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Masterpiece happens before 20 and after 80.
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Preface

This book is the sixth volume in the series of “Nonlinear Approaches in Engineering
Applications,” organized by the editors. This series are collecting individual appli-
cation on engineering problems in which the nonlinearity is quite important. Those
systems have been introduced and modeled mathematically, and the nonlinearity
in their equations has been used to make the system optimized, stable, analyzed,
etc. This book is also a collection of ten different important problems set in
two groups: Practical System Applications and Analytical System Applications.
Both groups are more or less focussed on applications of engineering problems.
Chapter 1 is on the laziness of vehicle to investigate how much vehicle behavior
in transient periods deviates from their steady-state behavior. Other chapters of the
Practical System Applications in the first group are on autonomous vehicles, drilling
dynamics and friction, micro-/nanorobotics, and modeling of sea level fluctuations.
The second group on Analytical System Applications begins with an extensive
article on how to model and simulate dynamic systems, methods of solutions, and
different classical behaviors. It follows up with a chapter on large deformation in
curvilinear coordinate systems and big data analysis, and the last two chapters are
on genetic algorithm and programing.

The nonlinear analysis, techniques, and applications have been developed in
the past two to three centuries when the linear mathematical modeling of natural
dynamical phenomena appeared not to be exact enough for some practical appli-
cations. The positive aspects of linear approximation of dynamic phenomena are
simplicity and solvability. Linear approximation of a system provides us with the
simplest model acting as the base and standard for which other nonlinear models
should approach when the nonlinearities become very small. Solvability is another
characteristic of all linear systems. These two characteristics provide us with a great
ability and desire to model dynamic systems linearly. However, there exist many
systems that their linear model and solution cannot provide exact enough approxi-
mation of the real system behavior. For such systems, considering the nonlinearities
of the phenomena is unavoidable. Although the nonlinear approximation of a system
provides us with a better and more accurate model, it also provides us with several
complications. Unsolvability is one of them that makes us to search for indirect
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methods to gain some information of the possible solutions. Due to the nonlinearity
and complexity of the nonlinear systems, usually, it is very difficult or impossible
to derive the analytical and closed-loop solutions for the systems. In solving or
simulating the nonlinear systems, we have to rely on approximate or numerical
methods, which may only provide approximate results for the systems while errors
are unavoidable during the processes of generating the approximate results.

Level of the Book

This book aims at engineers, scientists, researchers, and engineering and physics
students of graduate levels, together with the interested individuals in engineering,
physics, and mathematics. This chapter book focuses on the application of the
nonlinear approaches representing a wide spectrum of disciplines of engineering
and science. Throughout the book, great emphases are placed on engineering
applications, physical meaning of the nonlinear systems, and methodologies of
the approaches in analyzing and solving for the systems. The topics that have
been selected are of high interest in engineering and physics. An attempt has
been made to expose the engineers and researchers to a broad range of practical
topics and approaches. The topics contained in the present book are of specific
interest to engineers who are seeking expertise in vehicle- and automotive-related
technologies as well as engines and alternative fuels, mathematical modeling of
complex systems, biomechanical engineering approaches to robotics and artificial
muscles, nonclassical engineering problems, and modern mathematical treatments
of nonlinear equations.

The primary audience of this book are the researchers, graduate students, and
engineers in mechanical engineering, engineering mechanics, electrical engineer-
ing, civil engineering, aerospace engineering, mathematics, and science disciplines.
In particular, the book can be used for training the graduate students as well as
senior undergraduate students to enhance their knowledge by taking a graduate or
advanced undergraduate course in the areas of nonlinear science, dynamics and
vibration of discrete and continuous system, structure dynamics, and engineering
applications of nonlinear science. It can also be utilized as a guide to the readers’
fulfilment in practices. The covered topics are also of interest to engineers who are
seeking to expand their expertise in these areas.

Organization of the Book

The main structure of the book consists of two parts, Practical System Applications
and Analytical System Applications, including ten chapters. Each of the chapters
covers an independent topic along the line of nonlinear approach and engineering
applications of nonlinear science. The main concepts in nonlinear science and
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engineering applications are explained fully with necessary derivatives in details.
The book and each of the chapters are intended to be organized as essentially self-
contained. All the necessary concepts, proofs, mathematical background, solutions,
methodologies, and references are supplied except for some fundamental knowledge
well-known in the general fields of engineering and physics. The readers may
therefore gain the main concepts of each chapter with as less as possible the need
to refer to the concepts of the other chapters and references. The readers may hence
start to read one or more chapters of the book for their own interests.

Method of Presentation

The scope of each chapter is clearly outlined, and the governing equations are
derived with an adequate explanation of the procedures. The covered topics are
logically and completely presented without unnecessary overemphasis. The topics
are presented in a book form rather than in the style of a handbook. Tables,
charts, equations, and references are used in abundance. Proofs and derivations
are emphasized in such a way that they can be straightforwardly followed by the
readers with fundamental knowledge of engineering science and university physics.
The physical model and final results provided in the chapters are accompanied with
necessary illustrations and interpretations. Specific information that is required in
carrying out the detailed theoretical concepts and modeling processes has been
stressed.

Prerequisites

The present book is primarily intended for the researchers, engineers, and graduate
students, so the assumption is that the readers are familiar with the fundamentals
of dynamics, calculus, and differential equations associated with dynamics in engi-
neering and physics, as well as a basic knowledge of linear algebra and numerical
methods. The presented topics are given in a way to establish as conceptual
framework that enables the readers to pursue further advances in the field. Although
the governing equations and modeling methodologies will be derived with adequate
explanations of the procedures, it is assumed that the readers have a working
knowledge of dynamics, university mathematics, and physics together with theory
of linear elasticity.
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Chapter 1
Vehicles Are Lazy: On Predicting Vehicle
Transient Dynamics by Steady-State
Responses

Sina Milani, Hormoz Marzbani, Ali Khazaei, and Reza N. Jazar

1.1 Introduction

Analysis of vehicles’ handling behavior in turning maneuvers requires a proper
mathematical model. There are several factors affecting a vehicle’s response in a
turning maneuver. Apart from variations in vehicle and tire parameters, external
factors such as air resistance and slope of the road make it quite a complicated task
to consider all parameters in the vehicle model. The majority of the most important
features of the vehicle behavior in maneuvers are observable using fairly simplified
planar vehicle models. In planar modeling, we ignore the roll, pitch, and vertical
motions of the vehicle and only emphasize on the longitudinal, lateral, and yaw
motions.

The most famous and basic planar vehicle model is known as the bicycle model.
Many of the vehicle handling analyses and all the basic characterizations have been
derived using bicycle model throughout the course of vehicle dynamics studies
[1–3]. Bicycle model is accurate enough to represent the real car behavior to a
reasonable extent in normal driving conditions. This characteristic of the bicycle
model makes it useful in designing and investigating new ideas on dynamics and

S. Milani · H. Marzbani
Mechanical and Automotive Engineering, School of Engineering, RMIT University, Melbourne,
VIC, Australia

A. Khazaei
Mechanical Engineering, Kennesaw State University, Marietta, GA, USA

R. N. Jazar (�)
Xiamen University of Technology, Xiamen, China

School of Engineering, RMIT University, Bundoora, VIC, Australia
e-mail: reza.jazar@rmit.edu.au

© Springer Nature Switzerland AG 2020
R. N. Jazar, L. Dai (eds.), Nonlinear Approaches in Engineering Applications,
https://doi.org/10.1007/978-3-030-18963-1_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18963-1_1&domain=pdf
mailto:reza.jazar@rmit.edu.au
https://doi.org/10.1007/978-3-030-18963-1_1


4 S. Milani et al.

control of vehicles, such as defining the nominal vehicle response for yaw-rate
and/or side-slip angle [4, 5]. In the following section, the bicycle model is presented
in detail and the underlying assumptions are discussed.

In the rest of the chapter, the importance of steady-state responses of the bicycle
model is discussed by comparing the steady-state and transient vehicle behaviors,
characteristics of maneuvering vehicles including steady-state charts are presented,
and finally, application of such an analysis on a path following strategy is explained
and two examples are given to evaluate the proposed idea.

1.1.1 Bicycle Model

The first step in dynamic modeling of vehicles is to identify the main forces and
moments acting on the vehicle as a rigid body. The magnitude of these forces and
moments depends on the motion of the vehicle, which is described by kinematic
variables of the vehicle, such as longitudinal and lateral velocities, yaw rate, side-
slip angles, etc. In the next step, the forces and moments must be transferred to the
center of gravity of the vehicle and, finally, put into the Newton–Euler equations of
motion for a rigid body on a planar surface.

The main forces acting on the vehicle are the longitudinal and lateral tire forces.
There are many other acting forces and moments such as the aerodynamic forces
and rolling resistance of tires which are assumed to be negligible when dealing
with motion of vehicles in normal driving conditions. The normal driving condition
is defined as regular turning maneuvers with forward and lateral accelerations are
kept in certain limits that represent non-emergency maneuvering (see the maneuver
design in Sect. 1.3).

Longitudinal tire force is a function of a kinematic variable called the longi-
tudinal slip. The longitudinal slip is defined as the ratio of the slip velocity at
tire contact patch to the longitudinal velocity of the vehicle and, therefore, is a
function of tire’s rotational velocity. To be able to model the longitudinal tire force,
rotational dynamics of tires must be considered separately. Also, the longitudinal
forces will affect the forward velocity of the vehicle, which is normally studied in
vehicle performance investigations. Therefore, the longitudinal Degree of Freedom
(DoF) is of less importance when dealing with turning maneuvers and is usually
ignored in vehicle handling studies to avoid over-complication. Hence, the most
significant external forces to be studied are the lateral tire forces. The lateral tire
force is assumed to be proportional to another kinematic variable called tire side-
slip angle, in normal driving condition. The tire side-slip angle αi is defined as the
angle measured from the tire’s longitudinal axis xti towards the velocity vector vi
(direction of motion) at the wheel center about the vertical tire axis zti which makes
a right-handed coordinate frame with xti and yti (see Fig. 1.1a) [3].

Similarly, another side-slip angle βi may be defined for the vehicle body at any
point. The body side-slip angle is defined as the angle between longitudinal axis of
the vehicle body x and the velocity vector at that point vi about the vertical body
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vi

αi

yti

xti

vi

αi

yti

xti

x
βi

i

(a) (b)

Fig. 1.1 Definition of side-slip angles and tire coordinate frame

axis z. Body side-slip angle βi is related to longitudinal and lateral velocities of the
body point expressed in vehicle body coordinate frame by (1.1). Definition of βi
allows for calculation of the tire side-slip angle for a steered wheel (see Fig. 1.1b).
The tire side-slip in case of a steered wheel is obtained by the more general Eq. (1.2).
One may consider steer angle of δi = 0 for a wheel with no steering.

βi = arctan

(
vyi

vx

)
≈ vyi

vx
, for small βi (1.1)

αi = βi − δi ≈ vyi

vx
− δi (1.2)

Note that the longitudinal velocity of any point on the vehicle body is assumed to
be the same and equal to vx in a bicycle model.

Thus, the tire lateral force is written as (1.3). The negative sign is used to match
the direction of the force and the side-slip angle. When a vehicle is turning left, the
lateral force is positive while the tire side-slip αi is negative (see Fig. 1.2).

Fyi = −Cαiαi (1.3)

As shown in Fig. 1.2, with bicycle model of the vehicle, we assume the effect
of left and right tires is lumped at the center of the axle by an equivalent tire. It
is assumed that the lateral shift of the tires’ vertical loads in turning maneuver is
negligible and the lateral forces from left and right tires can be added up at the
center of the axle. The nominal parameters of the bicycle vehicle model used in all
sections of this manuscript are as follows:
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Fig. 1.2 Bicycle model and
vehicle body coordinate
frame

x

y lC

a2

r

a1v

α1
β1

β

v1

v2

Fy1

Fy2

α2=β2

δ

m = 1000 kg

a1 = 1 m

a2 = 1.5 m

l = a1 + a2 = 2.5 m

Iz = 1650 kg m2

Cα1 = Cα2 = 60,000 N/rad

1.1.2 Equations of Motion

Having identified and calculated the external forces as functions of vehicle kine-
matic variables, we may transfer the forces to the center of gravity (point C in
Fig. 1.2). Using the side-slip definition from (1.2) and assuming small δ, we may
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write the total lateral force and yaw moment at vehicle’s center of gravity C as (1.4),
(1.5) for a front steering vehicle.

Fy = Fy1 + Fy2 = −Cα1

(
vy1

vx
− δ
)
− Cα2

vy2

vx
(1.4)

Mz = a1Fy1 − a2Fy2 = −a1Cα1

(
vy1

vx
− δ
)
+ a2Cα2

vy2

vx
(1.5)

From the kinematics of a rigid planar vehicle, we know:

vy1 = vy + ra1, vy2 = vy − ra2 (1.6)

where yaw rate r is the rotational velocity of the vehicle about z axis and vy
is the lateral velocity of the vehicle at center of gravity C along y direction.
Substituting (1.6) in (1.4), (1.5), total lateral force and yaw moment become:

Fy =
(
−a1

vx
Cα1 + a2

vx
Cα2

)
r − (Cα1 + Cα2)

vy

vx
+ Cα1δ

= Crr + Cββ + Cδδ (1.7)

Mz =
(
−a

2
1

vx
Cα1 − a2

2

vx
Cα2

)
r − (a1Cα1 − a2Cα2)

vy

vx
+ a1Cα1δ

= Drr +Dββ +Dδδ (1.8)

in which the force system coefficients Cr, Cβ, Cδ,Dr,Dβ,Dδ are introduced for
simplicity in the equations. These coefficients are functions of vehicle parameters,
including vx which is treated as a varying parameter.

To complete the equations of motion, we need to calculate the accelerations of
the vehicle in body coordinate frame as functions of vehicle variables vy and r .
These accelerations are derived from the general Newton–Euler set of equations for
6 DoF in space. Since we limited the motion to planar, the equations simplify to
longitudinal, lateral, and yaw motions [3]:

Fx = m(v̇x − rvy) (1.9)

Fy = m(v̇y + rvx) (1.10)

Mz = ṙIz (1.11)

Note that the term (v̇y + rvx) is equivalent to the lateral acceleration ay of the
vehicle mass center expressed in the body frame. Equating (1.7), (1.8) with (1.10),
(1.11) provides us with the equations of motion for bicycle model:
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m(v̇y + rvx) = Crr + Cββ + Cδδ (1.12)

ṙIz = Drr +Dββ +Dδδ (1.13)

Taking the system variables as vy and r , we may rewrite (1.12), (1.13) in the
form of a state-space representation of the system as:

[
v̇y

ṙ

]
=

⎡
⎢⎢⎣
Cβ

mvx

Cr

m
− vx

Dβ

Izvx

Dr

Iz

⎤
⎥⎥⎦
[
vy

r

]
+

⎡
⎢⎢⎣
Cδ

m

Dδ

Iz

⎤
⎥⎥⎦ δ (1.14)

Note that since we assumed vx to be known, Eq. (1.9) does not add any
information to the system dynamics; however, the required Fx obtained from the
same equation provides the necessary longitudinal force during the maneuver which
is assumed to be supplied.

1.1.3 Steady-State Responses

Equations of motion (1.14) may be solved numerically or analytically to obtain the
transient response of bicycle model to a certain steer input δ. The same equations
may also be used to derive the steady-state values of the vehicle variables vy and
r to a step steer input. In steady-state condition, all of the state variables are kept
constant in time, hence, their time derivatives will be equal to zero. In other words,
Eq. (1.14) reduces to (1.15) in steady-state which is solved as (1.16).

[
0
0

]
=

⎡
⎢⎢⎣
Cβ

mvx

Cr

m
− vx

Dβ

Izvx

Dr

Iz

⎤
⎥⎥⎦
[
(vy)ss

(r)ss

]
+

⎡
⎢⎢⎣
Cδ

m

Dδ

Iz

⎤
⎥⎥⎦ δ (1.15)

[
(vy)ss

(r)ss

]
=

⎡
⎢⎢⎣
Cβ

mvx

Cr

m
− vx

Dβ

Izvx

Dr

Iz

⎤
⎥⎥⎦
−1⎡
⎢⎢⎣
−Cδ
m

−Dδ
Iz

⎤
⎥⎥⎦ δ (1.16)

where “ss” subscript refers to the steady-state solution of the variables. After
simplification, one may obtain vy and r solutions as:

(vy)ss = Dδ(Cr −mvx)−DrCδ
DrCβ − CrDβ +mvxDβ vxδ (1.17)
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(r)ss = CδDβ − CβDδ
DrCβ − CrDβ +mvxDβ δ (1.18)

It can be seen that the steady-state solutions are proportional to the steer angle
input. Hence, we may define steady-state responses of important vehicle variables
as their ratio to the steer angle δ. To observe more details about the behavior of the
vehicle in maneuver, we may introduce new dependent variables, namely body side-
slip at center of gravity β, and lateral acceleration ay which are useful in studying
handling of vehicle and are defined as:

(β)ss = (vy)ss

vx
(1.19)

(ay)ss = (v̇y)ss + (r)ssvx = (r)ssvx (1.20)

Thus, the steady-state responses are obtained as:

Sy = (vy)ss

δ
= Dδ(Cr −mvx)−DrCδ
DrCβ − CrDβ +mvxDβ vx (1.21)

Sr = (r)ss

δ
= CδDβ − CβDδ
DrCβ − CrDβ +mvxDβ (1.22)

Sβ = (β)ss

δ
= Sy

vx
= Dδ(Cr −mvx)−DrCδ
DrCβ − CrDβ +mvxDβ (1.23)

Sa = (ay)ss

δ
= Srvx = CδDβ − CβDδ

DrCβ − CrDβ +mvxDβ vx (1.24)

Note that the lateral and centripetal accelerations are approximately equal for
small side-slip angle β and forward acceleration ax , but in general, the following
relationship is held between ac, ax, ay :

ac = ay cosβ − ax sinβ

≈ ay if (ax &β small) (1.25)

ax = v̇x − rvy (1.26)

ay = v̇y + rvx (1.27)

Denominator of (1.21)–(1.24) forms the characteristic equation of the dynamic
system. A combination of the vehicle parameters dictates the general behavior of
the vehicle. Substituting the vehicle parameters into the force system coefficients,
the denominatorD is obtained; equating it to zero, we may find a stability condition
for turning maneuver:
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D = m(Cα2a2 − Cα1a1)v
2
x + l2Cα1Cα2 = 0 (1.28)

m

l2

(
a2

Cα1
− a1

Cα2

)
v2
x + 1 = Kv2

x + 1 = 0 (1.29)

vx = vc =
√
− 1

K
(1.30)

K = m

l2

(
a2

Cα1
− a1

Cα2

)
(1.31)

where vc is the critical speed at which the denominator will become zero and the
vehicle becomes unstable. The critical speed only exists when the stability factor
K is negative. The stability factor determines whether the vehicle is under-steer
(K > 0), over-steer (K < 0), or neutral-steer (K = 0). The behavior of the vehicle
changes with different signs ofK which is not in the scope of this chapter. For more
information about the effect of K on vehicle responses, see [1–3].

1.2 Center of Curvature and Path of Motion

One of the main characteristics of a maneuvering vehicle which is emphasized in
this chapter is the path of motion. The path of motion is directly related to the
radius of turning R and the center of curvature of the vehicle at each time instance,
which is also called the Instantaneous Center of Rotation (ICR). In this section,
the methodology to calculate R and ICR as well as obtaining the global vehicle
coordinates (X, Y ) which define the path of motion will be examined. Calculation
of ICR helps in understanding the similarity between transient and steady-state
responses [6]. The usage of the presented calculations is detailed in Sect. 1.3.

1.2.1 Curvature and Turning Radius

We start by calculating the radius of turning R. For a particle rotating about a
center with radius R, translational velocity of v, and angular velocity of ω, in 2-
dimensional space, the following relationship holds:

v = Rω (1.32)

The relation between longitudinal and lateral velocities vx, vy and the body side-
slip angle β can be written as:

v = vx cosβ + vy sinβ (1.33)
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and since β is assumed to be small:

v = vx + vyβ (1.34)

Assuming the vehicle to be a point mass at its mass center rotating with angular
velocity of ω = r , we may use (1.32) and (1.34) to write:

R = v

r
= vx + vyβ

r
(1.35)

κ = 1

R
= r

vx + vyβ (1.36)

where κ is called the curvature of the path and R is the radius of curvature. For
straight driving, κ = 0 while R → ∞. Using (1.36) and substituting vy, r, β
from (1.21)–(1.23), we may obtain the value of κ in steady-state which would be
a nonlinear function of steer input δ. On the other hand, the multiplication of two
small quantities vy and β is negligible compared to vx in (1.35), (1.36). So, with a
highly reasonable approximation, we may ignore the term vyβ in (1.35), (1.36) and
rewrite them as:

R = v

r
= vx

r
(1.37)

κ = 1

R
= r

vx
(1.38)

By using (1.37), (1.38) instead of (1.35), (1.36), we end up with a linear
relationship between (κ)ss and δ and we are able to define an additional steady-
state response Sκ called the curvature response:

(κ)ss = 1

(R)ss
= (r)ss

vx
(1.39)

Sκ = (κ)ss

δ
= Sr

vx
= CδDβ − CβDδ
(DrCβ − CrDβ +mvxDβ)vx (1.40)

The importance of the curvature and its steady-state response in analyzing
vehicle’s maneuver is due to its key role in calculating ICR as explained in the
following sections.

1.2.2 ICR in Vehicle Body Coordinate Frame

Having the radius of curvature R calculated, we know how far ICR is located from
vehicle’s center of gravity. On the other hand, the vehicle side-slip angle determines
how much rotation exists between the vehicle’s heading direction and the direction
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Fig. 1.3 Location of ICR in
vehicle body frame

R

x

y lC

a2

a1v β

v1

v2

ICR

β
x0

y0

tangent to the path. Thus, the side-slip angle β affects the longitudinal and lateral
coordinates of ICR (x0, y0) in body frame. Figure 1.3 shows the calculation of ICR
location in the vehicle body coordinate frame.

Thus, x0 and y0 are calculated as:

x0 = −R sinβ (1.41)

y0 = R cosβ (1.42)

Note that we do not use small angle approximation here to be able to observe
both the lateral and longitudinal location of ICR in the body coordinate frame.

1.2.3 ICR in Global Coordinate Frame

The location of ICR may also be calculated in the global coordinate frame. The
relationship between global and body coordinate frames is defined using the rotation
matrix GRB . Any position vector in 3-dimensional space may be expressed whether
in global frame G shown by G �d or in body frame B shown by B �d . Transformation
between body to global coordinate is defined by [7]:

G �d = GRB
B �d + G�eBG (1.43)

GRB =
⎡
⎣cosψ − sinψ 0

sinψ cosψ 0
0 0 1

⎤
⎦ (1.44)
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Fig. 1.4 Location of ICR in global frame

where G�eBG is the position vector of the origin of body frame OB with respect to
the origin of the global frameOG expressed in global frameG; and ψ is the heading
angle of the vehicle which is measured from the global longitudinal axis X towards
vehicle’s longitudinal axis x about the vertical axis z. In case of a vehicle in turning
maneuver, G�eBG is defined by global position components of the vehicle’s center of
gravity XC, YC . Figure 1.4 shows the global position and orientation of the vehicle
in a turning maneuver.

Applying the transformation (1.43) from body frame to global frame for ICR
position vector yields:

⎡
⎣X0

Y0

0

⎤
⎦ =

⎡
⎣cosψ − sinψ 0

sinψ cosψ 0
0 0 1

⎤
⎦
⎡
⎣x0

y0

0

⎤
⎦+

⎡
⎣XCYC

0

⎤
⎦ (1.45)

X0 = x0 cosψ − y0 sinψ +XC (1.46)

Y0 = x0 sinψ + y0 cosψ + YC (1.47)

substituting from (1.41), (1.42) the global coordinates of ICR are obtained as:

X0 = −R sinβ cosψ − R cosβ sinψ +XC (1.48)

Y0 = −R sinβ sinψ + R cosβ cosψ + YC (1.49)

Calculation of the global coordinates XC, YC which construct the path of motion
is presented in the following section.
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1.2.4 Path of Motion

We may assume that the vehicle was initially coincident with the origin of the global
frame. As the vehicle moves, a combination of the longitudinal, lateral, and yaw
velocities causes displacement and change of direction with respect to the global
frame. To calculate the current global coordinates at any time, we need to integrate
the velocities expressed in global frame, namely ẊC = vX, ẎC = vY . On the other
hand, these velocities are related to local expressions of the velocities in body frame,
namely vx, vy through a rotation of ψ about the vertical axis z. The transformation
between local and global velocity vectors is defined by:

Gv = GRB
Bv (1.50)

[
ẊC

ẎC

]
=
⎡
⎣cosψ − sinψ 0

sinψ cosψ 0
0 0 1

⎤
⎦[vx
vy

]
(1.51)

ẊC = vx cosψ − vy sinψ (1.52)

ẎC = vx sinψ + vy cosψ (1.53)

As (1.52) and (1.53) imply, derivation of the path of motion relies on calculation
of heading angle ψ . On the other hand, time derivative of ψ is equal to the yaw
velocity of the vehicle r:

ψ̇ = r (1.54)

Using the expressions (1.52)–(1.54), we may increase the order of the system
expressed by (1.14) and introduce new state variables XC, YC,ψ in order to obtain
the integrated quantities required for plotting the path, as outputs of the system. This
way, any numerical integration method used for solving the differential equations of
the system will also result in the path of motion. Augmenting the system variables
in (1.14) by (1.52)–(1.54), the new system would be represented by the following
set of differential equations:

⎡
⎢⎢⎢⎢⎢⎣

v̇y

ṙ

ẊC

ẎC

ψ̇

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cβ

mvx

Cr

m
− vx 0 0 0

Dβ

Izvx

Dr

Iz
0 0 0

− sinψ 0 0 0 0
cosψ 0 0 0 0

0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

vy

r

XC

YC

ψ

⎤
⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cδ

m
δ

Dδ

Iz
δ

vx cosψ
vx sinψ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.55)

Note that the above system is nonlinear due to potentially large values of ψ
making it impossible to linearly approximate sinψ and cosψ terms.
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1.3 Comparing Transient and Steady-State Behaviors

Steady-state relations may be used to calculate settled responses while the differ-
ential equations must be solved to obtain the transient responses. Road vehicles
are most of the time performing in a steady-state condition. In all other times, the
vehicle is undergoing a transition between two steady-states. Such a transition in
normal driving conditions is examined in this section. The objective of this section
is to show how this transition is made and how far the vehicle responses deviate from
quasi-steady-state transition. A Quasi-Steady-State (QSS) transition happens when
the inputs to the vehicle change at very low rates such that the vehicle responses
are close to steady-state responses at each time instance. The laziness in vehicle’s
behavior is defined by “vehicle’s tendency to get to the steady-state condition as
soon as possible.” Two different maneuver types are investigated in this manuscript
to examine the vehicle’s laziness against input changes during a turning maneuver:
1—increasing forward velocity at constant steering, and 2—increasing steer angle
at constant forward velocity.

In designing the maneuvers, the maximum longitudinal acceleration is set to be
ax·max = ±7.5 m/s2 since the maximum achievable acceleration or deceleration for
a vehicle with perfect traction management is ax = ±μg and for a passenger vehicle
μ ≈ 0.75. Maximum lateral acceleration is set at ay·max = ±0.5 g = ±4.91 m/s2.
Such a limitation avoids creation of large angles and considerable lateral load
shift in order for the bicycle model to remain valid. Both longitudinal and lateral
accelerations are well-above the limits of regular driving with passenger vehicles.

1.3.1 Time Response of System Variables

In this section, we examine the time responses of the main vehicle variables in time
domain and see how they behave in transient and steady-state conditions. As (1.14)
implies, the lateral velocity vy and yaw velocity r are the main variables of the
vehicle system. It is also useful to monitor the lateral acceleration of the vehicle
ay . Lateral acceleration is approximately equal to the centripetal acceleration of the
vehicle in a turning maneuver when side-slip angle β is small, and it is an indication
of lateral tire forces. To start examining the laziness of vehicles in maneuvers,
we may start by calculating the QSS response of the above-mentioned variables
between two steady-state conditions.

Using the vehicle parameters provided in Sect. 1.1.1, we first calculate the
force system coefficients in (1.7), (1.8), and then all of the steady-state responses
in (1.21)–(1.24) and (1.40) are evaluated for the corresponding range of vx and δ:



16 S. Milani et al.

Cr = −30,000

vx
N/rad (1.56)

Cβ = −120,000 N/rad (1.57)

Cδ = 60,000 N/rad (1.58)

Dr = −195,000

vx
Nm/rad (1.59)

Dβ = 30,000 Nm/rad (1.60)

Dδ = 60,000 Nm/rad (1.61)

Sy = −2vx(v2
x − 225)

v2
x + 750

m/s rad (1.62)

Sr = 300vx
v2
x + 750

rad/s rad (1.63)

Sβ = −2v2
x − 450

v2
x + 750

rad/rad (1.64)

Sa = 300v2
x

v2
x + 750

m/rad s2 (1.65)

Sκ = 300

v2
x + 750

1/m rad (1.66)

For transient simulation, system (1.14), or alternatively (1.55), is solved numeri-
cally for vy and r . The lateral acceleration in transient maneuver can be calculated
from (1.10) as:

ay = v̇y + rvx (1.67)

where v̇y is found from (1.14) as:

v̇y = Cβ

mvx
vy +

(
Cr

m
− vx

)
r + Cδ

m
δ (1.68)

substituting in (1.67):

ay = 1

m

(
Cβ

vx
vy + Crr + Cδδ

)
(1.69)
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Equivalently, we may obtain ay directly from (1.7) as:

ay = 1

m
Fy = 1

m

(
Cββ + Crr + Cδδ

)
(1.70)

Manuver 1: Increasing Velocity

The first maneuver consists of both increasing and decreasing the forward velocity
vx at the rate of maximum longitudinal acceleration, while keeping the steer angle δ
constant. The maneuver starts from an initial velocity of vx0 = 10 m/s with a large
constant large acceleration of ax·max = 7.5 m/s2 up to vx1 = 25 m/s in 2 s. After
another 2 s (to ensure reaching steady-state) vehicle then decelerates at the opposite
rate back to vx2 = 10 m/s in 2 s. The maneuver continues up to t = 8 s to ensure
reaching steady-state. We may then calculate the constant steer angle at which the
maximum lateral acceleration of ay·max = 4.91 m/s2 is created in the middle of the
maneuver:

δ = ay·max

Sa1
= 4.91

136.36
= 0.036 rad = 2.06 deg (1.71)

Inputs are plotted in Fig. 1.5.
The initial values of the variables vy, r are set to their steady-state values at vx0

to realize the first steady-state condition at the beginning of the maneuver when
solving the differential equations of motion:

vy0 = Sy0δ = (2.94)(0.036) = 0.11 m/s (1.72)

r0 = Sr0δ = (3.53)(0.036) = 0.13 rad/s (1.73)

Figure 1.6 shows the variation of lateral velocity vy in the QSS case (gradual
increase of vx) as well as the transient response. The difference between the two is

vx

Fig. 1.5 Steering and velocity inputs for maneuver 1



18 S. Milani et al.

Transient

QSS

Error

Fig. 1.6 QSS versus transient response of vy for increasing vx at constant δ

TransientQSS

Error

Fig. 1.7 QSS versus transient response of r for increasing vx at constant δ

also plotted as the error. The plot shows a reasonable level of error at each time.
Error magnitude is larger at higher velocities, but settles very quickly when motion
becomes steady. It is also observed that the transient curve of vy is slightly shifted
(about 0.2 s) in time domain which is negligible compared to the response time,
indicating the laziness of vy response in this maneuver, both for acceleration and
deceleration.

Figure 1.7 depicts the variation of yaw velocity r for both conditions. Maximum
error between transient and QSS responses is observed at around t = 2 right at
the end of transition to higher velocity, but it shows very quick elimination of the
error and drop of the yaw velocity to its steady-state in around 0.5 s afterwards. Yaw
velocity shows a very similar response to the QSS.

The lateral acceleration plot is shown in Fig. 1.8. It can be seen that the deviation
between the responses is almost uniform during transition and it does not exceed
0.2 m/s2 which is around 4% of the maximum acceleration during such a quick
transition, proving a close response to QSS.
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Transient

QSS

Error

Fig. 1.8 QSS versus transient response of ay for increasing vx at constant δ

Maneuver 2: Increasing Steer Angle

The second maneuver is defined as increasing steer angle δ at constant velocity of
vx = 20 m/s from an initial value of δ0 = 0 with constant rate of 1 deg/s up to
the final value of δ1. The final value of the steer angle is calculated such that the
final lateral acceleration is approximately equal to ay ≈ ay·max = 4.91 m/s2 as the
limiting value.

δ1 = ay·max

Sa1
= 4.91

104.35
= 0.047 rad = 2.70 deg (1.74)

t1 = δ1 − δ0
1

= 2.7 s (1.75)

Similar to the previous maneuver, the initial values of the variables vy, r are
set to their steady-state values at δ1 to realize the first steady-state condition at the
beginning of the maneuver:

vy0 = Sy0δ0 = 0 m/s (1.76)

r0 = Sr0δ0 = 0 rad/s (1.77)

The simulation continues up to t = 5 s after t = t1 to damp any transient
behavior. Velocity and steer inputs are plotted in Fig. 1.9.

Variation of vy for QSS and transient maneuvers for the second maneuver are
shown in Fig. 1.10. It is observed that the transient value of vy shows less agreement
with QSS response, indicating some expected side-slip difference between transient
and QSS during the transition. However, the effect of vy in total velocity v is
negligible.

Variation of yaw velocity r is shown in Fig. 1.11. There is a high level of
agreement between plots and the steady-state behavior seems to be dominant.
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vx

Fig. 1.9 Steering and velocity inputs for maneuver 2

Transient

QSS

Error

Fig. 1.10 QSS versus transient response of vy for increasing δ at constant vx

Transient

QSS

Error

Fig. 1.11 QSS versus transient response of r for increasing δ at constant vx
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Transient

QSS

Error

Fig. 1.12 QSS versus transient response of ay for increasing δ at constant vx

Figure 1.12 shows how the lateral acceleration varies during the maneuver in
transient and QSS conditions. Similar to yaw velocity, the lateral acceleration
response shows a high tendency to QSS case, proving laziness of the vehicle with
respect to ay .

Steady-State Surface Maps

It was shown in sections “Manuver 1: Increasing Velocity” and “Maneuver 2:
Increasing Steer Angle” that the time response of the vehicle variables is close
to their QSS responses. Although vx is a varying parameter of system (1.14), we
may also treat the steer angle δ and the forward velocity vx as the inputs from the
driver to the vehicle system. Having vx and δ as inputs and using the conclusion
above, we may introduce 3-dimensional surfaces consisting of steady-state variables
(vy)ss, (r)ss, (ay)ss for each pair of vx, δ. Such a surface is called a steady-state
surface map of the variable of interest which indicates the steady-state value of that
variable in the input domain, instead of time domain.

We expect the transient response plots to lie very close to the steady-state surface
maps, because of the transient time response of the vehicle being close to its QSS
response. To plot the surface maps, we create a mesh for a range of vx and a range
of δ values and calculate the steady-state variable for each point.

Figures 1.13, 1.14, and 1.15 show the steady-state surface maps for vy, r, ay
respectively. They include full information about all possible responses of variables
with any set of inputs. It is important to note that surface maps do not include
any information about the time. To find the time duration in which the transient
results are obtained, one must refer to the definition of the input as a function of
time, presented in sections “Manuver 1: Increasing Velocity” and “Maneuver 2:
Increasing Steer Angle”.
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Increasing 
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Fig. 1.13 Steady-state surface map of vy

Increasing 

Steady-
State

Increasing vx

Slow 
Rate

Quick 
Rate

Fig. 1.14 Steady-state surface map of r

Similar to sections “Manuver 1: Increasing Velocity” and “Maneuver 2: Increas-
ing Steer Angle”, two maneuvers of increasing vx : 10 → 25 m/s at δ = 2.06 deg
in two different time durations of 2 s and 4 s are plotted by the blue curves. Another
maneuver of increasing δ : 0 → 2.7 deg at vx = 20 m/s in two different time
durations of 1 s and 2 s is plotted by the red curves. As expected, it is observed that
as the time duration of the transition between two steady-state cases gets smaller,
the transient behavior becomes more visible and the deviation of the transient plot
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Increasing 
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State

Increasing vx

Slow 
Rate

Quick 
Rate

Fig. 1.15 Steady-state surface map of ay

from steady-state surface map increases. Nevertheless, it can be seen that even the
limiting quick maneuver lies reasonably close to the steady-state surface.

Although the focus of this manuscript is on investigating maneuvers with only
vx or δ being variable to assess the sensitivity with respect to each input, let us
consider a special case of decreasing steer angle δ and increasing velocity vx at the
same time, which represents a condition of merging into a new road. The transient
response of such a maneuver with δ : 3 deg → 0 deg and vx : 10 m/s → 30 m/s in
3 s is plotted in Fig. 1.16. It can be seen that the response of this maneuver is also
very close to the steady-state.

1.3.2 Center of Curvature Response (ICR Map)

So far, the responses of vehicle body variables are investigated and found to be
acting close to their steady-state values in normal driving conditions. It is expected
that such a lazy behavior will also be observable in the location of ICR. If we are able
to reasonably approximate the location of ICR by steady-state calculation, we may
directly relate the ICR response of a certain vehicle only to steer input and forward
velocity of that vehicle at any time instance. Hence, we can generate a look-up table
for vehicle turning maneuver so that any feasible turning demand (ICR location in
body coordinate frame) is translated to a pair of (vx, δ) for autonomous maneuvering
of vehicles.
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Fig. 1.16 Steady-state surface maps for special maneuver of turning into a road

For a pair of (vx, δ), the steady-state ICR coordinates in body frame are
calculated using (1.41), (1.42):

(x0)ss = −(R)ss sin(β)ss = − 1

δSκ
sin(δSβ) (1.78)

(y0)ss = (R)ss cos(β)ss = 1

δSκ
cos(δSβ) (1.79)

Considering specific ranges for vx and r , a steady-state chart is calculated that
contains all the possible ICR locations in body coordinate. Such a chart is called
the ICR map. Figure 1.17 shows the ICR map for the vehicle of interest in this
manuscript for prescribed ranges of vx, δ.

In Fig. 1.17, the horizontal black lines indicate constant velocity curves and the
green lines indicate constant steer angle curves. Note that these curves are nonlinear
functions of vx and δ as expressions (1.78), (1.79) imply, but the range of feasible
input values vx, δ, limits the curves to regions in which they look linear. For any
point in between the plotted points, an interpolation may be used to calculate the
required (vx, δ). Analytical calculations are also possible for higher accuracy.
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...

vx = 5 m/s
vx = 10 m/s

vx = 15 m/s
vx = 20 m/s

vx = 40 m/s
↑

vx↑

Fig. 1.17 ICR map (loci of possible steady-state ICRs in body coordinate)

vx→0 vx = 15 m/s vx = 20 m/s vx = 25 m/s

Fig. 1.18 Variation of the tangent point at different velocities

Figure 1.17 indicates that at a certain forward velocity, the longitudinal position
of ICR is almost constant for any steer angle. Connecting the point B(x0, 0) in the
body coordinate to ICR, we can conclude that the velocity of the body at that point
is perpendicular to the radius of curvature and tangent to x. In other words, the point
B(x0, 0) is the only point on the body frame that travels tangent to the path. Such a
location is called the tangent point. Figure 1.18 shows how the tangent point varies
at different velocities.

At very low velocities (kinematic turning), the tangent point is on the extension of
the rear axle. As the speed increases, the tangent point reaches the center of gravity
(β = 0); this velocity at which the side-slip angle becomes zero is also called the
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End 2

End 1

Start

Fig. 1.19 Variation of ICR in body coordinate: effect of �vx magnitude at constant δ

tangent speed [2]. It moves further forward with increasing speed. Note that the
tangent point is not necessarily on the vehicle body and it may go further beyond
the size of actual vehicle body. The tangent point does not go behind the rear axle
when the vehicle is moving forward.

Let us compare characteristic transient maneuvers with ICR map to see how the
magnitude and the rate of change in the inputs affect the location of ICR when
compared to steady-state.

Figure 1.19 shows two different scenarios applied on the same vehicle at constant
steer angle of δ = 2 deg. The first scenario represents an increase of velocity from
vx0 = 10 m/s to vx1 = 25 m/s in 2 s. The second scenario represents an increase of
velocity from vx0 = 10 m/s to vx1 = 30 m/s in 2.7 s. Note that the rate of change in
forward velocity is equal for both scenarios. It is observed that, as the rate is equal in
both cases, the proximity to QSS is almost equal, but the larger magnitude of �vx
in the second scenario causes more time of deviation between transient and QSS.
Hence, the smaller the change in �vx , the lazier the vehicle would be.

Figure 1.20 shows two different scenarios applied on the same vehicle at constant
steer angle of δ = 2 deg. The first scenario represents an increase of velocity from
vx0 = 10 m/s to vx1 = 25 m/s in 2 s. The second scenario represents the same
increase of velocity in 1 s. It is observed that, as the magnitude of change is equal
in both cases, the beginning and end points are the same in both scenarios, but the
larger rate of �vx/�t in the second scenario causes more deviation of transient
from QSS. Hence, the smaller the rate of change �vx/�t , the lazier the vehicle
would be.

Figure 1.21 shows two different scenarios applied on the same vehicle at constant
velocity of vx = 20 m/s. The first scenario represents an increase of steer angle from
δ0 = 1 deg to δ1 = 2 deg in 1 s. The second scenario represents an increase of steer
angle from δ0 = 1 deg to δ1 = 3 deg in 2 s. Note that the rate of change in steer
angle is equal for both scenarios. It is observed that, as the rate is equal in both
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Fig. 1.20 Variation of ICR in body coordinate: effect of �vx/�t rate at constant δ

End 2End 1Start

Fig. 1.21 Variation of ICR in body coordinate: effect of �δ magnitude at constant vx

cases, the proximity to QSS is almost equal, but the larger magnitude of �δ in the
second scenario causes more time of deviation between transient and QSS. Hence,
the smaller the change in �δ, the lazier the vehicle would be.

Figure 1.22 shows two different scenarios applied on the same vehicle at constant
velocity of vx = 20 m/s. The first scenario represents an increase of steer angle from
δ0 = 1 deg to δ1 = 2 deg in 1 s. The second scenario represents the same increase of
steer angle in 0.5 s. Magnitude of change is equal in these cases, the beginning and
end points are the same in both scenarios, but the larger rate of�δ/�t in the second
scenario causes more deviation of transient from QSS. Hence, the smaller the rate
of change �δ/�t , the lazier the vehicle would be.
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Fig. 1.22 Variation of ICR in body coordinate: effect of �δ/�t rate at constant vx

1.3.3 Reference Road Profile

In Sect. 1.3.1, the time response of variables was shown to act very close to
their steady-state solutions at each time sample. This step proves that the primary
responses act lazily. Such a conclusion allowed us to continue a step further and
see how the geometry of turning is affected by examining the location of ICR in
Sect. 1.3.2. The transient location of ICR in body frame was shown to follow the
ICR map with high level of similarity when the steer angle δ is kept constant while
the vehicle accelerates. On the other hand, for variation of δ at constant forward
velocity, the deviation between transient location and the ICR map is not that small.
Although the scale of x in the ICR map plot is much larger than the scale of y,
this deviation needs more investigation to be accepted as reasonably small. For this
reason, in order to come up with a stronger conclusion about similarity of turning
behavior between transient and QSS cases, we may continue one step further and
examine the final path traveled by the vehicle to make a better judgment about the
vehicle’s behavior in turning maneuvers. As the path is, in fact, the coordinates
of the vehicle’s center of gravity in global frame, investigation of the path can be
viewed as an equivalent to analyzing the ICR location in global frame.

In the previous sections, there was a QSS response defined for each pair of inputs
(δ, vx). In case of path, the QSS response will define an expected path with the
given inputs. So, it would be more realistic for applications to start from a given
intended path (instead of an expected path) and derive the required inputs (δ, vx)
which are expected to result in the intended path called the reference road profile.
In fact, it is also highly reasonable to assume vx to be known from the separately
analyzed road in terms of safety considerations. Such safety considerations may
include calculation of suggested speed range as a function of road curvature at any
point on the road.
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For a vehicle to stay on a given road at any time, ICR of the vehicle in global
frame must coincide with the center of curvature of the road at that specific time [8].
As observed in Sect. 1.2, the ICR, whether expressed in body or global coordinates,
moves on a smooth curve as the inputs to the vehicle change. In other words, there
is no jump in the ICR location if the inputs are continuous. As a result, one expects
continuous variation of rotation center of the traveled path as well. This implies that
a feasible road profile must have continuous loci of center of rotation in global
frame. Such a road profile might be feasible to be followed by a vehicle if the
velocity and curvature conditions fit in the achievable limit. Such a feasibility limit
may be translated to the following statement: “If the location of curvature center
fits in the boundaries of Fig. 1.17 at every time, there will be a reasonably accurate
solution for inputs (δ, vx) to make the vehicle stay on the intended road.”

A road with non-continuous loci of curvature center is theoretically impossible
to be followed continuously. Although there will be approximate input solutions to
keep the vehicle in an acceptable error boundary, but since there is discontinuity
in the mathematical solution, the accuracy of path following will drop and sudden
changes of inputs δ and/or vx will also be necessary as an undesirable condition.
Although the overall geometry of roads with continuous curvature do not visibly
vary much from the ones with non-continuous curvature, but the consequences in
vehicle control during maneuvering are critical. Note that different sections of the
road might be tangent to each other, but have discontinuous curvature.

In the remaining sections we first design a proper sample road, and then use it as
a reference road profile for the vehicle to follow.

Clothoid

For design of a road with continuous curvature, we need a mathematical function
that acts as a transition curve between two steady-state curves (two circles or a
circle and a line). Let us assume that the first section of the road is a circular curve
with curvature κ1 = 1/R1 and the second section is another circle with curvature
κ2 = 1/R2. Any of κ1 or κ2 may be zero in case of straight road.

A preferable transition between the two circular sections is the one with a
constant increasing rate for κ with respect to the arc length. Such a transition also
requires that beginning and end points coincide with the circular sections and the
slope of the transition curve and departure and destination curves match each other.
The solution to the constant rate of increase in curvature is the Euler spiral which is
also called a clothoid. The parametric equation for a clothoid is given as [9]:

X(t) = a
∫ t

0
cos
(π

2
u2
)
du (1.80)

Y (t) = a
∫ t

0
sin
(π

2
u2
)
du (1.81)
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Fig. 1.23 Example of the
Euler spiral

where the parameter a which defines the expansion of the curve, if we take t
analogous to time, can be viewed as the speed of the pen that slides on the paper to
draw the clothoid. One may convert the independent variable from t to arc length s
by the following relationship:

s = at (1.82)

The curvature and the slope of the clothoid along its length are also given as [9]:

κ = 1

R
= πt

a
= πs

a2 (1.83)

θ = π

2
t2 = πs2

2a2 (1.84)

An example of a clothoid with a = 200 is plotted for −5 < t < 5 in Fig. 1.23 which
is a representation of the Euler spiral.

Integrals of (1.80), (1.81) are known as Fresnel cosine and Fresnel sine integrals.

Sample Road 1

The first road profile is a road with a circular beginning with radius R1 = 160 m
and a second circular section with radius R2 = 80 m at the end. These radii
are calculated to approximately match the first scenario in Fig. 1.21. We start by
calculating the transition clothoid and then match the circular paths with it, for
simplicity. Assuming a constant value for a = 200 and using (1.83), (1.84),
the clothoid expressions may be found by the following procedures to match the
calculated curvatures in the beginning and at the end of the transition:

t1 = κ1a

π
= a

πR1
= 0.398, t2 = κ2a

π
= a

πR2
= 0.796 (1.85)
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θ1 = π

2
t21 = 0.249 rad, θ2 = π

2
t22 = 0.995 rad (1.86)

X(t) = 200
∫ t

0
cos
(π

2
u2
)
du (0.398 ≤ t ≤ 0.796) (1.87)

Y (t) = 200
∫ t

0
sin
(π

2
u2
)
du (0.398 ≤ t ≤ 0.796) (1.88)

The centers of the curvatures at the beginning and at the end of the clothoid are
located at:

XO1 = X(t1)− R1 sin θ1 = 39.71 m YO1 = Y (t1)+ R1 cos θ1 = 161.65 m
(1.89)

XO2 = X(t2)− R2 sin θ2 = 77.02 m YO2 = Y (t2)+ R2 cos θ2 = 92.74 m
(1.90)

Assuming the same t and a for the circular sections, the parametric equations of
the circular sections are given as:

X(t) = XO1 + R1 cos

(
at

R1
+ α0

)
(t0 < t < 0.398) (1.91)

Y (t) = YO1 + R1 sin

(
at

R1
+ α0

)
(t0 < t < 0.398) (1.92)

X(t) = XO2 + R2 cos

(
at

R2
+ β0

)
(0.796 < t < t3) (1.93)

Y (t) = YO2 + R2 sin

(
at

R2
+ β0

)
(0.796 < t < t3) (1.94)

Intersecting the curves described in (1.87), (1.88) and (1.91), (1.92) at t = t1 and
doing the same for curves (1.87), (1.88) and (1.93), (1.94) at t = t2 provides us with
the values of α0, β0. We may then manually define the beginning point at t0 = −1
and the end point at t3 = 3 of the total road. Note that the independent variable
t in the road design is different from the time it takes for the vehicle to travel the
path and it is only used to create the reference path; thus, t might even take negative
values as in here.

α0 = −1.82 rad (1.95)

β0 = −2.57 rad (1.96)

t0 = −1 (1.97)

t3 = 3 (1.98)
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Fig. 1.24 Actual path of motion versus the reference road profile for road 1

Finally, the set of curves described in (1.87), (1.88) and (1.91)–(1.94) are used
to draw the reference road profile sample road 1 as shown in Fig. 1.24. Center of
curvature in global frame at any point is also found and plotted from:

XO(t) = X(t)− R(t) sin θ(t), YO(t) = Y (t)+ R(t) cos θ(t) (1.99)

where θ(t) and R(t) are the slope and the radius of the curve at each point which
depend on type of the curve at each section.

Sample Road 2

To further evaluate the idea, we introduce another road profile which generates a
more complicated maneuver. Assume a straight road which eventually starts to bend
in until it merges with a circular path. The road continues to almost complete a circle
and then starts to decrease its curvature until it reaches back to its straight position
so that it continues the same straight line in the beginning as shown in Fig. 1.25.
Such a road is a good example for evaluating laziness of vehicles in maneuvering;
if the calculated inputs to the vehicle cause considerable error, the vehicle will not
get back to its initial orientation at the end of the road and we will observe an angle
made between the initial and the final directions of motion.

The derivation of the road profile is similar to section “Sample Road 1”. The
second half of the profile may be calculated using a symmetry about the middle
axis passing through the center of the circle. To be concise, the derivations are not
described here and only the final equations of the curves are given:
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Fig. 1.25 Actual path of motion versus the reference road profile for road 2
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Y (t) = 0 (t > 3.78) (1.107)
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1.3.4 Actual Path

The first step in determining the vehicle’s path is to calculate the radius of curvature
of the road at each point. Radius of curvature is calculated from (1.83) for clothoid
sections and is a constant value for circular sections. The intended center of
curvature at every point of the road may be translated into a desired ICR in body
frame as in the ICR map in Fig. 1.17, if an allowable range of side-slip angle β
is known as shown in Sect. 1.2.2, which can be used to solve for a non-unique
pair of inputs (δ, vx). In another approach, a constant velocity vx may be assumed
throughout the road by making sure that the centripetal acceleration required ac ≈
v2
x/R does not exceed the feasible limit of the vehicle. Then, the only unknown to

be calculated is the steer angle δ and the problem is solved by obtaining a vector
of δ associated with the vector of time t or distance traveled s. This may be done
geometrically using Fig. 1.17 or using the curvature response Sκ from (1.40).

In this section, for road 1, we use the same constant velocity of vx = 20 m/s used
in maneuver 1 of section “Manuver 1: Increasing Velocity”. For road 2, we select
the constant forward velocity of vx = 22 m/s considering the fact that the maximum
centripetal acceleration required during the circular motion would be ac ≈ v2

x/R =
4.84 m/s2 which is below the limit of 4.91 m/s2.

Figure 1.24 and 1.25 show the actual path of the vehicle on road 1 and road 2 by
inputting the steer angle calculated from the steady-state response. The location of
ICR in global frame is also plotted with is calculated from (1.48), (1.49). It can be
seen that the path of motion is very close to the reference road in both cases. These
results show that there is a great agreement between path of motion of transient and
QSS responses. It also shows that steady-state responses are well-suited for control
of the vehicle and keep it on the road on properly designed roads, proving laziness
of vehicles in turning maneuvers.

The maximum perpendicular distance (error) between the path and the road for
road 1 is around 1 m and for road 2 is around 1.5 m which are negligible compared to
the radii of roads. It also shows that the vehicle will almost stay inside the intended
lane, which is typically around 3 m wide.

It is important to note that there is a visible difference between the center of
curvature of the road and global ICR location which is almost eliminated in the path
of motion. Such a deviation in rotation centers is due to the fact that the heading
direction of the vehicle is not necessarily tangent to the road. In other words, there
is a nonzero side-slip angle β present, as expected from Fig. 1.10, that causes ICR
to rotate on a circle instead of staying at a fixed point, at steady-state. The value
of the side-slip angle is dictated by the imposed forward velocity vx as discussed
in Sect. 1.3.2; however, radius of rotation of the vehicle and the path are equal at
steady-state. Figure 1.26 shows this in more detail in an exaggerated manner.

To see the effect of reference velocity vx on the imposed side-slip angle β and
ICR deviation from road center of curvature, we may conduct the same simulation
on road 1 with different forward velocities and plot them together as shown in
Fig. 1.27.
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Fig. 1.26 Detailed view of the side-slip angle while maneuvering on the road

Fig. 1.27 Effect of vx on side-slip angle β and ICR deviation

It can be seen in Fig. 1.27 as the velocity gets closer to the zero side-slip velocity
explained in Sect. 1.3.2, the deviation of ICR from road center of curvature is
decreased, implying that the vehicle is moving with more similar heading direction
to the road. The side-slip angle is positive for vx = 10 m/s, zero for vx = 15 m/s,
and negative for vx = 20 m/s.
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1.4 Summary and Conclusions

The objective of this chapter was to show how close vehicles act to their steady-state
when undergoing a transient maneuver in normal driving conditions. The well-
known bicycle model was chosen to simulate vehicle behavior as it has proven to
be a reasonable approximate modeling for normal driving conditions with relatively
low accelerations and slip angles. Detailed equations of motion of the bicycle model
were given in Sect. 1.1 and steady-state solutions were extracted and summarized in
Eqs. (1.21)–(1.24) and (1.40). Calculations of curvature, turning radius, the location
of instantaneous center of rotation, and the calculation of path of motion were
explained in Sect. 1.2.

In Sect. 1.3.1, transient and quasi-steady-state solutions were compared in time
domain for two main transient maneuvers which reveal the overall behavior of the
vehicle variables in time domain and also in inputs’ domain using surface maps. The
similarity between the transient and quasi-steady-state responses were promising,
except vy response when δ was increasing, and we concluded that overall vehicle
behavior is lazy in turning maneuvers between two steady-states, as the major
activity in normal driving.

Investigation on the laziness of vehicles needed more evaluation on the next level
of vehicle response, namely the location of instantaneous center of rotation. This
investigation was performed in Sect. 1.2 by calculating body and global expressions
of the point. A useful chart was presented in Sect. 1.3.2 as the “ICR map” of a
vehicle. The concept of tangent point was explained in detail, clarifying the quality
of turning maneuver with geometrical expressions. Examples of basic transient
maneuvers were also investigated on the “ICR map” and it was found that the
vehicles also act lazy in that regard, specially when forward velocity changes at
constant steer input.

For better understanding the vehicle’s behavior when the steer angle changes,
road profile and its creation as an expected path of motion were discussed in
Sect. 1.3.3 and two sample roads were designed. Such road profiles enabled us
to apply an open loop steering control algorithm based on steady-state responses
and the results were satisfying, justifying that vehicles are lazy during turning
maneuvers in normal driving conditions. It was also found that although the
instantaneous center of rotation of the vehicle and the curvature center of the road
may not exactly coincide because of the velocity and side-slip relation, the path-
following error is kept minimum. It is important to note that such a conclusion
does not imply that vehicle path following can be simply achieved by an open-
loop control strategy, as vehicles may be driven at more severe circumstances at
specific moments. Also, the availability of road and vehicle data, vehicle variable
measurements, etc. with high-certainty is not guaranteed, the vehicle model might
include unmodeled dynamics, and roads might be imperfectly designed.

As a result, it is concluded that steady-state responses, including the maps pre-
sented in this document, may be used as a feed-forward strategy to strongly enhance
control quality with high accuracy; second usage of steady-state responses is to get
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insight about vehicle’s maneuvering behavior and possible operating ranges; another
important usage is to design roads based on steady-state characteristic of vehicles.
In parallel to steady-state feed-forward control, a feedback control is always needed
to compensate for errors caused by different sources including uncertainties and
unmodeled dynamics. Such a feedback control in a path-following strategy might
be tuned to keep the vehicle in a boundary around the road profile at each time
instant, such as a lane width.

List of Symbols

αi Tire side-slip angle for tire number i
βi Body side-slip angle at the center of wheel number i
vx Longitudinal velocity of center of gravity in body frame
vy Lateral velocity of center of gravity in body frame
vyi Lateral velocity of wheel center i in body frame
v Total velocity of center of gravity
δ Steer angle
Cαi Cornering stiffness of tire number i
m Vehicle’s mass
a1 Distance from center of gravity to front axle
a2 Distance from center of gravity to rear axle
l Wheelbase
Iz Yaw moment of inertia
Fyi Lateral force of tire number i
Fy Total lateral force at center of gravity
Mz Total yaw moment at center of gravity
Sy Lateral velocity response
Sr Yaw velocity response
Sβ Side-slip response
Sa Lateral acceleration response
Sκ Curvature response
ax Forward acceleration in body frame
ay Lateral acceleration in body frame
ac Centripetal acceleration
K Stability factor
R Radius of curvature
κ Curvature
GRB Rotation matrix from body to global frame
x0, y0 Coordinates of instantaneous center of rotation in body frame
X0, Y0 Coordinates of instantaneous center of rotation in global frame
XC, YC Coordinates of center of gravity global frame
X, Y Road profile coordinates in global frame
XO, YO Coordinates of road center of curvature in global frame
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Chapter 2
Artificial Intelligence and Internet
of Things for Autonomous Vehicles

Hamid Khayyam, Bahman Javadi, Mahdi Jalili, and Reza N. Jazar

2.1 Introduction

Artificial Intelligence (AI) is a machine intelligence tool providing enormous
possibilities for smart industrial revolution. It facilitates gathering relevant
data/information, identifying the alternatives, choosing among alternatives, taking
some actions, making a decision, reviewing the decision, and predicting smartly.
On the other hand, Internet of Things (IoT) is the axiom of industry 4.0
revolution, including a worldwide infrastructure for collecting and processing
of the data/information from storage, actuation, sensing, advanced services and
communication technologies. The combination of high-speed, resilient, low-latency
connectivity, and technologies of AI and IoT will enable the transformation towards
fully smart Autonomous Vehicle (AV) that illustrate the complementary between
real world and digital knowledge for industry 4.0. The purpose of this book chapter
is to examine how the latest approaches in AI and IoT can assist in the search for
the AV. It has been shown that human errors are the source of 90% of automotive
crashes, and the safest drivers drive ten times better than the average [1]. The
automated vehicle safety is significant, and users are requiring 1000 times smaller
acceptable risk level. Some of the incredible benefits of AVs are: (1) increasing
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vehicle safety, (2) reduction of accidents, (3) reduction of fuel consumption, (4)
releasing of driver time and business opportunities, (5) new potential market
opportunities, and (6) reduced emissions and dust particles. However, AVs must use
large-scale data/information from their sensors and devices.

The complexity of AV data/information (processing 1 GB per second) is
increasing which is used for Advanced Driver Assistance Systems (ADAS) and
entertainment. Therefore, it is needed to grow hardware and software requirements,
which use sensors, actuators devices and software, to compete the functions similar
to the superhuman brain as aimed through AI. AV sensors and devices produce
data containing information such as time, date, motion detection, navigation, fuel
consumption, voice recognition, vehicle speed with acceleration, deceleration,
cumulative mileage, voice search, recommendation engines, eye tracking and driver
monitoring, image recognition, sentiment analysis, speech recognition and gesture,
and virtual assistance. The total data is thus over a 100 terabyte per year for 100,000
vehicles [2, 3].

This data is predictable to increase further due to the growing adoption of
Connected Vehicles (CVs). The ascension of the AV brings new opportunities for
industrial manufacturers and dealerships, enabling companies to use AI to increase
value for their customers. When it comes to processing this data/information by AI,
the most efficient approach is to use Machine Learning (ML) algorithms. The ML
algorithms help form behavioural patterns for certain driver profiles and also offer
vehicle owners exactly what they need both in the vehicle and through their mobile
phones via a corresponding application. They accomplish this by remembering their
behaviour and analysing their driving history and the situation on the road.

Although AI can handle the AV big data, some of the extra data conditions, such
as traffic, pedestrians, and experiences, will need to be collected through various
IoT networks, such as Local Area Network (LAN), Wide Area Network (WAN),
Wireless Sensor Network (WSN), and Personal Area Network (PAN). This huge
data/information needs to have some substances, such as embedded electronics
devices, sensors, vehicles, buildings, software, and network connectivity, that enable
them to collect and share the data. These IoT-enabled AVs utilize a number of
integrated devices to provide many real-time assistance such as improving safety,
reduction of fuel consumption, and security for a vehicle. Both IoT and automotive
industry 4.0 will be transformed to provide a big boost through reducing machine
failure, improving quality control, increasing productivity, and lowering costs at
the same time. The potential and the predictions of IoT technology is astonishing.
A report by Morgan Stanley Research [4] shows that at least nine industrial
manufacturers will benefit from AVs through providing a number of superior
technology, key features, and services:

(1) Original Equipment Manufacturers (OEM), (2) Auto dealers, (3) Autonomous
trucks, (4) Chemical engineering, (5) Electric utilities, (6) Semiconductor, (7)
IT hardware-software, (8) Telecom and communications, and (9) Beverage and
restaurant sectors.

This chapter observes the technical trend towards AV with some discussion about
key issues and challenges faced by the automotive industry and Sect. 2.2 explains
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the AI field in detail with their approaches. In Sect. 2.3, the AV is described with
challenges and opportunities. In Sect. 2.4, the IoT network including cloud and edge
computing is demonstrated that allows us to use the generated huge amounts of data
from networked and connected devices. Finally, the combination of AI approaches
and IoT for AVs is concluded.

2.2 Artificial Intelligence (AI) Approaches

AI is a field of computer science and engineering used for different smart appli-
cations aiming to make intelligent machines. AI works and responds like humans,
intelligently and independently through learning from experience and adjusting to
new participations.

2.2.1 Introduction to Artificial Intelligence: Benefits
and Challenges

The trend of industrial revolution such as technologies, automation, and data
exchange is shown in Fig. 2.1. Current industries have new challenges in terms
of competition and market demand and they must take radical change to Industry
4.0 evolution. Artificial Intelligence (AI) is one of the capabilities that enables
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2nd Industrial 
Revolution 

3rd Industrial 
Revolution 

4th Industrial 
Revolution 
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Fig. 2.1 The fourth industrial revolution
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improved decision dynamics and better decision precision for industry 4.0, resulting
in better business performance, reducing machine failure, improving quality control,
increasing productivity, and lowering costs. AI has a number of benefits including:
(1) using data to automate learning, (2) enhancing the intelligence abilities to current
products, (3) adapting intelligent learning algorithms to do the programming by
the data, (4) analysing rationally of data, and (5) improving data accuracy [5].
Although AI most likely changes today’s world, it has its own limitations. The
biggest challenges of AI are about learning from the experience, and there is no
way that the knowledge can be incorporated in the learning. Besides that, any
inaccuracies in the data will be reflected in the results and are very challenging.

2.2.2 Artificial Intelligence: History and Approaches

AI is based on combining large amounts of data. It processes the data very fast with
iterative processing through the intelligent algorithms, which allow the software to
learn from features or patterns of the data. AI has become more widespread since
recently it substantially decreased the vision error (less than 5%) in comparison with
human vision error as shown in Fig. 2.2 [6, 7].

The history of AI began in antiquity, but it was introduced by John McCarthy in
1950s. A brief evolution of AI is schematically shown in Fig. 2.3 [8]

AI was invented in three main areas: (1) Neural Networks (NNs) from 1950s to
1970s that were mainly focused based on stirs excitement for ‘thinking machines’,
(2) Machine Learning (ML) from 1980s to 2010s that became popular approaches of
AI, and (3) Deep Learning (DL) at the present decade that drives the breakthroughs.
Our schematic diagram of AI approaches is shown in Fig. 2.4. As can be seen,
in general, AI can be divided into three main fields: symbolic learning, statistical
learning, and machine learning. These and briefly explained as follows:

Symbolic Learning: Symbolic learning is based on human readable symbols
of logic, problems, search and the symbolic learning rules, which are created

Fig. 2.2 The vision error rate
(%) from human and AI
algorithm [7]
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through human intervention. Mixtures of symbols with their interrelations is called
reasoning. In order to construct a symbolic reasoning, humans start to learn the rules
of the phenomena relationships, and then the code of those relationships transfer
into a program. Symbolic learning can be divided into cognitive computing and
computer vision.

Statistical Learning: Statistical learning is mathematics intensive and deals with
the problem of finding a predictive function based on data. It involves forming a
hypothesis before proceeding to building a model. Statistical learning relies on rule-
based programming and is formalized in the form of relationship between variables.
Statistical learning is also based on a smaller dataset with some attributes, operates
on assumptions, such as normality, no multi-collinearity, and homoscedasticity.
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Machine Learning: Machine Learning (ML) creates and automates analyti-
cal/numerical models and algorithms that can be used to improve the system
performance in a specific task. ML uses approaches from heuristic methods,
operations research, and statistics, and finds hidden insights in data without
explicitly being planned where to look or what to accomplish. The major ML
subfields are unsupervised, supervised, and reinforcement learning, which are
explained as follows:

Unsupervised Learning: Unsupervised learning is a group of understanding data
created based only on input data. One of the unsupervised learning techniques is
clustering that involves the grouping of data points through a set of data points.
The clustering algorithm can classify each set of data points into a cluster group
(see Fig. 2.5a).

Supervised Learning: Supervised Learning (SL) develops a model to predict based
on input and output data. SL approaches can be divided into: (1) Regression that
is an approach to find the relationship between variables. In machine learning,
this is used to predict the outcome of an event based on the relationship between
variables obtained from the dataset (see Fig. 2.5b). (2) Classification that is
trying to identify to which of a set of categories for a new observation belongs
accurately and it also attempts to predict the target class for each category of the
data (see Fig. 2.5c).

Reinforcement Learning: Reinforcement Learning (RL) is a new AI technology
based on decision-making that will help AI to advance extremely into the area
of machine learning of the real world. A brief comparison of unsupervised,
supervised, and reinforcement learning are listed in Table 2.1.

RL uses an agent that learns interactively with the environment through trial-
and-error response from its experiences and own actions. Fig. 2.6 shows a simple
(RL) framework that can solve the decision problem by using a sequential decision
problem through interactive to measure of the feedback performance [9]. In general,
RL tries to find a decent mapping that defines perceptions to do any actions for

Fig. 2.5 A sample unsupervised and supervised learning methods: (a) clustering, (b) regression,
and (c) classification
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Table 2.1 Comparison methods of machine learning

Unsupervised learning Supervised learning Reinforcement learning

Model affection Model does not affect
the input data

Model does not affect
the input data

Agent can affect its
own observations

Learning structure Learning underlying
data structure

Learning to
approximate reference
answers

Learning optimal
strategy by trial and
error

Feedback No feedback required Needs correct answers Needs feedback on
agent’s own actions

Fig. 2.6 A simple
reinforcement learning
framework

Environments Agent

Actions at

Observations st+1

Rewards rt+1

addressing situations for the decision-maker cooperating with an environment. RL
is a powerful method to speed up initial learning with remarkable results [10, 11]
that has become popular within the community of computer science, automation,
control, and mechatronics, and recent years have perceived to widely use especially
to solve the multi-agent problems.

The RL can be mathematically formulated as follows. The environment is a
current state s out of a set S, and the agent action is a subset of an action set A,
where S: S × A → S and R: S × A → R, action a in state s, the state S(s, a), a
reward R(s, a).

The goal function is to learn a policy function p: S → A, by choosing actions that
maximize expected future rewards. This is typically done by defining a discount
factor γ ∈ [0, 1), used to scale future rewards in the total value of a policy:

V p(s) =
+∞∑
k=1

γ k−1rk = r1 + γ r2 + γ 2r3 + · · · (2.1)

where rk is the reward obtained after k steps, starting from state s and following
policy p thereafter.

2.2.3 State of the Art of Artificial Intelligence Approaches

One of the new powerful and flexible machine learning that represents the world
with hierarchy of implications with more abstract representations is Deep Learning
(DL).



46 H. Khayyam et al.

Deep Learning

In most of machine learning techniques, in order to reduce the complexity of the
data and make patterns more visible to learning algorithms to work, the applied
features need to be identified by a domain expert. The main gain of Deep Learning
(DL) algorithms are to learn in high-level features from data in an incremental way
[12]. DL is based on conception, perception, and decision-making. It uses huge
neural network layers by using many processing units that has many advantages
of advances to improve training techniques for learning complex patterns in lots
of data. Common complex engineering applications include activity recognition,
video labelling, image, speech recognition, object recognition, and several types.
DL is also transmitting significant inputs to other areas of perception, such as audio,
speech, and natural language processing.

Deep Reinforcement Learning

Although AI has many successful approaches, the essential technology of AI is
the combination of deep learning and Reinforcement Learning (RL) which produce
inspiring results in learning. Deep RL approach extends reinforcement learning
by using a deep neural network and without explicitly designing the state space
[13, 14]. Thus, Deep RL refers to goal-oriented algorithms to open up many new
applications in areas such as engineering, and many more.

2.3 Autonomous Vehicle

2.3.1 Introduction

An Autonomous Vehicle (AV) is a vehicle that can guide itself, as opposed to being
controlled by human. The AV is a kind of driverless vehicle that has become in
reality and is the art of driving using computers for future. AVs have been targeted
due to: (1) increasing vehicle safety, (2) reduction of accidents, (3) reduction of
fuel consumption, (4) releasing of driver time and business opportunities, (5) new
potential market opportunities, and (6) reduced emissions and dust particles. It is
planned that around ten million AVs will be on to the roads by 2020 and is expected
that AVs produce $7 trillion annual revenue stream by 2050 [15].

2.3.2 Automated Vehicle: Levels and History

Vehicles have six levels for Advanced Driver Assistance Systems (ADASs) for
automated vehicles. The journey level of automation to fully autonomous vehicle
as shown in Fig. 2.7 are: Level zero—no automation and the human executes
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Fig. 2.7 The journey of automation to fully autonomous vehicle

to operate all the dynamic driving tasks like accelerating or slowing down,
steering, braking, and so forth. Level one—driver assistance by system of either
acceleration/deceleration or steering using information about driving conditions.
Level two—partial automation of vehicle which combined automated functions
both acceleration/deceleration and steering. Level three—conditional automation
of the driving mode that is precise performance by an automated driving system
when the driver response to request. Level four—high automation is the vehicle
capable of performing all driving functions under certain conditions even if a human
driver does not reply to a request. Level five—complete automation is the vehicle
accomplished to perform all driving jobs/functions under all conditions [16].

In level four and five, AVs are capable of performing all driving functions by
conjunction of many systems and sensors with each other to control a driverless
car. Table 2.2 listed the six levels of automated vehicle including the ADAS
technologies, sensors, and actuators (detailed in section “AV Objective Sensors”)
which have been constructed so far [16].

The idea of Autonomous Vehicles (AVs) is started from 1930s when science
fiction writers visualized and innovated the self-driving cars as a new challenge for
automotive industries. A brief history of autonomous driving is listed in Table 2.3.

In the near future, AV will reach fantastic human performance for competences
compulsory for driving by using the sensing algorithms. Intelligent perception
is close to do human tasks such as recognition, localization, path tracking, and
tracking for the AV. A new report predicts AVs will be widely adopted by 2020
and the adoption of AV competences won’t be restricted to individual transportation
[17]. As of 2016, many countries such as the USA (Nevada, Florida, California,
and Michigan states), Canada, France, the United Kingdom, and Switzerland have
approved some laws and regulations for the testing of AVs on public roads.

2.3.3 Autonomous Vehicle: Key Issues and Complexities

In general, Autonomous Vehicle (AV) needs autonomous mobile navigation to find
its: (1) localization, (2) map building, (3) path planning, and (4) path tracking. In
addition, it is required the AV obstacle avoidance through detection and classifica-
tion.
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Table 2.3 A brief history of autonomous driving by various research and development projects

Year Companies/projects Activity

1925 Houdina Radio Control Demonstrates a radio-controlled
‘driverless’ car

1939 General Motors Exhibit ‘Futurama’ model
1949 RCA Begin the technical explorations
1950s General Motors /RCA Research collaborative a large project
1950s General Motors The concept car called Firebird II
1956 General Motors The Firebird II exhibited is equipped

with receivers for detector circuits in
roadways

1958 Chrysler The first car with cruise control called
imperial

1960s Kikuchi and Matsumoto Wire following in Japan
1964 General Motors Futurama II exhibit
1964 OSU Research by Fenton
1970s Tsugawa Vision guidance in Japan
1979 Stanford Cart Used a video processing to navigate a

cluttered room without human input
1980s Dickmanns Vision guidance in Germany
1986 California PATH and PROMETHEUS Programs start
1994 PROMETHEUS Demo in Paris
1995 VaMP Autonomous vehicle drivers (almost)

completely autonomously for 2000 km
1995–1998 National AHS Consortium Demo ‘97
2003 PATH Automated bus and truck demos
2004–2007 DARPA Grand challenges is founded to

incentivise autonomous vehicle
development

2009 Google Self-driving car project begins
2015 Tesla Release its Autopilot software update
2016 Google Self-driving car has its accident
2017 General Motors Plans to include autonomous controls in

the Bolt and Super cruise in Cadullic
Ct6

2017 Volvo Plans to launch 100 self-driving vehicles
to customers

Some of mobility key issues of AVs are: (1) Software accuracy and fail proof
software is needed to make sure no problems will happen, (2) Map completeness
and correctness through improved features on maps with some additional details
such as identifying the surrounding objects and generating some virtual maps
to assist the AVs in finding the correct way and looking at dynamic obstacles
(pedestrians and vehicles), (3) Sensor fusion and estimation to sense diverse
unpredicted conditions to calibration be able to distinguish between very dangerous
situations from those less dangerous are needed.
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Fig. 2.8 The complexity situation awareness of autonomous vehicle caused by using multi-
sensors

The sensors, awareness area, architecture, and software of AVs become quite
complex due to the difficulty of the tasks. Among the above AVs issues, currently
sensors cannot process quickly to distinguish dangerous situations. A variety of
sensors and devices are required in order to keep the vehicle on path and avoid
obstacles. The huge information then generate the situational awareness of the
vehicle and its surroundings and make appropriate decisions while driving (Fig. 2.8).
The combination of sensors with different situational awareness, failures, and real-
time response shows the AVs complexities that they need to have a comprehensive
software. One approach to reduce complexity of AVs is logical development of
actions. Additional approach is to minimize the amount of state information and
the duration of the retaining of information. A limited inputs data to the AV system
make its behaviour more deterministic. Nonetheless, the main difficulty to reduce
data is that the vehicle has limited ability to navigate and manoeuvre. Therefore,
there are many AV challenges to be considered and can be solved through a design
of AV system architecture and software.

AV Objective Sensors

The AV objective sensors are:

Ultrasonic: The sensor uses sound waves with high-frequency that bounce back to
measure the objective distance of a vehicle. It releases sound waves (50 kHz) and
listens for bounce back. Then it calculates to determine range based on time-of-
flight.
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Cameras: Cameras detect the real-time obstacle to enable lane departure and track
roadway information (similar to road signs). An image created from camera
includes a huge array of values of individual pixels taken individually; these
numbers are almost worthless. The image must be understand by conversion
of low level information image information into high-level image information
by using computer vision algorithms. Computer vision includes analysis of
signals from: (a) thermal sensors, (b) cameras, (c) laser range finders, (d) X-
ray detectors. Computer vision has three components: (1)Segmentation is where
the physical objects are, (2) Classification is what these objects are, and (3) 3D
reconstruction is estimating ranges from 2D pictures.

Radar: The sensor releases radio waves that detect short- and long-range depth.
Radar sensors dotted around the vehicle monitor the position of vehicles nearby.
The radar emits a radio signal (green) which is scattered in all directions (blue).
The time-of-flight t for the signal returns the signal to the radar and gives the
distance d.

LiDAR: This sensor measures the distance by target brightness with pulsed laser
light and measures reflected pulses with sensors to create 3D map of area. LiDAR
sensors help to detect the boundaries of roads and identify lane markings by
active pulses of light off the vehicle’s environments.

DSRC: Dedicated Short-Range Communications (DSRC) is one-way or two-
way short-range to medium-range wireless communication channels precisely
designed for vehicle use and a consistent set of standards and protocols.
DSRC can use as 4G, Wi-Fi, Bluetooth, etc. to Vehicle to Infrastructure (V2I)
communication, Vehicle-to-Vehicle (V2V), and Vehicle-to-everything X (V2X).
The suitable device is to have lowest latency.

AV Pose Sensors

A vehicle has (at least) six degrees of freedom stated by the pose: (x, y, z, ϕ, θ , ψ)
shown in Fig. 2.9 and AV needs to have some sensors,

Where position = (x, y, z) and attitude: roll is the angle between y′ and the x–y
plane, −π < ϕ < π , which is the angle between x′ and the x–y plane −π < θ < π , and

z z

y
roll

pitch

Rear view Left view

θ ψ

φ

z' x'y'
y

yaw

Top view

z'x'

x x
y'

Fig. 2.9 Six degrees of freedom of vehicle dynamics
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yaw is the angle between x and the projection of x′ on the x–y plane. −π < ψ < π
as shown in Fig. 2.9.

GPS: Triangulates position for a moving receiver: latitude, longitude, altitude, and
also speed and direction of movement can be estimated position of vehicle using
satellites. Current GPS technology is limited to a certain distance.

Wheel Odometry: It computes changes in the 2D-pose (x, y, θ ) from vehicle
steering angle and velocity (steering angle from angle sensor and velocity from shaft
encoders or speed sensor), it also translates steering angle and velocity to kinematics
equations (x, y, θ ).

Accelerometers: A variant for measuring change in position (x, y, z) and force F.

Gyroscopes: Measures rotation with one, two, or three degrees of freedom. It
estimates (ϕ, θ , ψ) by summing up gyroscope rotations.

The foremost above AV issues is sensor fusion, as AV needs to have multi-various
homogeneous as well as heterogeneous sensors for detection and identification of
AV’s objectives which are compulsory to design AVs.

Vehicle Dynamics: While pose sensors to be developed rely only on the kinematics
of vehicle motion, a dynamic model is required for validating the vehicle perfor-
mance. The lateral dynamics of a vehicle in the horizontal plane are represented
here by the single track, or bicycle model with states of lateral velocity, uy, and
yaw rate, r. The bicycle model (see in Fig. 2.10) is a standard representation in the
area of ground vehicle dynamics and has been used extensively in [18, 19]. While
detailed derivation and explanation can be found in many textbooks [20, 21], the
underlying assumptions are that the slip angles on the inside and outside wheels are
approximately the same and the effect of the vehicle roll is small.

Fig. 2.10 Bicycle model [21]
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Data Fusion

As mentioned in the above section, the local situational awareness of Autonomous
Vehicle (AV) mostly depends on extracting information from a variety of sensors
(e.g. camera, LiDAR, Radar) each of which has its own operating conditions
(e.g. lighting, range, power). One of the open issues in the reconstruction and
understanding of the environment of AV is how to fuse locally sensed data to
support a specific decision task such as vehicle detection [22]. Sensor fusion is a
software for combining data from multi-sensors for the determination of improving
system performance. The accuracy independent vehicle position and orientation of
combining data from the separated sensors will be calculated [23].

Data fusion techniques can be categorized into the following methods:

• Estimation: The method optimally performs the estimation task by using a well-
defined statistical framework [24] such as: (1) Weighted Averaging (WA) and (2)
Kalman Filtering (DF) [25].

• Classification: It can be used in order to solve classification problems. The
challenge is to partition a multi-dimensional feature space into distinct regions
where each represents a specific class (group) such as: (1) Density Estimation
(DE), (2) K-Nearest Neighbour, (3) Discriminant Analysis (DA), (4) Support
Vector Machines (SVM), (5) Decision Trees (DT)[26].

• Inference: This method sets up a further category of fusion techniques based on
probability theory such as: (1) Naive Bayesian Inference (NBI), (2) Dempster-
Shafer Evidential Reasoning (DSER) [26].

• Artificial intelligence: These approaches are based on heuristic methods such as:
(1) Fuzzy logic (FL), (2) Artificial Neural Networks (ANN)[27].

Table 2.4 provides[28] a coarse overview of the advantages and disadvantages
of the selected algorithms concerning the applicability to embedded real-time
processing.

