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Preface

With the introduction of high-yielding varieties and application of chemical fertil-
izers and pesticides, the agricultural production has increased significantly but
gradually becoming dependent on the inputs of cumulative dosages of these men-
acing chemicals. These chemicals not only are expensive to the farmers but also
reduce organic carbon and microbial activities in the agricultural soils and are
harmful for human health as they enter the food chain. The increasing dependence
upon such chemicals for greater agricultural production compels the scientific
community to overcome this problem and find out realistic solutions.

The application of biofertilizers could be a desirable alternative as they make
agriculture more sustainable and environmental-friendly; indeed, the growing crops
using biofertilizers are worthy for human health. Biofertilizers are consist of plant
remains, organic matter, and safe and beneficial microorganisms, which are natural,
organic, biodegradable, eco-friendly, and cost-effective. Biofertilizers indeed meet
the integrated nutrient demand of the crops, hence ascribed as indispensable for
obtaining greater crop yield, and attribute to increased fertility and health of the soil
by providing nutrients and natural environment in the rhizosphere. Microbes present
in the biofertilizers are important because they produce nitrogen, phosphorus,
potassium, zinc, iron, and other nutrients required for the growth of plants. In fact,
several microbes produce plant growth-promoting substances like auxins, cytoki-
nins, and gibberellins, which are essential for the growth and development under
vital soil conditions. Microorganisms like Rhizobium, Azospirillum, Azotobacter,
Azolla, Piriformospora indica (Serendipita indica), and Cyanobacteria/blue green
algae have been found to add a significant amount of nitrogen under optimum soil
conditions, thereby largely reducing the use of chemical fertilizers. The application
of such microbial inoculants showed a robust impact on the crop yield. Furthermore,
several microbes exhibit the ability to recover heavy metals from soil, thereby
making the soil environment suitable for growing crop plants.

Phosphate-mobilizing or phosphorus-solubilizing microorganisms convert insol-
uble soil phosphate into soluble forms by secreting several organic acids. Symbiotic
fungi enhance the uptake of water and macro- and micronutrients by extending
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extra-radical hyphae several meters beyond the depletion zone, thus increasing the
nutrient uptake ability of the host plant. Moreover, they protect plant from environ-
mental stresses like salinity and drought and also strengthen the defense system of
plant, thereby suppressing the incidence of plant diseases, and thus help in the
biocontrol of plant diseases. In general, biofertilizers improve physicochemical
properties of the soil. Hence, it is pertinent to state that biofertilizers are a vital
and powerful tool for sustainable agriculture and environment.

The book Biofertilizers for Sustainable Agriculture and Environment comprises
24 provocative chapters written by the experts of this field, highlighting the latest
research on the beneficial microbial inoculants such as phosphate-solubilizing and
phosphate-mobilizing fungi; N,-fixing bacterial inoculants (free living and symbi-
otic); phosphorus-, potassium-, and zinc-solubilizing bacteria; algal inoculants;
microbes for the removal of heavy metals from agricultural fields for sustainable
agriculture; microbes for recycling of biodegradable municipal, agricultural, and
industrial waste; and biocontrol agents and biopesticides. Though, under current
circumstances, the application of microbial inoculants cannot be treated as an
alternative for chemical fertilizers and pesticides, indeed, these natural inoculants
can largely be utilized to reduce the use of these chemicals. With a fortune of
information on the different aspects of biofertilizers, this intensive volume indeed
provides useful information, dealing with different groups of microorganisms and
their beneficial effects, and is a valuable resource for researchers, academician,
environmentalists, and students in the broad field of microbiology, biotechnology,
and agriculture and for the industrialists involved in the production of biofertilizers.

We are highly delighted and thankful to all our contributing authors for their
endless support and outstanding cooperation to write selflessly these authoritative
and valuable chapters. We extend our sincere thanks to all our colleagues who
helped us in the preparation and compilation of this generous volume. We thank
the Springer officials, specially William F. Curtis, Eric Schmitt, Sabine Schwarz,
Isabel Ullmann, Beate Siek, and Anand Venkatachalam, for their generous support
and efforts in accomplishing this volume. We specially thank our families for their
consistent support and encouragement.

New Delhi, India Bhoopander Giri
Noida, India Ram Prasad
Jingzhou, China Qiang-Sheng Wu

Noida, India Ajit Varma
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Chapter 1 ®)
Microbial Biofertilizers: Types s
and Applications

Lebin Thomas and Ishwar Singh

Abstract The increased dependency of modern agriculture on excessive synthetic
input of chemical fertilizers has caused several environmental problems related to
greenhouse effect, soil deterioration, and air and water pollution. Furthermore, there
is an imperative need for viable agricultural practices on a global level with reduced
energy and environmental problems, for adequate cost-efficient production of food
for the increasing human population. Consequently, biofertilizers containing micro-
organisms like bacteria, fungi, and algae have been suggested as viable solutions for
large-scale agricultural practices which not only are natural, ecofriendly, and eco-
nomical but also maintain soil structure as well as biodiversity of agricultural land.
Besides providing nutrient enrichment to the soil, microbial biofertilizers promote
plant growth by increasing efficient uptake or availability of nutrients for the plants
and by suppressing soilborne diseases. Biofertilizers supplement nutrients mainly by
fixation of atmospheric nitrogen, by phosphorus solubilization, and by synthesizing
plant growth-promoting substances. The nitrogen-fixing bacteria of the rhizobia and
other groups are used for growth promotion of legumes and additional crops. In
addition, blue-green algae (BGA) as well as Azolla subsidize in the nitrogen budget
of practicable agriculture. Arbuscular mycorrhizal fungi are important for the uptake
of phosphorus and several other minerals in many plants. Phosphorus-solubilizing
bacteria like Azotobacter and Azospirillum that fix atmospheric nitrogen can increase
the solubility and availability of phosphorus to plants and, thus, crop yield. Further,
Azospirillum provides additional benefits such as the production of growth-
promoting substances, disease resistance, and drought tolerance. Thus, application
of microbial biofertilizers is an effective approach in increasing and maintaining the
nutrient economy of soil, thereby reducing the use of chemical fertilizers, for a
proficient and sustainable agriculture.

Keywords Biofertilizer types - Agrochemicals - Beneficial microbes - Application
of biofertilizers

L. Thomas - I. Singh (<)
Department of Botany, Hansraj College, University of Delhi, Delhi, India
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2 L. Thomas and I. Singh

1.1 Introduction

Fertilizers are natural or man-made chemicals that, when applied on the plant or to
soil or by fertigation (applying by irrigation water), can supplement natural soil
nutrients and augment crop growth and soil fertility (Edgerton 2009). These make
available important macronutrients (nitrogen, phosphorus, potassium, calcium, sul-
fur, and magnesium) along with numerous micronutrients (zinc, copper, iron,
boron, and molybdenum) to plants (Alley and Vanlauwe 2009). A high production
demand of standard fertilizers is observed for those that are commonly known as
NPK fertilizers and provide nitrogen (ammonia, urea, ammonium sulfate, ammo-
nium nitrate, calcium ammonium nitrate), phosphorus (di-ammonium phosphate,
superphosphates, ground rock phosphates), and potassium (potash or potassium
chloride, sulfate of potash or potassium sulfate, sulfate of potash magnesia, potas-
sium nitrate, kieserite, Epsom salt). Micro-enriched fertilization, involving the
addition of micronutrients to these standard fertilizers, has encouraged agronomic
bio-fortification to alleviate malnutrition and micronutrient deficiencies of copper,
iron, zinc, iodine, selenium, and fluorine in crop plants (Arnon and Stout 1939). For
example, fertilizers with added zinc have been found to increase cereal grain yield by
higher seedling establishment and tolerance to environmental stresses (Cakmak
2008). However, one constraint to plant growth is non-availability of nutrients
especially nitrogen and phosphorus to plants despite their ample occurrence in
soil, as most nitrogen is present in soil organic matter and plants have to compete
with soil microbes to obtain it, while phosphorus forms precipitates with iron and
aluminum (in acidic soils) or with calcium (in alkaline soils) (Schachtman et al.
1998; Hinsinger 2001).

The exponential growth in human population has demanded a concurrent pro-
duction and supply of food, particularly from plants. Consequently, a highly pro-
ductive and intensive agricultural system has been mostly accomplished by the use
of synthetic chemical fertilizers of nitrogen and phosphorus (Schultz et al. 1995).
However, increased dependence of modern agriculture on an excessive, imbalanced,
and steady synthetic input of chemical fertilizers has caused deterioration of soil
quality (by making them biologically inert and highly saline) and surface and ground
water, and it has further reduced biodiversity and stifled ecosystem functioning
(Socolow 1999). The production and transport of chemical fertilizers, which require
the use and combustion of fossil fuels, result in airborne carbon dioxide and nitrogen
pollution that get deposited into terrestrial ecosystems. Furthermore, excessive
supply of chemical fertilizers to soil than used by the crops gets stored in plants
and often causes potential losses (by leaching, volatilization, acidification, and
denitrification) due to elevated nitrate and phosphorus concentrations in water bodies
instigating eutrophication and hypoxia in lakes and estuaries (Vance 2001) and
environmental pollution problems by emissions of greenhouse gases like nitrous
oxide (N,O) from fertilizer production and application (Mosier et al. 2004; Nash
et al. 2012).
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Fig. 1.1 Sources of
biofertilizers

Living organisms

Because of the mentioned drawbacks of chemical fertilizers, it is essential to
reduce the consumption of chemical fertilizers and pesticides in agriculture without
having any adverse effect on crop production by the incorporation and usage of
harmless, renewable inputs of fertilizers. The most suitable alternatives for chemical
fertilizers are biofertilizers that include organic waste, dead organisms, as well as
living organisms (Fig. 1.1). For example, manure and compost are suitable for
almost every variety of plants, eggshells have high calcium, and Stellaria media
(chickweed), Equisetum sp. (horsetail), Azolla pinnata, Arctium sp. (burdock),
Rumex crispus (yellow dock), Symphytum officinale (comfrey), and Urtica dioica
(nettles) have high nitrogen content. Community waste and sewage sludge provide
an inexpensive source of plant nutrition, though these may contain heavy metals and
may have adverse effects on crops, consumers, and soil microorganisms (Giller et al.
1998; Graham and Vance 2000). More importantly, biofertilizers can be composed
of efficient microbial strains that, by their interactions in rhizosphere, benefit crop
plants by the uptake of nutrients. Many bacteria identified as plant growth-promoting
rhizobacteria (PGPR), by certain known and unknown mechanisms, can stimulate
plant growth. The important known mechanisms exhibited by PGPR that promote
plant growth are atmospheric nitrogen fixation, phosphorus solubilization, enhance-
ment of nutrient uptake, or production of plant growth hormones (Bashan et al. 1990;
Okon and Labandera-Gonzalez 1994; De Freitas et al. 1997; Bashan 1998; Goldstein
et al. 1999). Achromobacter, a PGPR, was found to enhance the length as well as
number of root hairs and increased nitrate and potassium uptake in Brassica napus
(oilseed rape), which was evident through the increased dry weights of shoot (from
22% to 33%) and root (from 6% to 21%) (Bertrand et al. 2000). Thus, various types
of biofertilizers provide optimum nutrients to crop plant, cause nominal damage to
environment, and enhance biodiversity of soil. Their consumption in the future is
expected to increase due to overall increase in the demand of fertilizers in order to
produce more food on limited arable land and further due to exhausting feedstock/
fossil fuels (energy crisis), increasing chemical-fertilizer cost, depleting soil fertility,
concerns about environmental hazards, and an increasing threat to sustainable
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agriculture. It is predicted that market share of biofertilizers will reach US$1.66
billion by 2022 and will be compounding the annual growth rate of 13.2% during the
years of 2015-2022 (Timmusk et al. 2017).

1.2 Microbial Biofertilizers

A biofertilizer of selected efficient living microbial cultures, when applied to plant
surfaces, seed or soil, can colonize the rhizosphere or the interior of the host plant
and then promote plant growth by increasing the availability, supply, or uptake of
primary nutrients to the host. Moreover, in contrast to chemical fertilizers,
biofertilizers are more accessible to marginal and small farmers. The most important
groups of microbes used in the preparation of microbial biofertilizer are bacteria,
fungi, and cyanobacteria, majority of which have symbiotic relationship with plants.
The important types of microbial fertilizers, based on their nature and function, are
those which supply nitrogen and phosphorus (Table 1.1).

1.2.1 Nitrogen-Fixing Microbes

Nitrogen is most abundant and ubiquitous in the air, yet becomes a limiting nutrient
due to difficulty of its fixation and uptake by the plants. However, certain microor-
ganisms, some of which can form various associations with plants as well, are
capable of considerable nitrogen fixation. This property allows for the efficient
plant uptake of the fixed nitrogen and reduces loses by denitrification, leaching,
and volatilization. These microbes can be:

(a) Free-living in the soil (Table 1.1). The assessment of nitrogen fixation by free-
living bacteria is difficult, but in some plants like Medicago sativa, it has been
estimated to range from 3 kg N ha™' to 10 kg N ha~' (Roper et al. 1995).
Azotobacter chroococcum in arable soils can fix 2-15 mg N g~ of carbon
source in culture media, and it further produces abundant slime which aggregates
soil. However, free-living cultures of nodulating bacterial symbionts (e.g.,
Frankia) have been found to fix atmospheric nitrogen in the rhizosphere of
their host and even non-host plants (Smolander and Sarsa 1990). For
Beijerinckia mobilis and Clostridium spp., inoculation methods of leaf spray
and seed soaking stimulated growth in cucumber and barley plants by significant
nitrogen fixation and other mechanisms of bacterial plant growth hormone
synthesis (Polyanskaya et al. 2002). Free-living cyanobacteria (blue green
algae) have been harnessed in rice cultivation in India which can provide up to
20-30 kg N ha~' under ideal conditions (Kannaiyan 2002).

(b) Having symbiotic and other endophytic associations (of rhizobia, Frankia, and
cyanobacteria) with plants. The nitrogen-fixing efficiency of rhizobia bacteria,
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Table 1.1 The important groups of microbial fertilizers

Group of
biofertilizers Sub-group Examples
Nitrogen- Free-living Anabaena, Azotobacter, Beijerinkia, Derxia, Aulosira,
fixing Tolypothrix, Cylindrospermum, Stigonema, Clostridium,
Klebsiella, Nostoc, Rhodopseudomonas, Rhodospirillum,
Desulfovibrio, Chromatium, and Bacillus polymyxa
Symbiotic Rhizobia (Rhizobium, Bradyrhizobium, Sinorhizobium,
Azorhizobium Mesorhizobium Allorhizobium), Frankia,
Anabaena azollae, and Trichodesmium
Associative Azospirillum spp. (A. brasilense, A. lipoferum,
A. amazonense, A. halopraeferens, and A. irakense),
Acetobacter diazotrophicus, Herbaspirillum spp., Azoarcus
spp., Alcaligenes, Bacillus, Enterobacter, Klebsiella, and
Pseudomonas
Phosphorus Phosphate- Bacillus megaterium var. phosphaticum, B. subtilis, B.
(microphos) solubilizing circulans, B. polymyxa, Pseudomonas striata, Penicillium
spp., Aspergillus awamori, Trichoderma, Rhizoctonia
solani, Rhizobium, Burkholderia, Achromobacter,
Agrobacterium, Microccocus, Aereobacter,
Flavobacterium, and Erwinia
Phosphate- Arbuscular mycorrhiza (Glomus sp., Gigaspora sp.,
mobilizing Acaulospora sp., Scutellospora sp., and Sclerocystis sp.),
ectomycorrhiza (Laccaria spp., Pisolithus spp., Boletus
spp., Amanita spp.), ericoid mycorrhiza (Pezizella ericae),
and orchid mycorrhiza (Rhizoctonia solani)
Micronutrients | Potassium Bacillus edaphicus, B. mucilaginosus, and Paenibacillus
solubilizing glucanolyticus
Silicate and zinc | Bacillus subtilis, Thiobacillus thioxidans, and
solubilizing Saccharomyces sp.
Growth Plant growth- Agrobacterium, Achromobacter, Alcaligenes, Arthrobacter,
promoting promoting Actinoplanes, Azotobacter, Bacillus, Pseudomonas
rhizobacteria Sfluorescens, Rhizobium, Bradyrhizobium, Erwinia,
Enterobacter, Amorphosporangium, Cellulomonas,
Flavobacterium, Streptomyces, and Xanthomonas

Modified from Singh et al. (2014)

an important group of biofertilizers that contains organisms like Rhizobium,
Bradyrhizobium,  Sinorhizobium,  Azorhizobium, Mesorhizobium, and
Allorhizobium, can vary till 450 kg N ha™' among different strains and host
legume species, in which root nodules are formed (Stamford et al. 1997,
Unkovich et al. 1997; Spaink et al. 1998; Vance 1998; Graham and Vance
2000; Unkovich and Pate 2000). The rhizobial biofertilizers can be in powder,
liquid, and granular formulations, with different sterilized carriers like peat,
perlite, mineral soil, and charcoal (Stephens and Rask 2000). Like rhizobia,
Frankia, a nitrogen-fixing actinomycete, can also form root nodules in several
woody plants (Torrey 1978; Dawson 1986; Benson and Silvester 1993;
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Dommergues 1995; Huss-Danell 1997; Wall 2000). This mycelial bacterium
forms symbioses with the roots of several non-legume plants like Casuarina,
Alnus (Alder) Myrica, Rubus, etc. These actinorhizal plants are used for timber
and fuelwood production, windbreaks, and shelterbelts and in advancing early
successional plant community development, mixed plantations, revegetation,
and land reclamation (Diagne et al. 2013; Schwencke and Caru 2001). The
inoculation of Frankia is considered valuable in nurseries and in arid or dis-
turbed environments (Schwintzer and Tjepkema 1990; Sprent and Parsons
2000). Besides, leaves of a few plants (e.g., Ardisia) develop special internal
cavities harboring symbiotic nitrogen-fixing bacteria like Xanthomonas and
Mpycobacterium, and as such, these leaves are source of nitrogen fertilizer to
the soil (Miller 1990). Another ecologically important group is that of
cyanobacteria—blue green algae (BGA)—some of which like Trichodesmium,
Nostoc, and Anabaena contribute to about 36% of the global nitrogen fixation
and have been reported to be helpful in enhancing rice-field fertility for the
cultivation of rice in many parts of the world (Kundu and Ladha 1995; Gallon
2001; Irisarri et al. 2001). Besides, BGA are also known to be advantageous for
possible reclamation of arid environments or ecosystems disposed to flooding
(Bashan et al. 1998; Malam Issa et al. 2001). The production and application of
BGA is, however, poorly developed, and it should be considered as a
biofertilizer for sustainable agricultural practices in various environments
(Hashem 2001). Aquatic BGA can further provide natural growth hormones,
proteins, vitamins, and minerals to the soil.

(c) Living in rhizosphere (associative/associated) without endophytic symbioses. In
comparison to endophytic symbionts, these nitrogen-fixing microbes have less
intimate association with roots. These include Acetobacter diazotrophicus and
Herbaspirillum spp. with sugarcane, sorghum, and maize (Triplett 1996; James
et al. 1997; Boddey et al. 2000); Azoarcus spp. with Leptochloa fusca (kallar
grass) (Malik et al. 1997); species of Alcaligenes, Azospirillum, Bacillus,
Enterobacter, Herbaspirillum, Klebsiella, and Pseudomonas with rice and
maize (James 2000); and Azospirillum with great host specificity comprising a
variety of annual and perennial plants (Bashan and Holguin 1997). Several
studies have shown that due to nitrogen fixation and production of growth-
promoting substances, Azospirillum increased the growth and crop yield of
wheat, rice, sunflower, carrot, oak, sugar beet, tomato, eggplant, pepper, and
cotton (Okon 1985; Bashan et al. 1989; Okon and Labandera-Gonzalez 1994).
The inoculum of Azospirillum can be inexpensively produced and applied by a
simple peat formulation (Vande Broek et al. 2000). The biofertilizer of
Acetobacter diazotrophicus was found to fix and make available up to 70% of
sugarcane crop nitrogen requirement, of about 150 kg N ha™' annually (Boddey
et al. 1995).

Thus, the capability of nitrogen fixation in substantial quantity of these microor-
ganisms makes them attractive candidates for their application as biofertilizers.
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1.2.2 Phosphorus-Solubilizing Microbes

In soil, the concentration of phosphorus is high, but most of it is present in
unavailable forms, which makes it the second most limiting plant nutrient after
nitrogen (Schachtman et al. 1998). The phosphorus-solubilizing bacteria (PSB)
like Bacillus and Pseudomonas can increase phosphorus availability to plants by
mobilizing it from the unavailable forms in the soil (Richardson 2001). These
bacteria and certain soil fungi such as Penicillium and Aspergillus bring about
dissolution of bound phosphates in soil by secreting organic acids characterized by
lower pH in their vicinity. The application of the inexpensive rock phosphate with a
PSB, Bacillus megaterium var. phosphaticum to sugarcane, was found to increase
sugar yield and juice quality by 12.6%, and it reduced the phosphorus requirement
by 25%, thereby further causing a 50% reduction of the costly superphosphate usage
(Sundara et al. 2002).

1.2.3 Mycorrhizal Biofertilizers

These are phosphorus-mobilizing biofertilizers or phosphate absorbers. The mycor-
rhizal fungi form obligate or facultative functional mutualistic symbioses with more
than 80% of all land plants, in which the fungus is dependent on host for photosyn-
thates and energy and in return provides a plethora of benefits to its host (Smith and
Read 1997; Thakur and Singh 2018). The mycelium of the fungus extends from host
plant root surfaces into soil, thereby increasing the surface area for more efficient
nutrient access and acquisition for the plant, especially from insoluble phosphorus
sources and others like calcium, copper, zinc, etc. (Singh and Giri 2017). Addition-
ally, mycorrhizal fungi are known to enhance soil quality, soil aeration, water
dynamics, and heavy metal and drought tolerance of plants and to make plants less
susceptible to root pathogens or herbivores (Rillig et al. 2002; Thakur and Singh
2018). This suggests high potential of these fungi for application in agriculture, land
reclamation, or vegetation restoration (Menge 1983; Sylvia 1990). Ectomycorrhiza
(of Basidiomycetes) forms a mantle on the root surface (of several trees such as
Eucalyptus, Quercus, peach, pine, etc.) and penetrates internally into the intercellular
spaces of the cortical region from where it obtains the plant-secreted sugars and
other nutrition. The important functions of these fungi are absorption of water and
minerals by increasing surface area of roots, solubilizing soil humus organic matter
to release and absorb inorganic nutrients, and secreting antimicrobial substances that
protect plants from various root pathogens. The importance of ectomycorrhizal
symbiosis has been observed for tree plantations in growth and nutrient acquisition,
especially for large-scale inoculum practices into nursery or forestry cultivated areas
(White 1941; Wilde 1944; Mikola 1970; Smith and Read 1997).

Arbuscular mycorrhizal (AM) fungi like Glomus are intercellular, nonspecific
obligate endosymbionts (with special structures of vesicles and arbuscules in roots)
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that, by functioning as an extended root system, harvest moisture and various
micronutrients from deeper and distant niches in the soil, besides increasing the
mobility and availability of phosphorus to enhance growth and development in host
plants. However, unculturability and the obligate nature of AM fungi have made
inoculation incompatible with large-scale industrial-scale agriculture, and thus it
might require additional research (Wood and Cummings 1992; Ryan and Graham
2002). Nevertheless, the AM inoculation for production of nursery stocks often
results in amended and homogeneous crop growth. For agricultural purpose, the
ability of fungi for colonization in specific host plants can vary, which can depend on
the inoculum source (Biermann and Linderman 1983; Klironomos and Hart 2002).
The production of infective propagules by growing inoculum in symbiosis with
living host plants or in root organ cultures is a viable mean, but has limitations of
high production cost, slow turnover time, and difficulty in excluding root pathogens.
AM inoculum is applied as spores (most reliable), fragments of colonized roots
(effective for some taxa), or a combination of these and incorporated soil mycelium
mixed with carrier substrate like pumice or clay, sand, perlite, vermiculite, soil rite,
and soil or glass pellets (Mallesha et al. 1992; Redecker et al. 1995; Gaur and
Adholeya 2000; Klironomos and Hart 2002).

1.2.4 Other Mineral-Solubilizing Biofertilizers

Soil-dwelling microorganisms can further be used as biofertilizers to provide various
nutrients other than nitrogen and phosphorus such as potassium, zinc, iron, and
copper. Certain rhizobacteria can solubilize insoluble potassium forms, which is
another essential nutrient necessary for plant growth (Jakobsen et al. 2005). The
higher biomass yields due to increased potassium uptake have been observed with
Bacillus edaphicus (for wheat), Paenibacillus glucanolyticus (for black pepper), and
Bacillus mucilaginosus in co-inoculation with the phosphate-solubilizing Bacillus
megaterium (for eggplant, pepper, and cucumber) (Meena et al. 2014; Etesami et al.
2017). Another important mineral is zinc, which is present at a low concentration in
the Earth’s crust, due to which it is externally applied as the costlier soluble zinc
sulfate to overcome its deficiencies in plant. However, some microbes such as
Bacillus subtilis, Thiobacillus thiooxidans, and Saccharomyces spp. can solubilize
insoluble cheaper zinc compounds like zinc oxide, zinc carbonate, and zinc sulfide
in soil (Ansori and Gholami 2015). Similarly, microorganisms can hydrolyze sili-
cates and aluminum silicates by supplying protons (that causes hydrolysis) and
organic acids (that form complexes with cations and retain them in a dissolved
state) to the medium while metabolizing, which can be beneficial to the plants. For
instance, an increase in rice growth and grain yield due to increased dissolution of
silica and nutrients from the soil was observed using a silicate-solubilizing Bacillus
sp. combined with siliceous residues of rice straw, rice husk, and black ash
(Cakmakeci et al. 2007).
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1.2.5 Plant Growth-Promoting Microbes

Besides nitrogen-fixing and phosphorus-solubilizing microbes, there are microbes
that are suitable to be used as biofertilizers as these enhance plant growth by
synthesizing growth-promoting chemicals (Bashan 1998). For example, rhizospheric
Bacillus pumilus and Bacillus licheniformis were found to produce substantial quan-
tities of physiologically active plant hormone gibberellin (Gutierez-Mafiero et al.
2001). However, Paenibacillus polymyxa showed a variety of beneficial properties,
including nitrogen fixation, phosphorus solubilization, production of antibiotics, cyto-
kinins, chitinase, and other hydrolytic enzymes and enhancement of soil porosity
(Timmusk et al. 1999). Further, some species of Azospirillum have been reported to
produce plant hormones (Bashan et al. 1990; Bashan and Holguin 1997). These
indicate the potential of diverse microbes as biofertilizers, which might require addi-
tional studies.

The rhizobacterial plant growth-promoting mechanisms of antagonism against
phytopathogenic microorganisms include production of antimicrobial metabolites
like siderophores and antibiotics, gaseous products like ammonia, and fungal cell
wall-degrading enzymes which cause cytolysis, leakage of ions, membrane disrup-
tion, and inhibition of mycelial growth and protein biosynthesis (Idris et al. 2007;
Lugtenberg and Kamilova 2009). For example, Pseudomonas strains can produce
antifungal metabolites like phenazines, pyrrolnitrin, pyoluteorin, and cyclic
lipopeptides of viscosinamide, which can prevent Pythium ultimum infection of
sugar beet. Pseudomonas fluorescens produces the iron-chelating siderophores like
pseudobactin and pyoverdin that bind and take up ferric ions, which makes them
better competitors for iron, thus preventing the growth and proliferation of patho-
genic microbes like Pythium ultimum, Rhizoctonia batatticola, and Fusarium
oxysporum (Cox and Adams 1985; Leeman et al. 1996; Hultberg et al. 2000).
Pseudomonas aeruginosa produces the siderophores pyoverdine, pyochelin, and
salicylic acid and further induces resistance against Botrytis cinerea (on bean and
tomato) and Colletotrichum lindemuthianum (on bean) (De Meyer and Hofte 1997;
Audenaert et al. 2002). However, some species of Pseudomonas produce extracel-
lular chitinase and laminase that can lyse Fusarium solani mycelia. In addition,
biofertilizers provide protection against some soilborne diseases, insect pests, and
plant diseases; for example, Azotobacter pervades the soil with antibiotics which
inhibit the spread of soilborne pathogens like Pythium and Phytophthora (Wani et al.
2013).

1.2.6 Compost Biofertilizers

Compost is a decomposing, brittle, murky material forming a symbiotic food
web within the soil, which contains about 2% (w/w) of nitrogen, phosphorus,
and potassium, along with microorganisms, earthworms, and dung beetles. The
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microbial organic solid residue oxidation causes the formation of humus-containing
material, which can be used as an organic fertilizer that sufficiently aerates, aggre-
gates, buffers, and keeps the soil moist, besides providing beneficial minerals to
the crops and increasing soil microbial diversity (Yu et al. 2016). Compost is
produced from a wide variety of materials like straw, leaves, cattle-shed bedding,
fruit and vegetable wastes, biogas plant slurry, industrial wastes, city garbage,
sewage sludge, factory waste, etc. The compost is formed from these materials by
different decomposing microorganisms like Trichoderma viridae, Aspergillus niger,
A. terreus, Bacillus spp., several Gram-negative bacteria (Pseudomonas, Serratia,
Klebsiella, and Enterobacter), etc. that have plant cell wall-degrading cellulolytic or
lignolytic and other activities, besides having proteolytic activity and antibiosis
(by production of antibiotics) that suppresses other parasitic or pathogenic microor-
ganisms (Boulter et al. 2002). Another important type (vermicompost) contains
earthworm cocoons, excreta, microorganisms (like bacteria, actinomycetes, fungi),
and different organic matters, which provide nitrogen, phosphorus, potassium, and
several micronutrients, and efficiently recycles animal wastes, agricultural residues,
and industrial wastes cost-effectively and uses low energy.

1.3 Application Practices of Microbial Biofertilizers

Biofertilizers are mostly supplied as conventional carrier-based inoculants with the
advantage of being cheap and easier to produce. The mass production of
biofertilizers involves culturing of microorganisms, processing of carrier material,
mixing of carrier material with the broth culture, and packing (Fig. 1.2). The ideal
carrier materials used in the preparation of biofertilizers must be cheaper, locally

Curing at specific physical
Marketing <@ conditions, analysis of quality -

and storage at 4 °C

Packaging

Fermentation in bioreactor

for large scale production I
——f 1717515 OF g

Fermentation and culturing at micro broth quality Mixing of broth with
scale in flasks as broth culture sterilized carrier

Fig. 1.2 A diagrammatic representation of mass production of bacterial biofertilizers
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available, and easier to process; must be non-toxic and organic in structure (so that
they remain biodegradable) with high water-holding capacity; and should carry
higher bacterial cells and support their survival for longer durations. Some of the
commonly used carrier materials in the production of good-quality biofertilizers are
neutralized peat soil/lignite, vermiculite, charcoal, press mud, farmyard manure, and
soil mixture. However, these can have disadvantages of possessing lower shelf-life,
temperature sensitivity, being contamination prone, and becoming less effective by
low cell counts. Consequently, liquid formulations have been developed for Rhizo-
bium, Azospirillum, Azotobacter, and Acetobacter which although costlier, have
the advantages of having easier production, higher cell counts, longer shelf-life, no
contamination, storage up to 45 °C, and greater competence in soil (Ngampimol and
Kunathigan 2008). Nevertheless, the application practices of microbial biofertilizers
include seed treatment, seedling root dipping, and soil application.

1.3.1 Seed Treatment

Seed treatment is a very effective, economic, and most common method
implemented for all types of inoculants (Sethi et al. 2014). The seeds are mixed
and uniformly coated in a slurry (inoculant mixed with 200 mL of rice kanji) and
then shade-dried, before being sown within 24 h. For liquid biofertilizers, depending
upon the quantity of seeds, the coating can be done in either plastic bag (if quantity is
small) or bucket (if quantity is large). The seed treatment can be done with two or
more bacteria (for instance, nitrogen-fixing bacteria such as Rhizobium, Azotobacter,
and Azospirillum can be taken along with phosphorus-solubilizing microbes), with-
out any antagonistic effect, and provide maximum quantity of each bacterium on
individual seed required for better results (Chen 2006). For example, seed treatment
is done for many plants using Rhizobium (pulses like chickpea, pea, groundnut,
soybean, beans, lentil, lucern, berseem, green gram, black gram, cowpea, and pigeon
pea), Azotobacter (cereals like wheat, oat, barley; oil seeds like mustard, seasum,
linseeds, sunflower, castor; millets like pearl millets, finger millets, kodo millet;
forage crops and grasses like bermuda grass, sudan grass, napier grass, para grass,
star grass, etc.), and Azospirillum or phosphorus-solubilizing bacteria (rice, maize,
and sorghum) (Taylor and Harman 1990).

1.3.2 Seedling Root Dipping

This application is common for plantation crops such as cereals, vegetables, fruits,
trees, sugarcane, cotton, grapes, banana, and tobacco where seedling roots are
dipped in a water suspension of biofertilizer (nitrogen-fixing Azotobacter or
Azospirillum and phosphorus-solubilizing microbial biofertilizer) for sufficient
period of time. The treatment time differs for different crops, for instance, vegetable
crops are treated for 20-30 min and paddy for 8-12 h before transplantation
(Barea and Brown 1974).
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1.3.3 Soil Application

In this practice, biofertilizer is applied directly to the soil either alone or in combi-
nation. A mixture of phosphate-solubilizing microbial biofertilizer, cow dung, and
rock phosphate is kept in shade overnight while maintaining its moisture content at
50% and then applied to the soil (Pindi and Satyanarayana 2012). Some examples of
biofertilizers in which soil application is employed are Rhizobium (for leguminous
plants or trees) and Azotobacter (for tea, coffee, rubber, coconuts, all fruit/agro-
forestry plants for fuelwood, fodder, fruits, gum, spice, leaves, flowers, nuts, and
seeds) (Zahran 1999; Hayat et al. 2010).

1.4 Available Microbial Biofertilizers

There are several microbial biofertilizers available as dried or liquid cultures under
different trade names in the market, which are used for a variety of purposes
including enhancement of plant growth and soil fertility (Table 1.2). For instance,
the rhizobia biofertilizers can fix 50-300 kg N ha™' that increases yield by 10-35%,
maintains soil fertility, and leaves residual nitrogen for succeeding crops (Davis
1996; Chen 2006). The Azotobacter biofertilizer used for almost all crops can fix
20-40 mg N g~ of carbon source that causes up to 15% increase in yield; maintains
soil fertility; produces growth-promoting substances such as vitamin B complexes,
indole acetic acid, and giberellic acid; and is further helpful in biocontrol of plant
diseases by suppressing some of the plant pathogens (Abd El-Lattief 2016; Kurrey et
al. 2018). The phosphorus-solubilizing bacterial biofertilizers, which are nonspecific
and suitable for all crops, produce enzymes which mineralize the insoluble organic
phosphorus into a soluble form, thereby increasing crop yield by 10-30% (Sharma
et al. 2013).

1.5 Limitations of Microbial Biofertilizers

Although biofertilizer technology is ecofriendly and possesses a surfeit of advan-
tages, there are some limitations (some of which have been mentioned in Table 1.3)
of this technology causing suspicion among stakeholders about its application. The
major drawbacks associated with microbial biofertilizers that need immediate atten-
tion through further research as well as proper planning include their plant specific-
ity, lower nutrient density (thus, are required in bulk to be made available for most
crops), requirement of separate machinery and skill for production and application
than that used for chemical fertilizers, difficulty of storage, and more importantly
inadequate awareness about their use and benefits among farmers (Malusa et al.
2016). Furthermore, there can be constraints regarding the application or implemen-
tation of biofertilizers that affect the technology at stages of production, marketing,
or usage (Table 1.3) (Jangid et al. 2012).
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Table 1.2 Different microbial biofertilizers available in market and their application

Microbial biofertilizers

Trade names

Application

Azospirillum lipoferum,
Azospirillum brasilense, and
different strains of
Azospirillum

Biospirillum, Green Plus,
Bio-N, Azo-S, ROM, and
Spironik

(1) For normal and acidic soils
and dry soils
(2) For paddy and other crops

Azotobacter chroococcum,
different strains of Azoto-
bacter (non-symbiotic)

Bioazoto, Bhoomi Rakshak,
Kisaan Azotobacter culture,
and Azonik

For all crops like wheat,
sorghum, barley, maize,
paddy, mustard, sunflower,
sesamum, cotton, sugarcane,
banana, grapes, papaya, water-
melon, onion, potato, tomato,
cauliflower, chilly, lady finger,
rapeseed, linseed, tobacco,
mulberry, coconut, spices,
fruits, flowers, plantation
crops, and forest plants

Gluconacetobacter
diazotropicus

Sugar-Plus

For sugarcane

Rhizobium strains
(symbiotic, nitrogen fixing)

Biobium, Rhizo-Enrich,
Kisaan Rhizobium culture,
Rhizoteeka, Green Earth Reap
N4, and Rhizonik

Pulses (gram, peas, lentil,
moong, urd, cowpea, and
arhar), oil legumes (groundnut
and soyabeans), fodder
legumes (barseem and
lucerne), and forest tree
legumes (subabul, shisam, and
shinsh)

Phosphorus-solubilizing and
Phosphorus-mobilizing
microbes like Bacillus
megaterium, mycorrizhal
fungi, etc.

Biophos, Get-Phos, MYCO-
RISE, Kisaan P.S.B. culture,
MycoRhiz, Reap P, and
Phosphonive

For all crops

Potassium-mobilizing or
potash bacteria like Bacillus
mucilagenosus

BIO-NPK, Bharpur,
BioPotash, Potash-Cure, and
Green Earth Reap K

For all crops

Sulfur-solubilizing microbes
like Thiobacillus thioxidans

Biosulf, Sulf-cure, Sulphonik,
S Sol B®, Siron, and MicroS-
109

For cereals, millets, pulses,
oilseeds, fiber crops, sugar
crops, forage crops, plantation
crops, vegetables, fruits,
spices, flowers, medicinal
crops, aromatic crops,
orchards, and ornamentals

Zinc-solubilizing microbes

Biozinc, Zinc-Cure, Zinc
activator, Zinc extra, and
MicroZ-109

For crops like paddy, wheat,
pulses, citrus, pomegranate,
ginger, etc.

Silica-solubilizing microbes

BioSilica, Silica-Cure, and
Silica-109

For crops like cereals, sugar
cane, onions, leafy greens,
legumes, cucumber, pumpkin,
and gourd

Modified from Singh et al. (2014), Biotech International Limited (2018), National fertilizers limited
(2018), Biocyclopedia (2018), Indiamart (2018) and International Panaacea Limited (2018)



14 L. Thomas and I. Singh

Table 1.3 The different constraints in biofertilizer technology

Biofertilizer technology
constraints Examples

Technological (1) Use of less efficient microbial strains and carrier materials
(2) Low quality and short shelf-life of microbial inoculants
(3) Lack of technically qualified personnel

Infrastructural (1) Non-availability of suitable production facilities like equipment,
space, storage, etc.

Financial and marketing | (1) Non-availability of sufficient funds

(2) Less return by sale of products

(3) Non-availability of right inoculant

(4) Lack of retail outlets or market network for producers

Environmental (1) Seasonal biofertilizers demand
(2) Soil characteristics
(3) Simultaneous short-span cropping operations

Human resources (1) Lack of appropriate training on production practices

(2) Unfamiliarity on the quality of the manufactured product
(3) Problem in adoption and unawareness of the benefits of
technology by farmers

(4) Ignorance on the environmental indemnities caused by
continuous application of chemical fertilizer

1.6 Conclusion

In modern-day agricultural practices, biofertilizers form an important component of
sustainable organic farming in terms of a viable alternative of chemical fertilizers
that are associated with various environmental hazards. Biofertilizers can fix and
make available atmospheric nitrogen in soil and root nodules, solubilize phosphate
(from insoluble forms like tricalcium, iron, and aluminum phosphates) into available
forms, sift phosphates from soil layers, produce hormones and antimetabolites to
uphold root growth, and decompose organic matter for soil mineralization. This
causes increased harvest yields, enhanced soil structure (by influencing the aggre-
gation of the soil particles for better water relation), untainted water sources, and
induced drought tolerance in plants (by enhancing leaf water and turgor potential,
maintaining stomatal functioning, and increasing root development). However, an
increased demand and awareness among farmers and planters about the use of
biofertilizers can pave the way for new entrepreneurs to get into biofertilizer
manufacturing, which also requires encouragement as well as support from the
governments. Biofertilizer technology, which is an inalterable part of sustainable
agriculture, has to be appropriate for the social and infrastructural situations of the
users, economically feasible and viable, renewable, applicable by all farmers
equally, stable in long-term perspective, acceptable by different societal segments,
adaptable to existing local conditions and various cultural patterns of society,
practically implementable, and productive. Thus, it is apparent that awareness of
the significance and economic feasibility of application of biofertilizer technology
has to be increased by proper practical training of dealers and farmers.
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Chapter 2 ®)
Fungal Inoculants for Native Phosphorus s
Mobilization

J. C. Tarafdar

Abstract More than 96% of the total native phosphorus present in any agricultural
soils is in unavailable inorganic or organic forms. They may be utilized by the plants
through the activity of efficient fungi which are secreting/producing/releasing huge
amount of acid phosphatase, alkaline phosphatase, phytase, and organic acids. The
important fungi capable of doing the job are in the groups of Aspergillus, Emericella,
Gliocladium, Penicillium, Trichoderma, and Chaetomium besides some AM fungi
like Glomus and Gigaspora. The three efficient fungi already used as inoculums are
Chaetomium globosum, Penicillium purpurogenum, and Emericella rugulosa. Seed
inoculation using these fungi is mobilizing 45-60 kg P and 16-25% increase in yield
of different crops. They are mainly exploiting from labile and moderately labile
fractions of phosphorus. Minimum concentration of organic acid of fungal origin
required to solubilize P was found between 0.2 and 0.5 mM. In fungal-inoculated
plants, microbial contribution was more than the plant contribution. Fungal extra-
cellular enzymes were more efficient than their intracellular counterpart. P uptake
occurs around the root tip into epidermal cells with their associated root hairs and
into cells in the outer layers of the root cortex. Phosphate can also be taken up by
transfer from mycorrhizal fungi to root cortical cells.

