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Abstract. Integrity constraints (ICs) are semantic conditions that a
database should satisfy in order to be in a consistent state. Typically,
ICs are declared with the database schema and enforced by the database
management system (DBMS). However, in practice, ICs may not be
specified to the DBMS along with the schema, this is considered a bad
database design and may lead to many problems such as inconsistency
and anomalies. In this paper, we present a method to identify and repair
missing referential integrity constraints (foreign keys). Our method com-
prises three steps of verification of candidate foreign keys: data-based,
model-based, and brute-force.
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1 Introduction

Integrity constraints capture an important aspect of every database application.
They are semantic conditions that a database should satisfy in order to be an
appropriate model of reality [6]. There are several types of integrity constraints
including: primary keys, functional dependencies, and referential integrity con-
straints (known as foreign keys). These constraints are derived from the seman-
tics of the data and of the miniworld it represents. It is the responsibility of
the database designers to identify integrity constraints during database design.
Some constraints can be specified to the DBMS and automatically enforced [13].
A common assumption in data management is that databases can be kept con-
sistent, that is, satisfying certain desirable integrity constraints. In practice, and
for many reasons1, a database may not satisfy those integrity constraints, and
for that reason it is said to be inconsistent.

Inconsistency is an undesirable property for a database. Therefore, as a
database is subject to updates, it should be kept consistent. This goal can be
achieved in several ways. One of them consists in declaring the ICs together with
the schema, thus, the DBMS will take care of keeping the database consistent,

1 For example, when merging data from different sources.
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by rejecting transactions that may lead to a violation of the ICs [6]. Another
possibility is the use of triggers or active rules that are created by the user and
stored in the database. They react to updates of the database by notifying a vio-
lation of an IC, rejecting a violating update, or compensating the update with
additional updates that restore consistency. Another common alternative con-
sists of keeping the ICs satisfied through the application programs that access
and modify the database, i.e., from the transactional side. However, the cor-
rectness of triggers or application programs with respect to ensuring database
consistency is not guaranteed by the DBMS.

In practice, for many reasons, integrity constraints are not specified to the
DBMS along with the database schema. In particular, foreign keys could be
missing because of (1) lack of support for checking foreign key constraints in
the host system, (2) fear that checking such constraints would impede database
performance, or (3) lack of database knowledge within the development team.
Absence of integrity constraints specification could be considered a bad database
design and may lead to many problems such as inconsistency, and anomalies.
Anomalies may cause redundancy (during insertion or modification), accidental
loss of information (during deletion), waste of storage space, and generation of
invalid and spurious data during joins on base relations with matched attributes
that may not represent a proper (foreign key, primary key) relationship.

In this paper, we address the problem of absence of referential integrity con-
straints specification, that is, when integrity constraints are not specified to the
DBMS. We present a method to identify and repair missing foreign keys in a rela-
tional database. In this method, we first identify candidate foreign keys, then
we conduct a thorough validation process of those candidates. The validation
process comprises three types of verification, namely: data-based, model-based
and brute-force verification. The objective of this process is to find valid foreign
keys such that they are then specified to, and enforced by the DBMS.

The paper is organized as follows. Section 2 reviews related works. We present
some preliminaries and the problem definition in Sect. 3. Then, we give an
overview of the solution in Sect. 4 where we discuss identification and valida-
tion of candidate foreign keys. Then, we present the three verification steps:
data-based (Sect. 5), brute-force (Sect. 6), and model-based (Sect. 7).

2 Related Work

A considerable amount of research has been done in the area of repairing incon-
sistent databases. Some works focused on data cleaning techniques to cleanse the
database from data that participates in the violation of the ICs (see [20] for an
overview). Other works have addressed the problem of Consistent Query Answer-
ing (CQA), that is, computing consistent answers over inconsistent database (see
[2,5,9,10,22]). Such works rely on the notion of database repair, which is a new
database instance that is consistent with respect to the ICs, and minimally differs
from the inconsistent database at hand. Some of these works are implemented in
prototypes systems, such as Hippo [12], and ConQuer [14]. However, these works
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assume that the integrity constraints are correctly specified; and the problem is
in the data. In contrast, in our work, we assume that the integrity constraints
are not correctly specified to the DBMS. We focus on identifying and repairing
missing referential integrity constraints.

