
Chapter 1
Vehicles Are Lazy: On Predicting Vehicle
Transient Dynamics by Steady-State
Responses

Sina Milani, Hormoz Marzbani, Ali Khazaei, and Reza N. Jazar

1.1 Introduction

Analysis of vehicles’ handling behavior in turning maneuvers requires a proper
mathematical model. There are several factors affecting a vehicle’s response in a
turning maneuver. Apart from variations in vehicle and tire parameters, external
factors such as air resistance and slope of the road make it quite a complicated task
to consider all parameters in the vehicle model. The majority of the most important
features of the vehicle behavior in maneuvers are observable using fairly simplified
planar vehicle models. In planar modeling, we ignore the roll, pitch, and vertical
motions of the vehicle and only emphasize on the longitudinal, lateral, and yaw
motions.

The most famous and basic planar vehicle model is known as the bicycle model.
Many of the vehicle handling analyses and all the basic characterizations have been
derived using bicycle model throughout the course of vehicle dynamics studies
[1–3]. Bicycle model is accurate enough to represent the real car behavior to a
reasonable extent in normal driving conditions. This characteristic of the bicycle
model makes it useful in designing and investigating new ideas on dynamics and
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control of vehicles, such as defining the nominal vehicle response for yaw-rate
and/or side-slip angle [4, 5]. In the following section, the bicycle model is presented
in detail and the underlying assumptions are discussed.

In the rest of the chapter, the importance of steady-state responses of the bicycle
model is discussed by comparing the steady-state and transient vehicle behaviors,
characteristics of maneuvering vehicles including steady-state charts are presented,
and finally, application of such an analysis on a path following strategy is explained
and two examples are given to evaluate the proposed idea.

1.1.1 Bicycle Model

The first step in dynamic modeling of vehicles is to identify the main forces and
moments acting on the vehicle as a rigid body. The magnitude of these forces and
moments depends on the motion of the vehicle, which is described by kinematic
variables of the vehicle, such as longitudinal and lateral velocities, yaw rate, side-
slip angles, etc. In the next step, the forces and moments must be transferred to the
center of gravity of the vehicle and, finally, put into the Newton–Euler equations of
motion for a rigid body on a planar surface.

The main forces acting on the vehicle are the longitudinal and lateral tire forces.
There are many other acting forces and moments such as the aerodynamic forces
and rolling resistance of tires which are assumed to be negligible when dealing
with motion of vehicles in normal driving conditions. The normal driving condition
is defined as regular turning maneuvers with forward and lateral accelerations are
kept in certain limits that represent non-emergency maneuvering (see the maneuver
design in Sect. 1.3).

Longitudinal tire force is a function of a kinematic variable called the longi-
tudinal slip. The longitudinal slip is defined as the ratio of the slip velocity at
tire contact patch to the longitudinal velocity of the vehicle and, therefore, is a
function of tire’s rotational velocity. To be able to model the longitudinal tire force,
rotational dynamics of tires must be considered separately. Also, the longitudinal
forces will affect the forward velocity of the vehicle, which is normally studied in
vehicle performance investigations. Therefore, the longitudinal Degree of Freedom
(DoF) is of less importance when dealing with turning maneuvers and is usually
ignored in vehicle handling studies to avoid over-complication. Hence, the most
significant external forces to be studied are the lateral tire forces. The lateral tire
force is assumed to be proportional to another kinematic variable called tire side-
slip angle, in normal driving condition. The tire side-slip angle αi is defined as the
angle measured from the tire’s longitudinal axis xti towards the velocity vector vi

(direction of motion) at the wheel center about the vertical tire axis zti which makes
a right-handed coordinate frame with xti and yti (see Fig. 1.1a) [3].

Similarly, another side-slip angle βi may be defined for the vehicle body at any
point. The body side-slip angle is defined as the angle between longitudinal axis of
the vehicle body x and the velocity vector at that point vi about the vertical body
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Fig. 1.1 Definition of side-slip angles and tire coordinate frame

axis z. Body side-slip angle βi is related to longitudinal and lateral velocities of the
body point expressed in vehicle body coordinate frame by (1.1). Definition of βi

allows for calculation of the tire side-slip angle for a steered wheel (see Fig. 1.1b).
The tire side-slip in case of a steered wheel is obtained by the more general Eq. (1.2).
One may consider steer angle of δi = 0 for a wheel with no steering.

βi = arctan

(
vyi

vx

)
≈ vyi

vx

, for small βi (1.1)

αi = βi − δi ≈ vyi

vx

− δi (1.2)

Note that the longitudinal velocity of any point on the vehicle body is assumed to
be the same and equal to vx in a bicycle model.

Thus, the tire lateral force is written as (1.3). The negative sign is used to match
the direction of the force and the side-slip angle. When a vehicle is turning left, the
lateral force is positive while the tire side-slip αi is negative (see Fig. 1.2).

Fyi = −Cαiαi (1.3)

As shown in Fig. 1.2, with bicycle model of the vehicle, we assume the effect
of left and right tires is lumped at the center of the axle by an equivalent tire. It
is assumed that the lateral shift of the tires’ vertical loads in turning maneuver is
negligible and the lateral forces from left and right tires can be added up at the
center of the axle. The nominal parameters of the bicycle vehicle model used in all
sections of this manuscript are as follows:
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Fig. 1.2 Bicycle model and
vehicle body coordinate
frame
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m = 1000 kg

a1 = 1 m

a2 = 1.5 m

l = a1 + a2 = 2.5 m

Iz = 1650 kg m2

Cα1 = Cα2 = 60,000 N/rad

1.1.2 Equations of Motion

Having identified and calculated the external forces as functions of vehicle kine-
matic variables, we may transfer the forces to the center of gravity (point C in
Fig. 1.2). Using the side-slip definition from (1.2) and assuming small δ, we may
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write the total lateral force and yaw moment at vehicle’s center of gravity C as (1.4),
(1.5) for a front steering vehicle.

Fy = Fy1 + Fy2 = −Cα1

(
vy1

vx

− δ

)
− Cα2

vy2

vx

(1.4)

Mz = a1Fy1 − a2Fy2 = −a1Cα1

(
vy1

vx

− δ

)
+ a2Cα2

vy2

vx

(1.5)

From the kinematics of a rigid planar vehicle, we know:

vy1 = vy + ra1, vy2 = vy − ra2 (1.6)

where yaw rate r is the rotational velocity of the vehicle about z axis and vy

is the lateral velocity of the vehicle at center of gravity C along y direction.
Substituting (1.6) in (1.4), (1.5), total lateral force and yaw moment become:

Fy =
(

−a1

vx

Cα1 + a2

vx

Cα2

)
r − (Cα1 + Cα2)

vy

vx

+ Cα1δ

= Crr + Cββ + Cδδ (1.7)

Mz =
(

−a2
1

vx

Cα1 − a2
2

vx

Cα2

)
r − (a1Cα1 − a2Cα2)

vy

vx

+ a1Cα1δ

= Drr + Dββ + Dδδ (1.8)

in which the force system coefficients Cr, Cβ, Cδ,Dr,Dβ,Dδ are introduced for
simplicity in the equations. These coefficients are functions of vehicle parameters,
including vx which is treated as a varying parameter.

