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Preface

Brain disorders have increasing relevance to our societies due to the increasing
ageing of the world population and the extremely stressful lives we live in. The
aetiology of any brain disorder is usually very complex, and often several hypothe-
ses are needed to explain its pathogenesis. Most of the time, it is experimentally very
difficult to understand how the interactions of the various pathways and mechanisms
lead to the pathogenesis of a brain disorder and its symptoms. Equally difficult are
the various potential routes of cure by drug and electrostimulation therapies. This
is mainly because experimental studies are usually carried out to isolate the effects
of a single mechanism and do not investigate the interactions of many mechanisms.
This leads to a set of results that are conflicting, very difficult to interpret or not
integrated in a unified framework.

This limited efficiency of the current experimental methods against the brain
disorders has created increasing demands towards the development of other novel
therapeutic strategies. Mathematical and computational models have emerged as
invaluable tools in resolving such conflicts, because they provide coherent con-
ceptual frameworks for integrating many different spatial and temporal scales and
resolutions that allow for observing and experimenting with the neural system
as a whole. Computational modellers then have precise control of experimental
conditions needed for the replicability of experimental results. Because the process
takes place in a computer, the investigator can perform multiple virtual experiments
by preparing and manipulating the system in precisely repeatable ways and observe
every aspect of the system without interference.

This book provides a series of focused papers on computational models of brain
disorders combining multiple levels and types of computation with multiple types
of data in an effort to improve understanding, prediction and treatment of brain and
mental illness. The book is divided into four thematic areas: (1) movement disorders
(e.g. Parkinson’s disease), (2) cognitive disorders (e.g. schizophrenia, psychosis,
autism, depression), (3) memory disorders (e.g. Alzheimer’s disease) and (4) other
disorders (e.g. absence epilepsy, anaesthesia). In each thematic area, physiologists
and anatomists studying cortical circuits, cognitive neuroscientists studying brain
dynamics and behaviour via EEG and functional magnetic resonance imaging
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vi Preface

(fMRI) and computational neuroscientists using neural modelling techniques are
brought together to explore local and large-scale disordered brain dynamics.

This volume is an invaluable resource not only to computational neuroscientists
but also to experimental neuroscientists, clinicians, engineers, physicists, mathe-
maticians and all researchers interested in modelling brain disorders. Graduate-level
students and trainees in all these fields will find this book an insightful and readily
accessible source of information.

Finally, there are many people who I would like to thank for making this book
possible. This includes all contributing authors who did a great job. I would like to
also thank Paul Roos, my Springer senior editor, and members of the production
team, who were consistent source of help and support.

Lincoln, UK Vassilis Cutsuridis
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Part I
Movement Disorders



Chapter 1
A Neuro-computational Model of Pallidal
vs. Subthalamic Deep Brain Stimulation
Effect on Synchronization at Tremor
Frequency in Parkinson’s Disease

Alekhya Mandali, V. Srinivasa Chakravarthy, and Ahmed A. Moustafa

Abstract Parkinson’s disease is a neurodegenerative disorder, associated with
different motor symptoms including tremor, akinesia, bradykinesia, rigidity as well
as gait and speech impairments. Previously, we have presented a neurobiologically
detailed neuro-computational model simulating the basal ganglia functioning as
well as the effects of subthalamic deep brain stimulation on action section (Mandali
A, Chakravarthy VS, Rajan R, Sarma S, Kishore A, Front Physiol 7:585, 2016;
Mandali A, Rengaswamy M, Chakravarthy S, Moustafa AA, Front Neurosci 9:191,
2015). In the current study, we extend our prior model by including thalamic and
cortical neurons and compare the effect of subthalamic and pallidal stimulation on
tremor in terms of oscillations within STN and GPi and subsequently their effect
on the cortex. In agreement with existing experimental studies, our model shows
that subthalamic stimulation is more effective at reducing the tremor power than
the pallidal stimulation. Our model provides a mechanistic explanation for such
comparative results.

Keywords Parkinson’s disease · Deep brain stimulation · Izhikevich spiking
neuron · Tremor · Sub thalamic nucleus · Globus pallidus
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1.1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder associated with a set of
motor symptoms such as tremor, bradykinesia, rigidity and gait abnormalities [27].
Apart from motor abnormalities, PD patients also suffer from non-motor problems
such as autonomic dysfunction, impaired cognitive functioning and speech abnor-
malities [7, 8, 19]. Initially, pharmacological treatments with combination of drugs
such as levodopa (a precursor of DA), dopamine agonists (DAA) such as ropinirole
and pramipexole and MAO inhibitors [21] are prescribed. However, 50–80% of PD
patients develop dyskinesias within 2–5 years of L-DOPA treatment [1, 9, 11] or
show cognitive deficits such as impulsivity due to the administration of DAA [22,
25]. In conditions where the ‘ON time’ (patients on medication) is clinically not
effective or the patients show refractory PD symptoms, clinicians suggest a surgical
technique called deep brain stimulation (DBS). It involves implanting an electrode
in deep structures of the brain such as ventralis intermedius (Vim) of the thalamus,
globus pallidus internus (GPi) and subthalamic nucleus (STN) [4, 12, 24] among
which GPi and STN are a part of the basal ganglia. Among these targets, STN
and GPi stimulation are widely chosen as neural targets [3] due to their higher
therapeutic benefit.

We have conducted a literature review on the comparison between the STN
and GPi with respect to symptomatic relief, which has shown differential effects
on motor, cognitive and other domains (Table 1.1). For example, it has been
observed that the symptomatic relief from bradykinesia and rigidity through STN

Table 1.1 Studies comparing the effect of STN vs. GPi stimulation on various PD symptoms

S. no. Symptom The effect of stimulation

1 Resting tremor STN is superior to GPi [2]
2 Bradykinesia, rigidity

(responsive to dopaminergic
medication)

Bilateral STN stimulation improves bradykinesia
more than bilateral and unilateral GPi stimulation
[2, 26]

3 Gait and postural instability Bilateral GPi stimulation subjects showed
improvement in stand-walk-sit test and in gait [26]

4 Dystonia Both STN and GPi have equal advantage [6]
5 Reduction in medication Reduction in L-DOPA dosage by 38% for STN

stimulation [6]
6 On-off fluctuations GPi effect >STN effect [6]
7 Dyskinesias GPi stimulation has dyskinesia suppression up to

89% than 62% from STN stimulation [26]
8 Off-time motor symptom No suggestive advantage of any target stimulation

[26]
9 Cognition A higher decline in cognitive levels of subjects

with STN stimulation compared to GPi [26]
10 Long-term medication and

management
GPi stimulation was observed to have an
advantage in the flexibility of long-term
medication and management of the DBS lead [26]
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stimulation is higher than GPi, whereas relief from dyskinesias is better via GPi
stimulation compared to STN stimulation. On the cognitive front, the side effects
in terms of impulsivity due to STN stimulation were observed to be higher than
GPi. Irrespective of its wide clinical usage, the mechanism by which DBS is
effective is still unclear. It is in these scenarios that computational modelling comes
handy, where one can study the effect of stimulation at the level of neural activity,
symptoms and behaviour.

Earlier, we built a spiking network model of the basal ganglia to study the neural
activity and cognitive functioning (using decision-making tasks) of PD patients
with and without medication and stimulation. We focused on how STN stimulation
could modulate the neural activity which may induce impulsivity. The results from
the model suggested that the electrode position within STN and the amplitude
of the current could significantly vary the behaviour of the patient which could
induce impulsive behaviour [14, 15, 17, 18]. We also observed from simulation
that an antidromic activation of the GPe neuron could also affect the behaviour by
modulating the STN activity.

In the current chapter, we have extended the same computational model [16] by
including Izhikevich neuron-based thalamic and cortical neurons and studied the
neural activity in the basal ganglia (BG) and cortical neurons and their relation to
tremor with and without external stimulation.

1.2 Effect of Pallidal vs. Subthalamic Stimulation on Tremor

Although the effect of medication and stimulation on the motor symptoms of PD
have been extensively studied experimentally [2, 3], most of the computational
studies have either concentrated on understanding the dynamics of the cortical-
subcortical structures and their interaction in terms of synchrony, firing pattern and
oscillations [5] or simulated the arm dynamics by incorporating abstract but not
detailed simulations of neural structures [20].

We studied the effect of deep brain stimulation on the frequency content
in STN and GPi neurons around tremor frequency using our previously
published model ([16]). The network model of cortico-BG neurons was
built using two-variable Izhikevich spiking neurons where each nucleus was
modelled as a lattice with (= 50 × 50) of neurons. All the neurons are
connected in one-one fashion with the striatum, globus pallidus externa (GPe)
and GPi being inhibitory and thalamus, STN and cortex being excitatory.
Each GPi neuron receives both glutamatergic projections from STN and
GABAergic projections from D1R-expressing striatal MSNs. The information
flow from cortex enters both D1 and D2 striatum and later follows the direct

(continued)
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and indirect pathways finally reaching the thalamus which further projects
back to the cortex (Fig. 1.1). Equations related to the Izhikevich spiking
neuron model are described as

dvx
ij

dt
= 0.04

(
vx

ij

)2 + 5vx
ij − ux

ij + 140 + I x
ij + I

syn
ij (1.1)

dux
ij

dt
= a

(
bvx

ij − ux
ij

)
(1.2)

if vx
ij ≥ vpeak

{
vx

ij ← c

ux
ij ← ux

ij + d

}
(1.3)

where vx
ij = membrane potential, ux

ij = membrane recovery variable, I
Syn
ij =

total synaptic current received, I x
ij = external current applied to neuron x at

location (i, j) and vpeak= maximum voltage set to neuron (+30mv) with x
being STN or GPe or GPi neuron. The values for the parameters a, b, c and d
for STN, GPi and GPe are given in ([16]). The values for striatum, thalamus
and cortex are given below (astr = 0.02, bstr = 0.2, cstr = −65, dstr = 8,
ath = 0.002, bth = 0.25, cth = −65, dth = 0.05, actx = 0.02, bctx = 0.2,
cth = −65, dctx = 8).

Fig. 1.1 Pictorial
representation of the model
with key BG nuclei such as
the striatum, STN, GPe and
GPi. All synaptic connections
are GABAergic for all nuclei
except for the STN, thalamus
and cortex which are
glutamatergic
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The synaptic connectivity between all the nuclei (cortex, thalamus, GPi,
striatum, STN and GPe) was modelled as

τRecep ∗ dhx→y

ij

dt
= −h

x→y

ij (t) + Sx
ij (t) (1.4)

I
x→y

ij (t) = Wx→y ∗ h
x→y

ij (t) ∗
(
ERecep − V

y

ij (t)
)

(1.5)

where τRecep is the decay constant for synaptic receptor, ERecep is the receptor-
associated synaptic reversal potential (Recep = AMPA/GABA/NMDA), Sx

ij is

the spiking activity of neuron ‘x’ at time ‘t’, h
x→y

ij is the gating variable for
the synaptic current from ‘x’ to ‘y’, Wx→y is the synaptic weight from neuron
‘x’ to ‘y’ and V

y

ij is the membrane potential of the neuron ‘y’ for the neuron
(cortex/thalamus/GPi/striatum/STN/GPe) at the location (i,j).

The effect of dopamine on the glutamatergic current from the cortex on to D1
and D2 striatal neurons was modelled as

ICtx→D1
ij =

(
INMDA→D1

ij + IAMPA→D1
ij

)
∗ cD1 (1.6)

ICtx→D2
ij =

(
INMDA→D2

ij + IAMPA→D2
ij

)
∗ cD2 (1.7)

where cD1 = AD1
1+exp(−λStr∗(DA−1))

, cD2 = AD2
1+exp(λStr∗DA)

, DA= dopamine

level (0.1–0.9), λ=, AD1= 30 and AD2=10.

Based on the experimental results that dopaminergic receptors (D2) are
present on STN and GPe neurons which modulated their synaptic strengths,
we modelled the effect of DA on STN-GPe synaptic strength as

Wx→y = (1 − cd2 ∗ DA) ∗ wx→y (1.8)

where the synapses are GPe→STN and STN→GPe. A similar method for
DA-dependent synaptic modulation on striatal neurons was used in [10].

We first simulated the PD condition by keeping DA low (= 0.1) (parameter
‘DA’ in Eqs. 1.6, 1.7 and 1.8) in the model and calculated the oscillatory frequency
using fast Fourier transform (FFT) which showed a peak at around 8 Hz (Fig. 1.2c)
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Fig. 1.2 Power in STN and GPi neurons with and without external stimulation. (a) Frequency
content in STN and GPi in the PD condition and when STN was stimulated; (b) frequency content
in STN and GPi in the PD condition when GPi was stimulated; and (c) frequency content in STN
and GPi in PD condition without any external stimulation

in the BG, thalamic and cortical neurons. To understand the effect of stimula-
tion, we individually stimulated STN and GPi neurons with monophasic current
(frequency = 130 Hz, amplitude = 120 pA, pulse width = 100 μS). The cortico-
thalamic weight was kept at value of (=20) which gave rise to the oscillations in the
thalamus and cortex.

The stimulation of STN neurons resulted in a sharp dip in the power of
oscillations (Fig. 1.2a) in both BG and cortical neurons. This pattern was
absent during GPi stimulation, i.e. only the power of oscillations in GPi was
decreased but was unaltered in the STN as well as the cortex (Fig. 1.2b). This
result only further reinforces the earlier theory of STN-GPe circuit to being
the potential tremor frequency generator [23]. As the STN activity peaks up at
around tremor frequency (4–8 Hz), the GPi activity follows the glutamatergic
input pattern from STN, and this behaviour is further reverberated into the

(continued)
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loop through the thalamus into the cortex. Once the external DBS stimulation
is applied to the STN neurons, the synchronous oscillatory activity within
itself is disrupted, which further halts the propagation of the oscillations in the
entire loop. The cortex, now free from the forced oscillations of STN, resumes
its spontaneous activity which has a mean frequency of around 20 Hz as
observed in Fig. 1.2a. This spontaneous firing rate which was earlier masked
by the tremor frequency oscillations is prominent only after the STN but
not GPi stimulation. This is believed to be due to the non-suppression of
oscillations in STN neurons during stimulation of GPi neurons.

The above result shows that STN stimulation is effective in suppressing the
oscillations around the tremor frequency within itself and GPi through its
glutamatergic projections. The presence of intact oscillatory behaviour in
STN neurons and only a slight decrease in oscillatory power during GPi
stimulation might be a plausible reason for STN being a preferred target for
tremor treatment (as indicated in Table 1.1).

We have also tested the role of thalamo-cortical weight in the ‘resonating’
effect within the cortico- BG loop. At low DA conditions (DA = 0.1), a higher
thalamo-cortical weight is believed to induce the resonating property within
the loop, i.e. the cortical input to striatum is backpropagated to the cortex
through the thalamus which is otherwise absent in healthy (low thalamo-
cortical connection) conditions. We simulated three (low (w = 2), medium
(w = 10) and high (w = 20)) thalamo-cortical weight conditions and observed
for the presence of such a replay within the cortical neurons. The weight
influences the glutamatergic current from the thalamus to the cortex which
was modelled as a combination of both AMPA and NMDA currents, similar
to Eqs. 1.6 and 1.7.

The cortex in the spiking model was stimulated by a Gaussian pulse at a
specific time point, one of the standard ways to replicate the synaptic current
propagation among neuronal networks [13]. The presence of resonance or
backpropagation through the thalamus to the cortex is observed in terms
of constant/increase spiking activity in cortex. Figure 1.3 shows the effect
of thalamo-cortical weight on the reverberation in cortical neurons. In low-
weight condition (w = 2), the spiking cortical neuron activity slowly decays
down over time (Fig. 1.3c). But on further increase of the connection strength
(w = 10), the rate of decay in the spiking activity slows down which is
observed as the constant spiking activity (Fig. 1.3b), and at higher connection
strengths (w = 20, (Fig. 1.3a)), an increase in cortical activity over time is
observed which is believed to be due to the back propagation property of
the loop. These simulations indicate that thalamo-cortical connection strength

(continued)



10 A. Mandali et al.

might play a crucial role in the propagation/reverberation of the activity within
the cortico-BG loop.

Fig. 1.3 Change in cortical activity as the strength of thalamo-cortical weight is
decreased after a Gaussian pulse at time = 85 milliseconds (ms): (a) for high
weight (w = 20), the cortical activity is maintained, (b) for medium weight
(w = 10), the cortical activity starts to decrease after a period of time and
(c) at lower weight (w = 2), a further decrease in cortical activity is observed

One of the studies that attempted to understand the effect of stimulation on motor
symptoms was conducted by [20]. The authors simulated the cortico-BG dynamics
using the Contreras-Vidal and Stelmach closed-loop model and combined it with
the Grossberg’s VITE model which calculates the difference between the desired
target and current position to determine the direction of motion. The simulation
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results showed that stimulation to STN helped to restore the normal activity through
either stimulation-induced inhibition of STN or partial synaptic failure of efferent
projections, or excitation of inhibitory afferent axons.

Though the model by Moroney et al. [20] was able to shed some light on the
possible mechanism of DBS action, each of the neurons in the basal ganglia and
cortex were modelled as rate coded and lacked the detailed spiking dynamics.
Furthermore, there was no explicit arm in the model which could replicate tremor or
bradykinesia. Based on our current results (Fig. 1.2), we intend to extend the current
spiking neuron model by integrating it to a biologically realistic arm and simulate
the PD motor symptoms by altering the dynamics of the neural structures. The effect
of STN/GPi stimulation at symptomatic as well as individual neuron level will be
further studied.
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Chapter 2
Dynamics of Basal Ganglia and
Thalamus in Parkinsonian Tremor

Jan Morén, Jun Igarashi, Osamu Shouno, Junichiro Yoshimoto,
and Kenji Doya

Abstract Although beta-range oscillation is observed in the basal ganglia (BG) of
Parkinson’s disease (PD) patients, its causal role in Parkinson’s tremor has been
controversial because the PD tremor is in much lower frequency range. In order to
explore the dynamic interaction between the BG and their downstream, we built a
spiking neuron model of the BG-thalamocortical (TC) network at the scale of a rat
brain. The model of the BG-TC circuit reproduced normal, asynchronous firing state
and Parkinson-like state with 15 Hz beta-range oscillation in the BG and 4–8 Hz
oscillation in the thalamus and the cortex, which is consistent with the PD tremor
frequency. Simulation results show that hyperpolarizing current in the thalamic
neurons and synchronous burst input from the BG are essential for subharmonic
resonant response of the thalamic network in generating Parkinsonian tremor.
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2.1 Introduction

A major symptom of Parkinson’s disease (PD) is tremors in the limbs. The basal
ganglia (BG) are the main locus of the disorder, and 15–30 Hz beta-range oscillation
is observed in the BG of PD patients and model animals [7]. However, typical
PD limb tremors are in 4–8 Hz range. If the beta-range oscillation in BG is
responsible for the tremor, there should be some nonlinear dynamics to cause sub-
harmonic resonance at the levels of the thalamus, the cortex, the spinal cord, or the
musculoskeletal system. The thalamus is a major output target of the BG, and the
thalamic neurons are known to oscillate synchronously at 4–6 Hz frequency range
during sleep [1]. Here we consider a hypothesis that PD tremor is caused by the
dynamic interaction of the BG and the thalamus [3, 10].

In order to test the hypothesis, we constructed spiking neural network models of
the BG, the thalamus, and the motor cortex (Fig. 2.1). The models take into account
topographic organization in those areas and are scaled to the size of the rat brain.

2.2 Spiking Neural Network Models

We follow the BG model by Shouno et al. [11, 12], in which 8–20 Hz beta-range
oscillation originates from the excitatory-inhibitory feedback interaction of the
subthalamic nucleus and the external globus pallidus [13].

Fig. 2.1 The organization of the basal ganglia-thalamocortical spiking neural network model



2 Dynamics of Basal Ganglia and Thalamus in Parkinsonian Tremor 15

We use the neuron models from [12] and lay them out in a spatial manner, with
stochastic, overlapping connection patterns derived from experimental data, rather
than disjoint “channels” as assumed in [11].

We estimated the spatial dimensions of the BG from the literature [9] and
constructed rectangular 2-D surfaces with the width, height, and area same as the
rat and the depth to match the volume. We populated each area with the reported
number of neurons in an even grid (Table 2.1).

The BG model consists of six neuron types (Fig. 2.1, left): the striatum with fast
spiking neurons (FS) and medium spiny neurons projecting to the direct pathway
(MS D1) and the indirect pathway (MS D2); the subthalamic nucleus (STN); the
external globus pallidus (GPe, called GP in the rat); and the internal globus pallidus
(GPi, called endopeduncular nucleus (EP) in the rat) and the substantia nigra pars
reticulata (SNpr) combined. The striatum receives inputs from the cortical layer 5B,
and GPi/EP+SNpr sends output to the thalamus. The specifications of connections
within and between these neuron types are shown in Table 2.2.

The thalamic network consists of four neuron types (Fig. 2.1, right bottom): 800
thalamocortical (TC) neurons, 1200 high-threshold (HT) neurons, 800 interneurons
(IN), and 800 reticular (RE) neurons. Neurons are conductance-based models based

Table 2.1 The structural
parameters of the BG
network model

Area Size (mm) Neuron type Neuron number

Striatum 3.78*4.0 FS 0.14 M

MSN D1 1.7 M

MSN D2 1.1 M

STN 1.08*1.68 STN 14 K

GPe 2.29*1.6 GPe 46 K

GPi + SNpr 1.67*1.58 GPi 29 K

Table 2.2 The connection parameters of the BG network model. The weights in ( ) are those for
PD state. Connection radius shows the target radius, except those with * showing the source radius

From To Weight Delay (ms) Probability Radius (μm)

Cortex 5B MS D1 5.0 5.0 1.0 32.5

Cortex 5B MS D2 10.0 5.0 1.0 32.5

Cortex 5B FS 5.0 5.0 1.0 32.5

FS MS D1 0.12 1.0 0.5 32.5

FS MS D2 0.08 1.0 0.5 32.5

MS D1 GPi −0.1 (−0.07) 1.0 1.0 47.25

MS D2 GPe −0.12 (−0.5) 1.0 1.0 48

GPe GPe −0.01 (−0.03) 1.0 0.05 *96–240

GPe STN −4.5 (−6.38) 5.0 0.13 *48

GPe GPi −0.1 5.0 0.13 *48

STN GPe 0.7 (2.0) 5.0 0.22 *21.75

STN GPi 0.7 5.0 0.22 *21.75



16 J. Morén et al.

Table 2.3 The connection parameters of the thalamic network model. The weights in ( ) are those
for PD state. Connection radius shows the target radius

From To Weight Delay (ms) Probability Radius (μm)

GPi TC −0.15 (−0.1) 5.0 1.0 33.6

GPi HT −0.03 (−0.02) 5.0 1.0 33.6

TC RE 0.25 1.0 1.0 200

HT IN 0.5 1.0 1.0 200

HT RE 0.25 1.0 1.0 200

IN TC −0.025 1.0 1.0 200

RE RE −0.0125 1.0 1.0 200

RE TC −0.01 1.0 1.0 200

RE HT −0.015 1.0 1.0 200

on [1]. When hyperpolarized, TC neurons show low-threshold spike (LTS) bursts.
The connections to and within the thalamic network model are shown in Table 2.3.

The cortical network model consists of eight neuron types (Fig. 2.1, right top):
44k cortico-cortical (CC), 5.5k fast spiking (FS), and 5.5k low-threshold spiking
(LTS) neurons in layers 2–3, and 18.2k pyramidal tract (PT), 9.1k corticostriatal
(CS), 9.1k CC, 4.55k FS, and 4.55k LTS neurons in layer 5B. All cortical neurons
are conductance-based integrate-and-fire model with alpha-shaped synaptic inputs
[6]. The entire TC network contains about 180,000 neurons.

PD state is simulated by (1) weakened MS D1 connections to GPi and strength-
ened MS D2 connections to GPe; (2) strengthened GPe connections to STN and GPi
and within GPe; and (3) weakened GPi connections to TC and HT, as shown in ( )
in Tables 2.2 and 2.3.

2.3 Simulation Results

The BG and TC models were implemented using the NEST simulator [5] and con-
nected by the MUSIC framework [2] to run together on highly parallel computers,
including RIKEN’s K supercomputer. The combined model reproduced a normal
state with asynchronous firing and a PD-like state with beta-range burst oscillation
in STN, GPe, and GPi [8].

2.3.1 Oscillatory Properties of the Thalamic Network

Here we examine the intrinsic oscillatory property of the thalamus as a possible
source of Parkinsonian tremor. The TC neurons have hyperpolarizing bias current,
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Fig. 2.2 The power spectrum of the TC neuron output with inputs from the BG in (a) normal state
and (b) PD state with 15 Hz bursts, at different levels of hyper polarizing current, from −0.4 (dark)
to −1.0 (light) μA

and we approximate the effect of dopaminergic depletion in the thalamus by a
stronger hyperpolarizing current [4].

Figure 2.2 shows the power spectrum of the TC neurons as we increase the
hyperpolarizing bias current from −0.4 to −1.0 μA. Even with the normal BG
model with non-oscillatory spikes at the average rate of 65 Hz (A), as the bias
current was increased, an oscillatory peak at around 7–8 Hz appeared, along with
a wider band activity at a lower frequency. When the BG was in PD state with GPi
oscillating at 15 Hz with the average firing rate of 75 Hz (B), in addition to a peak at
15 Hz for all level of the bias current, peaks in the 7–8 Hz range also appeared even
with bias current at −0.4 and −0.6 μA.

By taking the bias current of −0.4 μA as the standard level, the results suggest
that 7–8 Hz oscillation in the thalamus can be caused by either strong hyperpolariza-
tion of the TC neurons or oscillatory inhibitory input from the BG at 15 Hz range.
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2.3.2 The Role of Beta-Range Oscillatory Input from the BG

Can strong inhibitory input from the BG without oscillation induce PD-like
oscillation in the thalamus? We examined this possibility by comparing the effects
of the BG input in the normal state with no synchronous oscillation and PD state
with 15 Hz burst oscillation. Figure 2.3 shows the activities of TC neurons in 3–
10 Hz range at different levels of mean firing rate (55–120 Hz) and connection
strength (0.05–0.7). With the normal BG input (A), there was little to no response
for any input levels. With the BG input in PD oscillation (B), oscillatory responses
were seen at the moderate level of input weight for a wide range of average spike
frequency. At higher weights and spike rates, the TC neurons desynchronized, and
the power in the 3–10 Hz range was decreased.

Fig. 2.3 The effects of (a) asynchronous and (b) 15 Hz synchronous bursting inputs from the GPi
on the response of TC neurons in the 3–10 Hz range. The input strengths were varied by the average
firing rate (horizontal) and input weight (vertical). Both cases have a −0.4 μA bias current



2 Dynamics of Basal Ganglia and Thalamus in Parkinsonian Tremor 19

2.4 Discussion

Our spiking neural network model of the BG-TC circuit reproduced normal,
asynchronous firing state and Parkinson-like state with 15 Hz beta-range oscillation
in the BG and 4–8 Hz oscillation in the thalamus, which is consistent with the
PD tremor frequency. Increased hyperpolarizing current in the thalamic neurons,
approximating the effect of dopaminergic depletion in the thalamus, and 15 Hz
synchronous oscillatory inhibitory input from the PD state of the basal ganglia can
jointly trigger thalamic oscillation in the 3–10 Hz range. Stronger asynchronous
inhibitory input from the BG is not sufficient to cause 3–10 Hz oscillation in the
thalamus. These results imply that the effects of dopaminergic depletion in both BG
and the thalamus are essential for subharmonic resonant response of the thalamic
network in generating Parkinsonian tremor.
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Chapter 3
A Neural Mass Model for Abnormal
Beta-Rebound in Schizophrenia

Áine Byrne, Stephen Coombes, and Peter F. Liddle

Abstract Patients with schizophrenia demonstrate robust abnormalities of the
synchronisation of beta oscillations that occur in diverse brain regions following
sensory, motor or mental events. A prominent abnormality seen in primary motor
cortex is a reduction in amplitude of so-called beta-rebound. Here a sharp decrease
in neural oscillatory power in the beta band is observed during movement (MRBD)
followed by an increase above baseline on movement cessation (PMBR). An
understanding of how neural circuits give rise to MRBD and PMBR is clinically
relevant to the pathophysiology of schizophrenia. Here we survey a very recent
neural mass model for movement-induced changes in the beta rhythm and show
that it is an ideal candidate for use in a clinical setting. The model arises as an
exact mean-field reduction of a spiking network, has a realistic model of synaptic
processing and is able to describe the dynamic changes in population synchrony that
can underlie event-related desynchronisation/synchronisation for MRBD/PMBR.
A lengthening of the synaptic response time to sensory drive, modelling NMDA
receptor hypofunction, shows a reduction in beta-rebound consistent with that seen
in schizophrenia.
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3.1 Introduction

Normal cortical function depends on an intricate balance between GABAergic
inhibition and glutamatergic excitation and is believed to be disrupted in neuropsy-
chiatric disorders, such as schizophrenia [1, 2]. To build a bridge in understanding
how pathophysiologies of neurons and synapses can effect cognitive processes (e.g.
attention, memory, executive functions) underlying behavioural disorders (e.g. lack
of goal-directed behaviour, replaying conversations out loud, catatonia), clinicians
are increasingly turning to computational psychiatry [3]. This multidisciplinary
approach combines insight from the clinic with mechanistic models of brain
circuits that can be studied in silico [4]. These models range in their scale from
high-dimensional models of spiking neural networks [5] to more coarse-grained
phenomenological neural mass and neural field models [6], and see Breakspear [7]
for a recent survey. The former are computationally expensive to simulate, though
very useful for exploring ideas about neural function. For example, modelling work
by Vogels and Abbott [8], using large-scale integrate-and-fire spiking neuron mod-
els, has suggested that the cognitive and behavioural deficits arising in schizophrenia
may arise when a reduction in inhibition leads to a failure of sensory gating
by signal-carrying pathways. This modelling study reinforces the commonly held
notion of schizophrenia as a disorder of information processing. However, having
a detailed microscopic dynamical description of neurons may not be necessary for
building tissue activity models at the scale relevant to modern human neuroimaging
studies. At this level the neural mass and field models, which maintain a good
representation of synaptic dynamics, have proved to be a popular tool, especially
as they can be easily realised in open-source software platforms such as The Virtual
Brain [9]. The combination of neural mass models and computational platforms
for the interrogation of emergent network dynamics means that one can make
neuroimaging predictions as a function of distinct synaptic-level manipulations. The
quality of these predictions is linked to the choice of neural mass model, which in
turn should be chosen in a way to best suit the phenomenon under investigation.
Here we consider the phenomenon of so-called beta-rebound, which is abnormal
in patients with schizophrenia, and how best to develop a computational psychiatry
relevant to its study.

The term ‘beta-rebound’ refers to the event-related synchronisation in the beta
band (13–30 Hz) characteristically seen in electro- and magnetoencephalography
(EEG and MEG) recordings. It can be portrayed visually using a spectrogram
where it manifests as a transient increase above baseline in beta power. When
recorded from motor cortex, it is often referred to as post-movement beta-rebound
(PMBR) following movement cessation. This contrasts with the suppression of
the beta oscillation amplitude during voluntary movement, which is referred to as
movement-related beta decrease (MRBD). These modulations of the beta band are
caused by changes of synchrony within a relatively localised region of motor cortex
[10], with MRBD regarded as an instance of event-related desynchronisation (ERD)
and PMBR of event-related synchronisation (ERS). MEG studies of patients with
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schizophrenia demonstrate abnormalities of PMBR [11], with a significant reduc-
tion in the trough-to-peak change in amplitude from MRBD to PMBR (although
latency and duration are not significantly abnormal). Moreover, the magnitude of the
abnormality predicts persistence of symptoms. Figure 3.1 illustrates the differences
in the neural response between schizophrenia patients and healthy controls when
performing a simple motor task. The reduction in the magnitude of the PMBR is
readily observed. One should also note that the MRBD shows little to no change.
Furthermore, in a salience detection task, patients with schizophrenia show a greater
beta synchronisation in response to stimuli that are irrelevant than to behaviourally
relevant stimuli, in motor cortex and also in the insula, a brain region engaged in
detection of behavioural salience of stimuli. In contrast, healthy control participants
show greater beta synchronisation in response to relevant than to irrelevant stimuli
in both insula and motor cortex [12]. Thus, this abnormality of beta synchronisation
is a plausible target for therapy using neuromodulatory techniques. These in turn
could be assayed with the use of a realistic mechanistic model. Recent work [13]
has provided such a model in the form of a next-generation neural mass model. This
is an exact mean-field reduction of a spiking network that is capable of supporting
ERD and ERS in response to a time-dependent input. Importantly it has been
matched to experiments of healthy subjects exhibiting beta-rebound. Here we review
the model and show that it is also capable of explaining the abnormal beta-rebound
of patients with schizophrenia. This happens with an appropriate reduction in the
response time to excitatory input and is consistent with the glutamate hypothesis of
schizophrenia, which originated from the finding that phencyclidine and ketamine,
which each block NMDA receptors, mimic both positive and negative symptoms

Fig. 3.1 Relative time-frequency spectrograms showing the disruption of ‘beta-rebound’ in
schizophrenia patients. In this experiment subjects were asked to continuously tap their finger for
2 s. Movement-related beta decrease (MRBD) can be seen during the 2 s of movement, and post-
movement beta-rebound (PMBR) can be seen after movement termination. Left: Healthy controls.
Right: Diagnosed schizophrenia patients. Note that there is little difference in the MRBD between
patients and controls, but a significant reduction in PMBR is observed for the schizophrenia
patients. (Figure is reproduced and edited with permission from [11])
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of disease. Thus, the model further supports the hypothesis that NMDA receptor
hypofunction is a key component of the mechanism behind the pathophysiology of
schizophrenia [14].

3.2 The Model

Neural mass models have a long tradition of use in describing the dynamics of neural
populations. In broad terms they describe the evolution of some coarse-grained
notion of neural activity, typically synaptic current or mean-membrane potential.
They are formulated as coupled ordinary differential equation (ODE) models
that track the dynamics of interacting excitatory and inhibitory subpopulations.
Typically they are modelled as variants of the two dimensional Wilson-Cowan
model [15]. With the augmentation by more realistic forms of synaptic and
network interaction, they have proved especially successful in providing fits to
neuroimaging data [16]. However, all neural mass models to date are essentially
phenomenological, with the dynamics of state variables essentially determined by
the choice of a nonlinear population firing rate function. This is often chosen
to be a sigmoidal function of population activity and is a mainstay throughout
computational neuroscience for rate-based modelling of neural tissue. However,
the neural dynamics underlying ERD and ERS is most likely a manifestation of
a spiking network, with enhanced ERS being linked to an increase in the coherence
(synchrony) of spike trains. Thus, neural mass models in isolation are not natural
candidates for modelling MRBD and PMBR. Recently a neural mass model has
been derived as an exact mean-field model for a network of synaptically coupled
spiking (quadratic integrate-and-fire) neurons and been shown to have a sufficiently
rich repertoire of dynamics that it can model beta-rebound [13]. For a single
population of globally coupled spiking cells with a single type of synapse (either
excitatory or inhibitory), the evolution of synaptic conductance g takes the form

(
1 + 1

α

d

dt

)2

g = κf (Z), f (Z) = 1

πC
Re

(
1 − Z∗

1 + Z∗

)
. (3.1)

Here α−1 is the rise time of the synapse associated with an alpha-function response
α2te−αt for t ≥ 0, κ describes the strength of (self) coupling, and C represents
the membrane capacitance of the neuron. Extensions to multiple populations with
different types of excitation and inhibition are straightforward and discussed in
[17]. Importantly f is interpreted as a firing rate (driving the synaptic conductance)
that is a function of a complex number Z ∈ C (with complex conjugate Z∗) that
represents the degree of within-population synchrony. In essence, it is a Kuramoto
order parameter with self-consistent dynamics determined by
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2
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2
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(3.2)
At the microscopic level, each neuron receives a different constant input drawn from
a Lorentzian distribution with a mean η0 and width at half maximum given by Δ (so
that Δ can be used to control heterogeneity). The symbol vsyn denotes the reversal
potential of the synapse. This is excitatory (inhibitory) if vsyn is positive (negative)
with respect to the resting membrane potential. The function A(t) represents an
external signal from other brain regions. The form of the mean-field model is
precisely that of a neural mass model, with the notable difference that the firing
rate f is a derived quantity that is a real function of the complex Kuramoto
order parameter for synchrony. This in turn is described by a complex ODE with
parameters from the underlying microscopic model, so that the whole system is
described by four nonautonomous ODEs. Here we take the time-dependent drive
A(t) to be a simple excitatory current describing transduced motor input and
model it as a rectangular pulse smoothed by an alpha function with a rise time
α−1

D (neglecting shunts, which is reasonable for glutamatergic receptors with a
large positive reversal potential). The pulse shape is explicitly given by Ω(t) =
ΠΘ(t)Θ(τ − t), where Π is the amplitude of the drive, τ its duration and Θ

represents a Heaviside step function.
In Fig. 3.2 we show a spectrogram of the synaptic current obtained from the

model under both normal operating conditions (left) and the case of NMDA receptor
hypofunction (right), modelled by a lengthening of the timescale α−1

D . A reduction
of beta-rebound can clearly be seen in the latter case and is consistent with that seen
in MEG recordings [11].

Fig. 3.2 Spectrogram of the synaptic current in response to an applied pulse at t = 0 s. Parameter
values: Π = 30 μA, τ = 0.4 s, η0 = 21.5 μA, Δ = 0.5 μA, vsyn = −10 mV, κ = 0.1, α−1 =
33 ms, and C = 30 μF. (a) Normal operating conditions (health) with a rise-time for the excitatory
input synapse given by α−1

D = 10 ms. (b) NMDA receptor hypofunction (schizophrenia) with
α−1

D = 24 ms. Here one can clearly see a reduction in beta-rebound compared to the model of a
healthy patient
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3.3 Discussion

In this chapter we have surveyed a multi-scale neural model that can capture
the phenomenon of beta-rebound in healthy patients and its reduction in patients
with schizophrenia. The model is multi-scale in the sense that it can be derived
from an underlying spiking network in the limit of a large number of neurons
as a low-dimensional set of four nonautonomous ODEs. This would rise to 12
equations should populations built from both excitatory and inhibitory neurons be
considered (two ODEs for each of four synaptic populations and two complex
ODEs to describe synchrony in two distinct neural populations), though is still
parsimonious compared to large-scale spiking network models. Moreover, this
parsimonious model is easily extended to the network level, by incorporating
connectome data, and is ideally suited for computationally affordable whole brain
studies. This may help in the design of optimum neuromodulatory therapeutic pro-
tocols. For example, transcranial magnetic stimulation (TMS) [18], which delivers
electromagnetic stimulation to local regions of the cerebral cortex, is very effective
in a minority of cases of treatment-resistant depression and also for treatment
of symptoms such as hallucination in schizophrenia. However, the therapeutic
effects vary greatly between cases, necessitating large clinical trials to demonstrate
efficacy. The use of appropriate computational models would allow an optimisation
process for therapeutic efficacy (say relating to TMS pulse sequence, location and
duration of administration stimulation, etc.) to progress with a reduction in the scale
of expensive clinical trials. Indeed, mathematical and computational modelling,
building on the neural mass model presented here, offers the prospect of estimating
the effects of administration of stimulation: (1) at the site of stimulation, (2) at
remote network sites connected to the site of stimulation, (3) and, ultimately, of
eventual plastic changes at relevant network sites.
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Chapter 4
Basal Ganglio-thalamo-cortico-
spino-muscular Model of Parkinson’s
Disease Bradykinesia

Vassilis Cutsuridis

Abstract Bradykinesia is the cardinal symptom of Parkinson’s disease (PD) related
to slowness of movement. The causes of PD bradykinesia are not known largely,
because there are multiple brain areas and pathways involved from the neuronal
degeneration site (dopamine (DA) neurons in substantia nigra pars compacta (SNc)
and ventral tegmental area (VTA)) to the muscles. A neurocomputational model
of basal ganglio-thalamo-cortico-spino-muscular dynamics with dopamine of PD
bradykinesia is presented as a unified theoretical framework capable of producing
a wealth of neuronal, electromyographic, and behavioral movement empirical
findings reported in parkinsonian human and animal brain studies. The model
attempts to uncover how information is processed in the affected brain areas, what
role does DA play, and what are the biophysical mechanisms giving rise to the
observed slowness of movement in PD bradykinesia.

