
Simon Collart-Dutilleul · Thierry Lecomte ·
Alexander Romanovsky (Eds.)

 123

LN
CS

 1
14

95

Third International Conference, RSSRail 2019
Lille, France, June 4–6, 2019
Proceedings

Reliability, Safety,
and Security
of Railway Systems
Modelling, Analysis, Verification, and Certification

Lecture Notes in Computer Science 11495

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Simon Collart-Dutilleul • Thierry Lecomte •

Alexander Romanovsky (Eds.)

Reliability, Safety,
and Security
of Railway Systems
Modelling, Analysis, Verification,
and Certification

Third International Conference, RSSRail 2019
Lille, France, June 4–6, 2019
Proceedings

123

Editors
Simon Collart-Dutilleul
Laboratoire IFSTTAR/ESTAS
Villeneuve d’Ascq, France

Thierry Lecomte
ClearSy
Aix en Provence, France

Alexander Romanovsky
Newcastle University
Newcastle-upon-Tyne, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-18743-9 ISBN 978-3-030-18744-6 (eBook)
https://doi.org/10.1007/978-3-030-18744-6

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4076-3331
https://doi.org/10.1007/978-3-030-18744-6

Preface

Welcome to the proceedings of the Third International Conference on Reliability,
Safety, and Security of Railway Systems: Modelling, Analysis, Verification, and
Certification (RSSRail 2019). We were pleased that RSSRail 2019 took place in Lille
during June 4–6, 2019, and was hosted by IFSTTAR, one of the major players in
European research on transportation. The series of RSSRail conferences began in 2016
in Paris, and continued in 2017 in Pistoia. This year’s conference built on the success
of RSSRail 2016 and RSSRail 2017.

Development of the complex railway systems of the future faces a number of
challenges:

• To improve railway system safety, security, and reliability
• To reduce production cost, time to market, and running costs
• To increase system capacity and reduce carbon emissions

And it requires integrated environments and methods that support different
abstraction levels and different views, including:

• Systems architecture
• Safety analysis
• Security analysis
• Verification tools and methods.

The RSSRail 2019 conference brought together researchers and engineers interested
in building critical railway applications and systems, as a working conference in which
research advances are discussed and evaluated by both researchers and engineers,
focusing on their potential to be deployed in industrial settings.

The conference contributed to a range of key objectives. We feel that there is a
pressing need to bring together researchers and developers working on railway system
reliability, security, and safety to discuss how these requirements can be met in an
integrated way. It is also vital to ensure that all advances in research (both in academia
and industry) are driven by real industrial needs. This can help ensure that such
advances are followed by industrial deployment. Another particularly important
objective is to integrate research advances into the current development processes, and
make them usable and scalable. Finally, a key goal is the development of advanced
methods and tools that will ensure that rail systems meet the requirements imposed
both by the standards and in building the arguments for compliance.

We hope, and expect, that RSSRail 2019 successfully contributed to achieving all
of these objectives.

The conference covered topics related to all aspects of reliability, safety, and
security engineering for railway systems and networks, including:

• Safety in development processes and safety management
• Combined approaches to safety and security

• System and software safety analysis
• Formal modelling and verification techniques
• System reliability
• Validation according to the standards
• Safety and security argumentation
• Fault and intrusion modelling and analysis
• Evaluation of system capacity, energy consumption, cost, and their interplay
• Tool and model integration, toolchains
• Domain-specific languages and modelling frameworks
• Model reuse for reliability, safety, and security
• Modelling for maintenance strategy engineering.

This year the conference attracted 38 submissions from 14 countries. In total, 18
papers were accepted after a rigorous review process in which every paper received at
least three reviews.

Three prominent researchers working on railway engineering, Airy Magnien from
UIC (France), Alessandro Fantechi from the University of Florence (Italy), and Cédric
Blin from Ansaldo STS (France), kindly agreed to deliver keynote talks. The volume
includes one paper and two abstracts describing the research presented in the keynote
talks.

We would like to thank the Program Committee members and the additional
reviewers for all their efforts. We are indebted to IFSTTAR for helping with the
planning and organization of this event. We would like to acknowledge the help of
Newcastle University staff: Joan Atkinson, Tom Anderson, and Lisa Aston. We are
very grateful to Alfred Hofmann from Springer for supporting the publication of these
proceedings in the LNCS series. But, most of all, our thanks go to all the contributors
and to all those who attended the conference for making this conference a success.

March 2019 Simon Collart-Dutilleul
Thierry Lecomte

Alexander Romanovsky

vi Preface

Organization

Conference Chairs

Simon Collart-Dutilleul IFSTTAR, France
Thierry Lecomte ClearSy, France
Alexander Romanovsky Newcastle University, UK

Financial Chair

Joan Atkinson Newcastle University, UK

Local Organization Chair

Natalie Botticchio IFSTTAR, France

Website Design

Lisa Aston Newcastle University, UK
Andrew McLean Newcastle University, UK

Program Committee

Marc Antoni UIC, France
Carlo Becheri Alstom, Italy
Fabien Belmonte Alstom, France
David Bonvoisin RATP, France
Jens Braband Siemens, Germany
Tom Chothia University of Birmingham, UK
Fares Chucri SNCF, France
Alessandro Fantechi University of Florence, Italy
Francesco Flammini Linnaeus University, Sweden
Barbara Gallina Mälardalen University, Sweden
Frank Golatowski University of Rostock, Germany
Anne Haxthausen Technical University of Denmark, Denmark
Alexei Iliasov Newcastle University, UK
Chris Johnson University of Glasgow, UK
Hironobu Kuruma Hitachi, Japan
Michael Leuschel University of Düsseldorf, Germany
Jan Peleska Verified Systems Int., Germany
Peter Popov City University, UK
Etienne Prun ClearSy, France
Klaus Reichl Thales, Austria

Aryldo Russo CERTIFER, France
Colin Snook University of Southampton, UK
Mariëlle Stoelinga University of Twente, The Netherlands
Kenji Taguchi CAV Technologies, Japan
Stefano Tonetta FBK-irst, Italy
Laurent Voisin Systerel, France
Kirsten Winter University of Queensland, Australia

Additional Reviewers

Abderrahim Ait Wakrime Railenium, France
Davide Basile ISTI, Italy
Benjamin Beichler University of Rostock, Germany
Signe Geisler Technical University of Denmark, Denmark
Anatoliy Gorbenko Leeds Beckett University, UK
Sebastian Krings University of Applied Sciences, Germany
Bjørnar Luteberget RailComplete AS, Norway
Franco Mazzanti ISTI, Italy
Michael Nast University of Rostock, Germany
Hideaki Nishihara AIST, Japan
Subeer Rangra Alstom, France
Enno Ruijters University of Twente, The Netherlands
Thorsten Schulz University of Rostock, Germany
Paulius Stankaitis Newcastle University, UK
Shunsuke Yatabe AIST, Japan

viii Organization

Sponsors

CERTIFER

ClearSy

EURNEX

Newcastle University

Railenium

Systerel

SYSTRA

Wind

Organization ix

Abstracts of Invited
Keynote Talks

RailTopoModel - A Cornerstone to Foster
the Federation of Railway Digital Models

Airy Magnien

Union Internationale des Chemins de Fer, France
magnien@uic.org

Abstract. RailTopoModel (RTM) stands for a project initiated in 2013 by
several European railway companies. It led to the publication of RTM 1.0 by
Union Internationale des Chemins de fer (UIC) in April 2016. Its kernel
addresses the issue of providing a single repository for railway infrastructure
description, that is scalable, extensible, and platform-independent.

