
Interactive Decomposition of Relational
Database Schemes Using

Recommendations

Raji Ghawi(B)

Bavarian School of Public Policy, Technical University of Munich,
Richard-Wagner-Straße. 1, 80333 Munich, Germany

raji.ghawi@tum.de

Abstract. Schema decomposition is a well known method for logical
database design. Decomposition mainly aims at redundancy reduction
and elimination of anomalies. A good decomposition should preserve
dependencies and maintain recoverability of information. We propose
a semi-automatic method for decomposing a relational schema in an
interactive way. A database designer can build the subschemes step-by-
step, guided by quantitative measures of decomposition “goodness”. At
each step, a ranked set of recommendations are provided to the designer
to guide him to the next possible actions that lead to a better design.

Keywords: Relational databases · Functional dependencies ·
Schema decomposition · Normal forms · Recommendation

1 Introduction

Logical database design is a wide field that has been very well studied in the
past decades. Schema decomposition is a well known method for logical database
design which mainly aims at eliminating anomalies and reducing redundancy.
Decomposing a relation involves splitting its attributes to make the schemes of
new relations.

In fact, careless selection of a relational database schema can lead to redun-
dancy and related anomalies. It also introduces the potential for several kinds
of errors. Therefore, one of the motivations for performing a decomposition is
that it may eliminate anomalies and reduce redundancy. Normal forms have long
been studied as a means of reducing redundancies caused by data dependencies
in the process of schema design.

Besides anomaly elimination, literature suggests two other properties that are
desired in a decomposition [1,16,27]: information recoverability and dependency
preservation. Recoverability of information means that the original relation can
be recovered by joining the relations in the decomposition. Dependency preser-
vation means that the set of dependencies of the original schema are preserved
within the subschemes of the decomposition. Among all the data dependencies
c© Springer Nature Switzerland AG 2019
S. Kozielski et al. (Eds.): BDAS 2019, CCIS 1018, pp. 97–108, 2019.
https://doi.org/10.1007/978-3-030-19093-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19093-4_8&domain=pdf
http://orcid.org/0000-0002-2865-2014
https://doi.org/10.1007/978-3-030-19093-4_8

98 R. Ghawi

which have been proposed in the literature, functional dependencies (FDs) are
the most common kind of constraints in a relational database.

In this paper, we propose a semi-automatic method for decomposing a rela-
tional schema in an interactive way. A database designer can build the sub-
schemes step-by-step guided with quantitative measures of the decomposition
“goodness”. Our goal is to provide richer insights that help a database designer
have a better understanding of the consequences of different decomposition
choices and make design decisions accordingly. Therefore, at each step, a ranked
set of recommendations are provided to the designer that guide him to the pos-
sible next actions that lead to a better design. In order to do so, quantitative
“goodness” measures of the decomposition need to be defined.

The paper is organized as follows. Section 2 provides some preliminaries, and
Sect. 3 discusses the properties of good decomposition. Quantitative measures
of decomposition goodness are defined in Sect. 4. Then, in Sect. 5 we present
our proposed method for interactive decomposition using recommendations.
Section 6 concludes the paper.

2 Preliminaries

Let R(A1, · · · , An) be a relation scheme, and X and Y be subsets of
{A1, · · · , An}. We say X functionally determines Y , denoted X → Y if, in
whatever instance r of R, any two tuples that agree on X values they also agree
on Y values. We say a relation instance r satisfies functional dependency X → Y
if for every two tuples t1 and t2 in r such that t1[X] = t2[X], it is also true that
t1[Y] = t2[Y].

Let F be a set of FD’s for relation scheme R, and let X → Y be a FD.
We say F logically implies X → Y , if every instance r for R that satisfies the
dependencies in F also satisfies X → Y . The closure of F , denoted F+, is the
set of functional dependencies that are logically implied by F .

Armstrong [3] defined a complete and sound set of inference rules for func-
tional dependencies:

– Reflexivity. If Y ⊆ X, then X → Y holds (called trivial FD).
– Augmentation. If X → Y holds, then XZ → Y Z holds.
– Transitivity. If X → Y and Y → Z hold, then X → Z holds.

Let F be a set of FD’s on set of attributes U , and let X be a subset of U ,
then, the closure of X (with respect to F), denoted X+, is the set of attributes
A such that X → A can be deduced from F by Armstrong’s axioms. The FD
X → Y follows from a given set of dependencies F using Armstrong’s axioms if
and only if Y ⊆ X+; where the closure of X is taken with respect to F .

