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Abstract. A social network is a structure whose nodes represent people
or other entities embedded in a social context while its edges symbolize
interaction, collaboration or exertion of influence between these fore-
mentioned entities [3]. From a wide class of problems related to social
networks, the ones related to link dynamics seems particularly interest-
ing. A noteworthy link prediction technique, based on analyzing the his-
tory of the network (i.e. its previous states), was presented by Prudêncio
and da Silva Soares in [5]. In this paper, we attempt to improve the
quality of edges’ formation prognosis in social networks by proposing a
modified version of aforementioned method. For that purpose we shall
compute values of certain similarity coefficients and use them as an input
to a supervised classification mechanism (called structural function). We
stipulate that this function changes over time, thus making it possible to
derive time series for all of its parameters and obtain their next values
using a forecasting model. We might then predict new links’ occurrences
using the forecasted values of similarity metrics and supervised classifi-
cation method with the predicted parameters. This paper contains also
the comparison of ROC charts for both legacy solution and the novel
method.

Keywords: Social network · Dynamic graph · Link prediction ·
Structural function

1 Introduction

Currently, networks are a commonly used tool used to describe a wide range
of real-world phenomena [6]. A great amount of attention has been devoted
to social networks analysis. The problem of link prediction has been already
described extensively in literature. Liben-Nowell and Kleinberg [3] provide use-
ful information and insights for regarding that issue, with references to some
classical prediction measures based on topological features of analyzed network
[7]. Lu and Zhou summarized, in [4], popular algorithms used for linkage is
inside complex networks. Another interesting paper worth mentioning is [7]. In
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this publication, authors provide a comprehensive and systematic survey1 of
the link prediction problem in social networks. The topics discussed there cover
both classical and latest link prediction techniques, their applications, and active
research groups [7]. Many solutions described there either make use of network’s
various topological metrics or perform data mining in order to reveal new or
apply already existing structural patterns. The paper, however, neglected the
analysis of how does these topological metrics evolve over time.

Especially interesting link prediction technique was proposed by Prudêncio
and da Silva Soares in [5]. Authors proposed there calculating similarity scores
for each pair of disconnected nodes at different time-frames, thus building a
separate time series for each such pair. Subsequently, a forecasting model is
applied to the series in order to predict their next values, which are then going
to be used as input to unsupervised and supervised link prediction methods [5].

In this paper, we present modifications to the original method proposed by
Soares and Prudêncio. Predicted values of similarity metrics are treated as an
input to a supervised classification method. In further parts of this article, we will
refer to this classification mechanism by a term structural function, as its value
decides for whether a link exists for any given pair of nodes. We stipulate that this
so called structural function changes over time, thus making is possible to derive
time series for all parameters of a given structural function, and obtain their next
values using the forecasting model. We might then predict new links’ occurrences
using the forecasted values of similarity metrics and supervised classification
methods with predicted parameters.

The paper is organized as follows. In the Sect. 2 we will present
preliminaries—the link prediction problem along with basic definitions. In Sect. 3
we will present the new method of link prediction. Section 4 contains a short
description of a conducted experiment and its results. Conclusions are contained
in Sect. 5.

2 Prerequisites

Definition 1 (Dynamic graph). Let G = (V,E) represent a graph containing
vertices from set V and edges from E. Additionally, let T denote a set of moments
in time, such that T = {1, 2, ..., T, T + 1, T + 2, ...,T}, where T > 1 stands for the
actual time. Through the term “dynamic graph” we shall understand an indexed
family of graphs with t as a running index:

G = (Gt)t∈T
, (1)

where Gt = (Vt, Et) such that V1 = V2 = ... = VT.

The link prediction problem can be formulated (based on [7]) as follows: Consider
a social network of structure G = (Gt)t∈T

. The link prediction aims at: (a)
forecasting a creation or disappearance of links between nodes in the future

1 The authors cite 131 papers in their publication.
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time-frame t∗ : t∗ > T or (b) finding missing or unobserved links in current
state of the network.

Definition 2 (Cumulative Dynamic graph). A dynamic graph G = (Gt)t∈T
,

where Gt = (Vt, Et), is a “cumulative dynamic graph” if additionally the follow-
ing requirement is fulfilled:

∀t1, t2 ∈ T : t1 � t2 =⇒ Et1 ⊆ Et2 . (2)

In this paper, we will limit our scope to sole prediction of new edges in graph
GT+1, while assuming that already-existing links are not deleted. Hence, when-
ever G appears, it symbolizes a cumulative dynamic graph.