Keywords Parkinson’s disease · Slowness of movement · Bradykinesia ·
Akinesia · Computer model · Dopamine · Basal ganglia · Motor cortex · Spinal
cord · Triphasic pattern of muscle activation

4.1 Introduction

Bradykinesia is the hallmark and most disabling symptom of PD. Early in the
disease, the most notable manifestation of bradykinesia is difficulty with walking,
speaking, or getting into and out of chairs [24]. Individuals fail to swing an arm
during walking or lack facial expression [1, 24, 33]. Later in life, bradykinesia
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affects all movements and, at its worst, results in a complete inability to move.
Patients require intense concentration to overcome the apparent inertia of the limbs
that exists for the simplest motor tasks. Movement initiation is particularly impaired
when unnatural or novel movements are attempted [9] or when combining several
movements concurrently [4, 29].

The causes of bradykinesia are not known, in part because there are multiple
pathways from the sites of neuronal degeneration to the muscles. Figure 4.1 shows
three of the most important pathways: (1) the pathway from SNc and VTA to the
striatum and from the striatum to the substantia nigra pars reticulata (SNr) and the
globus pallidus internal segment (GPi) and from there to the thalamus and the frontal
cortex, (2) the pathway from SNc and VTA to the striatum and from the striatum
to the SNr and the GPi and from there to the brainstem, and (3) the pathway from
the SNc/VTA to cortical areas such as the supplementary motor area (SMA), the
parietal cortex, and the primary motor cortex (M1), and from there to the spinal
cord.

One of the popular views is that cortical motor centers are inadequately activated
by excitatory circuits passing through the basal ganglia (BG) [2]. As a result,
inadequate facilitation is provided to motor neuron pools, and hence movements
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are small and weak [2]. The implication of this view is that cells in the cortex and
spinal cord are functionally normally. This paper will show otherwise.

The paper’s view is that disruptions of the BG output and of the SNc’s DA
input to frontal and parietal cortices and spinal cord are responsible for delayed
movement initiation. Elimination of DA modulation from the SNc disrupts, via
several pathways, the buildup of the pattern of movement-related responses in the
primary motor and parietal cortex and results in a loss of directional specificity of
reciprocal and bidirectional cells in the motor cortex as well as in a reduction in
their activities and their rates of change. These changes result in delays in recruiting
the appropriate level of muscle force sufficiently fast and in an inappropriate scaling
of the dynamic muscle force to the movement parameters. A repetitive triphasic
pattern of muscle activation is sometimes needed to complete the movement. All of
these result in an increase of mean reaction time and a slowness of movement (i.e.,
bradykinesia).

4.2 Empirical Signatures of PD Bradykinesia

PD bradykinesia has been linked with the degeneration of DA neurons in SNc and
VTA. Bradykinesia manifests only when 80–90% of DA neurons die. All motor
cortical and subcortical areas are innervated by SNc and VTA DA neurons [6, 23,
35]. The degeneration of DA neurons leads to a number of changes relevant to
bradykinesia in the neuronal, electromyographic (EMG), and movement parameters
reported in parkinsonian human and animal brains:

• Reduction of peak neuronal activity and rate of development of neuronal
discharge in the primary motor cortex and premotor area [26, 32].

• Abnormal oscillatory GP (external and internal) neuronal responses [31].
• Disinhibition of reciprocally tuned cells [22]. Reciprocally tuned cells are cells

that discharge maximally in one movement direction but pause their activities in
the opposite direction.

• Significant increase in mean duration of neuronal discharge in motor cortex
preceding and following onset of movement [3, 22, 26].

• Multiple triphasic patterns of muscle activation [22, 27]. Triphasic pattern of
muscle activation is a characteristic electromyographic (EMG) pattern character-
ized by alternating bursts of agonist and antagonist muscles. The first agonist
burst provides the impulsive force for the movement, whereas the antagonist
activity provides the braking force to halt the limb. Sometimes a second agonist
burst is needed to bring the limb to the final position. In PD patients, multiple
such patterns are observed in order for the subjects to complete the movement.

• Reduction in the rate of development and peak amplitude of the first agonist burst
of EMG activity [5, 10, 22, 25, 27, 32].
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• Co-contraction of muscle activation [3]. In PD patients, the alternating agonist-
antagonist-agonist muscle activation is disrupted resulting in the coactivation of
opponent muscle groups.

• Increases in electromechanical delay time (time between the onset of modifica-
tion of agonist EMG activity and the onset of movement) [3, 21, 22].

• Asymmetric increase in acceleration (time from movement onset to peak veloc-
ity) and deceleration (time from peak velocity till end of movement) times of a
movement.

• Decrease in the peak value of the velocity trace [3, 8, 21, 22, 25, 30, 34].
• Significant increases in movement time [3, 21, 22, 30, 32, 34].

4.3 Basal Ganglio-thalamo-cortico-spino-muscular Model
of PD Bradykinesia

Figure 4.2 depicts the basal ganglio-thalamo-cortico-spino-muscular model with
dopamine of PD bradykinesia dynamics. The mathematical formalism of the model
has been detailed in [11, 16, 20]. The model is composed of three modules coupled
together: (1) the basal ganglio-thalamic module, (2) the cortical module, and (3)
the spino-muscular module. All modules and their components are modulated by
DA. The basal ganglio-thalamic module generates a scalable voluntary GO signal
that gates volitional-sensitive velocity motor commands in the cortical module,
which activate the lower spinal centers in the spino-muscular module. In the cortical
module, an arm movement difference vector (DV) is computed in cortical parietal
area 5 from a comparison of a target position vector (TPV) with a representation
of the current position called perceived position vector (PPV). The DV signal then
projects to area 4 (primary motor cortex), where a desired velocity vector (DVV) and
a non-specific co-contractive signal (P) [28] are formed. The DVV and P signals
correspond to two partly independent neuronal systems within the motor cortex.
DVV represents the activity of reciprocal neurons [22] and is organized for the
reciprocal activation of antagonist muscles. P represents the activity of bidirectional
neurons (i.e., neurons whose activity decreases or increases for both directions
of movement [22]) and is organized for the co-contraction of antagonist muscles.
Whereas the reciprocal pattern of muscle activation serves to move the joint from
an initial to a final position, the antagonist co-contraction serves to increase the
apparent mechanical stiffness of the joint, thus fixing its posture or stabilizing
its course of movement in the presence of external force perturbations [7, 28].
The spino-muscular module is an opponent-processing muscle control model of
how spinal circuits afford independent voluntary control of joint stiffness and joint
position. It incorporates second-order dynamics, which play a large role in realistic
limb movements.
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Fig. 4.2 Neural architecture of the dopamine modulated basal ganglio-thalamo-cortico-spino-
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cortical gate via inhibition of GPi response). Middle: cortical module for trajectory formation.
Bottom: opponent-processing spino-muscular module for agonist-antagonist-agonist muscle acti-
vation. Arrow black lines, excitatory projections; solid dot black lines, inhibitory projections;
diamond-dotted green lines, dopamine modulation; solid arrow gray lines, excitatory feedback
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spindles. GO globus pallidus internal segment (GPi) output signal, P bidirectional co-contractive
signal, T target position command, V difference vector (DV) activity, u desired velocity vector
(DVV) activity, A current perceived position vector (PPV) activity, M alpha motoneuronal activity,
R Renshaw cell activity, X spinal type-b inhibitory interneuronal activity, I spinal type-a inhibitory
interneuronal activity, S static gMN activity, D dynamic gMN activity, i and j antagonist cell pair

4.4 Results

The model can account for all empirical signatures of PD bradykinesia as they have
been described in the previous section and reported in previous publications of the
author [11–20]. To assist the readers of this paper, a subset of these simulation
results are reported here. Reduction of DA in cortical and subcortical motor areas
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Fig. 4.3 Comparison of peristimulus time histograms (PSTH) of reciprocally organized neurons
(column 1; reproduced with permission from Doudet et al. [22, Fig. 4.4a, p. 182], Copyright
Springer-Verlag) in area 4, simulated area’s 4 reciprocally organized phasic (DVV) cell activities
(column 2), PSTH of area’s 4 bidirectional neurons (column 3; reproduced with permission from
[22, Fig. 4.4a, p. 182], Copyright Springer-Verlag), and simulated area’s 4 co-contractive (P) cells
activities (column 4) for a flexion (row 1) and extension (row 2) movements in normal monkey.
The vertical bars indicate the onset of movement. Note a clear triphasic AG1-ANT1-AG2 pattern
marked with arrows is evident in PSTH of reciprocally and bidirectionally organized neurons. The
same triphasic pattern is evident in simulated DVV cell activities. The second peak in simulated
activities marked with an arrow arises from the spindle feedback input to area’s 5 DV activity

Fig. 4.4 Comparison of PSTH of reciprocally organized neurons (column 1; reproduced with
permission from [22, Fig. 4.4a, p. 182], Copyright Springer-Verlag) in area 4, simulated area’s
4 reciprocally organized phasic (DVV) cell activities (column 2), PSTH of area’s 4 bidirectional
neurons (column 3; reproduced with permission from [22], Fig. 4.4a, p. 182, Copyright Springer-
Verlag), and simulated area’s 4 co-contractive (P) cells activities (column 4) for a flexion (a and
c) and extension (b and d) movements in MPTP-treated monkey. The vertical bars indicate the
onset of movement. Note that the triphasic pattern is disrupted: Peak AG1 and AG2 bursts have
decreased, and ANT pause is shortened
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Fig. 4.5 Comparison of simulated GO signals (row 1) and α-MN activities (row 2) in normal
(column 1) and dopamine-depleted (column 2) conditions. (Row 2) Blue solid curve, agonist α-
MN activity; Red-dashed curve, antagonist α-MN activity. Note in PD (DA-depleted) case, the
triphasic pattern is disrupted, and it is replaced by a biphasic pattern of muscle activation. Also,
the peaks of agonist and antagonist bursts are decreased

disrupts, via several pathways, the rate of development and peak neuronal activity of
primary motor cortical cells (reciprocal and bidirection neurons) (see Figs. 4.3 and
4.4 for comparison). A clear triphasic AG1-ANT1-AG2 pattern marked with arrows
which is evident in control case PSTH of reciprocally and bidirectionally organized
neurons (Fig. 4.3) disappears in the dopamine-depleted case (Fig. 4.4). The same
triphasic pattern is evident in simulated control DVV cell activities (Fig. 4.3) that
disappears in the DA-depleted case (Fig. 4.4).

These changes lead in delays in recruiting the appropriate level of muscle force
sufficiently fast and in a reduction of the peak muscle force required to complete the
movement (see Fig. 4.5).

Repetitive and sometimes co-contractive patterns of muscle activation are needed
to complete the movement (see Fig. 4.6).

These disruptions result in an abnormal slowness of movement (see Fig. 4.7).
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Fig. 4.6 Comparison of the experimental GPi PSTH (column 1), GO signals (column 2), and α-
MN activities (column 3) in normal (row 1) and dopamine-depleted (row 2) conditions. (Column 3,
rows 1 and 2) Blue-colored solid curve, agonist α-MN unit; Red-colored dashed curve, antagonist
α-MN unit. Note in dopamine-depleted case, the α-MN activity is disrupted and replaced by
repetitive and co-contractive agonist-antagonist bursts (row 2, column 3). (Column 1, row 1) GPi
PSTH in intact monkey reproduced with permission from Tremblay et al. [49, Fig. 4.4, p. 6],
Copyright Elsevier. (Column1, row 2) GPi PSTH in MPTP monkey reproduced with permission
from [49, Fig. 4.2, p. 23], Copyright Elsevier
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Fig. 4.7 Comparison of experimentally obtained (column 1; adapted from [26], Fig. 4.5, p. 189)
and simulated (column 2) forearm displacement (position) in normal (a) and Parkinson’s disease
(b) conditions. Shaded area: representation of neuronal change related to movement. In a and
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Chapter 5
Network Models of the Basal Ganglia
in Parkinson’s Disease: Advances in Deep
Brain Stimulation Through Model-Based
Optimization

Karthik Kumaravelu and Warren M. Grill

Abstract Parkinson’s disease (PD) is a movement disorder resulting from degen-
eration of dopaminergic neurons in the substantia nigra pars compacta. Electrical
stimulation of the sub-cortical regions of the brain (basal ganglia – BG), also known
as deep brain stimulation (DBS), is an effective therapy for the motor symptoms of
PD. However, despite clear clinical benefits, the therapeutic mechanisms of DBS
are not fully understood. Computational models of the BG play a vital role in
investigation of the neural basis of PD and determining the therapeutic mechanisms
of DBS. We review several conductance-based computational models of the BG
published in the literature. First, we explain the different circuits within the BG
network associated with movement control. Second, we provide insights gained
from different computational models of the BG on the neural basis of PD and
therapeutic mechanisms of DBS. Third, we discuss the functionality of these models
to optimize DBS parameters. Finally, we present various opportunities available to
optimize further DBS therapy by laying out the critical elements lacking in existing
models.
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5.1 Introduction

Parkinson’s disease (PD) is a movement disorder resulting from degeneration of
dopaminergic neurons in the substantia nigra pars compacta. Functional neurosur-
gical interventions such as subcortical lesions and deep brain stimulation (DBS) are
both effective in suppressing the motor symptoms of PD. Computational models
of the basal ganglia (BG) provide a platform to investigate the neural basis of
parkinsonian symptoms and to study and optimize the therapeutic effects of DBS.
In this chapter, we provide a critical review of several conductance-based network
models of the BG available in the literature. First, we describe the key components
of the BG network and its effects on the thalamus. Second, we review different
network models of the BG and their potential to explain the neural basis of PD
symptoms and the therapeutic mechanisms of DBS. Third, we provide an overview
of the use of computational models of the BG network to optimize the parameters
of DBS. The two major issues with current DBS technology are stimulation-evoked
side effects [82] and the requirement for frequent replacement of the implanted
pulse generator (IPG) due to depleted batteries [14]. The process of selection of
DBS parameters is challenging due to the large number of degrees of freedom
and complexity of response to different parameters [59]. Model-based optimization
provides a systematic framework for the selection of DBS parameters. Finally, we
consider the critical aspects lacking in existing network models of BG that might
enable better optimization of DBS therapy.

5.2 Architecture of the Basal Ganglia Circuit

The basal ganglia (BG) is a group of subcortical nuclei in the brain comprised
of the substantia nigra pars compacta (SNc), striatum (Str), subthalamic nucleus
(STN), globus pallidus externa (GPe), globus pallidus interna (GPi), and substania
nigra pars reticulata (SNr) (Fig. 5.1). The Str and STN serve as the input nuclei
of the BG and receive dense excitatory projections from the cortex (CTX) [34,
35]. The GPi and SNr are the two primary output nuclei of the BG and send
inhibitory projections to the thalamus (TH) [15]. Medium spiny neurons of the Str
are modulated by the neurotransmitter dopamine via D1 and D2 receptors [15],
and the GPe and GPi/SNr receive inhibitory projections from the D2- and D1-
modulated Str neurons, respectively [15]. The STN sends excitatory projections
to both GPe and GPi/SNr [15], and the GABAergic GPe neurons make reciprocal
projections back to the STN (resulting in a closed loop STN-GPe network) as well
as to the GPi/SNr [85]. The Str neurons modulate GPi/SNr via two pathways:
(1) Str (D1) → GPi known as the direct pathway and (2) Str (D2)→GPe→GPi
referred to as the indirect pathway. Furthermore, the CTX exerts influence on the
GPi via direct projections to the STN known as the hyperdirect pathway. Motor
programs from the CTX are differentially modulated at the Str by dopaminergic
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Fig. 5.1 Architecture of basal ganglia (BG) network. The BG circuit comprises of three major
pathways – (1) D1-Str→GPi known as the direct pathway shown in blue, (2) D2-Str→GPe→GPi
known as the indirect pathway shown in red and, (3) CTX→STN→GPi known as the hyperdirect
pathway shown in green. Any comprehensive computational model of the BG circuit should
capture these three pathways

neurons projecting from the SNc. The classical rate model of PD demonstrates the
functional role of dopamine on the BG pathways [4]. In accordance with the rate
model, activation of the direct pathway via the D1 receptors results in inhibition
of GPi and subsequent disinhibition of the TH. Indirect pathway activation through
the D2 receptors results in excitation of GPi and subsequent inhibition of the TH.
However, recent findings challenging the rate model suggest the direct and indirect
pathways to be not functionally distinct with both the pathways being interlinked at
the level of Str (via interneurons) and GPe (via collaterals) [20, 25].

5.3 Neural Basis of Motor Symptoms of PD Explained Using
Network Models of the Basal Ganglia

Parkinson’s disease (PD) involves the degeneration of dopaminergic neurons in
the SNc [3]. The primary motor symptoms of PD are akinesia/bradykinesia, rest
tremor, rigidity, postural instability, and gait disorder [53]. Initial attempts were
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made to explain the underlying changes in neural activity resulting in PD motor
symptoms using the classical rate model of the BG. According to this model [4],
SNc dopamine depletion results in an imbalance between the direct and indirect
BG pathways resulting in decreased activation of the direct pathway and increased
activation of the indirect pathway. Increased activation of the indirect pathway leads
to a decrease in GPe firing rate and a subsequent increase in the STN and GPi
firing rates. The firing rate of GPi is further increased by the decreased activation
of the direct pathway. Therefore, a hyperactive GPi during PD provides a greater
inhibition to the TH, which results in bradykinesia/akinesia. Single-unit recordings
across different BG nuclei support the classical rate model. The firing rates of STN,
GPi neurons in 6-OHDA rats are higher than in control, while those of GPe neurons
are lower [44, 49, 68, 69, 76, 93]. Similarly, recordings from MPTP-treated monkeys
show an increase in the STN and GPi firing rates but a decrease in the GPe firing
rate post MPTP treatment [11, 13, 33, 47, 87, 97, 98].

The rate model excluded a potential role of the hyperdirect pathway in the
manifestation of PD symptoms. The functional significance of the hyperdirect
pathway in the normal execution of movements can be explained using the center-
surround theory proposed by Nambu and colleagues [75]. When a movement is
initiated, the motor cortex exerts a strong excitatory influence on the output nucleus
of the basal ganglia (GPi) via the hyperdirect pathway to the STN [74]. The
excitation of GPi and subsequent inhibition of TH is thought to enable selection
of one motor program through the negation of competing programs. The activation
of the hyperdirect pathway is followed by the activation of the direct pathway which
results in inhibition of GPi and subsequent disinhibition of TH. This command
enables proper selection of the desired motor program. Finally, the activation of
the indirect pathway results in increased GPi activity and TH inhibition. This aids
in the suppression of unwanted motor programs and further enables transmission of
the selected motor command.

The hyperdirect pathway is known to become abnormal during PD condition
[9, 24, 72], and therefore, a more accurate network model of BG should account
for the critical role played by the hyperdirect pathway during normal execution of
movements and subsequent manifestation of PD symptoms following its alterations
in PD state. Humphries and colleagues developed a high-level network model of the
BG circuit incorporating the center-surround action selection theory proposed by
Nambu and colleagues [52]. The model predicted that under the dopamine-depleted
condition, the BG circuit failed to switch appropriately between actions initiated at
the CTX. Thus, the model implicates the faulty action selection mechanism of BG
for the underlying motor symptoms of PD.



5 Network Models of the Basal Ganglia in Parkinson’s Disease: Advances. . . 45

5.4 Therapeutic Mechanisms of Lesion Explained Using
Network Models of the Basal Ganglia

Lesion of the subcortical regions of the brain is effective in treating PD motor
symptoms [39, 45, 60, 66, 71]. The therapeutic mechanism of STN lesion can
be explained using the classical rate model of PD. STN lesion would reduce the
activity of an already hyperactive parkinsonian GPi and result in a reduction of
net inhibition to the TH and thereby reduce bradykinesia. Similarly, lesion of GPi
would lead to a reduction of the overall inhibition to the TH and thereby reduce
bradykinesia. Thus, the classical rate model was sufficient to explain the therapeutic
mechanisms of subcortical lesion. Despite the clinical effectiveness of lesions in
suppressing PD motor symptoms, the effects are irreversible and non-adjustable, and
especially bilateral lesions can be associated with unacceptable side effect profiles.
This necessitated the development of an alternative therapy which could suppress
PD motor symptom akin to lesion as well as provide greater control in adjusting
treatment [10].

5.5 Therapeutic Mechanisms of DBS Explained Using
Network Models of the Basal Ganglia

Chronic high-frequency (HF) stimulation of the STN and GPi are effective at
treating the motor symptoms of advanced PD, including tremor and bradykinesia
[38, 56, 62], and provide outcomes that are superior to conventional medical
management [27, 96]. In PD patients, STN DBS at frequencies above 100 Hz
provides clinical benefits, while frequencies below 50 Hz are usually ineffective
[73]. Despite the clinical effectiveness of HF STN DBS, the therapeutic mechanisms
of this therapy are not entirely understood [8, 48].

Efforts were made to explain the therapeutic mechanism of STN DBS using the
classical rate model of PD. Results from single-cell computational models [37, 70]
and experimental studies suggest that DBS activates the afferent and efferent axons
projecting to and from the stimulated nucleus. For example, STN DBS results in
activation of axons projecting from the STN to GPe and GPi [43]. Similarly, GPi
DBS results in activation of the GPi efferent axons to TH [6]. Therefore, both
STN and GPi DBS result in increased firing of GPi neurons. However, according
to the classical rate model, increasing the activity of GPi by STN DBS should
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lead to a more bradykinetic state. This prediction of the rate model is in contrast
with the clinical outcomes observed during GPi and STN DBS in PD patients,
where bradykinesia is reduced. Therefore, the classical rate model is not sufficient
to explain the therapeutic benefits observed during STN and GPi DBS in PD.
This necessitated the development of computational models of the BG network to
represent the neural activity patterns in addition to firing rates seen in PD and how
these are altered by therapeutically effective DBS.

Rubin and Terman (RT) developed a biophysical model of the BG network [84].
The BG neurons were modeled using single-compartment Hodgkin-Huxley (HH)-
style neurons, and the network model accounted for differences in neural activity
observed in healthy and PD conditions. In the PD state, model BG neurons exhibited
synchronous oscillatory activity in the theta band similar to those seen in vitro [78].
The model was then used to explore the therapeutic effects of HF STN DBS. Error
index, a measure characterizing the efficacy of the TH to function as a relay, was
used as a model-based proxy for symptom to quantify the therapeutic effects of STN
DBS. The robustness of error index as a model-based proxy for PD symptoms was
quantified in a separate study [41]. GPi activities recorded in nonhuman primates
under “healthy,” “PD,” “PD + subtherapeutic DBS,” and “therapeutic DBS” were
fed as inputs to the TC neurons from the RT model. The model predicted a loss
in thalamic relay fidelity (i.e., an increase in error index) during input recorded
under PD condition compared to healthy, and the fidelity was restored only during
therapeutic but not subtherapeutic DBS. However, the RT model did not account
for the frequency-dependent effects of STN DBS in suppressing PD symptoms
[86]. In the RT model, STN DBS frequencies greater than 20 Hz were effective
in suppressing PD symptoms, which is inconsistent with clinical observations [73].
Several studies used the RT model to optimize DBS targets [77], amplitude/pulse
width [23, 32, 88, 95], multi-site stimulation [7, 40], multi-input phase-shifted
patterns [2], irregular/random patterns [90], and closed-loop controllers [36, 63,
64, 89].

The STN-GPe subcircuit from the RT model [92], incorporating synaptic
plasticity, has been used extensively to quantify the effects of a novel DBS
protocol called coordinated reset [30, 31, 46, 65]. Coordinated reset (CR) includes
phase-shifted stimulation trains delivered via multiple electrodes with the aim of
desynchronizing the excessive synchronization between neurons within BG nuclei
and between nuclei of the BG network that occurs in PD [12]. The model predicts
spike-time-dependent plasticity between intra-STN and intra-GPe synapses which
can be exploited to induce a long-lasting therapeutic response to CR stimulation
compared to continuous HF stimulation. A few pilot studies have been attempted
in PD patients, and MPTP-treated nonhuman primates to validate the model
predicted long-lasting neural effects of the CR protocol [1, 91, 94]. However, further
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experimental studies are required to compare the neural effects of CR protocol with
model-based predictions, and if the effects match, then the model can be used further
to optimize the CR protocol [67].

Another novel DBS protocol known as delayed feedback (DF) is a closed-
loop technique where high-frequency stimulation is delivered at a set delay with
the amplitude of the high-frequency train being modulated based on oscillatory
activity detected in the local field potential. The STN-GPe subcircuit from the
RT network predicts the DF protocol to be also effective in desynchronizing the
ongoing oscillatory activity [79]. An adaptive DBS (aDBS) scheme similar to
the DF protocol was tested in PD patients, and aDBS was found to be more
efficient in suppressing PD motor symptoms at a much lower energy compared to
HF DBS [83]. These studies using the RT model revealed desynchronization of
abnormal oscillatory activity as an important therapeutic mechanism of DBS.

A revised version of the RT model was developed to account for the strong
frequency-dependent effects of STN DBS [86]. The model BG neurons in the
So model exhibited synchronous beta oscillations in the PD state similar to those
observed in bradykinesia-dominant PD patients [18, 22]. Pathological beta oscilla-
tions are strongly correlated with motor symptoms of PD especially bradykinesia
and may serve as a proxy to evaluate the efficacy of DBS [57, 81]. The So version
of the RT model was used to quantify the effects of novel DBS waveforms [26].
The model predicted the delayed Gaussian waveform to outperform the traditional
rectangular waveform both in efficiency to elicit action potentials and in energy
consumption. Further, the So version of the RT model was used in multiple studies
to characterize the neural response to different temporal patterns of DBS. First,
temporally random patterns of STN DBS with an average frequency of 130 Hz
performed poorly in reducing bradykinesia in PD patients compared to regular
130 Hz [28]. A modified version of the RT model akin to the So model was used to
quantify the underlying neural response responsible for this effect. Random STN
DBS in the model failed to regularize GPi neural activity and restore thalamic
relay function. Second, in a different study in PD patients, several temporally non-
regular patterns of DBS were found to be more effective in suppressing bradykinesia
compared to regular 185 Hz STN DBS [17]. The So version of the RT model
was used to demonstrate that the non-regular patterns of STN DBS differentially
modulated beta-band power in the activity of model GPi neurons with a trend similar
to the measured motor response in PD patients [17]. Finally, the So version of the
RT model was coupled to a genetic algorithm to optimize temporal patterns of STN
DBS, and the model-based optimized pattern with an average frequency of 45 Hz
was efficient in suppressing motor symptoms in PD patients similar to regular HF
STN DBS [16]. These studies quantifying the effects of temporal patterns of DBS
were instrumental in revealing that HF stimulation is neither necessary nor sufficient
to generate effective symptom relief.
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A biophysically based network model of the BG developed by Hahn and
McIntyre (HM) also successfully accounted for the frequency-dependent effects of
STN DBS [42]. In contrast to the So/RT model, the BG network in the HM model
was optimized to match in vivo firing rates recorded from nonhuman primates.
The model BG neurons in the HM model exhibited increased burst activity and
synchronous beta oscillations in the PD state compared to the healthy condition. In
the HM model, reduction of GPi burst activity in a stimulation frequency-dependent
manner was theorized as a potential therapeutic mechanism of DBS. Subsequently,
the HM model was used to obtain optimum phase response curves for STN DBS
[50, 51].

Kang and Lowery extended the BG circuit by modeling the cortical neurons
and their connections to STN, the hyperdirect pathway [54]. The model implicated
the hyperdirect pathway as the entry point to the BG of abnormal low-frequency
oscillations during PD and added support to the desynchronization theory as the
basis for the therapeutic mechanism of DBS. The model was then used as a test bed
to evaluate the performance of several closed-loop DBS control schemes [29].

We developed a computational model of the cortical-basal ganglia-thalamus
circuit in the 6-OHDA-lesioned rat model of PD, including a closed-loop connection
from the thalamus to cortex [58]. The properties of the model were validated
extensively, including responses evoked by CTX stimulation in Str, STN, GPe, and
GPi model neurons with experimental PSTHs [55]. The model accounted for key
differences observed in the response patterns between the normal and PD states, and
the firing rates and patterns observed in the normal and PD states were consistent
with those in experimental studies in rats. We used the model to quantify the
frequency-dependent effects of STN DBS on low-frequency oscillatory activity in
model neurons. The model accounted for the frequency-dependent effects of STN
DBS with high frequencies being more effective at suppressing the pathological
oscillatory activity compared to low frequencies. This rodent version of the BG
network was coupled with a novel genetic algorithm to optimize temporal patterns
of STN DBS [21].

5.6 Opportunities to Improve Network Models of the BG
for Optimization of DBS

5.6.1 Symptom-Specific Network Models

The major motor symptoms of PD are rest tremor, rigidity, bradykinesia, postural
instability, and gait imbalance. Other non-motor symptoms include cognitive
dysfunctions, speech deficits, mood disorders, etc. The major motor symptoms are
not expressed to an equal extent across individuals with PD, i.e., some persons
have more rest tremor compared to bradykinesia and vice versa [80]. Therefore,
there is a need to develop symptom-specific network models of the BG circuit
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rather than generic ones. For example, synchronous oscillations of the BG neurons
in the beta band (13–35 Hz) are correlated with bradykinesia, whereas theta-band
oscillations (3–7 Hz) might be related to tremor symptoms [19]. STN and GPi are
preferred DBS targets during expression of all PD motor symptoms, whereas ventral
intermediate nucleus of the TH is the preferred target in tremor-dominant PD [5].
Thus, computational models of the BG network exhibiting symptom-specific neural
signatures can be used to optimize DBS therapy for individual patients.

5.6.2 Dynamic-Specific Network Models

The symptoms of PD are dynamic with current state such as movements vs. rest,
as well as dependent on medication status and time since last dose. Therefore,
improved network models of BG should capture these dynamics in PD symptoms
with respect to a trigger signal indicating an event such as initiation of movement.
Desynchronization of beta-band oscillations is a common phenomenon observed
during the onset of movements [61].

5.6.3 Improved Cost Function for Model-Based Optimization

The challenges with current DBS technology are side effects and high energy
expenditure due to the necessity of HF stimulation. Model-based optimization might
enable identification of DBS parameters that reduce PD symptoms with reduced
energy consumption [16]. Activation of internal capsule fibers is implicated as the
major cause for DBS-induced side effects. Hence, there is a need to develop model-
based proxies indicating induced side effects for a given set of DBS parameters.
Further, parameters might also be optimized to reduce stimulation-evoked side
effects. For example, reducing the average frequency of stimulation tends to reduce
side effects [83]. Additionally, current model-based optimization approaches do
not restore the rates and patterns of neural activity seen during healthy conditions
(Fig. 5.2). Therefore, future model-based optimization studies can optimize DBS
patterns such that neural activity during PD+HF STN DBS condition is same as
the healthy state. We envision future DBS technology to be neurorestorative, i.e.,
restore neural activity seen in the healthy BG, and models that faithfully represent
neural activity and the response to DBS will be a critical element of developing such
therapies.
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Fig. 5.2 Model-based neural response (rasterogram and interspike interval histogram of GPi
neurons) during three different conditions (a) healthy, (b) Parkinson’s disease (PD), and (c)
PD+high-frequency subthalamic nucleus deep brain stimulation (HF STN DBS). Note the
asynchronous firing in healthy condition, while PD state exhibits synchronous burst firing. PD+HF
STN DBS results in entrainment of model neurons at the frequency of STN DBS. Note the neural
response during PD+HF STN DBS state is not the same as the healthy condition. In other words,
HF STN DBS does not restore the response seen during normal condition instead induces a
different neural response which results in suppression of PD motor symptoms. Therefore, future
DBS technology can be neurorestorative where the goal is to optimize stimulation patterns such
that neural response during PD+HF STN DBS is similar to the healthy condition



5 Network Models of the Basal Ganglia in Parkinson’s Disease: Advances. . . 51

References

1. Adamchic I, Hauptmann C, Barnikol UB, Pawelczyk N, Popovych O, Barnikol TT, Silchenko
A, Volkmann J, Deuschl G, Meissner WG (2014) Coordinated reset neuromodulation for
Parkinson’s disease: proof-of-concept study. Mov Disord 29:1679–1684

2. Agarwal R, Sarma SV (2012) The effects of DBS patterns on basal ganglia activity and
thalamic relay. J Comput Neurosci 33:151–167

3. Agid Y (1987) Biochemistry of neurotransmitters in Parkinson’s disease. Mov Disord 2:166–
230

4. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders.
Trends Neurosci 12:366–375

5. Anderson D, Beecher G, Ba F (2017) Deep brain stimulation in Parkinson’s disease: new and
emerging targets for refractory motor and nonmotor symptoms. Parkinson’s Dis 2017:5124328

6. Anderson ME, Postupna N, Ruffo M (2003) Effects of high-frequency stimulation in the inter-
nal globus pallidus on the activity of thalamic neurons in the awake monkey. J Neurophysiol
89:1150–1160

7. Arefin MS (2012). Performance analysis of single-site and multiple-site deep brain stimulation
in basal ganglia for Parkinson’s disease. In: Electrical & Computer Engineering (ICECE), 2012
7th international conference on IEEE, p 149–152

8. Ashkan K, Rogers P, Bergman H, Ughratdar I (2017) Insights into the mechanisms of deep
brain stimulation. Nat Rev Neurol 13:548–554

9. Baudrexel S, Witte T, Seifried C, von Wegner F, Beissner F, Klein JC, Steinmetz H, Deichmann
R, Roeper J, Hilker R (2011) Resting state fMRI reveals increased subthalamic nucleus–motor
cortex connectivity in Parkinson’s disease. NeuroImage 55:1728–1738

10. Benabid A-L, Pollak P, Louveau A, Henry S, De Rougemont J (1987) Combined (thalamotomy
and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson
disease. Stereotact Funct Neurosurg 50:344–346

11. Bergman H, Wichmann T, Karmon B, DeLong M (1994) The primate subthalamic nucleus. II.
Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520

12. Beurrier C, Congar P, Bioulac B, Hammond C (1999) Subthalamic nucleus neurons switch
from single-spike activity to burst-firing mode. J Neurosci 19:599–609

13. Bezard E, Boraud T, Bioulac B, Gross CE (1999) Involvement of the subthalamic nucleus in
glutamatergic compensatory mechanisms. Eur J Neurosci 11:2167–2170

14. Bin-Mahfoodh M, Hamani C, Sime E, Lozano AM (2003) Longevity of batteries in internal
pulse generators used for deep brain stimulation. Stereotact Funct Neurosurg 80:56–60

15. Bolam J, Hanley J, Booth P, Bevan M (2000) Synaptic organisation of the basal ganglia. J Anat
196:527–542

16. Brocker DT, Swan BD, So RQ, Turner DA, Gross RE, Grill WM (2017) Optimized temporal
pattern of brain stimulation designed by computational evolution. Sci Transl Med 9:eaah3532

17. Brocker DT, Swan BD, Turner DA, Gross RE, Tatter SB, Koop MM, Bronte-Stewart H, Grill
WM (2013) Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s
disease. Exp Neurol 239:60–67

18. Bronte-Stewart H, Barberini C, Koop MM, Hill BC, Henderson JM, Wingeier B (2009) The
STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation
after deep brain stimulation. Exp Neurol 215:20–28

19. Brown P (2003) Oscillatory nature of human basal ganglia activity: relationship to the
pathophysiology of Parkinson’s disease. Mov Disord 18:357–363

20. Calabresi P, Picconi B, Tozzi A, Ghiglieri V, Di Filippo M (2014) Direct and indirect pathways
of basal ganglia: a critical reappraisal. Nat Neurosci 17:1022–1030

21. Cassar IR, Titus ND, Grill WM (2017) An improved genetic algorithm for designing optimal
temporal patterns of neural stimulation. J Neural Eng 14:066013



52 K. Kumaravelu and W. M. Grill

22. Cassidy M, Mazzone P, Oliviero A, Insola A, Tonali P, Lazzaro VD, Brown P (2002)
Movement-related changes in synchronization in the human basal ganglia. Brain 125:1235–
1246

23. Chen Y, Wang J, Wei X, Deng B, Che Y (2011) Particle swarm optimization of periodic deep
brain stimulation waveforms. In: Control Conference (CCC), 2011 30th Chinese IEEE, p 754–
757

24. Chu H-Y, McIver EL, Kovaleski RF, Atherton JF, Bevan MD (2017) Loss of hyperdirect
pathway cortico-subthalamic inputs following degeneration of midbrain dopamine neurons.
Neuron 95:1306–1318. e1305

25. Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM, Costa RM (2013) Concurrent
activation of striatal direct and indirect pathways during action initiation. Nature 494:238–242

26. Daneshzand M, Faezipour M, Barkana BD (2017) Computational stimulation of the basal
ganglia neurons with cost effective delayed Gaussian waveforms. Front Comput Neurosci
11:73

27. Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schäfer H, Bötzel K, Daniels C,
Deutschländer A, Dillmann U, Eisner W (2006) A randomized trial of deep-brain stimulation
for Parkinson’s disease. N Engl J Med 355:896–908

28. Dorval AD, Kuncel AM, Birdno MJ, Turner DA, Grill WM (2010) Deep brain stimulation
alleviates parkinsonian bradykinesia by regularizing pallidal activity. J Neurophysiol 104:911–
921

29. Dunn EM, Lowery MM (2013) Simulation of PID control schemes for closed-loop deep brain
stimulation. In: Neural Engineering (NER), 2013 6th international IEEE/EMBS conference on
IEEE, p 1182–1185

30. Ebert M, Hauptmann C, Tass PA (2014) Coordinated reset stimulation in a large-scale model
of the STN-GPe circuit. Front Comput Neurosci 8:154

31. Fan D, Wang Q (2015) Improving desynchronization of parkinsonian neuronal network via
triplet-structure coordinated reset stimulation. J Theor Biol 370:157–170

32. Feng X-J, Shea-Brown E, Greenwald B, Kosut R, Rabitz H (2007) Optimal deep brain
stimulation of the subthalamic nucleus—a computational study. J Comput Neurosci 23:265–
282

33. Filion M (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with
MPTP-induced parkinsonism. Brain Res 547:140–144

34. Gerfen CR, Wilson CJ (1996) Chapter II: The basal ganglia. In: Swanson LW, Björklund A,
Hokfelt T (eds) Handbook of chemical neuroanatomy, Vol. 12: Integrated systems of the CNS,
Part III. Elsevier Science Publishers, New York, pp 371–468

35. Glynn G, Ahmad S (2002) Three-dimensional electrophysiological topography of the rat
corticostriatal system. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188:695–703

36. Gorzelic P, Schiff S, Sinha A (2013) Model-based rational feedback controller design for
closed-loop deep brain stimulation of Parkinson’s disease. J Neural Eng 10:026016

37. Grill WM, Cantrell MB, Robertson MS (2008) Antidromic propagation of action potentials in
branched axons: implications for the mechanisms of action of deep brain stimulation. J Comput
Neurosci 24:81–93

38. Group D-BSfPsDS (2001) Deep-brain stimulation of the subthalamic nucleus or the pars
interna of the globus pallidus in Parkinson’s disease. N Engl J Med 2001:956–963

39. Guiot G, Brion S(1953) Traitement des mouvements anormaux par la coagulation pallidale-
Technique et resultats. In: Revue Neurologique MASSON EDITEUR 120 BLVD SAINT-
GERMAIN, 75280 PARIS 06, FRANCE, p 578–580

40. Guo Y, Rubin JE (2011) Multi-site stimulation of subthalamic nucleus diminishes thalamocor-
tical relay errors in a biophysical network model. Neural Netw 24:602–616

41. Guo Y, Rubin JE, McIntyre CC, Vitek JL, Terman D (2008) Thalamocortical relay fidelity
varies across subthalamic nucleus deep brain stimulation protocols in a data-driven computa-
tional model. J Neurophysiol 99:1477–1492

