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Abstract In this paper we give both a historical and technical overview of the
theory of Harnack inequalities for nonlinear parabolic equations in divergence form.
We start reviewing the elliptic case with some of its variants and geometrical
consequences. The linear parabolic Harnack inequality of Moser is discussed
extensively, together with its link to two-sided kernel estimates and to the Li-Yau
differential Harnack inequality. Then we overview the more recent developments of
the theory for nonlinear degenerate/singular equations, highlighting the differences
with the quadratic case and introducing the so-called intrinsic Harnack inequalities.
Finally, we provide complete proofs of the Harnack inequalities in some paramount
case to introduce the reader to the expansion of positivity method.
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1 Introduction

Generally speaking, given a class C of nonnegative functions defined on a set �, a
Harnack inequality is a pointwise control of the form u(x) ≤ C u(y) for all u ∈ C
(with a constant independent of u) where the inequality holds for x ∈ X ⊆ � and
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y ∈ Y ⊆ �, (X, Y ) belonging to a certain family F determined by C. Thus it takes
the form

∃ C = C(C,F) such that sup
X

u ≤ C inf
Y

u ∀ (X, Y ) ∈ F , u ∈ C. (1.1)

Given C, one is ideally interested in maximal families F . In this respect, certain
properties of maximal families are immediate, e.g., if X′ ⊆ X and (X, Y ) ∈ F , then
(X′, Y ) ∈ F . The so-called Harnack chain argument consists in the elementary
observation that if both (X, Y ) and (Y ′, Z) belong to F and y0 ∈ Y ∩ Y ′ 	= ∅, then

sup
X

u ≤ C inf
Y

u ≤ C u(y0) ≤ C sup
Y ′

u ≤ C2 inf
Z

u,

hence we can add all such couples (X,Z) to F by considering the constant
C2. Other properties of F follow from the structure of C: if, for instance, C is
invariant by a suitable semi-group {�λ}λ>0 of domain transformations (meaning
that u ∈ C ⇒ u ◦ �λ ∈ C for all λ > 0), then F should also exhibits this
invariance.

Formally, to a larger class C corresponds a smaller family F and the more
powerful Harnack inequalities aim at “maximize” the two sets at once. Typically,
C is the set of nonnegative solutions to certain classes of PDE in an ambient
metric space � and F should at least cluster near each point of � (i.e. ∀P ∈
�, r > 0 there exists (X, Y ) ∈ F such that both X and Y lie in the ball of
center P and radius r). Another example is the class of ratios of nonnegative
harmonic functions vanishing on the same set, giving rise to the so-called boundary
Harnack inequalities. Given C, searching for a suitable maximal family F such
that (1.1) holds, informally takes the name of finding the right form of the Harnack
inequality in C. Rich examples of such instance arise in the theory of hypoelliptic
PDE’s.

Historically, the first of such pointwise control was proved by Harnack in
1887 for the class C of nonnegative harmonic functions in a domain � ⊆
R

2, with F being made of couples of identical balls well contained in �.
Since then, extensions and variants of the Harnack inequality grew steadily in
the mathematical literature, with plentiful applications in PDE and differential
geometry. Correspondingly, its proof in the various settings has been obtained
through many different points of view. To mention a few: the original potential
theoretic approach, the measure-theoretical approach of Moser [70], the proba-
bilistic one of Krylov-Safonov [58] and the differential approach of Li and Yau
[65].

Many very good books and surveys on the Harnack inequality already exist
(see e.g. [54]) and we are thus forced to justify the novelty of this one. Our
main focus will be the quest for the right form F of various Harnack inequalities
and, to this end, we will mainly deal with parabolic ones, which naturally exhibit
a richer structure. Even restricting the theme to the parabolic setting requires a
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further choice, as the theory naturally splits into two large branches: one can
either consider divergence form (or variational) equations, whose basic linear
example is ut = div(A(x) Du), or equations in non-divergence form (or non-
variational), such as ut = A(x) · D2u. While some attempts to build a unified
approach to the Harnack inequality has been made (see [36]), structural differences
seem unavoidable. Moreover, both examples have nonlinear counterparts and the
corresponding theories rapidly diverge. We will deal with parabolic nonlinear
equations in divergence form, referring to the surveys [49, 57] for the non-
divergence theory.

Rather than simply collecting known result to describe the state of the art, we
aim at giving both a historical and technical overview on the subject, with emphasis
on the different proofs and approaches to the subject.

The first part, consisting in Sects. 2–4, will focus on the various form of (1.1),
mentioning some applications and giving from time to time proofs of well-known
facts which we found somehow hard to track in the literature. In particular,
we will deal with the elliptic case in Sect. 2, with the linear parabolic Harnack
inequality in Sect. 3 and with the singular and degenerate parabolic setting in Sect. 4.
Here we will describe the so-called intrinsic Harnack inequalities, by which we
mean a generalization of (1.1) where the sets X and Y also depend on u (or,
equivalently, (1.1) holds in a restricted class C determined by non-homogeneous
scalings).

The second part consists of the final and longest section, which is devoted to
detailed proofs of the most relevant Harnack inequalities for equations in divergence
form. Our aim is to obtain the elliptic and parabolic Harnack inequalities in a unified
way, following the measure-theoretical approach of De Giorgi to regularity and
departing from Moser’s one. This roadmap has been explored before (see [67] for an
axiomatic treatment), but we push it further to gather what we believe are the most
simple proofs of the Harnack inequalities up to date. Credits to the main ideas and
techniques should be given to the original De Giorgi paper [18], the book of Landis
[63] and the work of Di Benedetto and collaborators gathered in the monograph
[31]. We will focus on model problems rather than on generality in the hope to
make the proofs more transparent and attract non-experts to this fascinating research
field.

2 Elliptic Harnack Inequality

2.1 Original Harnack

In 1887, the german mathematician C.G. Axel von Harnack proved the following
result in [47].
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Theorem 2.1 Let u be a nonnegative harmonic function in BR(x0) ⊆ R
2. Then for

all x ∈ Br(x0) ⊂ BR(x0) it holds

R − r

R + r
u(x0) ≤ u(x) ≤ R + r

R − r
u(x0).

The estimate can be generalized to any dimension N ≥ 1 through the Poisson
representation formula, resulting in

(
R

R + r

)N−2
R − r

R + r
u(x0) ≤ u(x) ≤

(
R

R − r

)N−2
R + r

R − r
u(x0), (2.1)

and the constants can be seen to be optimal by looking at the solutions un of
the Dirichlet problem on the ball BR with boundary data ϕn → δx0 , |x0| = R.
However, the modern version of the Harnack inequality for harmonic functions is
the following special case of the previous one.

Theorem 2.2 Let N ≥ 1. Then there exists a constant C = C(N) > 1, such that if
u is a nonnegative, harmonic function in B2r (x0), then

sup
Br(x0)

u ≤ C inf
Br(x0)

u. (2.2)

The proof of this latter form of the Harnack inequality is an easy consequence
of the mean value theorem. For the early historical developments related to the first
Harnack inequality we refer to the survey [54].

The Harnack inequality has several deep and powerful consequences. On the
local side, Harnack himself in [47] derived from it a precisely quantified oscillation
estimate. Due to the ubiquity of this argument we recall its elementary proof. Let
x0 = 0 and

Mr(u) = sup
Br

u, mr(u) = inf
Br

u, osc(u, Br) = Mr(u)−mr(u).

Both M2r (u) − u and u − m2r (u) are nonnegative and harmonic in B2r , so (2.2)
holds for them, resulting in

M2r (u)−mr(u) ≤ C(M2r (u)−Mr(u)), Mr(u)−m2r(u) ≤ C(mr(u)−m2r(u)),

which added together give

M2r (u)−m2r (u)+Mr(u)−mr(u) ≤ C
(
M2r (u)−m2r (u)− (Mr(u)−mr(u))

)
.
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Rearranging, we obtain

osc(u, Br) ≤ C − 1

C + 1
osc(u, B2r ),

which is the claimed quantitive estimate of decrease in oscillation.
Removable singularity results can also be obtained through the Harnack inequal-

ity, as well as two classical convergence criterions for sequences of harmonic
functions. At the global level, it implies Liouville and Picard type theorems. For
example, Liouville’s theorem asserts that any globally defined harmonic function
bounded from below must be constant, as can be clearly seen by applying (2.2) to
u− infRN u and letting r →+∞.

2.2 Modern Developments

In his celebrated paper [18], De Giorgi introduced the measure theoretical approach
to regularity, proving the local Hölder continuity of weak solutions of linear elliptic
equations in divergence form

L(u) :=
N∑

i,j=1

Di(aij (x)Dju) = 0 (2.3)

with merely measurable, symmetric coefficients satisfying the ellipticity condition

λ|ξ |2 ≤
N∑

i,j=1

aij (x)ξiξj ≤ �|ξ |2, 0 < λ ≤ � < +∞. (2.4)

The modern regularity theory descending from his ideas is a vast field and the
relevant literature is huge. We refer to [69] for a general overview and bibliographic
references; the monograph [43] contains the regularity theory of quasi-minima,
while for systems one should see [61] and the literature therein.

Regarding the Harnack inequality, Moser extended in his fundamental work [70]
its validity to solutions of (2.3).

Theorem 2.3 Suppose u ≥ 0 solves (2.3) in a ball B2r (x0) where (2.4) holds. Then
there exists a constant C > 1 depending only on N and the ellipticity ratio �/λ

such that

sup
Br(x0)

u ≤ C inf
Br(x0)

u.
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Moser’s proof is also measure-theoretical, stemming from the De Giorgi
approach but introducing pioneering new ideas. It relied on the John-Nirenberg
Lemma [51] and certainly contributed to its diffusion in the mathematical
community. Such a level of generality allowed to apply essentially the same
technique for the general quasilinear equation

divA(x, u,Du) = 0. (2.5)

Indeed, in [81, 86], the same statement of the Harnack inequality has been proved
for (2.5) instead of the linear equation (2.3), provided A satisfies for some p > 1
and � ≥ λ > 0 the ellipticity condition

{
A(x, s, z) · z ≥ λ|z|p
|A(x, s, z)| ≤ �|z|p−1

x ∈ B2r (x0), s ∈ R, z ∈ R
N. (2.6)

The power of the measure-theoretical approach was then fully exploited in [25],
where the Harnack inequality has been deduced without any reference to an elliptic
equation, proving that it is a consequence of very general energy estimates of
Caccioppoli type, encoded in what are the nowadays called De Giorgi classes. For
a comprehensive treatment of the latters see [23].

2.3 Moser’s Proof and Weak Harnack Inequalities

Moser’s proof of the Harnack inequality is splitted in two steps:

(I) Lp − L∞ bound:
Let u be a nonnegative subsolution of (2.3) in B2r , i.e., u obeys −L(u) ≤ 0
weakly (supersolutions being defined through the opposite inequality). For any
p > 0 it holds

sup
Br

u ≤ C

(
−
∫

B2r

|u|p dx

) 1
p

(2.7)

for some constant C = C(N,�/λ, p). If on the other hand u is a positive
supersolution, then u−1 is a positive subsolution, and (2.7) can be rewritten
as

inf
Br

u ≥ C−1
(
−
∫

B2r

u−p dx

)− 1
p

.
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(II) Crossover Lemma. The Harnack inequality then follows if one has

−
∫

Br

up̄ dx−
∫

Br

u−p̄ dx ≤ C(N) (2.8)

for some (small) p̄ = p̄(N,�, λ) > 0. This is the most delicate part
of Moser’s approach, and is dealt with the so-called logarithmic estimate.
The idea is to prove a universal bound on log u, as suggested by the Har-
nack inequality itself. To this end, consider a ball B2ρ(x0) ⊆ B2r and test
the equation with u−1η2, η being a cutoff function in C∞

c (B2ρ(x0)). This
yields

λ

∫
B2ρ(x0)

|Du|2u−2η2 dx ≤ 2�

∫
B2ρ(x0)

|Du| u−1 |η| |Dη| dx

with λ,� given in (2.4). Apply Young inequality on the right and note that we
can assume |Dη| ≤ c ρ−1 to get

−
∫

Bρ(x0)

|D log u|2 dx ≤ C(�/λ) ρ−2 (2.9)

as long as η ≡ 1 in Bρ(x0). The Poincaré inequality then implies

−
∫

Bρ(x0)

(
log u−−

∫
Bρ(x0)

log u dx
)2

dx ≤ C(N,�/λ), for all B2ρ(x0) ⊆ B2r ,

which means that log u ∈ BMO(B2r ). Then John-Nirenberg’s Lemma
ensures

−
∫

Br

ep̄ |w| dx ≤ c, w = log u−m, m = −
∫

Br

log u dx

for some small p̄ = p̄(N,�) > 0 and c = c(N), and inequality (2.8) follows by
multiplying

−
∫

Br

up̄ dx = ep̄ m−
∫

Br

ep̄ w dx ≤ c ep̄ m and −
∫

Br

u−p̄ dx = e−p̄ m−
∫

Br

e−p̄ w dx ≤ c e−p̄ m.

In particular, Moser’s proof shows that a weaker form of Harnack inequality
holds for the larger class of non-negative supersolutions to (2.3) in B2r . Namely, the
following weak Harnack inequality holds

(
−
∫

B2r

up dx

) 1
p ≤ C inf

Br

u, for any p ∈ ]
0,

N

N − 2

[
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for some constant C = C(N,�/λ, p). The range of exponents in the weak Harnack
inequality is optimal, as the fundamental solution for the Laplacian shows. Notice
that the L∞ − Lp bound also implies an Lp-Liouville theorem, as letting r →
+∞ in (2.7) shows that 0 is the only nonnegative solution globally in Lp(RN).
On the other hand, the previous weak Harnack inequality gives a lower asymptotic
estimate for positive L

p
loc(R

N) supersolutions of the form infBr u � r−N/p for r →
+∞. From the local point of view, the weak form of the Harnack inequality is also
sufficient for the Hölder regularity and for strong comparison principles.

A different and detailed proof of the elliptic Harnack inequality via the expansion
of positivity technique will be given in Sect. 5.1.

2.4 Harnack Inequality on Minimal Surfaces

After considering the Harnack inequality for nonlinear operator, a very fruitful
framework was to consider its validity for linear elliptic operators defined on
nonlinear ambient spaces, such as Riemannian manifolds. One of the first examples
of this approach was the Bombieri–De Giorgi–Miranda gradient bound [10] for
solutions of the minimal surface equation

div

(
Du√

1+ |Du|2

)
= 0. (2.10)

The approach of [10], later simplified in [88], consisted in showing that w =
log

√
1+ |Du|2 is a subsolution of the Laplace-Beltrami operator naturally defined

on the graph of u considered as a Riemannian manifold. Since a Sobolev-Poincaré
inequality can be proved for minimal graphs (see [68] for a refinement to smooth
minimal submanifolds), the Moser iteration yields an L∞ − L1 bound on w which
is the core of the proof.

Another realm of application of the Harnack inequality are Bernstein theorem,
i.e. Liouville type theorem for the minimal surface equation (2.10). More precisely
Bernstein’s theorem asserts that any entire solution to (2.10) in R

2 is affine. This
statement is known to be true in all dimension N ≤ 7 and false from N = 8
onwards. One of the first applications in [70] of Moser’s (Euclidean) Harnack
inequality was to show that if in addition u has bounded gradient, the Bernstein
statement holds true in any dimension. Indeed, one can differentiate (2.10) with
respect to xi , giving a nonlinear equation which however can be seen as linear in uxi

with freezed coefficients. It turns out that if |Du| is bounded then the coefficients
are elliptic and the Liouville property gives the conclusion.

The approach of [10] was pushed forward in [9], where a pure Harnack inequality
was shown for general linear operators on minimal graphs. Taking advantage of
their Harnack inequality, Bombieri and Giusti proved that if N − 1 derivatives of a
solution to (2.10) are bounded, then also the N-th one is bounded, thus ensuring the
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Bernstein statement in any dimension thanks to the Moser result. See also [35] for
a direct proof of this fact using the Harnack inequality on minimal graph alone.

For other applications of the Harnack inequality on minimal graphs, see [16].

2.5 Differential Harnack Inequality

A natural way to look at the Harnack estimate u(x) ≤ C u(y) is to rewrite it as

log u(x)− log u(y) ≤ log C = C′, for all x, y ∈ Br

as long as u > 0 in B2r . If one considers smooth functions (such as solutions
to smooth elliptic equations), a way to prove the latter would be to look at it as
a gradient bound on log u. More concretely, it is a classical fact that harmonic
functions in B2r (x0) satisfy the gradient estimate

|Du(x0)| ≤ C(N)
supBr(x0)

|u|
r

,

therefore Harnack’s inequality implies that

u ≥ 0 in Br(x0) ⇒ |Du(x0)| ≤ C(N)
u(x0)

r
.

This can be rewritten in the following form:

Theorem 2.4 (Differential Harnack Inequality) Let u > 0 be harmonic in
Br(x0) ⊆ R

N . Then

|D log u(x0)| ≤ C(N)

r
. (2.11)

Inequality (2.11) can be seen as the pointwise version of the integral esti-
mate (2.9) and as such it can be integrated back along segments, to give the original
Harnack inequality. The differential form (2.11) of the Harnack inequality clearly
requires much more regularity than the Moser’s one, however, it was proved to
hold in the Riemannian setting for the Laplace-Beltrami equation in the ground-
breaking works [16, 94], under the assumption of non-negative Ricci curvature
for the manifold. To appreciate the result, notice that all proofs of the Harnack
inequality known at the time required a global Sobolev inequality, which is known
to be false in general under the Ric ≥ 0 assumption alone.

The elliptic Harnack inequality in the Riemannian setting proved in [94] (and,
even more importantly, its parabolic version proved soon after in [65]) again implies
the Liouville property for semi-bounded harmonic functions and it was one of the
pillars on which modern geometric analysis grew. See for example the survey article
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[64] for recent results on the relationship between Liouville-type theorems and
geometric aspects of the underlying manifold. The book [73] gives an in-depth
exposition of the technique of differential Harnack inequalities in the framework
of Ricci flow, culminating in Perelman differential Harnack inequality.

2.6 Beyond Smooth Manifolds

Clearly, the differential approach to the Harnack inequality is restricted to the
Laplace-Beltrami operator, due to its smoothness and its close relationship with
Ricci curvature given by the Bochner identity

�u = 0 ⇒ �
|Du|2

2
= |D2u|2 + Ric(Du,Du).

