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Abstract Vegetative propagation is an important method for increasing the pro-
ductivity of economically important agricultural and horticultural plants. Apart from
the application of phytohormones, beneficial microorganisms such as arbuscular
mycorrhizal (AM) fungi being natural biofertilizers are also widely used in the field
of horticultural production systems. The mutualistic association between the AM
fungi and plant are not only known for their efficient water and nutrient uptake, less
vulnerability to pathogens, and ability to withstand or tolerate abiotic and biotic
stresses but are also involved in the production of plant hormones and adventitious
root formation in asexual propagation. The inoculation of AM fungi to the rooting
substrate could result in similar responses on the cuttings to those obtained through
the application of exogenous plant growth regulators. In addition, the combined use
of AM fungi along with plant hormones leads to increased root initiation and
development of plant parts. The early inoculation of AM fungi onto the rooting
medium enhances the plant growth rate of vegetatively propagated plant species
after forming a symbiotic relationship with the plant. Moreover, a series of sequen-
tial signaling events are known to occur between AM fungi and the host plant during
the development of roots. The present chapter focuses on the role of AM fungi in
various types of vegetative propagation including cutting, layering, and grafting, the
interaction between the plant hormones, and the AM symbiosis. The mechanism
involved in the production of plant hormones through AM fungi and thereby the
physiological changes occurring in the plant metabolism during propagation is also
discussed.
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5.1 Introduction

Agriculture is the major source of food supply and places important pressure on the
environment and the natural resources. Horticulture being the major part of agricul-
ture includes the production of vegetables, ornamentals, fruits, and medicinal plants
(Sonah et al. 2011). There has been a significant increase in the productivity as well
as the quality of the agricultural crops obtained through several new farming
technologies (Edgerton 2009). Nevertheless, there is less progress in the domestica-
tion of tree species due to long generation times, irregular production of flowers and
fruits, and high prevalence of outbreeding leading to loss of genetic gain in succes-
sive generations (Leakey et al. 1994). In addition, farmers often cannot afford high-
quality tree transplants, or sometimes seeds may not be available, and some plants or
tree species have very low germination rates. In order to overcome these limitations,
vegetative propagation method was introduced for rapid production, better quality of
horticultural crops and tree species thereby greatly enhancing their yield (Davies
et al. 1994; Bisognin 2011).

Plant propagation are of two types, sexual propagation and asexual propagation,
of which asexual propagation is considered as an important propagation method in
which vegetative parts of plants such as stems, roots, leaves, or other special
vegetative structures when detached from the mother plant and placed under suitable
conditions develop into novel individuals that are genetically similar to the parent
plant. Vegetative propagation is also of great relevance in rapid replication of a plant
species under threat with a goal to sustain certain desired characteristics (Hartmann
et al. 2002). The propagation of plants involving vegetative parts is advantageous
over sexual methods, as the vegetative parts are much larger when compared to seeds
and consist of more reserve energy. This enables rapid, constant early growth and
facilitates the young plants called clones to establish successfully in spite of extreme
competition for light, water, and minerals from already existing vegetation. There-
fore, vegetatively propagating perennials can flourish over a wide range of dense
plant communities. For example, some grassland weeds like creeping buttercup and
stinging nettle invade vigorously through vegetative methods (Forbes and Watson
1992).

The vegetative organs of plants in the wild always prefer to propagate in an
environment that is favorable for its growth. Mostly, it circumvents waterlogged or
dry soil and heavily compacted area. Hence it is generally site-selective in nature. In
contrast, seed dispersal is often a random process in sexual propagation. As the new
individual plants or offsprings are produced through purely mitotic cell divisions in
vegetative propagation, they are genetically similar to the parent plant, and genetic
recombination does not take place (Forbes and Watson 1992). Therefore, the
successful plants with genetically identical characteristics suitable to its environment
propagate to develop well-adapted offsprings for many generations. Plant propaga-
tion through vegetative means is beneficial to agriculturists and horticulturists as
they could raise crops and ornamentals that do not produce viable seeds. For
instance, one of the initial and major developments in the agricultural system was
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the production of important crop species such as grapes and figs through the
insertion of the base of their woody stems into the ground to develop the adventitious
roots and thus regenerating into new plants (Steffens and Rasmussen 2016). Several
crop species like strawberries, potatoes, onion, etc. are well developed under natural
condition through vegetative propagation method (Megersa 2017).