To complete the equations of motion, we need to calculate the accelerations of
the vehicle in body coordinate frame as functions of vehicle variables vy and r .
These accelerations are derived from the general Newton–Euler set of equations for
6 DoF in space. Since we limited the motion to planar, the equations simplify to
longitudinal, lateral, and yaw motions [3]:

Fx = m(v̇x − rvy) (1.9)

Fy = m(v̇y + rvx) (1.10)

Mz = ṙIz (1.11)

Note that the term (v̇y + rvx) is equivalent to the lateral acceleration ay of the
vehicle mass center expressed in the body frame. Equating (1.7), (1.8) with (1.10),
(1.11) provides us with the equations of motion for bicycle model:



8 S. Milani et al.

m(v̇y + rvx) = Crr + Cββ + Cδδ (1.12)

ṙIz = Drr + Dββ + Dδδ (1.13)

Taking the system variables as vy and r , we may rewrite (1.12), (1.13) in the
form of a state-space representation of the system as:

[
v̇y

ṙ

]
=

⎡
⎢⎢⎣

Cβ

mvx

Cr

m
− vx

Dβ

Izvx

Dr

Iz

⎤
⎥⎥⎦

[
vy

r

]
+

⎡
⎢⎢⎣

Cδ

m

Dδ

Iz

⎤
⎥⎥⎦ δ (1.14)

Note that since we assumed vx to be known, Eq. (1.9) does not add any
information to the system dynamics; however, the required Fx obtained from the
same equation provides the necessary longitudinal force during the maneuver which
is assumed to be supplied.

1.1.3 Steady-State Responses

Equations of motion (1.14) may be solved numerically or analytically to obtain the
transient response of bicycle model to a certain steer input δ. The same equations
may also be used to derive the steady-state values of the vehicle variables vy and
r to a step steer input. In steady-state condition, all of the state variables are kept
constant in time, hence, their time derivatives will be equal to zero. In other words,
Eq. (1.14) reduces to (1.15) in steady-state which is solved as (1.16).

[
0
0

]
=

⎡
⎢⎢⎣

Cβ

mvx

Cr

m
− vx

Dβ

Izvx

Dr

Iz

⎤
⎥⎥⎦

[
(vy)ss

(r)ss

]
+

⎡
⎢⎢⎣

Cδ

m

Dδ

Iz

⎤
⎥⎥⎦ δ (1.15)

[
(vy)ss

(r)ss

]
=

⎡
⎢⎢⎣

Cβ

mvx

Cr

m
− vx

Dβ

Izvx

Dr

Iz

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣

−Cδ

m

−Dδ

Iz

⎤
⎥⎥⎦ δ (1.16)

where “ss” subscript refers to the steady-state solution of the variables. After
simplification, one may obtain vy and r solutions as:

(vy)ss = Dδ(Cr − mvx) − DrCδ

DrCβ − CrDβ + mvxDβ

vxδ (1.17)
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(r)ss = CδDβ − CβDδ

DrCβ − CrDβ + mvxDβ

δ (1.18)

It can be seen that the steady-state solutions are proportional to the steer angle
input. Hence, we may define steady-state responses of important vehicle variables
as their ratio to the steer angle δ. To observe more details about the behavior of the
vehicle in maneuver, we may introduce new dependent variables, namely body side-
slip at center of gravity β, and lateral acceleration ay which are useful in studying
handling of vehicle and are defined as:

(β)ss = (vy)ss

vx

(1.19)

(ay)ss = (v̇y)ss + (r)ssvx = (r)ssvx (1.20)

Thus, the steady-state responses are obtained as:

Sy = (vy)ss

δ
= Dδ(Cr − mvx) − DrCδ

DrCβ − CrDβ + mvxDβ

vx (1.21)

Sr = (r)ss

δ
= CδDβ − CβDδ

DrCβ − CrDβ + mvxDβ

(1.22)

Sβ = (β)ss

δ
= Sy

vx

= Dδ(Cr − mvx) − DrCδ

DrCβ − CrDβ + mvxDβ

(1.23)

Sa = (ay)ss

δ
= Srvx = CδDβ − CβDδ

DrCβ − CrDβ + mvxDβ

vx (1.24)

Note that the lateral and centripetal accelerations are approximately equal for
small side-slip angle β and forward acceleration ax , but in general, the following
relationship is held between ac, ax, ay :

ac = ay cos β − ax sin β

≈ ay if (ax & β small) (1.25)

ax = v̇x − rvy (1.26)

ay = v̇y + rvx (1.27)

Denominator of (1.21)–(1.24) forms the characteristic equation of the dynamic
system. A combination of the vehicle parameters dictates the general behavior of
the vehicle. Substituting the vehicle parameters into the force system coefficients,
the denominator D is obtained; equating it to zero, we may find a stability condition
for turning maneuver:
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D = m(Cα2a2 − Cα1a1)v
2
x + l2Cα1Cα2 = 0 (1.28)

m

l2

(
a2

Cα1
− a1

Cα2

)
v2
x + 1 = Kv2

x + 1 = 0 (1.29)

vx = vc =
√

− 1

K
(1.30)

K = m

l2

(
a2

Cα1
− a1

Cα2

)
(1.31)

where vc is the critical speed at which the denominator will become zero and the
vehicle becomes unstable. The critical speed only exists when the stability factor
K is negative. The stability factor determines whether the vehicle is under-steer
(K > 0), over-steer (K < 0), or neutral-steer (K = 0). The behavior of the vehicle
changes with different signs of K which is not in the scope of this chapter. For more
information about the effect of K on vehicle responses, see [1–3].

1.2 Center of Curvature and Path of Motion

One of the main characteristics of a maneuvering vehicle which is emphasized in
this chapter is the path of motion. The path of motion is directly related to the
radius of turning R and the center of curvature of the vehicle at each time instance,
which is also called the Instantaneous Center of Rotation (ICR). In this section,
the methodology to calculate R and ICR as well as obtaining the global vehicle
coordinates (X, Y ) which define the path of motion will be examined. Calculation
of ICR helps in understanding the similarity between transient and steady-state
responses [6]. The usage of the presented calculations is detailed in Sect. 1.3.