2.3.4 Recent Autonomous Vehicle Developments

Current vehicles use a wide variety of sensing competences. Moderately, these
days a vehicle has seventy sensors including ambient light sensors, accelerometers,
gyroscopes, and moisture sensors in the USA [29]. Vehicle sensors are not new
components and they were constructed before 2000; the sensors were used for the
internal state of the vehicle such as its wheel position, acceleration, and speed.
Vehicles already had a number of functionalities such as Anti-lock Braking Systems
(ABS), Airbag Control (AC), Traction Control Systems (TCS), and Electronic
Stability Control (ESC) for combining real-time sensing with perception and
decision-making. The recent commercialized automated competences functions are
listed in Table 2.5.
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Table 2.4 Overview of advantages and disadvantages of selected algorithms of fusion data [28]

Methods Advantages Disadvantages

K-Nearest Neighbour
(KNN)

Notable classification results
No (re)training phase
Distance metrics
Error probability bounded

Time consuming
Classification time
Memory utilization
Finding optimal k no online
learning

Mahalanobis Distance
Classifier (MDC)

Notable classification results
Approximative online learning

Estimation of statistics
Complex matrix ops

Linear Discriminant
Analysis (LDA)

Linear decision boundary
Fast classification
Fast parameter estimation
online learning

Gaussian assumptions
Training time
Complex matrix ops

Quadratic Discriminant
Analysis (QDA)

Quadratic decision boundary
Fast classification
Fast parameter estimation
Online learning

Gaussian assumptions
Training time
Complex matrix ops

Naive Bayes Classifiers
(NBC)

Fast execution ability
Fast classification
Online learning

Gaussian assumptions

Artificial Neural
Networks (ANN)

Fast execution ability
Fast classification
Arbitrary decision boundaries
Online learning

Training time
Use of heuristics

SVM Fast execution ability
Fast classification
Online learning

Training time
Limited decision boundaries

Table 2.5 Recent AV automated functions [29]

Context Automated functionality Date

Parking Intelligent Parking Assist System Since 2003
Parking Summon Since 2016
Arterial & Highway Lane departure system Since 2004 in North America
Arterial & Highway Adaptive cruise control Since 2005 in North America
Highway Blind spot monitoring 2007
Highway Lane changing 2015

The automated functionalities help drivers or totally take over well-defined
actions for increased comfortability and safety. Current vehicles can perform
adaptive cruise control on highways, park themselves, alert drivers about objects
in blind spots during lane changes and steer themselves during stop-and-go traffic.
Vision and radar technology are used to avoid collision by autonomously brake
when risk of a collision is detected for vehicles. By using deep learning, vehicles
are able to detect objects in the environment and recognize sound [29].
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The automotive industry aimed to continuously develop Autonomous Vehicle
(AV) in the last few years [30]. Around 46 private companies work in auto tech
on Autonomous Vehicle (AV). A report by Gartner shows that it is expected that
by 2020 around 250 million vehicles will be connected with each vehicle, Vehicle
to Everything (V2X) or Vehicle to Infrastructure (V2I) systems [30]. Therefore,
vehicles will be able to capture and share not only vehicle’s situations and location
data but also the road conditions (such as weather, traffic congestion and accidents,
road geometry, wind...), completely in real time. Although AVs are equipped with
sensors and cameras, but the communication systems enable the AVs to generate
enormous amounts of data and information. Some of the recent vehicle hardware
and software developments are briefly given as follows [31]:

1. Keolis and NAVYA (2017), in partnership with the city of Las Vegas, launched
the first autonomous, fully electric shuttle to be deployed on a public roadway in
the United States (2017).

2. Toyota (2018) announces ‘e-Palette’ concept vehicle which is a fully electric
autonomous vehicle that can be customized by a partner for applications such as
food deliveries (Pizza Hut), ride-sharing (Uber), or store fronts (Amazon).

3. Udelv (2018), a Bay Area tech company, completed the first delivery of goods
by a self-driving car when it delivered groceries in San Mateo.

4. Hyundai (2018) announced that a fleet of its fuel cell electric cars made a fully
successful automated trip from Seoul to Pyeongchang. This is the first time a
Level 4 car has been operated with fuel cell electric cars.

2.3.5 Artificial Intelligence in Autonomous Vehicle

An Artificial Intelligence (AI) model for Autonomous Vehicle (AV) includes three
steps: (1) data collection, (2) path planning, (3) act as illustrated in Fig. 2.11.

noitcello
C

ata
D Pa

th
 P

la
nn

in
g 

A
ct

Long-
Range 
Radar 

LiDAR 

Cameras 

Short-
Medium-

Range 
Radar 

Short-
Range 

Communic
ations 
DSRC 

Ultrasonic GPS 
IMU

Traffic 
Light  

Database
(Big Data)

Control 
Strategy 

Makes  
Decisions

and 
Planning   

Brake 
Pedal 

Control  

Acceleration 
Pedal 

Engine  

Economic 
Fuel 

Safety 
System 

Object 
Detection 

Steering 
Control

Gear Box 
Control 

Cognition 

Voice 
Recognition 

Eye 
Tracking 

Gesture 
Controls

Driver 
Monitoring 

Artificial Intelligence for Autonomous Vehicle 
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Step 1: Data Collection

AVs are equipped with multi-sensors and devices such as radars, cameras, and
communication to produce a huge data from its vehicle and environment. These
AVs data include the road, road infrastructure, other vehicles and every other
object on/near the road, parking, traffic information, transport and environmental
information just similar to a human driver. These data are then will be sent to be
processed as AV updated information. This is the first AV communication with
specific vehicle situations and environment conditions.

Step 2: Path Planning

The huge data from AV system will store and add with pervious driving experiences
from every ride in a database called Big Data. Also, an AI agent acts on the Big
Data to make meaningful decisions through strategy control. The control strategy
of path planning for AVs enables self-driving vehicles to find the safest, most
convenient, and most economically beneficial routes from point A to point B by
using the pervious driving experiences which help the AI agent make much more
accurate decisions in the future. Finding routes is complicated by all the static and
manoeuvrable obstacles that a vehicle must identify and bypass. Path planning
control strategy involves finding a geometric path from an initial configuration
to a given configuration so that each configuration and state on the path is
feasible (if time is considered). Path planning control strategy is involved with
Manoeuvre planning which aims at taking the best high-level decision for a vehicle
while considering the path specified by path planning mechanisms and Trajectory
planning which is the real-time planning of a vehicle’s move from one feasible state
to the next, satisfying the vehicle’s kinematic limits based on its vehicle dynamics
and as constrained by the navigation mode. The AV knows exactly what to do in this
driving environment and/or driving situation.

Step 3: Act

Based on the decisions made by the AI agent, the AV is able to detect objects
on the road, manoeuvre through the traffic, parking spot, obstacles, entertainment,
traffic lights, bicycle, pedestrians, working areas, weather conditions, and other
vehicles without human driver interposition and goes to the destination safely.
AVs are also being equipped with AI-based control and functional systems such
as steering control, acceleration by pedal engine, voice and speech recognition,
brake pedal control, eye tracking, safety system, gesture controls, economic fuel,
and other driving assistance/monitoring systems. These AV process loop including
data collection, path planning, and act will take place repetitively. The more the
number of data loop takes place, the more intelligent the AI agent becomes, resulting
in a higher accuracy of making decisions, especially in complex driving situations.
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2.3.6 Recent Autonomous Vehicle Challenges

Though today, Autonomous Vehicles (AVs) have become a reality after many years
of research and development, but still, there are a huge mountainous challenges in
completely designing autonomous system for the AVs such as: engineering tech-
nologies, regulatory, lack of industry standardized technology and tools, consumer
trust and acceptance, to name a few. At each progressive level of autonomy, the
challenges become more difficult. But, among of the challenges, still engineering
technologies especially in Perception, Localization, Planning, Control, and Predic-
tion (PLPCP) of data/information for following conditions/areas are required to be
improved [32]:

Road Conditions: Road conditions are extremely changeable and vary uncertain
from point to point. In some areas, there are smooth and marked broad highways.
But in some other areas, road conditions are highly deteriorated—no lane marking.
Lanes are not defined, there are potholes, mountainous and tunnel roads where
external signals for direction are not very clear and likewise.

Weather Conditions: Weather conditions play another spoilsport. There could be
a sunny and clear weather or rainy and stormy weather. AVs should work in all sorts
of weather conditions. There is absolutely no scope for failure or downtime.

Traffic Conditions: AVs would have to get onto the road where they would have
to drive in all sorts of traffic conditions. They would have to drive with other
AVs on the road, and at the same time, there would also be a lot of humans.
Wherever humans are involved, there a lot of emotions are involved. Traffic could be
highly moderated and self-regulated. But often there are cases where people may be
breaking traffic rules. An object may turn up in unexpected conditions. In the case
of dense traffic, even the movement of few centimetres per minute does matter. One
can’t wait endlessly for traffic to automatically clear and have some precondition to
start moving. If more of such cars on the road are waiting for traffic to get cleared,
ultimately that may result in a traffic deadlock.

Accident Liability: The most important aspect of AVs is liability for accidents.
Who is liable for accidents caused by an AV? In the case of AVs, the software will
be the main component that will drive the vehicle and will make all the important
decisions. While the initial designs have a person physically placed behind the
steering wheel, newer designs showcased by Google, do not have a dashboard and
a steering wheel. In such designs, where the car does not have any control like a
steering wheel, a brake pedal, an accelerator pedal, how is the person in the vehicle
supposed to control the vehicle in case of an untoward incident? Additionally, due
to the nature of AVs, the occupants will mostly be in a relaxed state and may not be
paying close attention to the traffic conditions. In situations where their attention is
needed, by the time they need to act, it may be too late to avert the situation.

Radar Interference: AVs use lasers and radar for navigation. The lasers are
mounted on roof top while the sensors are mounted on the body of the vehicle. The
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principle of radar works by detecting reflections of radio waves from surrounding
objects. When on the road, a vehicle will continuously emit radio frequency waves,
which get reflected from the surrounding vehicles and other objects near the road.
The time taken for the reflection is measured to calculate the distance between the
vehicle and the object. Appropriate action is then taken based on the radar readings.
When this technology is used for hundreds of vehicles on the road, will a vehicle
be able to distinguish between its own (reflected) signal and the signal (reflected or
transmitted) from another vehicle? Even if multiple radio frequencies are available
for radar, this frequency range is unlikely to be insufficient for all the vehicles
manufactured.

Big Data Analytics: It is required that both training systems and real-time
decision-making of AV volumes of data are deployed. Without efficient data man-
agement, the sheer resources the process will consume can dramatically slow down
innovation. Explore the four data considerations in the AV: (1) data acquisition,
(2) data storage, (3) data management, and (4) data labelling. For those early in
the data collection process, consideration of one’s data approach and thoughtful
decision-making regarding relevant tradeoffs will help ensure an action plan that
is both executable and expeditious. For those where data collection is becoming
increasingly precarious, a careful retrofit that leverages what is already in place can
take the organization to a more secure, accessible, and sustainable data approach.

A review of the six intelligent approaches: Representation Learning, Deep
Learning, Distributed and Parallel Learning, Transfer Learning, Active Learning,
and Kernel-Based Learning for applying scalable machine learning solutions to big
data are presented and remarked in detail in this book [33].

Vehicular Communication: In order to resolve PLPCP, AVs need to have a
network platform through the Internet communication with a huge data/information
for staging and deploying of: (1) vehicle side: vehicle diagnostics data, vehicle
real-time location, acceleration, speed, fuel consumption and emissions, and (2)
environment side: real-time traffic information, traffic signal messages, safety
messages, eco-routes, eco-speed limits, parking information, etc., and (3) energy
efficiency powertrain side: hybrids, electric vehicles, and other alternative power
sources.

2.4 Internet of Things

2.4.1 Introduction

The technical term Internet of Things (IoT) has been suggested by Kevin Ashton
in 1999 [34]. The meaning of ‘Things’ has changed as technology evolved in
last decade, but the main goal which is a digital device can make sense of
information without the human intervention remains the same. The Internet made
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the interconnection between people possible at an unprecedented scale and pace.
The next wave of connectivity is coming much faster to interconnect objects and
create a smart environment. There are currently nine billion interconnected devices,
more than the number of people in the world and it is expected to reach 24 billion
devices by 2020. The main advantage of such a massive number of connected
devices is accessing to big datasets which can be utilized in smart applications [35].
Several industries including agriculture, mining, manufacturing, and automotives
have already adopted this technology to improve the efficiency and control of their
processes. In this section, we will introduce the utilization of IoT technologies in
automotive industry which is mainly used for autonomous vehicles.

Autonomous Vehicles (AVs) must have a number of abilities for generation,
collection, analysis, processing, and storage of vehicular data from various sources
road conditions such as traffic congestion and accidents through a communication
network. The Internet of Things (IoT) is an emerging technology which includes a
network of physical objects such as: buildings and other items, vehicles, embedded
with hardware devices, software, sensors, and network connectivity that enables
these substances to collect and exchange data to information without human
interaction [34]. The concept of IoT is evolving from Machine-to-Machine (M2M)
connectivity as shown in Fig. 2.12. M2M connects isolated systems of sensors
to servers with no (or little) human intervention, whereas IoT takes machine-
to-machine connectivity, integrates web applications, and connects it to cloud
computing systems. Adoption of IoT in AVs has several technical benefits including
the capability to monitor vehicles to improve fleet efficiency, safety factors, reduce
the vehicle crash, vehicle usage, and provide more responsive service to customers,
more drivers interact with the environment around them.

M2M IoT

Cloud 

Fig. 2.12 Machine-to-Machine (M2M) and Internet of Things (IoT) connectivity for AVs
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2.4.2 Internet of Things Platform for Autonomous Driving

A typical IoT platform is an integrated system which is capable of supporting
millions of simultaneous device connections to generate a large volume of data to
be transferred and processed in cloud computing. There are four main components
in a typical IoT platform as depicted in Fig. 2.13. Four components are involved
with IoT-AV platform: (1) first component is sensors and hardware devices which
are the fundamental components and collect various data types from physical world,
(2) the second component is the communication network which is normally based
on wireless technologies such as Wi-Fi or cellular technologies (3G, 4G, 5G), (3)
the third component is big data which represents the volume, velocity, and variety
of data being generated; this data needs to be transferred, stored, and proceed, (4)
the forth component of the platform is cloud where the data will be stored and
processed as cloud provides several processing, analytics and storage services. IoT
applications are traditionally hosted in the cloud and can provide feedbacks and
decisions to the physical systems. In the case of AVs, cloud will be the centralized
management system where all the software components and monitoring tools will
be implemented.

IoT for autonomous driving is transforming the transportation system into a
global heterogeneous vehicular network. IoT provides several benefits including
dynamic information services, smart vehicle control, and applications to reduce

Data Storage, Analytics, Applications

Cloud

Network & Internet Infrastructure
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Network of Sensors and Actuators (Physical World)
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Fig. 2.13 Typical components of an IoT platform
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insurance rates and reduce traffic congestions and possibly accidents. In order to
create an IoT platform for vehicle, we need to extend the platform in Fig. 2.13
to make up a new ecosystem including the main elements and their interactions
and then introduce a network model consisting of the intra-vehicular model and the
environmental model. As mentioned before, there are a large number of sensors and
hardware devices in the typical IoT platform. In this platform, there are two separate
data acquisition components of an AV which are including (1) using data from
own sensors, exchanges data with others in neighbourhood, and (2) IoT platform
as collection place for large amounts of data from different gateway (parking, traffic
information, transport, environmental information) by connected devices (parking
spot, train, entertainment, traffic lights, bicycle, pedestrians, working areas, weather
conditions, other vehicles). This is where the power of heterogeneous data sources
and big data analytics come to picture to provide more comprehensive intelligence
for AVs.

2.4.3 Internet of Things Ecosystem for Autonomous Driving

An IoT-based vehicle ecosystem is comprised of six components that interact with
each other including: (1) vehicle, (2) person, (3) personal device, (4) network
infrastructure, (5) sensing device, and (6) roadside device. Vehicles can be all
nearby vehicles which can create a communication link to exchange relevant
information such as traffic and road conditions, alerts, and other physical parameters
in the ecosystem. Person includes people that request or access a service in the
IoT ecosystem. Personal device is a device that belongs to any person in the
ecosystem person (e.g. driver, passenger, cyclist) and uses or provides a service.
Network infrastructure refers to all devices in the communication network that
are used to transfer data in the ecosystem. Sensing device can be sensors and
actuators that collect data about the vehicle’s parameters, person’s health levels, and
environmental variables. For instance, this information can include tire pressure,
fuel consumption, vehicle temperature for the cars and blood pressure, heart rate
of the person and pollution, noise level, and weather conditions. Finally, roadside
device is the transportation environment such as traffic lights, information screens
or radars that have the ability to disseminate relevant information about traffic and
road conditions, accidents, or possible detours.

The essential part of this IoT-based ecosystem is that the interaction among all
IoT elements will cause a multi-level data exchange. This interaction, known as
Device-to-Device (D2D) interaction may involve many devices (inside and outside
of the vehicle) which can communicate, collect, store, and process information or
make decisions with no or less human interventions. As proposed in[36], six types of
D2D interactions have been identified as illustrated in Fig. 2.14. These interactions
are Vehicle-to-Vehicle (V2V), Vehicle and Personal (V&P) device, Vehicle and
Roadside (V&R), Vehicle and Sensor (V&S), Vehicle and Infrastructure (V&I),
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Vehicles 

Roadside to Roadside  

Sensors 

Y IEL D

Roadside Device

Personal Devices  

Network Infrastructure  

Fig. 2.14 Interaction model for IoT-based ecosystem for an autonomous vehicle

and Roadside and Personal (R&P) device. Additionally, there are two internal
interactions namely, Roadside-to-Roadside (R2R) and Sensor & Actuator (S&A).

As can be seen in Fig. 2.14, sensors and some of the personal devices are
within the AV and considered as internal interactions and the rest are more external
interactions and can be considered as environmental information.

2.4.4 Edge Computing for Autonomous Vehicles

Current IoT platforms for AVs do not enable low-latency and real-time data
processing and require offloading data processing to the cloud as shown in Fig.
2.13. The cloud allows access to storage and computing resources from anywhere
and facilitates development and maintenances of applications, and related data.
Although cloud computing optimizes resource utilization, it cannot provide an
effective solution for hosting smart applications required in AVs. These bring several
issues and challenges which hinder adopting IoT-driven services for AVs, namely:

• Transferring a large amount of data over the cloud network may incur significant
overhead in terms of time, throughput, energy consumption, and cost.

• The cloud may be physically located in a different geographical region, so it is
not possible to provide required services for AVs with reasonable latency and
throughput.

• Real-time processing of large quantities of IoT data will increase the workload
for providers and cloud data centre, with no benefit for the applications and users.

• Existing heterogeneity in hardware and software components of IoT sensors and
devices.
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Fig. 2.15 Edge computing for IoT-based autonomous vehicles ecosystem

• Do not always integrate well together.

To address these challenges data analytics could be performed at the network
edge near where the data is generated to reduce the amount of data and communica-
tions overhead [37]. This concept is called Edge computing (or Fog computing)
as illustrated in Fig. 2.15. This emerging technology promises to deliver highly
responsive computing services, scalability and privacy enforcement, and the ability
to mask transient cloud outages [38].

As can be seen in Fig. 2.15, AVs will be connected to the edge devices using
wireless communication network to access to real-time data analytics for required
applications. Edge devices can collaborate with other edges in the vicinity, thereby
creating a local peer-to-peer network beneath the cloud.

Data analytics at the edge of the physical world, where the IoT and data reside
introduces an intermediate layer between the data source and the cloud as depicted
in Fig. 2.16. By comparing the architecture of cloud computing in Fig. 2.12 and edge
computing in Fig. 2.16, the edge computing provides on premise data analytics as
well as the capabilities for IoT devices to communicate and coordinate with each
other in a distributed environment and with the cloud [39].

Edge computing can be considered as an extension of older technologies such
as peer-to-peer networking, distributed data, self-healing network technology, and
remote cloud services.

It provides several advantages over standard centralized cloud architectures such
as optimizing resource usage in a cloud computing system and reducing network
traffic, which reduces the risk of a data bottleneck. Edge computing also improves
security and privacy by encrypting data closer to the network core and keeps the
private data away from shared cloud environments.



64 H. Khayyam et al.

Fig. 2.16 Edge computing
for IoT connectivity in AVs IoT-Edge

Cloud 

EdgeEdge Edge

In order to have a better view, Table 2.6 compares edge with cloud computing.
As the data are pre-processed, filtered, and cleaned in the edge prior to offloading to
the cloud, the amount of transmitted data is much less than the data collected by IoT
devices. Also, the analytics on the edge is real-time while the analytics on the cloud
is offline. Edge generally has limited computing power and storage compared with
the cloud, however, processing on the cloud incurs higher computation latency. The
edge offers a high level of fault-tolerance as the tasks can be migrated to the other
edge in the vicinity in the event of a failure which is an important factor for AVs as
the reliability is one of the main requirements.

Edge device may employ various types of hardware such as computing boards
(e.g. Raspberry Pis), multi-core processor, FPGA, or GPU with fine granularity
versus a cluster of homogenous nodes in the cloud [40]. Each edge device employs
fixed hardware resources that can be configured by the user for each application,
whereas the allocated resources are mainly intangible and out of user’s control
in the cloud. An advantage of edge is the ability of integration to mobile IoT
nodes which is essential for AVs. In this case, multiple edge devices in close
proximity dynamically build a sub-system in which edge devices can communicate
and exchange data. Cloud offers a proven economic model of pay-as-you-go while
edge is a property of the user. Edge devices could be battery-powered, so they need
to be energy-efficient while the cloud is supplied with a constant source of power
with possible energy-efficient resource management.
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Table 2.6 Edge vs. Cloud computing

Characteristic Edge Cloud

Processing hierarchy Local data analytics Global data analytics
Processing fashion In-stream processing Batch processing
Computing power GFLOPS TFLOPS
Network Latency Milliseconds Seconds
Data storage Gigabytes Infinite
Data lifetime Hours/days Infinite
Fault-tolerance High High
Processing resources and
granularity

Heterogeneous (e.g. CPU,
FPGA, GPU) and fine-grained

Homogeneous (Data centre)
and coarse-grained

Versatility Only exists on demand Intangible servers
Provisioning Limited by the number of

edge in the vicinity
Infinite, with latency

Mobility of nodes Maybe mobile (e.g. in the
vehicle)

None

Cost Model Pay once Pay-as-you-go
Power model Battery-powered/Electricity Electricity

2.4.5 Integrating Artificial Intelligence with Edge Computing
for Autonomous Vehicles

In order to have AI model for AVs using edge computing, we need to modify the
traditional cloud-based model where all data storage and analytics are happening in
cloud. This traditional model is presented in Fig. 2.11 where the control mechanisms
and database system will be implemented in cloud. In order to improve this model,
we need to divide the process and planning section (Fig. 2.11b) into two modules
to be handled by edge and cloud collaboratively. Figure 2.17 shows AI-based AV
using edge computing where collected data from AV will be transferred to the edge
node for pre-processing and decision-making. The data from IoT sensors will be
analysed locally in the edge while data of the edge nodes is collected and transmitted
to the cloud for offline global processing and less time sensitive decision-making.
So, time-sensitive decisions such as obstacle detection or crash avoidance will be
performed in the edge node in much shorter time. Whereas, the data about road,
traffic and driving pattern are analysed in the cloud to improve the road safety and
better driving experience. The AI models implemented in the edge node can be
dynamic and updated based on the policies, and relevant rules and regulations and
customer requirements. As the data are pre-processed, filtered, and cleaned in the
edge node prior to offloading to the cloud, the amount of transmitted data is lower
than the data generated by IoT sensors in AVs. This can save considerable amount
of bandwidth and cost.
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Fig. 2.17 AI-based autonomous vehicles using edge computing

2.5 Conclusions

The growth of Autonomous Vehicle (AV) in recent years creates a new trend to
adopt various smart techniques and technologies to improve the performance and
quality of automatic decision-making. The integration of Artificial Intelligence (AI)
and Internet of Things (IoT) for AV provides high-performance embedded systems
that can be utilized in environment to enable more dynamic and robust control
systems. While the main software components of AVs are traditionally host by cloud
computing systems, new edge computing paradigm has emerged to address some
technical challenges such as latency, network bandwidth, and security. The concept
architecture of a new AI-based AV using edge computing is proposed in this chapter
and can be considered as a fundamental architecture for future research.
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Chapter 3
Nonlinear Drilling Dynamics
with Considerations of Stochastic
Friction and Axial and Tangential
Coupling

Jialin Tian, Yinglin Yang, Liming Dai, and Lin Yang

3.1 Introduction

With the development of the global economic, the demand for energy has increased
gradually in various countries in the world. In particular, the consumption of oil
and natural gas is increasing, which leads to an increase in the exploration and
development of oil and natural gas. At present, with the continuous development
and improvement of modern drilling technologies, drilling technology has been
developed from efficient drilling to enhanced oil recovery, increased oil and gas
production, and reduced mining costs. During the actual drilling of oil and gas
wells, the downhole work conditions are complicated due to the difference in the
formation environment. With the development of new drilling technologies, various
new drilling technologies are being developed and applied, which makes drilling
technology face more challenges that include the safe evaluation of downhole
tool, the reduction friction in the drilling process, and the increase of speed and
efficiency.
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For the spiral buckling of the drill string in the horizontal section, the finite-
difference method and the Newton iteration method are used to obtain the calcula-
tion model about the spiral buckling critical force and the contact force between the
drill string and the borehole wall in Gao Deli et al. [1]. In the drilling process, the
spiral buckling phenomenon leads to an increase of the frictional resistance. And
when the drill string is subjected to spiral buckling, once the drill string is reversed,
the frictional resistance caused by the rotation of the drill string has to be considered
to influence the mechanical properties of the drill string.

With the combination of the actual drilling characteristics of large-displacement
wells, a three-dimensional soft-pole calculation model is established in He Zhigang
et al. [2]. The calculation model considers the change of hole deviation angle and
azimuth angle in the actual drilling process, and the effect of drill string stiffness
on the calculation model is ignored. The drilling friction model based on large
displacement wells is modeled by using the space-oblique plane hypothesis. The
three-dimensional soft-pole calculation model can provide a theoretical reference
for drilling friction resistance and drilling torque in the design of the drilling
trajectory and it can provide help for field monitoring analysis of drilling friction
torque.

The influence on the friction resistance of horizontal wells from the effect of
lateral vibration of the drill string is conducted in Zhang Huizeng et al. [3]. And
the influence law of excitation amplitude and excitation frequency on the friction
resistance of the friction pair is obtained. If the excitation frequency is same, there is
a linear negative correlation between the friction coefficient and the excitation force.
If the excitation force is same, the logarithm of the friction coefficient is negatively
related to the excitation frequency. The research conclusions can provide a design
basis for the design of the transverse vibration tool.

The effect of frictional resistance on the drill string buckling is studied in Valery
Gulyayev et al. [4]. The Euler instability of drill string is predicted by the computer
simulation method. And on the basis of the curve elastic rod theory, the Euler
stability theory, the channel surface theory, and the classical mechanic method with
nonlinear constraints, a modeling method of the drill string critical buckling is
proposed. The frictional buckling of drill string is researched in Marcelo A. Jaculli
et al. [5] to establish the dynamic model of the drilling process, which includes
the problem of not considering the friction between the drill string and the borehole
wall or ignoring it, considering the hole deviation angle and the heave motion of drill
string. And the research result shows that the friction between the drill string and the
borehole wall is an important factor in the drill string buckling. The Aadnoy friction
model is established in Ahmed A. Elgibaly et al. [6], based on the friction factors of
directional well, which is applied to borehole trajectory design and friction analysis
of drilling process, but the model is not accurate for back-pressure and buckling
calculations.
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The drill string vibration model with the consideration of the axial load is
established, and vibration displacement and vibration velocity of different drill
string nodes are solved, which are discretized to obtain the solution results of the
vibration model in different nodes. Then, the influence analysis of radial inertia
effect is conducted, which influences the drill string dynamics to get the influence
analysis of parameters. Combined with the axial vibration model and considering
the stochastic friction force, the dynamic model with the consideration of stochastic
load is developed. And the model solution is carried out to conduct random filed
research between the drill string and the wellbore. In addition, the wear research on
cutting teeth due to torsional load is conducted and the geometry equation is set up.
According to the theoretical research, the calculation result of cutting teeth wear is
obtained. The research results are of significance to conduct the study of drill string
dynamics under different working conditions and can provide theoretical references
for further study of drill string dynamics.

3.2 Dynamics Model

3.2.1 Axial Vibration Model in Drill String Dynamics

Model Assumptions

During the axial vibration analysis model establishment for the downhole drill
string, the following model assumptions are made based on the existing drill string
vibration research:

1. The drill string is a small-deformed elastic body that can be reduced to an
elongate rod with uniform mass, and its axis coincides with the wellbore axis.
This chapter only discusses the problem of vibration and friction reduction before
the buckling of the drill string.

2. The inner and outer boundaries of the drill string section and the inner wall of
the wellbore are both rigid. The cross sections of both the wellbore and the drill
string are circular.

3. The speed is continuous during the delivery of the drill string, which does not
consider the mutual conversion process of static friction and dynamic friction at
each node of the drill string.

4. It is assumed that the drill string is in uniform contact with the well wall, and the
gravity, positive pressure, and frictional force on the drill string are uniformly
distributed.

5. The drill string in the studied horizontal section is long enough, and the spring
short section will greatly reduce the upward propagation of the vibration, so the
simplification of the upper boundary condition will not affect the propagation of
the vibration wave of the drill string.
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Vibration Model

A finite element model for axial vibration analysis in horizontal well is established
based on the above model assumptions, as shown in Fig. 3.1. Simplify the drill string
into n equal-spaced nodes, each with equal mass.

The axial vibration analysis model is discretized, and the vibration equation of
each node is obtained according to Newton’s second law. All nodes are considered
using the finite element method. The vibration equation of the vibration model can
be written as [7]

Mẍ(t)+ Cẋ(t)+Kx(t) = F(t) (3.1)

where x(t) is the displacement vector of the node, ẋ(t) is the speed vector, ẍ(t) is
the acceleration vector, F(t) is the force vector, M is the overall mass matrix, C is
the overall damping matrix, and K is the overall stiffness matrix.

According to the node’s degree of freedom, the displacement vectors, velocity
vectors, acceleration vectors, and force vectors of the n nodes are determined as

x(t) =

⎡
⎢⎢⎢⎣
x1(t)

x2(t)
...

xn(t)

⎤
⎥⎥⎥⎦ , ẋ(t) =

⎡
⎢⎢⎢⎣
ẋ1(t)

ẋ2(t)
...

ẋn(t)

⎤
⎥⎥⎥⎦

ẍ(t) =

⎡
⎢⎢⎢⎣
ẍ1(t)

ẍ2(t)
...

ẍn(t)

⎤
⎥⎥⎥⎦ , F (t) =

⎡
⎢⎢⎢⎣
F1(t)

F2(t)
...

Fn(t)

⎤
⎥⎥⎥⎦

(3.2)

The overall mass matrix and the overall stiffness matrix consisting of n nodes are
obtained as follows

M =

⎡
⎢⎢⎢⎢⎢⎣

m1 0 0 · · · 0
0 m2 0 · · · 0
0 0 m3 · · · 0
...
...
...
. . .

...

0 0 0 · · · mn

⎤
⎥⎥⎥⎥⎥⎦

(3.3)
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Fig. 3.1 Drill string vibration model in horizontal wells
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K =

⎡
⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 0 · · · 0
− k2 k2 + k3 −k3 · · · 0

0 −k3 k3 + k4 · · · 0
...

...
...

. . .
...

0 0 0 −kn kn

⎤
⎥⎥⎥⎥⎥⎦

(3.4)

The object will have the effect of damping force as long as there is vibration.
The damping force will make the energy dissipation of the vibration system.
There are many reasons for the damping force, and the mechanism of damping
is also complicated. It is difficult or even impossible to calculate the damping
by considering various factors. According to macroscopic studies, there are two
main forms of damping force: the first is the damping force generated by the fluid
around the object, which is called viscous damping; the second is the damping
force generated by the internal friction of the object, which is called the structural
damping.

To simplify the calculation, Rayleigh damping is used. It is a kind of linear
damping mode, which is a linear combination of mass matrix and stiffness matrix
in this chapter. The damping matrix can be expressed as [8]

C = αM + βK (3.5)

where α and β can be valued according to the method provided in document.
Since the drill string is simplified as a rod member with uniform mass distribution

and its cross section is circular, the stiffness of each node is calculated as follows
according to Hooke’s law of material mechanics

ki = E1
(
D2

1 −D2
0

)
4l

(3.6)

where E1 is the elastic modulus (Pa), D1 is the drill pipe outside diameter (mm), D0
is the drill pipe outside diameter (mm), l is the node length (m), and i is the node
label, take 2 ∼ n.

The first node of the model is the hydraulic oscillator, k1 is the stiffness of the
spring peg in the hydraulic oscillator, and m1 is the mass of the hydraulic oscillator.
The quality of each remaining node can be written as

mi = 1

4
ρl
(
D2

1 −D2
0

)
(3.7)

According to the force condition of the drill string system, the external force on
the first node is obtained as

F1(t) = Fsta + Fz (3.8)
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where Fsta is the axial thrust on the drill string (N) and Fz is the axial impact force
generated by hydraulic oscillator (N).

The external force from the second node to the n − 1 node is the friction between
the drill string and the borehole wall, i.e.,

Fi(t) = Fif (t) = −μFiN sgn (ẋi(t)) = −μmig sgn (ẋi(t)) (3.9)

where μ is the sliding coefficient of friction, Fif is the friction at each node (N), FiN

is the positive pressure for each node (N), i is the node label, take 2 ∼ n, and ẋi (t)
is the speed of the drill string at the ith node.

The external force received at the nth node includes the friction between the drill
string and the borehole wall and the reaction force of the rock on the roller cone bit.
The friction force is calculated as

Fnf (t) = −μFnN sgn (ẋn(t)) = −μmig sgn (ẋn(t)) (3.10)

The reaction force of the rock to the roller cone bit can be calculated by referring
to the formula given in document [9]

Fbit = W0 + W1 sin

(
πNbNr

30
t

)
(3.11)

where Nb is the number of cones, Nr is the bit speed, W0 is the static pressure value
for drilling, and W1 is the axial excitation amplitude.

So, the external force to the nth node can be expressed as

Fn = Fnf − Fbit (3.12)

Calculation and Solution of Vibration Model

The result of vibration displacement of the bottom drill string system is shown in
Fig. 3.2, which includes the first, seventh, 11th, and 13th node. Figure 3.3 shows
the calculation results of the vibration speeds of the first, seventh, 11th, and 13th
node of the lower drill string system. The first node is the hydraulic oscillator, and
the thirteenth node is the position of the drill bit. From Fig. 3.2 we can see that
the amplitude of the vibration displacement and vibration velocity from the first
node to the 13th node gradually becomes smaller, and the first node is the point
of excitation; the farther the distance to the excitation, the more attenuated the
vibration. Figure 3.4 shows the spectrum of the vibration displacement obtained
by the Fourier transform of the vibration displacement. The maximum response
frequency in the figure is 12.65 Hz, which is the same as the excitation frequency
with an input flow rate of 30 L/s.
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Fig. 3.3 Vibration speed of different nodes

3.2.2 Radial Inertia Effect on Vertical Vibration of Drill String

Vertical Vibration Model

According to drilling conditions, related assumptions are proposed to research the
vertical vibration of the drill string, as

1. The cross-sectional surface of the drill string is equivalent circular, and the axis
of the drill string coincides with borehole axis.
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Fig. 3.4 Spectral map of vibration displacement

2. The influence of the gravity of the drill string and the static including the drilling
pressure and drilling fluid buoyancy are ignored.

3. Drilling fluid is regarded as viscoelastic layer, which can be divided into several
parts, and the properties of drilling fluid inside and outside of the drill string are
of identical characteristics whose effect on inside and outside of the drill string
are equal.

The vibration model is shown in Fig. 3.5. Where hk and H denote the location and
the total length of the kth drill string segment, respectively; rPk and r ′Pk denote the
outer radius and the inner radius of the kth drill string segment, respectively; τPk is
the shear stress of drilling fluid inside and outside of the drill string at the interface;
and kPK and δPK denote the stiffness coefficient and the damping coefficient of the
bottom-hole to the drill string, respectively.

Vibration Equation and Solution

Not Considering the Effect of Radial Inertia

For the vertical vibration of the drill string taking into no account the radial inertia
effect, regarding the drill string as one-dimensional sticky elastomer, the vibration
equation of the kth drill string segment is described as [10]

EPkAk
∂2wk

∂z2
+ 2πτPk

(
rPk − r ′Pk

) = ρPkAk ∂
2wk

∂t2
(3.13)

In which, wk = wk(z, t) denotes the radial displacement of the kth drill string
segment; EPk, ρPk, rPk, and r ′Pk denote the elastic modulus, density, and outside
and inside radii of the kth drill string segment, respectively; Kk is the vertical shear
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Fig. 3.5 Longitudinal vibration model of drill string

stiffness of the drilling fluid in the unit length direction; and Ak represents the cross-
sectional area of the kth drill string segment. And the expressions of τPk and Ak

are

τPk = Kkwk (z, t) (3.14)

Ak = π
(
r2
Pk − r ′2Pk

)
(3.15)

Laplace transform is applied to Eq. (3.13), taking account of the assumptions, to
give

EPkAk
∂2Wk

∂z2 −
[
ρPkAks

2 − 2πKk
(
rPk − r ′Pk

)]
Wk = 0 (3.16)

In which, the Laplace transform with respect to time of wk = wk(z, t) represented
byWk = Wk(z, s), and the transform relation is

Wk (z, s) = L [wk (z, t)] =
∫ +∞

0
wk (z, t) e

−st dt (3.17)
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Then, Eq. (3.16) general solution has the following form:

Wk (z, s) = Ckeαz +Dke−αz (3.18)

where

α =
√
ρPkAks2 − 2πKk

(
rPk − r ′Pk

)
EPkAk

(3.19)

Ck and Dk denote undetermined coefficients determined by boundary conditions,
respectively.

In the process of drilling, the bottom is uneven, which leads to drill bit vibration
up and down. Assuming that the force of bottom hole to the drill bit is fk(z, t),
according to the transitivity of force, the force on the bottom of the drill string can
be also denoted as fk(z, t). So, the bottom and top of the drill string meet

EPkAk
∂Wk (z, s)

∂z

∣∣∣∣
z=0

= fk (z, s) (3.20)

EPk
∂Wk (z, s)

∂z

∣∣∣∣
z=H

= − (kPK + δPKs)Wk (z, s) (3.21)

where the Laplace transform with respect to time of fk(z, t) is represented by fk(z, s);
kPk and δPk denote the stiffness coefficient and the damping coefficient of the bottom
hole to the drill string, respectively.

Furthermore, Eqs. (3.20) and (3.21) are substituted into Eq. (3.18) to get the
following two equations:

Ck −Dk = fk (z, s)

αEPkAk
(3.22)

Ck = EPkα − (kPk + δPks)
EPkα + (kPk + δPks)e

−2αHDk (3.23)

It is assumed that

EPkα − (kPk + δPks)
EPkα + (kPk + δPks)e

−2αH = γ (3.24)

Then, Ck and Dk can be calculated by Eqs. (3.22) and (3.23), which are
substituted into Eq. (3.18), and the displacement of the drill string can be denoted
as follows:

Wk (z, s) = fk (z, s)

(γ − 1) αEPkAk

(
γ eαz + e−αz) (3.25)
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It is assumed that

s = iω (3.26)

Then, the Laplace transform is equivalent to the Fourier transform of unilateral,
so the response of displacement frequency can be expressed as Wk(z, iω). The
complex impedance of the drill string is derived as follows:

KPd = αAk (γ − 1) EPk
γ + 1

(3.27)

The complex impedance of the drill string bottom is equivalent to the complex
stiffness, which can be expressed in the plural form as follows:

KPd = Kr + iCi (3.28)

In which, the real component Kr denotes the real dynamic stiffness, which reflects
the ability of the drill string system to fight the vertical deformation; the imaginary
component Ci denotes the dynamic damping, which reflects the energy dissipation.

Considering the Effect of Radial Inertia

Combined with actual situation to allow for the impact of the radial inertia effect,
the vibration problem of the kth drill string segment can be described by the theory
of Rayleigh–Love model as follows:

EPkAk
∂2wk

∂z2 +2πτPk
(
rPk−r ′Pk

)=ρPkAk
(
∂2wk

∂t2
−ν2

Pk

(
r2
Pk − r ′2Pk

) ∂4wk

∂z2∂t2

)

(3.29)

where νPk denotes the Poisson’s ratio of the kth drill string segment.
Without considering the impact of the above-described lateral inertia, according

to the initial and continuity conditions, the vibration equation of the drill string is
solved by Laplace transform, and the displacement expression of the drill string is
obtained considering the radial inertia effect, which can be introduced as:

Wk (z, s) = fk (z, s)

(γ − 1) α (EPkAk + Akβ)
(
γ eαz + e−αz) (3.30)

where
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α =
√

ρPkAks2 − 2πKk
(
rPk − r ′Pk

)
EPkAk + ρPkAkν2

Pk

(
r2
Pk − r ′2Pk

)
s2

(3.31)

β = ρPkν2
Pk

(
r2
Pk − r ′2Pk

)
s2 (3.32)

γ = (EPk + β) α − (kPk + δPks)
(EPk + β) α + (kPk + δPks)e

−2αH (3.33)

Then, the analytical solution of the complex impedance at the drill string bottom
can be expressed as:

KPd = αAk (γ − 1) (EPk + β)
γ + 1

(3.34)

Parameter Impact Analysis

To analyze contrastively the influence of the drill string design parameters on the
characteristics of its vertical vibration, its characteristics of change are discussed
and studied by using the analytical solution of the complex impedance when one
of the related parameters changes. In the figure, the horizontal axis is the vibration
frequency, and the vertical axis is the dynamic stiffness at the bottom of the drill
string. The material parameters of the drill string are shown in Table 3.1.

Impact of the Length of Drill String on Vertical Vibration

The length of the drill string is dependent on the well depth. The larger the diameter
of the drill string, the poorer is its stability about the vibration. The impact of the
drill string length on the dynamic stiffness is analyzed with the consideration of the
radial inertia effect. The calculation parameters influencing the length of drill string
are shown in Table 3.2.

In Fig. 3.6, H denotes without considering the radial inertia effect, m; and h
denotes considering the radial inertia effect, m. Figure 3.2 shows the influence of
the length of the drill string on the dynamic stiffness in the frequency domain. It

Table 3.1 Material
parameters of the drilling
string

Name of parameter Result

Density of the drill
string ρPk (kg/m3)

8000

Modulus of elasticity of
the drill string EPk
(MPa)

2.06 × 103
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Table 3.2 Calculated
parameters of the impact of
the length of drill string

Name of parameter Result

Poisson’s ratio of the drill string, ν 0.3
Length of the drill string, H1 (m) 8
Length of the drill string, H2 (m) 10
Outside radius of the drill string, rPk (m) 0.1
Inside radius of the drill string, r ′Pk (m) 0.08
Damping coefficient, δPK (N · s/m3) 10,000
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Fig. 3.6 Impact of the length of drill string on its bottom dynamic stiffness

can be observed that the increasing trend of the dynamic stiffness of the drill string
becomes more notable when the length of the drill string and the cyclic frequency
increase whether allowing for the radial inertia effect or not. Meanwhile, the radial
inertia effect on the dynamic stiffness can be almost neglected only when the cyclic
frequency is small or zero, and which becomes more and more evident with the
increase in frequency. When considering the radial inertia effect, the absolute value
of dynamic stiffness in increasing period is bigger than the condition where the
radial inertia effect is ignored. The shorter the length of the drill string, the more
evident is the radial inertia effect.

Impact of the Inside and Outside Radii of Drill String on Vertical Vibration

The inside and outside radii are determined by the specification of the selected
drill string. The influence of the inside and outside radius of the drill string on the
dynamic stiffness is analyzed with taking account of the radial inertia effect. The
calculated parameters to study the influence of the inside and outside radii of the
drill string are shown in Table 3.3.
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Table 3.3 Calculated
parameters of the impact of
inside and outside radii

Name of parameter Result

Poisson’s ratio of the drill string, ν 0.3
Length of the drill string, H (m) 10
Outside radius of the drill string, rPk1 (m) 0.1
Outside radius of the drill string, rPk2 (m) 0.11
Inside radius of the drill string, r ′Pk1 (m) 0.08
Inside radius of the drill string, r ′Pk2 (m) 0.09
Damping coefficient, δPK (N · s/m3) 10,000
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Fig. 3.7 Impact of outside radius on its bottom dynamic stiffness
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Fig. 3.8 Impact of inside radius on its bottom dynamic stiffness

In Figs. 3.7 and 3.8, RPk and R′
Pk denote not considering the radial inertia effect,

and rPk and r ′Pk denote considering the radial inertia effect.
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Table 3.4 Calculated
parameters of the impact of
the damping coefficient

Name of parameter Result

Poisson’s ratio of the drill string, ν 0.3
Length of the drill string, H (m) 10
Outside radius of the drill string, rPk (m) 0.1
Inside radius of the drill string, r ′Pk (m) 0.08
Damping coefficient, δPK1 (N · s/m3) 8000
Damping coefficient, δPK2 (N · s/m3) 10,000
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Fig. 3.9 Impact of the damping coefficient on its bottom dynamic stiffness

Figures 3.7 and 3.8 show the influence of the inside and outside radii of the
drill string on the dynamic stiffness in the frequency domain. The increase trend of
the dynamic stiffness becomes more remarkable when the outside radius of the drill
string and the cyclic frequency increase or the inside decrease. When considering the
radial inertia effect, the absolute value of the dynamic stiffness in increasing period
is bigger than the condition where the radial inertia effect is ignored. Meanwhile,
the radial inertia effect has more important influence on the dynamic stiffness of the
drill string if the difference between the outside and inside radii of the drill string is
greater.

Impact of the Damping Coefficient on Vertical Vibration

The damping coefficient of the bottom hole to the drilling bottom should have
certain influence on the vertical vibration of the drill string. The calculation
parameters influencing the damping coefficient are shown in Table 3.4.

In Fig. 3.9, δPK denotes not considering the radial inertia effect and δ′Pk denotes
considering the radial inertia effect.

Figure 3.9 shows the influence of the damping coefficient on the dynamic
stiffness in the frequency domain. With the increase of the damping coefficient
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Table 3.5 Calculated
parameters of the impact of
the Poisson’s ratio of drill
string

Name of parameter Result

Poisson’s ratio of the drill string, ν1 0.1
Poisson’s ratio of the drill string, ν2 0.3
Length of the drill string, H (m) 10
Outside radius of the drill string, rPk (m) 0.1
Inside radius of the drill string, r ′Pk (m) 0.08
Damping coefficient, δPK (N · s/m3) 10,000

and the cyclic frequency, the dynamic stiffness increase more obviously. In a
single cycle, the closer to the crest and trough the curve is, the bigger the
difference of the dynamic stiffness of the drill string between the two conditions.
When considering the radial inertia effect, the absolute value of the dynamic
stiffness in increasing period is bigger than that in the condition where the radial
inertia effect is ignored; the bigger the damping coefficient, the less obvious
is the effect, which indicates that the damping of the bottom hole to the drill
string could weaken the influence of the radial inertia effect on the dynamic
stiffness.

The Impact of the Poisson’s Ratio of the Drill String on Vertical Vibration

Poisson’s ratio is the lateral deformation coefficient of the material, which reflects
the lateral deformation elastic constants of the material. In the static case, the
Poisson’s ratio change of the drill string is very small, so it is generally taken as
ν = 0.25. However, in the dynamic case, the dynamic Poisson’s ratio is commonly
taken as ν = 0.1 ∼ 0.30. The calculated parameters to study the influence of the
Poisson’s ratio are shown in Table 3.5.

In Fig. 3.10, ν denotes not considering the radial inertia effect and ν
′

denotes
considering the radial inertia effect. Figure 3.10 shows the influence of the Poisson’s
ratio of drill string on the dynamic stiffness in the frequency domain. It can be seen
that the increasing trend of the dynamic stiffness of the drill string becomes more
notable when the Poisson’s ratio of the drill string and the cyclic frequency increase
whether allowing for the radial inertia effect or not. The change of the Poisson’s
ratio of drill string has influence on the condition where the radial inertia effect
is considered rather than the other case, which indicates that radial inertia effect
includes the effect of the Poisson’s ratio. When considering the radial inertia effect,
the absolute value of the dynamic stiffness in increasing period increases with the
Poisson’s ratio of the drill string.
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3.2.3 Drill String Dynamics with Wellbore Random Friction
Forces

Drill String Dynamics Model

According to the working conditions in horizontal well, the force analysis of drill
string is conducted, as shown in Fig. 3.11, where the left boundary is the origin of
coordinates of analysis segment. Fsta is the equivalent force of the left boundary,
Ffric is the friction force, G is the gravity of drill string, m is the mass, g is the
acceleration of gravity, Fhar is the force of the drilling fluid, and Fbit is the reaction
force of the rock on the drill bit, which is equal to weight on bit (WOB).

Based on the force analysis, the vibration analysis model of the horizontal drill
string is established to research random wellbore friction. The model is expressed
as [11]

⎧⎨
⎩

Mü (t, ξ)+Cu̇ (t, ξ)+Ku (t, ξ)=Fsta+Fhar(t)+Fbit (u̇ (t, ξ))+Ffric (u̇ (t, ξ) , ξ)

u(0)=u0

u̇(0) = u̇0

(3.35)
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In which, M, C, and K are the mass matrix, damping matrix, and stiffness
matrix, respectively, u is the displacement function, u̇ is the corresponding speed, t
is the time coordinate, ξ is the friction coefficient, Fsta(x, t), Fhar(x, t), Fbit (u̇ (x, t)),
Ffric (u̇ (x, t)), and Fmass (ü (x, t)) are the corresponding matrix of the force,
respectively.

In order to analyze drilling power consumption, the efficiency equation is defined
as

η =
1

t1−t0
∫ t1
t0
fstau̇ (0, t)+ fharu̇ (L, t) dt
1

t1−t0
∫ t1
t0
fbit(t)u̇ (L, t) dt

(3.36)

With the combination of the importance and actual significance of the drilling
efficiency, the mean square value analysis of the drilling efficiency is conducted to
ensure the analysis result of the efficiency. And the solution method is given as

con
(
nη
) = 1

nη

nη∑
i=1

(ηi)
2 (3.37)

where nη is different solution counts.

Friction Randomness Research and Model Solution

In order to solve the vibration equation, the representation of each force needs to be
determined. According to the research innovation, the wellbore friction randomness
is studied first.

The randomness is an important feature of the drill string friction, which is
reflected in the random change of the contact position and the value of the friction
coefficient. The accuracy of mathematical method has a direct decisive effect on the
precision of the calculation results. Considering the characteristics of the wellbore
friction on drill string, the random variable ξ , corresponding to the displacement u,
is introduced to research the randomness of the generation location of the friction
pair. For the friction coefficient, through random statistical analysis, the distribution
law of the random data can be described by Gaussian distribution. The analysis
method is established, and the analysis model can be defined as follows.

Ffric (u̇ (x, t) , ξ) = ρLg (−f (x, ξ)) sgn (u̇ (x, t)) (3.38)

where x is the coordinate value of the analysis position, ρL is the mass of per unit
length, f (x, ξ ) is the friction coefficient based on x and ξ , the mean value is f (x, ξ),
and sgn (u̇ (x, t)) is the judgment function, which can be expressed as

sgn (u̇ (x, t)) =
⎧⎨
⎩

1 (u̇ (x, t) > 0)
0 (u̇ (x, t) = 0)
− 1 (u̇ (x, t) < 0)

(3.39)
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The probability density of f (x, ξ ) is calculated by

p (f (x, ξ)) = 1√
2πσ

exp

⎛
⎝−1

2

(
f (x, ξ)− f (x, ξ)

σ

)2
⎞
⎠ (3.40)

In which, σ is the standard deviation of the random variable.
In order to describe the randomness of the friction behavior, the random variable

needs to be converted. Since the Gaussian distribution characteristic of the stochastic
friction, Karhunen–Loève (KL) method is used to convert the random variable.
According to KL expansion, f (x, ξ ) is expanded at the mean value f (x, ξ), and
the expansion can be written as

f (x, ξ) = f (x, ξ)+
∞∑
i=1

√
λiφi(x)Zi (ξ) (3.41)

where {λi} and {φi(x)} are eigenvalue and eigenfunction sequences, respectively,
and Zi(ξ ) is uncorrelated random variable.

The expansion of Eq. (3.41) should be convergent in the Gaussian stationary
field. Relative to other types of expansion, there is a minimum mean square error
when the expansion term is same and limited. According to the downhole conditions
during the drilling process, x is defined as the spatial coordinate and x = (x1, y1),
which can be used to research the two-dimensional random field. Similarly, based
on the construction method of the two-dimensional random field, the result of the
one-dimensional random field can be obtained.

Corresponding to the matrix form of Zi(ξ ), each row consists of an imple-
mentation of random variable vector and each line is the value of different
application for the same random variable and is mutually independent and satisfies
the normal distribution. For Gaussian random field, the independent random variable
Zi(ξ ) remains the Gaussian model, and the mathematical expectation satisfies the
condition, which can be expressed as

{
E [Zi (ξ)] = 0
E
[
Zi (ξ) Zj (ξ)

] = δij (3.42)

In the two-dimensional area, the characteristic function {φi(x)} is satisfied with
the following conditions.

∫
�

φi (x1, y1) φj (x2, y2) d� = δij (3.43)

In which,Ω is a two-dimensional and closed region, x and y are two-dimensional
region coordinates, respectively, and δij is the K-delta function.
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The analytic expression of the eigenvalue {λi} and the eigenfunction {φi(x)} in
the expansion equation (3.41) can be obtained as [12]

λi =
4γ1γ2σ

2
φ(

γ 2
1 ω

2
1,m + 1

) (
γ 2

2 ω
2
2,n + 1

) (3.44)

φ∗i = φ1,m (x1) φ2,n (x2) (3.45)

wherein γ 1 and γ 2 are the correlation lengths in x and y, respectively, and when
there is isotropic, for that is γ 1 = γ 2, σ 2

φ is the variance of the randomness field.
In fact, during the calculation process, the eigenvalue {λi} and the eigenfunction

{φi(x)} can be achieved by the solution of the second Fredholm equation as follows
[13]. ∫

�

C (x1, y1; x2, y2) φi (x2, y2) d� = λiφi (x1, y1) (3.46)

where C(x1, y1; x2, y2) is the covariance function of the two-dimensional random-
ness field and its expression can be written as

C (x1, y1; x2, y2) = σ 2 exp

(
−|x1 − x2|

γ1
− |y1 − y2|

γ2

)
(3.47)

In which, |x2 − x1| and |y1 − y2| are the distances of the sample points in the two-
dimensional randomness field.

When Eq. (3.41) is work, the covariance function can be expressed as the
following spectral expansion.

C (x1, y1; x2, y2) =
∞∑
i=0

λiφi (x1, y1) φi (x2, y2) (3.48)

Meanwhile, the theoretical covariance function can be represented approximately
by M-order truncation analog value in the actual calculation. And the results can be
obtained as follows.

CM (x1, y1; x2, y2) =
M∑
i=0

λiφi (x1, y1) φi (x2, y2) (3.49)

On the basis of the above process, the matrix relationship, corresponding to the
covariance function of the multidimensional random variables, can be expressed as

[C (x1, x2, . . . , xm)] =

⎡
⎢⎢⎢⎣
C1,1 C1,2 · · · C1,m

C2,1 C2,2 · · · C2,m
...

...
. . .

...

Cm,1 Cm,2 · · · Cm,m

⎤
⎥⎥⎥⎦ (3.50)
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In order to conduct the error analysis, different expansion orders can be used to
analyze the changing trend of the eigenvalues after the solution of the above method.
And the weight of orders is analyzed throughout the KL expansion. The calculation
results of the covariance function can also be used to analyze the error. When Eq.
(3.49) holds, the relationship of covariance, correlation length, and expansion order
can be obtained by comparing the calculation results of the M-order covariance
function with the theoretical covariance function as Eq. (3.47).

With this, the method is achieved that is used for constructing the randomness
field of the wellbore friction. The steps, using the KL expansion, are as follows that
can generate the Gaussian friction randomness field between the drill string and the
wellbore. The independent random variables fi(x, ξ ) are generated whose number is
M. Then, the eigenvalue {λi} and the eigenfunction {φi(x)} of the integral equation
are solved and the results are taken into Eq. (3.41). Finally, the M-order truncation is
taken to generate a randomness field, and the P-time truncation is taken to generate
the P-time randomness field; then,

[
ZPM (ξ)

]
can be written as

[
ZPM (ξ)

]
=

⎡
⎢⎢⎢⎣
Z1

1 (ξ) Z
1
2 (ξ) · · · Z1

M (ξ)

Z2
1 (ξ) Z

2
2 (ξ) · · · Z2

M (ξ)
...

...
. . .

...

ZP1 (ξ) Z
P
2 (ξ) · · · ZPM (ξ)

⎤
⎥⎥⎥⎦ (3.51)

For
[
ZPM (ξ)

]
, each row consists of an implementation of random variable vector,

and each line is the value of different implementation for the same random variable
such that each line is mutually independent and satisfies the normal distribution,
where each element is independent Gaussian random number. Thus, the wellbore
friction randomness field of M-order and P-time is established.

The description and processing method of the friction force are given. The
expression and the solution method of other forces are determined in this section.

Fsta (x, t) = Fstaδ(x) (3.52)

where Fsta is the amplitude of Fsta(x, t) and δ(x) is the Dirac function δ for the
displacement of the analysis point.

For Fhar(x, t), the corresponding solution equation can be expressed as

Fhar (x, t) = F0 sin
(
ωf t

)
δ (x − L) (3.53)

In which, F0 is the resonant force amplitude of Fhar(x, t), ωf is the rotation
angular velocity, x = L is the corresponding vibration equilibrium position of
Fhar(x, t), and the Dirac function δ(x − L) is defined based on this.

About Fbit (u̇ (x, t)), the solution steps and results are more complex and the
influence factors are numerous. According to the actual condition, the solution
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methods of the Polycrystalline Diamond Compact (PDC) drill bit and the roller
cone bit are given, respectively. For the PDC drill bit, the expression is defined as
[14]

{
Fbit (u̇ (x, t)) =

[
C1 exp (−C2u̇ (x, t))− C1

]
δ (x − L) u̇ (L, t) > 0

Fbit (u̇ (x, t)) = 0 u̇ (L, t) ≤ 0
(3.54)

where C1 is the coefficient that is aiming at the rate of penetration (ROP) and C2 is
the coefficient to describe the nonlinear characteristic between the rock and the drill
bit.

For roller cone bit, according to the boundary condition, the calculation equation
can be written as [15]

⎧⎪⎨
⎪⎩
Fbit (u̇ (x, t)) = −

I∑
i=1

J (i)∑
j=1

K(i,j)∑
k=1

Fbit−X (i, j, k)+W0 u̇ (L, t) > 0

Fbit (u̇ (x, t)) = 0 u̇ (L, t) ≤ 0

(3.55)

where I is the number of cones, J(i) is the ring gear of the ith cone, K(i, j) is the
teeth number of the ith cone and the jth ring gear, Fbit − X(i, j, k) is the contact force

between single tooth and rock,
I∑
i=1

J (i)∑
j=1

K(i,j)∑
k=1

Fbit−X (i, j, k) is a dynamic WOB, and

W0 is static WOB.
For Fmass (ü (x, t)), the expression is

Fmass (ü (x, t)) = −mbitü (x, t) δ (x − L) (3.56)

where mbit is the mass of drill bit.
Based on the completion of forces and the determination of the solution method,

the dynamics vibration model of the drill string can be solved. According to Fig.
3.1, the discrete solution of the model is researched. With the downhole working
conditions of the drill string, the discrete analysis model is established and the drill
string is dispersed. The number of discrete units is n and the length of each unit is l,
corresponding to m1, m2, . . . , mn − 1, mn as shown in Fig. 3.12. The discrete results
can be obtained, which correspond to the mass matrix, the damping matrix, and the
stiffness matrix, respectively, in Eq. (3.35).

drillstring

1m

x

y
z

staF

fricF G mg

harF

bitF
2m –1nm nmLk

Lc

drill bit

Fig. 3.12 Discrete method and model of dynamics solution
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The expression of unit mass matrix can be expressed as

[M]e = lm∗

6

[
2 1
1 2

]
(3.57)

The expression of the overall mass matrix can be written as

[M] = l

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2m∗
n m

∗
n

m∗
n 4m∗

n m
∗
n

m∗
n 2
(
m∗
n +m∗

n−1

)
. . .

· · · · · ·
· · · · · ·
· · · 2

(
m∗

2 +m∗
1

)
m∗

1
m∗

1 4m∗
1 m

∗
1

m∗
1 4m∗

1 m
∗
1
m∗

1 2m∗
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.58)

The expression of the unit stiffness matrix is defined as follows.

[K]e = EA

l

[
1 −1
− 1 1

]
(3.59)

The expression of the overall stiffness matrix is achieved by

[K] = 1

l

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

kL + EnAn −EnAn
− EnAn 2EnAn −EnAn

−EnAn
· · ·

(E2A2 + E1A1) −E1A1
−E1A1 2E1A1 −E1A1
−E1A1 2E1A1 −E1A1

−E1A1 2E1A1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.60)

The expression of the damping matrix is obtained by

[C] = α [M] + β [K] (3.61)

wherein α and β are the scale coefficients, which can be determined by simulation.
Different values are given to α and β. When the fluctuation of the WOB is within
acceptable range, values of coefficients are determined.
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Analysis of Calculation and Experimental Test Results

Because of the well structure design, some parameters are not tested easily in
experiment test. Therefore, referring to the above input parameters, the wellbore
friction random field is analyzed according to the established theoretical model, and
then the displacement of the test point is calculated. Combined with the analysis
method of the wellbore random friction forces, the friction coefficient is obtained as
shown in Fig. 3.13. On the basis of the theoretical model, the dynamic characteristics
of the drill string are solved, and the result of the vibration displacement at the test
point 1 is shown in Fig. 3.14. Figure 3.14a shows the vibration displacement of
example, and Fig. 3.14b shows the enlarge figure of the results of experiment test
and example calculation. Figures 3.13 and 3.14 indicate that the wellbore friction
coefficient and the displacement at the test point present obvious randomness in the

Fig. 3.13 Simulation of the
bore friction coefficient
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Fig. 3.14 Vibration displacement test values of the example and experimental test. (a) The
vibration displacement of example. (b) The enlarge figure of comparison result
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Fig. 3.15 Vibration velocity of test point 1. (a) The vibration velocity of random friction. (b) The
vibration velocity of constant friction

Fig. 3.16 Vibration velocity
of experiment test
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drilling process. Besides, the vibration displacement in numerical example model is
smaller in comparison to the drilling footage.

As the proportion relationship between the displacement of the test point and the
footage, the comparison effect of the vibration displacement is not obvious. In order
to compare the results of different methods, the vibration velocity at the test point
is analyzed, including the wellbore random friction, the constant friction and the
actual experiment test of the vibration velocity, as shown in Figs. 3.15 and 3.16.

It can be observed in the figure that the mean value of the vibration velocity is
around 1.3 mm/s, but the vibration velocity, considering the friction randomness,
shows the characteristic closer to the test result, which can reflect the actual
motion features at the test point and verify the accuracy of the theoretical analysis.
Meanwhile, it is necessary to pay more attention to the influence of the wellbore
randomness on the dynamic characteristics of the drill string, especially in the
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Fig. 3.17 Drilling efficiency
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Fig. 3.18 Mean square value
of drilling efficiency
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horizontal drilling of deep or ultra-deep wells, or the exploitation of new oil and
gas resources with larger target diameter.

The drilling efficiency is shown in Fig. 3.17. And the result show that due to
vibration, the corresponding forces and velocities change during the drilling process.
And because of the randomness of the friction force, the drilling efficiency generates
a certain random fluctuation and the average value is about 0.25.

According to the efficiency value, different solution counts are installed to obtain
the mean square value of drilling efficiency as shown in Figs. 3.18 and 3.19. With
comparison to the results, although the efficiency fluctuation range is large, the
average efficiency value converges to a certain value rapidly and steadily with the
increase in the number of solution counts. Taking the numerical example, when the
number of iterations is more than 200, the mean efficiency is rapidly concentrated
near 0.057.
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Fig. 3.19 Mean square value
of drilling efficiency in
experiment test
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Fig. 3.20 Frequency spectrum analysis result of the vibration velocity of drill string

The accuracy and reliability of the method are verified by the comparison
between the test results and the calculated results. According to the experiment test
and the example calculation, the frequency spectrum of the drill string vibration
velocity is obtained and the results are shown in Figs. 3.20 and 3.21. It can be seen
from the figures that the frequency spectrum results show that the wellbore friction
force has some influence on the frequency spectrum of the drill string vibration
velocity; but in general, the dynamics input speed of the drilling platform has the
greatest effect, which is at 100 rpm and its corresponding integer multiple.

Moreover, the phase diagram and the Poincare plot of the test point 1 can be
obtained as shown in Figs. 3.22 and 3.23. The phase diagram shows the chaotic
motion features of the system; moreover, which indicates that the attractors revolve
around closed circles. Figure 3.22 illustrates that the system is not in a periodic
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Fig. 3.21 Frequency
spectrum analysis result of
vibration velocity in
experiment test

0 50 100 150 200 250 300 350 400 450 500
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

V
ib

ra
tio

n 
ve

lo
ci

ty
 (m

m
/s

)

Frequency (Hz)

Fig. 3.22 Phase diagram of
test point 1
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or quasiperiodic vibration. Figure 3.23 shows the Poincare map is convergent
to some irregular points, which indicates that there are some strange attractors.
And the Poincare cross section is not a closed curve or fixed point but a messy
assemblage, which thoroughly explains the chaotic vibration response of the system.
Figures 3.22 and 3.23 show that due to the influence of the drilling parameters
and the changing working conditions in downhole, the drill string produces random
vibration response during the drilling process.

The key parameters, affecting the vibration characteristics of the drill string, also
include the length of drill string, the radius of the wellbore friction circle, the ROP,
and so on. With a combination of the actual situation of oil and gas production,
the above solution methods and steps can be used to get the relevant results and
complete the result analysis, where the relevant parameters are transformed.
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Fig. 3.23 Poincare plot of
test point 1
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3.2.4 Torsional Vibration on the Wear of Cutting Teeth

The Force Conditions Analysis of Drill String

Due to the complex working conditions of the PDC drill bit during drilling process,
the following assumptions are made for the convenience of analysis and calculation:
(1) the axis of the drill bit and the borehole always coincide; (2) the rotational speed
of turntable and WOB always remain unchanged; and (3) the torque received on the
turntable and the drill bit is constant.

According to the assumptions, the force on the drill string system under the action
of torsional loads can be obtained, as shown in Fig. 3.24.

The drill string dynamics system is discretized to obtain a discrete system with
limited degrees of freedom. For convenience of calculation, the matrix form is
expressed as

[J ] θ̈ (t)+ [C] θ̇ (t)+ [K] θ(t) = [T (t)] (3.62)

where [J], [C], [K], and [T(t)] are the rotational inertia matrix, damping matrix,
torsional rigidity matrix, and torque matrix of the drill string system, respectively.
In addition, θ̈ (t), θ̇ (t), and θ (t) are the angular acceleration vector, angular velocity
vector, and angular displacement vector of the node, respectively.

According to the number of node degrees of freedom, the angular displacement
vector of n nodes is

θ(t) =

⎡
⎢⎢⎢⎣
θ1(t)

θ2(t)
...

θn(t)

⎤
⎥⎥⎥⎦ (3.63)
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Fig. 3.24 Force condition of
drill string FN
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The angular velocity vector of n nodes is

θ̇ (t) =

⎡
⎢⎢⎢⎣
θ̇1(t)

θ̇2(t)
...

θ̇n(t)

⎤
⎥⎥⎥⎦ (3.64)

The angular acceleration vector of n nodes is
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θ̈ (t) =

⎡
⎢⎢⎢⎣
θ̈1(t)

θ̈2(t)
...

θ̈n(t)

⎤
⎥⎥⎥⎦ (3.65)

The torque matrix composed of n nodes is

[T (t)] =

⎡
⎢⎢⎢⎢⎢⎣

T1

T2
...

Tn−1

Tn

⎤
⎥⎥⎥⎥⎥⎦

(3.66)

The rotational inertia matrix composed of n nodes is

[J ] =

⎡
⎢⎢⎢⎢⎢⎣

J1 0 0 · · · 0
0 J2 0 · · · 0
0 0 J3 · · · 0
...
...
...
. . .

...

0 0 0 · · · Jn

⎤
⎥⎥⎥⎥⎥⎦

(3.67)

The overall torsional rigidity matrix consisting of n nodes is

K =

⎡
⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 0 · · · 0
− k2 k2 + k3 −k3 · · · 0
0 −k3 k3 + k4 · · · 0
...

...
...

. . .
...

0 0 0 −kn kn

⎤
⎥⎥⎥⎥⎥⎦

(3.68)

The overall damping matrix consisting of n nodes is

[C] =

⎡
⎢⎢⎢⎢⎢⎣

c1 + c2 −c2 0 · · · 0
− c2 c2 + c3 −c3 · · · 0

0 −c3 c3 + c4 · · · 0
...

...
...

. . .
...

0 0 0 −cn cn

⎤
⎥⎥⎥⎥⎥⎦

(3.69)

In the process of drilling, assuming that the torque on the turntable is T1, the
torque provided by the torsional load is T2, which can be expressed as

Tn−1(t) = T2 (3.70)
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The resistance torque produced by the rock to the drill string system is T3, which
is given by

Tn = T3 (3.71)

According to formula (3.62), the rotational angular displacement and the angular
velocity of the PDC drill bit under the torsional load can be solved. According to the
relationship between the linear velocity and the angular velocity, the circumferential
linear velocity of the PDC drill bit under the action of the torsional load can be
written as

Vc = rθ̇ (3.72)

Since the drilling process of the PDC drill bit is a compound motion of
circumferential rotation and axial movement, the axial linear velocity can be
obtained from the relationship between the ROP and the axial linear velocity.

Va = 1000RJ
3600

(3.73)

where RJ is the ROP of the PDC bit.
According to the vectorial resultant theorem of velocity, the absolute linear

velocity of the PDC drill bit is obtained.

V =
√
V 2

c + V 2
a (3.74)

According to the relationship between linear velocity and rotation speed, the
rotation speed of the PDC drill bit can be solved.

N = V

2πr
(3.75)

Geometry Equation of Cutter

During the drilling process, the essential problem of rock breaking is to cut rocks
by the cutters of PDC drill bit. The geometry of PDC drill bit is the basis of PDC
drill bit dynamics and cutting mechanics. Therefore, the geometry of PDC drill bit
cutter has important significance for studying the PDC drill bit wear. Wherein, the
cutter geometry includes the interrelationship between the cutting edge inclination
angle, top rake, cutting depth, and cutting area of the PDC drill bit.

According to the definition of the cutting angle of the PDC drill bit, it is assumed
that the coordinate of the point on the cutter is w(r,ψ , hc), where r is the radius of
the cutter, ψ is the position angle of the cutter, and hc is the point of the cutter axial
distance. Based on the relationship between the angle of the cutters as shown in
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Fig. 3.25 Geometric model of PDC drill bit cutter

Fig. 3.25, the cosine of the normal direction of the cutter working plane can be
expressed as [60]

⎧⎨
⎩
u = cosα cosβ cosψ + sinα sinψ
v = cosα cosβ
p = sinα cosψ − cosα sinβ sinψ

(3.76)

where ξ , α, and β are the normal angle, the top rake, and the roll angle of the cutter,
respectively.

According to the geometrical equations of the cutters, the calculation model for
each angle of the PDC cutters is established, and the expression of the cutting edge
inclination angle is given by

βk = arctan
u [ζ1 (r + x1)+ ζ2y1] + w

[
ζ3

√
(r + x1)

2 + y2
1

]

v

√
2[ζ1 (r + x1)+ ζ2y1]2

(3.77)

where x1, y1, ζ 1, ζ 2, and ζ 3 can be written as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 = r sinψ cosβ cos ξ + r cosψ (cosα sin ξ − sinα sinβ cos ξ)
y1 = −r sinψ sinβ − r cosψ sinα cosβ
ζ1 = r (cosψ cosβ cos ξ + sinψ sinα sinβ cosψ)
ζ2 = r (sinψ sinα cosβ − cosψ sinβ)
ζ3 = −r (cosψ cosβ sin ξ + sinψ cosα cos ξ + sinψ sinα sinβ sin ξ)

(3.78)
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Fig. 3.26 Cutter of PDC drill
bit

We assume that the coordinate of the point on the cutter is (x, y), as shown in Fig.
3.26. According to the geometric relation, the effective linear cutting edge of cutter
can be expressed as

lthe effective cutting edge =
⎧⎨
⎩2
[
r2 − (r − ac

cosα

)2] 1
2

0 < y < r
(3.79)

Assuming that the cutting depth of the PDC cutter is ac, the cutting arc length of
the cutter can be obtained as follows:

L = 2r arccos
(

1 − ac

r cosα

)
cosβ (3.80)

The cutting area of the cutter is given by

Acut =
(
r2 arccos

(
1 − ac

r cosα

)
− r

(
r − ac

cosα

)
sin

(
arccos

(
r − ac

cosα

r

)))
cosβ

(3.81)

Cutter Wear Calculation Under Torque

The normal wear of the drill bit is a common case of PDC drill bit failure. According
to the principle of nonlinear dynamic system, the PDC drill bit wear process can be
divided into self-organizing stage, chaotic stage, and instability stage, corresponding
to the three periods in tribology, wearing in, normal wearing, and sharp wear stage,
respectively.
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Fig. 3.27 Wear of PDC cutters

In actual work, the cutter wear rate of the PDC drill bit can be defined by the
wear volume or height of the cutter in unit length or unit time. According to the
previous definition, the cutter wear rate can be expressed as [16]

vt = VV

t
(3.82)

or

vl = VV

l
(3.83)

where vt and vl are the volume wear rates, VV is the cutter wear volume, t is the
wear time, and l is the drilling depth.

In order to study the cutter wear rate of the PDC drill bit, the following
hypotheses are proposed: (1) the cutter wear volume is directly proportional to the
frictional work; (2) the friction and wear of the cutter side are ignored; and (3) the
wear amount of the cutter is very small.

As shown in Fig. 3.27, the wear volume of the PDC cutter is given by

dV V = [l + (l + dl) bV]

2
[(ac + dac)− ac] = lbVdac − bV

2 × dl dac
(3.84)

where dVV is the differential volume of cutter wear; a and b are the width of the
interface between the cutter and the rock and the thickness of the wearing surface,
respectively; and dh and da are the differential height and the differential width of
the cutter, respectively.

Cutter wear is so small that da and dh can be ignored. Since wear is generated
under the same conditions, b can be calculated as a constant.
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Frictional work is proportional to the wear volume of the PDC drill bit cutter, so
normal wear of the PDC drill bit produced by frictional work is expressed as

dV V = ωVdωV (3.85)

where dωV is the differential work done by friction.
Assumptions show that the friction at length dδ is given by

df = μp dδ (3.86)

The distance the differential length takes is written as

ds = δdψ (3.87)

The differential work is obtained as follows:

dω = df ds = μpξ dξ dψ (3.88)

where μ, p, and δ are the friction coefficient between the rock and the drill bit
cutter, the linear density of the pressure, and the distance from the drill bit center to
the wear part, the eccentric distance of the cutter, respectively; and dδ and dψ are
the differential value of the cutter eccentric distance and the differential angle of the
cutter rotation, respectively.

The work done by one rotation of the cutter is expressed as

W = μp
∫ δ+a

δ

ξ dξ

∫ 2π

0
dψ = πl (l + 2δ) μp (3.89)

The cutter wear volume is given by

VV = ωVW = ωπl (l + 2δ) μpNt (3.90)

Substituting formula (3.90) into formula (3.82), we get

vt = VV

t
= ωπl (l + 2δ) μpN (3.91)

The pressure distribution density p is defined as

p = F

L
(3.92)

where L is the contact length between the cutter and the rock and F is the pressure
on the cutter.
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Considering the cutter contact arc length, the state of wear, etc., the pressure on
the cutter of the PDC drill bit can be expressed as

F = ηβFd (3.93)

where the arc length coefficient is defined as

β = L

Ld
(3.94)

where Fd and Ld are the axial pressures on the standard cutter and the equivalent arc
lengths of the cutter cutting rock, respectively.

Cutter wear increasing coefficient is written as

η = exp

(
ac

D cosφ

)
(3.95)

where ac, D, and φ are the wear height, diameter, and caster angle of the cutter,
respectively.

Although the old cutter and the new cutter are essentially the same in their
stress, both the wear increase coefficient a and the arc length coefficient b affect
the force condition of the old cutting teeth. Therefore, the model is a comprehensive
consideration of the PDC bit cutting teeth by cutting teeth diameter, wear, and other
effects.

Although the force of the old cutter and the new cutter is the same, the wear
increasing coefficient μ and the arc length coefficient f both affect the force
condition of the old cutter. Therefore, the model comprehensively considers the
diameter and wear of the PDC drill bit cutter.

Substituting formulae (3.95) and (3.93) into formula (3.92), we get

p = exp

(
ac

D cosφ

)
Fd

Ld
(3.96)

Substituting formula into formula (3.82), we get

vt = πl (l + 2δ)CpμτN exp

(
ac

D cos2 φ

)
Fd

L
(3.97)

Assuming the wear height ac = 1 mm, the relationship between the linear
velocity at the unit cutting depth and the volume wear rate can be expressed as

vt = πl (l + 2δ)Cpμτ
V

Dπ
exp

(
1

D cos2 φ

)
Fd

L
(3.98)
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Calculation Analysis

According to the previous calculation method, combined with the drill bit param-
eters, as shown in Table 3.6, the angular velocity and angular displacement of the
drill string under the action of the torsional load can be obtained, as shown in Figs.
3.28 and 3.29, respectively.

As can be seen from Fig. 3.28, the rotational angular velocity of the drill
string under torsional load is fluctuating. Torsional loading of high-frequency
reciprocating impact drill string results in changes in the force of the drill string,
so the rotational angular velocity changes.

It can be seen from Fig. 3.29 that under the effect of the torsional load, the
rotational angular velocity fluctuates, so the rotational angular displacement also
fluctuates.

In order to obtain the relationship between the top rake, the effective cutting edge
length, cutting arc length, and cutting area, the specific parameters used, as shown
in Table 3.6.

Substituting the data in Table 3.6 into the previous formula, the relationship
between the effective cutting edge length, cutting arc length, cutting area, and top
rake can be obtained, and the results are shown in Table 3.7.

Table 3.6 Parameters of drill
bit

Parameter Value

The roll angle β (◦) 10
Cutting depth ac (mm) 1
Cutter position angle ψ (◦) 10
Normal angle of the cutter (◦) 10
PDC drill bit size 8.5′′
Number of blades 6
Compact radius r (mm) 8
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Fig. 3.28 Angular velocity of drill string
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Fig. 3.29 Rotational angular displacement

Table 3.7 Parameters of drill bit cutter

Top rake Effective cutting edge length Cutting arc length Cutting area

2 7.7482 7.9606 5.1376
4 7.7548 7.9532 5.0921
6 7.7658 7.9408 5.0161
8 7.7814 7.9234 4.9097
10 7.8015 7.9011 4.7726
12 7.8262 7.8737 4.6050
14 7.8556 7.8414 4.4065

The results obtained in Table 3.7 are plotted as shown in Figs. 3.30, 3.31, and
3.32.

Figure 3.30 shows the relationship between the top rake and the effective cutting
edge length. As can be seen from the figure, as the top rake increases, the effective
cutting edge length also increases, which means that the top rake is proportional to
the effective cutting edge length.

Figure 3.31 shows the relationship between the top rake and the cutting arc
length. It can be seen from the figure that as top rake increases, the cutting arc
length decreases, which means that top rake is inversely proportional to the cutting
arc length.

Figure 3.32 shows the relationship between the top rake and the cutting area.
As can be seen from the figure, with the increase of the top rake, the cutting area
decreases, which means that the top rake is inversely proportional to the cutting
area.
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Fig. 3.31 Relationship between the top rake and cutting arc length

As can be seen from Figs. 3.30, 3.31, and 3.32, the top rake has different effects
on the effective cutting edge length, cutting arc length, and cutting area. With the
increase of the top rake, the effective cutting edge length increases, while the cutting
arc length and cutting area decrease. This is not conducive to the improvement of
the ROP and rock-breaking efficiency, and it is not possible to break rock efficiently
(Table 3.8).

The results of substituting the parameters in Table 3.9 into the previous formula
are shown in Fig. 3.33.
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Table 3.8 Cutter force
parameters

Parameter Value

Axial pressure on cutter Fd (N) 400
Cutter wear strength τ (N/mm2) 70
Hydraulic coefficient Cp 0.14
Friction coefficient between cutter and rock μ 0.4
Caster angle ∅ (◦) 10

Table 3.9 Drilling
parameters

Service condition of torque load ROP (m/h)√
6.5

× 4.5

Figure 3.33 shows that there is a direct relationship between the volume wear
rate of the cutter (vt) and the distance from wear part to drill bit center (δ). With the
increase of δ, the vt also increases, and it is a linear distribution. The phenomenon
shows that the cutters in the center of the blade have small cutting volume, and the
less wear, while the outer cutter in cutting blades edges have large cutting volume
and heavy wear.

The results of substituting the parameters in Table 3.9 into the previous calcula-
tion formula are shown in Fig. 3.34.

From Fig. 3.34, it can be seen that the cutter volume wear rate under the action
of torsional load is small, and as the distance increases, the greater the difference
between the cutter wear with torsional load or not.
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Fig. 3.34 Results comparison of cutter wear with torture load or not

3.3 Concluding Remarks

Aiming at the existing exploitation conditions of new oil and gas resources, there is
great importance to conduct the drill string dynamics study, especially for shale gas,
coal-bed methane, large displacement horizontal well, and so on.