Keywords: Railway � Infrastructure � Modelling

Current developments in the RailTopoModel project (https://www.railtopomodel.org/en/)
are driven by urgent business needs, namely Building Information Modelling
(BIM) level 3: replicating the rail domain in IT, in the interest of prompt system certi-
fication and handover to operating and maintenance companies. This extension of the
application scope to all components of the railway transport system is taking place by
joining forces with the IFC Rail project coordinated by building SMART (https://www.
buildingsmart.org/ifc-maritime-project/).

In parallel, UIC drives the expansion of the technical scope of RTM to operations,
for the purpose of traffic planning, autonomous driving, or for disturbance recovery
optimization.

Another obvious challenge is no less exciting, namely governance. Given the
complexity and long life of railway systems, RTM aims at becoming one useful piece
in a set of cooperating models with well-defined responsibilities and a clear evolution
path.

https://www.railtopomodel.org/en/
https://www.buildingsmart.org/ifc-maritime-project/
https://www.buildingsmart.org/ifc-maritime-project/

Scientific and Technological Obstacles
to Achieve the Autonomy

Cédric Blin

Ansaldo STS, France
cedric.blin@ansaldo-sts.fr

Abstract. This talk will present Ansaldo STS experience with autonomy pro-
jects and highlight the technical difficulties encountered and the technological
and scientific obstacles identified, as well as the partnerships put in place to
overcome them.

The new technologies brought by the digital revolution open up new
opportunities for the world of transport, and the next technological era for
railways is now the Autonomy.

The autonomous train has many advantages, it improves safety, perfor-
mances and quality of service while reducing investment and operational costs
and saving energy.

In the long term, all trains will be autonomous. However, achieving auton-
omy requires overcoming technical difficulties as well as technological and
scientific obstacles. Therefore, the development of these complex systems
requires not only innovation, but also cooperation between railways operators,
industrial manufacturers as well as academic research organizations.

This talk will present Ansaldo STS experience with autonomy projects and
highlight the technical difficulties encountered and the technological and sci-
entific obstacles identified. More specifically, with regard to the autonomous
freight train carried out with Railenium and SNCF, it will show how new forms
of organization make it possible to better exploit innovation to meet techno-
logical challenges.

Keywords: Railway � Autonomous Trains � Innovation

The railway adventure is first and foremost a series of technological leaps that make it
possible to improve mobility. Today, the new technologies brought by the digital
revolution are opening up new opportunities for the world of transport, and the next
technological leap for the railways is now the Autonomy.

With the autonomous train, all the advantages are added up, it improves safety,
performances and quality of service and at the same time it reduces investment and
operational costs while saving energy. Indeed, since machines are faster than human
being and easier to coordinate, more autonomous trains will be able to follow one
another on the same line. More passengers and goods can be transported while saving
energy through optimized braking and acceleration. This will allow a more intensive
use of infrastructures that are always expensive and often saturated, with investments
well below the cost of building new tracks.

If automatic driving is operational for metro applications. For the other railways
systems, the situation is much more complex, due to a diversified fleet of rolling stock,
an Opened environment and network, and an infrastructure that will not be adapted. In
this context, the main technological and scientific challenges that have been identified
to achieve autonomy are the following:

• Geolocalization: To navigate autonomously, the train needs a geolocalization sys-
tem capable of positioning it on an open network with a sufficient level of accuracy.

• Cybersecurity: Integrity and confidentiality of information circulating on networks
for transportation systems is crucial, therefore it is essential to protect theses system
against the growing threat of cyberattacks.

• Environmental detection: Achieving the autonomy will necessitate to provide the
train with a vision of its environment. The perception system should collect the
greatest amount of relevant information to allow the train to understand its
environment.

• Decision-making: The train’s autonomy is also its ability to make decisions;
therefore, decision-making algorithm should be adapted to the context of the
autonomous train to enable the system to resolve the conflicts it will face.

• System validation: Autonomous systems are so complex that it is no longer possible
to test all the configurations. A virtual and representative simulation tool will have
to be developed to allow massive laboratory tests.

• Safety standards: If autonomous train will increase the overall safety level of the
railways system, the safety demonstration will be complex and may require an
adaptation of the regulations.

However, autonomy is not limited to overcoming technological and scientific
obstacles, and the arrival of autonomous trains is not only a simple market evolution
but a major transformation. Since no one is able to control all its components, whether
scientific, technological, industrial or economic, so that the development of a complete
and operational system seems difficult to be achieved by a single actor. For railways
actors, the trend is therefore towards cooperation between operators, manufacturers and
public and private research organizations.

Ansaldo STS will present a feedback from experience on autonomy projects and
highlight the technical difficulties encountered and the technological and scientific
obstacles identified. More specifically, with regard to the autonomous freight train
carried out with Railenium and SNCF, we will see how new forms of organization
make it possible to better exploit innovation to meet technological challenges.

Scientific and Technological Obstacles to Achieve the Autonomy xv

Contents

Keynote Talk

Connected or Autonomous Trains? . 3
Alessandro Fantechi

Railways System and Infrastructure Advance Modelling

Towards a Tool-Based Domain Specific Approach for Railway
Systems Modeling and Validation . 23

Akram Idani, Yves Ledru, Abderrahim Ait Wakrime,
Rahma Ben Ayed, and Philippe Bon

Statistical Model Checking of Hazards in an Autonomous Tramway
Positioning System . 41

Davide Basile, Alessandro Fantechi, Luigi Rucher, and Gianluca Mandò

Performance Evaluation of Metro Regulations Using Probabilistic
Model-Checking . 59

Nathalie Bertrand, Benjamin Bordais, Loïc Hélouët, Thomas Mari,
Julie Parreaux, and Ocan Sankur

Scheduling and Track Planning

Automated Planning of ETCS Tracks . 79
Stefan Dillmann and Reiner Hähnle

The Recent Applications of Machine Learning in Rail Track
Maintenance: A Survey . 91

Muhammad Chenariyan Nakhaee, Djoerd Hiemstra,
Mariëlle Stoelinga, and Martijn van Noort

Safe and Time-Optimal Control for Railway Games 106
Shyam Lal Karra, Kim Guldstrand Larsen, Florian Lorber,
and Jiří Srba

