
Chapter 14
Circadian Rhythms in Plant-Microbe
Interaction: For Better Performance
of Bioinoculants in the Agricultural Fields

Raghavendra Maddur Puttaswamy

Abstract Circadian rhythm (CR) is an important regulator of numerous basic
functions of the living organisms such as carbon metabolism, gene expression and
regulation, growth and reproduction. It is widely accepted, and several research
activities prove its implication on health and disease especially in humans and plants
including microbes associated with it. CR is reported to regulate circadian clock
which is subjected to extensive natural variation during day and night, light intensity,
availability of nutrients, stress and other factors. CR varies within and between
species; this underlies the importance of understanding the phenomenon at the
individual level to develop disease management strategies or production of microbial
formulations used for growth promotion. In plants, rhizosphere microorganisms
extensively depend on the root exudates, and its composition is reported to alter
with CR in response to external stimuli including global warming and pollution.
These microbes play an important role in plant growth and its environmental fitness
and hence the concept of plant growth-promoting rhizobacteria (PGPR) came to
existence. However, even today circadian clock regulating interaction of PGPR with
plants is not extensively studied, and hence most of the time, microbes developed in
the laboratory fail to perform in the field level. The world is awaiting another green
revolution to feed the growing population with bitter experience of the previous
revolution. It is the right time to understand the circadian clock at the species level
and to develop suitable formulations to exploit the beneficial aspect of plant-microbe
interaction to achieve high yield in the agricultural fields as a part of the sustainable
agriculture. Understanding the CR in plant-pathogen interaction will also help to
develop suitable treatment strategies to overcome the yield loss due to infection.
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14.1 Introduction

Genes not only inherit the capacity of the organisms to clone but also the capacity of
the generations to endure environmental changes referred to as chronon, which
means the cyclical, irreversible, recursive and chronological expression of genes as
a function of biological time. The stimulation of these constitutive biological
rhythms of the living organisms defines its fitness to the environmental variations.
Halberg et al. (1959) referred this rhythm as circadian (daily clock phenomenon)
derived from the Latin word circa for “about” and dies for “day”. It is defined as the
biological activities with a frequency of one activity cycle every 24 h (Halberg et al.
1977).

Linnaeus (1770) is the pioneer in studying the plant behaviour in response to
time. He observed the periodical movement of flowers in response to external
conditions such as temperature and change in light. His observations on timely
response of different varieties of flowers recorded using garden clock helped in
developing a concept of unique rhythms in many species. He named it as sleep of
plant analogous to that of animals. Even though these observations are connected
with plant response to external stimuli in time scale, detailed research on this concept
was taken up later to prove it.

Animals also respond to this clock and select the feed accordingly based on the
variation in the plant metabolites. Related to this, an interesting study on feeding
habit of olive baboon was reported by Adeola et al. (2014). These animals showed
different choices of feeding during wet and dry season. Among the plants used
for consumption, 7 plants, viz. Andropogon gayanus, Strychnos spinosa, Nuclear
larifiora, Vitellaria paradoxa, Ficus sycomorus, Annona senegalensis and
Tamarindus indica, were consumed in wet season with 303 feeding events, while
other 10 plants Detarium macrocarpum, Gardenia sotoemsis, Parkia biglobosa,
Piliostigma thonningii, Pterocarpus erinaceus, Prosopis africana, Ficus sycomorus,
Ximenia americana, Annona senegalensis and Vitex doniana were consumed with
315 feeding events during dry season. It is a clear indication that the plant with
higher nutritional quality was consumed by the animals. The change in feeding habit
also indicates that the plants are subjected to seasonal variation due to which the
nutritional composition also alters. It is a best example for how animals choose their
feeding to satisfy the nutritional balance. This change in feeding habit also indicates
change in plant metabolism in response to seasonal variation and provides clear
evidence that plant physiology is altered with season and time.