With the consideration of the friction randomness of drill string, drill string
dynamic characteristics can be evaluated accurately. And with the combination
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of the actual downhole conditions, the wellbore friction randomness is described
and the steps and methods of constructing the wellbore random field are given.
Based on this, the dynamic solution models of the horizontal drill string are
established. According to the experiment test, the basic input parameters are
determined, and a numerical example is carried out to calculate the wellbore
friction coefficient. The vibration displacement, the vibration velocity, and drilling
efficiency are solved and analyzed, and the frequency spectrum analysis of the
vibration velocity is completed. Besides, the phase diagram and Poincare plot of
the test point are obtained. The established method can provide a reference for the
drill string dynamic analysis on the basis of the wellbore friction randomness and
the quantitative evaluation of the influence of the key parameters on the drill string
dynamics.

For the actual condition of drilling process, the mechanical model and vibration
equations are established respectively with considering the radial inertia effect
or not. Within the frequency range of the drill string’s dynamic design, the
conclusions can be drawn. The drill string’s dynamic stiffness presents cyclical
transformation of amplitude increase with increase in frequency. Therefore, the
right drill column length should be selected comprehensively according to the
requirements of resisting vertical deformation and vibration. As the drill column
length and cross-sectional area increase, the dynamic stiffness of the drill string
also increases; when inner diameter is low or outer diameter sets high scale
at the same frequency, the absolute value of the dynamic stiffness is greater
correspondingly. The bigger the damping coefficient, the greater is the force to drill
column from the bottom of the well; then, the amplitude of dynamic stiffness is
smaller, which conforms to the actual condition. The influence of bottom-well’s
dynamic stiffness from the Poisson’s ratio and the radial inertia effect is obvious
gradually with increase in frequency. Therefore, the influence on the drill string
vertical vibration characteristics from Poisson’s ratio cannot be ignored. Especially,
when the vibration frequency is bigger, the influence of lateral dimension effect
should be considered while designing the drill string; otherwise, the results will
show deviations.

The torsional vibration model is established in the chapter, along with the
changing relationship of vibration angular displacement and vibration angular
velocity with the change of time. According to the analysis result, for the vibration
of drill string, which is under the torsional load, angular velocity and angular
displacement are varied wavelike. And on the basis of theoretical research, the
cutting teeth wear model of the PDC drill bit is given to analyze the cutting teeth
wear pattern. The cutter volume wear rate under the action of torsional load is
smaller. And as the distance increases, the difference also increases between the
cutter wear with torsional load or not.

Drill string dynamics is the theoretical basis for the safe production of down-
hole tools, the improvement of rock-breaking efficiency and the development of
new down-hole tools in oil and gas production process. Simultaneously, through the
tool failure, rock-breaking, and other result parameters, we can contradict that the
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corresponding drill string dynamics calculation method is reasonable. And when
the result parameters are constant with the reversed result, the dynamics calculation
method can meet the actual needs and effectively promote the development of
related technology.
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Chapter 4
Nonlinear Modeling Application
to Micro-/Nanorobotics

Ali Ghanbari and Mohsen Bahrami

4.1 Introduction

Micro-/nanorobots have the potential to revolutionize medicine by specific applica-
tions, such as targeted drug delivery, biopsy, hyperthermia, brachytherapy, scaffold-
ing, in vivo ablation, sensing, marking, and stem cell therapy [1, 2]. Application of
microrobots can move us to the stage that monitoring diseases, highly localized drug
delivery, minimally invasive surgery, and novel therapies such as stem cell therapy
are done using the tools inside the human body. The tiny machines can be inserted
into the human body through the natural conduits of the body. The application
of microrobots in medicine requires a multidisciplinary delicate investigation.
Microrobot propulsion system, actuation and control system, and microrobot motion
control are the areas that should be addressed.

Since size is small and velocity is low, microrobots have a very low Reynolds
(Re) number. Re number is the ratio between inertial forces and viscous forces,
and a low Re number indicates the dominance of viscous forces. Hence, swimming
methodologies at microscale are different from those at the macroscale. Several
methodologies have been proposed and demonstrated for motile microrobots in
viscous fluid environments. These microswimming robots are usually biomimetic,
employing techniques inspired by microorganisms and bacteria, which use cilia
and flagella to propel themselves [3–7]. However, researchers have also used the
direct pulling of a permanent magnet or a soft magnet in the fluid using external
magnetic fields with a magnetic field gradient at the location of the microrobot
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[8]. Although motion is linear at Stokes flow, hydrodynamics of flagella and cilia
involve nonlinear models that should be address for precise actuation and control of
micro-/nanorobots. Nonlinear modeling is of great significance especially when the
artificial filaments are fabricated from soft materials to mimic natural flagella and
cilia and provide enhanced propulsion [9].

Another great challenge in developing an autonomous microrobotic system is
to provide power and control to the microrobot. Since untethered microrobots can
be used as implants and have a higher maneuverability, the control system should
benefit from a wireless actuation mechanism. Magnetic actuation can transfer a
reasonable amount of power wirelessly. There are different systems for generating
magnetic field and gradients:

• Permanent magnets
• Helmholtz coils, Maxwell coils, or a combination thereof
• Magnetic resonance imaging (MRI) systems
• Customized sets of electromagnetic coils

Permanent magnets do not present the required flexibility for control of micro-
robots and it would be difficult to generate gradient fields using permanent magnets.
Helmholtz and Maxwell coils, which use air-core electromagnetic coils, surround
the workspace entirely causing some constraints for biomedical applications.
Indeed, they generate a weaker magnetic field when compared to the electromag-
netic coils with a soft-magnet core. Magnetic resonance imaging (MRI) systems
have also been used to manipulate the micro-/nanorobots [10, 11].

Customized sets of electromagnetic coils have widely been used for actuation of
micro-/nanorobots [12, 13]. These devices can be utilized in any of methodologies
for propulsion at microscale including gradient-based pulling, flagellar motion, and
finally ciliary propulsion. The electromagnetic coils generate the required power for
actuation of magnetic micro-/nanorobots and are safe in biomedical applications.

Hydrodynamic model of swimming microrobots which use flagellar, ciliary,
and gradient-pulling methodologies leads to coupled nonlinear systems of equa-
tions describing the fluidic–elastic–actuation problem. Also, magnetic actuation
predominantly involves forces and moments that are nonlinear functions of spatial
coordinates [14, 15].

Since propulsion and actuation are main challenges in micro-/nanorobotics
besides sensing, modeling of these functions provides an insightful realization of
these systems and their implementation at micro-/nanoscale. Here, we discuss the
application of nonlinear modeling in propulsion and magnetic actuation of micro-
/nanorobots. We provide the hydrodynamic modeling and magnetic propulsion of a
ciliary microrobot. We also give a nonlinear model of magnetic stimulation using
a set of electromagnetic coils that can be used in actuation and control of micro-
/nanorobots. We solve the models for numerical examples and investigate the role
of various design parameters.
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4.2 Hydrodynamic Modeling of a Ciliary Microrobot

4.2.1 Stokes Flow

Hydrodynamics of an incompressible fluid flow with a constant density ρ and a
constant dynamic viscosity μ is governed by the Navier–Stokes equations:

ρ
(
∂u
∂t

+ u.∇u
) = ρg + μ∇2u − ∇p

∇ · u = 0
(4.1)

where u is the fluid velocity, g is the gravitational acceleration, and p is the pressure.
Stokes flow is a type of fluid flow in which the inertia forces are small against the
viscous forces and their effects can be ignored. For a fluid with a constant kinematic
viscosity ν, Reynolds number is defined as Re = uD

ν
, which is a dimensionless

ratio between the inertia and viscous forces. Reynolds number is very small for
a Stokes flow; therefore, the inertia forces can be neglected in the Navier–Stokes
equations, and Stokes equations are obtained. For an incompressible Newtonian
fluid, the Stokes equations are derived as:

∇p − μ∇2u = 0
∇ · u = 0

(4.2)

Since flagella and cilia have a small size and motion is slow for artificial
microswimmers, Reynolds number is very small, on the order of 10−4, and the fluid
by flagella and cilia is described using Eq. (4.2).

Taylor modeled flagella motion by forming an envelope curve of the flagella
tip generating a wave [16]. He obtained the flagellum mathematical model and
established a relationship between the speed of the microorganism movement and
the velocity of its wave propagation.

Gray and Hancock suggested that since cilia and flagella are slender, i.e., their
radius relative to the length and the radius of curvature are very small, the local
drag forces (exerted by the surrounding fluid) can be related to the local velocities
[17]. In the Gray–Hancock model, the components of the drag force are considered
to be proportional to the velocity component in the same direction with a constant
coefficient, called resistive coefficient [17]. A drag force can be decomposed into
three directions of tangential, normal, and binormal. Although the model is simple
to apply, the resistive coefficients have not been specified for complex shapes. The
method also does not take into account the effect of flow induced by the cell body
or neighboring flagella or cilia [18, 19].

Slender body theory (SBT) is an alternative method to analyze the hydrodynamic
flow around, for example, a cylindrical filament with a very small radius compared
to its length. This theory, developed by many authors [20–22], relates the flow
distribution at a cross section along the slender body not only to the resistive forces
(which are the effect of “near field”) but also to the hydrodynamic interactions of the
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“far field” [19]. Therefore, this method is more precise than the resistive force theory
and is particularly for the case where the flagella or cilia are attached to a body, the
microorganisms move near the walls, or the microorganism has several flagella or
cilia [19, 23]. The SBT model takes into account the hydrodynamic interactions in
any of these cases.

4.2.2 Cilia Hydrodynamics

For a cilium with a radius c and length L moving in the fluid, the drag forces in
tangential and normal directions are given by RFT as:

φT = −CTVT (4.3)

φN = −CNVN (4.4)

where V(s, t) is the velocity at a cross section s along the cilium at the time t and
has two components in two dimensions in the tangential and normal directions as
VT and VN. φT and φN are the tangential and normal drag forces per unit length
applied by the surrounding fluid with a viscosityμ. Tangential and normal resistance
coefficients CT and CN that relate drag forces to the velocity in that direction are
defined as:

CT = 8πμ

−2 + 4 ln (2a/c)
(4.5)

CN = 8πμ

1 + 2 ln (2a/c)
(4.6)

where a has an arbitrary value so that a/L � 1 and c/a � 1. Brennen and Winet [24]
showed these expressions are more accurate for the tangential and vertical resistance
coefficients than those calculated by Gary and Hankook [17].

Gueron and Liron utilized SBT to model the hydrodynamics of cilia considering
the effect of the distant segment, the cell body, neighboring cilia, and external flows
on the drag force of a given cross section along the cilium [19, 23]. These effects
are captured by pseudo-drag forces gT and gN:

φT = −CTVT + gT (4.7)

φN = −CNVN + gN (4.8)
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where gT and gN are given by:

gT = CTGT (4.9)

gN = CNGN (4.10)

where G = (GT, GN) is the velocity induced at a cross section by other sources
excluding the local near segment. A full description of the method can be found
in [19]. To solve the Stokes flow, a distribution of Stokeslets and doublets is
considered at the cilium centerline along its length. Then, these Stokeslets and
doublets are integrated over the far field and neighboring cilia to account for their
contribution into the total drag force. The external flow velocity is directly included
in G [19].

A low Reynolds number simplifies the mathematical analysis of the correspond-
ing hydrodynamics since the fluid mechanics is linear at this regime. However,
even at Stokes flow modeling, the cilia motion involves a system of interconnected
nonlinear equations which includes the actuation force, cilia elasticity, and the
external fluid dynamics.

Consider the cilium as an inextensible filament shown in Fig. 4.1a. Suppose (x, y)
and (T, N) are global and local coordinates (as shown in Fig. 4.1a). It is possible to
write the velocity of the cilium at a cross section s in terms of local coordinates. By
differentiating this term with respect to the spatial variable s along the cilium and
evaluating the differentiation of the tangential and normal unit vectors, the following
formulations are obtained [19]:

Fig. 4.1 (a) Global and local coordinates shown for the cilium and location vector r of a point s
along the cilium. (b) Internal forces and moment at a cross section s
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VNs = θt − VT θs (4.11)

VTs = VNθs (4.12)

where indices s and t represent partial differentiation with respect to the spatial
variable and time. If we cut the cilium at a point s, then we have two internal
tangential and normal forces FT(s, t) and FN(s, t), respectively, and one internal
moment M(s, t) to maintain the movement of this point (Fig. 4.1b). These should
satisfy the forces and moments balance [19]:

φT = FTs − FNθs (4.13)

φN = FNs + FTθs (4.14)

Ms = FN (4.15)

The internal moment is due to the cilium elasticity as well as the applied actuation
torque, TA(s, t). If cilium is considered as a beam, the bending moment due to
elasticity is related to the beam curvature:

M = Kbκ (4.16)

where κ = ∂θ
∂s

and Kb are the cilium bending stiffness. Therefore, using Eq. (4.15),
we obtain the equation for the normal force as:

FN = Kbθss + TA (4.17)

If we eliminate the velocity components in Eqs. (4.13)–(4.17) using Eqs. (4.11),
(4.12) and (4.7), (4.8), we get the following equations [23]:

FNss +
(

1 + CN

CT

)
FNs θs + FTθss = −CNθt + CN

CT
FN(θs)

2 + CN

CT
gTθs + gNs

(4.18)

FTss =
(

1 + CT

CN

)
FNs θs +

CT

CN
FT(θs)

2 + FNθss − CT

CN
gNθs + gTs (4.19)

The cilium motion is expressed using Eqs. (4.17)–(4.19). If an actuation torque is
defined, then this coupled system of nonlinear partial differential equations should
be solved along with boundary and initial conditions to find the cilium internal
forces, FT and FN, and the cilium shape, θ (s, t), during its motion.
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The cilium is considered to be stiff at the base [23] and erect at its end, then:

θs (0, t) = 0 (4.20)

θs (L, t) = 0 (4.21)

Since the cilium has a limited motion near its base, drag forces are considered to
be zero at s = 0. Hence, from Eq. (4.13), (4.14), and (4.20), we get:

FTs (0, t) = FNs (0, t) = 0 (4.22)

and using Eqs. (4.22) and (4.17):

θsss (0, t) = −TAs (0, t) (4.23)

The cilium is anchored at s = 0 and is free at s = L. Hence, there is no internal
force or moment at the free end:

FT (L, t) = FN (L, t) = 0 (4.24)

θss (L, t) = −TA (L, t) (4.25)

4.2.3 Equations of Motion

Inertia is neglected for a microrobot swimming in a viscous fluid with a low
Reynolds number. Hence, since the rate of change of linear and angular momentums
of a microswimmer is negligible, the applied forces and moments are at static
equilibrium. Thus, for the microrobot shown in Fig. 4.2, we write the force balance
in x- and y-directions as:

∑
Fx,cilia +

∑
Fx,body = 0 (4.26)

∑
Fy,cilia +

∑
Fy,body = 0 (4.27)

and the moment balance perpendicular to the plane:

∑
Mcilia +

∑
Mbody = 0 (4.28)
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Fig. 4.2 Swimming microrobot model with global and local coordinates

Only hydrodynamic forces are applied to the microswimmer and need to be
considered in Eqs. (4.26) and (4.27). For an element ds of the cilium length, these
forces are written in x- and y-directions:

dFx,cilium = φTds cos θ + φNds sin θ (4.29)

dFy,cilium = φNds cos θ + φTds sin θ (4.30)

where φT and φN are tangential and normal drag forces and are obtained from:

φT = −CT (VT − U cos θ) (4.31)

φN = −CN (VN + U sin θ) (4.32)

where U is the velocity of the microrobot body.
Two rows of cilia are symmetrically aligned around the microrobot centerline

on both sides of the body (Fig. 4.2). For a planar motion of the microrobot, no
force is applied to the body in y-direction. Also, the vertical component of the
hydrodynamic force is identical for the cilia on both sides, but, with an opposite
direction. Therefore, they cancel each other and Eq. (4.27) is satisfied. The resulting
moment of cilia force, Fx, cilia, for the row of cilia on one side equals the one for the
row of cilia on the other side, but with a negative direction. Hence, they cancel each
other, and since there is no other moment exerted on the microrobot, then Eq. (4.28)
is also satisfied.
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Replacing Eqs. (4.31) and (4.32) into (4.29), we find the force on the element ds
in x-direction:

dFx,cilium =
(
CTVT cos θ − CTUcos2θ − CNVN sin θ − CNUsin2θ

)
ds (4.33)

Integrating Eq. (4.33) along the length of one cilium and multiplying by the total
number of cilia, n, we obtain the total force of cilia in x-direction:

Fx,cilia = n
∫ L

0
dFx,cilium (4.34)

For objects moving in the fluid with a small Reynolds number, the hydrodynamic
drag force is proportional to their velocity. For the specific microrobot body shape
considered as an ellipsoid (Fig. 4.2), the drag force is in the parallel direction to its
longitudinal centerline with a magnitude [25]:

Fx,body = 8.5μRU (4.35)

where R is the radius of the head hemisphere. Since there is no other force than
the cilia hydrodynamic force given by Eq. (4.34) and the body drag force given by
(4.35), we balance these forces and obtain the propulsive velocity.

4.2.4 Numerical Example

To solve the nonlinear equations of cilia numerically, we design the microrobot
parameters and evaluate its dynamic properties. Kim et al. fabricated a ciliary
microrobot using three-dimensional laser lithography [26]. Figure 4.3a shows the
microrobot model with its dimensions. Laser lithography enables microfabrication
of 3D structures with a precise control over their size and a high resolution. In
this technique, two laser beams are concentrated to form a single ellipsoidal spot,
which is used as a building unit. The movement of a piezoelectric stage is controlled
precisely to follow a pre-programmed path to partially expose the photoresist. A full
3D structure is produced after removing the unexposed photoresist in a developer.
Scanning electron microscopy (SEM) image of the fabricated ciliary microrobot is
depicted in Fig. 4.3b. A Nickel layer has been sputtered over the cilia to provide
magnetic properties for actuation. To solve a numerical example of the nonlinear
model developed in Sect. 4.2.2 and 4.2.3, we choose properties and dimension of
the microrobot body and cilia as in Table 4.1. We have selected the microrobot
dimensions so that they are producible using 3D laser lithography fabrication.

Artificial cilia should be sufficiently flexible to bend properly during the recovery
stroke. Kim et al. fabricated the artificial cilia from IP-dip with a modulus of
elasticity of 4 GPa, which is close to the natural cilia Young modulus [23].
However, natural cilia have a typical diameter of 25 nm, six times less than what
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Fig. 4.3 (a) Model of a ciliary microrobot with design parameters [26]. (b) The ciliary microrobot
fabricated using laser lithography method. Scale bar is 100 μm. Reproduced with permission from
[26]

Table 4.1 Ciliary
microrobot design parameters

Design parameter Value

Cilium length, Lcilia 75 μm
Cilium radius, ccilia 75 nm
Cilium Young’s modulus, E 4 GPa
Body radius, Rbody 150 μm
Body length, Lbody 220 μm
Number of cilia, n 8
Water viscosity, μwater 0.001 kg/(m·s)

we consider here (150 nm). Hence, flexural stiffness of the artificial cilia, obtained
by multiplying the modulus of elasticity and the moment of inertia, becomes larger
compared to that of the natural cilia. We assume the microrobot moves in a fluid
with the viscosity of water.

For actuation of cilia, we assume TA(s, t) to have a function like the model
described for an internal engine of natural cilia [23]. This model generates a beating
pattern similar to what is seen in Paramecium. The internal engine of natural
cilia has a 9 + 2 structure with 9 peripheral pairs of microtubules connected to
a central pair of microtubules by radial spokes [27]. A relative sliding between
microtubules leads to a surprising active bending of cilia. To understand the behavior
of ciliated microorganisms, their movement has been observed by many researchers
and their various beating patterns have been identified [28, 29]. Based on these
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observed patterns, Gueron and Levit-Gurevich proposed a model that approximates
the internal motor of cilia [23]. This model works for effective and recovery strokes
and is given by:

TAeff/rec= (±1) ·
{
CNL

2

TA0

ωeff/rec ·
(
s2−1

)
2

· [1+heff/rec (s, t)
]+ Beff/rec · κ (s, t)

}

(4.36)

where TA0 is the typical magnitude of shear force within the cilia [23], ωeff and ωrec
are the average angular velocities during effective and recovery stroke, respectively,
B is the model constant that varies for effective and recovery strokes as Beff = 0
and Brec = 2, and κ = θ s is the cilium curvature. The parameter h is given by two
different equations for effective and recovery strokes:

heff (s, t) = C1 + C2 ·
(
θ − π

2

)2
(4.37)

hrec (s, t) =
{

1 + C1 + C2 ·
(
θ (0, t)− π

2

)2 0 ≤ s ≤ 0.1

C1 + C2 ·
(
θ (0, t)− π

2

)2 0.1 ≤ s ≤ 1
(4.38)

where A1 = 0.26 and A2 = − 0.17, A1 = 1 and A2 = − 2 are constants for effective
and recovery stroke, respectively.

To solve the system of nonlinear partial differential equations of cilia (Sect.
4.2.2), we divide the cilium length into 50 elements (ds = L/50). The time step is
chosen 0.1 ms (dt = 0.1 ms). For convenience, a nondimensional form of equations
has been used in the numerical solution. The internal motor nondimensional
frequency is taken as ωeff = 393 and ωrec = 82 for effective and recovery strokes,
respectively [23].

Assuming cilia shape at t = 0 (initial condition) and the actuation force, we
calculate FN from Eq. (4.17). Then, using the values of gT and gN at a previous time
step, Eq. (4.19) is solved to find FT. Now having FT and FN, we calculate φT and
φN from Eqs. (4.13) and (4.14). Then, new values for gT and gN are obtained for
the current time step. This process is iterated until the relative error of the value for
FT becomes less than a given amount [23]. Then, Eq. (4.18), which is a fourth-order
nonlinear PDE with respect to θ , is solved to get the cilia shape over time.

A beating cycle is defined from the beginning of the effective stroke to its end
and then returning to the initial position through the recovery stroke. During the
effective stroke, cilia are straight and beat on the fluid. However, they are firmly bent
during the recovery stroke to have minimal resistance to the fluid. Effective stroke
commences at θ = 160◦ and ends at θ = 20◦. In addition to boundary conditions
described in Sect. 4.2.2, we select the initial condition as θ (s, 0) = 160◦. We can
solve the equations for one beating cycle and determine the propulsive force from
Eq. (4.34). Then, we write the force balance and obtain the propulsive velocity of
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Fig. 4.4 The propulsive
velocity of the microrobot for
one beating cycle of cilia as a
function of time

the microswimmer from Eq. (4.35). The resistance coefficients for cilia in tangential
and normal directions are CT = 0.00143 and CN = 0.00233, respectively.

The microswimmer propulsive velocity is shown in Fig. 4.4 as a function
of time. One full cycle of cilia beating takes 7.3 ms. The propulsive force is
proportional to the propulsive velocity through the coefficient of body drag (Eq.
4.35). The microswimmer velocity increases when cilia start beating at θ = 160◦
to a maximum value at θ = 90◦, then decreases. Figure 4.4 suggests that cilia
motion during the recovery stroke does not contribute to or withhold from the
microrobot propulsion significantly. The maximum velocity during effective stroke
is seven times higher than the utmost velocity during the recovery stroke. The
net displacement of the microswimmer can be evaluated from the area under the
velocity–time curve (Fig. 4.4). Displacement during effective and recovery stroke is
38.0 and 2.2 μm, respectively. Hence, this results in a net displacement of 40.2 μm
for the microswimmer at a mean speed of 5.66 mm/s.

4.2.5 Design Parameters

In this section, we characterize effect of each of the design parameters on the
microrobot motion. Figure 4.5a shows the microrobot velocity for various radiuses
of cilia during the effective stroke. Other parameters have the same values as in
Table 4.1. The microrobot velocity during effective stroke increases with an increase
in the radius of cilia. This rise in velocity results from increasing tangential and
normal resistance coefficients for larger sizes of the cilium radius.

On the other hand, when getting thicker cilia become stiffer and exhibit a higher
resistance in bending. Thus, they bend less with a certain amount of moment and
provoke higher resistance to the fluid. Therefore, the mean speed of microrobot
decreases after a maximum value of about 70 nm of the cilium radius (Fig.
4.5b). With a given driving moment, a relatively small bending stiffness causes a
considerable curvature of cilia during recovery stroke. Hence, cilia cannot have a
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Fig. 4.5 (a) Velocity of the microrobot during effective stroke for different radii of cilia as a
function of time. (b) The mean speed of the microrobot for various sizes of cilia radius

large radius. By testing different radiuses of cilia, when cilia get thicker than 150 nm
in radius, the motor is not able to bend them. It is also noteworthy that a low modulus
of elasticity, for instance on the order of MPa, does not help considerably, instead,
cilia dimension affects its curvature significantly.

The microrobot velocity is shown for different cilia lengths in Fig. 4.6a. Since
a longer cilium produces higher propulsive force during the effective stroke, the
propulsive velocity increases with an increase in the length. Figure 4.6a depicts
a ciliary microswimmer with a cilium length of 50, 70, and 100 μm achieves a
maximum speed of 9.46, 15.84, and 25.29 mm/s, respectively.

There is an optimum length of cilia for generating propulsive force and afterward,
longer cilia contribute to higher resistive force during recovery stroke and cause a
decreasing average speed for the microrobot. The maximum average speed that is
attainable by the microrobot is 7.78 mm/s for a 94.6 μm length of cilia (Fig. 4.6b).

A larger number of artificial cilia contribute to a higher propulsive force. Figure
4.7a, b shows how the microrobot maximum velocity and maximum mean speed
change with an increase in cilia number. To a number of 50 cilia, the average speed
rises sharply, and beyond that multiplying cilia number no longer affects the average
speed significantly.



126 A. Ghanbari and M. Bahrami

Fig. 4.6 (a) Velocity of the microrobot during effective stroke for different cilia lengths as a
function of time. (b) The mean speed of the microrobot for various lengths of cilia

The viscosity of the surrounding fluid affects the microrobot movement. A more
viscous fluid leads to higher resistive coefficients and drag forces and consequently
a higher propulsive force. On the other hand, the resistance against the body also
increases with increasing viscosity of the fluid. Figure 4.8 shows the velocity of
microrobot in a fluid with a viscosity of water, and as well twice and four times
this viscosity. The curve depicts that the positive and negative roles of increasing
viscosity to the motion of the microswimmer are in equilibrium at first; however, as
cilia incline from right angle the velocity suddenly drops.

Figure 4.9 shows how the microrobot mean speed varies with changes in the
radius of the body. Although Eq. (4.35) is linear with respect to the body radius,
since we have considered the effect of body’s speed on the cilia velocity, the
propulsive force depends on the body velocity and consequently on its radius, and
the relationship between the velocity and radius of the body is not linear.

We have estimated the ciliary microrobot velocity on the order of few millimeters
per second, which is higher than the maximum speed, 340 μm/s, of the ciliary
microrobot developed by Kim et al. in [26]. Thinner cilia that we have designed
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Fig. 4.7 (a) Maximum velocity of the microrobot during effective stroke based on the number of
cilia. (b) The microrobot mean speed for different cilia numbers

in our model contribute to this difference between velocities. Also, we have not
considered the surface friction on the microrobot, which can be an adverse factor
against the microrobot propulsion. However, the main reason for the difference in
propulsion is the way we actuate cilia. Although, with any actuation of cilia, the
ciliary microrobot might have an amount of propulsion, the optimum velocity is
obtained when cilia are stimulated to follow a biomimicking pattern during effective
and recovery strokes, like we have considered in our design.
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Fig. 4.8 The velocity of the microrobot in a fluid with a viscosity of μwater, 2μwater, and 4μwater
during the effective stroke

Fig. 4.9 The mean speed of
the microrobot as a function
of radius of the body

4.3 Magnetic Actuation of Cilia

Magnetic actuation of artificial cilia transfers an enormous amount of power
wirelessly. In addition, the availability of magnetic field generators such as MRI
devices facilitates the application of magnetic powering and control. Magnetic
stimulation has shown promise for application in micro-/nanorobotics [4, 13, 30–
32]. However, modeling magnetic fields involve nonlinear methods that need to be
addressed.

Artificial cilia, with a typical length of few micrometers and a diameter of
few nanometers to one micrometer, are usually composite polymeric nanofilaments
that have magnetic particles in their context. By molding polymeric materials in
which the iron oxide nanoparticles are dispersed, it is possible to fabricate arrays of
nanofilaments, and then dissolve and remove the mold [33, 34]. Another technique
is to fabricate nanorods using a 3D lithography method, such as laser lithography,
and coat them with a magnetic nanolayer [26].

To fabricate magnetic artificial cilia, we can use spherical magnetic nanoparticles
dispersed in a polymeric matrix. We assume artificial cilia are partially magnetized
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Fig. 4.10 Schematic
representation of a cilium
with magnetic nanoparticles.
xy and TN represent the
global and local coordinate
systems, respectively. The
cilium has magnetic particles
attached together from s=0 to
s = Lm. B is the applied
magnetic field with an angle
of ψ . Reprinted with
permission from [5]

using an arrangement of magnetic particles along a section of their centerline (Fig.
4.10). The magnetic nanoparticles are aligned coherently from the basal end of cilia
to a fraction of the cilia length (Fig. 4.10). To solve the hydrodynamics of cilia
motion, we need to find the model for magnetic actuation torque to use in Eq. (4.17).

Particles are superparamagnetic and when exposed to an external magnetic field
achieve a magnetic dipole moment [35]:

m = 4π rm3

3μ0
χ · B (4.39)

where μ0 = 4π × 10−7 H m−1 is the magnetic permeability of free space and χ is
the magnetic susceptibility.

We consider the magnetic field without any spatial gradient; hence, a pure
magnetic torque and no magnetic force is applied to the cilia. This torque actuates
the artificial cilia and bends them during recovery stroke. Applying a magnetic
field, paramagnetic particles align themselves to the magnetic field with their
maximal magnetization directions along the cilium length. To account for the shape
anisotropy of particle magnetization, two tangential and normal susceptibilities, χT
and χN, are assumed for cilia.

The adjacent magnetic dipoles interact with the magnetic field of a particle. A
single particle in the chain with a dipole moment of m = mTT̂ + mNN̂ generates
a magnetic field, which is perceived by neighboring particles. At a distance r, the
field is given by:

Bdip = μ0

(
2mTT̂ −mNN̂

)
4π r3 (4.40)

Since magnetic field drops rapidly with increasing distance, the interaction of a
particle magnetic dipole is solely considered on its two adjacent particles. By taking
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into account this field and the magnetic field, we reach the following expressions
for tangential and normal magnetizations [35]:

mT =
4
3π rm

3χTBT

μ0 (1 − χT/6)
(4.41)

mN =
4
3π rm

3χNBN

μ0 (1 + χN/12)
(4.42)

where BT and BN are the tangential and normal components of the applied magnetic
field. The cross product between particle magnetization and the magnetic field gives
the magnetic torque per unit length of the cilium:

TAmagnetic =
π rm

2|B|2
3μ0

(
χT − χN + χTχN/4

(1 − χT/6) (1 + χT/12)

)
sin (2 (ψ − α)) (4.43)

where ψ is the angle that the magnetic field makes with the x-axis. We rewrite Eq.
(4.43) in a new form as:

TAmagnetic = TA0 sin (2 (ψ − θ)) (4.44)

where TA0 is given by:

TA0 = π rm
2|B|2

3μ0

(
χT − χN + χTχT/4

(1 − χT/6) (1 + χT/12)

)
(4.45)

We design kinematics of the magnetic field, i.e., magnitude and direction, so that
(1) cilia motion has two effective and recovery stages; (2) cilia are straight and beat
on the fluid during the effective stroke; and (3) cilia bend during recovery stroke and
remain parallel to the body surface.

The initial condition for cilia is θ (s, 0) = 150◦. During the effective stroke, a
magnetic field is designed to have a magnitude of |B| = 70 mT and an angle of
α(0, t) − π /4. The magnetic field direction aims to maximize the sine function
in Eq. (4.44), and, therefore, the exerted magnetic torque. Using this scheme, the
magnetic field rotates from 105◦ to about 0◦ throughout the effective stroke, which
lasts 7.5 ms.

We apply two different magnetic fields in horizontal and vertical directions
during recovery stroke. A 90 mT constant magnetic field in x-direction, Bx = 90 mT,
and a magnetic field in y-direction with a sine function, By = 0.7 sin (10t), are
applied on cilia for a period of 2.5 ms from the beginning of the recovery stroke.
Then, the magnetic fields are turned off until the end of the recovery stroke, which
lasts 13.2 ms. The time interval for a full beating cycle is 20.7 ms.
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We use partial magnetization of cilia to induce a large bending during the
recovery stroke. From basal end (s = 0), we magnetize cilia up to Lm = 0.4L. This
reduces the energy threshold required to provoke bending in cilia and make cilia
prone to a large bending.

A nonlinear coupled magnetic–fluidic–elastic problem is formed by combining
cilia hydrodynamics, described in Sect. 4.2.2, and the magnetic actuation torque
given by Eq. (4.43). This nonlinear system should be solved to find the microswim-
mer motion due to a magnetic stimulation of cilia.

4.3.1 Numerical Example

We solve a numerical example of magnetic actuation of the ciliary microrobot with
parameters specified in Table 4.2. Figure 4.11 shows cilia beating sequences in
effective and recovery strokes, which mimics natural cilia beating. Solving nonlinear
equations of motion, we could design kinematics of a magnetic field that generates a
biomimicking beating pattern for artificial cilia. The designed magnetic moment has
approximately a maximum value throughout the effective stroke. In the first steps of
the recovery stroke when a large bending is required, a magnetic moment is applied
to the cilia. Thereafter, for the rest of the recovery stroke, the magnetic moment is

Table 4.2 Parameters of the
ciliary microrobot with
magnetic cilia

Design parameter Value

Cilium length, Lcilia 75 μm
Cilium radius, ccilia 75 nm
Magnetic particles radius, rm 70 nm
Cilium Young’s modulus, E 4 GPa
Body diameter, Rbody 150 μm
Body length, Lbody 220 μm
Number of cilia, n 8
Tangential susceptibility, χT 4.5
Normal susceptibility, χN 1
Water viscosity, μwater 0.001 kg/(m·s)

Fig. 4.11 Beating cycle of
cilia subjected to a magnetic
actuation in effective and
recovery strokes
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Fig. 4.12 Microrobot
velocity with magnetic
actuated cilia for a beating
cycle

Fig. 4.13 Microrobot mean
speed with magnetically
actuated cilia as a function of
the radius of the microrobot
body

not exerted until the end where cilia open up due to their elasticity to commence the
next cycle.

We consider the motion of the ciliary microswimmer, discussed in Sect. 4.2.3,
possessing magnetic artificial cilia under a magnetic field with the above kinematics.
Figure 4.12 shows the microrobot velocity for one cycle of cilia beating. The
microrobot velocity increases when cilia start beating to the upright position;
thereafter, the microrobot velocity decreases. By further continuing to the recovery
stroke, the swimmer velocity increases in the reverse direction until actuation is
stopped, where we see a discontinuity in the microrobot velocity. Then, velocity
remains close to zero till the cycle terminates.

The mean speed is obtained by dividing the area under the velocity–time curve
in Fig. 4.12 by the cycle time. Figure 4.13 shows the microrobot average speed for
different radii of the microrobot body.
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4.4 Magnetic Actuation Modeling

In the previous section, we observed the ciliary microrobot uses magnetic actuation
strategy for propulsion. Here, we establish a nonlinear model of magnetic fields
and gradients of a set of electromagnetic coils that can be used for the actuation of
microrobots.

A microrobot placed in a pure magnetic field, with no gradient, bears a magnetic
torque only:

Tm = m × B (4.46)

where m is the magnetization vector of the microrobot and B is the magnetic flux
density. However, applying magnetic fields with a spatial gradient exerts a magnetic
force on the microrobot:

Fm = (m · ∇)B (4.47)

We can write Eqs. (4.46) and (4.47) in a matrix form:

Tm =
∣∣∣∣∣∣

i j k
mx my mz

Bx By Bz

∣∣∣∣∣∣ (4.48)

Fm =
⎡
⎢⎣
∂Bx
∂x

∂By
∂x

∂Bz
∂x

∂Bx
∂y

∂By
∂y

∂Bz
∂y

∂Bx
∂z

∂By
∂z

∂Bz
∂z

⎤
⎥⎦
⎡
⎣mxmy
mz

⎤
⎦ (4.49)

where ∂Bk
∂n
, k = x, y, z, n = x, y, z is the partial derivative of the magnetic field

component in k-direction with respect to the spatial variable, n. The components of
magnetization in x-, y- and z-directions are indicated by mx, my, and mz, respectively.
The i, j, and k are the unit vectors along the x-, y- and z-axes, respectively.

An electromagnetic coil can be assumed as a stack of N loops. For one loop
carrying current I (Fig. 4.14), terms in Eqs. (4.48) and (4.49) can be evaluated at a
point P(x, y, z) outside the loop and sufficiently far [36, 37]:

Bx = μ0I

π

xz

2α2βρ2

[(
a2 + r2

)
E
(
κ2
)
− α2K

(
κ2
)]

(4.50)

By = μ0I

π

yz

2α2βρ2

[(
a2 + r2

)
E
(
κ2
)
− α2K

(
κ2
)]

(4.51)
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Fig. 4.14 A circular loop of
radius a carrying current I.
The magnetic field is
evaluated at point P(x, y, z)

Bz = μ0I

π

1

2α2β

[(
a2 − r2

)
E
(
κ2
)
+ α2K

(
κ2
)]

(4.52)

where

ρ =
√
x2 + y2 (4.53)

r =
√
x2 + y2 + z2 (4.54)

α =
√
a2 + r2 − 2aρ (4.55)

β =
√
a2 + r2 + 2aρ (4.56)

κ2 = 1 − α2

β2 (4.57)

and

γ = x2 − y2 (4.58)
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The derivatives of the magnetic field are given by:

∂Bx
∂x

= μ0I
π

z
2α4β3ρ4

{[
a4
(−γ (3z2 + a2

)+ ρ2
(
8x2 − y2

))
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(
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)+3z4γ
)−r4

(
2x4+γ (y2+z2

))]
E
(
κ2
)
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a2
(
γ
(
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)−ρ2
(
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(
2x4+γ (y2 + z2

))]
K
(
κ2
)}

(4.59)

∂Bx
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= μ0I
π
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)} (4.60)

∂Bx
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π
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(4.61)

∂By

∂x
= ∂Bx

∂y
(4.62)
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(4.63)

∂By

∂z
= y

x

∂Bx

∂z
(4.64)

∂Bz

∂x
= ∂Bx

∂z
(4.65)

∂Bz

∂y
= ∂By
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(4.66)

and
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π

z

2α4β3

{ [
6a2

(
ρ2−z2

)
− 7a4+r4

]
E
(
κ2
)
+α2

[
a2−r2

]
K
(
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(4.67)
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K and E are complete elliptic integrals of the first and second kind, respectively.
From Eqs. (4.50) to (4.67), we deduce that the magnetic field and gradients in the
vicinity of an electromagnetic coil are proportional to the current passing through
the coil:

B (P) = B (P) I (4.68)

dB
dP

= Bp (P) I (4.69)

where P is the position at which the magnetic field and gradient areevaluated.
Matrices in (4.68) and (4.69) for a set of electromagnetic coils are obtained by

summation of the magnetic field and gradient of each coil:

B (P) =
M∑
i=1

Bi (P) Ii (4.70)

Bp (P) =
M∑
i=1

Bpi (P) Ii (4.71)

where M is the number of coils in the set.
We evaluate the magnetic field and gradients of a set of six electromagnetic coils

which have been positioned in pairs along x-, y- and z-directions on both sides of a
workspace (Fig. 4.15). A 5 mm × 5 mm × 5 mm workspace has been considered
in the center. We assume two coils in each direction to be at 20 mm apart from each
other. Each coil has a radius of 6 mm and 100 turns. The magnetic field is shown in
different xy planes along the z-axis (Fig. 4.16). Magnetic gradients are also shown
in Fig. 4.17.

Fig. 4.15 A set of six
electromagnetic coils placed
along three perpendicular
axes surrounding a
workspace. Each coil has 100
turns and a radius of 6 mm.
Two coils in each direction
are at a 20 mm distance
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4.5 Conclusion

Implementation, control, and application of micro-/nanorobotic systems for
biomedical applications can be enhanced using a full understanding of the system
dynamics. However, dynamic modeling at micro-/nanoscale usually leads to
nonlinear equations of motion. In this chapter, we described nonlinear modeling
application in microrobotics. Hydrodynamic modeling of a ciliary swimming
microrobot and magnetic actuation of cilia for propulsion of the robot provided
examples of nonlinear modeling, which resulted in a nonlinear boundary value
problem. We solved these nonlinear coupled differential equations under the
boundary and initial conditions to obtain the microrobot propulsion velocity. In
the last part in Sect. 4.4, an analytical model was developed to determine nonlinear
magnetic forces and torques. This model can be used for a proper dynamic design
and control of various micro-/nanosystems actuated by magnetic fields and gradients
of a set of electromagnetic coils.

However, there are methods to consider nonlinearities as unknowns in the system
dynamics, and solve the equations in order to control the micro-/nanosystems
without any information of these undetermined parameters [36]. Nevertheless,
nonlinear modeling enhances the accuracy of dynamic modeling and control of the
micro-/nanorobots to achieve a desired performance.

References

1. Nelson, B. J., Kaliakatsos, I. K., & Abbott, J. J. (2010). Microrobots for minimally invasive
medicine. Annual Review of Biomedical Engineering, 12, 55–85.

2. Sitti, M., Giltinan, J., & Yim, S. (2015). Biomedical applications of untethered mobile
milli/microrobots. Proceedings of the IEEE, 103, 205–224.

3. Ceylan, H., Giltinan, J., Kozielskia, K., & Sitti, M. (2017). Mobile microrobots for bioengi-
neering applications. Lab on a Chip, 17, 1705–1724.

4. Chen, X. Z., Hoop, M., Mushtaq, F., Siringil, E., Hu, C., Nelson, B. J., & Pané, S. (2017).
Recent developments in magnetically driven micro- and nanorobots. Applied Materials Today,
9, 37–48.

5. Ghanbari, A., Bahrami, M., & Nobari, M. R. H. (2011). Methodology for artificial microswim-
ming using magnetic actuation. Physical Review E, 83, 046301.

6. Ghanbari, A., & Bahrami, M. (2011). A novel swimming microrobot based on artificial cilia
for biomedical applications. Journal of Intelligent and Robotic Systems, 63, 399–416.

7. Zhang, L., Abbott, J. J., Dong, L., Kratochvil, B. E., Bell, D., & Nelson, B. J. (2009). Artificial
bacterial flagella: fabrication and magnetic control. Applied Physics Letters, 94, 064107.

8. Abbott, J. J., Peyer, K. E., Lagomarsino, M. C., Zhang, L., Dong, L., Kaliakatsos, I. K.,
& Nelson, B. J. (2009). How should microrobots swim? International Journal of Robotics
Research, 28, 1434–1447.

9. Huang, H., Chao, Q., Sakar, M. S., & Nelson, B. J. (2017). Optimization of tail geometry for
the propulsion of soft microrobots. IEEE Robotics and Automation Letters, 2, 727–732.

10. Martel, S., Mohammadi, M., Felfoul, O., Lu, Z., & Pouponneau, P. (2009). Flagellated
magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for med-
ical nanorobots operating in the human microvasculature. International Journal of Robotics



4 Nonlinear Modeling Application to Micro-/Nanorobotics 139

Research, 28, 571–582.
11. Martel, S., Felfoul, O., Mathieu, J., Chanu, A., Tamaz, S., Mohammadi, M., Mankiewicz,

M., & Tabatabaei, N. (2009). MRI-based medical nanorobotic platform for the control of
magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries.
International Journal of Robotics Research, 28, 1169–1182.

12. Kummer, M. P., Abbott, J. J., Kratochvil, B. E., Borer, R., Sengul, A., & Nelson, B. J.
(2010). Octomag: An electromagnetic system for 5-DOF wireless micromanipulation. IEEE
Transactions on Robotics, 26, 1006–1017.

13. Schuerle, S., Erni, S., Flink, M., Kratochvil, B. E., & Nelson, B. J. (2013). Three-dimensional
magnetic manipulation of micro-and nanostructures for applications in life sciences. IEEE
Transactions on Magnetics, 49, 321–330.

14. Zhang, Z., & Menq, C. H. (2011). Design and modeling of a 3-D magnetic actuator for
magnetic microbead manipulation. IEEE/ASME Transactions on Mechatronics, 16, 421–430.

15. Grady, M. S., Howard, M. A., III, Molloy, J. A., Ritter, R. C., Quate, E. G., & Gillies,
G. T. (1990). Nonlinear magnetic stereotaxis: three dimensional, in vivo remote magnetic
manipulation of a small object in canine brain. Medical Physics, 17, 405–415.

16. Taylor, G. I. (1951). Analysis of the swimming of microscopic organisms. Proceedings of the
Royal Society of London. Series A: Mathematical and Physical Sciences, A209, 447–461.

17. Gray, J., & Hancock, G. (1955). The propulsion of sea-urchin spermatozoa. Journal of
Experimental Biology, 32, 802–814.

18. Brokaw, C. J. (1970). Bending moments in free-swimming flagella. Journal of Experimental
Biology, 53, 445–464.

19. Gueron, S., & Liron, N. (1992). Ciliary motion modeling, and dynamic multicilia interactions.
Biophysical Journal, 63, 1045–1058.

20. Childress, S. (1981). Mechanics of swimming and flying. New York: Cambridge University
Press.

21. Lighthill, J. L. (1975) Mathematical biofluiddynamics. In Regional Conference Series in
Applied Mathematics, SIAM (pp. 45–62).

22. Johnson, R. E., & Brokaw, C. J. (1979). Flagellar hydrodynamics: a comparison between
resistive-force theory and slender-body theory. Biophysical Journal, 25, 113–127.

23. Gueron, S., & Levit-Gurevich, K. (1998). Computation of the internal forces in cilia:
application to ciliary motion, the effects of viscosity, and ciliainteractions. Biophysical Journal,
74, 1658–1676.

24. Brennen, C., & Winet, H. (1977). Fluid mechanics of propulsion by cilia and flagella. Annual
Review of Fluid Mechanics, 9, 339–398.

25. Feng, J., Joseph, D. D., Glowinski, R., & Pan, T. W. (1995). A three-dimensional computation
of the force and torque on an ellipsoid settling slowly through a viscoelastic fluid. Journal of
Fluid Mechanics, 283, 1–16.

26. Kim, S., Lee, S., Lee, J., Nelson, B. J., Zhang, L., & Choi, H. (2016). Fabrication and
manipulation of ciliary microrobots with non-reciprocal magnetic actuation. Scientific Reports,
6, 30713.

27. Gibbons, I. R. (1981). Cilia and flagella of eukaryotes. Journal of Cell Biology, 91, 107s–124s.
28. Sleigh, M. A. (1962). The biology of cilia and flagella. Oxford: Pergamon Press.
29. Sleigh, M. A. (1968) Patterns of ciliary beating. In Aspects of cell motility (22nd Symposium

of the Society for Experimental Biology) (pp. 131–150).
30. Peyer, K. E., Zhang, L., & Nelson, B. J. (2013). Bio-inspired magnetic swimming microrobots

for biomedical applications. Nanoscale, 5, 1259–1272.
31. Kim, S., Qiu, F., Kim, S., Ghanbari, A., Moon, C., Zhang, L., Nelson, B. J., & Choi, H. (2013).

Fabrication and characterization of magnetic microrobots for three-dimensional cell culture
and targeted transportation. Advanced Materials, 25, 5863–5868.

32. Ghanbari, A., Chang, P. H., Nelson, B. J., & Choi, H. (2014). Electromagnetic steering of
a magnetic cylindrical microrobot using optical feedback closed-loop control. International
Journal of Optomechatronics, 8, 129–145.



140 A. Ghanbari and M. Bahrami

33. Evans, B. A., Shields, A. R., Lloyd Carroll, R., Washburn, S., Falvo, M. R., & Superfine, R.
(2007). Magnetically actuated nanorod arrays as biomimetic cilia. Nano Letters, 7, 1428–1434.

34. Goubault, C. (2003). Flexible magnetic filaments as micromechanical sensors. Physical Review
Letters, 91, 260802.

35. Roper, M., Dreyfus, R., Baudry, J., Fermigier, M., Bibette, J., & Stone, H. A. (2006). On the
dynamics of magnetically driven elastic filaments. Journal of Fluid Mechanics, 554, 167–190.

36. Ghanbari, A., Chang, P. H., Nelson, B. J., & Choi, H. (2014). Magnetic actuation of a cylin-
drical microrobot using time-delay-estimation closed-loop control: modeling and experiments.
Smart Materials and Structures, 23, 035013.

37. Simpson, J., Lane, J., Immer, C., & Youngquist, R. (2001) Simple analytic expressions for the
magnetic field of a circular current loop. NASA Technical Reports [Online]. Available: https://
ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010038494.pdf.

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010038494.pdf


Chapter 5
The Nonlinear Pattern of Sea Levels: A
Case Study of North America

Alberto Boretti

5.1 Introduction

Same as other climate-related parameters, the sea levels oscillate with well-known
periodicities in the 60-year range [1, 2]. More than 60 years of continuous recording
from the same tide gauge, without any major perturbation, is needed to compute a
reliable slope by the linear fitting. More than 90 years are needed to compute a
reliable acceleration by the parabolic fitting.

There are 20 long-term-trend (LTT) tide stations along the West Coast of North
America and 33 along the East Coast.

The measured monthly average mean sea levels (MSL) relative to the tide gauge
instrument are given by the Permanent Service for Mean Sea Level (PSMSL),
www.psmsl.org. Analyses of these data are offered by PSMSL, sealevel.info,
www.sealevel.info, National Oceanic and Atmospheric Administration (NOAA),
tidesandcurrents.noaa.gov/sltrends/, Système d’Observation du Niveau des Eaux
Littorales (SONEL), www.sonel.org (Fig. 5.1).

5.2 Method

Two regressions are usually applied to the measured relative sea levels of a tide
gauge record to compute the relative sea level rate of rise and acceleration. A linear
regression:
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Fig. 5.1 Locations of the tide gauges with more than 80 years of data in the PSMSL database.
Image reproduced modified after www.psmsl.org

y(x) = A+ B· x

returns the sea level rate of rise u as the slope B. A quadratic regression

y(x) = A′ + B ′· x + C· x2

returns the acceleration a taken as 2·C.
Sea level rise forecasts to 2050 and 2100 may then be constructed by using the

values of the conventional present sea level velocity u and acceleration a.

�y1 = u·�x

�y2 = u·�x + a

2
· n·�x

�y3 = u·�x + a

2
· n·�x + a

2
·�x·�x

http://www.psmsl.org
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where �y is the sea level rise forecasted after a time �x, and n is the length of
the record used to compute u and a. �y1 is a linear forecast, �y3 is a constant
acceleration nonlinear forecast, and �y2 is an intermediate forecast.

5.3 Detailed Results

Here are the analyses of the relative rates of rise and accelerations of the sea level in
the 20 long-term-trend (LTT) tide stations of the West Coast of North America and
the longest 20 of the 33 LTT tide stations of the East Coast of North America.

5.3.1 Ketchikan, AK, USA

• The MSL trend at Ketchikan, AK, USA (Fig. 5.2) is −0.33 mm/year with a
95% confidence interval of ±0.22 mm/year, based on MSL data from 1919/1
to 2017/12.

• The acceleration is −0.01808 ± 0.01746 mm/year2.

5.3.2 Sitka, AK, USA

• The MSL trend at Sitka, AK, USA (Fig. 5.3) is −2.33 mm/year with a 95%
confidence interval of ±0.27 mm/year, based on MSL data from 1924/5 to
2017/12.

• The acceleration is −0.01631 ± 0.02273 mm/year2.

Fig. 5.2 MSL data for Ketchikan, AK, USA. Image reproduced modified after www.sealevel.info

http://www.sealevel.info
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Fig. 5.3 MSL data for Sitka, AK, USA. Image reproduced modified after www.sealevel.info

Fig. 5.4 MSL data for Juneau, AK, USA. Image reproduced modified after www.sealevel.info

5.3.3 Juneau, AK, USA

• The MSL trend at Juneau, AK, USA (Fig. 5.4) is −13.16 mm/year with a
95% confidence interval of ±0.35 mm/year, based on MSL data from 1936/1
to 2017/12.

• The acceleration is −0.0378 ± 0.0322 mm/year2.

5.3.4 Unalaska, AK, USA

• The MSL trend at Unalaska, AK, USA (Fig. 5.5) is −4.14 mm/year with a
95% confidence interval of ±0.38 mm/year, based on MSL data from 1934/1
to 2017/12.

• The acceleration is −0.01453 ± 0.03414 mm/year2.

http://www.sealevel.info
http://www.sealevel.info
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Fig. 5.5 MSL data for Unalaska, AK, USA. Image reproduced modified after www.sealevel.info

Fig. 5.6 MSL data for Prince Rupert, Canada. Image reproduced modified after www.sealevel.
info

5.3.5 Prince Rupert, Canada

• The MSL trend at Prince Rupert, Canada (Fig. 5.6) is +1.17 mm/year with a
95% confidence interval of ±0.23 mm/year, based on MSL data from 1909/1 to
2016/12.

• The acceleration is 0.01484 ± 0.01463 mm/year2.

5.3.6 Point Atkinson, Canada

• The MSL trend at Point Atkinson, Canada (Fig. 5.7) is +0.95 mm/year with a
95% confidence interval of ±0.24 mm/year, based on MSL data from 1914/5 to
2016/12.

• The acceleration is −0.00531 ± 0.01572 mm/year2.

http://www.sealevel.info
http://www.sealevel.info
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Fig. 5.7 MSL data for Point Atkinson, Canada. Image reproduced modified after www.sealevel.
info

Fig. 5.8 MSL data for Vancouver, Canada. Image reproduced modified after www.sealevel.info

5.3.7 Vancouver, Canada

• The MSL trend at Vancouver, Canada (Fig. 5.8) is +0.49 mm/year with a 95%
confidence interval of ±0.22 mm/year, based on MSL data from 1909/11 to
2016/12.

• The acceleration is 0.0251 ± 0.0141 mm/year2.

5.3.8 Victoria, Canada

• The MSL trend at Victoria, Canada (Fig. 5.9) is +0.73 mm/year with a 95%
confidence interval of ±0.19 mm/year, based on MSL data from 1909/3 to
2016/12.

• The acceleration is 0.00663 ± 0.01361 mm/year2.

http://www.sealevel.info
http://www.sealevel.info
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Fig. 5.9 MSL data for Victoria, Canada. Image reproduced modified after www.sealevel.info

Fig. 5.10 MSL data for Tofino, Canada. Image reproduced modified after www.sealevel.info

5.3.9 Tofino, Canada

• The MSL trend at Tofino, Canada (Fig. 5.10) is −1.26 mm/year with a 95%
confidence interval of ±0.27 mm/year, based on MSL data from 1909/10 to
2016/12.

• The acceleration is 0.01998 ± 0.01699 mm/year2.

5.3.10 Friday Harbor, WA, USA

• The MSL trend at Friday Harbor, WA, USA (Fig. 5.11) is +1.20 mm/year with a
95% confidence interval of ±0.27 mm/year, based on MSL data from 1934/1 to
2017/12.

• The acceleration is 0.01018 ± 0.02539 mm/year2.

http://www.sealevel.info
http://www.sealevel.info
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Fig. 5.11 MSL data for Friday Harbor, WA, USA. Image reproduced modified after www.
sealevel.info

Fig. 5.12 MSL data for Seattle, WA, USA. Image reproduced modified after www.sealevel.info

5.3.11 Seattle, WA, USA

• The MSL trend at Seattle, WA, USA (Fig. 5.12) is +2.05 mm/year with a
95% confidence interval of ±0.15 mm/year, based on MSL data from 1899/1
to 2017/12.

• The acceleration is 0.00987 ± 0.00986 mm/year2.

5.3.12 Neah Bay, WA, USA

• The MSL trend at Neah Bay, WA, USA (Fig. 5.13) is −1.69 mm/year with a
95% confidence interval of ±0.30 mm/year, based on MSL data from 1934/8 to
2017/12.

• The acceleration is −0.01619 ± 0.02760 mm/year2.
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Fig. 5.13 MSL data for Neah Bay, WA, USA. Image reproduced modified after www.sealevel.
info

Fig. 5.14 MSL data for Astoria, OR, USA. Image reproduced modified after www.sealevel.info

5.3.13 Astoria, OR, USA

• The MSL trend at Astoria, OR, USA (Fig. 5.14) is −0.14 mm/year with a
95% confidence interval of ±0.33 mm/year, based on MSL data from 1925/2
to 2017/12.

• The acceleration is 0.01480 ± 0.02760 mm/year2.

5.3.14 Crescent City, CA, USA

• The MSL trend at Crescent City, CA, USA (Fig. 5.15) is −0.78 mm/year with a
95% confidence interval of ±0.30 mm/year, based on MSL data from 1933/1 to
2017/12.

• The acceleration is −0.00857 ± 0.02672 mm/year2.
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Fig. 5.15 MSL data for Crescent City, CA, USA. Image reproduced modified after
www.sealevel.info

Fig. 5.16 MSL data for San Francisco, CA, USA. Image reproduced modified after
www.sealevel.info

5.3.15 San Francisco, CA, USA

• The MSL trend at San Francisco, CA, USA (Fig. 5.16) is +1.47 mm/year with a
95% confidence interval of ±0.13 mm/year, based on MSL data from 1854/7 to
2017/12.

• The acceleration is 0.01406 ± 0.00619 mm/year2.

5.3.16 Santa Monica, CA, USA

• The MSL trend at Santa Monica, CA, USA (Fig. 5.17) is +1.52 mm/year with a
95% confidence interval of ±0.33 mm/year, based on MSL data from 1933/1 to
2017/12.

• The acceleration is −0.00718 ± 0.03198 mm/year2.
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Fig. 5.17 MSL data for Santa Monica, CA, USA. Image reproduced modified after
www.sealevel.info

Fig. 5.18 MSL data for Los Angeles, CA, USA. Image reproduced modified after
www.sealevel.info

5.3.17 Los Angeles, CA, USA

• The MSL trend at Los Angeles, CA, USA (Fig. 5.18) is +0.99 mm/year with a
95% confidence interval of ±0.24 mm/year, based on MSL data from 1923/12 to
2017/12.

• The acceleration is 0.01773 ± 0.01924 mm/year2.

5.3.18 La Jolla, CA, USA

• The MSL trend at La Jolla, CA, USA (Fig. 5.19) is +2.15 mm/year with a 95%
confidence interval of ±0.26 mm/year, based on MSL data from 1924/11 to
2017/12.

• The acceleration is 0.01121 ± 0.02154 mm/year2.
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Fig. 5.19 MSL data for La Jolla, CA, USA. Image reproduced modified after www.sealevel.info

Fig. 5.20 MSL data for San Diego, CA, USA. Image reproduced modified after www.sealevel.info

5.3.19 San Diego, CA, USA

• The MSL trend at San Diego, CA, USA (Fig. 5.20) is +2.17 mm/year with a
95% confidence interval of ±0.19 mm/year, based on MSL data from 1906/1 to
2017/12.

• The acceleration is 0.00813 ± 0.01279 mm/year2.

5.3.20 Balboa, Panama

• The MSL trend at Balboa, Panama (Fig. 5.21) is +1.44 mm/year with a 95%
confidence interval of ±0.21 mm/year, based on MSL data from 1908/1 to
2017/12.

• The acceleration is −0.00548 ± 0.01504 mm/year2.
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Fig. 5.21 MSL data for Balboa, Panama. Image reproduced modified after www.sealevel.info

Fig. 5.22 MSL data for Saint John, N.B., Canada. Image reproduced modified after www.sealevel.
info

5.3.21 Saint John, N.B., Canada

• The MSL trend at Saint John, N.B., Canada (Fig. 5.22) is +2.14 mm/year with a
95% confidence interval of ±0.20 mm/year, based on MSL data from 1896/6 to
2016/12.

• The acceleration is −0.00631 ± 0.01237 mm/year2.

5.3.22 Halifax, Canada

• The MSL trend at Halifax, Canada (Fig. 5.23) is +3.18 mm/year with a 95%
confidence interval of ±0.13 mm/year, based on MSL data from 1895/11 to
2014/7.

• The acceleration is −0.001387 ± 0.008732 mm/year2.
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Fig. 5.23 MSL data for Halifax, Canada. Image reproduced modified after www.sealevel.info

Fig. 5.24 MSL data for Charlottetown. Image reproduced modified after www.sealevel.info

5.3.23 Charlottetown, Canada

• The MSL trend at Charlottetown, Canada (Fig. 5.24) is +3.20 mm/year with a
95% confidence interval of ±0.16 mm/year, based on MSL data from 1911/4 to
2016/12.

• The acceleration is −0.00230 ± 0.01056 mm/year2.

5.3.24 Quebec, Canada

• The MSL trend at Quebec, Canada (Fig. 5.25) is −0.26 mm/year with a 95%
confidence interval of ±0.45 mm/year, based on MSL data from 1910/1 to
2012/10.

• The acceleration is −0.0367 ± 0.0314 mm/year2.
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Fig. 5.25 MSL data for Quebec. Image reproduced modified after www.sealevel.info

Fig. 5.26 MSL data for Deschaillons. Image reproduced modified after www.sealevel.info

5.3.25 Deschaillons, Canada

• The MSL trend at Deschaillons, Canada (Fig. 5.26) is +0.25 mm/year with a
95% confidence interval of ±1.46 mm/year, based on MSL data from 1915/5 to
2016/12.

• The acceleration is −0.0556 ±0.1069 mm/year2.

5.3.26 Trois-Rivieres, Canada

• The MSL trend at Trois-Rivieres, Canada (Fig. 5.27) is −1.43 mm/year with a
95% confidence interval of ±1.84 mm/year, based on MSL data from 1899/10 to
2016/12.

• The acceleration is −0.0440 ± 0.1225 mm/year2.
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Fig. 5.27 MSL data for Trois-Rivieres. Image reproduced modified after www.sealevel.info

Fig. 5.28 MSL data for Batiscan. Image reproduced modified after www.sealevel.info

5.3.27 Batiscan, Canada

• The MSL trend at Batiscan, Canada (Fig. 5.28) is −1.49 mm/year with a 95%
confidence interval of ±1.81 mm/year, based on MSL data from 1901/5 to
2016/12.

• The acceleration is −0.0376 ± 0.1248 mm/year2.

5.3.28 Neuville, Canada

• The MSL trend at Neuville, Canada (Fig. 5.29) is +0.05 mm/year with a 95%
confidence interval of ±0.70 mm/year, based on MSL data from 1914/6 to
2016/12.

• The acceleration is −0.0266 ± 0.0520 mm/year2.
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Fig. 5.29 MSL data for Neuville, Canada. Image reproduced modified after www.sealevel.info

Fig. 5.30 MSL data for Portland, ME, USA. Image reproduced modified after www.sealevel.info

5.3.29 Portland, ME, USA

• The MSL trend at Portland, ME, USA (Fig. 5.30) is +1.87 mm/year with a
95% confidence interval of ±0.15 mm/year, based on MSL data from 1912/1
to 2017/12.

• The acceleration is −0.00694 ± 0.01079 mm/year2.

5.3.30 The Battery, NY, USA

• The MSL trend at The Battery, NY, USA (Fig. 5.31) is +2.85 mm/year with a
95% confidence interval of ±0.09 mm/year, based on MSL data from 1856/1 to
2018/3.

• The acceleration is 0.00849 ± 0.00388 mm/year2.
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Fig. 5.31 MSL data for The Battery, NY, USA. Image reproduced modified after
www.sealevel.info

Fig. 5.32 MSL data for Atlantic City, NJ, USA. Image reproduced modified after
www.sealevel.info

5.3.31 Atlantic City, NJ, USA

• The MSL trend at Atlantic City, NJ, USA (Fig. 5.32) is +4.08 mm/year with a
95% confidence interval of ±0.15 mm/year, based on MSL data from 1911/9 to
2017/12.

• The acceleration is 0.01225 ± 0.01122 mm/year2.

5.3.32 Philadelphia, PA, USA

• The MSL trend at Philadelphia, PA, USA (Fig. 5.33) is +2.94 mm/year with a
95% confidence interval of ±0.19 mm/year, based on MSL data from 1900/7 to
2017/12.

• The acceleration is 0.01607 ± 0.01221 mm/year2.
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Fig. 5.33 MSL data for Philadelphia, PA, USA. Image reproduced modified after
www.sealevel.info

Fig. 5.34 MSL data for Baltimore, MD, USA. Image reproduced modified after
www.sealevel.info

5.3.33 Baltimore, MD, USA

• The MSL trend at Baltimore, MD, USA (Fig. 5.34) is +3.15 mm/year with a
95% confidence interval of ±0.13 mm/year, based on MSL data from 1902/6 to
2017/12.

• The acceleration is 0.00382 ± 0.00852 mm/year2.

5.3.34 Fernandina Beach, FL, USA

• The MSL trend at Fernandina Beach, FL, USA (Fig. 5.35) is +2.11 mm/year with
a 95% confidence interval of ±0.18 mm/year, based on MSL data from 1897/6
to 2017/12.

• The acceleration is 0.01600 ± 0.01108 mm/year2.
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Fig. 5.35 MSL data for Fernandina Beach, FL, USA. Image reproduced modified after
www.sealevel.info

Fig. 5.36 MSL data for Key West, FL, USA. Image reproduced modified after www.sealevel.info

5.3.35 Key West, FL, USA

• The MSL trend at Key West, FL, USA (Fig. 5.36) is +2.42 mm/year with a
95% confidence interval of ±0.15 mm/year, based on MSL data from 1913/1 to
2018/3.

• The acceleration is 0.01412 ± 0.01064 mm/year2.

5.3.36 Mayport, FL, USA

• The MSL trend at Mayport, FL, USA (Fig. 5.37) is +2.58 mm/year with a
95% confidence interval of ±0.27 mm/year, based on MSL data from 1928/5
to 2016/11.

• The acceleration is 0.01524 ± 0.02314 mm/year2.
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Fig. 5.37 MSL data for Mayport, FL, USA. Image reproduced modified after www.sealevel.info

Fig. 5.38 MSL data for Charleston, SC, USA. Image reproduced modified after
www.sealevel.info

5.3.37 Charleston, SC, USA

• The MSL trend at Charleston, SC, USA (Fig. 5.38) is +3.25 mm/year with a
95% confidence interval of ±0.19 mm/year, based on MSL data from 1901/1 to
2018/9.

• The acceleration is −0.000150 ± 0.012568 mm/year2.

5.3.38 Washington, DC, USA

• The MSL trend at Washington, DC, USA (Fig. 5.39) is +3.22 mm/year with a
95% confidence interval of ±0.28 mm/year, based on MSL data from 1924/12 to
2017/12.

• The acceleration is −0.000525 ± 0.023634 mm/year2.
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Fig. 5.39 MSL data for Washington, DC, USA. Image reproduced modified after
www.sealevel.info

Fig. 5.40 MSL data for Annapolis, MD, USA. Image reproduced modified after
www.sealevel.info

5.3.39 Annapolis, MD, USA

• The MSL trend at Annapolis, MD, USA (Fig. 5.40) is +3.57 mm/year with a
95% confidence interval of ±0.20 mm/year, based on MSL data from 1928/9 to
2017/12.

• The acceleration is −0.00356 ± 0.01744 mm/year2.

5.3.40 Eastport, ME, USA

• The MSL trend at Eastport, ME, USA (Fig. 5.41) is +2.13 mm/year with a
95% confidence interval of ±0.18 mm/year, based on MSL data from 1929/10 to
2017/11.

• The acceleration is −0.01719 ± 0.01551 mm/year2.
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Fig. 5.41 MSL data for Eastport, ME, USA. Image reproduced modified after www.sealevel.info

5.4 Summary Tables

Table 5.1 presents a summary of the sea level results for the LTT stations of West
North America.

The average relative rate of rise is −0.38 mm/year, the average acceleration is
+0.00120 mm/year2.

Table 5.2 presents a summary of the sea level results for the LTT stations of East
North America.

The average relative rate of rise is +2.22 mm/year, the average acceleration is
+0.00280 mm/year2.

5.5 Summary and Conclusions

Nonlinear patterns in tide gauge signals are detected by polynomial fittings. As the
second-order coefficients of parabolic fittings are generally small, I may conclude
that the nonlinearities in the rate of rise of sea levels are small.

The nonlinearities reflect changes in the sea component to the relative sea level
signal, originated from the increased volume of the water ocean by mass addition
and thermal expansion, and in the land component, originated from the subsidence
or uplift of the land.

Recent subsidence and global isostatic adjustments (GIA) explains the different
patterns of sea level rise along the East and West Coast of the United States. The
subsidence increases moving southwards, along both the East and the West Coasts.
Different phasing of the multi-decadal oscillations along the East and West coast
explains the remaining features of the Pacific and Atlantic patterns.
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Fig. 5.42 Areas of land subsidence, owing primarily or secondarily to groundwater or oil and
gas abstractions, in the 48 conterminous USA, and associated aquifer systems. Image reproduced
modified from Galloway, Bawden, Leake, & Honegger [4]

Land subsidence is a problem especially relevant in the United States, where
more than 45,000 km2 of land [3] have been directly affected by subsidence (Fig.
5.42).

The principal causes are aquifer-system compaction, hydro-compaction, natural
compaction, underground mining, drainage of organic soils, sinkholes, and thawing
permafrost [5].

Nearly the entire East Coast of the United States, from Massachusetts and parts
of Maine to Florida, is known to be affected by subsidence [6–10].

Subsidence is much stronger along the East Coast of the United States and
significant only in Southern California along the West Coast, and it increased in
intensity since the mid-1900s.

The data of absolute (geodetic) position of antennas nearby the tide gauges from
satellite may permit to better attribute the relative sea level rise of a specific tide
gauge to the growth of the water volume or the sinking of the land [11, 12]. However,
the GPS time series only covers a few years of data, they are only recent, do not help
when there are sudden land motions, such as earthquakes.

The negligible acceleration result is consistent with other global and regional
estimations from LTT stations such as Houston and Dean [13], Boretti [14, 15],
Parker [16], or Parker and Ollier [17, 18].

Sea level acceleration is small, but larger along the East coast, because of the
recent subsidence and the recent upward phase of the multi-decadal oscillations that
are not phased with those of the West Coast.
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The proposed simple formulae for sea level rise to 2050 and 2100 based on the
conventional present sea level velocity u and acceleration a return the small values
of Tables 5.1 and 5.2, on average negative for the West Coast, −12 to −7 and −31
to −17 mm, respectively, and on average positive for the East Coast, +71 to +75
and +182 to +198 mm, respectively.
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Part II
Analytical System Applications



Chapter 6
Illustrated Guidelines for Modelling
and Dynamic Simulation of Linear
and Non-linear Deterministic
Engineering Systems

Pavel M. Trivailo, Hamid Khayyam, and Reza N. Jazar

6.1 Introduction

In science, a model is a representation of an idea, an object, a system or a process that
is used to describe, explain and analyse phenomena. In many practical situations,
scientific model is a simplified and idealized replica of an engineering system (ES).

Scientific modelling is a scientific activity, the aim of which is to make an
engineering system or its feature to understand, define, quantify, visualize or
simulate by referencing it to existing and usually commonly accepted knowledge.

A simulation is the implementation of a model. A steady state simulation
provides information about the system at a specific instant in time (usually at
equilibrium, if such a state exists).

A dynamic simulation provides information over time. A simulation brings a
model to life and shows how a particular object or phenomenon will behave. Such
a simulation can be useful for testing, analysis or training in those cases, where
real-world systems or concepts can be represented by models.

Modelling and simulations are extremely useful in engineering, and therefore are
widely used. Some of the benefits include the following:

• In engineering, it is often either impossible or impractical to create experimental
conditions in which scientists can directly measure outcomes.

• Using simulations is generally cheaper, safer and sometimes more ethical than
conducting real-world experiments.
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(a) (b)

Fig. 6.1 The Federation Bell Installation in Birrarung Marr, Melbourne: (a) day view, (b) night
view. Courtesy: (a) Neil McLachlan, (b) Trevor Mien

• Simulations can often be conducted faster than real time.
• Modelling and simulations enable designers to optimize and control the engi-

neering systems.

In order to illustrate efficiency of the modelling and simulations in engineering,
we present below three examples from RMIT University research practice.

The first example of the successful application of the modelling and simulation,
preceding manufacture of the real system, is a design of the world-first set “har-
monic” and “poly-tone” bells, developed by RMIT University research team, which
included Dr. Neil McLachlan and Dr. Nigjeh Keramati (Chief Investigators), Prof.
Joe Thomas (Research Consultant) and Prof. Pavel M. Trivailo (Project Research
Supervisor). Using computer simulations, it was possible to develop unique bell
shapes, enabling for their first natural frequencies to be in the exact ratio up to tenth
harmonic, i.e. in the ratio 1:2:3:4:5:6:7:8:9:10 [1]. This project received support
worth $2 M and came from Arts Victoria and the Melbourne International Festival
for the Arts. After completion of successful modelling of the harmonic bells, 39
bells of up to 1.2 tonnes mass were manufactured and Bell Installation was built
at the Federation Square in Birrarung Marr, Melbourne, which was opened by Sir
Gustav Nostle on 26th January 2002 (Figs. 6.1a and 6.1b).

The second example of the successful application of the modelling and sim-
ulation, preceding manufacture of the real system, is related to the aerospace
engineering. The World first Harmonic Bells on the Federation Square points to
the sky—arena for another world-first achievement: on 25th September 2009, the
longest ever launched tethered system of 31.7 km was successfully deployed. Being
the tallest vertical structure ever made by mankind (as tall as 100 Eiffel towers or
nearly 4 times Mount Everest), it is in the 2009 Guinness Book of world records [2].
The whole system was designed by the Delta-Utech space consulting company in
the Netherlands, and led by the European Space Agency (ESA), with participation of
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Fig. 6.2 Illustration of the YES-2 Concept, involving return of a small capsule from space to
Earth, using a 30 km 5 kg tether rather than rocket. Courtesy: European Space Agency (ESA), S.
Corvaja

hundreds of students [3]. However, optimal control design of the tether deployment
in this YES-2 space mission, was performed by RMIT Team, including Dr. Paul
Williams and Prof. Pavel M. Trivailo (Research Supervisor). The tether control
design by RMIT was critical for the successful deployment of the longest ever
deployed tethered system during this ESA space mission [4]. Preparation of the
relevant launch of Foton-M3, carrying YES-2, is shown in Fig. 6.2.

Contribution of RMIT University to the simulation and design of the world-first
taped tether mission, launched by JAXA has been officially acknowledged by Prof
Hironori Fujii, the Leader of the S520-25 Space Rocket Project, who reported on
the successful deployment of a 132-m taped tether, launched and deployed on 30th
September 2010 by the Japan Aerospace Exploration Agency (JAXA) [5].

6.2 Modelling and Simulation of Linear Systems: General
Discussion and Examples of the Assumptions,
Fundamental Laws and Implementations

Modelling and simulation of engineering systems typically involve the following:

• Mathematical formulation of the task (representation of the real system as a
model, scaling, simplifications, assumptions, etc.)
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• Application of the proper physical principles/fundamental laws
• Selection of efficient solution paradigm (analytical, numerical)
• Selection of efficient methods, tools/computer packages/environments
• Simulation of the system or process
• Optimal design (where appropriate)
• Analysis of the results, including visualization/animation
• Validation of the results, model, assumptions, etc.
• Communication of the results

6.2.1 Multifunctional Significance of the Simulation Models

One of the most popular engineering models, mass-spring-damper system, is shown
in Fig. 6.3.

It is well known that the differential equation of motion of the system and the nat-
ural frequency of its undamped counterpart are given by the following relationships:

mq̈(t)+ cq̇(t)+ kq(t) = F(t) (6.1)

if c = 0, then ω1 =
√
k

m
(rad/s) (6.2)

Using this model, it can be shown, that it may be relevant to a wide range of cases
and systems, not only physical trolley, connected to the wall. In order to illustrate the
multifunctional significance of this particular model, let us consider a basic model
of the wing of the aircraft, which can be represented as a clamped elastic beam of
length l with constant bending stiffness EI and attached concentrated mass m at its
tip (see Fig. 6.4a).

If the mass-spring system (shown in Fig. 6.4b), which we introduce to replicate
the system in Fig. 6.4a, is assumed to be linear, than the static translational
displacement � of the mass m under the application of the static force F is given
with the linear relationship:

F = k� (for mass-spring model) (6.3)

For the wing model, also assumed to be a linear system, the relationship for the
lateral displacement of the beam’s tip and the lateral force F at the tip is also given
with the linear relationship:

Fig. 6.3 Mass-spring-
damper system
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Fig. 6.4 Correspondence between the cantilevered beam system and the mass-spring system

F = 3EI

l3
� (for wing model) (6.4)

Comparison of Eqs. (6.3) and (6.4) allows us to identify that, for the wing, the
equivalent of the stiffness k in the mass spring model is equal to 3EI/l3, therefore,
the mass-spring model’s Eq. (6.2) can now be also used for calculation of the first
(fundamental) natural frequency of the wing’s model:

ω1 =
√

3EI

ml3
(rad/s) (6.5)

6.2.2 Classical Analytical Modelling: Static Beam Deflection
Example

The classical way of modelling engineering systems is to derive their differential
equations, which can be ordinary or partial differential equations. Their examples
are presented below.

In case of the classical beam, the Bending Moment equation can be written as
follows:

M = −EI d
2y

dx2
(6.6)

This enables formulation of the relationship between the beam’s deflection y and
the applied distributed load q, known as the Euler–Bernoulli equation:

d2

dx2

(
EI
d2y

dx2

)
= q (6.7)
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(a)

(b) (c) (d) (e)

Fig. 6.5 Lateral deflections of the Euler-Bernoulli beam, loaded with the concentrated force F:
(a) notations and analytical solutions; (b–e) beam’s shape variation with variation of the position
x/L of the applied force F

The last Eq. (6.7) is an ordinary differential equation and can be solved analyt-
ically for the case of the hinged-hinged beam, loaded with the concentrated force
F, applied at the distance a from the left hinge. The exact analytical corresponding
solution is given with two different equations for the left and right segments with
respect to the force F and is presented in Fig. 6.5a.

Results of the simulations of the variation of the beam’s shape with variation
of the position of the force F along the beam can be conveniently plotted using
MATLAB

®
and are shown in Fig. 6.5b–e.

6.2.3 Classical Analytical Modelling: Temperature Distribution
in the Rectangular Plate Example

Let us consider a rectangular plate, which is bounded by x = 0, x = a, y = 0, and
y = b with the following boundary conditions:
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T (x, 0) = 0, T (0, y) = 0, T (a, y) = 0, and T (x, b) = T1 (6.8)

The steady-state temperature distribution is governed by the Laplace Equation:

∂2T

∂x2 + ∂2T

∂y2 = 0 (6.9)

This is a partial differential equation and can be solved analytically for a few
simple cases, including rectangular plate. Solution is given with the following
expression:

T (x, y) = 4T1

π

∞∑
n=1,3,5,...

sin
(
πnx
a

)
sinh

(πny
a

)
n sinh

(
πnb
a

) (6.10)

This solution can be presented in terms of the 2D plot as a 3D surface. Plot for
the temperature distribution for T1 = 100 ◦C and a = b = 1 m is shown in Fig. 6.6.

It is amazing, that the modern computer environments, like MATLAB
®

, enable
to show results of the simulations, corresponding to the exact analytical solution
cases, with so small effort! As a confirmation of this statement, we present in Fig.
6.6c MATLAB

®
script, corresponding to the case, shown in Fig. 6.6b.

Unfortunately, in many practical cases, analytical solutions are not readily
available, and one of the alternatives in these cases is to solve numerically associated
differential equations. In the following sections, we will present examples of this
strategy for various cases associated with first and second order ordinary differential
equations.

6.2.4 Numerical Simulation of the Problems, Described
with the First Order Ordinary Differential Equations

Series Resistance-Inductance Electrical Circuit Example-1

When the electromotive force is removed from a circuit containing inductance and
resistance but no capacitors, the rate of decrease of current is proportional to the
current.

Consider the electrical engineering system, shown in Fig. 6.7. When the electro-
motive force (emf) is removed from a circuit containing inductance and resistance
but no capacitors, the rate of decrease of current is proportional to the current. If the
initial current is 30 Amps but decays to 11 Amps after 0.01 s, find an expression for
the current as a function of time.
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(a) (b)

(c)

Fig. 6.6 Temperature distribution in the rectangular plate: (a) a = 1, b = 1 case; (b) a = 3, b = 1
case; (c) MATLAB

®
script for a = 3, b = 1 case

If I(t) denotes current and t denotes time, the statement “the rate of decrease of
current is proportional to the current” translates to the ordinary differential equation
of the first order:

dI

dt
= −kI (6.11)

where k denotes the constant of proportionality.
This example is selected for illustration purposes, as it has an exact analytical

solution, which we can use as a verification benchmark for the approximated
numerical solution to be presented immediately after the exact solution.

For deriving an analytical solution, we notice that the differential equation (6.11)
is separable, this allows analytical solutions with the process presented below:
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Fig. 6.7 Series resistance-inductance DC electrical circuit

dI
dt
=−kI ; dI

I
=−k dt; ∫

dI
I

= −k ∫ dt
ln |I | = −kt + Constant1
I= (Constant2)× e−kt ; (the eConstant1 and the ± all gets absorbed in the Constant2

)
(6.12)

Another condition in the task, saying that “if the current decays to 11 amps after
0.01 seconds”, enables us to calculate value of k:

I |t=0.01 = 11; ⇒ 11 = 30 × e−0.01k; ⇒ e−0.01k = 11
30 ; ⇒

− 0.01k = ln
(

11
30

)
; ⇒ k = −100 × ln

(
11
30

)
= 100.3302

(6.13)

Therefore, the analytical exact solution for this particular electrical circuit can be
written in its final, easy to plot, format:

I (t) = 30 × e−100.3302t (6.14)

Plotted results together with the corresponding MATLAB
®

script are presented
in Fig. 6.8.