Besides several advantages, vegetative propagation is not easy or cheap when
compared to propagation through seeds. Further, no hybrid or a new variety of plants
could be raised by this propagation method (Mckey et al. 2010). The multiplication
of vegetative organs could lead to overcrowding of individuals around the parent
plant and invariably results in competition for resources like water and nutrients. In
natural conditions, vegetatively propagated plants allow only short-range spread. In
addition, as there is no genetic variation, plants can lose their vigor easily (Mckey
et al. 2010). For example, if a plant is vulnerable to any specific pathogen or disease,
all its offsprings produced by the mother plant are also equally vulnerable thus
leading to the destruction of the whole plant population in a very short period
of time.

The most common method of vegetative propagation includes cutting that is
obtained by stem, leaf, or root, layering, grafting or through specialized organs such
as tuber, rhizome, or bulbs (Megersa 2017). Of these, propagation by cuttings is the
easiest, cheapest, and suitable method for a wide range of herbaceous and woody
plant species. When the plant material is scarce or in order to raise a particular plant
species rapidly, leaf cuttings or leaf bud cuttings are of great significance. Further,
stem cuttings are placed into the growing substrate so as to produce rooting and other
vegetative parts and thus developing into a new intact plant. Some of the plants do
not root easily by cutting. Such type of plants can be propagated through layering
where the propagated plant part is rooted when still remain attached to the mother
plant and the sap flow does not get disturbed (Preece 2003). Moreover, forest tree
species and other tropical fruits can be propagated through grafting technique in
which two parts of the living plant, scion and rootstock, are grafted together that
unite and develop into a new plant (Pina and Errea 2005). These different types of
propagation techniques have both advantages and disadvantages of their own.

The vegetative propagation of plants through above-mentioned methods could be
improved by the application of plant growth regulators for quick and early regener-
ation of plant parts (Păcurar et al. 2014; Adekola et al. 2012). Apart from plant
growth regulators, some of the beneficial soil microorganisms also play a vital role
in upraising plants through vegetative propagation techniques (Du Jardin 2015).
Among several soil microbes, arbuscular mycorrhizal (AM) fungi act as an
eco-friendly biostimulant that has a significant role in horticulture crops (Rouphael
et al. 2015). Apart from numerous positive effects, AM fungi also play a vital role
in the formation of adventitious roots when supplemented to the rooting substrate
in most of the plant species (Scagel 2004a, b; Fatemeh and Zaynab 2014), thus
contributing to the vegetative propagation of plants. Therefore, in the present
chapter, we outline the importance and effect of AM fungal application on the
regeneration and development of plant species through different methods of vege-
tative propagation (cutting, grafting, and layering). The interactions between plant
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hormones and AM fungal symbiosis and the mechanism through which AM fungi
enhance the growth of clones raised by vegetative propagation techniques is also
discussed.

5.2 Arbuscular Mycorrhizal Fungi

Mycorrhizal symbiosis is a mutualistic association between the soil fungi and plant
roots. About 80% of the land plant roots forms a symbiotic association with the AM
fungi which supports the host plant by providing essential nutrients in exchange for
carbohydrates provided by the host plant (Smith and Read 2008). The AM fungal
symbiosis is not limited to space within the roots, as the AM fungi produce
extraradical mycelium that explores the soil surrounding plant roots. Arbuscular
mycorrhizal fungi are characterized by the presence of two important structures:
arbuscules and vesicles (Fig. 5.1). The AM fungal hyphae colonize the cortical cells
of roots forming a highly branched structure within the cells called arbuscules that
function as a site for nutrient exchange (Berruti et al. 2015). The fungal hyphae
originating from roots extend into the adjacent soil where they scavenge nutrients
especially phosphorus (P) and transfer it to the host plants (Smith and Read 2008).
Vesicles are the storage organ developed by the AM fungi in the form of terminal or
intercalary hyphal swellings in the root cortical regions consisting of cytoplasm and
lipids (Biermann and Linderman 1983). They are inter- or intracellular and are
generally initiated after the formation of arbuscules, however, continue to develop
even after the formation of arbuscules has ceased. Spores of AM fungi consist of
lipids and are covered by multilayered cell wall allowing them to be viable for long
duration and thereby are important propagules for initiating new colonization
(Brundrett 1991).