42. Hahn PJ, McIntyre CC (2010) Modeling shifts in the rate and pattern of subthalamopallidal
network activity during deep brain stimulation. J Comput Neurosci 28:425–441



5 Network Models of the Basal Ganglia in Parkinson’s Disease: Advances. . . 53

43. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic
nucleus changes the firing pattern of pallidal neurons. J Neurosci 23:1916–1923

44. Hassani O-K, Mouroux M, Feger J (1996) Increased subthalamic neuronal activity after
nigral dopaminergic lesion independent of disinhibition via the globus pallidus. Neuroscience
72:105–115

45. Hassler R, Riechert T (1954) Indikationen und Lokalisationsmethode der gezielten Hirnopera-
tionen. Nervenarzt 25:441–447

46. Hauptmann C, Tass PA (2010) Restoration of segregated, physiological neuronal connectivity
by desynchronizing stimulation. J Neural Eng 7:056008

47. Heimer G, Bar-Gad I, Goldberg JA, Bergman H (2002) Dopamine replacement therapy
reverses abnormal synchronization of pallidal neurons in the 1-methyl-4-phenyl-1, 2, 3, 6-
tetrahydropyridine primate model of parkinsonism. J Neurosci 22:7850–7855

48. Herrington TM, Cheng JJ, Eskandar EN (2016) Mechanisms of deep brain stimulation. J
Neurophysiol 115:19–38

49. Hollerman JR, Grace AA (1992) Subthalamic nucleus cell firing in the 6-OHDA-treated rat:
basal activity and response to haloperidol. Brain Res 590:291–299

50. Holt AB, Netoff TI (2014) Origins and suppression of oscillations in a computational model of
Parkinson’s disease. J Comput Neurosci 37:505–521

51. Holt AB, Wilson D, Shinn M, Moehlis J, Netoff TI (2016) Phasic burst stimulation: a closed-
loop approach to tuning deep brain stimulation parameters for Parkinson’s disease. PLoS
Comput Biol 12:e1005011

52. Humphries MD, Stewart RD, Gurney KN (2006) A physiologically plausible model of action
selection and oscillatory activity in the basal ganglia. J Neurosci 26:12921–12942

53. Jankovic J, Rajput AH, McDermott MP, Perl DP (2000) The evolution of diagnosis in early
Parkinson disease. Arch Neurol 57:369–372

54. Kang G, Lowery MM (2013) Interaction of oscillations, and their suppression via deep brain
stimulation, in a model of the cortico-basal ganglia network. IEEE Trans Neural Syst Rehabil
Eng 21:244–253

55. Kita H, Kita T (2011) Cortical stimulation evokes abnormal responses in the dopamine-
depleted rat basal ganglia. J Neurosci 31:10311–10322

56. Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD,
Benazzouz A, LeBas JF (2003) Five-year follow-up of bilateral stimulation of the subthalamic
nucleus in advanced Parkinson’s disease. N Engl J Med 349:1925–1934

57. Kühn AA, Kempf F, Brücke C, Doyle LG, Martinez-Torres I, Pogosyan A, Trottenberg T,
Kupsch A, Schneider G-H, Hariz MI (2008) High-frequency stimulation of the subthalamic
nucleus suppresses oscillatory β activity in patients with Parkinson’s disease in parallel with
improvement in motor performance. J Neurosci 28:6165–6173

58. Kumaravelu K, Brocker DT, Grill WM (2016) A biophysical model of the cortex-basal
ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson’s disease. J Comput
Neurosci 40:207–229

59. Kuncel AM, Grill WM (2004) Selection of stimulus parameters for deep brain stimulation.
Clin Neurophysiol 115:2431–2441

60. Laitinen LV, Bergenheim AT, Hariz MI (1992) Leksell’s posteroventral pallidotomy in the
treatment of Parkinson’s disease. J Neurosurg 76:53–61

61. Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO (2002) Dependence
of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain
125:1196–1209

62. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid A-L (1998)
Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J
Med 339:1105–1111

63. Liu C, Wang J, Deng B, Wei X, Yu H, Li H, Fietkiewicz C, Loparo KA (2016) Closed-loop
control of tremor-predominant parkinsonian state based on parameter estimation. IEEE Trans
Neural Syst Rehabil Eng 24:1109–1121



54 K. Kumaravelu and W. M. Grill

64. Liu C, Wang J, Li H, Lu M, Deng B, Yu H, Wei X, Fietkiewicz C, Loparo KA (2017) Closed-
loop modulation of the pathological disorders of the basal ganglia network. IEEE Trans Neural
Netw Learn Syst 28:371–382

65. Lourens MA, Schwab BC, Nirody JA, Meijer HG, van Gils SA (2015) Exploiting pallidal
plasticity for stimulation in Parkinson’s disease. J Neural Eng 12:026005

66. Lozano AM, Lang AE, Galvez-Jimenez N, Miyasaki J, Duff J, Hutchison W, Dostrovsky JO
(1995) Effect of GPi pallidotomy on motor function in Parkinson’s disease. Lancet 346:1383–
1387

67. Lysyansky B, Popovych OV, Tass PA (2013) Optimal number of stimulation contacts for
coordinated reset neuromodulation. Front Neuroengineering 6:5

68. Magill P, Bolam J, Bevan M (2001) Dopamine regulates the impact of the cerebral cortex on
the subthalamic nucleus–globus pallidus network. Neuroscience 106:313–330

69. Mallet N, Pogosyan A, Márton LF, Bolam JP, Brown P, Magill PJ (2008) Parkinsonian beta
oscillations in the external globus pallidus and their relationship with subthalamic nucleus
activity. J Neurosci 28:14245–14258

70. McIntyre CC, Grill WM, Sherman DL, Thakor NV (2004) Cellular effects of deep brain
stimulation: model-based analysis of activation and inhibition. J Neurophysiol 91:1457–1469

71. Meyers R (1942) Surgical interruption of the pallidofugal fibers. Its effect on the syndrome of
paralysis agitans and technical considerations in its application. NY State J Med 42:317–325

72. Moran RJ, Mallet N, Litvak V, Dolan RJ, Magill PJ, Friston KJ, Brown P (2011) Alterations
in brain connectivity underlying beta oscillations in parkinsonism. PLoS Comput Biol
7:e1002124

73. Moro E, Esselink R, Xie J, Hommel M, Benabid A, Pollak P (2002) The impact on Parkinson’s
disease of electrical parameter settings in STN stimulation. Neurology 59:706–713

74. Nambu A, Tokuno H, Hamada I, Kita H, Imanishi M, Akazawa T, Ikeuchi Y, Hasegawa N
(2000) Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey.
J Neurophysiol 84:289–300

75. Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico–subthalamo–
pallidal ‘hyperdirect’ pathway. Neurosci Res 43:111–117

76. Pan HS, Walters JR (1988) Unilateral lesion of the nigrostriatal pathway decreases the firing
rate and alters the firing pattern of globus pallidus neurons in the rat. Synapse 2:650–656

77. Pirini M, Rocchi L, Sensi M, Chiari L (2009) A computational modelling approach to
investigate different targets in deep brain stimulation for Parkinson’s disease. J Comput
Neurosci 26:91

78. Plenz D, Kital ST (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and
external globus pallidus. Nature 400:677

79. Popovych OV, Lysyansky B, Rosenblum M, Pikovsky A, Tass PA (2017) Pulsatile desynchro-
nizing delayed feedback for closed-loop deep brain stimulation. PLoS One 12:e0173363

80. Rajput A, Sitte H, Rajput A, Fenton M, Pifl C, Hornykiewicz O (2008) Globus pallidus
dopamine and Parkinson motor subtypes clinical and brain biochemical correlation. Neurology
70:1403–1410

81. Ray N, Jenkinson N, Wang S, Holland P, Brittain J, Joint C, Stein J, Aziz T (2008) Local
field potential beta activity in the subthalamic nucleus of patients with Parkinson’s disease is
associated with improvements in bradykinesia after dopamine and deep brain stimulation. Exp
Neurol 213:108–113

82. Rizzone M, Lanotte M, Bergamasco B, Tavella A, Torre E, Faccani G, Melcarne A, Lopiano
L (2001) Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of
variation in stimulation parameters. J Neurol Neurosurg Psychiatry 71:215–219

83. Rosa M, Arlotti M, Ardolino G, Cogiamanian F, Marceglia S, Di Fonzo A, Cortese F, Rampini
PM, Priori A (2015) Adaptive deep brain stimulation in a freely moving parkinsonian patient.
Mov Disord 30:1003–1005

84. Rubin JE, Terman D (2004) High frequency stimulation of the subthalamic nucleus eliminates
pathological thalamic rhythmicity in a computational model. J Comput Neurosci 16:211–235



5 Network Models of the Basal Ganglia in Parkinson’s Disease: Advances. . . 55

85. Smith Y, Beyan M, Shink E, Bolam J (1998) Microcircuitry of the direct and indirect pathways
of the basal ganglia. Neurosci-Oxford 86:353–388

86. So RQ, Kent AR, Grill WM (2012) Relative contributions of local cell and passing fiber
activation and silencing to changes in thalamic fidelity during deep brain stimulation and
lesioning: a computational modeling study. J Comput Neurosci 32:499–519

87. Soares J, Kliem MA, Betarbet R, Greenamyre JT, Yamamoto B, Wichmann T (2004) Role of
external pallidal segment in primate parkinsonism: comparison of the effects of 1-methyl-4-
phenyl-1, 2, 3, 6-tetrahydropyridine-induced parkinsonism and lesions of the external pallidal
segment. J Neurosci 24:6417–6426

88. Su F, Wang J, Deng B, Li H (2015a) Effects of deep brain stimulation amplitude on the basal-
ganglia-thalamo-cortical network. In: Control and Decision Conference (CCDC), 2015 27th
Chinese IEEE, p 4049–4053

89. Su F, Wang J, Deng B, Wei X-L, Chen Y-Y, Liu C, Li H-Y (2015b) Adaptive control of
Parkinson’s state based on a nonlinear computational model with unknown parameters. Int
J Neural Syst 25:1450030

90. Summerson SR, Aazhang B, Kemere C (2015) Investigating irregularly patterned deep brain
stimulation signal design using biophysical models. Front Comput Neurosci 9:78

91. Tass PA, Qin L, Hauptmann C, Dovero S, Bezard E, Boraud T, Meissner WG (2012)
Coordinated reset has sustained aftereffects in parkinsonian monkeys. Ann Neurol 72:816–
820

92. Terman D, Rubin JE, Yew A, Wilson C (2002) Activity patterns in a model for the
subthalamopallidal network of the basal ganglia. J Neurosci 22:2963–2976

93. Vila M, Perier C, Feger J, Yelnik J, Faucheux B, Ruberg M, Raisman-Vozari R, Agid Y,
Hirsch E (2000) Evolution of changes in neuronal activity in the subthalamic nucleus of rats
with unilateral lesion of the substantia nigra assessed by metabolic and electrophysiological
measurements. Eur J Neurosci 12:337–344

94. Wang J, Nebeck S, Muralidharan A, Johnson MD, Vitek JL, Baker KB (2016) Coordinated
reset deep brain stimulation of subthalamic nucleus produces long-lasting, dose-dependent
motor improvements in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine non-human pri-
mate model of parkinsonism. Brain Stimul 9:609–617

95. Wang R, Wang J, Chen Y, Deng B, Wei X (2011) A new deep brain stimulation waveform
based on PWM. In: Biomedical Engineering and Informatics (BMEI), 2011 4th international
conference on IEEE, p 1815–1819

96. Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ, Rothlind J, Sagher O, Reda
D, Moy CS (2009) Bilateral deep brain stimulation vs best medical therapy for patients with
advanced Parkinson disease: a randomized controlled trial. JAMA 301:63–73

97. Wichmann T, Bergman H, Starr PA, Subramanian T, Watts RL, DeLong MR (1999) Com-
parison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal
segment and in the substantia nigra pars reticulata in primates. Exp Brain Res 125:397–409

98. Wichmann T, Soares J (2006) Neuronal firing before and after burst discharges in the monkey
basal ganglia is predictably patterned in the normal state and altered in parkinsonism. J
Neurophysiol 95:2120–2133



Chapter 6
Neural Synchronization in Parkinson’s
Disease on Different Time Scales

Sungwoo Ahn, Choongseok Park, and Leonid L. Rubchinsky

Abstract Parkinson’s disease is marked by an elevated neural synchrony in the
cortico-basal ganglia circuits in the beta frequency band. This elevated synchrony
has been associated with Parkinsonian hypokinetic symptoms. The application of
recently developed synchronization analysis techniques allows us to investigate the
temporal dynamics of synchrony on different time scales. The results of this analysis
are summarized here, revealing highly variable dynamics of synchronized neural
activity on multiple time scales and its association with disease.

Keywords Parkinson’s disease · Neural oscillations · Neural synchronization ·
Desynchronization · Intermittency · Beta-band oscillations

6.1 Beta-Band Oscillations and Synchronization
in Parkinson’s Disease

Synchronized rhythms of neural activity are widely observed phenomena in the
brain and have been studied quite extensively because of their correlations with
multiple functions and dysfunctions of neural systems. Neural synchronization
plays a crucial role in perception, cognition, and memory, among other processes
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(reviewed in [8, 11, 12]). Abnormalities of neural synchrony (such as excessively
strong or excessively weak synchrony) have been related to the symptoms of several
neurological and psychiatric disorders (reviewed in [21, 29, 31]).

In particular, abnormalities of neural oscillations and synchrony have been
observed in the cortico-basal ganglia circuits in Parkinson’s disease. Parkinson’s
disease is a major neurodegenerative disorder characterized by chronic dopamine
deficiency resulting in a set of movement-related as well as other symptoms
(see, e.g., [20] and references therein). The loss of dopamine in Parkinson’s
disease directly affects the basal ganglia, a group of subcortical nuclei which are,
among other things, involved in the neural control of movement. The landmark of
Parkinson’s disease is overall slowness of movement. This hypokinetic behavior
involves bradykinesia and akinesia (slowness of ongoing movement/inability to
start new movement) and rigidity (stiffness of joints). Another frequent symptom
is rest tremor whose biological mechanisms are probably different from those of
hypokinesia.

Parkinsonian pathophysiology is marked by increased oscillatory and syn-
chronous activity in the beta frequency band in cortical and basal ganglia circuits.
Over the past two decades, many studies have reported on the relationship between
excessive oscillations and synchronization in the beta-band and hypokinetic motor
deficits in humans with Parkinson’s disease and in animal models of this disorder
(reviewed in, e.g., [10, 13, 28, 30]).

Even though Parkinsonian brain expresses elevated beta-band synchrony, this
synchrony is still relatively mild [22, 30]. It changes in time, and most conventional
methods of synchronization estimation miss a complex picture of temporal dynam-
ics of synchrony. However, several techniques for the analysis of the dynamics of
synchrony reveal different temporal patterns of synchrony on different time scales
(see below). Here we review recent progress in the development of these synchro-
nization analysis techniques and their applications to Parkinsonian neurodynamics.

6.2 Synchronization on Different Time Scales

There are many definitions of synchronization, but the common theme is coordi-
nation of the temporal aspects of the oscillations, usually because of the coupling
between underlying oscillations. From the observational standpoint, synchroniza-
tion is inherently non-instantaneous phenomenon, and this is what distinguishes
it from a random and non-repetitive coincidence of some oscillatory features of
two signals [24]. This leads to the difficulty in estimation of synchrony over short
time scales. To make this discussion more specific, let us focus here on phase
synchronization.

Phase domain is an appropriate way to analyze weakly synchronized neural
signals [14, 17, 18, 24, 32]. As the coupling strength increases from low to moderate
values, synchrony may be observed in the phase domain, while the amplitudes of
oscillations remain uncorrelated. The phase may provide a more sensitive metric to
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explore moderately synchronized neural activity. The phase can be extracted from
oscillatory data in different ways including the use of the Hilbert transformation.
Let us assume that two phases are extracted from two signals: ϕ1 and ϕ2. Then one
can compute a fairly standard phase-locking (or phase synchrony) index γ :

γ =
∥∥∥∥∥∥

1

N

N∑
j=1

ei θj

∥∥∥∥∥∥

2

,

where θ j = ϕ1(tj) − ϕ2(tj) is the phase difference, tj are the times of data points, and
N is the number of data points. This phase-locking index varies from 0 (no phase
synchrony) to 1 (perfect phase synchrony). This phase-locking index was used to
study neural synchronization of widely varying strength, but it naturally provides an
average strength of phase synchrony.

However, behavior and synchrony, which helps to mediate it, usually vary in
time, so there is a question of how synchronization varies in time. To address this
problem, one may estimate a phase-locking index over time window of certain fixed
length. But for confident evaluation of synchrony, one needs to observe it for a
relatively long time. One can approach this issue statistically [14], by constructing
surrogates to evaluate phase-locking significance. Depending on the time scale used
in the analysis, there will be different temporal synchrony patterns [14]. This is
not an artifact of the analysis. Depending on which time scale is physiological,
synchrony may be significant or not, not only statistically but physiologically.

Decreasing the length of the analysis time window necessarily degrades statisti-
cal power. The window size must be long enough for powerful statistics and yet short
enough for high temporal resolution. Importantly, this may render short analysis
windows impractical. However, if there is an overall synchrony, one can consider
how the system gets to a synchronized state and leaves it in time (synchronized
state needs to be appropriately defined). This approach was recently developed in
[1, 27] and can describe the differences in the temporal structure of synchronization
and desynchronization events for the systems with similar overall level of phase-
locking. This is important given that the average neural synchrony is frequently
not very strong. The underlying network of presumably weakly coupled oscillators
spends a substantial fraction of time in the desynchronized state, which justifies the
focus on desynchronization episodes.

We will briefly describe one possible realization of this approach by using
the first-return map analysis to quantify deviations from the synchronized state,
provided that the data exhibit some synchrony on the average. Whenever the phase
of one signal crosses zero level from negative to positive values, we record the phase
of the other signal, generating a set of consecutive values {φi}, i = 1, . . . , N. These
φi represent the phase difference between two signals. After determining the most
frequent value of φi, all the phases are shifted accordingly (for different episodes
under consideration) so that averaging across different episodes (with potentially
different phase shifts) is possible. Thus, this approach is not concerned with the
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Fig. 6.1 An example of a synchronized episode. (a) Raw (thin line) and band-pass (10–30 Hz)
filtered spiking signal (thick line). (c) Raw local field potential (LFP, grey line) and band-pass
filtered signal (black line). (b) The sines of the phases of the filtered spiking (thick curve) and the
filtered LFP (thin curve) signals. The amplitude information is lost here, but the phase information
is preserved. Dots indicate the phases of the filtered spiking signal whenever the phase of filtered
LFP signal crosses 0 upward. (Adapted from [22])

value of the phase shift between signals, but rather with the maintenance of the
constant phase shift (phase-locking) (see Fig. 6.1).

Dynamics is considered as desynchronized if the phase difference deviates
from the preferred phase difference by more than certain amount (π/2 was used
in several studies). The duration of the desynchronized episodes is measured in
cycles of the oscillations. Thus, if the phase difference deviates from the preferred
phase difference by more than π/2 once, then the duration of the desynchronized
episode is one. If it deviates twice, then the duration is two, etc. This approach
distinguishes between many short desynchronizations, few long desynchronizations
and the possibilities in between even if they all yield the same average synchrony
strength.

We will describe the results of application of these techniques to the studies of
Parkinson’s disease neurophysiology in the next section.

6.3 Synchronization in Parkinson’s Disease on Different
Time Scales

The application of the synchronization variations analysis to the subcortical intraop-
erative recordings from Parkinsonian patients indicates that the phase-locking index
γ exhibits substantial variation in time. Figure 6.2 illustrates that the question of
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Fig. 6.2 Temporal dynamics of synchronous activity depends on the analysis window length.
Black curve is the phase-locking index γ computed over a short time window with duration of
1 s (a) and 1.5 s (b). Dotted curve is the 95% significance level estimate, obtained from surrogate
data. (Adapted from [28])

whether the dynamics is synchronous or not depends on the time scale. The data
used here are the spiking activity and LFP in the subthalamic nucleus of patients
with advanced Parkinson’s disease (subthalamic nucleus LFP is likely to reflect
pallidal input to the subthalamic nucleus, so this synchrony may be indicative
of pallidal-subthalamic relationship or input-output relationship for subthalamic
nucleus, discussed in [22]). The values of γ depend on the analysis window length.
This is natural, for long time windows one expects to see less time variability,
while for shorter time window, one has a better temporal resolution and more time
variability as well as less powerful statistics.

The synchronization between motor cortices in Parkinson’s disease follows
a similar pattern [7]. The time course of synchrony (as evaluated in this time-
dependent manner) in cortical and basal ganglia networks happens to be correlated
in a manner specific to pairs of EEG electrodes over motor and prefrontal cortical
areas, pointing to potentially global functional interaction between cortex and the
basal ganglia in Parkinson’s disease, when elevated synchrony in one network may
impact synchronous dynamics in another one.

The synchronization index γ considered above does not inform about the fine
temporal structure of synchrony because the analysis window length is not very
small. A window size of 1 s corresponds to ~20 cycles of beta oscillations.
Exploration of synchrony patterns on finer time scales is possible with techniques
described in the previous section. This approach revealed the intermittent nature of
activity in Parkinsonian brain and specifically the fine temporal structure of beta
oscillations: synchronous states are interrupted by frequent, but short desynchro-
nizations (see Fig. 6.3). The signals go out of phase for just one cycle of oscillations
more often than for two or a larger number of cycles in the basal ganglia [22, 25].

Beta-band activity in Parkinson’s disease is associated with hypokinetic symp-
toms. Another prominent Parkinsonian symptom is rest tremor. It is confined to
other frequency band (3–8 Hz), is expressed independently of beta activity [26], and
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Fig. 6.3 The histogram of desynchronization event durations (measured in cycles of oscillations).
For the duration >5, all durations longer than 5 are pooled together. The data are for the window
length for the computation of synchronization index γ equal to 1.5 s. (Adapted from [22])

is likely to have separate network mechanism. However, it also expresses temporal
patterning of neural (or neuro-muscular) synchrony, which is different on different
time scales [15, 16]. High temporal variability of all these pathological neural
synchronized dynamics may be related to the fact that these oscillations per se may
be normal, but being overexpressed synchrony leads to pathological symptoms (see
discussion in [22, 23, 28]).

6.4 Modeling Patterns of Neural Synchrony

Complex interactions within and between nuclei may be responsible for intermit-
tently synchronized beta rhythms in Parkinson’s disease. Experiments suggest that
two nuclei, subthalamic nucleus and external globus pallidus, may form a key
substrate for the synchronous rhythms in the Parkinsonian basal ganglia. Different
models of subthalamo-pallidal circuits of basal ganglia were used to study how
properties of neurons interact with network properties to generate synchronized
rhythms (e.g., [19]). A potential problem with this approach is that getting moderate
synchrony in coupled oscillators is easy, so matching frequency and average
synchrony strength may not be constraining enough.

Matching the temporal patterning of synchrony, especially on the very short
time scales, may be an effective tool to match the modeling and experimental
data. While there may be many different characteristics of dynamics to match
between model and experiment, for the phenomena where synchrony is important,
matching synchronous patterns allows to match the phase space of model and real
systems. Since basal ganglia synchronous dynamics is very intermittent, matching
synchrony patterns in the model and experiment ensures some similarity between
large areas of the phase space of the model and real systems. Thus, the mechanisms
of synchronized oscillatory activity considered in the model may be able to produce
the experimentally observed dynamics (see discussion in [9, 22]).
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We have used the matching of synchrony patterns as a tool to find parameter
values for the models of the cortical and basal ganglia networks, which would
generate realistic synchronous beta-band oscillations. This approach suggested that
Parkinsonian state of basal ganglia networks at rest is on the border of synchronized
and non-synchronized activity [23]. This new approach showed how Parkinsonian
synchronized beta oscillations may be promoted by the simultaneous action of both
cortical (or some other) and subthalamo-pallidal network mechanisms [6]. It also
showed that some proposed types of deep brain stimulation in Parkinson’s disease
may be potentially either effective [25] or ineffective [9] in pathological synchrony
suppression. The latter is an interesting observation because it emphasizes that
effectiveness of suppression of pathological synchrony may depend on how this
synchrony is patterned in time.

6.5 Conclusions

Synchronization is inherently non-instantaneous phenomenon, and its temporal
dynamics depend on the time scale used for the analysis. Even the question of
whether there is a statistically significant synchrony or not depends on the time
scale under consideration [14]. Many neural synchrony phenomena and behaviors
that they mediate are short-lived and non-stationary. Thus, the temporal aspects of
neural synchrony are likely to be important.

In particular, this is the case for the pathological neural synchrony in Parkinson’s
disease. As we described here, the basal ganglia express specific temporal patterns
of the synchronous beta-band activity [22, 28], which are likely to be dopamine-
dependent [23]. Parkinsonian tremor expresses different synchrony patterns on
different temporal scales [15]. Temporal variations of the beta-band synchrony in
Parkinson’s disease are also observed in cortico-basal ganglia interactions, and
temporal variability of synchronous patterns in cortical and basal ganglia circuits
is related [6, 7]. And we also would like to note that not only temporal but spatial
aspects are relevant to Parkinsonian physiology too [33].

The temporal patterning of synchrony phenomena are not confined to Parkinson’s
disease. Alterations of synchrony patterns on short time scales have been observed
in addicted brain [4] and even in the coordination of brainstem-regulated respiratory
rhythm and cardiac rhythm in with disease vs. healthy states [5].

Frequently observed patterning of neural synchrony on the very short time
scales (the interruption of synchronous dynamics by potentially numerous but
predominantly very short desynchronizations) may be a generic property of neural
circuits in the brain even in the healthy state [2, 4]. It may be grounded in the
very basic properties of the excitability of neural membranes [3]. However, the
quantitative differences between patterning of neural synchrony may be related to
relatively mild but behaviorally significant changes in the underlying network.
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Chapter 7
Obsessive-Compulsive Tendencies
and Action Sequence Complexity: An
Information Theory Analysis

Mustafa Zeki, Fuat Balcı, Tutku Öztel, and Ahmed A. Moustafa

Abstract Obsessive-compulsive disorder (OCD) is a psychiatric condition that is
primarily associated with anxiety provoking repetitive thoughts (i.e., obsessions)
and actions that are manifested to neutralize the resultant anxiety (i.e., compul-
sions). Interestingly, OCD patients continue compulsive behaviors (e.g., repeatedly
rechecking if the door is locked) although they are typically aware of the irrationality
of these behaviors. This suggests that compulsive behaviors have habit-like features.
We predicted that the motor actions (e.g., sequence of goalless key presses) would
deviate from randomness in individuals with stronger obsessive-compulsive (OC)
tendencies and thus expected to observe more rigid sequential action patterns in
these individuals (e.g., pressing keys according to a motif). We applied entropy
theory approach, defined as the rate of change of information in a given sequence,
to test this hypothesis. We collected two different types of sequential behavioral
data from healthy individuals and scored their obsessive-compulsive tendencies
based on the Padua Inventory. In the first method, we asked participants to press
one of the two buttons sequentially. In the second method, participants were asked
to mark one of the four different options sequentially (on a multiple-choice optic
form). The behavioral characterization was carried out by quantifying the entropy
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in the sequence of two sets of behavioral data using the Shannon metric entropy
and Lempel-Ziv complexity measures. Our results revealed a negative relationship
between the degree of washing tendencies and the level of information contained
in action sequences. These results held only for the data collected with key presses
and not for the choice sequences in the paper-pencil task. Based on these results,
we conclude that the behavioral rigidity observed in the form of compulsive actions
may generalize to some other behaviors of the individual.

Keywords Shannon metric entropy · Lempel-Ziv complexity ·
Obsessive-compulsive disorder · Entropy · Information theory · Action
sequences

7.1 Introduction

Obsessive-compulsive disorder (OCD) is a mental disorder characterized by two
main elements: obsessions and compulsions. Obsessions are unwanted, disruptive,
and often repetitive thoughts, feelings, and sensations. Compulsions are repetitive
motor (checking) or mental (counting) acts aimed at seizing the observed obsessions
or anxiety that they cause. Attempts to inhibit the compulsions forcibly cause steep
increases in the current level of anxiety often resulting in the patient to repeatedly
engage in compulsions. Furthermore, some compulsions (such as a specific way
of washing hands) carry the features of fixed action patterns as rigid sequential
behavioral programs (e.g., Berridge et al. [2]). In this work, we investigated if such
rigid features of behavioral sequences are generalized to other actions that are not
part of an individual’s repertoire of compulsions.

There are several tools that originate from the information theory that are suitable
to capture the degree of rigidity in this type of action sequences. The complexity of a
symbolic sequence is defined as the rate of change of information in that sequence.
Intuitively, it is the measure of the information content of a given sequence. The
Shannon metric entropy (ME) uses the probabilities of symbolic “words” of a given
length in the calculation of the entropy [21]. Consequently, ME is sensitive to
both the frequency and ordering of the symbols in the sequence. The Lempel-Ziv
complexity (LZC) measures the information content by constituting a dictionary of
distinct “words” in increasing lengths by applying an algorithm that chooses the
shortest “word” that previously did not appear or that is not in the dictionary yet. It
is the resultant number of distinct words in the dictionary that is used to calculate
the LZC of the given symbolic sequence. In data-scientific terms, LZC measures
the compressibility of a given sequence. However, both of these entropy measures
are defined for the sequences of infinite length. Their application for very short
symbolic sequences has been the subject of many recent studies [1, 8, 12]. In one
of these studies, Lesne et al. [11] compared many types of entropy measures in
terms of their goodness of approximation and found out that Shannon ME and LZC
[10] were superior to other measures for both sequences with low and high entropy
values.
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In the current study, we applied these information theoretic approaches to char-
acterize the relationship between the obsessive-compulsive tendencies of healthy
individuals and the degree of rigidity in their action sequences without goals. In
one of the tasks, participants were asked to repeatedly choose between four options
on an optic form, whereas in the other task, they were asked to repeatedly press
one of the two buttons on a game pad. The obsessive-compulsive tendencies of
participants were quantified based on the Padua Inventory (washing, rumination,
impulses, checking, precision subscales). The information content (complexity)
of the sequential actions was quantified based on tools that are most suitable
for short-length symbolic data [11] (i.e., Shannon ME and LZC). Our results
revealed significant relationships between the complexity of behavioral sequences
and primarily the washing tendencies.

7.2 Methods

7.2.1 Participants

Participants were recruited from Koç University undergraduate students (mean age
20.2) in exchange for course credit. Sample was composed of 69 participants (39
in the first group, 30 in the second group). The data of three participants in the first
group (instructed to “respond as they wished”) were excluded from the analysis
since two of them did not fully complete the Padua Inventory and one of them
could not complete the game pad task because of a technical problem. There
were 35 females and 60 right-handed individuals in the remaining sample that was
composed of 66 participants. We applied the median absolute deviation (MAD)
method introduced in Leys et al. [13] on the ME and LZC scores to exclude those
participants who had executed the experiment with excessive ME and LZC scores
due to reasons such as pressing the same button repeatedly for long periods during
testing. In particular, an individual was regarded as an outlier if the corresponding
data of the individual is more than three median absolute deviation away from
the median. Based on this exclusion criterion, ten participants were excluded from
further analysis. Consequently, 56 participants were included in the analysis (26
females, 52 right-handed, mean age 20.12). All the procedures were approved by
the Koç University Institutional Review Board.

7.2.2 Material

Stimuli were presented on an iMac computer using Psychophysics Toolbox exten-
sions [4, 7, 16] that were run on Matlab R2015b. Key presses were collected with a
Logitech F710 Wireless game pad that was connected to the iMac.
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7.2.3 Procedure

Participants first completed the paper-pencil (multiple-choice optic form) and game
pad choice tasks (order counterbalanced). Following the completion of these tasks,
participants filled out the Padua Inventory.

7.2.4 Game Pad Choice Task

Participants were asked to press one of the two keys on a game pad for 1000 times as
they wished (in the first group of participants) or randomly (in the second group of
participants). Contingent upon each key press, a square appeared on the screen and
remained until the participant released the pressed key. With the presentation of the
square, a beep sound was played during the key press for up to 500 ms. Participants
could press the keys at any rate. The comparison of the entropy scores between
the two groups of participants did not reveal a significant difference either for ME
(t(54) = 0.24, p = 0.81) or LZC (t(54) = 0.71, p = 0.48). Based on the lack of
significant differences, data were pooled between the two groups.

7.2.5 Paper-Pencil (Multiple Choice Form) Task

Participants were given an empty multiple-choice optic form that contained items
with four choice options per item. They were then asked to choose one of the options
(A, B, C, and D) for 150 times starting with the first item. Each sheet was composed
of three columns, each of which contained 25 items. Participants filled out two
sheets and were instructed to place each sheet in their sight while filling out the
other one. Each sheet had print only on one side. Participants were instructed that
there was no right or wrong answer of their choices, thus they could answer as
they wished (in the first group of participants) or randomly (in the second group
of participants). The comparison of the entropy scores between the two groups did
not reveal a significant difference either for ME (t(54) = −0.62, p = 0.54) or LZC
(t(54) = −1.13, p = 0.26). Based on the lack of significant differences, data were
pooled between the two groups of participants.

7.2.6 Scales

Following behavioral testing, participants filled out the Padua Inventory ([19, 23];
see Beşiroğlu et al. [3] for Turkish). The Padua Inventory measures the severity
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of OCD symptoms and contains five subscales: checking, washing, rumination,
impulses, and precision [23].

7.2.7 Data Analysis

Information Theory Analysis: Entropy Calculations for Symbolic Data
Shannon metric entropy (ME): For a symbolic sequence of infinite length,

Shannon ME ([21], also known as box entropy) of order n is defined as

Hn = −
∑
Sn

p (Sn) log2p (Sn) .

The sum is taken among all substrings of length n, Sn with probability of p(Sn).
This quantity measures the amount of information contained in words of length n.

Intuitively, it is the amount of information or the amount of uncertainty in a given
sequence. The following example (modified from Claude Shannon [21]) gives a
better intuition for understanding the formula above for n = 1. Let us consider a
machine producing one of the letters A, B, C, and D at each step. The entropy is
now defined as the least number of questions to be asked on the average to guess
the next letter. If all letters appear in the same frequency, their probabilities will be
equal to p(S1), where S1 is one of the four letters. In order to guess the next letter,
it is sufficient to ask two questions for each letter on the average. Namely, one can
ask, “Is it A or B?”. If the answer is “Yes,” one can then ask “Is it A?” to determine
if it is A or B. Otherwise, one would ask “Is it C?” to determine if it is C or D.
For each choice, the number of questions to be asked is two. Hence the weighted
average would be

0.25 × 2 + 0.25 × 2 + 0.25 × 2 + 0.25 × 2 = 2.

If the letters do not appear with equal probabilities, the least number of questions
to be asked is reduced. If the new probabilities are 0.5 for A, 0.25 for B, and 0.125
for C and D, one asks questions with respect to the probabilities of the letters. Since
A appears in majority of the cases, finding it first reduces the average number of
questions to be asked to determine the next outcome. One first asks “Is it A?” if the
answer is “Yes,” the task is done; If not, one then asks “Is it B?” since B appears
most frequently after A. If the answer is “Yes,” the task is done. If not, one now asks
“Is it C?”. Now the expected number of questions to be asked is

0.50 × 1 + 0.25 × 2 + 0.125 × 3 + 0.125 × 3 = 1.750.

Interestingly, Shannon found out that the number of questions to be asked can
be determined using the probabilities of the symbols. The number of questions to
be asked to determine a given letter appears to be log2(1/p(S1)) with S1 is one of
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A, B, C, or D. Indeed, in the above example, the formula yields log2(1/0.5) = 1,
log2(1/0.25) = 2, log2(1/0.125) = 3, log2(1/0.125) = 3, respectively.

The entropy rate hr, is given by the limit

hr = lim
n→∞

Hn

n

which can be approximated by the difference

hsap := Hn+1 − Hn

for some n > 0.
Lempel-Ziv complexity (LZC): The LZC [10] also calculates the information

content of a given data sequence. It is usually used to compress large data sets by
creating a dictionary of the recurrent pieces in their first appearances. Instead of
recording redundant words, their index from the dictionary is recorded. In finding
the LZC of a given symbolic sequence of length N and k symbols, the sequence
is broken into substrings in such a way that the next word would be the shortest
substring that has not appeared before. For example, given the binary sequence

10110011001010

the sequence of the substrings would be

1 ∗ 0 ∗ 11 ∗ 00 ∗ 110 ∗ 01 ∗ 010.

Now, the number of words in the partition is used to calculate the LZC of the
data. If we denote the number of substrings with Ns, the LZC is given by

L = lim
N→∞LNwith LN = Ns

(
1 + logkNs

)

N

which can be approximated with hlap = LN for some N > 0. The relation of LZC
with Shannon ME is given as follows [11]:

lim
N→∞LN = hr

ln 2 ln k
or hr = L ln 2 ln k

Shannon ME is the measure of mean uncertainty of predicting a substring of
length n. Then, the entropy rate would be the change in the uncertainty. Intuitively,
this is translated as a change in the information added by increasing “word” length
by 1. On the other hand, the LZC of a symbolic sequence of length N is a measure
of distinct patterns in a given sequence. In their elegant work, Lesne et al. [11]
considered various entropy approximations for very short symbolic sequences with
correlated (deterministic) and uncorrelated (random) dynamics. Among the ones
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considered, they found that the above approximations for Shannon and LZC gave
the best results in terms of the difference with the entropy value of the untruncated
sequences. In particular, the LZC approximation hlap gave much better results for
sequences with low entropy dynamics; and Shannon ME approximation hsap was
equally good for sequences with low and high entropy values.

7.3 Results

Tables 7.1 and 7.2 summarize the results of the correlation and multiple linear
regression analyses, respectively. The entropy scores (both LZC and ME) were
negatively correlated with the washing tendencies. These results held for ME even
when the analyses were constrained to the first 150 choices, namely, to the number
of choices in the paper-pencil task. In addition, both ME and LZC of the first 150
items of the data were inversely correlated with overall Padua total score. The ME
and LZC of the first 150 choices also showed inverse correlation with the impulses
subscale score. We would like to stress that in two independent pilot studies we had
previously conducted, the relationship between the entropy scores and the degree
of washing tendency corroborated our current findings, increasing our confidence
primarily in our results in relation to the washing tendency.

No significant correlations were found for the data gathered with the paper-pencil
multiple-choice task.

The correlation results also indicate that OCD subscale scores are strongly
correlated among each other (p < 0.001 and r > 0.65 for all subscales). In addition,
individual entropy approximations by both ME and LZ algorithms were strongly
correlated for both the paper-pencil multiple-choice (p < 0.001, r = 0.83) and game
pad data (p < 0.001, r = 0.76).

We next performed a stepwise multiple linear regression analyses with each
Padua subscale as the predictor variable and (a) LZC, (b) ME, (c) LZC (first
150 items), and (d) ME (first 150 items) as the predicted variables. Criterion to
add terms into the regression was restricted to P-values that were less than 0.05.
Each predicted variable was entered separately in the regression analysis. The final
models are shown in Table 7.2. The LZC and ME of the entire data were predicted

Table 7.1 Correlations between Padua subscales and entropy measures for the game pad data.
Only statistically significant results are shown (Spearman’s rho and P-value)

Participants
(n = 56)

Lempel-Ziv compl.
(LZC) scores

Metric entropy
(ME) scores

Lempel-Ziv compl.
(LZC) (first 150 items)

(ME) (first
150 items)

Padua total score – – −0.34* −0.27*
Washing subscale −0.32* −0.32* – −0.27*
Impulses subscale – – −0.51*** −0.34*
Precision subscale – – – –

*indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001
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by washing scores. The predictions that were constrained to the initial segment of
the behavioral sequences (equivalent to the number of choices in the paper-pencil
task) also spanned the impulses (for both ME and LZC) and washing tendencies (for
ME); increase in both features predicted higher rigidity during this segment of the
data. Interestingly, however, checking tendencies predicted lower rigidity during the
initial segment of the data with ME. We would like to note that these positive results
should be interpreted with caution as they resulted from exploratory analyses.