The same task can be solved numerically, using MATLAB
®

. For this purpose,
the following steps can be recommended for programming:

1. Input of the data for the particular case;
2. Programming of the differential equation (we use as an anonymous function

method in the illustration example) (Fig. 6.9);
3. Solving differential equation, using one of the MATLAB

®
“ode” procedures (we

use ode45, based on an explicit Runge-Kutta (4,5) formula [6]).
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(a)

(b)

Fig. 6.8 (a) Simulation results (exact solution) for the series resistance-inductance DC electrical
circuit; (b) corresponding MATLAB

®
script

Numerical results of the simulation are shown in Fig. 6.10 with continuous line.
This plot, for reference and comparison purposes, also presents an exact solution,
shown in dashed line. The plot shows remarkably close correspondence between
exact analytical and approximate numerical solutions. This explains, why numerical
methods are so popular in modern engineering: offering high accuracy, they enable
solution of much wider range of more complex problems than accessible with the
analytical methods, typically offering solutions for very simplified cases of the very
limited range of formulations. Later on we will also demonstrate that numerical
methods are very efficient for linear and also non-linear formulations associated
with any order of the ordinary differential equations.
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Fig. 6.9 Annotated MATLAB
®

script for solving electric circuit problem, with main conceptual
steps shown

Fig. 6.10 Simulation results for the series resistance-inductance DC electrical circuit: numerical
solution is shown with continuous blue line, exact analytical solution is also superimposed and
shown with the dashed red line

Series Resistance-Inductance Electrical Circuit Example-2

The LR series circuit is connected across a constant voltage source (the battery) and
a switch S. Assume that the switch, S, is open until it is closed at a time t = 0, and
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then remains permanently closed producing a “step response” type voltage input.
Find an expression for the current I as a function of time t.

Modelling of the system requires us to use Ohm’s law, Lenz’s law, Kirchhoff’s
voltage law and Faraday’s law of induction.

The current, I begins to flow through the circuit, but does not rise instantly to its
maximum value of Imax, as determined by the ratio of V/R (Ohm’s Law).

This limiting factor is due to the presence of the self-induced emf within the
inductor as a result of the growth of magnetic flux (Lenz’s Law).

After a time the voltage source neutralizes the effect of the self-induced emf, the
current flow becomes constant and the induced current and field are reduced to zero.

We can use Kirchhoff’s Voltage Law, to define the individual voltage drops that
exist around the circuit and then hopefully use it to give us an expression for the
flow of current. Kirchhoff’s Voltage Law gives:

V (t)− (VR + VL) = 0 (6.15)

The voltage drop across the resistor, R is IR (Ohm’s Law):

VR = IR (6.16)

The voltage drop across the inductor, L is as follows (due to Faraday’s law of
induction):

VL = LdI
dt

(6.17)

Resultant relationship has the following form:

L
dI

dt
= V − IR (6.18)

This ordinary differential equation is separable; this allows analytical solutions.
Detailed process is presented below:

dI
dt

= V−IR
L

; dI
V−IR = 1

L
dt

− 1
R

∫
du
u

= 1
L

∫
dt (by setting u = V − IR) ; ⇒

− 1
R

ln |V − IR| = t
L
+ Constant1

ln |V − IR| = −R
L
t + Constant2

(note : −R gets absorbed in the Constant2)

V − IR = (Constant3)× e−R
L
t(

note : the eConstant2 and the ± all gets absorbed in the Constant3
)
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IR = − (Constant3)× e−R
L
t + V ; ⇒

I = − (Constant4)× e−R
L
t + V

R(
note : 1

R
gets absorbed in Constant4

) (6.19)

Initial zero balance enables us to find the value of the Constant4:

I |t=0 = 0; ⇒ 0 = − (Constant4)× e
0
L + V

R
; ⇒ Constant4 = V

R
(6.20)

Analytical exact solution of the task can be now written in its final form:

I (t) = V

R

(
1 − e−

R
L
t
)

(6.21)

To complement this solution process, it is often advisable to show results in the
graphical format, facilitating dissemination of the results.

For this purpose, we use MATLAB
®

graphics commands shown in Fig. 6.11, and
corresponding plots shown in Fig. 6.12.

Graphical format enables us to come up with the following useful observa-
tions:

• The time required for the current flowing in the LR series circuit to reach its
maximum steady state value is equivalent to about 5 time constants or 5τ .

Fig. 6.11 MATLAB
®

script for solving electric circuit problem, with main conceptual steps
shown
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Fig. 6.12 Simulation results for the series resistance-inductance DC electrical circuit: numerical
solution is shown with continuous blue line, exact analytical solution is also superimposed and
shown with the dashed red line

• This time constant τ is measured by τ = L/R, in seconds, where R is the value of
the resistor in Ohms and L is the value of the inductor in Henries. This then forms
the basis of an RL charging circuit, where 5τ can also be thought of as “5 × L/R”
or the transient time of the circuit.

• In two cases, considered above, τ = L/R = 1/k = 0.0100 s, so transient time is
approximately equal to 0.05 s.

Let us proceed now with the numerical solution process, which has been already
outlined in the previous subsection. For the current example, this process is shown
in Fig. 6.13.

Numerical results (together with exact solution) are shown in terms of the I = I(t)
plot in Fig. 6.14.

Newton’s Law of Cooling (and Heating): General Comments on Modelling

The rate at which the temperature of an object changes is proportional to the
difference between the temperature of the object and the temperature of the
surroundings:

dT

dt
= k (T − Ts) (6.22)

where: t time; k—the constant of proportionality; T(t)—temperature of the object at
time t; Ts(t)—temperature of the surrounding area at time t.
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Fig. 6.13 Annotated MATLAB
®

script for solving electric circuit problem

Fig. 6.14 Simulation results for the series resistance-inductance DC electrical circuit

Equation (6.22) is valid for both, cooling and heating, as any of these particular
cases is described with appropriate values of k:

• If k < 0, Eq. (6.22) describes heating process.
• If k = 0, Eq. (6.22) corresponds to the static case, when temperature T is not

changing: T = const.
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Fig. 6.15 Cooling of the cup of coffee. Image courtesy: https://education.pasco.com/ebooks/
static/FloridaPhysicsReview/BookInd-638.html

• If k > 0, Eq. (6.22) describes cooling process.

The rate of cooling depends on the temperature difference between the two
objects. A large temperature difference means rapid cooling.

Let us consider the task of cooling a cup of coffee, illustrated in Fig. 6.15. When
the coffee is much hotter than the air, its temperature drops 8 ◦C in 1 min. A small
temperature difference means slower cooling. When the coffee has cooled to 30 ◦C,
the temperature changes by only 1.2 ◦C per minute.

We first attempt to get an analytical solution of the task, using Eq. (6.22). The
main steps involved are as shown below:

dT
dt

= k (T − Ts) ; ⇒ dT
T−Ts

= k dt
ln |T − Ts| = kt + Constant1; ⇒ T − Ts = (Constant2)× ekt(
the eConstant1 and the ± all gets absorbed in the Constant2

)
T = Ts + (Constant2)× ekt

For t = 0 : T0 = Ts + (Constant2)× e0 ⇒ (Constant2) = T0 − Ts

(6.23)

We now can distinguish two different cases: (a) T0 > Ts, corresponding to the
cooling process and (b) T0 > Ts, corresponding to the heating process.

Figure 6.16 shows the qualitative shapes of T(t) for these two scenarios, i.e.
cooling and heating.

Newton’s Law of cooling has its limitations [7] and is applicable under the
following limitations:

1. This Law applies to cooling by convection and radiation and not by radiation
alone. To achieve this condition, the hot body is cooled in a uniform flow of
air so that the radiation losses become small as compared to that due to forced
convection.

https://education.pasco.com/ebooks/static/FloridaPhysicsReview/BookInd-638.html
https://education.pasco.com/ebooks/static/FloridaPhysicsReview/BookInd-638.html
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Fig. 6.16 Qualitative time histories for the Cooling and heating scenarios

Fig. 6.17 Submersion of the metal specimen in the liquid with different temperature

2. This Law is applicable in still air only for a temperature difference of about
20 K or 30 K, but it is true for all temperature difference in conditions of forced
convection of the air.

Newton’s Law of Cooling (and Heating): Example-1 (Heating)

For illustration purposes, let us consider the following example. A small metal bar
whose temperature is 30 ◦C is dropped into a container of 75 ◦C water. Submersion
of the specimen is illustrated with Fig. 6.17, using MATLAB

®
graphics.
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After 1 s, the temperature of the bar has increased by 1 ◦C (i.e. up to 31 ◦C).

(a) How long will it take for the temperature of the bar to reach 70 ◦C?
(b) How long will it take for the temperature of the bar to reach 74 ◦C?

To solve the task, we have to determine first the value of k in the Eq. (6.22).
For this purpose, we use the data of the task and substitute known values in the Eq.
(6.22) with the following rearrangements:

T (t) = Ts + (T0 − Ts) ekt1

31 = 75 + (30 − 75) ek×1

(75 − 31) = (75 − 30) ek

ek =
(

75−31
75−30

)
=
(

44
45

)
k = ln

(
44
45

)
= −0.0225

(6.24)

Application of the data for T(t) = 70 ◦C enables us to write:

T (t) = Ts + (T0 − Ts) ekt70

70 = 75 + (30 − 75) ekt70

(75 − 70) = (75 − 30) ekt70

ekt70 =
(

75−70
75−30

)
= 5

45 = 1
9 ⇒ kt70 = ln

(
1
9

)
t70 = 1

k
ln
(

1
9

)
= 97.7724 (s)

(6.25)

Similarly, application of the data for T(t) = 74 ◦C enables us to write:

T (t) = Ts + (T0 − Ts) ekt74

74 = 75 + (30 − 75) ekt74

(75 − 74) = (75 − 30) ekt74

ekt74 =
(

75−74
75−30

)
= 1

45 ⇒ kt74 = ln
(

1
45

)
t74 = 1

k
ln
(

1
45

)
= 169.3894 (s)

(6.26)

Heating of the liquid process can be represented graphically and is shown in Fig.
6.18. The annotated plot has also two cases (reach of 70 and 74 ◦C) marked with
black and blue dots and lines.

For completeness, we also provide in Fig. 6.18 MATLAB
®

script, which has been
used to generate plot in Fig. 6.18. It shows, that the only few commands required to
plot the basic graph; however, many more commands may be required to annotate
the graph.

We explore and illustrate significant benefits of the numerical solutions, using
this example. Heating equations for the considered case can be easily solved,
using MATLAB

®
“ode” integration procedure. The whole process is illustrated
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(a)

(b)
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Fig. 6.18 Modelling of a specimen, heated by a hotter surrounding liquid: (a) time history of the
specimen; (b) MATLAB

®
script

in Fig. 6.19 with the annotated MATLAB
®

script, where equations (6.22) are
programmed as anonymous functions and the problem is solved, using ode45

MATLAB
®

procedure.
Numerical results are shown in Fig. 6.20 graphically, where the approximated

numerical solution is shown with the continuous line and the superimposed exact
analytical solution is shown with the dashed line.
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Fig. 6.19 Annotated MATLAB
®

script to solve task of heating of the specimen, using numerical
method

Fig. 6.20 Comparison of the numerical solution for the heated specimen against the exact
analytical solution

It should be noted that (as shown in the script in Fig. 6.19), the anonymous
function “T_xdot_anonymous3” (it can be given any other convenient name) does
not explicitly use time t; however, it is a compulsory convention for this function
to include t as a dummy variable for the “ode45” procedure to be able to
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perform numerical integration of the relevant differential equation, expressed with
the anonymous function.

Also, it is imperative to use in the ode45 call exactly the same name as used for
the anonymous function. At last, the name of the anonymous function should be in
compliance of MATLAB

®
function names, i.e. should not have spaces, algebraic

symbols, etc. For details, if necessary, please, refer to the complete MATLAB
®

documentation.

Newton’s Law of Cooling (and Heating): Example-2 (Cooling)

You are given a very hot sample of metal, and wish to know its temperature. You
have a thermometer, but it only measures up to 200 ◦C, and the metal is much hotter
than that! You leave the metal in a room kept at 20 ◦C. After 6 min, it has cooled
sufficiently that you can measure its temperature; it is 80 ◦C. After another 2 min it
is 50 ◦C. What was the initial temperature of the metal? This problem is illustrated
with Fig. 6.21, where the red curve shows expected tendency for the time history of
the temperature of the specimen.

General solution of the Eq. (6.22) is

T (t) = Ts + (T0 − Ts) ekt (6.27)

However, it cannot be immediately used, as k and T0 are not known. To determine
first the value of k, we can reset time at t = 6 s, introducing new supplementary time
variable τ = t − 6 (as shown in Fig. 6.21). Then we can apply Eq. (6.27), resulting
in the follow process of relating the known data:

T (τ) = Ts + (T0 − Ts) ekτ where τ = t − 6
50 = 20 + (80 − 20) ekτ2 ⇐ for τ = 2
(50 − 20) = (80 − 20) ekτ2

ekτ2 =
(

50−20
80−20

)
= 30

60 = 1
2 ⇒ kτ2 = ln

(
1
2

)
k = 1

τ2
ln
(

1
2

)
= 1

2 ln
(

1
2

)
= −0.3466 (1/min)

(6.28)

By the way, it would be interesting to note the different temperature rate of
change at different instants. For example, for t = 6 min

dT

dt

∣∣∣∣
t=6 min

= k (T − Ts) = −0.3466 (80 − 20) = −20.7944 (deg /min) (6.29)

Two minutes later, when t = 8 min, the rate of temperature is reduced by the
factor of 2:

dT

dt

∣∣∣∣
t=8 min

= k (T − Ts) = −0.3466 (50 − 20) = −10.3972 (deg /min) (6.30)
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(a)

(b)

Fig. 6.21 Formulation of the cooling problem with known data is shown in blue, unknown data
is shown in red: (a) initial formulation; (b) time is reset at t = 6 s and new time τ = t − 6 is
introduced

After the value of k was established, the value of T0 is still not known. In view of
the absence of critical data, in order to proceed with the quest to find a solution to the
task, let us guess the unknown value, assuming that T0 = 200 ◦C. With this in mind,
solution to the task can be obtained, using numerical integration of the differential
equation for the problem (6.27), using “ode45” procedure in MATLAB

®
. The

annotated script is presented in Fig. 6.22.
Results of the simulation are presented in Fig. 6.23a. Graphical representation

of results is very useful, as it immediately rejects assumption as invalid, because
the resultant cooling curve does not pass any of the desired “waypoints”, i.e. points
T = 80 ◦C for t = 6 s and T = 50 ◦C for t = 8 s.
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Fig. 6.22 Annotated MATLAB
®

script for solving cooling problem, where one of the unknowns
is guessed as T0 = 200 ◦C

This unsuccessful attempt prompts a strategy, which is widely used in simu-
lations of engineering systems: utilizing the advantage of the numerical methods,
often enabling fast solution of the task, we can attempt to guess the unknown value
of T0 as an array of several values. Analysing afterwards results of the simulations
for these multiple “guess” cases, similar to the previous attempt, we will reject the
unsuitable values of T0, which would not satisfy conditions of the task and will
retain the value which is within the accuracy tolerance for the task.

Figure 6.23b shows in blue colour the “guessed” solutions, which should be
abandoned, as not satisfying “waypoints” conditions of the task. And the red colour
is used to distinguish the cooling curve, which satisfies these conditions and which
can be adopted as being solution of the task.

Pond Pollution Example

Consider three ponds connected by streams (see Fig. 6.24a). The first pond has a
pollution source, which spreads via the connecting streams to the other ponds. The
goal of the exercise is to determine the amount of pollutant in each pond.

Let us introduce the following notations and consider an illustrated example with
particular data. We denote volumes of three ponds 1, 2, 3, connected by streams, as
V1, V2, V3. The pollution source f (t) is in pond 1. For a specific numerical example,
take fi/Vi = 0.03, 1 ≤ i ≤ 3, and let f (t) = 3 kg/h for the first 48 h, thereafter
f (t) = 0. We expect due to uniform mixing that after a long time there will be
3 * 48 = 144 kg of pollutant uniformly deposited, which is 48 kg per pond. Initially,
x1(0) = x2 (0) = x3(0) = 0, if the ponds were pristine. The other specifications for
the case are:
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(b)

(a)

Fig. 6.23 Results of the simulation of the problem, where one of the unknowns T0: (a) is guessed
as a single value T0 = 200 ◦C. (b) Are guessed as an array of values T0 = [200:100:600] ◦C

• Symbol f (t) is the pollutant flow rate into pond 1 (kg/h).
• Symbols f1, f2, f3 denote the pollutant flow rates out of ponds 1, 2, 3, respectively

(kg/h).
• It is assumed that the pollutant is well-mixed in each pond.
• The three ponds have volumes V1, V2, V3 (m3), which remain constant.
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(a) (b)

Fig. 6.24 System of three ponds: (a) sketch with shown interconnection and pollutant; (b)
notations for the system of differential equations

• Symbols x1(t), x2(t), x3(t) denote the amount (kg) of pollutant in ponds 1, 2, 3,
respectively.

The pollutant flux is the flow rate times the pollutant concentration, e.g. pond 1
is emptied with flux f1 times x1(t)/V1. A compartment analysis is summarized in the
diagram in Fig. 6.24b. The diagram plus compartment analysis gives the following
differential equations:

⎧⎪⎨
⎪⎩
dx1(t)
dt

= f3
V3
x3(t)− f1

V1
x1(t)+ f (t)

dx2(t)
dt

= f1
V1
x1(t)− f2

V2
x2(t)

dx3(t)
dt

= f2
V2
x2(t)− f3

V3
x3(t)

⇒

⎧⎪⎨
⎪⎩
dx1(t)
dt

= 0.03x3(t)− 0.03x1(t)+ 3
dx2(t)
dt

= 0.03x1(t)− 0.03x2(t)
dx3(t)
dt

= 0.03x2(t)− 0.03x3(t)

(6.31)

The new element in this example is derivation of the exact analytical solution
of the system of Eq. (6.31), using symbolic capabilities available from MATLAB

®
.

The corresponding MATLAB
®

script is presented in Fig. 6.25.
Analytical expressions for the solved problem are as follows:

x1(t) = t −
100 cos

(
3
√

3t
200

)

3(et )
9

200
+ 100

√
3 sin

(
3
√

3t
200

)

9(et )
9

200
+ 100

3

x2(t) = t −
200

√
3 sin

(
3
√

3t
200

)

9(et )
9

200

x3(t) = t +
100 cos

(
3
√

3t
200

)

3(et )
9

200
+ 100

√
3 sin

(
3
√

3t
200

)

9(et )
9

200
− 100

3

(6.32)

Utilizing further MATLAB
®

symbolic plotting commands (fplot or ezplot
instead, if MATLAB

®
version before R2016a is used), we can plot solutions, given

by Eqs. (6.32). They are presented in Fig. 6.26.
With the exact benchmark results, we will solve the same task, using “ode”

numerical solvers for the matrix ordinary differential equations, available in MAT-



196 P. M. Trivailo et al.

Fig. 6.25 MATLAB
®

script for solving Eqs. (6.31), using MATLAB
®

symbolic capabilities

Fig. 6.26 MATLAB
®

exact solutions for pollutants in lakes 1, 2, 3, obtained with MATLAB
®

symbolic solving capabilities and plotted, using MATLAB
®

symbolic plotting capabilities

LAB
®

. The annotated script, performing this task, is given in Fig. 6.27 with plotted
numerical results shown in Fig. 6.28. Comparison of the results in Figs. 6.26
and 6.28 demonstrates close correlation between analytical exact and numerical
approximate solutions.
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Fig. 6.27 MATLAB
®

script for solving “three ponds” task numerically

Fig. 6.28 MATLAB
®

approximate numerical solutions for pollutants in lakes 1, 2, 3, obtained
with MATLAB

®
solving differential equations capabilities



198 P. M. Trivailo et al.

6.2.5 Numerical Simulation of the Problems, Described
with the Second Order Ordinary Differential Equations

Falling Mass Example-1 (No Air Resistance)

As the next representative case, let us consider a falling mass m, assuming no air
resistance. This task is illustrated with Fig. 6.29. In this case, for solution process
and further interpretation of results, we need to assign positive sign conventions.
Let us place the coordinate system zOh at the datum level and direct axis z up.
In this case, application of Newton’s Second Law to the free-body diagram of the
mass, after obvious simplifications, leads to the following equation of motion of the
falling mass, which is a second order ordinary differential equation:

z̈ = g (6.33)

Of course, with this simplified formulation of the task, it can be solved
analytically. Integration of the differential equation (6.33) allows analytical solution:

d2z

dt2
= −g; ⇒ dz

dt
= −gt + C1; ⇒ z = −gt

2

2
+ C1t + C2 (6.34)

Application of Initial Conditions enables us to find the values of constants C1
and C2:

z|t=0 = z0; ⇒ z0 = C2
dz
dt

∣∣
t=0 = v0; ⇒ v0 = C1

(6.35)

Therefore, the exact analytical solution of the task (which is valid within the
assumptions in the task) can be presented as follows:

z(t) = z0 + v0t − gt2

2
(6.36)

Fig. 6.29 Model of a falling
mass with accepted notations
shown
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(a)

(b)

Fig. 6.30 Simulation of the falling mass with air resistance ignored: (a) MATLAB
®

script
implementing exact solution; (b) exact solution plotted as z = z(t)

This solution can be programmed as MATLAB
®

script and can be used to
generate solution plot of the height of the mass as a function of time z = z(t). These
are presented in Fig. 6.30.

With this solution, which we can use as a benchmark, let us solve the same task,
using numerical technique and employing one of the “ode” MATLAB

®
differential

equations solvers. However, these solvers are applicable to the first-order differential
equations and their systems, therefore, in order to access “ode” solvers, we will
need first to reformulate the task.

The aim of this supplementary reformulation step is to reduce second order
equation (6.33) to the system of the first order differential equations. This process
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is as follows. Instead of z, used in the initial formulation, let us introduce new, so-
called state variables x1 and x2:

{
x1 = z
x1 = ż (6.37)

Then, from Eq. (6.37) ẋ1 = x2, however, this relationship just reflects the choice
of the state variables, and does not reflect the physical equation of motion (6.34),
which can be rewritten in terms of the new variables as ẋ2 = −g. Therefore, instead
of the initial single ordinary differential equation (6.33) of the second order, written
in terms of z, we can produce a system of two ordinary differential equations of the
first order

{
ẋ1 = x2

ẋ2 = −g (6.38)

System of Eq. (6.38) is an equivalent to the Eq. (6.33); however, for (6.38) the
“ode” MATLAB

®
procedures can be applied.

Corresponding annotated MATLAB
®

script and resulting plot for the first state
x1, being a nick-name to z, are shown in Fig. 6.31a.

Comparison of the results in Figs. 6.30b and 6.31b shows that they are identical
within the solution tolerance. However, it should be remembered, that analytical
exact solutions are not always available and numerical technique may be the only
reasonable alternative.

For completeness, let us mention that in the example provided, where equations
of motion (6.38) can be presented in the compact form, we used an anonymous
function. This single function can be applied for the system of falling masses, and
an illustration example for two simultaneously launched masses is shown in Fig.
6.32. It features supplementing animation of the numerically simulated results.

Vibration of a Single Mass-Spring-Damper Linear System Example

Let us consider a Virtual Reality model of a mass-spring linear system with constant
k and m, shown in Fig. 6.33a. In this example, translational displacement of the mass
is denoted as q(t).

In order to derive equation of motion, we apply “positive” displacement to the
mass m (Fig. 6.33b); then remove constraints, applying equivalent forces to keep
the system in equilibrium (Fig. 6.33c).

The resultant free body diagram is shown in Fig. 6.33d and applying Newton’s
Second Law for the “m = const” case, we can write the differential equation of
motion of the system as follows:

∑
F = ma ⇒ mq̈ = −kq (6.39)
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(a)

(b)

Fig. 6.31 Simulation of the falling mass with air resistance ignored: (a) MATLAB
®

script
implementing exact solution; (b) exact solution plotted as z = z(t)

If needed, the excitation force F and viscous damping c can be also added (see
corresponding system in Fig. 6.34), which would expand this equation to the flowing
format:

mq̈ + cq̇ + kq = F (6.40)
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(a) (b)

Fig. 6.32 Simulation of two falling masses with air resistance ignored: (a) animation screen; (b)
MATLAB

®
basic script for simulation and animation of two falling masses

The feature of this example is in presenting Eq. (6.40) in the matrix state-space
form:

{
ẋ1

ẋ2

}
=
[

0 1
− k
m

− c
m

]{
x1

x2

}
+
[

0
1
m

]
F (6.41)

or the same can be written in the vector format:

ẋ = Ax + Bu

x =
{
x1

x2

}
=
{
q

q̇

}

A =
[

0 1
− k
m

− c
m

]

B =
[

0
1
m

]
(6.42)

The last equation can be programmed in MATLAB
®

and the system can be
simulated. For certainty, let us assume the following hypothetical parameters:
m = 10 kg; k = 100 N/m; c = 10 N*s/m; the initial conditions are assumed as
follows: q0 = 3 m; q_dot0 = 15 m/s.

Proposed simulation script and results of the simulation are shown in Figs. 6.35
and 6.36.



6 Illustrated Guidelines for Modelling and Dynamic Simulation of Linear. . . 203

(a)

(b) 

(c)

(d) 

Fig. 6.33 Virtual Reality mass-spring system: (a) notations, (b) positive displacement is applied
to the mass m; (c) constraints removed and equivalent forces applied to maintain equilibrium; (d)
free body diagram

Fig. 6.34
Mass-spring-viscous damper
system

Vibration of the Two Mass-Spring Linear System Example

Let us consider a two-DOFs mass-spring system. Its sketch is given in Fig. 6.37a.
Application of Newton’s Second Law to the free-body diagrams in Fig. 6.37e, f

enables us to write two differential equations (of the second order each) of motion:
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Fig. 6.35 Annotated MATLAB
®

script for simulating mass-spring-viscous damper system

Fig. 6.36 Annotated results of the simulation of the mass-spring-viscous damper system

{
m1q̈1 + (k1 + k2) q1 − k2q2 = 0
m2q̈2 − k2q1 + (k2 + k3) q2 = 0

(6.43)

For convenience in application of the simulation methods, these equations can be
rewritten in the matrix format as follows:
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(a)

(b) 

(c)

(d) 

(e)

(f) 

Fig. 6.37 Two DOFs mass-spring system: (a) sketch; (b) notations in VR; (c) positive displace-
ments q1 and q2 applied; (d) constraints removed and equivalent forces are applied; (e) free-body
diagram for mass m1; (f) free-body diagram for mass m2

[
m1 0
0 m2

]{
q̈1

q̈2

}
+
[
k1 + k2 −k2

− k2 k2 + k3

]{
q1

q2

}
=
{

0
0

}
or

[m] {q̈} + [k] {q} = {0} or (with damping and excitation forces added)
[m] {q̈} + [c] {q̇} + [k] {q} = {F }

(6.44)

where [m], [c] and [k] are known as mass, viscous damping and stiffness matrices
of the system and for the particular case of the mass-spring system, similarly shown
in Fig. 6.37a are equal to:
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Fig. 6.38 Two DOFs
mass-spring-damper system
(another example of
element’s arrangement,
different from Fig. 6.37)

[m] =
[
m1 0
0 m2

]
; [c] =

[
c1 + c2 −c2

− c2 c2 + c3

]
; [k] =

[
k1 + k2 −k2

− k2 k2 + k3

]

(6.45)

It should be emphasized that the structure of matrices [c] and [k] depends upon
the way the masses m1 and m2 are interconnected. For example, for another case,
shown in Fig. 6.38, the system matrices are slightly different from those, given by
Eq. (6.45) and are presented by the following relationships:

[m] =
[
m1 0
0 m2

]
; [c] =

[
c1 + c2 −c2

− c2 c2

]
; [k] =

[
k1 + k2 −k2

− k2 k2

]
(6.46)

Very often, especially in control applications, matrix Eq. (6.44) is further
rewritten in so-called state-space format {ẋ} = [A] {x} + [B] {u}; also it is
supplemented with the so-called output equation {y} = [C]{x} + [D]{u}and the
system of equations for simulation purposes can be rewritten as:

{ {ẋ} = [A] {x} + [B] {u}
{y} = [C] {x} + [D] {u} (6.47)

where

[A]=
⎡
⎣ [0] | [1]

−−−−−− + −−−−−−
−[m]−1 × [k] | −[m]−1 × [c]

⎤
⎦ ; [B] =

⎡
⎣ [0]

−−−
[m]−1

⎤
⎦ ; {u} =

{
Q1

Q2

}

(6.48)

Contents of the matrices [C] and [D] are assigned by the designer; however,
often, for [C] identity matrix and for [B]—zero matrix (of appropriate consistent
dimensions) are used:

[C] = [1] ; [B] = [0] (6.49)

enabling to get all system’s state in the output vector {y}.
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(a)

(b)

Fig. 6.39 Simulation of the response of the 2DOF mass-spring-viscous damper system, excited
with two external forces: (a) annotated MATLAB

®
script; (b) response results

To illustrate application of Eqs. (6.47)–(6.49), in Fig. 6.39, we attach the
MATLAB

®
script and results of the simulation of the forced response of the 2DOFs

system, presented in Fig. 6.38.
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6.3 Modelling and Simulation of Non-linear Systems:
Examples of the Selected Simulations

6.3.1 Oscillations of the Pendulum: Comparison of the Results
for the Linear and Non-linear Models

The word “pendulum” is from Latin pendulus, meaning “hanging”. A pendulum is
a weight suspended from a pivot so that it can swing freely (see Fig. 6.40). When a
pendulum is displaced sideways from its resting, equilibrium position, it is subject
to a restoring force due to gravity that will accelerate it back toward the equilibrium
position. When released, the restoring force acting on the pendulum’s mass causes
it to oscillate about the equilibrium position, swinging back and forth.

The time for one complete cycle, a left swing and a right swing, is called the
period. The period T depends on the length of the pendulum L and also to a slight
degree on the amplitude, the width of the pendulum’s swing.

For small deflection angles, the period of swinging oscillations can be calculated,
using the following relationship:

T ≈ 2π

√
L

g
(6.50)

The differential equation of motion for the swinging pendulum can be derived in
many different ways. Let us consider Newton’s Second Law in the vector format, as
applied to constant mass m:

∑−→
F = m−̈→r (6.51)

This relationship for the translational motion is equivalent to the following
equation, applicable to the rotational motion of the system with constant moment
of inertia IO, rotating about point O:

Fig. 6.40 Pendulum:
notations and sign
conventions
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∑
MO = IOθ̈ (6.52)

Developing the left-hand side of the Eq. (6.50)
∑

MO = − mg sin θ × L and

developing the right-hand side of the Eq. (6.51) IO d
2θ
dt2

= mL2 d2θ
dt2

, we can derive
differential equation of motion for the pendulum, which is a non-linear equation:

d2θ

dt2
+ g

L
sin θ = 0 (6.53)

This single ordinary non-linear differential equation of the second order can be
now rewritten as a non-linear system of two differential equations of the first order:

{
ẋ1 = x2

ẋ2 = − g
L

sin θ
(6.54)

These equations can be solved, using exactly the same principles and techniques,
as were used for the linear systems. As in the examples above, we can describe the
differential equations (6.54), using anonymous function (or use a separate function,
if equations are not given with compact expressions [8]). The proposed annotated
MATLAB

®
script is shown in Fig. 6.41.

The results of the simulation are presented in Fig. 6.42.

Fig. 6.41 Annotated MATLAB
®

script to simulate oscillations of the pendulum
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(a)

(b)

Fig. 6.42 Simulation results for the swinging pendulum, excited via initial conditions: (a)
θ0 = 30◦ and θ̇0 = 0 case; (b) θ0 = 174◦ and θ̇0 = 0 case

The first plot in Fig. 6.42a has results for the non-linear model (shown in
continuous red lines) and simplified, linear model (shown with dashed blue lines), in
both cases excited with the same initial conditions, involving θ0 = 30◦ and θ̇0 = 0.
The second plot in Fig. 6.42b has also results for non-linear and linear models,
however, excited with conditions, involving θ0 = 174◦ and θ̇0 = 0, i.e. having
much larger initial deflection angle θ0.
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It is obvious that for relatively small angles, including the θ0 = 30◦, non-linear
and linear models produce comparable results (Fig. 6.42a). However, for large
angles θ , results for the non-linear model are very different from the results related
to the linear system. These differences are very significant for both states, angle
θ (t) and angular velocity θ̇ (t), however, the differences are most prominent for the
angular velocity θ̇ .

6.3.2 Simulation of the Projectile Motion (No Air Drag)

Let us consider an example of the projectile motion. For its modelling, we will
use the Cartesian coordinate system with z axis aligned with the direction of the
gravitational force, shown in Fig. 6.43. In contrast to the previously considered
single falling mass case (which had only one DOF, therefore, two states in the
model), the 2D projectile motion case, described in the Cartesian coordinates, would
require two coordinates, which we denote as h and z for the horizontal and vertical
axes correspondingly.

We first consider the case when the air resistance is small and, therefore, ignored.
This would enable us to build benchmark result data to be further compared with
the results for the air resistance non-linear formulation, to be presented at the end of
this section.

To model the system, we employ Newton’s Second Law and represent all vectors
involved (velocity and applied forces) with the equivalent combination of their h and
z components. This results in two ordinary differential equations:

{
mḧ =∑Fh

mz̈ =∑Fz
⇒

{
mḧ = 0
mz̈ = −mg ⇒

{
ḧ = 0
z̈ = −g (6.55)

(a) (b)

Fig. 6.43 Projectile motion: (a) Cartesian coordinates, selected for modelling and notations; (b)
representation of the velocity vector via its h and z components
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As it can be seen from Eq. (6.55), the simplified final equations do not include
m, which indicates that the results would be mass insensitive. Also, it can be seen,
that the resultant equation of motion (EOM) are linear. It should be also noted that,
if necessary, the user can change the order of the equations in the system (6.55),
placing the second equation in the first position.

The dynamic equation of motion of the projectile (for the no air-resistance case),
Eqs. (6.55), are the second order ordinary differential equations. In order to access
the park of the powerful “ode” numerical solvers in MATLAB

®
, we will need to

rewrite these equations as a set of the first order ordinary differential equations. For
this purpose, we introduce the system’s states h, ḣ, z and ż.

It would be important to mention that the final format of the new set of equations
would depend upon the order in which these states are “packed” in the vector of
states x. We present a few possibilities for numbering of the system’s states.

For example,

if the order of states is selected as

⎧⎪⎪⎨
⎪⎪⎩

x1 = z
x2 = ż
x3 = h
x4 = ḣ

then the EOM are :

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2

ẋ2 = −g
ẋ3 = x4

ẋ4 = 0
(6.56)

There are two major implications of this choice of the states. Firstly, when the
initial conditions are formulated, the following vector must be passed on to the
solver:

x0 =

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦
t=0

=

⎡
⎢⎢⎣
z0

v0z

h0

v0h

⎤
⎥⎥⎦ (6.57)

Secondly, when results are calculated by MATLAB
®

, the z data would be in the
first column of the matrix with all solutions for all states, and h data would be in
the third column, as per the first statement in Eq. (6.57). Therefore, for example, for
plotting trajectory of the mass, the x3–x1 data should be used.

We present similar results in the other cases of numbering of the states.

If the order of states is selected as

⎧⎪⎪⎨
⎪⎪⎩

x1 = z
x2 = h
x3 = ż
x4 = ḣ

then the EOM are :

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x3

ẋ2 = x4

ẋ3 = −g
ẋ4 = 0

(6.58)
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and the vector of initial conditions should be specified as x0 = [x1 x2 x3 x4]T
t=0 =

[z0 h0 v0z v0h]T and for plotting 2D trajectory of the mass, x2–x1 data should be
used. (Here and further, T is used to show that the vector needs to be transposed).

If the order of states is selected as

⎧⎪⎪⎨
⎪⎪⎩

x1 = h
x2 = z
x3 = ḣ
x4 = ż

then the EOM are :

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x3

ẋ2 = x4

ẋ3 = 0
ẋ4 = −g

(6.59)

and the vector of initial conditions should be specified as x0 = [x1 x2 x3 x4]T
t=0 =

[z0 h0 v0z v0h]T and for plotting 2D trajectory of the mass, x1–x2 data should be
used.

If the order of states is selected as

⎧⎪⎪⎨
⎪⎪⎩

x1 = h
x2 = ḣ
x3 = z
x4 = ż

then the EOM are :

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2

ẋ2 = 0
ẋ3 = x4

ẋ4 = −g
(6.60)

and the vector of initial conditions should be specified as x0 = [x1 x2 x3 x4]T
t=0 =

[h0 v0h z0 v0z]T and for plotting 2D trajectory of the mass, x1–x3 data should be
used.

Let us consider numerical implementation of the scheme, given by Eqs. (6.56),

i.e. the states are numbered as x = [z, ż, h, ḣ]T, then the differential equations
of motion (EOM) to be solved, are:

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2

ẋ2 = −g
ẋ3 = x4

ẋ4 = 0

(6.61)

Annotated MATLAB script, enabling simulation and animation of the projectile
motion (for the no air resistance case) is shown in Fig. 6.44.

If comparison of the trajectories for various values of one of the parameters, let
us say projectile angle is needed, the core of script in Fig. 6.44 can be used as an
engine and the modified script is presented in Fig. 6.45a with simulation results in
Fig. 6.45b. Note that in the script we are only plotting trajectories for h > 0.

It can be seen from Fig. 6.45b, that angles θ0 = 10◦ and θ0 = 80◦ ensue the
same horizontal travel distance h for the projectile (restricted by z ≥ 0 requirement).
Another pair of the projectile angle is θ0 = 30◦ and θ0 = 60◦. Another observation
is that the maximum horizontal travel distance h is achieved, when θ0 = 45◦.
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Fig. 6.44 Annotated MATLAB
®

script, enabling simulation and animation of the projectile
motion (for no air resistance case)

The script in Fig. 6.45a can be used to produce a “projectile umbrella”—envelope
of trajectories of a projectile with a constant initial speed v0 and different angles θ0,
discussed in [9]. It would be interesting to note, that the equation for this envelope
can be derived analytically. It is given by the following equation:

z = 1

2

(
v0

2

g
− g

v2
0

x2

)
(6.62)

This curve is plotted in Fig. 6.46, where for its numerical validation, we
also superimpose the projectile trajectories for a wide range of the angle θ0:
θ0 = [5

◦
: 5

◦
: 175

◦
].

Of course, one of the most critical steps in the simulation process would be
validation of the numerical results. In some cases, where the analytical solutions
are available, it is advisable to validate numerical solutions against exact analytical
solutions. In the case of the projectile motion tasks with no air drag included in the
model, numerical results can be validated in many different ways. For example, the
following analytical solutions can be used:

• The equation of the parabolic path of motion:

z = −1

2
g

x2

v2
0cos2θ0

+ x tan θ0 (6.63)
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(a)

(b)

Fig. 6.45 (a) MATLAB
®

script, enabling comparative simulations of the projectile motion (for no
air resistance case) for various θ0; (b) simulation results

• The range R of the projectile on a flat ground (z = 0) and the time tR the projectile
reaches the range R are:

R = v2
0

g
sin (2θ0) ; tR = 2

v0

g
sin θ0 (6.64)

• The highest point H and the time it is reached are:

H = v2
0

2g
sin2θ0; tH = 1

2
tR = v0

g
sin θ0 (6.65)
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(a)

(b)

Fig. 6.46 (a) MATLAB
®

script to plot the analytical expression for the envelope of the projectile
trajectories (for “no air resistance” case and v0 = 10 m/s) and embraced numerically simulated
projectile trajectories for various θ0 = [5:5:175] degrees; (b) simulation results

6.3.3 Simulation of the Projectile Motion (With Air Drag)

In contrast to the task formulation used in the previous section, now we include in
the task formulation the air resistance force acting on the projectile. Let us assume
that it is proportional to the squared velocity v of the mass m and a coefficient Cd:

|Fair| = Cdv2 = Cd
(
v2
h + v2

z

)
(6.66)

This force is not generally aligned with any of the selected axes, h and z,
therefore, in order to formulate the h and z component equations of motion, we
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Fig. 6.47 Cartesian coordinate system h–z, used for simulation of the projectile motion, with mass
m velocity v and air resistance force Fair, resolved along these directions

need to resolve the Fair along the h and z directions. For this purpose, we first need
to declare the assumed sign conventions, shown in Fig. 6.47. This Figure also shows
corresponding representation of the velocity and air resistance force components,
resolved along h and z directions. On Fig. 6.47, the air resistance force Fair (shown
with a dashed arrow) is represented as an equivalent sum of the Fh air and Fz air force
components:

|Fair| = Cdv2

Fz air = − |Fair| sin θ = − |Fair| vzv = −Cdv2 vz
v
= −Cdvzv = −Cdvz

√
v2
h + v2

z

Fh air = − |Fair| cos θ = − |Fair| vhv = −Cdv2 vh
v
= −Cdvhv = −Cdvh

√
v2
h + v2

z

(6.67)

After this representation is completed, the Fair force is no longer needed, and
therefore marked in the Fig. 6.47 with a red cross.

Differential equations of motion of the projectile, can be derived, using various
methods. Using Newton’s Second Law, we can write them, in view of the explicit
air resistance force components [see Eq. (6.67)] as follows:

{
mḧ = Fhair = −Cdv2 cos θ

mz̈ = Fz air −mg = −mg − Cdv2 sin θ
(6.68)

These equations of motion are non-linear, second order, ordinary differential
equations. However, the treatment of this non-linear model for obtaining numerical
solution is very much the same, as was used for the linear case, presented in the
previous subsection. We first rewrite these equations in terms of system’s states,
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specifying the selected order of the states, for example, if the order of the states

selected as x = [
z, ż, h, ḣ

]T
, then the equations of motion of the system to be

used in numerical simulation process are:

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2

ẋ2 = −g − 1
m
Cdv

2 sin θ
ẋ3 = x4

ẋ4 = − 1
m
Cdv

2 cos θ

⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = −g − 1
m
Cdx2

√
x2

2 + x2
4

ẋ3 = x4

ẋ4 = − 1
m
Cdx4

√
x2

2 + x2
4

(6.69)

Then, in view of the compact expressions for the states, we program them in
the MATLAB

®
script, using anonymous function and employ one of the “ode”

integration procedures to get numerical solutions. The recommended structure of the
script, as in many preceding examples, remains the same and includes the following
critical stages: (6.1) input of the data; (6.2) formulation of the states; (6.3) calling
“ode45” integration procedure to solve differential Eq. (6.57) and (6.4) plotting
results of the numerical simulation. The annotated MATLAB

®
script, implementing

procedure of solving non-linear formulation for the projectile motion, is given in
Fig. 6.48.

The script in Fig. 6.48 can be further developed to run concurrent comparative
animations for two projectiles, described with linear model (which does not include
air resistance) and non-linear model (which includes air resistance).

Fig. 6.48 Annotated MATLAB
®

script, enabling simulation and animation of the projectile
motion (for the case, including air resistance)
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Fig. 6.49 Versatile MATLAB
®

script, enabling simultaneous comparative simulations and ani-
mations of two projectiles, described with linear and non-linear models, which do not include and
include air resistance correspondingly

This versatile script is presented in Fig. 6.49 and the final snap-shot screen of the
animated window is given in Fig. 6.50.

Comparison of the projectile trajectories for the linear and non-linear models in
Fig. 6.50 enables us to reveal very significant differences in their shapes and key
characteristics, including the range R of the projectile on a flat ground (z = 0) and
the time tR the projectile reaches the range R, highest point H and the time it is
reached tH . This particular case comparison highlights, in general case, limitations
of the linear model, use of which would lead to significant errors in prediction of
the projectile time history.
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Fig. 6.50 Final snapshot from the animation screen, presenting simultaneous comparative simu-
lations and animations of two projectiles, described with linear and non-linear models

And simplicity of the modelling of the fully non-linear model facilitates use of
the non-linear models and contributes to the improvement of the accuracy of the
modern simulations.

6.4 Advancing Modelling and Simulation of Engineering
Systems, Selecting and Employing Most Beneficial
Coordinate Systems

6.4.1 Example of Utilization of the Inclined Cartesian
Coordinate System

Let us consider the following task, associated with a flat surface, inclined at angle
α with respect to the horizon (shown in Fig. 6.53a). Assume that during the
experiment, mass m was released and travelled distance AB = h before it hit the
incline. Then, mass m bounces from the inclined surface. Simulate the motion of
the mass after the impact. In particular, determine the distance BC along the incline,
which the mass will fly until it collides with the incline surface for the second time at
point C, assuming elastic impact, which is characterized with no any energy losses
during the impact.

The treatment of the task without or with air resistance is the same. This task
of simulating mass motion between points A and B can be solved, using falling
mass methodology, presented in one of the previous subsections. The corresponding
simulation MATLAB script is given in Fig. 6.51 and the results of the simulation
(for the m = 1 kg, H = 2 m, Cd = 0.1 and Cd = 0.8) are presented in Fig. 6.52.
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Fig. 6.51 MATLAB script, enabling simulation of the mass m motion during segment AB

The task of simulating mass motion between points B and C can be solved, using
projectile motion methodology presented earlier and utilizing traditional Cartesian
coordinate system h–z, aligned with horizontal and vertical directions (see Fig.
6.53a). However, selection of the inclined Cartesian coordinate system h O z

(shown in Fig. 6.53b) could offer multiple advantages, for example, simplicity in
monitoring conditions of the impact at point C (indeed, this condition would simply
satisfy a simple requirement of the current z coordinate of the mass to be equal to
zero). However, utilization of this coordinate system would require formulation of
the equations of motion in the selected coordinate system. For this purpose, let us
consider the instant after the impact (presented in Fig. 6.53b). This figure shows for
the segment BC the initial velocity v0, value of which must be equated to the impact
velocity at point B, (i.e. final calculated velocity for the segment AB). Assuming
perfect elastic impact, we can also conclude that the angle of incidence γ 1 must be
equal to the angle of reflection γ 2 (see Fig. 6.53b) and equal to the angle α.

This enables us to establish for segment BC the initial projectile launching angle
θ0 in the inclined Cartesian coordinates h O z:

γ1 = γ2 = α ⇒ θ0 = π

2
− α (6.70)
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(a)

(b)

Fig. 6.52 Results of the simulation for the released mass m (falling mass segment AB): (a)
m = 1 kg; H = 2 m; Cd = 0.8 kg/m; (b) m = 10 kg; H = 5 m; Cd = 0.1 kg/m

We now consider the forces, applied to the mass, being the gravitational force
mg and air resistance force Fair. These forces, in general case, are not aligned with
any of the selected coordinate axes, therefore, we need to resolve them along the
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(a)

(b)

Fig. 6.53 Mass m, dropped from point A and colliding with the inclined surface: (a) main
notations; (b) bounced mass m is shown after the impact, together with employed inclined
Cartesian coordinate system h O z

coordinate axes and represent with their axial components. For brevity, we will
illustrate in detail the process, using mg force only, and shown in Fig. 6.53b.

The Fig. 6.53b shows this force as a vector and also shows that it can be
represented as an equivalent sum of two components mg sin α and − mg cos α,
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obtained when mg is resolved along h and z directions correspondingly. After this
representation is completed, vector mg is no longer needed; therefore, this force is
shown as crossed out with red lines in Fig. 6.53b. The air resistance force can be also
resolved in a similar way along h and z directions. With these in mind, the equations
of motion of the system can now be written in the inclined Cartesian coordinates as
follows:

{
mḧ =∑Fh
mz̈ =∑Fz

⇒
{
mḧ = mg sinα − Cdv2 cos θ
mz̈ = −mg cosα − Cdv2 sin θ

⇒
{
ḧ = g sinα − 1

m
Cdv

2 cos θ
z̈ = −g cosα − 1

m
Cdv

2 sin θ
(6.71)

where v is the magnitude of the instantaneous velocity vector v of the mass and θ is
the instantaneous inclination angle for the velocity vector v in the h O z coordinate
system, as per the Fig. 6.53b. Let us select the system’s states as follows:

x =
[
z, ż, h, ḣ

]T
(6.72)

then the equation of motion of the mass m can be rewritten in the following form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = −g cosα − 1
m
Cdv

2 sin θ
ẋ3 = x4

ẋ4 = g sinα − 1
m
Cdv

2 cos θ

⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = −g cosα − 1
m
Cdx2

√
x2

2 + x2
4

ẋ3 = x4

ẋ4 = g sinα − 1
m
Cdx4

√
x2

2 + x2
4

(6.73)

If we place the origin of the coordinate system h O z at the point B, then the
vector of initial conditions, required by MATLAB solvers, in view of Eq. (6.56), is

x0 = [0, v0 sin θ0, 0, v0 cos θ0
]T = [0, v0 cosα, 0, v0 sinα

]T
(6.74)

Equations (6.73), complemented with initial conditions (6.74), can be solved
numerically, using MATLAB ode procedures. Corresponding MATLAB script and
numerical results are presented in Figs. 6.54 and 6.55 for the following two contrast
cases: (a) m = 1 kg; H = 2 m; Cd = 0.8 kg/m; α = 30◦; (b) m = 10 kg; H = 5 m;
Cd = 0.1 kg/m; α = 30◦.

It should be emphasized that solution of Eqs. (6.73), shown in Fig. 6.55, produces
results in the inclined Cartesian coordinate system, facilitating determination of the
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Fig. 6.54 MATLAB script, enabling simulation of the mass m motion during segment BC

instant, when mass hits the incline for the second time at point C. The results are
showing that these distances in two contrast cases are equal to 1.19 and 17.04 m
correspondingly.

For interpretation of the BC segment trajectories in the conventional, not inclined
hOz coordinate system, trajectories in Fig. 6.55 must be rotated by the angle of
incline α (in the clockwise direction for the considered cases).

Rotation of the geometric objects can be done using matrix transformation of
their coordinates:

[h− z coordinates]after rotation =
[

cosα − sinα
sinα cosα

] [
h− z coordinates

]
before rotation

(6.75)
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(a)

(b)

Fig. 6.55 Simulated trajectories for the bouncing mass m (segment BC) in the inclined Cartesian
coordinate system h O z with the air resistance included in the model: (a) m = 1 kg; H = 2 m;
Cd = 0.8 kg/m; (b) m = 10 kg; H = 5 m; Cd = 0.1 kg/m

The “rotated” trajectories of the mass in the two contrast study cases are produced
in Fig. 6.56.

6.4.2 Example of Utilization of the Normal and Tangential
Coordinate System

Use of moving coordinate systems, alternative to Cartesian, can be very useful
in engineering and in mechanics, in particular. We will illustrate, that utilization
of the normal and tangential components of the projectile velocity could give an
interesting insight on the trajectory of the motion. In dynamics, use of normal and
tangential coordinates simplifies description of the velocity vector and air resistance
forces. We will show how these coordinates can be used to monitor position of
the instantaneous centre of rotation and the value of the instantaneous radius of
rotation.
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(a)

(b)

Fig. 6.56 Simulated trajectories for the bouncing mass m (segment BC) in the not inclined
Cartesian coordinate system hOz with the air resistance included in the model: (a) m = 1 kg;
H = 2 m; Cd = 0.8 kg/m; (b) m = 10 kg; H = 5 m; Cd = 0.1 kg/m

It can be derived that the acceleration of the moving mass m, including projectile,
can be expressed in the normal and tangential coordinates as follows [10]:
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Fig. 6.57 Representation of the vector of gravitational acceleration with normal and tangential
components

a = dv

dt
et + v2

ρ
en (6.76)

In Eq. (6.76) et and en are denoting unit vectors, tangent and normal to the path,
correspondingly and ρ is denoting the instantaneous radius of rotation of the mass–
radius of the imagined circle, closely conforming with the current infinitesimal
segment of the path around current instantaneous position of the moving point.

For our study, we will consider projectile mass m model, ignoring air resistance.
In this case, the gravitational acceleration g is the only acceleration, applied to the
mass. Figure 6.57 shows that the vector of the gravitational acceleration g can be
resolved along the normal and tangential directions (i.e. en and et directions):

g = gnen + gtet = (g cos θ) en + (−g sin θ) et (6.77)

From Eqs. (6.76) and (6.77), it can be identified that the radius of the instanta-
neous rotation of the projectile mass m can be calculated as:

ρ = v2

g cos θ
= v2

h + v2
z

g × arctan
(
vz
vh

) (6.78)
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Fig. 6.58 Evolution of instantaneous circles of rotation (red circles, red radii) and migration of
their (blue) centres: snapshots from animation, taken at t = 0:7 s [air resistance ignored]

Evolution of the instantaneous circles of rotation and location of their centres
were animated and the snapshots are shown for the example (v0 = 50 m/s; θ0 = 45◦)
in Fig. 6.58.

In Fig. 6.58, the projectile’s trajectory is shown with black line, instantaneous
circles of rotation—with red circular lines, instantaneous radii—with red straight
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lines, instantaneous centres of rotation—with blue small circles, and matching radii
points, lying on the path trajectory—with red small circles.

It is quite amazing to realize that exactly the same script can be used for
animating evolution of the instantaneous circles of rotation and position of the
instantaneous radii for the case with air resistance taken into consideration!
However, this no-difference in treatment of the linear and non-linear cases (for the
instantaneous centres of rotation analysis) is becoming evident, when we recall that
the air resistance acceleration is always aligned with the tangential direction and,
therefore, does not contribute to the normal acceleration used for the associated
calculations of R. For completeness in Fig. 6.59, similar to Fig. 6.58, we present
snapshots of the animated instantaneous radii and circles of rotation for the air
resistance case with Cd = 0.06 kg/m.

Side by side comparison of Figs. 6.58 and 6.59 for linear and non-linear models
shows that the radii of instantaneous rotations for the non-linear cases are smaller,
especially when the projectile is at its perigee segment of the trajectory. This can be
confirmed with the plot of the explicit comparison of the radii of the instantaneous
rotations of the projectiles, presented in Fig. 6.60.

To conclude consideration of the projectile models, we need to mention that when
state solution is available, it can be further used for analysis and/or interpretation of
any characteristics of interest of the system. For example, we can easily plot time
histories for the velocities of the projectiles, modelled with linear and non-linear
models, shown in Fig. 6.61. For this purpose, a relationship of the velocity v should
be produced and programmed for plotting:

v =
√
v2
h + v2

z =
√
x2

2 + x2
4 (6.79)

It should be reminded, that the indices in relationship (6.79) are sensitive to the
order of the states, in the illustration case stipulated with Eqs. (6.56) and (6.72), i.e.

xlinear =
[
z, ż, h, ḣ

]T
xnon-linear =

[
z, ż, h, ḣ

]T (6.80)

Also, when relationship (6.79) is programmed in MATLAB, pseudo-operations
must be used, i.e. sqrt(x2.ˆ2 + x4.ˆ2).

6.4.3 Example of Utilization of the Polar Coordinate System
in Spacecraft Dynamics

Polar coordinate systems are often used to describe the curvilinear motion of a
point mass. Being very popular in mechanics, they are widely used for modelling
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Fig. 6.59 Evolution of instantaneous circles of rotation (red circles, red radii) and migration of
their (blue) centres: snapshots from animation, taken at t = 0:7 s [air resistance included]

of the radar sensed aircraft and for the development of the classical orbital
mechanics models. The general analytical expressions for the radial and transverse
components of the acceleration in polar coordinates are given with the following
expressions:
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Fig. 6.60 Comparison of the radii of instantaneous rotations for the projectiles, described with
linear (with air resistance ignored) and non-linear (air resistance included) models

Fig. 6.61 Comparison of the velocity of the projectiles, described with linear (with air resistance
ignored) and non-linear (air resistance included) models

{
ar = d2r

dt2
− r( dθ

dt

)2 = d2r

dt2
− rω2

aθ = r d2θ

dt2
+ 2 dr

dt
dθ
dt

= rα + 2 dr
dt
ω

(6.81)

where the term −rω2 in the radial component of the acceleration is called centripetal
acceleration, and the term 2(dr/dt)ω in the transverse component is called Coriolis
acceleration. With this in mind, total acceleration, acting on the moving point can
be expressed with a single equation, utilizing polar coordinates unit vectors er and
eθ :

a =
(
r̈ − rθ̇2

)
er +

(
rθ̈ + 2ṙ θ̇

)
eθ (6.82)

On the other hand, if we consider a spacecraft of mass m in its orbit around
the Earth and assume that the gravitational force is the only force, acting on the
spacecraft, total acceleration can be calculated explicitly, using Newton’s law of
universal gravitation:

a = −Gm1M⊕
r2

er (6.83)
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where G is the gravitational constant [6.674 × 10−11 N · (m/kg)2] and M⊕ is the
mass of the Earth [M⊕ = 5.97219 × 1024 kg]. It should be noted, that Eq. (6.83) does
not have transverse component, as the gravitational force is aligned with the radial
direction. Comparison of Eqs. (6.82) and (6.83) allows us to write two equations
of motion of the point in the following from two coupled ordinary differential
equations of the second order:

{
m
(
r̈ − rθ̇2

) = −GmM⊕
r2

m
(
rθ̈ + 2ṙ θ̇

) = 0
(6.84)

The methodology of treatment of these types of equations for obtaining numer-
ical solution was illustrated with the example of the vibration of mass-spring
systems. Firstly, we will rewrite these second order equations in terms of the states
of the system, which would reduce the order of the new set of equations from the
second to the first.

Let us assume the following states of the system and their order in the states
vector x = [x1, x2, x3, x4]T:

x =

⎧⎪⎪⎨
⎪⎪⎩

x1

x2

x3

x4

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

r

θ

ṙ

θ̇

⎫⎪⎪⎬
⎪⎪⎭

(6.85)

In view of this statement, we can write first two state equations: ẋ1 = x3 and ẋ2 =
x4. Two other equations, reflecting the physical side of the modelling of the
simulated system can be obtained from Eq. (6.72). Total system of four ordinary
differential equations of the first order, being more convenient equivalent of the
Eqs. (6.84), can now be written as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = x3

ẋ2 = x4

ẋ3 = x1x4
2 − GM⊕

r2

ẋ4 = − 2x3x4
x1

(6.86)

Remarkable, that the mass m is no longer participating in the states equations
of motion (6.86), also observed in the case of the linear projectile model, where
the air resistance was ignored. We need to stress out, that the basic spacecraft
dynamics model state equations (6.86) are non-linear, however, as it will be seen,
conceptually, the solution process for these equations would be very much the same
to the treatment of the process for linear systems. This just confirms one of the main
advantages of the numerical methods—uniform treatment of the simulated systems,
linear and non-linear.

https://en.wikipedia.org/wiki/Gravitational_constant
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Fig. 6.62 MATLAB script, enabling simulation of the basic orbital dynamics equations

MATLAB script enabling simulation and visualization of the spacecraft orbits for
the following two contrast cases of the initial conditions is presented in Fig. 6.62,
and results of the simulation are in Figs. 6.63 and 6.64. The initial conditions, used
for these cases:

(a) r0 = 1.2R⊕; θ0 = 60
◦ ; ṙ = 0; θ̇ = −7000/r0

(b) r0 = 1.2R⊕; θ0 = 60
◦ ; ṙ = 0; θ̇ = −9000/r0

To bring visual realism to the plots in Figs. 6.63 and 6.64, we are plotting the
Earth as a sphere, using Earth texture, as per advice in [11]. We also place time
markers along spacecraft trajectories, plotted as polar lines in Fig. 6.63 and 3D
Cartesian line in Fig. 6.64. In Fig. 64, we also distinguish the spacecraft plane as
a yellow semi-transparent plane, bounded with the trajectory line (shown with red
colour).

The first observation from Fig. 6.63 and other similar cases, which could be
generated with the script in Fig. 6.62 enables us to rediscover Kepler’s first Law,
reformulating for the spacecraft-Earth system and stating that “The orbit of a
spacecraft is an ellipse with the earth at one of the two foci”.

The second observation would reflect importance of the initial conditions: case
(b) has only higher initial transverse initial velocity, as compared to case (a), with all
other conditions being the same. It is interesting to observe, that only this change in
a single parameter significantly influences the shape of the orbit, making it elliptical
with much higher eccentricity.

As an add-on to this example, we will further use case (b) to rediscover Kepler’s
Second Law, applied to the spacecraft-Earth system and stipulating that “A line
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(a)

(b)

Fig. 6.63 Simulated spacecraft orbits for two contrast cases

segment joining a spacecraft and the Earth sweeps out equal areas during equal
intervals of time”.
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(a)

(b)

Fig. 6.64 Simulated spacecraft orbit for the illustration initial conditions case r0 = 1.2R⊕; θ0 =
60

◦ ; ṙ = 0; θ̇ = −9000/r0: (a) 3D view, Earth shown as non-transparent body; (b) areas, swept
out by the radius vector pinned at the Earth centre for 0–2000s (magenta); 4000–6000 s (green)
and 10,000–12,000 s (cyan) equal intervals with Earth shown as a semi-transparent body

To prove this, let us consider first the area, swept out by the radius vector pinned
at the Earth centre, during 0–2000 s interval (shown with magenta colour in Fig.
6.64b). The area could be easily calculated, using MATLAB polyarea(X,Y)
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command and is equal to 6.87 · 107 km2. Within the accuracy of 0.1% and 0.01%
correspondingly, the areas of two other areas, corresponding to the intervals of
4000–6000 (shown in green) and 10,000–12,000 s (shown in cyan) are equal to
the same value, confirming Kepler’s Second Law.

Finally, in the subsection, we will verify Kepler’s Third Law. Being applied to
the spacecraft-Earth system, it states that “The square of the orbital period of a
spacecraft is directly proportional to the cube of the semi-major axis of its orbit”.
This would enable us to write the following relationship for two cases of the
spacecraft orbits:

(
TB

TA

)2

=
(
rB

rA

)3

(6.87)

Using simulation results for the cases (a) and (b) in Fig. 6.63, we can calculate
the left-hand side of Eq. (6.87), i.e. ratio of the corresponding periods (in hrs), which
would be equal to (6.1906/1.6933)2 = 13.4. It can be verified, that the right-hand
side of Eq. (6.87), with the accuracy of 0.2%, would be equal to the same value:
(17,125.9/7212.46)3 = 13.4. This concludes elementary numerical verification of
Kepler’s Third Law, using cases (a) and (b). For more generalized verifications,
more comparative examples should be involved.

Finally, once again it should be mentioned that original Kepler’s Laws were
initially formulated for the planetary motion, and in this subsection they were
reformulated for the spacecraft-Earth system. Classical Kepler’s Laws of planetary
motion [11], widely used in astronomy, are three scientific laws describing the
motion of planets around the Sun. For completeness, we present Kepler’s Laws
in the original iconic form:

1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
2. A line segment joining a planet and the Sun sweeps out equal areas during equal

intervals of time.
3. The square of the orbital period of a planet is directly proportional to the cube of

the semi-major axis of its orbit.

These Laws have wide application in astronomy and in order to illustrate one
of them, we estimate the period of rotation about Sun for Jupiter. If the average
orbital radii for Earth and Jupiter are available (equal to rE = 1.5 × 108 m and
rJ = 7.8 × 108 m), then the period TJ of rotation of Jupiter around Sun in terms of
the Earth’s period TE = 1 year, is calculated, using Eq. (6.87):

TJ = TE

(
rJ

rE

)3/2

= 11.9 years (6.88)
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6.5 Finite Element Method (FEM) as a Powerful “Vehicle”
for Reducing Modelling of Continuous Systems
to the Modelling of Discrete Systems: Applications
in Dynamics

6.5.1 Some General Comments on the FEM in Modelling
and Simulation

The finite element method (FEM) is a numerical method for solving problems of
engineering and mathematical physics. Studying or analysing a phenomenon with
FEM is often referred to as finite element analysis (FEA).

Typical problem areas of interest include structural analysis, heat transfer, fluid
flow, mass transport and electromagnetic potential. The analytical solution of these
problems generally require the solution to boundary value problems for partial
differential equations. The finite element method formulation of the problem results
in a system of algebraic equations. The method approximates the unknown function
over the domain. To solve the problem, it subdivides a large system into smaller,
simpler parts that are called finite elements. The simple equations that model these
finite elements are then assembled into a larger system of equations that models the
entire problem. FEM then uses variational methods from the calculus of variations
to approximate a solution by minimizing an associated error function [12].

The FE method was developed more by engineers using physical insight than
by mathematicians using abstract methods. It was first applied to problems of
stress analysis and has since been applied to other problems of continua [13]. The
applications of the method and bibliography on the subject are immense and the
interested reader is referred to the classical text [14] for more details.

The focus of this section, however, will be on the examples from dynamics,
involving vibrations of multi-DOFs mass-spring systems and elastic rods and beams
in axial and lateral vibrations. We will show that the FEM can be immediately
applied to the discrete deterministic systems (i.e. with finite DOFs), like mass-spring
systems, used for the concise and visual introduction into the FEM, presented earlier
in the section. In the following examples, we will show that the FEM can be applied
to the continuous deterministic systems, like vibrating beams, trusses, plates, shells,
solids, etc.

We will illustrate that the FEM in these cases would be playing a role of the
powerful “vehicle”, enabling reduction of the systems with infinite number of
degrees-of-freedom (DOFs) to the systems with finite number of DOFs, further
conversion of these discrete models to the states formulation and solution, using
mathematical solvers, for example, “ode” MATLAB solvers for ordinary differential
equations.
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Visual Introduction into FEM, Using Multi Mass-Spring System Examples

Let us consider a simple unconstrained mass-spring system, similar to the system in
Fig. 6.65. It has two springs, which we will treat as “finite elements”, characterized
with their nodal displacements. If we number masses in an arbitrary way, in general
case, each of the particular spring elements would have own two numbers, i and j
(i �= j), to describe their boundaries and to denote its stiffness kij.

Let us consider two experiments with the spring element kij (illustrated in Fig.
6.66), firstly applying a unit displacement to its left boundary and then applying a
unit displacement to its right boundary. This would enable us to establish resultant
forces F, which would be required to implement these experiments. These findings
can be expressed as two equations, which could be written in a single matrix
equation:

[
kij −kij
− kij kij

]{
qi

qj

}
=
{
Fi

Fj

}
(6.89)

The square matrix involved in Eq. (6.89) is called element stiffness matrix
[
ke

ij

]
.

If we create a global stiffness matrix [K], which would have dimension sufficient
to embrace all degrees-of-freedom, then the elasticity of the spring kij could be

Fig. 6.65 Unconstrained
3DOFs mass-spring system

Fig. 6.66 Consecutive application of the unit displacements to the boundaries of the spring kij
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Fig. 6.67 Process of assembling global stiffness matrix of the 3DOF mass-spring system

Fig. 6.68 Dynamic
excitation of the
unconstrained 3DOFs
mass-spring system

reflected in the matrix [K] by adding components of
[
ke

ij

]
to the relevant cells in

[K]. This process is illustrated in Fig. 6.67.
This result enables us to write general dynamics equation for the system for an

even more general case, when the arbitrary external forces Q1, Q2, Q3 are applied
to the system (Fig. 6.68):

⎡
⎣m1 0 0

0 m2 0
0 0 m3

⎤
⎦
⎧⎨
⎩
q̈1

q̈2

q̈3

⎫⎬
⎭+

⎡
⎣ k1 −k1 0

− k1 k1 + k2 −k2

0 −k2 k2

⎤
⎦
⎧⎨
⎩
q1

q2

q3

⎫⎬
⎭ =

⎧⎨
⎩
Q1

Q2

Q3

⎫⎬
⎭ (6.90)

This equation is the same as it would be an equation derived using traditional
method, based on the free-body diagram and Newton’s Second Law.

As further development of this topic, we now present two main techniques
to model systems which have some of the boundaries of their springs being
constrained, i.e. possess with constrained boundary conditions. The simplest case
is presented in Fig. 6.69a. The original system with one spring, left boundary of
which is constrained, is shown in Fig. 6.69a. To derive global stiffness matrix, we
employ a supplementary unconstrained system, which is created by adding to the
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original system with 
constrained boundary conditions

�

supplementary system with
unconstrained boundary conditions

�
(a)

(b) (c)

(d) (e)

original system with 
constrained boundary conditions

�

(f)

Fig. 6.69 Process of taking into account constrained DOFs in the global matrices derivation

original system a dummy mass, replicating left wall (Fig. 6.69b). Essentially, we
add additional DOF (q̃1) to the system, which has an additional mass (m̃1). In the
supplementary system, for consistency and programming convenience, we rename
notations (Fig. 6.69c). Now supplementary system has consistent numbering and
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notations and we can produce its global stiffness matrix, using assembling process,

explained earlier (Fig. 6.69d). By the way, global stiffness matrix
[
K̃
]

for the

supplementary system (in this purposely simplified case) is equal to the element
stiffness matrix.

The static equation for the supplementary unconstrained system can be written
as follows:

[
K̃
]
=
[
k1 −k1

− k1 k1

]
(6.91)

A requirement to constrain left end of the spring would mean that q̃1 = 0 and the
first equation, corresponding to q̃1 and the information in the first column of [K̃] are
becoming irrelevant and can be crossed out, as shown in Fig. 6.69e.

Now we can return to the initial original system, replacing the dummy mass in
the supplementary system with a wall. Returning to the initial original system and
also notations (Fig. 6.69f), we can now use the inherited “truncated” or “condensed”

matrix
[
K̃
]
as a global stiffness matrix of the original system (i.e. [K] = [k1]) and

can write an equation of motion of the original system, derived using the FEM, as
follows:

m1q̈1 + k1q1 = Q1 (6.92)

Another technique to take into account constrained DOFs in the system is
also involving creation of the unconstrained supplementary system, but suggests
assignment of very large value (let say, 1012 kg for the main mass being a few
kilograms) to the added mass [15]. This is a very convenient method for numerical
implementation, as it does not require truncation of the global matrices for the
supplementary system and additional renumbering manipulations. More advanced
examples may involve, in a general case, n masses, as in Fig. 6.70. The process of
treating constrained system is shown in Fig. 6.71a–6.71d for n = 4. Figures 6.72a,
b also present MATLAB scripts to solve eigenvalue problems.

In the current illustrated example, the following parameters are assumed: n = 4;
m = 7 kg; k = 500 N/m. Figure 6.72a shows that the first natural frequency of the

Fig. 6.70 n-DOFs mass-spring system
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(a)

(b) 

(c)

(d) 

Fig. 6.71 Mass-spring system example: (a) original system; (b) supplementary system; (c)
supplementary system renumbered; (d) assembly of the stiffness matrix for the supplementary
system

supplementary system is equal to zero, which would be an expected result, as the
system is not constrained and admits rigid body motion.

Return to the original system would imply that q̃1 = 0 and, mathematically,
this would mean that we can get global stiffness matrix from the supplementary
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(a)

(b) 

Fig. 6.72 Mass-spring system example: (a) calculation of the first natural frequency of the
supplementary system; (b) calculation of the first natural frequency for original system

system matrix by crossing out its first row and column. MATLAB script for
these calculations is shown in Fig. 6.72b, together with the calculated first natural
frequency for the original system, which is equal to ω1 = 2.9352 rad/s.
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(a)

(b) 

Fig. 6.73 Unconstrained supplementary system in taking into account constrained masses: (a)
method of replicating a wall by adding a heavy mass; (b) analysis of the first natural frequencies

Lastly, in Fig. 6.73 we illustrate second method of modelling constrained system
in Fig. 6.71a. This is very simple for programming and quite an efficient method,
suggesting that the constraining wall in Fig. 6.71a could be replaced with a
very heavy mass, shown in black colour on the diagram, Analysis of the natural
frequencies shows that the first natural frequency for the supplementary system with
heavy mass is equal to zero, and its second natural frequency is equal to the first
elastic frequency of the original constrained mass (see Fig. 6.73).
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6.5.2 Utilization of the FEM for Modelling of the Axial
Vibrations of Elastic Rods

Axial vibration of elastic rods is a classical task. Indeed, many structures and
structural elements are subjected to longitudinal loadings and can vibrate in the
longitudinal (axial) direction. The typical examples of them are: rockets, turbine
blades, helicopter blades, elements of magnetostriction devices, etc.

These complex vibrations can be nicely illustrated/visualized, using conceptual
analogies from physics (see Fig. 6.74). Figure 6.74a displays a sound wave
propagation, and Fig. 6.74b shows coiling spring, which can be used to easily send
longitudinal waves along the spring: for this, free end should be pulled in and out.

However, in the context of this book chapter, axial vibration of rods task attracts
our attention with the availability of analytical solutions, which we will establish
first to use them as a benchmark for the numerical approximate solution; we will
also obtain after the analytical (exact) counterparts.

Axial vibrations of the elastic rods can be described with the partial differential
equation [17]:

∂

∂x

[
EA(x)∂u (x, t)

∂x

]
+ f (x, t) = m(x)∂

2u (x, t)

∂t2
(6.93)

Equation of motion and the boundary conditions of the problem constitute what
is referred to as a boundary-value problem.

In case of homogeneous rods (EA = const, m = const), these equations for the
free vibration case can be simplified to the format, known as the wave equation [18]:

∂2u

∂x2 = 1

c2

∂2u

∂t2
where c = √EA/m = √E/ρ (6.94)

In Eq. (6.94) x is a coordinate of the cross section of the rod, u(x,t) is a function
of axial displacements of its cross sections, c is the wave propagation velocity along
the rod, E is its modulus of elasticity, m is the mass per unit length and ρ is the
density of the material and A is the area of the cross section (Fig. 6.75).

The general solution of Eq. (6.94) can be obtained, using the method of
separation of variables, assuming solution in the form u(x,t) = U(x)·F(t), and has
the following form:

u (x, t) =
(
A sin

ω

c
x + B cos

ω

c
x
)
× (C sinωt +D cosωt) (6.95)

where arbitrary constants A, B, C, D depend on the boundary conditions and the
initial conditions.
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(a)

(b)

Air molecules

Movement of sound waves

Direction of wave

Pull end of spring in and out
to send a longitudinal wave
along the spring

Fig. 6.74 Analogies with axially vibrating rods: (a) propagation of a sound wave; (b) propagation
of a transverse wave in a coiling spring [16]
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Fig. 6.75 Homogeneous elastic rods in axial vibrations: notations

Since the bar has free ends, the axial force, which is proportional to dU/dx, must
be zero at each extremity. Thus, the boundary conditions for this problem may be
written as

EA ∂u (x, t)
∂x

∣∣∣∣
x=0

= 0, EA ∂u (x, t)
∂x

∣∣∣∣
x=L

= 0 (6.96)

The first boundary condition will require that A = 0, so

u (x, t) =
(
B cos

ω

c
x
)
× (C sinωt +D cosωt) (6.97)

The second boundary condition then leads to the characteristic equation:

sin
ωL

c
= 0, or

ωrL

c
= rπ, r = 1, 2, 3, . . . (6.98)

to which corresponds the infinite set of mode shapes, described with eigenfunctions:

Ur(x) = Br cos
rπx

L
(6.99)

The first natural elastic modes for the free-free rod are plotted in Fig. 6.76 [17],
where the modes have been normalized by letting Br = 1. We note that the first mode
has one node, the second has two nodes and the third has three odes. In general, the
rth elastic mode has r nodes (r = 1,2, . . . ).

The system natural frequencies are:

ωr = rπc

L
= rπ

√
E

ρL2
, r = 1, 2, 3, . . . (6.100)
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Fig. 6.76 The first three natural elastic modes of longitudinal vibration for a free-free bar

Note that for the free-free boundary conditions, system allows rigid-body mode,
characterized with zero frequency, and this specific case can be obtained from Eq.
(6.100) using r = 0. Non-zero values of r are related to the so-called “elastic” modes.
It should be also noted, that the system has infinite number of natural frequencies,
and can be called as a system with infinite number of degrees-of-freedom.

In the more general case of free vibration initiated in any manner, the solution
will contain many of the normal modes:
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Fig. 6.77 Truss finite element: main notations

u (x, t) =
∞∑
r=1

cos
rπx

L
(Cr sinωrt +Dr cosωrt) , ωr = rπc

L
, r = 1, 2, 3, . . .

(6.101)

The arbitrary constants Cr, Dr depend on the initial conditions. As with increased
need for denoting too many parameters in this chapter, we are quickly running out
of notations, in the current context, coefficient A, B, C and D should not be mixed
up with the matrices in the state-space formulation, considered earlier in previous
sections.

With the exact benchmark solutions Eq. (6.100) for the natural frequencies
established, we will obtain the natural frequencies of the same system, using the
FEM, i.e. alternative method. The justification for this would be in the ability to
solve a much wider range of problems, including those, where derivation of the
analytical solutions would not be possible, for example in non-linear formulations.

Let us now consider a single finite element (see Fig. 6.77) with two nodal axial
displacements, u1 and u2, being two degrees-of freedom.

Using so-called Hermite functions, H1 and H2, also known as shape functions
[14] (shown in Fig. 6.78), it would be possible to derive an expression for calculation
of the axis displacement at any internal point with arbitrary coordinate x, using nodal
values [17]:

u (x, t) = H1(x)u1(t)+H2(x)u2(t) =
(
1 − x

h

)
u1(t)+ x

h
u2(t), where

H1(x) =
(
1 − x

h

)
and H2(x) = x

h

(6.102)

Using Eq. (6.102), it is possible to derive single finite element mass and stiffness
matrices:

[
ke] = EA

h

[
1 −1

− 1 1

]
; [

me] = mh

6

[
2 1
1 2

]
(6.103)
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Fig. 6.78 Shape functions for a truss finite element

and equivalent nodal forces:

f e
1 (t) =

∫ h
0f (x, t)

(
1 − x

h

)
dx = ∫ h0f (x, t)H1(x)dx

f e
2 (t) =

∫ h
0f (x, t)

(
x
h

)
dx = ∫ h0f (x, t)H2(x) dx

(6.104)

Let us assess, how expressions (6.103) work. Consider a rod, modelled with a
single finite element only. Then, for the static case, system can be modelled with the
following relationship:

[ke] {u} = {F } (matrix equation) , or,

EA
h

[
1 −1
− 1 1

]{
u1

u2

}
=
{
F1

F2

}
(the same, but in the expanded format)

(6.105)

For the illustration purposes, let us assume the following numeric values for
the example: a = 0.08 m; b = 0.08 m; h = 5 m; u1 = −0.1 m; u2 = 0.2 m;
E = 0.01 * 109 Pa. Calculation of the forces, required to ensure end rod’s
displacements, u1 and u2, using Eq. (6.105) produces verifiable results, illustrated
in Fig. 6.79b.

As next sophistication of the model, we model the bar (L = 1 m;
E = 0.01 * 109 Pa; ρ = 1.2 ∗ 103 kg/m3; a = 0.08 m; b = 0.08 m) introducing 50
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(a)

(b)

Fig. 6.79 Basic example of static modelling of the rod with only one truss finite element: (a)
MATLAB script; (b) FEM solution for F1,2 and its verification against Hooke’s Law

finite elements and calculate natural frequencies of the rod. These numerical model
results will be compared with the exact solutions, given by Eq. (6.100).

Complete MATLAB script, assembling the system’s global matrices, performing
required calculations, solving the eigenvalue problem and plotting approximated
numerical and exact analytical results is given in Fig. 6.80. This is a universal script,
enabling simulations of rods modelled with any number of the FEs. To change this
number, the value of NumFE variable should be changed. Considering two contrast
cases with NumFE = 1 and NumFE = 50, we generate plots to compare analytical
and FEM results (see Fig. 6.81). Figure 6.81 shows that in addition to the elastic
frequencies, the FEM models enabled calculation of the rigid-body mode frequency
with zero value ω0 = 0. And this observation is valid for any number of the finite
elements in the model, even for one element model. Also, Fig. 6.81 shows that
the accuracy of the FEM predictions can be improved, using higher number of the
elements in the model. In our specific example, with 50 finite elements model, at
least for 20 first frequencies high accuracies could be achieved.

Next step in sophistication of the FEM modelling is in considering response tasks
of the system with constrained boundary or boundaries.
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Fig. 6.80 MATLAB script, enabling calculation of the natural frequencies of the rod in axial
vibration and comparison with exact analytical solutions

For this illustration, let us consider a uniform rod of length L and cross section
a×b = A, with one end fixed and the other free. This rod is stretched under a static
load P0, as shown in Fig. 6.82, and suddenly released from rest at time t = 0. From
these initial conditions, determine the longitudinal displacements u(x,t).

For certainty, we assume the following numeric parameters:

• a = 0.08 m
• b = 0.08 m
• L = 5 m
• ε = 0.1
• E = 0.01 ∗ 109 Pa

The exact analytical solution for the task can be given by the following
expression [17]:

u (x, t) = 8εL

π2

∞∑
r=1

(−1)r−1

(2r − 1)2
sin
(2r − 1) πx

2L
× cos

(2r − 1) πct

2L
(6.106)
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(a)

(b) 

Fig. 6.81 Natural frequencies of the rod in axial vibrations: exact and FEM values: (a) finite
element model with 1 FE; (b) finite element model with 50 FEs

It involves summation with infinite number of contributions from all possible
natural modes.

Figure 6.83b–d show the contribution of the first three modes to the total response
of the bar. It may be appreciated that the amplitudes of various modes of vibration
are rapidly decreasing as r increases.

As one of the features of this example, let us represent Eq. (6.106) as a 3D surface
plot. Why this representation is a recommended format?—Because informatively it
is equivalent to the animation. However, animation cannot be included in the report,
but surface plot can be.

The appropriate script is reproduced in Fig. 6.84 and result of its execution is
shown in Fig. 6.85.

