®

Check for
updates

Performance Evaluation of Metro
Regulations Using Probabilistic
Model-Checking

Nathalie Bertrand!, Benjamin Bordais?, Loic Hélouét!(®) Thomas Mari?,
Julie Parreaux?, and Ocan Sankur!

! Univ. Rennes, Inria, CNRS, IRISA, Rennes, France
{nathalie.bertra_nd,loic.helouet}Qinria.fr, ocan.sankur@irisa.fr
2 ENS Rennes, Rennes, France
{Julie.Parreaux,Benjamin.Bordais,Thomas.Mari}@ens-rennes.fr

Abstract. Metros are subject to unexpected delays due to weather con-
ditions, incidents, passenger misconduct, etc. To recover from delays and
avoid their propagation to the whole network, metro operators use regu-
lation algorithms that adapt speeds and departure dates of trains. Reg-
ulation algorithms are ad-hoc tools tuned to cope with characteristics of
tracks, rolling stock, and passengers habits. However, there is no univer-
sal optimal regulation adapted in any environment. So, performance of
a regulation must be evaluated before its integration in a network.

In this work, we use probabilistic model-checking to evaluate the per-
formance of regulation algorithms in simple metro lines. We model the
moves of trains and random delays with Markov decision processes, and
regulation as a controller that forces a decision depending on its partial
knowledge of the state of the system. We then use the probabilistic model
checker PRISM to evaluate performance of regulation: We compute the
probability to reach a stable situation from an unstable one in less than d
time units, letting d vary in a large enough time interval. This approach
is applied on a case study, the metro network of Glasgow.

1 Introduction

Urban Train Systems (UTS) play an increasing role in modern cities: they pro-
vide connections from work to residential areas, and have become a key ele-
ment for economical and environmental concerns. Usually, UTS are operated by
private or semi-public companies, whose role is to provide services with con-
tractualized performance. A typical demand of local authorities is to guarantee
departures with a high pace (for instance one train every two minutes) dur-
ing peak hours to avoid networks congestion, and then ensure punctual/regular
departures at lower pace for the rest of the day. Form a contractual point of
view, performance is often specified in terms of Key Performance Indicators [12]
(or KPIs for short). KPIs are measures for trains punctuality, passenger com-
fort, average trip times, etc. They are evaluated a posteriori from weekly or
© Springer Nature Switzerland AG 2019

S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 59-76, 2019.
https://doi.org/10.1007/978-3-030-18744-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-18744-6_4

60 N. Bertrand et al.

monthly logs recorded during operation of the network. Failing to meet fixed
quality objectives may result in financial penalties.

A normal behavior of a train in a metro network is a succession of arrivals at
stations and departures, usually scheduled at precise dates, or cadenced accord-
ing to chosen departure rates at each station. Operators often rely on an a priori
schedule called a timetable, that fulfills the KPI objectives if realized properly.
Now, even during a normal day of operation, departures and arrivals of trains
cannot match exactly such a precise schedule: trains are frequently delayed, due
to passenger misbehavior, weather conditions, incidents on tracks, etc. Further,
incidents are not independent: as trains have to maintain security distances, a
primary delay on a train rapidly propagates to the following trains. To recover
from delays and eventually meet quality objectives, UTS are equipped with regu-
lation algorithms. Regulation algorithms consider the state of the network (train
positions, delays w.r.t. a timetable, etc.), and compute advices to adapt trains
dwell times or speeds. Several strategies such as trying to recover delays, sticking
to existing timetables, or trying to equalize distances between trains.

It is well known that there is no universal and optimal regulation algorithm:
efficiency of a particular regulation depends on the targeted KPI objective, on the
topology of a line, on the number of trains in the network, and even on passenger
behavior. It is hence important to evaluate and compare performance of several
algorithms to provide the most adapted solution in a given situation. Evaluation
of regulation is hence often seen as a performance evaluation question.

In this work, we use the probabilistic model checker PRISM [10] to evalu-
ate the performance of regulation schemes. We model UTS as Markov decision
processes (MDPs for short) [5], and regulation algorithms as controllers that
make decisions in MDPs (i.e. implement a strategy). The approach is the fol-
lowing: a metro network is seen as a finite number of discrete locations. The
behaviors of trains are modeled as processes which maintain discrete variables
memorizing their positions, and have probabilistic guarded transitions, that ran-
domly increment the position of a train. Regulation is also specified as a process
whose decisions synchronize with the rest of the system to allow or prevent some
transitions of trains. The overall behavior of the network is a form of product
between processes, with safety constraints (trains shall not collide), which gives a
Markov Decision Process. The accuracy of the model is chosen by appropriately
discretizing time and space, and choosing probabilities to define models with
sensible distributions of trips durations. We then study performance of regula-
tion in a ring network equipped with a simple regulation algorithm with PRISM.
More precisely, we initialize the system in a highly perturbed state (some signif-
icant delays have occurred), and compute the probability to get back to a stable
situation (i.e. a situation in which the network has recovered from delay) in less
that d time units, letting d vary in a significant time interval. Getting back to a
normal situation in less than d time units is encoded with a PCTL formula [6].

The results obtained show that one can obtain the exact values of probabili-
ties for fleets of 4 trains with a reasonable discretization factor. For larger fleets
and larger discretization factors, one has to rely on statistical model checking

Performance Evaluation of Metro Regulations 61

techniques. Another lesson learned is that without regulation, the probability to
recover from a delay by chance is close to zero.

