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Abstract. The coal-fired power plant regularly produces enormous
amounts of data from its sensors, control and monitoring systems. The
Volume of this data will be increasing due to widely available smart
meters, Wi-Fi devices and rapidly developing IT systems. Big data tech-
nology gives the opportunity to use such types and volumes of data and
could be an adequate solution in the areas, which have been untouched
by information technology yet. This paper describes the possibility to
use big data technology to improve internal processes on the example of
a coal-fired power plant. Review of applying new technologies is made
from an internal point of view, drawing from the professional experience
of the authors. We are taking a closer look into the power generation
process and trying to find areas to develop insights, hopefully enabling
us to create more value for the industry.
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1 Introduction

Power plants are places of the coexistence of various types of IT and OT (oper-
ational technology) systems. A long lifetime of assets, non-hyper-competitive
environment and regulation restrictions cause a substantial delay in the adoption
of new technologies, for example, big data and cloud computing. Indisputably,
especially in modern times data is an asset which can be utilized to create value
and improve businesses. In this specific environment of centralized financial,
ERP systems and distributed operation technology systems it is impossible to
ignore outstanding opportunities for the application of big data analytic tech-
niques. Desirable effects can be achieved by decreasing the cost of data storage as
well as through still developing analytic tools. Many current activities, for exam-
ple: making reports, spreadsheet calculations, intuitive decisions can be boosted,
automatized or transformed to provide better performance and efficiency. There
are also risks and problems we have to tackle as far as implementing this new
technology is concerned in the IT environment of power plants.
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2 Big Data Characterization

2.1 Big Data Definition

Big data refers to these types of data sets which processing causes a lot of prob-
lems or is simply impossible when traditional relational databases are employed.
There are many definitions describing big data, and one of them says shortly
“Big data is where parallel computing tools are needed to handle data”. Big
data not only refers to the size of data as the other features are well explained
in, for example, the concept of three V’s, which are: volume, variety, velocity.
The occurrence of more than one of these features could mean we are dealing
with big data. There are also two complementary features, which have come out
recently and possess massive commercial use. These are veracity and value [20].
5V’s (Fig. 1) may be described as follows:

Volume: The quantity of generated and stored data. Most people define big data
in tera or petabytes [22]. Machine-generated data is produced in much larger
quantities than traditional relational data. For instance, a single jet engine can
generate 10 TB of data in 30 min [7]. The number of variables and the frequency
of data generation make this volume so big. For example, a steam boiler has
about 20000 variables and produces 4–5 GB samples every month.

Variety: The type and nature of data. Big data draws from text, images,
audio, video; and it completes missing pieces through data fusion [8]. Variety
of sources use many different data types to analyze reasons for a variety of
processes [13]. Data is categorized as: structured (e.g. relation-based databases),
semi-structured (e.g., XML, JSON, RSS feed) and unstructured (e-mails, videos)
[22].

Fig. 1. The 5V model of Big data

Velocity: The frequency of data generation or the frequency of data delivery. For
example, a continuous stream of data could be adjusted with a once-in-a-while
event triggering data from a sensor. Although the majority of power system sensors
are event-triggered, there are also sensors, for example, PMUsboth at transmission
and distribution level, which produce data streams at high rates [3].



Big Data in Power Generation 17

Veracity: The quality of captured data. Means how much data is accurate
(error free, raw or currently analyzed, integrated). Taking into consideration
some information gathered from external sources, for instance, social media, we
can observe that they cannot be fully trusted and its quality may be debatable.

Value: The worth derived from exploiting big data. Means internal value to the
company. An important thing in DaaS (data as a service) and data monetization
concepts [20].

2.2 Big Data Architecture and Components

Lambda Architecture. Described by Nathan Marz and James Warren lambda
architecture is an elegant explanation of how big data works. It shows a way to
achieve a scalable system with all requirements of big data system including low
latency, high volume and error tolerance (listed in Table 1). Lambda architecture
as it is shown in Fig. 2, contains three components: batch, speed, and serving
layer [15].