As in previous examples, after obtaining analytical solution, we proceed with its
alternative—numerical solution. At the initial stage of the process, we consider the
simplest FEM model, comprising only one single finite element. To model clamped-
free system, we first build the system’s matrices for the free-free system, which
would be a supplementary system. For one-FE model of the free-free rod with h = L,
the dynamic equations of motion can be formulated, based on the Newton’s Second
Law, and can be written in the following matrix form:
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Fig. 6.82 A clamped-free uniform rod: (a) study case system; (b) initial conditions to excite its
longitudinal vibrations

mh

6

[
2 1
1 2

]{
ü1

ü2

}
+ EA

h

[
1 −1
− 1 1

]{
u1

u2

}

=
{

0
0

}
(for supplementary free-free rod) (6.107)

Applying boundary conditions, we need to constrain left boundary (u1 = 0),
which would be equivalent to crossing out the first equation and removing first
rows on the remaining [me] and [ke] matrices. Thus, for the study case with
clamped-free boundaries, we can reduce the previous Eq. (6.107) (formulated for
the supplementary system) to the following:

mh
6 [2] {ü2} + EA

h
[1] {u2} = {0} (for main system,fixed-free rod) or

[M] ü2 + [K] u2 = [0]
(
here [M] = mh

6 [2] and [K] = EA
h

[1]
) (6.108)

Because Eq. (6.108) is the second order equation, in order to access the
differential equation solvers, we now reformulate our task in terms of states, which
results in reduction of the order of the equations to the first order at the expense of
increase of the number of equations.
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Fig. 6.83 Rod in axial vibrations: (a) key notations; (b)–(d) scaled contribution of the first three
modes to the total longitudinal response of the rod, excited with initial conditions

Fig. 6.84 MATLAB script, plotting exact solution for the rod, excited with initial conditions, as a
3D surface
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Fig. 6.85 A clamped-free uniform rod: exact analytical (solution with N = 100 members kept
in the summation), plotted as a 3D surface (this is the same plot, but viewed from two different
viewpoints)

If introduced states are x = [x1, x2]T = [u2, u̇2]T, then the FEM dynamics
matrix equation for the clamped-free rod, modelled with one finite element can be
written in the state form:
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Fig. 6.86 MATLAB script, enabling FEM modelling of the response of the clamped-free uniform
rod, modelled with one FE

{
ẋ1

ẋ2

}
=
{

x2

− inv ([M]) ∗ [K] ∗ x1

}
(6.109)

involving inversion of the mass matrix, which is always positive for the engineering
systems.

Corresponding MATAB script, enabling solution of this matrix equation is given
in Fig. 6.86.

Approximated response of the system, modelled with only one FE, is presented
in Fig. 6.87.

We can further enhance representation of the results of the simulation, using 3D
surface plotting, shown in the annotated Fig. 6.87b. The corresponding MATLAB
script is presented in Fig. 6.88.

As a matter of clarification, we need to stress out that, in most cases, modelling of
the system with only one FE would not give sufficient accuracy, and such simplistic
modelling was used only for illustration purposes. Therefore, as it will be further
shown, the results of the simplistic models may not be realistic and reliable. Saying
this, when it comes to the FEM implementation, starting programming with a simple
model may not be a bad idea, as this approach enables to proceed quicker with the
development of the prototype of the program, which could be easily converted later
on in the high fidelity program.

Indeed, if we increase the number of the FEs in the model to 50, the shape of the
3D surface plot representing FEM solution is closely replicating the shape of the
same plot, corresponding to the exact (analytical) solution. Placement side by side
of these plots in Fig. 6.89 confirms this observation.
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(a)

(b) 

Fig. 6.87 FEM response of the clamped-free uniform rod, modelled with one FE: (a) plot for the
tip point; (b) annotated 3D surface plot for all points along the rod

Fig. 6.88 FEM response of the clamped-free uniform rod, modelled with one FE (Continuation
of the script in Fig. 6.86)

If we further increase the number of finite elements in the model up to 200, we
can see that the shape of the 3D surface plot (see Fig. 6.91b) rapidly converges to
the shape of the exact analytical solution (Fig. 6.85).
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Fig. 6.89 Side by side comparison of the plots, corresponding to the exact solution and the FEM
solution, obtained with 50 finite elements approximation (the same viewpoints as used)

(a)

(b) 

Fig. 6.90 FEM tip point responses of the clamped-free uniform rod: (a) model with 50 finite
elements; (b) model with 200 finite elements

It is possible to observe that the plots for the models with lower number of FE
have more “ripples”, also reflected with the time histories of the displacement at the
free end of the rod, presented in Fig. 6.90a. The segments of the plot for the 200 FE
model, shown in Fig. 6.90b, more closely resemble straight lines.

For completeness, in Fig. 6.92 we provide complete script for the FEM modelling
of the bar with arbitrary number of finite elements.
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(a) 

(b) 

Fig. 6.91 FEM response of the clamped-free uniform rod: (a) FE model with 50 finite elements
(b) FE model with 200 finite elements



262 P. M. Trivailo et al.

Fig. 6.92 MATLAB complete script for simulation and representation of results for the response
of the clamped-free rod in axial vibrations, modelled with arbitrary number of FEs

6.5.3 Utilization of the FEM for Modelling of the Lateral
Vibrations of Elastic Beams

In the previous subsections, a number of continuous systems were discussed, such
as strings in transverse vibrations and rods in axial vibrations. All these systems are
governed by the second-order partial differential equations in space and time, and
are analogous in nature. The corresponding boundary-value problem comprises two
boundary conditions, one at each end.

By contrast, a beam in flexure is governed by fourth-order partial differential
equations in space and the corresponding boundary-value problem requires two
boundary conditions at each end.
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Fig. 6.93 Main notations for the “Euler–Bernoulli Beam” Finite Element

In this subsection, we derive this boundary-value problem for a selected example
and obtain the response of this system to initial excitation using finite element
method (FEM), as analytical solution for the general case would not be available.

The examples in this subsection are supplemented with detailed MATLAB
scripts, which have, for certainty, particular numbers, including the number of the
finite elements. However, all these numbers can be easily changed to correspond to
the new requirements/conditions.

Let us assume that in the analysis of the beam, it is subdivided into smaller
size finite elements. One of these elements is shown in Fig. 6.93, outlining main
notation. It is known as “Euler-Bernoulli beam” finite element, and has two nodal
translational displacements, u1 and u3, and two nodal angular displacements, u2 and
u4, being four degrees-of freedom of the finite element.

It is possible to rigorously prove [17] that the following function can be used
for interpolation of the lateral displacement at any internal point within the finite
element:

u (x, t) = H1(x)u1(t)+H2(x)u2(t)+H3(x)u3(t)+H4(x)u4(t) (6.110)

where functions H1, H2, H3 and H4 are so-called “shape functions” (also known as
Hermite interpolation functions or Hermite cubics):



264 P. M. Trivailo et al.

H1(x) = 1 − 3
(
x
h

)2 + 2
(
x
h

)3
H2(x) = h

[(
x
h

)− 2
(
x
h

)2 + ( x
h

)3]
H3(x) = 3

(
x
h

)2 − 2
(
x
h

)3
H4(x) = h

[
−( x

h

)2 + ( x
h

)3]
(6.111)

Utilization of Eq. (6.111) could further lead to the establishment of the element
stiffness and mass matrices:

[
ke] = EI

h3

⎡
⎢⎢⎣

12 6h −12 6h
6h 4h2 −6h 2h2

− 12 −6h 12 −6h
6h 2h2 −6h 4h2

⎤
⎥⎥⎦ ; [

me] = mh

420

⎡
⎢⎢⎣

156 22h 54 −13h
22h 4h2 13h −3h2

54 13h 156 −22h
− 13h −3h2 −22h 4h2

⎤
⎥⎥⎦

(6.112)

For the FEM modelling of the system with external excitations, the expressions
for the nodal forces for a 2D beam finite element would be also needed:

f e
1 (t) =

∫ h
0f (x, t)H1(x)dx = ∫ h0f (x, t)

[
1 − 3

(
x
h

)2 + 2
(
x
h

)3]
dx

f e
2 (t) =

∫ h
0f (x, t)H2(x)dx = ∫ h0f (x, t)

[
3
(
x
h

)2 − 2
(
x
h

)3]
dx

f e
3 (t) =

∫ h
0f (x, t)H3(x)dx = ∫ h0f (x, t)

[
3
(
x
h

)2 − 2
(
x
h

)3]
dx

f e
4 (t) =

∫ h
0f (x, t)H4(x)dx = ∫ h0f (x, t) h

[
−( x

h

)2 + ( x
h

)3]
dx

(6.113)

however, in the illustration examples here, we will consider excitations of the beams
via initial conditions and not external forces; therefore, these nodal forces will be
assumed to be zeros.

Notations and relevant units, used in the Eqs. (6.112) and (6.113) are explained
below:

• “m” [kg/m]—mass per unit length of the beam;
• “[me]” elementary mass matrix;
• “E” [Pa]—Young’s Modulus;
• “I” [m4]—cross-sectional area moment of inertia (also known as Second moment

of area);
• “EI” [N/m]—bending stiffness of the beam;
• “[ke]” elementary stiffness matrix;
• “h” [m]—length of the finite element.

Individual element matrices can be calculated, using Eq. (6.112) and their
elements should be added to the appropriate cells in the global matrices during the
assembling process.
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(a) 

 
(b) 

 

Fig. 6.94 Process of assembling of the global mass matrix: (a) assembly for the supplementary
system; (b) truncation of the matrix; (c) global mass matrix for the original system (note: for
convenience of the explanation, h is assumed to be equal to 1)

This process is explained schematically in detail in Fig. 6.94 for simple example,
involving only two finite elements.

The feature of the example is in the constrained (clamped) end. For these
cases, in the assembling process, we initially ignore original boundary conditions
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of the system, and essentially assemble global matrices for the free-free (called
supplementary) system. For more visual explanation, let us assume that the length
of the finite element h = 1 m, in this case element matrices have no “h” parameters
in square brackets and are given by numbers only. Of course, in the general case,
use of full general expressions for the elementary matrices would be needed.

It is shown in Fig. 6.94, that during the assembly, a node, adjacent to two
elements, contributes to the degrees of freedom, associated with this border node. In
the illustrated example, middle node contributes to the third and fourth degrees-of-
freedom, which results in the “overlapped” area in the global mass matrix, marked
with yellow colour in Fig. 6.94, where resultant values are cumulative numbers,
containing contributions from the element #1 and element #2.

Requirement to constrain translational and rotational DEFs at the left end of
the beam results in making first two DOFs of the supplementary system irrelevant,
which allows us to eliminate two rows and two columns in the global matrix of the
supplementary system (Fig. 6.94b). These deleted rows and columns correspond
to one translational and one rotational constrained DOFs. It may be of interest to
mention, that “deletion” of rows and columns (which are also called sometimes as
“matrix condensation” or “truncation”) can be easily programmed in MATLAB.
For example, in order to delete the first column in the matrix [M], the following
command can be used:

M (:, 1) = [] (6.114)

and for deletion of the first row in the matrix [M], the following command can be
employed:

M (1, :) = [] (6.115)

If the number of finite elements is more than two, the assembly process is very
much the same: regardless of the initial conditions, it is advisable to introduce a
supplementary free-free beam and assemble its global matrices, which could be
further adjusted to the constrained boundary conditions by truncating rows and
columns, associated with the constrained DOFs.

For example, assembly process for the clamped-free stepped beam with five finite
elements starts with the assembly of the global matrix for the supplementary system
and is schematically shown in Fig. 6.95. The example in Fig. 6.95 emphasizes that
the individual properties of the finite elements can differ, which makes the FEM
a genuinely unique simulation tool, enabling treatment of the systems, for which
analytical solutions would no longer be available.

Let us now consider the main study case system in this subsection, shown in Fig.
6.96. It involves a simple uniform beam of length L, constant mass per unit length
m and constant bending stiffness EI. The beam is initially held at rest and then is
dropped from the horizontal position from the height y = H. When it reaches the
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Fig. 6.95 Schematic procedure of assembling of the global stiffness matrix for the supplementary
(free-free) system, related to the clamped cantilever beam study case example

Fig. 6.96 A uniform beam
(shown at the approaching
stage (t < 0)

level y = 0, it collides with the obstacles A and B at x = 0 and x = a, which both
automatically lock as pins on the beam’s matching points A and B, arresting the
motion of the beam.

Assume the instant of the collision as initial time t = 0 and consider the idealized
case where there are no energy losses due to friction, impact, etc., and where no
rebound occurs at the supports.

As an illustration example, we will program in MATLAB the Finite Element
Model of the beam (modelled with 10 equal length FEs) and determine the first
natural frequency of the beam in rad/s.

We assume the following parameters for the simulation case of the beam:

• Width and height of the beam: b = 60 mm and h = 10 mm; length of the beam:
L = 2 m

• Young Modulus of the beam: E = 200 GPa
• Density of the material: ρ = 7500 kg/m3 (stainless steel)
• Dropping height: H = 2 m
• Location of the right automatic hinge: a = 0.6 × L = 0.6 × 2 m = 1.2 m
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The recommended process for simulation of the system and solving specified
tasks may include the following critical steps.

• Step-1: Modelling of the system with adequate number of finite elements with
their boundaries compatible with the requirements of the study case.

Important comment is related to the subdivision of the beam into the finite
elements. It must comply with the requirement of the case to “arrest” points A
and B. This could only be achieved if after subdivision of the beam into the
finite elements, points A and B coincide with the nodes of the FE model. If the
beam is divided into 10 equal length finite elements (with h = L/10 = 0.2 m),
these requirements would be satisfied: point A would be the left end of the first
finite element #1, and point B would be a connecting point for the sixth (#6) and
seventh (#7) finite elements.

• Step-2: Assembly of the global mass and global stiffness matrices of the system
and formulation of the dynamics equations of motion, which would be subject
to the boundary conditions. For the original systems with constrained DOF,
introduction of the supplementary free-free systems may be required.

In the considered example, we will need to “start” clocks (i.e. set t = 0) at the
moment, when beam touches points A and B and rotational hinges are activated,
so beam is no longer free-free. In order to implement the boundary conditions of
the beam, conforming with the requirement that from the moment t = 0, the
beam is constrained (hinged) at points A and B, we need to assemble global
matrices for the supplementary system first. Then, corresponding “reduction”
of both global mass and stiffness matrices can be applied. Alternatively, large
values could be added to the cells in the global mass matrix, corresponding to
the constrained DOFs. Once again, it should be stressed out, that when the DOFs
in the system are constrained, we start simulation process, considering first the
supplementary system, which is completely free; then, we adjust supplementary
solution matrices to the main (i.e. constrained) case.

• Step-3: Reformulation of the equations of motion, using system’s states. This is
necessary to be able to access the ordinary differential equations solvers (like
“ode” in MATLAB), which are usually available for the systems, described with
the first order differential equations. For the vibrating systems, described with
the second order differential equations, this reformulation typically leads to twice
increased number of equations. For linear systems, the resultant equations have
the following form: ẋ = Ax + Bu and for non-linear systems have the form:
ẋ = f (x,u, t), with various solvers available for both forms.

• Step-4: Formulation of the initial conditions for the task.
In the study case for this purpose, we need to determine the velocity of the

beam after it flies 2 m and reaches A–B level. For this purpose, the Law of
Conservation of Energy can be used. Ignoring the air resistance, and assuming
that potential energy of the beam (initially lifted at the 2 m height) is completely
converted into the kinetic energy of the beam, when it touches A and B, we can
write:
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mgH = 1

2
mv2 ⇒ v = √2gH = √

2 × 9.81 × 2 = 6.2642 (m/s)

(6.116)

For this subsection example, the supplementary system (beam) with 10 FEs
would have 11 nodes and 22 DOFs, thus, 44 states, representing:

– lateral displacements (states 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21);
– angular displacements (states 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22);
– nodal velocities (states 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43);
– nodal angular velocities (states 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44).

With such defined states of the supplementary system, we can formulate
initial conditions, specifying all initial nodal velocities (states 23, 25, 27, 29,
31, 33, 35, 37, 39, 41, 43) equal to negative v0 and all other states equal to
zero.

Also, in “transition” from supplementary system global matrices, 13th and
first rows and columns should be removed to model hinged attachment of
the beam at points A and B. Also, exclusion of the states #13 and #1 would
require elimination of the corresponding displacement and velocity states
from the vector of the initial conditions, i.e. elements in the x0 vector number
#35, #14, #13 and #1. Note, that it is recommended to remove rows and
columns in the vector of initial conditions, global mass and global stiffness
matrices, processing deletions in descending (i.e. not ascending) order. So, for
programming convenience, in the global mass matrix, 13th rows and columns
should be removed first and only after this step is completed, the first rows and
columns can be removed. Similarly, in the “condensation” of the vector of the
initial conditions, we delete first 35th cell, then 14th cell, then 13th cell, then
first cell. Deletion from the tail does not affect numbering of the preceding
rows and columns.

• Step-5: Programming of the steps above, numerical solution of the task and
graphical interpretation of results.

MATLAB script, implementing these steps is presented in Fig. 6.97, and the
results of the simulation in the form of a 3D surface plot are presented in Fig.
6.98.

One of the features of this example is in utilization of the MATLAB standard
continuous state-space function “ss”, (available in SIMULINK with its “state-
states” block for linear systems). This further simplifies simulation process,
as it does not require programming of the “x_dot” anonymous or stand-alone
functions. Also, note, that “ss” function was used in combination with “initial”
function, bringing even more conveniences to the user. For more functions,
facilitating programming process, please, refer to the massive resources on the
MATHWORKS web site, Internet or specialized texts, like [8].
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%% VIBRATION OF THE BEAM (NumFE=10)
% Programmed by Prof P.M.Trivailo (C) 2019

bb=60*10^(-3); hh=10*10^(-3); m=7500*bb*hh; E=200*10^9; I=bb*hh^3/12; EI=E*I;
c=sqrt(EI/m); L=2; dropH=2; v0=sqrt(2*9.81*dropH); alphaC=0; betaC=0;

% Select the number of the FINITE ELEMENTS below:
NN=10; h=L/NN; dof=(NN+1)*2;

% Element matrices:
mm=(m*h/420)*[156   22*h    54   -13*h; ...

22*h  4*h^2  13*h  -3*h^2; ...
54   13*h   156   -22*h; ...

-13*h -3*h^2 -22*h   4*h^2];

kk=  (EI/h^3)*[12    6*h   -12     6*h; ...
6*h  4*h^2  -6*h   2*h^2; ...

-12   -6*h    12    -6*h;...
6*h  2*h^2  -6*h   4*h^2];

K=zeros(dof,dof); M=zeros(dof,dof);
for ii=1:NN

idx=[1:4]+(ii-1)*2; K(idx,idx)=K(idx,idx)+kk;  M(idx,idx)=M(idx,idx)+mm;
end
x0=zeros(2*dof,1);      % for NN=10; dof=22; 
x0(dof+1:2:2*dof)=-v0;  %<-- x0(23 25 27 29 31 33 35 37 39 41 43) = v0;

% FOR THE UNCONSTRAINED FREE-FREE BEAM:
%  1   2   3   4   5   6   7   8   9   10      <--- FEs
%  1===2===3===4===5===6===7===8===9===10===11   <---NODES
%  ^                       ^
% PIN-1                  PIN-2
% DOFs:
%  1   3   5   7   9  11  13  15  17  19  21    <- displacements
%  2   4 6   8  10  12  14  16  18  20  22    <--angles
% 23  25  27  29  31  33  35  37  39  41  43    <--velocities
% 24  26  28  30  32  34  36  38  40  42  44    <--angular velocities

% Take into account the boundary conditions.
% Remove the RIGHT HINGE DOF FIRST!!!!!!!!!!!!!
M(13,:)=[]; K(13,:)=[];M(:,13)=[]; K(:,13)=[];

% Remove the LEFT HINGE DOF THEN!!!!!!!!!!!!! 
M(1,:)=[]; K(1,:)=[];M(:,1)=[]; K(:,1)=[]; 
 
% PROCESS x0 FROM THE END TO THE BEGINNING: 
x0(dof+13)=[];   % i.e. for dof=22;  x0(35)=[];    <--NO  
x0(dof+1)=[];   % i.e. for dof=22;  x0(23)=[]; 
x0(13)=[];x0(1)=[]; 
 
% FOR THE CONSTRAINED PIN(left end)-PIN(0.6L)-FREE(right end) BEAM: 
%    1   2   3   4   5   6   7   8   9   10      <--- FEs 
%  1===2===3===4===5===6===7===8===9===10===11   <---NODES 
%  ^                       ^ 
% PIN-1                  PIN-2 
% 
% !!! RENUMBERED !!! DOFs: 
%      2   4   6   8  10      13  15  17  19    <- displacements 
%  1   3   5   7   9  11  12  14  16  18  20    <--angles 
%     22  24  26  28  30      33  35  37  39    <--velocities: ONLY THESE=v0 
% 21  23  25  27  29  31  32  34  36  38  40    <--angular velocities 
 
C=alphaC*M + betaC*K; 
dof=size(M,1);  % dof IS RECALCULATED: now it is for the CONSTRAINED SYSTEM 
 
[U,D]=eig(K,M); w_all=diag(sqrt(abs(D))); 
 
disp(sprintf('\n========== NUMBER OF FE:  %i ======',NN)) 
disp(sprintf('\n========== NUMBER OF UNCONSTRAINED DOF: %i ======',dof+4)) 
disp(sprintf('\n========== NUMBER OF CONSTRAINED DOF: %i ======',dof)) 
disp(sprintf('\n========== FIRST TWO FREQUENCIES FOR THE CONSTRAINED SYSTEM: ======')) 
disp(sprintf('w_1=%8.4f [rad/s];  w_2=%8.4f [rad/s]',w_all(1),w_all(2))) 
 
% RESPONSE: 
A = [zeros(dof, dof) eye(dof, dof) ; -inv(M)*K -inv(M)*C]; 
B = [zeros(dof, dof) ; inv(M)]; C = eye(2*dof, 2*dof); D = zeros(2*dof, dof); 
SYS=ss(A,B,C,D); [Y,T,X] = initial(SYS,x0); figure; grid on; rotate3d; 
translations=[zeros(size(T)), X(:,2), X(:,4), X(:,6), X(:,8), X(:,10),... 
              zeros(size(T)), X(:,13), X(:,15), X(:,17), X(:,19)]; 
 
% Plot displacements as 3D surface: 
[XX,TT]=meshgrid(linspace(0,L,NN+1),T); surf(XX,TT,translations); 
% Plot hinged points: 
line('XData',zeros(size(TT(:,1))),'YData',TT(:,1),'ZData',0*TT(:,1),'LineWidth',4,'Color','r'); %A 
tx1=text('String','$A$','Position',[0 0 0],'FontSize',24,'Color','w','FontWeight','bold'); 
line('XData',1.2*ones(size(TT(:,1))),'YData',TT(:,1),'ZData',0*TT(:,1),'LineWidth',4,'Color','r'); %B 
tx2=text('String','$B$','Position',[1.2 0 0],'FontSize',24,'Color','w','FontWeight','bold'); 
xl=xlabel('$x$ [m]'); yl=ylabel('$t$ [s]'); zl=zlabel('$y$ [m]'); 
set([xl,yl,zl,tx1,tx2],'Interpreter','LaTeX'); 
camlight('left'); lighting phong; shading interp; colormap jet; 
axis tight; view([-47 28]); set(gca,'FontSize',18); 
set(gcf,'Position',[100 120 1400 600]); 
 

Fig. 6.97 MATLAB script, enabling simulation of the response of the elastic beam, excited via
initial conditions
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Fig. 6.98 Response of the elastic beam, excited via initial conditions

6.6 Conclusion

This chapter presented guidelines and recommendations for modelling of various
engineering systems. These guidelines are unique in the sense that the basic
concepts are illustrated with a selection of provocatively simple study cases, all
examples are massively illustrated with detailed diagrams and working annotated
MATLAB scripts, enabling simulation, static representation of results and even
animations, using advanced computer graphics. The high efficiency of several key
techniques and methods were presented, including state-space formulation and
finite element method. The state-space formulation enables us to access powerful
solvers of the ordinary differential equations. And the FEM allows to reduce huge
class of problems, described with partial differential equations to the ordinary
differential equations. The main intent of this work was to show that with use of
modern simulation tools and computer environments, modelling and simulation
process of complex systems is amazingly accessible. A uniform and universal
recommended process is equally applicable to both linear and non-linear systems
and allows comparison of linear and non-linear models and verification of the
adopted assumptions. With a wide spectrum of the presented examples, related to the
mechanical, aerospace, civil, electrical, environmental and other engineering areas,
it is believed that presented modelling and simulation guidelines will be useful for
a very wide audience, including engineers, scientists, students and enthusiasts of
science and technology.
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Chapter 7
On the Description of Large Deformation
in Curvilinear Coordinate Systems:
Application to Thick-Walled Cylinders

Monir Takla

7.1 Introduction

Increasing requirements for the safety of extremely loaded cylindrical components
of structures resulted in considering the inclusion of elastic–plastic deformation in
the design calculations. Accordingly, the plastic or elastic–plastic deformation of
structures has gained special significance.

Extremely pressurized structures used in traditional and nuclear power genera-
tion, oil, gas, and other chemical industries have to endure the design loads reliably,
keeping in mind the potentially catastrophic consequences of overloading such
structures. As a result, it became necessary to include large plastic or elastic–plastic
deformation in the failure analysis of such structures.

This chapter presents an investigation of the elastic–plastic deformation of thick-
walled cylinders subject to radial and axial loading. The analysis adopts the von
Mises yield criterion and its associated flow rule.

7.1.1 Background

Accurate description of the distribution of large strains and associated stresses
leads to improved reliability of the calculated radial and axial loads. It is also vital
to calculating failure limit loads needed for the safety design of such structures.
Therefore, the correctness of failure analysis is based on the validity and accuracy of
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the description of stresses, strains, and strain rates, which describe the development
of the regular stable unique deformations in a current configuration.

Apart from the solution offered earlier by the current author [1, 2], available
literature does not provide an accurate prediction for the distribution of stresses and
strains in thick-walled pressure vessels under simultaneous radial and axial loading
when large elastic–plastic deformation occurs after the elastic limit is exceeded. The
reliable solution addresses the nonhomogeneous stress, strain, and velocity fields in
thick-walled cylindrical pressure vessels. The cited works, however, do not provide
enough details of the mathematical basis describing the large deformation involved
in developing the solution. The mathematical description of the large deformation
needs further explanation.

7.1.2 Historical Overview

Lame [3] provided a first closed solution for small elastic deformations of a radially
loaded closed cylinder under internal and external pressure. Small elastic–plastic
deformation of thick-walled cylinders was first investigated by Turner [4], adopting
the Tresca yield criterion. Other researchers followed the same approach to provide
solutions to cases with various boundary conditions, materials, etc. Their works,
however, were limited to the theory of small deformation.

The first solution that used the von Mises yield criterion was provided by
Belayev and Sinitskij [5] and Sokolovskij [6]. Some solutions for individual cases
were offered by MacGregor et al. [7] and Hodge and White [8] considering small
deformations. The principles of the mechanics of continuous media have been long
established in the literature [9–14, 25].

Large deformation of a cylinder, constrained in the axial direction, was described
by Celep [15], who considered large elastic–plastic deformation and linear material
hardening. He obtained a numerical solution by applying the Maximum Distortion
Energy yield criterion. Fischer [16] studied plane strain deformation of thick
cylinders applying the Maximum Shear yield criterion and considering linear
material hardening. Oeynhausen [17] extended the study to include an axial force
with the internal pressure, considering nonlinear hardening.

Imaninejad and Subhash [18] studied thick cylinders loaded by proportional
radial and axial loading, assuming constant strain ratios throughout the cylinder
wall. This assumption violates the basic principle that the axial strain is independent
of the radial location, in contrast with the other two strain components. Accordingly,
it resulted in an inaccurate solution including singularity.

Elastic–plastic thick-walled cylinders with nonlinear hardening, simultaneously
loaded radially and axially, were investigated in Takla [1, 2] adopting the Maximum
Distortion Energy yield criterion. However, the definitions of large deformations
were only briefly described.

A theoretical solution is generally based on substituting a constitutive law into the
equilibrium equations, making sure that the geometric compatibility is maintained.
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In the presented analysis, a brief description is provided for the large elastic–plastic
deformation. Material-independent fundamentals are first presented. A constitutive
law based on applying the von Mises yield criterion in association with the normality
rule is discussed. Large deformation is then discussed in detail for a thick-walled
cylinder, simultaneously loaded by hydrostatic pressure and axial force, considering
nonlinear isotropic hardening. The stress and strain distributions, calculated for
prescribed states of large deformation, are used to calculate the applied loads.

7.2 Material-Independent Fundamentals

Large deformation in curvilinear coordinates is described using both spatial and
material coordinate systems. Deformation is assumed to remain independent of
the axial position. The developed geometric expressions provide the relationships
between the geometric variables in the initial configuration and those in the
deformed configuration.

7.2.1 Description of Motion

The referential description of the position x∼ of a material point in three-dimensional

space at time t can be expressed by

x∼ = χ
∼κ

(
X∼, t

)
, (7.1)

where X∼ is the position of a material point in an arbitrary reference configuration.

Although there is a difference between the material and the referential description
of motion, both of them are used in this work with the same meaning, i.e., a
material point is identified with its position in its reference placement (Lagrange
formulation). In order to describe the current state of deformation, the configuration
in the initial state is usually used as the reference configuration.

7.2.2 Coordinates and Base Vectors

The motion of a material point can be described, either by the change of its
coordinates in a space-fixed coordinate system or by the change of the base vectors
in a convective coordinate system in which the coordinates move along with the
material points. In the case of axisymmetric, axially homogeneous deformation,
the current deformation comprises no rotation. Therefore, the first method will be
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adopted. Accordingly, in a curvilinear coordinate system, it is valid for the space
formulation:

dx∼ = dzi b∼i
(cartesian coordinates)

= dxj g
∼j

= dxkg∼
k (general curvilinear coordinates) , (7.2)

and for the material formulation:

dX∼ = dZαB∼α
(cartesian coordinates)

= dXαG∼α
= dXαG∼

α (general curvilinear coordinates)
. (7.3)

7.2.3 Description of Deformation

The deformation of a body can be represented by the deformation gradient:

dx∼ = F∼ dX∼, (7.4)

where F∼ is a dual-field tensor, which can be expressed by

F∼ =
∂χ
∼κ

(
X∼,t
)

∂X∼
= Grad χ

∼κ

(
X∼, t

)

F∼ = ∂x∼
∂X∼

= ∂xi

∂Xα
g
∼i

·G∼
α = F i.αg∼i

·G∼
α

. (7.5)

For the transformation χ
∼κ

to be unique and consequently invertible, it is

necessary for the Jacobian determinant of the deformation gradient “J” to have a
nonzero value, i.e.,

J =
∂χ
∼κ
∂X∼

= det F∼ �= 0, (7.6)

F∼
−1 =

∂X∼
∂x∼

= ∂Xα

∂xi
G∼
α · g

∼
i . (7.7)

Accordingly, the inverse of the deformation gradient exists, and it can be stated
that

dX∼ = F∼
−1 dx∼, (7.8)
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the Jacobian determinant also represents a measure of the change in volume because

J = ρo

ρ
=

√
g√
G

∣∣F r.α∣∣ , (7.9)

where
√
G and

√
g represent the scalar triple products of the base vectors Gi and gi.

The transposed tensors of F∼ and F∼
−1 are expressed, respectively, as

F∼
T = ∂xi

∂Xα
G∼
α · g

∼i
= F i.αG∼

α · g
∼i
, (7.10)

F∼
−T = ∂Xα

∂xi
g
∼
i ·G∼α. (7.11)

The metric coefficients can be written as

g
∼ik

= g
∼i

· g
∼k
, g

∼
ik = g

∼
i · g

∼
k

G∼αβ
= G∼α ·G∼β, G∼

αβ = G∼
α ·G∼

β
. (7.12)

7.2.4 The Strain Tensor

The symmetric tensor F∼
−TF∼ is positive definite and can be represented by the

square of a tensor “U∼ ,” which is also symmetric and positive definite, defined by

U∼U∼ = F∼
TF∼ . (7.13)

Defining, through an associative law, the tensor

R∼ =
(
F∼

T
)−1
U∼ (7.14)

leads directly to

F∼ = R∼U∼ . (7.15)

It is easy to prove that R∼ is actually an orthogonal tensor. It is also called the

“Rotation Tensor.” Similar to (7.13), it is valid that

V∼V∼ = F∼F∼
T. (7.16)
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Considering (7.15) together with the orthogonality of R∼ leads to the expression

V∼ = R∼U∼R∼
T = F∼R∼

T = F∼R∼
−1, (7.17)

which leads directly to the conclusion

F∼ = V∼R∼. (7.18)

Summarizing (7.15) and (7.18) results in

F∼ = R∼U∼ = V∼R∼. (7.19)

The symmetric tensors U∼ and V∼ are designated as right-stretch tensor and left-

stretch tensor.
For every symmetric tensor U∼ exist (at least) three orthogonal vectors; P∼1

, P∼2
,

and P∼3
, which maintain their directions during the transformation U∼

U∼P∼ i
= u(i)P∼ i . (7.20)

They allow the spectral resolution of U∼ in the form

U∼ =
∑
u(i)P∼ i

· P∼ i , (7.21)

u(i) and P∼ i
are the principal values and directions ofU∼ . Following from (7.17) and

(7.21) that

V∼ = R∼U∼R∼
T =

∑
u(i)p∼i

· p
∼i

(7.22)

with

p
∼i

= R∼P∼ i . (7.23)

The tensor “V∼” has generally the same principal values as the tensor “U∼ ,”

but different principal directions p
∼i

(p
∼i

= R∼P∼ i
), which result from rotating the

principal directions of U∼ by R∼. Because both of the stretch tensors U∼ and V∼ are

described entirely through the principal values and directions, the eigenvalues ε(i)
of the strain tensor can be represented as functions of u(i)

ε(i) = f
(
u(i)
)
. (7.24)
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The function “f ” is required to be monotonically increasing and sufficiently
smooth, resulting in two groups of strain tensors, which have the principal directions
of the tensors U∼ and V∼ , respectively.

ε∼o
= f

∼

(
U∼
)
=
∑
f
∼
(
u(i)
)
P∼ i

· P∼ i (7.25)

and

ε∼ = f
∼

(
V∼
)
=
∑
f
∼
(
u(i)
)
p
∼i

· p
∼i
. (7.26)

In both cases, the principal directions are given through the same material
orthogonal triad, which is adopted in both reference and current configurations. The
corresponding strain tensors are denoted as Lagrange and Euler strain formulations.

The tensor functions f
∼

(
U∼
)

and f
∼

(
V∼
)

are defined in (7.25) and (7.26) by

the principal values and directions of their arguments. If the argument U∼ for

an orthogonal tensor Q
∼

is substituted by Q
∼
U∼Q∼

T, only the principal directions

change to Q
∼
P∼ ; their principal values do not change. By comparison, results for

all orthogonal tensorsQ
∼

are

f
∼

(
Q
∼
U∼Q∼

T
)
= Q

∼
f
∼

(
U∼
)
Q
∼

T. (7.27)

According to an equivalent definition, “f
∼

” is an isotropic tensor function of

tensor variables.
It is beneficial to define a strain measure in such a way that it coincides after

linearization with the common strain measure for small deformations. After further
restrictions of “f

∼
,” it comes to

f
∼
(I ) = 0, f

∼
′(I ) = (I ). (7.28)

A strain tensor with this property is the logarithmic strain tensor.

f
(
u(i)
) = log

(
u(i)
)
, (7.29)

i.e.,

ε∼o
= log

(
u(i)
)
P∼ i

· P∼ i = log
(
U∼
)
, (7.30)

where the term “log (.)” denotes the natural logarithm, alternatively denoted as “ln
(.).”
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The corresponding Euler strain tensors are obtained using V∼ instead of U∼ .

ε∼ = log
(
v(i)
)
p
∼i

· p
∼i

= log
(
V∼
)
. (7.31)

A special property of the logarithmic strain tensor is the simple relationship
between its trace and the volumetric strain of the deformed element

tr (ε) = tr(ε)o =
∑

log
(
u(i)
) = log (u1u2u3) = log

dV

dVo
. (7.32)

These strain measures in general also have a disadvantage because a transfor-
mation of the principal axes is necessary to calculate the values of its components.
These disadvantages, on the other hand, do not apply when the strain measure is
needed only for the description of rotation-free deformation.

7.2.5 Velocities

The velocity of a material particle is described by the partial time derivative of the
change of its position vector with respect to the observer space

ẋ∼ = ẋ∼
(
x∼, t
)
= χ̇

∼κ

(
X∼, t

)
= ∂

∂t

(
x∼, t
)
= v∼ = vig

∼i
. (7.33)

The over-imposed point is also applied in other cases to designate that the
material point is followed during the time differentiation. The material derivative
operator

(·) ≡ D

Dt
( ) ≡ ∂

∂t
( )

∣∣∣∣
(X=const.)

(7.34)

can be applied to scalar, vector, or tensor functions.

ġ
∼k

= D

Dt
g
∼k

= �ijkvj g∼i
(7.35)

with the Christoffel symbols

�ijk = 1
2g
ir
(
gkr,j + grj,k − gjk,r

)
= �ijkrgir = g∼j,k

· g
∼
i = g

∼k,j
· g
∼
. (7.36)
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7.2.6 The Velocity Gradient

The space gradient “grad v∼” of the velocity field “v∼ = ẋ∼
(
x∼, t
)

” specifies the

change of the velocity along dx∼. The space velocity gradient “L∼” is given by

L∼ = grad v∼ =
∂v∼
∂x∼

=
∂ẋ∼
(
x∼, t
)

∂x∼
= grad ẋ∼, (7.37)

dv∼ = dẋ∼ = grad v∼ dx∼ = L∼ dx∼, (7.38)

L∼ = vi
∣∣∣
j
g
∼i

· g
∼
j =

{
∂vi

∂xj
+ �ijkvk

}
g
∼i

· g
∼
j . (7.39)

The transpose tensor is expressed as

L∼
T = vj

∣∣∣ig
∼i

· g
∼
j =

{
∂vj

∂xi
+ �ijkvk

}
g
∼i

· g
∼
j (7.40)

and

Tr
(
L∼
)
= Tr

(
grad v∼

)
= div

(
v∼
)
. (7.41)

The material time derivative of the deformation gradient is given by

Ḟ∼ = L∼F∼ =
(
Ḟ i.α + Fj.α�ijrvr

)
g
∼i

·G∼
α (7.42)

so that L∼can be expressed as

L∼ = Ḟ∼F∼
−1. (7.43)

The space velocity gradient L∼ can be additively divided into symmetric and skew

symmetric tensors, i.e.,

L∼ = D∼ +W∼ , (7.44)

D∼ = 1

2

(
L∼ + L∼

T
)
= 1

2

{
vi
∣∣
j + vj

∣∣i} g
∼i

· g
∼
j = dij g∼i

· g
∼
j , (7.45)
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W∼ = 1

2

(
L∼ − L∼

T
)
= 1

2

{
vi
∣∣
j − vj

∣∣i} g
∼i

· g
∼
j = wij g∼i

· g
∼
j , (7.46)

whereD∼ is denoted as the strain velocity tensor andW∼ as the rotation velocity tensor

or the spin tensor. The material time derivative of J is obtained from

J̇ = DJ

Dt
= J Tr

(
L∼
)
= Jvi

∣∣∣∣
i

. (7.47)

7.2.7 Stress Tensors

The symmetric Cauchy stress tensor

S∼ = σ i.j g∼i
· g
∼
j = σ ij g∼i

· g
∼
j (7.48)

is associated with the current configuration. Two additional forms of the stress tensor
are further needed, which are the nonsymmetric Lagrange (first Piola–Kirchhoff)
stress tensor

S∼L
= JS∼

(
F−1

)T = s.αi g∼
i ·G∼α, (7.49)

and the symmetric Kirchhoff stress tensor, which is applied per unit mass of the
deformed material element

S∼K
= JS∼ = σ iK.j g∼i

· g
∼
j . (7.50)

The Kirchhoff stress tensor coincides with the Cauchy stress tensor for incom-
pressible material behavior.

Furthermore, the stress deviator needs to be considered.

T∼ = S∼ − 1

3
tr
(
S∼
)
I∼ = t ij g∼i

· g
∼
j =

(
σ ij −

1

3
σ rr δ

i
j

)
g
∼i

· g
∼
j , (7.51)

T∼K
= S∼K − 1

3
tr

(
S∼K

)
I∼ = t iKj g∼i

· g
∼
j =

(
σ iKj −

1

3
σ rKrδ

i
j

)
g
∼i

· g
∼
j , (7.52)

where δij = 1 for i = j and δij = 0 for i �= j.

The physical components σ̂ ij of the tensor S∼ result from

σ̂ ij =
√
gjj√
gii
σ ij �

/
i, j. (7.53)
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In case a principal axes system is considered, the physical components are equal
to the mixed-variant components of the tensor. The substantial time derivatives are
calculated using (7.47) to (7.49). They can be expressed as

Ṡ∼L
= J

[
Ṡ∼ + S∼ tr

(
L∼
)
+ S∼L∼

T
] (
F−1

)T
, (7.54)

Ṡ∼K
= J

[
Ṡ∼ + S∼ tr

(
L∼
)]
. (7.55)

An observer-independent objective time derivative is also needed, e.g., the
Jaumann derivative given by

o

S∼ = Ṡ∼ −W∼ S∼ + S∼W∼ , (7.56)

o

S∼K
= Ṡ∼K

−W∼ S∼K
+ S∼K

W∼ = J
[
o

S∼ + S∼ Tr
(
L∼
)]
. (7.57)

The material and objective time derivatives of the stress deviators (7.50) and
(7.51) can be derived in a similar manner.

7.2.8 Equilibrium Conditions

In the case the mass forces and inertia effects are negligible, the equilibrium
condition

div S∼ = σ ij
∣∣∣
i
g
∼
j = 0 (7.58)

must be satisfied with

σ ij

∣∣∣
i
= σ ij,i + �iirσ rj − �sjiσ is . (7.59)

The necessity that (7.58) remains satisfied at all times requires that its material
time derivative, which represents a condition for continuous equilibrium, must also
be satisfied. Accordingly, the condition for continuous equilibrium can be written as

·
div S∼ = 0. (7.60)

It can be obtained after some calculations [19] in the form

div
[
Ṡ∼ + S∼ Tr

(
L∼
)
− S∼L∼

T
]
= 0. (7.61)
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It should be noted at this point that the different definitions of the divergence (div)
[11] lead to different expressions for (7.61), which revert back to the same equations
when calculating their associated components. If the objective time derivative is
applied, Eq. (7.61) can be written as

div

[
1

J

o

S∼K
+W∼ S∼ − S∼D∼

]
= 0, (7.62)

or in mixed variant components as

[
1

J
σ iKj |og∼

j + w.rj σ ir − σ rj dir
]∣∣∣∣
i

= 0 (7.63)

with the components of
o

S∼K
expressed as σ iKj

∣∣∣
o
.

7.3 Constitutive Laws

The constitutive law describes the relationship between stresses or stress increments
and strains or strain rates. For an elastic–plastic body, the total deformation can
be formally divided into elastic and plastic parts, which leads to a multiplicative
decomposition of the deformation gradient,

F∼ = F∼e
F∼p
. (7.64)

Such splitting implies the assumption of an incompatible intermediate state. A
splitting that deviates from (7.64) is possible ([20, 21, 26, 27]). All these possibilities
lead eventually to an additive splitting of the strain rate tensor into elastic and plastic
parts.

D∼ = D∼ e
+D∼ p

=
(

e

dij +
p

dij

)
g
∼i

· g
∼
j . (7.65)

Both parts of (7.65) do not necessarily need to satisfy all conditions that the total
strain rate needs to satisfy.

7.3.1 Elastic Deformation

For small elastic deformation, as, e.g., in metallic materials, the following known
relationship is valid.
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D∼ e
= 1

2G

[
o

S∼K
− υ

1 + υ Tr

(
o

S∼K

)
1∼

]
. (7.66)

This constitutive law can also be written for hypo-elastic materials in the form:

D∼ e
= 1

2G

o

T∼K
+ 1

9K
Tr

( ·
S∼K

)
1∼ (7.67)

with

Tr

(
o

S∼K

)
= Tr

( ·
S∼K

)
. (7.68)

The Volumetric Modulus (Bulk’s Modulus) is given by

K = 2G
1 + υ

3 (1 − 2υ)
= E 1

3 (1 − 2υ)
. (7.69)

Equation (7.67) can be expressed in component form as

e

dij =
1

2G
tiKj

∣∣∣∣o + 1

9K
σsKs

∣∣∣∣
o

δij . (7.70)

7.3.2 Plastic Deformation

Plastic deformation is determined through a yield criterion and a constitutive law.

Yield Criterion

The yield criterion provides an expression for the onset of plastic deformation as a
function of the stresses and the material hardening. It can be expressed under the
restriction to an isotropic material hardening [20, 21] by

F
(
T∼, . . .

)
= F

(
J2, J3, k

2
)
= f (J2, J3)− k2 (Wp

)
, (7.71)

where

J2 = Tr
(
T∼

2

K

)
, (7.72)

J3 = Tr
(
T∼

3

K

)
, (7.73)
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Wp =
∫ t

to

Sp

(
T∼K
D∼ p

)
dτ (7.74)

The quantity k2 is a scalar function, which describes the material hardening.

Deformation Law

The applied deformation law is based on the theory of plastic potential given by

D∼ p
= ·
λ ∂F
∂S∼K

p
d

∣∣∣∣
i

j

= ·
λ ∂F

∂σ
j
Ki

. (7.75)

This approach implies the so-called normality rule, according to which the plastic
deformation occurs normal to the yield surface. Accordingly, λ̇ is an always-positive
scalar function of the stresses, through which the yield criterion (7.71) is specified
to remain always satisfied during the plastic deformation, i.e.,

·
F = 0. (7.76)

7.3.3 Formulation of an Associative Constitutive Law

The material law defining of the elastoplastic deformations is obtained according
to Eq. (7.65). For the associative constitutive law, the normality rule (7.75) applies.
Plastic deformations occur only if the yield criterion (7.71) is satisfied. It should be
noted here that

– In the resulting equations, the stress differences appear as significant quantities.
– The current state of stress of the basic solution is calculated from predefined

strains and strain rates.
– Large three-dimensional strains in the current state are taken into consideration.
– The velocities in the current state may be in general not unique.

Constitutive Law Adopting Von Mises Yield Criterion

Constitutive laws in literature derived by applying the von Mises yield criterion
are expressed as nonlinear equations, which contain components of both the
stresses and the strain rates simultaneously. The solution of such equations by
numerical integration involves excessive large computational effort. Therefore, an



7 On the Description of Large Deformation in Curvilinear Coordinate. . . 287

approximation method is needed to be introduced for the numerical calculation of
the current state. The predefined assumptions of the problem should be fully utilized,
particularly the incompressibility and the axial homogeneity of the deformation.
Besides, a specified load path should be prescribed.

The disadvantage of the von Mises yield criterion regarding the large numerical
efforts is compensated on the other hand by the fact that the yield function is
continuously differentiable with respect to the stresses, which allows for utilizing
the analysis approach in bifurcation and instability investigations [1, 22–24]. For
the sake of completeness, the derivation of the material law is briefly sketched here.
Limiting considerations to statements of the type

∂f

∂J3
= 0 (7.77)

and

∂f

∂J2
= 1 (7.78)

results from (7.71), the well-known relationship by Huber/Mises/Hencky

F = Tr
(
T∼

2

K

)
− k2 = t iKj tjKi − k2 = 0 (7.79)

as well as a function of the principal stresses

F =
(
σ 1
K1 − σ 2

K2

)2 +
(
σ 2
K2 − σ 3

K3

)2 +
(
σ 3
K3 − σ 1

K1

)2 − 3k2 = 0. (7.80)

Applying the normality rule to the above yield criterion with

D∼ p
= λ̇2T∼K

(7.81)

results in a linear relationship between the components of the strain rate tensor and
those of Kirchhoff stress deviator. The quantity λ̇ is obtained by considering the
loading condition (7.76) together with the expression of plastic work (7.74)

λ̇ = ρo(
∂k2

∂Wp

)
Tr

(
T∼K

o

T∼K

)

Tr
(
T∼

2

K

) (7.82)

so that the plastic strain rate tensor leads to

D∼ p
= 2ρo(

∂k2

∂Wp

)
Tr

(
T∼K

o

T∼K

)

Tr
(
T∼

2

K

) T∼K
. (7.83)
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Including also the elastic component in the calculation leads to the equation

D∼ = 1

2G

o

T∼K
+ 1

9K
Tr

( ·
S∼K

)
1∼ + 2ρo(

∂k2

∂Wp

)
Tr

(
T∼K

o

T∼K

)

Tr
(
T∼

2

K

) T∼K
. (7.84)

After a short calculation, a constitutive law is obtained for an elastic–plastic body,
valid for small elastic and large plastic deformation with isotropic hardening.

D∼ = 1

2G

o

T∼K
+ 1

9K
Tr

( ·
S∼K

)
1∼ + δ (Wp

) Tr
(
T∼K
D∼
)

Tr
(
T∼

2

K

) T∼K. (7.85)

The hardening parameter δ(Wp) is a dimensionless material property, which has
zero value for elastic behavior and has the value of 1.0 for elastic–perfectly plastic
behavior

δ
(
Wp
) = 1

1 + 1
4Gρo

(
∂k2

∂Wp

) 0 ≤ δ ≤ 1. (7.86)

For incompressible materials, the constitutive law (7.85) is simplified to

D∼ = 1

2G

o

T∼ + δ (Wp
) Tr

(
T∼D∼
)

Tr
(
T∼

2
) T∼. (7.87)

The hardening parameters δ can be obtained as a function of the tangent modulus

δ
(
Wp
) = 1 − Et

E
. (7.88)

For deformation without rotation, a special nonlinear constitutive law is obtained
as

D∼ = 1

2G

·
T∼ + δ

(
Wp
) Tr

(
T∼D∼
)

Tr
(
T∼

2
) T∼. (7.89)

Even if the strain rate tensor D∼ is known, it is still impossible to find a closed

solution for the stress deviator T∼. Numerical integration is only feasible with

considerable effort. Therefore, approximation methods need to be deployed.
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A second possible approach is calculating the components of the stress deviator
iteratively. In this case, a carefully selected approximation in the first iteration can
lead to a very accurate solution in the second iteration.

The approach of such an approximation is based on one of the following cases:

1. The loading path is approximately proportional, provided that the elastic defor-
mation is in the same order as the plastic deformation.

2. The stress deviator “T∼” can be directly obtained fromD∼ , provided that the elastic

deformation is small compared to the plastic deformation.

In both cases, an approximation only in the elastic part of the deformation
leads to a small deviation from the exact solution. In the second iteration, these
deviations become negligible by all measures. The application of the constitutive
law for calculating the current state of an elastic–plastic thick-walled cylinder will
be explained in Sect. 7.4.

7.3.4 Material Model

The expression for the hardening parameter is usually obtained empirically. An
approximation law similar to that of Ramberg–Osgood [19] has been selected. It
is expressed as

ε = σ

E
+ σo

B

(
σ

σo
− 1

)n
σ ≥ σo, (7.90)

ε = σ

E
σ ≤ σo, (7.91)

where σ and ε are the true stress and the Hencky (logarithmic) strain, respectively,
which are obtained from a uniaxial tensile or compression test.

The tangent modulus is given by

Et = dσ

dε
= E

1 + E
B
n
(
σ
σo

− 1
)n−1 σ ≥ σo, (7.92)

Et = dσ

dε
= E σ ≤ σo. (7.93)
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The curvature is described by

dEt

dε
= d2σ

dε2 =
E3n (n− 1)

(
σ
σo

− 1
)n−2

σoB

[
1 + E

B
n
(
σ
σo

− 1
)n−1

]3 σ ≥ σo, (7.94)

dEt

dε
= d2σ

dε2
= 0 σ ≤ σo. (7.95)

Such a material model implies a smooth transition at the elastic–plastic interface
as well as a continuous tangent modulus at this interface. The continuity of further
derivatives depends on the value of the coefficient n. The tangent modulus changes
rapidly once the elastic–plastic limit is reached.

7.4 Application to Thick-Walled Cylinders

Large elastic–plastic deformation is described in detail for a thick-walled cylin-
der, simultaneously loaded by hydrostatic pressure and axial force, considering
nonlinear isotropic hardening. A theoretical solution is obtained by substituting a
constitutive law into the equilibrium equations, maintaining geometric compatibility
and satisfying boundary conditions. An algorithm is developed for calculating the
stress and strain distributions. The applied loads are calculated for prescribed states
of large deformation.

7.4.1 Geometric Analysis

Large deformation is described in detail for a thick-walled cylinder. The deforma-
tion is axisymmetric and axially homogeneous. The material points move only in
the radial and axial directions. However, deformation is a function of the radial
coordinate only. Strains are uniquely defined in the deformed state and are also
functions of the radial location.

Coordinate Systems

To describe the basic deformation of a thick-walled cylinder, the initial undeformed
configuration is selected as the reference configuration. A cylindrical coordinate
system is also selected for space-fixed and body-fixed coordinate systems. The space
and reference coordinates are defined according to (7.2) and (7.3) as
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xj = (r, φ, z) , (7.96)

Xα = (R,�,Z) . (7.97)

The corresponding space-fixed Cartesian coordinate zi are function of the
curvilinear coordinates, given by

z1 = r cos φ, (7.98)

z2 = r sin φ, (7.99)

z3 = z. (7.100)

Thus, the following expressions for the base vectors can be obtained.

g
∼1

= cos φb∼1
+ sinφb∼2

, (7.101)

g
∼2

= −r sin φb∼1
+ r cosφb∼2

, (7.102)

g
∼3

= b∼3
. (7.103)

The metric tensors of the curvilinear coordinate system are

gik =
⎡
⎣1 0 0

0 r2 0
0 0 1

⎤
⎦ , (7.104)

gik =
⎡
⎣1 0 0

0 1
r2 0

0 0 1

⎤
⎦ . (7.105)

The Christoffel symbols can be written according to (7.36) as

�1
22 = −r, �2

12 = �2
21 = 1

r
, (7.106)

all further Christoffel symbols vanish.
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Fig. 7.1 Basic Axially-Symmetric Deformation

Basic Deformation

In the following calculations, the derivatives with respect to the reference coordi-
nates are frequently needed. They are denoted as

(· )′ = ∂

∂R
(· ) , (· )∗ = ∂

∂�
(· ) , (· )+ = ∂

∂Z
(· ) . (7.107)

The material points move only in the radial and axial directions. However,
deformations are only functions of the radial coordinate (Fig. 7.1), i.e.,

φ = �, (· )∗ = 0

z+ = l
lo
, ż+ = l̇

lo

, (7.108)

where

l (to) = lo. (7.109)

Consequently, plane cross sections remain plane and the circular cylindrical
lateral surfaces remain circular cylindrical. Since the deformation contains no
rotation, the strain rate tensor in the current state can be directly obtained as

dik = Li.k = vi
∣∣∣
k
=
⎡
⎢⎣
ṙ ′
r ′ 0 0
0 ṙ
r

0

0 0 l̇
l

⎤
⎥⎦ , (7.110)

where according to Eq. (7.108)

ż+

z+
= l̇

l
. (7.111)



7 On the Description of Large Deformation in Curvilinear Coordinate. . . 293

The assumption of incompressibility results in the condition

dss =
ṙ ′

r ′
+ ṙ

r
+ l̇

l
= 0, (7.112)

the integration of which leads to the relationship

R2 = l

lo

(
r2 − C1

)
, (7.113)

where the initial conditions at t = to are given by

r (to) = R, (7.114)

r ′ (to) = 1.0, (7.115)

The integration constant C1 in (7.113) as well as the homogeneous axial strain
are purely geometrical and independent of the loading or the material properties as
long as the incompressibility condition is preserved. The integration constant C1
in (7.113) is still a function of time [15, 28], the value of which together with the
homogeneous axial strain determine the state of deformation of the thick-walled
cylinder completely independent of the loading or the material properties.

The components of the strain rate tensor are obtained from

d1
1 = 1

2r2 Ċ1 − 1

2

(
1 + C1

r2

)
l̇

l
, (7.116)

d2
2 = 1

2r2 Ċ1 − 1

2

(
1 − C1

r2

)
l̇

l
, (7.117)

d3
3 = l̇

l
, (7.118)

and as functions of the reference coordinate R

d1
1 = −1

2

·
l

l
− 1

2

⎛
⎝ 1

R2 + C1

(
l
lo

)
⎞
⎠(C1

(
l

lo

))·
, (7.119)

d2
2 = −1

2

·
l

l
+ 1

2

⎛
⎝ 1

R2 + C1

(
l
lo

)
⎞
⎠(C1

(
l

lo

))·
, (7.120)
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d3
3 =

·
l

l
. (7.121)

Monotonic deformation allows for the time integration of the components of the
strain rate tensor to represent the components of the Hencky (logarithmic) strain
tensor

ε1
1 = −1

2
ln

(
l

lo

)
+ 1

2
ln

(
1 − C1

r2

)
, (7.122)

ε2
2 = −1

2
ln

(
l

lo

)
− 1

2
ln

(
1 − C1

r2

)
, (7.123)

ε3
3 = ln

(
l

lo

)
, (7.124)

and with respect to material coordinates

ε1
1 = −1

2
ln

(
l

lo

)
+ 1

2
ln

(
R2lo

R2lo + C1l

)
, (7.125)

ε2
2 = −1

2
ln

(
l

lo

)
− 1

2
ln

(
R2lo

R2lo + C1l

)
, (7.126)

ε3
3 = ln

(
l

lo

)
. (7.127)

The strains and strain rates are functions of the radial locations r and R,
independent of the cylinder geometry. The inner radius in the deformed state is
termed as “a” and the outer radius as “b.” The radius of middle surface is

rm = a + b
2
. (7.128)

In the initial state (t = to)

a (to) = ao, (7.129)

b (to) = bo, (7.130)

rm (to) = Rm. (7.131)



7 On the Description of Large Deformation in Curvilinear Coordinate. . . 295

The following geometric expression provides the relationship between the
geometric variables in the initial state and those in the current state

bo

ao
=
[
(b/a)2 − L1

1 − L1

] 1
2

, (7.132)

lo

Rm
= l

rm

[
1 + (b/a)

1 + (bo/ao)
]

(lo/ l)
1.5

[
1 − (C1/a2

)]0.5 . (7.133)

The following dimensionless parameter is introduced.

L1 = C1

a2
. (7.134)

The parameter L1 is identified as the “Radial Loading Parameter” and will be
used as a measure for the radial deformation.

7.4.2 Stress–Strain Analysis

The material is assumed to be a homogeneous and isotropic elastic–plastic con-
tinuous medium, with isotropic plastic hardening. Small-elastic and large-plastic
constant-volume deformation is also assumed ignoring time, temperature, and
inertia effects. Stresses and strains are uniquely defined in the current state and
are functions of the radial location. A theoretical solution is generally based
on substituting the constitutive law into the equilibrium equations, maintaining
geometric compatibility and satisfying boundary conditions. The cylinder is loaded
by hydrostatic pressure and axial force simultaneously. The adopted constitutive law
is based on applying the von Mises yield criterion in association with its normality
rule.

Stress Distribution in the Elastic Range

Due to elastic incompressibility, the Hooke’s law for small elastic deformation
becomes

t ij = 2Gεij , (7.135)

a linear relationship between the components of the Hencky strain tensor (7.16)–
(7.18) and that of the stress deviator. Accordingly, the stress differences become
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σ 2
2 − σ 1

1 = −2G ln

(
1 − C1

r2

)
, (7.136)

σ 2
2 − σ 3

3 = −G
[

3 ln

(
l

lo

)
+ ln

(
1 − C1

r2

)]
, (7.137)

σ 3
3 − σ 1

1 = G
[

3 ln

(
l

lo

)
− ln

(
1 − C1

r2

)]
, (7.138)

and in terms of R

σ 2
2 − σ 1

1 = −2G ln

(
R2lo

R2lo + C1l

)
, (7.139)

σ 2
2 − σ 3

3 = −G
[

3 ln

(
l

lo

)
+ ln

(
R2lo

R2lo + C1l

)]
, (7.140)

σ 3
3 − σ 1

1 = G
[

3 ln

(
l

lo

)
− ln

(
R2lo

R2lo + C1l

)]
. (7.141)

Stresses in the Elastic–Plastic Range

Due to the complexity arising from applying a constitutive law based on the
von Mises yield criterion, an iterative algorithm was needed to be developed for
calculating the stress distribution throughout the cylinder wall. The main approach
is based on assuming small incompressible elastic but large plastic deformations
together with almost-proportional loading. Stresses are calculated as functions of
the radial position.

Due to applying a nonlinear constitutive law based on the von Mises yield
criterion with the normality rule, the state of stress depends not only on the state of
strain but also on the state of the strain rate. Consequently, calculating the stresses
by classical integration of the incremental material law can only be carried out
with substantially complex numerical calculations. An approximation method was
therefore needed to be developed for the numerical calculation of the stresses in the
current state utilizing an iterative approach to the solution.

For the Hencky strain tensor ε∼

ε̇∼ = D∼ , (7.142)

and accordingly

ε∼ =
∫ t

to

D∼ dτ if ε∼

∣∣∣∣
to

= 0∼. (7.143)



7 On the Description of Large Deformation in Curvilinear Coordinate. . . 297

The equivalent stress and strain rates are scalar quantities defined by

σ =
[

3

2
Tr
(
T∼

2
)] 1

2

, (7.144)

ε̇ =
[

2

3
Tr
(
D∼

2
)] 1

2

, (7.145)

and in component notation

σ =
[

3

2

({
t11

}2 +
{
t22

}2 +
{
t33

}2
)] 1

2

, (7.146)

·
ε =

[
2

3

({
·
ε

1

1

}2

+
{
·
ε

2

2

}2

+
{
·
ε

3

3

}2
)] 1

2

, (7.147)

where T∼ is the Cauchy stress deviator and D∼ is the strain rate tensor.

It should be noted that for incompressible material behavior, the Cauchy stress
tensor and the symmetric Kirchhoff stress tensor are identical. The value of the
equivalent strain is obtained by the integration

ε =
∫ t

to

ε̇ dτ. (7.148)

It is generally known, however, that

ε �=
[

2

3
Tr
(
ε∼

2
)] 1

2

. (7.149)

A unique relationship between ε and σ , which describes the isotropic material
behavior at monotonic loading, is directly obtainable from a tension or compression
test. As an approximation, the above-mentioned Ramberg–Osgood law is adopted.

Dividing the strain rate tensor into elastic and plastic components results in

D∼ = D∼ e
+D∼ p

, (7.150)

where according to Sect. 7.3

D∼ e
= 1

2G
Ṫ∼, (7.151)
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D∼ p
= δ

Tr
(
T∼D∼
)

Tr
(
T∼

2
) T∼ = δ

⎡
⎢⎢⎣

Tr

(
T∼D∼ e

)

Tr
(
T∼

2
) +

Tr

(
T∼D∼ p

)

Tr
(
T∼

2
)
⎤
⎥⎥⎦ T∼. (7.152)

7.4.3 The Iterative Solution

The components of the stress deviator are calculated iteratively. A carefully selected
approximation in the first iteration can lead to a very accurate solution in the
second iteration. An approximation only in the elastic part of the deformation
leads to a small deviation from the exact solution. In the second iteration, the
deviation becomes negligible. The stress and strain distributions are calculated, and
the applied loads are obtained for prescribed states of large deformation.

First Iteration

As a first approximation, the elastic part of the strain rate tensor is obtained as

D∼ e
= 3

2

εe

σ
Ṫ∼, (7.153)

where the modulus of elasticity E, due to the assumed elastic incompressibility, is
given by

E = 3G = σ

ε e
. (7.154)

Integration of (7.153) leads to

ε∼e
= 3

2

εe

σ
T∼. (7.155)

In the special case of proportional deformation, Eq. (7.149) does not apply.
Accordingly, is valid along the loading path that

D∼ e
= ε̇e

εe
ε∼e

(7.156)

and

εe =
[

2

3
Tr

(
ε∼

2

e

)] 1
2

. (7.157)
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For incompressible elastic–plastic material behavior and proportional deforma-
tion, a simple linear material law, which can also describe rigid plastic material
behavior, is obtained after short calculation.

D∼ =
⎡
⎢⎣

Tr
(
D∼

2
)

Tr
(
T∼

2
)
⎤
⎥⎦

1
2

T∼. (7.158)

The hardening parameter δ is substituted according to Eq. (7.88). The elastic
part of the strain rate tensor becomes approximate if the loading path deviates from
proportionality. However, Eq. (7.158) is exact for proportional loading.

Second Iteration

Rearranging the material law given by Eq. (7.89) leads directly to

T∼ = 1

δ

Tr
(
T∼

2
)

Tr
(
T∼D∼
)
[
D∼ − 1

2G
Ṫ∼

]
. (7.159)

The expression for the first iteration, Eq. (7.158) is reduced to

T∼ = 2

3

σ

ε̇
D∼ = (1)

T∼ . (7.160)

The material time derivative of Eq. (7.160) results in

Ṫ∼ = 2

3

⎡
⎢⎢⎣D∼Et + σ

·[
D∼
ε̇

]⎤⎥⎥⎦ . (7.161)

The second term in Eq. (7.161) is dependent on the rate of change of the strain
rate tensor and vanishes for proportional deformation. Substituting Eq. (7.161) back
into the material law (7.159) results in the second approximation as a function of
the first approximation

(2)
T∼ = (1)

T∼ − 2

9Gδ

⎛
⎜⎜⎝σ 2 1

ε̇

·[
D∼
ε̇

]⎞⎟⎟⎠ . (7.162)

The second term in Eq. (7.162) can be only calculated if a predefined load path
is specified.
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For small deformation, the approximation from the first iteration is very accurate
as the deviation from proportionality remains small. However, improvement through
the second iteration becomes impossible. At the elastic–plastic interface, the second
term in (7.162) becomes very large because the hardening parameter δ becomes
zero in the adopted material model. The effect of this term can be reduced in the
numerical calculation, e.g., through multiplication with a factor η, defined by

η =
(
εp

ε

)2

(7.163)

so that

(2)
T∼ = (1)

T∼ − 2

9Gδ

⎛
⎜⎜⎝σ 2 1

ε̇

·[
D∼
ε̇

]⎞⎟⎟⎠ .η. (7.164)

The factor η ensures that for small plastic deformation in the elastic–plastic
transition zone, the solution after the first iteration remains valid. The errors remain
small when the deviation from the proportionality in the transition zone remains
small. Through the second iteration, only very small changes occur in the values
of the equivalent stress because the elastic and the plastic strain tensors are almost
affine to each other, i.e., the deviations between the directions of their vectors (in a
nine-dimensional space) are minimal.

7.4.4 Description of the Load Path

The three-dimensional state of stress in an elastic–plastic solid deformed according
to the von Mises yield criterion depends on both the states of strain and strain rate.
Therefore, adopting the von Mises yield criterion in the analysis makes it necessary
to prescribe a load path in order to be able to determine the stress distribution
through the cylinder.

The assumption of a predefined, e.g., exactly proportional relation between the
applied pressure and axial force leads to an excessive numerical effort in calculating
the nonhomogeneous state of stress. Consequently, an iterative, incremental solution
becomes necessary. Every calculation step of such a solution corresponds to a
deformation increment, followed by calculating the stress distribution. Numerical
integration of the applied external loads is then necessary. It should be then
checked whether the resulting load increments satisfy the assumed load path. The
assumed deformation step must be then improved iteratively, until the corresponding
load increments, which are obtained again through repeated numerical integration,
coincide with the assumed loading path.
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Instead of this approach, an iterative method is introduced, in which the
description of the loading path is indirectly expressed through the prescription of
the deformation path, which implies an implicit relation between the applied loads.
Such an approach is only possible when assuming incompressible elastic and plastic
deformation, and it does not represent an explicit definition of the loading path.

The control of a predefined loading path in an actual experimental test is
also very problematic and implies usually strong approximations. If one or both
load component reaches its maximum value, it becomes practically impossible
to keep satisfying a specified relationship between the increments of the loading
components. As an example of the suggested approach, a loading path that leads to
a proportional loading path in the case of rigid-plastic closed thin-walled tubes is
described below. For an arbitrarily chosen material point, having the radius r = m in
the current configuration, the dimensionless geometrical parameter γ is defined by

γ = m

a
. (7.165)

This material point is located at the position “R = mo” in the reference (initial)
configuration. It should be noted, however, that

γo = mo

ao
�= γ. (7.166)

The integrated peripheral strain at the radius m can be obtained directly from
(7.123) as

ε2m = ε2|(r=m) = ln

[(
1 − C1

m2

)
eε3

]− 1
2

. (7.167)

As a simplification, that is still to be justified, a geometric relation is introduced.

·
ε3 = 4α

3e2ε2m − 2α
·
ε2m, (7.168)

·
ε2m =

(
3

4α
e2ε2m − 1

2

)
·
ε3. (7.169)

Equations (7.168) and (7.169) are assumed to remain satisfied along the loading
path at the selected position r = m, where the parameter α remains constant. The
above-mentioned relationship leads to an exact proportional relationship between
the applied internal pressure and the externally applied axial force for a rigid-
plastic, closed thin-walled tube made of a von Mises material when m is selected
to be the middle radius. In other cases, e.g., when analyzing thick-walled tubes
or considering materials with large elastic deformation, the suggested loading path
represents an approximation to the assumption of the proportional loading. The
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selection of the radius m, where the relationships (7.167) to (7.169) apply, generally
defines the load path to a particular load combination, and consequently the degree
of its proximity to load proportionality. The influence of this stress history on the
stress and strain distributions in the current state can be obtained by calculating the
results for different values of the parameter m.

Integrating (7.168) results in

ε3 = ln

(
3e2ε2m − 2α

3 − 2α

)
− 2ε2m. (7.170)

The initial conditions are utilized here to determine the integration constants. The
value of α is directly obtained from

α = 3m2

2C1

(
1 − e−ε3

)
. (7.171)

Consequently, the components of the velocity field are related by the expression

ε̇2 = m2

r2

(
ε̇3

2
− ε̇m

)
− ε̇3

2
. (7.172)

7.4.5 Calculating the Current State

The second term of Eqs. (7.162) and (7.164), which is needed for the second
iteration, is obtained after short calculation as

·[
ε̇2

ε̇

]
= −3

8

[
1 + 2

(
ε̇3
ε̇2

)]
[

1 +
(
ε̇3
ε̇2

)
+
(
ε̇3
ε̇2

)2
]2

(
ε̇

ε̇2

) ·[
ε̇3

ε̇2

]
, (7.173)

·[
ε̇3

ε̇

]
= −3

8

[
1 + 2

(
ε̇2
ε̇3

)]
[

1 +
(
ε̇2
ε̇3

)
+
(
ε̇2
ε̇3

)2
]2

(
ε̇

ε̇3

) ·[
ε̇2

ε̇3

]
. (7.174)

The third component can be obtained from the incompressibility condition. Thus,
a further material time derivative of the components of the velocity field is necessary,
which is obtained after some calculations.

(
ε̇2

ε̇3

)·
= A2ε̇2 + A3ε̇3, (7.175)
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with

A2 = 2AoM, (7.176)

A3 = AoM
(
r2 − C1

)
r2 − M

r2 γ
2, (7.177)

with the abbreviations

Ao = 2
(

1 − γ 2
o

)
+ m2γ 2

o

m2 − C1
− m2

r2

(
1 − r2

o

a2
o

)
, (7.178)

M = 1

2
+ (ε̇2/ε̇3)m. (7.179)

The time derivative of the inverse of the left side of (7.175) is obtained from

·
(ε̇3/ε̇2) = (ε̇3/ε̇2)

2
·

(ε̇2/ε̇3). (7.180)

The desired expression for Eqs. (7.162) and (7.164) can be obtained by sub-
stituting Eq. (7.180) into Eqs. (7.173) and (7.174), so that the stress tensor and
consequently the stress differences can be determined.

7.4.6 Equilibrium Condition

The stress components are obtained by utilizing the condition of radial equilibrium.

∂σ 1
1

∂r
+ 1

r

(
σ 1

1 − σ 2
2

)
= 0. (7.181)

Integration leads directly to

σ 1
1 =

∫ r

a

(
σ 2

2 − σ 1
1

) dr

r
− p. (7.182)

In Eq. (7.182), p denotes the internal pressure. The integration constants are
obtained from the boundary conditions at the inner and outer surfaces. The values
of the other stress components can be calculated from the expressions of the stress
differences.
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7.4.7 External Loads

The external loads can be obtained from stress distribution in the tube wall. The
expression for the internal pressure can be obtained from the boundary conditions
in conjunction with Eq. (7.182).

p =
∫ b

a

(
σ 2

2 − σ 1
1

) dr

r
. (7.183)

An expression for the axial force is obtained by integrating the axial stresses over
the tube cross section.

N = 2π
∫ b

a

σ 3
3 r dr. (7.184)

Taking into consideration the axial effect of core pressure on the core area πa2,
the expression for the externally applied axial force F is obtained.

F = 2π
∫ b

a

σ 3
3 r dr − πa2p. (7.185)

Since the stresses can be obtained only numerically, a closed solution for
calculating the external loads (7.183) and (7.185) is not possible. A numerical
integration is therefore necessary.

7.5 Conclusion

Large elastic–plastic deformation of continuous media has been described and
analyzed, with emphasis on the description of deformation in curvilinear coordinate
systems. Large strain and strain rate tensors have been analyzed. Different defini-
tions of the stress tensor have also been discussed. The application to the discussed
theory is applied to the large elastic–plastic deformation of thick-walled cylinders
loaded both radially and axially.

The tensor-based analysis is built on the continuum theory. Both tensor and
component notations are adopted. The analysis assumes the material to be a homo-
geneous and isotropic continuous medium. Material-independent fundamentals are
first discussed in detail, including strain, deformation, and velocity gradients.
Different forms of the stress tensor in different space- or material-based coordinate
systems are presented and discussed. The stress and strain definitions are used to
derive the equilibrium condition and constitutive laws for elastic–plastic materials.

The presented definitions have also been used to develop a novel approach,
recently published by the current author, for calculating the behavior of radially
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and axially loaded thick-walled elastic–plastic cylinders with nonlinear hardening.
An associative constitutive law is adopted, which is based on applying the von
Mises yield criterion in association with the normality rule. The deformation of the
cylinder is assumed to remain axially symmetric, i.e., deformation is independent
of the axial position. The solution is capable of accurately providing continuous
distribution of stress and strain gradients throughout the cylinder. It can, therefore,
be used to investigate the instability and bifurcation of the corresponding thick-
walled cylinders and to establish the basis for further research on the safety of
pressurized thick-walled cylindrical structures.

This investigation sheds more light and provides valuable information for
the safety design of extremely loaded pressure vessels. The presented approach
also establishes the basis for further research in the stability investigations and
bifurcation analysis of thick-walled pressure vessels.
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Chapter 8
Big Data Modeling Approaches for
Engineering Applications

Bryn Crawford, Hamid Khayyam, Abbas S. Milani, and Reza N. Jazar

8.1 Introduction

Engineering is intrinsically a field in which the application of science and mathe-
matics is utilized to solve problems in pursuit of the design, operation, maintenance,
and other faculties of systems in complex systems. Many of these systems contain
nonlinear interactions and as such, require tools of varying robustness and power to
describe them. Forecasting of future states or designing such systems is very costly,
time consuming, and computationally intensive, due to finite project timelines and
technical constraints within industry. Modeling can be effectively employed as an
inexpensive and powerful tool to address these issues in pursuit of engineering
objectives. Many computation methods are used to achieve the modeling of such
systems. This technique can lower the cost of achieving desired goals, by reducing
the number of experiments and even increase safety or reliability, by forecasting
the events. This can be achieved with the results of laboratory tests or industrial
data [1, 2].

Broadly speaking, there are two main categories of modeling [3]: deterministic
and heuristic. Deterministic models are based on physical systems and are based on
prior knowledge, giving insight into those physical systems, which are analytical
and require a symbolic representation of the system in terms of predictive inputs
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that determine the desired system output. Heuristic modeling is applied to complex
systems, to which applying deterministic modeling approaches would require
infeasible time, resources, and data volumes. Although the development of heuristic
models may require less effort and is simpler, there are additional challenges in
effectively using them, such as the size and quality of a dataset, combined with
the complexity of the system being described through the modeling process. Many
tasks may be achieved using modeling, including regression, classification, and
clustering. With the advent of larger datasets being available in the modern day,
this has offered a paradigm shift in the way that modeling approaches are examined
and applied.

Modern advances in information and communication technologies have provided
tools for organizations to archive and utilize unprecedented amounts of data of
various types. This is the case for many different industries, including healthcare,
manufacturing, satellite imaging, finance, and social media [4]. As an example
of the volume of data available to modern corporations that have deployed the
supporting infrastructure, Hewlett-Packard (HP) generates over one trillion events
per day [5]. For organizations such as this, it is expected that daily data production
will exceed 2.5 exabyte by 2020, which is a 44-fold increase from those seen in
2010 [6], illustrating the rapid changes in this area, which are occurring across the
industrial landscape. “Big data” is a relatively amorphous term used to describe the
rise in data volumes that are difficult to capture, store, manage, process, and analyze,
using traditional database methods and tools [7, 8]. The new reality of big data has
and shall continue to have profound implications on modeling, as new and highly
valuable information can be extracted for decision-making.

This ever-increasing volume of data has led to a realization that we have entered
the era of “big data,” which is considered to be a major catalyst for innovation and
an increase in competitiveness and productivity [9]. For example, Lund [10] states
that due to increases in operational efficiency, retail and manufacturing industries
worldwide are expected to generate an increased gross domestic product (GDP)
of $325 billion. Similarly, healthcare and government services are expected to
make comparable productivity gains in the order of $285 billion, by 2020. It was
also projected that big data may increase healthcare productivity by more than
$300 billion for the US government and $250 billion in the administration sector
for the European Union [9]. There is a wide range of applications for big data,
such as identifying irregular and suspicious activities, using financial transactions,
log files, network traffic analysis, and other data sources [5]. Benefits of big data
have been demonstrated beyond the field of business, including insurance, politics,
defense, sciences, engineering, and many other fields. Additionally, a survey by
the Economist Intelligence Unit illustrated that organizations that applied big data
analytics have improved in their performance over the past 3 years by 26%, and they
expect it will improve by 41% over the next 3 years. The ability of organizations to
analyze big data will become a key basis for increased competition and innovation,
underpinning new waves of productivity growth, and consumer surplus, on the
proviso that the right policies and enablers are in place [9]. Hence, it is critical to
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understand the potential challenges of big datasets, in selecting strategies to process
and model the data, to obtain that direct business value.

As has been highlighted, there are many opportunities available in the use of big
data, along with many challenges. Some of the challenges, and subsequent methods
of modeling to extract value from big data, can be characterized under four primary
banners. These are known as “the four V’s” and are widely cited in the literature [4,
11]. They are volume, variety, velocity, and veracity.

Volume, often considered to be the primary characteristic of big data, refers to
the absolute size of the dataset being considered. For example, 10 TB of data can be
generated per 30 min from the operation of a single jet engine [12], sourced from
many sensors (e.g., strain, temperature, pressure). Hence, for a commercial airline,
many petabytes of data can be generated each day and considering that in the order
of 25,000 flights may be operated per year, this data volume quickly becomes an
issue. Classical computing architectures, modern single-unit hardware performance,
data platforms, and modeling algorithms all find challenge in data of such great
volumes.

Variety in big datasets also provides additional challenges. Given the great diver-
sity of data sources, including sensors, images, video feeds, financial transactions,
location data, text documents and others, reconciling these sources into unified
modeling strategies is not straightforward [13]. When considering so many different
types of data, big data modeling strategies typically address three distinct types of
data: structures data, semi-structured data, and unstructured data. Structured data
is often numerical in nature and can be easily categorized in a relational database.
Unstructured data can be presented as a text file (e.g., PDF file) which is informal
and does not have defined structure. Semi-structured data is largely unstructured,
yet does contain some tags to separate semantic elements and has the capacity to
enforce some hierarchies in the data [14], such as e-mails.

Velocity describes the speed of the dataset being used, considering actions of
creation, transmission, processing, and ingestion [14]. This factor can be thought
of as the challenge of training and evaluating a predictive model (which typically
takes significant time with the volumes associated with big data), in the context
of new and relevant data constantly being made available. IBM [15] illustrates the
velocity of big data with case studies of the analysis of 500 million daily call detail
records in real time to predict customer call synopses for marketing and advertising,
or evaluating five million daily commercial trade events in an attempt to identify
fraud.

Veracity refers to the credibility, or inversely the uncertainty, of data and its
suitability of use in predictive modeling activities [16]. Due to the lack of control
of many data collected in big data activities, such as user reviews on social media
networks, or third-party sensor data, the accuracy and completeness of the dataset
must be considered [4]. Not only is the impact of this factor in modeling and
analysis difficult to quantify, but the impact on subsequent decision-making presents
additional and far-reaching challenges. Given the explosion of the number of data
sources available, achieving trust in the data sources parallel to this is becoming
increasingly important [15].
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Each application of big data has a different blend of challenges associated with
volume, variety, velocity, and veracity. Highly varied data, combined with the
context of different tasks to be achieved for each application, it can be seen that a
broad range of solutions are needed to achieve the goals of modeling and decision-
making. Machine learning (ML) methods present a capability for modeling highly
nonlinear, complex systems. In pursuit of modeling such complex systems, ML is
often seen as the most effective and only viable approach. ML algorithms have been
used in a wide range of engineering applications, such as plant control systems
[17], root cause analysis [18], nondestructive testing [19], material modeling [20],
risk analysis [21], robotics [22], structural health monitoring [23], and many others,
which demand the inherent learning and nonlinear capabilities of these models.
Often, a perceived drawback of these methods is that large datasets are required to
perform successful model training and converge toward solutions with acceptably
low errors. Big data of course counteracts this notion, where very large volumes
for training become accessible. However, while the availability of big data may
seem like a solution, often the explosion of this data introduces new challenges to
be considered. In the context of the challenges of volume, variety, velocity, and
veracity, scalability becomes an additional logistical challenge for applying ML
models for extracting value [24]. For example, or instance, most traditional machine
learning algorithms are designed to be trained and implemented on datasets to be
completely loaded into memory [25]. For big data with natures previously described,
this approach is not feasible.