Present-day advanced research is providing more insights into this concept, the
broader understanding of this phenomenon and its widespread application in several
aspects of plant growth and adaptability. The study on this behaviour needs accurate
observations and mathematical interpretation of numerous experimental data
recorded in different intervals of day and night. Recording the biological fluctuations
or variability in measurements of hormone and pigment concentrations, membrane
transport rates, growth, ion fluxes, protein production, etc. underlies the basic
understanding of rhythms.
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14.2 Rhizosphere Microflora and Root Exudates

Soil being a natural media supports plant-microbe interaction. Beneficial microor-
ganisms such as asymbiotic and symbiotic nitrogen-fixing microorganisms, ecto-
and endomycorrhizal fungi and plant growth-promoting rhizobacteria including
K and P solubilizers play a vital role in plant growth. Soil microbes also exhibit
antifungal activity, produce volatile organic compounds and induce systemic resis-
tance in plants. To maintain these microorganisms in the vicinity of the root, plants
release 5–10% of net photosynthate by roots, and this percentage increases when it is
grown in nonsterile system (Barber and Martin 1976). This indicates that the
structure and diversity of the rhizosphere microflora vary among plant species and
over time (Baudoin et al. 2002). It is also interesting to note that different root zones
of the same plant choose colonization of specific microbial communities by releasing
specific substrates which varies from simple sugar to complex aromatic compounds
(Kamilova et al. 2006). Composition of the root exudates hence is an important
selection force for beneficial plant-microbe interaction. It comprises phenolics,
sugars, amino acids and secondary metabolites of low molecular weight and poly-
saccharides, proteins and other biomolecules of high molecular weight (Abbot and
Murphy 2003; Walker et al. 2003). These biomolecules are often less diverse but
available in larger proportion in the exudates, and polysaccharides in general decide
the association of heterotrophic rhizobacteria with rhizosphere and rhizoplane.
Glycosides and hydrocyanic acid are considered as toxic metabolites of root origin
which is known to inhibit the growth of pathogens (Rangaswami 1988).

Recent studies proved that rhizosphere microbiome associated with plant growth
is also influenced by the type of soil, climate change and anthropogenic activities
(Igiehon and Babalola 2018). Even plant cultivar which is having variations in single
gene is reported to alter the microbiome. Bressan et al. (2009) observed change in
rhizosphere microflora between wild-type and transgenic Arabidopsis, due to release
of glucosinolates. They revealed that the presence of a single metabolite significantly
affected alphaproteobacteria and fungi population in the rhizosphere.

Abiotic factors such as pH, type of soil, availability of oxygen, intensity of light,
soil temperature, availability of proper nutrients and even presence of specific
microorganisms govern the qualitative and quantitative composition of root exu-
dates. It varies among the plant species, for example, differential exudation pattern
was observed in pines and variation in the amount of amino acids in pea and oat root
exudates. Diverse carbohydrates are released by young maples compared to mature
trees, which exude more and diverse amino acids.

Even the organic acids released in root exudates vary. Study conducted by
Schilling et al. (1998) revealed that root exudates of Zea mays found to contain
citric acid, where as in Triticum turgidum var. durum L. it was oxalic acid and acetic
acid and acetate is a dominant acid released by roots of Linum usitatissimum
L. (Cieslinski et al. 1997). This shows composition of root exudates varies with
several factors and it is specific to plant species.
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Ultimately it is the quantity and quality and type of carbon sources released in
root exudates that decide the composition of microbial communities in the rhizo-
sphere (Merbach et al. 1999). It is not only beneficial organisms; even pathogenic
fungi such as Rhizoctonia, Fusarium, Sclerotium, Aphanomyces, Pythium,
Colletotrichum, Verticillium and Phytophthora are allowed to germinate in response
to specific metabolites released by the roots (Vancura 1964). Plants can maintain
high number of antagonists by providing specific nutrients required for the growth of
these organisms to develop resistance against specific pathogens.

Raja et al. (2006) reported another interesting observation that even rhizosphere
microflora influence composition of root exudates. They observed that the compo-
sition varies after application of bioinoculants, viz. Azospirillum lipoferum-A2
204, Bacillus megaterium var. phosphaticum and Pseudomonas fluorescens pf-1,
into the soil. It was also supported by rRNA gene profiling and community-level
physiological profiles conducted by Miethling et al. (2000). Gomes et al. (2001)
reported the alterations in rhizosphere microflora even during senescence.

These studies indicate that the interaction between rhizosphere microflora and
plant is not simple and it is the interface which is gaining importance nowadays as a
hot spot of plant-microbe interactions, whether it is beneficial or pathogenic. As
discussed earlier, this interaction is very specific and influenced by several abiotic
and biotic factors including light and temperature, which directly alters the compo-
sition of the root exudates and through which metabolic exchange between rhizo-
sphere community and roots is also altered (Berg and Smalla 2009; Harmer 2009).
Hence it is the right time to study the alterations in the composition of the root
exudates in general and rhizosphere microbial population in particular. If it is not
done, the beneficial interaction of specific microbes with specific plant root through
metabolites is not going to be established, and it may remain as a major setback in
developing microbial formulations for generalized field applications. Sustainable
agriculture hence may be achievable only through overall information on plant and
its response to various environmental signals in the era of drastic climate change.