Safety Process and Validation

A Tool-Supported Model-Based Method for Facilitating
the EN50129-Compliant Safety Approval Process . 125

Faiz Ul Muram, Barbara Gallina, and Samina Kanwal

Efficient Data Validation for Geographical Interlocking Systems 142
Jan Peleska, Niklas Krafczyk, Anne E. Haxthausen, and Ralf Pinger

Formal Model Validation Through Acceptance Tests 159
Tomas Fischer and Dana Dghyam

Modelling

A Separation of Concerns Approach for the Verified Modelling of Railway
Signalling Rules . 173

Yves Ledru, Akram Idani, Rahma Ben Ayed, Abderrahim Ait Wakrime,
and Philippe Bon

RBS2HLL: A Formal Modeling of Relay-Based Interlocking 191
Naïm Aber, Benjamin Blanc, Nathalie Ferkane, Mohand Meziani,
and Julien Ordioni

Property-Based Modelling and Validation of a CBTC Zone Controller
in Event-B . 202

Mathieu Comptier, Michael Leuschel, Luis-Fernando Mejia,
Julien Molinero Perez, and Mareike Mutz

Formal Verification

Interlocking Formal Verification at Alstom Signalling 215
Camille Parillaud, Yoann Fonteneau, and Fabien Belmonte

Survey on Formal Methods and Tools in Railways: The ASTRail Approach. . . 226
Alessio Ferrari, Maurice H. ter Beek, Franco Mazzanti, Davide Basile,
Alessandro Fantechi, Stefania Gnesi, Andrea Piattino,
and Daniele Trentini

B-Specification of Relay-Based Railway Interlocking Systems Based
on the Propositional Logic of the System State Evolution. 242

Dalay Israel de Almeida Pereira, David Deharbe, Matthieu Perin,
and Philippe Bon

Security

Threat Modeling in the Railway Domain . 261
Christoph Schmittner, Peter Tummeltshammer, David Hofbauer,
Abdelkader Magdy Shaaban, Michael Meidlinger, Markus Tauber,
Arndt Bonitz, Reinhard Hametner, and Manuela Brandstetter

Integration Approach for Communications-Based Train Control
Applications in a High Assurance Security Architecture 272

Thorsten Schulz, Frank Golatowski, and Dirk Timmermann

xviii Contents

Merging Worlds – Aligning Safety and Security . 284
Christian Schlehuber and Dominik Renkel

Author Index . 297

Contents xix

Keynote Talk

Connected or Autonomous Trains?

Alessandro Fantechi(B)

Department of Information Engineering, University of Florence, Florence, Italy
alessandro.fantechi@unif.it

Abstract. In a parallel with the trends in the automotive domain, we
discuss the future challenges of automation of train control, where train
to infrastructure and train to train communication will support dis-
tributed control algorithms, while on board artificial intelligence will
provide autonomous control decisions. Already installed systems, like
ERTMS-ETCS, are actually distributed systems that span over geo-
graphical areas and are able to safely control large physical systems.
But still, crucial decisions are taken at centralized places, that concen-
trate communications with mobile objects. Several prospected advances,
aimed at increasing capacity and automation of rail transport, go in the
direction of a more dynamic network connection among mobile compo-
nents, in which decisions are actually taken in a distributed way.

A concept of dynamic safety envelope within which a train can safely
move then emerges, built by a fusion of reliable information coming from
the infrastructure and from other trains, as well as autonomously har-
vested by on-board “intelligent” sensors. This paper discusses some plau-
sible scenarios in this respect and presents the basic concepts behind
them.

1 Introduction

Connected cars and autonomous car driving are currently researched and experi-
mented in view of a future where safety and full automation of car transportation
are globally ensured by vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communication on one side, and by on board artificial intelligence on the
other side, in one or two decades to come.

The concept of connected cars is based on availability of ubiquitous high
band communication links that allow cars to negotiate the resolution of con-
flicts between cars either by playing distributed algorithms, or by asking help to
equipment deployed along the roads and at crossings.

As an evolution of current driver assistance systems, autonomous cars elabo-
rate instead information harvested by on-board sensors to provide the knowledge
needed to an automated driver to safely proceed along a requested journey.

Connection and autonomy complement each other, and will be eventually
merged in future automated cars.

When looking at railways, we can observe that the wide deployment of
ERTMS-ETCS systems on high speed lines as well as on freight corridors is
already a working witness to the possible achievement of high safety standards
c© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 3–19, 2019.
https://doi.org/10.1007/978-3-030-18744-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_1&domain=pdf
http://orcid.org/0000-0002-4648-4667
https://doi.org/10.1007/978-3-030-18744-6_1

4 A. Fantechi

by means of distributed control algorithms that span over geographical areas
and are able to safely control large physical systems.

ERTMS-ETCS is known as already able to support full automation of train
driving, since it provides the basic safety layer over which an automatic driving
mechanism can be implemented in place, or beside, the human driver, similarly
to what happens in CBTC systems of automatic metros. Hence, it can be said
that a connected trains paradigm is already implemented in railways, and used
by millions of passengers every day. Section 2 of this paper will show examples
of this state of the art in which connected trains are at a much more advanced
point w.r.t what is current practice in the automotive domain, due to the widely
deployed technological instrumentation of infrastructure. But still, crucial deci-
sions needed to guarantee safety of control are taken at centralized places (such
as the ETCS Radio Block Centre - RBC), that concentrate communications with
mobile objects.

Section 3 will discuss how the evolution of such technology, also pushed by
the Shift2Rail Joint Initiative with the aim of a 50% increase in capacity in
the railways in Europe [29], goes in the direction of a more dynamic connection
among mobile components, in which decisions are actually taken in a distributed
way, asking for distributed consensus algorithms.

Safety has to be preserved also by these dynamically connected trains: Sect. 4
introduces the fundamental concept of dynamic safety envelope within which a
train can safely move, built by a fusion of reliable information either coming
from the infrastructure and from other trains, or autonomously harvested by
on-board sensors, or both.

Autonomous decisions appear to have a far less important role in train control
systems, due to the strongly infrastructure-based nature of railway operations:
Sect. 5 discusses where autonomous decision inherited by automotive technolo-
gies can find a role in specific operational scenarios.

2 Current Connected Trains

Modern “connected trains” systems, on which we will focus our discussion in the
following, referring to significant examples, are indeed distributed systems, since
they are composed of a network of computing nodes connected by communication
links. Main critical control decisions are typically taken at specific nodes of
the network, that collect data from the other nodes for this purpose, and are
communicated to the other nodes in a master/slave fashion.

Indeed, some decisions could instead be negotiated between nodes with some
specific distributed algorithm; apart from the higher complexity of this alterna-
tive, one limiting factor is that the current business policy in railway industry
is centered over the independence of infrastructure managers w.r.t. train opera-
tors: the former tend to centralize control on the traffic over the infrastructure
they manage, while the latter have to ask the former, and pay, for access to the
infrastructure.