In the context of machine learning, new approaches are required for modeling
big data. Broadly, there are six categories of approaches used, which can be used
individually or in conjunction with each other, to generally address these issues of
scalability. These are applied to big data problems to allow for the feasible appli-
cation of ML for the effective modeling and capturing of nonlinear features within
the complex data, for more powerful and usable predictions. This chapter presents
an overview of some classical ML methods that have proven successful in modeling
complex systems, especially in engineering. Following this, a summary of each of
the six categories of approaches for modeling of big data is presented, including the
major methods of each. This chapter aims to provide a summary of these methods,
such that readers can formulate their own strategies for modeling big data.

In this chapter, a review of classical machine learning methods will be provided
in Sect. 8.2, including a selection of clustering, classification, and regression meth-
ods. Sections 8.3–8.8 will detail the six approaches for applying scalable machine
learning solutions to big data. Specifically, Sect. 8.3 will present Representation
Learning methods for data reduction and other uses; Sect. 8.4 will focus on deep
learning for capturing highly nonlinear behavior; Sect. 8.5 will present distributed
and parallel learning that addresses the challenges of volumes associated with
big data; Sect. 8.6 will provide detail on transfer learning for cross-domain and
cross-task learning activities; Sect. 8.7 will present active learning for the efficient
labeling of data points in supervised learning contexts; and Sect. 8.8 will present
kernel-based learning for leveraging higher expressive power in modeling activities.
Concluding remarks are provided in the final section.
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8.2 Classical Machine Learning Methods

In the context of processing big data, machine learning (ML) is an approach
to construct models using big data, for generating predictions and supporting
decision-making activities. ML models are able to capture a very high degree
of nonlinearity associated with complex systems, oftentimes resulting in black
box solutions. As big data tends to have very large and disparate feature spaces,
ML has found great success in modeling in this area. There are many different
approaches to machine learning, depending on scope of problem, nature of dataset,
desired outcomes, and other factors. Tasks to be completed by modeling include
regression, classification, and clustering. Regression as a task involves the mapping
of inputs to a continuous output(s), classification involves mapping inputs to a
discreet or class-based output(s), and clustering identifies and leverages spatial
relationships within a dataset to discover patterns or perform data reduction. The
modeling task selected depends on the task to be performed on the real system
being modeled. For example, in the context of machine learning-based computer
vision, image segmentation that identifies different objects of regions in an image,
is a classification task, whereby the membership of each pixel to a given class is
determined by the learning-driven model. Similarly, for a modeling exercise seeking
to predict the continuously mapped outcomes of a manufacturing process (e.g.,
temperature, viscosity) using input variable values (e.g., flow rate, concentration),
regression is the task to be performed. For users seeking to discover the degree
of correlation or other descriptors between variables in a system, such as complex
environmental systems, clustering is the task to be implemented.

Generally, there are two major categories of machine learning: supervised
learning and unsupervised learning (however, semi-supervised learning is also
considered a smaller category). Supervised learning involves preparing a model
through a training process, in which it is required to make predictions and is
corrected when those predictions are wrong; the training process continues until
the model achieves a desired level of accuracy on the training data. Unsupervised
learning typically focuses on exploratory analysis and dimensionality reduction
methods, such clustering used in Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), k-Means,
deep learning, for understanding the structure of data. Supervised learning typically
performed in the context of classification (mapping input feature spaces to discreet
output labels) or regression (mapping input feature spaces to continuous outputs).
Examples of supervised learning algorithms are ensemble methods, artificial neural
networks, regularization methods, rule systems, explicit regression techniques,
Bayesian methods, decision trees, clustering, and instance-based methods. However,
it should be noted that many of the methods mentioned can be applied to both
classification and regression problems, whereby their categorization is driven by
their ubiquity in industry. Some of these methods have been presented below, in the
context of clustering, classification, and regression as target activities.
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8.2.1 Clustering

Clustering is a common machine learning method typically used for exploratory
analyses of very large datasets with a high dimensionality of the input space,
commonly seen in the fields of genetics, finance, biological system, and others.
This can be in support of dimensionality reduction activities for further analysis
and processing, identifying spatial patterns for appraisal by human users, and
highlighting major contributing factors toward trends or hidden patterns within the
data. They are particularly important in the studying highly complex systems, where
a numerical or analytical model is not necessarily possible or feasible, such as
a mix of continuous and discontinuous data, furry or incomplete data, and other
challenges.

Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised learning procedure to
achieve dimensionality reduction in very large datasets through feature extraction.
Compared to dimensionality reduction techniques that employ feature reduction,
PCA encodes the entire q-dimensional input space into a set of principal component
vectors, which convolutes and captures the entirety of the information present in
the dataset. Then, a subset of k vectors is selected to preserve the majority of
information according to a variance maximization criterion.

The generation of a set of principal vectors P ⊂ R
q enforces that a core

assumption of the linear model used for analysis is satisfied, which requires that
all input variables to be independent of each other. This is a major advantage for
users who cannot otherwise satisfy this condition for linear modeling approaches.
Similarly, PCA has a tendency to minimize the loss of information typical in the
dimensionality reduction process, depending on the signal and noise models used
[26]. Conversely, a disadvantage of PCA is that the input independent variables to
the model are less interpretable for users.

The process for applying PCA to a dataset is to create a column-based centered
and standardized matrix from the input space X → Z, where the centralizing
operation is:

Zi,j = Xi,j −

q∑
j=1
Xj

i
(8.1)

where i is the row index, j is the column index, and q is the dimensionality of
the input space (number of input variables). This matrix Z is used to evaluate
the symmetric, positive semidefinite covariance matrix and decompose it into the
following:
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ZTZ = PDP−1 (8.2)

where P encodes the eigenvectors and D encodes the eigenvalues of the centered
and standardizes dataset. Using the resulting sorted matrix Z

∗ = ZP
∗
, based on

the magnitude of the corresponding eigenvalues (a measure of their contribution)
then allows for analysis using the proportion of variance method, to determine
a thresholding characteristic as a trade-off between the amount of information
retained and the resulting k-dimensions wished to be used for further analysis and
modeling.

A vector of weighting factors w(k) = (w1, . . . , wp)(k) is applied to the retained
eigenvectors in order to maximize the variance of the model. This is achieved by
starting with applying the following procedure to the first component, which must
satisfy:

w(1) = arg max
‖w‖ = 1

{∑
i

(
x(i).w

)2} (8.3)

The subsequent kth component is determined by first subtracting the first k − 1
component above from matrix Z:

Ẑk = Z −
k−1∑
s

Zwsws
T (8.4)

The weights vector that yields the maximum variance is given by:

w(k) = arg max
‖w‖ = 1

{∥∥∥Ẑkw
∥∥∥2
}

(8.5)

PCA has found extensive use in many fields, including biological systems,
environmental modeling, composite materials, genetics, information technology,
and others, in which dimensionality reduction of datasets with great volume is
necessary.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Density-based spatial clustering of applications with noise (DBSCAN) is a com-
monly implemented clustering algorithm that has found widespread adoption across
many industries. The task of clustering works on the premise of identifying regions
with a high density of observations as likely candidates for applying discreet cluster
membership, while regions of comparatively sparsely distributed observations are
considered outliers and treated as noise [27]. The implementation of DBSCAN is
simple and robust, yet without employing strategies to assist with volume scalability,
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model complexity can become infeasible. As the algorithm runtime is mostly
sensitive to the querying of each point, without an accelerated indexing structure
or if the data is degenerate, the runtime complexity is of order O(n2).

There are two primary parameters that define the DBSCAN model, which are ε
(the maximum radius of the neighborhood from cluster core points pk) and minPts
(the minimum number of points within a neighborhood to define dense-region
cluster). For iterative purposes in selecting a value of minPts ≥ D + 1, where D
is the dimensionality of the input space, is common to start with. A disadvantage
of the algorithm is that it is sensitive to the combination of minPts, ε selected.
Using these parameters, all points in the dataset are labeled as either core points,
reachable points, or outlier points. Figure 8.1 illustrates the application of DBSCAN
in R

2, with a single cluster identified from a dataset composed of the three classes
of points:

• Core points: For a maximum neighborhood radius ε, there must be |minPts|
locally for the point to be labeled as a core point (depicted in blue in Fig. 8.1).

• Reachable points: These points are within radius ε of at least one other point,
but do not satisfy the |minPts| constraint (depicted in orange in Fig. 8.1).

• Outliers: There are no other points in the dataset spatially within radius ε and
implicitly the constraint |minPts| is also not satisfied (depicted in red in Fig. 8.1).

DBSCAN has found use in fields, such as astronomy, biological sciences, signal
processing, knowledge discovery, protein classification, and others.

Fig. 8.1 A set of core points, reachable points, and an outlier point in an R
2 dataset, labeled based

on the model parameters ε (radius of the circles concentric to dataset points) and |minPts| (used to
label points as either one of the three types, core points, reachable points, or outliers)
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8.2.2 Classification

Classification is a very commonly employed machine learning method, used for the
prediction of categorical class labels. The categories can be discrete or unordered
in nature, where the models apply predictions on the form of these labels, to
new and unlabeled examples, based upon observations in the training set. Hence,
models (also known as classifiers) are constructed and trained to perform this
classification task [28]. The aim of a classification activity is to predict the class
label y′ for an unseen pattern in the complex system x′, by constructing a model f as
a predictor. For a paired set of input space parameters and output class labels, given
by {(x1, y1) . . . (xN , yN)}, the applied learning algorithm determines q-dimensional
hidden patterns through the training process and applies predictions to new data
in a test set. The dimensionality of the input and output spaces are given by
X = {x} N

i=1 ⊂ Rq and Y = {y} N
i=1 ⊂ R, respectively.

Support Vector Machines

Support Vector Machines (SVM) is a relatively new supervised learning algorithm
developed by Vapnik [29]. Generally, SVM models are categorized into four classes,
identified by the task and type of error function used. These are Classification SVM
Type 1 (C-SVM classification), Classification SVM Type 2 (ν-SVM classification),
Regression SVM Type 1 (ε-SVM regression), and Regression SVM Type 2 (ν-SVM
regression; [30]).

SVM exhibits good capabilities for fitting complex and nonlinear datasets in
the context of learning algorithms. The core functionality of the algorithm is to
define decision boundaries within the dataspace, with the objective of minimizing
structural risk within the dataspace. This approach avoids global minimum problems
and global minimum points can successfully be reached. SVM can be used for
both classification and regression, although the latter is referred to Support Vector
Regression (SVR). SVM generates hyperplanes within the dataspace that form
the boundaries between different applicable class labels to member data points
[31]. The optimal hyperplanes are determined by minimizing an objective error
function, through an iterative training algorithm. Conversely, this can be described
as maximizing the distance between the hyperplanes and the training points as
members of the various classes. Figure 8.2 represents this in R

2 space for visual
simplicity.

An SVM hyperplane boundary is defined by a q-dimensional vector (w ∈ R
q)

and a bias (spatial offset) b, which constructs the hyperplane (w, b) within R
q as

defined below:

WTZ + b = 0 Z ∈ R
q (8.6)
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Fig. 8.2 A separating hyperplane placed between regions of training points from two classes,
with the supporting vectors for each. The margin between the points and the plane is maximized,
to reduce the risk of misclassification in predictive modeling

As these hyperplanes are in essence the decision boundaries for classification,
this space Rq is divided into two regions -̂-z+ and -̂-z− by (w, b) that defines the regions
for classification. For binary classes, these two regions are defined according to the
below criteria. Additionally, Fig. 8.2 demonstrates how a separating hyperplane, the
location of which is determined by maximizing the margin between training points
of the two classes, minimizes structural error in the classification exercise.

-̂-z+ =
{
Z ∈ R

q : WTZ + b < 0
}

(8.7)

-̂-z− =
{
Z ∈ R

q : WTZ + b > 0
}

(8.8)

With this model, only linear plane boundaries are generated. As many engi-
neering problems consider highly nonlinear, complex systems, this alone may be
inadequate to generate an accurate predictive model. To address this shortcoming,
nonlinear transformations can be applied to the decision space (Z = φ(x): Rs →R

q),
where curved boundaries in s-dimensional space can be applied instead. A decision
value, d(x), is then used to perform the separation of regions within R

s:

d(x) = TWφ(x)+ b (8.9)
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Using the nonlinear transformation function φ(x), the two classes X− and X+ can
be predicted via modification of Eqs. 8.7 and 8.8:

Ĉ+ =
{
Z ∈ R

q : WTφ(x)+ b < 0
}

(8.10)

Ĉ− =
{
Z ∈ R

q : WTφ(x)+ b > 0
}

(8.11)

In order to have high-quality predictive model, the selected SVM parameters
must provide a good approximation of the boundary space, B. This boundary
space separates the previously defined sets, Ĉ+ and Ĉ−, defined by application
of the decision value d(x) to the nonlinear transformation. The SVM boundary B
can approximate the limit hypersurface (by obtaining the global minimum of the
problem):

B̂ = {z : dz = 0} (8.12)

The optimal values of w and b in pursuit of this problem are determined by using
a training set of points DN , which contains the associated input space values xi and
class labels ci:

D = {(xi, ci)} with ci = ci(x), i = 1, 2, . . . , N (8.13)

Ultimately, the optimization problem to be solved is as follows, where the
Euclidian distance between the training points and the constructed hyperplane is
to be minimized:

arg minw,b,ξ = 1

2
‖w‖2 + C

N∑
i=1

ξi (8.14)

Subject to the constraint ci(wTφ(xi) + b) ≥ 1 − ξ i = ξ i ≥ 0, where i = 1, . . . ,
N.

The minimum value of w is described as the classification margin. This is the
maximum distance between the generated boundaries from the model, and the
separated classes of training points, which, as previously described, provides the
minimized structural risk. The classification error from the training set applied to
the model is described by xi ∈ Ĉ− and xi �∈ C−, or xi ∈ Ĉ+ and xi �∈ C+ (where
C and Ĉ are the class spaces generated without and with the decision value d(x),
respectively). This is given by the nonzero value of w and the second term in Eq.
8.12. As can be seen, this yields a scenario of trading off between two objectives:
maximizing the classification margin and minimizing the misclassification error.
This leads to the selection of model hyperparameter C being critical in finding an
optimal solution in trading off between these objectives. Generally, choosing a low
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value of C leads to a lower misclassification error (as it is the coefficient to that
term) and increases the classification margin. Conversely, a high value of C will
result in the opposite conditions. Mathematically, this is relevant in the context of
trading off between high bias and high variance within the model and is reflected in
the application of test or cross-validation sets.

A weighted sum can be applied to the transformation φ(xi) of the training set, to
determine the optimal value of w and provides greater user control over the model,
given by:

w =
N∑
i=1

ciαiφ (xi) (8.15)

The magnitude of the Lagrange multipliers αi ≥ 0, used to find the local
minimum of the function subject to the inequality constraint shown associated
with Eq. 8.14, defines the weighting coefficients for each term shown above. By
combining the above equation and the decision value d(x) (Eq. 8.9), the kernel-
based SVM is as follows:

d(x) =
N∑
i=1

ciαik (x, xi)+ b (8.16)

where the kernel function is k(x, y) = φT(x)φ(y) and the sign of ci = ±1.
Generally, the Lagrange multipliers αi > 0 hold true for only a subset of the N

training data points, which are close to the boundary and require this approach to
solve the optimization problem. This subset, denoted as V ⊂ D, is support vectors.
As the summation of the optimization problem subject to constraint (Eq. 8.14) is
limited to less than N terms, the definition is:

d(x) =
∑

(xici )∈V
ciαik (x, xi)+ b (8.17)

In this context, selection of the value of C has a significant impact on the size
of support vector set. This is because as C trades off between minimizing the
classification errors and maximizing the classification margin, there will be cases
where certain values of C results in a greater number of points being close enough
to the boundary and requires the Lagrange multipliers, increasing the size of V. This
means that a high value of C yields a higher-dimensional V and hence boundary
with greater curvature, whereas a lower value of C lowers the number of support
vectors and effectively smooths the surface of the decision boundary. It should be
noted that many different kernel functions can be used for k(x, y), which is another
hyperparameter for user control of the model. The most commonly used kernel
function is the radial basis function kernel based on Euclidian distance, defined as:

k (x, y) = e−γ ‖x−y‖2
(8.18)
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SVM has been used in many fields of engineering applications, including
image classification, object recognition, fraud detection, anomaly detection, and text
categorization [32].

Decision Tree

Decision trees use a tree-like graphical model, similar in structure to a flowchart,
for exploring a decision space with associated consequences. Similar to many
of the machine learning models presented in this chapter, they can be used for
classification or regression tasks, but in this case, they are more widely applied
to the former. The tree model is constructed of many nodes and branches, which
embody the flow of class labels and consequences. There are three types of nodes:
decision nodes, chance nodes, and end nodes. Ultimately, a decision tree is used
as a decision support tool that yields expected values (or utilities) of competing
alternatives within the decision space. The three types of nodes build the model
with respect to assigning class labels to input vector spaces and probabilities for
associated outcomes, which are generally linearly summed to calculate the expected
values. The branches in the model as results from the nodes then act as inputs to
subsequent child nodes. This computationally simple approach allows for very large
dimensional data to be processed using decision trees.

When constructing a decision tree, the root node is selected as the input
attribute that in its own right provides the best classification result for the dataset,
where the second-best predictive attribute is used to split the data into two or
more subcategories. Subsequent nodes follow this same pattern, where remaining
attributes are selected to classify and split the data. With different combinations and
permutations to this process, the tree grows further from the root node, generating
increasing numbers of branches at each step. The algorithms used for generating
decision trees select the attribute used at each node, based on classification potential.
A popular example for classification of decision trees is the chi-squared automatic
interaction detection (CHAID) algorithm, which uses the chi-squared statistical
test to determine if a partition is statistically significant when building the tree.
Approaches such as this aim to remove branches that act as outliers or noise, which
would only result in an overall poorer estimation of the expected value. This is
performed to improve the accuracy of correct classifications on new data that the
model is not trained on. These methods are collectively referred to as pruning, where
branches are statistically tested and removed [28]. A visual example of a simple
decision tree is provided in Fig. 8.3.

When constructing a decision tree algorithm, three key inputs are needed. The
first is the training dataset (referred to as the data partition, D), which includes
the input space values and associated class labels for the training process. The
attribute list, containing the candidate attribute list, is also required. Finally, an
attribute selection method must be defined. This is the method by which the
optimal split of the dataset into separate classes is calculated and typically is a
statistical, nonparametric method. The use of the statistical descriptor Gini index
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Fig. 8.3 Decision trees
progressively partition the
dataspace through decision
nodes (leaves) and are used to
calculate the expected value
or utility from a set of given
decisions

is a commonly used method, which results in binary classification decision trees. It
is defined as double the integral between the model receiver operating characteristic
(ROC) curve and diagonal (y = x; the decision boundary that results in a “50/50”
correct classification scenario).

Decision tree algorithms have been successfully used in many different appli-
cations, including financial analysis, project risk management, manufacturing engi-
neering, astronomy, and many others [33].

Bayesian Approaches

Bayesian approaches to classification tasks construct probabilistic models using
training datasets. The learned distribution of the factors, based on probability and set
theory, are leveraged to assign probabilities to new data examples for classification.
The two most commonly used approaches are Naïve Bayes and Bayesian Belief
Network, which are predicated on the same general probabilistic model. The latter
generally has a greater degree of model fidelity, as the model builder has the ability
to encode their own expertise into the model through knowledge engineering of the
causal relationships [34].

Naïve Bayesian

Naïve Bayesian classification is a very simple and computationally efficient classifi-
cation method that has been widely used in many industries, including engineering
applications. The method is referred to as “naïve,” as the causality model assumes
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only direct influence between inputs and outputs and does not embed inter-factor
causality.

To use the Bayesian approach for classification tasks applied to a sample of data
without any labels, X, a hypothesis H0 is made such that X is a member of a class,
C. The probabilistic task in this exercise is to determine the posterior probability
P(H|X), where the confidence that X is associated with H0 is given. To calculate
P(H|X) using conditional probability theory, P(H), P(X), and P(X|H) are used as
components in the Bayesian theorem as follows [35]:

P (H |X) = P (X|H) · P(H)
P (X)

(8.19)

In this training exercise, we consider a set of m samples S = {S1, S2, . . . , Sm},
where each sample itself is an n-dimensional feature vector {X1, X2, . . . , Xn}. Each
given value within the feature vector, Xi, associated with attributes {A1, A2, . . . , An},
respectively. A set of k classes is similarly defined for each sample: C1, C2, . . . , Ck.
The aim of the model is to predict the class for a new and unlabeled sample Sj, given
its n-dimensional feature vector. In order to achieve this, P(Ci|X), i = 1, 2, . . . ,
k is calculated for each class and the highest conditional probability is chosen as
the final result. Equation 8.19 is hence modified to incorporate class labels as the
hypothesis of distribution membership and is given by:

P (Ci |X) = P (x|Ci) · P (Ci)
P (X)

(8.20)

To maximize the value of P(Ci|X), the numerator on the right-hand side of the
equation P(X|Ci) · P(Ci) should be similarly maximized, as P(X) is a constant value
for all classes. P(Ci) is calculated as follows:

P (Ci) = cardinality of class Ci
m

(8.21)

where m is the total number of training samples used. As conditional independence
is assumed between all attributes, P(Ci|X) can be explicitly calculated as follows:

P (Ci |X) =
n∏
t=1

P (Xt |Ci) (8.22)

where Xt are attribute values for the sample data X. The conditional probabilities
P(Xt|Ci) can be estimated using the training dataset, as a direct calculation using
the attributes column vector. Different density function models can be assumed to
calculate P(Xt|Ci), such as Gaussian, Gamma, Lognormal, and Poisson distribu-
tions. The relevant shape and hyperparameters of these models are estimated using
the training data. Gaussian distributions are most commonly assumed for P(Xt|Ci),
which is calculated as:
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P (Xt |Ci) = 1√
2πσi2

e
− (xt−μi)2

2σi
2 (8.23)

where μ is the mean of the data (−∞ < μ < +∞) and σ is the standard deviation
(σ > 0) [36].

Naïve Bayes models have found application in a variety of fields, such as
root cause analysis, combined diagnostic and prognostic queries in manufacturing
systems, text classification, anomaly and fraud detection, and many others within
the areas of engineering and beyond.

Bayesian Belief Network (BBN)

Bayesian Belief Networks (BBNs) are an extension of Naïve Bayesian networks,
where a directed acyclic graph (DAG) is used to connect the nodes of the
network, denoting the probabilistic conditional dependencies between them [37].
Hence, there is model structure encoded in BBNs that allows for more accurate
representation of the data. This structure can either be manually built by an expert
user, or can be statistically inferred through the training dataset, by use of maximum
expected likelihood algorithms, including Tree Augmented Naïve Bayes (TAN)
classifier or k-dependence Bayesian classifiers. BBNs offer robust models in the
context of incomplete data, or high degrees of uncertainty or inaccuracy [34].

Considering a subset of the system DAG, x1 and x2 are parent nodes in the
network and y is a child node. x1 is a parent of y if a link connects x1 to y, in that
direction of the causality model. The variables themselves are defined by mutually
exclusive states (discreet) and their relationships through the DAG are defined by
conditional probabilities (continuous). The application of Bayes Theorem for n
mutually exclusive hypotheses (i = 1, 2, . . . , n) determines these values according
to Janssens et al. [38]:

p (Hi |E) = p (E|Hi) p (Hi)
n∑
i=1
p (E|Hi) p (Hi)

(8.24)

where p(Hi|E) is the posterior conditional probability for the nth hypothesis H
(i = 1, 2, . . . , n). This is calculated using the training data as the evidence E. p(Hi)
is the prior probability, or belief, of the hypothesis and p(E|Hi) shows conditional
probability between these two. When the hypothesis Hi is true, the total probability
is given by the dominator of Eq. 8.24. This approach easily allows for updating,
based on new evidence. The prior probability is the assigned likelihood before any
evidence is collected, based on expert opinion, and subsequently updated using
experiential evidence. The posterior probability is the likelihood assigned after the
observations are collected. This equation is used in BBN.
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BBN modeling has been applied to many fields, including manufacturing
engineering, process root cause analysis, bioinformatics and genetics, accident
modeling, risk analysis in the chemical engineering industry, fault diagnosis, pattern
recognition, and knowledge engineering [34].

Ensemble Methods

Ensemble methods involve the training of multiple classifier models and combine
them together to generate an improved global model with a higher performance. The
component classifiers can be the same types of models (e.g., all decision trees—the
Random Forest algorithm) with different shapes and hyperparameters, a mixture
of different models (e.g., BBN, SVM, or others), or a combination. Bagging,
boosting, and random forests are methods used to amalgamate the results of the
consistent methods to generate the final prediction [39]. For categorical targets,
different ensemble rules can be applied, including majority voting (collaborative
generation), highest probability wins, or highest mean probability wins (adversarial
generation) for the final prediction. Ensemble methods have proven to be especially
suitable in cases when choosing the computational model is not straightforward,
which can be a significant concern when modeling highly nonlinear systems. As
the use of multiple models, especially if there is significant diversity between them,
helps in reducing overfitting. Techniques such as bagging also particularly assist in
reducing this problem. However, the obvious drawback of the ensemble methods
approach for modeling is that the solution does not scale well for large datasets,
as many computationally expensive methods may be embedded within this unified
model. When ensemble methods are applied to regression modeling tasks, the
voting process is instead based upon statistical values that aggregate the component
models, such as mean or median values [40] (Fig. 8.4).

Fig. 8.4 The general architecture for ensemble methods is to generate multiple learning algo-
rithms that form a unified model and predict class labels through an aggregation process such as
voting
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Ensemble methods have been used in many applications, including network
intrusion detection, remote sensing, speech recognition, object identification, and
others.

Random Forest

Random Forest (RF) is an ensemble method that uses decision trees for modeling
[41]. RF encapsulates the core capabilities of decision trees and hence can be used
for classification and regression tasks alike. Each decision tree in the model is
built using bootstrap sampling, or sampling with replacement [42]. This approach
adds an element of randomness to the modeling process and allows for a broad
search of the decision space, without explicitly needing to calculate it in its entirety.
Whereas in decision tree modeling, the split applied to the data partition at each
node is determined using the most suitable variable according to the selected
statistical measure for the model, RF models instead splits the data at each node by
randomly selecting a predictor. This creates a wide array of diverse decision trees
that contribute toward the voting process. By taking this direction in the modeling
process, only two parameters need to be defined: the total number of trees in the
forest and the number of variables to be considered for random selection when
splitting at each node. The final prediction is given by:

P (c|v) =
T∑
t=1

Pt (ci |v) (8.25)

where ti is the tree number, T is the total number of trees, and ci is the predicted
category.

RF models have shown to be user-friendly due to the property of having only
two parameters and harnesses the general advantages of ensemble methods, namely,
reducing overfitting and yielding high model performance. Figure 8.5 provides
a visual demonstration of the decision tree construction, expected likelihood
estimation, and voting process for the final category prediction.

Despite being a relatively new algorithm, RF has been applied to many areas
with excellent results. This includes wind power generation, fault detection, remote
sensing, chemical processing in the minerals industry, as well as others.

Adaptive Boosting

The boosting method is applied to classification problems, in order to improve the
accuracy of classification models by reducing both bias and variance, which in turn
converts weakly performing learning algorithms into strong ones. The approach
with boosting is to provide weights to the algorithms that are typically determined
from the accuracy of the weak learner in the group. Through this process, future
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Fig. 8.5 The RF methods randomly construct a range of decision trees using the bootstrap
sampling method. These trees each make classification predictions and vote on the final prediction
made for the overall model

weak learners provide greater learning value on the training examples that previ-
ously weak learners misclassified. This is achieved by adding weight to examples
that have been historically misclassified in the training process, whereas those
correctly classified are given less weight. As this approach essentially filters out
a few, important examples for training from the total dataset, a large amount of
training data is needed to successfully run a boosting model. Boosting can be
applied to both classification and regression tasks, yet classification is typically more
common.

The adaptive boosting method is the most common boosting method, where
the algorithm has the capability to adapt to the weak learners in the ensemble.
Misclassified examples are provided with a higher weighting factor in the learning
process in subsequent iterations [43, 44]. This reduces the total size of the dataset
needed to effectively learn and produce high accuracy predictions. Similarly, for
problems with very high-dimensional feature spaces that would require very long
durations to converge toward an acceptable solution, this approach helps reduce the
number of examples needed and hence training time.

For a given set of m training samples, with feature labels X and labels y,
(x1, y1), . . . , (xm, ym); xi ∈ X, yi ∈ {−1,+1}, initial weights are applied uniformly
to all samples D1(i) = 1

m
. From here, the learning process begins according to the

generic adaptive boosting algorithm below and based upon the error associated with
misclassified examples εj, the updated weights Dt + 1(i) are calculated and applied
iteratively as follows:
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find ht = arg minhj∈H , εj =
m∑
i=1

Dt(i)yi �= hj (xi) (8.26)

If εt ≥ 1
2 , then the iterative process stops, else:

Set αt = 1

2
log

(
1 − εt
εt

)
(8.27)

Assign Dt+1(i) = Dt(i) exp (−αtyiht (xi))
zt

(8.28)

where zt is the normalization factor related to the total number of samples in the
training set.

This process yields the following classifier:

H(x) = sign

(
T∑
t=1

αtht (x)

)
(8.29)

Given the benefits of boosting, combined with the ability to reduce training
time for computationally expensive problems, this method is widely used in many
application areas. This includes computer vision, image retrieval, facial recognition,
and many more.

8.2.3 Regression Techniques

The approach to regression problems is similar to that of classification, whereby
a set of inputs are to be mapped to an output. However, in the case of regression,
the output to be predicted is a continuous numerical value, rather than a discreet
category of class value. Hence, the aim of regression modeling in machine learning
is to find patterns for the prediction of a dependent variable y, based on a set of
independent variables x1, . . . , xk.

Artificial Neural Network (ANN)

Artificial Neural Networks (ANNs) have found widespread adoption as predictive
tools in many industries in recent years, from control systems to material science
[45]. It is considered one of the hot topics of modeling, with new examples of
successful applications emerging in the literature every day. For datasets with
nonlinear relationships between input and output feature spaces, ANNs can offer
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a modeling solution that meets a trade-off of needs between accuracy, training
speed, prediction speed, and scalability for high data volumes, for both classification
and regression tasks [46]. With the use of network elements such as softmax
functions (generalized logistic function) or a one-vs-all approach (output h� ∈ RC),
classification tasks can be performed, although more generally ANNs are built and
used for regression prediction. The network is constructed from neurons, positioned
in layers that hold and compute values, as well as synapses, that connect the neurons
and pass values through the network. The neurons in each layer work in parallel to
each other. ANNs are comprised of three primary elements: an input layer, hidden
layers, and an output layer [47]. Figure 8.6 shows the general architecture for ANN
and how calculated data is passed throughout the network in parallel layers.

The input layer is the value in the input feature space xi ∈ X ∈ R
d, which

is passed into the first hidden layer, composed of linear summation units and
nonlinear activation functions, which in turn passes values on to subsequent hidden
layers. The final hidden layer passes calculated values into an output layer, which
combined these signals into a prediction, using the heavily transformed initial input
layer values. The weightings applied to the linear summation units are randomly
initialized to begin with, but are iteratively modified through a training process
using a training dataset. This training process is performed to modify the weights,
such that the ANN is able to make accurate predictions on both the training
dataset, but also new inputs (e.g., a test or cross-validation set). Hence, a good
ANN will produce low learning errors and low prediction errors. The selection
of a suitable learning algorithm is important in developing a good ANN. Together
with the number of hidden layers and the number of neurons per layer, these form
key hyperparameters for users to determine. The learning algorithms employ the
gradient descent process, which uses backpropagation, to calculate the gradients
needed to update the weights and converge the ANN toward a solution that yields
good predictions, as per:

Fig. 8.6 ANNs are comprised of three components: an input layer that injects the input space into
the network, hidden layers with linear weights (Wli) and nonlinear activation functions at each
hidden layer node, and an output layer that produces a prediction
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aj
(n) = g

(
m∑
k=1

�
(n)
ij xk

)
(8.30)

where a is the activation function output from neuron j in hidden layer n, m is the
size of the input space, k is the index of the input from the previous layer being
summed, and � is the matrix of weights controlling the function mapping from
layer to layer. As can be seen from this approach, the heavy nonlinear convolution
of the input space into the ANN makes the model highly uninterpretable and “black-
box” in nature, yielding little or no insight for the user.

Some examples of algorithms for ANN include Scaled Conjugate Gradient
(SCG), Levenberg-Marquardt (LM), and Bayesian Regularization (BR; [48, 49]).
These different methods pose advantages for different contexts, such as that SCG
requires less memory and provides good generalizations for noise datasets, and
as such may be useful for datasets that pose volume and veracity constraints. For
SCG, the training process stops with respect to adaptive weight minimization or
regularization mechanisms. On the other hand, BR takes more time to complete
training. LM has been shown to have good convergence properties and take less
time for training, but takes more memory [49, 50] and hence may be more suitable
within a stream processing context with lower data volumes. The stability of the
learning process for LM has shown to be greater, with fewer oscillations toward the
converged solution.

Artificial neural networks have been rapidly applied and shown success in many
engineering and particularly manufacturing areas, including material modeling,
remote sensing, thermal-chemical-mechanical manufacturing problems, image pro-
cessing, machining, and many others.

Support Vector Regression (SVR)

Support Vector Regression builds on the fundamentals of SVM as outlined in pre-
vious sections, but features extended functionality for regression tasks. Specifically,
the data is projected into a higher-dimensional feature space and is fitted to a linear
function with the minimum complexity for the feature space. This is achieved
through the use of kernel functions, such as the commonly applied polynomial
sigmoid, Radial Basis Function (RBF), and Gaussian kernels. The latter has found
widespread adoption due to the excellent performance of the function, stemming
from its highly nonlinear nature, and fewer parameters to be adjusted, which speeds
up the training process [51]. Through this process, a linear regression problem can
be generated to solve a nonlinear regression problem [52, 53].

The use of a transformation function ϕ(x) on a training dataset {(x1, y1), (x2, y2),
. . . , (xn, yn)} determines a suitable function that nonlinearly connects inputs x with
outputs y. This means that the relationship between x and y is inherently linear in
the new feature space.
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f (x) =
n∑
i=1

wϕ(x)+ b (8.31)

where w and b describe as linear hyperplanes that can be fit to the training dataset
and used as the decision boundary for future predictions. This is achieved in the
same general context of SVM, where the structural risk of the model must be
minimized. This is implemented as follows:

Remp = 1

n

n∑
i=1

Lε (yi, f (xi)) (8.32)

where Lε is the ε-insensitive loss function:

Lε (y, f (x)) =
{

0, if |y − f (x)| ≤ ε
|y − f (x)| − ε, Otherwise

(8.33)

As with general SVM, the expected risk associated with the linear regression
operation, using the ε-insensitive loss function, is minimized by using ‖w‖2 to
decrease the model complexity:

minw,b,ξ,ξ∗
1

2
‖w‖2 + C

N∑
i=1

(
ξi + ξi∗

)
(8.34)

Subject to the following constraints:

⎧⎨
⎩

wφ (xi)+ b − yi ≤ ε + ξi,
yi − wφ (xi)− b ≤ ε + ξi∗,
ξi , ξi

∗ ≥ 0, i = 1, 2, . . . , n
(8.35)

where ξ i, ξ i
∗
, i = 1, 2, . . . , n are the nonnegative slack variables, which show the

difference between the true value of a training data point and the estimated solution
f (x).

Additionally, this optimization problem can be converted to a Lagrangian dual
problem and can be solved using the following expression:

f (x) =
n∑
i=1

(
ai

∗ − ai
)
K (xi, x)+ b (8.36)

Subject to the following constraints:

0 ≤ ai∗ ≤ C, 0 ≤ ai ≤ C (8.37)
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where ai and a∗i are the Lagrange multipliers obtained from the dual problem and
inherently a∗i �= ai . The inner product of the nonlinear transformation functions
ϕ(xi) and ϕ(xj) yields k(xi, xj). , which is the kernel function.

As has been previously stated, many different kernel functions may be used. The
following is the RBF as one of these examples:

k (x, z) = exp

(
‖x − z‖2

2γ 2

)
(8.38)

where γ must be set carefully selected to ensure a good solution, in addition to
model hyperparameters ε and C shown in Eqs. 8.33 and 8.34, respectively [54]. As
with SVM, poor selection of these parameters will lead to a poor model, resulting
from high bias or high variance [55]. This trade-off is managed by parameter C, in
providing greater weight toward either minimizing the regression prediction error
or maximizing the margin, in this optimization problem. Similarly, parameter ε
manages the number of support vectors in the model and for an RBF kernel as
shown above, γ must be selected pertinent to that model. There are no common set
of rules needed to determine these parameters and instead, users must rely on past
experiences and mathematical insight in guiding their decisions [56].

SVR has been successfully implemented in many modeling applications, includ-
ing signal processing, aerospace, petroleum sciences, environment and urban
systems, manufacturing, and many more.

8.3 Representation Learning

Representation learning (RL) is a method of constructing classifiers or other
predictors from unstructured data, which is useful in dimensionality reduction
tasks. RL aims to determine a reasonably sized learned and lower dimensionality
representation of an original dataset, capturing a vast number of input config-
urations, such that the challenges of volume, velocity, and variety of big data
can be addressed. Many classical machine learning algorithms require that the
entire dataset be loaded into local memory, such that the training process can
be effectively performed. For data volumes and other characteristics previously
discussed, this is not feasible and as such, representation learning offers a solution in
facilitating significant improvements in computational and statistical efficiency. The
lower-dimensional and latent representations of vertices within the dataset seeks to
retain core information for the statistical processes of machine learning methods
to succeed in modeling the full data, including topological structure, vertex content,
and other embedded information [57]. Following this, modeling and analytical tasks
can be easily applied at this new scale, through the application of conventional
vector-based machine learning algorithms, such as ANN, with respect to the new
representation feature space. Classification and regression tasks can subsequently
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be performed using the outcome of an RL exercise; however, due to the inherent
loss of information associated with dimensionality reduction, it is more commonly
and meaningfully applied to classification. Figure 8.7 illustrates a visually intuitive
example of how a highly feature-rich dataset can be represented in a new input
space, where such different raw inputs may seem spatially irreconcilable at first
glance.

RL is further subcategorized into the goal-oriented strategies for implementation
of feature selection, feature extraction, and distance metric learning. Both semi-
supervised and unsupervised tasks can be achieved with RL, depending on the
availability of any labeled data to guide the deeper structural learning capabilities.
From an algorithmic perspective, there are five categories in which RL can be
categorized. These are deep learning-based methods, random walk-based methods,
matrix factorization-based methods, edge-based modeling methods, and hybrid
methods.

This strategy has found significant successes in the fields of communication
networks by detecting community structures [58], modeling urban dynamics [59],
biological sciences by inferring interactions between proteins for the facilitation of
new treatments for diseases [60], natural language processing (NLP) [61], speech
recognition, and intelligent vehicle systems.

Fig. 8.7 Representation learning uses data reduction to extract lower-dimensional features of
input data, to perform machine learning. A visual representation of this in this figure shows how
learned images of dogs, cats, horses, and donkeys may share common feature spaces (e.g., colors
and edges), but are clustered in different regions on the feature surface, within the feature space.
This allows for successful classification at a lower computational cost, with an acceptable trade-off
in minimally higher error rates. Images of new objects, such as cars, can be described in this feature
space, but due to the high difference between it and the trained examples, it will likely not near the
surface
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8.3.1 Deep Learning-Based Methods

Deep learning-based methods are employed in problems with a very high degree
of nonlinearity in the dataset, which can be learned from stacked, deep learning
networks. Yet, in order to achieve this, computational time for these models is
typically high [62]. As a measure of similarity between vertexes within a dataset,
typical deep learning network architectures are designed for V ∈ R

d, d = {1, 2, 3}
Euclidean structured datasets.

Structural Deep Network Embedding (SDNE) is an example of a deep learning-
based algorithm for RL. This algorithm is applied to semi-supervised problems,
where a semi-supervised deep encoder model is initially generated in order to
determine the nonlinearity of the data network structures. In the unsupervised com-
ponent of the algorithm, the vertex representations that preserve the second-order
proximities are learned by reconstructing the vertex adjacent matrix representations,
which is |V|-dimensional. The objective function to be minimized for this task is as
follows:

L2nd =
|V |∑
i=1

∥∥∥(r(0)vi − r̂ (0)vi
)
� bi

∥∥∥ (8.39)

where r(0)vi = Si: is the representation of the input dataspace, r̂ (0)vi is the lower
dimensional output representation space, and bi is a weighting factor that penalizes
the fitting error on the nonzero elements of S. Following this, the supervised
component of the algorithm then determines the first-order proximities within the
embedding space, between the connected vertices. The objective function to be
minimized for this task is as follows:

L1st =
|V |∑
i,j=1

Si,j

∥∥∥(rKvi − r̂Kvi
)∥∥∥2

2
(8.40)

where rKvi is the representation of the vertex vi within the Kth layer of the deep
network and K is the depth of the network (number of hidden layers). Between
these two objective functions, they are in turn combined into the following multi-
objective optimization function:

L = L2nd + αL1st + νLreg (8.41)

where Lreg is a regularization term that penalizes model complexity and reduced
overfitting of the model to the dataset.
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8.3.2 Random Walk-Based Methods

Random walk-based methods leverage the stochastic sampling of the dataspace
through random walk algorithms, to build insight into the structural relationships
between vertices. This is achieved by performing truncated random walks on the
dataset, which will inherently capture the connections between vertices within
sequences. This collection of sequences can then be used as an input for probabilistic
analysis in building a structural model, via the frequency of occurrence of vertex-
context pairs to measure the structural distance between them. This approach to
obtaining structural information is efficient, but given that the random walks are
truncated, only local structure is typically captured. Figure 8.8 provides insight into
how a random walk is applied to a data structure network, in order to extract this
information.

Examples of RL random walk algorithms include DeepWalk, node2vec, TriDNR,
struct2vec, and others.

8.3.3 Matrix Factorization-Based Methods

Matrix factorization-based methods aim to capture a representation of the connec-
tions between vertices of a dataset within a matrix, to then obtain the embedding
space by factorizing that matrix. This approach assumes that the majority of the
variance of the original dataset is only affected by a small subset of latent factors,
which are those to be determined through the factorization process. This approach
has proven effective in learning informative vertex representations from the original
dataset, but it suffers from scalability issues. Namely, factorization operations
performed on datasets with the numbers of rows and columns typical of big data (in
the order of millions or more), this problem can become computationally infeasible
and must be kept in mind when designing the model [63]. To achieve this result,

Fig. 8.8 An illustrated example of a random walk applied to Representation Learning. In this
visual example, a series of truncated random walk samples of desired lengths are performed to
obtain sequences of connected vertices. One is shown, starting at node 5 (red outline). After
collecting a given set of sequences, analyses of this set can be performed, such as describing the
probability of the position a given node in a random walk (node 2 is shown here)
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many different types of matrices can be used as a means of preserving the data
structure, including the modularity matrix, the k-step transition probability matrix,
and the vertex-context matrix.

The High-Order Proximity Preserved Embedding (HOPE) is an example of a
matrix factorization-based method to RL for big data. The application for this
algorithm is for directed networks and it learns the asymmetric high-order proximity
of those networks, by building vertex representations. Specifically, in asymmetric
networks, the transitivity between vertices is important to capture. To this end, the
HOPE algorithm learns two embedding vectors as follows:

U s, U t ∈ R
|V |×d (8.42)

where Us and Ut are referred to as the source and target embedding vectors, respec-
tively. The vector embeddings are learned via the matrix factorization problem as
follows:

min
Us, Ut

∥∥∥S − U s.U tT
∥∥∥2

F
(8.43)

where S is the high-order proximity matrix. This minimization problem seeks to
reduce the error between the embedding vectors and the proximity matrix to obtain
an accurate representation space.

Other matrix factorization-based algorithms for RL include GraphWave, TADW,
MMDW, DMF, LANE, and others.

8.3.4 Edge-Based Modeling Methods

Edge-based modeling methods use vertex–vertex connections within a dataset to
directly learn vertex representations. By taking this approach, these methods are
typically more efficient compared to the other RL methods presented, but they also
have the disadvantage of not being able to reliably capture global network structure.
This is due to the limitation that they only consider observable vertex connectivity
information and do not generate new information for analysis in a transformed
representation dataspace.

Large-scale Information Network Embedding (LINE) is an example of an edge-
based modeling method. The vertex representations of the dataset are learned
by explicitly modeling both the first-order and second-order proximity, using the
observable vertex connectivity [64]. Two objective functions are formed to preserve
the first- and second-order proximity information, each of which is minimized
respectively. The first objective function, for the first-order proximity, is as follows:

O1 = d (p̂1 (., .) , p1 (., .)
)

(8.44)
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where p1(vi, vj) is a vertex pair in the joint distribution modeled within the embedded
latent, lower-dimensional space, p̂1 (., .) is the empirical distance between the
datapoints (in the original dataset), and d(., .) is the distance between the two. The
distance metric used may be Euclidian or otherwise.

Following the preservation of distance-based information of the vertices, the
second-order proximity objective seeks to preserve the structural information of the
dataset. This is achieved by minimizing the following function:

O2 =
∑
vi∈V

λid
(
p̂2 (.|vi) , p2 (.|vi)

)
(8.45)

where p2(.| vi) is the modeled conditional distribution of the context for the vertices
within the latent representation space with respect to point vi ∈ V, p̂2 (.|vi) is the
conditional distribution for the empirical dataset and λi is the prestige of the vertex
vi.

By minimizing both of these objective functions, two different vertex represen-
tations are learned independently by each, capturing the first- and second-order
proximity, respectively. These are then combined into a single, final vertex repre-
sentation.

Examples of other edge-based modeling algorithms include TLINE, pRBM,
GraphGAN, and others.

8.4 Deep Learning

Deep learning applies supervised and/or unsupervised learning strategies in deep
architectures, in order to automatically find hierarchical representations of datasets.
This strategy has the potential to capture highly complicated, nonlinear statistical
patterns from very large feature spaces typical of big data, which are hierarchically
organized by the networks. Deep learning architectures are characterized by multi-
layering of commonly shallow algorithms, such as Artificial Neural Networks
(ANNs), to include many processing layers [65]. Often, there are additional
strategies implemented to handle various aspects of the learning process to this
scale. Figure 8.9 provides a visual example of how multiple strategies may be used
in concert to achieve this goal, such as Representation Learning and Deep Learning.
Convolutional Neural Networks (CNNs) and Deep Belief Networks (DBNs) are
examples of common deep learning architectures. Classification and regression
tasks can both be achieved using DL strategies. For example, image segmentation
classifies regions of pixels as members of given object classes (e.g., road, car, sign,
and pedestrian in a road scene), whereas the direct modeling of a complex system
with respect to physical and continuous inputs and outputs (e.g., a manufacturing
process) can use a regression approach.
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Fig. 8.9 Deep learning may
be layered together with
additional strategies, in order
to deal with the large volumes
of big data, while also
capturing the highly
nonlinear behavior of a
complex system. Here, we
use combine RL in order to
perform dimensionality
reduction and DL to learn the
system, with both
architectures further
embedded in the generalized
machine learning domain of
supervised or unsupervised
learning, as well as artificial
intelligence principles

Deep learning has found extensive applications in many fields, including com-
puter vision [66], speech recognition [67], NLP [68], intrusion prediction [69], and
energy modeling [70].

8.4.1 Deep Neural Networks

Deep learning has commonly been applied as an extension to the capabilities
of ANNs, with more complex training structures and architectures to capture
increasingly nonlinear characteristics of target datasets. A typical ANN is composed
of three network elements, being an input layer, subsequent hidden layers, and
an output layer. Deep learning approaches applied to ANN models can greatly
extend the number of hidden layers, which may have many embedded hidden
layers with other auxiliary functions to perform convolution operations or nonlinear
transformations of the data through the network. Given the ability to develop highly
nonlinear models through deep learning, the balance between high bias and high
variance is tipped more toward the potential for overfitting. Hence, additional
methods can be incorporated into the learning process to reduce this, such as
dropout, where neurons within the network are randomly disregarded for a given
iteration in the training process. Dropout also provides additional robustness and
capability for deep learning, but allowing training directly on raw, unnormalized
data [70].

Additional challenges often need to be addressed when implementing deep
neural networks to big data. One common challenge, especially for computer
vision tasks, is the volume of the data being trained on. Considering an image of
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1024 × 1024-pixel resolution and three-color channels (RGB), the input space is
in excess of three million data points. A direct implementation of Perceptron ANNs
would be computationally infeasible, as a vectorized implementation of this requires
enormous matrices to be handled, limited by memory and computational speeds,
especially for the analysis of live-streams of video-based images. To circumvent
these challenges of scale, convolutional neural networks (CNNs) have been devel-
oped. Prior to the data being fed into a deep neural network for predictions, a series
of convolutions and nonlinear activations (e.g., ReLU) capture high-dimensional
nonlinear features, followed by pooling, which acts as a data reduction technique
that preserves the captured features. This step is iterated until the input space into
the deep neural network is small enough to be computationally feasible and large
enough to successfully model the data. Figure 8.10 shows how this process generally
works.

The nonlinear relationship between two connected layers in a deep neural
network, hl and hl + 1, is defined by the following function:

hl+1 = g (Whl + b) (8.46)

where b is the bias vector fed into layer hl + 1, matrix W is the set of model
parameters that act as linear weights applied to the outputs of layer hl fed into
layer hl + 1, and g is the activation that provides the nonlinear capabilities into the
network (ReLU, sigmoid, tanh, or others). In order to construct a deep ANN, in
order to model a given input space y = f (u), the above function is stacked in series
in a network of depth L according to the following set of equations via vectorized
implementation:

h1 = g1 (W1u+ b1) (8.47)

Fig. 8.10 Deep learning allows for capturing highly complex, nonlinear features in very large
feature spaces, such as images. The use of a CNN in this figure shows how an input image, which
would be computationally infeasible to feed into a Perceptron ANN (1024 × 1024 pixels have over
a million features in its input space), can be dimensionally reduced through a series of pooling
actions, performs feature learning through its nonlinear activation functions (e.g., ReLU), and is
then fed into a smaller Perceptron for classification
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h2 = g2 (W2h1 + b2) (8.48)

. . .

y = gL (WLhL−1 + bL) (8.49)

For this set of equations, the goal of the learning task is to minimize the
error function ε(yn, τ n), which calculates the difference between the inputs

and outputs of the training dataset {un, τn} N

n = 1
and the model predictions

yn = f (un). This is achieved by applying the process of gradient descent to the
network, in order to iteratively converge the set of network model parameters
θ = {W1, . . . , WL, b1, . . . , bL} toward a model that minimizes the sum of
the errors, calculated through the process of backpropagation [71]. The objective
function to be minimized is as follows:

minθ

[
J =

N∑
n=1

ε
(
yn, τn

)]
(8.50)

With the addition of other operations, such as convolutions and pooling in CNNs,
these may be further added into the process of gradient descent throughout the entire
network. This understandably adds greater computational complexity. However, due
to the significant advancement of graphical processing units (GPUs) in recent years,
which contain architectures that harnesses parallelized computing, has allowed for
the successful scaling of these methods through vectorized implementation.

More scalable vectorized implementations of deep learning ANN architectures,
combined with powerful modern computing hardware solutions have opened oppor-
tunities to deployment in a broad array of problems, such as computer vision in
the automotive industry, where on-board platforms are able to perform regression
and classification tasks in situ. This offers applications in scenarios that require fast
modeling and decision-making, such as for self-driving cars. Additionally, software
libraries, such as Google

®
TensorFlow built on the Python language, or modules

within Mathworks
®

Matlab software, facilitate the deployment of deep learning
methods for users to easily implement. These factors act to reduce the cost of
entry and shortening the development cycle for engineering problems, which can
be leveraged by large firms and start-ups alike. Further, the open-source nature of
the machine learning industry has led to aggressive strides in developing robust
predictive models that are in turn widely employed by a variety of end users. Tools
such as this provide solutions for users to address challenges of big data associated
with volume and velocity, in particular, under the context of highly nonlinear image
classification problems.

Image classification and object recognition are problems with many potential
applications, including computer vision for automotive self-driving. Given the
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highly nonlinear nature of the problem, deep learning networks have been employed
as a method to address this complexity. The deep architectures of CNNs have the
capability to both perform data reduction on the high-bandwidth feature space of
input images (covered in Sect. 8.3), as well as make predictions on the class of
objects in an image. There are many hyperparameters to be selected in defining a
network to complete object classification. This includes the size, depth, and quantity
of convolution and max pooling layers, learning rate for the learning process, the
optimization algorithm used, applicable regularization terms to penalize overfitting
or high variance of the network, the size of the mini-batch of inputs used for training,
the architecture of the fully connected layers at the end of the network (i.e., number
of layers and number of neurons per layer), among others. Hence, the possible
number of models that can be trained for this task is great, such that finding the
optimal solution is not trivial. The VGG-16 and VGG-19 CNNs, developed by the
Visual Geometry Group at Oxford University, are CNN models developed for object
classification tasks [72]. The depths of these networks are 16-layers and 19-layers,
respectively, where the description of VGG-16 is given in Fig. 8.11.

VGG-16 and VGG-19 have shown excellent predictive capability for image
recognition. Simonyan and Zisserman [72] have shown the networks are capable
of a top five classification error on a test set of 7.4 and 7.3%, respectively, when
using the hand-labeled ImageNet database for the Large Scale Visual Recognition
Challenge 2012 (ILSVRC2012) challenge. The success of this model has led to
its direct integration into many programming libraries, including TensorFlow and
Matlab. This has allowed for the rapid deployment of the model for end users.
For example, below is a sample of code that can be used in Matlab to generate
a semantic segmentation network (composed of an image classification network
and up-sampling portion), by leveraging the VGG-16 CNN. The below function of
Matlab allows for the construction of segmentation network layers (lgraph), pre-
initialized with the layers and respective weights from VGG-16 as a pretrained
model.

lgraph = segnetLayers(imageSize,numClasses,’vgg16’);

Fig. 8.11 The architecture of the VGG-16 CNN for object recognition. The deep learning CNN
utilizes 13 3 × 3 convolutional layers, combined with pooling after the second, fourth, seventh,
tenth, and thirteenth convolutional layers. The dimensionality of the feature space is progressively
reduced, with the introduction of more filters deeper into the network (beginning with 64 and
finally at 512 per layer). Two fully connected layers with 4096 neurons each are connected to the
16th and final layer, comprised of a softmax activation, to make the classification prediction
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Following this, the training parameters can be specified for the network with a
few simple commands. This includes the optimization algorithm used, which in the
below code is specified as stochastic gradient descent with momentum (SGDM).

options = trainingOptions(’sgdm’, ...
’Momentum’, 0.9, ...
’InitialLearnRate’, 1e-2, ...
’L2Regularization’, 0.0005, ...
’MaxEpochs’, 120,...
’MiniBatchSize’, 4, ...
’Shuffle’, ’every-epoch’, ...
’Verbose’, false,...
’Plots’,’training-progress’);

Once the model has been constructed and training parameters set, the model
can be trained and then evaluated. As a method of evaluation, labeled segmented
images from the test set, considered as the ground truth, can be compared with
the predictions from the model. Example code for use in Matlab is given below,
in which case image number 400 is extracted from the labeled image set for the
comparison. In this case, a figure is generated that plots both image outputs IB and
CB, for comparison in predictive accuracy, where the former is the human-labelled
ground truth and the latter is the output prediction from the deep learning model,
respectively.

pic_num = 400;
I = readimage(imds, pic_num);
Ib = readimage(pxds, pic_num);
IB = labeloverlay(I, Ib, ’Colormap’, cmap, ’Transparency’,0.8);
figure
% Show the results of the semantic segmentation
C = semanticseg(I, net);
CB = labeloverlay(I, C, ’Colormap’, cmap, ’Transparency’,0.8);
figure
imshowpair(IB,CB,’montage’)
HelperFunctions.pixelLabelColorbar(cmap, classes);
title(’Ground Truth vs Predicted’)

Using the above code on an image set, the result shown in Fig. 8.12 can be
generated. This network has been used to make classification-based segmentation
predictions for regions in the image including bicycles, pedestrians, vehicles, roads,
road signs, and other features that may be deemed relevant to autonomous driving
problems. This model can be used to make such predictions in the context of stream
processing, where data volume and velocity would be major concerns for classical
machine learning architectures.

Beyond the application example above, deep neural networks have found many
applications in fields ranging from computer vision, robotics, pattern recognition,
chemical process modeling, and many others.
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Fig. 8.12 Image segmentation performed on a photograph of a street, performed in Mathworks
®

Matlab software, comparing the ground truth from the labeled test set (left) and the prediction
from the model (right). The segmentation is achieved through use of a pretrained VGG-16 CNN,
for capturing high-level features through the deep learning architecture of the network and making
classification predictions using a classical ANN appended to the feature-learning layers of the CNN
(modified from Mathworks [73])

8.4.2 Deep Belief Network

Deep belief networks (DBNs) are an extension of functionality from deep neural
networks, where these models use probabilistic methods in the learning process to
reconstruct the inputs, generally within an unsupervised training context. Further
training of a DBN using labeled data can yield a model for the purpose of
classification or regression. It achieves this through the implementation of a series
of stacked generative stochastic ANNs to learn a probability distribution over a set
of given inputs. Different learning algorithms have been developed in the literature
to this end, such as the efficient gradient-based contrastive divergence [74], which
is what helped propel DBNs into prominence for a wide range of applications.

Contrast divergence applies an approximation to the maximum likelihood
method for iteratively updating the learned weights of the connected network,
to find the solution via the generative energy-based model. For a given layer in the
DBN, the weights are updated using the following log likelihood calculation:

wij (t + 1) = wij + η∂ log (p(v))

∂wij
(8.51)

where p(v) = 1
Z

∑
h

e−E(v,h) is the probability vector from the previous layer of

the network (based on energy function E(v, h) applied to the network), (v, h) are the
states of the visible and hidden units in the network, and η is the learning rate at
which the weights are shifted toward the converging solution.

At each Kth layer of the network, the outputs from the (K − 1)th layer are
initialized as the inputs and used to update the subsequent hidden units in the
network, then reconstruct the input units, as follows:
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p
(
hj = 1|V ) = g

(
bj +

∑
i

viwij

)
(8.52)

p (vi = 1|H) = g
⎛
⎝aj +∑

j

hjwij

⎞
⎠ (8.53)

where bj and aj are the bias of hidden unit hj and input unit vi, respectively.
Additionally, g is the nonlinear sigmoid activation function to capture the system
complexities within the model. These update steps can be continued until some
threshold of intra-layer convergence is achieved. Following this, the weights are
updated according to Eq. 8.51, where the magnitude of the weight change is
proportional to the difference between the averages of the training data and model
distributions:

�wij ∝
〈
vihj

〉
data −

〈
vihj

〉
model (8.54)

The model training process is continued until convergence toward a solution,
determined by a stopping criterion, is met. Further units are added to the DBN,
creating a deeper network, where each layer is trained using the above procedure.

DBNs have been used for applications including dimensionality reduction,
feature learning, classification and others, used in applications including drug
discovery, signal processing, and many other fields.

8.5 Distributed and Parallel Learning

Distributed and parallel learning (D&PL), as the name implies, used a distributed
network of parallel processing peers, able to allocate learning processes to each,
for the efficient scaling of machine learning algorithms to vast volumes of data.
This addresses the technical limitations of classical machine learning frameworks,
which typically require entire datasets to be loaded into local memory and also
processed locally, which is irreconcilable with the realities of big data volumes. Data
can be partitioned in preparation for D&PL either horizontally (by instances within
the training set) or vertically (by features within the training set). The majority of
partitions are made horizontally, as this is the most natural and suitable choice for
most applications. Mixed fragmentation is an alternate approach where datasets
are partitioned into subsets of instances and features to be stored and processed
across different sites. Commercial platforms such as Apache Hadoop and Google
MapReduce have been built to provide this service to users and are commonly
employed as solutions.



8 Big Data Modeling Approaches for Engineering Applications 343

The majority of D&PL algorithms leverage ensemble methods for collating
individually models trained from independent datasets to ensure successful final
models according to time and accuracy objectives [75]. The ensemble methods
primarily seek to combine the outputs of the constituent models, rather than
integrating the models themselves, as much information and model value are lost
in the translation between models. This is especially the case for models that
use different learning metrics (e.g., rule based and distance based). The ensemble
approach provides an array of advantages to the otherwise challenging context of
big data, such as the reduction of individual training biases within isolated models
by ensemble processes, or the inherently scalable nature. Additionally, corollary
benefits for this approach can be realized, such as robustness to security as a
consequence of fragmenting datasets across multiple sites. There are many different
architectures for D&PL. Although both classification and regression tasks can
leverage D&PL model architectures, classification has found greater application due
to ease of implementation. Material presented in this section will hence be written
from the perspective of classification modeling. Figure 8.13 shows the architecture
for distributed machine learning using Google’s TensorFlow library on Apache’s
Spark platform, as a means of training local models that are aggregated into a unified
model.

Fig. 8.13 Distributed and parallel learning systems aim to train models over many nodes and
aggregate the results from the partially sampled full datasets (as inputs to training) of each to
converge toward a high-accuracy model faster. Google’s TensorFlow combined with Apache’s
Spark provides a method to achieve this, where local model replicas are trained using partitions of
a global dataset (data shards) and a parameter server is used to update global model parameters by
surveying the model replicas
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There have been many examples of the successful implementation of D&PL,
largely in the data and computer science communities that operate on the scales of
volume and velocity that require such an approach, such as information retrieval
in learned search processes. Additionally, the high bandwidth of data in some
computer vision applications has found solutions with D&PL, as well as NLP. Other
major applications include search engines [76], database management [77], and data
mining [78].

Distributed machine learning algorithms are generally categorized into decision
rules, stacked generalization, meta-learning, knowledge probing, distributed passing
votes, effective stacking and distributed boosting. A brief description of each is
provided as follows.

8.5.1 Decision Rules

The use of decision rules addresses the challenges of making statistical inferences
of a large and fragmented dataset, in the assignment of predictions to individual
instances. If this were to be performed directly on the total dataset, high-order
statistical parameters from the joint probability density function could be extracted
for the direct computation of the posterior probability functions as per Bayesian
theory:

x → cj if P
(
cj |y1, . . . , yn

) = maxkP (cK |y1, . . . , yn) (8.55)

where yi ∈ {y1, . . . , yN} is the set of N outputs and hence N model predictions to
aggregate, for which instance x should be assigned to class cj.

In the case of distributed processing, the full information from the joint prob-
ability distribution needed is not available and thus, the rules for applying classes
to the instances must be expressed in terms of decisions generated from individual
models [79]. The posterior probability can be estimated as P(cj| x) = yi from model
yi, when measures of belief are available. This concept is what allows for efficient
combination rules. Some of the prevalent rules used in the literature include the
product rule, sum rule, max rule, min rule, median rule, and majority voting. For
example, the sum rule for mapping instance x to class cj is given by:

x → cj if
N∑
i=1

yij (x) =
C

max
k = 1

N∑
i=1

yik (x) (8.56)

where the maximum value of the linear sums of model probabilistic predictions
emerges as the final class to be applied to the instance.
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8.5.2 Stacked Generalization

Stacked generalization seeks to combine multiple predictive models, by learning
that each model output correlates with the true class of each instance. This is
achieved by inferring the biases of the models from the use of an independent
test dataset. To obtain this extra layer of information, each node in the distributed
network is provided with a model to train using a test and validation dataset. All of
the trained models are then shared with all nodes, so that they are locally stored on
each. Having generated a set of N models across all network nodes, a meta-level
training set can be generated. For the yi, i ∈ {1, . . . , N} models, there will be hence
N predictions for the output of instance x, but only one true class for the instance,
class(x). This forms the meta-level training set:

[y1, y2 . . . , yN−1, yN ; class(x)] (8.57)

Following, this set is then provided to a single node in the network to generate
a global model that fits the aggregated outputs from each model, into a single
prediction for class(x). Using this approach, for each new data point to be predicted,
it must first be fed through each model yi, i ∈ {1, . . . , N} to form a meta-
level instance, in turn fed into the global model to generate the final prediction
(Fig. 8.14).

8.5.3 Meta-Learning

Meta-learning builds upon the core concept of stacked generalization, where a
meta-level training set is generated, composed of model predictions for the class
of instance x, for training a global model that compensates for the individual
biases of each constituent model. Different meta-level training sets can be defined
that drive the learning outcome for the global classifier, which is where the extra
functionality arises from the general approach of stacked generalization. There
are three types of meta-learning strategies for defining this meta-level training set,
combiner strategies, arbiter strategies, and hybrid strategies that blend the previous
two.

Combiner strategies use a composition rule, in order to determine the content of
the instances used in the meta-level training set. The meta-class approach, similar
to stacked generalization, defines a training set composed of the individual model
outputs yi, as well as the true class of instance x, into [y1, y2 . . . , yN − 1, yN ; class(x)].
The meta-class-attribute approach also adds the instance attributes to this set,
adding further information for the global model to potentially provide a better
overall prediction, given by [y1, y2 . . . , yN − 1, yN ; x; class(x)]. Further, the meta-
class-binary approach provides the output predictions from each model yi rather
than as a class cj prediction, but as a one-vs-all vector with binary entries, where the
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Fig. 8.14 Stacked generalization uses a meta-classifier to make a global prediction, using the
aggregated predictions of individual node-based models within a computational network

actual predicted class is denoted by a 1 and all other elements are 0. This is denoted
as
[
y11,...,C (x), y21,...,C (x) . . . , yN−11,...,C (x), yN1,...,C (x); x; class(x)

]
. These methods

provide different levels of insight into the prediction characteristics of each model,
for the global model to be trained upon.

Arbiter strategies define selection rules, which are applied to the validation
dataset to create a subset of instances that will contain the meta-level set. This means
that the chosen subset from the validation set is fed into the constituent models and
that set of outputs is used to define the meta-level training set for the global model.
Two schemes are used to this end, these being the meta-different and meta-different-
incorrect schemes. Meta-different select instances from the validation set that yields
different outputs from models yi, to form the meta-set Md, such that:

Md = {x|y1(x) �= y2(x) ∨ y1(x) �= y3(x) ∨ · · · ∨ yn−1(x) �= yn(x)} (8.58)

This set specifically choses examples where the constituent models disagree with
each other, which is more useful for training the global model to compensate for
biases, rather than including instances where the models agree. By contrast, meta-
different-incorrect combines instances with the model outputs that agree, but the
agreed class is not the true class of x, such that:

M = Md ∪ {x|y1(x) = y2(x) = · · · = yn(x) ∧ class(x) �= y1(x)} (8.59)



8 Big Data Modeling Approaches for Engineering Applications 347

Having defined the meta-level training set from any of the combiner or arbiter
strategies, or a hybrid approach of both, the set is sent to a single node in the network
and trains the global model. In the case of combiner methods, the constituent models
all produce predictions for a given instance, to generate a meta-level instance, which
is fed into the global model for the final prediction. However, the arbiter methods
define the final prediction as the majority vote for the class of instance x, with the
global model providing the tie-breaking vote when necessary.

8.5.4 Knowledge Probing

Knowledge probing as a D&PL method is born from the realized limitation
of typical stacked generalization methods, whereby the definition of a meta-
level training set only provides insight into the broad statistical combination of
predictions from constituent models. In short, this means that the meta-level set does
not provide insight into each model’s understanding of the data, which is instead
embedded deeper within the black box itself. To this end, a descriptive model is
built in knowledge probing, learning from an unseen set of data points, and the
corresponding set of predictions.

Once the training set has been used to train a model at each node, the models are
distributed to all other nodes in the network. Following this, probing instances are
defined by using the inputs x from the validation set, combined with labeled classes
that are the desired class d(x) for each instance. The value of the desired class is
determined by application of a decision rule to the collection of outputs from the
constituent models, such as majority voting. Hence, the probing instances can be
defined as:

[x; d(x)] (8.60)

The probing instances are sent to a single node in the network, which builds
the probing set from the instances, in order to train a global model. Once the
global model has been established, any new instances sent to the node will simply
determine the final prediction.

8.5.5 Distributed Passing Votes

Distributed passing votes implement one of two strategies, importance-based
sampling (Ivote) and random-based sampling (Rvote), to generate subsets of data
for training models. To begin with, Ivote shall be examined. Ivote uses sampling
with replacement to generate each subset for training, such that each is more likely
to contain instances that are incorrectly predicted by the ensemble of models up
that point in the process. This means that the process is iterative, whereby each
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subsequent model in the process relies on the output of the ensemble of previous
models. The out-of-bag error is used in the sampling process to ensure that each
model is tested using instances not from its own training set. This generates a
training set that is able to obtain a suitable prediction for the generalization error.

For each node in the network, once the first subset of data for training is
generated, it is used to train the model at that node. Following this, the out-of-bag
error is calculated as follows:

e(k) = p × e (k − 1)+ (1 − p)× r(k) (8.61)

where p is the p-value selected for the training process (p = 0.75 is recommended
by Brieman [80]), e(k − 1) is the error calculated from the previous model in
the ensemble, k is the total number of models in the ensemble at this point in
the iterative process, and r(k) is the error rate of the kth classifier on this first
subset of data. Following this, the test set is built by estimating the probability of
selecting a correctly predicted instance, where those that were incorrectly predicted
are assumed to have not been in the training set for this ith round of training. The
probability is defined by:

Pr(k) = e(k)

1 − e(k) (8.62)

Using this metric, once z instances have been selected for this subset, a new
model is trained on the subsequent subset. The process is repeated to produce a
desired number of models. The Rvote process is similar to that for Ivote described
above, except that each subset is selected by bootstrap sampling and every instance
has the same probability of being selected for inclusion, irrespective of whether it
was likely in the previous training set or not.

Both the Ivote and Rvote processes generate a great number of prediction models
at each node in the network through this iterative process. The global model
to determine final predictions combines the outputs of these constituent models,
typically by a voting mechanism.

8.5.6 Effective Stacking

Effective stacking is an extension of stacked generalization that aims to provide
better scalability for applying machine learning models to datasets with very high
volumes and dimensionality. This need arises, because in the stacked generalization
approach, the number of inputs to the meta-level training set for the global prediction
model is a function of the number of classes being predicted, as well as the number
of nodes and models in the network. Hence, for very large datasets with high
dimensionality, the number of classes and the number of models can also become
large and itself introduce scalability issues. Additionally, the global prediction
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model is trained only using a subset of the total available data volume, in the form
of a validation set of instances independent to those used to train the aggregate
models at each node. Effective stacking addresses these problems by averaging the
aggregate model predictions from other node to create a set that acts as the training
set at a local node. Additionally, this set is used as a validation set for the global
model. The meta-level dataset will hence be of the form:

[
1

N

N∑
i=1

yi1(x),
1

N

N∑
i=1

yi2(x), . . . ,
1

N

N∑
i=1

yiC (x); class(x)

]
(8.63)

Using this approach means that the meta-level dataset does not increase in size
for a given number of C classes to be predicted, as the outputs from the N local
models are simply averaged. From here, N global classifiers are trained, one at each
node in the network, which represents the combined knowledge of all models in the
network, other than the one local to the node, in terms of the local subset of data
used. Final model predictions are made using the N individual predictions, typically
using the sum rule.

8.5.7 Distributed Boosting

Distributed boosting applies the Adaptive Boosting method described in Sect.
8.2.2.4.2 to the context of D&PL. This process is iterative, through rounds
t ∈ {1, . . . , T} of updating a model, where each round uses a different sampled
training set of distribution Dt. At each iteration, this set contains more instances with
a higher applied weighting for incorrect predictions, as per the boosting method. At
each iteration, a model computes a hypothesis ht, all of which are used to determine
a final hypothesis hf . While the rounds of boosting take place, node j in the network
retains a locally stored distribution of instances Δj, t and local weights apply to
the instances wj, t. Combined, these reflect the prediction accuracy of the node,
where instances with high weights are known to not be predicted accurately. As the
iterations progress, by slowly merging the data subsets from the distributed nodes
in the network, the global distribution is emulated for better final, global prediction
accuracy.

The following method is used to implement the distributed boosting strat-
egy, where every step in the method is performed at each node in the net-
work. Node j ∈ {1, . . . , N} is provided with the boosted set of instances
Sj = {(

xj,1, yj,1
)
, . . . ,

(
xj,mj , yj,mj

)}
, xj,i ∈ Xj , each of which is labeled

yj, i ∈ Yj = {1, . . . , C}. Let Bj = (i, yj) : i = 1, . . . , m, y �= yj, i.

1. We begin by initializing the subset distributionΔj, 1 over the instances by�j,1 =
1
n

.
2. A temporary version of the global distribution for the t = 1 iteration, Dj, 1, is

generated by initializing the jth interval within Dj, 1:
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⎡
⎣j−1∑
p=1

mp + 1,
j∑
p=1

mp

⎤
⎦ (8.64)

With values 1
mj

.
3. Dj, 1 is normalized with a normalization factor.
4. The following steps are performed for each iteration of the learning process t = 1,

2, . . . , T:

(a) A model Lj, t is trained from instances drawn from the distribution Dj, 1.
(b) This model is broadcast to and locally stored at each other node in the

network.
(c) An ensemble model (Ej, t) is built to combine all the predictions from the

aggregate classifiers to compute the hypothesis hj, t : X × Y → [0, 1].
(d) The loss function for the hypothesis hj, t is calculated using the following

equation:

εj,t = 1

2

∑
(i,y)∈Bj

�j,t (i, y)
(
1 − hj,t

(
xj,i , yj,i

)+ hj,t (xj,i , yj )) (8.65)

(e) Following, the term Vj, t is calculated:

Vj,t =
∑

(i,yj )∈Bj
wj,t (i, yi) (8.66)

where wj,t = 1
2

1−hj,t (xj,i ,yj )+hj,t (xj,i ,yj )
accpj

, p ∈ 0, 1, 2

(f) Vj, t is broadcast to all other nodes in the network. Given that this involves the
combination of all weight vectors wj, t, this may require a very large transfer
of information volume, depending on the size of the distributed datasets.
In order to reduce the data volume and hence time for broadcasting, the
summed values from each node can instead be used, at the cost of lost model
fidelity.

(g) A weight vector Uj, t is defined, where the weight factor wj, t is the jth interval[
j−1∑
p=1

mp + 1,
j∑
p=1

mp

]
. The values in the qth interval q ∈ 1, . . . , N, q �= j

are set to Vq,t
mq
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(h) Finally, the global distribution is updated such that:

Dj,t+1 (i, yi) = Dj,t (i, yi)

Zj,t
βj,t

Uj,t (i,yi ) (8.67)

where Zj, t is a normalization constant for the distribution.

By following the above procedure, each node in the network retains Dj, t

(the locally approximated version of the global distribution) and Δj, 1 (the local
distribution), for each iteration, t. Hence, the instance samples for boosting are
collected from Dj, t, in order to emulate the process as if it were sampling from
the true global, centralized distribution. The boosting process is supported by the
weight vectors wj, t to train using instances that are more difficult to learn.

8.6 Transfer Learning

Transfer learning leverages the heterogeneity typical of big data, stemming from
broad varieties of big data, to apply pretrained machine learning models to different
domains, tasks, and data distributions. This is, in particular, driven by needs
stemming from velocity characteristics of big data, where the training of new
models from the ground up can take significant resources and time. By identifying
a collection of domains, tasks, and data distributions with similarities, a wide range
of models can be trained using transfer learning in a more efficient manner. This
approach can be used for regression, classification, or clustering-based learning.
Figure 8.15 shows a typical set of training performance curves, for ML models
with and without transfer learning. The model with transfer learning both begins
at a higher performance and converges toward an optimal solution faster. This
increase in training and predictive performance can be attributed to the fact that
a carefully selected older, template model can contain parameters that do not have
to be changed much, in order to converge towards an optimal solution. Conversely,
initialising a model with random numbers or all zeros, can instead lead to a larger
volume of data being needed to complete the training process [81].

Transfer learning has been successfully applied in many fields, including image-
based style transfer [82], the construction of informative priors, large-scale docu-
ment classification [83], classification of cross-domain text [84], network localiza-
tion [85], artificial intelligence agents in video games [86], and NLP [87].

Depending on similarities between the domains, tasks, and distributions of the
originally trained model and the target application, inductive learning, transductive
learning, and unsupervised transfer learning can be employed. The latter is currently
an active area of new and challenging research.
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Fig. 8.15 Transfer learning takes pretrained models on one task, and applies it to a new task,
to speed up the training process for the new task (i.e., less time, fewer training examples needed).
Transfer learning provides three advantages for the training process, as depicted above: (a) a higher
initial performance of the model, (b) a greater rate of performance improvement, and (c) a higher
asymptote on the performance curve that is reached within a faster training timeframe

8.6.1 Inductive Learning

Transductive transfer learning aims to improve the performance of a target pre-
dictive model fT (.), by leveraging the knowledge in a source domain and learning
task, DS and TS , respectively. This is in pursuit of application to a target domain
DT and target task TT , where TS �= TT . To this end, some labeled datapoints
within the target domain are required to provide the mechanism to induce the target
predictive model. The two primary contexts for this approach are: when labeled
data in the source domain is also available, or when instead unlabeled data in the
source domain is available. This approach allows for the transfer of knowledge via
use of instances, feature representations (supervised or unsupervised), parameters
or relational knowledge from the source to the target domain.

TrAdaBoost is a variant of the Adaptive Boosting method, applied to inductive
learning problems, to use instances from a source domain for the training of the
target predictive model. This approach is useful, as it helps sort the data to be more
relevant to the target task. The algorithm iteratively applies weightings the source
domain data, reducing the influence of the irrelevant source data on the training
process, while increasing the influence of the good source data. Additionally,
the incorrectly predicted instances from the target domain are given the same
reweighting in the normal AdaBoost algorithm and do not need the extra attention
required of the source domain instances.

Feature representation transfer is an approach to inductive transfer learning,
where good feature space representations are learned to maximize prediction model
accuracy. This can be performed in the context of supervised or unsupervised
learning. For cases where the source domain contains sufficient volumes of labeled
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data, supervised learning methods can be used. This involves learning a latent
representation space that is commonly shared across tasks in the source and target
domains. Common features in this space are learned via the following minimization-
based objective function:

arg min
A,U

∑
t∈[T ,S]

nt∑
i=1

L
(
yti ,
〈
at , U

Txti

〉)
+ γ ‖A‖2

2,1, U ∈ Od (8.68)

where S and T are the source and target tasks, respectively. U is mapping function
to transform the data into the lower-dimensional representation space and the (r,
p)-norm of the matrix A is given by:

‖A‖rp =
(
d∑
i=1

∥∥∥ai∥∥∥p
r

) 1
p

(8.69)

Conversely, an unsupervised approach to learning feature representations uses
the method of sparse coding to learn high-level features. To achieve this, higher-level
bias vectors are learned using the following minimization-based objective function:

min
a, b

∑
i

∥∥∥∥∥∥xSi −
∑
j

aj Si bj

∥∥∥∥∥∥
2

2

+ β∥∥aSi∥∥1 (8.70)

Such that the constraint ‖bj‖2 ≤ 1, ∀ j ∈ 1, . . . , s is satisfied, where
b = {b1, b2, . . . , bS} are the bias vectors, aj Si are the new representations of the
vectors for a given instance xSi . β is a coefficient that provides trade-off between
the regularization and feature space reconstruction terms. Once the bias vectors are
learned, a second optimization problem can be then solved to define the embedded
higher-level features:

a∗Ti = arg min
aTi

∥∥∥∥∥∥xTi −
∑
j

aj Ti bj

∥∥∥∥∥∥
2

2

+ β∥∥aTi∥∥1 (8.71)

Using this result, a∗Ti can be subjected to discriminative algorithms, with labeled
instances, for either classification or regression tasks in the target domain.

Parameter learning in the context of inductive transfer learning assumes that
models between the source and target domains share parameters or hyperparam-
eter prior distributions. Regularization and Bayesian frameworks from multitask
learning, which aim to learn source and target tasks simultaneously, are leveraged
to this end. However, in transfer learning, the single aim is to improve predictive
performance in the target domain, simply by utilizing the source domain data. This
means that the weights of the loss function can be different, for different domains.
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Hence, to achieve better performance in the target domain, larger weights may
be applied to this loss function. The use of hierarchical Bayesian [88], Gaussian
Process [89], and SVM [90] frameworks has been employed for the transfer of prior
distributions, usually via an inter-task covariance matrix, for inductive parameter
transfer learning.

8.6.2 Transductive Learning

Transductive transfer learning is performed in the context of the same source and
target tasks being performed, with different domains, where the aim is to improve
the predictive capabilities of a target model fT (.). The function is applied within DT
and the knowledge is garnered from source domain DS and source task TS , where
DS �= DT and TS = TT .

In the use of instances across tasks to improve the model fT (·)’s predictions,
an optimal model is sought for the target domain, which effectively minimizes the
expected risk. This is given by:

θ∗ = arg min
θ ∈ �

∑
(x,y)∈DT

P(DT ) l (x, y, θ) (8.72)

where the loss function is given by l(x, y, θ ) and depends on the parameter θ .
However, with an absence of labeled data in the target domain, a model cannot be
trained and hence P(DT ) is intractable in the above equation. If P(DT ) = P(DS), then
the substitution may simply be made, otherwise a model with the ability for high
generalization needs to be trained. Here, the transductive transfer learning problem
is solved by estimating the following for each instance:

PT
(
xTi , yTi

)
PS
(
xSi , ySi

) = P
(
xSi
)

P
(
xTi
) (8.73)

where the left-hand side of the above expression are the weights corresponding to
the penalty values applied to each instance

(
xSi , ySi

)
within the source domain, a

predictive model can be learned for the target domain. The right-hand side of the
above expression can be estimated through various means, such as a kernel-mean
matching (KMM) algorithm.

