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Abstract. Super-resolution reconstruction (SRR) is aimed at increas-
ing image spatial resolution from multiple images presenting the same
scene or from a single image based on the learned relation between low
and high resolution. Emergence of deep learning allowed for improv-
ing single-image SRR significantly in the last few years, and a variety
of deep convolutional neural networks of different depth and complex-
ity were proposed for this purpose. However, although there are usually
some comparisons reported in the papers introducing new deep models
for SRR, such experimental studies are somehow limited. First, the net-
works are often trained using different training data, and/or prepared
in a different way. Second, the validation is performed for artificially-
degraded images, which does not correspond to the real-world conditions.
In this paper, we report the results of our extensive experimental study
to compare several state-of-the-art SRR techniques which exploit deep
neural networks. We train all the networks using the same training setup
and validate them using several datasets of different nature, including
real-life scenarios. This allows us to draw interesting conclusions that
may be helpful for selecting the most appropriate deep architecture for
a given SRR scenario, as well as for creating new SRR solutions.

Keywords: Super-resolution reconstruction · Image processing ·
Convolutional neural network · Deep learning

1 Introduction

Single-image super-resolution reconstruction (SRR) is a group of methods,
whose main goal is to construct a high-resolution (HR) image on the basis
of a single low-resolution (LR) input image [30,40]. There are a few main
approaches to resolve this task: usage of predefined mathematical formula
(e.g., bilinear, bicubic, and other interpolation methods), edge based meth-
ods [12,35,38], using a dictionary with pairs of matched LR and HR image frag-
ments [6,13,14,19,23,41], heavy-tailed gradient distribution [32], sparsity prop-
erty of large gradients [23], discrete and stationary wavelet decomposition [7,8],
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and universal hidden Markov tree model [28]. However, most of recent works
engage convolutional neural networks (CNNs) to transform LR image to HR
output.

1.1 Related Work

Super-resolution CNN (SRCNN) is the first deep learning model whose authors
claimed to surpass performance of other methods [9,10]. SRCNN is a single-
image super-resolution reconstruction algorithm that optimizes an end-to-end
mapping from LR to HR image. This model has been improved in two ways:
by increasing depth of the network, and by introducing recursive learning.
In very deep super-resolution CNN (VDSR) [21] and image restoration CNN
(IRCNN) [42], additional convolutional layers have been added. Kim et al. pro-
posed recursive learning for parameter sharing in their deeply-recursive convolu-
tional networks (DRCNs) [22]. Afterwards, Tai et al. suggested the use of recur-
sive blocks (deep recursive residual network—DRRN [36]) and memory blocks
(Memnet [37]). All mentioned networks have the same drawback—they require
input images that are of the same size as the desired output image. Therefore,
an additional step is needed to interpolate the LR image to the expected size.

Fast super-resolution CNN (FSRCNN) [11], the successor to the SRCNN,
solves aforementioned problem by taking the original LR image as an input,
and using deconvolution layer to enlarge the image to the desired resolution.
Moreover, the authors improved the previous design to accelerate the process-
ing (up to 24 frames per second). In efficient sub-pixel CNN (ESPCN) [33], a
new layer type was introduced to upscale the final LR feature maps into the
reconstructed output. On this basis, SRResNet [27] and enhanced deep residual
network (EDSR) were proposed [29], which exploit residual learning. In recent
years, generative adversarial networks (GANs) gain popularity in image genera-
tion, and they outperform are deep learning techniques in SRR [27].

1.2 Contribution

We have witnessed a breakthrough in single-image SRR, underpinned with the
use of deep neural networks. Architectures of different depth and complexity
are employed for this purpose, and the widely shared opinion is that the deeper
models are more capable of learning the relation between low and high resolution.
However, the experimental results reported in the papers introducing new SRR
techniques are often limited—the test sets are commonly composed of the images
of the same kind, and LR images are obtained by downscaling and degrading
HR images, which serve as a reference (grount-truth, GT) for evaluation.

In this paper, we report the results of our extensive experimental study to
compare a number of different deep architectures that have been proposed for
SRR. We consider the magnification factor of 2×, as we want to compare the
networks taking into account their capability of reconstructing images based
on the LR information. For larger magnification factors, the networks are, in
fact, trying to “guess” the high-resolution appearance of the details that are
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not visible in the input image. Our main contribution lies in comparing the
state-of-the-art deep SRR networks using the same training data and setup, for
several test sets of different kind, namely: (i) artificially-degraded natural images,
(ii) artificially-degraded satellite images, and (iii) real satellite data that are
matched with HR images acquired using a different satellite of higher spatial
resolution.