Another related area is the discovery of inclusion dependencies in a given
database. Many papers have been addressed approximate and exact discovery of
inclusion dependencies [15,21,23], and different discovery strategies have been
proposed, based on inverted indices [17], sort-merge joins [4], and distributed
data aggregation [16]. Research has also devised algorithms for exact discov-
ery of n-ary inclusion dependencies, such as Mind [17] and Binder [19], and
for approximate discovery, such as Faida [15]. These works assume data to be
complete or consistent, hence proposed discovery methods are mainly based on
data.

What distinguish our present work is that we address a two-fold problem.
First, foreign keys are missing, therefore their discovery is needed. Second,
data itself is not assumed to be consistent or complete, therefore repairing the
database instance is also needed. Thus, our proposed solution combines repairing
the database schema (specifying valid foreign keys), and repairing the database
instance (removing dangling values, when necessary).

In literature, various kinds of repair semantics have been proposed, based on
database operations used, and the type of constraints/dependencies. For inclu-
sion dependencies, three types of repairs are possible in general:

1. Tuple-insertion-based repairs [8] – New tuples are inserted in order to satisfy
violated constraints. This repair semantics is applied when the database at
hand is considered to be incomplete and is then completed via additional tuple
insertions. Repairing inclusion dependencies with tuple-insertion requires that
values have to be invented for them. This leads to possibly infinitely many
repairs. Moreover, value inventions are in general non-deterministic, and com-
plex to handle [6]; and they can lead to the undecidability of consistent query
answering [8].

2. Tuple-deletion-based repairs [11] – Tuples that violate constraints are deleted.
This class of repairs assume that the database instance at hand is closed, and
no insertions of new tuples are accepted [6], therefore integrity-restoration
actions are limited to tuple deletions. A good reason for adopting this kind
of repair semantics is that, when we insert tuples to enforce inclusion depen-
dencies, we may have to invent data values for the inserted tuples.

3. Null-insertion based repairs [7,18] – Under this repair semantics, inclusion
dependencies are repaired by insertions of null values to restore consistency.
Null values can also be used for value invention as required by tuple-insertion-
based repairs of referential ICs.

In this present paper, we adopt tuple-deletion-based repairs in the first place,
but we also consider null-insertion-based repairs are possible and valid in our
case study. However, we do not address tuple-insertion repairs as we assume the
database instance is closed, in the sense that no insertions of new tuples are
allowed, because they require value invention.
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3 Preliminaries and Problem Definition

In relational databases, referential integrity is a property of data stating that
references within it are valid. It requires every value of one attribute of a
relation to exist as a value of another attribute in a different (or the same)
relation. Formally, referential integrity constraints are expressed in terms of
inclusion dependencies [1]. Let R be a relation schema and X = A1, · · · , An

a sequence of attributes (possibly with repeats) from R. For an instance I of
R, the projection of I onto the sequence X, denoted I[X], is the n-ary relation
I[X] = {〈t(A1), · · · , t(An)〉 | t ∈ I}.

Let R be a relational schema. An inclusion dependency (IND) over R is
an expression of the form σ

.= R[A1, ..., Am] ⊆ S[B1, ..., Bm] where: R, and S
are (possibly identical) relation names in R, A1, ..., Am is a sequence of dis-
tinct attributes of R, and B1, ..., Bm is a sequence of distinct attributes of
S. An instance I of R satisfies σ, denoted I |= σ, if I (R)[A1, ..., Am] ⊆
I (S)[B1, ..., Bm]. The left-hand side of an IND is referred to as dependent
attribute(s) and the right-hand side as referenced attribute(s) [19]. Both of these
attribute sequences must be of the same size m. An IND is said to be unary if
m = 1, otherwise it is n-ary. Notice that we do not consider any semantics for
null values as they do not contribute to INDs: we simply ignore them.

In this study, we have a relational database that has a large number of
tables. This database is poorly designed and suffers from several design problems.
However, it is running and a complex application operates on top of it, thus a
redesign from scratch is not possible. Our task is to repair the database and
get rid of the design issues. Given a relational database that is accessed by
an application program, and has a large number of tables; assume the following:
(1) all tables have primary keys (declared with the schema), (2) most of tables do
not have declared foreign keys, (3) some tables have data records while others
do not, (4) all data records are identified using universally unique identifiers
(UUID); the problem is to identify missing foreign keys and declare them in the
database schema such that the integrity constraints are enforced by the DBMS.