Fig. 2. Big data block schema

Batch Layer includes the main dataset called also “data lake”. It is a repository
of raw data in its native format. Data is stored in a distributed file system to
provide greater scalability and capacity [14]. The repository recomputes all the
data from the distributed file system to the batch views, which are accessible
through fast queries. Recomputing is a slow process but the data is integral and
accessible.
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Table 1. Features of big data system

Low latency Most applications require low delay regarding data access. It is not
the most important thing concerning tasks similar to creating the
annual report but in the case of real-time control or anomaly
detection it is quite significant

Reliability
and fault
tolerance

Big data should be resistant to human errors and hardware
breakdowns. High availability is provided by replication and
distributed file system (e.g. Hadoop File System). Both failures and
handmade errors can be fixed by renewed batch computing

Scalability Ability to keep performance with fast grooving data storage and
high load. Big data is vertically scalable by adding new clusters [18]

Extensibility Big data is easy to develop. New functions and changes in the
existing code do not need much effort in data migration and
programming

Ad-hoc
queries

Each and every query regarding the whole data set can be called at
any time

Debug-ability Big data allows to follow input and output (batch view) values

Speed Layer records incremental data from recent updates. It is a response to
the requirement of velocity and it is a great complement to the batch layer. The
speed layer stores data updates, taking place between consecutive recomputing
processes, in the batch layer.

Serving Layer merges data from the Batch and the Speed layers and gives a
real-time view of data.

2.3 Comparison with Traditional Data Analysis

In comparison with the standard data warehouse, there are some distinguished
features characterizing big data.

From ETL to ELT. When we want to follow the traditional way of collecting
and utilizing data, we must first design a database schema as well as collect and
execute prepared operations. Taking that into consideration, we may observe a
difference reflected in a simple fact that big data analysis is “closer” to data. It
means that data is firstly collected in a simple form and then it is transformed
and analyzed.

In-Database Analytics. Instead of copying data to other locations and pro-
cessing it in a dedicated tool, it is possible now to do complex computing,
machine learning operations or set operations within a database engine. This
enables faster responses from databases, through which data could be fetched
nearly in real time.
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Distributed Computing. Data warehouses tend to be centralized systems.
This kind of a system is vertically scaled, what means that to scale it up the
system needs more RAM, a faster CPU or more CPUs. Distributed systems
allow horizontal scaling by adding other machines. It makes big data solutions
more cost-effective [17].

Unstructured Data. Decreasing the cost of data storage makes many types
of unstructured data justified to store, even if its value remains unknown. By
contrast, data warehouses operate only on relational databases and are designed
for a specific purpose.

2.4 Electric Power Data

Following the big data definition, it is worth to check if we are really dealing with
big data as defined by 5V’s. Traditionally, operation technology systems work
in distributed, firewalled environments to avoid noise and to provide adequate
security.

The number of samples and control signals fulfill the criteria of velocity.
Examples of some data charts from PGIM (Power Generation Information Man-
ager) visualized in Grafana system are shown in Figs. 4, 5 and 6. However, design-
ing big data in a way it could deal with island-like OT systems is a challenge.
The growing number of devices with m2m (machine to machine) or Wi-Fi inter-
faces, could provide some additional information for analysis. Both volume and
variety are characteristics of OPC servers (Open Platform Communications),
which store historical data including process data, triggered events, and alarms.

The majority of data is either not logged, or it is overwritten very quickly.
For example, in most protection relays and related sensors, the data collected is
discarded shortly after internal use. If a pre-programmed event is not detected,
then no data is automatically stored [3]. Accordingly, while many of the recently
deployed or emerging power data measurement systems lie in the description of
Big Data, the way that they are currently managed does not exactly match the
spirit and purpose of Big Data. Once such hidden data is collected, managed,
and analyzed, they will constitute the real Big Data in power systems [3].