1.3 Paper Structure

The paper is structured as follows. Section 2 describes in details the CNNs inves-
tigated in this paper. In Sect. 3, we present the results of our experiments, which
have been carried out to evaluate the implemented networks. Finally, Sect. 4
concludes the paper and shows the main goals of our ongoing research.

2 Convolutional Neural Networks for SRR

In this subsection, we discuss the implemented CNNs in detail. These networks
have been experimentally validated in Sect. 3.

2.1 Super-Resolution Convolutional Neural Network

SRCNN is the first CNN that has been developed specifically for SRR (Fig. 1)
[9,10]. The process of mapping LR to HR image can be separated into three
steps:

1. Patch extraction and representation
This part is done by the first convolutional layer. The patch extraction is
the process of sliding kernel through the whole image with the overlaps.
Representation is the resulting feature map which is a consequence of the
aforementioned patch extraction.

2. Non-linear mapping
The second convolving part non-linearly maps obtained feature map onto
another one. This new set of features directly corresponds to the HR image.

3. Reconstruction
The last part of the process gathers those HR representations and fuse them
into an image which should be as similar as possible to ground-truth.

The SRCNN model is parametrized by a fairly small set of hyperparameters:
the number of color channels, filter sizes in the first, second, and third layers (in
this case, k = 9, k = 1, and k = 5, respectively), and the number of filters in all
layers (n = 64, n = 32, and n = 1, respectively; note that the number of filters
in the last layer corresponds to the number of color channels).

SRCNN requires a pre-magnification of the input image to the desired size.
This design comes with one great advantage compared to other architectures,
where the whole super-resolution process is done by the model itself. The advan-
tage is that the network can be trained to restore images upscaled by any factor,
including non-integer upscaling factors.
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Fig. 1. A diagram of the SRCNN model

The experimental results reported in [9,10] show that SRCNN achieves better
numerical results than the state of the art at the time. It can be further tuned
in terms of either time efficiency or performance by changing the previously
mentioned hyperparameters.

2.2 Fast Super-Resolution Convolutional Neural Network

FSRCNN is built on the basis of SRCNN. There are two main high-level differ-
ences between these networks. The first one is that FSRCNN resizing process is
performed by the part of the model itself. Thus, the preprocessing step needed
by the SRCNN is eliminated. SRCNN requires that for different scales, therefore
the network has to be trained from scratch.

FSRCNN (Fig. 2) is composed of five different parts, which resembles the
SRCNN structure:

1. Feature extraction
Feature extraction is made at the very beginning of the processing pipeline
(first layer). Comparing to the SRCNN counterpart, its kernel size has been
reduced due to the fact that the input LR image is of the original size (it is
not interpolated).

2. Shrinking
To improve processing speed, the second convolutional layer is appended with
a kernel of size 1× 1. Its purpose is to reduce the number of channels and as
a result it lessens the number of parameters.

3. Non-linear mapping
The non-linear mapping is performed by several convolutional layers with
smaller kernels instead of one layer with a bigger filter of a greater size.

4. Expanding
The features are “expanded” to correspond directly to the high-resolution
image from which the final image is produced by the last part.

5. Deconvolving
The last part of the model aggregates the features and performs the upscaling
to produce the final high-resolution image.
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Fig. 2. A diagram of the FSRCNN model

The FSRCNN architecture improves computational speed without negatively
impacting the performance. Both, the computational speed and the performance
are highly adjustable with the number of non-linear mapping layers. Increasing
that number results in growing complexity and mapping accuracy.

The results presented in [11] showed that the improved architecture is truly
able to achieve real-time processing speed. Another effect of the changes is that
the reconstruction quality also was improved. Multiple narrow layers (non-linear
mapping layers) instead of one wider layer give better performance. The authors
showed that including upscaling part as a deconvolution layer also positively
affects the reconstruction quality. FSRCNN benefits from transfer-learning, once
it is trained for one upscaling factor, only the last deconvolutional layer has to
be retrained for other upscaling factor values.

2.3 Super-Resolution Residual Neural Network

Deeper networks have proven the ability to render performance impossible to
obtain by the shallow networks—more layers allow for modeling mappings of a
very high complexity. However, increasing the depth of the network is not as
easy as adding more layers—the problems of convergence and degradation (of
the network performance) can easily emerge. The vanishing/exploding gradient
problems [3,15] can stop the network from converging—error gradient may bring
too large or too small update for the network. Still, if the network manages to
converge, its performance may deteriorate with the increase in depth [34]. The
former problem has been addressed by normalized initialization [15,17,26,31] or
batch normalization layers [20]; for the degradation problem, the proposed solu-
tions encompass the highway networks [34] (utilizing information flow between
layers) and residual networks [18] (with the input skipping layers).