Actually, in our case-study, the reasons of inconsistency were mainly the
lack of database knowledge within the development team, and inappropriate use
of ORM (Object-Relational Mapping) technique [3]. As consequence, integrity
constraints were enforced by the application code only, without DBMS support;
hence when some records are deleted via the application, their referencing records
are not removed, leaving the database in an inconsistent state.

4 Solution Outlines

Identification of Foreign Keys. Our legacy database consists of a large num-
ber of tables. All the tables have primary keys (PKs). However, only a subset
of the foreign keys are defined at the database level, while the majority of the
relationships among the tables are not defined in terms of foreign keys. Thus, our
major objective is to identify the foreign keys and define them at the database
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level in order to enforce the referential integrity constraints. Our method goes as
follows. First, we conduct an exhaustive identification of candidate foreign keys.
Then, we validate candidate foreign keys using both the data and the application
code. Finally, we define valid foreign keys explicitly in the database, and correct
invalid foreign keys.

The first step is to obtain an exhaustive list of candidate foreign keys. The
result is a table of four columns: table, column, reference table, and reference
columns. Table 1 shows a sample of such candidate foreign keys. The identifica-
tion is performed manually by first investigating the columns names. According
to the naming convention used in our database, if a column name contains a
name of primary key of another table, it is probably a foreign key that refer-
ences this primary key. Also, if the column name contains ‘parent’ this indicates
that the column is probably a foreign key that references (the primary key of)
its own table. When necessary, the application code is also examined to confirm
the candidacy of each foreign key. By the end of this process, we obtain a list of
candidate foreign keys.

Table 1. Examples of candidate foreign keys

Table Column Reference table Reference column

department department branch id branch branch id

department department parent department department id

department section department section department id department department id

Validation of Candidate Foreign Keys. Identified candidate foreign keys
need to be validated. Such a validation is conducted over several steps. First, if
the owner table of a foreign key has data records (I (R) �= ∅), then we use data-
based verification where data records are used to verify the validity of the foreign
key. That is, we check whether the current instance satisfy the constraint or not.
Candidate foreign keys that fail in the data-based verification step are subject
to another verification step called brute-force verification, to find their potential
reference tables and/or their known values that have no reference (dangling
values.) However, if the owner table is empty (I (R) = ∅), we use a model-
based verification where the application program associated with database is
used to validate the foreign key (Sect. 7). In any case, candidate foreign keys
that successfully pass the data-based verification or model-based verification are
considered valid, and thus are declared explicitly in the database schema. Foreign
keys that are verified using brute-force step are corrected manually, and dangling
values are removed as we will see in Sect. 6. Figure 1 illustrates the overall process
of validation of candidate foreign keys.
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Fig. 1. Process of validation of candidate foreign keys

5 Data-Based Verification

The idea behind data-based verification is the following: a candidate foreign key
is valid if the database instance satisfies this foreign key constraint. Formally,
let R be a database schema with an instance I , and let σ

.= R[A] ⊆ S[B]
be a candidate foreign key over R, this candidate foreign key σ is considered
valid if the current instance I satisfies it (I |= σ.) In order to verify whether a
candidate foreign key σ

.= R[A] ⊆ S[B] is satisfied, the sets of distinct values of
the referencing column R[A] and the referenced column S[B] (denoted I (R)[A]
and I (S)[B], respectively) are extracted from the database instance I . Based on
the definition of inclusion dependency, if I (R)[A] ⊆ I (S)[B], then the referential
integrity constraint holds, and σ

.= R[A] ⊆ S[B] is indeed a valid foreign key.
The successfully validated foreign keys, are then defined explicitly in the

database in order to enforce the referential integrity constraint. This could be
done using the following SQL script:
ALTER TABLE R ADD FOREIGN KEY (A) REFERENCES S (B ) ;

Once a foreign key is defined with the schema, it will be enforced by the
DBMS; that is, if a user attempts to insert a tuple that violates the referential
IC (e.g., a tuple with a value t[A] /∈ I (S)[B]), the DBMS will reject this insertion,
keeping the constraint satisfied and the database consistent.