There are also many external sources of data related to the energy sector,
which can complete our big data set. For example, also shown in Fig. 3: weather
conditions, GPS data, traffic information, social-media can support the real-time
market or load management.

There is a large potential to use Big Data techniques in the analysis of power
system data. Various data sources with smart analytics lead to intelligence while
performing operational processes and tactical management.
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Fig. 3. Data types that could be used in Big Data analytic

Fig. 4. Sample of process data: fan power and instant CO emission

Fig. 5. Example graph of a power plant startup
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Fig. 6. Turbine active power

3 Big Data Analytics Approach

Big data analytics means using advanced analytic techniques operating on big
data [22]. Hardware solutions and platforms like Hadoop [1] and Spark [2] allow
for massive data collection and storage. These can well feed analytic tools to
enhance its results [22]. The tools cover techniques, like data mining, machine
learning (classification, regression, clustering), artificial intelligence (cognitive
simulation, expert systems, perception, pattern recognition) statistical analysis,
natural language processing, and advanced data visualization [3,12,23,24]. Data
analytic tools can analyze huge amounts of data at speed impossible for humans
without technology. However, any analytic method is useless, if no action is taken
[5] (Table 2).

Table 2. Example way from data to wisdom [5]

From To

Data −3 Celsius Information

Information −3 ◦ C At 3 ◦ C it’s cold out Knowledge

Knowledge −3 ◦ C Need to dress warmly Wisdom

Data analytics is categorized in some areas, depending on the purpose, scope,
and techniques used:

Descriptive Analytics - interpretation of historical data. Helps to compare
and understand data from the past, for example, annual reports comparison,
assessment of generation unit capital project, key performance indicators as
mean time between failures or month by month upkeep costs sets. It answers the
question: “What happened?”



22 M. Moleda and D. Mrozek

Diagnostic Analytics - a way to determine factors and causes of a particular
event. Can be used for example in fraud detection or to understand failures from
historical data. It answers the question: “Why did it happen?”

Predictive Analytics - this type of analytics uses statistics and modeling to
determine future performance. It can help to predict financial trends, create
reliability models or foresee asset management issues [5]. It is able to advise
which feed pump should be running to give the best operational efficiency. It
answers the question: “What can happen?”

Prescriptive Analytics - simulates possible paths and gives the best option
according to predicted results. Can calculate the potential economic profits from
steam-boiler renovation. It answers the question: “What should we do?”

Cognitive Analytics - uses advanced machine learning, cloud computing or
artificial intelligence to give a real-time decision making aid. For example, can
control in real time combustion process to achieve less nitrogen dioxide emissions.

4 Potential Benefits of Using Big Data in Power
Generation

Big data and digitization process coming along with machine-generated and
enterprise data can unlock new business opportunities. Not all of the areas are
visible now, but many cases indicate some potentials to improve operational
excellence and performance, as well as to reduce costs.

4.1 Fault Detection and Condition Monitoring

Early fault detection allows to improve system availability and to avoid addi-
tional downtime costs and regulatory fines. Data from control systems, diag-
nostic reports and videos can be analyzed in real time giving information on
the current equipment condition; and therefore, potential failure occurrence. For
example, based on data from SCADA (Supervisory Control And Data Acquisi-
tion) systems, it is possible to detect wind turbine failure by monitoring gearbox
oil temperature, power output, and rotational speed [19]. Similarly, if used on
other assets it could significantly reduce the operational and maintenance cost.
Anomaly detection can also catch events not visible for control systems. For
example, if a measurement tool has a predefined min-max range, the control
system will not alarm us even though the reading is anomalous (as shown in
Fig. 7).
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Fig. 7. Anomaly example

4.2 Operations-Planning Convergence

By integrating data from various sources and processes the possibility to con-
vergence has been enhanced. The term operations-planning convergence refers
to the ability of a utility enterprise to realize the future conditions of the power
system with high probability and high accuracy. This is difficult to achieve with-
out systematic data management and unified models [10]. Operational planning
refers to preparation for weather, load, and generation conditions changes in the
next minutes, hours, and days. There are various reasons for this convergence
gap (e.g., diverse models, diverse data sources and data formats) and inefficient
data management tools, which all can be overcome with the unified methods and
systematic data management [3]. To simulate system behavior we can use ana-
lytic tools, e.g., predictive analysis, machine learning, stochastic analysis, etc. It
is an interesting concept to create a digital copy of assets or the whole power
plant.