The SRResNet [27] (Fig. 3) architecture belongs to the family of residual
networks, and it was inspired by a network proposed by He et al. [18]. It deals
with both vanishing/exploding gradient and degradation problems (by the use of
intermediate normalization layers and residual connections). The residual blocks
(RBs) are the groups of layers stacked together with the input of the block added
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Fig. 3. A diagram of the SRResNet model

to the output of the final layer contained in this block. In SRResNet, each block
encompasses two convolutional layers, each followed by a batch normalization
(BN) layer that neutralizes the internal co-variate shift. The upsampling blocks
(UBs) allow for image enlargement by pixel shuffling (PS) layers that increase
the resolution of the features. The number of both RBs and UBs is variable—
by increasing the number of RBs, the network may model a better mapping,
whereas by changing the number of UBs, we may tune its scaling factor. However,
by adding more blocks, the architecture of the network becomes increasingly
complex, which makes it harder to train.

Throughout the whole network, Parametric ReLU (PReLU) is used as an
activation function. Similarly to Leaky ReLU, it introduces a small slope for
negative values, and PReLU enables the network to learn the optimal value
for this slope. Both Leaky and Parametric versions of ReLU decrease the time
needed for network to converge, and help with the dying ReLU problem [39].

2.4 Super-Resolution Generative Adversarial Network

GANs are rather complicated structures and may be described as two competing
networks, the first one (generator) is trying to produce the image indistinguish-
able from the real (not generated) pictures, while the second (discriminator)—
focuses on identifying these “fake” images. Once the discriminator starts to
distinguish well between “real” and “fake” images, the generator network needs
to produce increasingly better images. At the end of the training, discriminator
should not be able to differentiate original images from those produced by the
generator. In such a training scheme, the role of the discriminator may be per-
ceived as an adaptive loss function, that moderates the training of the network
by gradually increasing demand for the networks’ performance.

Scenarios for the usage of GANs encompass image generation from noise,
image inpainting and style transfer. In the context of single image super-
resolution, GANs were firstly introduced by Ledig et al. [27]. In SRGAN (Fig. 4),
both generator and discriminator (Fig. 5) are very deep networks; in fact SRRes-
Net is used as a generative part of the network. To train the generator network,
two loss functions are used and weighted—content loss is evaluated as an MSE
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Fig. 5. A diagram of the discriminator model. Number of convolution filters (denoted
by X) progressively increase, with X ∈ {64, 128, 256, 512}

between features of “real” and “fake” images (extracted with VGG19 network);
adversarial loss favors the solutions that generate images unable to distinguish
from the “real” ones. For discriminator, the loss proposed in [16] is used.

3 Experiments

All convolutional network models have been trained with DIV2K dataset [1].
The images were converted to 8-bit greyscale and downsampled 2× using bicu-
bic interpolation (in order to create LR patches). The set of prepared training
and validation images is available online1 under the license provided on the web-
site [24].

Several popular benchmarks were selected for the experiments: Set5 [5],
Set14 [41], and BSD [4]. In addition to these, we also created two datasets,

1 https://doi.org/10.7910/DVN/DKSPJF.

https://doi.org/10.7910/DVN/DKSPJF
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based on B4MultiSR [25], consisting of satellite images. The first one, Artifi-
cialy Degraded Satellite dataset, is composed of images gathered during the
Sentinel-2 mission. In this case, GT is the original image and LR is a bicubic
downscaled counterpart. Real Satellite dataset is the most challenging sce-
nario in our experiments—GTs are obtained by downscaling images from the
Digital Globe WorldView-4 satellite (original ground sampling distance equals
30 cm/px), and LR are images from Sentinel-2.

To quantitatively compare the quality of the investigated models, we utilized
several popular metrics: peak signal-to-noise ratio (PSNR), structural similar-
ity index (SSIM), universal image quality index (UIQI), and visual informa-
tion fidelity (VIF). Additionally, we exploit the following metrics: PSNRHF and
KFSSIFT [2]. In Table 1, we gathered all numeric results of conducted experi-
ments, whereas Figs. 6, 7, and 8 render images for the visual comparison.

Table 1. The results of our experiments. We boldfaced the best results for each dataset,
and the deep learning methods which render the results worse than Bicubic are anno-
tated with the gray background.