Although AM fungal spore can germinate in the absence of the host plant, they
fail to form a wide mycelial network and cannot complete their lifecycle without
forming an association with the plant host (Porcel et al. 2012). In low fertile soils,
AM fungi enhance the crop productivity by improving the uptake of immobile
nutrients other than P such as zinc (Zn) and copper (Cu). Mycorrhizal fungi absorb
nitrogen (N) from ammonia and transport to the host and enhance the crop produc-
tivity in soils of low potassium (K), calcium (Ca), and magnesium (Mg) content (Liu
et al. 2002). There is an increasing body of literature exhibiting the beneficial aspects
of AM fungi that include improved plant growth, increased acquisition of nutrients
and water, tolerance to salinity, drought and metal toxicity, resistance against root
pathogens, and maintaining of the soil structure and fertility (Harrier and Watson
2004; Rillig and Mummey 2006; Smith and Smith 2012; Yang et al. 2015).

Further, AM fungi are the important component of rhizosphere soil microbial
community and have a positive effect on both soil and plant under natural ecosystem.
They promote modifications in the chemical and biological properties of plants
under stressed conditions. In addition, AM fungi are widely used as bioinoculants
in most of the agricultural crops, thus in turn contributing to sustainable agricultural
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practices (Berruti et al. 2015). Apart from these positive effects, AM fungi are of
great significance in the field of plant propagation as they stimulate the development
of root system, enhance photosynthesis, produce more plant hormones, protect the
plants from various stresses, and help in the successful establishment of young plants
under natural conditions with improved output survival (Fig. 5.1).

5.3 Effect of AM Fungi on Cuttings

Arbuscular mycorrhizal fungi help in plant’s adaptation by promoting the survival
and establishment of rooted cuttings (Fatemeh and Zaynab 2014). The inoculation of
AM fungi into the rooting medium during propagation by cuttings enhances the

Fig. 5.1 Various plant benefits in response to arbuscular mycorrhizal (AM) symbiosis in vegeta-
tively propagated clones. The important AM fungal structures, arbuscules, and vesicles are also
shown within red circles
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rooting ability in different plants (Linderman and Call 1977; Singh 2002; Scagel
2004a, b). The response to AM fungal inoculation by the different plant cultivars
propagated through cuttings is presented in Table 5.1. However, the efficiency of the
AM symbiosis differs depending upon the AM fungal species and the ability of plant
species to form roots (Scagel 2004b). For example, inoculation of Prunus maritima
Marshall cuttings (hardwood and softwood) with three different AM fungal species,
Funneliformis mosseae (¼ Glomus mosseae), Claroideoglomus etunicatum (¼ Glo-
mus etunicatum), and Glomus diaphanum, in sterilized soil induced increased
adventitious root growth. Of these, F. mosseae was more efficient in adventitious
root production (Zai et al. 2007). Nevertheless, the method followed for plant
propagation through cuttings does not permit mycorrhizal formation naturally as
the rooting medium or substrate is generally sterilized to avoid interference of
pathogens or soilless substrates that lack AM fungi are used (Essahibi et al. 2017)
(Table 5.1). The quality of cutting, rooting medium, and the environmental condition
are important factors for successful rooting of the cuttings. An ideal root medium
allows good aeration, avoid water logging, and maintain moisture content and
improved and higher root development (Washa et al. 2012).

The application of AM fungi into the rooting medium in the greenhouses could be
helpful for the growth of propagating plants in outdoor conditions after transplanta-
tion. The early inoculation of cuttings with AM fungi during the formation of
adventitious roots benefits the plant growth (Scagel et al. 2003). The response of
olive cuttings to inoculation with two AM fungal species Rhizophagus irregularis
(¼ Glomus intraradices) and F. mosseae in the nursery and under field conditions
exhibited increased plant growth and yield. Further, pre-inoculation of AM fungi
into the field enhanced the plant growth response through the early establishment of
symbiosis in clones raised in sterilized substrates (Estaun et al. 2003). Nevertheless,
the effect of pre-inoculation treatment reduces over time as the seedlings get
colonized with the indigenous AM fungi in the field (Siqueira et al. 1998; Estaun
et al. 2003).