If R is a relation scheme with attributes A1, · · · , An and functional depen-
dencies F , and X is a subset of A1, · · · , An, we say X is a superkey of R if
X → A1, · · · , An is in F+. That is, X functionally determines all attributes of
R. We say X is a key of R if X is a superkey and no proper subset Y ⊂ X is a
superkey of R. Clearly, a relation can have more than one key. An attribute A

Interactive Decomposition 99

is called prime if it belongs to any key. Thus, an attribute that does not belong
to any key is called non-prime.

Let F and E be two sets of FD’s, we say that F and E are equivalent, denoted
F ≡ E, if and only if F+ = E+. That is, we can deduce all FD’s of E from F ,
and vice versa. Moreover, we say that E is a minimal cover of F if and only if
E ≡ F and there is no proper subset E′ ⊂ E such that E′ ≡ F .

If R is a relation scheme with attributes A1, · · · , An and functional depen-
dencies F , and S is a subscheme of R with attributes Ai1 , · · · , Aik

⊆ A1, · · · , An.
The projection of F over S, denoted FS is the set of functional dependencies
X → Y in F+ such that (X ∪ Y) ⊆ Ai1 , · · · , Aik

.
Let R be a relation schema with FDs F .

– We say that R is in First Normal Form (1NF) if all the attributes are atomic
(single-valued).

– We say that R is in Second Normal Form (2NF) [8] if it is in 1NF and for a
non-prime attribute A, whenever X → A is in F+, then X is not a proper
subset of any key.

– We say that R is in Third Normal Form (3NF) if whenever X → A is in F+,
then either X is a superkey of R or A is a prime attribute.

– We say that R is in Boyce-Codd Normal Form (BCNF) if whenever X → A
is in F+, then X is a superkey of R.

Clearly, if R is in 3NF then it is also in 2NF; and if it is in BCNF then it is
also in 3NF.

Other normal forms are formulated in the literature, such as Fourth Normal
Form (4NF) [17], Fifth Normal Form (5NF) [11,18] (also known as Project-
Join Normal Form, PJNF), Sixth Normal Form (6NF) [10,12], and Essen-
tial Tuple Normal Form (ETNF) [9]. However, these normal forms are based
on other types of dependencies: multivalued-dependencies (MVD’s) and join-
dependencies (JD’s). Therefore, they are beyond the scope of this paper.

A decomposition of a relation scheme R(A1, · · · , An) is its replacement by
a collection δ = {R1, · · · Rk} of subsets of R, called subschemes, such that R =
R1 ∪· · ·∪Rk. The subsets Ri’s are not required to be disjoint. If r is an instance
of R then the sub-instance of a subscheme Ri is the projection of r on Ri, that
is, ri = πRi

(r).
One of the motivations for performing a decomposition is that it may elimi-

nate (insert, delete and update) anomalies and reduce redundancy.

3 What Is a Good Decomposition?

A decomposition of a relation scheme R is its replacement by a collection δ =
{R1, · · · Rk} of subsets of R, called subschemes, such that R = R1 ∪ · · · ∪ Rk.
The subsets Ri’s are not required to be disjoint. If r is an instance of R then the
sub-instance of a subscheme Ri is the projection of r on Ri, that is, ri = πRi

(r).
Literature shows three main properties that a decomposition is desired to

have: [4,21,22]: Elimination of Anomalies, Recoverability of Information, and
Preservation of Dependencies.

100 R. Ghawi

1. Elimination of Anomalies can be described in terms of normal forms. The
literature shows that certain undesirable anomalies can be avoided when the
database scheme is in a normal form w.r.t the given dependencies [22].

2. Recoverability of Information (or lossless-join) means that the original rela-
tion can be recovered by taking the natural join of the relations in the
decomposition. In fact, any decomposition gives back at least the tuples with
which we start, but a carelessly chosen decomposition can give tuples in the
join that were not in the original relation [19]. Formally, a decomposition
δ = {R1, · · · , Rn} of a schema R is recoverable iff for whatever instance r of
R: πR1(r) �� · · · �� πRn

(r) = r. Lossless-join property can be checked using
chase test [2].