7.4 Discussion

This study tested if obsessive-compulsive features in a subclinical group of partic-
ipants predicted lower action syntax complexity (higher action sequence rigidity)
measured by the entropy in the sequence of key presses/choices. Our results pointed
at a consistent relationship between the washing tendencies and action sequence
complexity in the game pad data (that required key presses). The paper-pencil
data did not result in any significant relationship with any of the variables. To our
knowledge, this is the first time investigation of the entropy of the behavioral data
in relation to a psychological construct(s).

The fact that the participants had immediate access to their previous choices in
the paper-pencil task is a possible reason for the lack of the relationship between
entropy of the choices gathered from this task and the Padua scores. That is,
having access to the previous choices may have altered the entropy of the obtained
data due to the induction of a common behavioral tendency in participants with
low and high obsessive-compulsive tendencies. Emergence of common behavioral
patterning might have masked the inherent differences between participants with
differential obsessive-compulsive tendencies. Another reason for the absence of the
correlation between the entropy of choices and the corresponding Padua scores
may be the size of the data collected in the paper-pencil task (150 items each).
In order to address this possibility, we calculated the correlations of total Padua
and Padua subscale scores with the entropy estimated from the initial segment
(150 items) of the game pad data. Though not as strong as the entire game pad
data, the entropy scores of the initial segment of the game pad data still resulted
in strong correlations with the Padua scores (total Padua, impulses, and washing
scores; see Table 7.1). Furthermore, our stepwise regression analysis showed
the predictive value of washing tendencies for action sequence rigidity that also
included/replaced by impulses tendencies when the data were restricted to the initial
segment of testing. These results suggest that game pad task might be more sensitive
to obsessive-compulsive tendencies primarily due to the task characteristics (key
press vs. paper-pencil, two vs. four choice options) rather than task-independent
peripheral factors such as the sample size. Further studies are needed to empirically
address these different possibilities.

These consistent relationships with specifically washing tendencies might be due
to different neural mechanisms that underlie washing compared to other forms of the
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obsessive-compulsive tendencies (e.g., checking and rumination). Neuroimaging
studies suggest that the provocation of washing, checking, and hoarding symptoms
in OCD patients activate different brain areas to varying degrees in addition to
some overlap (e.g., for review see Taylor et al. [22]). For instance, Mataix-Cols
et al. [15] asked participants to imagine different scenarios that related either to
washing, checking, or hoarding symptoms. The provocation of washing symptom
in OCD patients resulted in greater activity of the caudate nucleus and several
cortical regions (e.g., ventromedial prefrontal cortex) than healthy controls, whereas
higher activation of other brain areas were observed with the provocation of
checking and hoarding symptoms. In the same study, different Padua subscale scores
(i.e., washing, checking, hoarding) were found to be correlated with the activity
of different brain regions. Supporting the heterogeneity of OCD [14], different
subtypes of OCD also respond differentially to different treatments (for review see
Taylor et al. [22]) and exhibit differential decision-making deficits [9]. A higher
degree of overlap between the neural circuits that are related to the performance
in our task and washing tendencies compared to other symptoms of OCD might
underlie the specific relations observed in this study.

The evolutionary and neuroethological approaches to OCD suggest that com-
pulsions might just be exaggerated forms of otherwise adaptive responses such as
washing for hygiene/prevention of disease and checking for safety, some of which
might be (at least partially) genetically coded [5, 6, 17]. To this end, Rapoport [17]
emphasized possible links between washing and grooming, essentially conceptu-
alizing washing as a fixed action pattern. Similar exaggerated or ritualized forms
of natural behaviors were also observed in other animals, and they can be treated
with medications effective in human OCD (e.g., Rapoport et al. [18], Seksel and
Lindeman [20]). These approaches to OCD also support the specific relations we
have observed in our study combined with previous findings gathered from rodent
studies.

Overall, our results suggest that particularly washing tendencies but also the total
scores and impulses tendencies obtained in a widely used OCD inventory can predict
the action sequence syntax complexity even in a subclinical sample. We expect that
the extension of this study to clinical populations would reveal more robust findings.
Finally, our findings emphasize the importance of using information theory analysis
to understand the behavioral features of the psychiatric conditions.
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Chapter 8
Cortical Disinhibition, Attractor
Dynamics, and Belief Updating
in Schizophrenia

Rick A. Adams

Abstract Genetic and pharmacological evidence implicates N-methyl-D-aspartate
receptor (NMDAR) dysfunction in the pathophysiology of schizophrenia. Dys-
function of this key receptor – if localised to inhibitory interneurons – could
cause a net disinhibition of cortex and increase in ‘noise’. These effects can
be computationally modelled in a variety of ways: by reducing the precision
in Bayesian models of behaviour, by estimating neuronal excitability changes
in schizophrenia from evoked responses, or – as described in detail here – by
modelling abnormal belief updating in a probabilistic inference task. Features of
belief updating in schizophrenia include greater updating to unexpected evidence,
lower updating to consistent evidence, and greater stochasticity in responding. All
of these features can be explained by a loss of stability of ‘attractor states’ in cortex
and the representations they encode. Indeed, a hierarchical Bayesian model of belief
updating indicates that subjects with schizophrenia have a consistently increased
‘belief instability’ parameter. This instability could be a direct result of cortical
disinhibition: this hypothesis should be explored in future studies.

Keywords Schizophrenia · Psychosis · Computational · Beads task ·
Excitation-inhibition balance · Bayesian

A key challenge in schizophrenia spectrum research is understanding how deficien-
cies in synaptic function in general and N-methyl-D-aspartate receptor (NMDAR)
functioning in particular in the disorder – implied by genetic studies [1] and
pharmacological models of psychosis that use the NMDAR antagonist ketamine
[2] – impact on neural dynamics at the circuit, network, and whole-brain levels. A
further challenge is understanding how these changes in neural dynamics then affect
brain computations and behaviour.
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NMDARs are located on both excitatory pyramidal cells and inhibitory interneu-
rons, although different receptor subtypes are distributed differentially on different
populations [3]. NMDAR dysfunction could therefore impact inhibitory interneu-
rons or pyramidal cells to differing degrees: in ‘subjects with a diagnosis of
schizophrenia’ (Scz), there is evidence that the former are more strongly affected
[4], resulting in a net loss of inhibitory (relative to excitatory) transmission. This
disinhibited state is also known as ‘increased E/I balance’.

The consequences of increased E/I balance in Scz can be modelled in a variety
of ways. One approach is to assume that this disinhibited state causes a decrease in
precision (increase in variance) of the states that neural circuits encode: especially
circuits at higher levels of the hierarchy, where there is most evidence for inhibitory
dysfunction. One can then model these effects as the loss of precision of prior beliefs
within a hierarchical Bayesian model of behaviour, as prior beliefs are most affected
by loss of precision at the top of a hierarchical model. This approach has shown that
numerous perceptual or behavioural phenomena in Scz can be modelled in this way,
e.g. dysfunction of smooth pursuit eye movements, resistance to visual illusions,
etc. [5].

Another approach is to ignore behaviour altogether and just model neural
responses. One of the best-validated electroencephalographic (EEG) findings in
Scz is a reduction in the mismatch negativity [6]. The mismatch negativity is the
difference in averaged EEG deflection in response to an oddball stimulus (e.g. a
high tone following a series of low tones) compared to that following the standard.
In Scz, there is less of a difference between EEG responses to oddballs and standards
than there is in controls, and E/I balance could contribute to this.

Dynamic causal modelling (DCM) estimates how the activity in neural popu-
lations (e.g. pyramidal cells or interneurons) in connected brain areas evolves in
response to some input (e.g. a sensory stimulus) according to the parameters of
the system (e.g. the degree of disinhibition of pyramidal cells within areas or the
strength of connections between areas). DCM of mismatch negativity responses of
Scz and their first-degree relatives and healthy controls indicate that both Scz and
their relatives have (i) an increase in disinhibition in the (right inferior) prefrontal
area involved in the mismatch response and (ii) a reversal of the usual increase in
excitability in response to oddballs (seen in controls) in that source [7]. This not
only supports the notion of cortical disinhibition in Scz but also implies that the
regulation of neural excitability by stimulus predictability is awry in the disorder:
as one might expect if prior beliefs are less precise. Indeed, reducing prior precision
in a hierarchical Bayesian (predictive coding) model attenuates the prediction error
responses to oddballs [5].

There are also differences between Scz and controls’ resting-state functional
magnetic resonance imaging (rsfMRI) responses. Scz show greater power and
variability of cortical rsfMRI data, especially in association cortices [8], and also
greater connectivity (i.e. rsfMRI data correlations) between association areas [9].
Models of interacting cortical areas producing rsfMRI data can reproduce these
effects if E/I balance within cortical areas is increased, although increasing coupling
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between areas also has similar effects [9]: it is hard to distinguish these model
perturbations using fMRI data, as it is less temporally precise.

The most complete modelling approach is to relate neural function to behaviour
using the same model. This is a complex procedure and there are few examples in
Scz research. One successful example used a spiking network model consisting of
pyramidal cells and interneurons to predict spatial working memory performance
under ketamine or placebo [10]. Increasing E/I balance in this network (as ketamine
is thought to do) allows activity to spread laterally through the network over time,
making the spatial ‘memory’ less precise and predicting increased false alarms to
nearby nontarget probes in a spatial working memory task, as is seen under ketamine
and also in Scz [11]. The persistent neural activity in the spiking spatial working
memory model takes the form of a ‘bump attractor’, i.e. a subset of neurons which
sustain activity from an input over time (the bump) whilst inhibiting local spread of
this activity via inhibitory interneurons.

Attractors are essentially quasi-stable states of neural firing that can be imple-
mented in a variety of ways. The first ‘attractor networks’ were designed to model
the storage (and reactivation) of memories in patterns of synaptic weights [12]. In
such networks, firing patterns more easily shift towards ‘low energy’ states, in which
strongly connected neurons are active and other neural activity is low. Once in such
a state, the network has to receive a large perturbation to shift its firing pattern
into a different state. If the energy of the network is plotted as a function of the
neural firing patterns, one can visualise these low energy states as ‘basins’ in an
energy landscape. The deeper the basin, the more difficult it is for the network to be
shifted out of it. As well as modelling mnemonic processes, similar networks can
also perform decision-making [13] and Bayesian belief updating [14].

For more than a decade, it has been hypothesised that changes in neural function
in Scz might reduce the stability of cortical attractor states [15]. In particular,
NMDAR dysfunction on both recurrent synapses on to pyramidal cells and on
inhibitory interneurons could make firing patterns harder to sustain over time and
less able to inhibit other firing patterns (respectively), making attractor basins more
shallow. In this case, it would be more easy for the network to shift from one state
to another – either due to an input that favours the other state or just to random
neuronal spiking – but hard to maintain or ‘deepen’ any one state (Fig. 8.1).

A loss of stable neural states was recently demonstrated in visual cortex of two
animal models of schizophrenia [16], and interestingly, healthy volunteers given
ketamine (which blocks NMDARs and is used as a model of psychosis) show
a decrement in updating to consistent stimulus associations and also increased
decision stochasticity in this context [17]. In the remainder of this chapter, I shall
describe a recent attempt to model alterations in (Bayesian) belief updating in
Scz using a computational model designed to mimic the effects on inference of
underlying neural attractor states with varying stability.

It has been known for decades that Scz tend to use less evidence than healthy
controls to make decisions in belief updating tasks. The paradigm used to demon-
strate this effect is often some variation of the ‘beads’ or ‘urn’ task [18], in which
the participant is shown two jars containing beads of two colours in opposing ratios
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Fig. 8.1 Potential effects of attractor network dynamics on belief updating

(e.g. 80:20 and 20:80 ratios of red/blue beads). The jars are then concealed and a
sequence of beads drawn (with replacement) from one jar, and the participant has
to either stop the sequence when they are sure of the source jar or give a probability
estimate of either jar being the source for the entire sequence. The former version
is known as the ‘draws to decision’ task and the latter as the ‘probability estimates’
task.

Well-replicated findings in the beads task include many Scz deciding on the
jar identity after seeing only one or two beads [19] – the so-called ‘jumping to
conclusions’ bias – and also Scz adjusting their beliefs more than controls after
seeing unexpected evidence, termed as ‘disconfirmatory bias’ [18, 20–23]. Although
these biases appear to involve greater belief updating (i.e. higher learning rates)
in Scz than in controls, in other tasks Scz seem to update less than controls –
especially to longer sequences of more consistent evidence [24] – and Scz are
often more stochastic in their responding [25, 26]. These three effects – greater
updating to unexpected evidence, lower updating to consistent evidence, and greater
stochasticity – are all consistent with an ‘unstable attractor’ model of belief
updating, in which it is easy to switch from one state into another, but hard to
stabilise (increase confidence in) any one state, and in which updates are more
vulnerable to stochastic fluctuations in neural firing.

Adams et al. [27] used a hierarchical Bayesian model (the hierarchical Gaussian
filter [28] – a variational Bayesian model with individual priors) to model belief
updating in two independent ‘probability estimates’ beads task datasets (Fig. 8.2).
Models with a standard learning rate ω and response stochasticity ν or including
a parameter increasing updating to ‘disconfirmatory evidence’ ϕ or a parameter
encoding belief instability κ1 (Fig. 8.3) were formally compared.

In these models, the belief about the jar on trial k + 1, x2
(k + 1) evolved according

a Gaussian random walk of variance exp(ω):

p
(
x

(k+1)
2

)
∼ N

(
x

(k)
2 , exp (ω)

)
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Fig. 8.2 Two beads task datasets. Dataset 1 [23], n = 80, including Scz and both clinical and non-
clinical controls, tested both when unwell and in recovery, and Dataset 2, n = 167, including Scz
and non-clinical controls, tested as stable outpatients. In Dataset 2, subjects were each tested on
four separate sequences, which are shown concatenated together

In the response model, stochasticity ν determined the width of the beta distribu-
tion centred on the current estimate of the jar probability (i.e. the prediction for the

next trial), μ̂
(k+1)
1 ≡ s

(
μ

(k)
2

)
; here μ denotes the current estimate of x, and s is the

sigmoid function.
In the ‘disconfirmatory bias’ model, changes in x2 from trial to trial occurred

according to an autoregressive (AR(1)) process controlled by three parameters: m,
the level to which x2 is attracted; ϕ, the rate of change of x2 towards m; and ω, the
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Fig. 8.3 Left – the ‘probability estimates’ beads task; right – the winning model. The right panel is
a schematic representation of the generative model containing belief instability parameter κ1. The
black arrows denote the probabilistic network on trial k; the grey arrows denote the network at other
points in time. The perceptual model lies above the dotted arrows and the response model below
them. The shaded circles are known quantities, and the parameters and states in unshaded circles
are estimated. The dotted line represents the result of an inferential process (the response model
builds on a perceptual model inference); the solid lines are generative processes. The response
model maps from μ̂

(k+1)
1 (purple line) – the probability the blue jar is the source (x1) on the next

trial, itself a sigmoid function of the tendency towards the blue jar (x2) – to y(k), the subject’s
indicated estimate of the probability the jar is blue. (See Adams et al. (submitted) for a full
description of the model)

variance of the random process:

p
(
x

(k+1)
2

)
∼ N

(
x

(k)
2 + ϕ

(
m − x

(k)
2

)
, exp (ω)

)

Given there was no bias towards one jar or the other, m was fixed to 0, so ϕ

always acted to shift the model’s beliefs back towards maximum uncertainty (i.e.
disconfirm the current belief) about the jar.

In the ‘belief instability’ model, changes in μ2 from trial to trial occur according
to two parameters: ω, the variance of the random process, and κ1, a scaling factor
that changes the size of updates when μ̂1 = 0.5, or maximum uncertainty, relative

to when μ̂1 is closer to 0 or 1, μ̂
(k+1)
1 ≡ s

(
μ

(k)
2 κ1

)
. The effect of increasing κ1 was

to increase updating to unexpected evidence, but decrease updating to consistent
evidence (Fig. 8.4), as might be seen in a more unstable attractor network (although
note that this model is merely simulating attractor network properties: it does not
contain attractor states).

The model containing learning rate ω, response stochasticity ν, and belief
instability κ1 won in all subjects in both datasets. Scz had greater belief instability
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Fig. 8.4 The effects of κ1 on belief updating. Left panel: simulated belief updating data μ̂1
(in response to the bead sequence u on the plot) shows that higher κ1 leads to overweighting
of unexpected evidence (instability) and underweighting of consistent evidence. Right panel:
this plot illustrates the average absolute shifts in beliefs on observing beads of either colour.
This ‘vulnerability to updating’ is analogous to the ‘energy state’ of a neural network model
(schematically illustrated in Fig. 8.1) – i.e. in low energy states, less updating is expected. The
effect of increasing κ1 is to convert confident beliefs about the jar (near 0 and 1) from low to high
‘energy states’, i.e. to make them much more unstable

(κ1) and response stochasticity (ν) than non-clinical controls in both datasets (Fig.
8.5). These parameters correlated in both datasets (Spearman’s ρ = −0.38, −0.52
and −0.35; all p < 0.0001). Interestingly, when unwell, clinical controls’ parameter
distributions resembled those of Scz; but at follow-up, they resembled non-clinical
controls.

Two computational studies of similar tasks in Scz have also demonstrated similar
patterns of belief updating. Jardri et al. [29] showed that on average, Scz ‘overcount’
the likelihood (i.e. the sensory evidence, in Bayesian terms) in a single belief update:
the authors attributed this effect to disinhibited cortical message passing, but it
could also be due to the belief instability in the model above. Likewise, Stuke et
al. [30] showed in another beads task variant that Scz updated more than controls to
‘irrelevant information’ (i.e. disconfirmatory evidence).

In conclusion, these results show that Scz subjects in two independent beads
task datasets have consistent differences in two parameters of a belief updating
model that attempts to reproduce consequences of attractor network instability.
More detailed spiking network modelling, pharmacological (or other NMDAR)
manipulations, and imaging are required in the future to understand how neuro-
modulatory function in both pyramidal cells and inhibitory interneurons contributes
to attractor dynamics and probabilistic inference.
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Fig. 8.5 Parameter differences between Scz and clinical and non-clinical controls. Scz con-
sistently had higher belief instability κ1 and greater response stochasticity ν than non-clinical
controls; clinical controls resembled Scz when unwell and non-clinical controls when better
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Chapter 9
Modeling Cognitive Processing
of Healthy Controls
and Obsessive-Compulsive Disorder
Subjects in the Antisaccade Task

Vassilis Cutsuridis

Abstract Antisaccade performance deficits in obsessive-compulsive disorder
(OCD) include increased error rates and antisaccade latencies. These deficits are
generally thought to be due to an impaired inhibitory process failing to suppress the
erroneous response. The superior colliculus has been suggested as one of the loci
of this impaired inhibitory process. Previously recorded antisaccade performance
of healthy and OCD subjects is reanalyzed to show greater variability in mean
latency and variance of corrected antisaccades as well as in shape of antisaccade
and corrected antisaccade latency distributions and increased error rates of OCD
patients compared to healthy controls. A neural accumulator model of the superior
colliculus is then employed to uncover the biophysical mechanisms giving rise
to the observed OCD deficits. The model shows that (i) the increased variability
in latency distributions of OCD patients is due to a more noisy accumulation of
information by both correct and erroneous decision signals, (ii) OCD patients are
less confident about their decisions than healthy controls, and (iii) competition via
lateral inhibition between the correct and erroneous decision processes, and not
a third independent inhibitory signal of the erroneous response, accounts for the
antisaccade performance of healthy controls and OCD patients.

Keywords Antisaccade paradigm · Eye movements · Superior colliculus ·
Accumulator model with lateral inhibition · Response inhibition · Impulse control

9.1 Introduction

In the antisaccade paradigm, participants suppress a reflexive saccade (error prosac-
cade) in favor of a saccade to a position in the opposite hemifield (correct
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antisaccade) [16]. Two processes take place during this paradigm: (1) suppression
(or inhibition) of an error prosaccade toward the peripheral stimulus and (2)
generation of a volitional saccade to the opposite direction (antisaccade) [14,
20]. The reaction times (RT) of error prosaccades, antisaccades, and corrected
antisaccades and the error rate are some of the measures of antisaccade performance
[17] with the error rate being the most reliable measure of it. A large study of
healthy young males has reported that error prosaccade and antisaccade RTs are
highly variable and the error rate is about 20–25% [12, 29].

A recent experimental study reported an increase in error rates and in latency of
corrected antisaccades in OCD patients [12]. The antisaccade performance deficit in
OCD was speculated to be due a common dysfunctional network of brain structures
including the (pre)frontal and posterior parietal cortices and superior colliculus
(SC). In this network there is a reported deficit in erroneous response inhibition
control [5].

Models of decision-making involve a gradual accumulation of information
concerning the various potential responses [6, 7, 9, 10, 11, 23, 24]. As soon as
the target appears, a decision process starting at some baseline level T0 representing
the prior expectation begins to rise at a constant rate r until it reaches a threshold
Th representing the confidence level required before the commitment to a particular
course of action. Once Th is crossed, then a response toward the target is initiated.
Response time (RT) is the time from the onset of the decision process till when the
decision signal crosses Th. The rate of rise is sometimes assumed to vary randomly
from trial to trial, with a mean μ and variance σ2 [28]. Changes in the baseline
level of activity, the rate of rise, or the threshold often result in changes in response
latency. Prior expectation and level of activation of intention influence the baseline
levels of activation.

The scope of the present modeling study is to uncover what goes wrong neurally
(i.e., the mechanisms) in OCD, so the model’s behavior best fits the experimental
observations (error rates and response time distributions) from both participant pop-
ulations (healthy controls and OCD patients). For this reason previously recorded
error rates and latencies of healthy and OCD participants [12, 13] were reanalyzed
to show that OCD patients display higher error rates, increases in mean latency and
variance of corrected antisaccades, and greater variability in shape of antisaccade
and corrected antisaccade latency distributions relative to healthy participants. The
Cutsuridis and colleagues [10] model was then employed to decipher the biophysical
mechanisms that gave rise to these antisaccade performance deficits in OCD.
The model showed that (i) increased variability in latency distributions of OCD
patients was due to a more noisy accumulation of information by both (pre)frontal
and posterior parietal centers representing the volitional (correct antisaccade) and
reactive (erroneous prosaccade) decision signals, respectively, (ii) OCD patients
were less confident about their decisions compared to healthy controls (i.e., the
decision threshold level Th value is lower in healthy controls than in OCD patients),
and (iii) competition between the correct and erroneous decision processes, and not
a third top-down STOP of the erroneous response, accounted for the antisaccade
performance of both healthy controls and OCD patients.
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9.2 Experimental Data

The data (antisaccade performance of healthy controls and OCD patients) were
derived from two previously published studies [12, 13]. Detailed description of
these data including details about the participants, eye movement recordings, task
description, and analysis can be found in Cutsuridis [8] study.

9.3 The Model

The model with its mathematical formalism was initially introduced in Cutsuridis
et al. [10] study. Interested readers are referred to this study for detailed description
of the model. To assist the readers of this chapter and increase the readability of
it, a brief description of the model is provided here. The model is a one-layer SC
neural network with lateral inhibition and firing rate nodes (neurons) representing
the SC buildup neurons (Fig. 9.1a). The total number of nodes in the network is
N. Short-range lateral excitation and long-distance lateral inhibition are assumed
between all nodes in model. The lateral interaction kernel wij, which allows for
lateral interactions between model nodes, is a shifted Gaussian, which depends only
on the spatial distance between nodes, and it is positive for nearby nodes to the node
activated by the input and negative for distant nodes (Fig. 9.1b). Model inputs are of
two types: (1) a reactive input (Ir), which represents the error prosaccade decision
signal and is hypothesized to originate from the posterior parietal cortices [20], and
(2) a planned input (Ip), which represents the correct antisaccade decision signal and
originates in the model from the frontal cortical areas [20]. Each input is integrated
in opposite model half according to the following way: if the reactive input activates
a node and two of each nearest neighbors on each side in the left model half, then
the planned input activates the mirror node and its two nearest neighbor nodes on
each side in the right model half and vice versa. The strengths of the external inputs
are not equal (Ip > Ir; see Table 9.3 for values). The reactive input is presented first
at time t = 50 ms, followed by the planned input, which is presented 50 ms later
(t = 100 ms) in accordance to experimental evidence [2]. Both inputs remain active
for 600 ms.

9.4 Results

9.4.1 Experimental Latency Distributions

The controls and OCD patient experimental data [12, 13] are reanalyzed here using
the methodology presented in Cutsuridis and colleagues [10] study. The mean inter-
individual of the median intraindividual RT for the error prosaccades was found to
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Fig. 9.1 Adapted with permission from Cutsuridis et al. [10]. (a) Neural network model. Neurons
are represented as firing rate nodes. Short-range lateral excitation and long-distance lateral
inhibition were assumed between all nodes in the network. The left model half was activated by a
reactive input Ir representing the error prosaccade decision signal, whereas the right model half was
activated by a planned input Ip representing the antisaccade decision signal. The strengths of the
inputs were not equal (Ip = 1.5*Ir). (b) Lateral interaction kernels W for nodes 20 and 80 modeled
as a shifted Gaussians. The kernels for nodes 20 and 80 were excitatory for the nearby nodes and
inhibitory for the distant ones. (c) Neuronal activities of all nodes in the network as a function of
time (ms). (d) Neuronal activity of nodes 20 and 80 as a function of time. Node 20 encoded the
reactive input (error prosaccade), and node 80 encoded the planned input (antisaccade). When both
activities crossed the threshold (dotted horizontal line), then an eye movement decision was made.
In this case, an error prosaccade was initiated first followed by a corrected antisaccade

be 211.09 ms (SD, 49.71) for the controls and 203.81 ms (SD, 53.17) for the patients
(Fig. 9.2a; see Table 9.1). This 7.28 ms difference was not statistically significant
(t64 = 0.57, P = 0.57). The RT distributions for patients were not much broader than
those for the controls, indicating a smaller RT variability. The group coefficient of
variation of RT defined as the interquartile RT range (Q75 – Q25) divided by the
median RT was not significantly different for the patients (0.35; SD, 0.21) and the
controls (0.30; SD, 0.21) (t64 = 0.4, P = 0.85) (see Table 9.2).

An average cumulative RT distribution for each group (controls vs. patients)
(Fig. 9.3a) was computed to further investigate if there is a shape difference between
the controls and patients distributions by organizing the RT for each subject in
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Fig. 9.2 (a) Mean of median error prosaccade, antisaccade, and corrected antisaccade reaction
times (RTs) for controls and OCD patients. (b) Mean percent error rate of controls and OCD
patients performing the antisaccade task. (c) Simulated median error prosaccade, antisaccade, and
corrected antisaccade reaction times (RTs) for controls and OCD patients. (d) Simulated percent
error rate for controls and OCD patients performing the antisaccade task

Table 9.1 Simulated and experimental median saccade reaction times and their standard devia-
tions and percent error rates for controls and patients with OCD

Median RT in ms
Error
prosaccade Antisaccade

Corrected
antisaccade % error rate

Sim Exp Sim Exp Sim Exp Sim Exp

Controls 214.72 211.09 ±
49.71

262.72 268.61 ±
46.76

136.97 128.84 ±
53.62

31.24 20.79 ±
0.19

OCD
patients

207.84 203.81 ±
53.17

277.58 275.73 ±
52.68

188.92 160.34 ±
42.55

41.58 47.96 ±
0.3

ascending order and percentile values were calculated (e.g., the RT for the 5%
percentile, the 10% percentile, the 15% percentile, . . . , the 95% percentile, the
100% percentile). The percentile values were then averaged across the group to
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Table 9.2 Simulated and experimental coefficients of variation (CV) of error prosaccades, antisac-
cades, and corrected antisaccades for controls and patients with OCD performing the antisaccade
task

Coefficient of variation (CV)
Error prosaccade Antisaccade Corrected antisaccade
Simulated Experimental Simulated Experimental Simulated Experimental

Controls 0.22 0.30 ± 0.21 0.19 0.24 ± 0.07 0.77 0.83 ± 0.41
OCD
patients

0.32 0.35 ± 0.21 0.26 0.31 ± 0.12 0.77 0.54 ± 0.24

Fig. 9.3 (Left) Average cumulative RT distribution for controls (white empty circles) and patients
(black squares). (Right) Reciprobit plots of the average cumulative RT distributions. The x-axis
represents 1/RT, and it has been reversed so that RTs increase to the right. Instead of 1/RT values,
the axis is marked with the corresponding RT values. The fitted lines correspond to linear regression
on the data of each distribution (controls vs. patients). (a) Error prosaccades. (b) Antisaccades. (c)
Corrected antisaccades

give average group percentile values. It has been shown that the average distribution
retains the basic shape characteristics of the individual distributions [26]. To test
the difference between the group distributions for patients and controls, a Wilcoxon
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rank sum test was used. It can be observed that the two cumulative distributions did
not differ in shape (Z = 1.008, P = 0.31).

A similar analysis was used for the antisaccades and corrected antisaccades
for both the controls and patients. The mean inter-individual of the median
intraindividual RT for the antisaccades was 268.61 ms (SD, 46.76 ms) for the
controls and 275.73 ms (SD, 52.68 ms) for the patients (Fig. 9.2a; see Table 9.1).
This 7.12 ms difference was not statistically significant (t64 = 0.57, P = 0.57). The
coefficient of variation of antisaccade RTs was also not significantly different for the
patients (0.31; SD, 0.12) and for the controls (0.24; SD, 0.07) (t64 = 2.62, P = 0.31)
(see Table 9.2).

The average cumulative RT distribution for each group (controls vs. patients)
(Fig. 9.3b) was computed as before. To test the difference between the antisaccade
group distributions for patients and controls, a Wilcoxon rank sum test was used.
It can be observed that the two cumulative distributions differ in shape, and this
difference was significant (Z = 2.65, P = 0.008).

The mean inter-individual of the median intraindividual RT for the corrected
antisaccades was 128.84 ms (SD, 53.62 ms) for the controls and 160.34 ms (SD,
42.55 ms) for the patients (Fig. 9.2a; see Table 9.1). This 31.5 ms difference was
statistically significant (t64 = 2.60, P = 0.0115). The coefficient of variation of RT
was found to be significantly different for the controls (0.83; SD, 0.41) and the
patients (0.54; SD, 0.24) (t64 = 3.42, P = 0.0011) (see Table 9.2).

The average cumulative RT distribution for each group (controls vs. patients)
(Fig. 9.3c) was similarly computed, and a Wilcoxon rank sum test was used to
test the difference between the group distributions for patients and controls. The
two cumulative distributions differed in shape, and this difference was significant
(Z = 3.92, P < 10−3).

9.4.2 Simulated Latency Distributions

To simulate the experimental data, the Cutsuridis and colleagues neural network
model of the antisaccade performance of healthy controls and schizophrenia patients
[10] was employed and extended it into the realm of OCD (Fig. 9.1a). To fit the
experimental data, in each trial run in the left and right SC, the time constants τ of
the internal states of each node took values from two different normal distributions
with means μ1 and μ2 and standard deviations σ1 and σ2, respectively. The model
was run for 5000 trials. In each trial the error prosaccade, antisaccade, and corrected
antisaccade latencies were recorded. In the model the error prosaccade reaction time
was estimated as the time interval from the onset of the reactive input until the time
the activity of the node encoding the reactive input reached a preset threshold (Th)
plus an additional 30 ms (Fig. 9.1d). The antisaccade reaction time was estimated as
the time interval from the onset of the reactive input until the time the activity of the
node encoding the planned input reached the threshold plus 30 ms (Fig. 9.1d). The
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corrected antisaccade reaction time was the time interval from threshold crossing of
the error node activity until the threshold crossing of the correct node activity.

To simulate the error prosaccade, antisaccade, and corrected antisaccade RT
distributions as well as the error rates of both healthy controls and OCD participant
groups, the integration constants τ (μ and σ) for both nodes that integrated the
reactive (μ1 and σ1) and planned (μ2 and σ2) inputs were varied. In the control
condition, μ1 = 0.01787, σ1 = 0.003, μ2 = 0.0056, and σ2 = 0.0016, whereas in
OCD condition μ1 = 0.0165, σ1 = 0.005, μ2 = 0.0047, and σ2 = 0.002. In both
conditions, the threshold value at which as a decision was reached (parameter Th
in Table 9.3) was higher in OCD patients than in healthy controls. The simulated
median RTs for the error prosaccades, antisaccades, and corrective antisaccades
were 214.72 ms, 262.72 ms, and 136.97 ms, respectively, for the model controls
and 207.84 ms, 277.58 ms, and 188.917 ms, respectively, for the model patients.
The simulated median RT values are very close to the experimental ones (Fig.
9.2c; see also Table 9.1). The simulated coefficients of variation (CVs) for the error
prosaccades, antisaccades, and corrected antisaccades were 0.22, 0.19, and 0.77,
respectively, for the controls and 0.32, 0.26, and 0.77, respectively, for the patients.
The simulated CV values are very close to the experimental ones (see Table 9.2).

As before the simulated average cumulative RT distributions for error prosac-
cades, antisaccades, and corrected antisaccades for both groups (model controls
vs. model patients) were estimated by organizing the RT for each subject group
from each trial run in ascending order and calculating the percentile values (e.g.,
the RT for the 5% percentile, the 10% percentile, the 15% percentile, . . . , the 95%
percentile) were computed. The percentile values were then averaged across trial
runs (5000 trial runs) for each subject group to give average subject group percentile
values. Carpenter and Williams [4] showed that if the cumulative RT distribution is
plotted using 1/RT in a reciprobit plot, then the RTs will fall on a straight line. Thus,
the average cumulative distribution data of RT (error prosaccade, antisaccade, and
corrected antisaccade) for the experimental and simulated controls and patients in
a reciprobit plot were transformed. A best-fitting regression line was computed for

Table 9.3 Model parameters and values

Value
Symbol Controls OCD Symbol Value

Th 0.16 0.177 σ 2π/10
C 0.35 �x 2π/N
Ir 1 A 1
Ip 1.5 N 100
μ1 0.01787 0.0165 β 0.5
σ1 0.003 0.005 θ 0.5
μ2 0.0056 0.0047 μn 0
σ2 0.0016 0.002 σn 0.05
T 50 ms, unless mentioned otherwise ntrials 5000
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each behavioral category (error prosaccade, antisaccade, and corrected antisaccade)
in each subject group (controls and patients). An R correlation coefficient was
estimated to assess how good fit was the modeled regression line to the experimental
data. The model fit for each behavioral category and for subject group was excellent
(correlation coefficient R was 0.99 for error prosaccades and antisaccades and
0.96 for corrected antisaccades in the healthy control group and 0.99 for error
prosaccades and antisaccades and 0.97 for corrected antisaccades in the OCD
group). To compare the two simulated regression lines for the patient and control
groups, the homogeneity of slope and intercept regression analysis described in
Wuensch [33] was used. The coefficients (slope and intercept) were extracted and
fitted to the experimental 1/RT data (see right plots of Fig. 9.3a–c). A comparison of
the homogeneity of slopes and intercepts showed that both (controls and patients)
fitted error prosaccade lines were statistically different in slope (t36 = 5.53305,
p = 0.005) and in intercept (t36 = 2.9, p = 0.005). A similar comparison of the
slopes and intercepts was made for the antisaccades and corrected antisaccades for
the controls and patients. The fitted antisaccade lines were not statistically different
in slope (t36 = 2.10387, p = 0.005) and in intercept (t36 = 1.75, p = 0.005). The
fitted corrected antisaccade lines were not statistically different in slope (t36 = 2.49,
p = 0.005) and in intercept (t36 = 0.193, p = 0.005).

9.4.3 Error Rates

The experimental error rate was found to be 20.79% for the controls and 47.96%
for the patients (Fig. 9.2b; see also Table 9.1). In the model an error was considered
when the firing activity of the node encoding the reactive input (error prosaccade)
crossed a preset threshold level. The model error rate was estimated to be 31.24% for
the controls and 41.58% for the patients (Fig. 9.2d; see Table 9.1), thus qualitatively
reproducing the increasing error rate trend reported in OCD patients.

9.5 Discussion

9.5.1 What Have We Learned from This Model?

Previously recorded antisaccade performance of healthy and OCD subjects [12] is
reanalyzed to show greater variability in mean latency and variance of corrected
antisaccades as well as variability in shape of antisaccade and corrected antisaccade
latency distributions and increased error rates of OCD patients relative to healthy
participants. A well-established neural nonlinear accumulator model of antisaccade
performance is then employed to uncover the biophysical mechanisms giving rise
to these observed OCD deficits. The major finding of this study is that the brains
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of OCD participants when they are performing the antisaccade task are noisier than
the brains of healthy controls. This noise is reflected in the rate of accumulation of
information (μ and σ) and the threshold level ST (confidence level required before
commitment to a particular course of action). As we can see from Table 9.3, the
value of Th (threshold level ST) is higher in the OCD patient case than in healthy
control one meaning that the OCD patients are less confident about their decisions
than the healthy controls. Their lack of confidence is reflected in their latencies,
which are longer than the control ones (see Table 9.1). Parameters μ1 and μ2 (see
Table 9.3 for values) are greater in control condition than in OCD condition meaning
that error prosaccades, antisaccades, and corrected antisaccades are slower in OCD
patients than in healthy controls. Similarly, σ1 and σ2 (see Table 9.3 for values)
are smaller in healthy control condition than in patient one, which means that error
prosaccade, antisaccade, and corrected antisaccade latencies are more variable in
OCD patients than in healthy participants. A physiological interpretation of the time
constant, τ, and its variability may be variability of NMDA-based rate of evidence
integration [11]. Experimental studies have shown that NMDA hypofunction is
implicated in neurodegenerative disorders such schizophrenia and OCD [19].

Another important finding of this study is the absence of a third signal, inhibitory
in nature, necessary to prevent the error prosaccade from being expressed when
the antisaccade reached the threshold first. Such a third inhibitory signal has been
speculated to exist by Noorani and Carpenter [22–24] in the form of a “stop-and-
restart” mechanism that partially captures the antisaccade performance of healthy
participants (see the Cutsuridis ([6], 2017) studies for a critique of Noorani and
Carpenter [24] model limitations). Recent experimental evidence has demonstrated
that lateral interactions within SC intermediate segment are more suitable for
faithfully accumulating subthreshold signals for saccadic decision-making [25].
Another experimental study by Everling and Johnston [15] challenges the idea of
a third suppressive/inhibitory influence (STOP signal in the Noorani and Carpenter
model) of prefrontal cortical areas on reflexive, erroneous prosaccade generation in
the antisaccade paradigm. My study has provided quantitative evidence that such a
third inhibitory STOP process is not necessary, but instead competition via lateral
inhibition in the SC between the neurons encoding the erroneous response (error
prosaccade) and neurons encoding the voluntary one (antisaccade) is sufficient
to prevent in some trials the error prosaccade from crossing the threshold when
the antisaccade has reached it first. My model simulated accurately the latency
distributions of the error prosaccades, antisaccades, and corrected antisaccades of
both healthy controls and OCD patients.

It has been suggested that when data are plotted on the reciprobit plot, then the
resulting straight line on the reciprobit plot could be used a diagnostic tool to assess
the contribution of different factors influencing the experimental results [3]. When
straight lines swivel by the threshold ST [28], then the mean and variances of the
lines are unequal. When the lines are parallel and shifted by μ, then the slopes
(1/σ) of the lines are equal, but their latency medians are not [27]. When the lines
cross, then the slopes are not equal, but their medians are [21]. In my model we
observed that when the lines crossed (error prosaccade (Fig. 9.3a) and antisaccade
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(Fig. 9.3b)), then the median values of error prosaccade and antisaccade latencies
are not significantly equal. When the lines are parallel and shifted (corrected
antisaccades; Fig. 9.3c), then the median latencies are significantly different.

9.5.2 Comparison with Other Models

Neurodegenerative disorders such as schizophrenia, bipolar disorder, and major
depression share same dimensions of clinical symptoms and same genetic vulnera-
bilities [1]. OCD, however, does not share with them the same clinical and genetic
vulnerability factors [1]. On the other hand, both OCD and schizophrenia have
been associated with dysfunctions of similar cortical and subcortical circuits [32].
These dissimilarities are reflected in the antisaccade performances of patients with
schizophrenia and those with OCD. Patients with schizophrenia consistently report
increased error rate, increased both antisaccade and corrected antisaccade latencies,
while their erroneous prosaccade ones are not significantly different from those of
healthy controls [18, 30, 31]. On the other end, OCD patients show increases in
error rates, increases in latencies of just the corrected antisaccades, and significant
differences in the shapes of OCD latency distributions of antisaccades and corrected
antisaccades compared with those of the healthy controls ([12]; this study).