Successful establishment of clonal plants in an environment depends on the
ability of the clones to produce a large volume of roots, superior root length and
clonal vigor (Washa et al. 2012). The mycorrhizal fungal inoculation improves the
root growth characteristics of plant species propagated by cuttings. Moreover,
Wimalarathne et al. (2014) reported greater root architecture such as root biomass,
root length, root volume, and root mean diameter in Piper nigrum L. rooted cuttings
inoculated with different quantities of F. mosseae inoculums in a sterilized rooting
medium comprising of top soil, cattle manure, and river sand. Similarly, both runner
and orthotropic shoots of P. nigrum inoculated with mycorrhizal fungi [Rhizophagus
fasciculatus (¼ Glomus fasiculatum), Gigaspora margarita, and Acaulospora
laevis] induced higher root growth characteristics when compared to the
uninoculated and indole butyric acid (IBA)-treated P. nigrum cuttings (Thanuja
et al. 2002). Plants of Origanum vulgare L., Origanum onites L., Mentha piperita
L., Mentha spicata L., and Mentha viridis L. raised by stem cuttings when trans-
ferred to sterile rooting medium containing C. etunicatum propagules had
increased the plant growth, nutrients, and production of essential oil (Karagiannidis
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et al. 2012). In addition, the uses of AM fungal soil inoculums have been reported to
enhance the survival and establishment of Khaya anthotheca (Welw.) C. DC.
cuttings and also in the restoration of plants in the degraded lands (Dugbley et al.
2015). The colonization of roots by AM fungi promotes the growth rate and nutrient
uptake in clones propagated through cuttings (Sohn et al. 2003; Karagiannidis et al.
2012).

The application of indigenous AM fungi is more useful than using exotic AM
fungal species for raising plants by cuttings. It has been suggested that the combi-
nation of both indigenous and exotic AM fungal species could lead to negative
response on plant growth (Klironomos 2003). In support of this statement, Williams
et al. (2013) found that addition of indigenous AM fungal species (A. laevis) to a
slow-growing tree species, Podocarpus cunninghamii Colenso rooted cuttings, in
pasteurized soil exhibited early and positive growth responses than application of
exotic or commercially produced AM fungi (Glomus spp.). Different types of
cuttings including softwood, semi-hardwood, and hardwood cuttings and also root
cuttings of Dalbergia melanoxylon Guill. & Perr. tree raised under soil-containing
AM fungi exhibited greater rooting traits thereby increasing the plant growth (Washa
et al. 2012).

The adventitious root formation in cuttings is a vital process in plants that are
widely propagated through vegetative methods. The formation of adventitious root
in the tissues of the shoot is a complex developmental process that includes induc-
tion, differentiation, dedifferentiation, and growth of roots (Hartmann et al. 2002). It
mostly depends on nutrients like carbon (C) and N and is specifically controlled by
the interaction of plant hormones (Druege et al. 2004; Kevers et al. 1997). A root-
colonizing endophytic fungus, Piriformospora indica when inoculated in root sub-
strate with the cuttings of Pelargonium and Poinsettia increased the number and
length of the adventitious root thereby promoting the formation of adventitious root
at the higher rate of seven at the low fungal root colonization rates (Druege et al.
2006). Likewise, the inoculation of hormone-treated miniature rose cuttings with
Rhizophagus intraradices (¼ Glomus intraradices) enhanced the root biomass and
adventitious root formation before the root colonization, which suggests that AM
fungi-plant signaling processes could have occurred earlier to rooting (Scagel
2004a).

5.4 Influence of AM Fungi on Grafting

Grafting is one of the major methods of vegetative plant propagation that has a
crucial role in the development of horticultural crops which involves the production
of new plants by inserting the shoot part (scion) onto the rootstock that forms the root
system of the scion and generates into a new plant (Lee 1994). The rootstock
influences the formation and accomplishment of the union graft. The rapid devel-
opment of prominent root system is essential for the successful development of the
plant, so the rootstock strongly relies on the effective root formation (Yetisir and Sari
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2003). As the root system has a pronounced effect on root functions, it is important
to know the influence of AM fungi on the performance of rootstock. It is observed
that the initial or early inoculation of AM fungi is beneficial for the development of
rootstock (Kumar et al. 2008).