3. Preservation of Dependencies means that all the functional dependencies that
hold in the original relation can be deduced from the FD’s in the decomposed
relations. Formally, a decomposition δ = {R1, · · · , Rn} of a schema R with a
set of FD’s F is dependency preserving iff:

⋃n
i=1 FRi

≡ F where FRi
is the

projection of F over Ri. An algorithm to test the dependency preservation
property is given in [5].

The literature shows several well known works on decomposition methods
that achieve some of the above desired properties. Bernstein [6] proposed a “syn-
thetic” approach for dependency-preserving decomposition into 3NF. Tsou and
Fischer [26] proposed a lossless-join decomposition into BCNF. Biskup et al.
[7] give a 3NF decomposition with a lossless join and dependency preservation.
Demba [13] propose an algorithmic approach for database normalization up to
third normal form.

However, it has been shown that there is no decomposition that guarantees
all the three properties at once. That is, sometimes, decomposition into BCNF
can lose the dependency-preservation property, while decomposition into 3NF
does not guarantee to eliminate all redundancy due to FD’s [19]. Moreover,
it is important to remember that not every lossless-join decomposition step is
beneficial, and some can be harmful [27]. Codd has argued that we should not
insist that a relation schema be in a given normal form. Rather, the database
designer should be aware of the issues and have a warning flag that if the relation
schema is not in a given normal form, then certain problems may arise.

A database designer may wish to thoroughly investigate many decomposi-
tions in order to choose a good one for his design. However, the number of
possible decompositions of a schema is exponential; thus, examining the whole
the search space of decompositions is almost unfeasible. In order to overcome
this drawback, we suggest to navigate step-wisely through this space. That is,
from some ‘current’ decomposition, the designer can investigate the neighbors
of that decomposition that are one step away; where a step means an action of
adding or removing of a subscheme or an attribute.

In this paper, we propose an interactive decomposition method, that supports
this idea of navigational search for good decomposition. Our goal is to guide
the database designer throughout the decomposition process with quantitative
measures that assesses the “goodness” of the decomposition.

Interactive Decomposition 101

In the literature, there are many works that have proposed tools and solu-
tions to support database decomposition, such as Mirco [15], RDBNorma [14],
and JMathNorm [28]. Some of such tools have educational purposes only, includ-
ing: [20,23–25]. However, to the best of our knowledge, there is yet no tool that
support interactive decomposition in the manner we do in this paper, where
recommendations (equipped with quantitative measures) for next steps are pro-
vided to guide the user during the decomposition process.

In the next section, we define decomposition “goodness” measures.

4 Decomposition Goodness Measures

Let R be a relation schema with FD’s F . Let DR be the set of all possible
decompositions over R, then a goodness measure is a function: ϑ : DR �−→
[0, 1]. Let δ ∈ DR be a decomposition of k subschemes: δ = {R1, · · · , Rk}, we
define four goodness measures:

4.1 Join-Lossless Measure ϑJ

This is a strict measure that takes value 1 when δ is join-lossless, and 0 otherwise:

ϑJ(δ) =

{
1 if δ is join lossless
0 otherwise

4.2 Dependency-Preservation Measure ϑP

This measure can also be defined in a strict fashion: ϑP (δ) = 1 when δ is
dependency-preserving, 0 otherwise.

ϑP (δ) =

{
1 if δ is dependency-preserving
0 otherwise

Alternatively, it can be defined in a relaxed fashion:

ϑP (δ) =
|Fpr|
|F |

where Fpr ⊆ F is the set of FD’s preserved by δ.

4.3 Normal-Forms Measure ϑN

Let Ri be a subscheme in δ, then the normal-forms measure of Ri is defined as:

ϑN (Ri) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3 if Ri is in BCNF
2 if Ri is not in BCNF, but in 3NF
1 if Ri is not in 3NF, but in 2NF
0 if Ri is not in 2NF

102 R. Ghawi

The normal-forms measure ϑN of a decomposition δ is then the normalized
average of the normal-forms measure of its components:

ϑN (δ) =
1
3k

k∑

i=1

ϑN (Ri)

Clearly, ϑN would be 0 when none of the subschemes is in 2NF, and reaches
1 when all the subschemes are in BCNF.

4.4 Structural Issues Measure ϑI

When a decomposition is built in an interactive way by adding or removing
subschemes and/or attributes, structural issues may arise. These issues can be
classified in different types as shown in Table 1.