1.2.1 Curvature and Turning Radius

We start by calculating the radius of turning R. For a particle rotating about a
center with radius R, translational velocity of v, and angular velocity of ω, in 2-
dimensional space, the following relationship holds:

v = Rω (1.32)

The relation between longitudinal and lateral velocities vx, vy and the body side-
slip angle β can be written as:

v = vx cos β + vy sin β (1.33)
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and since β is assumed to be small:

v = vx + vyβ (1.34)

Assuming the vehicle to be a point mass at its mass center rotating with angular
velocity of ω = r , we may use (1.32) and (1.34) to write:

R = v

r
= vx + vyβ

r
(1.35)

κ = 1

R
= r

vx + vyβ
(1.36)

where κ is called the curvature of the path and R is the radius of curvature. For
straight driving, κ = 0 while R → ∞. Using (1.36) and substituting vy, r, β

from (1.21)–(1.23), we may obtain the value of κ in steady-state which would be
a nonlinear function of steer input δ. On the other hand, the multiplication of two
small quantities vy and β is negligible compared to vx in (1.35), (1.36). So, with a
highly reasonable approximation, we may ignore the term vyβ in (1.35), (1.36) and
rewrite them as:

R = v

r
= vx

r
(1.37)

κ = 1

R
= r

vx

(1.38)

By using (1.37), (1.38) instead of (1.35), (1.36), we end up with a linear
relationship between (κ)ss and δ and we are able to define an additional steady-
state response Sκ called the curvature response:

(κ)ss = 1

(R)ss
= (r)ss

vx

(1.39)

Sκ = (κ)ss

δ
= Sr

vx

= CδDβ − CβDδ

(DrCβ − CrDβ + mvxDβ)vx

(1.40)

The importance of the curvature and its steady-state response in analyzing
vehicle’s maneuver is due to its key role in calculating ICR as explained in the
following sections.

1.2.2 ICR in Vehicle Body Coordinate Frame

Having the radius of curvature R calculated, we know how far ICR is located from
vehicle’s center of gravity. On the other hand, the vehicle side-slip angle determines
how much rotation exists between the vehicle’s heading direction and the direction
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Fig. 1.3 Location of ICR in
vehicle body frame
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tangent to the path. Thus, the side-slip angle β affects the longitudinal and lateral
coordinates of ICR (x0, y0) in body frame. Figure 1.3 shows the calculation of ICR
location in the vehicle body coordinate frame.

Thus, x0 and y0 are calculated as:

x0 = −R sin β (1.41)

y0 = R cos β (1.42)

Note that we do not use small angle approximation here to be able to observe
both the lateral and longitudinal location of ICR in the body coordinate frame.

1.2.3 ICR in Global Coordinate Frame

The location of ICR may also be calculated in the global coordinate frame. The
relationship between global and body coordinate frames is defined using the rotation
matrix GRB . Any position vector in 3-dimensional space may be expressed whether
in global frame G shown by G �d or in body frame B shown by B �d . Transformation
between body to global coordinate is defined by [7]:

G �d = GRB
B �d + G�eBG (1.43)

GRB =
⎡
⎣cos ψ − sin ψ 0

sin ψ cos ψ 0
0 0 1

⎤
⎦ (1.44)
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Fig. 1.4 Location of ICR in global frame

where G�eBG is the position vector of the origin of body frame OB with respect to
the origin of the global frame OG expressed in global frame G; and ψ is the heading
angle of the vehicle which is measured from the global longitudinal axis X towards
vehicle’s longitudinal axis x about the vertical axis z. In case of a vehicle in turning
maneuver, G�eBG is defined by global position components of the vehicle’s center of
gravity XC, YC . Figure 1.4 shows the global position and orientation of the vehicle
in a turning maneuver.

Applying the transformation (1.43) from body frame to global frame for ICR
position vector yields:

⎡
⎣X0

Y0

0

⎤
⎦ =

⎡
⎣cos ψ − sin ψ 0

sin ψ cos ψ 0
0 0 1

⎤
⎦

⎡
⎣x0

y0

0

⎤
⎦ +

⎡
⎣XC

YC

0

⎤
⎦ (1.45)

X0 = x0 cos ψ − y0 sin ψ + XC (1.46)

Y0 = x0 sin ψ + y0 cos ψ + YC (1.47)

substituting from (1.41), (1.42) the global coordinates of ICR are obtained as:

X0 = −R sin β cos ψ − R cos β sin ψ + XC (1.48)

Y0 = −R sin β sin ψ + R cos β cos ψ + YC (1.49)

Calculation of the global coordinates XC, YC which construct the path of motion
is presented in the following section.
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1.2.4 Path of Motion

We may assume that the vehicle was initially coincident with the origin of the global
frame. As the vehicle moves, a combination of the longitudinal, lateral, and yaw
velocities causes displacement and change of direction with respect to the global
frame. To calculate the current global coordinates at any time, we need to integrate
the velocities expressed in global frame, namely ẊC = vX, ẎC = vY . On the other
hand, these velocities are related to local expressions of the velocities in body frame,
namely vx, vy through a rotation of ψ about the vertical axis z. The transformation
between local and global velocity vectors is defined by:

Gv = GRB
Bv (1.50)

[
ẊC

ẎC

]
=

⎡
⎣cos ψ − sin ψ 0

sin ψ cos ψ 0
0 0 1

⎤
⎦ [

vx

vy

]
(1.51)

ẊC = vx cos ψ − vy sin ψ (1.52)

ẎC = vx sin ψ + vy cos ψ (1.53)

As (1.52) and (1.53) imply, derivation of the path of motion relies on calculation
of heading angle ψ . On the other hand, time derivative of ψ is equal to the yaw
velocity of the vehicle r:

ψ̇ = r (1.54)

Using the expressions (1.52)–(1.54), we may increase the order of the system
expressed by (1.14) and introduce new state variables XC, YC,ψ in order to obtain
the integrated quantities required for plotting the path, as outputs of the system. This
way, any numerical integration method used for solving the differential equations of
the system will also result in the path of motion. Augmenting the system variables
in (1.14) by (1.52)–(1.54), the new system would be represented by the following
set of differential equations:

⎡
⎢⎢⎢⎢⎢⎣

v̇y

ṙ

ẊC

ẎC

ψ̇

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cβ

mvx

Cr

m
− vx 0 0 0

Dβ

Izvx

Dr

Iz

0 0 0

− sin ψ 0 0 0 0
cos ψ 0 0 0 0

0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

vy

r

XC

YC

ψ

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cδ

m
δ

Dδ

Iz

δ

vx cos ψ

vx sin ψ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.55)

Note that the above system is nonlinear due to potentially large values of ψ

making it impossible to linearly approximate sin ψ and cos ψ terms.
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1.3 Comparing Transient and Steady-State Behaviors

Steady-state relations may be used to calculate settled responses while the differ-
ential equations must be solved to obtain the transient responses. Road vehicles
are most of the time performing in a steady-state condition. In all other times, the
vehicle is undergoing a transition between two steady-states. Such a transition in
normal driving conditions is examined in this section. The objective of this section
is to show how this transition is made and how far the vehicle responses deviate from
quasi-steady-state transition. A Quasi-Steady-State (QSS) transition happens when
the inputs to the vehicle change at very low rates such that the vehicle responses
are close to steady-state responses at each time instance. The laziness in vehicle’s
behavior is defined by “vehicle’s tendency to get to the steady-state condition as
soon as possible.” Two different maneuver types are investigated in this manuscript
to examine the vehicle’s laziness against input changes during a turning maneuver:
1—increasing forward velocity at constant steering, and 2—increasing steer angle
at constant forward velocity.