Model checking of railway systems has already been addressed in a Boolean
setting, mainly with safety objectives (see for instance [7]). Verification of rail-
way crossing, for instance, is a standard case study for model-checkers (see for
instance [3]). Boolean verification mainly addresses safety issues (critical sections
must not be violated), but usually cannot address quantitative properties, such
as the time needed to recover from a primary delay. These quantitative notions
are often addressed using simulation tools dedicated to performance evaluation.
To evaluate a regulation policy, one can design a model of an UTS, and simulate
a large sample of runs representing operation days with incidents, and derive
statistics. Dedicated tools address railway systems modeling at a microscopic
or macroscopic level. Macroscopic tools such as NEMO [8] use abstract models
(a graph representing the network), and do not consider details such as adher-
ence of trains to tracks, passenger flows. They are mainly used by infrastructure
managers. On the other hand, tools working at microscopic level (e.g. Open-
track [11]) consider every detail of rail systems: characteristics of rolling stocks
and tracks, weather conditions... Then, simulation steps compute the evolution
of the network during a fixed time period (typically, one second). However,
micro-steps simulation is time and space consuming. Microscopic and macro-
scopic approaches used for mainline trains can be adapted for metros, but metro
networks have two characteristics that need to be considered: first they embed
regulation algorithm, and second, decisions have to be made in a few seconds
to avoid delays and their propagation. This makes a big difference, for instance,
with macroscopic models of mainlines, where track occupancy schedules can
be easily maintained in case of short delay impacting only a few trains. The
SimMETRO tool [9] is specialized for simulation of metro systems. It includes
regulation schemes, and was used to simulate performance of regulation in the
Boston Metro network. The work in [2] uses a macroscopic simulation approach
based on a Petri Net variants to model metro system equipped with regulation.
The approach presented in this paper is a quantitative and macroscopic one,
based on model checking. When the considered model is of reasonable size, the
values computed are exact values, and hence provide strong performance guar-
antees. However, as subway systems are complex, their state space can rapidly
exceed the limits of standard model-checkers that compute exact probabilities of
properties from an explicit representation of the state space of the system. Even
in this case, Statistical Model Checking can be used to obtain these probabilities,
but only with a confidence interval.

This paper is organized as follows: Sect. 2 describes the Glasgow metro net-
work, that will be used as a case study to illustrate our approach. Section 3
defines the formal material used later in the paper, namely Markov Decision
Processes and PCTL properties, and shows how to use them to evaluate Per-
formance in a regulated metro network. Section4 gives experimental results,
and comments them these results. Section 5 concludes this work and gives some

62 N. Bertrand et al.

perspectives. Due to lack of space, some technical elements are not detailed in
this paper, but can be found in an extended version available at [4].

2 A Case Study: A Metro Network in Glasgow

The usual behavior of metros is the following. A metro travels at a given speed
between two stations, and then dwells in station for a predetermined duration.
Commercial speed of metros usually lies between 30 and 40km/h. When the
dwell time has expired, the doors close, and the train leaves for the next station.
This is where some incident may delay a train: doors may not close well, usually
when passengers try to alight while doors are closing. This can result in delays
of several seconds w.r.t. the expected departure date.

We consider the metro line of Glasgow [1], a bi-directional ring of 10.5 km
with 15 stations, depicted in Fig. 1. Train can travel both clockwise and coun-
terclockwise, using distinct tracks in separate tunnels; therefore, we only study
a unidirectional line. The ring has no intersection with other lines. Completing
a full round trip takes approximately 24 min. Several trains are used to provide
optimal service: if 4 trains are in use, then a metro leaves a station every 6 min.
The planned service is one metro every 4 min at peak hours and every 6 to 8 min
otherwise. The average dwell time in stations is around 30s.

Hillhead (Y
Kelvinhall

Partick

\
\ e =5

SSSSSS , . I
g o o

Shields Road \West Street

Fig. 1. A schema of the subway line of Glasgow

Ideally, providing a high quality service requires to maintain the network in a
stable configuration, i.e. a situation where distances between consecutive trains
are approximately equal (up to some small deviations appearing when trains stop
or suffer delays of a few seconds). Such situations are ideal to enforce arrivals and
departures at a regular pace. As in the Glasgow network the expected service
is one train every 6min, maintaining such balanced situations is a good way
to fulfill the fixed quality objectives. However, networks do not remain in stable
configurations without external help. As delays tend to accumulate, one may face
the following situation: a train that is delayed arrives late at the next station,
which increase the size of the crowd, and results in new door incidents, and
penalizes the late train with an additional delay. Usually, as people tend to rush
in trains as soon as they arrive in station, fewer passengers will enter the next
train alighting at this station. This situation repeats all along the line, causing

Performance Evaluation of Metro Regulations 63

delays. As trains cannot overtake, accumulation of delays results in a bunching
phenomenon, i.e. in a situation where a crowded train is followed closely by
almost empty trains. Regulation should avoid such situation and improve KPIs.