Keywords Fungal phosphatases and phytases - Fungal enzymes - Mycorrhizal
fungi - Mineral nutrition

2.1 Introduction

Phosphorus is one of the most important nutrients for plant growth and root
development. It helps in photosynthesis, energy conservation, carbon metabolism,
redox reaction, enzyme activation/inactivation, signaling, and nucleic acid synthesis
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(Vance et al. 2003). In general, P availability in soil is very low due to its easy
fixation and immobilization (Yadav and Tarafdar 2010). Phosphorus predominantly
presents in the soil as an insoluble inorganic form or an organic form, which are not
directly available to plants. A number of mechanisms have been proposed to increase
the soil phosphorus in plant rhizosphere. The most important ones are dissolution by
organic acids and hydrolysis of organic phosphorus by enzymes like phosphatases
and phytases. Both plant and microorganisms may contribute to the processes. Many
reports indicated that the changes in rhizosphere pH due to release of different
organic acids by plants and soil microorganisms especially fungi may be a major
factor of dissolution of soil phosphorus (Hedley et al. 1982; Yadav and Tarafdar
2003). The capability of soil microorganisms to solubilize insoluble phosphorus
fractions present in various forms is also well indicated (Richardson 1994; Tarafdar
and Yadav 2011). Many research findings have very clearly demonstrated the
potential of soil fungi to hydrolyze and solubilize phosphorus and help in plant P
availability under field conditions (Yadav and Tarafdar 2007; Tarafdar and Yadav
2011). Tarafdar and Marschner (1995) showed the importance of soil fungi in
increasing the available P from organic P like phytate and glycerophosphate to
plant roots. It has also been found (Yadav and Tarafdar 2003) that fungal isolates
differed in their abilities to hydrolyze different types of organic P compounds. The
role of phosphatase and phytase-releasing fungi is well appreciated in exploiting the
soil organic P even from very poor P status soils (Yadav and Tarafdar 2003, 2007,
2010). As compared to the plant contribution to P mobilization, fungal acid phos-
phatase was found to be more efficient in hydrolysis of organic P compounds
(Tarafdar et al. 2001). In general, fungi belonging to the genera Aspergillus,
Emericella, and Penicillium have more potential to exploit native organic phospho-
rus for plant nutrition (Yadav and Tarafdar 2003). The plant-unavailable organic and
inorganic fractions of P exploited by fungal acid phosphatase and alkaline phospha-
tase were identified by Tarafdar and Yadav (2011). The fungi of the genera Asper-
gillus, Emericella, Gliocladium, Penicillium, and Trichoderma are efficient to
mobilize unavailable P from very resistant organic P source like phytin (Yadav
et al. 2010) due to their huge production/release of phytase enzymes. Phytate and
phytin are metal (Fe, Al, Ca)-associated derivatives and generally constitute up to
50% of the total organic P in the soil (Turner et al. 2002). In the present chapter, 1
have examined the ability of fungi as inoculants to exploit soil-unavailable P for
plant nutrition.

2.2 P Status in the Soil

Almost 96.5% of phosphorus present in the soil is mostly in plant-unavailable
inorganic or organic form. Not more than 3.5% of the total P is present in any soil
as plant-available form. Plant takes P either as H,PO,~ or HPO,~ or PO,>~ form
depending on soil pH. If the soil pH is less than 6.7, then plants mainly take P as the
H,PO,~ form; between soil pH 6.7 and 9.4, the P is generally available to plants as
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Table 2.1 Forms of

; ) Form of phosphorus All soils (%) | Arid region (%)
E’;OZ?};;’:;SP‘;T“W inthe soil g} t-available form >1-3.5 0.7-1.6
Unavailable inorganic form 15-79 75-79
Organic form 18-92 18-22

HPO,~ form. If the soil pH is above 9.4, which is generally in rare case, then plants
take P as the PO43 ~ form. The P status of the world’s soil is summarized below in
Table 2.1.

In general, 96.5-99% of the total P is present in the soil as plant-unavailable
forms that can be exploited for plant nutrition through increasing acid phosphatase,
alkaline phosphatase, and phytase activity or increasing organic acid concentration
in the soil. That is possible with the introduction of efficient microorganisms,
especially fungi including mycorrhizal fungi or efficient plant species. It has been
reported (Batjes 1997; Gaume 2000) that 5.7 billion of hectares of worldwide soil
contains meager available P for optimum crop production. Generally, P is very less
mobile which may be due to the large reactivity of P ions relative to numerous soil
constituents and to the consequent strong retention of most of the soil phosphorus
onto those. Due to this, negligible proportion of soil phosphorus is present as P ions
in the solution. More P ion concentration is only noticed in highly fertilized soils.
Their concentration in soil solution varies from 0.1 to 10 micromoles (Frossard et al.
2000).

There are many fractions of inorganic P, some fraction adsorbed by exchange
sites generally known as loosely bound, labile, or exchangeable P (Ruban et al.
1999); it is an easily releasable fraction. The other fraction is associated with Al, Fe,
and Mn oxides and hydroxides; phosphorus and iron are often bound to sediments,
and iron complexes help in the adsorption of P by ligand exchange; here the amount
of FeOOH is one of the factors controlling P release. The third fraction is Ca-bound
compounds, generally referred to as apatite-P. The novel approach to characterize
hydrolysable organic P is the enzymatic hydrolysis in soil (Pant and Warman 2000).
The three important enzymes responsible for hydrolysis are acid phosphatase,
alkaline phosphatase, and phytase. The available P released through the cleavage
of organic bonds by these three enzymes can be taken up by the plants.

Phosphorus (may be both inorganic and organic forms) present in the soil ranges
between 100 and 2500 kg/ha, with an average of 1000 kg/ha in the top 20 cm. They
may be divided into four categories: P in soil solution as ions and compounds;
surface adsorption of P onto inorganic soil constituents; minerals P, both crystalline
and amorphous; and P present as a component of soil organic matter (Barber 1995).
P present in soil solution varies widely among soils and climate. In general, the
concentration of P needed by different vegetations varies between 0.003 and
0.3 ppm. Generally, tuber crops show very high P response. P is absorbed by plant
roots through diffusion and mass flow from the soil and transported to the entire
plant for nutrition. Barber (1995) reported that in high organic matter content soil,
50% of the phosphate in soil solution may be in the form of soluble organic
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compounds. Plants have developed a mechanism to secrete phosphatases mainly to
catalyze hydrolysis of P from organic forms in many soils (Richardson et al. 2001).
They may also report to release many organic acids to solubilize P compounds
from soil.

2.3 Important Fungi to Mobilize Unavailable P

Numerous fungi belonging to different genera have been reported to mobilize
P. Fungi mobilize organic P through the release of phosphatase and phytase enzymes
and inorganic P after releasing organic acids that solubilize soil inorganic P com-
pounds into plant-available forms. Fungi have potential also to immobilize available
phosphates into cellular material and promote the solubilization of fixed or insoluble
mineral forms of P mainly through the production of chelating agents. Organic
chelates form complexes with Ca, Fe, or Al and thereby release phosphate in
water-soluble forms as follows:

CaX;, x 3Ca (POs), + chelate = soluble PO,~
+ calcium chelate complex (where x = OH or F)

and
AL(Fe) x (H,0),(OH),H,PO4 + chelate = soluble PO,~ + AL(Fe)-chelate complex

A list of the most effective fungi for P mobilization and solubilization is presented
in Table 2.2.

As total organic P is highly correlated with total organic carbon in most of the
soils, therefore, mineralization may be expected to increase with increasing total
organic C. Temperature, aeration, and pH are other factors that dictate the quantity of
P mineralization/immobilization. Among 30 species of filamentous fungi isolated
from Brazilian soil, Aspergillus caespitosus produced and secreted the highest level
of alkaline phosphatase (Guimaraes et al. 2003). It has been well known that fungi
produced low-molecular-weight organic acids (e.g., citric acid, oxalic acid) in the

Table 2.2 Important fungi for native P mobilization

Aspergillus awamori Aspergillus terreus Paecilomyces variotii
Aspergillus candidus Aspergillus ustus Penicillium purpurogenum
Aspergillus flavus Chaetomium globosum Penicillium rubrum
Aspergillus fumigatus Curvularia lunata Penicillium simplicissimum
Aspergillus niger Emericella nidulance Phoma sp.

Aspergillus parasiticus Emericella rugulosa Pseudorotium zonatum
Aspergillus rugulosus Gliocladium catenulatum Trichoderma harzianum
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rhizosphere soil which enhances the solubility of mineral P by ligand exchange and
complexation of metal ions such as aluminum, iron, and calcium.

Arbuscular mycorrhizal (AM) fungi are well known to present abundance in
agricultural soils and proved to enhance P nutrition of plants by scavenging the
available P due to the large surface area of their hyphae that make them efficient for
more P uptake and transport (Moose 1980). They are also able to release/produce P
(Paul and Sundara Rao 1971) that could solubilize the insoluble mineral phosphates
from the soil. It has also been noticed that AM can produce/release phosphatase that
are efficient enough to mobilize organic P (Tarafdar and Marschner 1994; Tarafdar
1995). The organic acid production by AM fungi would definitely enhance the
availability of acid-labile insoluble phosphate. Lapeyrie et al. (1991) also demon-
strated that ectomycorrhizal fungi have possessed P-solubilizing activity. It has also
been shown that they are incapable of utilizing P from inositol phosphates and have
phosphatase activity that could further affect their ability to release P from organic
matter (Koide and Schreiner 1992). But the use of AM as phosphate biofertilizers is
not widespread due to the inability to culture them in vitro, since they are obligate
symbionts.

2.4 P Solubilization

The ability to solubilize P by fungi mainly depends on the nature of the N source
used. It is noticed to have greater solubilization in the presence of ammonium salts
than when nitrate is used as the N source. This may be due to the extraction of
protons to compensate for ammonium uptake, resulting in the lowering of extracel-
lular pH (Roos and luckner 1984). The release of organic acids or protons enhances
the ability of fungi to reduce pH of their surroundings and encourage solubilizing the
Ca-P complexes. The organic acids secreted by the fungi can either directly dissolve
the mineral phosphate as a result of anion exchange of PO, by acid anion or chelate
both iron and Al ions associated with phosphate (Bardiya and Gaur 1972). The
important organic acids such as acetate, lactate, oxalate, tartarate, succinate, citrate,
gluconate, ketogluconate, and glycolate produced by the fungi have been found to be
very effective for P solubilization. The efficiency of fungal organic acids toward the
release of available P has been computed and presented in Table 2.3.

Table 2.3 Release of plant

) Soil types
z‘l’égf;’;ftl; Ifgsf’glf)s‘gi‘ldzth e Organicacids | Alfisol Aridisol Inceptisol
action of 1 mM organic acids Citric 9.1+£1.2 156 +1.8 22.1 1.2
produced by fungi Formic 140+ 1.5 174+ 1.3 302+ 19
Lactic 143+13 20.6 = 1.5 31.8 £ 2.1
Malic 7.8 £0.8 8.0+ 0.9 10.8 £ 0.7
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Table 2.4 Minimum organic Minimum concentration required

acid concentration required 0 Organic acids to solubilize P (mM)
solubilize P .

Citric 0.26

Formic 0.22

Lactic 0.20

Malic 0.50

Subba Rao (1982) has demonstrated that the ability to reduce pH in some cases
does not correlate with the amount of mineral phosphate solubilized which indicated
that acidification is not the only mechanism of solubilization; the chelating property
of the organic acids may also be important that is also reflected in the work of Kucey
(1988), which showed that the addition of 0.05 M EDTA to the media had the same
solubilizing effect as the inoculation with Penicillium bilaii (Kucey 1988). Organic
acids, in general, help in cation—anion balance and hence for the net release of H*
that is likely to occur to compensate for this net efflux of negative charges. It has also
been noticed that root respiration can contribute to significant acidification of the
rhizosphere. It is in general believed that roots and rhizosphere fungi relying on root
exudates respire and thereby produce CO, and hence carbonic acid in the rhizo-
sphere. There are many reasons believed to account for the variations in the
effectiveness of fungi inoculations on plant growth enhancement and crop yield.
They are survival and colonization of inoculated fungi in the rhizosphere, competi-
tion with native microorganisms, nature and properties of soils and plant varieties,
insufficient nutrient in the rhizosphere to produce enough organic acids to solubilize
soil phosphates, and inability of fungi to solubilize soil phosphates. The minimum
concentration required to solubilize P by fungal organic acids varies among the type
of organic acid produced. Lactic acid was found to be most effective, and malic acid
needs more concentration to solubilize per unit P (Table 2.4).

2.5 P Mobilization by Fungal Phosphatases

Major P fractions in most of the soil are in the organic form. To utilize organic P
fractions by plants, these P compounds must be hydrolyzed by phosphatases or
phytase, which are of plant and microbial origin. Both the enzymes may therefore be
very important in the P nutrition of plants (Tarafdar and Claassen 1988). Fungi are
very efficient in producing both phosphatases (acid and alkaline). It has been noticed
that among the fungi, the genus Aspergillus was most efficient in producing phos-
phatases. Higher fungal buildup and increased root exudation in the rhizosphere are
reported to be the result of higher phosphatase activity and more P mobilization.
Fungi may cleave C—O-P ester bond of organic P with the help of phosphatases and
phytase released by them. Fungal activity may also result in alterations of root
exudate composition both qualitatively and quantitatively due to the degradation
of exudate compounds and the release of microbial metabolites (Neumann and
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Table 2.5 P-mobilizing enzyme release potential by some important fungi

Enzyme release (EU x 107 per g fungal mat)

Acid phosphatase Alkaline phosphatase Phytase
Fungi Intra Extra Intra Extra Intra Extra
Aspergillus flavus 20.7 5.2 5.0 1.9 33 1246
Chaetomium globosum 14.6 4.0 53 1.2 26 954
Curvularia lunata 13.7 34 1.1 0.2 19 699
Paecilomyces variotii 37.5 9.4 0.9 0.2 48 1824
Penicillium sp. 8.9 2.2 1.5 0.3 13 507
LSD (p = 0.05) 1.81 1.21 0.89 0.18 233 8.91

EU enzyme unit, LSD least significant difference

Table 2.6 P depletion from  "p frac(ion % depletion
different organic P fractions Labile fraction 43.9.904
by fungal phosphatases - -
Moderately labile fraction 15.7-21.3
Moderately resistant fraction 2.8-16.2
Highly resistant fraction 0.5-2.0

Roembheld 2000). Kucey et al. (1989) concluded that fungal activity is a central
factor in the soil organic P cycle and influenced the transformation of inorganic P
into the system. The importance of soil fungi in increasing available P and transfer to
the plant roots has been suggested by many workers. Tarafdar and Marschner (1995)
demonstrated also the role of co-inoculation with different compatible fungal com-
binations to mobilize more P from the soils for plant nutrition, for example, the
mycorrhizal fungi Glomus mosseae and Aspergillus fumigates, which have known
phytase activity (Wyss et al. 1999). Yadav and Tarafdar (2003) indicated that fungal
isolates differed in their abilities to hydrolyze different organic P compounds. The
efficiency of some fungi in releasing phosphatases and phytase both intra- and
extracellularly is presented (Table 2.5).

Tarafdar and Gharu (2006) demonstrated the role of Chaetomium globosum to
release/produce phosphatase and phytase enzymes, which is efficient in native P
mobilization and enhances the production of wheat and pearl millet crop. Penicil-
lium purpurogenum was also reported as an excellent P mobilizer under arid agro-
ecosystems (Yadav and Tarafdar 2011). In general, P mobilization by fungal phos-
phatases was more from the labile fraction followed by moderately labile fraction
and least from the highly resistant fraction of the organic P compounds (Table 2.6). It
indicates that fungi are less capable in mobilizing P from the relatively resistant pool.

The plant and microbial contribution to mobilize plant-unavailable P compounds
has been partitioned. It has been noticed that the microbial contribution was much
higher in the initial stages of plant growth than in the later stages (Table 2.7) when
plant roots are dominated in P mobilization. However, the microbial contribution
was higher than the plant contribution after considering the entire growth period of
the plants.
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The decrease in different organic P fractions, in general, was more (41-86%)
from water-soluble fractions due to the action of acid and alkaline phosphatases
produced by fungi, followed by 50-84% from NaHCO; fractions, 14-26% from
NaOH fractions, and 8-19% from HCI fraction under different vegetations (Gharu
and Tarafdar 2016). Between the contribution of acid and alkaline phosphatases
produced by the fungi, acid phosphatase was 9—14% more efficient in mobilizing P
than alkaline phosphatases. The fungal species are capable in significantly depleting
both inorganic and organic P from labile fractions and moderately labile fractions
(Yadav and Tarafdar 2003). The depletion from moderately resistant fractions was
much less and least with highly resistant fractions. The enzymatic hydrolysis was
expected to be complete by 8—12 h. The hydrolysis was initially rapid with the action
of fungi followed by gradual decline in hydrolysis. Inoculation of different
phosphatase-producing fungi increases dry matter, grain yield, and uptake of various
nutrients including phosphorus under different crops and soil types. They may be
hydrolyzed and help in translocation of nutrients to the plants. Their activity was
found more near the root zone especially in the rhizosphere.

2.6 P Mobilization by Fungal Phytase

Efficient phytase-producing fungi belong to genera Aspergillus, Emericella,
Gliocladium, Penicillium, and Trichoderma such as Emericella rugulosa. They
can easily hydrolyze the inositol penta- and hexaphosphates (phytates) and their
derivatives which are reported for a major component of soil organic P (Anderson
1980). These fungi groups were noted to be most efficient P mobilizer through the
production/release of phytase enzymes (Yadav et al. 2010). It is also observed that
the release of phytase by fungi was more under P deficient than sufficient P present
in the soil (Table 2.8) under different vegetations. In general, 16-55% more phytase
activity was expected in P-deficient soil conditions.

The application of phytase into the soil stimulates phytate hydrolysis, and sub-
sequently, the phosphorus transport as orthophosphate to the roots is increased
(Beissner and Roemer 1996). The phytin hydrolytic cleavage by phytase controlled
the P availability from phytin sources (Findenegg and Neiemans 1993) and ulti-
mately from organic sources. Between extra- and intracellular fungal enzymes,
extracellular fungal enzymes were more active than their intracellular counterpart
especially in respect to the release of P from phytin sources (Fig. 2.1). The

Table 2.8 Release of phytase by fungi under variable P conditions

Phytase release (EU x 107°) % increase under
Plants P deficiency P sufficiency P-deficient condition
Crops 3.75 £0.16 3.24 £ 0.12 16
Grasses 1.67 £ 0.08 1.08 £ 0.05 55
Trees 15.82 £ 1.20 12.63 £ 0.97 25
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Fig. 2.1 Comparative
efficiency of extra- and
intracellular fungal enzymes
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extracellular phytase released by the organisms was 12.7 times more than their
intracellular counterpart. Among the phytase-producing fungi, extracellular phytase
activity was more in Emericella rugulosa, whereas intracellular phytase activity was
higher in Tricoderma harzianum (Yadav et al. 2010). Emericella rugulosa was
found to be the most efficient in hydrolyzing phytin P (98.82 pg/g). The efficiency
of fungal phytase to hydrolyze phytin P compounds increases with time up to 24 h of
incubation. A significant correlation was observed between the activity of root-
associated and root-released extracellular phytase. Aspergillus fumigatus phytase
has been identified as a phytase for the animal including human nutrition due to their
series of favorable properties maximizing phytic acid degradation and for increasing
P and amino acid availability. Fungal phytase is regularly used as a supplement in
diets for monogastric animals to improve phosphate utilization from phytate, the
major storage form of phosphate in plant seeds (Greiner and Konietzny 2006).
Experiments also confirmed the favorable stability and catalytic properties of Asper-
gillus fumigatus phytase. In general, phytase-producing fungi after seed inoculation
may be able to enhance 18-25% shoot P concentration and 7-10% root P concen-
tration of plants, resulting in 15-23% increase in yield of cereal crops (Fig. 2.1).
Phosphatases and phytase produced by the fungi may release plant-unavailable P
mainly from water-soluble fractions and bicarbonate fractions under different
cropping systems. The results (Table 2.9) suggested that both organic and inorganic
P pools can be utilized by fungal P-mobilizing enzymes from the soils under
different vegetations indicating the use of fungal enzymes as effective inoculants
for P mobilization. It has also been reported that fungal enzymes can hydrolyze
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Table 2.9 Efficiency of fungal phosphatases to release P (%) from different soil P fractions under
variable vegetation

Fallow Crop Grasses Trees
P fractions Po Pi Po Pi Po Pi Po Pi
WS-P 64.7 72.9 72.2 68.1 68.1 72.0 53.3 64.9
Bicarab-P 70.1 78.0 70.9 67.2 68.0 75.9 69.4 71.3
NaOH-P 22.8 27.9 21.1 25.4 16.4 15.6 16.2 15.0
HCI-P 15.7 18.5 12.6 9.2 11.9 7.8 12.6 14.5
LSD (p = 0.05) 2.8 34 3.1 24 2.0 3.1 1.8 2.7

Po organic P, Pi inorganic P, LSD least significant difference

other phosphorylated amino acids like O-phosphothreonine, O-phosphotyrosine,
and O-phosphoserine (Guimaraes et al. 2003). Plants utilize organic P after hydro-
lysis by fungal phosphatases, but inorganic P seems to be more important and
preferentially used by plants; organic P may be essential in high P-fixing soils for
the nutrition (Tarafdar and Claassen 2005). The release of plant-available P from
different P fractions under different vegetations is presented in Table 2.9.
Depletion of P fractions in the rhizosphere varies with the plant species and soil
types. The P depletion by different plants in the rhizosphere has been related to
differences in root morphology; root density; root surface area; root hair length and
density; root-induced chemical, biochemical, and biological changes; and root—soil
interactions (Foehse et al. 1988; Haussling and Marschner 1989). The differences in
the ability of different fungi depend on their quality of enzyme released both extra-
and intracellularly although they might be releasing a similar quantity of enzymes.

2.7 P Mobilization by AM Fungi

Mycorrhizal symbiosis between plant roots and soil fungi is generally noticed in
ecosystems (Yang et al. 2018). The presence of AM fungi is widespread in soils, and
they form symbiotic as well as mutualistic associations with many plant species.
Their colonization with plant roots often increases plant growth by improving P
uptake, particularly on P-deficient soils (Smith and Read 1997). Due to their long
aerial mycelium (Fig. 2.2), AM fungi can transport P from a long distance where
plant roots cannot reach. They can also release some organic acids to solubilize P as
well as phosphatases to mobilize P from the unavailable native P sources. Root
infection with AM fungi may enhance the efficiency of nutrient absorption and, in
turn, enhance growth of mycorrhizal-infected plants, particularly at low availability
of phosphorus in the soil. AM infection has also influenced the root morphology
depending on the density of mycorrhizal association (Fig. 2.2).

The significant effect of mycorrhizal fungi was observed to the relatively immo-
bile nutrients. Regardless of the cropping system and the P concentration in soil, AM
fungi have been reported to improve dry biomass and crop yield besides increasing
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Fig. 2.2 Extraradical
hyphae of AM fungi to
transport P from distant
places

Table 2.10 Effect of AM fungi on important arid legumes

Inoculation | Cluster bean Moth bean Mung bean
A. Acid phosphatase (n Kat per 100 g soil)

Control 8.0 9.8 8.2
Glomus mosseae 9.8%*% 12.1%%% 10.4%**
Glomus fasciculatum 9.5%*% 11.0% 9. 7%
B. Alkaline phosphatase (n Kat per 100 g soil)

Control 13.0 17.5 11.0
Glomus mosseae 15.5%%%* 20.0%* 13.5%
Glomus fasciculatum 14.8** 19.8** 13.6*
C. P concentration (mg/g)

Control 1.7 1.5 1.4
Inoculated 2.1%%% 1.9%%* 1.9%%%
D. Grain yield (g/ha)

Control 54 4.2 4.8
Glomus mosseae 7.0%%* S5.1%%* 6.0%%*
Glomus fasciculatum 6.2%* 4.9%*% 5.8%%*
E. Shoot dry mass (g/ha)

Control 23.0 18.2 21.5
Glomus mosseae 31.7%%* 23.5%%% 27.9%%*
Glomus fasciculatum 29.9%** 21.8% 25.8%*

*Significant at 5% level; **Significant at 1% level; ***Significant at 0.1% level

the survival ability of plants against drought through water transport from the deep.
They help in more nodulation under legumes as well as the root surface area of the
plants to capture and transport more nutrients. Consequently, symbiotic N,-fixation
in legumes, a process being dependent on P supply, is improved by AM fungi. The
effect of AM fungi on arid legumes is presented in Table 2.10.

The percentage of root length infected by AM fungi was often reduced by high P
application in soil (Mosse 1973). In addition to the production of phosphatases and
release of organic acids, AM fungi may help in stabilization of soil aggregates.
Tisdall et al. (1997) demonstrated that fungal hyphae bring mineral particles and
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organic materials together to form stable microaggregate and demonstrated to bind
microaggregate into macroaggregates. The enhanced growth of plants infected by
AM fungi results primarily from improved uptake of soil immobile nutrients espe-
cially phosphate through the mobilization, or extra phosphate reaches the root
through the fungal hyphae that tap the soluble P in soil beyond the phosphate
depletion zone near the root surface. Besides P, they may increase the uptake of
other nutrients like Zn, Cu, and N. The AM fungus is believed to be obligatorily
dependent on the plant, that is, the plant often benefits from the fungus, and the
balance between the two is much influenced by soil fertility, especially phosphate
levels. The AM fungal system must be regarded as consisting of three components,
plant, fungal endophyte, and soil, involving a three-way interaction among them.
Cantrell and Linderman (2001) reported that AM can also help in drought resistance
to plants and can alleviate deleterious effects of saline soils on crop yield.

2.8 Some Important Fungal Inoculants for P Mobilization

P-mobilizing/P-solubilizing fungal inoculants are mainly used as seed inoculation.
In general, 1 g of fungal mat was crushed and mixed with 50 mL of extracellular
fungal aliquot; thereafter, approximately 150 g of absorbent material was added,
properly mixed, and air-dried. The important sticking materials used are guar
gum/carboxyl methyl cellulose/guar. French chalk powder, peat, lignite, or charcoal
is used as the absorbent material for inoculum preparation. The brief procedure for
fungal inoculum production for seed inoculation is sketched in Fig. 2.3. The amount
of inoculum required depends on the size of the seeds.

50 g seed + 5 — 10 mL of sticking solution (1%) and mix thoroughly
+
25 — 35 g of inoculants

They are mixed thoroughly and air-dried.

Fig. 2.3 Inoculum 50 g seed
preparation l

+ 5-10 mL of sticking solution (1%)
lMixing

+25 to 35 g of inoculants

l

Mixed thoroughly and air dried
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2.8.1 Chaetomium globosum

It is an efficient phosphatase- and phytase-producing fungus with the potential to
release organic acids. It has the potential to decrease the soil pH from 7.4 to 5.6 in the
rhizosphere within 4 weeks after inoculation. In general, at least one unit decrease in
soil pH was expected due to release of organic acids by Chaetomium globosum. The
important organic acids released by these fungi are lactic acid up to 0.08 mM, citric
acid 0.06 mM, malic acid 0.04 mM, and formic acid 0.02 mM. They also release a
huge amount of phosphatase and phytase to mobilize organic P fractions from the
soil. After seed inoculation, the population buildup was noticed between 7.5 and
16 times of the inoculated population within 4 weeks. Pure spores of CFU of 10—
10° cells/mL are generally used as inoculums. The moisture by weight of the
inoculums was generally maintained between 30% and 40% (w/w), and the effect
was expected to be about 45-60 kg SSP (single superphosphate) equivalent P
mobilization under different crops. On average, 16-25% increase in crop yield
was expected after the inoculation. The effect of seed inoculation of Chaetomium
globosum on different arid crops is presented in Table 2.11.

The maximum effect of inoculation on different soil enzyme activities (acid
phosphatase, alkaline phosphatase, phytase, and dehydrogenase) was observed
between 5 and 8 weeks of plant age. A significant improvement in plant biomass,
root length, plant P concentration, seed and straw yield, and seed P content resulted
from inoculation (Tarafdar and Gharu 2006). Chaetomium globosum also showed
higher competitive ability under harsh arid conditions than other native microorgan-
isms as well as thrived under any adverse condition. Under field conditions, inocu-
lation of Chaetomium globosum resulted in on average 53% more acid phosphatase
activity over control after 5 weeks, 72% more alkaline phosphatase activity over
control after 6 weeks, 48% more phytase activity over control after 7 weeks, and
110% more dehydrogenase activity over control after 8 weeks of crop growth. Seed
inoculation of plants showed a gradual increase in the mobilization of mineral P,
organic P, and phytin P fractions throughout the crop growth period. A significant

Table 2.11 Effect of seed inoculation by Chaetomium globosum in Aridisol (average of 4 years),
yield (kg/ha)

Pear] millet Cluster bean Moth bean Mung bean

(HHB 67) (RGC 936) (RMO 257) (K851)
Treatment Grain | Stover |Grain | Stover |Grain | Stover |Grain | Stover
Control 1131 | 2963 699 1258 520 728 760 1292
P40 1312 | 3689 798 1484 614 896 867 1387
P60 1348 | 3715 854 1503 639 984 899 1483
Chaetomium globosum | 1319 | 3699 839 1510 621 925 891 1479
LSD (p = 0.05) 12.31 |16.82 |13.95 |1527 |7.91 11.23 |8.21 14.72
% increase over control | 16.6 24.8 20.0 20.0 19.4 27.1 17.2 14.5

P40 SSP as 40 kg P per ha, P60 SSP as 60 kg P per ha, LSD least significant difference, SSP single
superphosphate
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improvement in plant P concentration (20%) and seed P content (25%) was also
observed under different inoculated crops.

2.8.2 Penicillium purpurogenum

It is an important P-mobilizing organism that can be effectively used for seed
inoculation. Plants inoculated with the fungi Penicillium purpurogenum showed
significant improvement in phosphatase (acid and alkaline), phytase, and dehydro-
genase activities in soil compared to uninoculated fields (Yadav and Tarafdar 2011).
Their effect on the depletion of organic P was much higher than that of mineral and
phytin P. In general, a significant improvement in plant biomass (30%), root length
(21%), P uptake (6%), seed (19%) and straw yield (30%), and P concentration of
shoot (15%), root (6%), and seed (33%) resulted from the inoculation of Penicillium
purpurogenum. The said fungi can well thrive under arid ecosystems as well as
under very harsh environment. With inoculation, their contribution on P mobiliza-
tion exceeded the plant contribution in respect to the mobilization of P from the
native sources. They are very much compatible with the rhizosphere environment of
most of the plants tested. For example, the combined effect (plant and microorgan-
isms) resulted in significant improvement in plant biomass, P concentration, and
yield of pearl millet, which indicated that the organism should be considered as an
efficient native P mobilizer and possible inoculation tool for cereal production,
especially under rain-fed conditions and phosphate-deficient soils like those in arid
areas. The inoculum culture should have at least 2 x 10° colony-forming units
(CFU) per g/mL of inoculum culture for Penicillium purpurogenum and inoculated
with 100 g/kg seed in the slurry of carrier-based culture prepared in sterilized jiggery
(20% gur) solution and dried under shade prior to sowing. During the preparation of
inoculum, the culture broth was blended in a homogenizer and diluted with steril-
ized, distilled water. The inoculation effect on pearl millet is presented in Table 2.12.

2.8.3 Emericella rugulosa

Emericella rugulosa is one of the other efficient P mobilizers that produce enough
phosphatases and phytase that mobilize native P and enhance the production of

Table 2.12 Seed inoculation of pearl millet with Penicillium purpurogenum

Yield (kg/ha) P concentration (mg/g)
Treatment Seed Straw Shoot Root Seed P content (%)
— Inoculation | 1578 +41.5 | 2878 £91.1 [4.73 £ 0.15 |3.59 +£0.21 | 0.96 £ 0.15
+ Inoculation | 1944 + 33.9 3802 £45.5 |590+£0.53 |3.83 £0.26 |1.30 +0.14
% increase 23.2 32.1 24.7 6.7 354
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many crops. The inoculation with Emericella rugulosa was carried out in the slurry
of carrier-based culture, and the population generally used was 10° CFU. Seed
inoculation with the fungi generally improved 20% acid phosphatase secretion and
45% alkaline phosphatase activity. The phytase activity, in general, increases by
46% after inoculation of Emericella rugulosa which also influences the dehydroge-
nase activity by 98% (Yadav and Tarafdar 2007). A gradual increase in depletion of
different forms of unavailable P with the inoculation was observed. Increase in dry
matter varies between 21% and 35% after inoculation of the fungi. The crop yield
may increase up to 23%. In general, more shoot (20%) and root (5%) P concentration
was expected compared to the uninoculated plants. A gradual increase in depletion
of different forms of unavailable P with the inoculation of Emericella rugulosa with
plant age was also observed (Yadav and Tarafdar 2007). The fungal contribution
varies between 51% and 82% for mineral P, 38% and 65% for organic P, and 44%
and 82% for phytin P. Increase in dry matter varies between 21% and 52% after
inoculation of fungi under different plant growth stages. The increase in inoculated
plant root length varies between 19% and 26%.

Plants acquire phosphorus as phosphate anions from the soil solution. It is
probably one of the least available plant nutrients found in the rhizosphere. In
particular, plant growth-promoting fungi have been reported to be key elements
for plant establishment under nutrient-imbalance conditions. Use of those fungi in
agriculture can favor a reduction in agro-chemical use and support more crop
production. The phosphatase and phytase release by different fungi can be further
enhanced by spraying 10 ppm Zn nanoparticles or 30 ppm Fe nanoparticles to the
culture. The additional enhancement of release due to application of nanoparticles on
phosphatases was observed between 46% and 56% under different phosphatase-
releasing fungi and between 170% and 253% for various phytase-releasing fungi.

2.9 Phosphate Uptake Mechanism

The activity of microorganisms especially fungi present in the rhizosphere dictates
the available P status in the soil for plant nutrition (Hinsinger 1998) and strategies of
plant for taking up P. The most important process is the decrease in the concentration
of phosphate ion in the soil solution, which occurs within the rhizosphere as a direct
consequence of the removal of P by the root uptake. The process of depletion of
rhizosphere P has been reported by different workers under various soils and plants
(Huebel and Beck 1993; Hisinger and Gilkes 1997). This depletion helps in the
replenishment of P from the solid phase in the crop-growing period, and P is
influenced by the physical-chemical conditions of the soil. The fungal contribution
was noticed to be much higher than the plant contribution (Yadav and Tarafdar
2007) to the hydrolysis of different native unavailable P fractions. In addition to the
cleavage of the C—O-P ester bond by fungal phosphatases and phytase, the fungi
may also produce appreciable quantity of organic acids, which may contribute also
in the release of plant-available inorganic P from the native sources.
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In low-phosphate soils, the slow rate of diffusion of phosphate results in a zone of
depletion of phosphate ions in solution around the roots of plants. Transfer of
phosphate to the site of uptake into the root symplasm limits phosphate uptake in
such soils. In general, the transfer involves movement across the depletion zone as
well as through the root apoplasm. The apoplasm is made up of cell walls of
epidermal and cortical cells, together with the associated intracellular spaces.
Although the pores in the open lattice of these cell walls permit movement of
nutrients around cells, they increase the path length across which phosphate ions
have to diffuse. The structural components and net negative charges of the cell walls
also influence the effective concentrations of phosphate in the apoplasm. This
concentration may be further modified by organic compounds excreted around cell
walls and the presence of fungi that use such compounds as carbon sources. A
membrane on the inner surface of the cell wall, the plasmalemma, separates the
apoplasm from the symplasm. Uptake of nutrients into the root symplasm occurs
through transporter proteins embedded in this membrane. The transport process is
driven by the potential across the membrane maintained by the action of a H*-
ATPase, the “proton pump,” which extrudes protons to the outer surface of the
membrane. The expression of genes encoding high-affinity root phosphate trans-
porters is regulated by the phosphorus status of the plant. Under phosphate stress, the
expression of genes encoding these phosphate transporters is unregulated. This
results in a greater number of transporter proteins in the plasmalemma and enhanced
phosphate uptake rates, if phosphate is available at the membrane surface. Uptake
occurs around the root tip into epidermal cells with their associated root hairs and
into cells in the outer layers of the root cortex. Further back along the root axis,
phosphate can also be taken up by transfer from mycorrhizal fungi to root cortical
cells.

AM fungi with their symbiotic associations with the root system of many plants
play a very important role in the acquisition of phosphate by the plant (Harrison
1999). These fungi colonies have the cortical cells from which they extend a
network of hyphae several centimeters out into the surrounding soil, thereby
expanding the effective soil volume that the plant can exploit. The hyphae gather
nutrients from the soil solution and transfer them back to the cortical cells of the
host plant. The fungi develop specialized structures known as arbuscles within
infected cortical cells. Materials are exchanged between the symbionts through
these arbuscles. The acquisition of phosphate through AM associations involves
transport of phosphate from the soil solution across the membrane of the fungal
hyphae, movement of that phosphate along the hyphae to the arbuscles, unloading
the phosphate from the fungal arbuscles at the arbuscle—cortical cell interface, and
uptake of that phosphate by the plant cortical cells. Harrison and Van Buuren
(1995) isolated a gene encoding a high-affinity phosphate transporter from the AM
fungus Glomus versiforme.
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2.10 Future Directions

We have to identify the phosphate transporters of plant origin which are responsible
for uptake from the interface into the cortical cells to understand the entire mecha-
nism. More attention is also needed on the phosphate concentration at the arbuscle—
cortical cell interfaces that are still unknown. Efforts are also needed to find out the
suitable culture for multiplication of AM fungi. More experiments are needed on the
balance between influx and efflux in the transgenic plants. Research should aim at
phosphate nutrition in cropping systems by the P mobilizer. Moreover, suitable
molecular technology is needed to introduce appropriate genes and regulatory
systems in the key components of the cropping systems. Intensive work is needed
to find out the compatible fungal combinations to maximum native P mobilization. P
use efficiency and role of nano-induced fungal enzymes to mobilize more P for
nutrition need more experimentation. Further experiments are needed to quantify the
different forms of organic and inorganic phosphorus mobilized by different phos-
phatase- and phytase-producing fungi and effectiveness of their extracellular and
intracellular enzymes. It is also important to identify more P-mobilizing fungi for use
as inoculums for seeds of different crops as well as in the nursery to develop
horticultural plants. Methods should be developed to assess the potential bioavail-
ability of organically bound soil phosphorus. P limitation of soil fungi under
different ecosystems, soils, and crops needs to be further studied. Assessment is
needed on rhizosphere processes that determine the P acquisition efficiency. Further
studies are also needed for a complete understanding of the mechanisms of P
mobilization, solubilization, and assimilation in microbes. Attention is to be paid
on genetic engineering in developing better and effective P mobilizers as well as
identification of microbial proteins that are responsible for P mobilization.
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Abstract To meet the growing demand for food, the production and application of
synthetic fertilizers, pesticides, and other chemicals have intensified, which conse-
quently pollute the environment and pose a serious threat to all living beings.
Furthermore, agricultural land is losing its fertility due to intensive agricultural
practices and climate changes. Various microorganisms such as bacteria, algae,
fungi, etc. are receiving much attention as environmental-friendly alternatives to
synthetic chemicals because of their ability to improve the soil fertility, fix atmo-
spheric nitrogen for plant availability, produce plant growth hormones and biocides,
etc. This chapter will explore the potential role of microalgae and cyanobacteria as
bio-fertilizers.

Keywords Microalgae - Cyanobacteria - Blue-green algae - Soil fertility - Nitrogen
fixation

3.1 Introduction

World population is expected to reach 9 billion by the midcentury, and it poses a
significant challenge to existing agriculture system (Food and Agriculture Organi-
zation 1996). The world must produce more food and feed to meet the demand of the
growing population. From the mid of the last century, the yield of crops increased
significantly—thanks to the development of disease-resistant and high-yielding
crops and intensive use of synthetic fertilizers (Singh et al. 2011). Atmospheric
nitrogen is converted to ammonia, a precursor of synthetic nitrogen fertilizer, using
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Haber-Bosch process which contributes to 1.8-3% of annual global energy usage
(IPTS/EC 2007; Valera-Medina et al. 2018). Unlike nitrogen, phosphorus source is
limited, and according to some scientists, the world is currently facing “peak
phosphorus” phenomenon (Cordell et al. 2009; Lee et al. 2018). While a fraction
of the applied fertilizer is consumed by the plant, a large amount of it is lost due to
leaching, volatilization, and soil erosion (Mikha and Rice 2004; Grant et al. 2012).
Leaching of excess nutrients in the receiving water bodies leads to eutrophication
and subsequent death of aquatic animals (Wang et al. 2018). In addition to fertilizers,
various pesticides, herbicides, fungicides, etc., are applied in the field to eliminate
unwanted invasion; these chemicals could also remove the useful microbiomes of
the soil (Santisima-Trinidad et al. 2018). Excessive and improper applications of
chemicals are also linked to loss of biodiversity and soil fertility (Bossa et al. 2012).
Under the current scenario, it is crucial that innovative approaches be developed for
further increase in crop yield and minimize energy input and environmental pollu-
tion (Tilman et al. 2002; Foley et al. 2011). Certain living organisms (e.g., bacteria,
algae, fungi, etc.) and different metabolites extracted from their biomass have shown
to influence the microbial activity and nutrient characteristics in the soil leading to
the enhanced growth of plant and crop yield (Read and Perez-Moreno 2003; Haas
et al. 2018; Win et al. 2018). These living microorganisms and metabolites are
termed as ‘“bio-fertilizers,” and these could be used as one of the environmental-
friendly alternatives of synthetic fertilizers. This chapter will only focus on the
potential use of algae (both microalgae and cyanobacteria) as bio-fertilizer and the
associated challenges.

Algae are a large group of photosynthetic eukaryotic (green microalgae, diatoms)
and prokaryotic (cyanobacteria) microorganisms. It was estimated that approxi-
mately 30,000 species of algae exist in nature (Guiry 2012). Under favorable growth
conditions, some of these strains could multiply their cell numbers several times a
day. Although algal cells primarily comprise protein, lipid, and carbohydrate, a
number of other secondary metabolites (pigments, growth hormones, vitamins,
antimicrobial compounds, etc.) and micronutrients (Fe, Cu, Zn, etc.) are also
found inside the cells; however, the content of each of these metabolites could
vary among strains and cultivation conditions (Rizwan et al. 2018). Use of algae
as bio-fertilizer has shown multiple advantages over synthetic fertilizer. Some of the
cyanobacteria species can fix the atmospheric nitrogen within their cells (Singh et al.
2018). Most of the earlier studies were focused on the use of these cyanobacteria on
the paddy field to make atmospheric nitrogen available to the plant (Ladha et al.
2016; Ma et al. 2019). However, in recent times, the biomass of other cyanobacteria
and microalgae strains is also being investigated for improved soil quality and plant
growth. The following sections will explore the potential applications of algal
bio-fertilizers, indirect benefits of using algal fertilizer, and challenges and strategies
of producing algal fertilizers.
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3.2 The Potential Application of Algal Bio-fertilizers

3.2.1 Reduction in Synthetic Nitrogen Fertilizer

A number of cyanobacteria (e.g., Anabaena, Tolypothrix, Nostoc, etc.) can fix
atmospheric nitrogen within their cells, mostly as heterocyst (Saikia and Bordoloi
1994; Fewer et al. 2002; Kumar et al. 2010); taking advantage of this phenomenon,
such cyanobacteria are widely used in the paddy fields in many Asian countries like
China, India, Vietnam, Japan, etc. (Lumpkin and Plucknett 1982; Saadatnia and
Riahi 2009; Sahu et al. 2012). Fixed nitrogen from the heterocyst may get liberated
as ammonia, free amino acids, vitamins, polypeptides, etc., in the surrounding
environment by the microbial degradation of the dead cells which would make the
nitrogen available to the higher plants; similarly, some cyanobacteria could secrete
the biologically fixed nitrogen (Subramanian et al. 1994). It was estimated that these
cyanobacteria could fix as much as 22.3-53.1 kg N/ha which might save 25-50% of
chemical nitrogen fertilizer (Issa et al. 2014). Additionally, the application of
cyanobacteria in the field provided similar crop yield and quality that were achieved
by chemical fertilizer alone. Recent reports suggested that the application of these
nitrogen-fixing cyanobacteria could also be extended to other crops and vegetables
(Osman et al. 2010; Swarnalakshmi et al. 2013; Gheda and Ahmed 2015; Bidyarani
et al. 2016).