Digital Twins is a digital power plant model allowing to simulate and visu-
alize its performance and behavior in varied scenarios. Digital model would make
it possible to determine how the real plant would respond to different conditions,
supplies or even weather events [11].

4.3 Asset Management

Asset management is a systematic process of developing, operating, maintaining,
upgrading, and disposing of assets cost-effectively. Big Data analytics may drive
forward asset management maturity model to be integrated and automated.

Predictive Maintenance. Owing to equipment monitoring and fault detec-
tion it is possible to make a transition from preventive to predictive maintenance
methods. Health-based maintenance of equipment provides better scheduled fix-
ing plans minimizing planned and unplanned downtimes. It means:

– reducing unnecessary repairs of equipment in good condition,
– minimizing the probability of downtime by real-time health monitoring.

Predictive maintenance needs comprehensive information about the asset. Big
data technology could fulfill this requirement in an inexpensive way of collecting
data from existing systems.
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Enhanced Planning. Complete assets data including current condition, repair
costs, and risks, could be used for asset managers to diversify maintenance meth-
ods (including reactive or preventive maintenance where it is justified) [25].
Maintenance methods are described in more detail in Table 3. Implementing the
right maintenance strategy can optimize costs and availability indicators. Criti-
cal equipment needs more predictive and preventive approach, while non-critical,
cheap to repair devices sometimes could run to failure.

Table 3. Comparison of maintenance methods.

Reactive Preventive Predictive

Description “Fix on fail”. Repair
is done already
when equipment is
broken

“Time-based” maintenance.
Equipment is serviced in
regular time intervals based
on the vendor’s
recommendations, MTBF
(Mean time between failures)
or other statistics

“Fix as required”.
Condition based
maintenance.
Service is done
before failure is
expected

Advantages No service and
inspection cost

Keeps equipment in high
condition. Doesn’t cause
production halts

Less service costs.
Better fault
detection

DisadvantagesLess production
availability. High
overhead costs. Lost
production costs

Requires planning.
Vulnerable to random failures

High cost of
monitoring and
skills needed

Integrated Data. Another economical aspect refers to comparing asset perfor-
mance before and after maintenance. Such analysis allows evaluating the prof-
itability of service activities. Moreover, big data could also feed service crews
with complete and accurate equipment information. The more adequate the
information is, the faster the service task may be completed.

Procurement and Materials. Gaining knowledge about the current condition
from big data could help in optimizing the procurement process, reducing its time
and cost. It has also a positive influence on the inventory size and better supply
planning.

4.4 Performance Optimization

Datasets coming from information technology systems and control systems used
in the real-time analysis would constitute great feedback for operators controlling
the production process. Understanding the power system as a black box, where
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parameters like steam pressure, steam temperature, and coal flow are inputs,
and efficiency or generated power is an output, dramatically simplifies modeling
process. Using data mining or machine learning techniques makes it possible to
find the right way to optimize efficiency or emissions [6,16].

Another example is to control additive chemicals applied to coal. Owing to
advanced analysis, it is possible to adjust the number of additives to current load
or other parameters. Such operation provides emissions compliance and prevents
overfeeding chemicals [21].

Renewable power generation units and fluctuating market dictate new flex-
ibility requirements to coal-based power plants. It means not only working in
highly efficient constant conditions, but also quickly adjusting the load to the
current demand. It needs start-up characteristics improvement by reducing start-
ing and stopping time and optimization of load gradient.