A regulation is an algorithm that gives advice to trains: these pieces of advice
can be about changing the speed between two stations or the dwell time at a
station, depending on the global state of the network. The range of values that
can be returned by a regulation algorithm are of course bounded: there is a
minimal and maximal running speed for trains, and similarly, a minimal dwell
time allowing a sufficient number of passengers to leave trains or alight. In com-
plex line topologies, a standard way to address regulation is to build precom-
puted timetables, and to try to stick as much as possible to these schedules. Of
course, timetables are never realized exactly as specified, they are simply ideal-
ized schedules. A standard regulation called hold-on technique tries to return to
this schedule by reducing dwell times and increasing trains speeds when a delay
is measured. In the case of rings such as Glasgow network, the most relevant
objective is to maintain a constant duration between arrivals at each station.
Considering that characteristics of rolling stocks allow all trains to have the
same speed ranges, this pace objective can be addressed as a distance objective,
by requiring trains to maintain equal spacing among them. In practice, as dis-
tances between stations in metro networks are short, changing train speeds has
little impact on delay recovery. We will hence consider regulation policies that
change dwell times in stations in order to equilibrate distances among trains.

For the Glasgow network, we will build a stochastic model encompassing
train behaviors, the possible perturbations, a regulation algorithm, then study
the performance of this algorithm with a probabilistic model checker. To achieve
this objective, we will compute the probability to reach a stable situation from
an unstable one in less than d minute, letting d vary in interval [0; 250].

3 Models

Unpredictable external events can affect the durations of dwelling and of trips
from one station to the next one: it is natural to model them using probabilities.
These events delay trains, and as explained in Sect.2, regulation policies are
then used to recover from primary delays and avoid their propagation to the
whole network. Given the current state of the system, an appropriate regulation
decision is chosen from a set of possible options and given as instructions to
the trains. To represent a metro system, we thus need a model that combines
probabilities (for the unpredictable events) and non-determinism (for the choice
of regulation decisions), hence we choose Markov decision processes (MDP). In
this section, we first define the mathematical model of MDP. Then we provide a
model of a generic ring metro line with several trains as an MDP with parame-
ters. We explain how to tune the values of the parameters for the Glasgow case
study, to reflect the number of trains in the network and the average trip dura-
tions. Finally, we define properties on this instantiated MDP model, that are of
particular interest to evaluate the performances of regulation policies.

64 N. Bertrand et al.

3.1 Markov Decision Processes

Definition 1. A Markov decision process (MDP) is a tuple M =
(S, so, Act, 6, AP,), where S is a set of states, so is the initial state, Act is a
finite set of actions, § : S x Act x S — [0, 1] is the probabilistic transition func-
tion such that for every s € S and a € Act,) g0(s,,5") € {0,1}, AP is a
set of atomic propositions, and { : S — 247 is the labeling function.

An action o € Act is enabled in state sif), g 0(s, @, ") = 1. The semantics
of a Markov decision process M = (S, so, Act, d, AP,) operates in discrete time
as follows: from some state s € S, when an enabled action « is chosen, the
probability to be in s’ at the next time instant is d(s, «, s’). Actions in M thus
model the possible choices one has to guide the system. A path in an MDP is
a finite or infinite alternating sequence of the form sg.ag.s1a1.92 ... such that,
for every i > 0, 0(s;, @, 8;41) > 0, that is, the probability to reach s;y; from s;
when choosing action «; is positive. We denote by Path™ (resp. Path]{i\r’]l) the
set of all paths (resp. all finite paths) of M. Figure?2 is an example MDP, with
S = {5a4,51,52, Sgoal }» S0 = Sa, Act = {a, 3}, and AP = {a, goal}, and {(s,) =
{a}, €(s1) = £(s2) = 0 and £(sgoal) = {goal}. The transition relation of this MDP
is given by: §(sq, @, 81) = 1, d(s1, @, s2) = 0.3, §(s1, @, $q) = 0.7, 0(s2,,8,) =
0.5, 5(52,0&782) = 05, 5(81,5,51) = 05, 5(81,6,82) = 017 5(517ﬂ75g03|) = 04,
d(s2, 3, 5a) = 0.9, d(s2, 3, Sgoal) = 0.1, 0(Sgoal, 5, Sgoal) = 1 and (s, 7, s") = 0 for
all other states s, s’ and action v € Act.

Fig. 2. An example MDP

Given an MDP, a policy resolves the non-determinism by choosing an enabled
action after each history of states and actions seen so far, that is for every finite
path of M. Formally,

Definition 2. A policy for the MDP M = (S, so, Act,d, AP, {) is a function
o Path% — Act.

Performance Evaluation of Metro Regulations 65

a:0.2
0.2 0.2
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4
£:04

Fig. 3. Part of the MDP model for a train, representing the journey between stations
So and S1 and with two intermediate locations.

Given an MDP M, each policy o defines a probability measure on infinite
paths of M originating from initial state so, that we write P§,. Reasonable
sets of paths A are measurable: one can write P4 (A) for the probability that a
sampled path of M starting from sg and following o belongs to A.

3.2 An MDP Model for the Glasgow Network

As argued earlier, MDPs are well suited to model random events occurring in
a metro, as well as non-determinism for the choice of the regulation decision.
However, MDPs are discrete models, whereas metro networks are continuous
systems, both in space and time. We thus propose to approximate their behavior
with a fine enough discretization of space and time. In this discrete model, each
state of the MDP will indicate the trains positions, and if some trains are stopped
their remaining dwell time. Each discrete step in the MDP model corresponds
to changes (in the positions and remaining dwell times) occurring during a fixed
delay. To obtain a relevant model, we associate a position to each station, but
we also consider intermediate positions between two stations, i.e. we discretize
the distance between two stations by adding %k intermediate positions between
two consecutive stations of the network. The number of intermediate positions
is one of the parameters of the model that need to be fixed a priori. We will call
location either a station or one of these intermediate positions.