Connected or Autonomous Trains? 5

2.1 Centralised Control

In this section we consider some communication-based existing systems (ETCS-
L2, Moving Block, Interlocking), taken as examples of centralised control over
distributed systems.

ERTMS-ETCS. The increasing need to boost the volume of passenger and
freight rail transport, while decreasing the cost, and the difficulties of construct-
ing new tracks, are leading to the aim of running more trains on the existing
tracks, asking for notable improvements of the operation principles of nowadays
railways. The European Railway Traffic Management System (ERTMS) is an
international standard that aims to answer these needs by jointly improving the
interoperability, performance, reliability, and safety of modern railways.

ERTMS relies on the European Train Control System (ETCS), an Auto-
matic Train Protection (ATP)1 system which continuously supervises the train,
ensuring that the maximum safe speed and minimum safedistance are respected.
ETCS is specified at four levels of operation, depending on the role of track-side
equipment and on the way the information is transmitted to/from trains. Levels
2 and 3 can indeed be considered as connected trains systems.

At Level 2, track-side equipment (track circuits, axle counters) is used to
detect the occupancy of sections of track, determining the location of trains with
a coarse granularity. This information is sent to a central unit, the Radio Block
Centre (RBC), which sends to each train a Movement Authority (MA) com-
puted by counting the free sections in front of the train (fixed-block signalling).
The MA specifies the maximum distance that a train is allowed to travel and
the maximum allowed speed depending on the track morphology (static speed
profile, temporary speed restrictions, etc.). The on-board European Vital Com-
puter (EVC) of each train uses the MA and data stored on-board (e.g., the
braking capability of the train) to compute the maximum allowed speed (i.e.,
the braking curve or the dynamic speed profile), triggering an emergency brake
whenever this limit is exceeded. Level 2 avoids track-side signalling through a
continuous bidirectional communication between the train and the RBC using
GSM-R (railway dedicated GSM).

Moving Block. The Level 3 of operation of the ERTMS/ETCS (ETCS-L3),
currently still in development, improves upon Level 2 by removing the way-
side equipment for detecting the occupancy of fixed-length tracks (fixed-block).
Rather, the ETCS-L3 relies on moving block systems, computing the maximum
distance that a train is allowed to travel based on the knowledge of the posi-
tion of the rear-end of the foregoing train. In doing so, headways between trains
can be considerably reduced, improving the line capacity (see Fig. 1). Although
main line ETCS-L3 has not been still deployed, moving block based on con-
tinuous communication and MA computation is currently implemented in some
1 For brevity, we here ignore the usual distinction between ATP and ATC (Automatic
Train Control).

6 A. Fantechi

automatic metros, as a feature of CBTC (Communication Based Train Control)
[15] systems.

In these innovative distancing systems, the traditional, simple and eas-
ily observable binary consensus information exchanged between old days elec-
tromechanical devices is replaced by more complex information (e.g. Movement
Authority - MA) continuously exchanged through advanced, mostly wireless,
means of communication. In such systems, safety is guaranteed not only by the
proper functioning of the equipment on the ground and on board the train, but
also by the accuracy and integrity of information exchanged between the ground
and on board, for example speed and position information produced on board
the train and Movement Authority sent to the following train.

Fig. 1. Communication based moving block principle

Automated Driving - ATO. Automatic driving is typically responsibility of
a so called Automatic Train Operation (ATO) system, that is responsible for
driving, but still subject to a safety enforcing ATP system (such as ETCS).
ATO systems of this kind are adopted by CBTC systems for automatic metros.

The ATO system manages the train running from one station (or predeter-
mined operational stopping point) to the next, automatically adjusting the train
speed with appropriate traction and braking commands. This automatic control
with regard to speed and acceleration is performed by the ATO respecting the
required operating conditions and the limits imposed by the ATP. The goal is
to optimize the compliance to a set of possibly conflicting requirements, such
as timetable respect, energy efficiency, passenger comfort, equipment durability,
etc. The ATO can replace the driver also in other operations (opening and clos-
ing doors, initial train setup, etc.), making unnecessary the presence of a human
operator on board. Although the ATO takes autonomous local decisions to this
respect, the actual degree of train autonomy with respect to the global train con-
trol is almost null, since all the (safety-critical) decisions in a CBTC system are
centralized in a Zone Controller (ZC - analogous to the RBC of ETCS). Although
being the state-of-art within CBTC “closed system” solutions on urban lines,
ATO implementation on main lines is still far, due to the high interoperability

Connected or Autonomous Trains? 7

requirements of “open” railway systems constituted by large, complex intercon-
nected railway networks operated by many different train types. Indeed, the
automated freight heavy rail line recently opened in Australia [2] is also a closed
system, with one only type of train.

Interlocking. Railway interlocking (IXL) systems are those systems that are
responsible to grant to a train the exclusive access to a route: a route is a
sequence of track elements that are exclusively assigned for the movement of a
train through a station or a junction.

The instantiation of generic interlocking rules on a station topology is usually
defined in a data structure named control table, that is specific for the station
where the system resides. The control table drives the subsequent development
of a centralised interlocking system. In the usual meaning of railway interlocking,
we intend therefore a system that simply receives requests of reservations, and
grants reservations or not on the ground of safety rules, until the reservation has
been fully used (the track is again free) or has been safely revoked.

It is not a burden of the interlocking to look for alternative routes in case the
requested one is busy, in order to optimise traffic throughput parameters, nor
to guarantee that a train does not enter a not reserved track. These two func-
tions, when automated, are usually responsibility of separate systems, namely
Automatic Train Supervision (ATS) and ATP systems respectively.

The connection between a train and an IXL is usually either through signals
that the driver must manually obey, or mediated by an ATP system: in ETCS,
a MA authority including a route through a junction area is sent to a train only
if the route is granted by the interlocking system controlling the junction.

2.2 Distributed Control

Railway lines are by nature geographically dispersed, so system distribution
typically reflects geography: a line is divided in sections, a station is divided in
zones, etc., with a separate control of each part in order to reduce complexity
and equipment costs, to minimize cabling, or to obey to different authorities
over the line. But within the section, or zone, the control is still centralised. A
recent trend has even seen the diffusion of “multistation interlocking” systems
[19], that is, a trend to centralise in a single system the interlocking functions of
all the stations of a line.

An important issue in geographically decomposed and communicating sys-
tems is related to the proper interface between the different systems, avoiding
proprietary interfaces and protocols that generate vendor locking, through the
definition of standard interfaces and communication protocols. The whole story
of ERTMS/ETCS is about this issue: interoperability between trains, infrastruc-
tures and equipment produced by different vendors and/or managed by different
entities.