Arbuscular mycorrhizal fungi influence the root morphogenesis through metab-
olites of AM fungi and hormones that are independent of the external supply of
nutrients (Hooker et al. 1992). The effect of AM fungal species inoculation on plants
through grafting method is presented in Table 5.2. In a study, Kumar et al. (2008)
observed that AM fungal inoculation (G. margarita and R. fasciculatus) increased
the rootstock vigor and vegetative and root parameters of mango thus contributing to
successful grafting. Likewise, the rootstock of Syzygium cuminii L. treated with
R. fasciculatus and R. intraradices when subjected to softwood grafting exhibited
higher percentage of graft success and survival when compared to the uninoculated
grafted S. cuminii (Neeraja Gandhi et al. 2010). The production of growth hormones
such as auxins, gibberellins, and vitamins by AM fungi could contribute to the
growth enhancement of rootstock. Furthermore, greater root geometry and increased
nutrient supply mediated by AM fungi lead to the extramatrical hyphal growth that
in turn improves the plant growth. The higher percentage of AM fungal root
colonization enlarges the surface area for absorption and nutrient uptake in the
rootstocks.

Inoculation of the AM fungal species (A. laevis and C. etunicatum) isolated from
the rhizosphere soil of cashew plants from different sites improved the growth
performance and the vigor of the cashew rootstock developed through grafting
process. The AM fungal inoculation benefitted the grafted plants to withstand the
transplant shock and to thrive well under field conditions (Lakshmipathy et al. 2004).
Further, some studies have revealed an increased salinity tolerance in response to
mycorrhizal inoculation of grafted plants through extension of the mycorrhizal
hyphae into the substrate for higher uptake of nutrients and enhancing the root
architecture parameters thereby improving the growth performance and fruit yield
of grafted plants (Oztekin et al. 2013). The AM fungal root colonization varies
among different grafted plant species. For example, Schreiner (2003) investigated
the root colonization by AM fungi of ten different rootstocks of grapevines (Vitis
vinifera L.) and reported only small variations in the mycorrhizal colonization of the
rootstock genotype, where root length density of fine roots and AM colonization of
fine roots were correlated to vigor and yield of scion. Further, AM fungal mycor-
rhizal colonization was related to the growth performance of the scion on varied
rootstocks (Schreiner 2003).

The scion’s quality and yield are gaining more interest in horticulture when
compared to the rootstock which is meant for absorption. Some studies have
reported that genotypes of scion exert a higher effect on AM fungal communities
when compared to rootstock raised in varied types of soil (Song et al. 2015). For
instance, Shu et al. (2017) conducted an experiment to find out the influence of
Avocado (Persea americana Mill.) scions on AM fungi and development of root
hairs in rootstocks and observed that scions did not have any impact on AM fungi,
but scion influenced both the AM absorption and root directed pathways
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systematically. It is believed that the plant hormones and secondary metabolites that
are produced by the leaves and shoots and then transferred to the roots are crucial for
the development of root hair and AM fungal colonization (Micallef et al. 2009; Shu
et al. 2017).

Several studies have highlighted the role of AM fungi in plant protection against
phytopathogens. Mora-Romero et al. (2015) conducted a grafting experiment using
two varied pathogens, Sclerotinias slerotiorum (Lib.) de Bary (fungal pathogen)
infected common bean (Phaseolus vulgaris L.) and tomato (Solanum lycopersicum
L.) plant infected with the bacterial pathogen (Xanthomonas campestris
pv. vesicatoria) and raised the presence and absence of AM fungi. The results of
the study showed that for both the plant pathogens, the scions originated from
non-mycorrhizal plants had the capacity to exhibit disease protection induced by
mycorrhizal fungi through their grafting to rootstocks inoculated with mycorrhizal
fungus (R. irregularis) (Mora-Romero et al. 2015). Bolandnazar et al. (2014) also
reported a decrease in the incidence of Fusarium wilt disease in tomato plants
through grafting onto resistant rootstocks and mycorrhizal inoculation.