It was only after the works [44, 78] that a different approach to Moser’s Harnack
inequality on manifolds was found.1 Essentially, it was realized that in order to
obtain the Harnack inequality on a Riemannian manifold (M, g) with corresponding
volume form m and geodesic distance, two ingredients suffice:

– Doubling condition: m
(
B2r (x0)

) ≤ Cm
(
Br(x0)

)

– Poincaré inequality:
∫

Br (x0)

∣∣∣u−−
∫

Br (x0)

u dm

∣∣∣2 dm ≤ C

∫
Br (x0)

|Du|2 dm

(2.12)

for any x0 ∈ M and r > 0. These two properties hold in any Riemannian
manifold with nonnegative Ricci curvature, thus giving a Moser-theoretic approach
to the Harnack inequality in this framework. What’s more relevant here is that
Doubling and Poincaré are stable with respect to quasi-isometries (i.e. bilipschitz
homeomorphisms) and thus can hold in non-smooth manifolds, manifolds where
Ric ≥ 0 does not hold (since curvature is not preserved through quasi-isometries),
and/or for merely measurable coefficients elliptic operators. It is worth mentioning
that Doubling and Poincaré were also shown in [17] to be sufficient conditions
for the solution of Yau’s conjecture on the finite-dimensionality of the space of
harmonic functions of polynomial growth.

It was a long standing problem to give geometric conditions which are actually
equivalent to the validity of the elliptic Harnack inequality, and thus to establish
the stability of the latter with respect to quasi (or even rough) isometries. This

1Actually, to a parabolic version of the Harnack inequality, which readily implies the elliptic one.
For further details see the discussion on the parabolic Harnack inequality below and for a nice
historical overview on the subject see [80, Section 5.5].
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problem has recently been settled in [6], to which we refer the interested reader
for bibliographic reference and discussion.

3 Parabolic Harnack Inequality

3.1 Original Parabolic Harnack

Looking at the fundamental solution for the heat equation

ut −�u = 0,

one finds out that there is no hope to prove a straightforward generalization of the
Harnack inequality (2.2). In the stationary case, ellipticity is preserved by spatial
homotheties and translations, thus the corresponding Harnack inequality turns out to
be scale and translation invariant. For the heat equation, the natural scaling (x, t) �→
(λx, λ2t) preserves the equation and one expects a parabolic Harnack inequality to
obey this invariance. In order to guess its form it is useful to look at the special
caloric function w(x, t) = t−1/2e−x2/t defined on R× ]0,+∞[. Given two times
t1, t2 > 0 and ξ ≥ 0, one easily computes

sup
x∈Br(ξ)

w(x, t1) = t
− 1

2
1 e

− (ξ−r)2+
t1 , inf

x∈Br(ξ)
w(x, t2) = t

− 1
2

2 e
− (ξ+r)2

t2 .

In order for the latters to be comparable for all large r and ξ = 0, it must hold
t1 � t2 � r2. Moreover, t1 = t2 = r2 won’t do when we choose ξ = k r with
k → +∞, so that the control must happen at different times. Even if t �→ t−1/2 is
decreasing while t �→ e−x2/t is increasing, a growth rate argument suggests that, in
order for a Harnack inequality to hold, one must require t1 < t2. Indeed, setting

w̃(x, t) =
{

w(x, t) if x > 0, t > 0

0 if x > 0, t ≤ 0

also gives a solution on the half-space ]0,+∞[×R, vanishing for t ≤ 0. Thus we
see that the supremum at a certain time can only be controlled by the infimum at
later times.

The explicit parabolic form of the Harnack inequality was found and proved
independently by Pini and Hadamard in [45, 75] and reads as follows.

Theorem 3.1 Let u ≥ 0 be a solution of the heat equation in B2ρ(x0) × [t0 −
4ρ2, t0+4ρ2]. Then there exists a constantC(N), N being the dimension, such that

sup
Bρ(x0)

u(·, t0 − ρ2) ≤ C(N) inf
Bρ(x0)

u(·, t0 + ρ2). (3.1)
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As expected, this form of the Harnack’s inequality complies with the scaling
of the equation and introduces the notion of waiting time for a pointwise control
to hold. It represents a quantitative bound from below on how much the positivity
of u(x0, t0) (physically, the temperature of a body at a certain point) propagates
forward in time: in order to have such a bound in a whole ball of radius r we have
to wait a time proportional to r2.

Another way of expressing this propagation for a nonnegative solution on
B2

√
T (x0) × [0, 4T ] is the following, which, up to numerical factors is equivalent

to (3.1),

C inf
P+

T (x0)

u ≥ u(x0, 2T ) ≥ C−1 sup
P−

T (x0)

u, (3.2)

where P±
T (x0) are the part of the forward (resp. backward) space-time paraboloid

with vertex (x0, 2T ) in B√
T
(x0)× [T , 3T ] (see Fig. 1):

P+
T (x0) = {(x, t) : T−t0 ≥ t−t0 ≥ |x−x0|2}, P−

T (x0) = {(x, t) : t0−T ≥ t0−t ≥ |x−x0|2}.

t

x

P+
T

P−
T

2T

x0

4T

2
√

T

u > 0

Fig. 1 Representation of (3.2): assuming u > 0 in the boxed region, the dark grey area is P+
T

where u is bounded below by u(x0, 2T ), while the light grey one is P T+ where u is bounded above
by u(x0, 2T )
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A consequence of the parabolic Harnack inequality is the following form of the
strong maximum principle. We sketch a proof here since this argument will play a
rôle in the discussion of the Harnack inequality for nonlinear equations.

Corollary 3.2 (Parabolic Strong Minimum Principle) Let u ≥ 0 be a solution of
the heat equation in � × [0, T ], where � is connected, and suppose u(x0, t0) = 0
for some x0 ∈ � and t0 ∈ ]0, T [. Then u ≡ 0 in �× [0, t0].
Proof (Sketch) Pick (x1, t1) ∈ �× ]0, t0[ and join it to (x0, t0) with a smooth
curve γ : [0, 1] → �× ]0, t0] such that γ ′ always has positive t-component. By
compactness there is δ > 0 and a small forward parabolic sector P+

ε = {ε ≥ t ≥
|x|2} such that: 1) γ (σ) ∈ γ (τ) + P+

ε for all σ ∈ [τ, τ + δ] and 2) the Harnack
inequality holds in the form (3.2) for all s ∈ [0, 1], i.e.

u(γ (s)) ≤ inf
γ (s)+P+

ε

u.

These two properties and u(γ (1)) = 0 readily imply u ◦ γ ≡ 0. ��

3.2 The Linear Case with Coefficients

In the seminal paper [74] on the Hölder regularity of solutions to parabolic equations
with measurable coefficients, Nash already mentioned the possibility to obtain a
parabolic Harnack inequality through his techniques. However, the first one to
actually prove it was again Moser, who in [71] extended the Harnack inequality
to linear parabolic equations of the form

ut =
N∑

j,i=1

Di(aij (x, t)Dju). (3.3)

Theorem 3.3 (Moser) Let u be a positive weak solution of (3.3) in B2r × [0, T ],
where aij are measurable and satisfy the ellipticity condition (2.4) for all t ∈ [0, T ].
For any 0 < t−1 < t−2 < t+1 < t+2 < T define (see Fig. 2)

C− := Br × [t−1 , t−2 ], C+ := Br × [t+1 , t+2 ].

Then it holds

sup
C−

u ≤ C(N,�, λ, t±1,2) inf
C+

u, (3.4)

with a constant which is bounded as long as t+1 − t−2 is bounded away from 0.
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Fig. 2 The cylinders C+ and
C− where the Harnack
inequality is stated

t

x

C−

C+

u ≥ 0

Using the natural scaling of the equation, the previous form the parabolic
Harnack inequality can be reduced to (3.1).

As in the elliptic case, the first step of Moser’s proof consisted in the Lp − L∞
estimates for subsolutions, obtained by testing the equation with recursively higher
powers of the solution. This leads to

sup
Q(ρ)

up ≤ C(N,p,�, λ)

(r − ρ)N+2

∫∫
Q(r)

up dx dt, r > ρ, p > 0 (3.5)

where Q(r) are parabolic cylinders having top boundary at the same fixed time t0,
say Q(r) = Br × [t0 − r2, t0]. Since if u is a positive solution, u−1 is a positive
subsolution, (3.5) holds true also for negative powers p, yielding a bound from
below for u in terms of integrals of up. Similarly to the elliptic case, in order
to obtain the parabolic Harnack inequality, Moser proceeded to prove a crossover
lemma which reads as

∫ 0

−1

∫
B1

up0 dx

∫ 2

1

∫
B1

u−p0 dx ≤ C, (3.6)

for some C and a small p0 > 0 depending on N and the ellipticity constants. This
proved to be much harder than in the elliptic case, mainly because the integrals
are taken on the two different and distant sets and no appropriate John-Nirenberg
inequality dealing with this situation was known at the time. Moser himself proved
such a parabolic version of the John-Nirenberg lemma yielding (3.6), but the proof
was so involved that he was forced to an erratum 3 years later. In [72] he gave a
different proof avoiding it, following an approach of Bombieri and Giusti [9]. For
this to work, he refined his Lp − L∞ estimates (3.5), showing that they hold with
constants independent from p, at least for sufficiently small values of |p|. As we
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will see, this was necessary for the Bombieri-Giusti argument to carry over. Despite
the parabolic John-Nirenberg Lemma has later been given a simpler proof in [33],
the abstract John-Nirenberg Lemma technique of [9] is nowadays the standard tool
to prove parabolic Harnack inequalities, see e.g. [56, 80]. On the other hand, Nash’s
program was later established in [34].

We next sketch the proof in [72]. The starting point is a logarithmic estimate,
obtained by multiplying the equation by u−1η2, with η ∈ C∞

c (B3), η ≥ 0 and
η ≡ 1 on B2 and integrate in space only. Proceeding as in the elliptic case we obtain
the differential inequality

d

dt
−
∫

B3

η2(x) log u(x, t) dx + c−
∫

B3

|D log u(x, t)|2 η2(x) dx ≤ C.

Under mild concavity assumptions on η, a weighted Poincaré inequality holds true
with respect to the measure dμ = η2(x) dx, so that we infer

d

dt
−
∫

B3

log u(x, t) dμ+ c−
∫

B3

(
log u(x, t)−−

∫
B3

log u(x, t) dμ
)2

dμ ≤ C.

By letting

v(x, t) = log u(x, t)− C t, M(t) = −
∫

B3

v(x, t) dμ

the previous inequality can be rewritten as

d

dt
M(t)+ c−

∫
B3

(
v(x, t) −M(t)

)2
dμ ≤ 0,

so that M(t) is decreasing. Next, for λ > 0 and t ∈ [0, 4], restrict the integral
over {x ∈ B2 : v(x, t) ≥ M(0) + λ} where, by monotonicity, v(x, t) − M(t) ≥
M(0)−M(t)+ λ ≥ λ, to get

d

dt
M(t)+ c (M(0)−M(t)+ λ)2 |B2 ∩ {v(x, t) ≥ M(0)+ λ}| ≤ 0,

(notice that dμ = dx on B2). Dividing by (M(0) − M(t) + λ)2, integrating in
t ∈ [0, 4] and recalling that M(t) ≤ M(0) we deduce

|Q+(2) ∩ {v ≥ M(0)+ λ}| ≤ C/λ, Q+(2) := B2 × [0, 4].

Similarly, for any t ∈ [−4, 0], on {x ∈ B2 : v(x, t) ≤ M(0)−λ} it holds M(t)−v ≥
M(t)−M(0)+ λ ≥ λ being M decreasing and proceeding as before we get

|Q−(2) ∩ {v ≤ M(0)− λ}| ≤ C/λ, Q−(2) := B2 × [−4, 0].
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Recalling the definition of v, the last two displays imply the weak-L1 estimate

|Q+(2) ∩ {log u ≥ M(0)+ λ}| ≤ C/λ, |Q−(2) ∩ {log u ≤ M(0)− λ}| ≤ C/λ,

(3.7)

where M(0) is a weighted mean of log u. To proceed, we let

w = u e−M(0), Q+(r) = Br × [4− r2, 4], ϕ(r) = sup
Q+(r)

log w

for r ∈ [1, 2]. Since Q+(r) ⊆ Q+(2), for all λ > 0,

|Q+(r) ∩ {log w ≥ λ}| ≤ C/λ.

We will prove a universal bound on ϕ(r) so we may suppose that ϕ(r) is large.
Estimate the integral of wp on Q+(r) splitting it according to log w ≤ ϕ(r)/2 or
log w > ϕ(r)/2, to get

∫∫
Q+(r)

wp dx dt =
∫∫

Q+(r)

ep log w dx dt

≤ epϕ(r)|Q+(r) ∩ {log w ≥ ϕ(r)/2}| + |Q+(r)| e p
2 ϕ(r)

≤ 2 C

ϕ(r)
epϕ(r) + cN e

p
2 ϕ(r).

Choose now p = p(r) such that

2 C

ϕ(r)
epϕ(r) = cN e

p
2 ϕ(r) ⇔ p = 2

ϕ(r)
log(c ϕ(r)), c := cN/(2C)

(where ϕ(r) is so large that p is positive and sufficiently small), so that
∫∫

Q+(r)

wp dx dt ≤ 2cN e
p
2 ϕ(r).

We use (3.5) (with constant independent of p for small p), obtaining for a larger C,

ϕ(ρ) ≤ 1

p
log

(
C e

p
2 ϕ(r)

(r − ρ)N+2

)
= ϕ(r)

2
+ 1

p
log

(
C

(r − ρ)N+2

)

= ϕ(r)

2

(
1+ log(C/(r − ρ)N+2)

log(c ϕ(r))

)

Therefore, either the second term in the parenthesis is greater than 1/2, which is
equivalent to

ϕ(r) ≤ C2

c (r − ρ)2(N+2)
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or the opposite is true, giving ϕ(ρ) ≤ 3
4ϕ(r). All in all we obtained

ϕ(ρ) ≤ 3

4
ϕ(r)+ C

(r − ρ)2N+4 .

The latter can be iterated on an infinite sequence of radii 1 = r0 ≤ rn ≤ rn+1 ≤
· · · ≤ 2 with, say, rn+1 − rn � (n+ 1)−2, to get

ϕ(1) ≤ C

∞∑
n=0

(3/4)n n4(N+2),

which implies supQ+(1) u e−M(0) ≤ C for some C depending on N , � and λ. Thanks
to the second estimate in (3.7), a completely similar argument holds true for w =
u−1 eM(0) on the cylinders Q−(r) = Br × [−r2, 0], yielding supQ−(1) u−1 eM(0) ≤
C, i.e. infQ−(1) u eM(0) ≥ C−1. Therefore we obtained

supQ+(1) u

infQ−(1) u
= supQ+(1) u eM(0)

infQ−(1) u eM(0)
≤ C2.

3.3 First Consequences

As in the elliptic case, the parabolic Harnack inequality provides an oscillation
estimate giving the Hölder continuity of solutions to (3.3) subjected to (2.4). More-
over, (3.4) readily yields a strong minimum principle like the one in Corollary 3.2
for nonnegative solutions of (3.3).

On the other hand, Liouville theorems in the parabolic setting are more subtle
and don’t immediately follow from the parabolic version of the Harnack inequality.
In fact, the Liouville property is false in general since, for example, the function
u(x, t) = ex+t is clearly a nontrivial positive eternal (i.e., defined on R

N × R)
solution of the heat equation. A two sided bound is needed, and a fruitful setting
where to state Liouville properties in the one of ancient solutions, i.e. those defined
on an unbounded interval ] −∞, T0[. An example is the following.

Theorem 3.4 (Widder) Let u > 0 solve the heat equation in R
N× ] − ∞, T0[.

Suppose for some t0 < T0 it holds

u(x, t0) ≤ Ceo(|x|), for |x| → +∞.

Then, u is constant.

The latter has been proved for N = 1 in [93], and we sketch the proof in the
general case.
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Proof By the Widder representation for ancient solutions (see [66]) it holds

u(x, t) =
∫
RN

ex·ξ+t |ξ |2 dμ(ξ) (3.8)

for some nonnegative Borel measure μ. Let ν := et0|ξ |2μ and observe that Hölder’s
inequality with respect to the measure ν implies that for all s ∈]0, 1[

u(sx + (1− s)y, t0) =
∫
RN

e(sx+(1−s)y)·ξ dν(ξ)

≤
(∫

ex·ξ dν(ξ)

)s(∫
ey·ξ dν(ξ)

)1−s

= us(x, t0) u1−s(y, t0)

i.e., x �→ log u(x, t0) is convex. As log u(x, t0) = o(|x|) by assumption, it follows
that x �→ u(x, t0) is constant. Differentiating under the integral sign the Widder
representation, we obtain

0 = P(Dx)u(x, t0)|x=0 =
∫
RN

P (ξ) dν(ξ)

for any polynomial P such that P(0) = 0. By a classical Fourier transform argu-
ment, this implies that ν = c δ0 and thus u(x, t) ≡ c due to the representation (3.8).

��
Compare with [83] where it is proved that under the growth condition 0 ≤ u ≤

Ceo(|x|+√|t |) for t ≤ T0, there are no ancient non-constant solutions to the heat
equation on a complete Riemannian manifold with Ric ≥ 0.

Using Moser’s Harnack inequality, Aronsson proved in [1] a two sided bound on
the fundamental solution of (3.3) with symmetric coefficients, which reads

1

C(t − s)N/2 e−C
|x−y|2

t−s ≤ �(x, t; y, s) ≤ C

(t − s)N/2 e−
1
C
|x−y|2

t−s (3.9)

for some C = C(N,�, λ) and t > s > 0, where the fundamental solution (or heat
kernel) solves, for any fixed (y, s) ∈ R

N ×R+
{

∂t� =∑N
j,i=1 Dxi (aij (x, t)Dxj �) in R

N× ]s,+∞[,
�(·, t; y, s) ⇀∗ δy, as t ↓ s, in the measure sense.

In [34], the previous kernel estimate was proved through Nash’s approach, and was
shown to be equivalent to the parabolic Harnack inequality.
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A global Harnack inequality also follows from (3.9), whose proof we will now
sketch. If u ≥ 0 is a solution to (3.3) on R

N × R+ and t > s > τ ≥ 0, then using
the representation

u(x, t) =
∫
RN

�(x, t; ξ, τ )u(ξ, τ ) dξ, t > τ,

and the analogous one for (y, s), we get

u(x, t) =
∫
RN

�(x, t; ξ, τ ) �−1(y, s; ξ, τ ) �(y, s; ξ, τ ) u(ξ, τ ) dξ

≥ u(y, s)

C2

(
s − τ

t − τ

)N
2

inf
ξ

e
1
C
|y−ξ |2
s−τ −C

|x−ξ |2
t−τ ,

where τ ≥ 0 is a free parameter. Recalling that

inf
ξ

a |y − ξ |2 − b |x − ξ |2 = a b

b − a
|x − y|2, a > b ≥ 0,

we consider two cases. If s/t ≤ 1/(2C2) we choose τ = 0 and compute

inf
ξ

|y − ξ |2
C s

− C
|x − ξ |2

t
≥ −2C

|x − y|2
t − s

.