As for regulation policies, the interesting elements to consider are arrival and
departure dates, and train positions. The behavior of each train 7; traveling
in the network can then be seen as an individual MDP M;, in which states
are locations of the network, and actions are regulation decisions. In this MDP,
train T; applies an action o € Act, (that represents a regulation decision), and
moves to the next location in the network with some probability p., or stays at
its current position with probability 1 — p,,.

Figure 3 represents the MDP model of the individual behavior of a train
between two stations Sy and Sp, with two intermediate points. At each loca-
tion (that correspond to states of the MDP), there are three possible actions,
representing the three different target speeds. Action «, labeling green transi-
tions represents the behavior of the trains when running at their standard speed,

66 N. Bertrand et al.

action @ (blue transitions) symbolizes the reduced speed mode, and action v (red
transitions) the stopped mode.

In the following, we will restrict to train models with the three possible
running modes «, 3, v illustrated in Fig. 3: one mode in which the train is running
at its standard commercial speed, one mode in which it travels at reduced speed,
and a last mode where the train is stopped. Intuitively, the intermediary mode
will be used if some other train is too close ahead, and the stopped mode will
be used to avoid collisions. However, the model easily extends to an arbitrary
number of target speeds, but at the cost of an increased the number of actions
and transitions in the model.

The overall behavior of the metro network is also an MDP, obtained as a
product @ M; @ Mpg of all individual MDP models for each train and of reg-
ulation, with safety constraints. An important constraint is that the product
forbids two trains (or more) to be at the same location at the same moment.
This safety requirement can be easily be implemented as a constraint on the
enabled transitions in each state of the product MDP. For example, if a train T;
is in location = and at the same instant another train 77 is in the next location,
i.e. x + 1, then all transitions that send T; in location = + 1 are forbidden. This
restriction guarantees that trains never collide.

In our MDP model for each train, probabilities attached to transitions allow
one to reflect the time a train will take to travel from a station .S; to the next
station S;41. For each action «, 3,7, at each step, a train can stay at its current
location with probabilities p., pg, p-y, respectively, or go to the next location with
probabilities 1 — po,1 — pg, 1 — p,. The parameters p,, pg, py, must be adjusted
to reflect the speed instructions (normal, reduced, 0). To simplify our model, we
will assume that the distance between two consecutive stations is the same in
the whole network. The distance A4 between two consecutive locations is hence
also uniform, and depends on the number k of intermediate positions. Each step
in the execution of a MDP symbolizes elapsing of a fixed duration A;. We will
explain how to choose A; once the probability parameters are fixed.

First of all, let us consider the speed induced by the choice of a particular
action by regulation. In our model, we want the speed induced by action « to
be the usual speed of trains, and the speed corresponding to action 3 to be a
lower speed occurring when trains slow down for safety reasons (if the next train
is too close), finally v corresponds to stopping the train. Start for example with
action «. The probability of going to the next location in one step under action
« is set to p, = 0.8. In every location of the network, the probability to stay
in there under action « during m steps is thus (1 — p,)™, and the probability
to move to the next location exactly at the m‘" step is (1 — pa)™ ! X p,. More
generally, the number of steps needed to move to the next location follows a
geometric law, whose expected value is E,, = pi With the parameters of Fig. 3,

«
E, = 1 = 1.25, so that in average, it takes 1.25 steps to go from a location to

the next one, assuming the regulation decision is always a.

Performance Evaluation of Metro Regulations 67

The standard speed v, of a train traveling at speed given by regulation
instruction « is obtained by dividing the distance Ay between two successive
locations by the average time needed to go from a location to the next one
under action «. The first parameter Ay can be easily computed as soon as k, the
number of intermediary locations, is fixed. In the Glasgow line, the total length
of the network is 10.5 km, and there are 15 stations. So the distance between
two consecutive stations is Ay = 10500/15 - k. Similarly, for a geometric law of
parameter p,, the expected number of discrete steps to move from one station
to the next one is E, - k. We know that the total duration of a round trip in the
Glasgow line is 1440 s, including a dwell time of 30 s at each station. Hence the
total running time in seconds is ¢ = 1440— (30 15) = 990. The time needed to
move from a station to another, in seconds, is thus ts: = 990/15 = 66. Fixing
parameter k, we should have E,.k.A; = 66. If we choose to have k = 5 locations
between two stations, we obtain Ay = 140 m and A; = 10.56 s. We finally obtain
_Ad A4 106 ms ! ~ 382 kmh-!
EQXAt_pa.AtN .6 m-s™ ~ 38.2 km-h™.

In a similar way, we can compute the average speed of trains when their
behavior is dictated by regulation instruction (. The expected number of steps
needed to go from a location to the next one is now Eg = 1/pg. We hence

the commercial speed v, =

Ad
have vg = pg - AL If ps = 0.6 as in the model of Fig.3, we obtain a reduced

speed v ~ 7.95 m-s™! &~ 28.6 km-h~!. Finally, for action v that represents
the instruction not to move, the speed is obviously v, = 0. All in all, using
three types of actions, associated each with a probability to move one location
forward in the next step, we were able to model three regulation instructions for
the speed of trains.