3.2.2 Increase in Seed Germination Rate

To achieve desired growth and yield of crops, appropriate care must be taken in the
seed germination stage to produce healthy seedlings. Both algal biomass and extracts
of algal biomass were shown to increase the seed germination rate in addition to
improved root and shoot development for the seedlings. As early as in 1967, the
aqueous extract of Phormidium foveolarum (BGA) was found to have beneficial
effects on rice seed germination; the hormones in the algal extract promoted the root
and shoot of the seedlings (Shukla and Gupta 1967). Similarly, the extract of
Phormidium foveolarum showed beneficial effects on the maize seed germination
(Kushwaha and Gupta 1970). Both the inoculum of Nostoc muscorum and its extract
were beneficial in increasing the seed germination rate for cotton, wheat, sorghum,
maize, and lentil (Adam 1999; Ibraheem 2007). The application of Chlorella
sp. suspension enhanced the germination rate of wheat, barley, and maize seeds
(Uysal et al. 2015; Odgerel and Tserendulam 2017). Supercritical fluid extracts of
Spirulina biomass were found to have a beneficial effect on the seed germination of
cress and winter wheat (Dmytryk et al. 2014; Michalak et al. 2016). The application
of Acutodesmus dimorphus biomass and its aqueous extract on the Roma tomato
seeds allowed a 2-day faster seed germination compared to control experiment
(Garcia-Gonzalez and Sommerfeld 2016). Garcia-Gonzalez and Sommerfeld further
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noticed that microalgae treated seeds had greater lateral roots which could improve
the ability of the plants in uptaking water and nutrients (Garcia-Gonzalez and
Sommerfeld 2016). El Arroussi et al. (2016) studied the effect of Dunaliella salina
hydrolysate on wheat seed germination in a saline soil; the exopolysaccharides had
stimulated the seed germination and growth of seedlings (El Arroussi et al. 2016).
Intracellular polysaccharides from two microalgae (i.e., Dunaliella salina, and
Phaeodactylum tricornutum) were found to enhance the germination rate of bell
pepper seeds in saline conditions (Guzman-Murillo et al. 2013) (Table 3.1).

3.2.3 Increase in Crop Yield
3.2.3.1 Enhancement of Soil Quality

Long-term usage of machines for tillage in preparing agriculture land alters soil
structure and reduces organic matter in soil (Mikha and Rice 2004; Gupta
Choudhury et al. 2014). The growth of algae on the soil will primarily increase the
organic content of the soil by fixing the atmospheric carbon dioxide through
photosynthesis. In addition, some cyanobacteria could fix the atmospheric inorganic
nitrogen into organic nitrogen (Fay 1992; Bergman et al. 1997). Under specific
growth conditions, some microalgae and cyanobacteria produce and secrete extra-
cellular polymeric substances (or EPS) (Pereira et al. 2009; Barclay and Lewin 1985;
Angelis et al. 2012; Delattre et al. 2016). EPS represents a group of high-molecular-
weight biopolymers that are mostly comprised of monosaccharides; however, EPS
could also comprise of noncarbohydrate compounds (e.g., proteins, lipids, nucleic
acids, etc.) (Singh 2014). When the growth conditions are not favorable, algae
produce these compounds to protect their cells from the stressed conditions (Chi
et al. 2007; Delattre et al. 2016). Deposition of EPS in the soil is one of the
mechanisms of increasing the soil organic content (Thomas and Dougill 2007).
The organic compounds derived from the death and decay of the algal cells will
also eventually increase the organic content of the soil (Han et al. 2014). Overall, the
inoculation of algae on the soil could be an important source of organic carbon
(Shields and Durrell 1964; Ibraheem 2007; Yilmaz and Sénmez 2017; Chamizo
et al. 2018).

Maintaining soil aggregate is one of the essential parameters for soil fertility.
Improvement of soil aggregation leads to an increase in water-holding capacity of
the soil (Bailey et al. 1973; Lehmann et al. 2017). Algal EPS was also identified as a
major component for soil stabilization (Burns and Davies 1986; Rossi et al. 2017).
The growth of algae on the soil surface significantly increased the soil polysaccha-
rides which improved the soil aggregation and soil structure while reducing soil
erosion (Bailey et al. 1973; Roychoudhury et al. 1983; Rao and Burns 1990; Weiss
etal. 2012). As Nostoc sp. was inoculated into poorly aggregate soil and saline-sodic
soil, the filamentous cells and the secreted EPS together increased the aggregate
stability of the soil which was attributed to the combined effect of coating,
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Table 3.1 Application of various algal strains as bio-fertilizers
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Algal strain

Mode of action as bio-fertilizer

Reference

Phormidium
foveolarum

Promotes seed germination, enhanced root
and shoot growth

Kushwaha and Gupta
(1970), Shukla and Gupta
(1967)

Nostoc muscorum

Enhanced seed germination rate in cotton,
maize, wheat, lentils

Adam (1999)

Chlorella Enhanced germination rate of wheat, Odgerel and Tserendulam
maize, barley (2017), Uysal et al. (2015)

Spirulina Promoted seed germination in cress and Michalak et al. (2016)
winter wheat

Acutodesmus Faster seed germination in Roma tomato | Garcia-Gonzalez and

dimorphus Sommerfeld (2016)

Dunaliella salina

Promoted seed germination in wheat

El Arroussi et al. (2016)

Dunaliella salina, and
Phaeodactylum
tricornutum

Enhanced germination rate in bell pepper
seeds

Guzman-Murillo et al.
(2013)

Nostoc Improved stability and mineral content of | Malam Issa et al. (2007),
saline soil Magqubela et al. (2009),
Weiss et al. (2012)
Botryococcus, Improved soil stability Chi et al. (2007), Fay

Chlamydomonas, and
Chlorella

(1992), Weiss et al. (2012)

Chroococcidiopsis
and Anabaena

Enhanced shoot length, spike length,
lateral root, grain weight in wheat plant

Hussain and Hasnain
(2011)

Scenedesmus Increased growth rate in Rhizobium Fingerhut et al. (1984)
obliquus Jjaponicum
Haematococcus Increased root growth and secondary Rao et al. (2001)
pluvialis metabolite in Beta vulgaris and Tagetes

patula
Spirulina platensis Enhanced secondary metabolite Rao et al. (2001)

production in Beta vulgaris

Calothrix elenkinii

Improved microbial community in roots of
rice plants

Natarajan et al. (2012)

Chlorella vulgaris

Biocidal effect and promoted lettuce yield

Faheed and Fattah (2008)

Spirulina platensis

Increased pepper and beet yields

Dias et al. (2016)

Spirulina Improved postharvest shelf life of eggplant | Dias et al. (2016)
Chlorella and Increased potato, pea, and wheat yield and | Ronga et al. (2019)
Spirulina quality

Scenedesmus Increased plant and flower growth in Sommerfeld (2014)
dimorphis tomato

Dunaliella salina

Improved germination and seed growth in
wheat plants

El Arroussi et al. (2016)

Chlorella, Improved growth in leafy vegetables, Das et al. (2018c), Renuka
Scenedesmus, and wheat, and tomato et al. (2017), Wuang et al.
Spirulina platensis (2016)

Chlorococcum Inhibited growth of Botrytis cinerea in Kulik (1995)

humicolum strawberry and Erysiphe polygoni in

tomato, turnips, and saprophytes
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enmeshment, binding, and gluing of aggregates and minerals (de Caire et al. 1997,
Malam Issa et al. 2007; Maqubela et al. 2009). It was further demonstrated that algal
EPS could fortify the soil porosity and increase the penetration resistance of soil by
reducing the damaging impact of water addition (Falchini et al. 1996; Chamizo et al.
2018). Even inoculation of green microalgae (e.g., Botryococcus, Chlamydomonas,
Chlorella, etc.) on the field improved the soil stability by increasing the EPS content
of the uppermost strata (Barclay and Lewin 1985; Weiss et al. 2012; Yilmaz and
Sonmez 2017). Algal crust formation phenomenon could be utilized as an alternative
ecological option in combating desertification in arid, semi-arid, and dry subhumid
areas (Park et al. 2017). As the algae increase the organic matter in the soil, these
compounds could act as carbon and energy source for heterotrophic microorganism
community in the soil. Studies have shown that inoculation of alga increased the
total microbial community in the soil column (Padmaperuma et al. 2018).

Typically, gypsum is added in the soil to improve the water permeability or
hydraulic conductivity in the soil when electrolyte concentrations in the soil get
reduced (Oster 1982). Soil cyanobacteria, often, together with indigenous bacteria,
forms micro-networks using filaments and EPS; this lead to improved soil structures
with increased porosity and water permeability (Chamizo et al. 2012; Sadeghi et al.
2017). It was reported that the addition of 10 kg/ha blue-green algae in the alkaline
soil could reduce gypsum addition as much as 1 ton/ha (Kaushik and Krishna Murti
1981). EPS in the soil could also play an important role in the retention of moisture
(Chamizo et al. 2013).

Phosphorus is the second most important element, after nitrogen, for the plant and
even algae growth. The average phosphorus content in the soil is approximately
0.05%; unfortunately, only a small fraction (approximately 0.1%) of this phosphorus
is available for plant uptake (Zhu et al. 2011). However, there are several soil
microorganisms (e.g., fungi, bacteria, cyanobacteria) which showed the ability to
solubilize inorganic phosphorus and mineralize insoluble organic phosphorus,
thereby making phosphorus available for plant uptake (Cameron and Julian 1988;
Yandigeri et al. 2011; Long et al. 2018). Similarly, as the iron concentration
becomes limiting, some cyanobacteria and green algae could produce and release
low-molecular-weight iron-specific chelators, also known as siderophores, which
make iron available to microbes and plants (Wilhelm and Trick 1994; Benderliev
1999). Apart from iron, algae are also known to enrich other microelements (e.g.,
Cu, Mn, Zn, Co, etc.) in plant parts (Lange 1976; Das et al. 1991).

3.2.3.2 Source of Phytohormones

In different groups of microalgae and cyanobacteria, all the eight different phyto-
hormones (e.g., auxins, cytokinins, abscisic acid, gibberellins, jasmonic acid,
salicylic acid, ethylene, and brassinosteroids) were found (Lu and Xu 2015;
Romanenko et al. 2015). Some of the algae strains produce these hormones as
intracellular metabolites, while the others secrete these hormones directly in the
surrounding environment (Abdel-Raouf 2012). These phytohormones could serve as
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growth-promoting substances in agriculture or lead to activation of certain cascades
in plant metabolism that eventually lead to improved plant growth and crop quality
(Zhao et al. 2005). These phytohormones could also improve plant tolerance in
various biotic and abiotic stress conditions (MarSalek et al. 1992). Rice plants
inoculated with cyanobacterial strains showed the presence of indole acetic acid
and indole butyric acid (Li et al. 2018).

Phytohormones like auxins and cytokinin, from Chroococcidiopsis sp. and
Anabaena sp., significantly enhanced shoot length, spike length, lateral root, and
grain weight of inoculating wheat plants (Hussain and Hasnain 2011). Hormones
produced by cyanobacteria and microalgae could act as elicitors. Some
cyanobacteria, in a symbiotic relationship with host plants, release arabinogalactan
proteins that play a vital role in regulating overall plant growth and development
(Bergman et al. 1996; Singh 2014). Cyanobacterial extracts and the inoculation of
cyanobacterial species on rice fields were found to produce root-accelerating hor-
mone known as gibberellic acid (Dong et al. 2016). Bioactive compounds released
by cyanobacteria could increase the phytohormonal level in plants that regulate
enzymatic activities and metabolism of plants (Han et al. 2018). Phytohormones
are also known to promote plant-microbe interactions, thereby indirectly enhancing
root colonization by other microbial communities (Di et al. 2016). The extract of
Scenedesmus obliquus increased the growth of slow-growing Rhizobium japonicum
(Fingerhut et al. 1984). Pea plants inoculated with cyanobacteria were found to have
increased protein content in pea due to certain induced metabolic processes caused
by the presence of gibberellins (Osman et al. 2010). The application of
Haematococcus pluvialis biomass extracts in the cultivation of Beta vulgaris and
Tagetes patula led to an increase in their hairy roots and accumulation of desired
secondary metabolite (betalains and thiophenes); however, the extract of Spirulina
platensis was only effective for Beta vulgaris (Rao et al. 2001). Similarly, the
extracts of algae had shown beneficial effects on somatic embryogenesis of Daucus
carota and pigment production in Carthamus tinctorius (Wake et al. 1991; Hanagata
et al. 1994).

3.2.3.3 Plant Tissue Colonization

Cyanobacteria and microalgae and some other microorganisms have been known to
colonize various parts of plant and areas surrounding their roots, i.e., rhizosphere
(Uzoh and Babalola 2018). Sometimes, the extent of colonization is such that plant
genes are lesser than the total microbial genes present in rhizosphere (Mendes et al.
2013). Cyanobacteria and microalgal colonization was found to have a profound
effect on seed germination, plant growth and productivity, disease control, etc.
(Garcia-Salamanca et al. 2013; Yang et al. 2017). Plants rely on various microor-
ganisms to perform certain vital and specific functions. Plants tend to deposit their
organically fixed carbon into the surrounding rhizosphere, thereby feeding the
surrounding microorganisms; so it plays an important role as a symbiotic partner
(Adams et al. 2013).
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There are multiple mechanisms by which cyanobacteria and microalgae colonize
vascular and non-vascular parts of plants and rhizosphere zone. Certain cyan-
obacteria gain entry into plant tissues via stomatal openings and subsequently invade
intercellular spaces, stomatal zones, and parenchymal cells (Li et al. 2014; Garcia-
Gonzalez and Sommerfeld 2016). Certain cyanobacteria could also colonize in the
epidermis and cortical cells of wheat crop roots (El-Zemrany 2017). A cyanobacte-
rium, Calothrix elenkinii, was found to colonize the root and shoot tissues of rice
plant and improved the microbial activity in the colonized parts (Natarajan et al.
2012). Similarly, certain cyanobacteria species could colonize chickpea plant roots,
in nodule forms, and improve rhizospheric microbial flora which led to improved
soil fertility and increased plant yields (Bidyarani et al. 2016; Prasanna et al. 2017).

As the cyanobacteria and microalgae colonize plants, they release certain elicitor
metabolites such as peptides, vitamins, phytohormones, and polysaccharides; these
elicitor compounds lead to certain signal transductions and gene responses that lead
to phytochemical changes in plant (Singh 2014). These phytochemical changes in
plant leads to production of increased ascorbic acid, anthocyanins, phenolic com-
pounds in mangoes and apples; increased flavonoid compounds in strawberries;
increased sterols in potatoes; increased beta-carotene and lycopene contents in
tomatoes; high levels of limonene, terpene, and caryophyllene in carrots; and
capsaicin and anthocyanin in capsicum (Kulik 1995; Rudell et al. 2002; Pandhair
and Gosal 2009).

3.2.4 Improving the Quality of Fruits and Vegetables

Microalgal- and cyanobacterial-based bio-fertilizers can improve plant yield and
quality of certain vegetable and food crops. Generally, the techniques used to
inoculate bio-fertilizers on fruits and vegetable crops are in the form of a foliar
spray or dry powder (Latha et al. 2013; Nagy and Pintér 2014). There was an
increase in lettuce yield when Chlorella vulgaris dry powder was applied on soil
with lettuce; while some compounds of the biomass protected the plant against
pathogens, some other micronutrients and growth hormones increased the lettuce
yield (Faheed and Fattah 2008). Foliar applications of Spirulina platensis on beet
and pepper crops resulted in increased yields; these were found to be at par when
compared with beet and pepper crop yields obtained using commercial NPK fertil-
izers (Dias et al. 2016). Spirulina-based bio-fertilizers have been found to increase
the postharvest quality of eggplant; the pulp firmness of the eggplant was enhanced
for a longer period of time even at increased temperature conditions, thereby
allowing an extended postharvest shelf life of eggplants (Dias et al. 2016). A foliar
mixture containing Chlorella sp. and Spirulina sp., enriched with nitrogen, phos-
phorous, magnesium, zinc, and potassium, increased potato, pea, and wheat yield
and quality (Ronga et al. 2019). When Spirulina sp. was applied directly to the soil
with sunflower, chili, soybean, green gram, and groundnut, there were positive



3 Potential Applications of Algae-Based Bio-fertilizer 49

effects on plant growth and product yield which were attributed to the Spirulina
sp. growth hormone (i.e., cytokinin) (Michalak et al. 2016).

Application of whole-cell microalgae biomass as a bio-fertilizer for fruits and
vegetables production had beneficial effects on faster seed germination rate,
improved crop quality, and reduced time in crop maturity. A number of tomato
and organic fruit producers spray Chlorella sp. live microalgae suspension which
allows the delivery of complex polysaccharide compounds and microelements
directly through plant stoma leading to improved aromatic and natural smell
(Ronga et al. 2019). Various types of algal extracts are commercially available,
which could improve the fruit yield and quality (El-Sharony et al. 2015).

3.2.5 Reclamation of Degraded Land

Alkalinity and salinity both influence the fertility of the soil. In general, the alkaline
soil has high pH, high potential for exchange of sodium ions, low carbonates, poor
hydraulic conductivity, and low aeration. On the contrary, the saline soil has high
salt content which reduces the water- and nutrient-absorbing capacity of the plant
roots from the soil. All these factors make both alkaline and saline soils highly
infertile. Conventional practices use sulfur, gypsum, and excessive irrigation to
improve the condition of these degraded lands (Day et al. 2018). However, these
methods are either expensive or not environmentally friendly (Seenivasan et al.
2016).

Research and some field applications have shown that algae could be a solution to
reclaiming degraded lands. Cyanobacteria and certain microalgae species could
thrive in highly alkaline and saline soils where these organisms form a thick layer
in soil using EPS; retain N, P, and organic carbon; and improve permeability,
aeration, hydraulic conductivity, electrical conductivity, and osmoregulation; all
these factors make algae potential candidates for reclamation of lands affected by
high alkalinity and salinity (Rai 2015). However, entrapment of sodium ions by the
algal EPS could be a temporary solution, and these ions will be released back to the
surrounding environment after the death and decay of the algal cells (Cuddy et al.
2013). Some of the algae strains, in a symbiotic relationship with bacteria, could
degrade the oil and petroleum compounds (Abed 2010; Das et al. 2018a). Therefore,
such algal strains have the potential to remediate the oil-contaminated site while
providing other benefits as bio-fertilizer (Suresh Kumar et al. 2015; Xiao and Zheng
2016; Srivastava et al. 2018).

Algae are extremely efficient in the removal of heavy metals from the contami-
nated water through cellular uptake and adsorption (Wilde and Benemann 1993;
Mehta and Gaur 2005). Similarly, in metal contaminated sites, algae were efficient in
reducing the heavy metal uptake by the plants (Allard and Casadevall 1990; Bender
et al. 1995; Chen et al. 2015). Both microalgae and cyanobacteria are also known to
produce exopolysaccharides that could bind the soil together, increase the soil
organic content, and improve the moisture absorption capacity of the desert soil.
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In recent times, several studies have shown that use of microalgae, cyanobacteria,
and even consortia of microalgae and bacteria on the desert soil restored and
stabilized the soil and improved the seed germination and plant growth (Trejo
et al. 2012; Xu et al. 2013; Park et al. 2017; Chamizo et al. 2018; Mugnai et al.
2018).

3.3 Method of Algal Bio-fertilizer Application

Proper application of microalgal bio-fertilizer is a crucial step for maximizing the
benefits. In the past, the most common use of algal bio-fertilizer was the inoculation
of live culture in the field. However, with time, more advanced techniques of algal
bio-fertilizer applications (e.g., spraying of specific algal extract, carrier-based
inoculation, biofilms, and consortia) were developed. The mode of algal
bio-fertilizer application will mostly depend on the plant type and soil condition.

3.3.1 Inoculation of Live Cultures

Live algae could be inoculated in the field either as a monoculture or as polycultures
of multiple organisms including algae, bacteria, yeast, etc. Application of live
cultures is advantageous as the live cells multiply on the field which doesn’t require
separate algal cultivation process. A vast majority of earlier works studied the effect
of monoculture on the soil quality and plant growth parameters (Priya et al. 2015;
Uysal et al. 2015; Odgerel and Tserendulam 2017). The ability of algae to fix
atmospheric nitrogen and produce and secrete plant growth-promoting substances,
pest control, etc. will vary among strains. Therefore, some studies used algal
consortia in the field to gain multiple benefits which otherwise couldn’t be achieved
using monocultures (Osman et al. 2010; Babu et al. 2015; Xue et al. 2017; Chittapun
et al. 2018). Further, the application of algae-bacteria consortia was also effective in
soil improvement and plant growth (Manjunath et al. 2011, 2016; Subashchandrabose
et al. 2011; Rana et al. 2015). Live cultures of algae and algal consortia could also
be applied on the field with the help of a carrier medium such as animal waste, paddy
or wheat straw, compost materials, fly ash, etc. While these carrier materials have
beneficial effects on the soil, there are other contaminants of concerns in these
materials such as heavy metals, pathogens, pharmaceutical compounds, etc. One
of the roles of the algae in the carrier medium was to control these contaminants.
Several recent studies revealed that algae were effective in reducing the metal
availability to plant, degrading pharmaceutical compounds, and reducing pathogens
of the carrier materials (Rai et al. 2000; Tripathi et al. 2008; Young et al. 2016; Yu
et al. 2017; Pan and Chu 2017; Kaur and Goyal 2018). The application of algal
biofilm on the field is another emerging method of bio-fertilization; in the biofilm,
algae serve as the matrix, and other micro-organisms (e.g., bacteria, and fungi) are
selected to cater specific functions (Prasanna et al. 2011; Bidyarani et al. 2016;
Kanchan et al. 2018).
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3.3.2 Spraying of Algal Extract

Although some of the algae release plant growth-promoting substances in the
surrounding environment, extracting these beneficial compounds from other algae
would require additional processes. Therefore, these strains are grown separately,
and specific metabolites are extracted from the harvested biomass. Spraying
Scenedesmus dimorphus microalgal extracts (on tomato plants) showed increased
plant growth, higher photosynthetic efficiency, and enhanced flower growth
(Sommerfeld 2014). Dunaliella salina extracts improved germination and seed
growth in wheat plants (El Arroussi et al. 2016). Furthermore, it was shown that
spraying algal extracts on the leaves of plants tend to improve water utilization
potential of plants (Shukla 1967).

3.4 Indirect Benefits of Using Algal Bio-fertilizers

3.4.1 Reduction in Greenhouse Gas Emission

It was estimated that approximately 50% of microalgal biomass is comprised of
carbon, and production of 1 kg microalgae would require 1.73 kg of CO, (Jiang et al.
2013; Verma and Srivastava 2018). Therefore, large-scale microalgae cultivation to
produce bio-fertilizer would indirectly act as long-term carbon sequestration
(Upendar et al. 2018). However, it must be noted that depending on the cultivation
and harvesting methods, production of microalgae biomass could be very energy
intensive and thereby diminish the advantages of greenhouse gas (GHG) reduction
(Medeiros et al. 2015). The nitrogen content in microalgae could vary between 2 and
10%, whereas it is 44% in urea (Markou et al. 2014). Unlike synthetic fertilizer,
microalgae biomass could act as slow-release bio-fertilizer, and therefore the
required amount of biomass would be lesser than the synthetic fertilizer. While
some of the microalgae and cyanobacteria require synthetic nitrogen fertilizers, some
cyanobacteria could fix atmospheric nitrogen, and cultivation of such cyanobacteria
could provide additional GHG reduction potential. Production, packaging, transpor-
tation, and application of typical synthetic fertilizers consume a lot of energy and
thereby contribute to 47.7% GHG emission related to crop production (Hillier et al.
2009; Wang et al. 2017). Therefore, live algal culture inoculation in the field could
substantially reduce the GHG emission.
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3.4.2 Biocidal Applications

The application of synthetic chemicals to control insects, pest, fungi, and bacteria in
the field is associated with adverse environmental effects and human health; there-
fore, there is a growing demand of bio-based alternative products. Algae and
cyanobacteria were proposed as promising and safe biocide agents (Nassar et al.
1999; Schrader et al. 2002; Gol’din 2012). Some species of cyanobacteria have the
ability to produce certain compounds that show antifungal, insecticidal, nematocidal,
cytotoxicity, and herbicidal properties (Biondi et al. 2004). Amides, indoles,
lipopeptides, and fatty acids are some of these bioactive compounds that could kill
or suppress various unwanted microorganisms and microflora/fauna. These bioac-
tive compounds inhibit physiological and metabolic activities in the targeted path-
ogens. For example, studies indicate that cyanobacterial extracts of Chlorococcum
humicolum have inhibited the growth of pathogens like Botrytis cinerea in straw-
berry and Erysiphe polygoni in tomato seedlings, turnips, and saprophytes (Kulik
1995). Several cyanobacteria, isolated from paddy field, were effective in preventing
fungal growth in soil (Kim 2006); similarly, cyanobacterial strains could also
prevent fungal growth in vegetables and flowers (Manjunath et al. 2010; Prasanna
et al. 2013). A study by Victor and Reuben (2000) showed that the inoculation of
cyanobacteria in the rice field could reduce the mosquito number (Victor and Reuben
2000). Extract from cyanobacteria also showed mosquito larvicidal activity (Singh
et al. 2003). Certain cyanobacterial formulations were effective in preventing root rot
disease in cotton and improving the rhizosphere (Babu et al. 2015). Microalgae
possess antibiotic properties; algal extracts containing tochopherols, polyphenols,
pigments, and oils also demonstrated antimicrobial properties (Dewi et al. 2018).

Extracts from microalgae and cyanobacteria increase plant immunity by enhanc-
ing plant defense enzyme activities (Florin Oancea et al. 2013). Inoculation of algae
and application of dry algae powder were found to effectively reduce the gall
formation and nematode infestation (Paracer 1987; Hamouda and El-Ansary
2017). Extracts of cyanobacterial toxins were effective in combating leaf-roller
larvae and moth (Sathiyamoorthy and Shanmugasundaram 1996; Jimenez et al.
2009). In addition to exhibiting biocidal properties, some cyanobacteria were able
to degrade organophosphorus pesticides and other chlorinated organic (Subramanian
et al. 1994; Kuritz 1998; Ibrahim et al. 2014). A major problem for organic
grapevine growers is the infestation of their crops with fungi; copper-based pesti-
cides are commonly used to prevent fungi growth. However, there is a drawback in
using copper-based antifungal agents as these tend to accumulate in soil and kill
other beneficial microorganisms present in the soil (Michaud et al. 2008; Hussain
et al. 2009). Recent studies showed that microalgal extract had a beneficial effect in
inhibiting fungal growth (e.g., mildew, botrytis, ectoparasites, etc.) while enhancing
the plant growth, thereby making it a substitute for conventional copper-based
antifungal agent (Bileva 2013; ProEcoWine 2018).
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3.5 Challenges in Developing Algae-Based Bio-fertilizer

Despite the immense potential of algae biomass as bio-fertilizer, there are still some
challenges that must be addressed for wider application of algal bio-fertilizer. There
are some algae strains, especially cyanobacteria and diatoms, which could produce
various types of toxins (e.g., cyanotoxins) under specific environmental conditions
which could be toxic to humans, animals, soil microbes, and plants (Katircioglu et al.
2004). Even worse, there is evidence that these cyanotoxins could be accumulated in
the food crops (Corbel et al. 2014). Therefore, before applying any algal strain on the
field, it is critical to evaluate its toxicity potential. Another major drawback is that
when live algal cultures are inoculated in the soil, these could be consumed by
grazers such as helminths, protozoa, small crustaceans, etc. To tackle this situation, a
combination of plant extract from neem or tobacco could be used as a carrier for
microalgal and cyanobacterial fertilizers (Jha and Prasad 2005).

The production of algae biomass in a cost and energy efficient way is very crucial.
Unlike the nitrogen-fixing cyanobacteria, which are inoculated on the field, other
microalgae and cyanobacteria must be produced separately which would require
additional land, water, nutrients, and energy (Markou et al. 2014). Fortunately, algae
can be grown in non-fertile marginal land using saline, brackish, and wastewater
(Das et al. 2016, 2018a). Furthermore, algae are extremely efficient in utilizing the
supplied nutrients, and any leftover nutrients in the algae culture media could be
recycled back in the next batch of cultivation. Harvesting of microalgae still remains
a major obstacle for producing microalgae-based low-cost products (Barros et al.
2015). There are few microalgae and cyanobacteria which form flocs and precipitate
spontaneously in the absence of mixing and thus eliminate the need of energy-
intensive preliminary biomass harvesting (Das et al. 2018b). For the other
microalgae and cyanobacteria, appropriate harvesting methods should be developed
so that the biomass doesn’t get contaminated with unwanted compounds and the
quality of the biomass remains intact. While some cyanobacteria were found to lock
the sodium in the soil in reducing the soil salinity, repetitive use of the marine algae
biomass could increase the salinity content of the soil.

To overcome the cost of the algal bio-fertilizer, the algal biorefinery approach
could be very beneficial. Algae are known to produce a range of high-value primary
and secondary metabolites which include polyunsaturated fatty acids (PUFA),
phycobiliproteins, and carotenoids (beta-carotene, lutein, astaxanthin, etc.). Upon
extraction of these metabolites, the leftover biomass still could be used as
bio-fertilizer, as shown in Fig. 3.1.

Hydrothermal liquefaction (HTL) is considered as a promising technology for
producing biocrude oil from algal biomass (Biller and Ross 2011); as a byproduct of
the process, solid biochar can be obtained which could also potentially be used as
bio-fertilizer. Lipid-extracted biomass could also serve as a bio-fertilizer leading to
increased crop yields like maize (Maurya et al. 2016). The left-over material of
anaerobically digested algal biomass, still rich in nitrogen and other nutrients, could
be used in soil improvement (Solé-Bundé et al. 2017). Cultivation of microalgae in
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different wastewaters, including municipal and industrial wastewaters, could con-
centrate various nutrients (e.g., N, P, trace metals, etc.) within the biomass; the
produced biomass in the wastewater could be a cheap source of bio-fertilizer.
Wastewater grown microalgae biomass (e.g., Chlorella sp., Scenedesmus sp., Spi-
rulina platensis) was found to improve the growth of different plants (wheat, leafy
vegetables, tomato, etc.) (Wuang et al. 2016; Renuka et al. 2017; Das et al. 2018c).

3.6 Conclusion

Despite some challenges, microalgae and cyanobacteria have shown tremendous
potential as bio-fertilizer, plant growth promoter, and even as biocides. While live
cells of algae are the used to take advantage of their ability to fix atmospheric carbon
dioxide and nitrogen, wastewater-grown algal biomass could be another source of
bio-fertilizer. From the biorefinery perspective, the effects of algal extracts on seed
germination, plant growth, crop quality, and plant defense are very promising.
Therefore, it can be expected that both the research and application of algal
bio-fertilizer will broaden in the coming years.
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Chapter 4 ®)
Ectomycorrhizal Fungi: Role s
as Biofertilizers in Forestry

José Alfonso Dominguez-Niifiez, Marta Berrocal-Lobo, and Ada S. Albanesi

Abstract Ectomycorrhizal fungi (ECMF) play a fundamental role in the nutrient
cycle in terrestrial ecosystems, especially in forest ecosystems. In this chapter, the
value of ECMF species is reviewed from a global framework, not only to increase
the production of edible fruit bodies and biomass of plants but also for the regular
practices of reforestation and restoration of ecosystems, with implicit applications in
biofertilization, bioremediation, and control of soil pathogens. The valuation of the
ECMF in forest management must be considered fundamental for innovation and
sustainable development. Ecological functions and bioactive compounds of the
ECMF of interest to mankind are briefly reviewed. The direct implications of the
ECMFs in forestry are described. To do so, its role as a biotechnological tool in
forest nursery production is briefly analyzed, as well as the role of MHB bacteria
(mycorrhizal helper bacteria). Subsequently, the direct role as biofertilizers of the
ECMF in forest management is discussed: reforestation, plantation management,
and ecosystem restoration.

Keywords Nutrient cycle - Ecosystem restoration - Reforestation - Sustainable
development

4.1 Introduction

Certain groups of fungi establish a symbiotic relationship with the roots of plants,
called mycorrhizae. Frank established two large subdivisions of mycorrhizae, ecto-
and endomycorrhizae (Smith and Read 2008). Ectomycorrhizal fungi (ECMF) form
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mantle and Hartig network of intercellular hyphae in the roots of forest species. The
arbuscular mycorrhizal fungi (AM) form arbuscules, vesicles that are more variable
than that of the ECMF, since it forms a symbiosis with trees and herbaceous plants.
Endomycorrhizae are classified as arbuscular mycorrhizae, ericoid mycorrhizae,
arbutoid mycorrhizae, monotropoid mycorrhizae, ectendomycorrhizae, or orchid
mycorrhizae. Each of these categories is characterized by the invasion of plant root
cells by fungal hyphae, but differs in the nature of intracellular hyphal development
(Peterson et al. 2004; Sharma 2017).

Ectomycorrhizal fungi are predominantly Basidiomycetes and some Ascomy-
cetes. In these symbiotic structures, the Hartig network is the interface for the
metabolic exchange between the fungus and the root. The mycorrhizal mantle is
connected to the filaments of fungi that extend into the soil (extraradical mycelium),
directly involved in the mobilization, absorption, and translocation of soil nutrients
and water to the roots (Suz et al. 2012). More than 7000 species of fungi form
ectomycorrhizae (Rinaldi et al. 2008), many of them with important commercial
trees such as poplar, birch, oak, pine, and spruce (Wiensczyk et al. 2002). The
reproductive structures (fruiting bodies) of the macromycetes are known as mush-
rooms when they grow in the soil and, like truffles, when they grow underground.

The community of mycorrhizal fungi can be determinant in the structure of the
plant community (Fitter 2005), therefore, the identification of the mycobiont partner
and its functional structure (Agerer 2001) are fundamental to understand the eco-
logical importance of this symbiotic relationship. ECMF diversity studies were
initially based on studies of fruiting bodies and, more recently, on the direct
identification of ectomycorrhizae (Horton and Bruns 2001).

Most of the cultivated species of edible fungi are saprophytes, and only some of
them are ECMF (Savoie and Largeteau 2011). The tickets (Boletus edulis),
Chanterelles (Cantharellus spp.), the matsutake mushroom (Tricholoma matsutake),
and the truffle (many species of the Tuber genus) are some ECM fungi for which the
crop has been studied (e.g., Chang and Hayes 1978; Chevalier 1998; Bencivenga
1998). The black truffle or Périgord, Tuber melanosporum, is widely grown, while
other species of ECM mushrooms have not yet been cultivated, including fungi
porcini (Boletus edulis S.) and the high-priced Italian fungus, white truffles
(T. magnatum).

4.2 Evaluating ECMF

Forest ecosystems and mycelial networks of ectomycorrhizal fungi play an impor-
tant role in biogeochemical cycles, biodiversity, climatic stability, and economic
growth (Smith and Read 2008). Ectomycorrhizal fungi not only promote the growth
and health of host plants but also form vast metabolic networks that may be of
critical value to ecosystem functions (Leake et al. 2004; Courty et al. 2010).
Ectomycorrhizal fungi are also important drivers for sustainable innovation
in different fields of research (Azul et al. 2014), such as the food industry,
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biotechnology, biomedicine, and agroforestry (Donnini et al. 2013). These are
desirable areas of innovation, given the threats to native forests around the world
from poor management, soil degradation, pollution, water scarcity, fire, and the
spread of invasive species and diseases (FAO 2010). The relationships between the
various native edible ECM fungi have been, until relatively recently, insufficiently
considered in the strategies of forest management (Dahlberg et al. 2010), and the role
of ECMF has been underestimated in bio-industrial innovation. Some authors have
presented several examples of representative models of the valuation of the ECMF
from a holistic conception (Suz et al. 2012; Azul et al. 2014).

Some of the intrinsic values of the ECMF to human activity are the food
(gastronomy, local, and international markets); the value of the landscape; the
popular culture; the ecological tourism, as indicators of environmental quality; and
the multifunctionality.

So far, different bioactive compounds have been identified from ECM fungi with
different biological activities, applications, or properties: low molecular weight
organic compounds, which may be used in the food industry to mimic mushroom
flavors (Mizuno and Kwai 1992), which may have anticancer properties (Wang et al.
2003) or antioxidant activity (Reis et al. 2011); polysaccharides, which may be
included in diabetic diets or to present immunosuppressive and anticancer activity
(Hu et al. 1994); fatty acids and other lipids, which may have antioxidant, anti-
inflammatory, anticancer (Reis et al. 2011), or immunosuppressive activity (Kreisel
et al. 1990); enzymes, which may have application in the paper industry, textile
industry, and detergent production (Campbell and Bedford 1992); or enzymes which
may have application in environment-contaminant degradation (Pointing and
Vrijmoed 2000), paint decoloration (Casieri et al. 2010), food industry (Gupta
et al. 2003), cosmetic industry (Liese et al. 2000), etc.; terpenoids, with anticancer
activity; and, finally, phenolic compounds, which define organoleptic properties
fungi (Ribeiro et al. 2006).

4.3 Ecological Functions of ECMF

Some of the traditionally known functions of the ECMF in the ecosystem are:

 Increase in the water and nutrient supply, extending the volume of land accessible
to the plants. Different fungal species (drought-sensitive hydrophilic or drought-
tolerant hydrophobic) can have different effects on hydraulic redistribution pat-
terns (Prieto et al. 2016).

e Increase in the plant’s nutrient supply, assimilating nutrients in the ways that
would not normally be available to plants.

¢ The mechanisms of improvement in the absorption of P would be: extension of
extramatrical hyphae and Pi transfer (inorganic), Pi transporters in the fungus/soil
interface; mobilization of organic P (labile), emission of phosphatases; and
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mobilization of insoluble mineral Pi, emission of low molecular weight organic
acids.

* The mechanisms of improvement in N nitrogen absorption would be intervention
in the mineral N cycle (NH4*, NO3") and assimilation of organic N (emitting
proteases, chitinases, others).

* Colonization of the root by ECMF can provide protection against soil pathogens.

* The non-nutritive benefits to plants due to changes in water relations, the level of
phytohormones, the assimilation of carbon, etc., have already been verified.

e Carbon is transferred through the fungal mycelium of ECMF that connects
different species of plants. This can reduce competition among plants and con-
tribute to the stability and diversity of ecosystems.

» Epigeous and hypogeal sporocarps of ECMF are important food sources for
placental and marsupial mammals. The mycorrhizal roots, the mycelium, and
the fruiting bodies of the fungi are important as food sources and habitats for
invertebrates.

e Mycorrhizae influence the microbial populations of the soil and the exudates in
the mycorrhizosphere and hyphosphere.

* The hyphal network produced by ECM fungi significantly alters and improves the
structure of the soil.

e Mycorrhizal fungi contribute to the storage of carbon in the soil by altering the
quantity and quality of organic matter in the soil.

* Enhancing plant tolerance to (biotic and abiotic) stresses.

Recent advances in the knowledge of nutrient translocation processes in the
fungus-plant and fungus-soil interaction are especially interesting, in particular, the
priority role of transporters of P, N, and C (Bonfante and Genre 2010). The inorganic
P and mineral or organic forms of N, such as NH4*, NO3 ™, and amino acids (AA),
are absorbed by specialized transporters located in the fungal membrane in the
extraradical mycelium. NH**/NH*" and inorganic P (from polyphosphates) are
imported from the symbiotic interface to the cells of the plant through selective
transporters. Transporters of hexoses import carbon of plant origin into the fungus,
while the transporter proteins that participate in the export of nutrients from the plant
or the fungus have not yet been identified. The nutritional strategies seem to be
different between symbiotic and pathogenic fungi, for example, in the translocation
of C. Even different transport strategies have been found between ECMF symbionts
belong to Ascomycota and Basidiomycota. The understanding of the different
systems of transporters or nutrient channels involved both at the level of the
extraradical mycelium and at the level of the symbiotic interface will clarify in the
future the processes of nutrition in the plant-fungus and fungus-soil interaction.

4.4 ECMF Genomic Studies

So far, genome sequencing of two ECMF (ectomycorrhizae), the Laccaria bicolor
and Tuber melanosporum (black truffle), helps in the identification of factors that
regulate the development of mycorrhiza and its function in the plant cell (Bonfante
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and Genre 2010). The study of symbiotic and transcriptomic genomes will provide
in the future, among others, the following lines of knowledge:

* A better understanding of the mesocosm of the tree (i.e., the interactions of the
host plant with its courtship of endophytes, symbiotics, and pathogenic
microorganisms).

e A basis for the study of the crosstalk of encoded proteins between symbiotic
partners that involve mycorrhizal effectors.

* A molecular definition of the mechanisms that lead to the initiation of the
carpophore and its development.

* The metabolic pathways that control the transport and assimilation of nutrients in
the symbiosis and in the body of fructification.

* Bioinformatic exploration of important symbiotic gene networks and major
transcriptional factors—the mycorrhizal genetic landscape.

» Comparative transcriptomics with other economically important saprobionts, and
with pathogenic fungi (Martin and Bonito 2012).

4.5 ECMF Selection Criteria for Sustainable Development

Some of the most common criteria considered for the selection of a most valued
species or strain of ECMF (some of them implicit in others) are the abiotic criteria
like climatic conditions, such as temperature, insolation, and humidity and improve-
ment of soil properties, such as texture and permeability, abiotic soil stress mitiga-
tion, soil contamination mitigation, soil metal mobilization, or nutrient cycling.
There may also be criteria regarding the host, such as the plant/fungus specificity,
the improvement of plant health, or the increase in the biomass of the plant. The
criteria regarding the fungus include abundance, effectiveness, propagules’ compet-
itiveness, fungus growth rate, or edibility. The other criteria may be the conservation
of native biodiversity, the functioning of the ecosystem, human health, food, nutra-
ceutical value, etc. (Suz et al. 2012; Azul et al. 2014).

4.6 Applications: ECMF and Forestry

Since the late 1950s, mycorrhizal fungi were utilized as biofertilizers to promote
plant growth, because of their ability to increase the plant uptake of P, N, mineral
nutrients, and water (Feldmann et al. 2009; Koide and Mosse 2004; Miransari 2011).
Much of our understanding of the functions of ECMF has come from research
directed toward practical application in forestry (Fig. 4.1). Although successful
inoculation of tree seedlings (already planted) in field has been known, nursery
inoculation is more common. Seedlings inoculated in nursery can establish a healthy
ECMF system before outplanting.
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Fig. 4.1 Main objectives of the inoculation of ectomycorrhizal fungi in forest nurseries and their
corresponding forest applications

4.7 ECMF in Forest Nurseries

The challenge in the controlled synthesis of the ectomycorrhizal symbiosis is to
produce quality mycorrhizal plant, only colonized by the desired fungus. Accurate
identification of the inoculum used and avoiding contamination during the growth of
the inoculated plants are essential parts of the production process to avoid the
introduction of unwanted species and to avoid the mixing of their genetic material
with indigenous species (Murat and Martin 2008).