The computational study of Cutsuridis and colleagues [10] showed that the
differences in the antisaccade performance of healthy controls and schizophrenia
patients are due to a more noisy accumulation of information process (μ and σ)
in both frontal (voluntary; antisaccade) and posterior parietal (reactive; erroneous
prosaccade) decision centers, but both groups’ prior confidence level (decision
threshold level ST) required before commitment to a particular course of action
was not affected by disease (schizophrenia). In the present computational study of
antisaccade performance of healthy controls and OCD patients, the accumulation of
information process (μ and σ) in both frontal (voluntary; antisaccade) and posterior
parietal (reactive; erroneous prosaccade) decision centers is still noisy compared to
healthy controls, but the OCD patients’ confidence level value (decision threshold
level ST) is higher than that of the healthy controls. This means that the OCD
patients are less confident to respond to that of the healthy controls. The difference
in the confidence level value between schizophrenia (see Table 9.3 in [10]) and OCD
(Table 9.3 in this study) participant groups is maybe due to the accuracy constraints
of the mirror antisaccade task reported in the Cutsuridis and colleagues [10] study
making the schizophrenia patients less confident (more hesitant) to respond, which
is reflected in the observed increases in their latencies (compare latency values in
Table 9.1 in Cutsuridis et al. [10] study and this one).
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9.6 Conclusion

Overall, the model showed in a quantitative way why the antisaccade performance of
patients with OCD is so poor, that this performance is not due to a deficit in the top-
down inhibitory control of the erroneous response as many speculated, but instead
it is a product of a neuronal competition via lateral inhibition between the erroneous
prosaccade and the antisaccade. The model accurately reproduced the error rates,
the median antisaccade, median error prosaccade, and median corrected antisaccade
latencies as well as the antisaccade, error prosaccade, and corrected antisaccade
distributions of healthy controls and OCD patients. The model showed that the
experimentally observed antisaccade performance deficits of OCD patients are due
to (i) a more noisy accumulation of information by both erroneous and correct deci-
sion signals and (ii) a higher confidence level of the OCD patients. The results pre-
sented here illustrate the benefits of tightly integrating psychophysical studies with
computational neural modeling, because the two methods complement each other
and they may provide together a strong basis for hypothesis generation and theory
testing regarding the neural basis of decision-making in health and in disease.
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Chapter 10
Simulating Cognitive Deficits
in Parkinson’s Disease

Sébastien Hélie and Zahra Sajedinia

Abstract Parkinson’s disease (PD) is caused by the accelerated death of dopamine–
producing neurons. Numerous studies documenting cognitive deficits of people with
PD have revealed impairment in a variety of tasks related to memory, learning,
visuospatial skills, and attention. In this chapter, we describe a general approach
used to model PD and review three computational models that have been used to
simulate cognitive deficits related to PD. The models presentation is followed by a
discussion of the role of glia cells and astrocytes in neurodegenerative diseases. We
propose that more biologically–realistic computational models of neurodegenerative
diseases that include astrocytes may lead to a better understanding and treatment of
neurodegenerative diseases in general and PD in particular.

Keywords Parkinson’s disease · Dopamine · Astrocytes

10.1 What Is Parkinson’s Disease?

Parkinson’s disease (PD) is a neurodegenerative disease caused by the accelerated
death of dopamine (DA)-producing neurons. Cell loss is predominately found in the
ventral tier of the substantia nigra pars compacta (SNpc), with less damage in the
dorsal tier [1, 2]. In contrast, normal aging yields substantially less cell loss and in a
dorsal–to–ventral pattern. Motor symptoms appear after a loss of 60–70% of SNpc
cells and 70–80% of DA levels in the striatum (where SNpc cells send projections)
[2, 3]. Motor symptoms include resting tremor, rigidity, bradykinesia, and akinesia.

In addition to motor deficits, PD patients present cognitive symptoms that
resemble those observed in patients with damage to the frontal lobes. Numerous
studies documenting cognitive deficits of PD patients have revealed impairment
in a variety of tasks related to memory, learning, visuospatial skills, and attention
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[4]. Critically, these deficits are not limited to challenging or esoteric laboratory
experiments, but they are also present in everyday lives [5]. Thus, a thorough
understanding of cognitive deficits in PD is essential for improving the quality of life
of people with PD. In this book chapter, we review popular computational models
that aim to better understand the progression of cognitive deficits in PD.

10.2 How Is Parkinson’s Disease Typically Modeled?

Because PD is characterized by the accelerated death of DA–producing neurons
in the SNpc, PD is typically modeled by reducing the amount of DA available
in computational models [6]. Hence, in theory, any computational model that
includes an explicit role for DA could be tested against data from PD patients.
Dopamine projections are predominantly directed at the basal ganglia (BG) and
frontal cortex [7], so many computational models of these brain structures include
a role for DA. In addition, DA is thought to play an important role in BG–
frontal functional connectivity by modulating the efficiency of the connectivity [8].
Computational models of cognitive deficits in PD have used one or both of these
approaches (i.e., reduced DA levels and/or reduced BG–frontal connectivity) to
simulate Parkinsonian symptoms.

A typical BG–cortical loop is shown in Fig. 10.1. As can be seen, cortex
sends excitatory connections to the striatum, where the information splits into two

Fig. 10.1 A typical BG–cortical loop. Purple boxes correspond to areas of the BG, while black
boxes are not included in the BG. Blue arrows represent excitatory (glutamatergic) connections,
while red arrows represent inhibitory (GABA) connections. The direct pathway passes through
the D1 dopamine receptors in the striatum, the indirect pathway passes through the D2 dopamine
receptors in the striatum, and the hyperdirect pathway passes through the subthalamic nucleus.
If the thalamic projections target the same cortical region that initially targeted the striatum, the
circuit is called a closed loop. Otherwise, the circuit is an open loop
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pathways: (1) the direct pathway and (2) the indirect pathway. Most connectivity
within the BG is inhibitory, so the overall output of the direct pathway is to excite
cortex, whereas the overall output of the indirect pathway is to inhibit cortex. In
addition to these two pathways through the striatum, a third pathway called the
hyperdirect pathway (3) goes through the subthalamic nucleus and directly excites
the internal segment of the globus pallidus (GPi). Similar to the indirect pathway,
the overall output of the hyperdirect pathway is to inhibit cortex.

10.3 Computational Models of Cognitive Deficits
in Parkinson’s Disease

In this section, we briefly describe three computational models that have been used
to simulate PD in chronological order. The reader is referred to the original papers
for implementation details.

10.3.1 Monchi, Taylor, and Dagher (2000)

Monchi and colleagues proposed a model to account for working memory deficits
in PD and schizophrenia [9]. The model includes three BG–cortical closed loops:
two with the prefrontal cortex (one for spatial information and the other for object
information) and one through the anterior cingulate cortex (ACC). The role of the
two prefrontal–BG loops is to maintain working memory information about the
stimuli, whereas the ACC loop maintains the adopted strategy by inhibiting all the
prefrontal cortex loops except one (i.e., representing the selected strategy). In the
model, the visual stimulus is input to the prefrontal cortex loops, and the stimulus
activity is propagated through the direct pathway of the BG. As a result, the thalamus
is released from inhibition of the GPi, and activation produced by the stimulus in
the prefrontal cortex reverberates through closed loops with the thalamus. When a
response is required, the prefrontal cortex transfers its activation to the premotor
cortex. If the response is incorrect, a feedback signal is sent to the ACC loop, which
selects a new strategy by switching its inhibition to different prefrontal cortex loops.
The Monchi et al. model has been used to simulate a delayed response task and the
Wisconsin Card Sorting Test [10]. Interestingly, reducing the connection strengths
within the BG–cortical loops produce Parkinsonian symptoms, whereas reducing
the strength of the feedback signal produces deficits similar to those observed in
schizophrenia [9]. This model thus shows that PD can be simulated by reducing the
functional connectivity between the BG and prefrontal cortex, which is consistent
one of the roles of tonic DA [6].
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10.3.2 Frank (2005)

Frank proposed a model that includes both the direct and indirect pathways through
the BG, the premotor cortex, and an unspecified input area [11]. In this model,
the input activates both the premotor cortex and the striatum. However, cortical
activation is insufficient to produce a response, so BG processing is required to gate
the correct response. The focus of the model is on the roles of the indirect pathway
and DA in probabilistic learning. In Frank’s model, the direct pathway is in charge
of selecting the appropriate action (Go), whereas the indirect pathway is in charge of
inhibiting inappropriate actions (NoGo). The direct and indirect pathways converge
in the GPi and compete to control GPi activation and eventually the response.

The competition between the direct and indirect pathways is modulated by DA.
Specifically, higher dopamine levels increase activation in the direct pathway (e.g.,
through D1 receptors) and reduces activation in the indirect pathway (e.g., through
D2 receptors). Hence, tonic DA release following unexpected rewards results in
long–term potentiation (LTP) in the direct pathway and long–term depression
(LTD) in the indirect pathway. In contrast, DA dips following the unexpected
absence of a reward reduces activation and produces LTD in the direct pathway
but increases activation and produces LTP in the indirect pathway. The simulation
results suggest that the dynamic range of the DA signal is critical in probabilistic
learning and reversal learning (e.g., when the response–reward associations are
changed during learning). Reducing (to simulate PD) or increasing (to simulate
medication overdose) DA levels can result in simulated Parkinsonian symptoms
[11]. These results are consistent with the role of tonic DA in reinforcement learning
and the possibility of simulating PD symptons by reducing the dynamic range of
tonic DA [6].

10.3.3 COVIS

COVIS [12] is a multiple–systems theory that was originally developed to account
for the many behavioral dissociations between rule–based and information–
integration categorization [13]. COVIS includes a hypothesis–testing system and
a procedural learning system. The hypothesis–testing system can quickly learn a
small set of categories (i.e., those that can be found by hypothesis–testing), while
the procedural learning system can learn any type of arbitrary categories in a slow
trial-and-error manner. Each categorization system relies on a separate brain circuit,
but they both include the BG. In the hypothesis–testing system, the BG is used to
support working memory maintenance and for rule switching. In the procedural
learning system, the BG is used to learn stimulus–response associations. While
COVIS is the earliest reviewed model in this chapter, it took nearly 15 years before it
was used to account for PD [14, 15]. Reducing DA levels in COVIS has been shown
to account for many cognitive symptoms in PD patients such as perseveration,
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category learning deficits (both deterministic and probabilistic), deficits in rule
maintenance, and reduced sensitivity to negative feedback (see [14, 15]). Because of
its multiple-systems architecture, COVIS can account for both the effect of reducing
tonic DA (e.g., perseveration) and phasic DA (e.g., reinforcement learning) [6].

10.4 The Role of Astrocytes in Neurodegenerative Diseases

Recent findings in neurophysiology show that glia astrocytes are doing more than
just passive and housekeeping functions in the brain: they also actively modulate
synapses and interfere with neural signaling [16–20]. Furthermore, multiple studies
show that astrocytes are involved in both the initiation and progression of neurode-
generative diseases [21–24]. For example, it has been shown that the number of
astrocytes increases in the PD [21, 22], and because astrocytes interfere with neural
signaling, the larger number of astrocytes should result in abnormal firing rates in
PD-related neural networks. Physiological studies have shown this abnormal firing
rate as an increase in neural bursting [25].

The effect of astrocytes on the firing rate of neural networks suggests using
models of neural networks for PD that include astrocytes and present a different
neural firing rate in comparison to typical neural networks. However, all the
reviewed models have focused only on neurons (mostly using rate models), and they
did not consider the changes in neural signaling caused by astrocytes. Therefore,
to achieve a more accurate biological model of PD, it can be useful to include
a model of astrocytes in the simulated neural networks. Note that we are not
claiming that using spiking models is superior to using the rate models that were
described in Sect. 10.3. Instead, we are claiming that spiking models could provide
complementary information that can be useful in better understanding PD at the
neural level and possibly address a different set of questions.

The current problem with computational models of astrocytes is that unlike neu-
rons, which have well–developed and widely used computational models [26, 27],
computational models of astrocytes have not yet received much attention. To date,
a few computational models of astrocytes have been proposed [28–33], but no
astrocyte model is fully functional or widely accepted.

To address the lack of biological–plausibility of astrocyte models, we [34]
recently proposed a new dynamic model of astrocytes based on the Izhikevich model
of neurons [26]. The parametrized model is described by:

6v̇ = 2.77 × 10−5(v + 70)(v − 1.43 × 103) − u + I (10.1)

u̇ = 0.03{−6.5 × 10−4(v + 70) − u} (10.2)

if v ≥ 35, then v ← −50, u ← u + 100 (10.3)

where v is the membrane potential of the astrocyte and u is an abstract term
representing cell recovery. Unlike previous astrocyte models, Eq. 10.3 shows a linear
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Fig. 10.2 Effect of inclusion of astrocytes in a simple neural network

current/voltage relationship and does not spike, which is in line with biological
astrocytes [35]. The astrocyte model has been added in simple spiking neural
networks (Fig. 10.2), and the results show that adding an astrocyte increases the
length of postsynaptic activity, and that additional astrocytes produce extended
bursting behavior, which is compatible with the physiological observations of
neuron’s outputs in PD [25]. This new astrocyte model has yet to be used in more
complex networks to simulate PD symptoms, but the results have been encouraging,
and the availability of the model should facilitate future work. The next step in
simulating PD symptoms is to add more astrocytes in a simulation model of a
cognitive function and observe the resulting behavior.

10.5 Conclusion

This chapter reviewed three computational models that have been used to reproduce
cognitive symptoms related to PD. As mentioned in Sect. 10.2, most of these models
focus on the BG and their interaction with prefrontal cortex. These brain structures
have received much attention from computational modelers. In particular, some
computational models of the BG are very anatomically detailed [36, 37], and in
theory any computational model of the prefrontal cortex or the BG that includes a
role for DA could be used to account for PD. However, as argued in Sect. 10.4, none
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of these models include glia cells, which have been shown to play an important role
in neurodegenerative diseases. A new dynamical model of astrocyte activation has
recently been proposed [34], which should facilitate computational work with glia
cells. These new developments are exciting, and future computational modeling of
neural diseases could lead to important breakthroughs and treatments.
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Chapter 11
Attentional Deficits in Alzheimer’s
Disease: Investigating the Role
of Acetylcholine with Computational
Modelling

Eirini Mavritsaki, Howard Bowman, and Li Su

Abstract Alzheimer’s disease is a neurodegenerative condition that affects the
brain’s cognitive processes as well as many other functions for daily life. It is
the commonest cause for dementia in older people and can take several years or
decades from the time its pathology starts to the time the full clinical symptoms
are developed. One of the cognitive processes affected in Alzheimer’s disease is
attention. Depletion in attentional processes is linked to acetylcholine function,
and attention deficit underlies many cognitive dysfunctions in Alzheimer’s disease.
In this work, we are employing computational modelling to provide a neural
bio-mechanistic account linking acetylcholine depletion and decreased attentional
performance. Although previous research has modelled the decrease of acetyl-
choline, how neurotransmitter depletion is associated with behavioural impairments
in Alzheimer’s disease remains unclear. We employed a spiking Search over Time
and Space (sSoTS) model to simulate attentional function and describe the reduction
of acetylcholine by changes applied to gNMDA and gAMPA conductance. Our
model simulation results showed that changes in acetylcholine function were able
to produce a notable reduction in attentional performance similar to what is seen
in patients with Alzheimer’s disease. This work provided an architectural and
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methodological framework under which neurobiological mechanisms and failures
of the system can directly explain symptomology, such as attention dysfunctions
in Alzheimer’s disease. This framework enables future studies and novel clinical
trials targeting acetylcholine pathways in treating Alzheimer’s disease and related
conditions.

Keywords Alzheimer’s · Spiking Search over Time and Space model ·
Computational modelling · Attention · Acetylcholine

Attention is a very important cognitive process that is employed for many actions in
our everyday life (e.g. watching television, reading a paper, washing our face, eating
and so on). It is therefore essential to investigate further the underlying mechanisms
in neurodegenerative conditions, like Alzheimer’s disease, in which our attentional
abilities are reduced [15, 16, 21, 41, 42, 50, 53]. Alzheimer’s disease is a condition
that can take several years if not decades from the time it starts to the time the full
symptoms are shown [51]. In those years of disease progression, there are a number
of pathological processes that are taking place; however, one of the starting points of
the pathology is believed to be the aggregation of β-amyloids into plaques [19, 51].
Irrespective of the amount of research that has taken place, many questions remain
on how the disease unfolds and how to identify individual’s position in the disease’s
trajectory [19, 45].

It is therefore essential to fully understand the underlying processing and
progression mechanisms of the pathology. Understanding the progression of the
pathology will allow for early diagnosis and improve medications and managements
providing better and longer life for patients. In fact to achieve this, it has been
argued that cognitive tasks related to cognitive impairments are reliable measures to
predict progression of the disease [4]. As previously discussed, one of the cognitive
functions that is affected in Alzheimer’s disease is attention [15, 16, 21, 41, 42,
50, 53]. Patients with Alzheimer’s disease have been shown to have reduced visual
processing and attentional orienting [26] that affect their attentional processing and
visual search [9, 26].

To investigate further attentional processing, researchers have been using the
single feature and conjunction search tasks [37, 42, 54, 56]. In both experiments,
subjects are asked to identify a target amongst distractors. In single feature search,
the target shares one common feature with distractors, for example, a target blue H
amongst blue A distractors. In the conjunction task, the target shares two different
features with the distractors, for example, a target blue H amongst distractors
that are blue As and green Hs [54, 56]. Patients with Alzheimer’s disease show
reduced activation in visual, dorsal attention and ventral attention networks [26]
leading to expected deficits in attentional processes [15, 16, 21, 41, 42, 50, 53].
Interestingly, the patients show a significant decrease in performance in the difficult
conjunction task but no significant changes in the easy single feature search [10,
16, 21, 40, 49, 50]. Researchers suggest that this might be due to an impairment
in the binding and grouping processes [21], problems with inhibitory processes
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[24, 38] or acetylcholine changes that are linked to Alzheimer’s disease [5, 11, 25,
34, 48, 55]. Acetylcholine is directly linked to attentional processes [12, 22, 25,
46], through its cholinergic projections from the basal forebrain [22]. Pyramidal
neurons modulated by acetylcholine express nicotinic and muscarinic receptors
[22]. Acetylcholine modulation from the nucleus basalis magnocellularis is linked
to changes in binding in visual search tasks [6], and changes in feature binding
affect the difficult rather than easy visual search [52]. Furthermore, acetylcholine
modulation affects attentional processes through gamma synchrony [12], which is
linked with changes observed in oscillatory activity in Alzheimer’s disease. In fact,
Deco and Thiele [12] identified that there is an optimum ratio between NMDA and
AMPA conductance that is linked to acetylcholine, gamma oscillations and optimum
attention.

All cognitive processes rely on rapidly occurring coordinated action among
distributed neural assemblies. Thus, one approach to understand and identify when
and how these processes go wrong is to measure coordinated neural activity in
brain networks. Neural oscillations, as observed with EEG or MEG (M/EEG),
are such a measure. Brain oscillations represent regular fluctuations in electrical
potentials/magnetic fields and are generated by tens of thousands of neurons.
Oscillations occur at different frequencies, ranging from very slow (0.2 Hz) to very
fast (300 Hz), where the frequency of an oscillation is thought to inversely reflect
the size of the network generating the oscillation. Brain oscillations thus capture
the fundamental characteristics of the structural wiring of the brain and allow
neural communication during different cognitive states (rest, perception, memory,
etc.) to be explored at the temporal resolution at which neurons operate. For this
reason, brain oscillations are a promising candidate for charting neurological and
psychiatric disorders [8, 17, 20, 43, 59].

There is an expanding literature on MEG/EEG (M/EEG) correlates of a range
of disorders, such as epilepsy, memory impairments, OCD and ADHD [20]. Of
particular relevance, there are now a number of findings on oscillatory correlates of
mild cognitive impairment (MCI) (e.g. Gomez et al. [18]), Alzheimer’s (e.g. Stam
et al. [47]) and other dementias (e.g. Hughes and Rowe [23]), including in large
multisite studies [27].

Additionally, in the resting-state brain (in which stationarity of oscillatory
features can be assumed), a number of interesting findings have been reported.
For example, one hallmark of dementia, particularly Alzheimer’s, is a general
slowing of the resting-state frequency spectrum [36]. Additionally, Poil et al. [39]
found a wide spectrum of EEG resting-state measures that predicted progression to
Alzheimer’s, with a broader beta power peak most predictive [39].

The oscillatory correlates of MCI are perhaps particularly important for attention
as well, since it is frequently a precursor diagnosis to Alzheimer’s. As a result, its
detection is a target for work on biomarkers of the very early stages of Alzheimer’s.
With this goal in mind, an oscillatory EEG pattern that distinguishes mild cognitive
impairment (MCI) patients who either progress within 3 years (convertors) or do
not (stable) to Alzheimer’s disease (AD) has been identified [33]. Figure 11.1
shows time-frequency spectra for brain activity arising from lexical processing.
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Fig. 11.1 An attenuation of theta activity associated with lexical processing in a group of MCI
patients who would go on to convert to Alzheimer’s disease [33]. The time-frequency spectra are
locked to word onset at the midline-parietal electrode Pz. There is a theta increase 0–0.5 s after the
onset of the word, for the healthy controls (panel [1]) and for the MCI patients who did not convert
to Alzheimer’s disease (i.e. MCI Stable, panel [2]). This theta increase was significantly attenuated
in MCI patients who would later convert to Alzheimer’s disease (panel [3]). For all groups, word
presentation is followed by an alpha suppression effect (0.5–1 s)

Importantly, healthy controls (panel [1]) and non-progressors (i.e. MCI-stable, panel
[2]) show a clear increase in theta power 0–0.5 s after word onset (warm colours),
while MCI-convertors (panel [3]) show a reduced increase (convertors<stable:
p < 0.046; convertors<control: p < 0.004). Such an oscillatory change for lexical
processing is consistent with language deficits in AD [14].

A key question that follows is the effect of neuromodulators on these EEG
patterns. As previously discussed, there is considerable evidence that there are a
range of changes to neuromodulators associated with the development of dementias.
In this respect, changes in acetylcholine are of particular interest. There are, though,
few studies that explicitly consider differences in human EEG features between
groups with and without Alzheimer’s when Acetylcholine is manipulated.

One of the few studies that explicitly targeted this question is by Yener and
collaborators [57]. They compared healthy controls with Alzheimer’s patients
on and off AchEI, a compound that increases the level and duration of action
of acetylcholine. The authors found a reduction in phase locking (to stimulus
presentation) of theta oscillations at a frontal electrode for the Alzheimer’s group
that were not on AchEl, i.e. who, it is assumed, had depleted acetylcholine. It is
notable that theta was the relevant oscillation both in the Yener et al. [57] and the
Mazaheri et al. [33] studies. This said, the former focussed on phase coherence
across replications, while the latter focussed on power changes, and electrode sites
were different. Nonetheless, the link between depleted acetylcholine in Alzheimer’s
and a noisier stimulus locked theta oscillation is definitely worth further exploration.
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An attractive way to proceed in this line of research is computational modelling,
which allows data collected from all different methodologies to be combined, to test
outcomes and to provide predictions for further testing [2, 12, 26, 29, 32]. It is very
important therefore to use computational modelling to help us interpret the findings
so far and to progress further. Moreover, developed computational models could
then be used to predict the progression of the disease on an individual basis and
predict the efficacy of different drug targets in Alzheimer’s disease if the model
captures the mechanism of these drug compounds in the patients. If the model
parameters can be determined at individual rather than group level, such model
paves the way for personalized treatments.

Accordingly, researchers have started modelling Alzheimer’s disease [1, 2, 58],
but they have focussed on low-level properties of the system, rather than linking
neurophysiological damage with behaviour. In contrast, in the work presented here,
we use a computational model that can allow these two levels to be linked and
allow us not only to understand Alzheimer’s at the neuronal level but also how
changes observed in Alzheimer’s disease are linked with behavioural changes. The
selected behavioural study is visual search. This is because, there is a good deal
of work in the area that identifies depletion in attentional processes in Alzheimer’s
disease and links it to acetylcholine function, and attention deficit underlies many
cognitive dysfunctions in Alzheimer’s disease [12, 15, 16, 21, 41, 42, 50, 53].
Furthermore, this work is based on the binding spiking Search over Time and Space
(bsSoTS) [29] that has been extensively used to simulate visual attention processes
in healthy adults [30–32] and to investigate further the attentional processes in
conditions where such processes are depleted [29, 31, 32]. The bsSoTS is also
the appropriate model to use because the parameters of the model have been set
to generate neural activity resembling that of the human brain in the content of
realistic noise component. To simulate the acetylcholine depletion, the work of
Deco and Thiele [12] is followed where the attentional behaviour changes are
investigated by changes in acetylcholine levels through the AMPA and NMDA
currents.

11.1 Methods

The methodology presented in this work is based on the bsSoTS model that uses
integrate-and-fire neurons to simulate the traditionally used visual search exper-
iment [29, 32]. Neuronal properties are described in Mavritsaki and Humphreys
[28] based on the integrate-and-fire neurons of Brunel and Wang [7]. Input to the
cell is based on a fast excitatory AMPA current, a slow excitatory NMDA current,
an inhibitory GABA current and a frequency adaptation based on the calcium-
sensitive potassium current IAHP. The model is ideal for this level of simulations
as it has successfully simulated the easy and difficult visual search experiment
and incorporates top-down and bottom-up processes [29, 32], as well as allowing
us to investigate neuronal changes dependent on the AMPA, GABA and NMDA
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Fig. 11.2 bsSoTS organisation for a range of feature maps. For the results presented in this work,
we are using two feature maps for shape and colour. The model is overall separated into three
layers, two layers for encoding the feature characteristics (the two feature maps) and a third layer in
which all information is combined, the location map [31]. To constrain the model, we move through
two different levels: level one is the mean field, where a group of neurons is simulated using a
transfer function as shown in Fig. 11.2, and the spiking level, where each neuron is simulated
using the equations shown on the top left corner of the figure. For more details on the model,
please see Mavritsaki and colleagues work [29, 30, 32]

currents [28]. The organisation of the model is based on previous work by Deco and
Zihl [13] and follows Feature Integration Theory [52]. The model simulates visual
search experiments as described above. The general organisation of the model and
the spiking and mean-field neuronal level is presented in Fig. 11.2; to model the
simulated experiment, the model is divided into three layers: two feature layers
whose activation is bound into the location map/saliency map [31]. Each feature
dimension layer is separated into two feature maps: the shape feature layer is
separated into H and A and the colour feature layer is separated into colour blue
and colour green, as in previous work [28, 29, 32].

Following the work by Deco and Thiele on the effects of acetylcholine on atten-
tion [12], we investigated the effects of changes in gNMDA and gAMPA on attentional
processes in an effort to simulate the changes in visual search, assuming only
changes in acetylcholine. We changed the AMPA and NMDA conductance from
performance observed in Alzheimer’s −16 to 16%. Figure 11.3 (gAMPA/gNMDA
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Fig. 11.3 On the left we show the success rate differences from baseline success rate for the single
feature 4 (SF4) items, single feature 6 (SF6) items, conjunction 4 (CJ4) items and conjunction 6
(CJ6) items. The baseline values that are used for the calculations are 95% for SF4 items, 96% for
SF6 items, 81% for CJ4 items and 80% for CJ6 items. The circle parameter group is the parameter
group that was identified as optimum to simulate Alzheimer’s visual search behaviour. On the
left we show AMPA/NMDA conductance ratio changes for the parameter space used. The circle
marks the set of parameters that was identified as the optimal to simulate Alzheimer’s visual search
behaviour

graph) presents the effect of the changed values to the ratio of the NMDA/AMPA
conductance [12]. Within this range of parameters, we identified the parameters
that allow for a different decline in visual search performance to be observed
for simulated Alzheimer’s disease between difficult and easy conditions. From
the range of parameters investigated, the parameter settings that allowed for a
greater decline in performance for the difficult relative to single feature search task
were selected. The single feature and conjunction visual search experiments were
simulated for this selected set of parameters.

The Poisson noise presented to the model allows us to simulate human perfor-
mance by running the model for 300 trials for each display size (4 and 6) in single
feature and conjunction conditions. This analysis follows the same analysis that
was previously performed [28, 29, 32]. The reaction times (RTs) and success rates
obtained were then analysed using a mixed ANOVA design.

11.2 Results

The RTs and success rates for all the gNMDA and gAMPA parameter changes
presented in Fig. 11.3 are calculated for each parameter set and presented in
Figs. 11.3 and 11.4. The changes for RTs and success rates for single feature
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Fig. 11.4 On the left we show reaction time difference from baseline reaction time for the single
feature 4 (SF4) items, single feature 6 (SF6) items, conjunction 4 (CJ4) items and conjunctions
6 (CJ6) items. The baseline values that are used for the calculations are 254.5 ms for SF4 items,
299.9 ms for SF6 items, 337.2 ms for CJ4 items and 432.9 ms for CJ6 items. The circle marks the
parameter group that was identified as optimum to simulate Alzheimer’s visual search behaviour.
On the left we show again the AMPA/NMDA conductance ratio changes for the parameter space
used.

were smaller than the changes for conjunction. The circled parameter set identified
in Figs. 11.3 and 11.4 is the one selected to simulate the Alzheimer’s condition.
Figure 11.5 illustrates the average RTs, and Fig. 11.6 illustrates the average success
rates.

Simulated participants’ RTs and success rates across all conditions were entered
into a 2 × 2 × 2 mixed-design ANOVA with the within-participants factor of
condition (single feature/conjunction search) and display size (4/6 items) and the
between-participants factor of group (simulated control/simulated AD groups). This
gave us the main effects and interactions presented in Table 11.1. A significant
interaction of condition x display size x group was observed for percentage success
rate, but not for reaction times. For reaction time, we observed significant main
effects of display size, F(1,28) =181, p < 0.001 and ηp

2 = 0.866; condition,
F(1,28) = 243.4, p < 0.001 and ηp

2 = 0.897; group F(1,28) = 276.1, p < 0.001
and ηp

2 = 0.908; and an interaction of condition with display size, F(1,28) = 13.9,
p = 0.001 and ηp

2 = 0.332. We did not observe significant interactions between
display size and group, F(1,28) = 1.7, p = 0.191 and ηp

2 = 0.06, or condition and
group, F(1,28) = 1.4, p = 0.236 and ηp

2 = 0.05. For success rate, we observed
significant main effects of display size, F(1,28) = 67.2, p < 0.001 and ηp

2 = 0.706;
condition, F(1,28) = 222.2, p < 0.001 and ηp

2 = 0.888; and group, F(1,28) = 34.2,
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Fig. 11.5 Bar plots for reaction times for simulated Alzheimer’s and baseline (simulated controls).
SF4 C shows the reaction time for single feature 4 items for controls (healthy participants); SF4
AD shows the reaction time for single feature 6 items for simulated Alzheimer’s patients. SF6 C
shows the reaction time for single feature 6 items for controls; SF6 AD shows the reaction time for
single feature 6 items for simulated Alzheimer’s patients. The same applies for conjunction, where
CJ4 is conjunction for 4 items and CJ6 is conjunction for 6 items

Fig. 11.6 Bar plots for success rate for simulated Alzheimer’s and Baseline (simulated controls).
SF4 C shows the success rate for single feature 4 items for controls (healthy participants); SF4 AD
shows the success rate for single feature 6 items for simulated Alzheimer’s patients. SF6 C shows
the success rate for single feature 6 items for controls; SF6 AD shows the success rate for single
feature 6 items for simulated Alzheimer’s patients. The same applies for conjunction where CJ4 is
conjunction for 4 items and CJ6 is conjunction for 6 items

p < 0.001 and ηp
2 = 0.551. We also observed significant interactions between

condition and display size, F(1,28) = 59.2, p < 0.001 and ηp
2 = 0.682; condition

and group, F(1,28) = 26.4, p < 0.001 and ηp
2 = 0.486; and display size and group,

F(1,28) = 65, p < 0.001 and ηp
2 = 0.699.
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Table 11.1 ANOVAs of percentage success and reaction times, reporting the main effects of and
interactions between condition (single feature/conjunction search), display size (4/6 items) and
group (baseline/AD group)

Measure ANOVA term F (df ) p ηp
2

Reaction time Display size 181 (1,28) <0.001 0.866
% Success Condition 243.4 (1,28) <0.001 0.897

Group 276.1 (1,28) <0.001 0.908
Condition × display size 13.9 (1,28) 0.001 0.332
Condition × group 1.4 (1,28) 0.236 0.05
Display size × group 1.7 (1,28) 0.191 0.06
Condition × display size × group 0.8 (1,28) 0.36 0.03
Display size 67.2 <0.001 0.706
Condition 222.2 <0.001 0.888
Group 34.2 <0.001 0.551
Condition × display size 59.9 <0.001 0.682
Condition × group 26.4 <0.001 0.486
Display size × group 65 <0.001 0.699
Condition × display size × group 53.6 <0.001 0.657

11.3 Discussion

This study fits broadly into the category of Computational Psychiatry [35, 58].
Although majority of Computational Psychiatry approaches aim to decompose
behaviour into its constituents before explaining its neural underpinnings, such as
mapping decision-making into values and prediction errors. Our approach aimed at
providing an architectural framework under which neurobiological dysfunctions can
directly explain symptomology in Alzheimer’s. The results from this work clearly
demonstrate that computational modelling that bridges low-level characteristics
with whole system behaviour can be used to simulate attentional processes, as
has also been previously shown [32, 44], and to make that bridge in simulating
Alzheimer’s disease changes in attentional processing. There were significant
changes observed between simulated controls and simulated Alzheimer’s disease
patients for success rates and reaction times, as has been previously shown [10, 16,
21, 40, 49, 50] and significant interactions for condition, display size and group.
This clearly demonstrates that the model was able to capture some of the changes in
Alzheimer’s disease attentional processing by changing the gNMDA and gAMPA
parameters, simulating reduction in acetylcholine observed in Alzheimer’s disease.

Although the results showed significant overall interactions for success rates,
the overall interaction for reaction time was not significant. This can be attributed
to the fact that the healthy simulated behaviour is at ceiling level; therefore any
changes due to the acetylcholine reduction might not be easily detected. Another
reason might be that although acetylcholine reduction is important in Alzheimer’s
disease there are other processes that might also be affected, like changes in binding,
grouping or inhibitory processes [21, 24, 38]. Changes in these processes are
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not taken into consideration in the present work, as this work aimed simply to
investigate if acetylcholine changes could be simulated using the chosen approach.
Although these processes were not investigated in the current work, the model
incorporates all the above processes [29, 32] and therefore can allow us to further
investigate them in the following steps of our work. Furthermore, additional work is
required to investigate where acetylcholine changes can be related to the oscillatory
behaviour in Alzheimer’s disease demonstrated by Mazaheri et al. [33], thereby
helping to shed light on further understanding of disease progression. The presented
work therefore demonstrated that the proposed and similar modelling approaches
can be used to simulate Alzheimer’s disease. The following steps are to use
the model to combine the changes in attentional processes which are found in
Alzheimer’s disease in one model and use the model to shed light on this condition.
Furthermore, if this is combined with oscillatory behaviour study [33] by using
previously develop approaches for extracting MEG activity from similar models
[3], it may be able to provide the first step for delivering personalized treatment in
Alzheimer’s disease.
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Chapter 12
A Computational Hypothesis on How
Serotonin Regulates Catecholamines
in the Pathogenesis of Depressive Apathy

Massimo Silvetti, Gianluca Baldassarre, and Daniele Caligiore

Abstract Despite increasing literature supports a strong involvement of dopamine,
noradrenaline and serotonin dysfunctions in the pathogenesis of most depressive
disorders, the (causal) relationship between those monoamines impairments and
the resulting disorder features is still not clear. We propose a hypothesis based on
a computational model for which some depressive features may be produced by
pathologically low levels of serotonin, which in turn causes a downregulation of
catecholamine release. The simulations run with the model demonstrate that this
process may be critical to the genesis of apathy, which is one of the most frequent
and invalidating features of depressive disorders.

Keywords Apathy · Depression · Computational modeling · Dopamine ·
Noradrenaline · Serotonin

12.1 Introduction

Many of the symptoms seen in depression – such as anhedonia, amotivation, and
apathy – have been consistently associated with dysfunctions in the catecholamines
system ([12, 16, 27] for reviews). For example, experiments with rats exposed to
chronic or unpredictable stressors have shown that there is an extended decrease in
the activity of the dopamine (DA) neurons of the ventral tegmental area (VTA) [4,
33], resulting in reduced dopamine afflux to nucleus accumbens and lower inactivity
([19]; see Fiore et al. [10], for a computational model). Similarly, norepinephrine
(Ne) activity in the locus coeruleus (LC) has been shown to be altered in patients
with depression compared with controls, and this alteration influences the emer-
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gence of symptoms like diminished ability to concentrate, depressed mood, and
fatigue [3, 20, 25].

Aside from catecholamines, several studies investigating the physiopathology
of depressive disorders have linked serotonin anomalies with the emergence of
depressive symptoms [2, 6, 21, 37]. Although serotonin agonists represent a first-
line treatment for depressive syndromes, the specific mechanisms through which
they can affect depression symptoms are still elusive, probably due to the indirect
and delayed mechanisms through which serotonin affects mood [14]. Important
data supporting the involvement of serotonin in depression come also from studies
of tryptophan depletion. In some works, a strong dietary manipulation is used
to produce a transient lowering in brain serotonin activity through diminishing
availability of its precursor amino acid, tryptophan [28]. It has also been shown
that tryptophan depletion can imply depressive symptomatology in people who have
experienced prior episodes of depression [22].

To date, it is not clear which is the relationship between the catecholamines
dysregulation and the serotoninergic system in the pathogenesis of depressive
symptoms [7]. In this chapter, we propose a hypothesis based on a computational
model, for which low levels of serotonin disrupt optimal control of catecholamines
release by altering the dialogue between the medial prefrontal cortex (MPFC) and
the brainstem catecholamine nuclei. In particular, we hypothesize that patholog-
ically low levels of serotonin translate into a higher internal cost of the release of
catecholamines and hence to their downregulation. We propose that this process may
contribute to the genesis of one of the most frequent and invalidating symptoms of
the depressive syndrome: apathy.

12.2 The Reinforcement Meta-learner (RML) Model

To test our hypothesis, we used the RML model proposed in Silvetti et al. [31]. The
RML architecture is based on the hypothesis that behavioral adaptation can be seen
as a problem of decision-making [11, 23], whose objective is to maximize the long-
term reward. In order to do so, animals need to learn both how to control optimally
their behavior and how to control the internal variables that influence brain processes
and behavior. For example, a foraging rat makes decisions about its movements in
the environment. At the same time, it also needs to control higher level variables not
directly linked to specific actions, like how much effort to invest (cost/benefit trade-
off), whether to keep in consideration or not eventual changes in the surrounding
environment (plasticity/stability trade-off), or even whether engaging or not in one
activity. Learning to control optimally these internal variables is defined as “meta-
learning” [26].

Many computational and theoretical studies indicate that the medial prefrontal
cortex, and in particular the dorsal anterior cingulate cortex (dACC), is a multi-
domain estimator of stimulus and action values that maximizes long-term reward
(Reinforcement Learning (RL) view; [30]). RL computation by itself cannot fully
account for dACC functioning as dACC is also linked to optimal control over
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internal variables that more broadly influence behavior (meta-learning; [1, 15, 29,
35]). The RML incorporates the hypothesis that it is critical to place dACC in a
larger cortical-subcortical network to understand its elusive computational role and
how the mammalian brain can perform optimal control over both behavior and the
internal variables that regulate behavior (meta-learning perspective). At the neuro-
physiological level, the RML architecture is based on the demonstrated bidirectional
anatomical connections between the dACC and the brainstem catecholamine nuclei
[9, 17] – the VTA and the LC. As in earlier RL models, the RML computes the
values of specific stimuli and actions to achieve adaptive behavior. However –
and differently from earlier models – RML internal parameters are dynamically
controlled by the interaction between the dACC and the brainstem catecholamine
nuclei, implementing a meta-learning process.