Let Ωδ be the set of all the structural issues occurring in a decomposition δ,
the Structural-Issues Measure ϑI is defined as:

ϑI(δ) =
1

1 + |Ωδ|
Clearly, ϑI can not be 0; it would be 1 when the decomposition δ does not

suffer any structural issues (Ωδ = ∅).

Table 1. Types of structural issues

Issue Formulation

A subsheme has no attributes ∃Ri ∈ δ : Ri = ∅
A subscheme has one attribute only ∃Ri ∈ δ : |Ri| = 1

A subscheme is the same as the original schema ∃Ri ∈ δ : Ri = R

An attribute is not mentioned in any relation ∃a ∈ R, ∀Ri ∈ δ : a /∈ Ri

Two subschemes have exactly the same attributes ∃Ri, Rj ∈ δ : Ri = Rj

A subscheme is a proper subset of another ∃Ri, Rj ∈ δ : Ri ⊂ Rj

A subscheme has no shared attributes with others ∃Ri ∈ δ, ∀Rj ∈ δ/Ri : Ri ∩ Rj = ∅

The list shown in Table 1 contains the most common and frequent types of
structural issues. These types are what we consider in the current version of our
tool. However, we do not claim that this list of issues is exhaustive.

Moreover, the formula of Structural-Issues Measure can be modified to obtain
a smoother decay of score when the number of issues increases, for example, using
ϑI(δ) = 3

3+|Ωδ| .

Interactive Decomposition 103

Total Score θ

To summarize the above goodness measures, a total score θ is defined as their
weighted average. Let wJ , wP , wN , and wI be non-negative weights that sum
up to 1. These weights signify the degree of importance of the goodness measures,
ϑJ , ϑP , ϑN , and ϑI , respectively. The total score θ is computed as:

θ(δ) = wJϑJ(δ) + wP ϑP (δ) + wNϑN (δ) + wIϑI(δ)

Example 1. Let R(A,B,C,D,E) be a schema with FD’s F = {A → B,E →
G,B → DE}, let δ = {R1(B,D,E), R2(C,E,G)} be a decomposition of R.
Then, the FD’s of the subschemes are: FR1 = {B → DE} and FR2 = {E → G}.

– δ is not join-lossless: ϑJ(δ) = 0.
– FD’s E → G and B → DE are preserved, but A → B is not: ϑP (δ) = 2/3.
– R1 is in BCNF, and R2 is not in 2NF: ϑN (R1) = 3, ϑN (R2) = 0, thus

ϑN (δ) = (3 + 0)/(3 × 2) = 1/2.
– δ suffers one issue: attribute A is not mentioned in any relation, thus |Ω| = 1,

and ϑI(δ) = 1/2.
– Assuming balanced weights, the total score is: θ = (0 + 2

3 + 1
2 + 1

2)/4 = 5
12 .

5 Interactive Decomposition and Recommendations

In order to help a database designer make a good decomposition, s/he first needs
to be able to measure the “goodness” of the decomposition, and second to better
understand the consequences of different decomposition choices; thus s/he can
make design decisions accordingly. We propose a semi-automatic method for
decomposing a relational schema in an interactive way, where the designer can
build the subschemes in a step-by-step way.

Given an original database schema R, and a set of FD’s F , the designer
starts with one empty subsecheme (with no attributes). Then, s/he can add
attributes to this subscheme or add another subscheme. Gradually, the decom-
position becomes richer and other types of actions become possible, such as
removing an attribute from certain subscheme or removing an entire subscheme.
In general, four types of actions are possible at any step:

1. Add a new subscheme. δ ← δ ∪ R′

2. Remove a subscheme. δ ← δ − R′

3. Add an attribute to a subscheme. δ ← (δ − R′) ∪ (R′ ∪ {a})
4. Remove an attribute from a subscheme. δ ← (δ − R′) ∪ (R′ − {a})

Every time an action is taken, two things happen. First, the “goodness”
measures (Sect. 4) are computed for the current decomposition δ, including the
total score θ(δ). This involves finding the FD projections and normal forms of
each subscheme, and the set of structural issues, if any.