The influence of AM fungi varies according to different plant species subjected to
grafting technique and the quality of scion and rootstocks. Grafting of mini water-
melon (Melothria scabra Naudin) onto mycorrhiza inoculated hybrid variety
(Cucurbita moschata Duchesne � Cucurbita maxima Duchesne) rootstocks
increased the vigor, production, and quality of mini watermelon fruits. In addition,
the vitamin C content in fruit was enhanced due to the increased nutrient uptake,
well-developed root system in rootstocks, and production of endogenous hormones
on mycorrhization (Miceli et al. 2016). The production of rootstocks of citrus species
(citrange ‘Fepagro C37 Reck’, ‘Kumquat’) with AM fungal species such as
C. etunicatum; Fuscutata heterogama (¼ Scutellospora heterogama); G. margarita;
and Acaulospora sp. resulted in increased plant growth performance and percentage
of AM fungal colonization in citrange ‘Fepagro C37 Reck’ when compared to the
other citrus rootstock which reveals that the effect of AM fungi on vegetative
development relies on rootstock species (Back et al. 2016). Moreover, different
methods of grafting have also been carried out to determine the successful grafting
process. For instance, cucumbers raised using different types of grafting including
self-grafted, splice grafted, and root pruned splice graft and inoculated with Glomus
spp. exhibited higher plant growth and yield. Of these three methods, root pruned
splice grafted cucumber produced more yield and superior plant growth response on
inoculation with indigenous AM species under greenhouse conditions (Babaj et al.
2014).

In addition to improving plant quality and performance, grafting technique has
received great reputation as an important research tool, especially in studies
pertaining to the signaling mechanisms between root and shoot (Gaion et al.
2018). In their classical study, Gianinazzi-Pearson and Gianinazzi (1992) showed
that intergeneric grafting of lupin scions onto pea root stocks greatly reduced root
colonization by F. mosseae and R. intraradices and totally prevented the develop-
ment of arbuscules in the root cortical cells. Based on the results, the authors
suggested the possible involvement of mobile factors originating in shoots
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preventing the establishment of mycorrhizal symbiosis in lupines (Gianinazzi-
Pearson and Gianinazzi 1992). Foo et al. (2015) based on the intergeneric grafting
experiment between lupin and pea showed that AM symbiosis and nodulation are
regulated independently of each other probably due to the long-distance signaling.
Further, the low strigolactone content in lupin scions grafted pea roots was suggested
a possible cause for the suppression of AM symbiosis in lupin-pea graft
combination.

In a greenhouse experiment, Kumar et al. (2015) investigated the influence of
grafting and R. intraradices inoculation on the biochemical, physiological, and
metabolite changes as well as gene expression analysis of tomato under two different
levels of cadmium (Cd) stress. In this study, there are two graft combinations: self-
grafted (S. lycopersicum cv. Ikram and S. lycopersicum cv. Ikram) and grafted onto
interspecific hybrid rootstock Maxifort (S. lycopersicum � S. habrochaites). The
presence of AM fungus was not able to ameliorate the effect of Cd stress and
significantly increased the accumulation of Cd in the tomato shoots which subse-
quently decreased the growth and yield. However, plants of Ikram/Maxifort graft
combination accumulated more proline, had higher antioxidant enzyme activity, and
reduced lipid peroxidation. Moreover, Ikram-/Maxifort-grafted plants had higher
accumulation of P, K, Ca, iron (Fe), manganese (Mn), and Zn and metabolites like
fructans, inulins, and phytochelatin PC2 than Ikram/Ikram combination. The
increased nutritional status of Ikram-/Maxifort-grafted plants was attributed to the
upregulation of LeNRAMP3 gene in leaves (Kumar et al. 2015).

5.5 Mycorrhizal Fungi and Layering

Layering is one of the techniques in vegetative propagation in which a branch of the
plant produces roots before it is detached from the mother plant. The successful
propagation via layering depends on many factors such as moisture availability,
season, the position of branching, and quality of rooting substrate and wrapping
material (Mishra et al. 2017). Layering is of different types such as simple layering,
compound layering, tip layering, and air layering. The combined inoculation of AM
fungal species, Scutellospora and Glomus, in Theobroma cacao L. obtained through
air layering showed an increase in dry biomass, stem diameter, and P concentration
in shoots (Chulan and Martin 1992). Arbuscular mycorrhizal fungi increased the
growth of Lychee (Litchi chinensis Sonn.) tree propagated by air layering in a soil-
free substrate. In addition, AM fungi (indigenous Glomalean fungi) enhanced the
copper (Cu) and Fe uptake in the Lychee (Janos et al. 2001). Moreover, the
application of AM fungi along with vermicompost and Azotobacter as the rooting
media improved the root and shoot characteristics and also the survival percentage of
air layers of Lychee (Mishra et al. 2017). Furthermore, Sharma et al. (2009) also
reported an enhanced total number of roots in Litchi air layers combined inoculated
with R. fasciculatus and Azotobacter sp. The betterment in root architecture of
air-layered Litchi trees was due to enhanced carbohydrates and metabolic activities
by the rooting substrate (Mishra et al. 2017). Only very few studies have been carried
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out through layering propagation using AM fungal species when compared to other
types of vegetative propagation. The precise mechanism of AM fungi in propagation
through layering is still obscure.