Example 1. Consider a database schema with three relations P1(A,B), P2(C,D)
and P3(E), and two candidate foreign keys σ1

.= P1[B] ⊆ P2[C] and σ2
.=
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P2[D] ⊆ P3[E]. Consider an instance I ′ such that I ′(P1) = {(a, b), (c, d)},
I ′(P2) = {(b, e), (d, f), (g, h)} and I ′(P3) = {(e), (h), (i)}. Then we have:

{b, d} = I ′(P1)[B] ⊆ I ′(P2)[C] = {b, d, g}
{e, f, h} = I ′(P2)[D] � I ′(P3)[E] = {e, h, i}

This means that the instance I ′ satisfies the constraint σ1
.= P1[B] ⊆ P2[C],

but not the constraint σ2
.= P2[D] ⊆ P3[E]. In this example, the first candidate

foreign key is valid and therefore is declared with the schema, whereas the second
candidate is invalid and should be verified again with brute-force verification.

6 Brute-Force Verification

Candidate foreign keys that do not successfully pass the data-based verification
(i.e., do not satisfy the condition I (R)[A] ⊆ I (S)[B]) are subject to another
inspection called brute-force verification. The idea behind this test is the fol-
lowing: the values of a candidate foreign key are compared with the values of
the primary keys of all tables in the database. When those values match (pos-
sibly partially) the values of a primary key of a table, this table is considered
a potential reference table for the candidate foreign key. If there is no match
with any table, then such unmatched values are considered unknown and should
be removed to keep the consistency of the database. In this section, we present
brute-force verification as an algorithm which takes a candidate foreign key as
input, and returns a set of potential referenced tables and a set of unknown val-
ues as output. According to the outcomes of the algorithm, we present possible
solutions for different cases.

When the condition I (R)[A] ⊆ I (S)[B] is not satisfied, this means that there
is at least an element â ∈ I (R)[A] such that â /∈ I (S)[B]. Let us denote the set
of such elements ̂A, then we have:

̂A = {a | a ∈ I (R)[A] ∧ a /∈ I (S)[B]} = I (R)[A] − I (S)[B]

In some sense, this set contains incorrect tuples of I(R)[A], i.e., tuples that
violate the integrity constraint; thus we want to find their correct references if
any. However, besides those incorrect tuples, I (R)[A] could contain other correct
tuples that reference S[B]. Let us denote the set of correct tuples as A∗, then:

A∗ = {a | a ∈ I (R)[A] ∧ a ∈ I (S)[B]} = I (R)[A] ∩ I (S)[B]

Note that I (R)[A] = ̂A∪A∗. The set A∗ could be empty, and in this case there is
no data-based evidence that S is a potential referenced table for the candidate
foreign key. However, if this set A∗ is not empty, then the table S remains a
potential reference table for R[A].

Let T be a relation schema, and let KT be the primary key of T , the set of
values of this primary key in the database instance is: I (T )[KT ].
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The brute-force verification is depicted in Algorithm 1, that takes an input a
candidate foreign key σ

.= R[A] ⊆ S[B], and returns a set ̂A of dangling values
of R[A], and a set Z of potential referenced tables.

First, the set Z is initially empty, whereas the set A∗ equals the intersection
I (R)[A]∩I (S)[B]. If this set is not empty, then S is indeed a potential reference
table, thus it is added to Z. Then, the set of dangling values ̂A initially equals the
difference I (R)[A]−I (S)[B]. For every table T in the database R, we extract the
set of values of T ’s primary key: I (T )[KT ], and find Q the intersection of this set
with ̂A. If this intersection Q is empty, the loop continues. But if it is not empty,
this means that we found a potential referenced table T for the candidate foreign
key R[A], therefore, we append this table T to the set of potential referenced
tables Z, and we remove the set Q from ̂A, because this subset is not considered
dangling any more, since we found its originating table T . Finally, the algorithm
returns the set of potential referenced tables Z that have been found, and the
set of remaining dangling values ̂A.