Definition 3 (Graph’s coefficient). A coefficient C in the context of G can
be thought as a function CG : V 2 ×T → R, that returns a certain value for a pair
of vertices and time frame t, according to the structure of graph Gt.

2.1 Similarity Coefficients

In order to be able to compare our method against the one proposed in [5], we
have decided to focus our preliminary research around measures used therein.
Let ΓG(v, t) denote a set of neighbors of a given vertex v in graph Gt. The
common neighbors (CN) measure, for a pair of two vertices (v and w) can be
defined as follows:

CNG(v, w, t) = |ΓG(v, t) ∩ ΓG(w, t)| (3)

According to CN measure suggests that the higher the mutual neighbors count,
for a given pair of nodes, the higher the possibility that a connection between
that pair should exist, yet it remains hidden or will exist. By its definition, CN
is closely tied with Jaccard’s coefficient (JC), known also as Link Relevance
measure, which in fact is a CN value divided by analyzed pair’s all neighbors
count.

JCG(v, w, t) =
|ΓG(v, t) ∩ ΓG(w, t)|
|ΓG(v, t) ∪ ΓG(w, t)| (4)

JC is used to measure connection strength and thus plays an important role in
the process of hidden links discovery inside graph knowledge-bases [1,2].

The Preferential Attachment (PA) is another measure that we will make
use of. It assigns higher link materialization possibility to pairs of vertices with
greater adjacent nodes count product. Though simple, the results obtained from
experiments assert its ability to predict link formation.

PAG(v, w, t) = |ΓG(v, t)| × |ΓG(w, t)| (5)

Lastly, [5] proposes Adamic-Adar (AA) measure.

AAG(v, w, t) =
∑

z∈|ΓG(v,t)∩ΓG(w,t)|

1
log |ΓG(z, t)| (6)
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We will leave JC and AA and utilize CN and PA for now. The reason behind this
decision is to reduce the time complexity during the proof of concept phase. Fur-
thermore, we would also like to avoid probable interdependence between applied
measures. Thus, we refrain from using the JC as it seems to be correlated to a
certain degree with CN. Once the proposed method yields positive results, we
shall include more coefficients in future tests.

2.2 Description of the Algorithm Proposed by Prudêncio
and da Silva Soares

The algorithm of link prediction proposed in [5] has the following steps:

I. For each pair of non-connected (v, w) nodes, create a time series CT (v, w)
of similarity coefficients’ vector

CT (v, w) = (sv,w
t )t=1,..,T , (7)

sv,w
t =

[
C1

G(v, w, t) C2
G(v, w, t) ... CN

G (v, w, t)
]�

, (8)

where Ci
G(v, w, t) is the value of i-th similarity coefficient for pair of nodes

(v, w) at moment t; the following metrics can be used as a similarity coef-
ficient: Common Neighbors (CN), Preferential Attachment (PA), Adamic-
Adar (AA) and Jaccard’s Coefficient (JC);

II. Using time series CT (v, w) and one of the forecasting methods (Moving Aver-
age, Average, Random Walk, Linear Regression, Simple Exponential Smooth-
ing or Linear Exponential Smoothing) compute the future T + 1 values:

s∗v,w
T+1 =

[
C

∗1
G (v, w, T + 1) C

∗2
G (v, w, T + 1) ... C

∗N
G (v, w, T + 1)

]�
. (9)

III. Basing on the value of s∗v,w
T+1 , use either unsupervised or supervised method

to predict new links.

In the unsupervised methods, the pairs of disconnected nodes are ranked accord-
ing to their scores defined by a chosen similarity coefficients. It is assumed, that
the top ranked pairs have highest probability of being connected in the future.
The link prediction is treated as a classification task in the supervised approach.
As a classifier, Support Vector Machine (SVM) is used in [5]. Data from the fam-
ily G′ = (G1, G2, ..., GT ) play the role of a training set, while data from graph
GT + 1 are used as a test network.