Notice that as soon as the discretization constant k is known, the value of
Ay follows from the length of the line. Similarly, considering that the dwell time
in stations, the total duration of a round trip are known, it suffices to choose
the value of p, to obtain the value of A;. As we had no data on round trip
durations in Glasgow, we have chosen a value for p, such that the distribution
of trip durations in our model matches statistics recorded for a track portion
in another line with similar characteristics. We refer interested reader to the
extended version of this paper [4] to see how this fitting was performed, and how
value p, = 0.8 was chosen to model duration of trips from a station to the next
one at standard commercial speed.

3.3 Integrating a Regulation Policy in the Model

Regulation policies decide which instruction to give to the trains, given their
positions (and possibly other useful data). In this work, we assume that a sig-
naling system is used to determine the safe speed of running trains at every step.
We also consider that trains run at their usual commercial speed whenever this
speed is allowed. We thus consider regulation policies that only choose the dwell

68 N. Bertrand et al.

times at stations, that is, determining whether a given train should leave the
station early or continue waiting.

The signaling system works as follows. Between two stations, trains travel
at their commercial speed (following a-transitions) if there is no train too close
ahead, at reduced speed ([-transitions) if the train ahead is close, and stop
moving to prevent collision or if they have to stay longer in a station.

A regulation policy aims at avoiding delays or recovering from them.
In a train networks, delay can be interpreted as a difference between an
arrival/departure date and the expected date of realization of this event in a
pre-computed timetable. However, in metros like Glasgow, emphasis is put on
regularity of departures, not on precise schedules. To formalize delays, we com-
pute, for each state ¢ of the MDP representing the whole network, a function
balgy : 1..nbiains — R that measures whether time intervals between trains are
similar or not in state ¢. In a state ¢, let us call pos(g,i) a number between 0
and k.15 — 1 denoting the position of train i in sate q. Then, for a particular

dq(i,i+1)
dg(i —1,3) + dg(i,i+ 1)
difference between the position of trains 7; and T} in sate ¢. It has to be noted
that bal, cannot be equal to 0 nor 1 since two trains cannot be in the same
location.

An ideal situation is when ay(i) = 0.5 for every train T; in the network,
which means that each train is positioned precisely in the middle of the space
delimited by its predecessor and its successor. Maintaining this equilibrium is
a way to guarantee regularity of service. However, it cannot be achieved unless
the movements of trains are quasi synchronous, which is too much requiring, as
distances between trains always vary due to dwell in stations. We will say that
the position of train T; is balanced in state ¢ if a4(7) € [0.4,0.6], and unbalanced
otherwise. We say that the current state of the network is balanced if all train
positions are balanced. As this definition only depends on the current state, one
can attach an atomic proposition balanced to every balanced state of the global
MDP. Similarly, we can associate a tag collision to a state if pos(q,i) = pos(q,7)
for some i # j € 1..nbyuains, that is to represent that a collision occurs.

We can now define our regulation policy as a linear function Dwell : [0,1] —
[20,40] applies from the value bal,(i) for every train T;. In each state of the
system, when a train 7T; arrives in station, the regulation algorithm imposes a
dwell time of Dwell(bal,(7)) to train T;. If bal,(¢) is close to 1, the train has to
leave the station early, and if it is close to 0, it has to dwell in station for a
longer duration than the nominal dwell time. Due to the discretization of time,
the dwell duration in station depends on the interval to which bal,(i) belongs
and not the exact value of bal, (7). For instance, with A, ~ 5 s, the dwell time
was set as follows:

train ¢, we define: bal, (i) = where d, (¢, j) measures the

Performance Evaluation of Metro Regulations 69

Ax A, ifve0.875,1]
5x A, if v e [0.625,875]
Dwell(v) = { 6 x A, if v € [0.375,0.625] (1)
7x A, if v e [0.125,375)]
8x A, ifve(0,0.125]

Similarly, if A; = 10s, we have set Dwell(v) = 2 x A; if v € [0.667,1],
Dwell(v) = 3 x A, if v € [0.334,0.666] and Dwell(v) = 4 x A, if v € [0,0.333].

3.4 Logical Properties for MDP

The overall objective of our experiment is to assess the performances of regula-
tion policies from a metro model. To do so, we use relevant quantitative proper-
ties. For example, we evaluate the probability of a regulation policy to recover
from a delay in less than 30 min. This can be done by writing “from initial state,
the MDP reaches a balanced state within 30 min” as a property ¢ in logics, and
then computing the probability of this event in the MDP given the policy o
corresponding to the regulation at hand. One can also evaluate the maximum
probability for this event when o ranges over all possible regulation policies.
Such an optimal policy ¢ can be computed: we have P%,(¢) = max, Ph,(¢)
where T ranges over a finite number of policies (see the extended version [4] for
details). Typically, we will denote this value by PR (¢).

The mentioned property ¢ is usually written using a formula F'<*’balanced in
linear temporal logics [13]. Such a property ¢ is a bounded reachability property:
the aim is to reach a given set of states (here the balanced ones) within a given
number of steps (or seconds). We are also interested in (unbounded) reachability
properties, such as F collision that expresses that eventually a collision occurs,
yet with no time bound. For our metro system, we aim at proving that under all
regulation policies the probability of F collision is 0, showing that collisions are
impossible. This constraint can be expressed as max, P}, (F collision) = 0, or in
a more compact way P (F collision) = 0.