Dataset name Model PSNR SSIM UIQI VIF PSNRHF KFSSIFT

Set5

Bicubic 32.33 0.922 0.859 0.605 38.94 42.56
SRCNN 34.96 0.944 0.871 0.672 45.40 44.67
FSRCNN 35.52 0.949 0.876 0.690 46.70 44.73
SRResNet 35.20 0.935 0.858 0.689 46.32 44.97
SRGAN 33.86 0.931 0.828 0.637 46.86 44.57

Set14

Bicubic 28.75 0.857 0.781 0.500 34.34 42.46
SRCNN 30.75 0.894 0.818 0.559 39.33 44.55
FSRCNN 31.11 0.900 0.825 0.574 40.14 44.69
SRResNet 30.29 0.889 0.813 0.558 39.21 44.62
SRGAN 30.11 0.878 0.777 0.534 40.49 44.11

BSD

Bicubic 28.23 0.832 0.768 0.467 33.70 42.91
SRCNN 29.88 0.876 0.814 0.518 38.45 45.06
FSRCNN 30.19 0.884 0.825 0.532 39.30 45.13
SRResNet 29.85 0.880 0.817 0.527 38.66 44.98
SRGAN 29.88 0.876 0.814 0.518 38.45 45.06

Artificially
Degraded
Satellite

Bicubic 30.22 0.899 0.873 0.517 41.97 43.54
SRCNN 26.84 0.829 0.800 0.440 34.76 41.85
FSRCNN 26.11 0.812 0.783 0.425 33.43 41.49
SRResNet 26.31 0.813 0.785 0.429 33.64 41.49
SRGAN 24.60 0.727 0.696 0.363 30.43 39.92

Real
Satellite

Bicubic 16.81 0.391 0.170 0.087 35.00 39.71
SRCNN 16.64 0.345 0.138 0.075 35.68 40.55
FSRCNN 16.72 0.343 0.139 0.076 35.81 40.34
SRResNet 16.90 0.394 0.179 0.090 36.21 40.76
SRGAN 17.11 0.391 0.173 0.088 37.45 40.79

For Set5 (Fig. 6), Set14 and BSD benchmarks, being most widely used
datasets for SRR testing, FSRCNN renders best results both qualitatively and
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GT LR Bicubic SRCNN FSRCNN SRResNet SRGAN

Fig. 6. Example of the reconstructed image from the Set5 dataset. A part of the image
is zoomed for clarity (second row).

quantitatively. On the other hand, deeper networks (SRResNet and SRGAN),
introduced the halo effect around the edges, decreasing the numerical results as
well. It is also worth mentioning that these benchmarks are composed of images
in the jpeg format (which introduces artifacts)—this may degrade the results
too (in fact, deeper networks seem to magnify such artifacts).

The results for the Artificially Degraded Satellite images “favor” the out-
comes produced by the bicubic interpolation. However, the images obtained by
the deep networks seem to be sharper than the high-resolution version of the
image (Fig. 7). This may be the reason for the observed lower quantitative scores.

GT LR Bicubic SRCNN FSRCNN SRResNet SRGAN

Fig. 7. Example of the reconstructed image from the Artificially Degraded Satellite
dataset. A part of the image is zoomed for clarity (second row).

Finally, for the images from the Real Satellite benchmark (Fig. 8), deeper
networks obtained the highest scores. Still, in this case, compared images (GT
and SR versions of the image) present the same area, however they do not share
similar pixel values (e.g., due to the variable lighting conditions). This is the
reason why some metrics (see e.g., PSNR) have such low values.
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GT LR Bicubic SRCNN FSRCNN SRResNet SRGAN

Fig. 8. Example of the reconstructed image from the Real Satellite dataset. A part of
the image is zoomed for clarity (second row).

4 Conclusions and Future Work

In this paper, we compared the performance of four different deep network archi-
tectures for single image super-resolution reconstruction. These networks were
evaluated over five different benchmarks, including three standard ones (Set5,
Set14, and BSD100) and two introduced in this work (Artificially Degraded
Satellite and Real Satellite). The experiments showed that it is notably easier to
reconstruct artificially degraded images (therefore, shallower networks can effec-
tively cope with this task). In this case, deeper networks start to enhance the
jpeg artifacts. On the other hand, reconstructing an image and comparing it to
the one obtained by another sensor is much more difficult. As a result, deeper
networks (with higher capacities) outperformed the others.

It is also worth mentioning, that deeper networks are much more complex
structures, hence computational power needed to perform the training and pre-
diction increase. In this article, we did not focus on efficiency of the deep net-
works, however our study shows that introducing more complexity to the model
is not always worth it.

Currently, we are investigating the influence of the scale on the performance
of deep networks (and how deeper networks deal with scales higher than 2). Also,
we are focused on the comparison between the classical computer vision methods
and deep networks for both single-image and multi-frame super-resolution.
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