14.3 Climate Change and Plant Response

Significant statistical change in distribution of weather patterns over an extension
period of time, ranging from decades to millions of years, refers to climate change. It
is caused by oceanic circulation, variation in solar radiation, plate tectonics, volcanic
eruptions and even human interferences. These changes lead to loss of sea ice,
increased in sea level, intense heat waves, extended drought periods and increase
in tropical storms. Another important drastic change is the increase in global surface
temperature in range of 1.8–3.6 �C by 2100 as a result of increased CO2 levels
derived from both anthropogenic and natural sources (IPCC 2007).

The world is witnessing drastic environmental fluctuations such as local cooling,
increased global temperature, shifting of vegetation and extreme weather due to
climate change. Is it not influencing the CR, plant physiology and root exudation?
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Scientific reports support the influence of altered environmental conditions on all
these plant processes. Especially elevated CO2 increases carbon allocation to root
zone and also alters the composition of the root exudates (Fig. 14.1). It is also
influenced by C/N ratio, nutrient availability, elevated temperature and drought
(Kandeler et al. 2006; Haase et al. 2008). Hence Drigo et al. (2008) opine that the
climate change substantially impacts the diversity and activities of microorganisms
leading to impaired beneficial effects of these organisms on plant growth and health.
It is the right time to develop a strategy to develop holistic approach involving all the
factors influencing the composition of root exudates to favour the growth of the
beneficial rhizosphere microflora and antagonists to confer resistance to plant
pathogens.

Also, these alterations indirectly alter the nature of soil and hence are known to
influence the rhizosphere microbiome. Increase in CO2 levels, one of the causes of
global warming, is known to alter the root exudation patterns which in turn decide
the soil food web structure and functioning by increasing the rate of photosynthesis
(Haase et al. 2008; Stevnback et al. 2012; Drigo et al. 2013). The world is also
witnessing changing weather pattern, for example, change in precipitation level with
time is also reported to have significant influence on soil microbial population (Sheik
et al. 2011; Castro et al. 2010). Singh et al. (2010) also observed that climate change
induced alterations in natural ecosystems and microbial population will have similar
changes in the biogeochemical cycles mediated by these microbes. They also
reported that there could be addition of new processes to ecosystem due to altered
microbial activities which is beneficial or detrimental to plants.

Altered activity of endophytes

Elevated atmospheric CO2

Increased photosynthesis

Increased C allocation

Changes in root exudation patters

Availability of chemoattractants
Changes in colonization and activity of microbes

Plant growth promotion C:N ratio

Signal molecules

Fig. 14.1 Influence of elevated CO2 on plant physiology

14 Circadian Rhythms in Plant-Microbe Interaction: For Better. . . 321



Forchetti et al. (2007) reported the altered plant-associated communities as a
result of drought stress. They observed the different subpopulations of endophytes
colonizing sunflower grown under drought conditions. Interestingly they could
isolate endophytic bacteria with more plant growth-promoting ability in sunflower
cultivated under drought than the cultivar grown with sufficient irrigation. Different
PGPRs, ecto- or endomycorrhizal taxa, however, are also reported to respond
differently to droughts in terms of their patterns of abundance. Examples are from
Mediterranean shrubs such as Pinus muricata, Pinus oaxacana, etc. where drought
significantly decreased the microbial colonization process (Compant et al. 2010a, b).

In view of these, proper exploitation of agricultural land and associated beneficial
microbes remains as a best choice for climate change resilience farming systems as it
supports the proper management of soil, water, biodiversity and local resource usage
(Sharma et al. 2014).

14.4 Rhythm in Plants and Its Influence on Plant Processes

Intestines of the animals resemble rhizosphere of the plants in many aspects. Several
host functions are regulated by microbes inhabiting these zones. Recently, in
animals, feeding and diet of the host were reported to alter intestinal microbiota of
humans (Leone et al. 2015) and mice (Liang et al. 2015; Zarrinpar et al. 2014) due to
diurnal oscillations. It is also proven to silence the host molecular clock genes
leading to gut dysbiosis (Thaiss et al. 2014). Harmer (2009) reported the plant innate
ability to estimate time within 24 h period to synchronize biological events via
circadian clock. Photosynthetic pattern and other physiological activities of the plant
may also alter the rhizosphere microbiome similar to animals.