3 The Novel Method Proposition

The method of link prediction, proposed in this paper, is a modification of the
one presented in [5]. We assume that not only values of similarity coefficients
are changing in time but also the relation (approximated by a structural func-
tion) between values of a given similarity coefficient and probability of new link
appearance.
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For every t ∈ T, the task of finding whether a given edge exists can be
expressed as a classification problem. A pair of vertices (v, w) ∈ Vt shall be
assigned either to class 1 if there exists an edge (v, w) ∈ Et or to class 0
otherwise—i.e. (v, w) /∈ Et. Due to the randomness of the edge occurrence and
the randomness2 of similarity coefficients’ values, we can use a classifier in the
form of a regression function:

E
{
I{(v,w)∈Et}|s

v,w
t = val

}
, (10)

where val ∈ R
N (N is the number of used similarity coefficients) and also:

I{(v,w)∈Et} =

{
1, (v, w) ∈ Et

0, (v, w) /∈ Et

. (11)

Due to the character of (11) the classifier takes the form of

P
{
I{(v,w)∈Et} = 1|sv,w

t = val
}

. (12)

Definition 4 (Structural function). A structural function for a given G =
(Gt)t∈T

, N coefficients and time step t is a function of a signature

fC,G
str : RN × T → [0, 1] , (13)

that maps coefficients’ values val ∈ R
N obtained from graph Gt to the condi-

tional probability of a link existence:

fC,G
str (val, t) = P

{
I{(v,w)∈Et} = 1|sv,w

t = val
}

(14)

It might be helpful to note that a realization of fC,G
str for one coefficient CG is a

mapping:

val, t 	→
∣∣{(v, w) ∈ V 2

t |CG(v, w, t) = val ∧ (v, w) ∈ Et

}∣∣
|{(v, w) ∈ V 2

t |CG(v, w, t) = val}| . (15)

3.1 Forecasting Links with a Structural Function
of the Last Known Moment

To predict edges for time t∗ = T + 1, evaluate coefficients for every vertices’
pair and each time-step t ∈ {1, 2, ...T} in series. The employment of polynomial
regression mechanism allows to obtain forecasted values s∗v,w

T+1 for each pair of
nodes. Now, we may assess the probability that a link exists between a pair of
vertices (v, w) in G, with respect to selected coefficients, by inserting forecasted
values into the structural function obtained from the last known moment - T . The
final decision whether a link exists involves choosing a certain threshold value
α ∈ [0, 1]. If the obtained probability value is higher or equal to the threshold
value, we assume that the link materializes.
2 Similarity coefficients’ values are random variables as they are functions of a random

graph structure.
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3.2 Overview of Our Derived Method

Our version of algorithm has the following form:

I. For each pair of non-connected nodes create a time series of similarity coef-
ficients’ vector as in (7);

II. For each t = 1, T approximate a structural function for a mapping between
similarity coefficients’ vector for any pair of vertices to the existence or
absence of a link sv,w

t 	→ {1, 0}. In other words, estimate parameters of the
structural function for each time period t = 1, 2, ..., T and therefore obtain
time series of these parameters;

III. Calculate s∗v,w
T+1 using time series CT (u, v) and polynomial regression (9);

IV. Calculate the values of the structural function’s parameters for T + 1 by
applying a polynomial regression to time series of structural function param-
eters;

V. Finally, predict new links existence by passing s∗v,w
T+1 as an argument to the

structural function and comparing its result with a threshold value.

3.3 Forecasting Links with the Predicted Structural Function

The structural function depends on time interval via its second argument. By
restricting it to some τ ∈ T, we may observe how coefficient C relates to the
probability of edge existence in that snapshot. One way of observing, how this
behavior changes through time is to look at fC,G

str as a sequence of its own restric-
tions.

fC,G
str

∣∣∣
t=1

, fC,G
str

∣∣∣
t=2

, ..., fC,G
str

∣∣∣
t=τ

, ..., fC,G
str

∣∣∣
t=T

(16)

To simplify future formulas we shall apply here some syntactic sugar and treat
fC,G
str |t=1 as fC1 , fC,G

str |t=2 as fC2 and so on, keeping the obvious G context in mind.

fCτ (val) � fC,G
str (val, t)

∣∣∣
t=τ

(17)