In designing the maneuvers, the maximum longitudinal acceleration is set to be
ax·max = ±7.5 m/s2 since the maximum achievable acceleration or deceleration for
a vehicle with perfect traction management is ax = ±μg and for a passenger vehicle
μ ≈ 0.75. Maximum lateral acceleration is set at ay·max = ±0.5 g = ±4.91 m/s2.
Such a limitation avoids creation of large angles and considerable lateral load
shift in order for the bicycle model to remain valid. Both longitudinal and lateral
accelerations are well-above the limits of regular driving with passenger vehicles.

1.3.1 Time Response of System Variables

In this section, we examine the time responses of the main vehicle variables in time
domain and see how they behave in transient and steady-state conditions. As (1.14)
implies, the lateral velocity vy and yaw velocity r are the main variables of the
vehicle system. It is also useful to monitor the lateral acceleration of the vehicle
ay . Lateral acceleration is approximately equal to the centripetal acceleration of the
vehicle in a turning maneuver when side-slip angle β is small, and it is an indication
of lateral tire forces. To start examining the laziness of vehicles in maneuvers,
we may start by calculating the QSS response of the above-mentioned variables
between two steady-state conditions.

Using the vehicle parameters provided in Sect. 1.1.1, we first calculate the
force system coefficients in (1.7), (1.8), and then all of the steady-state responses
in (1.21)–(1.24) and (1.40) are evaluated for the corresponding range of vx and δ:
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Cr = −30,000

vx

N/rad (1.56)

Cβ = −120,000 N/rad (1.57)

Cδ = 60,000 N/rad (1.58)

Dr = −195,000

vx

Nm/rad (1.59)

Dβ = 30,000 Nm/rad (1.60)

Dδ = 60,000 Nm/rad (1.61)

Sy = −2vx(v
2
x − 225)

v2
x + 750

m/s rad (1.62)

Sr = 300vx

v2
x + 750

rad/s rad (1.63)

Sβ = −2v2
x − 450

v2
x + 750

rad/rad (1.64)

Sa = 300v2
x

v2
x + 750

m/rad s2 (1.65)

Sκ = 300

v2
x + 750

1/m rad (1.66)

For transient simulation, system (1.14), or alternatively (1.55), is solved numeri-
cally for vy and r . The lateral acceleration in transient maneuver can be calculated
from (1.10) as:

ay = v̇y + rvx (1.67)

where v̇y is found from (1.14) as:

v̇y = Cβ

mvx

vy +
(

Cr

m
− vx

)
r + Cδ

m
δ (1.68)

substituting in (1.67):

ay = 1

m

(
Cβ

vx

vy + Crr + Cδδ

)
(1.69)
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Equivalently, we may obtain ay directly from (1.7) as:

ay = 1

m
Fy = 1

m

(
Cββ + Crr + Cδδ

)
(1.70)

Manuver 1: Increasing Velocity

The first maneuver consists of both increasing and decreasing the forward velocity
vx at the rate of maximum longitudinal acceleration, while keeping the steer angle δ

constant. The maneuver starts from an initial velocity of vx0 = 10 m/s with a large
constant large acceleration of ax·max = 7.5 m/s2 up to vx1 = 25 m/s in 2 s. After
another 2 s (to ensure reaching steady-state) vehicle then decelerates at the opposite
rate back to vx2 = 10 m/s in 2 s. The maneuver continues up to t = 8 s to ensure
reaching steady-state. We may then calculate the constant steer angle at which the
maximum lateral acceleration of ay·max = 4.91 m/s2 is created in the middle of the
maneuver:

δ = ay·max

Sa1
= 4.91

136.36
= 0.036 rad = 2.06 deg (1.71)

Inputs are plotted in Fig. 1.5.
The initial values of the variables vy, r are set to their steady-state values at vx0

to realize the first steady-state condition at the beginning of the maneuver when
solving the differential equations of motion:

vy0 = Sy0δ = (2.94)(0.036) = 0.11 m/s (1.72)

r0 = Sr0δ = (3.53)(0.036) = 0.13 rad/s (1.73)

Figure 1.6 shows the variation of lateral velocity vy in the QSS case (gradual
increase of vx) as well as the transient response. The difference between the two is

vx

Fig. 1.5 Steering and velocity inputs for maneuver 1
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Transient

QSS

Error

Fig. 1.6 QSS versus transient response of vy for increasing vx at constant δ

TransientQSS

Error

Fig. 1.7 QSS versus transient response of r for increasing vx at constant δ

also plotted as the error. The plot shows a reasonable level of error at each time.
Error magnitude is larger at higher velocities, but settles very quickly when motion
becomes steady. It is also observed that the transient curve of vy is slightly shifted
(about 0.2 s) in time domain which is negligible compared to the response time,
indicating the laziness of vy response in this maneuver, both for acceleration and
deceleration.

Figure 1.7 depicts the variation of yaw velocity r for both conditions. Maximum
error between transient and QSS responses is observed at around t = 2 right at
the end of transition to higher velocity, but it shows very quick elimination of the
error and drop of the yaw velocity to its steady-state in around 0.5 s afterwards. Yaw
velocity shows a very similar response to the QSS.

The lateral acceleration plot is shown in Fig. 1.8. It can be seen that the deviation
between the responses is almost uniform during transition and it does not exceed
0.2 m/s2 which is around 4% of the maximum acceleration during such a quick
transition, proving a close response to QSS.
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Transient

QSS

Error

Fig. 1.8 QSS versus transient response of ay for increasing vx at constant δ

Maneuver 2: Increasing Steer Angle

The second maneuver is defined as increasing steer angle δ at constant velocity of
vx = 20 m/s from an initial value of δ0 = 0 with constant rate of 1 deg/s up to
the final value of δ1. The final value of the steer angle is calculated such that the
final lateral acceleration is approximately equal to ay ≈ ay·max = 4.91 m/s2 as the
limiting value.

δ1 = ay·max

Sa1
= 4.91

104.35
= 0.047 rad = 2.70 deg (1.74)

t1 = δ1 − δ0

1
= 2.7 s (1.75)

Similar to the previous maneuver, the initial values of the variables vy, r are
set to their steady-state values at δ1 to realize the first steady-state condition at the
beginning of the maneuver:

vy0 = Sy0δ0 = 0 m/s (1.76)

r0 = Sr0δ0 = 0 rad/s (1.77)

The simulation continues up to t = 5 s after t = t1 to damp any transient
behavior. Velocity and steer inputs are plotted in Fig. 1.9.