If instead s/t ∈ ]1/(2C2), 1], we set τ = s − (t − s)/(2C2) > 0 obtaining

inf
ξ

1

C

|y − ξ |2
s − τ

− C
|x − ξ |2
t − τ

≥ −2C
|x − y|2
t − s

.

while (s − τ )/(t − τ ) = 1/(1 + 2C2). Therefore the kernel bounds (3.9) imply
the following Harnack inequality at large, often called sub-potential lower bound,
for positive solutions u of (3.3) on R

N×]0, T [ : there exists a constant C =
C(N,�, λ) > 1 such that

u(x, t) ≥ 1

C
u(y, s)

( s

t

)N
2

e−C
|x−y|2

t−s for all T > t > s > 0. (3.10)

A similar global estimate, with a non-optimal exponent α = α(N,�, λ) > N/2
for the ratio s/t , has already been derived through the so-called Harnack chain
technique by Moser in [71].
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3.4 Riemannian Manifolds and Beyond

Following the differential approach of [94], Li and Yau proved in [65] their
celebrated parabolic differential Harnack inequality.

Theorem 3.5 Let M be a complete Riemannian manifold of dimension N ≥ 2 and
Ric ≥ 0, and let u > 0 solve the heat equation on M ×R+. Then it holds

|D log u|2 − ∂t log u ≤ N

2t
. (3.11)

In the same paper, many variants of the previous inequality are considered, including
one for local solutions in BR(x0)× ]t0 − T , t0[ much in the spirit of [16], and
several consequences are also derived. Integrating inequality (3.11) along geodesics
provides, for any positive solution of the heat equation of M ×R+

u(x, t) ≥ u(y, s)
( s

t

)N
2

e
− d2(x,y)

4(t−s) , t > s > 0, (3.12)

where d(x, y) is the geodesic distance between two points x, y ∈ M . This, in turn,
gives the heat kernel estimate (see [80, Ch. 5])

1

CV (x,
√

t − s)
e−C

d2(x,y)
t−s ≤ �(x, t; y, s) ≤ C

V (x,
√

t − s)
e−

1
C

d2(x,y)
t−s , (3.13)

where V (x, r) is the Riemannian volume of a geodesic ball B(x, r). Notice that, in
a general Riemannian manifold of dimension N ≥ 2,

V (x, r) � rN for small r > 0,

but, under the sôle assumption Ric ≥ 0, the best one can say is

r

C
≤ V (x, r) ≤ CrN, for large r > 0.

Therefore, while the Li-Yau estimate on the heat kernel coincides with Aronsson’s
one locally, it is genuinely different at the global level.

Other parabolic differential Harnack inequalities were then found by Hamil-
ton in [46] for compact Riemannian manifolds with Ric ≥ 0, and were later
extended in [59, 83] to complete, non-compact manifolds. Actually, far more general
differential Harnack inequalities are available under suitable conditions on the
Riemannian manifold, see the book [73] for the history and applications of the
latters.
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Again, the differential Harnack inequality (3.11) requires a good deal of smooth-
ness both on the operator and on the ambient manifold. Yet, the corresponding
pointwise inequality (3.12) doesn’t depend on the smoothness of the metric gij

but only on its induced distance and the dimension, hence one is lead to believe
that a smoothness-free proof exists. Indeed, the papers [44, 78] showed that the
parabolic Harnack inequality (and the corresponding heat kernel estimates) can
still be obtained through a Moser-type approach based solely on the Doubling and
Poincaré condition (2.12). Indeed, [44, 78] independently showed the following
equivalence.

Theorem 3.6 (Parabolic Harnack Principle) For any Riemannian manifold the
following are equivalent:

(1) The parabolic Harnack inequality (3.1).
(2) The heat kernel estimate (3.13).
(3) The Doubling and Poincaré condition (2.12).

Since Doubling and Poincaré are stable with respect to quasi-isometries, the
previous theorem ensures the stability of the parabolic Harnack inequality with
respect to the latters, and thus its validity in a much wider class of Riemannian
manifolds than those with Ric ≥ 0. Condition (3) also ensures that the parabolic
Harnack inequality holds for general parabolic equations with elliptic and merely
measurable coefficients, see [79]. Actually, under local regularity conditions, it can
be proved for metric spaces which are roughly isometric to a Riemannian manifold
with Ric ≥ 0, such as suitable graphs or singular limits of Riemannian manifolds.

3.5 The Nonlinear Setting

An analysis of Moser’s proofs reveals that the linearity of the second order operator
is immaterial, and that essentially the same arguments can be applied as well to
nonnegative weak solutions of a wide family of quasilinear equations. In [2, 87], the
Harnack inequality in the form (3.4) was proved to hold for nonnegative solutions
of the quasilinear equation

ut = divA(x, u,Du) (3.14)

where the function A : �× R× R
N → R

N is only assumed to be measurable and
satisfying

{
A(x, s, z) · z ≥ C0|z|2,
|A(x, s, z)| ≤ C1|z|,

(3.15)

for some given positive constants 0 < C0 ≤ C1. These structural conditions are
very weak, as, for example, the validity of the comparison principle holds in general
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under the so-called monotonicity condition

(
A(x, s, z)− A(x, s,w)

) · (z −w) ≥ 0 (3.16)

which does not follow from (3.15). To appreciate the generality of (3.15), consider
the toy model case N = 1, A(x, s, z) = ϕ(z), so that a smooth solution of (3.14)
fulfills ut = ϕ′(ux)uxx . Assuming (3.15) alone gives no information on the sign
of ϕ′ except at 0 (where ϕ′(0) ≥ C0 > 0), so that (3.15) is actually a backward
parabolic equation in the region {ux ∈ {ϕ′ < 0}}.

Trudinger noted in [87] that the Harnack inequality for the case of general p-
growth conditions (2.6) with p 	= 2 seemed instead a difficult task. He stated the
validity of the Harnack inequality (3.4) for positive solutions of the doubly nonlinear
equation

(up−1)t = divA(x, t, u,Du)

where A obeys (2.6) with the same p as the one appearing on the left hand
side, thus recovering a form of homogeneity in the equation which is lacking
in (3.14). The (homogeneous) doubly nonlinear result has later been proved in
[40, 41, 56], (see also the survey [55]), but it took around 40 years to obtain the
right form of the Harnack inequality for solutions of (3.14) under the general p-
growth condition (2.6) on the principal part. The next chapter will be dedicated to
this development.

It is worth noting that another widely studied parabolic equation which presented
the same kind of difficulties is the porous medium equation, namely

ut = �um, m > 0.

In fact, most of the results in the following sections have analogue statements and
proofs for positive solutions of the porous medium equation. The interested reader
may consult the monographs [31, 91, 92] for the corresponding results for porous
media and related literature. More generally, the doubly nonlinear inhomogeneous
equation

ut = div(um−1|Du|p−2Du)

has found applications in describing polytropic flows of a non-newtonian fluid in
porous media [5] and soil science [4, 60, 82], see also the survey article [52].
Regularity results can be found in [50, 76] and Harnack inequalities in [37] for the
degenerate and in [39] in the singular case, respectively. To keep things as simple as
possible, we chose not to treat these equations, limiting our exposition to (3.14).
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4 Singular and Degenerate Parabolic Equations

4.1 The Prototype Equation

Let us consider the parabolic p-Laplace equation

ut = div(|Du|p−2Du), p > 1, (4.1)

which can be seen as a parabolic elliptic equation with |Du|p−2 as (intrinsic)
isotropic coefficient. The coefficient vanishes near a point where Du = 0 when
p > 2, while it blows up near such a point when p < 2. For this reasons we
call (4.1) degenerate when p > 2 and singular if p < 2.

In the fifties, the seminal paper [3] by Barenblatt was the starting point of the
study of the p-Laplacian equation (4.1). The following family of explicit solutions
to (4.1) where found, and are since then called Barenblatt solution to (4.1).

Theorem 4.1 For any p > 2N
N+1 and M > 0, there exist constants a, b > 0

depending only on N and p such that the function

Bp,M(x, t) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t−N
λ

[
aM

p
λ

p−2
p−1 − b

(|x| t− 1
λ

) p
p−1

] p−1
p−2

+
, if p > 2,

t−N
λ

[
aM

p
λ

p−2
p−1 + b

(|x| t− 1
λ

) p
p−1

] p−1
p−2

if 2 > p,

(4.2)

where λ = N(p − 2)+ p > 0, solves the problem

{
ut = div(|Du|p−2Du) in RN× ]0,+∞[,
u(·, t) ⇀∗ Mδ0 as t ↓ 0.

The functions Bp,M are also called fundamental solutions of mass M , or simply
fundamental solutions when M = 1, in which case one briefly writes Bp,1 = Bp.
Uniqueness of the fundamental solution for the prototype equation was proved by
Kamin and Vázquez in [53] (the uniqueness for general monotone operators is still
not known).

The Barenblatt solutions show that, when (4.1) is degenerate, the diffusion is very
slow and the speed of the propagation of the support is finite, while in the singular
case the diffusion is very fast and the solution may become extinct in finite time.
These two phenomena are incompatible with a parabolic Harnack inequality of the
form (3.1) or (3.4), (suitably modified taking account of the natural scaling) such as

C−1 sup
Bρ(x0)

u(·, t0 − ρp) ≤ u(x0, t0) ≤ C inf
Bρ(x0)

u(·, t0 + ρp) (4.3)
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with a constant C depending only on N . Indeed, in the degenerate case the
Barenblatt solution has compact support for any positive time, violating the strong
minimum principle dictated by (4.3) (the proof of Corollary 3.2 still works).
Regarding the singular case, this incompatibility is not immediately apparent from
the Barenblatt profile itself and in fact the strong minimum principle still holds for
solutions defined in R

N×]0, T [ when p > 2N
N+1 . However, consider the solution

of the Cauchy problem associated to (4.1) in a cylindrical domain � × R+ with
u(x, 0) = u0(x) ∈ C∞

c (�) and Dirichlet boundary condition on ∂� × R+, with
� bounded. An elementary energetic argument (see [21, Ch VII]) gives a suitable
extinction time T ∗(�, u0) such that u(·, t) ≡ 0 for t > T ∗, again violating the
strong minimum principle which would follow from (4.3).

Let us remark here that for 1 < p ≤ 2N
N+1 =: p∗ the Barenblatt profiles cease

to exists. The exponent p∗ is called the critical exponent for singular parabolic
equations and, as it will be widely discussed in the following, the theory is mostly
complete in the supercritical case p > p∗. Solutions of critical and subcritical
equations (i.e. with p ∈ ]1, p∗]) on the other hand, even in the model case (4.1),
exhibit odd and, in some aspects, still unclear (i.e., move the comma at the
beginning) features.

4.2 Regularity

Let us consider equations of the type

ut = divA(x, u,Du) (4.4)

with general measurable coefficients obeying

{
A(x, s, z) · z ≥ C0|z|p,

|A(x, s, z)| ≤ C1|z|p−1.
(4.5)

We are concerned with weak solutions in �× [0, T ], namely those satisfying

∫
uϕ dx

∣∣∣∣
t2

t1

+
∫ t2

t1

∫
�

[−uϕt + A(x, u,Du) · ϕ] dx dt = 0

where ϕ is an arbitrary function such that ϕ ∈ W
1,2
loc (0, T ;L2(�)) ∩ Lp(0, T ;

W
1,p

0 (�). This readily implies that

u ∈ Cloc(0, T ;L2
loc(�)) ∩ L

p
loc(0, T ;W 1,p

loc (�)).

In the case p = 2, the local Hölder continuity of solutions to (4.4) has been
proved in [62] through a parabolic De Giorgi approach. The case p 	= 2 was
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considered a major open problem in the theory of quasilinear parabolic equations
for over two decades. The main obstacle to its solution was that the energy and
logarithmic estimates for (4.4) are non-homogeneous when p 	= 2. It was solved
by DiBenedetto [19] in the degenerate case and Chen and DiBenedetto in [15] in
the singular case through an approach nowadays called method of intrinsic scaling
(see the monograph [90] for a detailed description). Roughly speaking, in order
to recover from the lack of homogeneity in the integral estimates, one works in
cylinders whose natural scaling is modified by the oscillation of the solution itself.
In the original proof, these rescaled cylinders are then sectioned in smaller sub-
cylinders and the so-called alternative occurs: either there exists a sub-cylinder
where u is sizeably (in a measure-theoretic sense) away from its infimum or in
each sub-cylinder it is sizeably away from its supremum. In both cases a reduction
in oscillation can be proved, giving the claimed Hölder continuity.

Stemming from recent techniques built to deal with the Harnack inequality
for (4.4), simpler proofs are nowadays available, avoiding the analysis of said
alternative. In the last section we will provide such a simplified proof, chiefly based
on [29] and [42].

As it turned out, Hölder continuity of bounded solutions to (4.5) (in fact, to
much more general equations) always holds. In the degenerate case p ≥ 2, a-priori
boundedness follows from the natural notion of weak solution given above, but in
the singular case there is a precise threshold: local boundedness is guaranteed only
for p > p∗∗ := 2N

N+2 , which is therefore another critical exponent for the singular
equation, smaller than p∗. However, when 1 < p < p∗∗, weak solutions may be
unbounded: for example, a suitable multiple of

v(x, t) = (T − t)
1

2−p

+ |x| p
p−2

solves the model equation (4.1) in the whole RN × R.
The critical exponents p∗ > p∗∗ arise from the so-called Lr − L∞-estimates

for sub-solutions, which are parabolic analogues of (2.7). Namely, when p > p∗,
a L1 − L∞ estimate holds true, eventually giving the intrinsic parabolic Harnack
inequality. If only p > p∗∗ is assumed, one can still obtain a weaker Lr − L∞
estimate with r > 1 being the optimal exponent in the parabolic embedding

L∞(0, T ;L2(BR))∩Lp(0, T ;W 1,p(BR)) ↪→ Lr(0, T ;Lr(BR)), r = p
N + 2

N

which is ensured by the notion of weak solution.
Finally, we briefly comment on the regularity theory for parabolic systems. The

general measurable coefficient condition dictated by (4.5) is not enough to ensure
continuity, and either some additional structure is required (the so-called Uhlenbeck
structure, due to the seminal paper [89] in the elliptic setting) or regularity holds
everywhere except in a small singular set. The parabolic counterpart of [89] has
first been proved in [22] and systematized in the monograph [21] for a large
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class of nonlinear parabolic system with Uhlenbeck structure. For the more recent
developments on the partial regularity theory for parabolic system with general
structure we refer to the memoirs [7, 32].

4.3 Intrinsic Harnack Inequalities

DiBenedetto and DiBenedetto and Kwong in [20] and [24] found and proved a
suitable form of the parabolic Harnack inequality for the prototype equation (4.1),
respectively in the degenerate and singular case. The critical value p∗ = 2N/(N+1)

was shown to be the threshold below which no Harnack inequality, even in intrinsic
form, may hold. However, comparison theorems where essential tools for the
proof. A similar statement was later found to hold for general parabolic quasilinear
equations of p-growth in [26] (degenerate case) and in [27] (singular supercritical
case), with no monotonicty assumption. We will now describe these results, starting
from the degenerate case.

Theorem 4.2 (Intrinsic Harnack Inequality, Degenerate Case) Let p ≥ 2 and
u be a non negative weak solution in B2r × [−T , T ] of (4.4) under the growth
conditions (4.5). There exists C > 0 and θ > 0, depending only on N,p,C0, C1
such that if 0 < θ u(0, 0)2−p rp ≤ T , then

C−1 sup
Br

u(·,−θ u(0, 0)2−p rp) ≤ u(0, 0) ≤ C inf
Br

u(·, θ u(0, 0)2−p rp). (4.6)

Clearly, for p = 2 we recover (3.1). For p > 2, the waiting time is larger the
smaller u(0, 0) is; in other terms u(0, 0) bounds from below u on p-paraboloids of
opening proportional to u(0, 0)p−2. It is worth noting here two additional difficulties
in the Harnack inequality theory with respect to the linear (or more generally,
homogeneous) setting. While it is still true that the forward form in the quasilinear
setting implies the backward one, this is no more trivial due to the intrinsic waiting
time depending on u0.

The Harnack inequality in the singular setting turns out to be much more rich and
subtle than in the degenerate case. A natural guess would be that (4.6) holds also in
the singular case. However, consider the function

u(x, t) = (T − t)
N+2

2+
(
a + b|x| 2N

N−2

)−N
2

, (4.7)

which is a bounded solution in R
N × R of the prototype equation (4.1) for any

p ∈ ]1, p∗[, N > 2 and suitably chosen a, b > 0. The latter violates both the
forward and backward Harnack inequality in (4.6), as the right hand side vanishes
for sufficiently large r , while the left hand side goes to +∞ for r → +∞.
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A similar phenomenon persists at the critical value p = p∗, as is shown by the
entire solution

u(x, t) =
(
ect + |x| 2N

N−1

)−N−1
2

(4.8)

for suitable c > 0: the left hand side of (4.6) goes to +∞ while the right hand
one vanishes as r → +∞. It turns out that for p ∈ ]p∗, 2[, Theorem 4.2 has a
corresponding statement.

Theorem 4.3 (Intrinsic Harnack Inequality, Singular Supercritical Case) Let
2 > p > 2N

N+1 and u be a non negative weak solution in B4r × [−T , T ] of (4.4)
under the growth conditions (4.5). There exists C > 0 and θ > 0, depending only
on N,p,C0, C1 such that if u(0, 0) > 0 and

rp sup
B2r

u(·, 0)2−p ≤ T , (4.9)

then

C−1 sup
Br

u(·,−θ u(0, 0)2−p rp) ≤ u0 ≤ C inf
Br

u(·, θ u(0, 0)2−p rp). (4.10)

Assumption (4.9) seems technical, however no proof is known at the moment
without it. Following the procedure in [24], it can be removed for solutions
of monotone equations fullfilling (3.16) (and thus obeying the comparison prin-
ciple). The proof of the intrinsic Harnack inequality for supercritical singular
equations is considerably more difficult than in the degenerate case and crucially
relies on the following L1-form of the Harnack inequality, first observed in
[48] for the porous medium equation, which actually holds in the full singular
range.

Theorem 4.4 (L1-Harnack Inequality for Singular Equations) Let p ∈ ]1, 2[
and u be a non negative weak solution in B4r × [0, T ] of (4.4) under the growth
conditions (4.5). There exists C > 0 depending only on N,p,C0, C1 such that

sup
t∈[0,T ]

∫
Br

u(x, t) dx ≤ C inf
t∈[0,T ]

∫
B2r

u(x, t) dx + C
(
T/rp+N(p−2)

) 1
2−p

.