The changes occurring in dynamic graph’s structure throughout its subsequent
phases may cause fCτ to return quite different value than fCτ+1 for the very same
pair of nodes and coefficient C. If the analyzed net alters in a particular manner,
the obtained values may reveal a certain trend. For example, during our research
we have found out that a network showing collaborations between authors of sci-
entific publications exhibits a characteristic of a logistic function. This corollary
led us to the idea of prognosing the structural function values at time t∗ = T +1,
that is what f

∗C
T+1 would have looked like at time t∗. Performing logistic regression

(or any that fits the trend) for each function from fC1 , fC2 , ..., fCT sequence will leave
us with T corresponding vectors of logistic models coefficients: B1,B2, ...,BT .
To discovery of their behavior can be achieved by running polynomial regression
for each position in obtained vectors.

If Bi =
[
bi1 bi2 ... bin

]� then applying the polynomial regression for each of
its position will allow us to predict a coefficients’ vector for the time t∗ = T + 1,
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which we will denote it as B∗
T+1

[
b∗
1 b∗

2 ... b∗
n

]�.

b11, b21, b31, ..., bT1
pred. by reg.−−−−−−−−→ b∗

1

b12, b22, b32, ..., bT2
pred. by reg.−−−−−−−−→ b∗

2

...

b1n, b2n, b3n, ..., bTn
pred. by reg.−−−−−−−−→ b∗

n

The predicted coefficients B∗
T+1 can then be inserted into logistic function

formula, hence unfolding the expected shape of structural function fCt∗ . For vector
s∗v,w

T+1 =
[
s∗
1 s∗

2 ... s∗
N

]�:

f
∗C
T+1

(
s∗v,w

T+1

)
=

exp
(
B∗

T+1 · s
)

1 + exp
(
B∗

T+1 · s
) , (18)

where s =
[
1 s∗

1 s∗
2 ... s∗

N

]�.
For example, the application of logistic regression for one coefficient C will

result in a series of vectors Bi =
[
b1 b2

]� and a prediction: B∗
T+1 =

[
b∗
1 b∗

2

]�.
In this case, the probability value can be evaluated with the formula:

f
∗C
T+1

(
C

∗
G(v, w, T + 1)

)
=

exp
(
b∗
1 + b∗

2C
∗
G(v, w, T + 1)

)

1 + exp
(
b∗
1 + b∗

2C
∗
G(v, w, T + 1)

) . (19)

Again, as in Sect. 3.1, a link (v, w) will materialize when f
∗C
T+1

(
s∗v,w

T+1

)
� α,

where α is the chosen threshold.

3.4 Extending the Method for N Coefficients

The method can be accommodated to take any positive number of measures into
account. This can be accomplished by inserting each measure’s values into a set
of even-length intervals. The number of divisions and their size may vary for
each coefficient. Let C =

{
C1

G , C2
G , ..., CN

G
}

be a set of N coefficients’ evaluation
functions. Now, let D : C×N

+ → 2R denote a function that, for a given coefficient
CG , divides space [0,max CG(v, w, t)] into a set of consecutive, equal-length, d
intervals: (CG , d) =

{
ΔC

1 ,ΔC
2 , ...,ΔC

d

}
. Through max CG(v, w, t) we marked the

highest value achieved for a given CG up to the predicted time-frame.
To every interval we will now assign its representative value (via R : 2R → R

function)—in our study we decided to use interval’s average value.
Having got through the definitions we may now construct, for a given G, an

indexed family of tables: T = (tablt)t∈{1,2,...,T} (one table per each time frame)
that will constitute a data to be consumed by logistical regression mechanism
while searching for structural function coefficients. This calls for evaluating all
of N coefficients for every pair of vertices in each time step.
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The table contains information on how many pairs of vertices can be found
in a given N -dimension space fragment and how many of them are actually
linked. A given pair of nodes (v, w) belongs to the space fragment represented
by

(
R(ΔC1

G ),R(ΔC2
G ), ...,R(ΔCN

G )
)

if ∀i ∈ 1, 2, ..., N : Ci
G(v, w, t) ∈ ΔCi

G .

Table 1. Data of tablt from time frame t, used for finding the coefficients of logistic
structural function that utilizes n measures. Column designations: LP stands for linked
pairs, AP – all pairs, Crep

i – a representative value for a given Ci’s interval.