Algorithm 1. Brute-Force Verification
Input: a candidate foreign key (σ

.
= R[A] ⊆ S[B])

Output: a set of potential referenced tables Z and a set of dangling values ̂A

1: Z ← ∅
2: A∗ ← I (R)[A] ∩ I (S)[B] � correctly referenced values
3: if A∗ �= ∅ then
4: Z ← Z ∪ {S}
5: ̂A ← I (R)[A] − I (S)[B] � dangling values
6: for T ∈ R do
7: find I (T )[KT ] � extract the values of T ’s pk
8: Q ← ̂A ∩ I (T )[KT ]
9: if Q �= ∅ then

10: ̂A ← ̂A − Q
11: Z ← Z ∪ {T}
12: return Z, ̂A

Algorithm 1 is executed for every candidate foreign key σ
.= R[A] ⊆ S[B],

that has failed in the data-based verification. Based on the outcomes of the
algorithm, we distinguish three cases:

– Case 1. Z = ∅, the FK has no potential referenced tables at all.
– Case 2. |Z| = 1, the FK has one potential referenced table.
– Case 3. |Z| > 1, the FK has more than one potential referenced tables.

6.1 Case 1. No Potential Referenced Tables

The first case is the easiest one to solve. It means that we are unable to find
an alternative table that could be referenced by R[A]. This proves that the
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originally candidate referenced table S should be actually the correct referenced
table, even if there is no data-based evidence. Anyway, the problem in this case
is only with dangling values ̂A. Therefore, the solution is simply to remove the
dangling values ̂A, and declare the foreign key with the schema. The solution
can be expressed in SQL as shown in Listing 1.1.

Listing 1.1. Solution of Case 1

−− Remove dangl ing va lues

DELETE FROM R WHERE A IN ̂A ;

−− Def ine the f o r e i g n key
ALTER TABLE R
ADD FOREIGN KEY (A) REFERENCES S (B ) ;

Example 2. Consider a schema with three relations P1(A,B), P2(C) and P3(D)
and a candidate foreign key σ

.= P1[B] ⊆ P2[C]. Consider I ′(P1) = {(a, b)},
I ′(P2) = {(c)} and I ′(P3) = {(d)}. Clearly, the instance I ′ does not satisfy σ
and the candidate foreign key fails the data-based verification. With brute-force
verification, we have Z = ∅ and ̂B = {b}. Therefore, the solution is to admit the
candidate foreign key σ as valid and declare it with the schema, and to remove
the dangling value b, either by removing the entire tuple (a, b), or setting b to
null, I ′(P1) = {(a,NULL)}.

6.2 Case 2. One Potential Referenced Table

The second case is also easy to solve, because the only potential referenced table
found in Z must be the correct referenced table that we are looking for. This
found table could be the same candidate referenced table S, or another table.
Anyway, let us denote it U . The solution is simply to correct the foreign key to
be: σ′ .= R[A] ⊆ U [KU ] where KU is the primary key of U . This implies the
removal of the dangling values ̂A, and defining the correct foreign key explicitly:

Listing 1.2. Solution of Case 2

−− Remove dangl ing va lues

DELETE FROM R WHERE A IN ̂A ;

−− Def ine the c o r r e c t f o r e i g n key
ALTER TABLE R
ADD FOREIGN KEY (A) REFERENCES U (KU ) ;

Example 3. Consider a schema with three relations P1(A,B), P2(C) and P3(D)
and a candidate foreign key σ

.= P1[B] ⊆ P2[C]. Consider I ′(P1) = {(a, b), (c, d)},
I ′(P2) = {(e), (f)} and I ′(P3) = {(b), (d)}. Clearly, I ′ * σ and the candidate
foreign key fails the data-based verification. With brute-force verification, we
have Z = {P3} and ̂B = ∅. The solution here is to correct the candidate foreign
key to be: σ′ .= P1[B] ⊆ P3[D].
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6.3 Case 3. Many Potential Referenced Tables

The third case is tricky, as there are many different potential referenced tables
Z = {U1, U2, · · · , Un} that are referenced by R[A].

Example 4. Consider a schema with three relations P1(A,B), P2(C) and P3(D)
and a candidate foreign key σ

.= P1[B] ⊆ P2[C]. Consider I ′(P1) = {(a, b), (c, d)},
I ′(P2) = {(b), (e)} and I ′(P3) = {(d), (f)} (Fig. 2). Clearly, I ′ * σ and the can-
didate foreign key fails the data-based verification. With brute-force verification,
we have Z = {P2, P3} and ̂B = ∅.