The RML architecture is summarized in Fig. 12.1a. Here three loops of infor-
mation flow are shown: an inner loop (between action selection and parameter
control processes, black arrows); an external loop, between RML and environment
(light gray arrows); and a third loop simulating RML control over other brain
areas, via broadcasting catecholaminergic signal. The third loop shows how the
dACC-brainstem system can work as a source of control signals to optimize the
performance of other brain areas. An overview closer to neurophysiology (Fig.

Fig. 12.1 (a) Model conceptual overview (see text). (b) Model overview with anatomical-
functional analogy. The RML-environment interaction happens through nine channels of infor-
mation exchange (black arrows) (input, empty bars; output, filled bars). The input channels
consist of one channel encoding action costs (c), three encoding environmental states (s), and
one encoding primary rewards (RW). The output consists of three channels each encoding one
action (a), plus one channel conveying LC signals to other brain areas (Ne). The entire model
is composed of four reciprocally connected modules (each with a different color). The upper
modules (blue and green) simulate the dACC, while the lower modules (red and orange) simulate
the brainstem catecholamine nuclei (VTA and LC). dACCAct selects actions directed toward
the environment and learns through first and higher-order conditioning, whereas dACCBoost
exploits similar computational principles to modulate catecholamine release. The VTA module
provides DA training signals to both dACC modules, while the LC controls learning rate (yellow
bidirectional arrow) in both dACC modules and effort exertion (promoting effortful actions) in
the dACCAct module (orange arrow). Finally, the LC signal controlling effort in the dACCAct is
directed also toward other brain areas for neuro-modulation. (See Silvetti et al. [31], for further
details)
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12.1b) shows that action selection and parameter control belong, respectively, to
cortical and brainstem structures: the dACC (dACCAct and dACCBoost modules in
Fig. 12.1b) performs action-outcome comparison and action selection while it is
augmented by meta-learning (LC and VTA; orange/red modules in Fig. 12.1b).
Both dACCAct and dACCBoost work in parallel and have the same objective of
maximizing reward; nonetheless they differ not only for the target of their decisions
(external environment for dACCAct and catecholamine nuclei for dACCBoost) but
also for the type of costs they have to keep in consideration for optimal decision-
making. Indeed, while the dACCAct is influenced by action costs (e.g., energy
expense to climb a ladder), the dACCBoost is influenced by the cost of enhancing
catecholamine release. The latter is implemented as a linear function of the control
signal afferent from the dACCBoost to the LC and VTA modules:

DAB = r (R − ωb) (12.1)

where DAB is the dopamine signal encoding reward for the dACCBoost, r is a binary
variable indicating whether the reward is present or not, R is the magnitude of the
(eventual) reward, b is the control signal afferent from the dACCBoost itself, and ω

is a parameter coding for the cost of boosting up catecholamine release. A complete
detailed description of the RML model can be found in Silvetti et al. [31].

12.3 Modeling Serotonin Influence on Catecholamines
Release

In the simulations described here, we hypothesize that serotonin plays a
neuro-modulatory role on decision-making at a higher level with respect to
catecholamines. We suggest that one of the serotonin functions consists in coding
for the costs of enhancing (boosting) catecholamine release by the dACC [18]. In
our model, this cost is represented by the parameter ω (Eq. 12.1). We hypothesize
that low serotonin levels translate to higher ω values and hence in higher costs
for catecholamine boosting. This means that, while catecholamines are responsible
for optimal control of several decision-making variables (e.g., effort investment
or plasticity), serotonin plays the higher-level role of regulating control over
catecholamines by tuning the cost of their release.

12.4 Simulation Methods

We administered to the RML a decision-making task (here called “Effort Task”)
where effortful choices compete with low-effort choices (Fig. 12.2a; [24, 36]). This
task consists in a sequence of trials where binary choices must be made. One of the
choices requires a high effort to be executed and leads to high reward, while the
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Fig. 12.2 (a, b) Effort and No Effort tasks executed by the RML. Here action selection is
represented by a black arrow that selects either a blue or a red box. The effort needed to execute the
action is proportional to the arrow thickness. (c, e) Behavioral results, respectively, in controls and
5-HT lesioned (simulated) subjects. (d, f) Control signal selected by the dACCBoost to modulate
LC and VTA activity

other one implies a low effort leading to small reward. We simulated two groups,
one control group (where all the RML parameters are the same as in Silvetti et
al. [31]) and one group simulating serotonin depletion. The latter was implemented
through a 100% increase of the ω parameter in Eq. 12.1. Moreover, we administered
to the control group also a “No Effort Task” where both the choices required a low
effort, but one kept on leading to a higher reward (Fig. 12.2b). To mimic standard
experimental paradigms, we repeated each simulation 12 times (i.e., 12 simulated
subjects for each group). This verified that the model could generate a large effect
size of the results (p-values can always be improved by running more simulated
subjects).
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12.5 Results and Discussion

The RML simulating the control group prefers to select the high-effort-high-reward
option (Fig. 12.2c), in agreement with experimental data from Walton et al. [36].
At the neurophysiological level (Fig. 12.2d), the dACCBoost increased the boosting
signal (b in Eq. 12.1) toward the catecholamines nuclei (VTA and LC) in the
Effort task compared to the No Effort Task (t(11) = 18.78, p < 0.0001), simulating
the experimental results with nonhuman primates [34]. Increased catecholamines
influence decision-making in the dACCAct by energizing behavior and facilitating
effortful actions (Fig. 12.2c). At the same time, boosting catecholamines has a cost
(Eq. 12.1), so that the higher the variable b, the higher the reward discount for the
dACCBoost module. The result of these two opposite forces (energizing behavior by
catecholamines boosting and minimizing the cost of boosting itself) converges to
the optimal value of b and therefore of catecholamine release by VTA and LC.
In case of low serotonin levels (Fig. 12.2e), the RML exhibits a behavior with
higher selection percentage of low effort-low reward choice. Moreover, serotonin
depleted RML shows also a higher percentage of refusals to engage in the task
(Stay option). This behavioral pattern indicates a lowered capability to exert effort
for achieving a reward, with both the tendency to minimize effort rather than to
maximize reward and a higher probability of immobility (refusal to engage in
the task). This behavioral impairment closely simulates behavioral apathy in both
human patients and animal models. At the neurophysiological level, the RML
predicts a downregulation of catecholamine release (Fig. 12.2f; t(11) = 2.98,
p = 0.013) in agreement with experimental data from depressed patients [12, 16].
In summary, the final consequence of low serotonin levels is a downregulation of
catecholamine release because the dACC reward-based decision-making processing
finds less valuable to boost up catecholamines.

12.6 Conclusions

The role of serotonin in depression is not clear yet. It has been shown that impairing
serotonin function can cause clinical depression only in some circumstances, for
example, in patients with high-risk factors for depression [22, 32]. Based on
these data, it has been suggested that low serotonin function may compromise
mechanisms involved in maintaining recovery from depression rather than having
a primary effect in symptoms generation [7]. In this chapter, we propose a compu-
tational model that starts to address this issue by making explicit a possible neural
mechanism underlying the involvement of serotonin in the emergence of depressive
apathy. In particular, simulation results suggest that low levels of serotonin may
cause an increased evaluation of costs about catecholamine release control, with
consequent catecholamine downregulation, leading to apathy. This hypothesis might
be also linked to the strong interaction of serotonin with amygdala, important for the
appraisal of negative experiences [13, 14]. Moreover, it is also in line with influent



12 A Computational Hypothesis on How Serotonin Regulates. . . 133

theoretical/computational modelling proposals supporting the role of serotonin in
cost evaluation [5, 8]. These data represent the first step of a research agenda aiming
at understanding the link between neuromodulators and computational aspects of
decision-making in the pathogenesis of depressive symptoms.
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Chapter 13
Autism Spectrum Disorder and Deep
Attractors in Neurodynamics

Włodzisław Duch

Abstract Behavior may be analyzed at many levels, from genes to psychological
constructs characterizing mental events. Neurodynamics is at the middle level. It can
be related to biophysical properties of neurons that depend on lower-level molecular
properties and genetics and used to characterize high-level processes correlated
with behavior and mental states. A good strategy that should help to find causal
relations between different levels of analysis, showing how psychological constructs
used in neuropsychiatry emerge from biology, is to identify biophysical parameters
of neurons required for normal neural network activity and explore all changes
that may lead to abnormal functions, behavioral symptoms, cognitive phenotypes,
and psychiatric syndromes. Neural network computational simulations, as well
as analysis of real brain signals, show importance of attractor states, providing
language that can be used to explain many features of mental disorders. Compu-
tational simulations of neurodynamics may generate hypothesis for experimental
verification and help to create mechanistic explanation of observed behavior. Autism
spectrum disorder is used as an example of the usefulness of such approach, showing
how deep attractors resulting from ion channel dysfunctions slow down attention
shifts, influence connectivity, and lead to diverse developmental problems.

Keywords Neurodynamics · RDoC · Mental disorders · Autism spectrum
disorder (ASD) · Brain fingerprints · Computational modeling

13.1 Neurodynamics and Many Levels of Neuropsychiatry

Diagnostic criteria at the foundation of psychiatry and clinical psychology contained
in the Diagnostic and Statistical Manual of Mental Disorders [6] are based on
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evaluation of behavioral symptoms. Research Domain Criteria (RDoC) is an attempt
by NIMH to integrate many levels of information needed to understand human
behavior [2, 3]. Psychological constructs are used to characterize five general
domains: arousal and regulatory systems, negative and positive valence systems,
cognitive systems, and social processes. Many psychological constructs and more
detailed subconstructs are used for each domain, and each construct is described by
“units of analysis” that include specific genes, molecules, cells, circuits, physiology,
behavior, self-reports representing psychological components, and paradigms defin-
ing experimental procedures. The RDoC matrix based on constructs vs. unit analysis
is far from being complete and is not yet useful to build models of functions based on
activity of brain subnetworks. In particular it does not characterize different types of
neurons in terms of their structure, synapses, receptors, ion channels, connectivity,
and other “units of analysis” that influence network functions.

Although all RDoC units of analysis are important, understanding the mechanics
of mental functions should be done at the circuit level. Functions of neural networks
depend on the cellular, molecular, and genetic levels. Complex functions responsible
for behavior result from neurodynamics. Therefore a good strategy that should help
to find causal relations between different levels of analysis, showing how RDoC
psychological constructs emerge from biology, is to identify biophysical parameters
of neurons required for normal neural network activity and explore all changes that
may lead to abnormal functions, behavioral symptoms, cognitive phenotypes, and
syndromes. Computational simulations of neurodynamics generate hypothesis for
experimental verification and help to interpret neuroimaging data. Neurodynamics
provides language that relates measureable brain processes to RDoC psychological
constructs. As an example of such an approach, I shall focus here on the autism
spectrum disorders (ASD). Many confusing observations may find an explanation
at this level and lead to hypothesis that may be experimentally verified.

13.2 Attempts to Understand Autism Spectrum Disorders

There is a growing consensus that autism is not a single disease but belongs to
a spectrum of various disorders of general temporospatial neural processing [14].
Many specific mechanisms and multiple etiologies causing ASD may exist, includ-
ing metabolic and immune system deregulation, exposure to various chemicals,
and other environmental factors [29]. Based on the DSM criteria, core behavioral
symptoms may be sufficient for the diagnosis of autism, but RDoC characterization
will reveal phenotypic diversity, with each subgroup requiring different approach
to therapy. Many brain diseases (ASD, spectrum of psychotic disorders, epilepsy)
should be placed in a continuum phenomics space, forming a spectrum of diseases
that may have similar core symptoms, but great variability of all RDoC units of
analysis. In the case of ASD, even the main symptoms are highly variable. There
are many theories of autism that focus on selected aspects of behavior or clinical
observations, mistaking symptoms for deeper causes [30].
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So far big projects related to autism have been focused mostly on a single
level. A lot of efforts have been devoted to the genetics of autism. Large number
of genes involved in deregulation of neural systems has clearly shown that major
brain diseases may have very different etiologies. Research on the genetics of
autism has identified over 880 genes (about 4.5% of all human genes) that are
correlated with some form of autism (SFARI Gene database, Q1 2017 release,
https://gene.sfari.org/). They are involved in cell signaling, structure and transport,
metabolic, immune and neural processes, and frequently implicated in other disease
such as cancer, cardiac or neurodegenerative disease [29]. Genetic variation and
environmental conditions lead to the diversity of proteins, signaling pathways, ion
channels, synapses, and structures of neurons and their connections. Unfortunately
there are no good methods to analyze in vivo molecular structure of biological
neurons.

The motto of molecular biology “structure is function” is also true at the systems
level. Therefore the best strategy is to analyze neural properties in relation to
molecular and genetic levels and investigate how that will influence neurodynamics,
spatiotemporal patterns of neuronal electrical activity. Brain functions and observ-
able behavioral symptoms may then be understood in terms of specific dysfunctions
of neurons. To achieve this goal, the whole causal chain (Fig. 13.1) sketched below
is needed.

1. Genes are expressed in different parts of the brain, creating proteins that form
neural receptors, ion channels, synapses, and cell membranes. Mutations, copy
number variation, and other genetic processes create specific dysfunctions of
proteins building ion channels, influencing generation of action potentials [22].

2. Complete ion channelome is needed and should be related to different types of
neurons, their dendrites, axons and membranes, and density and distributions of
ion channels, influencing integration of synaptic inputs [12].

3. Specific character of individual neurons depends on all biophysical properties,
but the distribution and temporal activation of voltage-gated ion channels are of
particular importance. The fast temporal dynamics of activity-driven ion channel
changes should be taken into account [18].

4. Neural simulators aimed at detailed modeling of single neurons at subcellular
component level, including biochemical reactions, are needed to investigate how
changes at molecular level determine properties of single neurons and how
these properties influence, in stimulus-driven situations, development of neural
networks and whole connectomes. Such neural simulators are in the early stage
of development. NEURON, GENESIS 3 and the hope is that Brain Simulation

Genes
Molecules

Proteins

Neurons

Circuits
Neurodynamics

Cognitive

functions
Behavior

Fig. 13.1 Causal chain for understanding of ASD mechanics

https://gene.sfari.org/
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Platform of the Human Brain Project will provide even more detailed simulators
that should integrate all experimental information.

5. Simulations of brain functions related to the five RDoC domains should reveal
the range of biophysical neural parameters that may be responsible for normal
functions and disruption of these functions. Whole-brain simulations should also
show how connectomes develop as a function of sensory stimulation and internal
dynamics.

A lot of data is missing at each of these stages. Understanding this causal chain
is a real challenge in ASD research, and it should be clearly stated as a vision based
on RDoC approach and one of the goals of the HBP.

Although the complexity of the problem is overwhelming as a kind of a “proof
of principle,” I shall show below how multilevel approach may be applied to ASD,
generating hypothesis that may be experimentally verified.

13.3 ASD and Neurodynamics

As the first approximation, minimal models that capture some properties of
biological networks and allow for simulation of experimental observations are
needed. Starting from simple models of neurons and networks, we have tried to
create models of normal cognitive and motor functions and determine ranges of
model parameters that preserve these functions. Synchronization of neurons in
local microcircuits and between distal brain areas is necessary for binding neuronal
activations that permit perception, action, and other cognitive activity. Abnormal
temporospatial neural processing [14] is at the root of pervasive developmental
disorders but also attention deficit disorder, both in the inattentive and hyperactive
(ADHD) form, concentration deficit disorder, bradyphrenia (slowness of thought),
and other disorders related to attention. Such effects may be investigated using
attractor neural networks [1], where the activity of groups of neurons settles in a
quasi-stable spatiotemporal pattern called “attractor.” These patterns encode long-
term memory, concepts, and object recognition. The subspace of initial activations
that will end in the attractor as a result of neural dynamics is called “the basin of
attractor.” Transitions between attractors are possible due to the noise in the system,
effects of neural fatigue, or signals coming from other groups of neurons due to the
external or internal stimulation.

Neurodynamics takes place at many spatial and time scales, from the nanoscale
to slow developmental and learning (neuroplasticity) processes. Relevance of
these processes depends on the questions that are asked. In analogy to adiabatic
approximation in quantum systems, one can consider transitions in neurodynamics
as relatively independent of slower processes responsible for neuroplasticity. In
this approximation neurodynamics may be investigated on a train network that
has already fixed synaptic connections and may assume many distinct attractor
states. However, one should remember that the development of connectomes due
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to the Hebbian associative mechanisms depends on the stimulations that create
attractor states in networks. Attractors in the sensory cortices develop quite early
in infancy; perception-action cycle attractors develop later, coupling local attractor
states, synchronizing the activity in sensory and motor areas through distal con-
nections [27]. Formation of such attractors depends on frequency of stimulations
and the time the system stays in a given state and induces neuroplastic changes.
The time in which neurodynamics dwells in a given attractor basin should be
within certain range to ensure normal development. If local attractors are too
strong, capturing neurodynamics for a long time, the effective number of internal
changes of activation patterns may be low. This will prevent formation of stronger
and more complex attractors connecting wider brain areas and thus lead to the
underconnectivity between distant brain areas.

The underconnectivity theory of autism has achieved considerable success [19],
but reasons for local overconnectivity and underconnectivity (or lower bandwidth
of information transmission) between frontal and posterior brain areas need deeper
explanation that may be provided by the deep attractor theory. Zimmerman book
[30] describes 20 different approaches to ASD, divided into 6 types: molecular
and clinical genetics; neurotransmitters and cell signaling; endocrinology, growth,
and metabolism; immunology, maternal-fetal interaction, and neuroinflammation;
environmental mechanisms and models; and neuroanatomy and neural networks.
Most approaches focus on phenomenological observations. Minicolumnopathy,
mirror neuron system (MNS), theory of mind, underconnectivity, empathizing-
systemizing, and executive dysfunction theory all focus on symptoms trying to
link them to behavior. Such approaches do not provide an explanation why
such symptoms arise and why observed abnormalities create specific behavioral
problems. Imbalanced spectrally timed adaptive resonance theory [16], or iSTART,
is based on artificial neural network that does not include measurable parameters.
This model simply assumes breakdown of some brain functions – underaroused
emotional depression, hyperspecific learning, and attentional and motor circuits –
but has no relations to the biophysical reality at molecular or neuroimaging levels.

Neurodynamics depends on many parameters that characterize neurons and their
networks: general network connectivity; types of neurons; density and strength of
synaptic coupling; the balance between excitatory, inhibitory, and leak currents;
types of ion channels (ligand or voltage-gated, inward-rectifier); availability of
neurotransmitters; and many others. Construction of computational models incor-
porating all details is not yet feasible, but even greatly simplified models may help
to generate useful insight into some brain functions.

13.4 Computational Simulations

Minimal model of neurons that can be linked to biophysical reality should include
excitatory and inhibitory ion channels and leak channels that control spontaneous
depolarization. Emergent neural simulation software based on Leabra cognitive
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Fig. 13.2 Point neuron, three
types of ion channels

architecture is relatively simple and captures most important biological principles
[24, 25]. Point neurons and rate coding of neural activity is used to replace
population of spiking neurons by single units, three types of ion channels (Fig.
13.2), k-winners-takes-all (kWTA) mechanism to account for inhibition and sparse
coding, several types of noise, and Hebbian and error-driven learning mechanisms.
This architecture has been developed over several decades and is implemented in
the Emergent neural simulation software, providing a great tool for a whole family
of simple attractor network models of various brain functions that may be used to
illustrate under which conditions normal functions are disrupted.

I will summarize here three types of models relevant to autism that we have
investigated in the past: attention shifts [9, 11, 15], spontaneous thought dynamics
[8, 10] based on the model of reading, and simple cyclic movements [7].

The attention shift model has been based on classical Posner spatial cueing task.
Model implemented in Emergent (Fig. 13.3) is composed of input, V1, and two
spatial and two object recognition layers with additional output layer. This model
is essentially the same as described in O’Reilly and Munakata [25], simulating
the speed of reaction times when helpful (valid) or confusing (invalid) cues are
presented. Speedup and slowdown for valid/invalid trials compared to a neutral trial
with no cueing can be calculated. Effects of lesions in case of hemispatial neglect
and Balint’s syndrome have also been shown in this model, showing significantly
slower reaction times in case of invalid cues.

Problems with the speed of attention shifts may arise not only due to the lesions
but also changes in relative strength of excitatory/inhibitory and leak ion channel
conductances. In many investigations individuals with ASD have shown atypical
attention patterns. For example, Landry and Bryson [23] found that “Children
with autism had marked difficulty in disengaging attention. Indeed, on 20% of
trials they remained fixated on the first of two competing stimuli for the entire 8-
second trial duration.” Kawakubo et al. [20] conclude: “We suggest that adults with
autism have deficits in attentional disengagement and the physiological substrates
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Fig. 13.3 Posner spatial
cueing task model
implemented in Emergent
simulator

underlying deficits in autism and mental retardation are different. [ . . . ] These
results demonstrate electrophysiological abnormalities of disengagement during
visuospatial attention in adults with autism which cannot be attributed to their IQs.”
Development of such problems is gradual – between 7- and 14-month infants who
were later diagnosed with autism stopped improving speed and flexibility of their
visual orientation [13].

Our simulations of attention shift effects point to the mechanism that is also
seen in spontaneous transition between thoughts and cyclic movements in case of
motor system activations. The model of thought wandering is based on a modified
model of normal reading and dyslexia, implemented in the Emergent simulator
[25]. The model has six layers, representing information about orthography (6 × 8
units), phonology (14 × 14 units), and semantics (10 × 14 units), connected to
each other via intermediate (hidden) layers of neurons (Fig. 13.4). Full connectivity
between each adjacent layer is assumed, with recurrent self-connections within each
of these layers. The original model has been used primarily to study various forms of
dyslexia due to the lesions of one of the intermediate layers between the two inputs
and the semantic layer. The network has been trained on 40 words, half of them con-
crete and half of them abstract. Semantics has been captured by using micro-features
describing words. Accommodation mechanism has been added, based on the con-
centration of intracellular calcium that builds up slowly as a function of activation
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Fig. 13.4 Model of reading, with orthographic, phonological and semantic layers (140 units
representing microfeatures) and 3 intermedite layers, showing activity of neurons during mind-
wondering

and opens leak channels releasing potassium ions, regulating subsequent inhibition
of a neuron. Synaptic Gaussian noise with zero mean and 0.02 variance has been
used to facilitate free transitions between attractors representing words or thoughts.
The network is prompted by showing it a word in the orthographic or phonological
layer and observing transitions of activity in the semantic layer neurons.

To see trajectories of neurodynamics in 140-dimensional space, recurrence plots
(RPs) and fuzzy symbolic dynamics (FSD) visualization have been used [8, 10].
In Fig. 13.5 examples of such trajectories are shown for three values of parameter
controlling the calcium buildup: b = 0.005 leads to deep attractor basins and reduced
number of states in neurodynamics, b = 0.01 leads to normal transitions, and
b = 0.02 leads to fast depolarization of neurons, shallow attractor basins, and the
inability to dwell in a single state. In the first case, neurons remain synchronized in
one persistent pattern; trajectories of neurodynamics are trapped in attractor basins
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Fig. 13.5 FSD (left) and RP (right) visualization of attractors in semantic layer with 140 units in
weak (ASD), normal and strong (ADHD) accommodation case

for relatively long time. This seems to explain why disengagement of attention in
ASD is slow.

On the other hand, too short synchronization times, or shallow basins of
attractors, lead to rapid jumps from one basin of attraction to another, with short
dwell times. Attention is not focused long enough, as is typical in case of attention
deficit hyperactivity disorder (ADHD). Thus a single parameter that controls neural
accommodation mechanism may lead to very different behaviors. Some ASD and
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ADHD cases may be at the opposite ends of the same spectrum. Other mechanisms
(inhibition, recurrence) may be lead to different subtypes of these diseases.

Links between calcium and potassium channelopathies and ASD have been
recently noticed [17]. Several genes (CACNA1C, CACN1G, and CACNA1I) that
control construction of calcium ion channels have been associated with ASD.

13.5 Interpretation

Strong synchronization of neurons in local sensory cortices creates deep attrac-
tors trapping neurodynamics for a long time. Network activity patterns do not
change with normal frequency, and therefore perception-action networks requiring
synchronization of distant cortical areas are developing slowly. This is consistent
with many observations related to the development of frontoparietal connectivity
[19]. Courchesne and Pierce [5] have also postulated that ASD is characterized
by early local hyperconnectivity and a long-distance hypoconnectivity of the
prefrontal cortex. Trying to understand conflicting neuroimaging findings of hypo-
and hyperconnectivity in children and adults, Uddin et al. [28] suggested that
the increase in functional connectivity over the age span may be slower in ASD
group. Deep attractor hypothesis supports these views and links them to properties
of neurons at molecular and genetic levels. Analysis of neurodynamics has great
diagnostic potential and may be used after EEG source power reconstruction or
after wavelet multiscale decomposition of signal. Recurrence quantitative analysis
estimating trapping time, recurrence rate, entropy, laminarity, and other nonlinear
features of EEG signal allowed for discrimination between autistic and typically
developing children starting at 3 months of age [4].

In our computational models, strong attractors may arise due to several reasons:
unusually strong inhibition, strong recurrence, or damage of leak (K+) ion channels
that has genetic basis. Shift of attention due to the bottom-up processes in Posner
experiment requires desynchronization of current activation patterns and resynchro-
nization of the new one. Spontaneous depolarization of neurons through the leak ion
channels plays an important role in this process. Sizes of basins of attractors may
considerably differ depending on encoding of stimulus and how initial connectivity
was structured. Hyperconnectivity may lead to relatively small but very strong
basins. One way to estimate it in case of attractor network is to plot variance of the
fluctuations σ(P(ε)) around the mean attractor pattern P as a function of the synaptic
noise ε. If the variance is initially low for growing noise variance, but at some point
there is a sharp increase, the attractor basin is deep (synchronization is strong) and
narrow (fluctuations are small). Behavioral interpretation of such situation is that
even strong stimuli will be ignored, resulting in underreaction. Deep attractors may
be activated in the cortex even when sensory stimulation is rather weak, and this may
be true for all sensory modalities, sight, hearing, touch, smell, movement, and taste
but also purely internal activation. From behavioral perspective deep attractors in
perception-action cycle will lead to insistence on sameness. Development of strong
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attractors coupling sensory cortices and subcortical areas controlling emotions may
result in overreaction and tantrums [26].

On the other hand, if the variance σ(P(ε)) of the network activation patterns will
grow with increasing noise, the attractor basin may be broad, shifts of attentions
may be easier, and development of long-distance connections should be faster.
To achieve such desirable outcome, children should be stimulated in an intensive
way. Applied behavioral analysis is using such intensive stimulation and is the
best-established form of therapy for children with autism. Detailed simulations of
trajectories entering basins of attractors show that steps of the trajectories (total
change of patterns in short time step) decrease near the center, making it hard in
case of ASD to get out of the basin of attractor. A flow of activity may prevent
the tendency to dwell for longer time in one state (perception, thought, action). For
example, using the rapid sequential visual presentation technique, one can adjust
speed that allows for comprehension but does not allow to maintain the same brain
state for long.

Finding fingerprints of persistent EEG activity in brains of autistic children
should give support to ideas presented here. Many other ideas may be derived
from computational simulations and the deep attractor hypothesis. More detailed
computational simulations should help to understand casual chain linking genetics,
neural structures, development of connectomes, and behavior in a meaningful way.
The language of dynamical systems may help to bridge the gap between physical
and mental processes.
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Chapter 14
Alzheimer’s Disease: Rhythms, Local
Circuits, and Model-Experiment
Interactions

Frances K. Skinner and Alexandra Chatzikalymniou

Abstract As more biological details emerge from sophisticated experimental
techniques today, we are faced with the increasing challenge of how best to develop
and use computational models to gain insight into neurological diseases. In this
chapter we briefly describe what is known regarding Alzheimer’s disease (AD) and
changes in brain rhythms as well as computational models in AD. We then briefly
describe an expansion of our previous proposal of using whole hippocampus exper-
imental preparations that spontaneously express θ and γ rhythms when developing
microcircuit models. In this way, a cycling between model and experiment becomes
possible allowing model insights to be brought to bear in understanding AD in our
complex brain circuits.

14.1 Opening

The multi-scale, nonlinear, and detailed nature of human brain dynamics is what
makes it complex and challenging to model and understand [1]. Also, as multi-scale
interactions are thought to be a defining feature of brain functioning [2], they need to
be explicitly considered. From a disease perspective, it is clear that cellular specifics
require consideration [3, 4]. Moreover, we are now firmly in an age where inherent
biological variability has been shown to be a part of the individuality of biological
circuits and should be considered in trying to understand the boundaries between
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health and disease [5]. The need and advantage of computational models relative to
experimental studies is their ability to examine and analyze output at multiple levels
simultaneously so as to help understand the multi-scale, nonlinear underpinnings
of neurological disease. This necessarily depends on the computational model’s
representation of brain circuits.

In this chapter, we focus on presenting Alzheimer’s disease (AZ) from a rhythmic
perspective and end with an update on a previous proposal [6].

14.2 Alzheimer’s Disease and Rhythms

Alzheimer’s disease (AD) is a devastating disorder, and early diagnosis is pivotal
for its effective treatment. The community is in search of early biomarkers that can
detect changes associated with early stages of the disease. AD seems to be a disorder
of mechanisms underlying structural brain self-organization [7] and changes in brain
connectivity [8]. Changes in subcortical structures in early- versus late-onset AD
have also been shown [9] as well as early abnormalities in brain microstructure [10].
The main neuropathological model of the disease is the amyloid cascade model
[11, 12] which in its final stages leads to neuronal death and decreases in brain
volume [13]. Several amyloid-based AD models have been developed in rodents and
non-rodents [14]. However, prior to amyloid segregation, changes in other kinds of
brain activity occur and can serve as signals of the pathological changes.

Brain rhythms undergo fundamental changes in AD as seen in EEG recordings,
in both rodents and humans. The hallmark of EEG abnormalities in AD patients
is a shift of the power spectrum to lower frequencies [15–17] and a decrease in
coherence of fast rhythms. Other than these general observations, changes occur in a
frequency band-specific way. For example, in [18], delta activity was a significantly
greater percentage of total EEG power in the moderate-to-advanced AD subjects
when compared to either the healthy controls or mild AD subjects.

Besides changes in spectral EEG power measurements in AD, changes in addi-
tional measurements of neural activity have been observed in AD. Phase amplitude
coupling (PAC) between a slower and a faster rhythm, a form of cross frequency
coupling, is one of these additional measurements. PAC is associated with memory
performance and changes in AD [19]. In [20], PAC between alpha and gamma was
altered in AD patients, and in [21], altered θ -γ PAC was found in individuals with
AD and mild cognitive impairment (MCI). Global field synchronization (GFS) is a
commonly used measure of EEG synchronization and reflects the global amount of
phase-locked activity at a given frequency. In [22], patients showed decreased GFS
values in α, β, and γ frequency bands and increased GFS values in the delta band,
supporting a hypothesized functional disconnection in neurocognitive networks. In
another study, GFS values were found to be significantly lower in AD patients
relative to healthy controls [23].

In essence, EEG abnormalities of AD patients are characterized by slowed mean
frequency and PAC changes, less complex activities, and reduced coherence among
cortical regions [24]. Overall, the changes in EEG suggest that it has utility as a
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valuable tool for early diagnosis of AD and could be especially helpful in combi-
nation with other biological/neuropsychological markers and structural/functional
imaging [15, 25–28]. Particular rhythmic changes occur in local field potential
(LFP) recordings of AD subjects [29]. Interestingly, changes in PAC of θ and γ

LFP rhythms in the hippocampus have been found to precede pathological changes,
thus indicating that it could serve as an early biomarker [30–33]. These changes
have been shown to be specific to different brain structure regions that include the
hippocampus and parietal cortex, but not the prefrontal cortex [34].

14.2.1 Lower Level Changes

Synaptic malfunctions and ion channel expression changes are observed in AD.
Synapse loss is an early and invariant feature of AD, and there is a strong correlation
between the extent of synapse loss and the severity of dementia [35]. Rubio
et al. [36] showed that older (8 months) behaving mice expressing mutated human
amyloid precursor protein (hAPP) had diminished θ and γ rhythm power and a
significant deficit in GABAergic septo-hippocampal (SH) innervation as compared
to aged normal mice, in addition to the well-known loss of cholinergic input to the
hippocampus in AD. This was shown to be due to a reduced number and complexity
of SH axons and not neuronal loss.

Verret et al. [37] showed that reduced Nav1.1 levels and parvalbumin cell
dysfunction critically contributed to abnormalities in oscillatory rhythms, network
synchrony, and memory in hAPP mice and possibly in AD. Moreover, restoring
Nav1.1 levels in hAPP mice by Nav1.1 expression increased inhibitory synaptic
activity and γ oscillations and reduced hypersynchrony, memory deficits, and
premature mortality. Restoration of brain rhythms and cognition has also been
shown in Nav1.1-overexpressing interneuron transplants in mouse AD models [38].

14.2.2 Computational Models and AD

The challenge of multi-scale modeling aspects in neuroscience is exposed by the
various modeling studies that have been done in AD [39]. Subcellular, cellular,
circuit, and system-level models in consideration of AD have been built. Neural
mass models were used to be able to consider whole brain representations and to be
able to examine the hypothesis that excessive neuronal activity leads to degeneration
and hub vulnerability in AD [40]. At a different level, cross talk between multiple
cell types including neurons and glia and amyloid-beta (Aβ) was modeled to help
understand the neurodegenerative progression of AD [41].

A modeling focus has been on the hippocampus. For example, Menschik and
Finkel [42] built circuit models of the CA3 region of the hippocampus in consid-
eration of memory alterations, and Cutsuridis et al. [43] considered encoding and
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retrieval aspects in the CA1 region that could be used for AD insights. The specific
effect of Aβ on synaptic release probability was examined in CA1 pyramidal cell
models [44], and a hippocampo-septal circuit model was used by [45] to examine
changes in θ band power when Aβ changes in pyramidal cell ion channels were
modeled.

14.3 Proposal Redux

As described above, rhythmic changes as captured in EEG and LFP measures in
AD are clear, as well as cellular and synaptic specific changes. Models that examine
AD aspects have been developed and some examples are provided above. Model
considerations range from biochemical signaling to system-level processing [39].

How might one further bring forth the advantage of computational modeling
to help understand the multi-scale, nonlinear complexities that underlie these
multiple level changes? Incorporating particular biological details (e.g., particular
ion channel biophysics in a given cell type) typically leads to one having sparse
experimental data (e.g., other ion channel types and their biophysical characteristics
in the given cell type as well as ion channel biophysics for other cell types) in
building microcircuit models. As such, a focus on whole brain EEG modeling
with a cellular representation is not sensible. Further, a focus on LFP rather than
EEG recordings in models would help reduce the spatial extent and complexity
[46]. Given the present age in which we exist with updated knowledge and ever-
expanding information about different cell types and the availability of molecular
datasets and more [47], we think that the most critical aspect is to be able to have a
cycling between modeling work and experimental data so that additional knowledge
can be continually considered and possibly incorporated to obtain additional insights
from models.

We previously suggested that a focus on microcircuit modeling where direct links
between model and experiment at multiple levels are possible can better leverage
insights gained from computational modeling [6]. This is possible if a model focus
on an in vitro whole hippocampus preparation is used in which spontaneous θ

and θ /γ rhythms are expressed [48, 49]. That these rhythms emerge spontaneously
suggests that they form part of the natural output of the biological system. We are
using such a model focus and now have a working mechanism for the generation
of θ rhythms in this preparation that includes fast-firing parvalbumin interneurons
and pyramidal cells with spike-frequency adaptation and post-inhibitory rebound
characteristics in CA1 microcircuits [50]. We have also built models to examine
the contribution of additional inhibitory cell types to ongoing theta rhythms [51].
We have also leveraged these latter models to build biophysical LFP models
that were constrained with LFP experimental characteristics leading to insights
of how different cell types and pathways could contribute to robust LFP theta
rhythms in CA1 microcircuits [52]. This latter work is a critical development and is
schematized in Fig. 14.1 that we consider as an updated proposal from [6]. That is,
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Fig. 14.1 Proposal Redux Schematic. Biophysical LFP models and experiments (green arrows)
of rhythmic activities (θ , θ /γ ) from microcircuits in which the models have biological representa-
tions that span more than one scale (middle blue wordings) and in which there are direct linkages
between model and experiment. A cycling (blue arrows) between model and experiment is then
possible. Based on [6]

a cycling between model and experiment (blue arrows) in which there are biological
representations (blue wordings) in the model microcircuits of synaptic, cellular, and
network levels can occur. The cycling is possible because comparisons between
model and experiment are possible at multiple levels, importantly including the
LFP output from the microcircuit (green arrows) of the isolated whole hippocampus
preparation. Therefore, any model predictions or developed hypotheses can be
examined in the experimental system.

Moving forward, the CA1 hippocampus microcircuit model can be expanded to
include additional levels (e.g., molecular, as shown in gray wording in Fig. 14.1)
incorporating further data and considering other detailed models [53] but always
being able to be directly constrained by the experimental system of the isolated
whole hippocampus preparation. As this preparation has been specifically used to
show particular θ and θ /γ changes using mouse AD models [30], any insights
obtained by our models have the possibility of providing insight into the complex
circuit dynamics of AD states.
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Chapter 15
Using a Neurocomputational
Autobiographical Memory Model
to Study Memory Loss

Di Wang, Ahmed A. Moustafa, Ah-Hwee Tan, and Chunyan Miao

Abstract Autobiographical memory (AM) is a core component of human life and
plays an important role in self-identification. Various conceptual models have been
proposed to explain its functionalities and describe its dynamics. However, most
existing computational AM models do not distinguish AM from other long-term
memory. Specifically, during model design, the unique features and the memory
encoding, storage, and retrieval procedures of AM were not taken into consideration
in prior models. In this chapter, we introduce our neurocomputational AM model,
which is consistent with Conway and Pleydell-Pearce’s model in terms of both the
network structure and dynamics. We further propose how to apply our parameterized
computational model to quantitatively study memory loss in people of different age
groups. As such, we provide a suitable tool to evaluate the effect of different memory
loss phases in a rapid and quantitative manner, which may be difficult or impossible
in experimental studies on human subjects.

Keywords Autobiographical memory · Neurocomputational model · Memory
loss · Cognitive modeling
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15.1 Benefits of Modeling AM Using a Neurocomputational
Model

Autobiographical memory (AM) is “a system that encodes, stores and guides
retrieval of all episodic information related to our personal experiences” [4]. It
is a core component of human brain function and plays an important role in
self-identification. Specifically, “individuals’ current self-views, beliefs, and goals
influence their collections and appraisals of former selves. In turn, people’s current
self-views are influenced by what they remember about their personal past, as well
as how they recall earlier selves and episodes” [32]. Due to its great importance, over
decades, researchers from different disciplines have tried to find out the working
mechanisms of AM. Although until today, we still do not fully understand the
dynamics of AM on the neural network level, we have already learned about
its activation regions in the brain using various neural imaging techniques [7].
Moreover, some conceptual AM models proposed in the literature have been
supported by neural imaging evidence (e.g., Conway and Pleydell-Pearce’s model
[8] has been supported by [1]).

Among the various AM models established by psychologists, the one proposed
by Conway and Pleydell-Pearce [8] has been widely accepted in the academic world.
They categorized autobiographical memory knowledge into three levels, namely,
lifetime periods, general events, and event-specific knowledge (from general to
specific, see Fig. 15.1). Furthermore, they proposed that autobiographical memories
can be directly accessed if the cues are specific and personally relevant. On the

Fig. 15.1 Illustration of the autobiographical memory hierarchy proposed by [8]. (This figure
replicates Figure 1 presented in [8])
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other hand, if the cues are general, a generative retrieval process must be engaged
to produce more specific cues for the retrieval of relevant memories. The main
difference between direct and generative retrievals is that “the search process is
modulated by control processes in generative retrieval but not, or not so extensively,
in direct retrieval” [8]. We adopt these established theories as the design principles
of our computational AM model, which is introduced in the following section.