Feature representation learning in transductive transfer learning is conducted
in unsupervised regimes. This can be achieved through the use of a structural
correspondence learning (SCL) algorithm, which extracts some relevant features
from unlabeled data in the target domain to assist in reducing the difference between
both domains and maximize value. SCL defines a set of m domain-specific pivot
features on the data from both the source and target domains. Following, these
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features are removed from the data and each is treated as a new label vector. To
this end, we first assume that a linear classifier can solve the problem, given by:

fl(x) = sgn
(
wl

T.x
)
, l = 1, . . . , m (8.74)

where sgn() is the signum function, m is the number of pivot features, and wl

is the parameters vector for classifier l, which can be stacked into a matrix
W = [w1w2 . . . wm]. W = UDVT is solved using singular value decomposition,
in order to obtain θ = U[1 : h, :]

T, where h is number of shared features between the
source and target domains. From here, discriminative algorithms can be employed
to build models directly.

8.7 Active Learning

Active learning seeks to shift machine learning strategies for big data from large
volumes of unlabeled data, which is time consuming and difficult, to that which uses
labeled data. Hence, active learning is most broadly applicable to supervised and
semi-supervised machine learning scenarios. Given that labeled data is expensive
to obtain, active learning minimizes the cost associated with this activity, by
identifying a subset of points in the original data distribution most critical in
achieving a desired constraint of accuracy. Figure 8.16 provides a visually intuitive
example of active learning. The process of active learning identifies key points in a
dataset, which if labeled, can provide the greatest value in classifying the remainder
of the dataset. Similar approaches are taken for regression modeling.

Fields such as medical image classification [91] and biological DNA identifi-
cation have found particular success in applying active learning techniques. In the

Fig. 8.16 The concept of active learning is intuitively illustrated in this figure with respect to a
classification task. Here, in (a) a labeled instance belonging to class 1 (red) is shown, with the
other points unknown and depicted in gray. Through active learning, two points are identified in
(b), shown as white circles, which are deemed to provide the most statistically significant impact
for the learning process once classified. With those key points labeled as class 1 (red) and class 2
(blue), other machine learning methods (e.g., k-Means) can be applied to more easily classify the
remaining points into their respective classes
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case of the latter, King et al. [92] demonstrated the ability to employ autonomous
biological experimentation to discover the metabolic pathways for the yeast species
Saccharomyces cerevisiae, which not only had the physical experiments conducted
by a laboratory robot, but all experimental configurations were selected using an
active learning approach. Other areas include NLP [93], experimental design [94],
image processing [95], database searching [96], and network intrusion detection
[97].

The goals of active learning are achieved by utilizing three different types
of query strategies, namely, stream-based selective sampling, membership query
synthesis, and pool-based sampling. For each strategy, the optimal selection of
instances to be labeled can follow one of many frameworks. These include
uncertainty sampling, query-by-committee, expected model change, expected error
reduction, variance reduction, and density-weighted methods [98].

Membership query synthesis is the simplest type of active learning, whereby
the learner requests labels for any given unlabeled instance. This is typically done
assuming the learner model’s queries are independent of each other and not part
of an underlying distribution or pattern (i.e., it is random). For large datasets that
describe highly complex and nonlinear system, this approach does not necessarily
scale well. Additionally, given that many of these queries may not actually contain
useful information to classify, especially when part of big datasets with limited
veracity, stream-based and pool-based scenarios can be employed to address these
limitations.

In the case of stream-based queries, the learner model samples instances one at a
time from the dataset and on a case-by-case basis, decides whether a query should
be submitted to have it labeled or not. Pool-based queries are similar in nature,
although rather than one at a time, an entire collection of candidates is selected, of
which each is evaluated and subsequently ranked before selecting the best query
for labeling. Assuming that the distribution of the source dataset is nonuniform (in
which case it will act akin to the membership query process), the queries will come
from an underlying distribution and will provide value.

Different frameworks can be used in determining the relative value for querying
a given instance in the learning process. The simplest method would be to define a
minimum threshold for informativeness, where every point that meets that criteria
(i.e., above the threshold) is submitted as a query. Alternatively, if two or more
models are trained, comparisons between their ability to agree or disagree on
predictions using labeled versus unlabeled data can identify regions in the feature
space where additional labeled data will reconcile the models and provide greatest
value. This region of uncertainty can be explicitly calculated, but it computationally
expensive and must be reperformed after each new query is made, as the model
hyperparameters will have been updated. For large datasets, statistical frameworks
can be used on randomly selected instances to determine the comparative likelihood
of increasing the value by labeling.

Uncertainty sampling is one statistical framework used to maximize the expected
value of a submitted query. Methods such as least confidence, margin sampling, and
entropy can be employed as measures of uncertainty. For example, least confidence
uses the following equation to select the optimal instance for labeling, x:
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x∗LC = arg max
x

1 − Pθ
(
ŷ|x) (8.75)

where ŷ is the class label with the highest posterior probability and θ is the model.
This expression can be intuitively understood as the model’s belief that instance
x being considered will be mislabeled, based on the posterior probability of each
instance. Hence, the instance in which the model has least confidence in a correct
prediction is selected. The selection criteria for margin sampling and entropy as
measures of uncertainty are given as follows, respectively:

x∗M = arg min
x

Pθ
(
ŷ1|x

)− Pθ (ŷ2|x
)

(8.76)

x∗E = arg max
x

−
∑
i

Pθ (yi |x) logPθ (yi |x) (8.77)

where ŷ1 and ŷ2 are the classes with the first and second highest probability of being
selected as labels, respectively, and yi has a range of all potential labels within the
problem.

Compared to more random sampling methods, uncertainty sampling assists a
learning model in converging toward a solution faster. Figure 8.17 illustrates this
with two curves, where the uncertainty sampling methods harnesses greater value in
the learning process, for each instance that is queried. For very large datasets with
a high degree of embedded complexity, implementing this strategy can significantly
reduce the total cost needed to achieve required model prediction accuracy via
labeling instances.

Fig. 8.17 A set of learning
curves for the classification of
the text classification of
words baseball vs. hockey.
The model that employed
uncertainty sampling
consistently showed better
accuracy for a given number
of queried instances,
compared to the model that
randomly queried instances
[99]
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Other frameworks in active learning exploit varying approaches in determining
the highest value instance to query. For example, query-by-committee approaches
define a set of competing set of models C = {

θ(1), . . . , θ (C)
}
, called a committee,

which provide predictions on a set of instances being considered for querying. The
instance that exhibits the greatest level of disagreement in the committee is selected
as the final candidate for querying. There are different methods for measuring the
level of disagreement in the committee, such as the vote entropy method as follows:

x∗VE = arg max
x

−
∑
i

V (yi)

C
log
V (yi)

C
(8.78)

where C is the number of models in the committee and V(yi) is the number of votes
that each label receives from each member of the committee.

Other frameworks for selecting candidate instances for labeling are expected
error reduction, variance reduction, and density weight methods.

8.8 Kernel-Based Learning

Kernel-based learning uses nonlinear kernel functions, embedded within classical
and well-known linear statistical techniques (e.g., support vector machines) to
project the input space of a dataset onto a higher-dimensional feature space. This
allows for a higher expressive power, owing to the greater number of features,
and the opportunity to perform multiple analyses with the same dataset [100].
However, this can be at the cost of higher computational complexity, especially if
the model is not well designed for the task at hand. This is applicable for regression,
classification, and clustering modeling tasks, as all methods ultimately seek to
extract relational patterns from the input dataset.

At first glance, it may seem counterintuitive to create a higher dimensional
representation for a big dataset. With a higher number of dimensions to represent the
input space, not only does the explicit size of the dataset increases but the statistical
principle, oft-referred to as the curse of dimensionality, may lead to the impression
that the difficulty of estimation problems from the dataset will increase. With respect
to the latter, an increase in the input space dimensions N, requires exponentially
many patterns between variables to sample the space for a sufficient mathematical
description, especially for the purposes of modeling and prediction. However, this
is not always the case, as the selection of a suitable mapping between X → F
can yield a set of simpler, such as linear, relationships in the new feature space
F . However, it can be seen that this becomes a trade-off for users in taking this
approach, between minimizing the impact of increasing the size of the dataset and
maximizing the computational efficiency realized from the discovery of simple class
of decision rules in the higher dimensional feature space for modeling. Figure 8.18
provides visual insight into how this process can lead to simpler prediction models.
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Kernel mapping

k (x,x´) = 〈f(x),f(x´)〉F

Fig. 8.18 Visual demonstration of the process of kernel-based learning. Data that may be
represented in 2D feature space and is seemingly unclassifiable, can be projected into 3D space
using their embedded nonlinearity, allowing for the much easier classification in this new feature
space, using a computationally simpler linear hyperplane (now described in R

3) as illustrated

The goal of kernel-based learning is to employ a kernel function, which maps
the original dataset within feature space X to a space of higher dimension F , via a
nonlinear mapping Φ, as follows:

� : X → F , x  → �(x) (8.79)

This is achieved through the use of a kernel function, k, which performs the
transformation without needing to know the mappings between X → F explicitly.
This operation is expressed as:

k
(
x, x′

) = 〈�(x),� (x′)〉F ,∀x, x ∈ X (8.80)

Polynomial and Gaussian kernels are the most widely used kernel functions and
empirical evidence suggests that, although the selection of the best kernel for a given
application is not formally defined, these two generally provide good results. A
selection of some of the more common kernel functions includes the Gaussian radial
basis function, polynomial, sigmoidal, inverse multiquadric, which are as follows,
respectively:

Gaussian radial basis : k (x, y) = exp

(
−‖x − y‖2

c

)
(8.81)

Polynomial : ((x.y)+ θ)d (8.82)

Sigmoidal : tanh (k(x.y)+ θ) (8.83)
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Inverse multiquadric : 1√
‖x − y‖2 + c2

(8.84)

Once the dataset has been mapped X → F , typical learning algorithms can
be applied within the new feature space for a faster and computationally feasible
training process. Applications in which kernel-based learning offers advantages are
usually those with inherently high degrees of complexity and are either intractable
within X alone, or the computational time saved with the approach opens up
successful opportunities for applications that would otherwise be infeasible. In the
case of the former, adaptive multi-regression [101], as well as convexly constrained
parameter and function estimation [102] have found success, whereas in the latter,
online classification [103] has benefited from kernel-based learning.

Kernel-based learning has found many areas of applications, due to its ability
to express information from highly complex datasets. This includes de-noising
in signal processing [104], image classification [105], and biological engineering
[106].

8.9 Conclusion

The availability and prevalence of big data is both a challenge and opportunity for
the future of modeling. There are many difficulties that arise from handling such
datasets, typically associated with the volume of the data, variety in the input space,
velocity of the input data-streams, and required predictions, as well as the veracity
of the data used for modeling. However, the benefits that can be leveraged from
big data, namely the significant boots in productivity from better predictions and
hence decision-making, are too great to be ignored. Hence, in order to harness the
value of big data in the face of these challenges, six approaches have been presented.
Combining these approaches with classical machine learning methods, effective and
efficient models can be constructed for prediction and decision-making purposes.
Many of the approaches require an empirical view to select optimal models and
associated parameters and with such a broad range of tools available, this is no small
task. Hence, the study of different techniques for big data is of great importance and
has been reviewed here.
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Chapter 9
Genetic Programming Approaches
in Design and Optimization
of Mechanical Engineering Applications

Hamid Khayyam, Ali Jamali, Hirad Assimi, and Reza N. Jazar

9.1 Introduction

Optimization in engineering can be defined as a methodology to making something
as real, robust, functional, as it is possible. It is in the aspect of mathematical
modeling to optimal (maximizing or minimizing) of the objective function without
violating the constraint(s) as in Eq. (9.1).

The Mathematical Optimization Problem is given as follows:

Minimize function f0(x)

Subject to constraints fi(x) ≤ bi i = 1, . . . , m
(9.1)

• x = (x1,. .., xn): optimization parameters to be addressed
• f0: Rn → R: objective function
• fi: Rn → R, i = 1, . . . , m: constraint functions

Multiple solutions can be found for optimization problems, which are dependent
on objective function [1]. As shown in Fig. 9.1, the objective function f(x) can reach
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Fig. 9.1 Global and local
optima
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the highest value for x. The points x1, x2, and x3 are all local maxima of the function,
when the first order condition f(x) = 0 and is met. This is indicated by the horizontal
tangents illustrated in Fig. 9.1. Any small increase or decrease in the value of x
would decrease the corresponding function’s value, as per: f(x) ≥ f(x ± ε)|ε→ 0.

However, since x1 and x3 are local (not global) optima and only point x2 is
a global optimum, as it provides the maximum overall output value for the total
domain of the objective function f (x).

It is often difficult to find the true solution to such a problem, as a local or
the global optimum are difficult to differentiate in a mathematical search and the
solution space is extremely complex.

9.1.1 Conventional Approaches

Conventional (traditional) approaches are operated using iterative search algorithms
and they begin the process with a solution, such as a deterministic or arbitrarily
selected value, by then improving according to some deterministic rule. These
approaches can be applied to engineering optimization is highly sensitive to the
nature of problem [1–3] such as:

Linear Programming (LP)

LP is applied to the linear objective function that models the problem at hand, and
its constraints optimization problem. The general approach is to use the Simplex
Algorithm, such that the first LP function is transformed into its canonical form
or mid integer linear programming [4, 5]. Following this, a basic (initial) feasible
solution of the LP is determined from the easier to manipulate canonical form and
the initial solution is then moved to a basic, feasible solution which is both in the
same neighborhood as the first solution, but also closer to the optimal solution. This
is the case among all other adjacent basic feasible solutions, where the process is
repeated until the true, global optimum solution is achieved.
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Quadratic Programming (QP)

QP can find applications for optimization problems where the objective function is
in a quadratic form and the constraints are linear (in-)equalities [6]. This solution
approach uses a modified version of the aforementioned Simplex Algorithm.

Dynamic Programming (DP)

DP is an optimization based solution approach, which transforms a larger complex
problem, into sequences of smaller and simpler problems to solve, in the context
of the multistage nature of the optimization procedure [7]. To begin with, the most
recent subproblem in the sequential queue, T, is solved. Following this, the optimal
solution for the penultimate problem, T−1, is also determined, which similarly
leads sequentially to the optimal solution for T. This process is repeated until all
subproblems and hence, finally the total problem, are solved.

Convex Optimization (CO)

CO is a study the problem consisting the objective is a convex function if
minimizing, or a concave function if maximizing and all the constraints are convex
functions. More explicitly, a convex problem is of the form can be defined by [8]:

Minimize subject to : f0(x)

fi(x) ≤ bi, i = 1, . . . , m

Objective and constraint functions are convex:

fi (αx + βy) ≤ αfi(x)+ βfi(y)

if α + β = 1, α ≥ 0, β ≥ 0 (9.2)

Includes least-squares problems and linear programs as special cases.
In general, CO is used for solving some optimization problems if:

• No logical solution.
• Reliable and effective algorithms.
• Computation time (roughly) proportional to max [n3, n2m, F],

where F is cost of evaluating fi’s and their first and second derivatives.
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In comparison with other optimization approaches, CO has a number of tricks
for transforming problems into convex form for solving the complex problems:

Convex Hull (CH)

CH is integration of convexity, segment, and convex combination as expressed in
Eqs. (9.3) to (9.5):

A set S is convex if x ∈ S and y ∈ S implies the segment xy ∈ S (9.3)

The segment xy is the set of all points of the form αx + βy with α ≥ 0, β ≥ 0

and α + β = 1
(9.4)

A convex combination of points x1, . . . , xk is a sum of the form
α1x1 + . . . + αkxk with αi ≥ 0 for all i and

α1 + · · · + αk = 1 (9.5)

CH of a set of planar points is the minimum convex polygon containing all the
points. Each point xi in the S has a weight (or coefficient) αi, they are non-negative
and used to calculate for the points as weighted average. For any selected weights
(or coefficient), combination of the resulting convex is a point in the convex hull.
The selected weights (or coefficients) in all possible ways form the whole convex
hull. The convex hull can be written by following equation:

Conv(S) =
⎧⎨
⎩

|S|∑
i=1

αixi

∣∣∣∣∣∣ (∀i : αi ≥ 0) ∧
|S|∑
i=1

αi = 1

⎫⎬
⎭ . (9.6)

The entire CH containing the data can be broken up into triangles using the
Delaunay triangulation method [9]. For example, the Delaunay triangulation results
in the Convex Hull boundary shown in Fig. 9.2.

Stochastic Programming (SP)

SP is used when there is some uncertainty present in the data being incorporated
into the objective function for solving the optimization problem [10]. Solution
approaches can be included to improve the robustness of the process, such as
recourse strategies, assumption of different scenarios and by performing sensitivity
analyses.
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Fig. 9.2 An example of Delaunay triangulation results for power consumption by high tempera-
ture and drive speed [5]

Greedy Algorithms (GA)

GAs as functions always prefer the next step in the iterative solution process, which
generates the greatest possible improvement toward the global optimum, yet does
not assess or incorporate the consequences [11]. Given a current solution, which
is suboptimal (not the global optimum), a greedy algorithm would conduct the
search for a modified solution, that is within a certain neighborhood relative to the
suboptimal solution, and then choose the best candidate among them. This approach
is often referred to as hill climbing, by way of comparing the analogous actions
of a mountaineer that chooses every step with efficiency and progress in mind.
These algorithms are only focused on the “next” step in the iterative optimization
process. Hence, it is possible for them to remain entrenched in many of the local
optima present in complex function, especially if the initial values are not chosen
well to speed the process. Hence, this approach requires smooth and less nonlinear
solution spaces. Additionally, solving with monotonous objective functions makes
the process simpler for generating good solutions. This is related to the general
concept of gradient search and suffers from similar shortcomings.
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Gradient Search (GS)

GS is used once the objective function f (x) is in a form that is differentiable and
strictly convex, where the solution can be achieved through the first order constraint
∂f /∂x = 0. Given the proposed solution:

∇f (x′) =
(
∂f

∂x1
, . . . ,

∂y

∂xn

)
for x′ = x (9.7)

As mentioned earlier, conventional approaches are used only for mathematical
problems that satisfy certain preconditions. The constraints must be expressed in
certain formats and the objective function must be of a certain type, and so forth.
Therefore, the applications are restricted to a rather limited set of problems. Many
of the current conventional optimization approaches do suffer from a nontrivial
sensitivity to the following problems:

• Difficulties in passing over (calculating a rejecting) local optimal solutions,
• Risks of divergence,
• Computational difficulties in handling multiple, complex constraints, or numeri-

cal difficulties associated to computing first or second order derivatives [12].

To overcome these problems, the heuristic approaches are comparative and
superlative solutions and they have been used in a number of engineering optimiza-
tion problems [13–15].

9.1.2 Heuristic Approaches

Heuristic Optimization (HO) methods have been used to a number of engi-
neering applications, due to their capability of overcoming relatively common
challenges present in automated design problems, control and mechanical engi-
neering problems [16–20], including but not limited to uncertainty, nonlinearity,
varied parameter types, and the local minima presence and/or discontinuities [21].
HO is a technique which can solve a problem more quickly in comparison with
conventional approaches which are slower. Also, HO can find an estimated solution
when conventional approaches fail to find an accurate solution. In other words,
Ho can provide accuracy, optimality, extensiveness, or exactness with respect to
the speed. However, applying heuristic optimization to a problem at hand can be
computationally expensive because HO requires experienced data to develop itself.
These kind of data are usually difficult to find, which lead to classify the evaluations
in minor or major issues.

In this chapter, we define some heuristic approaches as technique for solving
mathematical optimization problems [12, 22] and presenting the genetic program-
ming as an intuitive approach in truss structure’s design of mechanical engineering
problem that can be interpreted and exploited intelligently to obtain a reasonable
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solution. These approaches and techniques have been described in the following
sections: Section 9.2 present the heuristic optimization techniques. Section 9.3
defines the Genetic programming as intuitive approach. Section 9.4 explains the
truss structure’s design and optimization of mechanical engineering problems.
Section 9.5 presents some of the optimization applications in truss structure’s
mechanical design solved through genetic programming. Concluding remarks are
provided in the last section. A large number of references have also been included.

9.2 Heuristic Optimization Techniques

9.2.1 Underlying Concepts

Heuristics approaches were first presented in 1945 by G. Polya [23] and then in 1978
[24] the approaches were introduced to solving of some science and engineering
problems.

Compared to conventional optimization approaches, heuristic methods are
designed such that better computational performance is possible, while at the
expense of yielding a lower model accuracy.

However, the “rules of thumb” that are the underlying factors to conducting a
heuristic method are typically very context sensitive. That is, they are often very
specific as to the nature of the problem at hand. Further, as heuristic methods
are techniques to solve problems based on the user’s expertise, domain specific
representations of the design space are used, and hence general heuristics can be
defined for fundamental problem solving only, such as search methods [25].

The central feature common to all Heuristic Optimization (HO) methods is that
they begin with a more or less arbitrary initial solution as a starting point, which
is then followed with iterative processing to produce new solutions. This is done
by some generation rule, which evaluates the new solutions, eventually serving
the best solution evaluated during the search process to the user. The execution
of the iterative search procedure is typically ended when improvements over a
given number of iterations become insubstantial. Other metrics for stopping include
When the solution at hand is good enough for the application as defined by a
threshold; when the allowed CPU time, or other resource-based external limit has
been reached; or when some internal parameter (as defined by the user) terminates
the algorithm’s execution. Another obvious stopping condition would be exhaustion
of valid candidate solutions. This latter case is hardly ever realized in practice, due
to the complexity and sheer size of the design space for such engineering systems.

Due to the fact that HO approaches may be substantially different in their
underlying concepts, it is hard to find a method of generally classifying them.
Yet, some central concepts have been highlighted to facilitate some comparisons
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between methods. New heuristic approaches rapidly increasing, as well as variants,
or combinations of others, the list that follows are far from exhaustive [1]:

First Generation Through Neighborhood Search New solutions can be gener-
ated by taking the current solution and modifying it by neighborhood search, or
alternatively new solutions can be based on past experience. By employing such
approaches, simple search strategies can be applied. For example, the use of a
deterministic rule, random guesses in the design space, or potentially a combination
of both.

New Generation To overcome the presence of local optima, HO approaches
typically consider not only new solutions in the design space that lead to a short-
term improvement, but also include a portion of solutions that are inferior to the
best solution, by comparison. To enforce the requirement of convergence, inferior
solutions could be included in cases where the known global optimum is close by,
or alternatively might be provided a smaller “weight” in the process. Additionally,
the solution(s) with the best performance in the search thus far may be reinforced,
sometimes referred to as the elitist principle, or novel solutions may be ranked in
order of preference/score and only the very best of those are kept for future might be
a solution, among others. It is important to note that the underlying acceptance rules
for this process can be deterministic or embody certain degrees of randomness.

Knowledge Past knowledge can be used to help the iterative search process to assist
in reaching the global optimum faster. This is often referred to as the guided search
approach. However, while incorporating any sort of past knowledge may have the
potential to certainly reduce the search space, and simultaneously increase the speed
of convergence, there is the added drawback that this might yield inferior solutions.

Limitations Given that the search algorithm is often very large for the types of
problems considered, new and useful solutions can be discovered by searching in
the neighborhood of an agent’s current solution. Similarly, the complexity at a
population-level considers this promising. Conversely, some approaches will instead
explicitly exclude some neighborhoods or regions from the search process, in order
to avoid features such as cyclic search paths, expending overt computation time on
nominally irrelevant alternatives, as well as others.

Flexible Tolerance in Constraints There exist some methods, which are devel-
oped to address specific types of constraints and are therefore not good to be
generalized for applications to other optimization problems. Other capabilities allow
for the testing and ranking of different algorithms, which in turn may also affect the
decision of which (optimal) approach to select for a given optimization problem.

Combinatorial Complex Problems HO can solve combinatorial problems to find
an optimal solution from a finite set of possible solutions. For HO methods,
generally speaking, the complexity of the problem largely depends on the costs for
evaluating each candidate solution in the design space, the total number of iterations
to be completed, and if applicable, the overall population size and costs associated
with managing the population (i.e., for storage or compute tasks). Generally, the
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total number of iterations, in addition to the size of the population, will increase for
more complex problems (i.e., larger problem spaces). This will result in an increase
in the computational costs required to complete the task. Yet, for HO methods, this
is not uncommonly lower than for employing conventional (traditional) methods.

Convergence Rate A common metric to compare, and often rank, different
algorithms, is the process time, as a resource. This relates to the aforementioned
underlying concepts of HO. While computational “speed” may be a useful property
of an algorithm in terms of practicality and logistics, conversely it can be considered
as not meaningful when viewed as a lone criterion. This is because it does not
holistically describe the effectiveness of the method, such as the ability to converge
to local and global optima. Only a time limit can be imposed as a metric in this case.

Various Reliability Problem For some common heuristic methods, the exist
proofs that show these methods will eventually converge toward the global optimum.
However, this is under the caveats of sufficient computation time and appropriate
choices of model parameters. In practice, it is sometimes necessary to accept a trade-
off between these two objectives. As an optimization algorithm getting stuck in an
objective function’s local optimum, heuristic methods are hence commonly judged,
or ranked, by their typical ratio of finding solutions in a global optimum, versus
inferior solutions.

More details to the broadly defined categories of heuristic optimization is in
Sect. 9.2.2.

9.2.2 Heuristic Approaches

Engineering optimization problems are mostly including different variables under
complex constraints and extremely nonlinear. Modern heuristic optimization
approached have been developed with an aim to achieve global search [26].
This section provides details of some of the most commonly used heuristic
optimization approaches. These can be considered as typical examples for these
types of approaches, which are also underpinned by differences as described in
Sect. 9.2.1.

Simulated Annealing

Simulated Annealing (SA) works as a hill-climbing search approach, which is
useful in finding global optima in the existence of large numbers of local optima.
In 1980s, SA were established by using the Metropolis algorithm [27]. SA is a
method for solving unconstrained and bound-constrained optimization problems.
The method models the physical process of heating a material and then slowly
lowering the temperature to decrease defects, thus minimizing the system energy.
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At each iteration of the simulated annealing algorithm, a new point is randomly
generated. The distance of the new point from the current point, or the extent of
the search, is based on a probability distribution with a scale proportional to the
temperature. The algorithm accepts all new points that lower the objective, but
also, with a certain probability, points that raise the objective. By accepting points
that raise the objective, the algorithm avoids being trapped in local minima, and
is able to explore globally for more possible solutions. An annealing schedule is
selected to systematically decrease the temperature as the algorithm proceeds. As
the temperature decreases, the algorithm reduces the extent of its search to converge
to a minimum. A basic simulated annealing pseudocode is in Table 9.1.

Tabu Search

The Tabu Search (TS) strategy was introduced by [28], as a search strategy that
avoids returning to solutions already visited by maintaining a Tabu list, which stores
successive approximations. Three main strategies in TS are: (1) forbidding is to
control what arrives the Tabu list, (2) freeing is to check which exits the Tabu list,
and (3) short-term that is to manage between the forbidding and freeing strategy
to select trial solutions. Since the Tabu list is finite in length, at some point, after
a number of steps, some solutions can be revisited. Adding a newly generated
solution to a completed Tabu list is done by removing the oldest one from the
list, based on a First In, First Out (FIFO) principle. New approximations can be
generated in different ways. Some of the TS parameters are: local search procedure,
neighborhood structure, aspiration conditions, form of Tabu moves, addition of a
Tabu move, maximum size of Tabu list, stopping rule. A basic TS pseudocode
presented in Table 9.2 uses the following procedure: at each step, a given number
of new approximations are calculated within the neighborhood of the currently
considered solution but considering as feasible only the ones which are not in the
Tabu list. Among the new approximations the best one is chosen to replace the
current solution, being also introduced in the Tabu list.

Table 9.1 A basic simulated
annealing pseudocode

s = Generate_Initial_Solution()
T = T_0

While termination conditions not met
s1 = Pick_At_Random (N(s))

If f(s1) < f(s)

s = s1

Else
Accept s1 as new solution with probability p(T,s1,s)

Endif
Update(T)
Endwhile
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Table 9.2 A basic Tabu Search pseudocode

Step 1: Choose an initial solution i in S. Set i∗ = i and k=0.
Step 2: Set k=k+1 and generate a subset V∗ of solution in N(i,k) such that either one of the
Tabu conditions is violated or at least one of the aspiration conditions holds.
Step 3: Choose a best j in V∗ and set i=j.
Step 4: If f(i) < f(i∗) then set i∗ = i.
Step 5: Update Tabu and aspiration conditions.
Step 6: If a stopping condition is met then stop. Else go to Step 2.

Table 9.3 A basic evolution strategy pseudocode

Procedure ES{
t = 0;
Initialize P(t);
Evaluate P(t);
While (Not Done)

{
Pp (t) = Select_Best(μ,P(t)) (Select μ Best);
Pc (t) = generate (λ, Pp (t)) (Generate λ new individual) ;
Evaluate (Pc (t));
P(t+1)= Select_Survivors(Pp (t) ∪Pc (t));
t = t + 1;

}

Evolution Strategy

Evolution Strategy (ES) introduced in [29] as a part of evolutionary computation
and developed further after 1970s. ES has two main generation parameters:
number of parents μ, and number of offsprings creation λ notation by ES (μ, λ).
These evolution from one generation to another controlled by mutation and each
generation begin with a population of individuals. Each individual λ is evaluated to
assign their fitness, then all individuals are ranked in descending order according to
their finesses. Next, the first μ fittest individuals are nominated to create the parent
population. Next, each of the μ parents will create by repeated mutation k = λ/μ
offsprings. Finally, the new, mutated population will change the old one and the
algorithm reiterates. A basic evolution strategy pseudocode is in Table 9.3.

Genetic Algorithms

The Genetic Algorithm (GA) is able to efficiently investigate large search spaces.
It has two major requirements: Representation and Evaluation. GAs have been
designed and developed by Holland [30] and later by Goldberg [31] and De Jong
[32]. GAs are search methodologies which employ the specific mechanisms of
genetic evolution such as selection, crossover, and mutation to evolve based on the
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Table 9.4 A basic pseudocode of genetic algorithm

Step 1: Select an encoding schema
Step 2: Randomly initialize chromosome pool
Step 3: Evaluate each individual in the population
Step 4: Evaluate fitness of each individuals (fitness = fi∑

fi
) to breed new population

Step 5; Select individuals using Roulette wheel or tournament and Create new population from
selected parents using crossover and mutation
Step 6: Replace old population with new population
Step 7: Repeat steps 3 - 6 for each generation

natural selection principle. Seven steps of a basic pseudocode of a genetic algorithm
are presented in Table 9.4. GA uses the selection operator in each generation to
choose a pair of individuals with respect to their fitness as parents to generate two
offspring by the crossover operator. Next a pair of parent chromosomes select,
and they enter the crossover step to generate two offspring. Crossover operator
generates solutions that inherit good characteristics from both parents. Lately,
mutation operator to create individuals by small changes in the genes to ensure
the newness in the genetic material. Next, all offspring produced by crossover and
mutation are put in a selection pool to choose from to form the new population.
Finally, the initial population is replaced with the offspring population and the three
steps of selection, crossover, and mutation for a next generation will be repeated. In
order to avoid losing the best solution [25] a copy of the best individual from the
current population and transfer it unchanged in the next generation will be made.

Particle Swarm

The Particle Swarm (PS) optimization method was first proposed in the 1990s,
by Kennedy and Eberhart [33]. PS is a stochastic optimization method based on
emulates swarming performance, and characteristics of swarms, of large groups of
animals (birds or insects, etc.). Fundamentally, the PS method develops a population
of agents, which individually move in the search space, leveraging cooperative
strategies such as the interaction of the individual particles to exchange information.
PS is basically a form of directed mutation. Any particle i has two parts: position Xi

and its velocity Vi. The position of a particle i is calculated with respect to its prior
position, denoted by Xi. An additional correction term proportional with its velocity
ε·Vi is also included. Sequentially, a value for velocity is individually assigned to
each particle in the systems and is calculated using four primary components: (1)
the weighting or importance of the previous time-step value of velocity Vi; (2)
the importance of the best “personal” (local optima based on partial information
available to the agent) solution for particle i, Xi P; (3) the importance of the ideal
local solution so far for informants of particle i, Xi L; and (4) the importance of the
ideal global solution so far, as determined by the entire swarm at a macroscopic
perspective, XG. These individual factors are all considered by being weighted
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Table 9.5 A basic
pseudocode of particle swarm

[x∗] = PSO()
P = Particle_Initialization ();
For i=1 to it_max

For each particle p in P do
fp = f(p);
If fp is better than f(pBest)

pBest = p;
end

end
gBest = best p in P;
For each particle p in P do

v = v + c1∗rand∗(pBest – p) + c2∗rand∗(gBest – p);

p=p+v

end
end

together (e.g., in a linear sum), denoted by a, b, and c. A basic Particle Swarm
pseudocode is in Table 9.5.

Cuckoo Search

Cuckoo search (CS) method is inspired by modeling the reproduction procedure of
cuckoo species in the nature. Cuckoo search is an optimization algorithm developed
by Xin-she Yang and Suash Deb in 2009 [34]. It was inspired by the obligate brood
parasitism of some cuckoo species by laying their eggs in the nests of other host
birds of other species. The main steps of this algorithm are in a way that firstly
each cuckoo lays an egg at a time and the egg is dumped in a random selected nest.
Then, the best nests with high quality of eggs are opted for being processed at next
generation. After that the egg is thrown away or the nest is abandoned, which results
in building a new nest in a new location as presented in Table 9.6.

Differential Evolution

Differential Evolution (DE) was largely proposed as a new evolutionary algorithm
by [35]. DE works based on the differences between randomly selected possible
solutions. This approach uses the search space topography in the neighborhood of
the current solution. In depends on the candidate solutions in a wide area and in a
narrow area, mutations will have large amplitudes and will be of small importance
respectively. In any generation, all current possible solutions will be considered as
reference solutions different mechanisms of DE will be applied. Consequently, for
an Xi, two different individuals Xr1 and Xr2, other than Xi, will be randomly selected
and a mutation will be used to Xi depends on the difference between Xr1 and Xr2, to
produce a mutant Xi. Then a crossover, based on the difference between current and
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Table 9.6 A basic
pseudocode of cuckoo search

Objective function f(x), x = (x1, ..., xd)T

Initial a population of n host nests xi(i = 1, 2, ..., n)

While (t <MaxGeneration) or (stop criterion);
Get a cuckoo (say i) randomly by Lévy flights;
Evaluate its quality/fitness Fi

Choose a nest among n (say j) randomly
if (Fi> Fj ),

Replace j by the new solution;
end

Abandon a fraction (pa) of worse nests
[and build new ones at new locations via Lévy flights];

Keep the best solutions (or nests with quality solutions);
Rank the solutions and find the current best;

end while

Table 9.7 A basic pseudocode of differential evolution

Initialization
Parameter limits should be defined
If not, parameter ranges should cover the suspected optimum

Generate the initial population (X(i, j, k))
For n=1: No. of Generation or Evaluation

For j=1: No. of Population
Choose two different individuals (Xr1 and Xr2)
V=Xbest + F ∗ (Xr1 - Xr2) (F is mutant factor)

U(n,k) =
{
X (n, k) if rand ≤ CR
V (n, k) otherwise

k=1: No. of Design Variables (CR is probability

of crossover)
End
Replace X with the generated U if it is better

End

mutated solutions, will be applied to generate the new Xi. When its fitness function
is better, Xi will change the reference solution with the best at any time (Table 9.7).

Genetic Programming

The Genetic Programming (GP) algorithm is a systematic method for getting
computers to automatically solve a problem starting from a high-level statement
of what needs to be done and some of the advantage are:

• It can find fit solutions in a very less time. (fit solutions are solutions which are
good according to the defined heuristic)
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• The random mutation guarantees to some extent that we see a wide range of
solutions.

• Coding them is really easy compared to other algorithms which does the same
job.

In next section GP will be explained in detailed with their applications.

9.3 Genetic Programming and Applications

9.3.1 Genetic Programming

Inspired by Darwin’s natural selection concept in the mathematical platform,
Genetic Programming (GP) is a meta-heuristic as well as evolutionary optimization
approach capable of solving optimization problems [36–39]. GP, which is an
improved version of the Genetic Algorithm (GA), was introduced by Koza in
1992 and so far has been used in many optimization problems such as the system
identification, controller design, modeling, neural networks and circuit design [40–
42]. The GP algorithm uses computer programs as members of its population
and displays them with a tree structure. Like the real trees, these trees consist
of branches and leaves, which in the algorithm’s terminology, they are called as
function and terminal, respectively. Each of these trees can represent a computer
program. In order to form the initial population, the set of functions and terminals
must first be defined for making the tree’s elements. The set of functions can
include mathematical, logical, conditional, loop, and arithmetic operators, while,
the set of terminals can consist of the fid and random numbers, variables or program
inputs. Also, two depths are considered for the tree as the initial and maximum
depths. The initial depth is defined as the maximum depth the trees might have
in the first generation and the maximum one is for controlling the highest depth
the trees can meet during the program execution after the implementation of the
genetic operators. Similar to the other evolutionary algorithms, the initial population
are randomly created in the genetic programming. Koza specifies three techniques,
namely grow, full, and what is referred to as “ramped-half-and-half” configuration,
for creating random initial population [36]. In grow method, primary individual
produced in such a way that they do not grow in length beyond the maximum
depth/length as specified by the user (local stopping criterion). The full method is
somewhat similar in process to the grow method, other than that the terminals are
guaranteed to all have a user-defined depth. Generally, the “ramped-half-and-half”
method is a combination of the full and grow approaches. It must be noted, the depth
of a node is mathematically translated to the number of edges from the root of that
specific node. The depth of the tree is considered as the depth of its deepest leaf. For
example, the tree of Fig. 9.3 represents 5 sin 3x.

After the creation of the trees in the initial generation, the fitness value of
each decoded tree evaluated based on described objective function. Since the first
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Fig. 9.3 Tree structure
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generation trees are created in a randomized manner, the average fitness is weak in
this initial generation, additionally the genetic operators should be used in order to
improve the population fitness. The two main operators in the genetic programming
algorithm are the crossover and mutation [36]. Crossover operator takes two parents,
cuts them from a random point, and swaps the fragments to produce two offsprings.
Mutation operator takes one parent, cuts it from a random point, and generates a
new tree in the cut point to form the offsprings. It must be noted that each of the
common selection methods such as tournament or roulette wheel can be used to
select a random individual as an input for GP operators. Figure 9.4 depicts the (a)
crossover and (b) mutation operations.

After applying the genetic operators on the population, all of the new and initial
population trees were collected in a pool and then, based on one of the selection
methods (tournament or roulette wheel), trees are selected to the number of initial
population and transferred to the next generation. If the end condition of the genetic
planning algorithm is not satisfied, the initial population will be replaced by the next
generation’s ones and this process will be repeated until the end of the algorithm.
Finally, the best founded tree (from the fitness point of view) during the algorithm
implementation is extracted as the optimum solution of the problem.

Like the other evolutionary algorithms, some important parameters must be
determined by the user to control the genetic programming performance. The
main control parameter is the size of the initial population, which represents the
magnitude of the initial search in the search space. The other parameters are the
initial and maximum depths, number of generations, probability of crossover and
probability of mutation.

9.3.2 Applications of Genetic Programming in Optimization

GP has proved its efficiency to solve a great diversity of problems in a variety
of domains such as, machine learning, pattern recognition, system identification,
controller design, circuit design, etc. In this section, some applications of genetic
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Fig. 9.4 Schematic of genetic operators

programming belong to the domain of controller design, system identification, and,
truss optimization.

Applications of Genetic Programming in Automated Design of Controllers

The early comprehensive efforts in using GP as a controller design approach
carried out by its inventor, John Koza. Koza well introduced genetic programming
as a promising evolutionary approach for design of robust controllers for many
types of industrial processes [39, 43–45]. He used GP methods for the automatic
combination and utility of both topology-based information and parameter-tuning
processes of different types of mathematical controllers in a parallel array for
variety. Although it can be concluded that the results generated through this method
by the author were interesting, however, due to computationally expensive nature
of his approach, many researchers tried to use GP in more efficient scenarios, In
this regards, Fukunaga et al. investigated application of simulation-based genetic
programming for evolution of controllers to ultimately perform high-level motion-
based tasks on a service robot [46]. GP is applied by Kobayashi et al. for the
nonlinear systems output regulation [47]. They used only output information to
design an optimal feedback controller based on inverse system modeling. Grosman
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and Lewin used a new approach to automatically generate Lyapunov function for
nonlinear system with maximum domains of attraction [48, 49]. They applied
the proposed approach on the analysis of two independent dynamic systems are,
namely, van der Pol’s equation and a model of an exothermic, continuous stirred
tank reactor. Chen and Lu employed GP approach to optimally derive the structure
and parameters of a robust system controller for interval types of plants, which
are based on the Kharitonov theorem [50]. Ibadulla et al. compared two symbolic
regression methods of conventional genetic programming and a variational approach
of genetic programming for control system synthesis of the two nonlinear systems
[51]. Balandina stabilized nonlinear duffing oscillator, as a famous nonlinear control
benchmark, by Cartesian Genetic Programming (CGP) which is program in a form
of a directed graph structure [52]. Dracopoulos and Effraimidis adopted genetic
programming into a complex, nonlinear helicopter control problem, for the purpose
of providing hovering functionality. This problem is high dimensional in nature and
illustrated its efficiency compared to other controller design methods, such as neuro-
evolutionary [53]. Bourmistrova and Khantsis proposed a flight control system
design optimization approach via genetic programming [54]. They developed a
methodology for design a controller that satisfied the objectives of the sea-based
recovery of a fixed-wing Unmanned Aerial Vehicle by ship. Maher and Mohamed
proposed an enhanced genetic programming algorithm for optimal controller design
concerning the initial population, the tree structure, genetic operations, and some
other new nongenetic operators [55]. GP is employed by Alfaro-Cid to design a
robust controller for a supply ship under environmental disturbances [56]. In this
way, the current and desired state of the propulsion and heading dynamics of a
supply ship are given as inputs, and controller generate the commanded forces
required to maneuver the ship. Barate and Manzanera presented various automatic
design of vision based obstacle avoidance controllers using GP [57]. Das et al.
used GP to evolve tuning rules for reduced process parameters, which are based
on a minimum time domain integral performance index [58]. Imae et al. proposed
a differential GP for design of robust optimal controllers by solving Hamilton–
Jacobi–Bellman (HJB), Hamilton–Jacobi–Isaacs (HJI) and Francis–Byrnes–Isidori
(FBI) equations [59]. Kumar and Balasubramaniam suggested a reduced calculus
optimal controller design approach for linear singular systems by solving the
matrix Riccati differential equation [60]. Nallasamy and Ratnavelu reported an
optimum controller design scheme for stochastic linear singular Takagi-Sugeno
fuzzy delay systems with quadratic performance using GP [61]. Kumaresan and
Ratnavelu introduced an optimal GP based controller design paradigm for stochastic
linear quadratic singular neuro Takagi-Sugeno fuzzy systems with singular cost
[61]. Mwaura proposed a new Gene Expression Programming (GEP) algorithm to
automatically develop robot controllers and robot morphology [62]. GEP utilized
two famous evolutionary algorithm, GA and GP, to precisely explore and exploit
the feasible search domain.



9 Genetic Programming Approaches in Design and Optimization. . . 385

Applications of Genetic Programming in Nonlinear System Identification

System identification and modeling of complex processes which use input–output
data have always attracted many research efforts [63–67]. Generally, techniques for
system identification are applied in a wide array of fields, in order to model and
predict the behavior of very complex systems. This is done using the given input–
output data for the problem. Extremely flexible tree representation of GP is useful
to derive mathematical equations or complete models of nonlinear systems.

Willis et al. used GP to develop empirical models of steady-state and dynamic
input–output of the chemical process [67]. Performance of the proposed approach
is demonstrated by solving two typical processes: a vacuum distillation column and
a twin screw cooking extruder. Togan and Baysec derived a robust model using
GP for modeling and prediction of the torque and brake specific fuel consumption
of a gasoline engine [68]. In this way, spark advance, throttle position, and engine
speed are selected as input variables of model. Comparing the obtained model with
those generated by artificial neural networks shown more simplicity and accuracy
of obtained model. Madar et al. used GP to generate nonlinear input–output models
of dynamical systems [69]. They applied Orthogonal Least Squares algorithm to
estimate the contribution of the branches of the tree to the accuracy of the model.
Saghafi and Arabloo proposed a novel compositional models based on GP to predict
the gas condensate compressibility factor below dew point pressure using more
than 1800 data series [70]. Cao et al. used GP embedded by genetic algorithm to
discover and optimize the tree structure for modeling of nonlinear dynamic systems
including systems of ordinary and higher-order differential equations for a number
of practical example [71]. Hinchliffe proposed a multiple basis function GP (MBF-
GP) algorithm and compared its performance with the standard algorithm [66].
The steady-state and dynamic modeling ability of MBF-GP and neural networks
compared based on three nonlinear input–output data tables including, time series
with/without time delay, and, Cooking Extruder. Jamali et al. proposed a new
multi-objective genetic programming (MOGP) for Pareto optimal modeling of
some complex nonlinear systems using some input–output data [42]. MOGP used
a diversity preserving mechanism to get more uniformly Pareto front and a real
number alteration operator to increase its exploration ability. In this way, two
nonlinear mathematical models, each using different input–output datasets, for
an explosive cutting process have been considered separately in a three-objective
optimization processes. The pertinent conflicting objective functions that have been
considered for such Pareto optimizations are namely, training error (TE), prediction
error (PE), and the length of tree (complexity of the network) (TL) of the GP
models. In another study, they used MUGP algorithm for robust Pareto modeling
and prediction of complex nonlinear processes using some input–output data table
[38]. Robust modeling consider uncertainties included in measured data to obtain
more robust models. To achieve more robust model, the mean and standard deviation
of training error and prediction error are considered in robust Pareto modeling.
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Applications of Genetic Programming in Truss Optimization

The truss optimization searches for an optimal structure having the optimal stress
distribution in the elements under the static and dynamic constraints. Trusses are
generally investigated from the three perspectives for the optimization purpose.
The topology optimization viewpoint looks for the best interconnection between
the structure nodes and examines the presence or absence of the elements in the
design space. Sizing optimization intends to optimize the cross-sectional areas for
the truss members. Finally, the shape optimization seeks for optimal geometric
nodal coordinates in the design space. In short, the combination of topology and
size optimization of a truss, optimizes the cross-sectional dimensions of its elements
while simultaneously utilizing new elements or detecting the current elements
as redundant. In all of these viewpoints, the aim is to optimize one or more
objective functions, including the structure’s weight, volume, and displacement.
Converse to this idea, the structure optimization problem is generally constrained
to the static and dynamic constraints, including the maximum allowed stress
in the structural elements, maximum allowable displacement of the structure’s
nods, natural frequency of the structure and buckling. Two viewpoints are usually
considered for displaying the design space. The first one is named by convention
as the ground structure, which specifies all the boundary conditions of the problem.
On the other hand, it draws the structure with all the possible connections, specifies
the loading and type of the supporting nodes [72]. Unlike the first viewpoint, the
second one, which is the open space design, specifies only the boundary conditions
including the loading and nodes and does not provide any information on the
possible connections among the structure’s nodes. As a result, design in an open
space is carried out without prior knowledge.

The subject of trusses optimization has attracted many researchers in recent
decades. Many conventional (traditional) optimization techniques have been imple-
mented for optimizing the trusses such as the sensitivity analysis and approximate
methods [73–75]. Although being powerful and effective for small structures, these
methods were weak in solving more complex and non-convex problems [37, 76].
This is due to the inability for displaying the internodes’ connections. After devel-
oping meta-heuristic techniques such as evolutionary algorithms, these methods
have proved their ability to find an optimal global solution of the problems and
many researchers have used these methods during the last two decades for solving
the structural optimization problems [77]. Many studies have implemented the
evolutionary algorithms in order to solve the structural optimization problems. One
of the problems with the evolutionary algorithms is that they are computationally
expensive compared to the conventional approaches. However, this issue does not
matter with the development of computer systems and parallel processing methods.

Le et al. combined Electromagnetism and Firefly algorithms and proposed a new
algorithm called Electromagnetism-like Firefly Algorithm (EFA) to solve discrete
structural optimization [78]. The initial population in the proposed algorithm con-
sisted of electrified fireflies having active or inactive behaviors based on objective
function evaluation. In active mode, a firefly can fly randomly to any place while
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in the inactive mode it only moves by the electromagnetic interactive forces.
Population diversity in EFA increased by using a novel adaptive interactive force.
Moreover, two new mechanisms are, namely, current-to-best and bidirectional-
searching suggested to boost exploration–exploitation and local search abilities of
the proposed algorithm, respectively—the capability of the new algorithm in finding
global optimum design demonstrated by six popular truss optimization problems.

Prayogo et al. proposed a differential Big Bang–Big Crunch (DBB-BC) algo-
rithm and employed it for optimum design of some construction-engineering
problems such as a tubular column, 3-bar truss, 25-bar and 72-bar tower truss
[79]. DBB-BC used a combination of BB-BC algorithm, differential evolution
algorithms, and neighborhood search to get better performance in the point view
of exploration and exploitation.

Discrete sizing optimization of a structure is studied by Gholizadeh et al.
using two improved versions of Black hole and Multiverse algorithms [80]. They
improved the mechanism of regenerating, the radius of the event horizon, and,
updating equation in original algorithms to improve its deficiency in solving opti-
mization problems including discrete design variables. Three benchmark problems
including steel trusses, steel frames, and reinforced concrete frames are employed
to clarify the efficiency of the proposed algorithm.

Cao et al. proposed an improved subspace harmony search (SHS) and employed
a modified version of Deb-rule-constraints-handling for optimum design of truss
structures with discrete cross sections [81]. They suggested three new rules for
memory consideration, pitch adjustment, and, randomization of basic algorithm’s
operators to improve its search space exploration. To use information of the
infeasible domain, they modified the Deb-rule-constraints-handling, and infeasible
design with slight violations of constraints are considered as a feasible design. They
compared search capability and computational efficiency of the proposed algorithm
with other state-of-the-art evolutionary algorithms based on for weight minimization
of truss structure problems.

Soh and Yang introduce a new tree expression for truss structure and applied it to
the problem of simultaneous topology, shape and size optimization of trusses with
static constraints [82]. They solved two well-known examples in truss optimization
by proposed algorithms and obtained lighter trusses in comparison of conventional
optimization methods. They also improved performance of his proposed algorithm
by using fuzzy logic expert system to control the iteration process of GP.

Zheng et al. utilized linear GP to find the optimum nodal locations and member
sizing of planer and space trusses [83]. Furthermore, a grammar-based form of GP
has been employed to find fully optimized solutions made of elements with real-
word cross sections. This approach trapped truss benchmark problems without clear
boundary conditions.

Assimi et al. presented a genetic programming approach (SOGP) including an
alteration operator and used it to optimize the mass of a truss with static constraints
[76]. They demonstrated that owing to non-presence of mathematical operators
in possible results (tree expressions), it is worthwhile to employ a modification
operator to revise the tree components probabilistically and improved the global
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search ability of the algorithm. This operator converts the real values presented in
the tree by a predefined probability. It can be looked like as a classical one-point
mutation operator; although, this operator can be characterized as a custom-defined
one-point mutation because it incorporates the current value of the desired member
in the process of mutating it to a new member. This work also depicted that GP
could detect redundant truss nodes and members in the design space. They showed
that GP could achieve lighter solutions with unique topologies than other state-of-
the-art approaches.

Afterward, they suggested a GP combined with Nelder–Mead (HGP) and applied
it to the problem of size optimization of trusses with both static and dynamic
constraints for topology and size optimization which is a more complicated problem
comparing with earlier problems [37]. The claimed that the alteration operator used
in SOGP is dependable on a random variable and might not perform effectively
in a more non-convex optimization problem and, GP may reach a local optimum.
Hence, they combined the Nelder–Mead as an operator with GP to attain lighter
trusses through the generations and strengthened GP abilities to obtain better
results which improved the performance of the algorithm in comparison with other
approaches such as SOGP [76]. It is worth mentioning that this study only observed
the size and topology optimization of trusses under natural frequency constraints
and static design limitations. Because of this matter, the design variables in test
problems contain only the size of truss elements. Thus, truss optimization dealt with
shape optimization (layout modification) stayed unchallenged. As a matter of fact,
incorporation of shape optimization design variables into the optimal truss design
problem makes the optimization search space more non-convex and probably may
direct the algorithm to a false convergence.

Recently, Assimi et al. examined GP for truss optimization problem from the
multi-objective point of view [84]. This approach will yield to provide a set of
potential optimum truss designs, which helps the designers to choose the proper
design based on the associated criteria. They claimed that HGP approach hybridized
with Nelder–Mead as a local strategy is highly computational, and they proposed
another approach to overcome the pitfall of no change in the real values composing
the tree elements. This study incorporated an adaptive mutant factor to enhance the
GP performance. This operator (which is motivated by the differential evolution
algorithm) guides potential results to a new area in the search space based upon an
adaptive mutant factor. This adaptive mutant factor aims to lead GP to explore more
globally in early iterations and exploit more locally later.

9.4 Application of Genetic Programming in Mechanical
Design of Truss Structures

This section defines the problem of truss optimization with discrete design variables.
In this part, the objective function and constraints of the optimization problem



9 Genetic Programming Approaches in Design and Optimization. . . 389

are presented. Following that, the algorithm of Discrete version of Structural
Optimization by Genetic Programming (DSOGP) is described.

9.4.1 Problem Statement

The truss optimization problem is a nonlinear problem subjected to different
constraints such as the kinematic stability, maximum allowable stress in the truss
members, maximum allowable displacement in the truss nodes, critical buckling
load or natural frequency constraints. These constraints can divide the search space
of the optimal design of trusses into feasible and infeasible parts. This study
considers discrete design variables for optimization problem besides the structural
constraints. It means that the optimization problem is subjected to satisfy existing
provisions in the design codes for constructional constraints to make it applicable.
Finally, the final optimum design should be found in the feasible search space
(without violating the design constraints) incorporating optimum discrete design
variables.

The term of the ground structure has been used in the literature [85] to illustrate a
truss problem in structural form. The ground structure represents the default layout
of a truss. It defines the geometry of the design space including the position of nodes
and how each node can be connected to other nodes by truss members. Moreover,
the ground structure signifies the boundary conditions of the problem such as how
external forces are exerted on the truss.

Every node in a truss can be categorized into two types: essential and optional
nodes. Essential nodes must be present in each feasible solution including the
final optimum design. These nodes either carry the loads or support the structure.
Other nodes in the design space which are not essential are known as the type of
optional [86].

Figure 9.5 depicts a ground structure of an example truss. This figure shows that
the truss consists of six truss members incorporating four nodes. Nodes 1 and 2
support the truss, and node 3 carries the external load on it. Hence these three nodes
are identified as essential nodes. This figure also presents the connectivity table
among the nodes and how each node can be potentially connected. Interestingly, in
this sample truss, all nodes are connected to all other nodes. The ground structure
of this sample truss also defines the geometric position of nodes in the design space,
which plays a key role in the determination of the length of each truss member.

In discrete size and topology optimization, we aim to minimize the weight of
the truss. The weight of a truss is defined as the summation of the weight of each
truss member. The weight of each member is dependent on the material density,
length, and the size of the member. The optimization algorithm for this problem
looks for the optimum cross-section areas to determine the weight of each truss
member. Simultaneously, it is important to find how the nodes are connected in the
final optimum design. In other words, the optimization algorithm aims to minimize
the mass of the truss while it looks for the optimum size of each member and decides
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Fig. 9.5 The ground
structure of a six-member
truss

to keep or eliminate each truss member. It should be noted that different constraints
have restricted the search space. For instance, the optimization algorithm should
distribute the stress in the truss members and the displacement in truss nodes without
violating these constraints. The discrete space of design variables also makes the
feasible section of design space narrower. Equation (9.5) states the optimization
problem formulation for sizing and topology optimization of trusses with discrete
design variables.

Find A = {A1, A2, . . . , Am}
To minimize f =

m∑
i=1
ρiliAi + P

Subjected to G1 ≡ Truss has all essential nodes
G2 ≡ Truss is kinematically stable
G3 ≡ σi ≤ σmax

i i = 1, 2, . . . , m
G4 ≡ δi ≤ δmax

j j = 1, 2, . . . , n

G5 ≡ Ai ∈ D i = 1, 2, . . . ., m

(9.8)

where P defined as follows,

P =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

109 if G1 is violated,
108 if G2 is violated in the first step,
107 if G2 is violated in the second step,

105
( m∑
i=1

|〈G3i〉| +
n∑
j=1

∣∣〈G4j
〉∣∣ otherwise

(9.9)

where f denotes the objective function which is the sum of truss weight and its
corresponding penalty (P) if a truss violates the constraints.

Definition of truss optimization problem constraints and how to tackle them are
as follows which is adopted 710 from [86] and penalty values are presented in
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Eq. (9.6). m and n denote the number of truss members and nodes. ρi, li, and Ai

signify the material properties, length, and size of the ith truss member, respectively.
Constraint G1 checks if a truss includes all the essential nodes defined by the

ground structure. If the truss violates this constraint, it results in a highly infeasible
truss and the algorithm penalizes this truss with a considerable P with 109 added to
its truss weight to ignore it with high probability in the evolution process.

Constraint G2 makes sure that the truss is kinematically stable. As this process
is computationally expensive, it is suggested to be handled in two steps [86]. In
step 1, the algorithm calculates the degree of freedom in the truss, if it returns a
positive value, the truss is not static and is a mechanism and a penalty of 108 will
be added to its weight. Otherwise, if the degree of freedom is a nonpositive value,
the algorithm checks the positive definiteness in the stiffness matrix of the truss. If
the truss violates the kinematic stability in this step, a penalty of 107 will be added
to its weight.

Other constraints of the problem are the maximum allowable stress and max-
imum allowable displacement in the truss which form G3 and G4 constraints,
respectively. These constraints check if the stress in truss members and displacement
in truss nodes exceed the maximum allowable value. To handle this constraint,
bracket operator penalty has been used. Bracket operator penalty is a prominent
approach to handle constraints in one term and normalizes constraint values when
their order of magnitude is different [87]. Hence, the bracket operator penalty for a
constraint as gk(x) ≤ gallow

k (x) is defined as follows,

|〈gk(x)〉| = gk(x)

gallow
k (x)

− 1 ≤ 0 (9.10)

So, if this term returns a negative value, the bracket operator penalty is zero;
otherwise, it takes the absolute value of the above equation as the bracket operator
penalty.

Therefore, G3 and G4 assure that if a truss violates maximum allowable stress
and displacement in the truss, a corresponding penalty based on bracket penalty
term which is commensurate with the degree of constraint violation is added to the
weight of truss.

G5 is the fabricational constraint, which denotes that the size of each member
should be chosen from a predefined set of discrete sizes (D). Because genetic
programming generates its initial population based on this predefined set, this
constraint is satisfied automatically.
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9.4.2 Discrete Version of Structural Optimization by Genetic
Programming

This section defines the proposed genetic programming approach for truss optimiza-
tion with the discrete size of members by the algorithm of a Discrete version of
Structural Optimization by Genetic Programming (DSOGP).

Initialization

Genetic programming requires a set of functions and terminals to generate its initial
population.

Each genetic programming individual (as an expression tree) should represent
a solution for the truss optimization problem in the search space. Therefore, each
should represent a truss for this problem in the design space. Due to this, genetic
programming elements in an expression tree should be the truss members and truss
nodes.

Equation (9.8) defines the function and terminal sets for this purpose:

Function set = {A1, A2, . . . , Am}
Terminal set = {N1, N2, . . . , Nn} (9.11)

Nq denotes the position of qth node in the design space with Cartesian coor-
dinates (xq, yq, zq). Therefore, the generated expression tree for an individual in
the proposed approach includes the cross-sections sizes and nodes position in the
design space. Interestingly, Ai has two meanings. First, Ai denotes a binary function,
which takes two arguments (which are nodes) and connects these two. Moreover, Ai

denotes the size of the labeled ith member in the tree. For instance, a sample tree
expression is shown in Fig. 9.6; if we suppose A5(N4, N2) = 19.9 in.2, it means that
there exists a member labeled as the fifth member in the truss connecting nodes 2
and 4 with the cross-section size of 19.9 in.2

DSOGP takes the ground structure of the truss test problem as an input to find
out the geometry and boundary conditions of the problem. Next, it generates a
population employing the function and terminal sets stated in Eq. (9.8). DSOGP
generates its initial population using the ramped half-and-half approach [88] and
may contain feasible or infeasible individuals.

Decoding

It is essential for DSOGP to decode its population from the tree expression form
to the truss form successfully. It should be noted that each expression tree should
be mapped into one unambiguous truss form to maintain the consistency of the
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algorithm. For this purpose, the output of a binary function present in the tree,
namely Ai is defined with two rules as follows [82],

1. If Ai is connected with a branch from top left, the output of Ai is the element at
its below right.

2. If Ai is connected with a branch from top right, the output of Ai is the element at
its below left.

Decoding steps of the sample tree expression (depicted in Fig. 9.7) is as follows,
It is evident that this tree includes six binary functions (A1, A2, . . . , A6) and

four terminals (N1, N2, . . . , N4). The decoding process should be started from the
deepest level and the left side, as shown in Fig. 9.7.

Step 1. A5 is connecting N4 and N2 in Fig. 9.6; so there exists a truss member
labeled as the fifth member with size of “A5” which connects nodes N4 and N2 in
the design space.

Fig. 9.6 A expression tree of a sample individual in DSOGP population
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Step 2. A3 is connecting N2 and N1. Therefore, there exists a truss member
labeled as the third member with size of “A3” which connects nodes N2 and N1
in the design space.

Step 3. To decode the rest of the tree, the output of A5 and A3 should be
determined. A3 follows the first rule because it has a connection from the top left.
Therefore, the output of A3 is the terminal at its left which is N1. Conversely, the
output of A5 is N4. Hence, A2 is taking A5 and A3 as arguments which their outputs
are N4 and N1, respectively. Therefore, A2 connects nodes N4 and N1 in the design
space.

Step 4. Following the abovementioned steps for the right hand of the tree, the
sample tree shown in Fig. 9.6 will be decoded into the sample truss shown in
Fig. 9.7.

Fitness Evaluation

After the decoding steps, the competence of an individual in solving the optimiza-
tion problem should be evaluated. In this study, fitness function defined in Eqs. (9.5)
and (9.6) measures the weight of a truss and penalizes an individual if they violate
the constraints. To evaluate the constraints such as kinematic stability in the second
step, distribution of stress in truss members and displacement of truss nodes, finite
element analysis has been done. This study uses OpenSEES [89] for the structural
analysis. OpenSEES is a comprehensive framework which provides numerous types
of elements, materials and numerical solvers to analyze the trusses obtained after
decoding.

Genetic Operators and Selection

DSOGP assigns the fitness value to each expression tree in the population and
performs the swap tree crossover and mutation to produce an offspring pool. Hence,
DSOGP employs the tournament selection and selects the new population. Next,
if the termination criterion is satisfied, DSOGP designates the best-found solution
during the run as the ultimate optimum design. Otherwise, the current population
is replaced with the new population and DSOGP reiterates the above steps till
termination criteria are met.

9.5 A Case Study for Optimal Mechanical Design of Truss
Structure

This section provides an example of Discrete version of Structural Optimization
by Genetic Programming (DSOGP) algorithm for the optimal mechanical design
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Table 9.8 Setting
parameters for DSOGP

Parameters Value

Population size 100
Probability of crossover 80%
Probability of mutation 10%
Tournament selection size 4
Termination criterion Maximum generation
Maximum generation 500

Fig. 9.8 The ground
structure for ten-member
truss problem
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of truss with discrete design variables. The proposed approach has been applied to
a planar truss optimization problem. The obtained results are compared with other
state-of-art methods available in the literature and resulted in better solutions for
size and topology optimization of trusses.

Because genetic programming is a stochastic algorithm, each problem has been
tested for 30 times, the best results have been designated as the ultimate optimal
design and reported in the corresponding tables and figures. Moreover, Table 9.8
lists the setting parameters used in DSOGP for this study.

Ten-member truss problem is a well-known benchmark for structural optimiza-
tion. Figure 9.8 depicts the schematic of the ground structure of this truss. As the
name of the benchmark suggests, it consists of ten members and six nodes. Nodes
1 and 4 support the truss, and nodes 2 and 3 carry the exerted forces on the truss.
These external forces are downward loads with P = 100 kips. So, there exist four
essential nodes in the problem with two optional nodes.

The material density and the modulus of the elasticity are defined as 0.1 pci
and 30,000 ksi, respectively [90]. The truss is subject to maximum allowable
displacement and stress with an absolute value of 2 in. for both directions and 25 ksi
for both tension and compression, respectively.

The design variable set include D = [1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88,
2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80,
4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 16.90, 18.80,
19.90, 22.00, 22.90, 26.50, 30.00, 33.50] (in.2) which are 42 selected sizes selected
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Fig. 9.9 The convergence plot for the best solution for ten-member truss problem

from the American Institute of Steel Construction (AISC) design code [91]. This
case study has been studied previously by [90, 92–97].

Figure 9.9 illustrates the progress of the best-found solution obtained by the
proposed algorithm during the evolution compared with the improvement of the
best solution reported by [90, 93]. This figure states that DSOGP initially found
a feasible solution with the weight of 8974.38 lbs. and evolved to the best-found
solution with the weight of 4980.10 lbs after 358 generations. Despite, DSOGP
required more iterations to converge to a solution, but this solution is remarkably
lighter and better than the other two methods with 9.3% improvement.

Table 9.9 presents the obtained results compared with the other methods applied
to this problem. Inspection of the data in this table states that DSOGP has found
a unique layout incorporating six truss members into the ultimate design and
identifying four truss members as redundant members. This unique topology has
been shown in Fig. 9.10. It also demonstrates that even though the design variables
are discrete, but DSOGP could find a solution with fewer elements leading to lighter
truss design because it employs a tree-based expression to explore the search space.
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Table 9.9 Comparison of optimal results for the ten-member truss

Size of
members
(in.2) GA HPSO TLBO MBA aeDE HHS EFA DSOGP

[92] [90] [94] [93] [95] [96] [97] Our study

A1 33.50 30.00 33.50 30.00 33.50 33.50 33.50 30.00
A2 1.62 1.62 1.62 1.62 1.62 1.62 1.62 –
A3 22.00 22.90 22.90 22.90 22.90 22.90 22.90 22.00
A4 15.50 13.50 14.20 16.90 14.20 14.20 14.20 13.90
A5 1.62 1.62 1.62 1.62 1.62 1.62 1.62 −
A6 1.62 1.62 1.62 1.62 1.62 1.62 1.62 −
A7 14.20 7.97 7.97 7.97 7.97 7.97 7.97 7.22
A8 19.90 26.50 22.90 22.90 22.90 22.90 22.90 22.00
A9 19.90 22.00 22.00 22.90 22.00 22.00 22.00 22.00
A10 2.62 1.80 1.62 1.62 1.62 1.62 1.62 –
Best
weight
(lbs)

5613.84 5531.98 5490.74 5507.75 5490.74 5490.74 5490.74 4980.10

Average
weight
(lbs)

N/A N/A 5503.21 5527.30 5502.62 5493.49 5528.23 4983.51

Standard
deviation
(lbs)

N/A N/A 20.33 11.38 20.78 10.46 18.37 11.76

Improve-
ment (%)

11.29 9.98 9.30 9.58 9.30 9.30 9.30 –

Constraint
violation

None None None None None None None None

Fig. 9.10 The optimal
topology obtained for
ten-member truss problem

9.6 Conclusion

Engineering optimization problems are mostly involving with different variables
under complex constraints and extremely nonlinear. These constraints might be
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written as simple bounds, or as nonlinear relationships between them. This chapter
provided basic knowledge of most popular conventional and heuristic optimization
approaches, and how they are applied in common optimization problems in
engineering applications. The heuristic optimization approaches have been devised
and developed for solving a complex problem more quickly when conventional
optimizations are too slow, or for finding an approximate solution when conven-
tional approaches fail to find any exact solution. Their success is due largely to
their most important features, namely the need of minimal additional knowledge on
the optimization problem and a highly numerical robustness of algorithms. Among
of the heuristic optimization approached, Genetic programming has been shown
that it can be considered as shortcut optimization approaches to achieve by trading
optimality, completeness, accuracy, or precision for speed solving of engineering
problems. In order to optimal mechanical engineering design of truss with discrete
design variables, genetic programming has been constructed. The results showed
that the genetic programming uses high-level building blocks of variable length and
their size and complexity could be changed during breeding. Genetic programming
works well in a large number of different cases and has many potentials to solving
applications of mechanical engineering optimization.
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Chapter 10
Optimization of Dynamic Response
of Cantilever Beam by Genetic Algorithm

Javad Zolfaghari

10.1 Introduction

Structural design involves developing a structure that meets specific performance
criteria. Such a design can usually be improved by using numeric optimization
procedures. In the design of many important mechanical and structural systems,
dynamic response must be considered. In order to obtain an optimal dynamic
response, natural frequencies and mode shapes or other dynamic behaviours such
as velocity of an existing model may have to be altered in a prescribed manner.
Optimization methods for dynamic response of a system are not routine or well
established, particularly when dealing with the velocity and acceleration response.

Since, in most low-frequency vibration problems, the response of the structure to
dynamic excitation can be expressed as a function of its fundamental frequency
and mode shape, a large amount of literature is related to the optimization of
structure with frequency constraints. Accordingly, most of the papers in the field
of optimization of dynamic response of structures deal with the optimum design
problem in which objective or constraint quantities are associated with the vibration
phenomena (e.g. natural frequency).

As a preliminary step in non-frequency optimization, maximizing the tip velocity
response of a cantilever beam was studied in this chapter. The optimization
investigated in this chapter has been delimited to adjusting the height of the beam
while the other parameters are fixed. This classic example is chosen because it gives
us a perspective to industrial problem with complexity in constructions and any
accessibility to implicit objective function and constraints both equal and unequal.
Hence, by developing a flexible method for such problems, we can obtain a precise
solution for a number of unresolved problems, at the moment.
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However, firstly, which zero-order optimization lead us to a concept for
approaching a solution is analysed by using methods such as scaling which is
the main factor of decreasing generality. Secondly, it is found that genetic algorithm
could be a reliable method among others. Finally, efficient penalty function and
powerful nonconventional method to achieve global optimum during generalization
is presented.

10.2 Dynamic Response Analysis

A dynamic response analysis is the solution of the equation of motion. Using the
finite-element formulation, the linear equation of motion in matrix notation may be
generally expressed as

[M] {ü(t)} + [C] {u̇(t)} + [K] {u(t)} = {F(t)} (10.1)

where

[M] is the mass matrix
[C] is the damping matrix
[K] is the stiffness matrix
{F(t)} is the vector of applied loads, a function of time
{u(t)} is the nodal displacement vector, a function of time (unknown)
t is the time variable

If n is the number of active degrees of freedom (DOF) in the system, then [M],
[C] and [K] are of order n.

In the absence of damping and external load, the equation is reduced to

[M] {ü} + [K] {u} = {0} (10.2)

For a linear structure, the displacements due to free vibration are harmonic and
of the form

{u} = {ϕ} sin ωt (10.3)

where {∅} is an n-dimensional vector and the natural circular frequency of vibration
(rad/s). Substituting Eqs. 10.3 into 10.2, one obtains the generalized eigenvalue
problem

(
[K] − ω2 [M]

)
{ϕ} = {0} . (10.4)

Static response can be viewed as a special case of dynamic response in which the
accelerations and velocities are very low that the inertia and damping forces can be
neglected.
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One of the destructive phenomena in a structural system is the state of response
in which the response amplitude of an undamped structure subject to a harmonic
force excitation tends to infinity. Resonance occurs when the exciting frequency
coincides with one of the natural frequencies of the system. In order to limit the
response of structures to dynamic loads, the natural periods of system must be less
than the threshold (critical period). Similarly, tall buildings are subject to resonance.
Therefore, the natural frequency of a tall building should be less than the critical
period at which wind vortices are shed to avoid resonance with the forces induced
by vortex shedding.

Solving an eigenvalue problem for frequencies is usually an integral part of
analysing the dynamic response of a structure. Finite-element method is often
incorporated as a part of the optimal design process. One of the difficulties in these
analyses is that the finite-element model changes during the optimization process
and the design and analysis iterations become greatly complicated. Generally, one
can classify the dynamic response of structures into two categories: deterministic
(prescribed) and nondeterministic or ‘random load’. Deterministic loading itself is
divided into periodic and nonperiodic loading or

• Harmonica steady-state input
• Transient response

Three dynamic analyses, namely direct frequency response, modal frequency
response and modal transient response, have been discussed in various references.
Another classification has been made in step-by-step integration and modal analysis.

10.2.1 Modal Analysis

The process of determining the natural frequencies and mode shapes of a system
is termed as modal analysis. Natural frequencies and mode shapes are obtained by
solving the following equation:

(
[k] − ω2

i [M]
)
{#}i = 0 (10.5)

where

[k] is the reduced stiffness matrix of the structure
[M] is the reduced mass matrix of the structure
ωi is the circular natural frequency of the mode i
{ψ}i is the reduce mode shape vector of mode i
{ψ}i is often normalized such that

{#}Ti [M] {#}i = [I ] (10.6)
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Modal analysis provides the vibration characteristics of a structure. Usually a
modal analysis is required for starting a more detailed dynamic analysis, such as a
transient dynamic analysis. Modal analysis is also important in designing a structure
for dynamic loading conditions.

10.2.2 The Eigenvectors

The displacement solutions of the equilibrium equation for free, undamped vibra-
tions are defined as eigenvectors. The eigenvalues represent the natural frequencies
of the system and the eigenvectors, the corresponding mode shapes.

There are n eigen solutions to equation
(
ω2

1, {ϕ1}
)
,
(
ω2

2, {ϕ2}
)
,
(
ω2

3, {ϕ3}
)
, . . . ,(

ω2
n, {ϕn}

)
. ω2

i are the eigenvalues, which represent the square of the natural
circular frequency of the system, and {ϕ}i are the eigenvectors, which represent
the corresponding mode shapes.

10.2.3 Number of Modes

It is evident that if all n modes are considered in the solution of the discretized
equilibrium equations, then the solution will be exact. In this case, however, no
reduction in the size of the problem is achieved.

Practically, however, all n modes need not to be considered because it is unlikely
that all of them will contribute significantly to the response of the system. In
most cases, a reasonably good approximation to the response can be obtained by
considering only a fraction of the total number of modes.

10.2.4 Dynamic Analysis Methods

The numerical methods available to solve the equation for a transient dynamic
analysis are classified into

• Direct integration
• Mode superposition

Direct Integration Method

In this method, the equilibrium equation is solved at discrete time points in a
step-by-step manner. Moreover, a particular variation of displacements, velocities
and accelerations is assumed between any two time points. At a given time point,
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all equations are coupled and solved simultaneously. Three different approaches
commonly used in a step-by-step integration procedure are categorized as follows:
linear acceleration, Newmark’s β and Wilson’s θ .

Mode Superposition Technique

Mode superposition is one of the techniques used to determine the dynamic
response of linear structures. Computation time is significantly saved when the
mode superposition method is used because usually only the first few modes need
to be considered for a good approximation to the solution. The accuracy of the
solution, however, depends on the number of modes included in the analysis.

10.3 Optimization of Dynamic Response

The optimum design of structures for dynamic response usually involves more
difficulties than the optimization of statically loaded structures. These difficulties
are due to the fact that the displacements, velocities and accelerations are often
related to the objective function and the constraints which, in turn, are, in general,
implicit, nonlinear or a black box situation. The algorithm may query the value f (x)
for a point x, but it does not obtain gradient information, and, in particular, it cannot
make any assumptions on the analytic form of f (x) functions of the design variables.

Optimum design methods in dynamic response can be classified as matrix struc-
tural analysis and nonlinear optimization techniques [1]. Cost, volume (weight),
maximum values of the displacement, velocity, acceleration, stress or displacement
(during a prescribed time interval) are considered as the objectives for the optimum
design of structures in dynamic response.

The first task in an optimization procedure is to identify the most applicable
dynamic response in order to define cost functions and then begin to formulate
the specific trial design. Once the problem formulation task is accomplished, the
designer has to concentrate on the available solution techniques to find the optimum
design.

The state of the system in dynamic analysis is time dependent and can be
described by a state variable vector. Also, performance and failure constraints must
be satisfied for all time in the entire interval. The designers might have to change the
design criteria in order to obtain better solutions or convergence of the solutions. In
this case, they may have to set up a new optimization procedure for a new design.

Although ongoing research in the area of analysing dynamic response and
improving optimization procedures has had a significant growth over the past
20 years, the capability to perform dynamic response optimization is still in a very
early phase. Most of the papers in the field of optimization of dynamic response
of structures deal with the optimum design problems in which objective or con-
straint quantities associate with vibrational phenomena (e.g. natural frequencies).
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Szyszkowski and King [2] and Grandhi and Venkayya [3] are amongst the numerous
researchers who have treated frequencies in the objective function and constraints
in their optimization procedure, respectively. Olhoff [4] determined the distribution
of structural material of transversely vibrating beams or rotating circular shafts,
such that maximum natural frequency or critical speeds are obtained. Instead of
defining the natural frequency or critical speed in the objective functions, he solved
an equivalent problem where the volume is minimized for a given natural frequency
or critical speed. Niordson [5] found the best possible tapering of a simply supported
beam, which for a given volume would have the highest possible value of the natural
frequency for the lowest mode of lateral vibrations.

In structural optimization, Venkayya et al. [6], Khan and Willmert [7] and a
few others applied the optimality criterion method to structural design problems of
natural frequency constrains. Jan and Truman [8] considered the design of structural
systems under multiple natural frequency constraints. A numerical procedure was
developed by Turner [9] for minimum weight structures with specified natural
frequencies. In that procedure, a finite-element idealization was employed, and
the governing nonlinear equations were solved by an iterative procedure. He
also employed Lagrange multipliers to introduce the free vibration equation as
a constraint function. Later, Khan et al. [10] developed two optimality criterion
techniques for the minimum weight design of mechanical systems subject to stress
and natural frequency constraints. They applied the techniques, for instance, to
a cantilever beam with concentrated mass, and they considered the area of each
element as design variable. They concluded that optimality criterion techniques
resulted in a substantial saving in computational times compared to standard
nonlinear programming techniques. Recently, Truman and Petruska [11] applied
optimality criteria (based on the Kuhn–Tucker condition) for an arbitrary dynamic
loading to structural systems. In their work, the objective function is the weight
of the structure and the constraints can be stresses, displacements and natural
frequencies, as well as side constraints. The algorithm used consists of several
steps that involve solving the system of ordinary differential equations [discretized
equation of motion, Eq. (10.1)] using Newmark’s methods and solving the system
of equations to get the Lagrange multipliers.

Paeng and Arora [12] discussed the optimization of mechanical systems under
dynamic loadings by using the multiplier methods. They defined an augmented
function for the dynamic response optimization problem and developed the design
sensitivity analysis for that function. Chahande and Arora [13] studied the multiplier
method (also called the augmented Lagrangian method) for optimum design of
mechanical and structural systems subjected to dynamic loads. In this work,
three types of constraints have been considered: equality, inequality and explicit
bounds. The basic idea of the method is to transform the constraint optimization
problem into a sequence of unconstrained problems. The augmented function for the
unconstrained problem was defined using the objective function and the constraint
functions of the original problem and multipliers for constraints. The multiplier
algorithm used has been successfully applied to several test problems.
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It is interesting to note that the optimized shapes are not always intuitive. In
Johnson et al. [14], for instance, the optimum thickness of a cantilever tube excited
in torsion by a harmonically varying load is at its minimum at the root and has a large
value at the tip. Again, in a study by Brach [15], the optimized shape of a cantilever
beam for minimum tip deflection subjected to an impulse load at the tip requires a
relatively large mass (42.4% of the total) directly under the load (at the tip).

10.4 Presentation of Classic Example

The cantilever beam selected in this chapter is a rectangular cross-sectional alu-
minium beam, with lumped mass on the tip. The beam is released from a deflected
state equivalent to the deflection created by locating a 100 kg lumped mass at the tip.
Through the dynamic analysis, a 30 kg lumped mass remained at the tip. The width
of the beam is 0.5 m, the material of the beam has been assumed to be linearly elastic
with a density of 2710 kg/m and a modulus of elasticity of 69 GPa. The structures
here are 2-D elastic beams. For analysis purposes, a finite-element model of the
beam has been defined. The software package ANSYS was employed to determine
the dynamic response of the beam. The research by Abolbashari [16] showed the
accuracy of dynamic response of cantilever beam.

The cantilever beam was modelled with 10 elements as shown in Fig. 10.1.
The design variables are the heights of the elements (thickness of cantilever beam)
which are varied to maximize the tip velocity. The lower bounds for the design
variables are given in Table 10.1. The beam is subjected to both equality and
inequality constraints. During the optimization procedure, the volume (0.098 m3),
width (0.5 m) and length (3.5 m) of the beam are held constant (equality constraint),
and the maximum stress is checked, so that the allowable stress of 100 MPa,
which represents the yield stress of annealed aluminium, is not exceeded (inequality
constraint).

Fig. 10.1 Discretization of a
cantilever beam



410 J. Zolfaghari

Table 10.1 Minimum
acceptable element heights
for the test problem when
using ANSYS 4 4 for
dynamic analysis

Element no. Minimum height (mm)

1 8.5
2 13.1
3 16.2
4 16.2
5 16.2
6 16.2
7 16.2
8 16.2
9 16.2
10 16.2

Fig. 10.2 Nongravitational
loading history for a static
analysis followed by a
dynamic analysis

The loading procedure for all tests in this study is as follows, unless otherwise
stated. The beams are subjected to both their weight and the weight of a lump which
is located at the tip. First, a static analysis is required to calculate tip deflection.
The lumped mass for static analysis is 100 kg [generates 981 (N) force]. Then, the
lumped mass is reduced to 30 kg and the beams are released from the previously
deflected position. The load history is plotted in Fig. 10.2.