LP AP Crep
1 Crep

2 ... Crep
N

lp1 ap1 R(Δ
C1

G
1 ) R(Δ

C2
G

1 ) ... R(Δ
CN

G
1 )

lp2 ap2 R(Δ
C1

G
1 ) R(Δ

C2
G

1 ) ... R(Δ
CN

G
2 )

...
...

...
... ...

...

lpj apj R(Δ
C1

G
1 ) R(Δ

C2
G

2 ) ... R(Δ
CN

G
1 )

lpj+1 apj+1 R(Δ
C1

G
1 ) R(Δ

C2
G

2 ) ... R(Δ
CN

G
2 )

...
...

...
... ...

...

lpk apk R(Δ
C1

G
2 ) R(Δ

C2
G

1 ) ... R(Δ
CN

G
1 )

lpk+1 apk+1 R(Δ
C1

G
2 ) R(Δ

C2
G

1 ) ... R(Δ
CN

G
2 )

...
...

...
... ...

...

Let us now introduce a logit function [8]: L(pi) = ln (pi/(1 − pi)), where,
pi = lpi/api. This lets us apply the generalized least squares (GLS) technique
from [8] to find structural functions’ coefficients. The algorithm continues then
as shown in Sect. 3.3.

3.5 A Detailed Pseudo-Code for the Proposed Method

Let Xt and Yt be mutable integer maps (for time frame t)—i.e. mappings of type
N0 → N0, such that:

– initially every n ∈ N0 is associated with zero—n 	→ 0,
– every IncrementMappingValueForKey(M, n) call, where M is a map-

ping, increments the value returned for n by 1 (E.g. After two such calls with
3 as the second argument M(3) = 2.)

Initially, a value of coefficient C is computed (CG(v, w, t)) for every pair of nodes
in the graph at every historical time step 1, 2, ..., T . The results form a matrix
X, such that its every row contains a series of sequential values obtained at
different moments of time. At line 6 we increase a number of pairs with similar
result by one, while at line 8 only existing links with that value are accounted
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for. Line 9 is responsible for fitting a regression curve of a structural function
at time t. At line 9 a structural function is predicted for time T + 1. At line 13
we than obtain a forecast of coefficient C at T + 1. Finally the link occurrence
prediction can be assessed.

Algorithm 1. The algorithm for one coefficient C returning N0.
1: procedure Predict(G, CG , α)
2: for every t = 1, T do
3: for every (v, w) ∈ V 2

t of graph Gt = (Vt, Et) do
4: c ← CG(v, w, t)
5: X [GetRowForNodePair(v, w), t] ← c
6: IncrementMappingValueForKey(Xt, c)
7: if (v, w) ∈ Gt then
8: IncrementMappingValueForKey(Yt, c)

9: Bt ← LogisticRegressionFit(Yt,Xt)

10: B∗ ← PredictNextUsingPolynomialRegression(B1,B2, ...,BT )
11: for every row r in X do
12: x ← GetRowFromMatrix(X , r)
13: x∗ ← PredictNextUsingPolynomialRegression(x)
14: p ← ValueOfLogisticFunWithParamsAt(B∗, x∗)
15: if p � α then
16: P [r] ← 1
17: else
18: P [r] ← 0

19: return P

The next algorithm also requires some commentary. The D vector contains
numbers of divisions (intervals) for each coefficient found in a list C. The function
GetMaximumInColumn at line 12 returns a maximum value ever returned
by a given coefficient. PrepareDivTables (line 13) creates a table for each
coefficient containing intervals and their representative values. The last function
call that may appear obscure to the reader is PrepareDataTable() from line
15. Its purpose is to create a table of a form presented by Table 1 in Sect. 3.4.