4.5 Data Analysis and Visualization

Big data tools and techniques enable visualization and exploration of large vol-
umes of data. It includes also enhancing the reporting ability of existing business
intelligence systems and discovering new things for the enterprise. Unlike stan-
dard dashboards or charts, big data needs more advanced tools to present mul-
tidimensional, high-volume data. Visualization involves graphical representation
of data structures and techniques making data more transparent, like aggre-
gation and hierarchization. Data analysis is supported by advanced techniques
and tools, like predictive analytics, data mining (IBM SPSS Modeler, KNIME,
WEKA), statistical analysis (Matlab, RStudio, Python), complex SQL, data
visualization (MS Power BI, Qlikview, Tableau), artificial intelligence (Keras,
Tensorflow), or natural language processing (Natural Language Toolkit, Apache
OpenNLP). Some spreadsheet-based reports could be substituted and auto-
mated, also the decision-making process could evolve from intuitive to data-
based.

4.6 Demand Response

Electrical energy cannot be stored, so production is adjusted to temporary
energy consumption. Demand prediction includes also forecasting energy con-
sumption and power generation from renewable sources (wind turbines, solar
plants). Gathering data from smart meters, social media, analyzing consumption
patterns enables us to predict the expected energy consumption [9]. Moreover,
we can forecast weather impact on predicted power generation from renewable
sources (wind, solar). Complete information gives chances to use existing power
supplies in an optimized way and aids in load planning (containing also energy
collecting and power-to-heat strategies). Accurate energy forecasting allows to
avoid imbalance costs and gives the possibility to gain more from the real-time
market.



26 M. Moleda and D. Mrozek

5 Challenges in Big Data Adoption

5.1 Siloed Data

Effective big data analytics needs comprehensive data access. One of the chal-
lenges is to face silo mentality, meaning the situation in which some departments
do not wish to share their data with others. There are many factors fueling silo
mentality such as poor communication or internal competition. Departments
have different goals, priorities, and responsibilities, so they often do not col-
laborate with each other to achieve common business goals. A more important
problem is to save data confidentiality in compliance with legal and security reg-
ulations. Sensitive data like customers personal data, financial or trading data
still need to be restricted from unwanted access.

5.2 Cybersecurity

Power plants and energy utilities represent critical infrastructure where data
and IT systems would be principally protected. More significance of IT and data
makes it more vulnerable to cyberattacks. Known threats like data stealing,
system disabling can cause huge financial losses. Moreover, cyberattacks more
often could be aimed for energy utilities. An example could be an attack on
the Ukrainian power grid in 2015 [26] when hackers using malware software and
taking control on SCADA systems were able to cause outages in 30 substations.
Considering data as a valuable asset needs to provide relevant activities and
protection to assure its confidentiality, integrity, and backup.

5.3 Skills

Adapting big data in organization forces requires acquiring new skills covering
both infrastructure architecture and data analytics. Data architects, data sci-
entists or data engineers are some of the new professions created by big data.
Besides, to leverage big data impact organizations need many business users with
analytical skills. To attract good employees, companies will need to develop a
distinct culture, career paths, and recruiting strategy for data and analytics tal-
ents. However, there are many talented engineers with analytical skills in the
electricity industry, so many of analysts could be trained, not hired.

5.4 Leadership and Organization

Transforming the decision-making process in organizations into one based on
data and analytics, besides technical skills, requires applying leadership, orga-
nizational structures and communication to make the expected revenue. Due
to survey results most significant challenges are ensuring senior management
involvement in data analysis activities and designing an appropriate organi-
zational structure to support analytics activities [4]. Organizational structures
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should provide good communication between the analytics team and depart-
ments. Greater impact on both cost and revenue was achieved with hybrid struc-
ture meaning central analytics organization that coordinates with employees who
are embedded in individual business units [4]. An important thing is support-
ing and involving analytics by CEOs to align activities close to their vision and
strategy.