Indeed, one driving factor against distribution is related to maintenance costs:
the dispersion of technological equipment needing a frequent maintenance over

8 A. Fantechi

kilometers of lines hosting a continuous train traffic is a highly costly and highly
risky activity. For the same reasons, if a particular functionality requires mas-
sively distributed equipments put in operation along a line, it would be an impor-
tant advantage that they exhibit zero-maintenance throughout its operating life.
The latter characteristic is hence a must for future systems that exploit a finer
granularity of distribution, together with the capability of energy harvesting to
avoid cabling as much as possible.

The centralisation trends discussed above seem to contrast the advent of
pervasive, distributed intelligence to support fine grained, distributed decision
systems, which are instead a general trend in advanced cyber-physical systems
to attack complexity.

Indeed, distributed decision can already be found even in old, electrome-
chanical signalling systems: for example the Italian BACC system (Automated
Coded Currents Block) [20] is intrinsically distributed. BACC is a fixed-block
ATP system based on relay technology: at any border between two sections, an
alternate current, with a specific code modulation, is injected on the rails in
front of the coming train: the train short circuits the rails so that no current is
present on the track behind it, and an on-board equipment brakes the train if
no code is detected in front. The injected code at a section border is depending
on the (sensed) code of the previous section, so that the code read by the train
tells how many sections are actually free in front of the train. The equipment
that decides the information to be injected in the rail for delivery to the train is
therefore distributed in a chain on the line: in a sense, the protection algorithm
is naturally geographically distributed.

3 Future Connected Trains

In this section we discuss three possible examples of innovative systems that
need a wider adoption of distributed decision.

3.1 Virtual Coupling

The availability of safe information about the position, speed, acceleration and
deceleration of the preceding train, like that used in ETCS Level 3 and in CBTC,
inspired the idea of an innovative method of train formation, called Virtual
Coupling [7,14,30]. The concept is based on the idea of multiple trains (possibly,
individual self propelling units) which run one behind the other without physical
contact but at a distance comparable to mechanical coupling (see Fig. 2). The
strict real-time control of the dynamic parameters of the following train with
respect to the parameters of the preceding one allows the distance between trains
to be minimized, therefore with consequent high capacity and high flexibility, for
example in the forwarding of different segments of a train to different destinations
through “run-time” composition and decomposition, without stopping the train.
Although it still looks like a concept far from being implemented in reality,
largely for the radical innovations needed in terms of safety and operational rules,

Connected or Autonomous Trains? 9

the concept, already the object of an industrial patent in the railway domain [22],
inherits some of the principles of car platooning [8], that is being experimented
in the automotive domain. Virtual Coupling is one of the challenges addressed
in the Shift2Rail Joint Undertaking Initiative, and well represents the limits
to which the technologies upon which ETCS is based can be pushed in a next
future.

Notice that in Virtual Coupling the strict cross control between coupled
trains has to be negotiated locally, with a train to train communication, since it
requires a precision on the relative distance between the trains that cannot be
supported by ETCS-like systems.

Fig. 2. The Virtual Coupling concept

3.2 Distributed Interlocking

Centralised interlockings are complex and costly to design and especially to be
certified against safety guidelines. The complexity is due to the need of verifying
every possible conflicting combinations of different routes through the station.

Therefore it is sensible to consider a distribution of the interlocking logic
over a network of computing nodes, with a granularity pushed to the limit of
one controller node for each element of the track layout. The idea of distributed
interlocking has been proposed in several papers (e.g., [3,4,11]), and even patents
have been issued at this regard [21,31]. In a system like this, every physical track
element is equipped with a tiny computer, which knows the routes that interest
the associated element, and receives and interprets route booking, release, and
cancellation requests, dialoguing with the computers of adjacent elements. The
overall safety of a plant of this kind can only be achieved by ensuring that the
information on the routes reserved for incoming trains are properly shared in a
consistent way by all distributed processors associated to the concerned elements.

A distributed mutual exclusion algorithm is played between the nodes corre-
sponding to track elements, triggered by route requests coming from the trains
or from a dispatcher [12]; the used algorithms adopted by the distributed inter-
locking proposals cited above differ from the point of view of the way information
is allocated to nodes and trains and passed between them, but none of the pro-
posals dares to rely directly on a distributed consensus algorithm between trains
to reach a common decision about allocation of a route.

10 A. Fantechi

3.3 Fully Automated Train Operation

Extending the principles of ATO systems to envisage a fully automated main
line train, the following principles should be considered:

– A train is given a mission in terms of:
• starting time and location,
• destination,
• intermediate stops,
• possibly, the required timetable,
• a map of the lines to be traversed, with alternative paths if any, and with

related speed limits and other local constraints.
Whether the information is transmitted to the train at the beginning of the
journey or at run-time, or section after section, or continuously asked by the
train, is an implementation choice that should consider many factors, includ-
ing geography, different jurisdictions, the possibility of real-time changes and
different modalities adopted in different sections of the mission.

– A train tries to accomplish at best its mission by reserving in advance the
resources that it needs, autonomously asking for the needed extensions of its
EoA (End of Authority), or asking for the exclusive access to a route through
a station or a junction to a (centralised or distributed) interlocking system.

– At any prospected conflict between trains, complex distributed consensus
algorithms can be envisaged to take the role of preserving safety while opti-
mizing resource usage and line capacity.

– A train, in case of conflict, can decide to travel through an alternative route,
if available and convenient.

– The items above require the existence of (a limited set of different) standard
interfaces and protocols for the exchange of information in train to infras-
tructure, train to train and infrastructure to infrastructure communication.

– At any time, the train can move at a maximum speed, that is below the
braking curve given by the current safety envelope, and is optimal w.r.t.
the objectives of timetable respect, energy efficiency, not uselessly triggering
emergency brakes, etc.

– The items above related to automated driving are not safety-critical, since
safety is anyway guaranteed by an underlying ATP system, such as ETCS.
Different ATP systems can be however installed in different sections of the
mission, and this requires adequate transition areas and mechanisms.

– At any moment, the train should release resources that were allocated to
it, and have already been consumed. The sooner the resources are released,
the sooner they are available to other trains, improving the capacity of the
railway network. This concept is called, for interlocking system, sequential
release. Safety concerns are raised by this issue, that should be therefore
taken over by the ATP system.

– Interoperability with human-driven trains has to be guaranteed.

Again, autonomous decisions play a minor role in this picture, dominated by
communication-based centralised and distributed decisions.

Connected or Autonomous Trains? 11

4 Safety Concerns

A typical concern when introducing new train control systems is that the high
safety standards of railway transport are preserved.

4.1 Qualitative Safety

Safe train motion is usually defined in a qualitative manner, as the inability of
a train to travel beyond a protected point or EoA (depending on the kind of of
protection mechanism) established in front of the train. At any time, the span of
tracks from the current train position to the protected point constitutes a safety
envelope within which the train can freely move.