The appropriate selection of suitable plant-host species is essential for the success
of mycorrhization (Olivier 2000). Relatively fast-growing fungi are generally pre-
ferred for inoculation because of their short incubation period. Unfortunately, many
otherwise desirable ECMF grow slowly. According to Marx (1980), fresh cultures
are preferred to cultures repeatedly transferred and stored for several years. He
further suggested passing important fungus cultures through a host inoculation and
mycorrhiza formation followed by re-isolation, every few years, to maintain
mycorrhiza-forming capacity. Moreover, fungi which produce large hyphal stands
of rhizomorphs in culture of soil may be superior in soil exploration and mineral
uptake to those which lack rhizomorphic growth. On the other hand, the fruiting of
the ECMF species is not based solely on the mycorrhizal state of the seedlings. After
planting, in addition to the presence of indigenous competitors, the biotic and
physicochemical characteristics of the soil also influence the persistence and spread
of the cultivated fungus (Hortal et al. 2009).
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The type of ECMF material used for inoculation can affect the success of a
mycorrhizal inoculation program. In addition to remaining viable during storage and
transport, the inoculant must also maintain its infectivity for several months after its
introduction (Rossi et al. 2007).

There are three main sources of fungal inoculum:

(a) The use of the soil or humus collected from the area in which the mycorrhizal
seedlings are going to be planted: Its main disadvantage is the lack of control of
the species of ECMF present in the soil or of microorganisms and harmful
germs. It is widely used in developing countries, although it is currently
discarded in mycorrhization programs. Also, planting mycorrhizal “nurse” seed-
lings or incorporating chopped roots of ECMF hosts into nursery beds as a
source of fungi for neighboring young seedlings has been successful (Sim and
Eom 2006).

(b) The use of spores of fruit bodies collected in the field: The main advantages are
that the spores do not require the extension of the aseptic culture and that the
spore inoculum is not heavy (Marx and Cordell 1989). Most of the recent
research has been with P. tinctorius; however, inoculation with Rhizopogon
species also appears promising. Abundant Rhizopogon mycorrhizae formed on
seedlings produced from the coated seed of P. radiata with basidiospores of
Rhizopogon luteolus (Sharma 2017). However, it has three main drawbacks:
(A) significant quantities of fruiting bodies are required and may not be available
each year; (B) the success of the inoculation is highly dependent on the viability
of the spores; and (C) the lack of genetic definition. Freeze drying and storage at
a low temperature in the dark is helpful to maintain its viability. The spores can
be mixed with physical supports before the soil inoculation, suspended in water
and soaked in the soil, sprinkled, sprayed or pelleted and emitted to the ground,
encapsulated or coated on the seeds and they can be embedded in hydrocolloid
chips (Marx and Cordell 1989).

(c) Mycelial inoculum: It is the use of hyphae as an inoculum in a solid or liquid
medium or substrate. Fungal hyphae are cultivated mainly from sterile parts of
fruiting bodies, less frequently from mycorrhiza due to their low (approx.
5-20%) success rate (Molina and Palmer 1982) and rarely from sclerotia (Trappe
1969) or sexual spores (Fries and Birraux 1980). It is considered the most
appropriate method since it allows the selection of particular strains of a fungus
previously tested for its ability to promote the growth of plants (Marx 1980).
Many species do grow well in culture, e.g., most species of Suillus, Hebeloma,
Laccaria, Amanita, Rhizopogon, and Pisolithus. Liquid substrates have the
advantage over solids because they are easily mixed, and they produce more
uniform conditions for crop growth, but the risk of bacterial contamination and
costs are higher (Rossi et al. 2007). On the other hand, the main advantages of
the solid medium (Cannel and Moo-Young 1980) are the reduction of bacterial
contamination due to the lower water content, the low costs of the equipment,
and the simplified design of the bioreactors. The main drawback of the use of
mycelial inocula is that several species of ECMF are difficult to grow under
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laboratory conditions, or growth is very slow (due to the absence of their
symbiont), and it is not always easy to produce large amount of inoculum viable
for large-scale nursery inoculation programs. Some advances have been made
using mycelium encapsulated in “beads” of calcium alginate (Le Tacon et al.
1983), but they have to be refrigerated. Inoculant beads can remain viable for
several months under refrigeration, although the results vary between fungal
species. For several species, the mycelial inoculum has been tested with trees of
economic interest. This technique has great potential for the inoculation of
seedlings in reforestation programs. For example, Rossi et al. (2007) designed
a bioreactor with the capacity to produce inoculum for 300,000 seedlings,
enough to reforest 200 ha. Based on a global demand of 3.0 billion cubic meters
of wood, an estimated 4.3 tons of mycelium would be needed to inoculate
12 billion seedlings (5 g of dry mycelium per plant, Rossi et al. 2007). An
advantage of alginate gel is the possibility of preparing a multimicrobial
inoculant.

4.7.1 Mycorrhizal Helper Bacteria

The concept of “mycorrhizal helper bacteria” (MHB) was introduced in a “Tansley
Review”—Helper Bacteria: a new dimension of mycorrhizal symbiosis (Garbaye
1994)—which has led to new research in the plant-fungus model system, as for the
meaning of these bacteria that promote the formation of mycorrhizae and cause
many physiological effects of mutualistic interaction.

In general, the ability of some microorganisms to influence the formation and
functioning of the symbiosis is known, through activities of various kinds such as the
activation of infective propagules of the fungus in presymbiotic stages (Azcon-
Aguilar and Barea 1996), facilitating the formation of entry points in the root
(Linderman 1988), and increase the growth rate (Carpenter-Boggs et al. 1995).
The MHB improve mycorrhiza formation, although the same MHB can benefit
mycorrhization for certain fungi and be negative for others (Garbaye and Duponnois
1992). The above reflects the fungal specificity by isolate, which exemplifies the
genetic distance between isolates of different origin.

Among the mechanisms presented by the MHB are:

(a) Promotion of the establishment of the symbiosis by stimulation of the mycelial
growth. The germination of spores and mycelial growth are improved by the
production of growth factors (Keller et al. 2006).

(b) Increased contact and colonization root-fungi surfaces: increasing of lateral root
number by the production of phytohormones (Bending et al. 2002) and the
improvement of radical colonization by induction of flavonoid production (Xie
et al. 1995).

(c) Reduction of the impact of adverse environmental factors on the mycelium of the
mycorrhizal fungus. Bacteria can detoxify soils, restoring their conductivity,
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similarly freeing them from contamination generated by heavy metals (Brulé
et al. 2001) and reducing the concentrations of phenolic antagonist compounds
produced by the same mycorrhizal fungi (Duponnois and Garbaye 1990). The
rhizospheric microorganisms also have an effect on the growth of the plants,
reaching a synergistic effect, where the presence of the micro-fungus and the
other microorganism produce an increase in the growth, vigor, and protection of
the plant (Dominguez et al. 2012). These effects are based on activities such as
the acquisition of nutrients, inhibition of the growth of pathogenic fungi (Budi
et al. 1999), and improvement of the root ramification (Gamalero et al. 2004).

In recent years, a potential capacity of bacteria associated with ectomycorrhizae
to fix atmospheric nitrogen has been suggested (Frey-Klett et al. 2007). Several
studies suggest a real possibility that the bacteria present in mycorrhizal tissues
contribute to the nutritional needs of both the fungus (ascocarp development) and
consequently of the plants, by providing them with available nitrogen derived from
atmospheric nitrogen (N5).

MHB belong to a wide range of genera (Burkholderia, Paenibacillus, Poole et al.
2001; Pseudomonas, Bacillus, Duponnois and Garbaye 1991; Streptomyces, Maier
et al. 2004).

However, the molecular mechanisms by which MHB induce the growth of
ECMF are not well described. Recently, changes in expression of genes involved
in the development of certain ECMF have been studied at the molecular level in
confrontations with MHB (Schrey et al. 2005; Riedlinger et al. 2006; Deveau et al.
2007; Zhou et al. 2014). Research in mycorrhizae should, therefore, strive towards
an improved understanding of the functional and molecular mechanisms involved
in interactions in the mycorrhizosphere, in order to develop ad hoc biotechnology
that allows the application of optimized combinations of microorganisms as
effective inoculators within sustainable systems of plant production (Artursson
et al. 20006).

4.7.2 Polymicrobial Formulations

Polymicrobial formulations containing a diverse mixture of beneficial rhizosphere
microorganisms with multiple functionalities is attractive because combining
different classes of soil organisms can take advantage of multiple plant growth-
promoting mechanisms and could be applied to multiple crops (Avis et al. 2008;
Gravel et al. 2007; Hayat et al. 2010; Malusa et al. 2012; Vestberg et al. 2004). A
key concept in constructing effective polymicrobial multifunctional formulations
is the selection and use of a right combination of rhizosphere bacteria and fungi
that are mutually compatible, have complementary functionalities, effectively
colonize the rhizosphere of the crop(s) of interest, and bring about a synergistic
promotion of growth and yield of crop(s) (Avis et al. 2008; Azcén-Aguilar et al.
2009; Barea et al. 2005; Hata et al. 2010). It is to be expected that well-designed
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multifunctional formulations such as the one described would be a welcome
addition to the fast-growing inoculant enterprises worldwide. Such an inoculant
is also expected to be eco-friendly and suitable for organic farming and other
integrated production systems, where synthetic fertilizer inputs are not allowed or
restricted by law. However, construction of such complex formulations is techni-
cally demanding (Reddy and Saravanan 2013).

Ectomycorrhizal fungi exhibit synergistic interactions with other plant-beneficial
organisms such as symbiotic N,-fixers. For example, ectomycorrhizal symbiosis
enhanced the efficiency of inoculation of two Bradyrhizobium strains on the growth
of legumes (Andre et al. 2005). It is also of interest that similar synergies were seen
when AMF (Glomus mosseae), ECM fungus (Pisolithus tinctorius), and
Bradyrhizobium sp. were used together to inoculate Acacia nilotica; enhancement
of N, fixation, growth, and dry biomass were observed when all three organisms
were present (Saravanan and Natarajan 1996, 2000).

Also, using plant growth-promoting microorganism (PGPM) strains that form
stable and effective biofilms could be a strategy for producing commercially viable
inoculant formulations (Malusa et al. 2012; Seneviratne et al. 2008). A majority of
plant-associated bacteria found on roots and in the soil are found to form biofilms
(Ude et al. 2006). Bacterial, fungal, and bacteria/fungal biofilms were suggested as
possible inoculants. This is a novel and interesting idea, but to what extent this
approach would be practiced remains to be seen (Reddy and Saravanan 2013).

4.8 Application of ECMF in Forest Management

The inoculation of ECMF can be done not only with the objective of producing
edible carpophores but also because of its considerable value in forest management
(Fig. 4.1); in particular, they have had great importance in reforestation programs
where it was expected that the quality and economic productivity of the plantations
would increase (Garbaye 1990). The success of the plantations with mycorrhized
seedlings from the nursery depends on their ability to quickly access the nutrients
and water available within the soil matrix (Dufiabeitia et al. 2004).

In mycorrhizal plantations (productive or conservation forest reforestations), a
consequence of the recognition of the advantages of fungal diversity in ecosystems
will be an increase in the refusal to introduce potentially dominant species in mixed
communities. On the other hand, unfortunately, it seems that many of those fungi
selected for optimal colonization in the nursery have been poor competitors in the
field, especially when the planting sites contained indigenous populations of mycor-
rhizal fungi. There are several possible explanations for the inoculation failure (from
the nursery) to produce beneficial effects in the planting sites. Probably, among the
most important of these is the inability of inoculum introduced to persist in the roots
of the plant after the transfer of the nursery to the field. The soil conditions
experienced in the nursery and with the plant growing in a container are very
different from those of most of the planting sites; in addition, the raising, storage,
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and transport of seedlings can reduce the vigor of fine roots and their fungal
associates. Species such as Pisolithus tinctorius (15 sub spp), in circumstances
such as degraded environments, with absence or scarcity of autochthonous mycor-
rhizal populations, have achieved the greatest success in inoculation programs
(McAfee and Fortin 1986).

In the case of an artificially mycorrhized plant with edible ECM fungi of interest,
such as Tuber melanosporum (black truffle), the establishment of plots has always
had the main objective of producing fruiting bodies, leaving in the background the
contribution of ecological functions of the symbiosis (in the plant, soil, and, in
general, the ecosystem, Dominguez et al. 2006). The example of mycorrhizal
plantations for truffle production has been generally successful (Olivier et al.
1996), obtaining productions from 6 to 7 years of implantation.

In restoration of ecosystems, the biofertilization, bioremediation, or the control
of soil pathogens are prominent roles of the mycorrhizal forest plants. Degraded
ecosystems are the result of a wide range of characteristics and factors related to
unfavorable land management or industrial activities. Environmental degradation
of the soil is increasing worldwide at an alarming rate due to erosion, acidity,
salinization, compaction, the depletion of organic matter, and water scarcity. In a
healthy ecosystem, there is a balanced microbiota of the soil, in such a way that the
potential of pathogenic and mycorrhizal fungi coexists in apparent harmony.
Ectomycorrhizal fungi can survive in extreme habitats with high or low tempera-
ture (Tibbett and Cairney 2007; Geml et al. 2011), salt and metal concentration
(Colpaert et al. 2011), drought (Azul et al. 2010), and other circumstances related
to the degradation of the ecosystem. The importance of ECM fungi in the balance
of the ecosystem can be enormous, since they can be used to increase the tolerance
of plants against abiotic stresses, especially their capacity to fix heavy metals or to
degrade a wide variety of persistent organic compounds; to interact with soil
bacteria; to attack fungi, bacteria, and pathogenic nematodes; and to improve the
vegetative growth and the nutritional status of its symbiont plant. In addition, the
extraradical mycelium of the ECM fungi provides a direct pathway for the trans-
location of photosynthesized carbon to microsites in the soil and a large surface
area for interaction with other microorganisms (Sun et al. 1999; Suz et al. 2012).
Very little is known about how the tolerance of fungi to metals affects the transfer
of metal to the host plant. The ability to accumulate metals depends not only on the
inter- and intraspecific variation of the sensitivity of mycorrhizal fungi to metal but
also on environmental factors (Suz et al. 2012). Meharg and Cairney (2000)
revised potential ways in which ectomycorrhizal fungi might support rhizosphere
remediation of persistent organic pollutants (POPs). Recently, the importance of
low molecular weight organic acids and metal-chelating agents (such as
siderophores) from ECMF in the fixation of metal ions and their transmission or
not to the root of the host plant has been described (Machuca 2011).
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4.9 Conclusions

Research on ectomycorrhizae should focus on better understanding the functional
and molecular mechanisms involved in interactions in the mycorrhizosphere. It
should aim to find the appropriate technology for the commercial techniques of
multiplication and large-scale inoculation of the mycorrhizal inoculum and the
application of optimized combinations of plant-microorganisms, adopted under
well-defined environmental and soil conditions. The role of ECMF as biofertilizers
in reforestation and environmental restoration has been fundamental up to now, and
its importance in the balance of the ecosystem can be enormous, increasing the
tolerance of plants against biotic and abiotic stress.
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Chapter 5 )
Perspectives on the Role of Arbuscular e
Mycorrhizal Fungi in the In Vivo Vegetative
Plant Propagation

Ravichandran Koshila Ravi and Thangavelu Muthukumar

Abstract Vegetative propagation is an important method for increasing the pro-
ductivity of economically important agricultural and horticultural plants. Apart from
the application of phytohormones, beneficial microorganisms such as arbuscular
mycorrhizal (AM) fungi being natural biofertilizers are also widely used in the field
of horticultural production systems. The mutualistic association between the AM
fungi and plant are not only known for their efficient water and nutrient uptake, less
vulnerability to pathogens, and ability to withstand or tolerate abiotic and biotic
stresses but are also involved in the production of plant hormones and adventitious
root formation in asexual propagation. The inoculation of AM fungi to the rooting
substrate could result in similar responses on the cuttings to those obtained through
the application of exogenous plant growth regulators. In addition, the combined use
of AM fungi along with plant hormones leads to increased root initiation and
development of plant parts. The early inoculation of AM fungi onto the rooting
medium enhances the plant growth rate of vegetatively propagated plant species
after forming a symbiotic relationship with the plant. Moreover, a series of sequen-
tial signaling events are known to occur between AM fungi and the host plant during
the development of roots. The present chapter focuses on the role of AM fungi in
various types of vegetative propagation including cutting, layering, and grafting, the
interaction between the plant hormones, and the AM symbiosis. The mechanism
involved in the production of plant hormones through AM fungi and thereby the
physiological changes occurring in the plant metabolism during propagation is also
discussed.
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5.1 Introduction

Agriculture is the major source of food supply and places important pressure on the
environment and the natural resources. Horticulture being the major part of agricul-
ture includes the production of vegetables, ornamentals, fruits, and medicinal plants
(Sonah et al. 2011). There has been a significant increase in the productivity as well
as the quality of the agricultural crops obtained through several new farming
technologies (Edgerton 2009). Nevertheless, there is less progress in the domestica-
tion of tree species due to long generation times, irregular production of flowers and
fruits, and high prevalence of outbreeding leading to loss of genetic gain in succes-
sive generations (Leakey et al. 1994). In addition, farmers often cannot afford high-
quality tree transplants, or sometimes seeds may not be available, and some plants or
tree species have very low germination rates. In order to overcome these limitations,
vegetative propagation method was introduced for rapid production, better quality of
horticultural crops and tree species thereby greatly enhancing their yield (Davies
et al. 1994; Bisognin 2011).

Plant propagation are of two types, sexual propagation and asexual propagation,
of which asexual propagation is considered as an important propagation method in
which vegetative parts of plants such as stems, roots, leaves, or other special
vegetative structures when detached from the mother plant and placed under suitable
conditions develop into novel individuals that are genetically similar to the parent
plant. Vegetative propagation is also of great relevance in rapid replication of a plant
species under threat with a goal to sustain certain desired characteristics (Hartmann
et al. 2002). The propagation of plants involving vegetative parts is advantageous
over sexual methods, as the vegetative parts are much larger when compared to seeds
and consist of more reserve energy. This enables rapid, constant early growth and
facilitates the young plants called clones to establish successfully in spite of extreme
competition for light, water, and minerals from already existing vegetation. There-
fore, vegetatively propagating perennials can flourish over a wide range of dense
plant communities. For example, some grassland weeds like creeping buttercup and
stinging nettle invade vigorously through vegetative methods (Forbes and Watson
1992).

The vegetative organs of plants in the wild always prefer to propagate in an
environment that is favorable for its growth. Mostly, it circumvents waterlogged or
dry soil and heavily compacted area. Hence it is generally site-selective in nature. In
contrast, seed dispersal is often a random process in sexual propagation. As the new
individual plants or offsprings are produced through purely mitotic cell divisions in
vegetative propagation, they are genetically similar to the parent plant, and genetic
recombination does not take place (Forbes and Watson 1992). Therefore, the
successful plants with genetically identical characteristics suitable to its environment
propagate to develop well-adapted offsprings for many generations. Plant propaga-
tion through vegetative means is beneficial to agriculturists and horticulturists as
they could raise crops and ornamentals that do not produce viable seeds. For
instance, one of the initial and major developments in the agricultural system was
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the production of important crop species such as grapes and figs through the
insertion of the base of their woody stems into the ground to develop the adventitious
roots and thus regenerating into new plants (Steffens and Rasmussen 2016). Several
crop species like strawberries, potatoes, onion, etc. are well developed under natural
condition through vegetative propagation method (Megersa 2017).

Besides several advantages, vegetative propagation is not easy or cheap when
compared to propagation through seeds. Further, no hybrid or a new variety of plants
could be raised by this propagation method (Mckey et al. 2010). The multiplication
of vegetative organs could lead to overcrowding of individuals around the parent
plant and invariably results in competition for resources like water and nutrients. In
natural conditions, vegetatively propagated plants allow only short-range spread. In
addition, as there is no genetic variation, plants can lose their vigor easily (Mckey
et al. 2010). For example, if a plant is vulnerable to any specific pathogen or disease,
all its offsprings produced by the mother plant are also equally vulnerable thus
leading to the destruction of the whole plant population in a very short period
of time.

The most common method of vegetative propagation includes cutting that is
obtained by stem, leaf, or root, layering, grafting or through specialized organs such
as tuber, rhizome, or bulbs (Megersa 2017). Of these, propagation by cuttings is the
easiest, cheapest, and suitable method for a wide range of herbaceous and woody
plant species. When the plant material is scarce or in order to raise a particular plant
species rapidly, leaf cuttings or leaf bud cuttings are of great significance. Further,
stem cuttings are placed into the growing substrate so as to produce rooting and other
vegetative parts and thus developing into a new intact plant. Some of the plants do
not root easily by cutting. Such type of plants can be propagated through layering
where the propagated plant part is rooted when still remain attached to the mother
plant and the sap flow does not get disturbed (Preece 2003). Moreover, forest tree
species and other tropical fruits can be propagated through grafting technique in
which two parts of the living plant, scion and rootstock, are grafted together that
unite and develop into a new plant (Pina and Errea 2005). These different types of
propagation techniques have both advantages and disadvantages of their own.

The vegetative propagation of plants through above-mentioned methods could be
improved by the application of plant growth regulators for quick and early regener-
ation of plant parts (Pacurar et al. 2014; Adekola et al. 2012). Apart from plant
growth regulators, some of the beneficial soil microorganisms also play a vital role
in upraising plants through vegetative propagation techniques (Du Jardin 2015).
Among several soil microbes, arbuscular mycorrhizal (AM) fungi act as an
eco-friendly biostimulant that has a significant role in horticulture crops (Rouphael
et al. 2015). Apart from numerous positive effects, AM fungi also play a vital role
in the formation of adventitious roots when supplemented to the rooting substrate
in most of the plant species (Scagel 2004a, b; Fatemeh and Zaynab 2014), thus
contributing to the vegetative propagation of plants. Therefore, in the present
chapter, we outline the importance and effect of AM fungal application on the
regeneration and development of plant species through different methods of vege-
tative propagation (cutting, grafting, and layering). The interactions between plant
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hormones and AM fungal symbiosis and the mechanism through which AM fungi
enhance the growth of clones raised by vegetative propagation techniques is also
discussed.

5.2 Arbuscular Mycorrhizal Fungi

Mycorrhizal symbiosis is a mutualistic association between the soil fungi and plant
roots. About 80% of the land plant roots forms a symbiotic association with the AM
fungi which supports the host plant by providing essential nutrients in exchange for
carbohydrates provided by the host plant (Smith and Read 2008). The AM fungal
symbiosis is not limited to space within the roots, as the AM fungi produce
extraradical mycelium that explores the soil surrounding plant roots. Arbuscular
mycorrhizal fungi are characterized by the presence of two important structures:
arbuscules and vesicles (Fig. 5.1). The AM fungal hyphae colonize the cortical cells
of roots forming a highly branched structure within the cells called arbuscules that
function as a site for nutrient exchange (Berruti et al. 2015). The fungal hyphae
originating from roots extend into the adjacent soil where they scavenge nutrients
especially phosphorus (P) and transfer it to the host plants (Smith and Read 2008).
Vesicles are the storage organ developed by the AM fungi in the form of terminal or
intercalary hyphal swellings in the root cortical regions consisting of cytoplasm and
lipids (Biermann and Linderman 1983). They are inter- or intracellular and are
generally initiated after the formation of arbuscules, however, continue to develop
even after the formation of arbuscules has ceased. Spores of AM fungi consist of
lipids and are covered by multilayered cell wall allowing them to be viable for long
duration and thereby are important propagules for initiating new colonization
(Brundrett 1991).

Although AM fungal spore can germinate in the absence of the host plant, they
fail to form a wide mycelial network and cannot complete their lifecycle without
forming an association with the plant host (Porcel et al. 2012). In low fertile soils,
AM fungi enhance the crop productivity by improving the uptake of immobile
nutrients other than P such as zinc (Zn) and copper (Cu). Mycorrhizal fungi absorb
nitrogen (N) from ammonia and transport to the host and enhance the crop produc-
tivity in soils of low potassium (K), calcium (Ca), and magnesium (Mg) content (Liu
et al. 2002). There is an increasing body of literature exhibiting the beneficial aspects
of AM fungi that include improved plant growth, increased acquisition of nutrients
and water, tolerance to salinity, drought and metal toxicity, resistance against root
pathogens, and maintaining of the soil structure and fertility (Harrier and Watson
2004; Rillig and Mummey 2006; Smith and Smith 2012; Yang et al. 2015).

Further, AM fungi are the important component of rhizosphere soil microbial
community and have a positive effect on both soil and plant under natural ecosystem.
They promote modifications in the chemical and biological properties of plants
under stressed conditions. In addition, AM fungi are widely used as bioinoculants
in most of the agricultural crops, thus in turn contributing to sustainable agricultural
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Fig. 5.1 Various plant benefits in response to arbuscular mycorrhizal (AM) symbiosis in vegeta-
tively propagated clones. The important AM fungal structures, arbuscules, and vesicles are also
shown within red circles

practices (Berruti et al. 2015). Apart from these positive effects, AM fungi are of
great significance in the field of plant propagation as they stimulate the development
of root system, enhance photosynthesis, produce more plant hormones, protect the
plants from various stresses, and help in the successful establishment of young plants
under natural conditions with improved output survival (Fig. 5.1).

5.3 Effect of AM Fungi on Cuttings

Arbuscular mycorrhizal fungi help in plant’s adaptation by promoting the survival
and establishment of rooted cuttings (Fatemeh and Zaynab 2014). The inoculation of
AM fungi into the rooting medium during propagation by cuttings enhances the
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rooting ability in different plants (Linderman and Call 1977; Singh 2002; Scagel
2004a, b). The response to AM fungal inoculation by the different plant cultivars
propagated through cuttings is presented in Table 5.1. However, the efficiency of the
AM symbiosis differs depending upon the AM fungal species and the ability of plant
species to form roots (Scagel 2004b). For example, inoculation of Prunus maritima
Marshall cuttings (hardwood and softwood) with three different AM fungal species,
Funneliformis mosseae (= Glomus mosseae), Claroideoglomus etunicatum (= Glo-
mus etunicatum), and Glomus diaphanum, in sterilized soil induced increased
adventitious root growth. Of these, F. mosseae was more efficient in adventitious
root production (Zai et al. 2007). Nevertheless, the method followed for plant
propagation through cuttings does not permit mycorrhizal formation naturally as
the rooting medium or substrate is generally sterilized to avoid interference of
pathogens or soilless substrates that lack AM fungi are used (Essahibi et al. 2017)
(Table 5.1). The quality of cutting, rooting medium, and the environmental condition
are important factors for successful rooting of the cuttings. An ideal root medium
allows good aeration, avoid water logging, and maintain moisture content and
improved and higher root development (Washa et al. 2012).

The application of AM fungi into the rooting medium in the greenhouses could be
helpful for the growth of propagating plants in outdoor conditions after transplanta-
tion. The early inoculation of cuttings with AM fungi during the formation of
adventitious roots benefits the plant growth (Scagel et al. 2003). The response of
olive cuttings to inoculation with two AM fungal species Rhizophagus irregularis
(= Glomus intraradices) and F. mosseae in the nursery and under field conditions
exhibited increased plant growth and yield. Further, pre-inoculation of AM fungi
into the field enhanced the plant growth response through the early establishment of
symbiosis in clones raised in sterilized substrates (Estaun et al. 2003). Nevertheless,
the effect of pre-inoculation treatment reduces over time as the seedlings get
colonized with the indigenous AM fungi in the field (Siqueira et al. 1998; Estaun
et al. 2003).

Successful establishment of clonal plants in an environment depends on the
ability of the clones to produce a large volume of roots, superior root length and
clonal vigor (Washa et al. 2012). The mycorrhizal fungal inoculation improves the
root growth characteristics of plant species propagated by cuttings. Moreover,
Wimalarathne et al. (2014) reported greater root architecture such as root biomass,
root length, root volume, and root mean diameter in Piper nigrum L. rooted cuttings
inoculated with different quantities of F. mosseae inoculums in a sterilized rooting
medium comprising of top soil, cattle manure, and river sand. Similarly, both runner
and orthotropic shoots of P. nigrum inoculated with mycorrhizal fungi [Rhizophagus
fasciculatus (= Glomus fasiculatum), Gigaspora margarita, and Acaulospora
laevis] induced higher root growth characteristics when compared to the
uninoculated and indole butyric acid (IBA)-treated P. nigrum cuttings (Thanuja
et al. 2002). Plants of Origanum vulgare L., Origanum onites L., Mentha piperita
L., Mentha spicata L., and Mentha viridis L. raised by stem cuttings when trans-
ferred to sterile rooting medium containing C. etunicatum propagules had
increased the plant growth, nutrients, and production of essential oil (Karagiannidis
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et al. 2012). In addition, the uses of AM fungal soil inoculums have been reported to
enhance the survival and establishment of Khaya anthotheca (Welw.) C. DC.
cuttings and also in the restoration of plants in the degraded lands (Dugbley et al.
2015). The colonization of roots by AM fungi promotes the growth rate and nutrient
uptake in clones propagated through cuttings (Sohn et al. 2003; Karagiannidis et al.
2012).

The application of indigenous AM fungi is more useful than using exotic AM
fungal species for raising plants by cuttings. It has been suggested that the combi-
nation of both indigenous and exotic AM fungal species could lead to negative
response on plant growth (Klironomos 2003). In support of this statement, Williams
et al. (2013) found that addition of indigenous AM fungal species (A. laevis) to a
slow-growing tree species, Podocarpus cunninghamii Colenso rooted cuttings, in
pasteurized soil exhibited early and positive growth responses than application of
exotic or commercially produced AM fungi (Glomus spp.). Different types of
cuttings including softwood, semi-hardwood, and hardwood cuttings and also root
cuttings of Dalbergia melanoxylon Guill. & Perr. tree raised under soil-containing
AM fungi exhibited greater rooting traits thereby increasing the plant growth (Washa
et al. 2012).

The adventitious root formation in cuttings is a vital process in plants that are
widely propagated through vegetative methods. The formation of adventitious root
in the tissues of the shoot is a complex developmental process that includes induc-
tion, differentiation, dedifferentiation, and growth of roots (Hartmann et al. 2002). It
mostly depends on nutrients like carbon (C) and N and is specifically controlled by
the interaction of plant hormones (Druege et al. 2004; Kevers et al. 1997). A root-
colonizing endophytic fungus, Piriformospora indica when inoculated in root sub-
strate with the cuttings of Pelargonium and Poinsettia increased the number and
length of the adventitious root thereby promoting the formation of adventitious root
at the higher rate of seven at the low fungal root colonization rates (Druege et al.
2006). Likewise, the inoculation of hormone-treated miniature rose cuttings with
Rhizophagus intraradices (= Glomus intraradices) enhanced the root biomass and
adventitious root formation before the root colonization, which suggests that AM
fungi-plant signaling processes could have occurred earlier to rooting (Scagel
2004a).

5.4 Influence of AM Fungi on Grafting

Grafting is one of the major methods of vegetative plant propagation that has a
crucial role in the development of horticultural crops which involves the production
of new plants by inserting the shoot part (scion) onto the rootstock that forms the root
system of the scion and generates into a new plant (Lee 1994). The rootstock
influences the formation and accomplishment of the union graft. The rapid devel-
opment of prominent root system is essential for the successful development of the
plant, so the rootstock strongly relies on the effective root formation (Yetisir and Sari
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2003). As the root system has a pronounced effect on root functions, it is important
to know the influence of AM fungi on the performance of rootstock. It is observed
that the initial or early inoculation of AM fungi is beneficial for the development of
rootstock (Kumar et al. 2008).

Arbuscular mycorrhizal fungi influence the root morphogenesis through metab-
olites of AM fungi and hormones that are independent of the external supply of
nutrients (Hooker et al. 1992). The effect of AM fungal species inoculation on plants
through grafting method is presented in Table 5.2. In a study, Kumar et al. (2008)
observed that AM fungal inoculation (G. margarita and R. fasciculatus) increased
the rootstock vigor and vegetative and root parameters of mango thus contributing to
successful grafting. Likewise, the rootstock of Syzygium cuminii L. treated with
R. fasciculatus and R. intraradices when subjected to softwood grafting exhibited
higher percentage of graft success and survival when compared to the uninoculated
grafted S. cuminii (Neeraja Gandhi et al. 2010). The production of growth hormones
such as auxins, gibberellins, and vitamins by AM fungi could contribute to the
growth enhancement of rootstock. Furthermore, greater root geometry and increased
nutrient supply mediated by AM fungi lead to the extramatrical hyphal growth that
in turn improves the plant growth. The higher percentage of AM fungal root
colonization enlarges the surface area for absorption and nutrient uptake in the
rootstocks.

Inoculation of the AM fungal species (A. laevis and C. etunicatum) isolated from
the rhizosphere soil of cashew plants from different sites improved the growth
performance and the vigor of the cashew rootstock developed through grafting
process. The AM fungal inoculation benefitted the grafted plants to withstand the
transplant shock and to thrive well under field conditions (Lakshmipathy et al. 2004).
Further, some studies have revealed an increased salinity tolerance in response to
mycorrhizal inoculation of grafted plants through extension of the mycorrhizal
hyphae into the substrate for higher uptake of nutrients and enhancing the root
architecture parameters thereby improving the growth performance and fruit yield
of grafted plants (Oztekin et al. 2013). The AM fungal root colonization varies
among different grafted plant species. For example, Schreiner (2003) investigated
the root colonization by AM fungi of ten different rootstocks of grapevines (Vitis
vinifera L.) and reported only small variations in the mycorrhizal colonization of the
rootstock genotype, where root length density of fine roots and AM colonization of
fine roots were correlated to vigor and yield of scion. Further, AM fungal mycor-
rhizal colonization was related to the growth performance of the scion on varied
rootstocks (Schreiner 2003).

The scion’s quality and yield are gaining more interest in horticulture when
compared to the rootstock which is meant for absorption. Some studies have
reported that genotypes of scion exert a higher effect on AM fungal communities
when compared to rootstock raised in varied types of soil (Song et al. 2015). For
instance, Shu et al. (2017) conducted an experiment to find out the influence of
Avocado (Persea americana Mill.) scions on AM fungi and development of root
hairs in rootstocks and observed that scions did not have any impact on AM fungi,
but scion influenced both the AM absorption and root directed pathways
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systematically. It is believed that the plant hormones and secondary metabolites that
are produced by the leaves and shoots and then transferred to the roots are crucial for
the development of root hair and AM fungal colonization (Micallef et al. 2009; Shu
et al. 2017).

Several studies have highlighted the role of AM fungi in plant protection against
phytopathogens. Mora-Romero et al. (2015) conducted a grafting experiment using
two varied pathogens, Sclerotinias slerotiorum (Lib.) de Bary (fungal pathogen)
infected common bean (Phaseolus vulgaris L.) and tomato (Solanum lycopersicum
L.) plant infected with the bacterial pathogen (Xanthomonas campestris
pv. vesicatoria) and raised the presence and absence of AM fungi. The results of
the study showed that for both the plant pathogens, the scions originated from
non-mycorrhizal plants had the capacity to exhibit disease protection induced by
mycorrhizal fungi through their grafting to rootstocks inoculated with mycorrhizal
fungus (R. irregularis) (Mora-Romero et al. 2015). Bolandnazar et al. (2014) also
reported a decrease in the incidence of Fusarium wilt disease in tomato plants
through grafting onto resistant rootstocks and mycorrhizal inoculation.

The influence of AM fungi varies according to different plant species subjected to
grafting technique and the quality of scion and rootstocks. Grafting of mini water-
melon (Melothria scabra Naudin) onto mycorrhiza inoculated hybrid variety
(Cucurbita moschata Duchesne x Cucurbita maxima Duchesne) rootstocks
increased the vigor, production, and quality of mini watermelon fruits. In addition,
the vitamin C content in fruit was enhanced due to the increased nutrient uptake,
well-developed root system in rootstocks, and production of endogenous hormones
on mycorrhization (Miceli et al. 2016). The production of rootstocks of citrus species
(citrange ‘Fepagro C37 Reck’, ‘Kumquat’) with AM fungal species such as
C. etunicatum; Fuscutata heterogama (= Scutellospora heterogama); G. margarita;
and Acaulospora sp. resulted in increased plant growth performance and percentage
of AM fungal colonization in citrange ‘Fepagro C37 Reck’ when compared to the
other citrus rootstock which reveals that the effect of AM fungi on vegetative
development relies on rootstock species (Back et al. 2016). Moreover, different
methods of grafting have also been carried out to determine the successful grafting
process. For instance, cucumbers raised using different types of grafting including
self-grafted, splice grafted, and root pruned splice graft and inoculated with Glomus
spp. exhibited higher plant growth and yield. Of these three methods, root pruned
splice grafted cucumber produced more yield and superior plant growth response on
inoculation with indigenous AM species under greenhouse conditions (Babaj et al.
2014).

In addition to improving plant quality and performance, grafting technique has
received great reputation as an important research tool, especially in studies
pertaining to the signaling mechanisms between root and shoot (Gaion et al.
2018). In their classical study, Gianinazzi-Pearson and Gianinazzi (1992) showed
that intergeneric grafting of lupin scions onto pea root stocks greatly reduced root
colonization by F. mosseae and R. intraradices and totally prevented the develop-
ment of arbuscules in the root cortical cells. Based on the results, the authors
suggested the possible involvement of mobile factors originating in shoots
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preventing the establishment of mycorrhizal symbiosis in lupines (Gianinazzi-
Pearson and Gianinazzi 1992). Foo et al. (2015) based on the intergeneric grafting
experiment between lupin and pea showed that AM symbiosis and nodulation are
regulated independently of each other probably due to the long-distance signaling.
Further, the low strigolactone content in lupin scions grafted pea roots was suggested
a possible cause for the suppression of AM symbiosis in lupin-pea graft
combination.

In a greenhouse experiment, Kumar et al. (2015) investigated the influence of
grafting and R. intraradices inoculation on the biochemical, physiological, and
metabolite changes as well as gene expression analysis of tomato under two different
levels of cadmium (Cd) stress. In this study, there are two graft combinations: self-
grafted (S. lycopersicum cv. Ikram and S. lycopersicum cv. Ikram) and grafted onto
interspecific hybrid rootstock Maxifort (S. lycopersicum x S. habrochaites). The
presence of AM fungus was not able to ameliorate the effect of Cd stress and
significantly increased the accumulation of Cd in the tomato shoots which subse-
quently decreased the growth and yield. However, plants of Ikram/Maxifort graft
combination accumulated more proline, had higher antioxidant enzyme activity, and
reduced lipid peroxidation. Moreover, Ikram-/Maxifort-grafted plants had higher
accumulation of P, K, Ca, iron (Fe), manganese (Mn), and Zn and metabolites like
fructans, inulins, and phytochelatin PC2 than Ikram/Ikram combination. The
increased nutritional status of Ikram-/Maxifort-grafted plants was attributed to the
upregulation of LeNRAMP3 gene in leaves (Kumar et al. 2015).

5.5 Mycorrhizal Fungi and Layering

Layering is one of the techniques in vegetative propagation in which a branch of the
plant produces roots before it is detached from the mother plant. The successful
propagation via layering depends on many factors such as moisture availability,
season, the position of branching, and quality of rooting substrate and wrapping
material (Mishra et al. 2017). Layering is of different types such as simple layering,
compound layering, tip layering, and air layering. The combined inoculation of AM
fungal species, Scutellospora and Glomus, in Theobroma cacao L. obtained through
air layering showed an increase in dry biomass, stem diameter, and P concentration
in shoots (Chulan and Martin 1992). Arbuscular mycorrhizal fungi increased the
growth of Lychee (Litchi chinensis Sonn.) tree propagated by air layering in a soil-
free substrate. In addition, AM fungi (indigenous Glomalean fungi) enhanced the
copper (Cu) and Fe uptake in the Lychee (Janos et al. 2001). Moreover, the
application of AM fungi along with vermicompost and Azotobacter as the rooting
media improved the root and shoot characteristics and also the survival percentage of
air layers of Lychee (Mishra et al. 2017). Furthermore, Sharma et al. (2009) also
reported an enhanced total number of roots in Litchi air layers combined inoculated
with R. fasciculatus and Azotobacter sp. The betterment in root architecture of
air-layered Litchi trees was due to enhanced carbohydrates and metabolic activities
by the rooting substrate (Mishra et al. 2017). Only very few studies have been carried
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out through layering propagation using AM fungal species when compared to other
types of vegetative propagation. The precise mechanism of AM fungi in propagation
through layering is still obscure.

5.6 Interaction Between Plant Hormones and AM Fungi

The relationship between the host plant root and AM fungi involves a constant
exchange of signals that lead to proper symbiosis development (Gianinazzi-Pearson
1996). Arbuscular mycorrhizal fungi regulate the hormonal balance of the plant by
producing growth regulators under stressed conditions (Nadeem et al. 2014). The
plant hormones regulate a number of events during the developmental stage of plants
and constitute signaling molecules to regulate the establishment of a symbiosis. For
example, auxins regulate the shoot and root architecture of plants and also stimulate
the early events thereby helping in the formation of lateral roots on the host plant
(Kaldorf and Ludwig-Miiller 2000). Further, abscisic acid and jasmonates are
involved in the formation of arbuscules (Herrera-Medina et al. 2007). However, in
the formation of spore and vesicles, no hormones have been specified so far. Thus,
these alterations in the fungus development may be induced by autonomous signals
of the fungi itself. In addition, phytohormones take part in the temporary defense
responses that are essential for establishing a homeostasis between AM fungi and the
host plant (Garcia-Garrido and Ocampo 2002). Moreover, they might also stimulate
resistance against pathogens to protect the host plant (Pozo et al. 2002).

The application of AM fungal species on cuttings treated with auxins exhibited
controversial results. For instance, inoculation of AM fungi and auxin on stem
cuttings of D. melanoxylon improved the rooting ability in terms of rooting percent-
age and root parameters (Ezekiel Amri 2015). An increase in the levels of auxins
after inoculation of AM fungi in maize and soybean plants has been observed by
Kaldorf and Ludwig-Miiller (2000); Meixner et al. (2005). Production of indole-3-
acetic acid by R. irregularis was reported by Ludwig-Miiller et al. (1997). Jasmonic
acid is known to establish symbiotic association between plant and AM fungus by
modifying the endogenous jasmonic acid through repeated wounding of the plant
(Landgraf et al. 2012). One of the hormones responsible for inducing AM spore
germination is strigolactones, and it acts as a signaling molecule in rhizosphere to
form AM symbiosis (Garcia-Garrido et al. 2009).