4 The Experiment

In order to evaluate the novel method an experiment was conducted in which a
prediction about future collaboration of authors in Arxiv3 publications’ database
was to be attained. Like in the case of [5], the scope included all articles in High
Energy Physics – Lattice archive (hep-lat4) published between 1993 and 2010
with an accuracy to a month. Each time-frame corresponded to one year. (In
order to gain some reduction in algorithms’ execution time, yearly data, that
3 https://arxiv.org.
4 https://arxiv.org/archive/hep-lat.

https://arxiv.org
https://arxiv.org/archive/hep-lat
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Algorithm 2. The algorithm for n coefficients in a list C.
1: procedure Predict(G, C, D, α)
2: N ← Length(C)
3: for every t = 1, T do
4: for every (v, w) ∈ V 2

t of graph Gt = (Vt, Et) do
5: for i ← 1 to N do
6: X t[GetRowsForNodePair(v, w), i] ← C[i](v, w, t)

7: if (v1, v2) ∈ Gt then
8: Y t[GetRowForNodePair(v, w)] ← 1
9: else

10: Y t[GetRowForNodePair(v, w)] ← 0

11: for i ← 1 to N do
12: Max[i] ← GetMaximumInColumn(i, 〈X1,X2, ...,XT })

13: divTables ← PrepareDivTables(Max,D)
14: for every t = 1, T do
15: dataTablet ← PrepareDataTable(divTables,X t,Y t)
16: Bt ← LogisticRegressionFit(dataTablet)

17: B∗ ← PredictNextUsingPolynomialRegression(B1,B2, ...,BT )
18: for every row r in X1 do
19: for i ← 1 to N do
20: xi ← CreateVector(X1[r, i],X2[r, i], ...,XT [r, i])
21: x∗

i ← PredictNextUsingPolynomialRegression(xi)

22: x∗ ← CreateVector(x∗
i , x∗

2, ..., x
∗
N )

23: p ← ValueOfLogisticFunWithParamsAt(B∗,x∗)
24: if p � α then
25: P [r] ← 1
26: else
27: P [r] ← 0

28: return P

was actually taken into account and processed, had been limited only to records
from four months: 3rd, 6th, 9th and 12th.) It should be noted that edges are
added in a cumulative manner - i.e. once a pair of vertices is bond by an edge,
it remains connected. Two approaches were confronted:

– using the last structural function to obtain prognosis (AP1) and
– utilizing the predicted structural function for same purpose (AP2).

The computation has been done using a dedicated software. In order to reduce
prognosis complexity, the developed software divides the analyzed multi-graph
into weak connected components with respect to its last structure in time series
so that for any pair of vertices coming from different components neither PA nor
CN may yield output other than zero. The comparison of the quality of both
solutions was assessed with the help of ROC (Receiver Operating Characteristic)
charts.
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Fig. 1. ROC chart for single coefficient model—CN. The upper series curve
( CUT NODE 0) illustrates the effectiveness of AP2 approach, while CUT NODE 1
of AP1. The diagonal line across represents expected the prognostic ability of a random
guess.

Fig. 2. ROC chart for single coefficient model—PA

A note on interpreting the ROC charts. The mechanism, that forecasts of
weather the link should or should not exist, can be viewed as kind of a binary
classifier, hence the usage of ROC charts as the assessment tool. The presented
ROC charts shows how well the classifier performs for different levels of threshold
α (please refer to Sect. 3.3 for α). The TPR (True Positive Rate) value assesses
how well the mechanism performs for positives—i.e. how many observations cat-
egorized belong there truthfully. The higher the value, the better. On the other
hand, the FPR (False positive Rate) measures how poorly the classification works
for negatives—i.e. how many observations categorized as negatives, have been
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wrongly assigned. The lower the value, the better. In conclusion, the closer the
ROC curve passes by the upper-left corner, the better the classifier works.

As it can be seen in Fig. 1, the usage of the forecasted structural function
with CN improves the classification results. When it comes to PA (Fig. 2), the
proposed modification causes FPR to increase slightly, but on the other hand it
performs a better job when classifying positives

5 Conclusion and Future Work

As shown in the results section, performing prediction with the help of a
forecasted structural function improves the classification rate of true positives
(TPR). Although obtained false positive ratio (FPR) seems inferior to last-step
structural function forecast, the gain from the improved TPR classification sur-
passes by far that loss, thus making the usage of forecasted structural function
sensible and advisable. In near future we plan to experiment with other sim-
ilarity measures (such as AA or JC) and running a series of experiments for
multi-coefficient version of the algorithm. Further research would concentrate
on: (a) experimentation with other kinds of social networks, (b) proposal of
recommended set of uncorrelated coefficients, (c) taking into account that some
pairs of nodes may become disconnected and (d) the introduction of cooperation
intensity concept.
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