Fig. 2. Database schema of Example 4

This case requires a careful inspection of the database schema and the appli-
cation code by the database designer in order to know exactly the reason of
this situation, and to figure out an appropriate solution. For instance, we could
distinguish two cases:

Case 3-1. For instance, it could be the case that only one of these tables is the
correct one, and the others are not. Here, the solution is similar to the solution
of Case 2 above, but with an additional removal of erroneous values. That is, let
us consider that U1 is the correct table, and the other tables U2, · · · , Un should
not be referenced by R[A].

In this case, the only valid foreign key is: σ1
.= R[A] ⊆ U1[KU1 ] which should

be declared in the schema. In addition to removing dangling values ̂A from R[A],
we need also to remove the erroneous values that reference any of U2, · · · , Un

tables. This solution can be expressed in SQL as shown in Listing 1.3.

Example 5. In the previous example (Example 4), we found two potential refer-
enced tables Z = {P2, P3}. If we consider P2 is the correct reference table, then
the valid foreign key is σ

.= P1[B] ⊆ P2[C] (Fig. 3-a), and the erroneous data
record is (c, d). But if we consider P3 is the correct reference table, then the valid
foreign key is σ′ .= P1[B] ⊆ P3[D] (Fig. 3-b), and the erroneous data record is
(a, b).
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Listing 1.3. Solution of Case 3-1

−− Remove dangl ing va lues

DELETE FROM R WHERE A IN ̂A ;

−− Remove erroneous va lues
DELETE FROM R
WHERE A IN ( SELECT KU2 FROM U2 ) ;
. . .
DELETE FROM R
WHERE A IN ( SELECT KUn FROM Un ) ;

−− Def ine the c o r r e c t f o r e i g n key
ALTER TABLE R
ADD FOREIGN KEY (A) REFERENCES U1(KU1 ) ;

(a) P2 is the correct reference table (b) P3 is the correct reference table

Fig. 3. Solutions for Case 3-1 (Example 5)

Case 3-2. Another possibility, is that all the potential tables Z =
{U1, U2, · · · , Un} are considered correct and should be indeed referenced by R[A].
This case contradicts with the basic principles of database design, and must be
solved radically. Based on the semantics of the relations, two solutions are pos-
sible:

Case 3-2, Solution 1. Replace the column A in R, by n columns
A1, A2, · · · , An that reference U1, U2, · · · , Un, respectively. This means, we
replace the candidate foreign key σ

.= R[A] ⊆ S[B] by the following foreign
keys:

σ1
.= R[A1] ⊆ U1[KU1 ]

σ2
.= R[A2] ⊆ U2[KU2 ]

· · ·
σn

.= R[An] ⊆ Un[KUn
]

This solution implies that we first delete dangling values, then we add new
columns A1, A2, · · · , An to R. Now, we should update R such that each column
Ai contains the values of A that reference Ui[KUi

], for i = 1, · · · , n. Finally, we
drop the column A, and define the foreign keys. This solution can be expressed
using SQL as shown in Listing 1.4.
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Example 6. In Example 4, we found two potential referenced tables Z =
{P2, P3}. If both tables are considered correct and should be referenced by
P1[B], then the solution presented above is to replace the column B by two
columns B1 and B2, such that we have two foreign keys instead of one, namely:
P1[B1] ⊆ P2[C], and P1[B2] ⊆ P3[D] (Fig. 4).

Fig. 4. Solution 1 of Case 3-2 (Example 6)

Listing 1.4. Solution 1 of Case 3-2

−− Remove dangl ing va lues

DELETE FROM R WHERE A IN ̂A ;

−− Add new columns to R
ALTER TABLE R

ADD COLUMN A1 . . . ,
. . .
ADD COLUMN An . . . ;

−− Migrate data va lues from A to the new columns
UPDATE R SET A1 = A
WHERE A IN ( SELECT KU1 FROM U1 ) ;
. . .
UPDATE R SET An = A
WHERE A IN ( SELECT KUn FROM Un ) ;

−− Drop column A
ALTER TABLE R DROP COLUMN A ;

−− Fina l ly , d e f i n e the c o r r e c t f o r e i g n keys
ALTER TABLE R

ADD FOREIGN KEY (A1 ) REFERENCES U1(KU1 ) ,
. . .
ADD FOREIGN KEY (An ) REFERENCES Un(KUn ) ;