Moreover, it is assumed that the load is applied in the vertical plane of symmetry.
A typical loading system is shown in Fig. 10.3.

Mathematically, the problem may be expressed as

maximize u̇
(
l, t∗

)
0 ≤ t∗ ≤ T (10.7)
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Fig. 10.3 Time history and
deflection related to example

Subject to the following conditions

E
∂2

∂x2

[
I (x)

∂2u

∂x2

]
+m(x)∂

2u

∂t2
= p(x.t) (10.8)

{
u (0, t) = 0
u′ (0, t) = 0

{
EIu′′ (l, t) = 0
EIu′′′(l,t) = m0 [g + ü (l)] 0 ≤ t ≤ T

u (x, 0) = u∗(x)

u̇ (x, 0) = 0

l∫
0

m dx = M

σm (x, t) ≤ σα

I (x) ≥ I0(x) > 0

ρ, l, E,M are held constant

where
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u̇ (l, t∗) is the tip velocity
l is the length of the beam
ρ is the density
x is the position along the beam
E is the Young’s modulus of the beam material
p(x. t) is the transverse external load
I(.), I0(.) are the cross-sectional area moments of inertia
u(x, t) is a small transverse deflection of the beam
m(x) is the mass per unit length of the beam
m0 is the tip mass
g is the gravitational acceleration
M is the total mass of the beam
u
∗
(x) is the initial deflection

T is the total time in which the motion is considered
t∗ is the time when the maximum velocity occurs
σm(x, t) is the maximum normal stress
σα is the allowable normal stress

10.5 Comparison of Zero-Order Numerical Optimization

The design space consists of the heights of the beam elements; in this case, hi,
i = 1 − 10. The beams are subject to both equality and inequality constraints. The
following constraint sets have been studied:

1. Constant volume, width and length constraints with a limit constraint on stress.
2. Constant volume and width constraints with maximum stress subject to a limit

constraint but no limitation on length.

In the above case, the stress constraint is

σmax ≤ σa, (10.9)

where σmax is the maximum stress within the beam elements and σ a is the allowable
stress. It should be noted that due to the numerical calculation difficulty, the design
variables had to be bounded. These limit constraints are

hl ≤ hi ≤ hu, (i = 1, . . . , n) (10.10)

where hl and hu are the lower and upper limits of the heights, respectively.
The main intention in this work is the improvement of genetic algorithm method

in the optimization of dynamic response of cantilever beam which is mentioned
above.

According to the research by Abolbashari [16], like simple genetic algo-
rithm (SGA), there is another zero-order numerical optimization method.
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10.5.1 Modified Direction Set (MDS) Strategy

The simplest Direction Set (Powell’s) method [17] for multidimensional (n)
problem is a search in one direction at a time along the coordinate directions to
its minimum/maximum. The procedure of the simplest direction set begins with
moving along the first direction to the minimum/maximum of the function, then
moving from there along the second direction to the minimum/maximum of the
function and so on. The procedure is repeated through the whole set of directions
until the function stops decreasing/increasing. This cannot be followed exactly in
the optimization of the beam because of the constant volume constraint. Therefore,
the search in any directions has to be modified such that reduction of height in one
element is accompanied by an increase in the height of the others. To handle this, a
FORTRAN program is provided to calculate the height of the other elements when
some of them are assigned a value by the user. In this program, the remainder of
the volume (the total volume minus the volume of the candidate elements that have
had their heights assigned by the designer) is calculated first and then this remaining
volume is equally divided among the rest of the elements. The designer’s choice of
selecting the elements and assigning them a value plays a central role in this strategy.
This choice has to be made based on the tip velocity (v, objective value). Thus, the
direction search is manually modified by the designer in each iteration.

The above procedure is summarized in Fig. 10.4, where Hi, i = 1, . . . , n
are the optimized heights. The search begins by decreasing the height of the first
element (fixed to the wall) of a uniform beam and increasing the other heights
to maintain a constant volume. The next step is to select a candidate element for
decreasing/increasing the height in such a way that does not violate the design
variable and stress constraints (Eqs. 10.9 and 10.10) and obtains a higher velocity
response. One may keep decreasing the specific element height until a stop criterion
(i.e. violating the constraints or obtaining a lower velocity response) occurs or may
try to decrease the heights of more than one element simultaneously.

This strategy is nondeterministic, and the results may vary from one run to
another. Since there are no exact footprints in each step of MDS strategy, and it
also involves the engineering intuition of the designer in the design procedure, the
MDS strategy seems to be inefficient; however in this study, it has been found to
work fairly well (Fig. 10.5 and Table 10.2).
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Fig. 10.5 Optimized solution for schematic side view and tip velocity by MDS method (scales are
not accurate)



10 Optimization of Dynamic Response of Cantilever Beam by Genetic Algorithm 415

Table 10.2 Optimized
heights and maximum stress
of each element by MDS
method

Element no. Height (mm) Stress (MPa)

1 175.4 0.20
2 175.4 0.5
3 16.3 99.04
4 19.5 99.95
5 22.5 99.30
6 25.2 99.35
7 27.7 99.59
8 30.2 99.49
9 32.7 99.76
10 35.2 99.47

10.5.2 Equally Assigned Height (EHA) Strategy

This strategy is exactly the same as the Modified Direction Set, except there is
no choice for the designer to assign the element height and/or alter the element
height for more than one element simultaneously. Rather, the designer has a choice
to assign any value for the increment of altering the heights as it is illustrated below.
In this strategy, the test begins with a uniform beam of height Hini, the height of the
element that carries the largest stress (i.e. the element fixed to the wall) is decreased
by a specified increment, and the heights of the other elements are increased such
that the total volume remains constant.

In this strategy, the volume that has been lost by decreasing the height of the
candidate element is equally divided (the name Equally Assigned Height derives
from this fact) among the other elements that have not been treated yet, and the
new heights would then be calculated. This process continues until the stress in
any element exceeds the upper limit of the constraint. Then the second last reduced
height, which has not violated the constraints, is considered as the best height of this
element. This best height is kept unchanged until the end of the process. It is evident
that repeating the process for different values of increment increases the chance of
obtaining a better solution but at the cost of running several times. The elements are
treated in turn, and there is no reiteration for altering the heights of the elements
after they have been optimized once. It is obvious that the last element (i.e. element
at the free end) must remain untouched because there is no further element to carry
the volume which has been taken off from the candidate element which in turn needs
to be added to the other element/elements.

The reason for stopping the iteration at the end of the first procedure is that either
the elements are at the highest allowable stress or the heights are at the lower limit.
During the process, the best set of element heights (i.e. the set that results in a higher
velocity response) is stored at a separate location; in that way, the algorithm reports
the best set (Hi, i = 1, . . . , n) found during the whole process.

This strategy is a blind search from objective evaluation point of view because
the velocity is not monitored, and no sensitivity analysis is performed in order to
find the new search direction in the design space.
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Fig. 10.6 Conceptual flowchart of the Equally Assigned Height strategy

This strategy is illustrated in Fig. 10.6; a program in ‘TurboC++’ has been written
to implement the strategy. Other functions of this program include writing ANSYS
input files, running the ANSYS program and subsequently evaluating the output
from ANSYS. From all potential solutions, the set which results in a higher velocity
response is stored at a separate location; in that way, the algorithm would report the
best set found during the whole process. Thus, smaller values of the increment do
not necessarily result in a better solution because this strategy does not make use of
the objective value information (i.e. maximum velocity) to improve the next step.
This strategy could be judged as a fast and efficient strategy from a computing point
of view (Fig. 10.7 and Table 10.3).
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Tip velocity=0.860 m/s

120mm

3.5m

Fig. 10.7 Optimized solution for side view and tip velocity by EAH method

Table 10.3 Optimized
heights and maximum stress
of each element by EAH
method

Element no. Height (mm) Stress (MPa)

1 120.8 0.35
2 120.8 0.87
3 120.8 1.60
4 19.0 95.58
5 23.9 81.54
6 27.8 76.58
7 27.8 93.68
8 29.6 98.37
9 32.9 94.47
10 36.5 89.13

10.5.3 Fully Stressed (FS) Strategy

The main idea of the Fully Stressed strategy is searching in the design space to find
regions where each element carries the maximum allowable stress when the beam is
released from a deflected state. Candidate elements for decreasing/increasing their
heights in each trial are selected depending on the current state of their stresses.
The height of the overstressed element (hnhi) has been increased, and the height of
the element having the lowest stress (hnlo) has been decreased in such a way that
the total volume remains constant. The process should be continued until no further
step is possible (i.e. all elements have a maximum stress near the allowable stress).
A conceptual flowchart of this strategy is presented in Fig. 10.8. It is evident that
reiteration is not applicable in this technique because further iteration results in the
violation of the stress constraint. Similar to the Equally Assigned Height techniques
during the optimization process, the best set of element heights (i.e. the set that
results in a higher velocity response) is stored at a separate location; in that way, the
algorithm reports the best set (Hi, i = 1, . . . , n) found during the whole process
(Fig. 10.9 and Table 10.4).
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Fig. 10.8 Conceptual flowchart of the Fully Stressed strategy

It is obvious that the result depends on the size of increment which is used to
alter the heights and the initial values of the design. This strategy does not make use
of the objective value information (i.e. maximum velocity) to improve the next step.
From all the potential solutions, the set results of the highest velocity response are
recognized as the optimum. A second program in ‘TurboC++’ has been written
to implement this strategy and to run the ANSYS program to obtain stress and
velocities.
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Tip velocity=0.846 m/s

329mm

3.5m

Fig. 10.9 Optimized solution for side view and tip velocity by FS method

Table 10.4 Optimized
heights and maximum stress
of each element by FS
method

Element no. Height (mm) Stress (MPa)

1 329.8 0.07
2 13.4 99.52
3 17.2 98.91
4 20.8 93.93
5 23.7 94.17
6 26.0 96.94
7 28.9 94.25
8 30.5 99.86
9 33.8 95.07
10 35.7 97.76

Fig. 10.10 Typical mutation
of the beam element heights
before scaling

10.5.4 Evolutionary Program (EP)

Evolutionary programs are the subject of growing research interest. Most of their
problem-solving is based on the principles of evolution and heredity with a selection
process based on the fitness of an individual and a set of operators, such as mutation.
They imitate the principles of natural evolution in parameter optimization problems.
The concept behind the mutation operation is the introduction of some variability
into the design variables by small random changes as illustrated in Fig. 10.10.

Consider a set of individual element heights as given by a mutation of this set is
a new set, where
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hi = hi + Rε (10.11)

and all hi have been rescaled to keep a constant volume. R is a random number
between 0 and 1, and e is usually selected as a small fraction, namely 0.001.

Evolution programs can be formulated in different ways for a given problem.
Methods for generating the initial design, techniques for handling constraints and
probabilities of applying different operators may differ from one formulation to
another. However, a common principle governs all these formulations: an artefact
or sample design is selected, it then undergoes some transformations, and during
this evolution process, the individuals strive for survival based on the fitness or
evaluation criteria [18]. Usually the best (i.e. fittest which is the highest velocity
in this study) set of design variables is altered by small random changes (mutation
process), and then its fitness is evaluated. A conceptual flowchart of an evolutionary
program is presented in Figs. 10.11 and 10.12 and Table 10.5).

10.5.5 Genetic Algorithms (GAs)

Traditionally, numerical optimization techniques have been used to guide the search
in the design space. More recently, expert system technology has been integrated
into this process [19]. Both the approaches have relatively good features but tend to
suffer in constrained optimization problems, where there are large, nonlinear spaces
and no enough domain-dependent information to guide the search. In such cases,
genetic algorithm is the best suited technique [20].

GAs are inspired by the basic mechanism of natural selection as described by
Charles Darwin in The Origin of Species. Perhaps the lack of dependence of GAs
on the gradient information and the fact that GAs use multiple starting points
make them less susceptible to the pitfall of convergence to a local optimum. GAs
perform a random search in the design space and are widely applicable global search
algorithms that have been used in structural optimization as well as in other areas.

In some aspects, GAs are also different from usual zero-order methods; their
search is parallel rather than sequential (i.e. they search from a population of points
instead of a single point in the design space), they use probabilistic (nondeterminis-
tic) rules, and they can treat problems in which the design variables are continuous
or discrete. Therefore, GAs are more robust than classical zero-order methods [21].

GAs use an iterative improvement technique. The population undergoes a
sequence of transformations to simulate evolution. At each iteration, the individuals
strive for survival: the relatively ‘fit’ individuals are more likely to reproduce, while
the relatively ‘unfit’ ones are less likely to reproduce. One commonly used technique
for doing this is a roulette wheel [20]. The roulette wheel selection returns the first
individual whose fitness added to the fitness of the preceding population members
is greater than or equal to a random number between 0 and total fitness (sum of
the fitnesses of all members in the population). Although the selection procedure
is random, the individual’s chance of being selected is directly proportional to the
fitness.
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Fig. 10.11 A conceptual flowchart of an Evolutionary Program

After several generations, the program converges with the best individual repre-
senting the optimum solution. Stochastic processes are used to generate an initial
population of individual designs. Then, a new population is formed by allowing
the individuals to reproduce by means of crossover and mutation. A conceptual
flowchart of a simple genetic algorithm is presented in Fig. 10.13.

Creation of Initial Population Firstly, a primary population must be randomly
generated in MAX_POP number (the number of chromosomes). There are 10
elements in this example, so 10 × (MAX_POP) numbers will be created. Each
chromosome (including 10 numbers as the height) should be individually scaled
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Tip velocity=1.002 m/s

21.8mm

3.5m

Fig. 10.12 Optimized solution for side view and tip velocity by EP method

Table 10.5 Optimized
heights and maximum stress
of each element by EP
method

Element no. Height (mm) Stress (MPa)

1 21.6 9.16
2 25.4 14.21
3 38.5 9.85
4 16.6 74.82
5 20.1 68.64
6 102.8 3.40
7 46.0 22.19
8 130.9 3.48
9 55.2 24.45
10 102.9 8.64

with respect to the constant volume. The value generated for each element must not
be less than the values presented in Table 10.1. It should be considered that this
random production just occurs in the first generation. Hence, in this part of solution
the equality constraint (constant volume) could be exerted.

int pp,counter, i; / ∗ dummy integer ∗/
float oldh[NUMBER_ELEMENTS],volume,scale;
float pop[MAX_POP] [NUMBER_ELEMENTS];
for (pp = 0 ; pp < MAX_POP ; pp++)
{
volume =0; / ∗ Initialize volume total to 0 ∗/
for(i=2; i<NUMBER_ELEMENTS+2 ; i++ )
{
oldh[i] = 0.056;
volume= volume + oldh[i]∗ra∗0.5∗0.5;
}
scale=(.098/volume); / ∗ Scale volume of the beam to be 0.098 ∗/
volume =0;
for(i = 2; i<NUMBER_ELEMENTS+2 ; i++ )
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Fig. 10.13 A conceptual flowchart of Simple Genetic Algorithm

{
oldh[i] = oldh[i]∗scale;
pop[pop][i]=oldh[i];
volume = volume + volume+oldh[i]∗ra∗0.5∗0.5;
}
counter=0; /∗ do-while loop for generation the

appropriate heights randomly ∗/
do

{
counter=counter+1; / ∗ Increment the counter ∗/
volume = 0; / ∗Initialize volume total to 0 ∗/
for(i=2;i<NUMBER_ELEMENTS+2 ; i++)
{
h[i] = pop[pp] [i] + (100.0/(10.0+2.0∗pp))∗(float)rand()

/RAND_MAX_;
volume = volume + h[i]∗ra∗0.5∗0.5;

/ ∗ End of for loop with i index ∗/
volume=0;
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for(i = 2;i< NUMBER_ELEMENTS+2 ; i++ )
{

pop[pp][i]=h[i]∗scale;
volume=volume+pop[pp][i]∗ra∗0.5∗0.5;

}
if(counter==100)
{
Printf(“\n check the program, the No.Of loops is exceeded 100\n”);
exit(0);

}
}
while ( pop[pp] [2]<0.0085 II pop[pp] [3]<0.0131 II
pop[pp] [4]<0.0162II pop[pp] [5]<0.0162 II
pop[pp][6]<0.0162 II pop[pp] [7]<0.0162 II
pop[pp] [8]<0.0162 II pop[pp] [9]<0.0162 II
pop[pp] [10]<0.0162 II pop[pp][11]<0.0162 II
} / ∗ Associated with for loop with pp index ∗/

Evaluation of the Fitness of Each Individual and Handling the Stress Con-
straint In this part, each chromosome information that is the values of 10 elements
as the height which are scaled to reach the constant volume are inserted in height.src,
and the maximum tip velocity as fitness is calculated by the system command in
TurboC++ for entering ANSYS. This calculation is repeated MAX_POP times for
each generation. First, the values of heights are stored in can.dat; next, this file is an
input file to ns6, a program for static and dynamic analysis in ANSYS. Output static
and dynamic answers are stored in javab and je files, respectively. In this part, these
two results combine with each other and yield jesol, which comprises maximum
tip velocity, maximum stress and static deflection. It is clear that these values are
calculated for each chromosome and repeated MAX_POP times in this program.

Pr=fopen(“d:\\proper.dat”,”r”);
If((Pr=fopen(“d:\\proper.dat”,”r”))==NULL)
Printf(“Cannot open input file.\n);

fscanf(Pr,”% S%d\ n”,dumstr,&nd );
fscanf(Pr,”% S%d\ n”,dumstr,&velold );
fscanf(Pr,”% S%d\ n”,dumstr,&k );
fscanf(Pr,”% S%d\ n”,dumstr,&kk );
fscanf(Pr,”% S%d\ n”,dumstr,&biggest );
fscanf(Pr,”% S%d\ n”,dumstr,&generations );
fscanf(Pr,”% S%d\ n”,dumstr,&loops );
fscanf(Pr,”% S%d\ n”,dumstr,&fitness_max );

fclose(Pr);
nd=nd+1;
if(nd==1)
{float a2=0.0085,a3=0.0131,a=0.0162,b=0.4142;
Int i,k;

for(i=0; i<MAX_POP;i++)
{

Pop[i][2]=a2+(b-a2)∗
(float)(rand()%RAND_MAX_)/RAND_MAX_;

Pop[i][3]=a3+(b-a3)∗
(float)(rand()%RAND_MAX_)/RAND_MAX_;

for (k=4; k<NUMBER_ELEMENTS+2;k++)
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{
Pop[i][k]=a+(b-a)∗

(float)(rand()%RAND_MAX_)/RAND_MAX_;
}

}
POP1=fopen(“d:\\height.src”,”w”);
if ((POP1=fopen(“d:\\height.src”,”w”))==NULL)
printf(“Can not open input file.\n”);

for (pp=0;pp<MAX_POP; pp++)
for(i=2;i<NUMBER_ELEMENTS+2;i++)

fprintf(POP1,”h %d=%f\n”,i,pop[pp][i]);
fclose(POP1);
}

Pr=fopen(“d:\\proper.dat”,”w”);
fprintf(Pr,”nd=%d\n”,nd);
fprintf(Pr,”velold=%f\n”,velold);
fprintf(Pr,”k=%d\n”,k);
fprintf(Pr,”kk=%d\n”,kk);

fprintf(Pr,”biggest=%d\n”,biggest);
fprintf(Pr,”generations=%d\n”,generations);
fprintf(Pr,”loops=%d\n”,loops);
fprintf(Pr,”fitness_max=%f\n”,fitness_max);

fclose(Pr);
}

POP=fopen(“d:\\height.src”,”r”);
if ((POP=fopen(“d:\\height.src”,”r”))==NULL)

printf(“Can not open input file.\n”);
nd1=10∗(loops);

for(i=1;i<nd1+1;i++)
fscanf(POP,” %s%f\n”,dumstr,&dumdob);
for(i=2;i<12;i++)
{ fscanf(POP,” %s%f\n”,loops,i,&pop[loops][i]);
Printf(“h[%d][ %d]= %f\n”,loops,i,pop[loops][i]);
}

fclose(POP);
run_no=generations∗MAX_POP+loops+1;
stmax=0;
volume=0;

for(i=2;i<NUMBER_ELEMENTS+2;i++)
{
h[i]=pop[loops][i];
volume=volume+h[i]∗ra∗0.5∗0.5;
}
Printf(“vol=%f”,volume);

OutFile=fopen(d:\\can”,”w”);
fprintf(OutFile,”/bach”);
for(i=2;i<12;i++)
fprintf(OutFile,”\nh%d=%f”,i,h[i]);
fprintf(OutFile,”\nl=%f\n”,l);
fclose(OutFile);
system(“copy d:\\can+d:\\ns6 d:\\can.dat”);

if(h[2]>0.0085 && h[3]>0.0131 && h[4]>0.0162 && h[5]>0.0162
&& h[6]>0.0162 && h[7]>0.0162 && h[8]>0.0162 &&

h[9]>0.0162 && h[10]>0.0162 && h[11]>0.0162)
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{
k=k+1

system(“d:\\ansys\\bin\\ansys-ed.exe
<d:\\can.dat> d:\\can.out”);

system(“copy d:\\javab + d:\\je d:\\jesol”);
}

for(i=2;i<12;i++)
printf(“\n The h%d is %f “,i,h[i]);

printf(“\nloop=%d , vmax=%f \n”,loops,velold);

Generally, structural design problems are required to conform to a number of
inequality constraints related to stress, displacement, dimensional relationships and
other parameters. In the genetic algorithm, these can be performed by using a
penalty function approach. The idea of penalty approach is that a constraint violation
is penalizing to deter the future use of that set of parameters. A penalty function
must penalize the fitness (i.e. velocity) value obtained from a set of design variables
that resulted in constraint violation. The fitness function used in this part of solution
(with SGA) is as follows:

fitness =
{

υmax ; if σmax − σa ≤ 0.0

υmax.r.
(
σa
σmax

)n ; if σmax − σa > 0.0
(10.12)

where

vmax is the maximum tip velocity
σmax is the maximum stress within the beam
σ a is the maximum allowable stress
r and n are the coefficient and the power or penalty function

This formulation with r = 0.95 and n was rounded to work well for this test
problem.

Generation of New Population Selection In each generation, the best set is
selected as the first set of new population. The first 10% of the population were then
selected for the next generation without any replacement or operation on them. This
procedure may be done by shifting each member of the old 10% to a one higher
location in the matrix. Figure 10.14 shows this procedure for three generations.
Thus, after the number of generations equals 10% of the population size, the first
10% of population would be a collection of the best sets. The rest (i.e. 90%) of the
population undergoes a sequence of transformation to simulate evaluation. At each
iteration, the individuals strive for survival: the relatively ‘fit’ individuals are more
likely to reproduce; one commonly used technique for doing this is a roulette wheel.
The roulette wheel selection returns the first individual whose fitness added to the
fitness of the preceding population numbers is greater than or equal to a random
number between zero and total fitness (sum of the fitnesses of all members in the
population). Although the selection procedure is random, the individual’s chance of
being selected is directly proportional to the fitness.
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Fig. 10.14 Procedure of replacement of the best set of each generation to be the first set of the
new population

void sum_ fitness(void) /∗ Routine to sum up the fitnesses and
calculate the cumulative probability
for each chromosome ∗/

{
int i; /∗ Lopp index ∗/
total_ fitness = 0;
for( i = 0; < MAX_POP ; i + + )
{
total_fitness= total _fitness + fitness[ i];
}
printf(tot = %f\ n“,total_fitness);
for(i =0;< MAX_POP ;i + + )

{
P[i] = 0.;
q[i] = 0.;
}
P[0] = fitness[0]/total_fitness;
q[0] =p[0];
for( i = 1;i< MAX_POP ; i + +)
{
P[i] = fitness[i]/total_ fitness;
q[i] = q[i-1]+ p[i];
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}
}
void select _new _pop (vood) /∗Routine to generate a new

population based on the roulette
wheel technique∗/

{
int i,j,k /∗ Loop indices ∗/
float test ; /∗ Variable for storing the random number∗/
for( i = (0.1∗MAX_POP + 1 );i < MAX_POP ; i + + )
{

/∗Generate a random No. between 0 and 1 and
store as test variable /∗

test = (float ) ( rand()%RAND_MAX_)/RAND_MAX_;
j=0;
for(i = 0 ; i < (0.1∗MAX_POP) ; i + + )
{
for( K= 2 ; < NUMBER _ ELEMENTS + 2 ; K + + )
new pop[ i + 1] [k] = pop [ i] [ k ];

}
for ( k = 2 ; k < NUMBER _ EIEMENTS + 2 ; K + + )
new _ pop [0] [k] = pop [ biggest] [k ];

/∗while loop to increment the
individual numbers till the cumulative
probability of the individual is less
then the random number ∗/

while ( test > q[i] )
{j=j +1;}
for( k = 2 ; k < NUMBER _ ELEMENT + 2 ; K ++)
new _ pop [ i ][ k ] = pop [j] [k] ;

}
}

Crossover Crossover combines two randomly selected parent individuals (i.e.
design variable sets) to form two new individuals by swapping the corresponding
segments of the parent individuals. The crossover site is randomly selected. The
purpose of the crossover operator is information exchange between different
potential solutions. In the test problem, as can be seen in Fig. 10.1, there are 10
design variables, h1,...,h10, which represent the heights of the beam elements. As an
example of one-point simple crossover between two individual sets, consider

(
h

p
1, . . . , h

p
10

)
and

(
h

q
1, . . . , h

q
10

)
(10.13)

the superscripts p and q denote individuals and subscripts represent element number.
After crossover at the kth (1 ≤ k < 10) position, the sets become

(
h

p
1, . . . , h

p
k, h

q
k+1, . . . h

q
10

)
and

(
h

q
1, . . . , h

q
k, h

p
k+1, . . . h

p
10

)
(10.14)

void cross_over(void) /∗ Routine for performing the crossover
operation And scaling the new heights∗/

{
int i,k; /∗ Loop indices ∗/
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float colume,scale,j;
float temp[20], h[NUMBER_ELEMENTS+2];

/ ∗ for loop for performing the
90% of the population ∗/

for( i = (0.1∗MAX POP) ; i < MAX_POP; i = i+2)
{
j = (NUMBER_ELEMENTS∗(float)(rand() %RAND_MAX_)/RAND_MAX_)+2;

/ ∗ generate a random No. between 2 and
NUMBER_ELEMENTS+2=12 ∗/

for( k = 2; k < j; k++ )
{ temp[k] = new_pop[i] [k];
New_pop[i][k] = new_pop[i+l] [k];
new_pop[i+l] [k] = temp[k];
}
volume=0;
for(k=2; k<NUMBER_ELEMENTS+2;k++)
{ h[k]=new_pop[i][k];
volume= volume+h[k]∗ra∗0.5∗0.5;
}
scale= (0.98/volume);
for(k=2;k<NUMBER_ELEMENTS+2;k++)
new_pop[i][k]=h[k]∗scale;
}
}

Mutation In the genetic algorithms method, usually after crossover, a few namely
3–8% of the individuals mutate. The concept behind the mutation operation is the
introduction of some variability into the design variables by small random changes.
Consider a set of individual element heights given by

(h1, . . . hi, . . . , h10) (10.15)

Mutation of this set is a new set

(
h1, . . . , hi, . . . , h10

)
(10.16)

where

hi = hi + Rε (10.17)

R is a random number between 0 and 1 and ε is selected as a small fraction, namely
0.001. After exerting mutation operation, certainly the new chromosome will not be
included in the volume of the mentioned problem (0.098 m3). Hence, the resulted
height of elements according to the mentioned volume must be scaled. Three percent
mutation probability should be chosen in resolving this problem.

void mutate(void) / ∗ Routine to perform the mutation
operation and scale the heights ∗/

int i,j,k; / ∗ Loop indices ∗/
float volume, scale;
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float h[NUMBER_ELEMENTS+2];
/ ∗ for loop to mutate 90% of the population with
the probability of PERCENT MUTATION ∗/

for( i = (0.1∗MAX_POP); i < MAX_POP ; i ++ )
{
j = MAX_ POP ∗ ( float)rand()/RAND_MAX_;

/∗Generate a random No . 0<r<MAX_POP ∗/
if (j<(PERCENT_MUTATION∗MAX_POP/100))

/∗ if j is within the PERCENT _ MUTATION
of the population size ∗/

{
volume = 0;
for ( k = 2; NUMBER _ ELEMENTS + 2 ; K + + )
{
h[ k] = new _ pop[ i ][k] + 0.001∗(float) rand()/RAND _ MAX_;
volum = volume + h [k]∗ra∗ 0.5∗0.5;
} /∗End of for with k index ∗/
scale = ( .098/ volume);
for ( k = 2 ; k <NUMBER_ ELEMENTS+2; K+ + )
new_pop[ i] [ k] = h [ k]∗ scale;
} / ∗ End of if loop of j index ∗/
} /∗ End of loop of i index ∗/
}

In accordance with the flowchart in Fig. 10.13, after some generations, the
program will converge towards an optimum solution.

In Fig. 10.15 and Table 10.6, various solutions are presented in which the number
of chromosome in each generation (MAX_POP) and the number of generations in
each run are different.

Fig. 10.15 Three runs of
SGA program, with
Run(gen_num,MAX_POP)
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Table 10.6 Three different runs by SGA (different MAX_POP and gen_num for each run)

Run no. MAX_POP Generation ANSYS run Maximum tip velocity (m/s)

1 100 20 2000 1.1566
2 40 50 2000 1.2025
3 100 100 10,000 1.4562

Fig. 10.16 Maximum tip
velocity response of the best
individual and mean velocity
in the population using SGA

Table 10.7 Optimized
heights and maximum stress
of each element by SGA
method

Elements no. Height (mm) Stress (MPa)

1 9.34 13.21
2 13.22 15.72
3 66.07 40.52
4 125.55 25.17
5 22.25 32.71
6 17.05 35.16
7 22.18 37.33
8 130.94 20.42
9 116.09 22.85
10 37.26 34.91

In Fig. 10.16 and Table 10.7, maximum tip velocity of the beam for the best
chromosome and mean tip velocity of the beam for the existing chromosome in each
generation are shown, when the number of population is 100 and the generation is
100, too. In this solution, the obtained maximum velocity for the best chromosome
is 1.456 m/s and the maximum stress in it is 40.52 MPa which is less than the
allowable quantity.

By running the SGA program several times, it would be seen that the best
chromosome in each run is different. This subject demonstrates that the solution
will be trapped in local optimum by means of SGA method (Fig. 10.17).
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Tip velocity=1.456 m/s

9.3mm

3.5m

Fig. 10.17 Optimized solution for side view and tip velocity by SGA method

There are three weaknesses and limitations related to the mentioned solution
obtained by using the simple genetic algorithm. They are:

1. In each part, by tuning the volume and scaling the height, the volume constraint
would be exerted, resulting in the following limitations:

(a) Generality of the solution of the problem may be damaged. That is the
problem; there would be some constraints or a constraint more difficult than
constant volume ones which cannot be resolved using scaling method of
heights.

(b) Searching in the whole space of solution could be limited to the one that
the constant volume constraint is satisfied. It could be an essential factor in
causing the following two main problems.

2. Low velocity is obtained because of using traditional crossover and mutation
operators (the operators explained in the previous chapters, namely conventional
operators).

3. There will be premature convergence and the solution is trapped in a local
optimum because of the low power of crossover operators and traditional
mutation operator in searching the solution space.

10.6 Joines and Houck’s Method in Penalty Function

In order to overcome limitation 1 mentioned at the end of the previous chapter,
the penalty function method should be proposed. Owing to imposing penalty
function, instead of the restriction of remaining in search space based on constraints,
the algorithms could be able to utilize the whole searching space (feasible as
well as infeasible area). Figure 10.18 shows the concept of this issue. Simple
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Fig. 10.18 Search space:
feasible and infeasible area

comparison of two chromosomes (b) and (c) shows that chromosome (b) includes
more information than chromosome (c) related to global optimum of chromosome
(a). Without considering the whole space, probably the algorithm will be trapped in
local optimum. Comparing the two chromosomes (b) and (d), the amount of penalty
for (b) is greater than that of (d) but more efficient for rapidly achieving global
optimum of (a). Hence, it has to be less penalized initially and then more penalized
for increasing the number of generations.

Generally, in penalty function method, the constrained problems invert to
nonconstrained ones. One of the most effective methods is presented by Joines and
Houck [22].

Joines and Houck considered the following nonlinear programming problem:

Max f (x)

S.T. gi(x) ≥ 0 i = 1, 2, . . . , m1

hi(x) = 0 i = m1 + 1, . . . , m (= m1 +m2)

x ∈ X
(10.18)

where f, g1, g2,... gm1 , hm1+1, hm1+2... hm are valued functions defined on En,
X is a subset of En and x is an n dimensional real vector with components
x1, x2, . . . , xn that satisfy the restrictions and meanwhile minimize the function
f. The function f is usually called the objective function. Each of the constraints
gi(x) = 0 is called an inequality constraint, and each of the constraints hi(x) = 0
is called an equality constraint. The set X might typically include lower and
upper bounds of the variables, which is usually called domain constraint. A vector
x ∈ X satisfying all the constraints is called a feasible solution to the problem; the
collection of all such solutions forms the feasible region.

Penalty techniques transform the constrained problem into an unconstrained
problem by penalizing infeasible solution. Joines and Houck’s method constructs
the evaluation function with penalty term as follows:

eval = f (x)− p (t, x) (10.19)
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The penalty function is also constructed with equations (10.13), a variable
penalty factor, and (10.14), a penalty for the violation of constrains, as follows:

p (t, x) = ραt
m∑
i=1

d
β
i (x) (10.20)

where t is the iteration of genetic algorithm and α and β are parameters used to
adjust the scale of penalty value. The penalty term for single constraint di(x) and the
variable penalty factor ρt are given as follows:

di(x) =
⎧⎨
⎩

0 ; if x is feasible
|gi(x)| ; if otherwise for 1 ≤ i ≤ m1

|hi(x)| ; if otherwise for m1 + 1 ≤ i ≤ m
(10.21)

ρt = ct (10.22)

where c is a constant. The penalty on infeasible chromosomes is increased along
with the evolutionary process because the variable penalty factor ρt varies with the
iteration of the genetic algorithm for Joines and Houck’s method.

The experimental results of Joines and Houck’s method indicated that the quality
of the solution was very sensitive to the values of the three parameters. How to
determine the variable penalty factor is problem-dependent, and it is necessary to
design the component with a proper dynamic property suitable for a given problem
because this component is constantly increased along with the growth of

h1 + h2 + · · · + h10 = 0.56 (10.23)

fitness =
{

υmax − B ; if σmax − σa ≤ 0.0

(υmax − B) .r.
(
σa
σmax

)n ; if σmax − σa > 0.0
(10.24)

where

B = (ct)α{|h1 + h2 + · · · + h10 − 0.56|}β (10.25)

Applying the above procedure in the simple genetic algorithm and supposing
that α = 2, β = 1 and c = 0.2, the results would be as follows: conventional
operators cannot act as fast as possible to research all space dimensions, for in
one of run algorithms, the solution in local optimum with v = 0.149 m/s and
volume = 0.231 m3 would be trapped and the algorithm stopped (Fig. 10.19).
Hence, the next step to solve these problems is to use nonconventional and powerful
operators.
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Fig. 10.19 Exerting penalty function in SGA

10.7 Application of Nonconventional Operator for
Improving SGA Method

10.7.1 Fuzzy-Connective-Based Crossover Operators

The crossover operator plays a central role in the performance of genetic algorithms;
it exploits the available information about the search space from the population.
This operator has been highlighted as another key point for solving the premature
convergence problem. Numerous investigations have been directed to find the
optimal crossover rates and more powerful alternative crossovers which would allow
suitable levels of exploitation to be established in the development of such crossover
operators, which were attempted for the case of real-code GAs (RCGAs). Fuzzy-
connective-based crossover (FCB-crossover) operators were presented for RCGAs
based on the use of fuzzy connectives: t-norm, t-conorm, average function and gen-
eralized compensation operators. A set of offspring selection mechanisms (OSMS)
was proposed which chooses the chromosomes (produced by the crossover) that will
be the population members. Different exploration and exploitation degrees may be
introduced with the FCB-crossover operators. The OSMs establish a relationship
between these properties, so that they induce different diversity levels in the
population, and therefore, the premature convergence problem may be eradicated.

To describe the FCB-crossover operators, we follow three steps: define gene
combination functions, use these functions to define crossover operators between
two chromosomes and apply the crossover operators to the individuals in the
population, establishing the number and type of operators along with the OSM to
be used.
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Fig. 10.20 Action interval for a gene

Gene Combination Function Let us consider c1
i , c

2
i ∈ [ai, bi] two real genes to be

combined and αi = min
{
c1
i , c

2
i

}
and βi = max

{
c1
i , c

2
i

}
. The action interval [ai, bi]

of these genes can be divided into three intervals [ai, αi], [αi, β i] and [β i, bi]. These
intervals bound three regions to which the resultant genes of some combination of

the former may belong. Moreover, considering a region
[
α’

i ,β
’
i

]
with α’

i ≤ αi and

β’
i ≥ β would seem reasonable. This is shown in Fig. 10.20.

The intervals described above could be classified as exploration or exploitation
zones; the interval with both the genes being the extremes is an exploitation zone,
the two intervals that remain on both the sides are exploration zones, and the region
with extremes α’

i and β’
i could be considered as a relaxed exploitation zone.

With regard to these intervals, four functions were proposed: F, S, M and L
defined from [a, b] ∗ [a, b] in [a, b], a, b ∈ R, which fulfil

(P 1) ∀c, c′ ∈ [a, b] F
(
c, c′

) ≤ min
{
c, c′

}
(P 2) ∀c, c′ ∈ [a, b] S

(
c, c′

) ≥ max
{
c, c′

}
(P 3) ∀c, c′ ∈ [a, b] min

{
c, c′

} ≤ M
(
c, c′

) ≤ max
{
c, c′

}
(P 4) ∀c, c′ ∈ [a, b] F

(
c, c′

) ≤ L
(
c, c′

) ≤ S
(
c, c′

)
(P 5) F, S,M, and L are monotone and non-decreasing

.

Each one of these functions allows us to combine two genes giving results
belonging to each one of the aforementioned intervals. Therefore, each function
will have different exploration or exploitation properties depending on the range
being covered by it.

The fuzzy connectives t-norm, t-conorm, averaging function and generalized
compensation operators may be used to build these functions; we may associate
F to a t-norm, S to a t-conorm, M to an averaging operator and L to a generalized
compensation operator. In order to do so, we need to transform the genes, that will
be combined, from the interval [a, b] to [0, 1] and later result in [a, b].

Complying with a set of fuzzy connectives, a set of functions associated with it
is built as described below:

IF c, c
′ ∈ [a, b] then

F
(
c, c′

) = a + (b − a) .T
(
s, s′

)
(10.26)
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Table 10.8 Families of fuzzy connectives, from top to bottom, the Logical, Hamacher, Algebraic,
and Einstein families are shown

t-norm t-conorm Averaging fun. (0 ≤ λ ≤ 1 ) Gen. com Op.

T1 (x, y) = min (x, y) G1 (x, y) = max (x, y) P1(x, y) = (1 − λ)x + λy C1 = T 1−λ
1 .Gλ1

T2 (x, y) = xy
x+y_xy G2 (x, y) = x+y−2xy

1−xy P2 (x, y) = 1
y−yλ−xy+xλ

xy
+1

C2 = P2(T2, G2)

T3 (x, y) = xy G3 (x, y) = x + y − xy P3(x, y) = x1 − λyλ C3 = P3(T3, G3)
T4 (x, y) = xy

1+(1−x)(1−y) G4 (x, y) = x+y
1+xy P4 (x, y) = 2

1+
(

2−x
x

)1−λ( 2−y
y

)λ C4 = P4(T4, G4)

S
(
c, c′

) = a + (b − a) .G
(
s, s′

)
(10.27)

M
(
c, c′

) = a + (b − a) .B
(
s, s′

)
(10.28)

L
(
c, c′

) = a + (b − a) .C
(
s, s′

)
(10.29)

where

s = c − a
b − a and s′ = c′ − a

b − a (10.30)

These operators have the properties of being continuous and nondecreasing and
satisfy the respective properties (P1) − (P5). The families of fuzzy connectives used
are shown in Table 10.8.

Fuzzy connective families in Table (10.8) fulfil the following property:

(P6) T4 ≤ T3 ≤ T2 ≤ T1 ≤ PJ (J = 1, . . . , 4) ≤ G1 ≤ G2 ≤ G3 ≤ G4

FCB-Crossover Let us assume that O ∈ {F, S, M, L} and K1 = (
k1

1, . . . , k
1
n

)
and K2 = (

k2
1, . . . , k

2
n

)
are two chromosomes that have been selected to

apply the crossover operator to them. We can generate the chromosome
H = (h1, . . . , h2, . . . , h3) as

hi = O
(
k1
i , k

2
i

)
, i = 1, . . . , n (10.31)

This operator applies the same F, S, M or L function for all the genes in the
chromosomes to crossover. For this reason, they will be called F-crossover, S-
crossover, M-crossover and L-crossover when the F, S, M and L functions are
applied, respectively. It should be emphasized that these crossover operators have
different properties: the F-crossover and S-crossover operators show exploration,
the M-crossover operator shows exploitation and the L-crossover operator shows
relaxed exploitation.
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Fig. 10.21 Exploration and relaxed exploitation levels

According to the property (P6) of the families of fuzzy connectives in Table
10.8, we can see that the degree to which each crossover operator shows its related
property will depend on the fuzzy connective on which it is based. Thus, we
dispose Fj-crossover and Sj-crossover operators with different exploration levels;
the F4-crossover and S4-crossover show the maximum exploration, whereas the F1-
crossover and the S1-crossover represent the minimum exploration. These operators
give results between the extremes of the exploration domain. With respect to the
Lj-crossover, the level of relaxed exploitation directly depends on the Tj, Gj and Pj

used for its definition. Figure 10.21 shows the behaviour of the interval definition
for the crossover operators.

Application of the FCB-Crossover By using the previously proposed crossover
operators, different application strategies can be built which are differentiated
according to how they carry out the following two steps:

1. Generation of offspring using the different defined operators.
2. Selection of offspring resulting from the crossover which will form part of the

population.

Herrera et al. presented four proposals [23], which are shown in Table 10.9,
where we specify the strategy name, the FCB-crossover operators applied, the
number of chromosomes in the population that should undergo crossover and finally
the type of OSM and the way in which it introduces diversity (measured in three
diversity levels: strong, high and weak).

The experiments developed by Herrera et al [23] on different test functions
showed, in general, the suitability of using the logical FCB-crossovers and the OSM
that choose the two best elements from a set of four where the exploitation and
exploration properties are equitably assigned. Another important conclusion was
that by using F-crossover and S-crossover with F and S functions distant from the
minimum and maximum (logical F and S function), respectively, the population
diversity levels obtained are greater, which agrees with the properties shown in Fig.
10.21. This result suggested the definition of the dynamic FCB-crossovers in [23],
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Table 10.9 Application strategies (Nc is the number of chromosomes that should undergo
crossover, N is the population size and Pc is the crossover probability)

Statergy FCB − crossover Nc OMS Diversity

STI F − , S − and M − crossover 2
/

3 .Pc.N All three
offspring

Strong

ST2 F − , S − and tow M − crossovers Pc. N The two most
promising

Weak

ST3 F − , S − , M and L − crossover Pc. N The two most
promising

Weak

ST4 F − , S − , M and L − crossover 1
/

2 .Pc.N All three
offspring

High

which extend the use of the FCB-crossover operators in order to follow the principle
‘to protect the exploration in the initial stages and the exploitation later’.

void cross_over(void) /∗Routine for performing the
fuzzy_based crossover

Operation with st1+st4 strategy∗/
{ int generations;

Int i j = 2,k; /∗Loop indices ∗/
float volume, scale, landa,n,a=0.0162,a2=0.0085,

a3=0.0131,b=0.4142;
float
temp[20],s1[NUMBER_ELEMENTS+2],s2[NUMBER_ELEMENTS+2],

t[NUMBER_ELEMETS],g[NUMBER_ELEMENTS];
float H[MAX_POP][NUMBER_ELEMENTS+2];

if(generations<=10)
{

for(i=(0.1∗MAX_POP);i<13;i=i+2)
If(generatins<=10)
{
for(i=(0.1∗MAX_POP);i<13;i=i+2)
{landa=(float)(rand0%RAND_MAX_)/RAND_MAX_;
s1[2]=(new_pop[i][2]-a2)/(b-a2);
s2[2]=(new_pop[i+1][2]-a2)/(b-a2);
t[2]=s1[2]∗s2[2];//(s1[2]+s2[2]-s1[2]∗s2[2]);
g[2]=(s1[2]+s2[2]-s1[2]∗s2[2]);//(1.0-s1[2]∗s2[2]);
s1[3]=(new_pop[i][3]-a3)/(b-a3);
s2[3]=(new_pop[i+1][3]-a3)/(b-a3);
t[3]=s1[3]∗s2[3];//(s1[3]+s2[3]-s1[3]∗s2[3]);
g[3]=(s1[3]+s2[3]-s1[3]∗s2[3]);//(1.0-s1[3]∗s2[3]);
for(k=4:k<NUMBER ELEMENTS+2;k++)
{
s1[k]=(new_pop[i][k]-a)/(b-a);
s2[k]=(new_pop[i+1][k]-a)/(b-a);
t[k]=s1[k]∗s2[k];//(s1[k]+s2[k]-s1[k]∗s2[k]);
g [k]=(s1[k]+s2[k]-s1[k]∗s2[k]);//(1.0-s1[k]∗s2[k]);
}
n=1-landa;
H[j][2]=a2+(b-a2)∗t[2];
H[j+1][2]=a2+(b-a2)∗g[2];
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H[ j+2][2] =a2+(b-a2)∗(pow(s1[2],n)∗pow(s2[2],landa));
H[j][3] =a3+(b-a3)∗t[3];
H[j+1][3]=a3+(b-a3)∗g[3 ];
H[j+2][3]=a3+(b-a3)∗(pow(s1[3],n)∗pow(s2[3],landa));
for(k=4;k<NUMBER_ELEMENTS+2;k++)
{
H[j][k]=a+(b-a)∗t[k];
H[j+1][k]=a+(b-a)∗g[k];
H[j+2][k]=a+(b-a)∗(pow(s1[k],n)∗pow(s2[k],landa));
}
j=j+3;
{
for(i=2;i<MAX_POP;i++)
}

for (k=2;k<NUMBER_ELEMENTS+2;k++)
}
new_pop[i][k]=H[i][k];
{
{
{
If(generation>10)
}
for(i=(0.1∗MAX_POP);i<11;i=i+2)
}landa= )fioat)(rand0%RAND_MAX)/RAND_MAX_;
s1[2]=(new_pop[i][2]-a2)/(b-a2);
s2[2]=(new_pop[i+1][2]-a2)/(b-a2);
t[2]=s1[2]∗s2[2];//(s1[2]+s2[2]-s1[2]∗s2[2]);
g[2]=(s1[2]+s2[2]-s1[2]∗s2[2]);//(1.0-s1[2]∗s2[2]);
s1[3]=(new_pop[i][3]-a3)/(b-a3);
s2[3]=(new_pop[i+1][3]-a3)/(b-a3);
t[3]=s1[3]∗s2[3];//(s1[3]+s2[3]-s1[3]∗s2[3]);
g[3]=(s1[3]+s2[3]-s1[3]∗s2[3]);//(1.0s1[3]∗s2[3]);
for(k=4;k<NUMBER_ELEMENTS+2;k++)
}
s1[k]=(new_pop[i][k]-a)/(b-a);
s2[k]=(new_pop[i+1][k]-a)/(b-a);
t[k]=s1[k]∗s2[k];//(s1[k]+s2[k]-s1[k]∗s2[k]);
g[k]=(s1[k]+s2[k]-s1[k]∗s2[k])//1.0-s1[k]∗s2[k]);
}
H[j][2]=a2+(b_a2)∗t[2];
H[j+1][2]=a2+(b_a2)∗g[2];
H[j+2][2]=a2+(b-a2)∗(pow(s1[2],n)∗pow(s2[2],landa));
H[j+3][2]=a2+(b-a2)∗(pow(t[2],n∗pow(g[2],landa));
H[j][3]=a3+(b-a3)∗t[3];
H[j+1][3]=a3+(b-a3)∗g[3];
H(j+2)[3]=a3+(b-a3)∗(pow(s1[3],n)∗pow(s2[3],landa));
H[j+3][3]=a3+(b-a3)∗(pow(t[3],n)∗pow(g[3],landa));
for(k=4);k<NUMBER_ELEMENTS+2;k++)
}
H[j][k]=a+(b-a)∗t[k];
H[j+1][k]=a+(b-a)∗g[k];
H[j+2][3]=a3+(b-a3)∗(pow(s1[3],n)∗pow(s2[3],landa));
H[j+3][3]=a3+(b-a3)∗(pow(t[3],n)∗pow(g[3],landa));
for(k=4;k<NUMBER_ELEMENTS+2;k++)
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}
H[j][k]=a+(b-a)∗t[k];
H[j+1][k]=a+(b-a)∗g[k];
H[j+2][k]=a+(b-a)∗(pow(s1[k],n)∗pow(s2[k],landa));
H[j+3][k]=a+(b-a)∗(pow(t[k],n)∗pow(g[k],landa));
{
j=j+4;
{
for(i=2;i<MAX_POP;i++)
}

for(k=2;k<NUMBER_ELEMENTS+2;k++)
}

new_pop[i][k]=H[i][k];
{

} / ∗Loop indices∗/
/∗for loop for performing the 90 percent of the population ∗/
for(i=(0.1∗MAX_POP);i<MAX_POP; i=i+2)
}
j=(NUMBER_ELEMENTS∗(float)(rand() %RAND_MAX_ )/RAND_MAX_)+2;
∗/Generate a random No. Between 2 and NUMBER_ELEMENTS+2 ∗/
for(k=2;k<j;k++)
} temp[k]=new_pop[i][k];
new_pop[i][k]=new_pop[i+1][k];
new_pop[i+1][k]=temp[k];
{
volume=0;
for(k=2;k<NUMBER_ELEMENTS+2;k++)

{h[k]=new_pop[i][k];
volume= volume+h[k]∗ra∗0.5∗0.5;

{
{

}

10.7.2 Dynamic Mutation Operator

This operator also called nonuniform mutation is given by Janilow and Michalewicz
[24]. It is designed for fine-tuning capabilities aimed at achieving high precision.
For a given parent x, if the element Xk of it is selected for mutation, the resulting
offspring is x′ = [

x1, . . . , x
′
k, . . . , xn

]
, where x′k is randomly selected from the

following two possible choices:

x’
k = xk +�

(
t, xUk − xk

)
or x’

k = xk +�
(
t, xk − xLk

)
(10.32)

The functionΔ(t, y) returns a value in the range [0, y] such that the value ofΔ(t, y)
approaches 0 as t increases (t is the generation number). This property causes the
operator to search the space uniformly initially (when t is small) and locally at later
stages. The function Δ(t, y) is given as follows:



442 J. Zolfaghari

�(t, y) = y.r.
(

1 − t

T

)b
(10.33)

where r is a random number from [0, 1],T is the maximal generation number and b is
a parameter determining the degree of nonuniformity. It is possible for the operator
to generate an offspring which is not feasible. In such a case, we can reduce the
value of random number.

Regarding the mentioned subjects and considering the presented principle to
reach the ultimate solution, the 10 first generation should use ST1 strategy and
the rest ST4 strategy. Of course, this method used fuzzy operators (C2, P2, G2T2).
Hence, by applying Joines and Houck’s method and using nonconventional oper-
ators (FCB-Crossover) and dynamic mutation with coefficient b = 1, the ultimate
solution will be obtained.

Void mutate(void) /∗Routine for dynamic mutation∗/
}
Int i,j,k,1,m,generations,s, /∗Loop indices ∗/
Fioat volume,scale;
Fioat h[NUMBER_ELEMENTS +2],HU=0.4142,HL=0.0162;
Fioat H[NUMBER_ELEMENTS∗MAX_POP];

/∗for Loop to mutate 90% of th Population
with the probability of
RERCENT_MUTATION ∗/

For(i=0;i<MAX_POP;i++)
}
For (k=2;k<NUMBER ELEMENTS+ 2;k++)
}H[i∗NUMBER_ELEMENTS+k-2]=new_pop[i][k];}
{
K=6; /∗k=(fioat)PERCENT_MUTATION/100.0)

∗NUMBER_ELEMENTS∗MAX_POP;∗/
For (i=0;i<k;i++)
}
Radumize0;
J=random(NUMBER_EIEMENTS∗MAX_POP);
S=random(2);
If(s==0)
H[j]=H[j]+0.01∗((fioat)(rand0%RAND_MAX)/RAND_MAX_)

∗(HU_H[j])∗(1.0-
)fioat)generation/(fioat)gen_num);
if(s==1)
H[j]=H[j]-0.01∗((fioat)(rand0%RAND_MAX)/RAND_MAX_)

∗(H[j]-HL)∗(1.0-
)fioat)generation/(fioat)gen_num);
If(H[j]<0.0162)
H[j]=0.016201;
If(H[j]>0.4142)
H[j]=0.4142;
m=j%10+2
l= )j+2-m)//NUMBER_EIEMENTS;
new_pop[l][m]=H[j];
{
{
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Fig. 10.22 Graphic results of
ST1, ST4 and ST1 + ST4

In Figs. 10.22 and 10.23 and Table 10.10, the outcomes according to ST1 (exerted
on whole generation), ST4 (exerted on whole generation) and ST1 + ST4 (exerted
ST1 on 10 first generation and ST4 on the rest) show improvement in results
(maximum tip velocity). In Table 10.10, the complementary information about the
best solutions by ST1, ST4 and ST1 + ST4 is presented.

The ultimate solution is presented in Figs. 10.24 and 10.25 and Table 10.11. It
would be said that in this procedure, the number of population is 20, as seen in
Fig. 10.22, to converge at generation 80 and to obtain the answer. For the ultimate
solution of the particular case presented, the artificial selection replaced the natural
selection. It is interesting in which ultimate solution by running several times of
program, the acquired results are the same for all heights and maximum tip velocity.
It could be demonstrate that we reach to global optimum.

Artificial Selection As shown previously, the concepts of genetic algorithms are
inspired from nature. The operators existing in nature are very simple and take place
gradually, spending huge amounts of time. Therefore, the evolution procedure took
place in a million years. Hence, previously, nonconventional operators are utilized.
Now, for the case example, artificial selection will be exerted instead of natural
selection, which is roulette wheel. To reach the global optimum rapidly, the best
chromosomes are directly selected and placed on the next pool instead of random
selection. The selected chromosomes are arranged based on the value of fitness of
each one of them.

Void select_ new_pop (void) /∗Routine to generate a
new population

Based on the artificial
selection ∗/

{
int s=1,counter= 2,i,k,l,counter1,ll,counter2;
float fmax;
int j , generations;
for(i=0;i<(0.1∗MAX_POP-1);i++)
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Fig. 10.23 Side view of
beam acquired with (a) ST1,
(b) ST4 and (c) ST1 + ST4

8.5mm

(b)Tip velocity=1.838 m/s

8.5mm

(a)Tip velocity=1.804 m/s

22mm

3.5m

(c)Tip velocity=1.963m/s

{
for(k=2;k<NUMBER_ELEMENTS+2;k++)
New_pop[i+1][k]=pop[i][k];
}
for(k=2;k<NUMBER_ELEMENTS+2;k++)
New_pop[0][k]=pop[biggest][k];
for(l=2;l<MAX_POP;l++)
{
fmax=0.000001;
counter1=-1;
for(i=0;i<MAX_POP,i++)
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Table 10.10 Results obtained from the strategies ST1, ST4 and ST1 + ST4

Element no. Height (mm) by ST1 Height (mm) by ST4 Height (mm) by ST1 + ST4

1 22.07 8.522 8.576
2 16.93 13.45 13.19
3 18.34 16.24 16.57
4 16.61 16.26 32.59
5 25.76 16.30 25.93
6 17.15 22.65 16.35
7 17.66 18.69 17.85
8 22.56 65.88 21.31
9 93.75 263.33 101.16
10 309.11 118.59 306.44
Maximum tip
velocity

1.804 1.838 1.963

No. of
generations

80 80 80

No. of
population

20 20 20

Volume (m3) 0.09799 0.09799 0.09800
Max. stress 80 83 93

Fig. 10.24 Graphical variation for best chromosome in ultimate solution

{
if(fmax<fitness[i])
{
fmax=fitness[i];

Counter 1=i;
}

}
If(counter 1>=0)
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Tip velocity=2.3689 m/s

8.5mm

3.5m

Fig. 10.25 Side view of the beam with maximum tip velocity by ultimate solution

Table 10.11 Ultimate
solution ST1 + ST4 strategy
for dynamic mutation and
artificial selection

Element no. Height (mm)

1 8.511
2 13.104
3 16.212
4 16.201
5 16.223
6 16.430
7 16.858
8 19.534
9 27.242
10 409.686
Maximum tip velocity 2.3689 m/s
Number of generation 80
Number of population 20
Volume (m3) 0.09800
Maximum stress (MPa) 99

{
fitness[counter 1]=0.0;
for(k=2;k<NUMBER_ELEMENTS+2;K++)
new_pop[counter][k]=pop[counter 1][k];
Counter=counter+1;
}
If(counter1<0)
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{ ll=l-2;
counter2=counter-2;
for(k=2;k<NUMBER_ELEMENTS+2;K++)
new _pop[1][k]=new_pop[11-s∗counter2+2][k];
if(1==(s+1)∗counter2+1)
{s=s+1;}

}
}

10.8 Conclusion

Considering the solution of problem in this topic with SGA, it would be seen in
each run program that various values of velocity and heights are obtained. But the
ultimate solution in each run could be almost the same in terms of velocity and
heights. While comparing the results obtained from SGA and the ultimate solution,
it was found that the time taken to reach the optimum solution is more for SGA.
Moreover, it would be seen that in the SGA, the solution is trapped in local optimum,
whereas the result acquired by means of ultimate solution method is reliable and the
most likely will be a global optimum.

Eventually, the powerful and generalized method represented in this work is an
efficient and flexible one that could be used in solution of other mechanical dynamic
response optimization problems by revising or altering various parameters which
exist in all operations which are presented.
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Autonomous vehicles (AVs) (cont.,)
situation awareness, 50
software accuracy, 49
V2I systems, 55
V2X, 55
vehicle sensors, 53

B
Bayesian belief networks (BBNs), 322–323
Bayesian regularization (BR) algorithm, 328
Bicycle model

DoF, 4
kinematic variables, 4
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Newton–Euler equations, 4
side-slip angles, 4, 5
tire coordinate frame, 4, 5
vehicle body coordinate frame, 5, 6
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deep learning (see Deep learning (DL)

methods)
deterministic models, 307, 308
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heuristic modeling, 307, 308
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laboratory tests, 307
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methods)
RL (see Representation learning (RL))
transfer learning

inductive learning, 352–354
models, 351, 352
transductive learning, 354–355

velocity, 309
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C
Cameras, 51
Cauchy stress tensor, 282
CH, see Convex hull (CH)
Chi-squared automatic interaction detection

(CHAID) algorithm, 319
Ciliary microrobot, hydrodynamic modeling

design parameters, 121, 122
biomimicking pattern, 127
mean speed, 128

propulsive force, 125
velocity, 124–128
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drag forces, 116, 119
effective and recovery strokes, 123
equation of motion, 119–121
forces and moments balance, 118
global and local coordinates, 117
nonlinear partial differential equations,

118, 123
propulsive velocity, 124
pseudo-drag forces, 116
Reynolds number, 117
shear force, 123
Stokes flow, 115–116
Stokeslets and doublets, 117
three-dimensional laser lithography, 121
velocity components, 118
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Connected vehicles (CVs), 40
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elastic deformation, 284–285
material model, 289–290
plastic deformation

deformation law, 286
yield criterion, 285–286

Convex hull (CH), 370, 371
Convex optimization (CO), 369–370
Convolutional neural networks (CNNs), 337
Coriolis acceleration, 232
Covariance function, 88
Cuckoo search (CS) method, 379
Curvilinear coordinate systems

constitutive laws (see Constitutive laws)
elastic–elastic deformation, 273, 274
elastic–plastic thick-walled cylinders, 274
failure analysis, 273
material-independent fundamentals

deformation, 276–277
equilibrium conditions, 283–284
geometric variables, 275
material formulation, 276
referential description, 275
space-fixed coordinate system, 275
strain tensor, 277–280
stress tensors, 282–283
velocities, 280
velocity gradient, 281–282

maximum distortion energy yield criterion,
274
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thick-walled cylinders (see Thick-
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deformation)

Tresca yield criterion, 274
von Mises yield criterion, 275

CVs, see Connected Vehicles (CVs)

D
Damping coefficient, 78, 83–84
Data fusion techniques, 53, 54
DBSCAN, see Density-based spatial

clustering of applications with noise
(DBSCAN)

DE, see Differential evolution (DE)
Decision tree, 319–320
Decoding, 392–394
Dedicated Short-Range Communications

(DSRC), 51
Deep belief networks (DBNs), 341–342
Deep learning (DL) methods, 45, 46, 332, 336

DBNs, 341–342
deep neural networks

backpropagation, 338
CNNs, 337
image classification, 338
image segmentation, 340, 341
nonlinear transformations, 336
object recognition, 338
SGDM, 340
training parameters, 340
VGG-16 and VGG-19 CNNs, 339

image segmentation, 335
nonlinear statistical patterns, 335

Deep reinforcement learning (RL), 46
Degrees-of-freedom (DOFs), 4, 238, 266
Delaunay triangulation, 370, 371
Density-based spatial clustering of applications

with noise (DBSCAN), 313–314
Device-to-Device (D2D) interaction, 61, 62
Differential Big Bang–Big Crunch (DBB-BC)

algorithm, 387
Differential evolution (DE), 379–380
Directed acyclic graph (DAG), 322
Direct integration method, 406–407
Discrete version of Structural Optimization by

Genetic Programming (DSOGP)
decoding, 392–394
fitness evaluation, 394
genetic operators and selection, 394
initialization, 392
optimal mechanical design, 394–397

Distributed and parallel learning (D&PL)
architecture, 343

data bandwidth, 344
decision rules, 344
distributed boosting, 349–351
distributed passing votes, 347–348
effective stacking, 348–349
ensemble approach, 343
knowledge probing, 347
limitations, 342
meta-learning, 345–347
stacked generalization, 345

DL methods, see Deep learning (DL) methods
DOFs, see Degrees-of-freedom (DOFs)
Drill string dynamics

axial vibration model
energy dissipation, 73
external force, 73–74
friction force, 74
Hooke’s law, 73
hydraulic oscillator mass, 73
model assumptions, 71
finite element model, 72
Rayleigh damping, 73
reaction force, 74
spectral map, 74, 76
stiffness matrix, 72
vibration displacement and velocity, 74,

75
vibration equation, 72

torsional vibration, cutting teeth wear
angular displacement vector, 97, 98
angular velocity, 106
cutter force parameters, 108, 109
cutter volume wear rate, 109
damping matrix, 99
force condition, 97, 98
geometric equation, 100–102
parameters, 106, 107
resistance torque, 100
rotational angular displacement, 106,

107
rotational inertia matrix, 99
top rake vs. effective cutting edge

length, 107, 108
torque, 102–105
torque matrix, 99
torsional rigidity matrix, 99
wear part vs. drill bit center, 109, 110

wellbore random friction forces
covariance function, 88
damping matrix, 90, 91
direct decisive effect, 86
discrete method, 90
drilling efficiency, 94
eigenvalue and eigenfunction, 88
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Drill string dynamics (cont.,)
error analysis, 89
force analysis, 85
Fredholm equation, 88
frequency spectrum analysis, 95, 96
friction coefficient, 92
Gaussian distribution, 86
KL method, 87
mass matrix, 91
mean square value, 94–95
multidimensional random variables, 88
PDC drill, 90
phase diagram, 95, 96
Poincare plot, 95–97
power consumption, 86
probability density, 87
P-time randomness field, 89
rate of penetration, 90
stiffness matrix, 90, 91
vibration displacement, 92
vibration velocity, 93

DSOGP, see Discrete version of Structural
Optimization by Genetic
Programming (DSOGP)

Dynamic programming (DP), 369
Dynamic response analysis

cantilever beam
direct integration method, 406–407
eigenvectors, 406
generalized eigenvalue problem, 404
modal analysis, 405–406
mode superposition technique, 407
finite-element formulation, 404
number of modes, 406

optimization, 407–409
Dynamic simulation, definition, 171

E
Economist Intelligence Unit, 308
Edge-based modeling methods,

334–335
Edge computing

advantages, 64
with Artificial Intelligence, 65–66
vs. cloud computing, 63–65
hardware types, 64
IoT connectivity, 63, 64
IoT-driven services, 62, 63
peer-to-peer networking, 64
real-time data analytics, 63

Eigenvalue and eigenfunction, 88
Elastic deformation, 284–285
Electromagnetic coils, 114

Electromagnetism-like Firefly Algorithm
(EFA), 386

Ensemble methods
adaptive boosting, 324–326
architecture, 323
multiple classifier models, 323
random forest (RF), 324

Equally assigned height (EHA) strategy,
415–417

Equation of motion (EOM), 212, 213
Euler–Bernoulli beam finite element, 263
Euler strain formulations, 279
Evolutionary algorithms, 381
Evolutionary program (EP) strategy, 419–422
Evolution strategy (ES), 377

F
Federation Bell Installation, 172
Finite element method (FEM), 72, 404

continuous deterministic systems, 238
DOFs, 238
elastic beams, lateral vibrations

2D beam finite element, 264
DOFs, 266
element stiffness and mass matrices,

264
Euler–Bernoulli beam finite element,

263
global mass matrix, 265–266
global stiffness matrix, 266, 267
second-order partial differential

equations, 262
shape functions, 263
simulation parameters, 267
simulation process, 268–271
uniform beam, 266, 267

elastic rods, axial vibration
analogies, 246, 247
boundary condition, 248
boundary-value problem, 246
characteristic equation, 248
clamped-free uniform rod, 253, 255,

257–261
eigenfunctions, 248
finite elements approximation, 258, 260
free-free bar, 248, 249
Hermite functions, 250
homogeneous elastic rods, 246, 248
key notations, 254, 256
MATLAB script, 252–254, 256, 258,

260, 262
natural frequencies, 252, 254
partial differential equations, 246
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static modeling, 251, 252
Truss finite element, 249, 251
wave equation, 246

partial differential equations, 238
stress analysis, 238
unconstrained 3DOFs mass-spring system

with constrained mass, 245
dynamic excitation, 240
dynamics equation, 240
global matrices, 240, 241
natural frequency, 242, 244
original and supplementary system,

242, 243
static equation, 242
stiffness matrix, 240, 242
unit displacements, 239

Force system coefficients, 7, 9
Fourier transform, 79
Fredholm equation, 88
Frequency spectrum analysis, 95, 96
Fresnel cosine, 30
Fresnel sine integrals, 30
Fully stressed (FS) strategy, 417–419
Fuzzy connective-based crossover (FCB-

crossover), 435, 437–438
application, 438–441

G
Gaussian distribution, 86
Gaussian kernels, 328
Gene combination function, 436–437
Gene Expression Programming (GEP)

algorithm, 383
Genetic algorithms (GAs), 377–378

cantilever beam
ANSYS 4, 409, 410
design variables, 409
dynamic response analysis (see

Dynamic response analysis)
Joines and Houck’s method, penalty

function, 432–435
non-frequency optimization, 403
nongravitational load history, 410
SGA (see Simple genetic algorithm

(SGA))
time history, 410, 411
zero-order optimization, 404 (see also

Zero-order numerical optimization)
Genetic programming (GP)

controller design approach, 383–384
convex hull, 370, 371
convex optimization, 369–370
deterministic rule, 368

dynamic programming, 369
evolutionary algorithms, 381
global and local optima, 367, 368
gradient search, 372
greedy algorithms, 371
heuristic approaches

advantage, 380–381
CS method, 379
DE, 379–380
ES, 377
GA, 377–378
PS optimization method, 378–379
SA, 375–376
TS strategy, 376, 377

heuristic optimization
combinatorial problems, 374–375
convergence rate, 375
knowledge, 374
limitations, 374
mechanical engineering problem,

372–373
neighborhood search, 374
reliability problem, 375
resource-based external limit, 373
“rules of thumb,” 373

linear programming, 368
mathematical optimization problem, 367
mutation operator, 382, 383
nonlinear system identification, 385
quadratic programming, 369
stochastic programming, 370
tree structure, 381, 382
truss optimization, 386–388 (see also Truss

optimization)
GPS, 52

time series, 167
Gradient search (GS), 372
Greedy algorithms (GAs), 371
Gross domestic product (GDP), 308
Gyroscopes, 52

H
Helmholtz coils, 114
Hencky (logarithmic) strain tensor, 294–296
Hermite functions, 250
Heuristic approaches

CS method, 379
DE, 379–380
ES, 377
GA, 377–378
PS optimization method, 378–379
SA, 375–376
TS strategy, 376, 377



454 Index

Heuristic modeling, 307, 308
Heuristic optimization (HO)

combinatorial problems, 374–375
convergence rate, 375
knowledge, 374
limitations, 374
mechanical engineering problem, 372–373
neighborhood search, 374
reliability problem, 375
resource-based external limit, 373
“rules of thumb,” 373

Hooke’s law, 73, 295
Hydrodynamic model, 114

I
Inductive learning, 352–354
Industry 4.0 revolution, 39, 41
Instantaneous center of rotation (ICR), 10

center of curvature response, 23–28
global coordinate frame, 12–13
vehicle body coordinate frame, 11–12

Internet of Things (IoT)
advantage, 58–59
autonomous vehicles

benefits, 60
components, 60, 61
edge computing (see Edge computing)
interaction model, 61, 62
M2M connectivity, 59

J
Japan Aerospace Exploration Agency (JAXA),

173
Joines and Houck’s method, 432–435, 442

K
Kalman filtering technique, 53
Karhunen–Loève (KL) method, 87
Kepler’s Laws, 237
Kernel-based learning, 358–360
Kirchhoff stress tensor, 282, 297

L
Lagrange formulations, 279
Laplace transform, 77, 78
Large-scale Information Network Embedding

(LINE), 334–335
Levenberg-Marquardt (LM) algorithm, 328
LiDAR, 51

Linear programming (LP), 368
Linear systems

differential equation, 174
first order ordinary differential equations

Newton’s law of cooling (see Newton’s
law of cooling)

pond pollution, 193–197
series resistance-inductance electrical

circuit, 177–185
lateral displacement, 174
mass-spring-damper system, 174

vs. cantilevered beam system, 174, 175
second order ordinary differential equations

falling mass, 198–202
single mass-spring-damper linear

system, 200–204
two mass-spring linear system, 204–207

static beam deflection, 175–176
temperature distribution, 176–178
translational displacement, 174

M
Machine learning (ML) methods, 40, 44, 45,

310
classification

BBNs, 322–323
decision tree, 319–320
ensemble methods, 323–326
Naïve Bayesian approach, 320–322
SVM, 315–319
training process, 315

clustering
DBSCAN, 313–314
factors, 312
PCA, 312–313

decision-making, 311
regression techniques, 311

ANN, 326–328
SVR, 328–330

supervised learning, 311
unsupervised learning, 311

Machine-to-Machine (M2M) connectivity, 59
Magnetic actuation

cilia
3D lithography method, 128
beating cycle, 131
magnetic dipoles, 129
magnetic field generators, 114, 128
magnetic nanoparticles, 129
mean speed, 132
nonlinear coupled magnetic–fluidic–

elastic problem, 131
parameters, 131
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polymeric matrix, 128
tangential and normal magnetizations,

130
velocity, 132

modeling
electromagnetic coil, 136
magnetic field, 133–135
magnetic field strength, 136, 137
magnetic gradients, 136, 137
magnetic torque, 133

Mass-spring-damper system, 174
vs. cantilevered beam system, 174, 175

Mathematical optimization problem, 367
Matrix factorization-based methods, 333–334
Maximum distortion energy yield criterion,

274
Maxwell coils, 114
Mean sea level (MSL), 141, 143–163
Meta-learning, 345–347
Metropolis algorithm, 375
Microrobot propulsion system, 113
Microswimming robots, 113
Minimization-based objective function, 353
ML, see Machine Learning (ML) methods
Modelling and simulation, engineering systems

inclined Cartesian coordinate system
equation of motion, 224
MATLAB script, 220, 221, 225
matrix transformation, 225
rotated trajectories, 226, 227
simulated trajectories, 225, 226
simulation results, 220, 222
vector force, 223–224

linear systems, 173–174 (see also Linear
systems)

non-linear systems (see Non-linear
systems)

normal and tangential coordinate system,
226–232

polar coordinate system, spacecraft
dynamics

Coriolis acceleration, 232
curvilinear motion, 230
Kepler’s Laws, 237
MATLAB script, 234
Newton’s law of universal gravitation,

232
numerical methods, 233
ordinary differential equations, second

order, 233
radial and transverse components, 231
simulated spacecraft orbits, 234–236

Modified direction set (MDS) strategy,
413–415

Multi-objective genetic programming
(MOGP), 385

N
Naïve Bayesian approach, 320–322
Nanorobots, 113, 114
Navier–Stokes equations, 115
Newton–Euler equations, 4
Newton iteration method, 70
Newton’s law of cooling

formulation, 191, 192
MATLAB®, 187–193
metal specimen submersion, 187
qualitative time histories, 186, 187
temperature, 184–185, 191

Newton’s law of universal gravitation, 232
Nonlinear drilling dynamics

Aadnoy friction model, 70
downhole tool, 69
drilling friction model, 70
drill string dynamics (see Drill string

dynamics)
drill string vibration model, 71
Euler instability, 70
Newton iteration method, 70
radial inertia effect, 71

damping coefficient, 78, 83–84
drill string length, 80–81
Fourier transform, 79
inside and outside radii, 81–82
Laplace transform, 77, 78
material parameters, 80
one-dimensional sticky elastomer, 76
Poisson’s ratio, 84, 85
Rayleigh–Love model, 79
stiffness coefficient, 78
vertical vibration model, 75–77

spiral buckling phenomenon, 70
stochastic friction force, 71
three-dimensional soft-pole calculation

model, 70
Non-linear systems

pendulum oscillations
deflection angles, 208
differential equation of motion, 208
MATLAB®, 209
non-linear equation, 209
notations and sign, 208
simulation results, 209–211
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Non-linear systems (cont.,)
projectile motion

Cartesian coordinate system, 211
EOM, 212, 213
MATLAB®, 213, 214
Newton’s second law, 211
order of states, 213
parabolic path of motion, 214
projectile trajectories, 214, 216
projectile umbrella, 214, 215
second order ordinary differential

equations, 212
simulation, 216–220

North America sea level
climate-related parameters, 141
East Coast, 163, 165–166
land subsidence, 167
linear regression, 141
long-term-trend (LTT) tide stations, 141,

143–163
MSL data, 141, 143–163
PSMSL, 141
sea level velocity and acceleration, 142
tide gauges, 141, 142
West Coast, 163, 164

O
Offspring selection mechanisms (OSMS), 435
Optimization, definition, 367

P
Parameter learning, 353
Particle swarm (PS) optimization method,

378–379
Permanent magnets, 114
Permanent Service for Mean Sea Level

(PSMSL), 141
Plastic deformation

deformation law, 286
yield criterion, 285–286

Poincare plot, 95–97
Poisson’s ratio, 84, 85
Polycrystalline diamond compact (PDC) drill,

90
Pressure vessels, 274

safety, 305
Principal component analysis (PCA), 312–313

Q
Quadratic programming (QP), 369
Quasi-steady-state (QSS) transition, 15

lateral velocity, 17
steady-state conditions, 15
vs. transient response, 18–21

R
R2R interaction, see Roadside-to-Roadside

(R2R) interaction
Radar sensors, 51
Radial basis function (RBF), 328, 330
Ramberg–Osgood law, 297
Random forest (RF), 324
Rate of penetration (ROP), 90
Rayleigh damping, 73
Rayleigh–Love model, 79
RBF, see Radial basis function (RBF)
Real-code GAs (RCGAs), 435
Regression techniques, 44

ANN, 326–328
SVR, 328–330

Reinforcement learning, 44, 45
Representation learning

classification and regression tasks, 330
data reduction, 331
deep learning-based methods, 332
dimensionality reduction, 330
edge-based modeling methods, 334–335
feature-rich dataset, 331
goal-oriented strategies, 331
matrix factorization-based methods,

333–334
random walk-based methods, 333
training process, 330
vector-based machine learning algorithms,

330
Reynolds number, 115, 117
Roadside-to-Roadside (R2R) interaction, 62
Rotation tensor, 277

S
SBT, see Slender body theory (SBT)
Scaled conjugate gradient (SCG) algorithm,

328
Scientific modelling, definition, 171
Sensor & Actuator (S&A), 62
Simple genetic algorithm (SGA)

dynamic mutation operator
artificial selection, 443–447
function, 441
Joines and Houck’s method, 442
results, 443

FCB-crossover, 435, 437–438
application, 438–441
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gene combination function, 436–437
OSMS, 435
RCGAs, 435

Simulated annealing (SA), 375–376
Simulation, definition, 171
SL, see Supervised learning (SL)
Slender body theory (SBT), 115–116
Spacecraft dynamics, polar coordinate system

Coriolis acceleration, 232
curvilinear motion, 230
Kepler’s laws, 237
MATLAB script, 234
Newton’s law of universal gravitation,

232
numerical methods, 233
ordinary differential equations, second

order, 233
radial and transverse components, 231
simulated spacecraft orbits, 234–236

Statistical learning, 43
Stochastic gradient descent with momentum

(SGDM), 340
Stochastic programming (SP), 370
Stokes flow, 115–116
Strain tensor

disadvantages, 280
Euler strain formulations, 279
Lagrange formulations, 279
logarithmic strain tensor, 279, 280
rotation tensor, 277
spectral resolution, 278
symmetric tensor, 277, 278

Stress tensors, 282–283
Structural correspondence learning (SCL)

algorithm, 354
Structural deep network embedding (SDNE),

332
Subspace harmony search (SHS), 387
Supervised learning (SL), 44, 311
Support vector machines (SVM), 315–319

classification error, 317
engineering applications, 319
Euclidian distance, 318
hyperplane boundary, 315, 316
Lagrange multipliers, 318
linear plane boundaries, 316
nonlinear transformation function,

317
type, 315
weighted sum, 318

Support vector regression (SVR), 328–330
Symbolic learning, 42–43

T
Tabu search (TS) strategy, 376, 377
Thick-walled cylinders, elastic-plastic

deformation
equilibrium condition, 303
external loads, 304
geometric analysis

axially-symmetric deformation, 292
coordinate systems, 290–291
dimensionless parameter, 295
Hencky (logarithmic) strain tensor, 294
integration constant, 293
monotonic deformation, 294
radial and axial vibrations, 290
radial loading parameter, 295
strain rate tensor, 292, 293

iterative solution
components, 298
first iteration, 298–299
second iteration, 299–300

load path, 300–302
stress and strain distribution, 290
stress–strain analysis

elastic–plastic range, 296–298
stress distribution, 295–296
von Mises yield criterion, 295

time derivative, 302–303
Transductive learning, 354–355
Transfer learning

inductive learning, 352–354
models, 351, 352
transductive learning, 354–355

Tresca yield criterion, 274
Truss finite element, 249, 251
Truss optimization

bracket penalty, 391
degree of freedom, 391
discrete design variables, 388, 390
DSOGP

decoding, 392–394
fitness evaluation, 394
genetic operators and selection, 394
initialization, 392
optimal mechanical design, 394–397

essential and optional nodes, 389
natural frequency constraints, 389
structure, 389, 390

U
Ultrasonic sensors, 50
Unsupervised learning, 44, 311
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V
Vector-based machine learning algorithms, 330
Vehicle dynamics, 3, 51–52
Vehicle laziness, 15
Vehicle’s handling behavior

actual path, 34–35
angular velocity, 11
bicycle model, 3 (see also Bicycle model)
characteristics, 10
curvature of the path, 11
curvature response, 11
equations of motion, 6–8
external factors, 3
ICR, 10

center of curvature response, 23–28
global coordinate frame, 12–13
vehicle body coordinate frame, 11–12

local vs. global velocity vectors, 14
longitudinal and lateral accelerations, 15
path of motion, 14
planar modeling, 3
QSS transition, 15
reference road profile

body/global coordinates, 29
clothoid, 29, 30
Euler spiral, 29, 30
Fresnel cosine, 30
Fresnel sine integrals, 30
parametric equations, 31
vs. path of motion, 32, 33
QSS response, 28
velocity and curvature conditions, 29

side-slip angles, 4
steady-state responses, 4, 8–10
time response

centripetal acceleration, 15
lateral acceleration, 15
steady-state surface maps, 21–24
steer angle, 19–21
transient simulation, 16
vehicle parameters, 15–16

velocity, 17–19
turning radius, 10
yaw-rate, 4

Vehicle to everything (V2X), 55
Vehicle to Infrastructure (V2I) systems, 55
Vehicle transient/steady-state behavior

actual path, 34–35
center of curvature response, 23–28
reference road profile, 28–33
time response, 15–24

Volumetric Modulus, 285
von Mises yield criterion, 275, 286–289, 295

W
Wave equation, 246
Weighted averaging (WA) technique, 53
Wheel odometry, 52

Y
YES-2 Concept, 173

Z
Zero-order numerical optimization

design space, 412
EHA strategy, 415–417
EP strategy, 419–422
fully stressed (FS) strategy, 417–419
GAs

crossover, 428–429
flowchart, 421, 423
initial population creation, 421–424
mutation, 429–432
new population selection, 426–428
roulette wheel selection, 420
stress constraint, fitness evaluation,

424–426
structural optimization, 420

MDS strategy, 413–415
SGA, 412
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