Variation of vy for QSS and transient maneuvers for the second maneuver are
shown in Fig. 1.10. It is observed that the transient value of vy shows less agreement
with QSS response, indicating some expected side-slip difference between transient
and QSS during the transition. However, the effect of vy in total velocity v is
negligible.

Variation of yaw velocity r is shown in Fig. 1.11. There is a high level of
agreement between plots and the steady-state behavior seems to be dominant.
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vx

Fig. 1.9 Steering and velocity inputs for maneuver 2

Transient

QSS

Error

Fig. 1.10 QSS versus transient response of vy for increasing δ at constant vx

Transient

QSS

Error

Fig. 1.11 QSS versus transient response of r for increasing δ at constant vx
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Transient

QSS

Error

Fig. 1.12 QSS versus transient response of ay for increasing δ at constant vx

Figure 1.12 shows how the lateral acceleration varies during the maneuver in
transient and QSS conditions. Similar to yaw velocity, the lateral acceleration
response shows a high tendency to QSS case, proving laziness of the vehicle with
respect to ay .

Steady-State Surface Maps

It was shown in sections “Manuver 1: Increasing Velocity” and “Maneuver 2:
Increasing Steer Angle” that the time response of the vehicle variables is close
to their QSS responses. Although vx is a varying parameter of system (1.14), we
may also treat the steer angle δ and the forward velocity vx as the inputs from the
driver to the vehicle system. Having vx and δ as inputs and using the conclusion
above, we may introduce 3-dimensional surfaces consisting of steady-state variables
(vy)ss, (r)ss, (ay)ss for each pair of vx, δ. Such a surface is called a steady-state
surface map of the variable of interest which indicates the steady-state value of that
variable in the input domain, instead of time domain.

We expect the transient response plots to lie very close to the steady-state surface
maps, because of the transient time response of the vehicle being close to its QSS
response. To plot the surface maps, we create a mesh for a range of vx and a range
of δ values and calculate the steady-state variable for each point.

Figures 1.13, 1.14, and 1.15 show the steady-state surface maps for vy, r, ay

respectively. They include full information about all possible responses of variables
with any set of inputs. It is important to note that surface maps do not include
any information about the time. To find the time duration in which the transient
results are obtained, one must refer to the definition of the input as a function of
time, presented in sections “Manuver 1: Increasing Velocity” and “Maneuver 2:
Increasing Steer Angle”.
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Fig. 1.13 Steady-state surface map of vy
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Fig. 1.14 Steady-state surface map of r

Similar to sections “Manuver 1: Increasing Velocity” and “Maneuver 2: Increas-
ing Steer Angle”, two maneuvers of increasing vx : 10 → 25 m/s at δ = 2.06 deg
in two different time durations of 2 s and 4 s are plotted by the blue curves. Another
maneuver of increasing δ : 0 → 2.7 deg at vx = 20 m/s in two different time
durations of 1 s and 2 s is plotted by the red curves. As expected, it is observed that
as the time duration of the transition between two steady-state cases gets smaller,
the transient behavior becomes more visible and the deviation of the transient plot
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Fig. 1.15 Steady-state surface map of ay

from steady-state surface map increases. Nevertheless, it can be seen that even the
limiting quick maneuver lies reasonably close to the steady-state surface.

Although the focus of this manuscript is on investigating maneuvers with only
vx or δ being variable to assess the sensitivity with respect to each input, let us
consider a special case of decreasing steer angle δ and increasing velocity vx at the
same time, which represents a condition of merging into a new road. The transient
response of such a maneuver with δ : 3 deg → 0 deg and vx : 10 m/s → 30 m/s in
3 s is plotted in Fig. 1.16. It can be seen that the response of this maneuver is also
very close to the steady-state.

1.3.2 Center of Curvature Response (ICR Map)

So far, the responses of vehicle body variables are investigated and found to be
acting close to their steady-state values in normal driving conditions. It is expected
that such a lazy behavior will also be observable in the location of ICR. If we are able
to reasonably approximate the location of ICR by steady-state calculation, we may
directly relate the ICR response of a certain vehicle only to steer input and forward
velocity of that vehicle at any time instance. Hence, we can generate a look-up table
for vehicle turning maneuver so that any feasible turning demand (ICR location in
body coordinate frame) is translated to a pair of (vx, δ) for autonomous maneuvering
of vehicles.
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Fig. 1.16 Steady-state surface maps for special maneuver of turning into a road

For a pair of (vx, δ), the steady-state ICR coordinates in body frame are
calculated using (1.41), (1.42):

(x0)ss = −(R)ss sin(β)ss = − 1

δSκ

sin(δSβ) (1.78)

(y0)ss = (R)ss cos(β)ss = 1

δSκ

cos(δSβ) (1.79)

Considering specific ranges for vx and r , a steady-state chart is calculated that
contains all the possible ICR locations in body coordinate. Such a chart is called
the ICR map. Figure 1.17 shows the ICR map for the vehicle of interest in this
manuscript for prescribed ranges of vx, δ.

In Fig. 1.17, the horizontal black lines indicate constant velocity curves and the
green lines indicate constant steer angle curves. Note that these curves are nonlinear
functions of vx and δ as expressions (1.78), (1.79) imply, but the range of feasible
input values vx, δ, limits the curves to regions in which they look linear. For any
point in between the plotted points, an interpolation may be used to calculate the
required (vx, δ). Analytical calculations are also possible for higher accuracy.
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...

vx = 5 m/s
vx = 10 m/s

vx = 15 m/s
vx = 20 m/s

vx = 40 m/s
↑

vx↑

Fig. 1.17 ICR map (loci of possible steady-state ICRs in body coordinate)

vx→0 vx = 15 m/s vx = 20 m/s vx = 25 m/s

Fig. 1.18 Variation of the tangent point at different velocities

Figure 1.17 indicates that at a certain forward velocity, the longitudinal position
of ICR is almost constant for any steer angle. Connecting the point B(x0, 0) in the
body coordinate to ICR, we can conclude that the velocity of the body at that point
is perpendicular to the radius of curvature and tangent to x. In other words, the point
B(x0, 0) is the only point on the body frame that travels tangent to the path. Such a
location is called the tangent point. Figure 1.18 shows how the tangent point varies
at different velocities.

At very low velocities (kinematic turning), the tangent point is on the extension of
the rear axle. As the speed increases, the tangent point reaches the center of gravity
(β = 0); this velocity at which the side-slip angle becomes zero is also called the
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End 2

End 1

Start

Fig. 1.19 Variation of ICR in body coordinate: effect of �vx magnitude at constant δ

tangent speed [2]. It moves further forward with increasing speed. Note that the
tangent point is not necessarily on the vehicle body and it may go further beyond
the size of actual vehicle body. The tangent point does not go behind the rear axle
when the vehicle is moving forward.