CR in plants regulates central metabolic pathways of carbon (Kolling et al. 2015),
expression of genes, stomatal function and photoperiodism associated with seasonal
reproduction (Michael et al. 2003; Yanovsky and Kay 2001). This clock shows
variation in response to natural variation both between and within species leading to
individual plant performance and fitness (Sulpice et al. 2014; Konmonth-Schultz
et al. 2013; Yerushalmi et al. 2011) (Fig. 14.2). It also enhances the adaptations of
plant to different environments by regulating physiological and developmental states
periodically (Graf et al. 2010; Harmer 2009). Even plant pathogens regulate life
cycle in response to diurnally regulated host plant metabolism. On the other hand,
plant innate immune response for its fitness is regulated by CR through cellular
metabolism (Seo and Mas 2015; Roden and Ingle 2009). Hence it serves as a
fascinating adaptive force of life on earth. Obviously, it is endogenous helping in
keeping the time of day and night for all living organisms. Photosynthetic organisms
record such activity in response to different wavelengths of light as they use light as a
source of energy. It is compulsory for them to adapt to daily and seasonal fluctua-
tions of light which serves as a selective force to determine time in a circadian
manner (Jarillo et al. 2003).
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The list of plant processes regulated by CR is increasing; it is playing a vital role
in expression of genes, cytosolic ion concentration, phosphorylation of proteins,
movement of chloroplast, stomatal regulation, elongation of hypocotyl, movement
of leaf and cotyledon, production of hormones, fitness and responsiveness. Its role in
synchronizing developmental processes such as flowering time is well documented.
Any change in the clock-associated genes was also reported to alter the photoperi-
odic control of flowering. Over the years even stem elongation, root pressure, cell
membrane potential and CO2 exchange are also included in the list (Hubbard et al.
2017). Activity of the plants regulated by CR is tabulated in Table 14.1, and it
highlights the need of understanding the phenomenon in other plants too.

Johnsson (2007) observed that the rhythmic transpiration reflects rhythmic cel-
lular control by guard and subsidiary cells which regulates assimilation of CO2 and
transpires water vapour by stomatal openings. In 1979, Raschke expressed the need
of a model system to understand the regulation of water system in plant in associ-
ation with photosynthesis and CO2 transport through stomata. Even before this in
1729, French astronomer De Mairan reported his observation of persistent leaf
movements of Mimosa pudica for several days even after the plants were placed in
darkness. This laid a foundation for plants’ accurate timing mechanism to synchro-
nize their physiology with daily environmental fluctuations. It was Bunning (1931)
who first identified the plant clock which monitor the duration of day and night. He
proved its importance by inducing a mutation in a bean gene involved in clock
regulation. Recent studies proved beyond doubt that CR increases ability of plants to
anticipate and prepare for changes in the environment that occur during day and
night.

WAVELENGTH OF LIGHT, TEMPERATURE, SEASONAL VARIATION, GLOBAL WARMING

IMMUNE RESPONSE

GROWTH AND DEVELOPMENT

TOLERANCE TO ABIOTIC STRESS

PHYSIOLOGY/METABOLISM

NUTRIENT ACQUISITION

CHANGES IN
COMPOSITION

OF ROOT
EXUDATES 

IMPACT ON
RHIZOSPHERE
MICROBIOME

CIRCADIAN
CLOCK

CLOCK
GENES

Fig. 14.2 Influence of climatic change on CR and rhizobiome
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Table 14.1 CR in plants and its associated activities

Plant Activity References

Mimosa pudica Daily leaf movements De Mairan (1729)

Phaseolus
coccineus

Periodical movement of leaf Bunning (1931)

Pea Influence of light-harvesting chlorophyll a/b
binding protein (CAB), small subunit of
ribulose-1,5-bisphosphate carboxylase/
oxygenase and an early light-induced protein

Kloppstech (1985)

Wheat Transcription rate for the Cab-1 gene Nagy et al. (1988)

Tamarindus
indica and
Mimosa pudica

Rhythmic movement of leaf in legumes
driven by turgor-induced expansion and
contraction of the pulvinus

Kim et al. (1993)

Arabidopsis
thaliana

Elongation rate of the abaxial and adaxial
cells of the petiole

Engelmann and Johnsson
(1998)

Rate of hypocotyl elongation Dowson-Day and Millar
(1999)

Elongation rate of inflorescence stem Jouve et al. (1998)

Transcription rate and transcript accumula-
tion of Arabidopsis LHCB

Millar and Kay (1991)