Face-to-face interview is the conventional way of finding out how much AM a
human subject can recall or which type of AM does one recall easily. Inevitably, a
large amount of effort is involved in this process. For example, the study reported
in [3] recruited 130 interviewers to record the response of 1,241 participants, and
the study conducted later [22] recruited 120 interviewers and 1,307 participants.
Nonetheless, these studies only evaluate our overall capability of memory recalls
across different life stages, which do not distinguish the respective effect of the
memory encoding, storage, and retrieval phases. On the other hand, advanced neural
imaging techniques allow us to learn the activation regions and the sequence of
activations in our brain. However, these studies only reveal the dynamics of memory
retrieval and may not be suitable to study memory encoding and storage. If we
can build a neurocomputational model based on prior neurocognitive studies, we
can then quantitatively evaluate various phenomena related to AM in a rapid and
quantitative manner, which may be difficult or impossible in human participants.
For example, by using a parameterized computational model, we may not need to
conduct thorough interviews to learn one’s memory performance. Instead, with the
help of the peripheral information such as age, gender, education level, medical
history, etc., we may only need to ask few questions to identify human subjects’
key parameters to approximate their memory performance. Moreover, with a
computational model, we can better design and deliver personalized reminiscence
therapies [28, 31] to improve the psychological and cognitive well-being of the
elderly [17]. In the following section, we introduce our neurocomputational AM
model, which serves as an appropriate groundwork for future rapid, quantitative,
and more complex evaluations on autobiographical memory loss.

15.2 Autobiographical Memory-Adaptive Resonance Theory
(AM-ART) Network

Existing neurocomputational AM models (e.g., [6, 13, 20, 26]) may not be suitable
for quantitative evaluations of memory loss because their memory retrieval mecha-
nisms are over-simplified that they either simply retrieve all memories or retrieve all
memories containing certain keyword(s). Other computational long-term memory
models embedded in cognitive systems (e.g., [2, 15, 16]) may also not be suitable
because they do not consider the emotional aspects [27] of the stored memory, which
is one of the major differences between AM and other types of long-term memories.
To enable quantitative evaluations of memory loss in a rapid manner, we introduce
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Autobiographical Memory-Adaptive Resonance Theory (AM-ART) network [29],
which is a formally defined neurocomputational model whose structure is consistent
with Conway and Pleydell-Pearce’s model (see Fig. 15.1). Interested readers please
refer to [29] for all the mathematical formulations and algorithms.

The network structure of AM-ART is shown in Fig. 15.2. AM-ART is a three-
layer neural network that in the top-down order, its F3, F2, and F1 layers encode
lifetime periods, general events, and event-specific knowledge, respectively. AM-
ART is designed based on Conway and Pleydell-Pearce’s model that we can
highlight the correspondence between the two models using the following examples.
The life experience of “working at A” can be represented as a code (learned episode)
in F3 of AM-ART. The associated events of that episode, namely, “first day at work,”
“working in the C office,” and “drinks at W Friday evenings,” can be represented as
codes (learned events) in F2. A specific event, taking “drinks at W Friday evenings”
as an example, can be read out in F1 that on Friday night (time), at W (location), with
colleagues (people), drinking (activity), feeling happy (emotion), together with the
pictorial memory (imagery). Furthermore, memory retrieval in AM-ART replicates
the three stages of the generative memory retrieval presented in [8], namely, the
elaboration stage, strategic search stage, and evaluation stage. The operations
applied in AM-ART to realize the three stages of the generative memory retrieval
are summarized in Table 15.1.

Fig. 15.2 Network structure of AM-ART. All its channels and layers match specific brain regions

Table 15.1 Operations in AM-ART to realize the generative autobiographical memory retrieval

# Stage Description in [8] AM-ART operations in [29]

1 Elaboration “The elaboration of a cue with which to
search memory and the simultaneous
setting of verification criteria.”

Template masking, mutation,
and setting of the vigilance
parameters

2 Strategic
search

“Matching the description to records in
memory.”

Code activation and code
competition

3 Evaluation “Records accessed in memory were
assessed against

Template matching

the verification criteria.”
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Moreover, in terms of functional mapping in human brain, we find that AM-
ART would reside in the temporal lobe (see Fig. 15.2). Specifically, inputs of time
and location are from entorhinal cortex [14], inputs of people and activity are from
fusiform gyrus [12], inputs of emotion and imagery are from amygdala [18], and
both the F2 and F3 layers reside in hippocampus [24]. Note that the inputs to AM-
ART are considered as recognized or processed information, e.g., imagery used for
memory encoding in hippocampus is from amygdala [18] rather than directly from
occipital lobe.

15.3 Using AM-ART to Study Autobiographical Memory
Loss

Memory loss generally occurs during three phases, namely, memory formation,
storage, and retrieval [11]. Specifically, we can introduce three parameters to AM-
ART to regulate the corresponding memory loss processes, namely, overload as
the intensity of demanding cognitive tasks during formation [9], decay as the rate
of long-term memory fading during storage [21], and inhibition as the likelihood
of retrieval failure during retrieval [25]. This way of using parameters to model
memory loss is in line with cognitive studies that “the individual pattern of impaired
memory functions correlates with parameters of structural or functional brain
integrity” [11].

After the identification of the three memory loss parameters, the next step is to
estimate their values among different types of people based on prior surveys, such
as the results reported in [3, 5, 10, 19, 22, 23]. These survey data may be used
interchangeably for training, i.e., to estimate the memory loss parameter values
among different age groups, and testing, i.e., to evaluate whether the estimated
parameter values can be used for memory loss predictions. Note that the values of
the memory loss parameters may influence the overall performance in a nonlinear
manner. Interested readers please refer to [30] for the preliminary results.

The proposed overload, decay, and inhibition parameters may only represent
one possible combination of the underlying mechanisms of memory loss. Based on
AM-ART, other memory loss mechanisms may also be tested. For example, some
researchers hypothesize that the formed long-term memories will not biologically
get lost. However, we simply cannot retrieve them back. This possibility can be
easily emulated using AM-ART by excluding memory losses during storage and
making it harder when retrieve the old memories.
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Chapter 16
How Can Computer Modelling Help
in Understanding the Dynamics
of Absence Epilepsy?

Piotr Suffczynski, Stiliyan Kalitzin, and Fernando H. Lopes da Silva

What I cannot create, I do not understand

Richard Feynman

Abstract An overview of the pathophysiology of absence seizures is given, focus-
ing on computational modelling where recent neurophysiological experimental
evidence is incorporated. The main question addressed is what is the dynamical
process by which the same brain can produce sustained bursts of synchronous spike-
and-wave discharges (SWDs) and normal, largely desynchronized brain activity,
i.e. to display bistability. This generic concept, tested on an updated neural
mass computational model of absence seizures, predicts certain properties of the
probability distributions of inter-ictal intervals and of the durations of ictal events.
A critical analysis of the distributions predicted by the model and those found in
reality led to adjustments of the model with respect to the control of the duration of
ictal events. Another prediction derived from the bistable dynamics, the possibility
of aborting absence seizures by means of counter-controlled electrical stimulation,
is also discussed in the light of current experimental studies. Finally the most recent
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update of the model was carried out to account for the particular properties of the
cortical “driver” of SWDs, and the underlying putative role of the persistent Na+
current of cortical neurons in this process.

Keywords Generalized epilepsies · Absence seizures · Neural mass models ·
Dynamical neural systems · Bistability · Inter-ictal and ictal distributions ·
Counter-stimulation · Ih current · Na-persistent current

16.1 Introduction

This chapter gives an overview of the pathophysiology of absence seizures in
the light of insights obtained by means of computational modelling associated
with recent neurophysiological experimental evidence. Classically, absence seizures
are considered the paradigm of primary generalized epilepsies (PGE). They are
characterized by a sudden arrest of ongoing behaviour and conscious awareness,
while the electroencephalogram (EEG) displays a burst of bilateral oscillations,
in human at about 3/s spike-and-wave discharges (SWDs), which have abrupt
onset and cessation. The main question that we address in this overview is what
is the dynamical process by which the same brain can produce paroxysms of
SWDs associated with the arrest of conscious awareness and normal EEG activity
associated with normal state of consciousness. This process is considered from
the perspective of bistability, meaning that the brain has two stable equilibrium
dynamical states.

16.2 The Conceptual Link Between Absence Epilepsy
and Dynamical Complex Nonlinear Systems

This sudden change in brain rhythmic activity typical of absence seizures reminds
us of the seminal writings of Mackey and Glass already in 1977 [24], about
the conditions under which “oscillations and chaos” can occur in physiological
systems that led to the development of the concept of “dynamical diseases” [25].
In short, these authors proposed that “the signature of a dynamical disease is a
change in the qualitative dynamics of some observable nature”. In essence these
changes in dynamics correspond to bifurcations in a complex nonlinear system,
which mathematically describes the physiological system. In an earlier paper
[19], we proposed that this is what occurs in the thalamocortical system. In this
system different types of oscillations occur, depending on the state of a number of
parameters that are controlled by neuromodulatory subsystems: normal oscillations
as alpha rhythms or sleep spindles and pathological oscillations as SWDs during
absence seizures.
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Why, how, and when paroxysmal oscillations of epileptic nature occur is difficult
to grasp based simply on current knowledge of pathophysiology. This is the
consequence of the complexity of factors that jointly regulate the dynamics of a
paroxysmal disease. It may appear trivial, but it should be added that an essential
feature of this kind of conditions is that for periods of considerable duration, the
behavior and brain signs display mostly normal states of activity, in general much
longer than the duration of the paroxysmal episodes of abnormal activity. In order
to apprehend the underlying dynamics of a paroxysmal disease, as is the case in
epilepsy, it is appropriate to resort to dynamical modelling of complex nonlinear
systems.

16.3 A Simplified Sketch of the Thalamocortical Neuronal
Networks: The Sources of SWDs

Before describing the computational models, it is relevant to sketch the basic
structure and physiology of the system being modelled: the thalamocortical system
[37] is shown schematically in Fig. 16.1. The system consists essentially of two
neuronal populations, cortical and thalamic, which are mutually interconnected
by a number of loops. In a simplified way, the thalamic loop is formed by the
population of thalamocortical relay (TCR) neurons that project to the population of
reticular thalamic (RE) neurons. The latter inhibit TCR neurons by way of GABAA
and GABAB types of inhibition. TCR neurons receive also external inputs from
sensory systems, from the basal forebrain and the brainstem. The cortical network
consists essentially of a negative feedback loop formed by interacting populations
of pyramidal neurons (PY) and inhibitory interneurons (IN). Pyramidal cells, in
addition to projecting to local interneurons, send also excitatory connections to the
thalamus both to the TCR and RE populations. In turn, the TCR cells excite both
the pyramidal cells and interneurons. Thalamic populations receive also modulating
inputs corresponding, among others, to cholinergic activation from the brain stem.

16.4 Modelling Spike-and-Wave Patterns

Several modelling studies addressed the question which mechanisms are responsible
for the generation of SWDs. Most of these focused on the thalamus, the brain
structure that was then thought to be primarily responsible for the generation of
SWDs; thus, Wang [41] developed a single neuron model of a thalamic relay neuron
that is completely deterministic and may display “strange attractors” typical of a
chaotic dynamic state. A thalamic neuronal network spatial model was developed
by Lytton et al. [23] which shows that the complex nonlinear dynamics of the
neuronal network depends critically on the low-voltage activated (LVA or LTS)
Ca2+-current IT that can lead to intrinsic repetitive bursting in TCR neurons. It
is also noteworthy that drugs, like ethosuximide, that depress IT can suppress
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Fig. 16.1 Simplified diagram of the thalamocortical network showing connections between
different cell types. Thalamic relay cells (TCR) in the main thalamic nuclei send excitatory input
to the reticular nucleus neurons (RE). GABAergic RE cells are mutually connected and send back
inhibitory fibres to the TCR cells. Pyramidal cells (PY) in the cortex interact with local interneurons
(IN). The cortex sends also recurrent connections to both thalamic relay and the reticular nucleus
and receives sensory input via TCR cells. Additionally, thalamic nuclei receive modulatory inputs
from the brain stem and basal forebrain structures. Open triangles denote excitatory connections,
and filled circles denote inhibitory ones, as indicated in the figure

seizure initiation, although it should be noted that ethosuximide acts also on the
persistent Na+ current (INaP) and on a Ca2+-activated K+ current [18]. A model of
cortico-thalamic feedback loops was developed by Destexhe et al. [7] and Destexhe
and Sejnowski [8] in order to investigate the role of cortico-thalamic feedback
in promoting SWD oscillations, in contrast with most previous studies where the
emphasis was on the role of intra-thalamic mechanisms. The model indicates that
cortico-thalamic feedback is of crucial importance and that it acts through excitation
of GABAergic RE neurons leading to the recruitment of TCR cell inhibition that
can show rebound firing. Among other predictions this model reveals that the
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upregulation of Ih current, induced by an increase of [Ca2+]i, may mediate the
termination of absence seizures.

16.5 Modelling the Dynamics of Absence Seizures

The models described in short above gave insights into some basic neuronal
mechanisms underlying the generation of SWDs, but did not address specifically
the most relevant issue of the dynamics of this type of epileptic activity, i.e. what
causes absence seizures to start from a normal background of brain activity and to
stop after about 5–15 s? This implies that the underlying neuronal system is able
to display both kinds of activity – normal EEG and paroxysmal SWDs – i.e. it
possesses bistability. This means that the dynamics of this system may undergo
a transition between those two states, depending on some specific conditions. In
other words the system displays a bifurcation. With the objective of better grasping
this dynamical feature, we developed a computational model using the neural
mass approach introduced by Wilson and Cowan [43]. This model consists of
four interacting neural populations: TCR, RE, cortical pyramidal cells (PY), and
interneurons (INs) integrating synaptic and network properties at the mesoscopic
and macroscopic levels (Fig. 16.2) [38, 39]. The model’s output signal can display
a waxing and waning “spindle-like” oscillation of relatively low amplitude having a
spectrum with a peak at approximately 11 Hz, simulating the normal state EEG, or a
high amplitude “seizure-like” oscillation at a frequency around 9 Hz that constitutes
the limit cycle characteristic of absence seizures in the rat (WAG/Rij or GAERS)
(Fig. 16.3).

Thus, for a given set of neuronal parameters, the model is in a “bistable regime”
where it may generate both normal and paroxysmal oscillations and spontaneous
transitions between these two types of behaviour, depending on exogenous and/or
endogenous fluctuations. A representation of the corresponding dynamics in phase
space can illustrate what is the main difference between the brain of an epileptic
patient with absence seizures and a normal brain, assuming that both share the
same basic neuronal networks. Figure 16.4 shows a two-dimensional slice of the
excitatory/inhibitory phase space of the dynamical model where the trajectories
described by the system are projected. In both cases two attractors are shown: the
outer one corresponds to the seizure state and the inner one to the normal state.
The essential difference between both is that in the normal case, the two attractors
are kept well apart on both sides of the “separatrix”; this is not the case in the
epileptic brain. In the latter some parameters differ from the normal situation (e.g.
the characteristics of some ion currents in a specific group of neurons, as discussed
below). This is expressed by a deformation of the attractors such that the distance
between the outer and inner attractors is much smaller. This implies that even
random fluctuations, for example, an increase in the power of an external drive, can
cause the trajectory to cross the “separatrix”, leading to a seizure. This illustrates
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Fig. 16.2 Diagram of the thalamocortical network model. Four neuronal populations are con-
nected according to anatomical connections. Each population is described by synaptic current
responses, which are integrated giving rise to mean membrane potential of a population. Population
voltage is transformed into population firing by nonlinear spike- (cortex) or burst (thalamus)-
generating mechanism. The population of thalamocortical cells (TC, yellow) receives sensory
input, while cortical pyramidal cells (PY, red) receive cortical input from other cortical areas.
Mutual inhibition between reticular cells (RE, green) is represented by RE inhibitory input. Mean
membrane potential of the PY population represents the model output. (Adapted with permission
from Suffczynski et al. [38])

the concept that these absence seizures can be caused by random fluctuations of
some variables and that their occurrence follows a stochastic process. This feature
is an important prediction of the dynamical model. The model was originally
aimed to reproduce seizure-like activity in the rat, but with minor modification of
some parameters (namely, a reduction of GABA-A conductance and an increase of
GABA-B conductance), the model may also account for human SWDs. Comparison
of the model output with EEG signals recorded in an epileptic patient is shown in
Fig. 16.5.
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Fig. 16.3 Upper panel: Bifurcation diagram for the thalamocortical population model with
cortical PCx input as control parameter on the x-axis and cortical membrane potential on the y-axis.
Solid lines denote stable steady state solutions: fixed point (blue) and limit cycle (red). Thin vertical
black lines denote the control parameter space borders at which bifurcations occur and which
divide the plot into three different regions. For low PCx values (on the left side) only fixed point
exists. For extreme PCx values (on the right side), only a limit cycle is present. For intermediate
PCx values, between black vertical solid lines, a bistable region is present in which fixed point
solutions coexist with periodic oscillations. Dotted lines below the plot represent the probability
distribution of the PCx input and show that when the mean of the PCx input is in the bistable
region, fluctuations may reach neighbouring regions, what leads to change of a steady state. Lower
panel: examples of the model output for three different mean values of the PCx input located in
different parameter space regions. For the mean PCx located in the mono-stable fixed point region,
only normal behaviour is observed. For the mean PCx in the bistable domain, transitions between
normal and paroxysmal activity occur. For the mean PCx in mono-stable limit cycle region, only
paroxysmal activity is present. Colour of the signals corresponds to different types of steady states
shown in the upper plot. Time between the ticks is 5 s

16.6 Predictions of the Dynamical Model of Absence Seizures

The model described above leads to two main predictions.
The first prediction concerns the probability distributions of inter-ictal intervals

and of ictal durations. If the ictal events occur randomly, the intervals between
these events are exponentially distributed (Fig. 16.6). This is the special case of
the gamma distribution that is described by the following expression, y = C xα−1

e–x/β , where C is a normalization constant and the distribution’s parameters are α,
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Fig. 16.4 Phase portraits of the model trajectories showing differences between non-epileptic (a)
and epileptic (b) brains. Excitatory cortical activity (E) is plotted along the y-axis and inhibitory
activity (I) along the x-axis. On each plot fixed point and limit cycle solutions (blue lines) and
a boundary between them (“separatrix”, red line) are shown. In non-epileptic brain the distance
between the fixed point behaviour and the boundary is large, and the trajectory doesn’t cross
spontaneously into the limit cycle domain. In epileptic brain the distance between trajectories and
the boundary is relatively small and the trajectory may cross between domains due to fluctuations
in E or I, leading to epileptic transitions. (Adapted from Lytton [22]. And from: Lopes da Silva
et al. [19])

the shape parameter, and β, the scale parameter. In the case of the exponential
distribution, α = 1. For the cases where α > 1, the process is not completely
random, as when some extra number of degrees of freedom has to be taken into
account, what is described more explicitly below. In the cases where α < 1, the
process may correspond to a random walk; this latter model has been proposed in
neurophysiology by Gerstein and Mandelbrot [11] to describe how a neuron reaches
the firing threshold when the weighted sum of incoming excitatory and inhibitory
inputs upon the membrane potential attains a threshold, a process that is akin to a
random walk. This may be assumed to occur also with respect to the way that the
equivalent electrical potential of a neuronal mass reaches the “separatrix” between
two dynamic attractors. Also in this case, successive inter-ictal intervals are not fully
independent as the ictal events are clustered, but they still have random duration.

Indeed according to the first part of the first prediction, concerning the distribu-
tion of inter-ictal intervals, the latter follows a gamma distribution with α ≤ 1. This
model prediction was verified experimentally (Fig. 16.6) in WAG/Rij rat and also in
GAERS, in human absences, and in an in vitro model [39].

The second part of the first prediction that the same gamma distribution with
α ≤ 1 would apply also to ictal durations, however, was found in a group of
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Fig. 16.5 Comparison between the model output and real EEG signals in a human subject. In
the upper panel, a simulated epoch of the 60s with two seizure episodes is shown. In the middle
panel, enlargements of normal and seizure-like activity are shown. In the bottom panel examples of
human EEG during alpha oscillations (on the left) and an absence seizure (on the right) are shown.
In order to simulate EEG signals, the sum of postsynaptic currents in both cortical populations was
taken as a model output. (Adapted from: Lopes da Silva et al. [20])

experimental rats as shown in Fig. 16.6 that had been treated with vigabatrin,
a GABA transaminase inhibitor [4], but this was not supported by experimental
observations in other groups of untreated rats. This was, at first, a surprising result;
in any case it indicated that the model is missing something essential. The finding
that the α-parameter was consistently larger than unity in the gamma distribution
of the duration of ictal periods in untreated rats suggests the possible involvement
of extra dynamic degrees of freedom in the process of termination of seizures.
Therefore, we hypothesize that the deviation of α from unity could be accounted
for by the action of “activity-dependent” mechanisms, namely, by “homeostatic
mechanisms of regulation of neuronal excitability”. The latter might be affected
by the treatment of the rats with vigabatrin. In this way we explored a number
of possible mechanisms by extending the neural mass model of Suffczynski et
al. [38] described above. Thus, Koppert et al. [15] were able to demonstrate in
this extended model that the introduction of the hyperpolarization activated inward
current Ih, in the pyramidal population, was able to affect the duration of the limit
cycle, i.e. the termination of SWDs. In this way the α-parameter associated with
the seizure duration distribution increases significantly with increasing Ih channel
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Fig. 16.6 Distributions of the durations of ictal and inter-ictal epochs obtained in the model (a)
and in the WAG/Rij rat in vivo (b). Histograms with experimental data that represent the relative
number of events in each interval are shown. Exponential distributions are indicated by red lines
and also on the log plots in the inset. Note the similarity between the model and the real data.
(Adapted from: Suffczynski et al. [38])
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Fig. 16.7 α-parameter values of the gamma distribution of durations of ictal and interictal periods.
Increase of Ih current conductance leads to an increase of α above unity for ictal epochs distribution
(left) but doesn’t affect distributions of inter-ictal epochs (right). (Adapted from Koppert et al. [15])

conductance, while a similar increase of the Ih conductance does not affect the
distribution of the duration of inter-ictal periods (Fig. 16.7). This change in the
α-parameter characteristic of the distribution of the duration of ictal periods is in
agreement with the new experimental findings in untreated rats, reported above.
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A second prediction is that SWDs may be annihilated by well-timed pulses, since
the system is bistable [16, 38]. Indeed some studies appear to support the proposition
that counter-stimulation can abort paroxysms of SWDs in experimental animals.
Osorio and Frei [31] showed that single DC pulses were effective in aborting
generalized seizures in rats. Also it has been shown that brief sensory stimulation
delivered at the onset of absence seizure in humans may be effective in arresting a
seizure [35].

In a number of studies, a variety of experimental electrical stimulation protocols
have been used to control SWDs. Although these experimental manipulations
operate in different ways compared to those presented above, i.e. by modulating
coarse network parameters, rather than by means of activating a switch between
coexisting dynamical states, it is interesting to consider these studies briefly
here. Berényi et al. [2] used a closed-loop low-frequency transcranial electrical
stimulation (TES) in a rodent model of absence seizures; a short series of electric
pulses triggered by the SWDs (at a frequency about 6 Hz) was able to shorten
the duration of the SWD burst in an intensity-dependent way. Kozák and Berenyi
[17] extended the latter study, using in essence the same protocol with the aim
of determining whether “on-demand TES treatment of epileptic seizures” over an
extended period of time up to 4 months would have a long-term therapeutic effect,
but it did not. This is not surprising taking into consideration that absence seizures
are essential manifestation of dynamical bistability. Aborting seizure episodes by
temporarily manipulating network parameters does not alter the general dynamics
for the occurrence of seizures. A similar paradigm was used by Van Heukelum et al.
[40], following Lüttjohaan and van Luijtelaar [21], but now applying high-frequency
stimulation (HFS = 130 Hz) to the somatosensory cortex, also in a closed-loop
fashion in the same experimental rats; similarly, they reported that this form of
stimulation could significantly shorten the duration of SWDs and reduce the number
of SWDs, but the SWD duration returned to baseline values in the post-closed-loop
stimulation period. This fact is suggestive that the main effect of the HFS is the
modulation of cortical excitability in general. Furthermore this study did not reveal
whether HFS effects were site specific.

16.7 Where Is the “Driver Network” of SWDs?
Experimental Approaches

Variation of model’s parameters in our neural mass model [38] showed that,
depending on the parameter setting, the SWDs could be initiated in the thalamus
or in the cortex. This result does not resolve the enduring discussion as to where
SWDs may originate primarily in the cortex or in the thalamus or as Avoli [1] in
a striking title expressed “a brief history on the oscillating roles of thalamus and
cortex in Absence seizures”. This discussion is still very much alive. As mentioned
by Sorokin et al. [36], it is a challenging issue to isolate the thalamic and cortical
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contributions with respect to the primary origin of SWDs by means of lesions,
pharmacology, and electrical stimulations. With the aim of throwing light in this
discussion, we used an alternative methodology: we applied nonlinear association
analysis to local EEGs (local field potentials, LFPs) recorded simultaneously from
a large number of cortical and thalamic sites in awake freely moving WAG/Rij
rats, enabling us also to estimate short time delays between associated signals [28,
29]. This approach led to the finding that there exists a cortical site where SWDs
are initiated in the perioral area of the somatosensory cortex that was called the
“cortical driver”, from where these propagate with short time delays to other cortical
and thalamic sites (Fig. 16.8). This pattern is very consistent within the initial
<500 ms of a SWD burst, but the SWD activity becomes bidirectional thereafter.
Interestingly, the “driving” function of this cortical site was amply confirmed by
new experiments where it was shown that the anti-absence drug ethosuximide was
able to suppress SWDs only if applied locally in this peri-oral area in freely moving
GAERs, but not if applied in other cortical areas [26]. Most interesting Polack et al.
[34], using intracellular recordings, showed in GAERS that SWDs are initiated in
layer 5/6 of the same peri-oral area of the somatosensory cortex. Furthermore the
ionic mechanism underlying SWDs was shown to involve an interaction between
glutamatergic pyramidal neurons, likely amplified by a persistent voltage-gated Na+
current (INaP), and inhibitory interneurons that limit the firing of the pyramidal
neurons; the resulting hyperpolarization activates the hyperpolarization-activated
cationic Ih current, such that rhythmic SWDs ensue [6]. At the molecular level an
additional interesting finding was that in the same area of the “neuronal driver of
SWDs” an upregulation of mRNA coding for two sub-units of voltage-gated Na+
channels, that are likely responsible for an enhancement of the INaP was found
[3, 9, 14]. In short, these experimental animal models allowed, not only to find
and characterize, at the cellular and molecular levels, the “driver network” that
is the primarily responsible for the generation of SWDs, but they also permitted
the study of different features of the dynamics of the cortico-thalamic system at
multiple scales. In this context an important recent study [36], called attention to the
importance of the firing modes of thalamic neurons in the maintenance of SWDs;
these authors found that phasic firing is necessary to maintain SWDs oscillations,
in contrast to tonic firing. Using optogenetic tools Sorokin et al. [36] demonstrated
that switching the firing mode of thalamic cells from phasic to tonic was sufficient
to terminate SWDs. These results emphasize the role of the bi-directional cortico-
thalamo-cortical system in maintaining SWD oscillations. As these authors note
these new findings do not argue against the “cortical driver theory” [29], but suggest
further that the thalamo-cortical pathway could act as a “choke point” for SWDs.
According to Paz and Huguenard [32] this “choke point” is a site “remote from the
initiation site that might be as important as the initial dysfunction”.
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Fig. 16.8 Simplified diagram of the results obtained by Meeren et al. [28] employing nonlinear
association (h2) analysis of the EEG signals recorded simultaneously from multiple cortical and
thalamic structures during spontaneous SW discharges in WAG/Rij rats. For the rat shown here,
ten absence seizures were analysed. The results shown correspond to the average of the local
field potentials recorded during the initial 500 ms of ten bursts of SWDs. The values of averaged
time delays in milliseconds are indicated. A consistent cortical driver network (indicated by the
red circle) was found in the perioral area of the somatosensory cortex (SmI), because this site
consistently led the other cortical and thalamic recording sites. Cortico-cortical relationships are
represented by black arrows; intra-thalamic by light grey arrows, and cortico-thalamic by dark
grey arrows. The thickness of an arrow represents the average strength of the association (i.e. the
value of the h2 index), and the direction of the arrowhead points to the direction of the lagging
site. The hindpaw area, for instance, was found to lag by 2.9 ms on average with respect to
the driver site. Within the thalamus, the laterodorsal (LD) nucleus was found to consistently
lead other thalamic sites. The ventroposterior medial (VPM) nucleus was found to lag behind
the ventroposterior lateral (VPL) nucleus, with an average time delay of 4.3 ms. Concerning
cortico-thalamic interrelationships, the cortical focus site consistently led the thalamus (VPM),
with an average time delay of 8.1 ms. Within the somatosensory system of the hindpaw, the (non-
focal) cortical site led the thalamic site (VPL) during three of ten seizures; the thalamus led the
cortex during one seizure, whereas for the other six seizures, no direction of the delay could be
established. (Adapted with permission from Meeren et al. [28])

16.8 Which Properties Make the “Cortical Network”
a “Driver’ for the Initiation of SWDs? A Modeling
Approach

We may reason that some special (patho)physiological properties should be char-
acteristic of neurons in the “driver network” that would reduce the threshold for
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the bifurcation between normal and SWD activity. In this respect the clue is given
by the electrophysiological findings of the Paris group [34, 42] associated with
the molecular findings of Klein et al. [14], clearly leading to the assumption that
the local pyramidal cells of layers 5/6 in the “cortical driver network” display
an abnormal enhancement of the expression of INaP. To test this hypothesis we
added to the original neural mass model of Suffczynski et al. [38, 39] a module
to simulate the contribution of this enhanced INaP. This current tends to amplify
small depolarizations [13]. We determined quantitatively what was the effect of the
gain of this conductivity on the crossing the threshold or separatrix between the
normal and the epileptic attractors. The value of the seizure threshold in the model
was quantified as the minimal value of a ramp input to pyramidal cells population
necessary for the network to switch to limit cycle oscillations. The result is shown
in Fig. 16.9. Part A of this figure shows three sigmoid functions, describing mean
firing rate of a neuronal population as a function of the mean membrane voltage, for
three different values of the INa,p conductance: a sigmoid used as reference (ref, in
blue), another one (up, in red) shifted to a more negative membrane potential, and a

Fig. 16.9 (a) Sigmoid functions, describing mean firing rate of a neuronal population (in pulses
per second, pps) as a function of mean membrane potential. Three different sigmoids are shown for
three different values of the firing threshold, assumed to reflect different conductance of sodium
currents, and the extra contribution of the persistent sodium INaP current. Blue, reference sigmoid;
green sigmoid, hypothetical decreased gNaP conductance and increased threshold; red sigmoid, the
proposed increased gNaP conductance and decreased threshold. (b) Dependence of the network
excitability on the pyramidal population sigmoid threshold. The seizure threshold was measured in
the model as the additional DC input necessary to trigger a seizure (in pulses per second, pps). The
plot shows that as the firing threshold of cortical neurons decreases, e.g. due to an increase of gNaP
conductance (red sigmoid in a), the seizure threshold decreases; as a result the network becomes
more excitable. Each of the three colour points on the broken black line, correspond to each of the
sigmoids of the same colour shown in plot a
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third one (down in green) shifted in opposite direction, for comparison. Figure 16.9b
shows the corresponding seizure thresholds; clearly the sigmoid representing the
enhanced contribution of the persistent INaP conductance (up), corresponds to a
lower threshold for the transition from normal to seizure-like activity than the
original reference value.

Summarizing our main findings, by means of a combined modelling and experi-
mental approach, demonstrate that transitions from the normal to the seizure (SWD)
state are controlled by a random walk process that operates between coexisting
normal and seizure dynamical states separated by a boundary. Such transitions are
noise induced and don’t require parameter changes. After crossing the boundary
of limit-cycle oscillation, an activity dependent process, moves the system back
to the normal state. Accordingly, seizure termination is dependent on a change in
network parameters. It is interesting to briefly discuss these results in the light of
other modelling studies, in particular in the framework of the concept of multi-
stability.

In some other models the transitions from normal state to SWD are mediated by
parameter changes [5, 33] or can be triggered either by noise or by a parameter
change, depending on whether the model is in the bistable region or not [27].
While seizures caused by parameter change may be induced by pharmacological
manipulation, this is not the case for spontaneously occurring episodes. Goodfellow
et al. [12] using a spatiotemporal neural mass model suggested bistable switching
between low amplitude desynchronized state and synchronous SWDs, governed
by intermittent dynamics rather than by noise. The distribution of the durations
of seizure-free, and seizure epochs predicted by this model, however, has not
yet been confirmed experimentally. Milton et al. [30] approached the dynamical
properties of neural microcircuits responsible for absence epilepsy focusing on
the concept that time delays within these circuits can play an important role in
the dynamics, since these microcircuits can generate multi-stability depending on
their internal delays. In such multi-stable system absence seizures correspond to
transients associated with transitions between stable attractors. In this context the
notion of “multi-stability” means that two or more attractors can coexist, and
transient dynamics can occur due to delay-induced transient oscillations. Hence the
concept of multi-stability in absence epilepsy appears to be relevant. The various
proposed mechanisms that may produce paroxysmal changes in dynamics, however,
require further experimental validation.

16.9 Conclusions

In this paper we made an attempt to put together modelling and experimental studies
carried out with the objective of obtaining insight into the brain mechanisms under-
lying absence epilepsy. We elaborated further on our own previous investigations
regarding both research fields in order to highlight the importance of the integration
of new experimental and modelling studies. Thus the original model of cortico-
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thalamo-cortical networks [38] was extended in two ways: first, by Koppert et al.
[15] adding an homeostatic mechanism of regulation of neuronal excitability (the Ih
current) that can account for the termination of a burst of SWDs, and thus for the
transition from the limit cycle back to the normal state; second, in the present work,
by introducing a module representing the persistent Na+ current (INaP) that was
found in the physiological experiments [6] to be strongly enhanced in the pyramidal
cells of the cortical area responsible for initiating and driving a burst of SWDs. With
these extensions, the basic model can account for the distributions of the duration of
both inter-ictal normal periods (gamma distribution with α ≤ 1), and of ictal periods
(gamma distribution with α > 1).

A central feature elicited by our computational model is the coexistence of
multiple stable dynamic states for the same set of parameters. This property has
been not considered in other models where the basic mechanisms for changing
the behaviour of the system are by shifting the parameters [44, 45]. The presence
of multiple states, or attractors, however, can be affected by the values of the
parameters in the model [38]. This leads to the possibility [19] that epileptic
conditions can be due to variety of parameter settings, a circumstance that may
be the explanation of why no universal robust biomarker has been found to identify
epileptic tissue or condition so far.

Absence epilepsy is a remarkable form of epilepsy since it is a clear mani-
festation of a dynamic disease. The neural processes underlying the sudden loss
of consciousness, that forms the core of the symptomatology of absence seizures,
have intrigued a long series of clinical and experimental neuroscientists, who have
offered several explanatory theories, which were the object of lively controversies
(for an interesting overview of the latter, see Avoli [1]). According to our point of
view, an understanding of those neural processes has necessarily to account for the
fine dynamics of absence seizures, with the characteristic short ictal paroxysms and
the relative long periods where brain activity and behaviour are normal (inter-ictal
periods). This is why we focus on a model that can catch these dynamics and not
only the generation of SWDs, as such, with their characteristic waveforms. With this
aim we followed the quote of the famous physicist Richard Feynman (in Wikiquote
[10]) “What I cannot create, I do not understand”. Therefore we created a computer
model in order to better understand the basic neuronal phenomena responsible for
the dynamics of absence seizures.
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Chapter 17
Data-Driven Modeling of Normal
and Pathological Oscillations
in the Hippocampus

Ivan Raikov and Ivan Soltesz

Abstract Epilepsy is a disorder caused by abnormalities at all levels of neural
organization that often have complex and poorly understood interactions. Phys-
iologically detailed computational models provide valuable tools for evaluation
of possible clinical treatments of neural disorders because every parameter can
be changed and many experimentally inaccessible variables can be observed. We
present our recently developed full-scale model of the CA1 subfield in the rodent
hippocampus and highlight its role in the study of biophysical neural oscillations,
which are important biomarkers of cognitive processes as well as abnormal neural
dynamics in epilepsy. This model provides an integrative framework that unifies
experimentally derived knowledge about the hippocampus on multiple scales and
can yield insight into the neurophysiological mechanisms underlying the dynamical
regimes of the brain. Such a framework can be useful in studying cellular mecha-
nisms of multitarget pharmacological treatments of neural disorders.

Keywords Hippocampus · CA1 · Theta oscillations · Gamma oscillations ·
Epilepsy · High-frequency oscillations · Fast ripples

17.1 Introduction

Epilepsy is a spectrum disorder that is characterized by a wide range of unpre-
dictable seizures and is often associated with other cognitive, psychiatric, and sleep
disorders [26]. Epileptic seizures are caused by abnormal neuronal excitability,
which is influenced by many factors. Gene mutations in ion channels can cause
disruptions in neuronal dynamics that can result in cognitive deficits [45]. At the
synapse level, changes in the subunit composition of GABAA receptors [51] and
in chloride transporter dynamics [23] can facilitate seizure occurrence. Studies
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of temporal lobe epilepsy have revealed that at the circuit level, specific classes
of neurons are involved in seizure generalization and comorbidities [11], while
at the network level, abnormal spiking activity emerges concurrently in mesial
and neocortical temporal regions [34] and optogenetic manipulation of inhibitory
cerebellar neurons results in a decrease in the duration of temporal lobe seizures
[35]. Taken together, these results suggest the existence of mechanisms that both
destabilize local circuits and allow the spread of epileptogenic activity to multiple
brain regions well before a seizure occurs.

Conceptually, seizures are thought to result from an inability of intrinsic feedback
mechanisms to regulate the coupling strength between interconnected inhibitory and
excitatory neurons. Under normal conditions, neural oscillatory activity remains
well-regulated when exposed to diverse sensory stimuli, which implies a robust
feedback path that maintains a tight balance between excitation and inhibition [3].
Under epileptic conditions, poorly regulated feedback paths lead to a high degree of
synchronization that is manifested by seizures [38].

These intrinsic feedback mechanisms arise from specific cellular and synaptic
physiological properties of neurons, as well as anatomical and functional con-
nectivity. However, establishing causality between the physiology of neurons and
functional pathways of brain circuits is difficult in most experimental work, as
data are typically obtained for only a relatively small number of cells or field
potentials at a few locations, often over a short time course. The multiscale nature of
epileptogenic processes can be addressed by biophysically detailed computational
models [40], which enable the selective manipulation of experimentally inaccessible
aspects of neural function by removing or adding certain types of neurons, changing
ion channel properties, or modifying synaptic connections.

In the next sections, we review the role of network oscillations as a biomarker
for epilepsy and the construction of multiscale computational models that exhibit
physiological oscillatory behavior.

17.2 Pathological Oscillatory Dynamics as a Biomarker
for Epilepsy

The hippocampus has been experimentally observed to generate three major types
of oscillatory field potentials: theta rhythms, gamma rhythms, and sharp wave-
ripple (SWR) complexes. These oscillatory patterns are of behavioral and cognitive
importance [13, 14, 16] and are frequently disrupted or otherwise altered during
seizures and other pathological conditions. Among the oscillations of particular
interest to epilepsy research are high-frequency oscillations (HFOs). Normal HFOs
include ripple oscillations (approximately 100–200 Hz local field oscillations),
which are part of the SWR complex: they are initiated by large-amplitude sharp
waves that reflect the postsynaptic effects of synchronous discharges of groups
of pyramidal cells in the CA3 or CA2 subfield of the hippocampus [14] and are
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manifested in the CA1 subfield but are also found in the subiculum and entorhinal
cortex [21]. SWRs induce cortical synaptic modifications that are involved in
memory consolidation [15] and it is thought that the high degree of synchrony of
the firing of the participating pyramidal cells is an efficient mechanism to transfer
episodic memory traces to the neocortex that comes at the cost of susceptibility to
epileptiform discharges in pathological conditions [14].