Let us compare characteristic transient maneuvers with ICR map to see how the
magnitude and the rate of change in the inputs affect the location of ICR when
compared to steady-state.

Figure 1.19 shows two different scenarios applied on the same vehicle at constant
steer angle of δ = 2 deg. The first scenario represents an increase of velocity from
vx0 = 10 m/s to vx1 = 25 m/s in 2 s. The second scenario represents an increase of
velocity from vx0 = 10 m/s to vx1 = 30 m/s in 2.7 s. Note that the rate of change in
forward velocity is equal for both scenarios. It is observed that, as the rate is equal in
both cases, the proximity to QSS is almost equal, but the larger magnitude of �vx

in the second scenario causes more time of deviation between transient and QSS.
Hence, the smaller the change in �vx , the lazier the vehicle would be.

Figure 1.20 shows two different scenarios applied on the same vehicle at constant
steer angle of δ = 2 deg. The first scenario represents an increase of velocity from
vx0 = 10 m/s to vx1 = 25 m/s in 2 s. The second scenario represents the same
increase of velocity in 1 s. It is observed that, as the magnitude of change is equal
in both cases, the beginning and end points are the same in both scenarios, but the
larger rate of �vx/�t in the second scenario causes more deviation of transient
from QSS. Hence, the smaller the rate of change �vx/�t , the lazier the vehicle
would be.

Figure 1.21 shows two different scenarios applied on the same vehicle at constant
velocity of vx = 20 m/s. The first scenario represents an increase of steer angle from
δ0 = 1 deg to δ1 = 2 deg in 1 s. The second scenario represents an increase of steer
angle from δ0 = 1 deg to δ1 = 3 deg in 2 s. Note that the rate of change in steer
angle is equal for both scenarios. It is observed that, as the rate is equal in both
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Fig. 1.20 Variation of ICR in body coordinate: effect of �vx/�t rate at constant δ

End 2End 1Start

Fig. 1.21 Variation of ICR in body coordinate: effect of �δ magnitude at constant vx

cases, the proximity to QSS is almost equal, but the larger magnitude of �δ in the
second scenario causes more time of deviation between transient and QSS. Hence,
the smaller the change in �δ, the lazier the vehicle would be.

Figure 1.22 shows two different scenarios applied on the same vehicle at constant
velocity of vx = 20 m/s. The first scenario represents an increase of steer angle from
δ0 = 1 deg to δ1 = 2 deg in 1 s. The second scenario represents the same increase of
steer angle in 0.5 s. Magnitude of change is equal in these cases, the beginning and
end points are the same in both scenarios, but the larger rate of �δ/�t in the second
scenario causes more deviation of transient from QSS. Hence, the smaller the rate
of change �δ/�t , the lazier the vehicle would be.
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Fig. 1.22 Variation of ICR in body coordinate: effect of �δ/�t rate at constant vx

1.3.3 Reference Road Profile

In Sect. 1.3.1, the time response of variables was shown to act very close to
their steady-state solutions at each time sample. This step proves that the primary
responses act lazily. Such a conclusion allowed us to continue a step further and
see how the geometry of turning is affected by examining the location of ICR in
Sect. 1.3.2. The transient location of ICR in body frame was shown to follow the
ICR map with high level of similarity when the steer angle δ is kept constant while
the vehicle accelerates. On the other hand, for variation of δ at constant forward
velocity, the deviation between transient location and the ICR map is not that small.
Although the scale of x in the ICR map plot is much larger than the scale of y,
this deviation needs more investigation to be accepted as reasonably small. For this
reason, in order to come up with a stronger conclusion about similarity of turning
behavior between transient and QSS cases, we may continue one step further and
examine the final path traveled by the vehicle to make a better judgment about the
vehicle’s behavior in turning maneuvers. As the path is, in fact, the coordinates
of the vehicle’s center of gravity in global frame, investigation of the path can be
viewed as an equivalent to analyzing the ICR location in global frame.

In the previous sections, there was a QSS response defined for each pair of inputs
(δ, vx). In case of path, the QSS response will define an expected path with the
given inputs. So, it would be more realistic for applications to start from a given
intended path (instead of an expected path) and derive the required inputs (δ, vx)

which are expected to result in the intended path called the reference road profile.
In fact, it is also highly reasonable to assume vx to be known from the separately
analyzed road in terms of safety considerations. Such safety considerations may
include calculation of suggested speed range as a function of road curvature at any
point on the road.
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For a vehicle to stay on a given road at any time, ICR of the vehicle in global
frame must coincide with the center of curvature of the road at that specific time [8].
As observed in Sect. 1.2, the ICR, whether expressed in body or global coordinates,
moves on a smooth curve as the inputs to the vehicle change. In other words, there
is no jump in the ICR location if the inputs are continuous. As a result, one expects
continuous variation of rotation center of the traveled path as well. This implies that
a feasible road profile must have continuous loci of center of rotation in global
frame. Such a road profile might be feasible to be followed by a vehicle if the
velocity and curvature conditions fit in the achievable limit. Such a feasibility limit
may be translated to the following statement: “If the location of curvature center
fits in the boundaries of Fig. 1.17 at every time, there will be a reasonably accurate
solution for inputs (δ, vx) to make the vehicle stay on the intended road.”

A road with non-continuous loci of curvature center is theoretically impossible
to be followed continuously. Although there will be approximate input solutions to
keep the vehicle in an acceptable error boundary, but since there is discontinuity
in the mathematical solution, the accuracy of path following will drop and sudden
changes of inputs δ and/or vx will also be necessary as an undesirable condition.
Although the overall geometry of roads with continuous curvature do not visibly
vary much from the ones with non-continuous curvature, but the consequences in
vehicle control during maneuvering are critical. Note that different sections of the
road might be tangent to each other, but have discontinuous curvature.

In the remaining sections we first design a proper sample road, and then use it as
a reference road profile for the vehicle to follow.

Clothoid

For design of a road with continuous curvature, we need a mathematical function
that acts as a transition curve between two steady-state curves (two circles or a
circle and a line). Let us assume that the first section of the road is a circular curve
with curvature κ1 = 1/R1 and the second section is another circle with curvature
κ2 = 1/R2. Any of κ1 or κ2 may be zero in case of straight road.