Other genes McClung and Kay (1994)

A short fragment of the Arabidopsis
LHCB13(CAB2) promoter

Millar et al. (1992)

Multiple metabolic pathways Schaffer et al. (2001), Harmer
et al. (2000)

35% of the transcriptome Michael and McClung (2003)

Sugar metabolism Blasing et al. (2005)

Ability to respond to abiotic stresses such as
cold

Fowler et al. (2005)

Rates of chlorophyll production and carbon
fixation

Dodd et al. (2005), Green
et al. (2002)

mRNA abundance of the CAT2 and CAT3
catalase genes

Zhong and McClung (1996)

Glycine-rich RNA-binding protein
(ATGRP7/CCR2) and a germin-like protein
(AtGER3)

Strayer et al. (2000), Staiger
and Apel (1999), Staiger et al.
(1999)

mRNA abundance of nitrate reductase Pilgrim et al. (1993)

RCA gene Liu et al. (1996)

Genes encoding phytochrome B (PHYB),
cryptochrome 1 (CRY1), cryptochrome
2 (CRY2) and phototropin (NPH1)

Harmer et al. (2000)

Genes CRY1 and CRY2 coding for homo-
logs of the blue light photoreceptor

Dunlap (1999)

SPA1 and RPT2 genes involved in down-
stream mediators of phototransduction
pathways

Harmer et al. (2000)

Desaturases involved in lipid modifications Harmer et al. (2000)

(continued)
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14.5 Mechanism of CR in Plants in Brief

Mechanism of CR regulated by circadian clock is well established in Arabidopsis;
the clock was reported to consist of a series of transcriptionally and post-
transcriptionally regulated intertwined feedback loops (Harmer 2009). Even though
it is proved in this plant, its existence in other plant species needs to be evaluated
(Song et al. 2010). The circadian clock has been found to influence a variety of
metabolic functions in the plant including chlorophyll biosynthesis, transport pho-
tosystems, starch synthesis and degradation and nitrogen and sulphur assimilation.
The clock timing was found to be altered to different concentrations of several
metabolites such as glutamate, nitrate, glutamine and sucrose (Gutierrez et al.
2008; Knight et al. 2008). However, due to differences in methodology, these results

Table 14.1 (continued)

Plant Activity References

Auxin efflux carriers PIN3 and PIN7 Taiz and Zeiger (1998)

Flowering induction by photoperiodism Samach and Coupland (2000)

Twenty-three genes encoding enzymes in the
phenylpropanoid biosynthetic pathway were
coordinately regulated to peak before dawn
at CT20

Landry et al. (1995), Li et al.
(1993)

Community structure of the rhizosphere dur-
ing drought

Zolla et al. (2013)

Increase the growth and fitness through stress
signalling

Muller et al. (2014)

Tomato Growth improvement Hillman (1956)

Sucrose phosphate synthase activity Jones and Ort (1997)

LHCA genes Kellmann et al. (1999)

Beans Regulation of stomatal opening and gas
exchange along with Calvin cycle reactions

Hennessey and Field (1991)

Sorghum Levels of gibberellic acid Foster and Morgan (1995)

ACC oxidase activity and increasing the
availability of mRNA coding for
1-aminocyclopropane-1-carboxylic acid
(ACC) transcribed by SbACO2 gene

Finlayson et al. (1999)

Robinia
pseudoacacia

Leaflet movement Gomez and Simon (1995)

Angiosperms LHCB mRNA abundance Piechulla (1999), Fejes and
Nagy (1998)

CAM plants Phosphorylation and dephosphorylation of
PEPc

Nimmo (2000)

Many plants Regulates the composition of the root
exudates

Hubbard et al. (2017),
Greenham and McClung
(2015)

Plant stress response Guadagno et al. (2018)
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are sometimes inconsistent across studies, highlighting a need to consider photope-
riod duration and the time of sample collection when describing results.

Advances in the identification and characterization of components of the plant
circadian system have been made largely through genetic studies in Arabidopsis.
The number of genes regulating Arabidopsis circadian clock is approximately 20, in
contrast to smaller number of genes regulating the circadian clock of insects,
mammals and fungi. As in the mammalian circadian clock, several clock-associated
genes from Arabidopsis have overlapping functions. The complexity of
phototransduction pathways in plants may contribute to the large number of genes
implicated in clock function (Jarillo et al. 2003).