The production of abscisic acid by the AM fungal hyphae of R. irregularis was
revealed by Esch et al. (1994). This could give rise to early signal to enhance the
production of indole-3-butyric acid to increase the lateral root numbers in the young
roots and thus constituting a path for the fungal entry (Kaldorf and Ludwig-Miiller
2000) as the production of indole-3-butyric acid was stimulated by abscisic acid
(Ludwig-Miiller et al. 1995). This might be a good example which indicates that
hormonal signal formed by the symbiont can affect synthesis of hormones in plants.
Deficiency of abscisic acid leads to increased level of ethylene that adversely
regulates mycorrhizal fungal colonization. Moreover, abscisic acid deficiency



100 R. Koshila Ravi and T. Muthukumar

seems to downregulate the formation of arbuscules directly (Martin-Rodriguez et al.
2011).

5.7 Mechanism of AM Fungi in Plant Propagation

The primary mechanism accountable for plant growth is the improvement in the
uptake of nutrients especially P induced by AM fungi. The production of plant
hormones through these mutualistic fungi may also contribute to plant metabolic
processes. Both the physiological and morphological alterations that microbial plant
hormones could stimulate in the plant may help in the AM fungal symbiosis
establishment and its activity, thereby resulting in the increased acquisition of
nutrients by the host plants. In addition, gibberellins enhance the leaf area and lateral
root formation, cytokinins play an important role in the fundamental processes of
plant growth such as enhancement of photosynthetic rate, and auxins regulate the
formation of roots and improve cell wall elasticity (Barea and Azcén-Aguilar 1982).
Moreover, increased levels of cytokinin are reported with the association of plant
roots with AM fungi thereby maintaining the chlorophyll levels and influencing the
iron transport (Khade and Rodrigues 2009). The AM fungal colonization enhances
the internal cytokinin levels in the colonized tissue and increases the fluxes of
cytokinin to other plant parts, independent of the nutrient status of the host plant
(Hirsch et al. 1997).

A series of sequential signaling events take place during various stages of plant-
AM fungi interactions; however, there is no accurate information available about
these signaling molecules (Roussel et al. 2001). The functioning of these molecules
is examined in root-AM fungi interactions, but not between the stem and AM fungi
(Scagel 2004a). In the propagation of plants obtained through cuttings, AM fungi
benefit the plants when inoculation is done during the formation of the adventitious
root (Fatemeh and Zaynab 2014). Moreover, the presence of precolonization signal
among propagules of AM fungi and cutting is alike to those prevailing in the
existence of host plant roots (Scagel 2001). This signal is activated in the cuttings
of basal ends due to the release of carbon dioxide or other metabolites that was able
to stimulate AM fungi propagule (Tamasloukht et al. 2003). The exudates released
by the AM fungi might cause alterations in the metabolism of cuttings, thus
increasing initiation of the adventitious root, thus improving the rooting ability on
the cuttings on inoculation with AM fungi (Scagel 2004a). Furthermore, AM fungi
induce new root formation after colonizing the root by enhancing the phenolic
compound accumulation that is involved in tolerance against soilborne pathogens
and also increases the water and nutrient uptake through the extraradical mycelia
(Larose et al. 2002).

Arbuscular mycorrhizal symbiosis improves the ability of roots to uptake soil
elements that are of low mobility through their mycelial network, thus enhancing
plant growth. Inoculation of AM fungi in the soilless rooting substrate decrease the
mortality percentage during transplantation and enhance the productivity of several
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ornamental plants through vegetative propagation (Scagel 2004a). Mostly, another
mechanism behind the rooting of cuttings is ascribed to the alterations in the N,
amino acid, protein, and carbohydrate metabolism occurring during the development
of adventitious roots. For example, miniature roses inoculated with AM fungi
showed changes in the protein and amino acid contents in the cuttings (Scagel
2004a).

The beneficial aspect of AM fungi is more noticeable in the adaptation of rooted
cuttings. As already mentioned, AM fungi improved the survival of the clones
through the hardening stage and protected them from transplantation shocks
(Yadav et al. 2013). Arbuscular mycorrhizal fungi improve the nutrient contents
and stomatal conductivity of rooted cuttings. Mycorrhization positively influences
the plant’s gas exchange through enhancing the stomatal conductance (Sanchez-
Blanco et al. 2004), subsequently supplying a large amount of carbon dioxide
assimilation to the plant and hence increasing photosynthetic process in cuttings
(Essahibi et al. 2017). Arbuscular mycorrhizal fungi increase the production of
secondary metabolites (Sangwan et al. 2001). The increased synthesis of secondary
metabolites in AM-inoculated plants could be ascribed to the stimulation of the
aromatic biosynthesis pathway. The age and developmental stages of the plant are
also important during secondary metabolite production. The AM symbiosis results in
increased secondary metabolism due to the higher content of chlorophyll, amino
acids, and proteins (Tejavathi et al. 2011).

5.8 Conclusion

The application of AM fungi in raising horticulturally important crops and tree
plantations through vegetative propagation techniques is of great importance. The
mycorrhizal inoculation increased the viability, rooting ability, survival, and overall
plant growth of the vegetatively propagated plants. It has been suggested that
production of hormones by AM fungi is responsible for the stimulation of plant
growth in addition to the formation of adventitious roots and improved nutrient
uptake. A number of signaling events take place during the interaction between the
host plant and AM fungi during root formation on cuttings (Scagel 2004a, b).
Although hormone production has been recognized as the potential mechanism
responsible for plant growth promotion, the exact mechanism still remains unclear.
Further, the role of AM fungi in plant propagation through layering is not explored
largely as for plants obtained through cuttings and grafting methods. Therefore,
studies related to AM fungi and layering method could be useful in understanding
their effects on plants. The use of indigenous or native AM fungal species might be
considered to be beneficial than inoculation with exotic AM species, thereby
improving the growth performance of plants under field conditions. Though mycor-
rhizal fungi enhance the plant growth through plant propagation methods, the
combined application of plant hormones and other beneficial microbes such as
plant growth-promoting rhizobacteria can increase the rooting of cuttings more
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efficiently. The application of beneficial microbes like AM fungi over chemical
treatments could reduce the propagation costs in the nursery and defend against soil
pathogens.
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Kirti Saurabh, J. S. Mishra, M. L. Dotaniya, and Hansraj Hans

Abstract Across the world today, loss of the health of the soil is a key constraint
causing reduced soil productivity and fertility, and also influencing crop yield, all major
threats to food security. Intensive use of land by farmers, without undertaking appro-
priate nutrient management practices, results in the removal of more nutrients from the
soil, which is connected to the decline in the productivity of crops. Plants need various
nutrients in different ratios for their growth and development. The plants obtain these
essential nutrients from soil, water, and air. Some of these nutrients are required in large
amounts, whereas others are necessary in only small quantities for vegetative and
reproductive growth of crop plants. As per recent speculation, reduced yield is mainly
associated with reduction in the appropriate supply of nitrogen (N) by the soil, although
total available N remains unaffected. In rice, silicon-solubilizing microorganisms have
been noticed recently as more important for their role in the solubilization and mobi-
lization of silicate minerals, rendering K (potassium) silicate and making potassium and
silicon easily available to crop plants. Major causes of zinc deficiency in India are
intensifying cultivation, unbalanced supply of nutrients, generally without zinc (Zn),
and the predominance of lands with low organic matter content, calcareous nature, and
high pH. Alternately, numerous microorganisms, especially those allied with roots,
may increase the growth and productivity of plants. In the recent few years the use of
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Zn-solubilizing bacteria (ZSBs) as bio-fertilizers has acquired momentum, and bac-
teria are significant in improving soil nutrient content and sustaining crop production.
ZSBs have been proven to have great ability to enhance Zn availability in the
rhizosphere and to improve Zn supply to crop plants. Many genetically modified
strains (GMSs) may be able to mobilize/solubilize more plant nutrients from the root
zone. Development of GMSs with improved solubilization/mobilization of nutrients
through genetic engineering and DNA technology is necessary to maintain an
environmentally friendly and sustainable agriculture production system. Plant breed-
ing strategies also appear to be a more reliable and cost-effective technique to enhance
Zn content in plants. This chapter is mainly focused on silicon and zinc microorgan-
isms, their role in the uptake mechanisms and solubilization activities in plants
relative to nutrient dynamics, and the potential to apply this knowledge in managing
a sustainable and eco-friendly agriculture system.

Keywords Enzymatic activities - Mechanisms - Significance - Silicon-solubilizing
bacteria - Sustainable agriculture - Zinc-solubilizing bacteria

6.1 Introduction

The use of bio-fertilizers is a critical factor in integrated nutrient management (INM).
Bio-fertilizers are a renewable source of nutrients, environmentally safe in compar-
ison to synthetic fertilizers, and also low in cost. Among the sources of plant
nutrients, growth-promoting rhizobacteria (PGPR) offer a possible way to increase
production and quality of grains without affecting the environment. Several research
studies have shown that bio-fertilizers are a good substitute for synthetic fertilizers to
improve the growth of plants as well as crop yields, reducing the use of hazardous
agro-chemicals. These microorganisms colonize root surfaces and internal plant
tissues. PGPRs improve plant growth by N-fixation, supply of inorganic phosphorus
(P), solubilization of silicon and zinc, siderophore production, phytohormone syn-
thesis, and reducing pathogen effects (Lugtenberg and Kamilova 2009). For higher
plants, silicon (Si) is not considered an essential nutrient but has been found
beneficial for many plant species, particularly tropical poaceous plants such as
rice; it is also required for the healthy growth and development of plants (Liang
et al. 2007). As other essential plant elements, Si has a key function that is
mechanical rather than physiological. These characteristics of silicon function
show why the effects are easily found in plants that accumulated silicon to a small
extent and why a silicon effect is more explicit in biotic or abiotic stress. Silicon
makes thicker and stronger plant cell walls as well as increasing the size of the
vascular system (Meena et al. 2014a). This thick plant cell wall makes the plant
stronger in all aspects, and the enlarged vascular system allows more water and
nutrient intake, resulting in larger, healthy plants producing higher yields. Silicon-
solubilizing bacteria (SSBs) are bio-fertilizers that are based on selected strains of
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bacteria of the genus Bacillus found to be naturally beneficial. These bacteria can be
utilized as effective soil bio-inoculants that solubilize silicon, provide the potential to
tolerate biotic and abiotic stress, and enhance plant resistance to diseases from
attacks by insects and other pests. It is used in organic agriculture along with
bio-fertilizer inocula such as nitrogen-fixing bacteria; phosphate-solubilizing bacte-
ria (PSBs), potash-mobilizing bacteria (PMBs), zinc-solubilizing bacteria (ZSBs),
sulfur-solubilizing bacteria (SSBs), iron-solubilizing bacteria (FSBs), manganese-
solubilizing microbe (MSMs), and vesicular-arbuscular mycorrhiza (VAM). Such
bio-fertilizers are also safe to use with plant extracts (botanical) and bio-pesticides,
and an effective component in IPM/INM programmes, thus leading to significant
reduction in use of synthetic/chemical fertilizers, which not only create residues in
the soil but also cause resistance and resurgence problems in the environment.

In the changing global scenario, the role of Si becomes more important for a
higher yield with sustained productivity. Silicon-solubilizing bacteria (SSBs) could
be significant in solubilizing not only the insoluble forms of silicon but also
potassium and phosphates, therefore enhancing soil fertility and enhancing crop
productivity (Maleva et al. 2017). Phosphorus (P) and potassium (K) are key
elements for growth and development of plants, and P and K fertilizers are com-
monly applied in soluble form to obtain optimum yields. This strategy is especially
important for reclamation of infertile or degraded soils that are not suitable for
sustainable agriculture. Various researchers have reported the effect of SSBs on
nutrient uptake from the soil, and their positive influence on photosynthesis and the
growth of some crops (Han et al. 2006). The addition of SSBs-enriched bio-fertilizer
to a clay substrate significantly increased the thickness of the mesophyllic layer, the
number of mesophyll cells, plastid material volume, photosynthetic rate, and pho-
tosynthetic pigment content in the leaves of Brassica juncea (Fig. 6.1) (Maleva et al.

T

(/5]

‘}'E 30 1 —e— Control —=— SSB-EB *
N

O

(@)

© 20 A

€

=.

o)

o

© 10

©

<

C

>

N

o

.'6 0 sl T T T T T T T T T T T T T T T T T T T T 1
= 100 400 700 1000 1300 1600 1900 2200

PAR (umol m=2s-T)

Fig. 6.1 Photosynthetic rate in the leaves of Brassica juncea affected by silicon-solubilizing
bacteria (SSB)-enriched bio-fertilizer (Maleva et al. 2017)
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2017), providing enhanced CO, uptake by Indian mustard. Consequently, we can
conclude that bio-fertilizer based on SSBs improved the photosynthetic activities of
B. juncea. Changes in the studied parameters of mustard plants grown with added
silicon-solubilizing bacteria (SSB)-enriched bio-fertilizer (EB) can result from
increasing the available forms of macro-nutrient content in the substrate by solubi-
lization of clay silicates, as confirmed by enlargement of the total P and K concen-
tration in the leaves of B. juncea (Maleva et al. 2017). Pedda et al. (2016) found that
maximum grain yield (3622 kg/ha) was obtained with the application of SSB + FYM
followed by FYM (farmyard manure) and SSB alone.

Uses of Zn partly cater to plant needs as 96-99% of supplied Zn is converted into
various insoluble forms, depending on soil types and physicochemical reactions in the
7 days of application (Saravanan et al. 2004). Soil microorganisms are potential options
that could serve Zn needs by solubilization of the complex Zn available in the soil.
Many soil microbes, such as Pseudomonas spp. and Bacillus spp., are observed to
solubilize Zn. Microorganisms solubilizing the metal form by chelated ligands, and
oxido-reductive and proton systems, are present on the surface of cells and membranes
(Crane et al. 1985; Wakatsuki 1995). These bacteria also showed different beneficial
traits for plants, such as the formation of vitamins, antifungal substances, phytohor-
mones, antibiotics, hydrogen cyanide, and siderophores (Rodriguez and Fraga 2004).

Similarly, Zn deficiency is a common issue in plants as well as human beings. Its
shortage in plants checks nitrogen metabolism and photosynthesis, decreases
flowering and fruit setting, reduces the synthesis of phytohormones and carbohy-
drates, and delays crop maturity, resulting in reduced crop yield and seed quality.
Chaudhary et al. (2007) observed that Zn deficiency is the key determination of
paddy production in many parts of the country. Almost 50% or more of the world’s
soils that are under a cereal-based cropping system have lower available Zn, which
causes reduced yield and quality of seeds and grains (Welch and Graham 2004). Zn
is required for all living forms including plants, humans, and microorganisms
(Kumawat et al. 2013a, b; Kumar and Bohra 2014). All humans and macro- and
microorganisms need Zn in small quantities throughout life to complete their
physiological activities (Kumar et al. 2018), and Zn is also an important micronu-
trient for the life cycles of plants (Kumar et al. 2015a).

The main aim of bio-fortification is to produce plants having augmented content
of bio-available nutrients in the consumable portions (Kumar et al. 2017). Cereals
and other staple plants are the main food for the larger part of the world’s population
but these may have shortage in micronutrients, from a nutritive outlook, having less
Zn and other required plant nutrients (Kumar et al. 2015b, ¢). Under the process of
bio-fortification the major drawback is the root or shoots barriers and the process of
grain filling (Kumar et al. 2016a). Research has shown different possible ways to
combat these situations. The distribution of Zn can be mainly controlled by heavy
metal transport of P-ATPase and the metal tolerance protein family (Kumawat et al.
2012, 2015; Kumar et al. 2016b, c). For a better understanding of Zn transport,
mechanisms are needed to enhance grain quality and to reduce the deposit of
hazardous metals (Kumawat et al. 2017). Most soils are either Zn deficient or
the Zn content is in a fixed form not available to plants; thus, in these soils, a Zn



6 Silicon (Si)- and Zinc (Zn)-Solubilizing Microorganisms: Role in. . . 113

deficiency appears. Zn deficiency is more frequently found in paddy fields, soils
having a higher level of P and Si, and highly weathered acid and coarse textured,
neutral, sandy, and calcareous soils (Kumar and Meena 2016). Zn deficiency may be
related to the properties of the soil, as in calcareous soils. If Zn is present in soils at
less than 10~ " to 107 M, plant growth may be affected (Saravanan et al. 2007). In
70% of the soils in the Pakistan, Zn deficiency has been reported (Shaikh and Saraf
2017), and Zn deficiency has been found in 50% of the cultivated lands in China.
Available Zn is mainly found in the form of sphalerite (ZnS); low-Zn-containing
minerals include zinkosite (ZnSO,), zincite (ZnO), hopeite [Zn;(PO,),.4H,0],
franklinite (ZnFe,0,), and smithsonite (ZnCO5).

6.2 Significance of Bio-inoculants in Sustainable
Agriculture

Bio-inoculants are the most important factor of sustainable agriculture, having living
microorganisms with the capacity to solubilize/mobilize important plant nutrients
from unavailable to readily available forms by microbial paths. Bio-fertilizers have
comes to stay in Indian farming in the past three decades regarding low cost,
significance to crop production, and health of the soil as well as their eco-friendly
nature. Use of bio-fertilizers is a key component for integrated nutrient management
(INM) as these are renewable sources of nutrients to supplement synthetic fertilizers
for a sustainable farming system. Bio-fertilizers include nitrogen-fixing microbes
(NFM) (Rhizobium, Bradyrhizobium, Azotobacter, Azospirillum), phosphorus-
solubilizing microbes (PSM) (Aspergillus, Bacillus, Pseudomonas), phosphate-
mobilizing microorganisms (mycorrhizae) (PGPR), and potassium-solubilizing
microorganisms (KSM), ZSBs, and SSBs. For their metabolism, growth, and devel-
opment, plants require different types of nutrients. Microbes have significant roles in
solubilization of nutrients required by the plants. Among the essential plant nutri-
ents, the micronutrient Zn is a most important plant nutrient that is essential for
healthy development and better reproduction for all the plants. Thiobacillus
ferrooxidans and Thiobacillus thiooxidans are facultative thermophilic iron oxi-
dizers that solubilize Zn from sulfide sphalerite (Hutchins et al. 1986). Zn is a
plant nutrient source when it is in low concentration, but at higher doses it may be
toxic to plants as well as human beings. The solubilizing of Zn might have extended
the growth of bacteria at higher doses. Unless media tolerate higher doses of Zn, its
solubilization will not be continued. A few fungi groups have the capacity to
solubilize Zn; among them, Aspergillus niger was reported to grow in 1000 mg
Zn, so this fungi is used to quantify Zn in soils having low Zn (2.0 mg/kg Zn) (Bullen
and Kemila 1997).

Microorganisms present in the root zone of different plants produce or release
auxins as secondary products/metabolites because of higher proving of substrates
exuding from the roots in comparison to non-rhizospheric soil. Bacteria of the genera
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Pseudomonas, Azospirillum, Rhizobium, Xanthomonas, Enterobacter (cloacae),
Alkaligenes (faecalis), and Acetobacter diazotrophicus, and a few fungi and algae,
are able to produce auxins, which exert a pronounced effect on plant growth and
development (Patten and Glick 1996). Indole acetic acid (IAA) is also an important
physiologically active auxin. Several microorganisms produce L-tryptophan metab-
olism. IAA is also produced by ZSBs that may be also having some effect on growth
of different plant species (Rajkumar and Freitas 2008).

6.3 Plant Nutrients

Crop plants require different nutrients in different quantities for their growth and
development. Plants obtain these essential nutrients from soil, water, and air. Some
of these nutrients are required in large amounts, whereas for others small quantities
are adequate for the vegetal and reproductive growth stages of the crop plant.
Seventeen nutrients are essential to healthy growth and development of plants.
The macronutrients are nitrogen (N), phosphorus (P), potassium (K), sulfur (S),
calcium (Ca), magnesium (Mg), carbon (C), hydrogen (H), and oxygen (O); the
micronutrients are copper (Cu), iron (Fe), boron (B), manganese (Mn), molybdenum
(Mo), chlorine (Cl), zinc (Zn), and nickel (Ni). These plant nutrients are generally
divided into three major categories. In the first category are the three macronutrients,
carbon (C), hydrogen (H), and oxygen (O), which can taken up from water, air, or
both by the plants. These nutrients do not need to be provided by the soil; therefore,
synthetic fertilizer is not needed. The remaining 14 essential plant nutrient categories
are soil-originated macronutrients and soil-originated micronutrients. The soil-
originated macronutrients are N, P, K, S, Ca, and Mg; and the soil-originated
micronutrients are B, Cl, Cu, Fe, Mn, Mo, Zn, and Ni.

Micronutrients are generally needed in relatively small amounts (100 mg/kg dry
weight) by plants, but have significant roles in cellular and metabolic activities such
as energy metabolism, gene regulation, signal transduction, and hormone perception
(Tripathi et al. 2015). Many micronutrients are major ingredients for essential amino
acids and enzyme complexes in crop plants and microbes. The low levels of the
S-containing amino acids, methionine and cysteine, in major food crops limit Zn
bioavailability; thus, it would be worthwhile to increase the level of these amino
acids in these food crops to overcome the negative effect of anti-nutritives on Zn
bioavailability (Johaning and O’Dell 1989). If deficiency of one or more
micronutrients can affect viral and bacterial pathogens, chlorosis, necrotic disease,
increased vulnerability to fungi can stunt plant growth, affecting the productivity and
health of plants. These micronutrients are mostly limited in availability in the soil
from many causes such as low availability or deficiency, soil type, flooded/dry
situations, drainage, soil texture, soil pH, moisture availability, and weather condi-
tions (Imran and Gurmani 2011).
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6.4 Silicon (Si)

In the universe, by mass silicon is the eighth most important key element; however, it
is very rarely found as a pure free element in nature, having a wide range of
distribution in the form of silicon dioxide or silicates. The most prevalent element
in the Earth’s crust is oxygen; the second most prevalent element is Si, included in
more than 25% of the Earth’s crust. In fact, the concentration of Si in soil is equal to
macronutrients such as K and Ca and is also well in excess of P levels. Silicon is a
tetravalent cation (Si4+) with atomic number 14, oxidation states of +2, +4, and —4,
and molecular weight 28.09. It does not react with acids, except hydrofluoric acid. On
the periodic chart, silicon is surrounded by near-neighbours B, C, N, O, P, and S. It is
interesting to notice that all these neighbours are found to be essential elements
whereas Si is identified as necessary only for plants (Gascho 1978).

Most Si is commercially used in Portland cement to make concrete, ceramics such
as porcelain, traditional quartz-based glass, and synthetic polymers. In the modern
era, a large amount of Si is utilized in steel refining, aluminum casting, chemical
industry, semiconductor electronics, and integrated circuits for computers on which
modern technology is greatly dependent. Silicon is an essential element in biology.
In trace quantities, it is needed by animals, but various sea sponges and microor-
ganisms such as diatoms and radiolarians secrete a skeletal structure composed of
Si. Silicon is often deposited in plant tissues in all parts of most of the crops and
plants in the universe. Silicon is a functional nutrient although it is not considered as
an essential nutrient in crops; therefore, a systematic survey of Si status in soils and
its relationship with soil properties, response of applied Si on growth characters,
yields, juice quality, nutrient uptake, disease, pest resistance, etc., would be of
practical importance.

6.4.1 Significance of Si in Plants

Silicon is mainly available to plants in the form of monosilicic acid [Si(OH),4], which
is absorbed by the plant roots from soil water. The element is then deposited as
amorphous silica throughout the plant, mainly in the cell walls. Si is identified as a
major constituent of soils. Si alleviates abiotic stresses such as radiation, lodging,
drought, freezing, high temperatures, and ultraviolet, and composite stresses such as
nutrient imbalance, metal toxicity, and salt tolerance (Epstein 1994). It aids in
drought resistance by maintaining the photosynthetic rate, erectness of leaves,
water balance, and structure of the xylem vessels in higher transpiration rates, mainly
the result of higher temperatures and moisture deficiency (Hattori et al. 2005). The
role of Si in plants is multifunctional. It aids the strength and thickness of cell walls,
keeps plants upright, and positions the leaves for good light interception. Many
plants such as rice, sugarcane, and tomato actually require Si as an essential element,
although in many species Si has been shown to offer such growth benefits as
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increased absorption and translocation of several macro- and micronutrients (Meena
et al. 2014b, ¢). The concentration of Si in plant species ranges from 0.1% to 10%
(Epstein 1994). SSBs secrete many organic acid compounds as a part of its metab-
olism that has a double role in Si weathering. SSBs release H ions to the medium
and stimulate hydrolysis and organic acids including keto-acids, oxalic acid, citric
acid, and hydroxyl carbolic acids that bond with cations and are made easily
available to the plant. Joseph et al. (2015) observed a few identified bacteria that
can by solubilization or mobilization change insoluble minerals (silicates, phos-
phates, potash) into readily available forms by releasing many organic compounds
such as 2-ketogluconic acid, polysaccharides, and alkalis. Barker et al. (1998) found
that many microbes are made available to silicates by developing organic ligands,
hydroxyl anions, protons, extracellular polysaccharides, and enzymes. Seven crops
are Si accumulators among plant species that accumulated more than 1.0% Si on the
basis of dry matter (Hodson et al. 2005). Worldwide, 210-224 Mt Si/year is removed
by crops (Savant et al. 1997). Narayanaswamy and Prakash (2009) reported that total
Si removed by paddy plants grown in Inceptisol soils ranged from 205 to 611 kg/ha.

6.4.2 Dynamics and Occurrence of Si in Soils

Using plant ash to improve the fertility status of degraded soils was suggested by the
Roman Empire poet and scientist Virgil (Vergilius). Chinese scientists applied parts
of paddy straw to the soils. In the China Kingdom, there were few fertilizers that
could be classified as Si fertilizers, and plant ash was named ‘Burning Manures.’
Jons Jacob Berzelius discovered Si as an element in 1824, and he was the first person
to study the interaction of silicon and organic matter in nature (Mathew et al. 2004).
Silicon is the second most important element in the Earth’s layers, almost exclu-
sively present in the form of silicon dioxide (SiO,) in association with the wide
arrays of Si-bearing minerals in crystalline, poorly crystalline, and amorphous
phases (Sommer 1926). An average of 28% Si by weight ranging from 0.52% to
47% was found in the pedosphere of the Earth’s crust. Minerals of Si are commonly
found in carbonaceous rock such as carbonites and limestones, whereas rocks such
as orthoquartzite and basalt have a high content of Si (23-47%) (Wedepohl 1995;
Monger and Kelly 2002). Silicon content ranges from 200 to 300 Si g/kg in clay soils
and 450 Si g/kg in sandy soil (Kovda 1973; Matichenkov and Calvert 2002). Silicon
in soils varies from 1.0% to 45% on a dry weight basis (Sommer et al. 2006). Silicon
is the key fertilizer for growing crops, enhancing soil resistance to environmental
stress (Liang et al. 2005). Weathering of silica minerals is the end source of
dissolving Si (monosilicic acid, H4SiO,4), which contributes to continental soils by
linked biogeochemical processes (Basile-Doelsch et al. 2005). Silicon releases to the
soil from weathering of silicate-containing minerals are rather slow and are con-
trolled by precipitation and neo-formation of authigenic Si components, uptake and
assimilation by plants and microorganisms, preservation of stable Si forms in the
profile, and addition to external atmospheric input (Fig. 6.2) (Cornelis et al. 2011).
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Fig. 6.2 Different fractions of Si in soils (Tubana and Heckman 2015)

These are linked processes, and the largest inter-pool Si transfer takes place between
biomass (biogenic silica and microorganisms) and soil solution (at rates ranging
from 1.7 to 5.6 x 10'* Si kg/year. In the oceans, the largest inter-pool Si transfer is
between biogenic silica from diatoms and dissolved Si at 6.7 x 10'* Si kg/year
(Tréguer et al. 1995; Matichencov and Bocharnikova 2001). It is assumed that the
average quantity of Si is transformed into biogenic silicas at 2.5 x 10 Si kgl/year
(Laruelle et al. 2009).

6.4.3 Si-Solubilizing Bacteria (SSBs)

Many microorganisms are present in soil, but few are capable of solubilizing silicon.
Proteus mirabilis, Bacillus caldolyticus, Pseudomonas, and Bacillus mucilaginosus
var. siliceous were observed to be most suitable to solubilize Si from natural silicates
(Meena et al. 20144, b, c). These SSBs are capable of decomposing silicates, mainly
Al,Si05. These microbes secrete many organic substances during their growth
period that can assist in weathering, also freeing K from K-containing minerals.
Solubilizing of silica minerals by microorganisms is considered as a good source of
Si to be provided for vegetation. These microbes enhance the growth characteristics,
chlorophyll value, 1000-grain weight, filled grains, and biological yield of paddy
crop (Avakyan et al. 1986). Use of SSBs in soil gave greater yields of potato, wheat,
maize, and tomatoes and increased the microbial population in the maize rhizosphere
(Fig. 6.3) (Aleksandrov 1958).
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Fig. 6.3 Effect of silica sources on the microbial population in maize rhizosphere

6.4.4 Mechanism of SSBs

Silicon-solubilizing microbes secrete many organic acids during their metabolism
activities that help in weathering of silicates. These organic acids provided H* ions to
the medium and stimulated hydrolysis to produce acids such as oxalic acid, keto
acids, citric acid, and hydroxy carbolic acid, which complex with cations and are
rendered readily available to plants (Fig. 6.4). Barker et al. (1998) found that
microbes are made readily available to silicate minerals by releasing of hydroxyl
anions, protons, organic ligands, cellular polysaccharides, and enzymes. These
bacteria alter silicates into soluble Si. SSBs increase the availability of soil nutrients,
although Si is considering as a nutrient “anomaly” (Epstein and Bloom 2005).
Actually, the biotic mechanism behind nano-silica uptake and its influence on soil
microbes and silica availability requires thorough investigation. The maximum
microbial population was found under the source of nano-silica (Fig. 6.5). Silicon
concentrations in both plants and soils are pivotal in establishing the effect of Si,
when applied as another silica source. Analysis of soil nutrients added with sodium
silicates and calcium silicate has been done by Nanayakkara et al. (2008). All the
same, findings on the influence of unique size-dependent qualities of nano-silica on
soil microorganism populations and changes in soil silica content are meager.
Although the effect of Si nano-particles on corn crop growth was shown in an earlier
study, an in-depth assessment of the bio-components of the soils and possible
utilizable mechanism of silica is lacking (Epstein and Bloom 2005). Growing
some crops with poor management practices decreases Si concentration in soil,
resulting in lower yields. In addition, soil microorganisms have great ability for
converting various Si sources into a form readily taken up by the plants
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Table 6.1 Yields of sugarcane as influenced by different sources of silicon (Phonde and Banerjee
2015)

Millable Cane Sources | Commercial

cane height | yield content | cane sugar yield | Benefit:cost
Source of silicon (cm) (t/ha) (%) (t/ha) ratio
Control 210.54 89.20 |20.53 13.26 2.92
Bagasse ash 218.49 98.90 |20.36 14.55 3.22
Fly ash 212.73 106.06 |20.59 15.79 3.38
Pond ash 213.16 111.79 |20.41 16.44 3.56
Calcium silicate 210.49 106.65 |21.07 16.20 3.19
2.5% K,SiOj3 spray 212.40 102.07 |21.03 15.58 3.26
SEM+ 4.78 3.1 0.23 0.54 0.10
CD (P =0.05) NS 9.7 |NS 1.68 0.30

(Muralikannan and Anthoniraj 1998). Unfortunately, Si sources are not effectively
taken up by the plants because they are not a direct source. Actually, synthetic silica-
based fertilizer production cost is high and the uptake of silica is very slow
(Table 6.1).

6.4.5 Si-Induced Mechanisms of Plant Resistance to Stress

Monosilicic acid or orthosilicic acid (H4Si0,4) are the Si forms that are taken up by
the roots of plants. Knight and Kinrade (2001) suggested that H,SiO, concentration
in soil solution ranges from 0.1 to 0.6 mM at the pH levels of most agricultural soils.
Uptake of monosilicic acid or orthosilicic acid by lateral roots is via an active,
passive, and rejective mechanism (Cornelis et al. 2011). It is considered that in
higher Si accumulators the quantity of monosilicic acid adsorbed by active mecha-
nisms is greater than content uptake by mass flow because of the higher density of Si
transporters in roots and shoots, facilitating monosilicic movement across the root
cell membranes. In rice crops, both radial transport and xylem loading of H4SiO, are
mediated by transporter Lsil and Lsi2 in roots and Lsi6 in shoots (Mitani and Ma
2005; Ma et al. 2007). Takahashi et al. (1990) classified plants as high accumulators,
intermediate accumulators, or non-accumulators according to active, passive, and
rejective absorption mechanisms, respectively. However, it was based solely on
measuring Si in the leaves and does not measure this element daily in other parts
of the plant. Some crops, including crimson clover (Trifolium incarnatum), coffee
(Coffea), green onions (Allium cepa), radish (Raphanus sativus), Chinese cabbage
(Brassica rapa), peppers, and tomatoes are now known to have more Si content in
their roots than in the shoots (French-Monar et al. 2010; Huang et al. 2011). Thus, it
is believed that rooting of all plants in the soil will have Si in their plant tissue and
that the Si content may be greater than that of other essential minerals. Therefore, it is
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not likely that there are plants that do not accumulate silica. Many workers continue
to find that plants are categorized as high accumulators (10-100 g/kg, dry weight
basis), and more are monocotyledons, such as rice, barley wheat, and sugarcane
(Liang et al. 2007). Intermediate silica accumulation crops have 5-10 g/kg dry
weight and are also monocotyledons, whereas dicotyledon plants, with less than
5 g/kg by dry weight, are low accumulators. The monosilicic acid taken up by root
cells is accumulated in the leaf epidermal cells. If water is removed, the deposited
H4Si0,4 in the leaf becomes thickened into a hard polymerized silica gel (SiO,.
nH,0), known as phytoliths. The accumulated Si in the leaf epidermal cells is
immobile and cannot be translocated to new emerging leaves of the plants (Raven
1983).

Many reports are available regarding the benefits of silica in plants. Mainly, Si
helps maintain productivity of plants under stressed situations (Epstein 1999; Li
et al. 2007). The presence of the Si-induced mechanism enhanced plant resistance
against natural and environmental stresses in the soils, root systems, and inside the
plants. Some of the known mechanisms and actions that are involved externally and
internally for induced plant resistance to more stresses are included in Table 6.2. The
code position of Si and metals such as Al, Mn, and Cd in either soil and root solution
and in the plants decreases concentrations of free metals at toxic levels in vegetation.
Si-precipitated metals are not easily moved up, which reduces their toxic influence
on plants (Richmond and Sussman 2003).

6.5 Zinc (Zn)

Zinc deficiency is the most common micronutrient deficiency and significantly
affects crop production. It is an essential micronutrient needed by plants for higher
growth, reproduction, and nutritional value. Zn is available in soils in the inorganic
form, which commonly is not an available form for plant assimilation. It is found as a
free element that drives and increases the rates of metabolic reactions in crop plants
(Parisi and Vallee 1969). The levels of Zn in plant materials are very low, commonly
in the order of 100 ppm or less in dry weight. The Zn requirement of plants is
correspondingly small. Zn taken up by plants is less than 0.5 kg/ha/year. Zn
concentrations ranging from 150 to 200 pg/g in dry weight is considered toxic to
plants (Sauerbeck 1982). In practice, Zn deficiency is easily corrected by foliar spray
or soil application through Zn-containing fertilizers. Application is usually in the
range of about 5.0 kg/ha, which is effective for 3 years. ZnSO, is the most commonly
used fertilizer because it has high solubility in the soil. Many microbes (bacteria)
that are associated with roots of plants have great potential to improve plant growth
and productivity through supplying mineral nutrients that are less mobile in the
soils, such as Zn: these are the zinc-solubilizing bacteria (ZSBs) (Gandhi and
Muralidharan 2016).
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Table 6.2 Proposed silicon (Si) mechanisms associated with improved tolerance of plants to biotic
and abiotic stresses

Number

Mechanisms

Specific actions

1.

External or involved
in soil and root in
preventing excessive
uptake of metal

High [H4Si0,] increases soil pH, precipitates metal, e.g., Al,
Cd, Fe, Mn (Lindsay 1979)

H,4Si0,4 adsorbs Al hydroxides, diminishing the activity of Al
in solution (Baylis et al. 1994)

Mobile Al is strongly adsorbed on surfaces of silica
(Schulthess and Tokunaga 1996)

Si induces oxidizing capacity of roots facilitating the conver-
sion of plant-available Fe>* to a less plant-preferred Fe**
(Ma and Takahashi 2002)

Si induces release of OH™ by roots, which raises soil pH
(Wallace 1993)

2. Reinforces plant Silica in shoots enhances structural component of plant and
protective layer and creates a hard outer layer (Bélanger et al. 2003)
mechanical structure | Improves overall mechanical strength and protective layer of
plant (Hayasaka et al. 2008)
3. Mediated/primed Increased production of glucanases, phytoalexins, and PR-1
mechanisms of proteins (Rodrigues et al. 2004, 2005)
defence Enhanced deposition of phenolic-based compounds (Bélanger
et al. 2003; Rodrigues et al. 2003)
Up- and downregulation of a number of unique defensive and
metabolic genes (Brunings et al. 2009; Ghareeb et al. 2011)
Interferes with the synthesis and/or action of fungal ethylene
(Van Bockhaven et al. 2014)
Sequestration of cations and enhancing activity of some
protein molecules (Fauteux et al. 2005)
4. Internal or in planta Enhances plant antioxidant systems (Inal et al. 2009)

Silica deposits in cell wall react (co-precipitate) to heavy
metals, impairing their translocation inside the plants
(Richmond and Sussman 2003; Ma et al. 2007)

Prevents accumulation of Na of salt-stressed plants through
Si-induced reduction in transpiration (Yeo et al. 1999)

6.5.1 Significance of Zn in Plants

Zinc is a key element for plants with a significant role in structural constituents or
regulation cofactors of a wide range of various enzymes activated by Zn that are
involved in carbohydrate metabolism, maintenance of cellular membrane integrity,
protein synthesis, regulation of auxin synthesis, and pollen formation (Alloway
2008). Zinc is also necessary for the integrity of cellular membranes to preserve
the structural orientation of macromolecules and the ion transport system. Its
interaction with phospholipids and sulthydryl groups of membrane proteins contrib-
utes to the maintenance of membranes. Zinc is essential for the synthesis of trypto-
phan, a precursor of IAA, and is also active in the production of growth hormones
such as auxins (Cakmak 2000). Zinc seems to affect the capacity for water uptake
and transport in plants and also reduces the adverse effects of short periods of heat
and salt stress.
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6.5.2 Zn Status in Soils

Soils inherit their minor elements, including zinc, mainly from rocks through geochem-
ical and pedo-chemical weathering processes. The average Zn content of the lithosphere
zone is about 800 ppm (Goldschmidt 1954). Zn is generally found in the range from
10 to 300 mg/kg in many minerals. The level of Zn in soils is very much related to the
parent materials. Soils derived from granite and gneiss can be low in total Zn (Helmke
et al. 1977). Similarly, total Zn is low in highly leached, acid, or sandy soils such as
those found in many coastal areas. Quartz in the soil dilutes Zn because the reported
concentrations of Zn in quartz are very low, from 1.0 to <5-8 pg/g (Alloway 2008). Zn
deficiency is becoming the most common nutrient problem; any practices that enhance
Zn uptake and its transportation to sink have significant practical relevance. The
presence of Zn in the soil depends on pH, type, intensity of weathering, climate, and
other predominating factors during the process of soil formation (Saeed and Fox 1977).
Zn deficiency can be found in every part of the world, and almost all crops respond
positively to application of Zn. The deficiency occurs in a wide range of semi-arid areas:
calcareous types of soils, tropical regions with highly weathered soils, and sandy-
textured soils in several different climatic zones tend to be more seriously affected.
More than 30% of the cultivable lands of the world contain a low level of Zn (FAO).
Zn is the essential micronutrient for all plants and microorganisms on Earth. Zn
occurs in the Earth layers at 0.008%. It is significant in nutrition for prokaryotic and
eukaryotic microorganisms as cofactor or metal activator in various enzymatic
processes (Hughes and Poole 1991). Zn deficiencies are observed worldwide, mainly
under the rice-based ecosystem of Asia Pacific regions (Tisdale et al. 2009) and in
different orders of soils such as aridisols, mollisols, vertisols, and alfisols (Srivastava
and Gupta 1996). The lowest Zn content in soils was found in spodosols (28 mg/kg),
mollisols (30 mg/kg), luvisols (35 mg/kg), and vertisols (36 mg/kg); higher levels
were found in ultisols (43 mg/kg), alfisols (44 kg/ha), entisols (47 mg/kg), histosols
(58 mg/kg), fluvisols and inceptisols (60 mg/kg), aridisols (61 mg/kg), and oxisols
(72 mg/kg) (Katyal and Sharma 1991; Kiekens 1995). More than 90% Zn in soils is
available in the insoluble form and cannot be adsorbed by plants, whereas exchange-
able Zn ranges from 0.1 to 2 mg/kg in soils (Singh 2011). In India, the total area
under Zn deficiency is about 10 million hectares (ha). In the Indo-Gangetic Plains
regions, about 85% of the area is under rice-wheat cropping systems, and their yield
limiting factor is Zn, mainly because of calcareous and alkaline soils. In India,
soybean-wheat systems removed around 7 tonnes grain/ha/year Zn from the soils
and total uptake was about 416 g/ha/year. Indian soils showed deficiency around
50%, which is below the critical limit (0.5 mg/kg of available Zn) (Prasad 2010).

6.5.3 Roles of Zn in Plants

Among the micronutrients, Zn is an essential element present in enzymatic systems
as cofactor and metal activator of various enzyme activities. Plant growth promotion
requires Zn is an important essential micronutrient as it is a key part of many
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metabolic enzymes, and its poor translocation in plants advised that a fixed supply of
available zinc be obtained for proper growth and development of plants. Zinc is the
first element known to be essential for human, animals, plants, and many microbes
(Kabata-Pendias 2000). It is also required for regulation of carbonic anhydrase for
fixation to carbohydrate in crop plants (Tisdale et al. 1984). Zn finger transcription
factors are required for the development and function of floral tissues such as
anthers, tapetum, pollen, and pistil secretary tissues in many plants (Marschner
1995).

Zn is a component of the active catalytic centre of the enzyme carbonic
anhydrase, which increases the rate at which equilibrium is achieved between CO,
and bicarbonate ions in solution. The reaction is very fast (a turnover time of 1079
and, therefore, the concentration of the enzyme and thus of zinc of this particular
component of leaf tissue is very small (Rains 1976). It has more influences on plant
life processes such as nitrogen metabolism, uptake of nitrogen, and quality of
protein; chlorophyll synthesis and photosynthesis; and tolerance to biotic and abiotic
stresses (Potarzycki and Grzebisz 2009). Zn shows superiority against plant insect
pests and in disease resistance, protein metabolism, photosynthesis, pollen develop-
ment, and cell membrane integrity (Kumawat et al. 2015; Gurmani et al. 2012) and
improved levels of antioxidant enzyme and chlorophyll content in tissues of plants
(Sbartai et al. 2011). An inadequate supply of Zn will reduce production, produc-
tivity, and quality attributes of produce. Thus, for proper growth and development of
vegetation or plants, a fixed minimum level of Zn is essential.