To compute such optimal probabilities, we use the probabilistic model checker
PRISM [10]. We describe our metro model as processes in the PRISM language:
each train is a process, whose state encodes the position of the train in the net-
work. Regulation is also a process. The underlying semantics of these processes is
the MDP depicted in Sect. 3.2. A first sanity check for our PRISM model is thus
to verify that the safety requirement is met, i.e. that the resulting MDP M for
the network behavior (obtained as the product of processes for trains) satisfies
the formula P (F collision) = 0. Then to evaluate the efficiency of a regula-
tion algorithm, we will compute values such a P%‘”‘(qu balanced) for ¢ a given
number of steps. This value is the maximal probability, among all regulation
policies, i.e. considering choices of actions that are not decided by regulation,
that the system recovers a balanced situation within ¢ steps (or equivalently
within ¢ x A; seconds). We will also measure P%,(F=7 balanced) to evaluate
efficiency of a policy o. Letting the system start from an unbalanced state, we

70 N. Bertrand et al.

can compute this probability for different values of ¢ and obtain performance
measures for a regulation algorithm.

4 Experimental Results

We performed several experiments with PRISM on the MDP models we con-
structed for the Glasgow metro. The objective was to evaluate the value of
quantitative formulas given in Sect. 3.4 to study performances of the simple reg-
ulation algorithm (balancing of trains positions on the ring) defined in Sect. 3.3.
Usually, PRISM explicitly builds the MDP resulting from the processes descrip-
tion, and then computes the values for the properties to check by value iteration
(see [5] for a description of the algorithms). As an alternative to the explicit
MDP construction, in case the model is too large (in terms of state space, and
transition table) to be stored, PRISM can perform statistical model checking
(SMCQC), i.e., generate on the fly a set of sample runs, to approximate, with a
given confidence, the values one aims at computing.

For our case-study, the size of the MDP depends on the discretization factor
k, and on the number of trains running in the system. The tests we performed
were conducted for two discretization values (k = 5 and k = 10) and two possible
number of trains (nbiains = 4 and nbyains = 6). As described in Sect. 3.2, all
processes representing trains were designed with three distinct possible speeds
a, 3,7, corresponding respectively to standard commercial speed, reduced speed,
and train stopped. These speeds were modeled using intermediary locations as
in Fig. 3, with probabilities p, = 0.8,p3 = 0.6, p, = 0.

As initial state of our MDP, we chose a very unbalanced configuration, in
which trains occupy consecutive stations, with no free location between them.
This configuration is certainly the worst for the network. We then computed
three probabilities, for increasing values of ¢, the bound on the number of steps
to recover a balanced configuration. We first consider the policy oy, defined in
Sect. 3.3, which chooses dwell times for each train in order to move the train to
the middle of the previous and the next train. This probability is thus denoted
P75 (F'<1 balanced). Second, we computed the maximum probability when the
policy ranges over all possible ones. This is written as P> (F <4 balanced). Note
that when computing this probability, PRISM also determines how to optimize
this value, and returns a policy. Third, we defined a fixed regulation policy oy
which always picks the dwell time of 30 s regardless of the current state. This
probability is thus denoted]P’jr\ﬁ{(ng balanced). This choice corresponds to an
absence of regulation policy. We expect that ofy should perform worse than op,
since the latter makes clever choices to equilibrate distances.

Obviously, the size of the models increases with the discretization factor k
and with the number of trains. With the smallest values k£ = 5 and nbyains = 4,
PRISM was not able to build the complete state space of the model, and hence
could not compute that optimal policy. A standard technique to overcome this
limit is to use abstraction. Abstraction allows to consider some states as equiva-
lent, and then perform model checking on a quotient (w.r.t. equivalence classes)

Performance Evaluation of Metro Regulations 71

Lo | EEE With regulation
Emm Without regulation
B Optimal regulation f | |

. ' H;HW
I
L

| | | Statistical
model checking

|||“H|0ni

°
>

Probability

°
S

02 EXAC! o } {
model checking

et

00

52 58 129 161

Time (min)

Fig. 4. Probability to recover from a delay with nbiains = 4 and k =5

of the original MDP (which is then smaller). We have used a sound abstraction
of states up to a rotation of positions in the network. Indeed, in the Glasgow
ring, the dwell time decided for a train only depends on the distance to the pre-
decessor and successor, and not on the visited station. This abstraction allowed
to reduce the state space of the original MDP, while preserving values of the for-
mulas (as behaviors of trains and the balanced property of states are equivalent
up to rotation). We do not detail here the formal definition of abstraction up to
rotation, and refer interested readers to the extended version [4] for details.

The Table1 below shows the effect of abstraction on the size of the MDP
computed by PRISM, for a discretization k = 5, with and without abstraction.
Abstraction up to rotation reduces the number of states by a factor 1000 for 3
trains, and allows PRISM to compute explicitly and MDP for 4 trains, which
is not possible without abstraction. However, even with abstraction, taking as
discretization factor £k = 10 or a fleet of 6 trains exceeded the size of models
for which PRISM can return an exact value for a simple property. With these
parameters, one necessarily have to rely on SMC.

Table 1. Size of the MDP models in terms of number of states and transitions (k = 5)

Model number of trains | Before abstraction | After abstraction

Three trains

2.1 x 10® states
3.4 x 10° transitions

3.5 x 10° states
8.3 x 10° transitions

Four trains

Not built in PRISM

2.0 x 107 states
5.7 x 107 transitions

72 N. Bertrand et al.

10 s With regulation
mmm Without regulation

HH++|ume'"""""""‘“"“”“
}

.