As in other organisms, the circadian system in plants consists of input pathways
that provide temporal information from the environment to the clock, the central
oscillator mechanism itself and a set of pathways through which the temporal
information provided by the clock is used to generate overt rhythms in several
processes. During the course of evolution, photoreceptors of plant have developed
capability to detect light over a large range of wavelengths and transduce the signal-
specific genes regulating the clock. There are three main classes: the phytochromes,
having the ability to absorb the red and far-red region of electromagnetic spectrum,
and the cryptochromes and phototropins which absorb blue and UV A region of
spectrum (Jarillo et al. 2003).

14.6 Plant Rhythm and Its Influence on Rhizosphere
Microflora

Waldon et al. proved that the rhizobacteria respond and adapt to increased temperature
which in turn regulates the CR. They could isolate rhizobia from nodules of desert
woody legume Prosopis glandulosa which is better adapted to 36 �C compared to
other strains grown in normal conditions. This proves that the bacteria colonizing
distinct soil sites respond differently to certain environmental conditions. Increase in
temperature from 10 to 30 �C will decrease the ability of an endophyte Burkholderia
phytofirmans to colonize tomato rhizosphere (Pillay and Nowak 1997). It is also
reported that bacterial endophytic populations, which colonize plant internal tissues
such as stems, roots, leaves, shoots as well as flowers, fruits and seeds, may be affected
in a similar manner (Compant et al. 2005, 2008, 2010a, b; Hallmann 2001). Even
mycorrhizal hypha reduces its growth in response to elevated CO2 concentrations
(Madhu and Hatfield 2013).

Composition and abundance of rhizosphere populations associated with straw-
berry, potato and oil seed was reported to change over the field season, and this
alteration could be because of alternation in time.

Daniel et al. (2004) assessed cycling dynamics in A. thaliana diel cycle associated
with exposure to dark and light periods, and they involved study associated with
acyclic Arabidopsis line having cca1 gene ectopically overexpressed and also
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another plant Brachypodium distachyon to prove any alterations in the rhizosphere
community among species, wild types and mutants. The data obtained by them
completely disproved the observations of Bulgarelli et al. (2012) and suggested that
rhizosphere microflora is highly dynamic and are influenced by biotic and abiotic
factors along with circadian clocks. This served as clear-cut evidence that CR plays a
vital role in deciding both composition of root exudates and also the diversity of
rhizosphere microbial community. Even recent reports involving next-generation
sequencing of the 16S rRNA gene, soil organic matter composition in the rhizo-
sphere characterized by high-resolution mass spectrometry and 21T Fourier trans-
form ion cyclotron resonance mass spectrometry support this observation (Staley
et al. 2017).

These reports suggest the possible role of circadian clock on the rhizosphere
community. The timing of bacterial cycling in relation to that of Arabidopsis further
suggests that diurnal dynamics influence microbial association with plant carbon
metabolism and exchange. In view of this, Grayston et al. (2001), Staley et al. (2017)
and Dunfield and Germida (2003) suggest that previous studies done without
relevance to time of day may need to be reevaluated with regard to the impact of
diurnal cycles on the rhizosphere microbial community. Along with this, they also
suggest that caution should be taken when conclusions are drawn about root-
associated microbial community structure based on the results of a single time point.

14.7 Conclusions and Outlook

Plant-rhizosphere microbiome interactions are highly relevant because rhizosphere
microflora is reported to strongly influence plant fitness and biomass which in turn
inform evolutionary studies of adaptation, agronomic practices and conservation
much needed for sustainable agriculture. Climate change and global warming are the
major threats to living organisms, resulting in alterations of normal process of
evolution. It is a forced artificial evolution; inevitably all the organisms have to
respond and adopt. Especially elevated CO2 and pattern of light radiation are
affecting several natural phenomena including plant-microbe interactions in rhizo-
sphere. If this harmony is not understood and integrated with the bioinoculant
performance in the field, the desired effect of bioinoculants on plant growth is
naturally affected. It is the right time to evaluate the efficacy of all bioinoculants
with special reference to individual plant CR responses.

Genes regulating CR are highly sensitive and regulated by several environmental
parameters. Alterations in CR are reported to alter the rhizosphere community
structure due to changing pattern of diurnal fluxes of carbon, water or nutrients
from plant roots. Clock misfunction would bring in differences in this structure in
general and alterations in rare taxa in particular leading to differences in community
function required for plant performances. It is the right time to understand the clock
genes associated with plants, after which rhizosphere engineering or suitable micro-
bial consortia or bioinoculants can be developed to increase the plant processes
associated with plant health, growth and yield.
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