104 R. Ghawi

Second, a list of next-possible-actions Ψ = {ψ1, · · · , ψm} is generated
(Sect. 5.1). For each next-possible-action ψj ∈ Ψ , the corresponding decompo-
sition δψj

(resulting if the action ψj is taken) is computed behind the scene,
along with its goodness metrics including the total score θ(δψj

). The total score
is used to rank the list of actions, such that the actions with higher scores are
displayed first. Moreover, each action is annotated as positive, equivalent or nega-
tive, respectively, based on whether the action score θ(δψj

) is, respectively, higher
than, equal to, or less than the score of the current decomposition θ(δ).

This way, a ranked list of action-score pairs is presented to the designer:
{〈ψj , θ(δψj

)〉}. In this list, positively annotated actions form the recommenda-
tions that are given to the designer to choose one from them. Those recommen-
dations are guaranteed to give, if taken, a better decomposition than the current
one in terms of the total score of the goodness measures.

When an action (unnecessarily positive) is taken, the list of recommendations
will change (re-computed). That is because the next possible actions would be
different, and their corresponding decompositions will vary accordingly.

Obviously, the designer is not obligated to take the first recommendation
in the list, s/he is free to take any action. However, taking top recommended
actions would rapidly lead to better decomposition. It is important to note that
an optimal decomposition is not always possible. Therefore, the designer may
stop the decomposition process whenever s/he feels satisfied with the goodness
measures s/he gets.

A prototype of this interactive method is implemented in Java as a user-
friendly GUI (Fig. 1). The source code, examples, and other resources are avail-
able at: https://goo.gl/rSPOin.

5.1 Algorithm for Recommendation Generation

The list of recommendations of each step is generated using Algorithm 1. For
each subscheme, we consider actions of adding an attribute that is not currently
in the subscheme (lines 3:7), and removing an attribute from the subscheme
(lines 8:12). If there are more than one subscheme, we also consider removing
each subscheme (lines 13:17). For each key, we consider adding a subscheme
that consists of the attributes of that key, if such a subscheme is not already
present in the decomposition (lines 18:22). For each FD in the minimal cover
of F , we consider adding a subscheme that consists of the left and right side
attributes of that FD, if such a subscheme is not already in the decomposition
(lines 23:28).

For each one of these actions, ψ, the corresponding decomposition δψ is found
and its total score θ(δψ) is computed. The pairs 〈ψ, θψ〉 are then added to the
list of recommendations Ψ , which is, at the end, ordered by the values of θψ and
returned.

https://goo.gl/rSPOin

Interactive Decomposition 105

Algorithm 1. Compute a List of Recommendations
Require: R original schema, F a set of FD’s, δ a decomposition of R.
Ensure: Ψ a set of recommendations.
1: Ψ := ∅
2: for each subscheme Ri ∈ δ do
3: if |R − Ri| > 1 then
4: for each attribute A ∈ R − Ri do
5: ψ := (Add A to Ri) ;
6: δψ := (δ − Ri) ∪ (Ri ∪ {A}) ;
7: θψ := θ(δψ) ; Ψ := Ψ ∪ {〈ψ, θψ〉}
8: if |Ri| > 1 then
9: for each attribute B ∈ R do
10: ψ := (Remove B from Ri) ;
11: δψ := (δ/Ri) ∪ (Ri/{A}) ;
12: θψ := θ(δψ) ; Ψ := Ψ ∪ {〈ψ, θψ〉}
13: if |δ| > 2 then
14: for each subscheme Ri ∈ δ do
15: ψ := (Remove Ri from δ) ;
16: δψ := δ/Ri ;
17: θψ := θ(δψ) ; Ψ := Ψ ∪ {〈ψ, θψ〉}
18: for each key K of R do
19: if K /∈ δ then
20: ψ := (Add K to δ) ;
21: δψ := δ ∪ K ;
22: θψ := θ(δψ) ; Ψ := Ψ ∪ {〈ψ, θψ〉}
23: for each FD X → Y ∈ E = minCover(F) do
24: S := X ∪ Y
25: if S /∈ δ then
26: ψ := (Add S to δ) ;
27: δψ := δ ∪ S ;
28: θψ := θ(δψ) ; Ψ := Ψ ∪ {〈ψ, θψ〉}
29: order Ψ by θψ desc.
30: return Ψ

5.2 Example

Consider the schema R(A,B,C,D,E,G) with FD’s F = {AB → CD,A →
E,B → G,EG → C}. Let us start a new decomposition δ with a new subscheme
R1 and add attribute A to R1. At this point, the goodness measures are: ϑJ = 0,
ϑP = 0, ϑN = 1, ϑI = 0.125 (due to 7 issues), and θ = 0.28125. The top 3
recommendations are:

〈ψ11 :: Add attribute E to subscheme R1, 0.3542〉
〈ψ12 :: Add new subscheme: {C,E,G}, 0.3542〉
〈ψ13 :: Add new subscheme: {A,E}, 0.3482〉

106 R. Ghawi

If we take the first recommendation, we get δ = {R1(A,E)} with FR1 =
{A → E}. This will make ϑP = 0.25 (1 FD is preserved), and ϑI = 0.1667 (issues
are reduced to 5); therefore, θ = 0.3542 (as the recommendation promised). The
top-3 next recommendations are:

〈ψ21 :: Add new subscheme: {C,E,G}, 0.4583〉
〈ψ22 :: Add new subscheme: {B,G}, 0.425〉
〈ψ23 :: Add new subscheme: {A,B,D}, 0.3958〉
If we again take the first recommendation, we get δ = {R1(A,E), R2(C,

E,G)} with FR2 = {EG → C}. This will make ϑP = 0.5 (2 FD’s are preserved),
and ϑI = 0.333 (2 issues remaining: attributes B,D are not mentioned in any
subscheme); therefore, θ = 0.4583 (Fig. 1).

Fig. 1. Decomposition after adding subscheme R2{C, E, G}

The top-3 next recommendations are:

〈ψ21 :: Add new subscheme: {C,E,G}, 0.4583〉
〈ψ22 :: Add new subscheme: {B,G}, 0.425〉
〈ψ23 :: Add new subscheme: {A,B,D}, 0.3958〉
Continuing the decomposition process with recommended actions, we shall

add R3(A,B,D) and R4(B,G), hence an optimal decomposition can be achieved:
δ = {R1(A,E), R2(C,E,G), R3(A,B,D), R4(B,G)} which is lossless-join, all
FD’s are preserved, all subschemes are in BCNF, and free from structural issues;
thus, θ(δ) = 1.

Interactive Decomposition 107

6 Conclusions and Future Work

We have proposed a semi-automatic method for interactive decomposition of
relational databases. A database designer is guided throughout the decomposi-
tion process by a list of recommendations that tell him what are the next possible
actions that can lead to a better decomposition.

Interactive decomposition seems to be a good approach to help the designer
better understand the pros and cons of every possible action by quantitatively
assessing the goodness of the decomposition. This method can be considered as
an interesting addition to the arsenal of already established methods and tools
within database design literature. As a future work, an extensive experimenta-
tion is needed to evaluate the method, and to study the impact of each goodness
property on the overall quality of database design. Looking ahead, interactive
decomposition can be extended to involve extra goodness measures such as: min-
imality, freedom from globally redundant attributes, and freedom from attribute
replication. Moreover, it can be extended to consider other types of dependencies
(e.g. MVDs) and higher normal forms (e.g. 4NF).

Other directions of future work concern improving the tool and making the
interface more user-friendly; by introducing, for instance, graphical represen-
tation on functional dependencies in the form of FD diagrams, and graphical
representation of join- diagram of the decomposition.

Finally, future work should address the usefulness of the decomposition
method in real-life situations where the search space is huge. Therefore, it is
necessary to conduct some experiments with real-life databases consisting of
many, possibly non-normalized, relations.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Aho, A.V., Beeri, C., Ullman, J.D.: The theory of joins in relational databases.
ACM Trans. Database Syst. 4(3), 297–314 (1979)

3. Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP
Congress, pp. 580–583 (1974)

4. Arora, A.K., Carlson, C.R.: The information preserving properties of relational
database transformations. In: Proceedings of the Fourth International Conference
on Very Large Data Bases, VLDB 1978, vol. 4, pp. 352–359. VLDB Endowment
(1978)

5. Beeri, C., Honeyman, P.: Preserving functional dependencies. SIAM J. Comput.
10(3), 647–656 (1981)

6. Bernstein, P.A.: Synthesizing third normal form relations from functional depen-
dencies. ACM Trans. Database Syst. 1(4), 277–298 (1976)

7. Biskup, J., Dayal, U., Bernstein, P.A.: Synthesizing independent database schemas.
In: Proceedings of the 1979 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 1979, pp. 143–151. ACM, New York (1979)

8. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

108 R. Ghawi

9. Darwen, H., Date, C.J., Fagin, R.: A normal form for preventing redundant tuples
in relational databases. In: Proceedings of the 15th International Conference on
Database Theory, ICDT 2012, pp. 114–126. ACM, New York (2012)

10. Date, C.J., Darwen, H., Lorentzos, N.A.: Temporal Data and the Relational Model.
Elsevier, Amsterdam (2002)

11. Date, C.: An Introduction to Database Systems, 8th edn. Addison-Wesley Long-
man Publishing Co. Inc., Boston (2003)

12. Date, C., Darwen, H., Lorentzos, N.: Time and Relational Theory, Second Edition:
Temporal Databases in the Relational Model and SQL, 2nd edn. Morgan Kaufmann
Publishers Inc., San Francisco (2014)

13. Demba, M.: Algorithm for relational database normalization up to 3NF. Int. J.
Database Manag. Syst. 5, 39–51 (2013)

14. Dongare, Y., Dhabe, P., Deshmukh, S.: RDBNorma: a semi-automated tool for
relational database schema normalization up to third normal form. arXiv preprint
arXiv:1103.0633 (2011)

15. Du, H., Wery, L.: Micro: a normalization tool for relational database designers. J.
Netw. Comput. Appl. 22(4), 215–232 (1999)

16. Elmasri, R., Navathe, S.: Fundamentals of Database Systems, 6th edn. Addison-
Wesley Publishing Company, Boston (2010)

17. Fagin, R.: Multivalued dependencies and a new normal form for relational
databases. ACM Trans. Database Syst. 2(3), 262–278 (1977)

18. Fagin, R.: Normal forms and relational database operators. In: Proceedings of the
1979 ACM SIGMOD International Conference on Management of Data, SIGMOD
1979, pp. 153–160. ACM, New York (1979)

19. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete
Book, 2nd edn. Prentice Hall Press, Upper Saddle River (2008)

20. Kung, H.J., Tung, H.L.: A web-based tool to enhance teaching/learning database
normalization. In: Proceedings of the 2006 Southern Association for Information
Systems Conference. Jacksonville (2006)

21. Maier, D.: The Theory of Relational Databases. Computer Science Press, Rockville
(1983)

22. Maier, D., Mendelzon, A.O., Sadri, F., Dullman, J.: Adequacy of decompositions
of relational databases. J. Comput. Syst. Sci. 21(3), 368–379 (1980)

23. Piza-Dávila, H.I., Gutiérrez-Preciado, L.F., Ortega-Guzmán, V.H.: An educational
software for teaching database normalization. Comput. Appl. Eng. Educ. 25(5),
812–822 (2017)

24. Stefanidis, C., Koloniari, G.: An interactive tool for teaching and learning database
normalization. In: Proceedings of the 20th Pan-Hellenic Conference on Informatics,
PCI 2016, pp. 18:1–18:4. ACM, New York (2016)

25. Taofiki, A.A., Tale, A.O.: A visualization tool for teaching and learning database
decomposition system. J. Inf. Comput. Sci. 7(1), 003–010 (2012)

26. Tsou, D.M., Fischer, P.C.: Decomposition of a relation scheme into Boyce-Codd
normal form. SIGACT News 14(3), 23–29 (1982)

27. Ullman, J.D.: Principles of Database and Knowledge-base Systems, vol. I. Com-
puter Science Press Inc., New York (1988)

28. Yazici, A., Karakaya, Z.: JMathNorm: a database normalization tool using math-
ematica. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS
2007. LNCS, vol. 4488, pp. 186–193. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72586-2 27

http://arxiv.org/abs/1103.0633
https://doi.org/10.1007/978-3-540-72586-2_27
https://doi.org/10.1007/978-3-540-72586-2_27

	Interactive Decomposition of Relational Database Schemes Using Recommendations
	1 Introduction
	2 Preliminaries
	3 What Is a Good Decomposition?
	4 Decomposition Goodness Measures
	4.1 Join-Lossless Measure J
	4.2 Dependency-Preservation Measure P
	4.3 Normal-Forms Measure N
	4.4 Structural Issues Measure I

	5 Interactive Decomposition and Recommendations
	5.1 Algorithm for Recommendation Generation
	5.2 Example

	6 Conclusions and Future Work
	References