H”HI

|| Statistical
|| model checking

Probability

o!"”l

120 140
0 50 100 150 200 250

Time (min)

Fig. 5. Probability to recover from a delay with nbin.ins = 4 and £ = 10

We can now show the results obtained from our experiment. Figure 4 shows
the probability to return to a balanced state in minutes when starting from a
very unbalanced situation. Absiscae represents time elapsed, and ordinates the
probability. The green curve is the exact value of the probability computed from
the MDP (an MDP - quotiented by the rotation abstraction- was explicitly built
by PRISM) when an optimal policy is used to regulate trains. The red curve is
the result obtained with our simple regulation policy oy, and the blue curve the
results obtained when constant time regulation oy is used. For the red and blue
series of measures, statistical model checking had to be used. Indeed, introducing
a particular regulation scheme may require the use of additional information in
states and increases the size of the underlying MDP. Note that on the figure, as
the results are obtained with statistical model checking, the probabilities in the
red and blue curse are not given as a single point but as an interval. This figure
shows that the best possible choices when doing regulation cannot do better
than returning to a balanced state with probability 0.5 in 52min, and with
probability 0.8 in 58 min. The regulation policy op, needs respectively 129 min
and 161 min to reach probabilities 0.5 and 0.8. One can however notice that this
regulation improves the performance of the metro network, as the regulation ofix
that sticks to standard dwell times of 30 s in stations has a probability to return
to a balanced state that stays close to 0.

Let us now compare these results with the curves obtained for £ = 10 and
Nbirains = 4 (Fig.5) and for & = 10 and nbyains = 6 (Fig. 6). As explained before,
these values do not allow PRISM to compute and store the whole state space
of the MDP and hence to obtain the green curve representing results achieved
with an optimal policy. However, measures for regulation opy or ok can still
be obtained with statistical model checking. We can now discuss the effect of

Performance Evaluation of Metro Regulations 73

10 | MW With regulation

Emm Without regulation HH'”H“Q,H"N'N'

Statistical

Probability

|| model checking

142 167
150 200 250

Time (min)

Fig. 6. Probability to recover from a delay with nbinins = 6 and k£ = 10

discretization by comparing the red curve in Figs.4 and 5. One can notice that
the global shape of the curve is the same, but that with a discretization factor of
10, it takes 120 min (instead of 129) to return to a balanced state with probability
0.5. Similarly, it takes a slightly smaller time (140 min instead of 161) to get
back to a balanced state with probability 0.8. This can be explained by several
facts. First, when choosing a rough discretization, one gives regulation the ability
to take fewer choices, and starting from less precise information than with a
finer discretization. A second aspect is that trains reduce their speed when they
approach their predecessor (i.e. the number of locations between the two trains
is low), and stop when moving to the next location would cause a collision. So,
with a coarse discretization, trains will slow down and stop more frequently,
which will delay the date of recovery.

Let us compare the curves of Figs. 5 and 6, respectively obtained with values
(k = 10, nbyrains = 4) and (k = 10, nbyrains = 6). Returning to a balanced situ-
ation take a longer time with 6 trains than with 4: the network needs 142 min
instead of 120 to get back to a balanced state with probability 0.5, and 167 min
instead of 140 to return to a balanced state with probability 0.8. Indeed, each
train introduces randomness in the system, and increasing the number of trains
increases the probability to move to an unbalanced state.

Let us now address the time needed by PRISM to compute the curves. We
recall that the green curve in Fig.4 is the exact probability to reach a stable
configuration in x steps achievable with an optimal regulation scheme, for k = 5
and nbyyqins = 4. Each point in this curve took less than 1 hour to compute on
an average laptop. For statistical model checking, with a confidence level of 99%,
the time needed to compute each interval in the red curves of Figs.4, 5 and 6

74 N. Bertrand et al.

(i-e., the probability to return to an equilibrate situation in 2 minutes with our
regulation algorithm) is less than 2min per interval.

5 Conclusions

We have proposed a quantitative evaluation scheme for metro networks with
simple ring topologies. This experiment showed interesting results. First, for a
coarse discretization and a small number of trains, we can compute the exact
value of properties probabilities. The size of the MDP rapidly exceeds the model-
checker’s limits, but SMC still works for finer discretization and larger number
of trains. The parameters used to model the network of Glasgow are bounded
in terms of discretization (k < 10) and number of trains. Regarding the number
of trains, as far as the Glasgow network is concerned, the limits allow to model
the activity of the network at peak hours. For discretization, it has to be noted
that the state space of the MDP is greater than (K x k)"Pwn where K is the
number of stations and k the discretization factor. Overall, appropriately chosen
parameters allow to obtain a fair estimation of the distribution of time needed
to return to normal situations. The durations obtained may seem rather high
(on the average 150 min), but the initial state of simulation is the worst possible
situation for the network. A natural extension of this work is to consider the
time needed to recover from less severe perturbations (e.g. when a single train
is delayed).

One advantage when working with explicitly built MDP models in PRISM, is
that computing the optimal value for a formula also gives a finite memory strat-
egy to reach this optimal. However, these strategies are state-based, and cannot
be interpreted immediately as a regulation algorithm. An interesting issue is
hence to understand better the output of quantitative model checkers to be able
to synthesize efficient strategies in terms of user-understandable rules. Another
possible extension for this work is to consider more complex topologies, and
more complex regulation techniques, for instance network topologies with forks
and joins where trains complete distinct trips, networks with parking locations
allowing to remove a train from the network or insert it at the most appropriate
moment to improve performance of the network...