Notice that p +N(p − 2) > 0 if and only if p > p∗. Thanks to this deep result,
an elliptic form of the intrinsic Harnack inequality can be proved.

Theorem 4.5 (Elliptic Harnack Inequality for Singular Supercritical Equa-
tions) Let p ∈ ] 2N

N+1 , 2[ and u be a non negative weak solution in B4r × [−T , T ]
of (4.4)–(4.5). There exists C > 0 and θ > 0, depending on N,p,C0, C1 such that
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if u(0, 0) > 0 and (4.9) holds, then

C−1 sup
Qr

u ≤ u(0, 0) ≤ C inf
Qr

u,

Qr = Br × [−θ u(0, 0)2−p rp, θ u(0, 0)2−p rp]. (4.11)

Recall that an elliptic form of the Harnack inequality such as (4.11) cannot hold
for the classical heat equation. This forces the constants appearing in the previous
theorem to blow-up as p ↑ 2, hence, while this last form of the intrinsic Harnack
inequality clearly implies (4.10), the constants in (4.10) are instead stable as p ↑ 2.
The previous examples also show that both constants must blow-up for p ↓ p∗. The
same comments following Theorem 4.3 on the rôle of hypothesis (4.9) can be made.

In the subcritical case, different forms of the Harnack inequality have been
considered. Here we mention the one obtained in [38] generalizing to monotone
operators a result of Bonforte and Vázquez [11, 12] on the porous medium equation.

Theorem 4.6 (Subcritical Case) Let p ∈ ]1, 2[, u be a positive, locally bounded
weak solution in B2r × [−T , T ] of (4.4) under the growth conditions (4.5) and the
monotonicty assumption (3.16). For any s ≥ 1 such that λs := N (p− 2)+p s > 0
there exists C, δ, θ > 0, depending on N,p, s, C0, C1 such that letting

Q̃r (u) = Br ×
[
θ
(−
∫

Br

u(x, 0) dx
)2−p

rp, θ
(−
∫

Br

u(x, 0) dx
)2−p

(2r)p
]

,

if u(0, 0) > 0 and Q̃2r (u) ⊆ B2r × [0, T ], then

sup
Q̃r (u)

u ≤ C Aδ
u inf

Q̃r (u)
u, Au =

⎡
⎢⎢⎣

−
∫
Br

u(x, 0) dx

(
−
∫
Br

us(x, 0) dx
) 1

s

⎤
⎥⎥⎦

p s
λs

(4.12)

Notice that (4.12) is an elliptic Harnack inequality for later times, intrinsic in
terms of the size of u at the initial time t = 0. In the singular supercritical case
one can take r = 1 and thus Au ≡ 1 in the previous statement to recover partially
Theorem 4.5. The main weakness of (4.12) lies in the dependence of the Harnack
constant from the solution itself. In general, a constant depending on u won’t allow
to deduce Hölder continuity but, as noted in [38], the peculiar structure of Au

permits such a deduction.
Other weaker forms not requiring the monotonicity assumption (3.16) are

available (see [28]), however the complete picture in the subcritical case is not
completely clear up to now.
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4.4 Liouville Theorems

As for the classical heat equation, a one sided bound is not sufficient to ensure
triviality of the solutions of the prototype equation (4.1). Indeed, a suitable positive
multiple of the function

u(x, t) = (1− x + ct)

p−1
p−2
+ (4.13)

solves (4.1) on R × R whenever c > 0 and p > 2. As is natural with parabolic
Liouville theorems, a convenient setting is the one of ancient solutions and it turns
out that a two-sided bound at a fixed time is sufficient to conclude triviality. The
basic tools to prove the following results are the previously discussed Harnack
inequalities and the following results are contained in [30].

Theorem 4.7 Let p > 2 and u be a non-negative solution of

ut = divA(x, u,Du) on RN× ] −∞, T [ (4.14)

under the growth condition (4.5). If for some t0 < T , u(·, t0) is bounded above, then
u is constant.

Notice that no monotonicity assumption on the principal part of the operator is
needed. An optimal Liouville condition such as the one of Theorem 3.4 is unknown
and clearly the example in (4.13) shows that it must involve a polynomial growth
condition instead of a sub-exponential one. For the prototype parabolic p-Laplacian
equation, a polynomial growth condition on both x and t more in the spirit of [83]
is considered in [85].

On the complementary side, boundedness for fixed x0 can also be considered,
yielding:

Theorem 4.8 Let p > 2 and u be a nonnegative solution in R
N ×R of (4.14),

(4.5). If

lim sup
t→+∞

u(x0, t) < +∞ for some x0 ∈ R
N,

u is constant.

In the singular, supercritical case, the elliptic form (4.11) of the Harnack
inequality directly ensures that, contrary to what happens for classical heat equation,
a one-sided bound suffices to obtain a Liouville theorem. This is no longer true in
the critical and subcritical case, as the functions in (4.8) and (4.7) show. However,
again a two sided bound suffices.

Theorem 4.9 Let 1 < p < 2 and u be a weak solution onRN× ]−∞, T [ of (4.14)
under condition (4.5). If u is bounded, it is constant.
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4.5 Harnack Estimates at Large

By Harnack estimates at large, we mean global results such as the sub-potential
lower bound (3.10) or the two-sided Kernel estimate (3.9). For the quasilinear
equation

ut = divA(x, u,Du) (4.15)

with p-growth assumptions (4.5), the natural candidates to state analogous inequal-
ities are the Barenblatt profiles Bp,M given in (4.2). When A satisfies smoothness
and monotonicity assumptions such as

{
(A(x, s, z)− A(x, s,w)) · (z−w) ≥ 0 ∀s ∈ R, x, z,w ∈ R

N,

|A(x, s, z)− A(x, r, z)| ≤ �(1+ |z|)p−1|s − r| ∀s, r ∈ R, x, z ∈ R
N .

(4.16)

a comparison principle for weak solutions is available, as well as existence of
solutions of the Cauchy problem with L1 initial datum.

We start by considering the singular supercritical case, since the diffusion is fast
and positivity spreads instantly on the whole R

N , giving a behaviour similar to the
one of the heat equation. The next result is contained in [13].

Theorem 4.10 (Sub-potential Lower Bound, Singular Case) Let 2N
N+1 < p <

2 and u be a nonnegative solution of (4.15) in R
N× ]0,+∞[ under assump-

tions (4.5), (4.16). There are constants C, δ > 0, depending on the data, such that
if u(x0, t0) > 0, then

u(x, t) ≥ γ u(x0, t0)Bp

(
u(x0, t0)

p−2
p

x − x0

t
1/p

0

,
t

t0

)
, (4.17)

for all (x, t) ∈ R
N × [t0(1− δ),+∞[.

As an example, assume x0 = 0, t0 = 1 and u(0, 1) = 1. Then, the previous
sub-potential lower bound becomes

u(x, t) ≥ γBp(x, t)

for any (x, t) ∈ R
N × [1− δ,+∞[. As a corollary, for any fundamental solution

of (4.15), one obtains the two-sided kernel bounds (proved in [77] for the first time)

C−1Bp,M1(x, t) ≤ �(x, t) ≤ CBp,M2(x, t)

for some C,M1,M2 > 0 depending on the data. Notice how the elliptic nature
of (4.15) for p ∈ ]p∗, 2[, as expressed by the forward-backward Harnack inequal-
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ity (4.11), allows to obtain the bound (4.17) also for some t < t0. Previously known
sub-potential lower bounds correspond to the case δ = 0 above. As shown in [14],
the phenomenon of propagation of positivity for t < t0 not only happens in the near
past but, as long as the spatial diffusion has had enough room to happen, it also
hold for arbitrarily remote past times. More precisely, in [14] it is proved that (4.17)
holds for all

(x, t) ∈ Pc :=
{
t > 0, |x − x0|pu(x0, t0)

2−p > 1− t

t0

}
,

while a weaker, but still optimal, lower bound holds in P .
In the degenerate case p > 2, the finite speed of propagation implies that if

the initial datum u0 has compact support, then any solution of (4.15) keeps having
compact support for any time t > 0. The finite speed of propagation has been
quantified in [8], under the sôle p-growth assumption (4.5).

Theorem 4.11 (Speed of Propagation of the Support) Let p > 2 and u be a weak
solution of the Cauchy problem

{
ut = divA(x, u,Du) in RN× ]0,+∞[,
u(x, 0) = u0

under assumption (4.5). If R0 = diam(supp u0) < +∞, then

diam(supp u(·, t)) ≤ 2R0 + Ct1/λ‖u0‖
p−2

λ

L1(RN)
,

where λ = N(p − 2)+ p and C depend only on N,p,C0 and C1.

Such an estimate actually holds for a suitable class of degenerate systems, see
[84]. Sub-potential lower bounds are obtained in [8] as well.

Theorem 4.12 (Sub-potential Lower Bound, Degenerate Case) Let p > 2
and u be a nonnegative solution of (4.15) in R

N× ]0,+∞[ under assump-
tions (4.5), (4.16). Then there are constants C, ε > 0 such that if u(x0, t0) > 0,
then (4.17) holds in the region

t > t0, |x − x0|p ≤ ε u(x0, t0)
p−2t0 min

{
t − t0

t0
,

(
t − t0

t0

)p/λ
}

,

with λ = N(p − 2)+ p.

The last condition on the region of validity of (4.17) is sharp, especially when
t � t0 and the minimum is the first one (see [8, Remark 1.3] for details).
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Under the additional assumptions (4.5) and (4.16) fundamental solutions exist
and, as in the singular case, the sub-potential lower bound implies a two-sided
estimate on the kernel in terms of the Barenblatt solution.

5 The Expansion of Positivity Approach

In this section we provide detailed proofs of some of the Harnack inequalities stated
until now. Historically, Hölder regularity and Harnack inequalities have always been
intertwined, with the former usually proved before the latter. The reason behind this
is that Hölder regularity is a statement about a reduction in oscillation of u in Br as
r ↓ 0, i.e. on the difference supBr

u − infBr u. Thus it reduces to prove that either
supBr

u decreases or infBr u increases in a quantitative way. On the other hand, a
Harnack inequality implies the stronger statement that both supBr

u decreases and
infBr u increases at a certain rate (see the nice discussion in [63, Ch. 1, §10]).

The modern approach thus often shifted the statements, first proving a Harnack
inequality and then deducing from it the Hölder continuity of solutions. We
instead revert to the historical roadmap, for two main reasons. The first one is
pedagogical, as it feels satisfactory to reach an important stepping-stone result such
as Hölder regularity, which would anyway follow from the techniques needed to
prove the Harnack inequality. The second one is practical, since without continuity
assumptions some of the arguments to reach, or even state, the Harnack inequality
would be technically involved: for example, one would need to give a precise
meaning to u(0, 0) in (4.6).

We start in Sect. 5.1 by considering the elliptic setting. The proof of the Hölder
continuity follows closely the original De Giorgi approach, then we introduce
the notion of expansion of positivity. A technique due to Landis allows us to
construct a largeness point from which to spread the positivity, thus giving the
Harnack inequality. These are the common ingredients to all subsequent sections.
In Sect. 5.2 we apply this technique to homogeneous parabolic equations with only
minor modifications. Then we start discussing degenerate and singular parabolic
equation. Section 5.3 is devoted to the proof of common tools to both, Sect. 5.4 to
the degenerate case and the last one to singular supercritical equations.

While we won’t prove basic propositions such as Energy estimates or Sobolev
inequalities, the presentation will be mostly self contained. The only exception will
be Theorem 5.32, which is the core tool to treat the singular supercritical Harnack
inequality. Its proof is rather technical and since we could not find any simplification
we would simply rewrite [31, Appendix A] word-by-word. Incidentally, this will
also be the only sup estimate we will use. In striking contrast with the Moser
method, in all the other subsections we will only assume qualitative boundedness
of the solution (which certainly holds, as discussed in the previous section) without
ever proving or using a quantitative integral sup-bound.

Since some arguments will be ubiquitous, a detailed discussion will be given
at their first appearance, but we will only sketch the relevant modifications on
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subsequent occurrences. For this reason, the non-expert is advised to follow the path
presented here from its very beginning, rather than skipping directly to the desired
result.

5.1 Elliptic Equations

We now describe the De Giorgi technique to prove Cα-regularity and Harnack
inequality for solutions of elliptic equations of the form

divA(x, u,Du) = 0 with

{
A(x, s, z) · z ≥ C0|z|p
|A(x, s, z)| ≤ C1|z|p−1

p ∈ ]1, N[. (5.1)

We will not treat boundedness statements (which actually hold true in this setting)
and always assume that solutions are locally bounded.

Roughly speaking, the approach of De Giorgi consisted in deriving pointwise
estimates on a solution u by analizing the behaviour of |{u ≤ k} ∩ Br | with
respect to the level k > 0. First, he proved that the relative size of the sublevel
set shrinks as k decreases, at a certain (logarithmic) rate. Then he showed that,
when a suitable smallness threshold is reached, it starts decaying exponentially fast,
so that it vanishes at a strictly positive level. This procedure produces a pointwise
bound from below for u in terms of the size of its sublevel set in a larger ball and
is thus called a measure-to-point estimate in the literature. This estimate, moreover,
expands in space, since the relative size of a sublevel set in a larger ball BR can
also be bounded from below (polynomially in r/R) by its size in Br ⊆ BR . The
quantitative statement arising from this simple observation is called expansion of
positivity and is the basis for our proof of the Harnack inequality.

With a certain abuse of notation, we will say that u is a (sub-) super-solution
of (5.1) if there exists and A obeying the prescribed growth condition for which
−divA(x, u,Du)(≤) ≥ 0. Observe that, being (5.1) homogeneous, the class of
(sub-/super-) solutions of (5.1) is invariant by scaling, translation and (positive)
scalar multiplication. More precisely, performing such transformations to a subso-
lution of (5.1) for some A results in a subsolution of (5.1) for a possibly different
Ã, which nevertheless obeys the same bounds. We will use the following notations:
Kr(x0) will denote a cube of side r and center x0, Kr = Kr(0) and, respectively,

P(K; u � k) = |K ∩ {u � k}|
|K| ,

thus, for example, P(K; u ≥ 1) is the percentage of the cube K where u ≥ 1. In
the following, the dependence from p in the constants will always be omitted, and
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any constant only depending on N , p, C0 and C1 (the “data”) will be denoted with
a bar over it. Often we will also consider functions f : R+ → R+ which will also
depend on the data, and we will omit such a dependence. We first recall some basic
facts.

Proposition 5.1

1) [31, Lemma II.5.1] Let Xn ≥ 0 obey for some α > 0, b,C > 0, the iterative
inequality

Xn+1 ≤ C bn X1+α
n .

Then

X0 ≤ C−1/αb−1/α2 ⇒ lim
n

Xn = 0. (5.2)

2) De Giorgi-Poincaré inequality: [31, Lemma II.2.2] For any u ∈ W 1,1(Kr) and
k ≤ h

(h− k)|{u ≤ k}| ≤ C(N) rN+1

|{u ≥ k}|
∫
{k<u≤h}

|Du| dx.

3) Energy inequality: Let u be a supersolution to (5.1) in K . Then there exists C̄

such that for any k ∈ R and η ∈ C∞
c (K)

∫
K

|D(η(u− k)−))|p ≤ C̄

∫
K

(u− k)
p
−|Dη|p dx. (5.3)

Lemma 5.2 (Shrinking Lemma) Let u ≥ 0 be a supersolution in KR . For any
μ > 0 there exists β(μ) > 0 such that

P(KR/2; u ≥ 1) ≥ μ ⇒ P(KR/2; u ≤ 1/2n) ≤ β(μ)/n
1− 1

p .

Proof Rescale to R = 2 and let kj = 2−j . By the De Giorgi-Poincaré inequality

(kj − kj+1)|K1 ∩ {u ≤ kj+1}| ≤ C̄

|K1 ∩ {u ≥ kj }|
∫

K1∩{kj+1<u}
|D(u− kj )−|dx

≤ C̄

μ

∫
K1∩{kj+1<u}

|D(u− kj )−| dx. (5.4)
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If η ∈ C∞
c (K2) is such that 0 ≤ η ≤ 1, η ≡ 1 on K1/2 and |∇η| ≤ C(N), (5.3)

gives

∫
K1/2

|D(u− kj )−|p dx ≤ C̄

∫
K2

(u− kj )
p
− dx,

so that the last integral in (5.4) can be bounded through Hölder’s inequality as

∫
K1/2∩{kj+1<u}

|D(u− kj )−| dx

≤
(∫

K1/2∩{kj+1<u}
|D(u− kj )−|p dx

) 1
p

|K1/2 ∩ {kj+1 < u ≤ kj }|1−
1
p

≤ C̄

(∫
K2

(u− kj )
p
− dx

) 1
p (|K1/2 ∩ {u ≤ kj }| − |K1/2 ∩ {u ≤ kj+1}|

)1− 1
p

Insert the latter into (5.4), use (u− kj )− ≤ kj and kj − kj+1 = kj /2 to get

kj

2
|K1/2 ∩ {u ≤ kj+1}| ≤ C̄

μ
kj

(|K1/2 ∩ {u ≤ kj }| − |K1/2 ∩ {u ≤ kj+1}|
)1− 1

p .

Simplify the kj ’s, raise both sides to the power p/(p − 1) and sum over j =
0, . . . , n − 1. Since |K1/2 ∩ {u ≤ kj }| is decreasing and |K1/2 ∩ {u ≤ kj }| −
|K1/2 ∩ {u ≤ kj+1}| telescopic, we obtain

n |K1/2 ∩ {u ≤ kn}|
p

p−1 ≤
n−1∑
j=0

|K1/2 ∩ {u ≤ kj+1}|
p

p−1

≤ C̄

μ
p

p−1

(|K1/2 ∩ {u ≤ k0}| − |K1/2 ∩ {u ≤ kn}|
) ≤ C̄

1− μ

μ
p

p−1
.