6.5.4 Deficiency of Zn in Plants

Zinc is an essential nutrient for plants in a very small amount. In Zn uptake by plants
from soils, adequate levels of dissolved Zn are needed for optimal growth of crops
(Reed and Martens 1996). Necessary Zn for optimal growth and development of
plants is 15-20 mg/kg dry weight (Marschner 1995). Deficient Zn levels are usually
about 0—15 mg/kg dry weight (Boehle and Lindsay 1969). That Zn is essential was
first discovered in maize, which is known as “white bud” (Maze 1915); in maize
crops, chlorotic bands developed on either side of the leaf midrib. Zn deficiency was
previously reported in rice crops by Nene (1966) at GBPUAT (Govind Ballabh Pant
University of Agriculture and Technology), Pantnagar, India. Because Zn is associ-
ated with many enzymes, its deficiencies cause various disorders in the plants. In
young plants, interveinal areas have dark brown necrotic lesions. These areas may be
pale green, yellow, or white. The deficiency symptoms first appear on young leaves
as zinc is immobile under conditions of deficiency. These leaves remained small,
cupped upward, and developed interveinal chlorosis and necrotic spots on the top of
the leaf surface which later merge to make a brown necrotic and brittle patch. The
most common features of Zn deficiency in plants include stunted growth, smaller
leaves, shortened internodes and petioles, chlorosis, pollen sterility, and spikelet
sterility. Zn deficiency can have a negative impact on grain quality; plants
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susceptible to injury by excessive light or temperature and to infection by fungus
diseases may also increase (Cakmak 2000). The most identifiable symptoms in plants
is loss of turgidity, where the plants fall over and float on the water surface. Zn
deficiency may also affect the uptake and flow of water into vegetation and reduce the
negative effects of short or long spells of temperature and salinity stresses (Tavallali
etal. 2010; Peck and McDonald 2010). Zn deficiency also has an important role in the
inhibition of RNA synthesis. Many more symptoms and responses by plants lead to
Zn deficiency, as follow: mottled leaves from interveinal chlorosis, wilting caused by
loss of turgidity in the leaves, and basal chlorosis of leaves, delayed development of
the plant, and “bronzing” of leaf (Tripathi et al. 2015).

6.5.5 Zn-Solubilizing Bacteria (ZSBs)

Zn-solubilizing microorganisms have great potential as compared to chemical
sources of plant nutrients such as fertilizers. Use of microorganisms in sustainable
crop production and restoration of fertility is gaining more interest. Zn-solubilizing
microbes have been discovered from the soils of many crops and tested as plant
growth-promoting factors (Goteti et al. 2013; Sunithakumari et al. 2016). Within
7 days of application, applied Zn fertilizers partially cater the plant need as 96-99%
of given zinc is converted into various insoluble forms; this mainly depends on the
type of soil and physicochemical reactions (Saravanan et al. 2004). Hence, the
insoluble form of Zn can be converted into soluble form by treated bacterial cultures
with the ability for Zn solubilization. This shortage can be managed by zinc-
solubilizing microbes, which have great ability to convert many unavailable forms
of metals to a readily available form. These microbes can convert unsolubilized zinc
such as zinc phosphates, zinc oxide, and zinc carbonates in good amounts, which is
not a common feature among the microbes in the top surface soils (Cunninghan and
Kuiack 1992). ZSBs are capable alternatives that can cater essential zinc to plants
through solubilizing complexed zinc into soils. Several genera of microbes, such as
Bacillus, Pseudomonas, Acinetobacter, Thiobacillus thiooxidans, and Thiobacillus
ferrooxidans, have been found as Zn solubilizers (Saravanan et al. 2007). The
solubilized metals are formed by chelated ligands, protons, and the oxido-reductive
system available on cell surfaces and in cell membranes. These microbes have many
beneficial features to the plants such as producing phytohormones, siderophores,
vitamins, antibiotics, and antifungal substances (Goteti et al. 2013). Rosas et al.
(2009) found that when seed is treated with Pseudomonas aurantiaca in sandy loam
soil in Argentina the grain yield of wheat increases by 36%. A positive correlation
between Zn content and protein content in grain was observed by Cakmak et al.
(2010). Seed inoculation with ZBS improved methionine content in the grains of
wheat varieties compared to no inoculation; Zn inoculants may help to better Zn
bio-availability and to produce better grains. Goteti et al. (2013) reported that seed
inoculated with Bacillus and Pseudomonas increased in root volume (RV), shoot
length (SL), total dry matter (TDM), leaf areas (LA), and also nutrient content in the
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Table 6.3 Biometric growth parameters of maize treated with Zn-solubilizing bacteria (ZSBs) and
inorganic sources of Zn

Root volume Shoot length Total dry matter Leaf area
Treatment | (RV) (ml) (SL) (cm) (TDM) (g) (LA) (cmz)
Control 9.8 (+£0.45) 78.8" (£3.63) 9.16" (+£0.422) 627.7" (£28.93)
ZnS0, 13.8" (£0.64) 8.51% (£3.92) | 15.25% (£0.703) 1161.3% (+£53.52)
Priming | 15.0% (£0.69) 96.0° (+4.42) 12.87° (£0.593) 861.0% (+39.68)
B61 15.0 (+0.69) 97.8° (+4.51) | 11.369 (+£0.523) 908.3° (+41.86)
B40 15.7% (£0.72) 92.14 (+4.24) 11.98° (+0.552) 955.59 (+£44.04)
B116 16.7° (+£0.77) 110.1% (£5.07) 12.78° (40.589) 1113.8° (£51.33)
Bl14 16.2°¢ (0.75) 92.49 (+4.26) 9.81% (+0.452) 901.7° (+41.56)
B118 16.3° (+£0.76) 89.0° (+4.10) 12.08° (+0.557) 1041.8° (+48.02)
P33 15.3%% (+£0.71) 95.8° (+4.42) 12.085(+0.557) 982.54 (+45.28)
P29 18.3° (£0.84) 84.7% (£3.90) | 12.96" (+£0.597) 1147.5% (+58.02)
P74 14.88 (£0.68) 75.5' (£3.48) 10.13" (+£0.467) 851.7% (£39.25)
P17 9.8 (+£0.45) 73.5' (£3.39) 7.381 (£0.340) 611.8' (£28.2)
P21 19.8* (+0.91) 96.0° (+4.43) 10.61° (+0.489) 790.7" (+36.44)
ZSB 12.8' (+0.59) 86.3" (+3.98) 9.678 (+£0.446) 859.7" (£39.62)
FYM 15.5¢ (£0.71) 83.58 (4+3.85) 9.08" (+0.418) 819.38" (+£37.76)
LSD 0.57 2.0 0.42 35.5

Modified after Goteti et al. (2013)
“Idenotes the values are significant to other based on Multiple Duncan’s test

leaf of corn plants (Table 6.3). Several studies have also been reported on solubili-
zation of insoluble Zn forms by ZSBs (Di Simine et al. 1998; Fasim et al. 2002). The
unavailable zinc can be converted into the available form by applying a microor-
ganism that can solubilize the insoluble zinc (Saravanan et al. 2003). Among the
microorganisms, an group of soil bacteria known as plant growth-promoting
rhizobacteria (PGPR) have a role in nutrient cycling and, therefore, have attracted
special attention for such bio-inoculants in sustainable agriculture (Weller and
Thomashow 1994; Glick et al. 1999). In this context, application of beneficial
rhizosphere microorganisms to convert insoluble zinc into the soluble form for
plant assimilation and to achieve objectives of low-cost input is highly essential
for sustainable agriculture (He et al. 2010).

6.5.6 Mechanism of Zn-Solubilizing Bacteria

PGPR are soil-borne microbes that colonize in the root zones, multiply, and compete
with other rhizobacteria to improve the growth of plants (Kloepper and Okon 1994).
These microbes improve the growth of plants through mobilization/solubilization
and help in nutrient absorption or by releasing phytohormones or bio-control agents
to save plants from many pathogens (Glick 2012). Many PGPR have been reported
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to be effective Zn solubilizers. This type of rhizobacteria enhances growth and
development of plants through colonization in the root zones and by solubilizing
complex Zn compounds into simpler ones to make Zn available to vegetation. ZSBs
solubilize Zn by many pathways, that is, acidifications. These bacteria generate
organic compounds into soils that sequester Zn cations and lower the pH of nearby
soils (Alexander 1997). Anions can also chelate Zn and improve its solubility in the
soil (Jones and Darrah 1994). Other possible pathways include secretion of
siderophores and protons, the oxido-reductive system on cell membranes, and
chelated ligands for the solubilization of Zn (Agnihorti 1970; Saravanan et al.
2011). The most important mechanism is the excretion of organic acid by various
bacteria as observed for solubilization of Zn in soil (Nguyen et al. 1992). The
association of ZSBs and roots of higher plants are involved in the mobilization or
solubilization, bio-fortification, and mineralization of Zn pools, as ZSBs can solu-
bilize Zn from inorganic and organic pools of the total Zn present in the soils to
increase Zn availability to plants (Fasim et al. 2002). These microbes are known as
being more effective for Zn solubilization by their conjunction with roots of plants,
producing root exudates that act as chemo-attractants (Shakeel et al. 2015). Di
Simine et al. (1998) reported solubilization of Zn phosphate by strains of Pseudo-
monas fluorescens. It was observed that secretion of gluconic acids in the culture
media helps in mobilization/solubilization of Zn. In this study, it was also found that
lower pH can help solubilizing bacteria to generate organic acids and allow high
production of available Zn in a culture medium. Inoculation with bacteria can
improve bio-available Zn in rhizospheric soils and Zn concentration in the plants
(Whiting et al. 2001; Biari et al. 2008). Saravanan et al. (2007) reported that
5-ketogluconic acid was exuded by Gluconacetobacter diazotrophicus, which
helps in solubilizing Zn present in soils in insoluble form. Isolated bacterium strains
when used as individuals and in combination with other strains significantly
enhanced growth of plants and uptake of Zn by a rice crop as compared to control
treatment and also Zn fertilizers alone (Vaid et al. 2014). Zn content in soil was
increased by use of ZSBs as a inoculant; this approach has been practiced in cereals
but was often neglected for fodder crops. ZSBs can solubilize the insoluble sources
of Zn such as zinc oxide and zinc carbonate because most soils have high Zn
concentration but a much less insoluble Zn form. Both Bacillus spp. and Pseudo-
monas spp. have the capability to solubilize these sources of Zn in the soils
(Saravanan et al. 2003). Many soil microorganisms may be useful to various plant
species by many pathways such as solubilization/mobilization of plant elements and
also as bio-control agents (Khalid et al. 2009) (Fig. 6.6).

Vaid et al. (2014) found that inoculation with ZBSs in paddy field produced
higher plant growth and 42.7% improved Zn content in grains of paddy. Many others
strain has found for improve Zn concentration in the grains and straw of wheat and
soybean and also increases reduced the zinc deficiencies in the soils. Zn-solubilizing
microbes, mainly Bacillus spp., that enhance growth attributes, yields, and
bio-fortification in maize, soybean, and wheat crops, have also been differentiated
by many investigators (Kumar et al. 2016a; Khande et al. 2017).
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Fig. 6.6 Mechanism of Zn-solubilizing bacteria

6.6 Future Perspectives and Scope in Agriculture

Microbial diversification is among the most important components of overall world
biological diversity. The latest technologies exploring microorganism diversity have
found that a large proportion of microorganisms is still undiscovered, and their role
in the ecological aspects is largely unknown. Several microbes are widely known for
solving major agricultural needs such as crop productivity, plant protection, and
maintenance of soil fertility. Many significant findings relative to PGPR and their
roles in sustainable agriculture have appeared in the past few years, but studies of the
impact of SSBs and ZSBs in field crops are meager. Until recently, silicon chemical
dynamics in the soil have been poorly studied. The chemical dynamics between
silica and other soil factors affects the quantity of available Si liberated into soil
solution, a possible challenge assuming that based on the quantity of 2:1 layered
silica minerals that has been found, most of the soils in the United States are able of
providing a higher content of silica to the plants. Si- and Zn-solubilizing microor-
ganisms have yet to fulfill their promise as commercially available bio-inoculants in
many crops. Improvement of the effective strains that can work in different envi-
ronmental behaviours and soil types may prove a boon in farming. Identification of
efficient and potential Si- and Zn-solubilizing bacteria carrying other growth-
promoting characteristics not only helps in enhancing the quality of crop production,
animal feeds, and soil health, but also searches for its uses in bio-remediation in
those areas affected by high metal contamination. In this regard, an important
research work focus is required to better understood whether these are solubilizers
or mobilizers of other minerals such as phosphorus, differing from Zn. Under
solubilization of toxic compounds, their resistance toward toxic ions, mechanisms
of solubilization, survival in rhizospheric soils, and improvement of solubilization
minerals needs to be evaluated.
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6.7 Conclusions

Application of inorganic fertilizers in the soils enhances the yields but kills beneficial
microbes with huge harmful effects on the plant—soil ecosystem. To solve this
problem, plant growth-promoting rhizobacteria (PGPR) is a better alternative.
PGPR are multifunction microbes with an important role in the sustainable agricul-
ture industry. They are significant in improving soil fertility, suppressing pathogens,
and enhancing the growth of plants in sustainable agriculture. Increasing demands
for food grain production with significantly reduced use of inorganic fertilizers and
pesticides are currently a large challenge. The inoculation of nutrient solubilizers
through seed or soils has been proved environmentally safe and also improves the
yields by proving favourable environments and nutrients in the rhizosphere. The
mechanism of the microbials including nutritional balance and hormonal regulation
stimulate tolerance against harmful pathogens and provide nutrients to the plants by
the solubilization process. Plants require macro/micronutrients for their optimum
growth and development. These plant nutrients are provided by fertilizers, and
organic inputs are absorbed by the plant roots with water. Some microbes have an
important role in Si and Zn solubilization. Zn-solubilizing microbes solubilize zinc
and improve the growth and yields of crops. Zn-solubilizing microbes are able to
solubilize zinc oxide, zinc phosphate, and zinc carbonate by production of organic
compounds. For the recommendation of Si fertilizer, clay content, pH, EC, organic
matter, and Al and Fe oxide are essential factors to consider. Use of low-cost
industrial Si fertilization by product sources with high liming potential may become
an agronomic practice in many crop production systems, mainly for alleviating
biotic and abiotic stresses that may limit yields and maintain soil pH.
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Abstract Bacterial inoculants are bacterial species that are applied directly or
indirectly to enhance the growth and yield of plants. The application of bacterial
inoculants is largely due to their compatibility and complementarity with natural
processes of nutrient cycling, plant protection and other related biological processes
in agroecosystems. As a nature-based solution, bacterial inoculants are able to drive
many beneficial biological processes in agroecosystems with little or no negative
impacts. However, their applications have been limited by factors such as awareness,
production quality and quantity, storage and compatibility. Although there are
studies that are already investigating many of these challenges, the future prospects
of the application of bacterial inoculants will be determined by the adoption of new
technologies that include multi-omics approach for improving the quality as well as
applicability of these beneficial microorganisms.
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7.1 Introduction

The core objective for sustainable agriculture is promoting a healthy environment
while producing sufficient yield of crops to meet the requirements of an increasing
world population. Generally, the vision of sustainable agriculture guarantees bio-
safety, nutrient-rich yield and efficient soil nutrient utilisation as well as increased
crop productivity without compromising environmental integrity or public health
(Lesueur et al. 2016; Lichtfouse et al. 2009). The application of chemical inputs such
as inorganic fertilisers, pesticides and herbicides in agriculture has, without doubt,
led to increased crop productivity over the years (Chianu et al. 2012; Hermary 2007).
Nevertheless, their excessive application and inefficient management have contrib-
uted to soil degradation and environmental pollution, along with associated human,
animal and crop health risks (Wallace and Knausenberger 1997).

Globally, there is an evolving consensus that encourages the adoption of suitable
practices for management of both the agroecosystems and the environment in
general. Of great importance is the use of beneficial plant and soil microorganisms,
also known as biofertilisers or inoculants. They are regarded as active biological
agents, free of agrochemicals, but contain microorganisms that are known to drive
the biogeochemical cycles (Szilagyi-Zecchin et al. 2016; Trabelsi and Mhamdi
2013; Sayyed et al. 2012). These microorganisms hold huge potential in improving
crop health through their ability to produce plant growth-promoting (PGP) sub-
stances such as siderophores, antifungal metabolites and 1-aminocyclopropane-1-
carboxylate acid (ACC) (Khan et al. 2016a; Vejan et al. 2016; Glick 2014).

Microbial inoculants are classified based on different factors, which include type
and functional capabilities of microbial components, method of application and
market segmentation of the inoculant product (Huang et al. 2014; Malus4 et al.
2012; Lucy et al. 2004). Although inoculants could be made of bacteria, fungi or
blue-green algae (BGA) in combination or separately, this chapter only focusses on
bacterial inoculants. Effects of bacterial inoculants are expressed through enhance-
ment of growth and development by nitrogen fixation, macro- and micronutrient
solubilisation and the production of PGP substances (Hassen et al. 2016; Singh et al.
2016; Gupta et al. 2007). In addition, these inoculants have secondary roles such as
inducing systemic resistance on plants as well as biocontrol capabilities of patho-
genic microorganisms. In this chapter, we write about different types of bacterial
inoculants and their applications. In addition, future prospects of bacterial inoculant
applications in the agroecosystem are also discussed.
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7.2 Bacterial Inoculants as a Nature-Based Solution

A combination of factors that include climate change and the increasing world
population and anthropogenic pollution of soils and water bodies pose a significant
challenge to crop productivity (Garcia-Fraile et al. 2015). Although cross-
interactions between physicochemical and biological properties of the soil are
important for plant productivity, microbes are key drivers of many processes in the
soil-plant interphase (Huang et al. 2014). The interactions of plant and its beneficial
microbes, especially in the soil, is important for maintenance of plant health and
perhaps the continued existence of plants (Jain and Khichi 2014; Patel et al. 2014).
Due to their biological origin and potential beneficial influence on the environment,
fertilisers consisting of beneficial microbes have become an indispensable part of
sustainable environmental practices (Vessey 2003). They are utilised not only for
soil productivity but to also deal with many environmental and socioeconomic
challenges such as climate change, water security, soil and water pollution, mineral
purification, food security, plant and human health and disaster risk management
(Raimi et al. 2017; Adeleke 2014; Patel et al. 2014).

Of the diverse types of soil beneficial microorganisms used for inoculant formula-
tion, the bacterial group also known as plant growth-promoting rhizobacteria (PGPR)
are, perhaps, the most promising with various agricultural applications (Glick 2014;
Suyal et al. 2016; Vessey 2003). Activities of these microbes in the soil contribute to
plant nutrient uptake, regulation and control of microclimate and hydrological pro-
cesses, plant disease control and detoxification of noxious chemicals in the soil
(Fig. 7.1) (Ambrosini et al. 2015). Examples of these beneficial rhizosphere bacteria
include Rhizobium, Azospirillum, Azotobacter, Azomonas, Bradyrhizobium, Pseudo-
monas and Bacillus. In appreciation of their huge beneficial roles in promoting plant
growth, these bacterial species have been widely utilised for the production of com-
mercial inoculants (Malusa et al. 2016; Singh et al. 2016; Ahemad and Kibret 2014).
Harnessing these essential beneficial microbes for increased crop productivity is a
strategy towards achieving the objectives of sustainable agricultural production. Sus-
tainable agriculture supports the development of a safe ecosystem for all plants and
animals by promoting efficient use of diverse resources through the integration of
biochemical, economic and physical sciences to develop new and eco-friendly tech-
niques (Patel et al. 2014; Lichtfouse et al. 2009; Gupta et al. 2007). Hence, the adoption
of an environmentally friendly nutrient management approach fits well into this scope.

7.3 Sources of Microbes Used for Inoculant Formulation

A large number of bacteria used for inoculant formulation are present in the rhizosphere
and phyllosphere (Fig. 7.1). Some also exist as endophytic or free-living bacteria, for
example, bacterial endophytes inhabit inter- and/or intracellular healthy tissues of host
plants, for the entire or a part of their life cycle, without causing damage or disease
(Singh et al. 2017; Shridhar 2012; Andrews and Harris 2000). The plant-endophyte
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Fig. 7.1 Schematic overview of mechanisms of action and habitat of bacteria used for inoculant
formulation. Different soil bacteria found in the phyllosphere and rhizosphere are involved in plant
and soil nutrient management through atmospheric nitrogen fixation, nutrient solubilisation and the
production of plant growth-promoting substances

association, mostly found in vascular plants, has been shown to enhance plant growth
and development by protecting the host plant from pathogenic attack and improving
their adaptability in adverse conditions. The endophytes accomplish this by secreting
bioactive compounds such as alkaloids, steroids, flavonoids, phenols and azadirachtin
(Singh et al. 2017). They exist in the host roots, leaves, stems, meristems, reproductive
structures as well as seeds. Endophytes have been considered essential components of
biodiversity that can be harnessed for sustainable production of bacterial inoculants for
increased agricultural production (Gupta et al. 2012; James 2000).

Furthermore, epiphytic bacteria used for the production of inoculants are found on
plant surfaces such as leaves, stems, buds, roots and flowers (Andrews and Harris 2000;
Lindow and Brandl 2003). Various studies have reported bacteria as a major colonist of
plant leaves with their population averaging up to 10% cells/g of leaf (Andrews and
Harris 2000). This large population of bacteria on leave surfaces is an indication of the
potential contributions of bacterial epiphytes to many essential global processes as well
as plant behaviour and physiological condition (Lindow and Brandl 2003).
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Other beneficial microbes freely inhabit the rhizosphere, the narrow region of the
soil that is in close proximity to the plant roots. The rhizosphere is directly influenced
by the microbial colonists, respiration and metabolism of the plant root (Zhang et al.
2010; Chung et al. 2005). The rhizosphere has a higher concentration and diversity
of bacteria than any other part of the soil. Soil bacteria use root exudates as a source
of nutrition while in return promote plant growth through soil nutrient management
processes including nitrogen fixation, phosphorus solubilisation, sulphur oxidation
as well as siderophore production and stimulation of the production of various
phytohormones (Fig. 7.1) (Huang et al. 2014). The nutrient management in the
rhizosphere is tailored towards high-efficiency crop production by enhancing the
supply of nutrients in the plant root zone, regulating root architecture and physio-
logical traits as well as influencing biological processes (Zhang et al. 2010). These
processes are crucial and are reflected in the properties of bacteria that are considered
in the formulation of specific and efficient inoculant products (Huang et al. 2014).
Some of these processes occur at the rhizoplane, the surface of plant roots, compris-
ing the epidermis and outer cortex, where microbes and plant exchange different
types of nutrients and metabolic products (Huang et al. 2014; Johri et al. 2003).
Microorganisms attach to the rhizoplane using structures such as flagella, fimbriae
and polysaccharides. Generally, the rhizoplane and rhizosphere appear as a whole;
this is because the thin boundary that separates the two habitats is difficult to
differentiate (Johri et al. 2003).

7.4 Types of Bacterial Inoculants and Their Mechanisms
of Action

7.4.1 Nitrogen-Fixing Bacterial Inoculants

Although the atmosphere consists of approximately 80% nitrogen, atmospheric
nitrogen (N,) is inaccessible to plants due to its stability. However, it may
become accessible when converted to compounds such as ammonia and nitrate
during biological nitrogen fixation (BNF) (Fig. 7.2) (Chianu et al. 2010; Guinness
and Walpole 2012; Bloem et al. 2009). Biological nitrogen fixation is usually
carried out by prokaryotic microorganisms that are collectively known as
diazotrophs. Diazotrophs interact with host plant root in the soil under symbiotic
or non-symbiotic associations to fix N (Bloem et al. 2009). Some of the well-
known diazotrophs including symbiotic (rhizobia and Frankia) and non-symbiotic
(free-living and associative) N-fixers of great importance in BNF are discussed in
the section below.

Biological nitrogen fixation involves different biological and chemical trans-
formations and/or processes that are performed by various rhizosphere benefi-
cial microbes. Such processes are key components of the N cycle during which
organic nitrogen and atmospheric nitrogen are transformed to ammonia through
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Fig. 7.2 Overview of the nitrogen cycle showing biological nitrogen fixation (BNF), nitrification
and denitrification processes. The genes involved in the processes are in italics on the arrows that
indicate the path of the reaction, where nitrogenase (nif), ammonium monooxygenase (amoA),
hydroxylamine oxidoreductase (hao), nitrite oxidoreductase (nxr), periplasm nitrate reductase
(nap), respiratory nitrate reductase (nar), nitrite reductase (nir), nitric oxide reductase (nor), nitrous
oxide reductase (nos), multiheme nitrite reductase (nrf), and hydrazine synthase (hzs) are all
enzymes involved in the reactions. The enzyme nrfA is involved in the dissimilatory nitrate
reduction to ammonia (DNRA), while Azs is involved in the anaerobic ammonium oxidation
(anammox). Adapted from Kox and Jetten (2015), Klotz and Stein (2008)

ammonification and BNF, respectively (Zehr and Kudela 2011; Klotz and Stein
2008). The cycle also involves the regulation of organic nitrogen in the soil through
mineralisation and immobilisation. Mineralisation is the release of ammonia and
nitrate during microbial decomposition of organic matter, whereas immobilisation
occurs when soil microorganisms take up ammonia and nitrate for cell metabolism
and growth. Mineralisation involves two major processes: ammonification and
hydrolysis. The former transforms organic nitrogen into ammonia, while the latter
converts ammonia to ammonium (Zehr and Kudela 2011).

Diazotrophs fix dinitrogen gas from abiotic to biotic environments employing a
mechanism that involves the enzyme called nitrogenase (nif) (Zhang et al. 2017).
Nitrogenase is an oxygen-sensitive enzyme complex that comprises dinitrogenase
reductase and dinitrogenase, which both function in reducing the atmospheric
nitrogen into a reactive form of ammonia and nitrate (Fig. 7.2) (Swain and Abhijita
2013; Shridhar 2012). The ammonium produced may be converted to nitrites
(NO; ") and then nitrates (NO5 ) through nitrification process (Fig. 7.2) (Zehr and
Kudela 2011). In this process, ammonium is usually converted to nitrites by bacteria
called Nitrosomonas spp., which possess key enzymes such as ammonium
monooxygenase (amoA) and hydroxylamine oxidoreductase (hao) (Kox and Jetten
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2015). The toxic nitrite produced is then converted to nitrate by Nitrobacter spp.,
using the nitrite oxidoreductase (nxr) (Fig. 7.2) (Klotz and Stein 2008). Nitrate is
further transformed into nitrogen through denitrification process. In this process,
nitric oxide (NO) and nitrous oxide (N,O) released from the reduction of nitrate
(NO37) and nitrite (NO, ") are subsequently reduced to atmospheric nitrogen by
nitrite reductase (nir), nitric oxide reductase (nor) and nitrous oxide reductase (nos)
(Kox and Jetten 2015; Klotz and Stein 2008). Denitrification process completes the
N cycle, and microbes such as Pseudomonas are involved in this process.

7.4.1.1 Symbiotic Nitrogen Fixers

Historically, rhizobia have been a major bacterial inoculant used for enhancement
of plant and soil health. They are a group of well-known soil bacteria that are
efficient in BNF (Somasegaran and Hoben 2012; Oldroyd et al. 2011). Most
rhizobia belong to the family Rhizobiaceae and inhabit the intracellular spaces of
the host in a symbiotic association. This synergy may be mutualistic, resulting in
the formation of specialised structures called nodules (Fig. 7.1). Such mutualistic
symbioses are most prominent in Rhizobium, Bradyrhizobium, Azorhizobium,
Mesorhizobium and Sinorhizobium in association with several hundreds of legume
plants (Oldroyd et al. 2011; Peoples et al. 2009). The nodule-forming, rhizobia-
legume association has enormous agronomic and ecological significance due to its
substantial role in global BNF (Fig. 7.2). For instance, legumes cultivated with
Rhizobium inoculants fix up to 300 kg N/ha and can also supply over 90% of the
total nitrogen requirement of the host plants through BNF (Swain and Abhijita
2013; Hayat et al. 2010). By and large, rhizobial inoculants are most efficient in
agricultural soils when the rhizobia in the local soil are lacking, less efficient or
have low population (Lupwayi et al. 2000).

Another important nitrogen-fixing bacterium is Frankia. The first isolated species
of Frankia, F. alni strain Cpll, which was isolated from the root nodules of
Comptonia peregrina, is commonly referred to as Cpll (Comptonia peregrina
Isolate No.1) (Callaham et al. 1978). The soil actinomycete genus Frankia fixes
nitrogen both in free-living and symbiotic association with the host, actinorhizal
plants (Sellstedt and Richau 2013). It belongs to the family Frankiaceae and has
been found to nodulate actinorhizal plants, which represent a diverse group of almost
220 species belonging to 8 plant families including Betulaceae, Casuarinaceae,
Myricaceae, Rosaceae, Elacagnaceae, Rhamnaceae, Datiscaceae and Coriariaceae
(Santi et al. 2013). Its wide distribution, broad range of plant hosts and the ability to
differentiate into sporangium and vesicles, which are specialised cells for nitrogen
fixation, have increased its ecological importance (Santi et al. 2013; Boonkerd
1998). Similarly, the diazo-vesicles produced during the growth stage of Frankia
can supply adequate amounts of nitrogen to the host plant under the symbiotic
association. Thus, Frankia can support the growth of plants where nitrogen is a
major limiting factor in the growth of the host (Sellstedt and Richau 2013). It has
been reported that Frankia is responsible for about 15% of BNF in the world, mostly
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in symbiotic relationship with plants and shrubs, especially dicot plants (Rascio and
Rocca 2013). Under a symbiotic system, this important genus also secretes extra-
cellular enzymes such as cellulases, pectinases and proteinases that are involved in
bacteriolysis, hydrolysis and virulence (Santi et al. 2013).

7.4.1.2 Non-symbiotic Nitrogen Fixers
Free-Living Nitrogen Fixers

This group of N-fixers exist freely in the rhizosphere without necessarily having
any association with the plant. Several non-symbiotic, free-living, N-fixing bacteria
have been employed for the production of inoculants used on a large expanse of
agricultural land. These include Azotobacter, Beijerinckia, Bacillus, Pseudomonas
and Clostridium (Mirza and Rodrigues 2012; Ahmad et al. 2008). Azotobacter spp.
are gram-negative bacteria belonging to the phylum Proteobacteria with extremely
high rates of respiration, which makes it an efficient nitrogen fixer under nitrogen-
deficient soil conditions (Hayat et al. 2010). Azotobacter species including
A. vinelandii, A. beijerinckii, A. nigricans, A. salinestri and A. chroococcum are
widely used in inoculant formulation. Apart from the nitrogen-fixing ability, Azoto-
bacter also contributes to the production of PGP substances such as gibberellins,
indole acetic acids and vitamins (Verma et al. 2001). Other free-living N-fixers that
participate in BNF and also produce the aforementioned PGP substances are
Azoarcus sp., Klebsiella pneumoniae and Pantoea agglomerans (Yanni et al.
2001; Reinhold-Hurek et al. 1993).

Associative Living Nitrogen Fixers

Other non-symbiotic nitrogen-fixing bacteria, including the genera of Azospirillum
and Enterobacter, occur in an associative relationship with the host plant. The genus
Azospirillum is a facultative endophyte, mostly inhabiting the intercellular space,
vascular tissues or root surfaces of several kinds of cereal crops and grasses
(Shridhar 2012; Wagner 2012). The species Azospirillum brasilense has been widely
used on various crops to increase yield, while Azospirillum diazotrophicus has
been reported to fix approximately 60-80% of nitrogen in sugarcane plantations
(Ohyama et al. 2014; Lucy et al. 2004). Similarly, some of the species in the
Acetobacteraceae family have the ability to fix N when in association with the
host. These include Swaminathania, Gluconacetobacter and Acetobacter. For exam-
ple, Gluconacetobacter diazotrophicus fixes nitrogen non-symbiotically or symbi-
otically, especially in association with sugarcane plants (James 2000). These bacteria
have been isolated in countries such as Brazil, Argentina, the United States, Mexico
and Egypt (Reis and Teixeira 2015). Gluconacetobacter diazotrophicus has been
reported with the ability to colonise intracellular space of both leguminous and
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nonleguminous plants without the formation of nodules. They produce enzymes
such as cellulase, hemicellulase and pectinases that enhance host cell wall penetra-
tion (Dent and Cocking 2017). Under different field trials, the inoculant NFix® of
G. diazotrophicus significantly increased crop yield such as maize, oilseed rape and
wheat with or without the application of N fertilisers. It was suggested that the
intracellular symbiotic N-fixation improved the level of photosynthesis and produc-
tion of plant growth substances, which are essential for improvement of crop yield
(Dent and Cocking 2017).

7.4.2  Solubilising Bacterial Inoculants

For increased crop productivity, agricultural soil must have adequate plant nutrients
such as phosphorus, potassium, magnesium and zinc. These nutrients are frequently
lacking and, when present, form stable complexes with iron, aluminium and cal-
cium, which cannot be easily metabolised by plants (Shanware et al. 2014; Parmar
and Sindhu 2013; Han and Lee 2005). This situation has resulted in limitations of
plant growth due to nutrient deficiencies especially for phosphorus, which is the
second most essential macronutrient after nitrogen for crop metabolism, growth and
development (Cordell et al. 2009; Roy et al. 2006). Hence, solubilisation and
mobilisation of insoluble nutrients in the soil using bacterial inoculant technology
are essential strategies in nutrient management.

7.4.2.1 Phosphate-Solubilising and Phosphate-Mobilising Bacterial
Inoculants

Phosphorus is essential for the formation and effective functioning of key plant
enzymes. In spite of the large reservoir of phosphorus, it remains inaccessible by
plants (Jenkins and Jenkins 2005). To improve crop productivity, phosphorus
fertilisers are commonly used to augment phosphorus-deficient agricultural soils.
However, most of the phosphorus fertilisers applied are immobilised, leaving a
minimal amount available for plant use. Thus, phosphate-solubilising and
phosphate-mobilising bacteria are essential for alleviating this situation (Mukhuba
et al. 2018; Ma et al. 2011; Jenkins and Jenkins 2005). Phosphate-solubilising
bacteria (PSB) have been in use since 1950 after it was first reported by Pikovskaya
in 1948 (Krasilinikov 1957). Its application in crop cultivation, being a sustain-
able alternative to inorganic phosphorus fertiliser application, supports the world’s
campaign for the green revolution. Most PSB belong to the genera Pseudomonas,
Klebsiella, Serratia, Rhodococcus, Flavobacterium, Bacillus, Arthrobacter,
Xanthomonas and Micrococcus (Bello-Akinosho et al. 2016; Suyal et al. 2016;
Mohammadi 2012). Some of the most efficient phosphorus solubilisers that have
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been reported in different studies include Enterobacter, Erwinia, Bacillus (B.
polymyxa, B. megaterium, B. subtilis) and Pseudomonas (P. striata, P. rathonis)
(Adeleke et al. 2017; Pindi and Satyanarayana 2012; Bhattacharyya and Jha 2012;
Mohammadi 2012).

There are different mechanisms through which beneficial rhizosphere bacteria
solubilise insoluble phosphate. Such mechanisms are based on the form of available
phosphorus, either inorganic or organic phosphorus (Mukhuba et al. 2018; Adeleke
etal. 2017). Other factors such as soil pH, temperature and nutritional content as well
as bacterial growth and physiological status greatly affect solubilisation efficiency
(Goldstein and Krishnaraj 2007; Chung et al. 2005). For organic phosphorus, a
major mechanism of solubilisation is by mineralisation through the secretion of
phosphatase, an enzyme which hydrolyses organic phosphate to release phosphorus
(Goldstein and Krishnaraj 2007). Conversely, the PSB solubilise inorganic phos-
phate by secreting low-molecular-weight organic acids (oxalic, citric, malic,
fumaric, acetic and lactic acids), siderophores as well as hydroxyl and carboxyl
groups (Fig. 7.3) (Adeleke et al. 2017; Sarkar et al. 2017). These chemical sub-
stances use a chelating mechanism to bind the cation to the insoluble phosphate
compounds thereby releasing the soluble form of phosphate (Mohammadi 2012;
Richardson and Simpson 2011). Many phosphorus-solubilising bacteria can effec-
tively solubilise Ca3(PO,4), and phosphorite to monobasic (H,PO, ) and dibasic
(HPO,?") ions, which are easily taken up by plants (Oliveira et al. 2009).

The field efficiency of phosphate inoculants is dependent on several factors such
as bacterial inoculant type, soil carbon and nitrogen, available phosphorus and level
of hydrogen ions in the soil. Most Enterobacter and Klebsiella sp. are able to
solubilise Ca3(PO,4), more efficiently than other phosphate compounds such as
FePO, and AIPO, (Chung et al. 2005). Similarly, the metabolic activities of bacterial
inoculants also directly contribute to the solubilisation of phosphorus through the
efflux of protons and organic ions (Richardson and Simpson 2011).

Apart from the aforementioned, bacteria inoculants can also improve the ability
of plants to acquire available phosphorus in the soil through hormonal stimulation of
root growth, development and elongation (Adeleke et al. 2017; Goldstein and
Krishnaraj 2007). In addition, variations in the soil sorption balance may increase
the amount of orthophosphate ions in soil solutions. This may also enhance the
mobility of organic phosphorus through microbial turnover (Richardson and
Simpson 2011; Richardson et al. 2009).

7.4.2.2 Potassium-Solubilising Bacterial Inoculants

Major compounds of potassium including mica, muscovite, illite, orthoclase and
biotite are unavailable for plant use (Raimi et al. 2017; Meena et al. 2014). This
situation has adversely affected crop productivity in many agricultural fields. How-
ever, rthizosphere bacteria are capable of solubilising insoluble potassium com-
pounds through the secretion of biochemical substances such as metabolites,
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organic ligands, hydroxyl anions and enzymes (Shanware et al. 2014; Han and Lee
2005). Bacteria with this ability are referred to as potassium-solubilising bacteria,
and their solubilisation efficiency greatly depends on soil, microbial type and the
form of potassium compounds (Meena et al. 2014; Shanware et al. 2014). Several
bacterial genera such as Acidothiobacillus, Bacillus, Pseudomonas, Burkholderia,
Frateuria and Paenibacillus are widely used for the production of K-solubilising
inoculants. Important species of Bacillus with high K-solubilising and K-mobilising
capabilities include B. mucilaginous, B. edaphicus and B. circulans (Parmar
and Sindhu 2013; Sangeeth et al. 2012; Adeleke et al. 2010). These bacteria
directly solubilise potassium by secreting viscous-like substances such as
exopolysaccharides that invade silicate mineral and chelate silicon to release soluble
potassium (Parmar and Sindhu 2013; Hutchens et al. 2003). It has been reported that
organic ligands such as exudates, enzymes, secondary metabolites, siderophores and
organic compounds (oxalic, gluconic, citric and lactic acids) aid in the solubilisation
of potassium from its parent compounds such as feldspar and aluminosilicate (Sarkar
et al. 2017; Hutchens et al. 2003). The application of potassium bacterial inoculants
on agricultural soil is a sustainable measure to increase plant-available potassium in
the soil, thereby reducing the cost of potassium fertiliser application for increasing
crop production.

7.4.2.3 Micronutrient-Solubilising Bacterial Inoculants

Various micronutrients including zinc, iron and manganese are essential for the
survival and multiplication of plants and microorganisms (Roy et al. 2006). Under
different soil conditions, such as pH and oxygen levels, these compounds are
transformed into various mineral complexes and become isolated, thereby
preventing plants from accessing them (Adeleke et al. 2017). Under the oxic
condition, iron occurs primarily as iron (III), an insoluble compound that forms
hydroxides and oxyhydroxides (Hayat et al. 2010). These important elements drive
the enzymatic and metabolic processes of plants and are needed in low quantity for
metabolism. However, their absence or presence at high concentrations hinders plant
growth and development (Berraho et al. 1997). To deal with this challenge, soils
deficient in micronutrients are usually treated with fertilisers, but the majority of
applied fertilisers are immobilised in the soil. For example, in zinc-fertilised
soil, approximately 25% of applied zinc is available, with less than 4% of this
being used by plants (Mahdi et al. 2010). However, bacterial inoculants such as
Bradyrhizobium, Rhizobium, Bacillus, Pseudomonas and Thiobacillus are well
known for the production of metabolic by-products and siderophores, which have
a high affinity for soil micronutrients such as zinc and iron. These inoculants have
been widely employed to overcome soil nutrient immobilisation in several agricul-
tural soils (Ndakidemi et al. 2011; Esitken et al. 2010; Altomare et al. 1999).
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7.4.3 Plant Growth Regulators Synthesised by Bacterial
Inoculants

Bacteria and plant interactions in the rhizosphere have been used as indicators of soil
and plant health (Huang et al. 2014). Several soil beneficial bacteria promote soil
fertility and plant health through the production of different growth-promoting
substances, also known as growth regulators. The production of these regulators
may be facilitated through direct or indirect mechanisms (Chaiharn and Lumyong
2011; Hayat et al. 2010). Apart from participating in soil nutrient management,
beneficial bacteria directly participate in plant growth promotion through biosynthe-
sis of different plant hormones including auxins, gibberellins, cytokinins and
1-aminocyclopropane-1-carboxylate (ACC) acid, which is an ethylene precursor
(Khan et al. 2016a; Karadeniz et al. 2006). These phytohormones have been found
to increase leaf and root length as well as yield in plants, while also improving the
interactions between plant and the rhizosphere microbes (Vacheron et al. 2013).
Different types of auxins exist, and some of these include 1-naphthalene acetic acid
(NAA), indole-3-butyric acid (IBA), phenylacetic acid (PAA), indole-3-pyruvic acid
(IPyA) and indole acetic acid (IAA) (Patten and Glick 1996). The most common and
physiologically active auxin in plants is indole acetic acid (IAA), which promotes
accelerated and long-term responses in plants. Indole acetic acid affects plant root
architecture and cell division, elongation and differentiation, thereby stimulating
increased root development (Patten and Glick 2002). Bacteria such as Bacillus
subtilis, which are efficient in producing IAA, have been reported to promote
tuber elongation and increased number of sprouts when used on Dioscorea
rotundata (Swain et al. 2007). Similarly, inoculant of Azospirillum producing
TAA-mediated ethylene stimulated an increase in the number of root hairs, root
surface area and total biomass in tomato plants (Ribaudo et al. 2006). Rhizosphere
beneficial bacteria including Azospirillum and Paenibacillus also produce indole-3-
butyric acid, tryptophol and indole-3-ethanol, which indirectly contribute to plant
growth promotion (Solaiman and Anawar 2015; Hayat et al. 2010). Approximately
80% of isolated rhizosphere bacteria have been reported to produce IAA (Patten and
Glick 1996), while about 90% of isolated bacteria from the rhizosphere of different
crops were found to be involved in cytokinin production, under in vitro cultivation
(Barea et al. 1976). According to Vacheron et al. (2013), the biosynthesis of
cytokinins has also been documented in bacteria such as Bradyrhizobium japonicum,
Pseudomonas fluorescens and Bacillus licheniformis. Similarly, gibberellic acid
produced by Bacillus megaterium, B. aureus and Klebsiella pneumoniae stimulates
increased flowering, stem and internode elongation as well as fruit setting and
growth in different plants (Kumar et al. 2014; Zalewska and Antkowiak 2013;
Karadeniz et al. 2006). Maize, tomato and rice planted with gibberellic acid had a
substantial increase in growth and yield when compared to the control (Kumar et al.
2014; Zalewska and Antkowiak 2013; Fulchieri et al. 1993). 1-Aminocyclopropane-
1-carboxylate acid (ACC) plays an essential role in the biosynthesis of ethylene
hormone found in higher plants (Khan et al. 2016a, Onofre-Lemus et al. 2009).
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Ethylene hormone acts as a modulator of growth and development in plants.
Although ethylene is a key factor in plant defence response to a wide range of stress,
high levels of ethylene could be detrimental to plant growth. Fortunately, ACC can
be degraded by bacterial ACC deaminase, an enzyme that indirectly facilitates plant
growth (Glick 2014). Rhizosphere bacteria with ACC deaminase function as a sink
for ACC by producing alpha-ketobutyrate and ammonia from ACC hydrolysis,
instead of ethylene (Onofre-Lemus et al. 2009). This process lowers the amount of
ACC and ethylene levels in plants, thereby promoting steady plant growth and
development, through the reduction of damages such as plant death and growth
inhibition usually caused by high concentration of plant ethylene (Glick 2014; Hayat
et al. 2010; Onofre-Lemus et al. 2009; Saleem et al. 2007).

