 336.968 177.409 119.639

B2 342.448 182.890 133.982

B3 340.182 191.721 122.853

B4 351.803 178.421 120.651

B5 353.934 192.172 132.136

6 B1 288.484 150.155 100.959

B2 292.709 154.381 110.950

B3 290.968 160.062 103.444

B4 298.540 150.973 101.777

B5 300.822 160.827 109.890

7 B1 231.874 119.054 79.790

B2 234.562 121.742 85.409

B3 233.457 124.586 81.374

B4 237.343 119.588 80.324

B5 239.214 125.345 84.976

8 B1 165.154 83.545 55.816

B2 166.215 84.607 57.727

B3 165.780 85.409 56.442

B4 166.932 83.757 56.028

B5 167.842 85.818 57.654

9 B1 86.073 43.036 28.691

B2 86.073 43.036 28.691

B3 86.073 43.036 28.691

B4 86.073 43.036 28.691

B5 86.073 43.036 28.691

Transferable case
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Fig. 1 Price under coalition Nash equilibrium for all possible coalition structures (coalition
equilibrium trajectories)

Table 3 The Shapley values
based on characteristic
functions given in Remark 1
for the game with coalition
structure B5

t Sh1[v̌t ,B5] Sh2[v̌t ,B5] Sh3[v̌t ,B5]
0 453.830 257.999 180.775

1 470.503 264.627 184.647

2 461.662 257.534 179.103

3 436.144 241.405 167.346

4 399.432 219.123 151.343

5 354.103 192.08 132.059

6 300.858 160.788 109.893

7 239.179 125.341 85.0157

8 167.805 85.8249 57.6838

9 86.0727 43.0364 28.6909

This motivates firms to keep this coalition structure the same in the game and not to
change it in any intermediate game period once the game has been started.

Following Remark 1, we may calculate the characteristic functions under another
approach (see the definition of v̌t (S,B)). The values of these functions and the
corresponding Shapley values for the three-person game differ only for coalition
structure B5. The Shapley values Sh[v̌t ,B5] for t = 0, . . . , 9 are presented in
Table 3. Analyzing the values in Tables 2 and 3, we observe that the coalition
structure B2 is also dynamically stable under this approach.

5 Conclusion

We have considered a linear-quadratic dynamic game in which firms, competing
in a market, may cooperate and form not only the grand coalition but also smaller
coalitions being components of a coalition structure. The firms in the coalitions



396 E. Parilina and A. Sedakov

obtain their profits according to a cooperative point solution (e.g., the Shapley
value, the nucleolus). The conditions for coalition Nash equilibrium strategies of
firms have been obtained. We examined the stability of the coalition structure
meaning its Nash stability according to which no firm has an incentive to individual
deviation from the coalition it belongs to. We have considered an example for
which the grand coalition is unstable, but there exists another coalition structure
which is stable not only for the whole game but also along the state equilibrium
trajectory corresponding to this coalition structure, that is, dynamically stable. It is
interesting to find the general conditions under which a coalition structure is stable
(or dynamically stable) for the class of dynamic games considered in the chapter.
One can also develop stronger stability conditions which would protect a coalition
structure against deviations of any group of players. These developments are left for
future research.
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