This generic notion of safety envelope has to include both the distancing from
previous train (responsibility of ATP systems) along a line, and the reservation
of a path in junction areas, such as stations (responsibility of interlocking). The
first contribution, depending on the kind of system, is given by the number of
free sections (fixed block), the distance from the preceding train (moving block),
the distance and speed of the preceding train (virtual coupling). The second
contribution is given by the sequence of track elements constituting the reserved
route. The safety envelope can be defined as the minimum of the track spans
given by these two contributions.

The guarantee of safe train motion may require other constraints as well to
be satisfied by the infrastructure, such as: switches in front of the train are locked
in their position so that they do not move when the train passes over them, level
crossing barriers are locked in a closed position, signals show specific aspects,
etc.

In general, we can look at this issue as a mutual exclusion problem: in order to
proceed a train needs to have an adequate set of resources exclusively allocated
to it, and the amount and characteristics of such resources define the maximum
extent and speed of safe train motion. This concept is developed, limited to
interlocking systems, in [12].

Notice that in such a distributed mobile system, communication timing and
latencies as well as train speed have to be taken into account in the definition of
the safety envelope, by adding proper safety margins that typically reduce the
span of the safety envelope.

4.2 Quantitative Safety

A reference for the probabilistic quantification of safety in the railway domain
is the EN50126 standard, in which functions that in case of malfunction may
cause catastrophic effects are rated at SIL4 (the highest Safety Integrity Level),
a level that is equated to a Tolerable Hazard Rate (THR) of 10−9 failures per
function per operation hour.

Quantitative safety assessment should be able to provide both the probability
with which a system correctly works (that is, its reliability) and the probability
that the system has reacted to a possible safety threat going in a fail-safe state.

12 A. Fantechi

The complement of the sum of these probabilities, the unsafety, shall not exceed
the THR limits defined for the SIL allocated to the function of the system.
Notice that a fail-safe state in the railway signalling domain typically ends up in
non providing the service, since it corresponds to some halted train, e.g. through
the application of emergency braking or setting all signals to red, impacting
therefore availability and capacity of the transport system (see Sect. 5.1).

Under the probabilistic perspective, considering the safety envelope concept
discussed above, safety of train motion is guaranteed when it is demonstrated
that the sum of the probabilities that: (i) a train goes beyond its safety envelope
(e.g. the received MA), and (ii) the train is given an erroneously permissive
safety envelope (e.g., a longer MA), does not exceed the THR limits.

One important aspect to be considered when distributed consensus algo-
rithms are used for safety-critical control functions, is the fundamental result of
[13]: distributed consensus cannot always be reached in presence of asynchronous,
possibly faulty, communication. Evaluating the probability of not reaching con-
sensus can provide other figures for a quantitative analysis of safety. However,
the most sensible way to deal with this problem is by setting timeouts for a
distributed consensus round, and to bring the system in a fail-safe state in case
consensus is not reached in a useful time, again moving the problem from safety
to availability.

4.3 Uncertainty

The advent of sophisticated train control system that need accurate measure of
position of trains and of their speed introduce the need of coping with uncertainty
over such measures, quantified as an error interval around the measured quantity
of interest.

Uncertainty in positioning is usually managed by allowing for a longer safety
margin, by assuming a maximum uncertainty threshold: in railways, positioning
of a reference (say, the head) of a train is monodimensional, because it refers
to a point on the line. Uncertainty makes position to stay within an interval,
so safety margins have to be computed accordingly. Speed uncertainty can be
handled similarly: if an error interval is known, integrating it over time gives a
position uncertainty.

One cause of uncertainty of position information is given by the positioning
mechanism itself. In fixed block systems, the position of a preceding train is
given by the block that it currently occupies: it is not known where the train
rear end actually is inside the block, and it is implicitly considered as the end
of the block. In the more sophisticated positioning systems required by moving
block, uncertainty is typically associated to position and speed.

A satellite positioning device, as used in avionic satellite navigation, gives,
together with a position estimation a so called protection level, a statistical bound
error computed so as to guarantee that the probability of the (unknown) real
position error exceeding the protection level is smaller than or equal to a target
value (called integrity risk). In other words, the interval (given by the protection
level) around the estimated position does not contain the real position with

Connected or Autonomous Trains? 13

probability less than the integrity risk. The target integrity risk can be computed
in relation to the desired THR. However, a typical satellite position receiver gives
a greater THR w.r.t. that of SIL4 functions, and hence sensor fusion with other
odometry devices is needed to lower the THR [25].

A tramway application of these principles is reported in this volume [6], where
statistical model checking is used to analysing safety-critical scenarios.

Delays in communication and the periodic, rather than continuous, nature of
communications introduce another source of uncertainty: timestamps and time-
out mechanisms are used in ETCS to prevent impact on safety of a missing or
out-of-time MA reception, stopping the train when given uncertainty thresholds
are passed (see Sect. 5.1)

4.4 Security for Safety

A further challenging aspect related to the integrity of exchanged vital data is
security, that is the absence of intrusion by a third party to fraudulently take
control of the functions of a system. This becomes increasingly important as the
communication is based on open protocols at some level (internet, wireless, ...):
since there is the trend to keep communication costs to an acceptable level by
recurring at open protocols and media, it is believed that this aspect is by far
the greatest concern for the deployment of the signalling systems whose safety is
based on communication, in which security has a direct impact on the integrity
of vital information.

The CENELEC standard EN50159, as well as recent developments in secu-
rity and encryption techniques, attempt to mitigate this concern: the so called
cyber-physical security research area, addressing other domains both in trans-
portation and other pervasive computing applications, has produced also results
for the railway signalling domain. Safety critical applications typically employ
protection w.r.t. random corruption of communications or data, that can be
strong enough to resist basic attacks. More sophisticated attacks can be coun-
tered by standard security countermeasures, which are actually used in nowadays
communication-based systems: [23] shows the unfeasibility, on costs basis, of a
serious attack to ETCS safety-critical communications. Security of the ETCS
train to trackside protocols has been formally analysed using the ProVerif tool in
[26]. [9,24] discuss how the IEC62443 standard for security of industrial automa-
tion and control systems can be applied to the railway domain by codesign of
safety and security features.

A general message from this body of literature is that it is currently possible
to adopt security countermeasures that make security attacks (such as coun-
terfeiting plausible MA) with catastrophic consequences very unlikely. Rather,
more concern is raised about the possibility of denying communication, which
may trigger emergency braking and extensive denial of service.

On the other hand, it is not simple to give a probabilistic measure of the
contribution of security issues to safety: such a measure should be obtained on
the basis of assumptions on the frequency of intrusion by third parties, as well as
on the basis of the capacity of the security mechanisms to counter them. Sanders

14 A. Fantechi

in [27] discusses some possible tools and methods for quantitative predictive
assessment of security for large-scale systems.