Case 3-2, Solution 2. Replace the whole table R by n new tables,
R1, R2, · · · , Rn, each of which will be referencing one of the referenced tables
U1, U2, · · · , Un. In this case, each one of those tables Ri will contain a version
of the column Ai that references Ui[KUi

]. This means that we also replace the
candidate foreign key σ = R[A] ⊆ S[B] by the following foreign keys:

σ1
.= R1[A1] ⊆ U1[KU1 ]

σ2
.= R2[A2] ⊆ U2[KU2 ]

· · ·
σn

.= Rn[An] ⊆ Un[KUn
]
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This solution implies that we first delete dangling values, then we create
new tables R1, R2, · · · , Rn, including the definition of foreign keys. Then, data
records should be migrated from R to those new tables such that each new
table Ri contains the records that reference his corresponding reference table Ui

for i = 1, · · · , n. Finally, table R can be dropped safely. This solution can be
expressed using SQL code as shown in Listing 1.5.

Listing 1.5. Solution 2 of Case 3-2

−− Remove dangl ing va lues

DELETE FROM R WHERE A IN ̂A ;

−− Create new tab l e s , i n c l ud ing d e f i n i n g c o r r e c t f o r e i g n keys
CREATE TABLE R1 (

. . . , A1 , . . .
FOREIGN KEY A1 REFERENCES U1(KU1 )

) ;
. . .
CREATE TABLE Rn (

. . . , An , . . .
FOREIGN KEY An REFERENCES Un(KUn )

) ;

−− Migrate data from R to the new tab l e s
INSERT INTO R1 ( . . . , A1 , . . . )
SELECT . . . , A , . . . FROM R
WHERE A IN ( SELECT KU1 FROM U1 ) ;
. . .
INSERT INTO Rn ( . . . , An , . . . )
SELECT . . . , A , . . . FROM R
WHERE A IN ( SELECT KUn FROM Un ) ;

−− Fina l ly , drop tab l e R
DROP TABLE R ;

Example 7. In Example 4, we found two potential referenced tables Z =
{P2, P3}. If both tables are considered correct and should be referenced by
P1[B], then the solution presented above is to replace the table P1(A,B) by
two tables P1,1(A1, B1) and P1,2(A2, B2), such that we have two foreign keys:
P1,1[B1] ⊆ P2[C], and P1,2[B2] ⊆ P3[D], as shown in Fig. 5.

Fig. 5. Solution 2 of Case 3-2 (Example 7)
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7 Model-Based Verification

This type of verification is applied for candidate foreign keys whose tables do
not have data records, and it is based on the application program. In our case
study, each database table has an associated model (Java bean). Model-based
verification is based on the following idea: we inspect the model associated with
owner table of the candidate foreign key. If this model has a reference to the
model associated with referenced table of the foreign key, then we consider that
the foreign key is valid. Formally, given a candidate foreign key σ = R[A] ⊆
S[B], we inspect the models MR and MS associated with the tables R and S,
respectively. If the model MR contains a field a of type MS , this means that the
table R has a column Ca which is probably a foreign key references the table S
associated with the model MS .

8 Conclusion

In this paper, we have presented a method for repairing referential integrity
constraints in relational databases. This method is applied when the constraints
are not correctly specified in terms of foreign keys in the database schema. The
method starts with identifying candidate foreign keys. Then, these candidates
are verified using three types of verification: model-based, data-based, and brute-
force verification. Valid foreign keys are declared with the database schema and,
thus, are enforced by the DBMS to keep the database consistent.

Our method has been applied on a real-world database composed of 167
tables. We have identified 393 candidate foreign keys. Among them, there are
246 foreign keys whose tables have records, hence they are subject to data-based
validation; whereas the remaining 147 foreign keys have empty tables, thus they
are subject to model-based verification. Among the 246 foreign keys that have
been verified using data-based validation, there are 232 that passed, while 14
foreign keys only have failed, thus they are subject to brute-force validation. As
a result of brute-force validation, 4 FKs have no potential reference tables (case
1), while 9 FKs have one potential reference table (case 2), and only one FK has
three potential reference tables (case 3). For all the 14 foreign keys there were
dangling records in the range of 1 to 7 records per table (in total: 31 records).
Among the 147 foreign keys that have been verified using model-based validation,
only 4 FKs have failed the test and hence have been manually corrected.
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