��
Lemma 5.3 (Critical Mass) Let u ≥ 0 be a supersolution in KR . There exists ν̄

such that

P(KR; u ≤ 1) ≤ ν̄ ⇒ u ≥ 1/2 in KR/2. (5.5)

Proof Scale back to R = 1 and define for n ≥ 1 kn = rn = 1/2+ 1/2n, Kn = Krn .
Let moreover

ηn ∈ C∞
c (Kn), 0 ≤ ηn ≤ 1, ηn|Kn+1

≡ 1, |Dηn| ≤ C̄ 2n



336 F. G. Düzgün et al.

and chain the Sobolev inequality with (5.3) with k = kn, η = ηn, to obtain

∫
|(u− kn)−ηn|p∗ dx ≤ C̄

(∫
|D(u− kn)−ηn|p dx

)p∗
p

≤ C̄

(∫
Kn

2np(u− kn)
p
− dx

)p∗
p

. (5.6)

On the right we use (u− kn)− ≤ kn and |Kn| ≤ 1 to bound
∫

Kn

(u− kn)
p
− dx ≤ k

p
n |Kn ∩ {u ≤ kn}| ≤ 2−np P (Kn; u ≤ kn)

while by ηn ≡ 1 on Kn+1 and Tchebicev’s inequality,
∫
|(u− kn)−ηn|p∗ dx ≥

∫
Kn+1

(u− kn)
p∗
− dx ≥

∫
Kn+1∩{u≤kn+1}

(u− kn)
p∗
− dx

≥ (kn − kn+1)
p∗ |Kn+1 ∩ {u ≤ kn+1}| ≥ 2−(n+1)p∗2−NP(Kn+1; u ≤ kn+1).

Use the previous two inequalities into (5.6) to get

P(Kn+1; u ≤ kn+1) ≤ C̄ 2np∗P(Kn; u ≤ kn)
p∗
p .

The claim now follows from (5.2) applied to the sequence Xn = P(Kn; u ≤ kn).
��

Lemma 5.4 (Measure-to-Point Estimate) Let u ≥ 0 be a supersolution in KR .
For any μ > 0 there exists m(μ) > 0 such that

P(KR/2; u ≥ k) ≥ μ ⇒ inf
KR/4

u ≥ m(μ) k. (5.7)

Proof Given μ > 0, choose nμ ≥ 1 in Lemma 5.2 such that β(μ)/n
1−1/p
μ ≤ ν̄,

so that P(KR/2; u ≥ k/2nμ) ≤ ν̄. Then apply (5.5) to u/k, obtaining (5.7) with
m(μ) = 2−nμ−1. ��
Theorem 5.5 (Hölder Regularity) Let u solve (5.1) in K2R. There exists C̄, ᾱ > 0
such that

osc(u;Kρ) ≤ C̄ osc(u;KR) (ρ/R)ᾱ for 0 ≤ ρ ≤ R/2. (5.8)

Proof Rescaling to R = 1 and considering u/osc(u;K1) we can suppose
osc(u,K1) = 1. Both u+ = u − infK1 u and u− = supK1

u − u are non-negative
solutions with osc(u±;K1) = 1. Since

P(K1; u+ ≥ 1/2) = P(K1; u− ≤ 1/2) = 1− P(K1; u− > 1/2),
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at least one of P(K1; u± ≥ 1/2) is at least 1/2 and we can suppose without loss of
generality that it is u+. Then (5.7) with R = 2, k = 1/2 provides

inf
K1/2

u+ ≥ m(1/2)/2 =: m̄ ⇒ inf
K1/2

u ≥ inf
K1

u+m̄ ⇒ osc(u;K1/2) ≤ 1−m̄.

Scaling back we obtained osc(u;KR/2) ≤ osc(u;KR)(1 − m̄) which, iterated for
Rn = R/2n gives

osc(u;KRn) ≤ osc(u;KR)(1− m̄)n.

For ρ ≤ R/2, let n ≥ 1 obey Rn+1 ≤ ρ ≤ Rn and ᾱ := − log2(1 − m̄). Then, by
monotonicity,

osc(u;Kρ) ≤ osc(u;KRn) ≤ osc(u;KR)(1− m̄)n = osc(u;KR)2−n ᾱ

= 2ᾱ osc(u;KR)(2−(n+1))ᾱ

giving the claim due to 2−(n+1) ≤ ρ/R. ��

Theorem 5.6 (Expansion of Positivity, See Fig. 3) Let u ≥ 0 be a supersolution
in KR . There exists λ̄ > 1 and, for any μ > 0, c(μ) > 0 such that

P(Kr ; u ≥ 1) ≥ μ ⇒ inf
Kρ

u ≥ c(μ) (r/ρ)λ̄ if r ≤ ρ ≤ R/2. (5.9)

Proof Using the notations of Lemma 5.4, we let c = c(μ) := m(μ/2N) and
iterate (5.7) as follows. From P(Kr ; u ≥ 1) ≥ μ we infer P(K2r ; u ≥ 1) ≥ μ/2N

thus (5.7) gives infKr u ≥ c. If δ̄ := m(4−N) and ρn = 2nr , we thus have
P(Kρ0 ; u ≥ c δ̄0) = 1. Moreover

P(Kρn ;u ≥ cδ̄n) = 1 ⇒ P(Kρn+2 ;u ≥ cδ̄n) ≥ 4−N ⇒
(5.7)

P(Kρn+1 ;u ≥ cδ̄n+1) = 1.

Fig. 3 The expansion of
positivity. If u ≥ 1 on the
dashed part of the cube, it is
bounded below by a negative
power of the distance from
the cube

x

u

1
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Thus, by induction, u ≥ c δ̄n in Kρn for all n ≥ 0 such that ρn+2 = 2n+2r ≤ R.
Given ρ ∈ [r, R/2] let n be such that 2n−1 ≤ ρ/r ≤ 2n. Then we obtained the claim
with λ̄ = − log2 δ̄, since

inf
Kρ

u ≥ inf
Kρn

u ≥ c δ̄n ≥ c δ̄ (ρ/r)log2 δ̄ .

��
We call the exponent λ̄ the expansion of positivity rate.

Theorem 5.7 (Harnack Inequality) There exists C̄ > 0 such that for any locally
bounded solution u ≥ 0 to (5.1) in K8R it holds

sup
KR

u ≤ C̄ inf
KR

u.

Proof Rescaling to R = 1 and considering u/ supK1
u we are reduced to prove that

sup
K1

u = 1 ⇒ inf
K1

u ≥ m̄ > 0 (5.10)

for any solution u ≥ 0 in K8. We will find m̄ > 0, x0 ∈ K1 and r > 0 such that

u(x0) rλ̄ ≥ m̄, P (Kr (x0); u ≥ u(x0)/2) ≥ ν̄ (5.11)

for λ̄ given (5.9) and some universal ν̄. Theorem 5.6 applied to u/u(x0) will then
prove (5.10) for such r , with the choices R = 8, k = u(x0)/2, μ = ν̄ and ρ = 2, as
K1 ⊆ K2(x0) ⊆ K4.

To choose x0 and r , observe that Theorem 5.5 implies that the function

[0, 1] � ρ �→ ψ(ρ) = (1− ρ)λ̄ sup
Kρ

u

is continuous and vanishes at ρ = 1, thus it attains its maximum at some ρ0 < 1
and we set

max[0,1] ψ = (1− ρ0)
λ sup

Kρ0

u = (1− ρ0)
λ u(x0)

for some x0 ∈ Kρ0 . Let ξ ∈ ]0, 1[ to be chosen and define r = ξ (1− ρ0). Then

u(x0) rλ̄ = ξ λ̄ u(x0) (1− ρ0)
λ̄ = ξ λ̄ ψ(ρ0) ≥ ξ λ̄ ψ(0) = ξ λ̄. (5.12)
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Since Kr(x0) ⊆ Kρ0+r , we infer from ψ(ρ0 + r) ≤ ψ(ρ0) that

sup
Kr(x0)

u ≤ sup
Kρ0+r

u = ψ(ρ0 + r)

(1− ρ0 − r)λ̄

≤ ψ(ρ0)

(1− ρ0 − r)λ̄
= (1− ρ0)

λ̄

(1− ρ0 − r)λ̄
sup
Kρ0

u = u(x0)

(1− ξ)λ̄
.

Choose ξ̄ as per (1 − ξ̄ )−λ̄ = 2, so that u ≤ 2 u(x0) in Kr(x0), while (5.12) gives
the first condition in (5.11) with m̄ = ξ̄ λ̄. Apply (5.8) for R = r , ρ = η̄r with η̄ s. t.
4C̄η̄ᾱ ≤ 1, so that

osc(u;Kη̄r(x0)) ≤ C̄ osc(u;Kr(x0)) η̄ᾱ ≤ 2 C̄ u(x0) η̄ᾱ ≤ u(x0)/2,

implying u ≥ u(x0)/2 in Kη̄r(x0). Thus, the second condition in (5.11) holds for
ν̄ = η̄N . ��

5.2 Homogeneous Parabolic Equations

In the forthcoming subsections we will provide the extension of the previous
techniques to the parabolic setting. In order to highlight the similarities with
the elliptic case, we will proceed step-by-step in increasing generality, gradually
introducing the modifications needed to cater with the evolutionary framework.

First we will deal with homogeneous equations, i.e. those for which scalar
multiplication still gives a solution of the same (from the structural point of view)
type of equation. We chose for simplicity to deal with the quadratic case, i.e., with
equations of the form

ut = divA(x, u,Du),

{
A(x, s, z) · z ≥ C0|z|2
|A(x, s, z)| ≤ C1|z|.

(5.13)

As in the previous subsection, we say that u is a (sub-) super-solution if there is
some A obeying the growth conditions and such that ut (≤) ≥ divA(x, u,Du). An
important feature of (5.13) is that the class of its solutions is invariant by space/time
translations, by the scaling uλ(x, t) = u(λx, λ2t), λ > 0 and, more substantially,
by scalar multiplication. More generally, homogeneous problems of the form

|ut |p−2ut = divA(x, u,Du),

{
A(x, s, z) · z ≥ C0|z|p
|A(x, s, z)| ≤ C1|z|p−1

can be dealt in the same way. In fact, as will be apparent from the proofs, in
this homogeneous setting the Harnack inequality follows solely from the energy
inequality. Indeed, in [40], it has been proved for non-negative functions belonging
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to the so-called parabolic De Giorgi classes i.e., roughly speaking, functions
obeying the energy inequality for truncations.

In the following, we set QR,T = KR × [0, T ]. Given a rectangle Q = K ×
[a, b] ⊆ R

N × R, u : Q → R and k ∈ R we define, respectively

P
(
Q; u � k

) =
∣∣Q ∩ {u � k

}∣∣
|Q| , Pt

(
K; u � k

) =
∣∣K ∩ {u(·, t) � k

}∣∣
|K| .

The dependence on N , C0 and C1 will always be omitted, and a constant c

depending only on the latters will be denoted by c̄. We also recall the relevant
functional analytic tools.

Proposition 5.8

1) Parabolic Sobolev Embedding: [31, Lemma II.4.1] If u ∈ L2(0, T ;W 1,2
0 (�)),

then

∫ T

0

∫
�

|u|2 N+2
N dx dt ≤ CN

(
sup

t∈[0,T ]

∫
�

u2(x, t) dx

) 2
N ∫ T

0

∫
�

|Du|2 dx dt.

2) Energy inequality: [31, Prop. III.2.1] Let u be a supersolution to (5.13) inQ =
K × [0, T ]. There exists C̄ > 0 s. t. for any k ≥ 0 and η ∈ C∞(a, b;C∞

c (K)),
0 ≤ η ≤ 1 it holds

sup
t∈[0,T ]

∫
K

(u(x, t)− k)2−η2 dx + 1

C̄

∫∫
Q

|D(η(u− k)−)|2 dx dt

≤
∫

K

(u(x, 0)− k)2−η2 dx + C̄

∫∫
Q

(u− k)2−|∇η|2 dx dt (5.14)

+ C̄

∫∫
Q

(u− k)2−|ηt | dx dt.

The first lemma shows how initial measure-theoretic positivity propagates at
future times.

Lemma 5.9 Let u ≥ 0 be a supersolution in QR,R2 . For any μ > 0 there are
k, θ ∈ ]0, 1[ such that

P0(KR; u ≥ 1) ≥ μ ⇒ Pt (KR; u ≥ k(μ)) > μ/2 ∀t ∈ [0, θ(μ)R2]. (5.15)

Proof Rescale to R = 1 and, for any δ, θ ∈ ]0, 1[, employ the energy inequal-
ity (5.14) on K1 × [0, θ ] with η ∈ C∞

c (K1) independent of t and such that

0 ≤ η ≤ 1, η|Kδ
≡ 1, |Dη| ≤ CN/(1− δ). (5.16)
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obtaining for any t ∈ [0, θ ]
∫

Kδ

(u(x, t)− 1)2− dx ≤
∫

K1

(u(x, 0)− 1)2− dx + C̄

(1− δ)2

∫ t

0

∫
K1

(u− 1)2− dx dt

≤ 1− μ+ C̄ θ

(1− δ)2 ,

where we used the assumption in (5.15) in the last inequality. For k ∈ ]0, 1[ we have

∫
Kδ

(u(x, t)− 1)2− dx ≥
∫

Kδ∩{u(·,t )<k}
(1− k)2 dx ≥ (1− k)2|Kδ ∩ {u(·, t) < k}|.

Insert the latter into the previous one to obtain, for all t ∈ [0, θ ]

1− Pt (K1; u ≥ k) ≤ 1− |Kδ ∩ {u(·, t) ≥ k}| = 1− δN + |Kδ ∩ {u(·, t) < k}|

≤ 1− δN + 1

(1− k)2

(
1− μ+ C̄ θ

(1− δ)2

)
. (5.17)

Successively choose δ, k ∈ ]0, 1[ and, consequently, θ ∈ ]0, 1[ so that:

1− δN = μ

8
,

1− μ

(1− k)2 = 1− 3

4
μ,

1

(1− k)2

C̄ θ

(1− δ)2 ≤
μ

8

to obtain that the right hand side in (5.17) is less than 1− μ/2, proving the claim.
��

The next two steps are fully in the spirit of the De Giorgi approach.

Lemma 5.10 (Shrinking Lemma) Suppose u ≥ 0 is a supersolution in Q2R,T

obeying

Pt (KR; u ≥ k) ≥ μ, ∀t ∈ [0, T ] (5.18)

for some μ ∈ ]0, 1[, k > 0. There exists β = β(μ) > 0 such that

P
(
QR,T ; u ≤ k/2n

) ≤ β(μ)
(

1+ R2

T

)1/2 1

n1/2 ,

Proof Let kj = k/2j , j ≥ 0. The inequality (5.14) with η ∈ C∞
c (K2R) such that

0 ≤ η ≤ 1, η|KR
≡ 1, |Dη| ≤ CN/R (5.19)
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gives

∫∫
QR,T

|D(u− kj )−|2dxdt ≤ C̄

∫
K2R

(u(x, 0)− kj )
2−dx + C̄

R2

∫∫
Q2R,T

(u− kj )
2−dxdt

≤ C̄ k2
j RN (1+ T/R2). (5.20)

For any t ∈ [0, T ], apply the De Giorgi-Poincaré inequality and (5.18) to obtain

(kj − kj+1)|KR ∩ {u(·, t) ≤ kj+1}|

≤ CN RN+1

|KR ∩ {u(·, t) < kj }|
∫

KR∩{kj+1≤u(·,t )}
|D(u(x, t) − kj )−| dx

≤
(5.18)

CN R

μ

∫
KR∩{kj+1≤u(·,t )}

|D(u(x, t)− kj )−| dx

Integrate over [0, T ], divide by |QR,T | and use Hölder’s inequality to get

kj

2
P(QR,T ; u ≤ kj+1) ≤ CN R

μ |QR,T |
∫∫

QR,T ∩{kj+1≤u}
|D(u− kj )−| dx dt

≤ R

μ

(
C2

N

|QR,T |
∫∫

QR,T ∩{kj+1≤u}
|D(u− kj )−|2dxdt

)1
2 |QR,T ∩ {kj+1≤u≤ kj }| 1

2

|QR,T | 1
2

≤
(5.20)

C̄ R

μ
kj

1

T
1
2

(
1+ T

R2

) 1
2 (

P(QR,T ; u ≤ kj )− P(QR,T ; u ≤ kj+1)
) 1

2 ,

The latter reads

P 2(QR,T ; u ≤ kj+1) ≤ C(μ)
(
1+R2

T

) (
P(QR,T ; u ≤ kj )− P(QR,T ; u ≤ kj+1)

)
,

which, being the right hand side telescopic, can be summed over j ≤ n − 1 to get
the claim:

n
(
P(QR,T ; u ≤ kn)

)2 ≤
n−1∑
j=0

(
P(QR,T ; u ≤ kn)

)2 ≤ C(μ) (1+ R2/T ).

��
Lemma 5.11 (Critical Mass) For any θ > 0 there exists ν(θ) > 0 such that any
supersolution u ≥ 0 on QR,θR2 fulfills

P
(
QR,θR2 ; u ≤ k

) ≤ ν(θ) ⇒ u ≥ k/2 on KR/2 × [θ R2/8, θ R2].
(5.21)
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Proof Use homogeneity and scaling to reduce to R = 1, k = 1. Define for n ≥ 1

rn = 1

2
+ 1

2n
, kn = 1

2
+ 1

2n
, θn = θ

8
− θ

2n+3 ,

let Kn = Krn , Qn = Kn × [θn, θ ] and choose ηn ∈ C∞([θn, θ ];C∞
c (Kn)) s. t.

ηn(·, θn) ≡ 0, 0 ≤ ηn ≤ 1, ηn|Qn+1
≡ 1, |Dηn| ≤ CN 2n, |(ηn)t | ≤ CN

2n

θ
.

(5.22)

Inserting into the energy inequality (5.31) and noting that kn ≤ k, we get

sup
t∈[θn+1,θ]

∫
Kn+1

(u(x, t)− kn)
2− dx +

∫∫
Qn

|D(ηn(u− kn)−)|2 dx dt

≤ C̄ 22n(1+ θ−2)

∫∫
Qn

(u− kn)
2− dx dt ≤ C̄ 22n(1+ θ−2)k2

n|Qn ∩ {u ≤ kn}|.

By the parabolic Sobolev embedding

∫∫
Qn+2

(u− kn+1)
2 N+2

N− dx dt ≤
∫∫

Qn+1

((u− kn+1)−ηn+1)
2 N+2

N dx dt

≤ C

∫∫
Qn+1

|D ηn+1(u− kn+1)
2−|2dxdt

[
sup

t∈[θn+1,θ ]

∫
Kn+1

η2
n+1(x, t)(u(x, t)− kn+1)

2−dx

] 2
N

≤ C̄ 22n N+2
N (1+ θ−2)

N+2
N h

2 N+2
N

n |Qn ∩ {u ≤ kn}|N+2
N ,

while, being (u− kn+1)− ≥ kn+1 − kn+2 = kn/4 when u ≤ kn+2,

∫∫
Qn+1

(u− kn+1)
2 N+2

N− dx dt ≥ (kn/4)2 N+2
N |Qn+2 ∩ {u ≤ kn+2}|.