Furthermore, rhizosphere bacteria also produce siderophores, particularly under
iron-deficient soil. Siderophores are low-molecular-weight (~200-2000 Da) sub-
stances with an extraordinary chelating ability for iron (Ahmed and Holmstrom
2014). A wide range of siderophores have been reported in different bacteria, and
most of these are catecholates (enterobactin), carboxylates (rhizobactin) and
hydroxamates (ferrioxamine B). Most of the soil iron is not readily available for
rhizosphere beneficial microbes and plant use (Shanmugaiah et al. 2015; Ahmed and
Holmstrom 2014). The bacteria producing siderophores are able to overcome this
condition through iron-chelation mechanism (Sarkar et al. 2017; Radzki et al. 2013).
The mechanism of siderophore-bound iron transport systems varies between gram-
positive and gram-negative bacteria (Ahmed and Holmstrom 2014). In gram-
negative bacteria, the Fe(Ill)-siderophore complexes bind to TonB-dependent
outer membrane receptor and cross the membrane through an energy-dependent
system involving outer membrane receptor proteins, periplasmic binding proteins
and inner membrane transport proteins (Fukushima et al. 2013; Braun and Hantke
2011). Subsequently, the complex is transported into the cytoplasm through the
cytoplasmic membrane by an ATP-binding cassette (ABC) transport system after the
Fe(III)-siderophore complex, bounded by periplasmic binding protein have been
released into the periplasmic space (Ahmed and Holmstrém 2014; Noinaj et al.
2010). Finally, the Fe(Ill)-siderophore complex is reduced to Fe(Il). For gram-
positive bacteria, the membrane receptors are absent due to lack of the outer
membrane. Hence, the Fe(Ill)-siderophore complexes are bound by periplasmic
binding proteins that are attached to the cell membrane due to lack of periplasmic
space. Similar to gram-negative bacteria, the Fe(IIT)-siderophore complexes are then
transported into the cytoplasm using ATP-binding (ABC) transport system
(Fukushima et al. 2013; Braun and Hantke 2011). Some of the bacterial species
used for inoculum formulation and their plant growth-promoting functions are
presented in Table 7.1.
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Table 7.1 Bacterial species used for inoculum formulation and their plant growth-promoting

functions
Bacterial genera | Species Function Reference
Sinorhizobium | Sinorhizobium meliloti Fix-N Villegas et al. (2006)
Bradyrhizobium | B. japonicum, B. elkanii, | Fix-N, P-solubilisation, | Antoun et al. (1998),
B. betae, B. canariense, siderophore and IAA Wu et al. (2011)
B. liaoningense production
Azospirillum A. brasilense, Fix-N, P-solubilisation, | Rodrigues et al.
A. lipoferum, TAA and siderophore (2008), Thakuria
A. amazonense production et al. (2004)
Azotobacter Azotobacter Fix-N, P-solubilisation, | Ahmad et al. (2005),
chroococcum gibberellin, IAA, kinetin | Verma et al. (2001)
and siderophore
production
Azoarcus A. communis, A. indigens | N-fixer Reinhold-Hurek et al.
(1993)
Bacillus B. mucilaginous, K- and P-solubilisation, | Parmar and Sindhu
B. megaterium, gibberellin, auxin, and (2013), Mohammadi
B. licheniformis, cytokinin production and Sohrabi (2012),
B. edaphicus, B. subtilis, Karadeniz et al.
B. cereus, B. pumilus, (2006)
B. circulans
Burkholderia B. unamae, B. tropica 1-Aminocyclopropane- | Onofre-Lemus et al.
1-carboxylate (ACC), (2009)
N-fixer, IAA,
P-solubilisation and
siderophore
Enterobacter E. asburiae TAA, P-solubilisation, Ahemad and Khan
siderophore ammonia (2010)
Klebsiella Klebsiella sp. TAA, P-solubilisation, Ahemad and Khan
siderophore ammonia (2011)
Pseudomonas Pseudomonas putida, P-solubilisation, Parani and Saha
P. jessenii, P. aeruginosa, | siderophore and IAA (2012), Shaharoona
P. chlororaphis et al. (2008)
Alcaligenes Alcaligenes faecalis P-solubilisation, IAA Sayyed et al. (2010)
and siderophore
production
Acinetobacter Acinetobacter spp. TAA, P-solubilisation Rokhbakhsh-Zamin
and siderophore et al. (2011)
Rhizobium Rhizobium cicero, Siderophore, Fix-N, Berraho et al. (1997),
R. phaseoli, R. undicola TAA Ghosh et al. (2015)
Serratia Serratia nematodiphila TAA, siderophore, HCN | Dastager et al. (2011)
and P-solubilisation
Flavobacterium | Flavobacterium sp. TAA, P-solubilisation Soltani et al. (2010)

Adapted from Raimi et al. (2017), Ahemad and Kibret (2014)
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7.5 Applications of Bacterial Inoculants in Agroecosystems

7.5.1 Bacterial Inoculants for Increased Crop Productivity
and Soil Restoration/Maintenance

The application of bacterial inoculants in agriculture has robust benefits in enhancing
soil fertility and crop productivity (Raimi et al. 2017; Hassen et al. 2016; Singh et al.
2016). The efficiency of agronomic input is enhanced where inoculants are used in
combination with other integrated nutrient management methods (Duarah et al.
2011; Kumar et al. 2010; Shaharoona et al. 2008). In general, these benefits lead
to the reduction of inorganic fertiliser application, while also improving the eco-
nomic status and profitability of farmers (Singh et al. 2016; Suyal et al. 2016; Geetha
and Joshi 2013; Catroux et al. 2001; Bashan 1998). Cost-effectiveness of bacterial
inoculants is usually estimated based on the fraction of the value of possible benefits
correlated to the total real costs of applied inoculants over a specific period of time
(Mulongoy et al. 1992). For legume inoculants, the benefits are based on the
N-fixing capability of the product. For example, white clover plant had cost/benefit
ratio of 416 with a N-fixing capability of 200 kg/ha, while soybean had a cost/benefit
ratio of 17 and fixes about 100 kg of N/ha from inoculation which cost as low as half
a dollar (US$ currency) per kg of bacterial inoculant (Mulongoy et al. 1992). In
addition, the cost of bacterial inoculants that will provide the same quantity of
nutrient supplied by mineral fertiliser is low. For example, NoduMax® inoculant
costs only $5 per ha in application as opposed to $100 per ha cost of urea fertiliser
needed to supply the same quantity of nutrients (N2Africa 2015).

The soil is the farmer’s most precious asset and must be made productive through
a systematic application of nutrients. It has been estimated that about 28.8 million
tons of plant nutrients are needed for the production of 321 million tons of grain
crops by the year 2020. Due to high market price and unavailability, only 21.6
million tons will be supplied through chemical fertiliser application, leaving a
shortfall of 7.2 million tons (Pathak et al. 2017). This deficit is a major challenge
for increasing food supply, especially in developing nations. However, the applica-
tion of bacterial inoculants, which is more economically viable, is an efficient
nutrient management technique for augmenting the gap (Chianu et al. 2010; Graham
and Vance 2003).

7.5.2 Availability of Soil Nutrients and Increased Crop Yield

Crop yield, especially for legumes, is improved when cultivated with nitrogen-fixing
bacterial inoculants such as Sinorhizobium, Bradyrhizobium, Rhizobium and
Azorhizobium, which can fix appreciable amounts of soil nitrogen through BNF
(Wagner 2012; Oldroyd et al. 2011). The symbiotic relationship of the Rhizobium-
leguminous plant has been reported to fix between 24 and 584 kg N/ha annually
under different crop and soil types (Martinez-Romero 2009; O’hara et al. 2002). For
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example, soybean yield and soil organic matter were improved under Rhizobium-
inoculated soil which was attributed to the biological fixation of approximately 80%
of nitrogen (Smaling et al. 2008). In addition, Frankia and Casuarina equisetifolia
symbiotic relationship resulted in the fixation of up to 362 kg N/ha, whereas
Azotobacter, a free-living bacteria, contributes about 15 kg N/ha/year (Elkan
1992). Depending on crop types, co-inoculation of Azotobacter and Azospirillum
increases the yield of crops in the range of 5%—10% (Pathak et al. 2017). Likewise,
the increased growth of Phaseolus vulgaris (common bean) was attributed to
Rhizobial inoculant application (Ndakidemi et al. 2011). In addition, pomegranate
(Punica granatum L.) treated with inoculants containing N-fixing bacteria (Azoto-
bacter chroococcum) and arbuscular mycorrhiza fungi (Glomus mosseae) had
increased growth and yield (Aseri et al. 2008). The combined treatment of the
inoculants enhanced microbial activities, nutrient uptake as well as the activities of
dehydrogenase, alkaline phosphatase and nitrogenase in the plant rhizosphere com-
pared to the control (Aseri et al. 2008).

Similarly, solubilising bacteria also have positive influence on crop growth and
development. For instance, Bacillus magisterium var. phosphaticum applied on
sugarcane plants stimulated plant growth and yield with high sugar content (Sundara
et al. 2002). In the same vein, the cultivation of rice (Oryza sativa) and yardlong
bean (Vigna unguiculata) with P inoculants such as Pseudomonas, Bacillus and
Erwinia was also found to promote seed germination (germination index > 2.5) as
well as increased shoot, root length and biomass (Duarah et al. 2011). Peanut
(Arachis hypogaea) and sunflower (Helianthus annuus) had high yield when inoc-
ulated with Bacillus inoculants (Wang et al. 2014; Ahmed and El-Araby 2012). In
addition, Pseudomonas aeruginosa strain PSBI3-1 and Aerococcus sp. strain
PSBCRG;-1 solubilise tricalcium phosphate at different sodium chloride concentra-
tions for plants grown under saline soil, while Burkholderia cepacia increased maize
plant yield under sodium chloride concentration of up to 5% (Alori et al. 2017,
Srinivasan et al. 2012).

Furthermore, under low P and K soil, eggplant (Solanum melongena), pepper
(Capsicum annuum L.) and cucumber (Cucumis sativus L.) plants were reported to
have improved mineral uptake with an increase in nutrient (NPK) content and yield
of crops when cultivated with a combination of potassium and phosphate inoculants
(Han and Lee 2005, 2006). The potassium and phosphate inoculants contained
Bacillus megaterium var. phosphaticum and Bacillus mucilaginosus, respectively
(Han and Lee 2005). Similarly, under soil inoculation with K-solubilising Bacillus
edaphicus, an increased yield of rape (Brassica napus L.) and cotton (Gossypium
hirsutum L.) was achieved (Sheng 2005). Inoculants of Pseudomonas, Mycobacte-
rium and Bacillus have also been reported with high ability to increase the growth
and yield of maize (Zea mays) plants (Egamberdiyeva 2007).

In iron-deficient soil, inoculants producing siderophores caused an increase in the
yield of groundnut (Arachis hypogaea) and tomato (Solanum lycopersicum) plants
compared to the control (Radzki et al. 2013; Sayyed et al. 2010). Likewise, mung
bean (Vigna radiata L.) had increased chlorophyll content and yield under iron-
deficient soil when inoculated with Pseudomonas strain (GRP3) (Sharma et al.
2003). In addition, available soil iron is of great importance for effective functioning
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of N-fixing bacterial inoculants. This is because iron is necessary for the formation of
iron-molybdenum and iron proteins that play crucial roles in the effective function-
ing of the nitrogenase, an important enzyme in BNF (Sickerman et al. 2017). Thus,
for increased N-fixation, especially under iron-deficient soil, siderophore-producing
bacterial inoculants are essential (Hassen et al. 2016; Duval and Hungate 2008).
These observations highlight the positive influence of inoculant application in
increasing crop nutrient uptake and productivity.

7.5.3 Biocontrol Ability of Bacterial Inoculants

The iron-chelation mechanism of siderophores creates an indirect competition for
soil iron amongst rhizosphere microbes. This process reduces the available soil iron,
thereby indirectly suppressing pathogens and their ability to cause diseases
(Shanmugaiah et al. 2015; Sayyed et al. 2010). For example, the fusarium wilt of
potato and maize has been controlled by siderophore-producing Pseudomonas and
Bacillus inoculants, through their ability to make iron unavailable to the pathogen
(Beneduzi et al. 2012). In the same vein, inoculants of Pseudomonas aeruginosa
have been widely used for controlling bacterial blight disease caused by
Xanthomonas oryzae pv. oryza and Rhizoctonia solani (Yasmin et al. 2017). Fusar-
ium spp. and Pythium spp., mainly attacking both maize and wheat crops, have also
been controlled with inoculants of Bacillus spp. and Burkholderia cepacia (Whipps
2001). The application of inoculants for biocontrol of crop pest and diseases is a
sustainable alternative to pesticide application.

On the other hand, the direct inhibition of pathogens by bacterial inoculants is
usually through their metabolic activities and production of antibiotics (Solanki et al.
2012; Akgiil and Mirik 2008). For example, Fusarium udum Butler and Erwinia
carotovora cause Fusarium wilt of pigeon pea (Cajanus cajan L.) and soft rot of
potato (Solanum tuberosum), respectively, thereby reducing the productivity of these
crops (Sharma et al. 2016; Pérombelon 2002). However, these pathogens can be
controlled by inoculants of Pseudomonas fluorescens and Sinorhizobium that
synthesise chitinase and f-1,3-glucanase (Gupta et al. 2013; Kumar et al. 2010).
These enzymes are able to break down the cell wall components of fungal pathogen.
Chitinases hydrolyse chitin, the major components of fungal cell walls, while
glucanases catalyse hydrolytic cleavage of the glucosidic linkages in the (1, 3)
B-glucan and break down the glucans present in the fungal cell wall (Gupta et al.
2013). Furthermore, plant-microbe interactions in the rhizosphere can strengthen the
defence mechanisms of plants against pest attack through cyanogenesis, a process
through which hydrogen cyanide is produced (Rudrappa et al. 2008). The cyano-
genic defence substances produced in the legume-Rhizobium symbiotic relationship
promote resistance in plants against herbivore attack (Thamer et al. 2011; Kempel
et al. 2009). Similarly, about 26% reduction in the population of predatory insects
was achieved when maize (Zea mays) plants were cultivated with bacterial inocu-
lants (Megali et al. 2015).



7 Status and Prospects of Bacterial Inoculants for Sustainable. . . 155
7.5.4 Volatile Organic Compounds

One of the major groups of secondary metabolites produced by rhizosphere bacteria
is known as volatile organic compounds (VOCs). Volatile organic compounds are
essential components of plant growth regulators that have been found to stimulate
increased crop productivity through induced resistance of plants to pathogens and as
a direct source of plant nutrients (Santoro et al. 2011). These metabolites play an
essential role in plant-microbe signal communication (Insam and Seewald 2010).
Some of the well-known VOCs include acetone, 3-butanediol, terpenes, jasmonates
and isoprene. These compounds have a high vapour pressure, low boiling point and
low molecular mass (<300 Da). Several factors have been reported to affect the
production of microbial VOCs in the soil. These factors include the pH, moisture
content, temperature, oxygen level and nutrient content of the soil (Insam and
Seewald 2010). The microbial growth stage also influences VOCs production.
Several studies have shown that microbial VOCs can indirectly affect root develop-
ment, secretion of hormones and plant growth (Piechulla et al. 2017; Schulz-Bohm
et al. 2017; Ryu et al. 2004). For example, in a study by Santoro et al. (2011), the
biosynthesis of essential oils and increased growth parameters observed in Mentha
piperita (peppermint) were attributed to the VOCs produced by Pseudomonas
fluorescens, Bacillus subtilis and Azospirillum brasilense. Similarly, biocontrol
potential of different species of Pseudomonas and Bacillus has been attributed to
the antibacterial activities of their various VOCs (Schulz-Bohm et al. 2017). Volatile
organic compounds such as benzothiazole and 1-methylnaphthalene produced by
Pseudomonas fluorescens WR-1 have bacteriostatic effects against Ralstonia
solanacearum, a tomato pathogen (Raza et al. 2016). Likewise, benzaldehyde and
1,3-butadiene produced by Bacillus spp. suppress the growth of R. solanacearum
and induces systemic resistance in tobacco plant against bacterial wilt diseases
(Tahir et al. 2017).

7.6 Bacterial Inoculants for Environmental Sustainability

7.6.1 Bioremediation of Polluted Agricultural Soil

Of recent, rhizosphere beneficial bacteria have found application in soil bioremedi-
ation, especially in toxic metal-polluted soils (Adeleke et al. 2012; Adeleke 2014;
El-Kabbany 1999). Bioremediation process is an eco-friendly and cost-effective
technique that employs microorganisms to effectively remove or reduce pollutants
of water, soil and sediments. This process is based on the ability of microbes such as
bacteria to degrade organic and inorganic substances in polluted environment
(Adeleke 2014; Chorom et al. 2010). In addition, the diverse rhizosphere beneficial
processes such as nutrient cycling, biochemical synthesis, detoxification as well as
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soil structure conservation have been harnessed in bioremediation (Jiao et al. 2015;
Panda and Mishra 2007).

The main advantage of using bacterial inoculants for bioremediation of polluted
soil in agroecosystems is the potential additional capabilities of microorganisms to
drive the processes involved in nutrient cycling. For instance, Rhizobacteria in
association with arbuscular mycorrhizal fungi (AMF) have been used to clean up
toxic heavy metal-contaminated agricultural soil (Khan 2014). Such approach will
allow the ecosystem, especially the agroecosystem, to benefit comprehensively from
the bioremediation process. Similarly, Bello-Akinosho et al. (2016) in an in vitro
study also reported the potential of Pseudomonas sp. strain 10—1B in the degradation
of polycyclic aromatic hydrocarbons (PAH) as well as in soil fertility management.
Several beneficial bacteria including Burkholderia, Pseudomonas, Bacillus, Rhizo-
bium and Enterobacter have also found application in bioremediation (Bello-
Akinosho et al. 2015, 2016, 2017; Jain and Khichi 2014; Mathew et al. 2014).
Burkholderia spp. have been used to remediate Cd- and Pb-polluted agricultural soil
(Jiang et al. 2008), while species of Bacillus, Streptococcus, Pseudomonas and
Micrococcus have also been reported with bioremediation potential for Cd-, Pb-
and Cu-contaminated soil (Mani and Kumar 2014; Fulekar et al. 2012). Importantly,
the twofold functions, viz. soil nutrient management and bioremediation, have made
rhizosphere beneficial bacteria a significant soil fertility management technology for
increasing agricultural land productivity in polluted soils (Raimi et al. 2017).

7.6.2 Drought or Water Stress Resistance

Plant-microbe interactions have vital influences on the diversity, abundance and
survival of both plants and their associated microbes (Huang et al. 2014; Whipps
2001). Due to this close interconnection, stress and sudden changes in the abiotic
environment of plants also affect their associated microbial communities (Naylor and
Coleman-Derr 2018). One of such environmental stress conditions is drought, which
adversely affects crop productivity. Under repeated water stress conditions, interac-
tions between plants and microbes have evolved adaptive strategies (Cruz-Martinez
et al. 2009). This involves improved association of plants with microbes. These
microbes can directly or indirectly improve the metabolism and development of the
host plant, thereby making such plants drought-resistant (Naylor and Coleman-Derr
2018). Many of the root-associated bacterial communities of plants cultivated under
drought conditions have the capability to enhance water stress tolerance through their
growth-promoting mechanisms (Kaushal and Wani 2016). The production of antiox-
idant defence substances, VOCs, dehydrins, PGP substances and exopolysaccharides
(EPS) and modification of phytohormone levels are some of the common mechanisms
used by bacteria to enhance water stress resistance of plants (Cruz-Martinez et al.
2009; Glick 2014; Kaushal and Wani 2016). Unfortunately, no single bacterial isolate
possesses all these attributes. Hence, utilisation of a microbial consortium rather than
single isolates could be important in the formulation of bacterial inoculants with
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drought-resistant capabilities (Naylor and Coleman-Derr 2018). For example, in a
study conducted by Khan et al. (2016b), a consortium of ten endophytic strains
improved water stress resistance of hybrid poplar (Populus sp.) through multiple
distinct drought response pathways.

Another example is the ability of such consortium to produce a combination of
PGP substances such as auxins, cytokinins, gibberellins, siderophores and ACC,
which promote high water stress tolerance in plants (Kaushal and Wani 2016;
Molina-Romero et al. 2017). Hence, inoculants known for the production of these
PGP substances have immense application in drought-prone environments (Figuei-
redo et al. 2010; Wang et al. 2012). For instance, cucumber (Cucumis sativus) plants
inoculated with a consortium of PGPR strains (Bacillus cereus AR156, Bacillus
subtilis SM21 and Serratia sp. XY21) under drought stress conditions had increased
leaf proline and chlorophyll content, darker green leaves and improved root recovery
intension when compared to the control (Wang et al. 2012). Similarly, a bacterial
consortium formulated with Pseudomonas putida KT2440, Sphingomonas
sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM2 improved
the yield of maize (Zea mays) compared to the control. This was attributed to the
abilities of the strains to solubilise phosphorus and produce high levels of
siderophore and TAA (Molina-Romero et al. 2017). According to Gururani et al.
(2013), Bacillus inoculant, which produces ACC and siderophores, enhanced water
stress tolerance of potato (Solanum tuberosum). Also, pepper (Capsicum annum)
and tomato (Solanum Ilycopersicum) plants inoculated with Achromobacter
piechaudii ARVSE had increased water stress resistance when cultivated under
water-stressed soil conditions (Mayak et al. 2004).

7.7 Current Status and Hurdles in the Formulation
of Efficient Inoculants

Efficient bacterial inoculants must not only have the ability to enhance plant growth,
but they should also be highly potent with sufficient capabilities to dominate in the
rhizosphere environment (Lupwayi et al. 2000). It is also important to ensure that
inoculants have high association compatibility with the plant host and other benefi-
cial rhizosphere microbes, as well as a broad range of beneficial functions with
diverse crops (Herridge et al. 2002). In addition, bacteria used for inoculant produc-
tion must be easily multiplied (both in the laboratory and field), environmentally
friendly and have the capability to perform under various ecological conditions
(Reddy and Giller 2008). Quite a number of rhizosphere bacteria have been reported
to possess a combination of the aforementioned abilities. As earlier highlighted, no
single inoculant can effectively perform all these functions under the different
ecological conditions. This has encouraged the formulation of inoculants with
microbial consortium, which perform diverse field functions (Herrmann and Lesueur
2013). In addition, it is also necessary to screen and select beneficial plant growth
promoters under different ecological conditions for the formulation and production
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of efficient bacterial inoculants for increased crop productivity (Arora et al. 2010).
For instance, several species of Pseudomonas, Bacillus, Azospirillum and Azotobac-
ter have found extensive applications in soil nutrient enhancement, not only for their
high nutrient solubilisation capability but also for their abilities to produce different
PGP substances and fix appreciable amounts of nitrogen, especially under extreme
environmental conditions (Bello-Akinosho et al. 2016; Ghosh et al. 2015; Parani and
Saha 2012; Sharma et al. 2003).

In spite of the need for increased production and application of inoculant in
sustainable agriculture, there exist some challenges that limit full commercialisation
of inoculants. One of the limiting factors is the field efficacy, which affects the
overall acceptability and success of the products (Parnell et al. 2016). Generally, the
field efficacy of inoculants cannot always be guaranteed. Several successful labora-
tory and greenhouse experiments are rarely translated to field success. In addition,
several quality assessments have shown that poor-quality inoculant products unable
to improve crop productivity are sold in the agro market (Herrmann et al. 2015;
Olsen et al. 1996; Raimi and Adeleke 2018). More so, efforts to formulate inoculants
that can perform under all ecological conditions have been unsuccessful (Stephens
and Rask 2000). Specific plants recruit a range of beneficial bacteria based on the
plant’s metabolites or exudates in the form of carbon, VOCs and organic acids
(Parnell et al. 2016). Moreover, efficiency of inoculants on different crops may differ
due to differences in their associated microbial community, developmental stages,
environment and nutrient availability or preferences (Herrmann and Lesueur 2013).

Furthermore, the success of inoculants greatly depends on the target crop, product
availability and cost as well as ease of application and environmental challenges.
Developing an efficient product suitable under different field conditions, which
combines all the aforementioned characteristics, has become a major challenge in
the inoculant industry (Stephens and Rask 2000). Another important factor is the
carrier formulation for inoculant production. This is a challenge that affects product
application, quality and field efficiency. It is essential that carrier materials support
the growth of specific inoculant strains and maintain the desired population of these
strains over an acceptable shelf life. Unfortunately, carriers for consortium products
are usually less selective; a desired quality that is required to support the diverse
microbial strains used for consortium product formulation. However, the disadvan-
tage of the less selective carrier is the potential to support growth of other microbial
contaminants. This is a major challenge affecting the formulation of good-quality
inoculants, especially the consortium products (Herrmann et al. 2015; Olsen et al.
1996).

An additional challenge in the production of efficient inoculants is the lack of
stringent quality control measures. Better quality control system should be put in
place to assess the quality of the numerous emerging products in the market as well
as the activities of the growing industry (Lupwayi et al. 2000). It is essential that the
products meet all quality criteria through regular quality assurance performed by the
manufacturers during production processes. In addition, quality control assessment
by independent bodies or government should be performed regularly to confirm
quality standards of inoculants (Herrmann and Lesueur 2013).
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7.8 Commercial Bacterial Inoculant Products

Bacterial inoculants have been established for over a century, with the first reported
inoculant, Nitragin®, produced by a Dutch scientist, Hiltner L. in 1896
(Bhattacharjee and Dey 2014). The growing need for sustainable agricultural pro-
duction has increased awareness and use of bacterial inoculants. This has caused an
increase in the commercialisation and market share of inoculants with different types
of products being supplied to the agromarket (Raimi et al. 2017). Recently, the
majority of inoculants produced and used are mostly rhizobia products, which
constitutes approximately 79% of the global inoculant demand. This may be attrib-
uted to the major role nitrogen plays in crop productivity. Apart from rhizobia, the
phosphate-solubilising inoculants account for approximately 15%, while other inoc-
ulants including mycorrhizal products make up the remaining percentage (Transpar-
ency Market Research 2014; Suyal et al. 2016). According to Transparency Market
Research (2014), the bioinoculant global market demand is growing and has been
estimated to increase at a robust cumulative average growth rate (CAGR) of approx-
imately 13% from 2017 to 2025. It is projected to be valued at US$4.09 billion in
2025 from the value of US$1.25 billion as at 2016. Azospirillum sp. and Bacillus
subtilis are commonly used for the formulation of commercial free-living PGPR
products, Bacillus subtilis has been used under different trade names such as
Serenade® and Kodiak® for crops including beans, pea, rice, maize and soybean
(Transparency Market Research 2014). Another important bacterial species in inoc-
ulant production is Agrobacterium radiobacter, which have been produced by
different manufacturers under the trade names Diegall® and Nogall®. These prod-
ucts are used for the cultivation of fruit, trees and ornamentals. Similarly, Pseudo-
monas fluorescens has been produced under trade names such as Conquer® and
Victus®, used on various types of crops (Suyal et al. 2016). Some of these inoculant
products are listed in Table 7.2.

7.9 Conclusions

Bacterial inoculants play several essential roles in agroecosystems. Their direct and
indirect impacts on plant growth and development are expressed through various
mechanisms including nutrient solubilisation and mobilisation as well as the pro-
duction of PGP substances. Therefore, traditional nutrient management strategies,
which are greatly dependent on the application of agrochemical inputs such as
inorganic fertilisers and pesticides must realign with contemporary integrated nutri-
ent management systems such as bacterial inoculant technology. In spite of the many
success stories attributed to the use of bacterial inoculants for improving agricultural
production, many questions regarding their sole utilisation to improve soil quality
and enhance plant health remain unanswered.
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Table 7.2 Global representation of inoculants, bacterial components and manufacturers

Continent Product Active component Manufacturer

Africa Firstbase, Bacillus sp. Microbial solution (Pty)
Biostat, Ltd, South Africa
Landbac,
Waterbac,
lifeForce
Likuiq Bradyrhizobium elkanii Microbial solution (Pty)
Semia Ltd, South Africa
Nitrasec Sinorhizobium meliloti Microbial solution (Pty)
Alfalfa Ltd, South Africa
(Lucerne)
Organico Bacillus spp. Enterobacter Amka Products (Pty) Ltd,

spp., Pseudomonas,
Stenotrophomonas,
Rhizobium

South Africa

Soil Vital Q

Bacillus subtilis, Bacillus
thuringiensis, Azotobacter
chroococcum, Pseudomonas
fluorescens, Lactobacillus

Sp.

BioControl Products SA
(Pty) Ltd

Bac up Bacillus subtilis BioControl Products SA
(Pty) Ltd
Azo-N Azospirillum brasilense, BioControl Products SA
Azospirillum lipoferum (Pty) Ltd
Azo-N Plus Azospirillum brasilense, BioControl Products SA
Azospirillum lipoferum, (Pty) Ltd
Azotobacter chroococcum
B-RUS, Bacillus subtilis Ag-Chem Africa (Ltd) Ltd,
Extrasol South Africa
NAT-P Pseudomonas fluorescence BioControl Products SA
(Ltd) Ltd
N-Soy Bradyrhizobium japonicum | BioControl Products SA
(Ltd) Ltd
SoilFix Brevibacillus laterosporus, BioControl Products SA
Paenibacillus chitinolyticus, | (Ltd) Ltd
Lysinibacillus sphaericus,
Sporolactobacillus
laevolacticus
Composter Bacillus spp. BioControl Products SA
(Ltd) Ltd
N-Bean Rhizobium phaseolus BioControl Products SA
(Ltd) Ltd
Histick Bradyrhizobium japonicum | BASF SA (Pty) Ltd,
South Africa
Nodumax Bradyrhizobia IITA Business incubation
platform, Nigeria
BIOFIX Rhizobia MEA Fertilizer Ltd, Kenya
Soyflo Bradyrhizobium japonicum | Soygro (Ltd) Ltd,

South Africa

(continued)
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Table 7.2 (continued)
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Continent Product Active component Manufacturer
Rhizostim Azospirillum sp. Soygro (Ltd) Ltd,
South Africa
Mazospirflo | Azospirillum brasilense Soygro (Ltd) Ltd,
South Africa
Europe Legume fix | Rhizobium spp. Legume Technology (UK)
(common
bean)
Legume fix Bradyrhizobium japonicum
(soybean)
Twin N Azorhizobium sp., Azoarcus | Mapleton Ltd, UK
sp., Azospirillum sp.
Nitrasec Rhizobium tropici Lage y Cia. S.A, Uruguay
Australia Bio-N Azotobacter spp. Nutri-Tech Solution,
Australia
B.Sub Bacillus subtilis Nutri-Tech Solution,
Australia
Accelerate Bacillus polymyxa, Strepto- | Nutri-Tech Solution,
myces Spp. Australia
Bioplex Azotobacter spp. Nutri-Tech Solution,
Australia
Myco tea Azotobacter chrococcum, Nutri-Tech Solution,
Bacillus polymyxa Australia
Twin-N Azorhizobium, Azoarcus, Mapleton Int. Australia
Azospirillum
NIB PGPR Pseudomonas sp. Murdoch University,
peat Australia
inoculant
North and Vault NP Bradyrhizobium japonicum Becker Underwood, USA
South America Chick Pea Mesorhizobium ciceri Becker Underwood, USA
Nodulator
Cowpea peat | Rhizobia Becker Underwood, USA
inoculant
Excalibur Natural bacteria for field America’s Best Inoculant,
Gold seed USA
Graph-Ex Bradyrhizobium japonicum | America’s Best Inoculant,
USA
Green gram | Rhizobia Becker Underwood, USA
peat and
Groundnut
peat
Myco Apply | Bacillus licheniformis, Mycorrhizal Application,
Soluble B. megaterium, B. pumilus, Inc. USA
Maxx B. amyloliquefaciens
Vault HP Bradyrhizobium spp. BASF, Canada

(continued)
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Table 7.2 (continued)

Continent ‘ Product Active component Manufacturer

PHC Biopak | Bacillus azotofixans, Plant Health Care Inc. USA
B. licheniformis,
B. megaterium, B. polymyxa,
B. subtilis, B. thuringiensis
PHC Biopak | Paenibacillus azotofixans, Plant Health Care Inc. USA
colonise AG | Bacillus licheniformis,
B. megaterium, B. polymyxa,
B. subtilis, B. thuringiensis

Rizo-Liq Bradyrhizobium sp. (green Rizobacter, Argentina
(green gram, | gram, ground nut and soy-
common bean), Mesorhizobium ciceri
bean, soy- (chickpea), Rhizobium spp.
bean, (common bean)
groundnut,
chickpea)
Rizo-Liq Bradyrhizobium japonicum Rizobacter, Argentina
Top
Asia Bioplant Clostridium, Artemis & Angelio Co. Ltd,

Achromobacter, Streptomy- | Thailand
ces, Aerobacter, Nitrobacter,
Nitrosomonas, Bacillus

Adapted from Raimi et al. (2017), Herrmann et al. (2015)

Furthermore, several research works have focussed on rhizobia, possibly because
of its huge biological N-fixation capability, especially in symbiosis with legumes
(Reis and Teixeira 2015; Zahran 1999). However, beyond rhizobia-legume interac-
tions, there is more to be discovered and developed for improving N-fixation,
particularly in nonleguminous crops. Similarly, bacterial inoculants that have mul-
tiple field applications (e.g. nitrogen fixation, nutrient solubilisation and syntheses of
PGP substances) should be further investigated for efficient inoculation and sustain-
able crop production.

Globally, to improve quality, acceptance and adoption of bacterial inoculants,
ideas should be borrowed from new technologies that include multi-omics approach.
This approach could lead to the development of ‘super-inoculants’ that can be used
not only to improve plant health but also to eliminate unwanted microbes that
directly or indirectly inhibit plant development. This could involve development
of a biomarker strategy for manipulating plant microbiome ecosystems, thus improv-
ing the production of efficient bacterial inoculants for sustainable management of
agroecosystems.
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Abstract The agricultural practices adopted to enhance agricultural productivity
have adversely affected our environment and the natural resources. Moreover, food
security for the ever-increasing human population also demands improvement in the
quality of agri-produce. Due to the very low concentration of micronutrients in
cereals, human beings are suffering the deficiency of these micronutrients. Approx-
imately one-third of the total population in developing countries is at high risk of Zn
deficiency because they depend on cereals for their daily caloric intake. Indiscrim-
inate use of agro-chemicals and chemical fertilizers to increase crop yield has caused
considerably negative impact on environmental sustainability and has resulted in
deficiency of micronutrients in soil and plants. The micronutrient deficiency has
further resulted in loss of plant enzyme functions, cell damage, oxidative stress and
metabolic disturbances and subsequently affected crop productivity. Increased inter-
est in low-input agriculture in recent years has emphasized the use of biological
inoculants (bacteria and/or fungi) to increase the mobilization of key nutrients
(nitrogen, phosphorus, potassium and zinc) to crop plants. Zinc (Zn) is a crucial
micronutrient for plants, microorganisms and humans. Therefore, effective strategies
are required to overcome Zn deficiency in edible crops, to enhance the grain Zn
content and to minimize the adverse effects of Zn deficiency on humans. Recently,
inoculation of zinc-solubilizing bacteria has been recommended to overcome the
zinc deficiency in plants and human beings. Zinc-solubilizing bacteria alone or with
organic manures has been found to increase the bioavailability of native and applied
zinc to the plants. Several bacteria including Acinetobacter, Bacillus and Pseudo-
monas have been reported to solubilize zinc. Thus, the production and management
of biological fertilizers containing zinc-solubilizing bacteria can be an effective
alternative to chemical fertilizers. The current knowledge about the characterization
of zinc-solubilizing microorganisms (ZnSMs), complexity of the Zn-solubilization
mechanisms and the interactions of biofertilizers under the field conditions leading
to improved crop productivity is discussed in this chapter.
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8.1 Introduction

Plants require a variety of nutrients for optimum growth and metabolism. The
inorganic forms of nutrients are absorbed along with water by the plant roots.
Some of the micronutrients play a vital role in balanced crop nutrition and physio-
logical functions and are therefore essential for plant growth and crop production.
The common micronutrients important for plant metabolic activities are iron, copper,
zinc, boron, nickel, manganese, molybdenum and chloride (Uchida 2000). Defi-
ciency of any one of these micronutrients in the soil could retard plant growth, even
if all other macro- or micronutrients are present in sufficient quantity (Yu and Rengel
1999). Most of the soils in world are deficient in micronutrients due to harvesting of
micronutrients from the soil by growing of high-yield crops, increased use of NPK
fertilizers containing lesser amounts of micronutrients and less use of organic
manures and compost.

Among the different micronutrients, zinc is important for healthy growth, repro-
duction and metabolism of crop plants (Hughes and Poole 1989; Perumal et al.
2017). Zinc serves as an important component in a variety of enzymatic reactions,
redox reactions and metabolic processes (Gandhi et al. 2014). Zinc has been reported
to perform many critical functions in biological systems, including protection of
structural and functional integrity of biological membranes, photosynthesis, biomass
production, chlorophyll formation, nodulation, lipid and protein metabolism, carbo-
hydrate synthesis, enhanced stress tolerance and reproductive processes (Thenua
etal. 2014; Yu et al. 2017). Zinc is also required for the synthesis of phytohormones
like auxins and cytokinins, which help in growth regulation and stem elongation in
plants (Hussain et al. 2015). It is used for protection from free radicals and conver-
sion of starches to sugars. It also plays a vital role in regulation of the gene
expression needed for the tolerance of environmental stresses in plants (Cakmak
2000).

In areas where zinc deficiency is widespread in crops, there is a high risk for the
health of livestock and humans. Zn plays a critical role in humans maintaining the
activity of enzymes and is found responsible for controlling over 300 enzymatic
reactions (Tapiero and Tew 2003). Solanki et al. (2016) reported that fertility
problems have increased in the past few years in humans and animals in areas
where zinc deficiency is more pronounced. The deficiency of important
micronutrients such as iron and zinc may often lead to impairment in brain devel-
opment and wound healing, and the person becomes immune-compromised to
common infectious diseases such as pneumonia, diarrhoea and malaria (Prasad
2013). Mostly, the zinc and iron deficiencies are caused by a diet deficient in
micronutrients or their non-bioavailability (Welch and Graham 2004).

Zinc deficiencies are commonly found in 30% of the global soils (Sharifi and
Paymozd 2016) and have resulted in large losses in yield and quality of several crops
and legumes worldwide. The low solubility of zinc in spite of its high abundance in
soils is mainly responsible for widespread occurrence of zinc deficiency problem in
crop plants (Cakmak 2008). In India, up to 50% of the agricultural land, particularly
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the whole of the Indo-Gangetic belt, is reeling under zinc deficiency and expected to
further increase up to 63% by 2025 (Sunitha Kumari et al. 2016). The deficiency of
zinc results in remarkable reduction in plant height and occurrence of whitish brown
patches, which turn necrotic subsequently. This led to serious consequences when
crop plants were grown on zinc-deficient soils, which resulted in grain yield reduc-
tion of up to 80%. Zn deficiency is very common in rice cultivation, and it stands
next to nitrogen and phosphorus deficiency. Severe deficiency causes a decrease in
the number of tillers and delay in crop maturity (Wissuwa et al. 2006). Mostly,
chemical fertilizers are applied to overcome these nutritional constraints, and the
impact of zinc application on increasing crop yields has been recorded on most
crops, both under irrigated and rainfed conditions. Usually, the addition of 25 kg/ha
ZnSOy4 heptahydrate, equivalent to 5 kg/ha zinc, is generally recommended for every
year or alternate years for soil application. But, they are not cost-effective, and added
fertilizers readily get converted into non-accessible insoluble form to plants.

Availability of zinc from insoluble sources is regulated by many factors, among
which biochemical reactions of rhizospheric microorganisms play an important role
in converting unavailable forms of zinc into available forms (Singh et al. 2005;
Bapiri et al. 2012; Zamana et al. 2018). From the exogenous application of soluble
zinc sources, only 20% of applied zinc is available for plant uptake (Bapiri et al.
2012). The unavailable or immobilized zinc, i.e. zinc phosphate, zinc oxide and zinc
carbonate, is reverted to available forms by the inoculation of bacterial strains which
can solubilize it by release of organic acids and decrease in pH (Wang et al. 2013;
Sharma et al. 2014).

8.2 Importance of Zinc (Zn) in Metabolism of Plants,
Humans and Microorganisms

The essentiality of zinc as a micronutrient in plants and animals is phenomenal (Das
and Green 2013), and Zn is observed as the 23rd most copious element on Earth with
five stable isotopes (Broadley et al. 2007). Zn”* has distinct characteristics of Lewis
acid and is considered to be redox-stable (Barak and Helmke 1993; Sinclair and
Kramer 2012; Hafeez et al. 2013). Interestingly, Zn plays a prominent role in many
biochemical reactions because it is a structural constituent or a regulatory cofactor
for different enzymes and proteins. At the organism level, the significant role of ‘zinc
finger’ as a structural motif is well established in regulation of transcription (Klug
1999; Englbrecht et al. 2004; Broadley et al. 2007).
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8.2.1 Responses of Zinc in Plant Metabolism and Growth

Zinc performs several important functions in different plants. It is involved in the
regulation of carbonic anhydrase for fixation to carbohydrates in plants and also
promotes metabolism of carbohydrate, protein and auxin and pollen formation
(Marschner 1995). Zinc has been found to govern the functioning of biological
membranes and to perform defence mechanism against harmful pathogens. The
presence of Zn in superoxide dismutase and catalase as a cofactor has been shown
to protect plants from oxidative stress. Moreover, Zn is the component of all the six
enzyme classes, i.e. oxidoreductases, transferases, hydrolases, lyases, isomerases
and ligases, which perform catalytic role in various biochemical reactions in plants.