An interesting intertwining of safety and security is a recently advanced pro-
posal of employing blockchain technology for railway control [17]. Blockchain is
actually an example of distributed consensus algorithm, by which several peers
agree in a secure way on some shared information. In this case, tracks or route
reservation is the shared information on which involved trains are competing and
need to find a consensus. This proposals is claimed to smoothly support correct
accounting of infrastructure usage by train operators as well. In order for such
technology to gain actual acceptance, a serious analysis of safety issues related
to the probability that the consensus is not reached is needed.

4.5 Software

We deliberately leave out of this discussion software issues. It is well known
that software is typically plagued with faults that can have catastrophic conse-
quences, and that giving a quantitative evaluation of software reliability is not
feasible for the required safety level. For the purpose of this paper, we assume
that safety-critical software is developed and certified at SIL4 level according
to EN50128 standard. We strongly advocate the adoption of formal methods in
a roadmap for “zero-defect” software, in a trend championed by Shift2Rail in
several projects [5].

5 Autonomy as a Mean to Performability of Automated
Operation

In a parallel with the automotive domain, and inheriting autonomous cars tech-
nology, another direction of innovation is to move more and more intelligence
onboard trains, to let them take autonomous decisions, with little help of ground-
based infrastructure. However, the physics of train motion, that requires long
stretches of free track to attain high speeds, limits the actual possibility to adopt
autonomy in train control.

5.1 Performability, Availability, Capacity

As indicated by Shift2Rail [29], the primary objectives of introducing techno-
logical advances in train traffic control are not only related to an increase in the
already very high safety standards of railway safety, but especially to preserve
such standards while dramatically improving KPIs such as performability (often
intended as adherence to expected timetables), availability of transport service
and transport capacity, all attributes that in computer science terms could be
tagged as “liveness properties”, that often conflict with safety objectives.

On the other hand, the large number of critical computing components and
the complexity of distributed algorithms increase the number of cases in which
the failure of one component can bring to a fail-safe halt of a system, causing

Connected or Autonomous Trains? 15

the partial or full unavailability of transport service. High reliability of each
component is hence a must.

This effect is worsened by the number of communication links employed
in these systems: typically, the safety layers of the communication protocols
adopted in these systems exploit the principle of positive control to allow move-
ment of trains: the train cannot move if no explicit consensus or MA has been
received. Any serious transmission error (that is, persistent over a given period
of time) eventually leads to a fail-safe state. A careful evaluation of safety char-
acteristics of a modern, complex, signalling system cannot therefore ignore an
adequate analysis of availability attributes, in order to ensure an appropriate
transport capacity, with the related operation cost effectiveness, through tech-
niques of quantitative evaluation of these attributes [28].

The already cited uncertainty sources, with the related increase in safety mar-
gins, constitute another limiting factor to capacity. A more subtle phenomenon
observed in radio-based train control, such as ETCS or CBTC systems, is the
indeterminate delay time in message transmission experienced when multiple
trains require movement authorities and the available bandwidth of the com-
munication link is not sufficient to guarantee correct end-to-end transmission
in due time. Retries tend to clog even more the link, with the fail-safe halt
as ultimate consequence. Quantitative modelling and evaluation of the ERTMS
Euroradio protocol by means of Petri Net models has been studied by several
authors [10,32].

5.2 Autonomy in Degraded Modes

According to what we have seen, due to the strong infrastructure-based nature
of railways, autonomy would appear not to have a main role in the future of train
control systems. However, in future fully automated train driving (as described
in Sect. 3.3) the possibility of taking autonomous decisions in place of the driver
will be essential. We briefly discuss a couple of scenarios of this kind. In both
scenarios, the safety envelope in front of the train is not negotiated with the
infrastructure or with other trains, but is autonomously determined.

Degraded Modes of Operation. The first scenario considers that, in order
to allow trains to proceed even when a threat to safety does not allow full per-
formance, ETCS defines degraded modes of operation, to be entered when the
“Full Supervision” mode (the normal mode of operation, as described above)
is no longer supported by the system, e.g., when connection is lost, and in
which more responsibility is given to the driver, in different operational sce-
narios: Limited Supervision, Staff Responsible, OnSight, Shunting are the most
relevant ones.

When an ATO system is substituting the driver, it should be able to cope
with degraded modes, with no connection with any RBC or other external super-
vising entity. An autonomous driving system equipped with obstacle detection
sensors and artificial vision may play the role of the driver, moving the train at

16 A. Fantechi

reduced speed according to the operational procedures that are foreseen for the
OnSight mode, trying to switch back to Full Supervision as soon as connection
is recovered.

Light Rail Autonomous Vehicles. Tramways and light rail vehicles normally
use little signalling, and safety is for most part responsibility of the human
driver (on-sight driving). In this sector obstacle detection and artificial vision
techniques inherited by the automotive domain, together with connection to
control centers and train to train communication may be used to substitute
the human driver. Autonomous trams experiments of this kind have already be
shown at the last Innotrans fair [1].

A sensitive issue on autonomous driving is that advanced capabilities of
autonomous decisions (such as artificial vision systems) are often based on Arti-
ficial Intelligence techniques that are not easily certifiable with a deterministic
approach based on testing or formal verification, and indeed appear to be banned
as Not Recommended by EN 50128. Possibly, the widespread adoption in auto-
motive applications will favour the acceptance of these techniques as “proven
in use” software, especially considering that trains move in a much more pre-
dictable environment than cars, hence favouring reliability of machine learning
techniques.

6 Conclusions

We have shown how the state of the art of railway signalling technology envisages
connected trains at a much more advanced point w.r.t what is current practice in
the automotive domain, due to the wide instrumentation of infrastructure, and
how this scenario is going to evolve when more and more automation is intro-
duced in next generation systems. On the other hand, autonomy lags behind, but
autonomous decision can take a prominent role in degraded operation, in order
to improve performance of railway also in cases of safety and security threats.

In the discussion, a series of concepts that constitute open research questions
have been put forward at several levels:

– distributed mutual exclusion, consensus and control algorithms;
– high reliability, zero-maintenance, low-cost, low-power computing elements;
– switch to a safety paradigm based on a real-time definition of a safety envelope

in front of the train, subject to uncertainty;
– formal methods for software development;
– safety certification of AI software;
– cybersecurity issues;
– quantitative analysis of “liveness” KPIs;
– application of full autonomous driving in specific contexts.

The paper was not intended to be an exhaustive survey of the most advanced
railway signalling technologies, but has only referred to some notable examples.

Connected or Autonomous Trains? 17

Several other systems have raised an important body of literature: just to name
some, the ETCS variants CTCS and ETCS L3 Hybrid. We have also ignored
many secondary, mostly onboard, safety-critical features, such as precise plat-
form berthing, door opening control, speed sensors (odometry), train integrity
monitors, where local autonomous decisions are favoured over communication-
based ones.