5.6 Interaction Between Plant Hormones and AM Fungi

The relationship between the host plant root and AM fungi involves a constant
exchange of signals that lead to proper symbiosis development (Gianinazzi-Pearson
1996). Arbuscular mycorrhizal fungi regulate the hormonal balance of the plant by
producing growth regulators under stressed conditions (Nadeem et al. 2014). The
plant hormones regulate a number of events during the developmental stage of plants
and constitute signaling molecules to regulate the establishment of a symbiosis. For
example, auxins regulate the shoot and root architecture of plants and also stimulate
the early events thereby helping in the formation of lateral roots on the host plant
(Kaldorf and Ludwig-Müller 2000). Further, abscisic acid and jasmonates are
involved in the formation of arbuscules (Herrera-Medina et al. 2007). However, in
the formation of spore and vesicles, no hormones have been specified so far. Thus,
these alterations in the fungus development may be induced by autonomous signals
of the fungi itself. In addition, phytohormones take part in the temporary defense
responses that are essential for establishing a homeostasis between AM fungi and the
host plant (Garcia-Garrido and Ocampo 2002). Moreover, they might also stimulate
resistance against pathogens to protect the host plant (Pozo et al. 2002).

The application of AM fungal species on cuttings treated with auxins exhibited
controversial results. For instance, inoculation of AM fungi and auxin on stem
cuttings of D. melanoxylon improved the rooting ability in terms of rooting percent-
age and root parameters (Ezekiel Amri 2015). An increase in the levels of auxins
after inoculation of AM fungi in maize and soybean plants has been observed by
Kaldorf and Ludwig-Müller (2000); Meixner et al. (2005). Production of indole-3-
acetic acid by R. irregularis was reported by Ludwig-Müller et al. (1997). Jasmonic
acid is known to establish symbiotic association between plant and AM fungus by
modifying the endogenous jasmonic acid through repeated wounding of the plant
(Landgraf et al. 2012). One of the hormones responsible for inducing AM spore
germination is strigolactones, and it acts as a signaling molecule in rhizosphere to
form AM symbiosis (García-Garrido et al. 2009).

The production of abscisic acid by the AM fungal hyphae of R. irregularis was
revealed by Esch et al. (1994). This could give rise to early signal to enhance the
production of indole-3-butyric acid to increase the lateral root numbers in the young
roots and thus constituting a path for the fungal entry (Kaldorf and Ludwig-Müller
2000) as the production of indole-3-butyric acid was stimulated by abscisic acid
(Ludwig-Müller et al. 1995). This might be a good example which indicates that
hormonal signal formed by the symbiont can affect synthesis of hormones in plants.
Deficiency of abscisic acid leads to increased level of ethylene that adversely
regulates mycorrhizal fungal colonization. Moreover, abscisic acid deficiency
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seems to downregulate the formation of arbuscules directly (Martín-Rodríguez et al.
2011).

5.7 Mechanism of AM Fungi in Plant Propagation

The primary mechanism accountable for plant growth is the improvement in the
uptake of nutrients especially P induced by AM fungi. The production of plant
hormones through these mutualistic fungi may also contribute to plant metabolic
processes. Both the physiological and morphological alterations that microbial plant
hormones could stimulate in the plant may help in the AM fungal symbiosis
establishment and its activity, thereby resulting in the increased acquisition of
nutrients by the host plants. In addition, gibberellins enhance the leaf area and lateral
root formation, cytokinins play an important role in the fundamental processes of
plant growth such as enhancement of photosynthetic rate, and auxins regulate the
formation of roots and improve cell wall elasticity (Barea and Azcón-Aguilar 1982).
Moreover, increased levels of cytokinin are reported with the association of plant
roots with AM fungi thereby maintaining the chlorophyll levels and influencing the
iron transport (Khade and Rodrigues 2009). The AM fungal colonization enhances
the internal cytokinin levels in the colonized tissue and increases the fluxes of
cytokinin to other plant parts, independent of the nutrient status of the host plant
(Hirsch et al. 1997).