A preferable transition between the two circular sections is the one with a
constant increasing rate for κ with respect to the arc length. Such a transition also
requires that beginning and end points coincide with the circular sections and the
slope of the transition curve and departure and destination curves match each other.
The solution to the constant rate of increase in curvature is the Euler spiral which is
also called a clothoid. The parametric equation for a clothoid is given as [9]:

X(t) = a

∫ t

0
cos

(π

2
u2

)
du (1.80)

Y (t) = a

∫ t

0
sin

(π

2
u2

)
du (1.81)
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Fig. 1.23 Example of the
Euler spiral

where the parameter a which defines the expansion of the curve, if we take t

analogous to time, can be viewed as the speed of the pen that slides on the paper to
draw the clothoid. One may convert the independent variable from t to arc length s

by the following relationship:

s = at (1.82)

The curvature and the slope of the clothoid along its length are also given as [9]:

κ = 1

R
= πt

a
= πs

a2 (1.83)

θ = π

2
t2 = πs2

2a2 (1.84)

An example of a clothoid with a = 200 is plotted for −5 < t < 5 in Fig. 1.23 which
is a representation of the Euler spiral.

Integrals of (1.80), (1.81) are known as Fresnel cosine and Fresnel sine integrals.

Sample Road 1

The first road profile is a road with a circular beginning with radius R1 = 160 m
and a second circular section with radius R2 = 80 m at the end. These radii
are calculated to approximately match the first scenario in Fig. 1.21. We start by
calculating the transition clothoid and then match the circular paths with it, for
simplicity. Assuming a constant value for a = 200 and using (1.83), (1.84),
the clothoid expressions may be found by the following procedures to match the
calculated curvatures in the beginning and at the end of the transition:

t1 = κ1a

π
= a

πR1
= 0.398, t2 = κ2a

π
= a

πR2
= 0.796 (1.85)
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θ1 = π

2
t2
1 = 0.249 rad, θ2 = π

2
t2
2 = 0.995 rad (1.86)

X(t) = 200
∫ t

0
cos

(π

2
u2

)
du (0.398 ≤ t ≤ 0.796) (1.87)

Y (t) = 200
∫ t

0
sin

(π

2
u2

)
du (0.398 ≤ t ≤ 0.796) (1.88)

The centers of the curvatures at the beginning and at the end of the clothoid are
located at:

XO1 = X(t1) − R1 sin θ1 = 39.71 m YO1 = Y (t1) + R1 cos θ1 = 161.65 m
(1.89)

XO2 = X(t2) − R2 sin θ2 = 77.02 m YO2 = Y (t2) + R2 cos θ2 = 92.74 m
(1.90)

Assuming the same t and a for the circular sections, the parametric equations of
the circular sections are given as:

X(t) = XO1 + R1 cos

(
at

R1
+ α0

)
(t0 < t < 0.398) (1.91)

Y (t) = YO1 + R1 sin

(
at

R1
+ α0

)
(t0 < t < 0.398) (1.92)

X(t) = XO2 + R2 cos

(
at

R2
+ β0

)
(0.796 < t < t3) (1.93)

Y (t) = YO2 + R2 sin

(
at

R2
+ β0

)
(0.796 < t < t3) (1.94)

Intersecting the curves described in (1.87), (1.88) and (1.91), (1.92) at t = t1 and
doing the same for curves (1.87), (1.88) and (1.93), (1.94) at t = t2 provides us with
the values of α0, β0. We may then manually define the beginning point at t0 = −1
and the end point at t3 = 3 of the total road. Note that the independent variable
t in the road design is different from the time it takes for the vehicle to travel the
path and it is only used to create the reference path; thus, t might even take negative
values as in here.

α0 = −1.82 rad (1.95)

β0 = −2.57 rad (1.96)

t0 = −1 (1.97)

t3 = 3 (1.98)
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Fig. 1.24 Actual path of motion versus the reference road profile for road 1

Finally, the set of curves described in (1.87), (1.88) and (1.91)–(1.94) are used
to draw the reference road profile sample road 1 as shown in Fig. 1.24. Center of
curvature in global frame at any point is also found and plotted from:

XO(t) = X(t) − R(t) sin θ(t), YO(t) = Y (t) + R(t) cos θ(t) (1.99)

where θ(t) and R(t) are the slope and the radius of the curve at each point which
depend on type of the curve at each section.

Sample Road 2

To further evaluate the idea, we introduce another road profile which generates a
more complicated maneuver. Assume a straight road which eventually starts to bend
in until it merges with a circular path. The road continues to almost complete a circle
and then starts to decrease its curvature until it reaches back to its straight position
so that it continues the same straight line in the beginning as shown in Fig. 1.25.
Such a road is a good example for evaluating laziness of vehicles in maneuvering;
if the calculated inputs to the vehicle cause considerable error, the vehicle will not
get back to its initial orientation at the end of the road and we will observe an angle
made between the initial and the final directions of motion.

The derivation of the road profile is similar to section “Sample Road 1”. The
second half of the profile may be calculated using a symmetry about the middle
axis passing through the center of the circle. To be concise, the derivations are not
described here and only the final equations of the curves are given:



1 Vehicles Are Lazy: On Predicting Vehicle Transient Dynamics by Steady-. . . 33

t=0.64t=3.14

t=0 t=3.78

Center of 
Rotation

Fig. 1.25 Actual path of motion versus the reference road profile for road 2

X(t) = 200
∫ t

0
cos

(π

2
u2

)
du (0 ≤ t ≤ 0.64) (1.100)

Y (t) = 200
∫ t

0
sin

(π

2
u2

)
du (0 ≤ t ≤ 0.64) (1.101)

X(t) = 63.13 + 100 cos

(
200t

100
− 0.93

)
(0.64 < t < 3.14) (1.102)

Y (t) = 106.23 + 100 sin

(
200t

100
− 0.93

)
(0.64 < t < 3.14) (1.103)

X(t) = 126.25 − 200
∫ 3.78−t

0
cos

(π

2
u2

)
du (3.14 ≤ t ≤ 3.78) (1.104)

Y (t) = 200
∫ 3.78−t

0
sin

(π

2
u2

)
du (3.14 ≤ t ≤ 3.78) (1.105)

X(t) = 200t + 126.25 (t > 3.78) (1.106)

Y (t) = 0 (t > 3.78) (1.107)
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1.3.4 Actual Path

The first step in determining the vehicle’s path is to calculate the radius of curvature
of the road at each point. Radius of curvature is calculated from (1.83) for clothoid
sections and is a constant value for circular sections. The intended center of
curvature at every point of the road may be translated into a desired ICR in body
frame as in the ICR map in Fig. 1.17, if an allowable range of side-slip angle β

is known as shown in Sect. 1.2.2, which can be used to solve for a non-unique
pair of inputs (δ, vx). In another approach, a constant velocity vx may be assumed
throughout the road by making sure that the centripetal acceleration required ac ≈
v2
x/R does not exceed the feasible limit of the vehicle. Then, the only unknown to

be calculated is the steer angle δ and the problem is solved by obtaining a vector
of δ associated with the vector of time t or distance traveled s. This may be done
geometrically using Fig. 1.17 or using the curvature response Sκ from (1.40).