Chaining these latter two estimates and simplifying kn gives the iterative inequality

|Qn+2 ∩ {u ≤ kn+2}| ≤ C̄ bn
N(1+ θ−2)1+ 2

N |Qn ∩ {u ≤ kn}|1+ 2
N

and (5.2) for Xn := |Q2n ∩ {u ≤ k2n}| gives the claim. ��
Lemma 5.12 (Measure-to-Point Estimate) Let u ≥ 0 be a supersolution in
QR,R2 . For all μ ∈ ]0, 1[ there are c(μ) > 0 and θ(μ) ∈ ]0, 1[ such that

P0(Kρ; u ≥ h) ≥ μ ⇒ u ≥ c(μ) h in Kρ/2 × [θ(μ)ρ2/8, θ(μ)ρ2]. (5.23)
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Proof By homogeneity we can let h = 1. Let θ(·), k(·) be given in Lemma 5.9,
so that Pt (Kρ; u ≥ k) ≥ μ/2 for t ∈ [0, θ ρ2], θ = θ(μ) and k = k(μ). Apply
Lemma 5.10, choosing n = n(μ) such that

β(μ/2) (1+ θ(μ)−1)1/2 n−1/2 ≤ ν(θ),

(ν(·) given in (5.21)), to get P(Qρ,θρ2 ; u ≤ k 2−n) ≤ ν(θ). Then (5.21)
proves (5.23). ��
Theorem 5.13 (Hölder Regularity) Any locally bounded solution of (5.13) is
locally Hölder continuous, with Hölder exponent depending only on N , C0, C1.

Proof By translation and scaling it suffices to prove an oscillation decay on the
cubes Qn = K2−n × [−θ̄ 2−2n, 0] with θ̄ = θ(1/2) given in (5.23). Suppose
osc(u,Q0) = 1. Then, one of

P−θ̄

(
K1; sup

Q0

u− u ≥ 1/2
) ≥ 1/2, or P−θ̄

(
K1; u− inf

Q0
u ≥ 1/2

) ≥ 1/2

holds. If it is the first one, apply (5.23) to supQ0
u− u ≥ 0 translated in time to get

supQ0
u− u ≥ m(1/2)/2 =: m̄ in Q1, i.e. supQ1

u ≤ supQ0
u− m̄. Therefore

osc(u,Q1) ≤ sup
Q1

u− inf
Q0

u ≤ sup
Q0

u− inf
Q0

u = 1− m̄.

The same holds in the other case and by homogeneity we have osc(u;Q1) ≤ (1 −
m̄)osc(u,Q0). By scaling and induction, osc(u,Qn) ≤ osc(u,Q0)(1−m̄)n. Finally,
for (x, t) ∈ Q1 let n ≥ 1 such that

2−n−1 ≤ max{|x|, (|t|/θ̄)1/2} ≤ 2n,

so that we have (x, t) ∈ Qn and, for ᾱ = − log2(1− m̄),

|u(x, t)− u(0, 0)| ≤ osc(u,Qn) ≤ osc(u,Q0)

1− m̄
(1− m̄)n+1

≤ osc(u,Q0)

1− m̄
max

{
|x|, (|t|/θ̄)1/2

}ᾱ

.

��

Lemma 5.14 (Expansion of Positivity, See Fig. 4) Let u ≥ 0 be a supersolution
in QR,R2 . There exists λ̄ > 1, γ̄ ∈ ]0, 1/4[ and, for any μ > 0 a constant c(μ) > 0,
such that

P0(Kr ; u ≥ 1) ≥ μ ⇒ inf
Kρ

u(·, γ̄ ρ2) ≥ c(μ) (r/ρ)λ̄ ∀ρ ∈ [r, R/8].
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Fig. 4 The parabolic
expansion of positivity. If at
time t = 0 u ≥ 1 on the
dotted part of given measure,
after a waiting time γ̄ , u is
pointwise bounded from
below in the paraboloid by a
large negative power of t

t

x

γ̄

Proof First expand (5.23) in space observing that P0(Kρ; u ≥ h) ≥ μ implies
P0(K4ρ; u ≥ h) ≥ μ 4−N , so that by changing the constants θ(μ) and c(μ), we get

P0(Kρ; u ≥ h) ≥ μ ⇒ u ≥ c(μ) h in K2ρ × [θ(μ)ρ2/8, θ(μ)ρ2]. (5.24)

Let c̄ = c(1), θ̄ = θ(1), ρn = 2n r and define recursively the sequences

t0 = θ(μ)r2/8, tn+1 = tn + θ̄ρ2
n+1/8, s0 = θ(μ)r2, sn = tn−1 + θ̄ρ2

n, n ≥ 1.

Letting furthermore Qn = Kρn+1 × [tn, sn], apply recursively (5.24) as

P0(Kr ; u ≥ 1) ≥ μ ⇒ P(Q0; u ≥ c(μ)) = 1 ⇒ P(Q1; u ≥ c(μ)c̄) = 1 . . .

to get by induction P(Qn; u ≥ c(μ) c̄n) = 1 for all n ≥ 1. It is easily checked that
sn > tn+1 for n ≥ 1, hence

inf
Kρn+1

u(·, t) ≥ c(μ) c̄n tn ≤ t ≤ tn+1, n ≥ 1.

Notice that we can suppose that θ(μ) ≤ θ̄ ≤ 1/16, so that it holds θ̄ ρ2
n−1 ≤ tn ≤

θ̄ ρ2
n for n ≥ 1 and a monotonicity argument gives

inf
Kρn

u(·, t) ≥ c(μ) c̄n+2 θ̄ ρ2
n ≤ t ≤ θ̄ ρ2

n+1, n ≥ 0.
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For ρ ≥ r , let n be such that ρn ≤ ρ ≤ ρn+1, hence θ̄ ρ2
n+1 ≤ 4 θ̄ ρ2 ≤ θ̄ ρ2

n+2.
Then the lemma is proved for λ̄ = − log2 c̄, and γ̄ = 4 θ̄ , since

inf
Kρ

u(·, 4 θ̄ ρ2) ≥ inf
Kρn+1

u(·, 4 θ̄ ρ2) ≥ c(μ) c̄n+3≥c(μ) c̄3 (r/ρn)λ̄≥c(μ) c̄3 (r/ρ)λ̄.

��
Theorem 5.15 (Harnack Inequality) Let u ≥ 0 be a locally bounded solu-
tion of (5.13) in K2R × [−(2R)2, (2R)2]. There exists C̄ such that u(0, 0) ≤
C̄ infKR u(·, R2).

Proof By homogeneity, scaling and a Harnack chain argument it suffices to prove

u(0, 0) = 1 ⇒ inf
K1

u(·, 1) ≥ c̄ > 0 (5.25)

for any solution u of (5.13), nonnegative in KL̄×[−L̄2, L̄2] for L̄ to be chosen. Let

ψ(ρ) = (1− ρ)λ̄ sup
Q−

ρ

u, Q−
ρ := Kρ × [−ρ2, 0], ρ ∈ [0, 1]

where λ̄ is given in Lemma 5.14. By continuity, we can choose ρ0 ∈ [0, 1], (x0, t0) ∈
Q−

ρ0
such that

max[0,1] ψ(ρ) = (1− ρ0)
λ̄u0 u0 := u(x0, t0).

For ξ ∈ ]0, 1[ to be determined let r = ξ (1−ρ0), so that, being ψ(0) = u(0, 0) = 1,

u0 rλ̄ = ξ λ̄ u0(1− ρ0)
λ̄ = ξ λ̄ ψ(ρ0) ≥ ξ λ̄ ψ(0) = ξ λ̄. (5.26)

If Q̃r = Kr(x0)× [t0 − r2, t0], it holds Q̃r ⊆ Q−
ρ0+r and being ρ0 maximum for ψ ,

sup
Q̃r

u ≤ sup
Q−

ρ0+r

u = ψ(ρ0 + r)

(1− ρ0 − r)λ̄
≤ (1− ρ0)

λ̄

(1− ρ0 − r)λ̄
u0 = (1− ξ)−λ̄ u0. (5.27)

Choose ξ̄ as per (1− ξ̄ )−λ̄ ≤ 2, so that u ≤ 2 u0 in Q̃r , and let θ̄ = θ(1/2) ∈ ]0, 1[
be given in (5.23). Since Kr(x0) × [t0 − θ̄ r2, t0] ⊆ Q̃r , the previous proof shows
that for all ρ ≤ r/2

osc(u(·, t0),Kρ(x0)) ≤ C̄ sup
Q̃r

u (r/ρ)ᾱ ≤ 2 C̄ u0 (r/ρ)ᾱ,
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and choosing ρ = η̄ r with C̄ η̄ᾱ ≤ 1/4 gives osc(u(·, t0),Kη̄r(x0)) ≤ u0/2.
The latter ensures Pt0(Kr(x0); u ≥ u0/2) ≥ η̄N and the expansion of positivity
Lemma 5.14 for 2 u/u0 implies

inf
Kρ(x0)

u(·, t0 + γ̄ ρ2) ≥ c(η̄N)
u0

2

rλ̄

ρλ̄
≥

(5.26)

c(η̄N)ξ̄ λ̄

2ρλ̄
, r ≤ ρ ≤ L̄/8. (5.28)

Solve t0 + γ̄ ρ = 1 in ρ: from γ̄ ≤ 1/4 and t0 ∈ [−1, 0] we infer 2 ≤ ρ ≤ 2/γ̄ .
Therefore Kρ(x0) ⊇ K1 and we can let L̄/8 := 2/γ̄ in (5.28), giving (5.25) and
completing the proof. ��

5.3 Inhomogeneous Parabolic Equations

In the last subsection, we heavily took advantage of the homogeneous structure of
the equation. The situation is quite different for inhomogeneous equations whose
model is

ut = divA(x, u,Du),

{
A(x, s, z) · z ≥ C0|z|p
|A(x, s, z)| ≤ C1|z|p−1

(5.29)

for p 	= 2, as it is no longer true that λu is a solution of a similar equation for
λ 	= 1. The translation invariance still holds, and the scale invariance says that if
u solves (5.29) then uλ(x, t) = u(λx, λpt) is a solution (in the usual sense that
there exists an A obeying the growth condition such that u solves the corresponding
equation). More generally, given R, T > 0 and a (sub-) super-solution of (5.29),

uR,T (x, t) = R
p

2−p T
1

p−2 u(R x, T t) (5.30)

is still a (sub-) super-solution (in the structural sense) an equation of the kind (5.29).
This shows that statements for λu can be derived from those for u by scaling the
space-time variables conveniently (actually, with one degree of freedom).

It is worth noting that, in the inhomogeneous setting, it is not known wether
the energy inequality alone suffices to prove the Harnack inequality. In our proof,
we will indeed use a clever change of variable introduced in [29], which crucially
relies on the equation. Moreover, as extensively discussed in the previous chapter,
the degenerate (p > 2) and singular (p < 2) cases require different treatments.
We thus first derive some common tools in this subsection, and discuss in details
the two families of equations in the following ones. The notation will be the
same as in the previous one, with the additional dependence on p omitted in
constants.
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Proposition 5.16

1) Parabolic Sobolev Embedding: If u ∈ Lp(0, T ;W 1,p

0 (�)), and p∗ = p(1 +
2/N), then

∫ T

0

∫
�

|u|p∗ dx dt ≤ C(N)

(
sup

t∈[0,T ]

∫
�

u2(x, t) dx

) p
N ∫ T

0

∫
�

|Du|p dx dt.

2) Energy inequality: [31, Prop. III.2.1] Let v be a supersolution to (5.29) in QT

under condition (4.5). There exists C = C(C0, C1) > 0 s. t. for any k ≥ 0 and
η ∈ C∞(0, T ;C∞

c (K)), 0 ≤ η ≤ 1 it holds

sup
t∈[0,T ]

∫
K

(v(x, t)− k)2−ηp dx + 1

C

∫∫
QT

|D(η(v − k)−)|p dx dt

≤
∫

K

(v(x, 0)− k)2−ηp dx + C

∫∫
QT

(v − k)
p
−|Dη|p dx dt

+ C

∫∫
QT

(v − k)2−|ηt | dx dt.

(5.31)

We start by sketching the proof of the relevant critical mass lemma.

Lemma 5.17 (Critical Mass) Let v ≥ 0 be a supersolution of (5.29) on QR,T for
p 	= 2 and let h ≥ 0. There exists ν > 0 s.t.

P
(
QR,T ; v ≤ h

) ≤ ν(hR
p

2−p T
1

p−2 ) ⇒ v ≥ h

2
on KR

2
× [T

2
, T
]
. (5.32)

Proof Consider the supersolution vR,T (x, t) = R
p

2−p T
1

p−2 v(R x, T t): as (5.32) is
invariant by this transformation, it suffices to prove it for R = T = 1. Define

rn = 1

2
+ 1

2n
, hn = h

2
+ h

2n
, tn = 1

2
− 1

2n+1

Kn = Krn, Qn = Kn × [tn, 1], An = Qn ∩ {v ≤ hn}.

Fix ηn as per (5.22) with θ = 4. Inserting into (5.31) and noting that hn ≤ h, we get

sup
t∈[tn+1,1]

∫
Kn+1

(v(x, t)− hn)
2− dx +

∫∫
Qn

|D(ηn(v − hn)−)|p dx dt

≤ C̄ 2np

∫∫
Qn

(v − hn)
p
− dx dt + C̄ 2n

∫∫
Qn

(v − hn)
2− dx dt

≤ C̄(hp + h2) 2np |An|.
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Use hn+1−hn+2 = h/2n+3, Tchebicev and the parabolic Sobolev embedding to get

hp∗ |An+2|
2p∗(n+3)

≤
∫∫

An+2

(v − hn+1)
p∗
− dxdt ≤

∫∫
Qn+1

((v − hn+1)−ηn+1)
p∗ dxdt

≤ C̄

∫∫
Qn+1

|D(ηn+1(v − hn+1)
2−)|pdxdt

[
sup

t∈[tn+1,1]

∫
Kn+1

(v(x, t) − hn+1)
2−dx

] p
N

≤ C̄ b̄n (hp + h2)1+ p
N |An+1||An| p

N ≤ C̄ b̄n (hp + h2)1+ p
N |An|1+ p

N .

This amounts to |An+2| ≤ b̄n C̄(h)|An|1+ p
N and (5.2) for Xn = |A2n| gives the

conclusion. ��
Lemma 5.18 Let v ≥ 0 be a supersolution in QR,T of (5.29). There exists σ̄ s. t.

inf
KR

v(x, 0) ≥ h ⇒ v ≥ h/2 on KR/2 ×
[
0, min{σ̄ Rp h2−p, T }].

Proof Consider the supersolution ṽ(x, t) = R
p

2−p v(Rx, t) to reduce to the case

R = 1, ṽ(·, 0) ≥ h̃ = hR
p

2−p on K1. Proceed as in the previous proof with tn ≡ 0,
ηn independent of t and Qn = Krn × [0, T ]. Since ṽ(·, 0) ≥ h̃n and (ηn)t ≡ 0, the
first and third term on the right of (5.31) vanish, giving

sup
t∈[0,T ]

∫
Kn+1

(ṽ(x, t)− h̃n)
2− dx +

∫∫
Qn

|D(ηn(ṽ − h̃n)−)|p dx dt ≤ C̄ 2nphp |An|.

where An = Qn ∩ {ṽ ≤ h̃n}. As before, we get the iterative inequality

h̃p∗/2p∗(n+3)|An+2| ≤ C̄ b̄n hp
N+p

N |An|1+
p
N

which, recalling that p∗ = p(N + 2)/N and enlarging b̄, reads

|An+2| ≤ C̄ b̄n h̃
p
N

(p−2)|An|1+
p
N .

Since |A0| ≤ T , (5.2) ensures the existence of σ̄ such that

T ≤ σ̄ h̃2−p ⇒ lim
n
|A2n| = 0 ⇒ inf

Q1/2,T

ṽ ≥ h̃/2 ⇔ inf
QR/2,T

v ≥ h/2.

��
We conclude this section with a useful tool to prove Hölder continuity of

solutions.
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Lemma 5.19 Suppose there exist T̄ > 0 and m̄, θ̄ ∈ ]0, 1[, depending only on the
data, such that any solution u of (5.29) with p 	= 2 in Q2,T̄ fulfills

P0(K1; u ≥ 1/2) ≥ 1/2 ⇒ u ≥ m̄ on K1/4 × [(1− θ̄ )T̄ , T̄ ]. (5.33)

There exists C̄, ᾱ depending on m̄ and θ̄ such that any solution with ‖u‖L∞(Q2,T̄ ) ≤
1 obeys

osc(u,Kr × [T̄ (1− rp), T̄ ]) ≤ C̄ rᾱ, 0 ≤ r ≤ 1. (5.34)

Proof Fix δ ∈ ]0, 1/4], θ ∈ ]0, θ̄] so that θ
1

2−p δ
p

p−2 = γ := (1 + m̄)−1 < 1. We
claim by induction

osc(u,Qn) ≤ (1+ m̄)γ n, ∀n ≥ 0, where Qn := Kδn × [T̄ (1− θn), T̄ ].
(5.35)

Since ‖u‖L∞(Q2,T̄ ) ≤ 1, (5.35) holds true for n = 0, so suppose by contradiction
that

osc(u,Qn) ≤ (1+ m̄) γ n & osc(u,Qn+1) > (1+ m̄) γ n+1 (5.36)

for some n ≥ 1. Being osc(u,Qn) ≥ osc(u,Qn+1) we infer

osc(u,Qn) > (1+ m̄) γ n+1. (5.37)

By scaling and translation invariance, the function v(x, t) = γ−nu
(
δnx, (t−T̄ )θn+

T̄
)

solves in Q0 an equation of the type (5.29) and, recalling that γ = 1/(m̄ + 1),
we have

osc(v,Q0) = γ−nosc(u,Qn) >
(5.37)

(1+ m̄) γ = 1.

We infer from the latter that the assumption in (5.33) holds for at least one of the
nonnegative supersolutions v+ := v − infQ0 v or v− = supQ0

v − v: indeed, for
example, P0(K1; v+ ≥ 1/2) < 1/2 is equivalent to P0(K1; v+ < 1/2) ≥ 1/2 and
then osc(v,Q0) ≥ 1 ensures

P0(K1; v− ≥ 1/2) ≥ P0(K1; v− > osc(v,Q0)− 1/2)=P0(K1; v+ < 1/2)≥1/2.

Suppose, without loss of generality, that P0(K1; v+ ≥ 1/2) ≥ 1/2: then, since
θ ≤ θ̄ and δ ≤ 1/4, (5.33) implies infQ1 v+ ≥ m̄ and thus

osc(v,Q1) = osc(v+,Q1) ≤ osc(v+,Q0)− m̄ = osc(v,Q0)− m̄.
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Scaling back to u and using the relations in (5.36), we obtained the contradiction

(1+ m̄) γ < γ−nosc(u,Qn+1) = osc(v,Q1) ≤ osc(v,Q0)− m̄

= γ−nosc(u,Qn)− m̄ ≤ 1+ m̄− m̄.