A series of sequential signaling events take place during various stages of plant-
AM fungi interactions; however, there is no accurate information available about
these signaling molecules (Roussel et al. 2001). The functioning of these molecules
is examined in root-AM fungi interactions, but not between the stem and AM fungi
(Scagel 2004a). In the propagation of plants obtained through cuttings, AM fungi
benefit the plants when inoculation is done during the formation of the adventitious
root (Fatemeh and Zaynab 2014). Moreover, the presence of precolonization signal
among propagules of AM fungi and cutting is alike to those prevailing in the
existence of host plant roots (Scagel 2001). This signal is activated in the cuttings
of basal ends due to the release of carbon dioxide or other metabolites that was able
to stimulate AM fungi propagule (Tamasloukht et al. 2003). The exudates released
by the AM fungi might cause alterations in the metabolism of cuttings, thus
increasing initiation of the adventitious root, thus improving the rooting ability on
the cuttings on inoculation with AM fungi (Scagel 2004a). Furthermore, AM fungi
induce new root formation after colonizing the root by enhancing the phenolic
compound accumulation that is involved in tolerance against soilborne pathogens
and also increases the water and nutrient uptake through the extraradical mycelia
(Larose et al. 2002).

Arbuscular mycorrhizal symbiosis improves the ability of roots to uptake soil
elements that are of low mobility through their mycelial network, thus enhancing
plant growth. Inoculation of AM fungi in the soilless rooting substrate decrease the
mortality percentage during transplantation and enhance the productivity of several
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ornamental plants through vegetative propagation (Scagel 2004a). Mostly, another
mechanism behind the rooting of cuttings is ascribed to the alterations in the N,
amino acid, protein, and carbohydrate metabolism occurring during the development
of adventitious roots. For example, miniature roses inoculated with AM fungi
showed changes in the protein and amino acid contents in the cuttings (Scagel
2004a).

The beneficial aspect of AM fungi is more noticeable in the adaptation of rooted
cuttings. As already mentioned, AM fungi improved the survival of the clones
through the hardening stage and protected them from transplantation shocks
(Yadav et al. 2013). Arbuscular mycorrhizal fungi improve the nutrient contents
and stomatal conductivity of rooted cuttings. Mycorrhization positively influences
the plant’s gas exchange through enhancing the stomatal conductance (Sánchez-
Blanco et al. 2004), subsequently supplying a large amount of carbon dioxide
assimilation to the plant and hence increasing photosynthetic process in cuttings
(Essahibi et al. 2017). Arbuscular mycorrhizal fungi increase the production of
secondary metabolites (Sangwan et al. 2001). The increased synthesis of secondary
metabolites in AM-inoculated plants could be ascribed to the stimulation of the
aromatic biosynthesis pathway. The age and developmental stages of the plant are
also important during secondary metabolite production. The AM symbiosis results in
increased secondary metabolism due to the higher content of chlorophyll, amino
acids, and proteins (Tejavathi et al. 2011).

5.8 Conclusion

The application of AM fungi in raising horticulturally important crops and tree
plantations through vegetative propagation techniques is of great importance. The
mycorrhizal inoculation increased the viability, rooting ability, survival, and overall
plant growth of the vegetatively propagated plants. It has been suggested that
production of hormones by AM fungi is responsible for the stimulation of plant
growth in addition to the formation of adventitious roots and improved nutrient
uptake. A number of signaling events take place during the interaction between the
host plant and AM fungi during root formation on cuttings (Scagel 2004a, b).
Although hormone production has been recognized as the potential mechanism
responsible for plant growth promotion, the exact mechanism still remains unclear.
Further, the role of AM fungi in plant propagation through layering is not explored
largely as for plants obtained through cuttings and grafting methods. Therefore,
studies related to AM fungi and layering method could be useful in understanding
their effects on plants. The use of indigenous or native AM fungal species might be
considered to be beneficial than inoculation with exotic AM species, thereby
improving the growth performance of plants under field conditions. Though mycor-
rhizal fungi enhance the plant growth through plant propagation methods, the
combined application of plant hormones and other beneficial microbes such as
plant growth-promoting rhizobacteria can increase the rooting of cuttings more
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efficiently. The application of beneficial microbes like AM fungi over chemical
treatments could reduce the propagation costs in the nursery and defend against soil
pathogens.
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