In this section, for road 1, we use the same constant velocity of vx = 20 m/s used
in maneuver 1 of section “Manuver 1: Increasing Velocity”. For road 2, we select
the constant forward velocity of vx = 22 m/s considering the fact that the maximum
centripetal acceleration required during the circular motion would be ac ≈ v2

x/R =
4.84 m/s2 which is below the limit of 4.91 m/s2.

Figure 1.24 and 1.25 show the actual path of the vehicle on road 1 and road 2 by
inputting the steer angle calculated from the steady-state response. The location of
ICR in global frame is also plotted with is calculated from (1.48), (1.49). It can be
seen that the path of motion is very close to the reference road in both cases. These
results show that there is a great agreement between path of motion of transient and
QSS responses. It also shows that steady-state responses are well-suited for control
of the vehicle and keep it on the road on properly designed roads, proving laziness
of vehicles in turning maneuvers.

The maximum perpendicular distance (error) between the path and the road for
road 1 is around 1 m and for road 2 is around 1.5 m which are negligible compared to
the radii of roads. It also shows that the vehicle will almost stay inside the intended
lane, which is typically around 3 m wide.

It is important to note that there is a visible difference between the center of
curvature of the road and global ICR location which is almost eliminated in the path
of motion. Such a deviation in rotation centers is due to the fact that the heading
direction of the vehicle is not necessarily tangent to the road. In other words, there
is a nonzero side-slip angle β present, as expected from Fig. 1.10, that causes ICR
to rotate on a circle instead of staying at a fixed point, at steady-state. The value
of the side-slip angle is dictated by the imposed forward velocity vx as discussed
in Sect. 1.3.2; however, radius of rotation of the vehicle and the path are equal at
steady-state. Figure 1.26 shows this in more detail in an exaggerated manner.

To see the effect of reference velocity vx on the imposed side-slip angle β and
ICR deviation from road center of curvature, we may conduct the same simulation
on road 1 with different forward velocities and plot them together as shown in
Fig. 1.27.
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Fig. 1.26 Detailed view of the side-slip angle while maneuvering on the road

Fig. 1.27 Effect of vx on side-slip angle β and ICR deviation

It can be seen in Fig. 1.27 as the velocity gets closer to the zero side-slip velocity
explained in Sect. 1.3.2, the deviation of ICR from road center of curvature is
decreased, implying that the vehicle is moving with more similar heading direction
to the road. The side-slip angle is positive for vx = 10 m/s, zero for vx = 15 m/s,
and negative for vx = 20 m/s.
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1.4 Summary and Conclusions

The objective of this chapter was to show how close vehicles act to their steady-state
when undergoing a transient maneuver in normal driving conditions. The well-
known bicycle model was chosen to simulate vehicle behavior as it has proven to
be a reasonable approximate modeling for normal driving conditions with relatively
low accelerations and slip angles. Detailed equations of motion of the bicycle model
were given in Sect. 1.1 and steady-state solutions were extracted and summarized in
Eqs. (1.21)–(1.24) and (1.40). Calculations of curvature, turning radius, the location
of instantaneous center of rotation, and the calculation of path of motion were
explained in Sect. 1.2.

In Sect. 1.3.1, transient and quasi-steady-state solutions were compared in time
domain for two main transient maneuvers which reveal the overall behavior of the
vehicle variables in time domain and also in inputs’ domain using surface maps. The
similarity between the transient and quasi-steady-state responses were promising,
except vy response when δ was increasing, and we concluded that overall vehicle
behavior is lazy in turning maneuvers between two steady-states, as the major
activity in normal driving.

Investigation on the laziness of vehicles needed more evaluation on the next level
of vehicle response, namely the location of instantaneous center of rotation. This
investigation was performed in Sect. 1.2 by calculating body and global expressions
of the point. A useful chart was presented in Sect. 1.3.2 as the “ICR map” of a
vehicle. The concept of tangent point was explained in detail, clarifying the quality
of turning maneuver with geometrical expressions. Examples of basic transient
maneuvers were also investigated on the “ICR map” and it was found that the
vehicles also act lazy in that regard, specially when forward velocity changes at
constant steer input.

For better understanding the vehicle’s behavior when the steer angle changes,
road profile and its creation as an expected path of motion were discussed in
Sect. 1.3.3 and two sample roads were designed. Such road profiles enabled us
to apply an open loop steering control algorithm based on steady-state responses
and the results were satisfying, justifying that vehicles are lazy during turning
maneuvers in normal driving conditions. It was also found that although the
instantaneous center of rotation of the vehicle and the curvature center of the road
may not exactly coincide because of the velocity and side-slip relation, the path-
following error is kept minimum. It is important to note that such a conclusion
does not imply that vehicle path following can be simply achieved by an open-
loop control strategy, as vehicles may be driven at more severe circumstances at
specific moments. Also, the availability of road and vehicle data, vehicle variable
measurements, etc. with high-certainty is not guaranteed, the vehicle model might
include unmodeled dynamics, and roads might be imperfectly designed.

As a result, it is concluded that steady-state responses, including the maps pre-
sented in this document, may be used as a feed-forward strategy to strongly enhance
control quality with high accuracy; second usage of steady-state responses is to get
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insight about vehicle’s maneuvering behavior and possible operating ranges; another
important usage is to design roads based on steady-state characteristic of vehicles.
In parallel to steady-state feed-forward control, a feedback control is always needed
to compensate for errors caused by different sources including uncertainties and
unmodeled dynamics. Such a feedback control in a path-following strategy might
be tuned to keep the vehicle in a boundary around the road profile at each time
instant, such as a lane width.

List of Symbols

αi Tire side-slip angle for tire number i

βi Body side-slip angle at the center of wheel number i

vx Longitudinal velocity of center of gravity in body frame
vy Lateral velocity of center of gravity in body frame
vyi Lateral velocity of wheel center i in body frame
v Total velocity of center of gravity
δ Steer angle
Cαi Cornering stiffness of tire number i

m Vehicle’s mass
a1 Distance from center of gravity to front axle
a2 Distance from center of gravity to rear axle
l Wheelbase
Iz Yaw moment of inertia
Fyi Lateral force of tire number i

Fy Total lateral force at center of gravity
Mz Total yaw moment at center of gravity
Sy Lateral velocity response
Sr Yaw velocity response
Sβ Side-slip response
Sa Lateral acceleration response
Sκ Curvature response
ax Forward acceleration in body frame
ay Lateral acceleration in body frame
ac Centripetal acceleration
K Stability factor
R Radius of curvature
κ Curvature
GRB Rotation matrix from body to global frame
x0, y0 Coordinates of instantaneous center of rotation in body frame
X0, Y0 Coordinates of instantaneous center of rotation in global frame
XC, YC Coordinates of center of gravity global frame
X, Y Road profile coordinates in global frame
XO, YO Coordinates of road center of curvature in global frame
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