In rats that exhibit recurrent spontaneous seizures, HFOs with frequencies
greater than 200 Hz occur in the dentate gyrus, in the CA1 and CA3 subfields of
hippocampus, as well as in the subiculum and entorhinal cortex [8]. These HFOs,
called fast ripples, are considered to be pathological events based on results that
associated them with seizure onset and correlated a greater number of fast ripple-
generating sites with a higher rate of seizures [6, 7, 10, 24, 29, 32, 53]. These results
suggest that the cellular and network mechanisms that generate pathological HFOs
are important targets for clinical intervention [36].

Computational models are a powerful tool for multiscale simulations of neuronal
networks and the oscillations they generate and therefore could become a solid
test platform for understanding the mechanisms of epilepsy and exploring seizure
control and treatment options. In the next section, we review the recent full-scale
model of the CA1 network that was developed in the Soltesz lab.

17.3 A Multiscale, Data-Driven Model of Oscillations
in the Hippocampus

The hippocampal CA1 area is involved in diverse cognitive tasks including learning,
memory, and spatial processing [43]. These cognitive tasks require coordination
of neuronal activity reflected by physiological network oscillations, including the
theta rhythm [13, 17]. In rodents, hippocampal theta is a 5–10 Hz oscillation in
the local field potential (LFP) and neuronal firing patterns [37, 50, 57, 59, 60] that
occurs during locomotion and in REM sleep [13]. Recent reports have suggested
an intrinsic ability of the CA1 circuitry to generate theta oscillations even in the
absence of rhythmic external inputs [2, 28]. However, the multiscale mechanisms
that contribute to the generation of the theta rhythm are not well understood
[18, 19].

Motivated to explore the mechanisms of hippocampal oscillations in CA1, recent
work in the Soltesz lab has resulted in the most detailed to-date quantitative estimate
of the cellular and synaptic constituents of the rodent CA1 region and a correspond-
ing full-scale computational model [4, 5]. The CA1 network model incorporated
multicompartmental models of all known CA1 neuron types, including pyramidal
cells with realistic morphology and eight types of interneurons with simplified
morphology, including PV+ basket cells, CCK+ basket cells, bistratified cells, axo-
axonic cells, O-LM cells, Schaffer collateral-associated cells, neurogliaform cells,
and ivy cells (Fig. 17.1a). Each cell type has its own complement of ion channel
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Fig. 17.1 Intrinsically generated network oscillations in a full-scale computational model of the
CA1 network. (a) Cell types and connectivity structure of the model. (b) Top: continuous low
frequency asynchronous input from CA3 and ECIII drive theta and gamma frequency oscillations
in CA1. Bottom: transient high frequency asynchronous activation of a subset of CA3 inputs results
in ripple oscillations in CA1. (Adapted from Bezaire et al. [4])
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conductances and thus exhibits realistic intrinsic electrophysiological excitability
properties and firing patterns.

The cell populations were organized in 3D with layer depth based on anatomical
laminar distributions and randomly distributed horizontal locations. Probability
of connection depended on layer and axonal extent of each cell type. Modeled
synapse types included AMPA, GABAA, and GABAB. The model contained an
implementation of the LFP estimation method described by Schomburg et al. [49],
a highly accurate yet computationally efficient approximation.

When excited with tonic inputs at physiologically relevant frequencies, the model
network generated spontaneous theta and gamma oscillations, as measured in the
LFP signal and spike density function [55], with phase-preferential firing specific
to each cell classes present in the model (Fig. 17.1b). Consistent with experimental
results [2, 28], these oscillations emerge without explicit patterned or phasic inputs.
The model results corresponded well with findings on the differential roles of PV+
basket cells and OLM cells [33]. In addition, the model unexpectedly revealed
that interneuronal diversity itself may also be important in theta generation, since
replacing all interneurons in the model with fast spiking PV+ basket cells did not
result in a theta-generating network, in spite of the key role of PV+ basket cells in
hippocampal oscillations.

The model network also displayed gamma oscillations (25–80 Hz), as expected
based on in vivo data [20, 50] and in vitro slice data showing 65–75 Hz gamma
oscillations arising in response to theta rhythmic network stimulation [12]. The
gamma oscillation was phase-locked to the theta rhythm, as it is in vivo [9, 16,
30, 50]. Furthermore, preliminary results indicate that activation of a small group
of CA3 afferents consistently yields multi-cycle spike sequences that generate
field potentials very similar to ripple oscillations during analogous optogenetic
experiments [54] (Fig. 17.1c, d).

The CA1 model results characterize the roles for specific cellular, synaptic, and
network components and suggest that the complex hippocampal circuitry maintains
the stability of oscillatory mechanisms as the brain operates in diverse behavioral
states. It has been theorized that the predisposition for oscillation at theta and gamma
frequencies, coupled with phase-preferential firing, may aid information processing
by providing order and allowing parallel channels of information [1, 27, 41].

17.4 Outlook

Complex multiscale diseases such as epilepsy require complex multitarget treat-
ments [59]. However, multitarget pharmacological treatment of epilepsy is used
without detailed understanding of the interrelated effects of drug combinations
[39]. High-level models that describe dynamical processes and seizures in the
brain on a macroscopic level do exist [31], but they lack description of ion
channel and synaptic dynamics, which makes them unsuitable for quantitatively
assessing pharmacological impact. Biophysical models have not been developed
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to the point of describing several interconnected brain regions but do provide the
detail necessary to directly assess pharmacological intervention across temporal and
spatial scales.

Our biophysical full-scale computational model of the hippocampal CA1 sub-
field provides an integrative framework that unifies experimentally derived knowl-
edge about the hippocampus on multiple scales to recapitulate key behaviorally
relevant oscillatory regimes and facilitates the manipulation of cellular, synaptic,
and network parameters so as to yield insight into the underlying neurophysiological
mechanisms. Combined with models of ion channels and synaptic receptors that
are affected by anticonvulsant drugs [44], and in concert with models of other
hippocampal and cortical regions [22, 47] and methodologies for connectivity
analysis and dendritic modeling [25, 42, 46, 48, 52, 56], this framework will allow
researchers an alternative novel tool to model the synergistic effects of different
pharmacological treatments on all levels of neural organization.
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Chapter 18
Shaping Brain Rhythms: Dynamic and
Control-Theoretic Perspectives on
Periodic Brain Stimulation for Treatment
of Neurological Disorders

John D. Griffiths and Jérémie R. Lefebvre

Abstract Rhythmic, collective activity is a fundamental feature of neural systems.
As a result of this, many of the challenges and opportunities involved in developing
clinical tools from basic neuroscience knowledge come down to questions about
control of dynamic, oscillatory networks. In this chapter we review a range of
experimental and theoretical work on control of neural oscillations, in healthy brains
and in relation to various clinical conditions. We highlight the main types of quali-
tative system behaviour that can result from application of periodic stimulation and
present a simple case study on this using a mathematical model of rhythmogenesis
in thalamocortical circuits. The concepts discussed here may, we hope, help provide
some guidelines and principles for the development of future generations of more
physiologically and dynamically informed brain stimulation techniques, paradigms,
and researchers.

18.1 Background

Synchronous neural activity has been identified as a hallmark of neural com-
munication and information processing. These rhythmic electrical fluctuations,
which occur at frequencies spanning several orders of magnitude, have been
linked to numerous neurophysiological and cognitive processes, including atten-
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tion [1], memory [2], spatial navigation [3, 4], sensory processing [1, 5–7], and
a wide variety of perceptual and motor tasks (see [8] and references therein).
Abnormal neural synchrony and altered oscillatory activity are hallmarks of many
neurological disorders [9] such as Parkinson’s [10], dementia [11, 12], stroke [13–
15], tumours [16–18], and neurogenic pain [19, 20]. These observations, together
with recent technological developments and increasingly widespread availability of
noninvasive brain stimulation techniques such as transcranial magnetic stimulation
(TMS) and transcranial direct and alternating current stimulation (TDCS, TACS),
have led to a surge of interest in the use of electromagnetic neuromodulation
to engage and manipulate brain oscillations, as a means of enhancing cognitive
function and improving treatment of central nervous system disorders [21, 22].
Painless, inexpensive, and relatively easy to use, TMS, TDCS, and TACS protocols
have already become popular to support a wide variety of clinical interventions [23–
25]. These trends are most apparent in the fields of stroke rehabilitation [26, 27]
and treatment of depression [28, 29], with promising results also being obtained in
Alzheimer’s [30, 31], Parkinson’s [32], and epileptic [33, 34] cohorts. Noninvasive
stimulation has also been used to interfere with brain oscillations in order to enhance
working memory [35] and other cognitive functions (see [22] and references therein)
and has been proposed as a tool to help slow down cognitive decline in the
elderly [12].

Collectively, these results hold great promise. However, despite the rapid growth
in recent years of applied and basic research in this area, the mechanisms by
which noninvasive stimulation interferes with brain oscillations to modify neural
and cognitive function remain poorly understood. This knowledge gap constitutes a
major limitation in the development of new paradigms aimed at enhancing and/or
restoring healthy brain dynamics through selective manipulation of synchrony
and oscillatory activity. Mathematical and computational approaches represent
increasingly central tools in efforts by scientists and clinicians to address these
questions. For example, appropriately formulated mathematical models allow us
to estimate and quantify the relationship between stimulation parameters (e.g.
waveform, frequency, and intensity) and observed neural responses, at both the
individual cell and neural population scales. These relationships can then be used
to tune stimulation parameters in order to achieve the desired output in a clinical
setting. In this chapter, we shall review some of the existing science about the effects
of stimulation on brain rhythms and examine some of the mechanisms involved.

18.2 Brain Stimulation: Insights from Electrophysiology,
Imaging, and Computational Models

From the perspective of individual cells, most information we have about how neu-
rons (cortical and non-cortical) respond to stimulation comes from slice preparation
studies [36]. The influence of static and varying electric fields on both extra- and
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intracellular potentials have been studied extensively in recent years, notably using
computational and forward models [37, 38] and biophysical models [39, 40]. As a
general rule, neurons subjected to varying electric fields will display fluctuations in
membrane polarization mirroring the waveform applied. However, the connection
between stimulation waveform and neural spiking activity is more challenging
to establish and depends on many parameters that are difficult to determine in
practice [41]. Weak electrical stimulation, such as that delivered to the brain by
TDCS, cannot usually make neurons fire. Rather, it generates a diffuse electrical cur-
rent that influences the firing probability by either hyperpolarizing or depolarizing
neuronal membranes, hence causing subthreshold voltage fluctuations. Other forms
of stimulation (e.g. direct cortical stimulation) do induce suprathreshold effects
due to the greater proximity of the electrodes and more intense fields. Periodic
stimulation triggers an alternation of depolarization and hyperpolarization periods
across neuronal compartments [42], whose magnitude and phase depend on the
relative position and orientation of the cell (and its arborization) with respect to
the cathode/anode, as well as the frequency of the carrier signal. Due to synaptic
delays and current leakage, neurons also exhibit filtering properties that make them
more susceptible to low-frequency inputs if intensity is kept constant [41]. Some of
these synaptic filtering effects are responsible for cell type-specific frequency tuning
and resonances that have been suggested to direct the flow of information across the
cortex [43, 44].

Macro-scale brain oscillations, such as the high-amplitude and low-frequency
alpha rhythms that dominate human EEG and MEG recordings, are a collective
phenomenon. It is therefore critical to understand how stimulation impacts popu-
lations and circuits, as opposed to individual neurons. Experimental studies have
repeatedly demonstrated the ability of periodic brain stimulation to engage specific
brain circuits in a frequency-specific manner, as well as its ability to both up- and
downregulate performance on cognitive tasks [2, 45, 46].

The literature on computational models of brain stimulation is vast and spans
the full range of spatial scales and neuroscience measurement modalities, from
individual cells to whole-brain networks. For present purposes we focus on the
meso-/macro-scale commensurate with both the brain stimulation techniques and
recording techniques available in human subjects. Studies of microcircuits of
recurrently connected excitatory and inhibitory spiking neurons [47, 48] and
coupled bistable networks [49, 50] have demonstrated that periodic stimulation can
evoke persistent large-scale oscillatory activity over prolonged time scales. Often
however it is preferable for practical purposes to work with lower-dimensional
neural population models (generally termed neural mass, mean field, or neural field
models) than with detailed spiking networks, once the correspondence between
simpler and more complex models has been established [51, 52]. Popular neural
mass models such as those of Wilson and Cowan [53] or Jansen and Rit [54–
56] represent entire brain regions by one or several excitatory and one or several
inhibitory populations in a cortical column. Researchers deploying neural mass
models to study brain stimulation have tended to focus on two things: (i) modulation
of intrinsic brain rhythms by periodic stimulation [48, 57–62] and (ii) propagation
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of stimulation-evoked responses away from stimulated areas to downstream cortical
and subcortical locations [63]. The power and precision of these large-scale mod-
elling approaches have been improved considerably in recent years by developments
in data acquisition and analysis tools for noninvasive estimation of individual
subjects’ white matter connectivity structure and geometry using diffusion-weighted
MRI tractography [58, 63–66].

18.3 Restoring Brain Synchrony: A Control Problem

How can stimulation be used to compensate for disease-related loss in neural
synchrony [9]? This control problem naturally depends on the pathology concerned,
the impact it has on brain oscillations, and the cellular populations involved. Many
physiological mechanisms may lead to the same change in neural synchrony.
Irrespective of these details, our goal remains to restore collective brain activity
by enhancing the amplitude of brain oscillations, speeding them up, or even
suppressing them (as for example in the case of Parkinson’s disease).

External signals (control signals) can engage and interact with these intrinsic
oscillations via several specific, mathematically well-defined mechanisms. We list
the main ones here:

1. Resonance. Stimuli with frequencies close to the system’s natural frequency
amplify the power of intrinsic oscillations. The proximity of the stimulation
frequency to the intrinsic system frequency, and/or its harmonics, will dictate
the amplitude of the responses.

2. Entrainment. The system is frequency- and phase-locked to the stimulus. The
neuron or network of neurons is said to be driven by the stimulation, and
phase alignment between the system’s activity and the input must be observed.
Entrainment of a nonlinear system is a function of stimulation frequency and
amplitude, and regions in parameter space where entrainment occurs are called
Arnold Tongues.

3. Nonlinear acceleration. High-frequency and/or random stimuli interact with the
system’s nonlinearities to provoke a shift in intrinsic frequency.

4. Destabilization. Application of an anti-phasic signal or a strong irregular (i.e.
noisy) waveform transiently or permanently destabilizes (and thereby sup-
presses) intrinsic oscillations, effectively preventing the system from establishing
stable synchronous states. This suppression can occur through a variety of ways
(bifurcations).

For a comprehensive discussion of these different mechanisms, see [48]. We now
turn to a didactic example of a simple model for EEG brain rhythms and their
response to periodic stimulation, demonstrating aspects of mechanisms 1 and 2
outlined above.
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18.4 Case Study: Tuning Thalamocortical Alpha Oscillations

Alpha oscillations, a cortical rhythm of roughly 8–12 Hz in humans, have been
shown to play a key role in a wide variety of cognitive and perceptual func-
tions [8, 67, 68] and, for that reason, have been a prime target for noninvasive
stimulation [48]. To get some insights about the effect of patterned stimulation
on alpha oscillations, let us consider the simplified thalamocortical network model
shown diagrammatically in Fig. 18.1.

Numerous experimental and computational studies have shown that alpha oscilla-
tions are, least in part, of thalamocortical origin [69–71]. As such, in this nonlinear
neural oscillator model, the dynamics are governed by a combination of cortico-
cortical interactions and thalamocortical feedback. A similar network has recently
been used to explain some state-dependent effects of repetitive stimulation on
cortical activity in humans [62], and similar models have been used extensively
by other authors [59, 72–76].

The basic building block of the model is a minimal four-component cortico-
thalamocortical motif that describes the interconnections between excitatory (ue)
and inhibitory (ui) neuronal populations in a given patch of cortical tissue and two
thalamic nuclei: the reticular nucleus (ur ) and specific relay nucleus (us). Both
relay and reticular nuclei receive inputs from the cortical excitatory population,
following a corticothalamic conduction delay (τ1). However only the relay nucleus
sends excitatory input back to the cortex, again received following a corticothalamic
delay. The reticular nucleus, which is widely known to have an inhibitory influence
on other thalamic regions, plays a similar role to the cortical inhibitory population,
inhibiting the relay nucleus and thereby generating oscillatory dynamics. Multiple
adjacent patches of cortical tissue are modelled by repeating this basic circuit motif
and coupling patches together through their excitatory neuronal populations. The

Fig. 18.1 Thalamocortical
model. Schematic of the
thalamocortical model
structure. Cortical (ue,ui ) and
thalamic (us ,ur ) populations
interact through a delayed
feedback loop. Entrainment
of the network activity
through electromagnetic
stimulation P applied to ue

depends on the amplitude and
frequency of the stimulation
pulse, as well as the network
state, controlled by Io
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dynamics for the model are given by the following set of Wilson-Cowan-type
stochastic delay-differential equations:

due(t)

dt
= −ue(t) + geeF[ue(t)] + geiF[ui (t)] + gesF[us(t − τ1)] + gccCCI

+ P(t) + √
2Dξ e(t) (18.1)

dui (t)

dt
= −ui (t) + giiF[ui (t)] + gieF[ue(t)] + gisF[us(t − τ1)] + √

2Dξ i (t)

(18.2)

dur (t)

dt
= −ur (t) + greF[ue(t − τ1)] + grsF[us(t − τ2)] + √

2Dξ r (t)

(18.3)

dus(t)

dt
= −us(t) + gsrF[ur (t − τ2)] + gseF[ue(t − τ1) + √

2Dξ s(t) + Io

(18.4)

where the population vectors up(t) = (up1(t), up2(t), . . . upN(t)) denote the mean
somatic membrane activity of neuronal population p ∈ {e, i, r, s} and N = 100
units per population. Nonlinear interactions between neuronal populations are
mediated by a steep sigmoidal response function F[u] = (1 + exp(−150))−1 and
in the cases of intrathalamic and corticothalamic/thalamocortical connections are
retarded by conduction delays τ1 = 5 ms and τ2 = 20 ms, respectively. The summed
influence of the N excitatory populations in adjacent patches of cortical tissue on
each other is given by the cortico-cortical input term CCI = N−1 ∑N

k=1 F[uk
e].

Irregular and independent fluctuations are also present in the network, modelled by
the zero mean Gaussian white noise processes ξp. Stimulation is applied evenly
to all excitatory cortical units ue through the continuous stimulation pulse P =
Msin(2πωt) with frequency ω and intensity M . Finally, the level of sensory drive
to the thalamus is represented by the parameter Io. As has been demonstrated
previously [61], increasing this parameter past a critical point triggers suppression
of resting state alpha oscillations and results in a greater susceptibility of cortical
neural populations to entrainment by exogenous inputs or noninvasive stimulation.

Despite its simplicity, the base cortico-thalamocortical circuit motif in this
model combines what are widely considered the two most important rhythmogenic
mechanisms responsible for large-scale oscillatory activity observable in human
extracranial recordings such as scalp EEG: low-frequency (i.e. alpha) oscillations
generated by thalamocortical loops and higher-frequency (e.g. gamma) oscilla-
tions generated by local (intra-columnar) excitatory-inhibitory interactions in the
cortex. Moreover, through variation of Io, the model naturally accommodates the
widely reported phenomenon of alpha suppression observed in response to sensory
inputs [8, 77], during cognitive tasks requiring top-down control, and which is
reduced in anaesthesia [78] and during sleep [73].
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Fig. 18.2 Baseline activity of the thalamocortical circuit in the rest and task states. Time series
(a) and power spectra (b) of cortical excitatory (blue) and inhibitory (orange) neural populations
during rest (left column) and task (right column) states, in the absence of stimulation. The rest state
(Io = 0) is dominated by slow, high-amplitude alpha (around 10 Hz) rhythms, whereas the task
state (Io = 1.5) is dominated by lower amplitude gamma (around 40 Hz) oscillations. Asterisks
indicate locations of spectral peaks

Figure 18.2 shows examples of the time series and power spectra generated by the
model in ‘rest’ and ‘task’ states, in the absence of external stimulation (P(t) = 0).
The power spectrum in the rest state is dominated by high-amplitude, low-frequency
(around 10 Hz) oscillations and their harmonics. As we shall see, this state-
dependence of oscillatory activity has major implications for how we understand
and model the effects of periodic brain stimulation. It has been shown that cortical
systems are more prone to entrainment in regimes of strong sensory drive where
the power of alpha is suppressed, suggestive of mechanisms such as stochastic
resonance [61]. This has been repeatedly demonstrated in both noninvasive [79]
and intracranial [62] experiments, highlighting the need to develop closed-loop
systems where such fluctuations can be tracked – and compensated for – in real time.
This dependence on baseline fluctuations is illustrated in Fig. 18.3, where the peak
frequency and peak amplitude of the system in response to a sine wave stimulation
are plotted as a function of stimulation amplitude and frequency. For both rest
and task states, the lowest amplitude stimulation has no effect on the dominant
rhythms, and so the plots are dominated by the endogenous natural frequency
associated with that state (power spectral peaks from Fig. 18.2). As stimulation
amplitude is increased, a triangular pattern known as an Arnold Tongue appears
in panel A of Fig. 18.3. These patterns represent stimulation parameters for which
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Fig. 18.3 Entrainment region in both rest and task regimes. Shown are maximum frequencies
(a) and corresponding maximum amplitudes (b) of the cortical excitatory population in rest and
task states as a function of stimulation frequency and stimulation amplitude. In both task and
rest states, the system oscillates at its natural frequency (cf. Fig. 18.2, panel b), observable as a
contiguous domain of constant dominant frequency in the lower portions of the frequency response
heatmaps. Increasing stimulus level results in the emergence of Arnold Tongues (a) and resonance
peaks (b), centred on the natural frequency

the system’s activity is frequency- and phase-locked to the stimulus. Moreover, such
susceptibility to entrainment is greatest at the system’s natural frequency, which is
around 10 Hz in the rest state and around 40 Hz in the task state (cf. Fig. 18.2, panel
a). In addition to the difference in natural frequencies, the rest and task states differ
markedly in their susceptibility to exogenous control. This can be seen by the fact
that the stimulus level needed to entrain network oscillatory activity – i.e. the lower
tip of the Arnold Tongues in Fig. 18.3 panel a – is much higher for the rest state
than the task state. Resonance also shapes the amplitude of the responses, as seen in
Fig. 18.3 panel b, where the amplitude of the solutions is increased near the system’s
endogenous frequency and/or its harmonics. Taken together, these results show that
the presence of the alpha rhythm in the thalamocortical circuit can be understood as
‘suppressing’ higher-frequency exogenous oscillatory fluctuations, consistent with
multiple empirical observations in the M/EEG literature.

18.5 Summary

In this chapter we have reviewed several key dynamical systems and control-
theoretic concepts that, when combined with appropriate mathematical descriptions
of macro-scale neural circuit properties, hold great promise in the development
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of precision brain stimulation therapies for neurological and neuropsychiatric
disorders. The case study served to demonstrate several of these concepts in a
schematic model exhibiting two distinct rhythmogenic mechanisms, both believed
to play an important role in the genesis of macro-scale oscillations in the human
brain: (i) intra-columnar excitatory-inhibitory interactions within the cortex and (ii)
recurrent, delayed inhibitory feedback in thalamocortical loops. For the purposes
of this chapter, we have focused on providing the reader with a clear exposition of
some of this system’s behavioural repertoire, rather than, e.g. matching precisely
power spectrum traces from specific TMS/TACS-EEG datasets. Details of the full
model implementation – including the use of optimization routines to accurately
fit individual patients’ whole-head power spectra, electromagnetic forward models
(both brain-to-sensor and stimulus-to-brain), whole-brain white matter connectivity
(anatomical macro-connectome), and integration with the virtual brain modelling
and neuroinformatics platform [80, 81] – was beyond the scope of this chapter and
shall be the subject of future work. It is nevertheless essential when constructing
complex, multicomponent models to first have a detailed characterization of the
dynamic behaviour of the individual building blocks – which in our case is the base
thalamocortical motif shown in Fig. 18.1. The scientific value of such models lies in
their ability to capture, in a mathematically compact way, some essential properties
of large-scale neural dynamics and thereby provide insight into both normal activity
and potential for control with brain stimulation techniques.

18.6 Software Note

Python code and additional documentation for the simulations presented
in this chapter is freely available online at www.github.com/Lefebvrelab/
ShapingBrainRhythms.
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Chapter 19
Brain Connectivity Reduction Reflects
Disturbed Self-Organisation of the Brain:
Neural Disorders and General
Anaesthesia

Axel Hutt

Abstract The neurophysiological correlate of functional neural impairment is an
open problem. Functional impairment may be observed as mental disorder, seizures
or modification of consciousness level. The latter include loss of responsiveness
under general anaesthesia, sleep or even trance in hypnosis. This chapter points out
the relation between reduced brain connectivity as a possible correlate of neural
functional impairment and self-organisation in the brain. A first numerical example
demonstrates how neural noise disturbs self-organisation in the brain. Estimators of
self-organisation such as global phase synchrony or information transfer quantify
the degree of self-organisation. The chapter provides a brief literature review on
how these estimators indicate brain connectivity modifications in neural disorders
and under general anaesthesia.

Keywords Unconsciousness · Alzheimer’s disease · Parkinson disease ·
Multiple sclerosis · Noise-induced transition

19.1 Introduction

The healthy normal brain can be regarded as an optimally tuned self-organised com-
plex system [1–3]. It decodes sensory stimuli and encodes them to trigger responsive
action. Multiple functional areas are known to transfer and share information.
These properties result from a very high degree of self-organisation in and between
functional areas, whose interactions enable the brain to process information. If
these interactions are disturbed, then the brain can exhibit abnormal functions.
Dependent on the degree of disturbed interactions, these abnormal functions are
observed clinically as abnormal behaviour or even pathologies. The present chapter
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discusses diseases and reduced consciousness emerging under drug administration,
e.g. in hospital under general anaesthesia. The chapter reviews the role of brain
connectivity in neural disorders and demonstrates how brain network fragmentation
may explain loss of behavioural responsiveness in patients under general anaesthesia
and why this reflects the partial breakdown of brain self-organisation.

19.2 Self-Organisation in the Brain

Complex systems exhibit a hierarchical structure of subunits that interact with each
other [4, 5]. For weak interactions, the system dynamics is more or less given by the
sum of the single subunits. However, for stronger interactions, subunits merge and
generate new subunits on a higher hierarchical level. These higher-level units show
dynamical behaviour that is not the sum of the subunits it emerged from but have
new properties. Again, these new subunits on a higher hierarchical level interact
with other new subunits generating together units on even higher hierarchical levels
and so on. This merge of subunits is called self-organisation. The higher-level
subunits can be observed as cooperative phenomena, such as cognitive functions [1],
synchronisation [6, 7] or motor behaviour [3]. The enhanced interactions between
subunits may indicate merged subunits and self-organisation. Hence a reasonable
approach to reveal underlying neural mechanisms is the data analysis of neural
activity that aims to quantify and identify interactions between subunits.

On a microscopic scale, single neurons or small neuron populations represent
subunits, and a well-established data analysis approach is to extract synchronisation
measures between these subunits from experimental data. For instance, enhanced
synchronisation between single visual cortex neurons in visual perception tasks
indicated cooperative interactions [8, 9]. This leads to the hypothesis [6] that the
brain solves the visual binding problem by synchronisation or self-organisation.

On a macroscopic scale applying spatial mode analysis of electroencephalo-
graphic data [10–17] extracts spatial patterns that are supposed to reflect underlying
interacting subunits. For instance, it has been shown that the spatio-temporal
dynamics of middle-latent auditory evoked potentials is low-dimensional reflecting
highly ordered neural activity [13]. This indicates neural self-organisation on a
larger spatial and temporal scale.

To understand neural mechanisms and quantify the degree of self-organisation,
brain connectivity has attracted much attention in recent years [18, 19]. For instance,
[20] distinguished structural, effective and functional connectivity describing con-
nections by fibre pathways, by correlations and by information flow, respectively.
Other approaches aim to quantify influences of model variables [21] or brain regions
or systems [22] on each other, e.g. by computing correlation coefficients or spectral
or phase coherence.
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19.2.1 An Illustrative Example

For illustration of self-organisation and how this can be quantified, let us consider
a sparsely connected network of N = 100 nodes that is driven by additive random
noise

dVi =
⎛
⎝−Vi + g

N

N∑
j=1

WijS[Vj (t − τ)]
⎞
⎠ dt + αξ(t) , i = 1, . . . , N (19.1)

with α = 170/
√

60, g = 0.02, the nonlinear transfer function S and Gaussian
zero-mean i.i.d noise with 〈ξ(t)ξ(t ′)〉 = μ2δ(t − t ′). The parameter τ = 8 ms is
a delay time, and μ denotes the noise strength of the driving force. The network is
sparse with connectivity probability 0.8 and the connection strength Wij = 1 ∀ |i −
j | ≤ 4,Wij = −1 otherwise, i.e. the network exhibits local excitation and lateral
inhibition. Previous studies [23, 24] show that additive noise in such a network tunes
the systems power spectrum and destructs coherent rhythmic activity for large noise
levels. To gain the numerical solution of Eq. (19.1), we apply an Euler-Maruyama
method [25] with discrete time step Δt = 1 ms.

Figure 19.1a shows the time-frequency distribution of the network mean V̄ (t) =∑N
i=1 Vi(t)/N , and Fig. 19.1b gives the noise strength μ that changes with respect

to time. We observe an oscillation of the network average with a single frequency
for low noise levels and a destruction of this rhythm by additive noise. The different
elements in the network are coherent at low noise levels as seen in Fig. 19.2, whereas
coherence breaks down abruptly at larger noise levels. Since coherence reflects self-
organisation in the network, we conclude that large noise destructs self-organisation.
It is important to note that this destruction does not happen by weakening the direct
coupling between elements but by rendering the interaction of network elements
more noisy (see the discussion in [23, 24]).

Besides coherence measures, brain connectivity may be quantified by informa-
tion theoretic measures [28, 29]. Figure 19.3 shows the transfer entropy (T E) [30]
between two arbitrarily chosen time series Vi(t) and Vj (t) and the active informa-
tion storage (AIS) [31] in Vi(t) in different time windows. Since the noise level
increases with time, Fig. 19.3 reveals that T E and AIS decrease with increasing
noise level. Hence less information is passed between elements with increased
noise level, and less information is stored in them. Since AIS reflects the degree
of predictability from the corresponding time series, decreasing AIS is consistent
with increased system randomness. Both measures may reflect the degree of self-
organisation in the system, while typically T E is also interpreted as a brain
connectivity measure.

The next section illustrates by selected literature examples that brain connectivity
and neural disorders are strongly related. Then the subsequent section points
out that modifications of brain connectivity during sedation and unresponsiveness
under general anaesthesia resemble well findings in neural disorders. In sum,
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Fig. 19.1 Additive noise destructs coherent network activity. (a) Time-frequency distribution of
the network mean V̄ (t) gained from a Morlet wavelet analysis. (b) Noise strength μ with respect
to time. The transfer function is chosen to S(V ) = 100/(1 + exp(−100V ))
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Fig. 19.3 Increasing noise decreases transfer entropy (TE) and active information storage (AIS)
between and in two arbitrarily chosen network nodes, respectively. Thick dots mark the values for
the signals; small dots with error bars represent results for 1000 surrogate data [28]. The estimates
of T E and AIS have been computed with the open toolbox JIDT [28] with standard parameters
and delay time τ = 8 ms

this resemblance indicates that deterioration of connections (being structural or
functional or effective) yields impairment of mental abilities as a consequence of
a self-organisation deterioration.

19.3 Brain Connectivity in Neural Disorders

It is trivial to state that brain areas do not interact directly with each other if there
are no fibre pathways between them. Consequently, in the following we assume
present fibre pathways in the network if not stated otherwise. As already stated,
enhanced brain connectivity may yield self-organisation. Such a well-balanced and
self-organised brain state ensures normal information processing and good cognitive
abilities. In turn weakened brain connectivity may yield abnormal functions, such
as cognitive impairment, attentional deficits, unconsciousness or even diseases.
This insight promises to contribute to early diagnostic examinations based on
magnetic resonance imaging. Here the state of the art is the detection of structural
abnormalities, e.g. in Alzheimer’s disease [32], Parkinson disease [33] or multiple
sclerosis [34].

Beyond the detection of structural pathologies, functional connectivity modifica-
tions appear to correlate well with structural pathologies and cognitive impairment.
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For instance, multiple sclerosis (MS) patients are found to exhibit a functional
fragmentation of the cerebellum [35] and the white matter integrity [36]. Interest-
ingly, the latter study also shows enhanced functional connectivity in modules of
the default mode network in early multiple sclerosis patients. The corresponding
authors provide two explanations. The enhanced functional connectivity may
represent a compensatory effect of the brain to solve given tasks that are more
difficult for the brain with the loss of white matter integrity. Moreover, the finding
could be explained by the loss of diversity in large-scale cortical dynamics due
to white matter integrity loss. This missing ability of large-scale diverse cortical
patterns may enhance local patterns’ increasing local functional connectivity. This
latter line of argumentation resembles the finding of a recent work on enhanced
effective connectivity in local areas under general anaesthesia (see the subsequent
section for more details).

These findings in multiple sclerosis resemble qualitatively in some respect to the
brain connectivity in Alzheimer’s disease (AD). Resting-state functional magnetic
resonance imaging studies have revealed that AD patients exhibit a fragmentation
of the brain network [37], e.g. within the default mode network [38] as in multiple
sclerosis [36]. A further common feature to brain connectivity in multiple sclerosis
patients is the enhanced functional connectivity in intralobe connections [37], such
as in prefrontal lobe [39] or in parietal lobe [40].

In Parkinson disease (PD), dynamic functional brain deteriorations have been
found in patients with mild cognitive impairment [41] and in idiopathic PD
patients [42]. Similar to MS and AD, also enhanced correlations in certain brain
areas have been found, e.g. in the prefrontal cortex [42] and in the default mode
network [43].

Summarising, there is a strong indication that modification of functional connec-
tivity is strongly related to brain disorders, be it reduction of functional connectivity
in global networks or enhanced function connectivity in more local structures.
Consequently, these disorders may result from strong reduction of network self-
organisation.

19.4 Brain Connectivity Under General Anaesthesia

Arousal is an important action in the brain setting the level of excitation and hence
controlling brain functions [44]. The ascending arousal system (ASS) [45] is a
neural distributed network that sets the level of arousal via two major branches [46].
One branch is an ascending pathway from brainstem to the thalamus that inputs
to the reticular nucleus and activates thalamic relay cells. Fast firing in cells
in the upper brainstem areas, pedunculopontine and lateral tegmental nuclei, is
present during wakefulness and rapid eye movement (REM) sleep, and low activity
marks non-REM sleep stages. The other branch ascends, inter alia, from the
brainstem and caudal hypothalamus and bypasses the thalamus projecting to the
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lateral hypothalamus, the basal forebrain and the cerebral cortex. Lesions along this
pathway induce sleepiness and coma.

It is well-known that general anaesthetics alter neurotransmission in the cere-
bral cortex, thalamus and brainstem [47, 48]. Sedative and hypnotic anaesthetics
diminish cortical activity in ferrets [49] and humans [50, 51]. This decrease of
neural activity has been found by several experimental techniques, such as positron
emission tomography (PET) as reduced metabolic activity [52], functional magnetic
resonance imaging (fMRI) as reduced BOLD response and by electroencephalog-
raphy (EEG) as reduced voltage amplitude [53]. For some general anaesthetics,
this reduced activity can be explained by anaesthetics-enhanced inhibitory action
of GABAergic receptors and anaesthetic-diminished excitatory action of NMDA
receptors [54].

Taking a closer look at the AAS, its cortical and subcortical structures play
different roles in arousal regulation. The brainstem projects along the two AAS
pathways, activates or deactivates various AAS structures setting the excitation level
of the cerebral cortex and controls respiratory and cardiovascular functions [48].
The brainstem is also supposed to largely influence thalamo-cortical oscillations
that are observed in EEG [55]. A further major target structure in the AAS is
the central thalamus that regulates the level of consciousness, and lesions in this
area may produce neurological disorders of consciousness [56]. The hypothalamus
may also promote awake state, while it primarily plays an important role in sleep
regulation [46].

Anaesthetics affect the cortex and the functional structures in the AAS and
primarily reduce their activity. This reduction may explain the interruption of
information processing in the brain during anaesthesia. However, various experi-
mental studies in the recent decade and the corresponding hypothesis of Tononi et
al. [22, 57, 58] indicate that it is less the reduced neural activity that is the major
marker of the anaesthetic state but rather the connectivity between neural structures.
Various electrophysiological and modelling studies have shown that anaesthetics
reduce the global connectivity in the brain [59] accompanied by a characteristic
change of the activity power spectra [60–63]. These findings are partially consistent
with experimental evidence from fMRI [64] revealing that global connectivity and
the mean frequency of neural rhythms decrease with the level of sedation. A recent
study on the information flow between ferret prefrontal cortex and visual cortex
has revealed a decreasing transfer entropy between both areas under isoflurane
sedation [65]. In the clinical context, patients with consciousness disorder show
strong functional disconnections as well [64].

However this view is challenged by experimental evidence that, at surgery
anaesthetic level that is deeper than for sedation, faster neural activity becomes
more pronounced again [64], and hence the frequency shows a multiphasic relation
to the level of anaesthesia. This multiphasic modification has been found in
functional connectivity as well [66]. Some cortical and subcortical areas exhibit a
first connectivity reduction, while increasing anaesthetic concentration before their
connectivity was recovered at even deeper anaesthesia.
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Moreover, anaesthetic sedation may even yield connectivity enhancement
between certain structures, such as the increased connectivity between the precuneus
and cortical areas in humans [67] or between the posterior cingulate cortex and, the
sensorimotor cortices [68]. In an information entropy study of local field potentials
in ferret prefrontal cortex and visual cortex, [65] found decreasing T E between
prefrontal cortex and visual cortex, an increase in intra-area AIS and a decrease in
intra-area entropy (H ) with anaesthetic level in both areas. The authors of that study
argue that less available information H in each area yields less information that can
be transferred (T E). Synchronously, the increase of AIS reflects an increased
predictability of the corresponding neural activity reflecting enhanced coherence.
This is in line with the onset of coherence in the α−EEG frequency band at the
point of loss of consciousness during propofol anaesthesia [69, 70].

A recent study of [71] further reveals that the onset of enhanced δ−power in EEG
reflects well the point of loss of consciousness and that parietal and frontoparietal
connectivity in this frequency range increases. Together with previous studies
on EEG power spectra under general anaesthesia, this latter study indicates that
connectivity may also depend on frequency range. Future studies will elicit whether
brain connectivity is frequency-dependent.

In sum, this line of evidence suggests that an increased coherence in local
areas by anaesthetic action induces the fragmentation of the global network. Huang
et al. [64] bring up the hypothesis that, at first, sedation enhances local connections,
while the global network remains unchanged, before global connections are reduced
at deeper sedation levels. Then, in deep anaesthesia or in disorders of consciousness,
local networks are fragmented as well.

19.5 Conclusion

Self-organisation in the brain is the condition for normal neural information
processing in healthy patients. The reduction or removal of neural self-organisation
is reflected, e.g. as neural disorders in diseases or loss of consciousness under
anaesthesia. In these cases, the brain connectivity is affected in a similar manner.
Local areas enhance their synchronisation and hence their connectivity, whereas
global connections are reduced. These common features in neural disorders and
anaesthesia (and even in sleep) point to the important role of connectivity in neural
processing of information. Here, it is important to mention a line of evidence on the
self-organisation in epileptic seizures [72]. It has been found experimentally that
epileptic seizures exhibit high-frequency activity in local patches in the seizure onset
zone [73], while desynchronisation has been observed at the seizure onset [74].
These, at a first glance contradictory findings, can be explained easily by spatial
subsampling of electrodes detecting desynchronisation between low- and high-
frequency spatial patches.
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Future research will reveal whether these connections are strongly frequency-
dependent. The distinction of connectivity in certain frequency bands may advance
the understanding of diseases and general anaesthesia.
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