Zinc is a component of the Rubisco structure, and therefore, it activates several
biochemical reactions in the photosynthetic metabolism (Brown et al. 1993; Alloway
2004a, b). Zn has been found to inhibit the production of high toxic hydroxyl
radicals in Haber—Weiss reactions in the thylakoid lamellae, due to its high affinity
with cysteine and histidine (Brennan 2005; Disante et al. 2010; Tsonko and Lidon
2012). The uptake and availability of water to plants have also been found to be
affected by the availability of Zn (Barcelo and Poschenrieder 1990; Tsonko and
Lidon 2012). In addition, Zn is also involved in the formation of complexes with
DNA and RNA (Pahlsson 1989; Coleman 1992). Due to its involvement in the
tryptophan synthesis (precursor for indole acetic acid production), Zn has been
reported to play an active role in signal transduction (Brown et al. 1993; Alloway
2004a, b; Hansch and Mendel 2009). By combining with phospholipids and
sulphydryl groups of membrane proteins, Zn is also involved in the regulation of
membranes. Based on its prominent role in different functions, the Zn concentration
required for proper growth of the plant is estimated to be 15-20 mg Zn kg~ ' dry
weight (Marschner 1995). The Zn deficiency in plants may cause different symp-
toms and responses including necrosis at root apex and inward curling of leaf lamina,
mottled leaf due to inter-veinal chlorosis, bronzing and internode shortening and size
reductions in leaf. Significant losses in crop quality and quantity have been reported
worldwide due to Zn deficiency in crops and legumes.

8.2.2 Effect of Zinc in Humans

Zinc is a structural component of several body enzymes in the human body.
Deficiency of Zn may result from unsatisfactory consumption and inappropriate
absorption of Zn in the body. More than 30% of world’s population is found to suffer
from severe Zn deficiency (Welch 2002), and Zn deficiency is the fifth most
important risk factor responsible for illness and death of humans in the developing
world (Cakmak 2009). Zinc has been reported to improve the immune system of
humans (Walker and Black 2007; Gibson et al. 2008). Due to the deficiency of Zn,
human body suffers from hair and memory loss, skin complications and weakness in
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body muscles. Insufficient Zn intake during pregnancy may cause stunted brain
development of the foetus (Graham 2008; Benton 2008). Moreover, infertility has
also been perceived in Zn-deficient men. Zinc deficiency may also cause congenital
diseases like acrodermatitis enteropathica (Zimmermann and Hilty 2011; Kumar
et al. 2016; Sharma et al. 2016). Zn deficiency in human beings is widespread in
India, Pakistan, China, Iran and Turkey, and interestingly, these are the regions with
Zn-deficient soils (Hotz and Brown 2004; Joy et al. 2015).

The detection and diagnosis of zinc deficiency in the human body is usually
carried out by measuring zinc concentration in serum and other tissues (Hambidge
and Krebs 2007). A common recommendation for an average male is for intake of
11 mg Zn per day, whereas an average female needs 9 mg of Zn daily. A female
needs 13—-14 mg of Zn on a daily basis during pregnancy and lactation because the
requirement for zinc intake increases during this period (Hotz and Brown 2004). Zn
has been found abundant in the rice husk and grains. Zn-rich foods include beef,
pork, chicken and breakfast cereals; nuts like roasted peanuts, almonds, walnuts and
oats; and dairy products such as yogurt, cheese and milk (Cakmak 2002; Masood
and Bano 2016; Velazquez et al. 2016).

8.2.3 Role of Zinc in Microorganisms

The role of zinc in the nutrition and physiology of both eukaryotic and prokaryotic
microorganisms is widely studied (Hughes and Poole 1989). Zinc deficiency in fungi
and bacteria is accompanied by impairment of the formation of pigments such as
melanin, chrisogenin, prodigiosin, subtilisin and others (Chernavina 1970). A few
fungal genera possess immense potential of solubilizing zinc and tolerating a high
zinc level. Aspergillus niger was found to grow under 1000 mg Zn, and this fungus is
used to quantify zinc in soils containing low zinc (2 mg kg~ available zinc) (Bullen
and Kemila 1997). Lichens and conifers are conspicuous for their high zinc content,
and the highest concentration of zinc has been found in poisonous mushrooms
(Vinogradov 1965). Some bacteria, viz. Thiobacillus thiooxidans, T. ferrooxidans
and facultative thermophilic iron oxidizers, have been reported to solubilize zinc
from sulphide ore (sphalerite) (Hutchins et al. 1986).

8.2.4 Zinc Tolerance and Toxicity in Plants and Microbes

Zn is toxic to cellular organisms at high concentrations, but it is an indispensable
component of thousands of proteins in plants, humans and microorganisms. Hence,
adequate supply of Zn is critical for growth and development of organisms. There-
fore, further efforts are required to understand the concept of application, acquisition
and assimilation of zinc in plants. The exposure of leaf with elevated level of Zn,
i.e. above 0.2 mg g~ ' dry matter, has been found to cause multiple abnormal
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functioning in plant. This toxicity level resulted in deterioration of leaf tissue, and
the productivity of plant is lowered by making their growth stagnant. Soybean and
rice plants were found to show sensitivity toward toxic Zn concentration (Chaney
1993). Similarly, leafy vegetable crops, viz. spinach and beet, tend to accumulate a
high concentration of Zn, and therefore, effect of Zn toxicity was observed in these
crops (Boawn and Rasmussen 1971).

Zinc is also toxic to prokaryotic and eukaryotic microorganisms at higher con-
centrations, and therefore, zinc solubilization might limit the bacterial growth.
Variable effects on the growth and activities of different microorganisms were
observed by supplementation of zinc in the medium. For example, 10 mM concen-
tration of Zn>* decreased the survival of Escherichia coli but enhanced the survival
of Bacillus cereus, whereas it did not significantly affect the survival of Pseudomo-
nas aeruginosa and Norcardia coralline (Babich and Stotzky 1985). Saravanan et al.
(2003) studied zinc tolerance limit of bacterial isolates ZSB-O-1 and ZSB-S-2, and
population reduction was reported even at 25 mg L™' of ZnSO, within 24 h. Nweke
et al. (2006) assessed toxicity of Zn** on four planktonic bacteria by measuring
dehydrogenase activity after exposing bacterial strains to various zinc concentrations
(0.2-2.0 mM). Dehydrogenase activity was progressively inhibited at concentrations
greater than 0.2 mM, indicating that these bacterial strains are sensitive to Zn>*
stress. Rajkumar et al. (2008) isolated a metal-resistant bacterial strain SM3 from a
serpentine soil, and the strain was characterized as Bacillus weihenstephanensis.
This strain exhibited resistance to nickel and zinc even at a concentration of
700 mg L' and also exhibited the capability of solubilizing phosphate both in the
absence and presence of nickel, copper and zinc metals.

8.3 Prevalence of Zinc in Soil and Factors Affecting Zinc
Availability

Zinc is found in the Earth’s crust at a concentration of 0.008%, and more than 50% of
Indian soils exhibit deficiency of zinc (Katyal and Rattan 1993; Ramesh et al. 2014).
The worldwide prevalence of Zn deficiency in crops is due to low solubility of Zn
rather low Zn availability in soil (Igbal et al. 2010). The soluble zinc sulphate
(ZnS0O,) is added as fertilizer to improve plant growth and crop productivity, but
constraints are faced in absorbing zinc from the soil, because only 1-10% of total
available zinc is utilized by the crop and 90% of applied zinc is transformed into
different mineral fractions (Zn-fixation), which are not available for plant absorption
(crystalline iron oxide bound and residual zinc). Zinc fixation is closely related to
cation exchange in acidic soils, whereas under alkaline conditions, Zn fixation
occurs by means of chemisorptions of zinc on calcium carbonate, which formed a
solid solution of ZnCaCOj; and by complexation by organic ligands (Alloway 2008).

The content of zinc and capacity to supply Zn for optimal crop growth varies
widely in agriculture soils (White and Zasoski 1999). Soils deficient in their ability
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to supply Zn to crops are widespread all over the world including Australia
(Sillanpaa 1990), China (Lui 1991) and India (Takkar 1996; Singh 2008; Behera
et al. 2009b). The zinc applied to agriculture fields as zinc sulphate (soluble) gets
converted to different insoluble forms like Zn(OH), at high soil pH, ZnCO; in
calcium-rich alkali soils and zinc phosphate in near-neutral to alkaline soils (with
large application of P fertilizers) and ZnS under reducing conditions particularly
during flooding (Sarathambal et al. 2010). Several factors have been found to affect
Zn availability depending on the soil conditions. For example, solubility of Zn has
been reported to decrease with the increase in pH (Anderson and Christensen 1988),
high organic matter and bicarbonate content, high magnesium-to-calcium ratio and
high availability of P and Fe (Wissuwa et al. 2006). Usually, extractable Zn was
found to decrease with an increase in soil pH due to increased adsorptive capacity,
formation of hydrolysed forms of zinc, possible chemisorption on calcium carbonate
and co-precipitation in iron oxides (Cox and Kamprath 1972; Alloway 2008).

Zn deficiency is usually more prevalent in calcareous soils with high pH (Liu
et al. 1983; Katyal and Vlek 1985). The problem of Zn deficiency is also more acute
in sandy acidic soils having low organic matter content and low level of available
plant nutrients (Rautaray et al. 2003). The acidic soils in India cover about 49 million
ha of area, whereas more than 800 million ha of acidic soils are found worldwide
(Sharma and Singh 2002). Therefore, soil acidity is causing a huge problem by
affecting food production across Asia, Africa and Latin America, and it is imposing
heavy costs on farmers in Europe and North America. Excessive accumulation of
phosphorus in the soil has also been found to interfere on zinc uptake by plants, and
thus, it has been found to cause zinc-imposed deficiency in plants (Salimpour et al.
2010).

After 7 years of continuous cropping of wheat (Triticum aestivum)—rice (Oryza
sativa), wheat and maize (Zea mays) and chickpea (Cicer arietinum)—bajra
(Pennisetum typhoides) decrease of soil pH was reported in a sandy loam soil
(Chandi and Takkar 1982). These crop rotations showed diverse effects on labile
Zn fractions in soil due to their effect on soil pH. Moreover, differential uptake of Zn
by the crops was observed from different soil Zn fractions. Behera et al. (2009a)
reported decline in organic matter and carbonate-bound Zn in an inceptisol as a result
of intensive cropping with maize and wheat for more than three decades. Soil
organic matter content was also reported to affect the availability of Zn (Lindsay
1972; Moody et al. 1997). High levels of organic matter increased exchangeable and
organic fractions of Zn and decreased the oxide fractions of Zn in soil because of
reducing conditions to enhance Zn availability for uptake by the plants.

Thus, Zn management in acidic soils is an emerging area of concern for obtaining
higher crop yield. Soil surveys illustrating the geographic distribution of soil zinc
availability will provide a better understanding of the nature and extent of zinc
deficiencies and toxicities observed in plants, livestock and humans (White and
Zasoski 1999). To evaluate the bioavailability of Zn in soils, several extractants are
being used which include mineral acids, chelating agents, buffered salts and neutral
salts. Diethylene triamine pentaacetic acid (DTPA) is the most widely used soil
extractant for extraction of plant-available Zn in different soil types, but other
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extractants like ethylenediaminetetraacetic acid (EDTA), hydrochloric acid, ammo-
nium bicarbonate-DTPA (ABDTPA), Mehlich 1 and Mehlich 3 are also widely used
(Alloway 2008). The unavailability of zinc fertilizers at the time of need, poor
quality of zinc fertilizers available in the market and lack of awareness of the farmers
about effects of micronutrient on plant and human health are the major challenges
faced by the farmers (Das and Green 2013).

8.4 Occurrence of Beneficial Microorganisms
in the Rhizosphere

The plant—soil interface around living roots, termed as rhizosphere, is a narrow zone
of soil that provides niche to various microorganisms including fungi, bacteria,
actinomycetes, algae and nematodes (Prashar et al. 2014). Nearly 5-21% of all
photosynthetically fixed carbon by plants is being transferred to the rhizosphere
through root exudates (Marschner 1995; Flores et al. 1999). These root exudates
support the growth of specific microbial populations and thereby markedly affect
interactions between plants and the soil environment (Doornbos et al. 2012; Mendes
et al. 2013). Phenolic metabolites released in root exudates attract particular
rhizospheric and soil microbes and successfully manipulate the resident soil micro-
bial population (Brimecombe et al. 2001).

Some plants shape their rhizosphere microbiome with the recruitment of benefi-
cial bacteria or fungi (Berendsen et al. 2012), and host genotype also influences the
overall composition of these microbial communities (Badri et al. 2013; Bulgarelli
et al. 2015). In addition, edaphic and environmental factors also affect the compo-
sition of root microbiome (Hacquard et al. 2015). Legume plants release a specific
kind of flavonoids in the root exudates, which interact with nodulation gene nodD of
the host-specific rhizobia to establish symbiosis with legume plants (Bertin et al.
2003; Hassan and Mathesius 2011), which provide fixed nitrogen supply to the plant
(Marschner et al. 2011; Oldroyd 2013). Some plant roots release strigolactones to
attract mycorrhiza for improving phosphate supply (Akiyama et al. 2005). Recently,
the changing climatic conditions were found to alter the rhizosphere biology by
modifying rates of root exudation and biogeochemical cycling (Hawley et al. 2017).
These rhizosphere bacteria improve plant growth by (1) supplying nutrients to crops;
(2) producing plant hormones; (3) inhibiting the activity of plant pathogens;
(4) improving soil structure; (5) reducing abiotic and biotic stress and (6) causing
bioaccumulation or microbial leaching of inorganics and heavy metals (Ehrlich
1996; Sindhu et al. 2014).

Some beneficial rhizosphere microorganisms improve the plant growth and yield
through nutrient cycling by providing mineralized nutrients (Bulgarelli et al. 2013;
Sindhu et al. 2016, 2019). Beneficial plant growth-promoting rhizobacteria (termed
as PGPR) include a wide range of genera, i.e. Acinetobacter, Alcaligenes,
Azospirillum, Azotobacter, Bacillus, Pseudomonas, Rhizobium, Serratia, etc.
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(Sturz et al. 2000; Shoebitz et al. 2009). These rhizobacteria produce plant growth
regulators/hormones, solubilize phosphorus and potassium, fix atmospheric inert
nitrogen and act as elicitors for tolerance of abiotic and biotic stresses (Yang et al.
2008; Bhattacharyya and Jha 2012; Pérez-Montafio et al. 2014). Some bacteria
produce phytohormones such as indole acetic acid (IAA), gibberellins (GA3) and
cytokinins, which alter root architecture and stimulate plant growth (Spaepen et al.
2007; Duca et al. 2014). Some species of Pseudomonas (e.g. P. fluorescens), Strep-
tomyces and Bacillus have been found to inhibit the proliferation of the pathogens
(Bhattacharyya and Jha 2012; Sharma et al. 2018b). Other PGPR strains have been
reported to induce tolerance in plants to abiotic stresses. For instance, Paenibacillus
polymyxa, Achromobacter piechaudii and Rhizobium tropici were found to amelio-
rate the drought stress in Arabidopsis, tomato (Solanum lycopersicum) and common
bean (Phaseolus vulgaris), respectively, by accumulation of abscisic acid and due to
degradation of reactive oxygen species and ACC (1-aminocyclopropane-1-carbox-
ylate) (Mayak et al. 2004b; Yang et al. 2008). Salinity tolerance in plants was
improved by inoculation of Achromobacter piechaudii and B. subtilis (Mayak
et al. 2004a; Zhang et al. 2008; Choudhary and Sindhu 2016). Endophytic bacteria
isolated from wild rice (Oryza alta) plants were found to supply fixed nitrogen to
their host plants (Baldani et al. 2000; Chaudhary et al. 2012).

Infestation of plants with a pathogen has been reported to alter the soil
microbiome composition through shifts in root exudation profile (Chaparro et al.
2013). For example, the presence of the pathogenic fungus Fusarium graminearum
in the rhizosphere of barley triggered the exudation of many phenolic compounds
that prevented fungal spore germination (Lanoue et al. 2009). The rhizobacterium
Pst DC3000 was chemoattracted by secretion of L-malic acid by roots in response to
infection of foliage. The interaction of the B. subtilis strain FB17 with the
Arabidopsis plants altered the expression of host plant genes, which are involved
in regulation of auxin production, metabolism, defence and stress responses and also
caused modifications in cell wall (Lakshmanan et al. 2012). The hormones involved
in plant immunity, i.e. salicylic acid and jasmonic acid, were also found to affect the
root microbiome (Lebeis et al. 2015). Therefore, further understanding of the
rhizosphere biology is required for promoting beneficial plant—microbe interactions
as a low-input biotechnology for sustainable agriculture (Ryan et al. 2009; Dubey
et al. 2016).

8.5 Characterization of Zinc-Solubilizing Bacteria
from Rhizosphere

The soluble form of zinc fertilizers are applied to the field soils to surmount the Zn
deficiency. These chemical fertilizers are very costly and cause pollution in soil, air
and water. Therefore, an eco-friendly and cost-effective approach is required to
supplement the Zn deficiency by inoculation of Zn-solubilizing microorganisms.
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Fig. 8.1 Solubilization
zone formed by zinc-
solubilizing bacteria

Recently, the use of beneficial microorganisms is advocated for sustainable agricul-
ture and restoration of soil fertility (Sindhu et al. 2019). For improving Zn availabil-
ity in field soils, solubilization of insoluble Zn compounds [ZnO, ZnCOs,
Zn3(POy),] by plant growth-promoting rhizobacteria has been reported (Saravanan
et al. 2007a, b; Sharma et al. 2012; Krithika and Balachandar 2016; Gontia-Mishra
et al. 2016) (Fig. 8.1). The inoculation of Zn-solubilizing bacteria (ZSB) has been
found to increase the availability of soluble zinc for plant assimilation and eventually
resulting in plant growth promotion.

Bacteria including Thiobacillus thiooxidans, T. ferrooxidans and facultative
thermophilic iron oxidizers were reported to solubilize zinc from sulphide ore
(Hutchins et al. 1986). Simine et al. (1998) isolated a zinc-solubilizing Pseudomonas
fluorescens strain from forest soil. Zinc-solubilizing ability of Bacillus sp. (isolated
from zinc ore) and Pseudomonas sp. (isolated from paddy soil) was assessed using
zinc oxide, zinc sulphide and zinc carbonate in both plate and broth assays
(Saravanan et al. 2003). A strain of Gluconacetobacter diazotrophicus was isolated
that caused zinc solubilization and also showed anti-nematode activity against
Meloidogyne incognita (Saravanan et al. 2007a, b). Sindhu (2014) obtained 38 bac-
terial isolates from rhizosphere soil of different crops and screened these isolates for
solubilization of various insoluble zinc sources, i.e. zinc oxide, zinc sulphide and
zinc carbonate. All the rhizobacterial isolates solubilized zinc oxide with solubili-
zation index ranging from 1.56 to 36.00. Only three isolates solubilized zinc
sulphide with the index varying from 1.96 to 4.00, and 33 isolates solubilized zinc
carbonate with index 3.36 to 25.00. Fourteen rhizobacterial isolates showing zinc
solubilization index more than 15.00 on zinc oxide-containing plates were also
screened for phosphorus (P) solubilization and IAA production. All the 14 bacterial
isolates solubilized P with an index ranging from 1.56 to 14.87, and only 11 isolates
showed TAA production that varied in the range of 4.06-8.77 pg mL~".

Sharma et al. (2014) isolated 48 endophytic bacteria from soybean (43) and
summer mungbean (5) rhizosphere. The zinc-solubilizing ability of these isolates
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was studied in Tris minimal medium separately amended with inorganic zinc
compounds, viz. zinc oxide (ZnO) and zinc phosphate Zn3(PO,), by plate assay
method. Only two bacterial isolates solubilized ZnO, while other two isolates
solubilized Zn(PO,), on Tris minimal medium. Due to their efficiency of phosphate
solubilization, zinc solubilization and IAA production, endophytes 1J (Klebsiella
spp.) and 19D (Pseudomonas spp.) were found to be the most promising bacterial
isolates for stimulation of plant growth. Similarly, Gandhi et al. (2014) isolated
240 zinc-solubilizing bacterial strains from rhizosphere of rice, and of them, 15 iso-
lates were found efficient zinc solubilizers. From eight different agricultural fields of
Coimbatore district of Tamil Nadu, 35 zinc-solubilizing bacteria were isolated
(Sunitha Kumari et al. 2016). Five bacterial isolates were selected as the best strains
based on their solubilization efficacy and were identified using the 16S rRNA
sequencing method. Of the five bacterial isolates, Pseudomonas aeruginosa showed
maximum solubilization of zinc in the broth and also decreased the pH from 7 to 3.3.

Perumal et al. (2017) isolated six zinc-solubilizing bacterial strains from the
rhizosphere of maize. Bacterial isolate ZSB SM-1 was found to be most effective
in solubilization of insoluble zinc substances, viz. zinc oxide, zinc carbonate and
Zn-EDTA. The insoluble Zn compounds were effectively solubilized at 0.1%
concentration as compared to 0.2% concentration. Dhaked et al. (2017) isolated
four potassium-solubilizing bacteria (KSB), eight zinc-solubilizing bacteria (ZnSB)
and two zinc-solubilizing fungi (ZnSF) from rice, maize, cotton and sorghum
rhizosphere soil. Screening of the KSB isolates for solubilization of insoluble zinc
oxide showed that the solubilization zone for zinc oxide ranged from 6 to 16 mm.
The isolate ZnSB-3 showed maximum solubilization zone of 16 mm, and the
solubilization efficiency ranged from 150% to 333.33%. The isolate ZnSF-1 showed
maximum solubilization zone of 85 mm followed by ZnSF-2 with 34 mm for ZnO.
The solubilization zone ranged from 6 mm to 25 mm for ZnP. The isolate ZnSB-
8 showed maximum solubilization zone of 25 mm for zinc phosphate, and solubi-
lization efficiency ranged from 157.14% to 500%.

8.6 Mechanisms Involved in Solubilization of Zinc
by Zinc-Solubilizing Bacteria

Zinc-solubilizing bacteria increase the availability of zinc in the rhizosphere through
different mechanisms, which ultimately improve the uptake of soluble zinc by the
plant (Fig. 8.2). Different mechanisms employed by zinc-solubilizing bacteria to
improve zinc bioavailability are discussed below.
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Fig. 8.2 Mechanisms involved in solubilization of zinc by microorganisms in the rhizosphere of
crop plant

8.6.1 Lowering the pH of Rhizosphere

Plant growth-promoting bacteria have been reported to release organic acids and
extrude protons, which lowers the pH of the rhizosphere (Fasim et al. 2002; Wu et al.
2006; Parmar and Sindhu 2018). For example, the secretion of 2-ketogluconic acid
and gluconic acid by Pseudomonas fluorescens resulted in solubilization of zinc
phosphate in the culture. Furthermore, coinoculation of Pseudomonas and Bacillus
spp. in broth culture lowered down the pH, which solubilized zinc sulphide, zinc
oxide and zinc carbonate (Saravanan et al. 2004). The availability of micronutrients
in soil is also influenced by the pH of the soil, and it has been reported that decrease
in one unit of pH resulted in 100 times increase in the availability of Zn in the soil
(Havlin et al. 2005). The role of low pH has also been correlated with potassium
solubilization in efficient potassium-solubilizing strains, i.e. Bacillus subtilis
ANctcri 3 and Bacillus megaterium ANcteri 7 isolated from rocks in Kerala
(Anjanadevi et al. 2016). Similarly, inoculation of arbuscular mycorrhizae
(AM) was found to lower the soil pH in the rhizosphere, and it contributed to release
of zinc from mineral fraction (Subramanian et al. 2009). However, the reduction in
rhizosphere pH varied among different microorganisms (Giri et al. 2005). Wu et al.
(2006) observed a decrease in pH up to 0.47 units with bacterial inoculation due to
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the release of organic acids and H*, which ultimately improved the Zn solubilization
and uptake by plants.

8.6.2 Zinc Chelation

Chelation of zinc by soil/rhizosphere microorganisms is another dominant mecha-
nism to improve Zn bioavailability and uptake by plant roots. Usually, the plant-
available Zn fraction in the soil is less due to low persistency and high reactivity of Zn
in soil solution. Zn-chelating compounds have been found to increase the bioavail-
ability of zinc in the rhizosphere (Obrador et al. 2003). These chelating compounds
are released by the plant roots and microorganisms present in the rhizosphere, which
chelate the Zn and increase its availability in root zone of the plants. Various
metabolites secreted by the rhizosphere microorganisms form complexes with Zn>*
(Tarkalson et al. 1998) and thereby reduce their reaction with the soil. Some bacteria,
e.g. Pseudomonas monteilii, Microbacterium saperdae and Enterobacter
cancerogenesis, have been found to synthesize Zn-chelating metallophores for
enhancing water-soluble Zn, which is bioavailable in soil for plant uptake (Whiting
et al. 2001). Tariq et al. (2007) reported release of fixed insoluble zinc by the
biofertilizer strains containing Pseudomonas sp. (96-51), Azospirillum lipoferum
(JCM-1270, ER-20) and Agrobacterium sp. (Ca-18) due to production of chelating
agent ethylenediaminetetraacetic acid and made the zinc available for longer period to
rice. Inoculation of Penicillium bilaji was found to enhance the bioavailability of zinc
to plants through chelating mechanism (Kucey 1987).

8.6.3 Organic Acid Production

The production of organic acids like citric, oxalic and tartaric acids and the produc-
tion of capsular polysaccharides by microorganisms were found to cause dissolution
of the minerals illite and feldspar to release potassium (Vyas and Gulati 2009;
Qureshi et al. 2017; Parmar and Sindhu 2018). The pH of the medium decreased
from 7.0 to 2.05 after growth of bacterial and fungal cultures during bioextraction of
potassium using feldspar. Species of Bacillus and Pseudomonas were found to
produce organic acids, which decreased the pH in the root zone, and Zn was made
available to plants (Saravanan et al. 2004). Some PGPR strains were reported to
produce gluconic acids (Saravanan et al. 2011) or its derivatives such as
2-ketogluconic acid (Fasim et al. 2002), 5-ketogluconic acid (Saravanan et al.
2007a, b) and various other organic acids (Tariq et al. 2007) for solubilization of
zinc. Zinc phosphate solubilization was studied by a strain of Pseudomonas
fluorescens and gluconic acids produced in culture medium was found to help in
solubilization of zinc salts (Simine et al. 1998). Similarly, Bacillus sp. AZ6 was
found to solubilize insoluble zinc compounds by releasing organic acids like
cinnamic acid, ferulic acid, caffeic acid, chlorogenic acid, syringic acid and gallic
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acid in a liquid medium (Hussain et al. 2011). Martino et al. (2003) found that
mycorrhizal fungi secreted organic acids to solubilize zinc from insoluble Zn3(PO4),
and ZnO.

Enhanced production of organic acids was found to improve the available zinc in
the culture broth. Desai et al. (2012) reported that higher availability of Zn is directly
proportional to acidic pH of the culture broth. Solubilization of zinc phosphate
occurred by both an increase in the H* concentration of the medium and the
production of gluconic acid. Perumal et al. (2017) studied solubilization of insoluble
zinc substances, viz. zinc oxide, zinc carbonate and Zn-EDTA using six bacterial
strains isolated from the rhizosphere of maize. They concluded that solubilization of
zinc from insoluble zinc substances might be due to production of acids by the
culture, since the pH of the broth decreased from 7.0-7.3 to 3.0-4.8 after 10 days of
inoculation.

8.7 Inoculation Effect of Zinc-Solubilizing Bacteria on Crop
Growth and Yield

Micronutrient deficiencies in the soil have been found to reduce the quality and yield
of the agriculture produce. It has been reported that more than 3 billion people
worldwide experience micronutrient deficiency (Hennessy et al. 2014). Zn defi-
ciency is reported as a global nutritional problem, and this deficiency is more severe
in developing countries (Zamana et al. 2018). The Zn deficiency has been attributed
to consumption of cereal grains having very low grain Zn concentrations, which are
usually grown in Zn-deficient soils. Zinc deficiency can be minimized by nutritional
diversification, food enrichment and biofortification. Zinc biofortification is a viable
choice to augment the bioavailable concentrations of vital micronutrients in edible
portions of crop plants through agronomic practices or genetic methods (Zamana
et al. 2018). The quality of crop produce biofortification has been found to depend on
the chemical properties of the soil, crop genotypes, agricultural management prac-
tices and climatic factors (Schulin et al. 2009). Attempts are being made worldwide
to improve the genetic potential of crop plants for enhancing the micronutrient
bioavailability in common staple food crops such as wheat, rice, maize, beans and
oilseeds (Cakmak et al. 2010). Plant breeding approaches are being used to enhance
the amount of a number of minerals concurrently available in edible tissues of food,
whereas transgenic approaches are used to improve nutrient mobilization from the
soil, transport to the shoot and leaf and build-up of mineral elements in bioavailable
forms in edible tissues (Borrill et al. 2014). The plant breeding approach to increase
micronutrient uptake by plant roots is tedious, and results take a long time, whereas
the transgenic approach is costly.

Another eco-friendly alternative approach is the application of potential plant
growth promoting microorganisms (PGPMs) to increase micronutrient uptake by
roots. These PGPMs could facilitate the growth of crop plants by modulating of root
architecture resulting in growth of deep root systems in nutrient-deficient soils and
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Table 8.1 Effect of various zinc-solubilizing bacterial isolates on plant growth parameters
Zinc-solubilizing
bacterial isolates Effects on plant growth Crop plant | Reference
Pseudomonas sp. strain Improved the zinc content in plant Soybean Saravanan
ZSB-S-1 tissues et al.
(2004)
Pseudomonas strain Increased fruit yield per plant, Strawberry | Esitken
BA-8 and Bacillus strain | i.e. 91.73% and 81.58% when treated et al.
M-3 with BA-8+M-3 and M-3, respectively (2009)
P. aeruginosa strain Increase in root (144%) and shoot length | Rye Shahab
CMG860 (120%) et al.
(2009)
Bacillus isolates Increase zinc accumulation in seeds Soybean Sharma
et al.
(2012)
Pseudomonas strains B; | Increased grain Zn concentration (31%) | Rice Deepak
and B, et al.
(2013)
Burkholderia strain BC Increased mean number of productive Wheat Vaid et al.
and Acinetobacter strains | tillers (21.1%), number of grains per (2013)
AB and AX year (5.7%), thousand grain weight
(10.1%), grain yield (18.1%) and straw
yield (3.1%) and reduced phytic acid
concentration (17.6%)
Bacillus aryabhattai Strains MDSR7 and MDSR 14 substan- | Soybean Ramesh
strains MDSR?7, tially influenced mobilization of zinc and wheat | et al.
MDSRI11 and MDSR14 | and its concentration in edible portion, (2014)
yield of soybean and wheat
Bradyrhizobium Phosphorus supplementation caused Cowpea Nyoki and
Jjaponicum increase in micronutrients uptake; but Ndakidemi
decrease in Zn content was observed in (2014)
few organs
Bacillus strain AZ6 Increased shoot length (59%) and pho- | Maize Hussain
tosynthetic rate (90%) et al.
(2015)
Bacillus sp. and Bacillus | Suppressed Pyricularia oryzae and Rice Shakeel
cereus Fusarium moniliforme, and enhanced et al.
Zn translocation toward grains and (2015)

increased yield of basmati-385
(22-49%) and super basmati rice varie-
ties (18—47%)

the excretion of ligands/siderophores or acids/alkalis to mobilize micronutrients.
Microbial transformation of unavailable forms of soil zinc to plant-available zinc by
zinc-solubilizing bacteria could influence the mobilization and uptake of zinc in
edible portion and may improve the yield of different cereals, legumes and horticul-

ture plants (Table 8.1).
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8.7.1 Zinc Uptake by PGPR and ZnSB

Saravanan et al. (2004) isolated zinc-solubilizing bacterial cultures from soil and ore
(sphalerite) sources both by direct plating and by enrichment technique in the
modified Bunt and Rovira medium incorporated with 0.1% zinc. Among these,
ZSB-0O-1 and ZSB-S-4 were characterized as Bacillus sp. and ZSB-S-2 as Pseudo-
monas sp. The results revealed that Pseudomonas sp. (ZSB-S-1) was able to correct
the zinc deficiency in soybean plants when used along with 1% (w/w) zinc oxide.
Tariq et al. (2007) inoculated plant growth-promoting rhizobacteria for mobilizing
indigenous soil zinc in rice (Oryza sativa L.) and compared it with the available form
of chemical Zn source as Zn-EDTA. Application of PGPR decreased the zinc
deficiency symptoms and increased the total biomass (23%), grain yield (65%)
and zinc concentration in the grains invariably. Positive effects on root length
(54%), root weight (74%), root volume (62%), root area (75%), shoot weight
(23%), panicle emergence index (96%) and higher Zn mobilization efficiency were
observed in inoculated plants in comparison to the uninoculated control. Li et al.
(2007) investigated the effects of Burkholderia cepacia on metal uptake by the
hyperaccumulating plant Sedum alfredii with different concentrations of cadmium
and zinc. Inoculation with bacteria significantly enhanced plant growth (up to 110%
with zinc treatment), phosphorus uptake (up to 56.1% with cadmium treatment), and
metal uptake (up to 243% and 96.3% with cadmium and zinc treatment, respec-
tively) in shoots, the tolerance index (up to 134% with zinc treatment) and translo-
cation of metals (up to 296% and 135% with cadmium and zinc treatment,
respectively) from root to shoot.

Kuffner et al. (2008) obtained ten rhizospheric isolates (Pseudomonas,
Janthinobacterium, Serratia, Flavobacterium, Streptomyces and Agromyces) from
heavy-metal-accumulating willows. These isolates were analysed for plant growth
promotion and zinc and cadmium uptake in Salix caprea plantlets grown in steril-
ized, zinc—cadmium-lead-contaminated soil. Agromyces strain AR33 was found to
increase plant growth and also enhanced the total amount of zinc and cadmium
extracted from soil. Igbal et al. (2010) studied the inoculation effects of five bacterial
isolates (U, 8M, 36, 102 and 111) on the growth of Vigna radiata. Bacterial isolates
were applied alone or together with zinc phosphate [Zn;(PO,4),-4H,0]. The maxi-
mum increase in root and shoot length was observed as a result of inoculation with
the isolate 102. The fresh and dry weight of seedlings was also enhanced in
comparison to control. Bacterial isolate 36 with amendment of 1 mM zinc phosphate
resulted in a maximum increase of almost 1.7 times in the seedling length (35.1 cm)
in comparison to control (19.3 cm), indicating that bacteria can be used as a
biofertilizer for improving the growth of mungbean plants in presence of water-
insoluble zinc phosphate.

Sharma et al. (2012) isolated 134 Bacillus isolates from soybean rhizosphere soils
to select effective zinc solubilizers for increased assimilation of Zn in soybean seeds.
Inoculation of Bacillus isolates significantly increased the Zn concentration in
soybean as compared with uninoculated control (47.14 pg/g). Goteti et al. (2013)
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screened ten zinc solubilizing strains on maize crop in a short-term pot culture
experiment. Seed bacterization with zinc-solubilizing Pseudomonas sp. strain P29
significantly enhanced the concentrations of macronutrients and micronutrients such
as manganese (60 ppm) and zinc (278.8 ppm) in comparison to uninoculated control.
In similar studies, Vaid et al. (2014) assessed the capacity of three bacterial strains,
i.e. Burkholderia strain BC and Acinetobacter strains AB and AX, isolated from a
zinc-deficient rice—wheat field to improve Zn nutrition in Zn-responsive (NDR359)
and Zn non-responsive (PD16) varieties of rice. Bacterial inoculation significantly
enhanced the total zinc uptake per pot (52.5%) as well as grain methionine concen-
tration (38.8%). Inoculation with bacteria either singly or in combination signifi-
cantly increased the mean dry matter yield/pot (12.9%), productive tillers/plant
(15.1%), grain yield (17.0%) and straw yield (12.4%) over the control and Zn
fertilizer treatment. The phytate-to-zinc ratio in grains was also reduced by 38.4%
in treatments with bacterial inoculations.

8.7.2 Inoculation Effect of AM Fungi on Zinc Uptake

Root colonization by arbuscular mycorrhizal (AM) fungi was found to increase the
uptake of metal micronutrients, such as copper in white clover (Li et al. 1991), copper,
zinc, manganese and iron in Zea mays (Liu et al. 2000) and zinc in field pea crops (Ryan
and Angus 2003). Similarly, higher uptake of iron, manganese, zinc and copper was
reported in wheat by inoculation of Azospirillum and mycorrhizae in comparison with
uninoculated control plants (Ardakani et al. 2011). Inoculation of rice roots with
arbuscular mycorrhizal fungi was found to increase zinc uptake and mobilization and
showed enhanced growth of rice (Purakayastha and Chhonkar 2001). Higher Zn uptake
and increase in wheat and maize growth was observed by inoculation of AM fungi in
zinc-deficient soils after addition of zinc as a fertilizer (Kothari et al. 1990).

8.7.3 Application of ZnSB Along with Manure and Fertilizers

Strains of Bacillus cereus (N, fixing), Brevibacillus reuszeri (phosphorus solubilizing)
and Rhizobium rubi (both N, fixing and phosphorus solubilizing) were inoculated on
broccoli to evaluate their effect on plant growth, nutrient uptake and yield in compar-
ison with manure (control) and mineral fertilizer application under field conditions
(Yildirim et al. 2011). Bacterial inoculations with manure significantly increased yield,
plant weight, head diameter, chlorophyll content and nitrogen, potassium, calcium,
sulphur, phosphorus, magnesium, iron, manganese, zinc and copper content of broccoli
in comparison to control treatment. Senthilkumar et al. (2014) reported that the
combination of fertigation and a consortium of biofertilizers in banana significantly
enhanced accumulation of secondary nutrients and micronutrients (Fe, Zn, V and Mn)
in the leaves, pseudostem and fruits at harvest. Senthil et al. (2004) conducted a field
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study to assess the effect of Zn-enriched organic manures and Zn-solubilizing bacteria
on the yield, curcumin content of turmeric and nutrient status of the soil. When treated
with farm yard manure (FYM) along with zinc-solubilizing bacteria, higher turmeric
rhizome yield (21.6%) was observed in comparison with those treated with FYM alone
(9.1%) and without manure (control). The dry rhizome yield showed the promising
effect of Zn- and Fe-enriched coir pith or FYM. The highest values for available N, P
and K contents in the soil were observed by use of FYM along with Zn-solubilizing
bacteria. Significant effect on the availability of N, P and K was observed in treatment
with inoculation of Zn-solubilizing Bacillus sp. The application of ZnSO,, FeSO, and
fortified FYM along with Zn and Fe and their foliar spray showed synergistic effect and
enhanced the bioavailability of micronutrients as well as potassium.

The effect of micronutrients and inoculation of zinc-solubilizing bacteria was
studied on the yield and quality of grape variety Thompson seedless (Subramoniam
et al. 2006). Recommended doses of N, P and K fertilizers were applied along with
foliar sprays of ZnSO, (0.2%) + boric acid (0.2%) + FeSO,4 (0.2%) + MnSO,4 (0.2%)
+ MgSO, (0.5%) + CaCl, (0.5%) + KNOj3 (0.5%) + urea (1%) at blooming and
15 days after blooming stages. Both the inoculation of zinc-solubilizing bacteria
along with application of fertilizers and foliar sprays were recommended as cost-
effective technology for increasing the grape yield. The fruits’ quality such as juice
content, TSS, titratable acidity, specific gravity, total sugar and TSS/acidity ratio
were also higher in the treatment having inoculation of zinc-solubilizing bacteria
along with fertilizers in comparison to control uninoculated treatment.

8.7.4 Coinoculation of Phosphorus- and Zinc-Solubilizing
Bacteria

Phosphorus is the second major plant nutrient required for the proper growth and
metabolic activities of a plant (Sindhu et al. 2014). Hu et al. (2006) isolated two
phosphate- and potassium-solubilizing Paenibacillus mucilaginosus strains
KNP413 and KNP414 from the soil of Tianmu Mountain. Both the strains effec-
tively dissolved mineral phosphate and potassium, while strain KNP414 showed
higher dissolution capacity. In a similar way, it is desired that coinoculation of
phosphorus or potassium-solubilizing bacteria having zinc solubilizing activity
may show synergistic effects leading to significant stimulation of the plant growth.
Woo et al. (2010) isolated phosphate-solubilizing bacterial isolates from the rhizo-
sphere of Chinese cabbage and found that 10 strains having higher phosphorus-
solubilization potential also solubilized insoluble ZnO. Recently, Zeng et al. (2017)
reported that production of organic acids by Pseudomonas frederiksbergensis strain
JW-SD2 is correlated with phosphorus-solubilizing activity, and its effects on plant
growth promotion of poplar seedlings were greater in the non-sterilized than
sterilized soil.
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To assess the impacts of B. japonicum inoculation and phosphorus supplemen-
tation on the uptake of micronutrients in cowpea, a field and pot house experiment
was conducted (Nyoki and Ndakidemi 2014). Significant improvement in
micronutrients uptake was observed in the B. japonicum-inoculated treatments
over the control. Phosphorus supplementation (40 kg P/ha) also resulted in signif-
icant increase in the uptake of some micronutrients, while it caused decrease in Zn
uptake in few plant organs. Significant interaction between B. japonicum inoculation
and addition of phosphorus was observed with the root uptake of Zn for the field
experiment. Sindhu (2014) tested three bacterial isolates MR1, CR2 and OR1 for
zinc solubilization, and their inoculation effect was studied on growth and yield of
mungbean crop under pot house conditions. The inoculation of isolate MR1 caused
72.6% increase in shoot dry weight in comparison to uninoculated control. Inocu-
lation of mungbean with bacterial isolates MR 1 and CR2 showed 104.8% and 72.0%
increase in seed yield, respectively, as compared to uninoculated control. Treatment
with ZnSO, at 25 kg ha™' along with inoculation of isolate ORI was found
significantly superior to all other treatments and caused 184% and 92.6% increase
in seed yield and shoot dry weight in comparison to uninoculated control. The
selected two strains, CR2 (highest zinc solubilizer) and OR1 (highest plant growth
promoter), were identified as Bacillus stratosphericus and Bacillus altitudinis by
16S rRNA gene sequence analysis. It was concluded that the Bacillus altitudinis
isolate OR1 showing maximum plant growth promotion effect under pot house
conditions could be exploited as a Zn-solubilizing biofertilizer for plant growth
promotion of mungbean under field conditions.

8.7.5 ZnSB Role in Disease Control

Global crop yields are reduced by 20-40% annually due to pests and diseases
(Strange and Scott 2005). Sustainable agricultural practices are revitalizing the
interest of scientists in characterization of plant beneficial microorganisms having
both nutrient mobilization and control of plant diseases by biological control agents.
Recently, some of the microbial strains were isolated for solubilization/mobilization
of phosphorous, potassium or zinc, and these strains also inhibited the growth of
pathogenic fungi resulting in suppression of 