To prove (5.34) let η = δ min{1, γ
p−2
p } and suppose ηn+1 ≤ r ≤ ηn for some n.

Then, using θ
1

2−p δ
p

p−2 = γ , we infer Kr × [T̄ (1− rp)] ⊆ Qn. Letting ᾱ = logη γ

and using (5.35) we have

osc(u,Kr × [T̄ (1− rp), T̄ ]) ≤ γ n = γ−1 (ηn+1)ᾱ ≤ γ−1 rᾱ.

��

5.4 Degenerate Parabolic Equations

This subsection is devoted to the case p > 2 of (5.29). Compared to the
homogeneous case p = 2, the most delicate part is the proof of the measure-to-
point estimate, Lemma 5.22 below.

Lemma 5.20 Assume that u ≥ 0 is a supersolution in Q1,T of (5.29) with p > 2.
For any μ > 0 there exists k(μ) ∈ ]0, 1[ such that

P0(K1; u ≥ 1) ≥ μ ⇒ Pt

(
K1; u ≥ k(μ)

(t + 1)
1

p−2

)
>

μ

2
∀t ∈ [0, T ] (5.38)

Proof For any k, δ ∈ ]0, 1[, we employ (5.31) with η as in (5.16), obtaining for
t ∈ [0, T ]
∫

Kδ

(u(x, t)− k)2− dx ≤
∫

K1

(u(x, 0)− k)2− dx + C̄

(1− δ)p

∫∫
Q1,t

(u− k)
p
− dx dt

≤ k2(1− μ)+ C̄ kp t

(1− δ)p
.

For ε ∈ ]0, 1[ we have

∫
Kδ

(u(x, t)−k)2− dx ≥
∫

Kδ∩{u(·,t )<εk}
(k−εk)2 dx ≥ k2(1−ε)2|Kδ∩{u(·, t) < εk}|
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which, inserted into the previous estimate and dividing by k2(1− ε)2 gives

|Kδ ∩ {u(·, t) < εk}| ≤ 1

(1− ε)2

(
1− μ+ C̄ kp−2 t

(1− δ)p

)
. (5.39)

Therefore

1− Pt(K1; u ≥ εk) ≤ 1− |Kδ ∩ {u(·, t) ≥ εk}| = 1 − δN + |Kδ ∩ {u(·, t) < εk}|

≤ 1− δN + 1

(1− ε)2

(
1− μ+ C̄ kp−2 (t + 1)

(1− δ)p

)
.

Choose δ, ε ∈ ]0, 1[ and, for each t ∈ [0, T ], kt ∈ ]0, 1[ such that

1− δN = μ

8
,

1− μ

(1− ε)2 = 1− 3

4
μ,

C̄ k
p−2
t (t + 1)

(1− ε)2(1− δ)p
= μ

8
.

Clearly it holds δ = δ(μ), ε = ε(μ) and therefore kt = k(μ)/(t+1)
1

p−2 . With these
choices we have 1− Pt (K1; u ≥ εkt ) ≤ 1− μ/2, proving the claim. ��

The previous Lemma suggests to consider the function (t + 1)
1

p−2 u(x, t), which
is a supersolution to an equation similar to (5.29), but with structural constants
depending on t (and degenerating for large times). In order to keep the structural
conditions independent of t , it turns out that the change of time variable t + 1 = eτ

suffices, so that we consider instead

v(x, eτ ) = e
τ

p−2 u(x, eτ − 1). (5.40)

A straightforward calculation shows that v is a solution on Q1,log(T+1) of

vt = divÃ(x, v,Dv) + v/(p − 2)

with Ã(x, s, z) := e
τ

p−2 A
(
x, se

−τ
p−2 , ze

−τ
p−2

)
obeying the structural conditions

in (5.29). In particular, if u ≥ 0, v belongs to the class of nonnegative supersolution
of (5.29).

Lemma 5.21 (Shrinking Lemma) Suppose v ≥ 0 is a supersolution in Q2,S

of (5.29) for p ≥ 2 such that

Pt (K1; v ≥ k) ≥ μ ∀t ∈ [0, S] (5.41)
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for some μ > 0, k ≥ 0. There exists β = β(μ) such that

P

(
K1 × [0,

(
2n

k

)p−2

]; v ≤ k

2n

)
≤ β(μ)

n
1− 1

p

, if

(
2n

k

)p−2

≤ S (5.42)

Proof The proof is very similar to the one of Lemma 5.10 and we only sketch it.
Suppose n ≥ 1 satisfies 2n(p−2) ≤ S kp−2 and let kj = k/2j for j = 0, . . . , n. Let
Q := Q1,S and use (5.31) with η as in (5.19) with R = 1, to get

∫∫
Q

|D(v − kj )−|p dx dt ≤ C̄

∫
K2

(v(x, 0)−kj )
2− dx+C̄

∫∫
Q2,S

(v − kj )
p
− dx dt

≤ C̄(k2
j + Sk

p
j ).

For any t ∈ [0, S] apply the De Giorgi-Poincaré inequality and (5.41) to obtain

(kj − kj+1)Pt (K1; v(·, t) ≤ kj+1) ≤ C̄

μ

∫
K1∩{kj+1≤v(·,t )}

|D(v(x, t) − kj )−| dx.

Integrate over [0, S], use Hölder’s inequality and the energy estimate to get for j =
0, . . . , n− 1

kj

2
P(Q; v ≤ kj+1) ≤ C̄

μ

(
k2
j

S
+ k

p

j

) 1
p (

P(Q; v ≤ kj )− P(Q; v ≤ kj+1)
)1− 1

p .

(5.43)

As j ≤ n, it holds 2j (p−2) ≤ S kp−2 as well, implying k2
j /S ≤ k

p
j . Thus we can

simplify all the factors involving kj above, giving for all j ≤ n− 1

(
P(Q; v ≤ kj+1

) p
p−1 ≤ C̄ μ

p
1−p

(
P(Q; v ≤ kj )− P(Q; v ≤ kj+1)

)
.

which, summed over j ≤ n− 1 gives (5.42) by the usual telescopic argument. ��
Lemma 5.22 (Measure-to-Point Estimate) For any μ ∈ ]0, 1[ there exists
m(μ) ∈ ]0, 1[, T (μ) > 1 such that any supersolution u ≥ 0 in Q2,T (μ) fulfills

P0(K1; u ≥ 1) ≥ μ ⇒ u ≥ m(μ) in K1/2 × [T (μ)/2, T (μ)]. (5.44)

Proof Let T to be determined and suppose u ≥ 0 is a supersolution in Q1,T . By
Lemma 5.20,

Pt (K1; (t + 1)
1

p−2 u ≥ k(μ)) ≥ μ/2, ∀t ∈ [0, T ].
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If v is defined as per (5.40), the previous condition reads

Pτ (K1; v ≥ k(μ)) ≥ μ/2, ∀τ ∈ [0, S], S = log(T + 1) > 0

so that, being v ≥ 0 a supersolution, Lemma 5.21 implies

P(Q1,Sn; v ≤ S
1

2−p
n ) ≤ β(μ/2)/n

1− 1
p , for Sn := (2n/k(μ))p−2.

Next choose n = n(μ), (and thus S = S(μ) := Sn and T = T (μ) := eS−1) so that

β(μ/2)/n
1− 1

p ≤ ν(1), with ν given in (5.32). Lemma 5.17 applied on Q1,S with

h = S
1

2−p thus gives

v ≥ S
1

2−p /2 on K1/2 × [S/2, S].

Recalling the definition (5.40) of v, in terms of u the latter implies

u ≥ e
− T

p−2 log
1

2−p (T + 1)/2 on K1/2 ×
[√

T + 1− 1, T
]
⊇ K1/2 × [T/2, T ].

��
Theorem 5.23 (Hölder Regularity) Any L∞loc(�T ) solution u of (5.29) in �T for
p > 2 belongs to Cᾱ

loc(�T ), with ᾱ depending only on N , p, C0 and C1. Moreover,
there exist T̄ ≥ 1 and C̄ > 0 such that if Q−

R(T̄ ) := K2R × [−T̄ Rp, 0] ⊆ �T , for
any r ∈ [0, R] it holds

osc(u(·, 0),Kr) ≤ C̄ max
{

1, ‖u‖L∞(Q−
R(T̄ ))

} ( r

R

)ᾱ
. (5.45)

Proof Let T̄ = T (1/2) be given in the previous Lemma. By space/time translation,
it suffices to prove an oscillation decay near (0, 0), with Q−

r0
(T̄ ) ⊆ �T for some

r0 > 0. By (5.30), u(x r0, t r
p

0 ) (still denoted by u) solves (5.29) on Q−
1 (T̄ ). Let

M = ‖u‖L∞(Q−
1 (T̄ )): if M > 1 consider v(x, t) = M−1 u(x,M2−p t), which, being

p > 2, solves (5.29) on Q−
1 (T̄ ) and ‖v‖L∞(Q−

1 (T̄ )) ≤ 1. Applying Lemma 5.19 to

v(·, T̄ + t) (notice that Q−
1 (T̄ ) translates to Q2,T̄ ) proves the Hölder continuity of

u, while (5.45) is obtained from (5.34) for v, scaling back to u. ��
The next lemma shows that the geometry of the expansion of positivity in the

degenerate setting is very similar to the nondegenerate case. Compared to Fig. 4, the
only difference is in the shape of the paraboloid which is thinner for larger p.
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Lemma 5.24 (Expansion of Positivity) There exists λ̄ > 0 and, for any μ > 0,
c(μ) ∈ ]0, 1[, γ (μ) ≥ 1, such that if u ≥ 0 is a supersolution to (5.29) in Q4R,T ,

P0(Kr; u ≥ k) ≥ μ ⇒ inf
Kρ

u
(·, γ (μ)

(k rλ̄

ρλ̄

)2−p
ρp
) ≥ c(μ)

k rλ̄

ρλ̄

whenever r ≤ ρ ≤ R and γ (μ)
(
k rλ̄/ρλ̄

)2−p
ρp ≤ T/c(μ).

Proof We first generalize (5.44) as follows: there exists θ(μ) > 0 such that for any
η ≥ 1, h > 0

P0(Kρ; u ≥ h) ≥ μ ⇒ u ≥ c(μ)
h

η
1

p−2

in K2ρ ×
[
θ(μ)

2

ρp

hp−2 , ηθ(μ)
ρp

hp−2

]
.

(5.46)

By considering v(x, t) = h−1u(ρ x, h2−p ρp t) and recalling (5.30), it suffices to
prove the claim for ρ = h = 1. By Lemma 5.20, (5.38) holds true, implying

Ps(K4; u ≥ k(μ)/(s + 1)
1

p−2 ) ≥ μ 4−N−1 where s is a parameter in [0, η − 1].
Rescale (5.44) considering

v(x, t) = ks(μ)−1 u(4 x, ks(μ)2−p 4p t), ks(μ) := k(μ)/(s + 1)
1

p−2

which fulfills Ps(K1; v ≥ 1) ≥ μ 4−N−1, to obtain, with the notations of (5.44)

v ≥ m(μ 4−N−1) in K1/2 ×
[
s + T (μ 4−N−1)/2, s + T (μ 4−N−1)

]
,

If c(μ) := k(μ) m(μ 4−N−1), using s ∈ [0, η − 1], the latter reads in terms of u

inf
K2

u(·, t) ≥ ks(μ) m(μ 4−N−1) ≥ c(μ) η
1

2−p if t ∈ Is for some s ∈ [0, η− 1]

Is :=
[
4p ks(μ)2−p (s + T (μ 4−N−1)/2), 4p ks(μ)2−p (s + T (μ 4−N−1))

]
.

Finally, let θ(μ) = 4p k(μ)2−pT (μ 4−N−1) and observe that ∪s∈[0,η−1]Is ⊇
[θ(μ)/2, η θ(μ)],2 proving (5.46). Notice that all the argument goes through as long
as it holds sups∈[0,η−1] Is = 4pk(μ)2−pη(η−1+T (μ 4−N−1)) ≤ T which, scaling
back, is ensured e.g. by η2 θ(μ) ρp h2−p ≤ T .

2Both a(s) = inf Is and b(s) = sup Is are continuous, hence ∪s∈[0,η−1]Is =
[

infs ∈ [0,η−1] a(s),

sups∈[0,η−1] b(s)
]
. Then observe that a(0) = θ(μ)/2 while b(η − 1) ≥ η θ(μ).
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To prove the lemma, again we can suppose k = 1, (otherwise consider v(x, t) =
k−1u(x, k2−p t)). Let, as per (5.46), θ̄ = θ(1) and c̄ = c(1), ρn = 2n r and define
recursively

t0 = θ(μ)

2
rp, tn+1 = tn + θ̄

2
(c(μ) c̄n)2−p ρ

p
n . (5.47)

Applying (5.46) with η = 1, we get

P0(Kr ; u ≥ 1) ≥ μ ⇒ Pt0(Kρ1 ; u ≥ c(μ)) = 1 ⇒ Pt1(Kρ2 ; u ≥ c(μ)c̄) = 1

and, proceeding by induction, we infer Ptn(Kρn+1; u ≥ c(μ) c̄n) = 1, for all n ≥
0. In particular Ptn(Kρn; u ≥ c(μ) c̄n) = 1, so we again use (5.46) for η to be
determined to obtain

u ≥ c(μ) c̄n+1 η
1

2−p in Kρn+1 × [tn+1, tn + η θ̄ (c(μ) c̄n)2−pρ
p
n ]. (5.48)

Choose η so that

tn + η θ̄ (c(μ) c̄n)2−pρ
p

n+1 = tn+2 ⇔ η = η̄ := (1+ c̄2−p 2p)/2.

For this choice (5.48) holds in the time interval [tn+1, tn+2] giving, by monotonicity,

inf
Kρn

u(·, t) ≥ c(μ) c̄n+m for all tn ≤ t ≤ tn+m, n,m ≥ 0

for a smaller c(μ). Let sn := c̄n(2−p)ρ
p
n ; computing tn we find tn �μ sn with

constants depending on μ, therefore, for sufficiently large m = m(μ) ∈ N, tn ≤
γ (μ) sn ≤ γ (μ) sn+1 ≤ tn+m and

inf
Kρn

u(·, t) ≥ c(μ) c̄n for all γ (μ) sn ≤ t ≤ γ (μ) sn+1, n ≥ 0.

The same argument as in the end of the proof of Lemma 5.14 gives the thesis. ��
Theorem 5.25 (Forward Harnack Inequality) Let u be a nonnegative solution
of (5.29) in K16R × [−T , T ]. Then there exists C̄ > θ̄ > 0 such that if
C̄ u(0, 0)2−p Rp ≤ T , then

u(0, 0) ≤ C̄ inf
KR

u(·, θ̄ u(0, 0)2−p Rp). (5.49)

Proof Thanks to (5.30), the function v(x, t) = u(0, 0)−1u(Rp x, u(0, 0)2−p Rp t)

solves (5.29) in K16 × [−T u(0, 0)p−2 R−p, T u(0, 0)p−2 R−p] and v(0, 0) = 1. It
then suffices to prove the existence of θ̄ ≥ 1, c̄ ∈ ]0, 1[ such that any solution u ≥ 0



Harnack Estimates 357

of (5.29) in K16 × [−2, θ̄/c̄] obeys

u(0, 0) = 1 ⇒ inf
K1

u(·, θ̄ ) ≥ c̄. (5.50)

As in Theorem 5.15, let Q−
ρ := Kρ × [−ρp, 0] and consider ψ(ρ) := (1 −

ρ)λ̄ supQ−
ρ

u for ρ ∈ [0, 1], where λ̄ is given in Lemma 5.24. Let by continuity

ρ0 ∈ [0, 1], (x0, t0) ∈ Q−
ρ0

such that

max[0,1] ψ(ρ) = (1− ρ0)
λ̄u0 u0 := u(x0, t0),

choose ξ̄ ∈ ]0, 1[ such that (1 − ξ̄ )−λ̄ = 2 and let r = ξ̄ (1 − ρ0). As in (5.26), it
holds u0 rλ̄ ≥ ξ λ̄. Let T̄ be given in Theorem 5.23 and let Q̃r := KT̄ −1/p r (x0) ×
[t0− rp, t0]. Since T̄ ≥ 1, it holds Q̃r ⊆ Q−

ρ0+r and we can deduce as in (5.27) that

supQ̃r
u ≤ (1− ξ̄ )−λ̄ u0. Then (5.45) ensures

osc(u(·, t0),Kρ(x0)) ≤ 2 C̄ u0 (ρ/r)ᾱ for ρ ≤ T̄ −1/pr.

Since u(x0, t0) = u0, we infer u(·, t0) ≥ u0/2 in Kη̄r(x0) for some η̄ > 0.

Therefore Pt0(Kr(x0); u ≥ u0/2) ≥ η̄N and being u0 rλ̄ ≥ ξ̄ λ̄, a fortiori it

holds Pt0(Kr(x0); u ≥ ξ̄ λ̄ r−λ̄/2) ≥ η̄N . Since K12(x0) ⊆ K16, Lemma 5.24

with k = ξ̄ λ̄ r−λ̄/2 gives for suitable γ̄ ≥ 1 > c̄ > 0

inf
Kρ(x0)

u
(·, t0 + γ̄ ξ̄ λ̄(2−p)ρp+λ̄(p−2)

)≥ c̄
ξ λ̄

ρλ̄
, r ≤ ρ≤ 3, γ̄ ξ λ̄(2−p)ρp+λ̄(p−2)≤ T

c̄
.

In (5.50) we let θ̄ := γ̄ 2p+λ̄(p−2) and choose ρ such that t0+γ̄ ξ λ̄(2−p)ρp+λ̄(p−2) =
θ̄ . From t0 ≤ 0 we get ρ ≥ 2 (and thus Kρ(x0) ⊇ K1) and from t0 ≥ −1 we infer

γ̄ ξ λ̄ρp+λ̄(p−2) ≤ 1+ γ̄ ξ λ̄(2−p)2p+λ̄(p−2) ≤ γ̄ ξ λ̄(2−p)(1+ 2p+λ̄(p−2)) ⇒ ρ ≤ 3.