This work also helped to discover strengths and weaknesses of generic model-
checking techniques. Undoubtedly, generic model checking tools such as PRISM
have flexible enough input languages to model complex systems such as regulated
metro networks. They also build on solid theory to obtains values for probabilistic
properties. However, they also have some weaknesses. First of all, as already
mentioned in the paper, the MDP of a metro network, even for a simple topology
such as the Glasgow ring is huge. This has an impact on the applicability of exact
techniques such as value iteration, that need to build a complete state space to
obtain results. With respect to this drawback, abstraction techniques can help
reducing the size of MDPs. In this paper, the reduction used is a symmetry, and
is an exact abstraction: the value of a property checked on the abstract model
is exactly the value of the property on the original model. Exact reductions via

Performance Evaluation of Metro Regulations 75

symmetries work mainly for ring-like lines, but should be more difficult to obtain,
and less efficient for other topologies. Then, one can rely on other techniques that
group sets of states into equivalence classes, but at the cost of an approximation
in the obtained results.

Discretization is a factor that increases a lot the state space considered by
model-checkers. The choice of the discretization levels chosen for the experiment
were mainly guided by the will to model accurately the distributions of tran-
sit times between stations. Hence, shapes of network topologies do not impact
too much the discretization level of a model. However, the discretization level
is an important parameter of our models: when discretization increases, the
distribution of transit times that can be obtained approach a Gaussian distribu-
tion. Further, if discretization is too coarse, the space between two intermediate
locations may cover more than one block. As a consequence, information about
block occupation ahead a train is pessimistic, and trains may have to brake
more often in the simulated model that in the real network, which decreases
the performances of the simulated system. Hence, a rather high level of dis-
cretization is preferable to model realistic train movements (at least intermedi-
ate locations should not cover several blocks). It should be noted, however, that
improving discretization by a factor ¢ results is a blowup of ¢™Ptreins of the size
of the MDP.

We hence face several generic difficulties that are inherent to model-checking
tools (and not only to PRISM): a very precise model leads to a state space explo-
sion, which disallows computation of exact values for probabilities. To overcome
this problem, one can reduce the discretization level of the model, and obtain
pessimistic results for the performance of regulation. The other possibility is to
find a good abstraction, but as long as an abstraction is not exact, this leads
to a loss of precision in the results. The other possibility is to use statistical
model checking. As shown in this paper, SMC allows to deal with models of
larger sizes (in our case 6 trains and a discretization factor of 10, i.e., a sys-
tem with more than 10'3 states), but computes a confidence interval. It shall
be noted that the precision of the confidence interval can be set in most SMC
tool by choosing a confidence level. Of course, the computation time needed to
obtain small confidence intervals increase with the required confidence, but the
loss of precision when using SMC for performance evaluation from a faithful
model can be controlled. All these consideration advocate for the use of SMC
for evaluation of regulation in metro networks. Another possible approach is to
use SMC with continuous representations of train trajectories instead of discrete
positions. This is the approach followed in [2]. The price to pay here is that
evolution of the system over time is not discretized and one has to compute the
next occurrence date of events (arrival, departure, braking...). This calculus can
also become costly when the size of the model grows.

76

N. Bertrand et al.

References

Glasgow subway webpage (2018). http://www.spt.co.uk/subway/

2. Adeline, B., Dersin, P., Fabre, E., Hélouét, L., Kecir, K.: An efficient evaluation

10.

11.

12.

13.

scheme for KPIs in regulated urban train systems. In: Fantechi, A., Lecomte, T.,
Romanovsky, A. (eds.) RSSRAIL 2017. LNCS, vol. 10598, pp. 195-211. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-319-68499-4_13

Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL 4.0 (2006)
Bertrand, N., Bordais, B., Hélouét, L., Mari, T., Parreaux, J., Sankur, O.: Perfor-
mance evaluation of metro regulations using probabilistic model-checking (draft).
In: Preprint of RSSRAIL 2019 HAL (2019). hal.inria.fr/hal-02065365

Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53—-113. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21455-4_3

Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512-535 (1994)

. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed

railway control system. IEEE Trans. Softw. Eng. 26(8), 687-701 (2000)

Kettner, M., Sewcyk, B., Eickmann, C.: Integrating microscopic and macroscopic
models for railway network evaluation. In: Association for European Transport
(2003)

Koustopoulos, H.N.; Wang, Z.: Simulation of urban rail operations: model and cal-
ibration methodology. In: Transport Simulation, Beyond Traditional Approaches,
pp- 153-169 (2009)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585-591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

Nash, A., Huerlimann, D.: Railroad simulation using opentrack. In: Computers in
Railways IX, pp. 45-54 (2004)

UITP (International Association of Public Transports). Metro service performance
indicators, a UITP information sheet (2011)

Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science FOCS 1977, pp. 46-57. IEEE (1977)

http://www.spt.co.uk/subway/
https://doi.org/10.1007/978-3-319-68499-4_13
http://hal.inria.fr/hal-02065365
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

	Performance Evaluation of Metro Regulations Using Probabilistic Model-Checking
	1 Introduction
	2 A Case Study: A Metro Network in Glasgow
	3 Models
	3.1 Markov Decision Processes
	3.2 An MDP Model for the Glasgow Network
	3.3 Integrating a Regulation Policy in the Model
	3.4 Logical Properties for MDP

	4 Experimental Results
	5 Conclusions
	References