5.5 Architecture and Technology

There are many commercial and open sources of software, architecture, tools
offering big data analytics. Chosen solution should fit in the organization needs
and provide integration with existing systems, training and support. It is a big
challenge to gather data from sensors and devices working in real-time systems,
which was not intended for analysis in system building process because of high
cost or lack of analytic tools in past times.

6 Conclusion

This article presents the characteristics of big data issues in the context of the
power generation industry. Technology progress gives the opportunity to han-
dle and analyze new streams of data, it also enhances current business intel-
ligence based on data warehousing and gives the possibility to explore values
from data in a new way. Big data analytics can be capitalized in many specific
internal processes in power generation industry improving operating efficiency.
It also helps to make better and faster decisions, using modeling and predic-
tion to optimize maintenance and reliability. It is inevitable for big data to face
some challenges; for example, to gain expected revenue organizations must create
structures, acquire skills and change culture and mentality.

Acknowledgements. This work was supported by the Polish Ministry of Science
and Higher Education as part of the Implementation Doctorate program at the Silesian
University of Technology, Gliwice, Poland (contract No 0053/DW/2018), and partially,
by the pro-quality grant for highly scored publications or issued patents of the Rector of
the Silesian University of Technology, Gliwice, Poland (grant No 02/020/RGJ19/0167),
and by Statutory Research funds of Institute of Informatics, Silesian University of
Technology, Gliwice, Poland (grant No BK/204/ RAU2/2019).

References

1. Apache Hadoop homepage. https://hadoop.apache.org. Accessed 27 Oct 2018
2. Apache Spark homepage. https://spark.apache.org/. Accessed 27 Oct 2018
3. Akhavan-Hejazi, H., Mohsenian-Rad, H.: Power systems big data analytics:

an assessment of paradigm shift barriers and prospects. Energy Rep. 4, 91–
100 (2018). https://doi.org/10.1016/j.egyr.2017.11.002. http://www.sciencedirect.
com/science/article/pii/S2352484717300616

https://hadoop.apache.org
https://spark.apache.org/
https://doi.org/10.1016/j.egyr.2017.11.002
http://www.sciencedirect.com/science/article/pii/S2352484717300616
http://www.sciencedirect.com/science/article/pii/S2352484717300616


28 M. Moleda and D. Mrozek

4. Brad Brown, J.G.: The need to lead in data and analytics (2016). https://
www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-need-
to-lead-in-data-and-analytics. Accessed 22 Oct 2018

5. Canadian Electricity Association: Data to wisdom. Big data and analytics in
the Canadian electricity industry (2017). https://electricity.ca/library/data-to-
wisdom/. Accessed 20 Oct 2018

6. Chongwatpol, J., Phurithititanapong, T.: Applying analytics in the energy indus-
try: a case study of heat rate and opacity prediction in a coal-fired power plant.
Energy 75, 463–473 (2014)

7. Dijcks, J.P.: Big data for the enterprise (2014). https://www.oracle.com/assets/
wp-bigdatawithoracle-1453236.pdf. Accessed 20 Sept 2018

8. Hilbert, M.: Big data for development: a review of promises and challenges. Dev.
Policy Rev. 34(1), 135–174 (2016)

9. Huang, Z., Luo, H., Skoda, D., Zhu, T., Gu, Y.: E-Sketch: gathering large-scale
energy consumption data based on consumption patterns. In: 2014 IEEE Interna-
tional Conference on Big Data (Big Data), pp. 656–665. IEEE (2014)

10. Kezunovic, M., Xie, L., Grijalva, S.: The role of big data in improving power
system operation and protection, pp. 1–9, August 2013. https://doi.org/10.1109/
IREP.2013.6629368

11. Lawson, S.: Cloud-based ‘digital twins’ could make power plants more
efficient (2015). https://www.networkworld.com/article/2987521/cloud-based-
digital-twins-could-make-power-plants-more-efficient.html. Accessed 15 Dec 2018

12. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge
University Press, Cambridge (2014)
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