Hence (by eventually lowering c̄), such ρ is admissible and its upper bound
proves (5.50). ��
Theorem 5.26 (Backward Harnack Inequality) Let u be a nonnegative solution
of (5.29) in K16R × [−T , T ]. Then there exists C̄′ > θ̄ ′ > 0 such that if
C̄′ u(0, 0)2−p Rp ≤ T , then

sup
KR

u(·,−θ̄ ′ u(0, 0)2−p Rp) ≤ C̄′ u(0, 0). (5.51)

Proof By the same scaling argument as before, we can reduce to the case R = 1,
u(0, 0) = 1. Let, for t ≥ 0, w(t) := u(0,−t) and apply (5.49) to u with (0,−t)
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instead of (0, 0) to get

u(0,−t + θ̄ w2−p(t) ρp) ≥ w(t)/C̄, 0 < ρ ≤ 1.

If w(t) ≤ 2 C̄ for some t ≤ θ̄/(2 C̄)p−2, we can choose ρ(t) > 0 such that ρ(t)p =
t wp−2(t)/θ̄ ≤ 1, obtaining u(0, 0) = u(0,−t + θ̄ w2−p(t) ρp(t)). Therefore we
proved

0 ≤ t ≤ θ̄/(̄2C)p−2 & w(t) ≤ 2 C̄ ⇒ w(t) ≤ C̄

which implies w(t) ≤ 2 C̄ for all 0 ≤ t ≤ θ̄/(̄2 C̄)p−2 by a continuity argument.
Letting θ̄ ′ = θ̄/(̄2 C̄)p−2, C̄′ = 2 C̄ we prove (5.51) by contradiction: from
u(0,−θ̄ ′) ≤ C̄ and supK1

u(·,−θ̄ ′) > 2 C̄, by continuity there exists x̄ ∈ K1

such that u(x̄,−θ̄ ′) = 2 C̄. Since 0 ∈ K1(x̄) and θ̄ (2 C̄)2−p = θ̄ ′, the Harnack
inequality (5.49) for u at the point (x̄,−θ ′) implies

1 = u(0, 0) ≥ inf
K1(x̄)

u(·,−θ̄ ′ + θ̄ (2 C̄)2−p) ≥ u(x̄,−θ̄ ′)/C̄ = 2.

��

5.5 Singular Parabolic Equations

We conclude with the Harnack inequality for solutions of parabolic singular
supercritical equations. The measure-to-point estimate will be treated through a
change of variable analogous to the degenerate case, but requires a little bit more
care. From this we’ll derive a Hölder continuity result for all bounded solutions
in the full range p ∈ ]1, 2[. As mentioned in the introduction of the section, the
proof of the Harnack inequality will rely on Theorem 5.32, which we state without
proof.

Lemma 5.27 Let u ≥ 0 be a supersolution in Q1,T of (5.29) with p ≤ 2. For any
μ > 0 there exists k(μ) ∈ ]0, 1[, T (μ) ∈ ]0, min{1, T }] such that

P0(K1; u ≥ 1) ≥ μ ⇒ Pt (K1; u ≥ k(μ)) > μ/2 ∀t ∈ [0, T (μ)].

Proof Proceed as in Lemma 5.20 to get (5.39) for k = 1, δ, ε,∈ ]0, 1[ and t ∈
[0, T ]. Thus

1− Pt (K1; u ≥ ε) ≤ 1− δN + 1

(1− ε)2

(
1− μ+ C̄ t

(1− δ)p

)
.



Harnack Estimates 359

Choose δ = δ(μ) and ε = ε(μ) as per 1 − δN = μ/8 and (1 − μ)/(1 − ε)2 =
1− 3μ/4, so that

Pt(K1; u ≥ ε(μ)) ≥ 5

8
μ− C(μ) t, for any t ∈ [0, T ].

Choosing T (μ) ≤ T such that C(μ) T (μ) ≤ μ/8 gives the claim. ��
Lemma 5.28 (Shrinking Lemma) Let v ≥ 0 be a supersolution in Q2,S of (5.29)
with p ∈ ]1, 2[ such that for some μ, k ∈ ]0, 1[

Pt (K1; v ≥ k) > μ ∀t ∈ [0, S].

Then there exists β = β(μ) > 0 such that for any n ≥ 1

P
(
Q1,S; v ≤ k/2n

) ≤ β(μ)
(

1+ k2−p/S
) 1

p−1
/n

1− 1
p .

Proof Proceed as in the proof of Lemma 5.21 up to (5.43) with Q = Q1,S . As j ≥ 1
and p < 2, it holds k

p
j + k2

j /S ≤ k
p
j (1+ k2−p/S), so that

P(Q; v≤ kj+1)
p

p−1 ≤ C̄μ
p

p−1

(
1+ k2−p

S

) 1
p−1 (

P(Q; v≤ kj )− P(Q; v≤ kj+1)
)
,

which yields the conclusion summing over j ≤ n− 1. ��
Lemma 5.29 (Measure-to-Point Estimate) Let u ≥ 0 be a supersolution of (5.29)
for p ∈ ]1, 2]. For any μ ∈ ]0, 1] there exists m(μ), T (μ) ∈ ]0, 1[ such that

P0(K1; u ≥ 1) ≥ μ ⇒ u ≥ m(μ) in K1/4 × [T (μ)/2, T (μ)]. (5.52)

Moreover, T (μ) can be chosen arbitrarily small by decreasing m(μ).

Proof Let T (μ), k(μ) be given in Lemma 5.27: clearly T (μ) can be chosen
arbitrarily small. Since p < 2, an explicit computation shows that for any fixed
T ∈ [T (μ)/2, T (μ)], the function

v(x, τ ) = e
τ

2−p u(x, T − e−τ ), x ∈ K1, τ ≥ − log T

is a supersolution to (5.29). The conclusion for u of Lemma 5.27 becomes for v

Pτ (K1; v ≥ e
τ

2−p k(μ)) ≥ μ/2, ∀τ ≥ − log T ,

and for s ≥ − log T to be chosen, the latter implies (thanks to p < 2)

Pτ (K1; v ≥ e
s

2−p k(μ)) ≥ μ/2, ∀τ ≥ s ≥ − log T . (5.53)
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For ν(μ) and β(μ) given in Lemmata 5.17 and 5.28, let n = n(μ) ≥ 1 be such that

β(μ) n
1
p
−1
(
k(μ)2−p + 1

) 1
p ≤ ν(k(μ)),

and for s ≥ − log T let Is = [es, 2es]. Due to (5.53), Lemma 5.28 applies to v on

K1 × Is for k = k(μ) e
s

2−p , giving, by the choice of n = n(μ),

P(K1 × Is; v ≤ k(μ) e
s

2−p /2n) ≤ ν(k(μ)). (5.54)

Subdivide Is in [2n(2−p)] + 1 disjoint intervals, each of length λ ∈ [es (2−n(2−p) −
1), es 2−n(2−p)]. On at least one of them, say J = [a, a + λ] ⊆ Is , (5.54) holds for
J instead of Is , thus a fortiori

P(K1 × J ; v ≤ k(μ) λ
1

2−p ) ≤ P(K1 × J ; v ≤ k(μ) e
s

2−p /2n) ≤ ν(k(μ)).

Apply (5.32) to v on K1 × J to obtain

v(x, τ ) ≥ k(μ)λ
1

2−p /2 ∀ τ ∈ [a + λ/2, a + λ] ⊆ Is, x ∈ K1/2.

Since λ ≥ es (2−n(2−p) − 1), in terms of u and s, the latter implies that for some
τs ∈ J ⊆ [es, 2es]

inf
K1/2

u(·, T − e−τs ) = e
− τs

2−p inf
K1/2

v(·, τs ) ≥ k(μ) e
s−τs
2−p

22n
=: c(μ) e

s−τs
2−p .

Apply Lemma 5.18 to u in K1/2 × [T − e−τs , T ] with h = c(μ) e
s−τs
2−p to get

inf
K1/4

u(·, t) ≥ c(μ)
e

s−τs
2−p

2
∀t ∈ [T − e−τs , T − e−τs +min{e−τs ,

σ̄

2p
c(μ)es−τs }].

(5.55)

Finally, let s̃ = s(μ) = max{− log(T (μ)/2),− log(σ̄ 2−p c(μ)}, so that it holds

s̃ ≥ − log T and σ̄ 2−p c(μ) es̃−τs̃ ≥ e−τs̃ .

Therefore (5.55) holds for t = T and from τs̃ ≤ 2es̃ we deduce a lower bound
on es̃−τs̃ depending only on μ, which proves (5.52) by the arbitrariness of T ∈
[T (μ)/2, T (μ)]. ��
Theorem 5.30 (Hölder Regularity) Any L∞loc(�T ) solution u of (5.29) in �T for
p ∈ ]1, 2[ belongs to Cᾱ

loc(�T ), with ᾱ depending only on the data. Moreover there
exists S̄, also depending on the data, with the following property: if S ≥ S̄ there
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exist C̄(S) > 0 such that

sup
K2R×[−k2−pRp,0]

u ≤ Sk ⇒ osc(u,Kr × [−k2−prp, 0]) ≤ C̄(S)k
( r

R

)ᾱ
, r ≤ R,

(5.56)

for any k,R > 0 for which K2 R × [−k2−p Rp, 0] ⊆ �T .

Proof Let T̄ = T (1/2) ∈ ]0, 1] given in the previous Lemma. By space-time
translations and rescaling we are reduced to prove Hölder continuity near (0, 0) with
Q̄ := K2 × [−T̄ , 0] ⊆ �T . If M := ‖u‖L∞(Q̄) > 1 consider M−1 u(M(p−2)/px, t)

which, being p ∈ ]1, 2[, solves (5.29) in Q̄ and fulfills ‖v‖L∞(Q̄) ≤ 1. Applying

Lemma 5.19 gives the first statement. To prove (5.56), suppose that S ≥ T̄
1

p−2 =: S̄,
rescale to R = 1, then let γ̄ (S) := Sp−2 T̄ −1 and consider

v(x, t) = (S k)−1u(ρ x, τ t) ρ = γ̄ (S)1/p, τ = k2−p T̄ −1.

Thanks to (5.30), it is readily verified that v solves (5.29) in Q̄ and by the assumption
in (5.56) it is bounded by 1. Applying (5.34) (notice that T̄ is the same) and rescaling
back gives (5.56) for all r ≤ γ̄ (S)1/pR and hence for all r ≤ R with eventually a
bigger constant. ��
Lemma 5.31 (Expansion of Positivity, See Fig. 5) There exists λ̄ > p/(2 − p)

and, for any μ > 0, c(μ), γ1(μ), γ2(μ) ∈ ]0, 1[ s. t. if u ≥ 0 is a supersolution in
Q8R,T

P0(Kr ; u ≥ k) ≥ μ ⇒

inf
Kρ

u
(·, k2−prp

(
γ1(μ)+ γ2(μ)

(
1−

(
r

ρ

)λ̄(2−p)−p ))) ≥ c(μ)
k rλ̄

ρλ̄
(5.57)

whenever r ≤ ρ ≤ R and k2−p rp (γ1(μ) + γ2(μ)(1 − (r/ρ)λ̄(2−p)−p)) ≤ T .
Moreover, the γi(μ) can be chosen arbitrarily small by lowering c(μ).

Proof The proof is very similar (and in fact simpler) to the one of Lemma 5.24 and
we only sketch it. First expand in space (5.52) through

P0(K1; u ≥ 1) ≥ μ ⇒ P0(K8; u ≥ 1) ≥ μ

8N
⇒ u ≥ c(μ) in K2×[θ(μ)

2
, θ(μ)],
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t

x

γ1

γ1 + γ2

Fig. 5 The expansion of positivity in the singular case. If at time t = 0, u ≥ 1 on the dotted part
of given measure, after a waiting time γ1, u is pointwise bounded from below in the shaded region
by a large power of (γ1 + γ2 − t)

where we have set, with the notations in (5.52), θ(μ) := T (μ/8N), c(μ) :=
m(μ/8N). Notice that, since p < 2, we can suppose that 2p c(1)2−p ≤ 1.
Through a scaling argument, we infer that for any supersolution u ≥ 0 in
K8ρ × [0, θ(μ) h2−p ρp] it holds

P0(Kρ; u ≥ h) ≥ μ ⇒ u ≥ c(μ)h in K2ρ ×
[θ(μ)

2
h2−pρp, θ(μ)h2−pρp

]
,

(5.58)

To prove (5.57), we can suppose that k = 1 by scaling and define

c(μ) := c(μ, 1/2), θ̄ := θ(1), c̄ := c(1) ≤ 2
p

p−2 , ρn = 2n r

and tn as per (5.47). Since by assumption P0(Kr ; u ≥ 1) ≥ μ, a first application
of (5.58) implies Pt0(Kr ; u ≥ c(μ)) = 1. Iterating (5.58) with μ = 1 we thus obtain

u ≥ c(μ) c̄n in Kρn ×
[
tn, tn + θ̄

2
(c(μ) c̄n−1)2−p ρ

p

n−1

]

for all n ≥ 1. From 2p c̄2−p ≤ 1 we infer tn + 2−1 θ̄ (c(μ) c̄n−1)2−p ρ
p
n−1 ≥ tn+1,

so that

u ≥ c(μ) c̄n in Kρn × [tn, tn+1], n ≥ 1.

Finally, an explicit calculation shows that for suitable γ1(μ), γ2(μ) > 0 it holds

tn = γ1(μ) rp+γ2(μ)
(
1−(2p c̄2−p)n

) = rp
(
γ1(μ)+γ2(μ)

(
1−(r/ρn)

λ̄(2−p)−p
))
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where λ̄ = − log2 c̄ > p/(2 − p). A monotonicity argument then gives the claim
for any ρ ≥ r . ��
Theorem 5.32 (Appendix A of [31]) Let u ≥ 0 solve (5.29) in K2R × [t − 2h, t]
for some p ∈ ]p∗, 2[. Then

sup
KR×[t−h,t ]

u ≤ c̄

h
N

N(p−2)+p

(
inf

s∈[t−2h,t ]

∫
K2R

u(x, s) dx

) p
N(p−2)+p + c̄

( h

Rp

) 1
2−p .

(5.59)

Theorem 5.33 (Harnack Inequality) Let p ∈ ]p∗, 2[. There exists constants C̄ ≥
1, θ̄ > 0 such that any solution u ≥ 0 of (5.29) in K8R×[−T , T ] obeying u(0, 0) >

0 and

4 Rp sup
K2R

u(·, 0)2−p ≤ T (5.60)

satisfies the following Harnack inequality

C̄−1 sup
KR

u(·, s)≤ u(0, 0)≤ C̄ inf
KR

u(·, t), −θ̄u(0, 0)2−pRp ≤ s, t ≤ θ̄u(0, 0)2−pRp.

(5.61)

Proof Consider the solution u(0, 0)−1 u(R x,Rp u(0, 0)2−p t) in K8 × [−T ′, T ′]
(still denoted by u) with T ′ = T R−p u(0, 0)p−2. This reduces us to u(0, 0) = 1,
R = 1, T ′ ≥ 4 and (5.60) implies

1 ≤ M2−p := sup
K1

u(·, 0)2−p ≤ T ′/4. (5.62)

We first prove the inf bound in (5.61). Let λ̄ ≥ p/(2 − p) be the expansion of
positivity exponent, define ψ(ρ) = (1−ρ)λ̄ supKρ

u(·, 0) for ρ ∈ [0, 1] and choose
ρ0, x0 ∈ Kρ0 such that

max[0,1] ψ = ψ(ρ0) = (1− ρ0)
λ̄ u0, u0 := u(x0, 0) ≥ 1.

As in the proof of Theorem 5.7, we can let ξ̄ ∈ [0, 1] obey (1 − ξ̄ )−λ̄ = 2 to find
for r = ξ̄ (1− ρ0)

u0 rλ̄ ≥ ξ̄ λ̄, sup
Kr(x0)

u(·, 0) ≤ (1− ξ̄ )−λ̄ u0 = 2 u0. (5.63)
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Let a := u
2−p

0 rp. By construction u0 ≤ M and by (5.62), u solves (5.29) in
Kr(x0) × [−4 a, 4 a]. Apply (5.59) for R = r/2, t = a, s = 0 and h = 2 a to
get

sup
K r

2
(x0)×[−a,a]

u ≤ c̄

a
N

N(p−2)+p

(∫
Kr(x0)

u(x, 0) dx

) p
N(p−2)+p + c̄ a

1
2−p r

p
p−2

≤ c̄
(2 u0 rN)

p
N(p−2)+p

(u
2−p

0 rp)
N

N(p−2)+p

+ c̄ u0 ≤ c̄ u0, (5.64)

where we used the second inequality in (5.63) to bound the integral. Since a =
u

2−p

0 rp, we can apply (5.56) with k = u0 in both Kr/2(x0)×[−a, 0] and Kr/2(x0)×
[0, a] to get

osc(u,Kρ(x0)× [−a, a]) ≤ c̄ u0 (ρ/r)ᾱ, ρ ≤ r/2.

As u(x0, 0) = u0 we infer that u ≥ u0/2 in Kη̄r(x0) × [−η̄p a, η̄p a] for suitable

η̄ ∈ ]0, 1/2[, so that Pt (Kr(x0); u ≥ u0/2) ≥ η̄N for all |t| ≤ η̄ u
2−p

0 rp. Apply the

expansion of positivity Lemma 5.31 at an arbitrary time t such that |t| ≤ η̄ u
2−p
0 rp,

choosing the γi(η̄
N ) so small that γ1(η̄

N )+ γ2(η̄
N ) < η̄/2. Its conclusion for k =

u0/2, ρ = 2 implies, thanks to K2(x0) ⊇ K1,

inf
K1

u(·, t + γru
2−p
0 rp) ≥ c̄u0r

λ̄, γr := γ1(η̄
N)+ γ2(η̄

N)
(
1−

( r

2

)λ̄(2−p)−p )
<

η̄

2

for all |t| ≤ η̄ u
2−p

0 rp. The latter readily gives u(x, t) ≥ c̄ u0 rλ̄ for x ∈ K1 and

|t| ≤ η̄ u
2−p

0 rp/2. Finally, observe that since r ≤ 1 and λ̄ ≥ p/(2 − p), it holds

u
2−p

0 rp ≥ (u0 rλ̄)2−p, so that the first inequality in (5.63) yields u(x, t) ≥ c̄ ξ̄ λ̄ =:
1/C̄ for x ∈ K1 and |t| ≤ η̄ ξ̄ λ̄(2−p)/2 =: θ̄ .

To prove the sup bound we proceed similarly. Indeed, let x∗ ∈ KR be such that
u(x∗, 0) = supKR

u. Notice that KR(x∗) ⊆ K2R , hence (5.60) still implies (5.62) for
the rescaled (and translated) function. Hence, the same proof as before carries over,
giving, after rescaling back, infKR u(·, 0) ≥ c u(x∗, 0). This implies supK1

u(·, 0) ≤
C u(0, 0) and we can proceed as in (5.64) for r = 2R, x0 = 0 and a = Rp supK2R

u

to get the final sup estimate. ��
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