As usual in the railway domain, we have assumed a conservative approach
to define the safety of a railway system, according to the prescriptions of the
EN5012x norms, that favour a neat separation between “liveness” and safety
functions, so that the high necessary certification efforts and costs can be con-
centrated on the latter: less conservative approaches that collectively look at
all dependability aspects are an active theoretical research area, as seen in this
volume [16].

Acknowledgments. Thanks to Stefania Gnesi for her useful comments on a draft of
this paper.

Work partially supported by the H2020 Shift2Rail-RIA-777561 project ASTRail
and by Tuscany Region project POR FESR 2014-2020 SISTER.

References

1. Siemens mobility presents worlds first autonomous tram, 3 September
2018. https://www.siemens.com/press/en/pressrelease/?press=/en/pressrelease/
2018/mobility/pr2018090290moen.htm

2. Rio Tinto completes autohaul autonomous train project, 4 January 2019. https://
www.railwaygazette.com/news/news/australasia/single-view/view/rio-tinto-
completes-autohaul-autonomous-train-project.html

3. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Trans. Softw. Eng. 26(8), 687–701 (2000). https://
doi.org/10.1109/32.879808

4. Banci, M., Fantechi, A., Gnesi, S.: The role of formal methods in developing a
distribuited railway interlocking system. In: Proceedings of Formal Methods for
Automation and Safety in Railway and Automotive Systems, FORMS/FORMAT,
Braunschweig, Germany, pp. 79–91 (2004)

5. Basile, D., et al.: On the industrial uptake of formal methods in the railway domain.
In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 20–29. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98938-9 2

6. Basile, D., Fantechi, A., Rucher, L., Mandò, G.: Statistical model checking of haz-
ards in an autonomous tramway positioning system. In: Collart-Dutilleul, S., et al.
(eds.) RSSRail 2019. LNCS, vol. 11495, pp. 41–58 (2019)

7. Bergenhem, C., Pettersson, H., Coelingh, E., Englund, C., Shladover, S., Tsugawa,
S.: Overview of platooning systems. In: 19th ITS World Congress, Vienna, Austria
(2012)

8. Bock, U., Bikker, G.: Design and development of a future freight train concept
- virtually coupled train formations. In: 9th IFAC Symposium Control in Trans-
portation Systems. IFAC, Braunschweig (2000)

9. Braband, J.: It security framework for safe railway automation. In: Mahboob, Q.,
Zio, E. (eds.) RAMS in Railway Systems, pp. 393–402. CRC Press (2018)

https://www.siemens.com/press/en/pressrelease/?press=/en/pressrelease/2018/mobility/pr2018090290moen.htm
https://www.siemens.com/press/en/pressrelease/?press=/en/pressrelease/2018/mobility/pr2018090290moen.htm
https://www.railwaygazette.com/news/news/australasia/single-view/view/rio-tinto-completes-autohaul-autonomous-train-project.html
https://www.railwaygazette.com/news/news/australasia/single-view/view/rio-tinto-completes-autohaul-autonomous-train-project.html
https://www.railwaygazette.com/news/news/australasia/single-view/view/rio-tinto-completes-autohaul-autonomous-train-project.html
https://doi.org/10.1109/32.879808
https://doi.org/10.1109/32.879808
https://doi.org/10.1007/978-3-319-98938-9_2

18 A. Fantechi

10. Carnevali, L., Flammini, F., Paolieri, M., Vicario, E.: Non-markovian performabil-
ity evaluation of ERTMS/ETCS level 3. In: Beltrán, M., Knottenbelt, W., Bradley,
J. (eds.) EPEW 2015. LNCS, vol. 9272, pp. 47–62. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23267-6 4

11. Fantechi, A., Gnesi, S., Haxthausen, A., van de Pol, J., Roveri, M., Treharne,
H.: SaRDIn - a safe reconfigurable distributed interlocking. In: Proceedings 11th
World Congress on Railway Research, WCRR, Ferrovie dello Stato Italiane, Milano
(2016)

12. Fantechi, A., Haxthausen, A.E.: Safety interlocking as a distributed mutual exclu-
sion problem. In: Howar, F., Barnat, J. (eds.) FMICS 2018. LNCS, vol. 11119, pp.
52–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00244-2 4

13. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985). https://doi.org/10.1145/
3149.214121

14. Flammini, F., Marrone, S., Nardone, R., Petrillo, A., Santini, S., Vittorini, V.:
Towards railway virtual coupling. In: International Transportation Electrifica-
tion Conference (ITEC). IEEE, Nottingham, UK (2018). https://doi.org/10.1109/
ESARS-ITEC.2018.8607523

15. Vehicular technology society: 1474.1 - standard for communications- based train
control (CBTC) - performance and functional requirements. IEEE (2004)

16. Karra, S.L., Larsen, K.G., Lorber, F., Srba, J.: Safe and time-optimal control for
railway games. In: Collart-Dutilleul, S., et al. (eds.) RSSRail 2019. LNCS, vol.
11495, pp. 106–122 (2019)

17. Kuperberg, M., Kindler, D., Jeschke, S.: Are smart contracts and blockchains suit-
able for decentralized railway control? CoRR abs/1901.06236 (2019)

18. Lecomte, T., Pinger, R., Romanovsky, A.B. (eds.): Reliability, safety, and security of
railway systems. modelling, analysis, verification, and certification. In: Proceedings
of First International Conference, RSSRail 2016, Paris, France, 28–30 June, 2016,
LNCS, vol. 9707. Springer (2016). https://doi.org/10.1007/978-3-319-33951-1

19. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional model checking of
interlocking systems for lines with multiple stations. In: Barrett, C., Davies, M.,
Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 146–162. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57288-8 11

20. Mayer, L., Guida, P.L., Milizia, E.: Impianti Ferroviari. CIFI (2016)
21. Michaut, P.: Method for managing the circulation of vehicles on a railway network

and related system. Patent US 8820685, B2 (2014)
22. Ohmstede, H.: Method for reducing data in railway operation. Patent US 7578485

(2009)
23. Pépin, F., Vigliotti, M.G.: Risk assessment of the 3Des in ERTMS. In: Lecomte et al.

[18], pp. 79–92 (2016). https://doi.org/10.1007/978-3-319-33951-1 6
24. Ponsard, C., Grandclaudon, J., Massonet, P., Touzani, M.: Assessment of emerging

standards for safety and security co-design on a railway case study. In: Abdelwahed,
E.H., et al. (eds.) MEDI 2018. CCIS, vol. 929, pp. 130–145. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-02852-7 12

25. Rispoli, F., Neri, A., Stallo, C., Salvatori, P., Santucci, F.: Synergies for trains and
cars automation in the era of virtual networking. J. Transp. Technol. 8, 175–193
(2018). https://doi.org/10.4236/jtts.2018.83010

https://doi.org/10.1007/978-3-319-23267-6_4
https://doi.org/10.1007/978-3-319-23267-6_4
https://doi.org/10.1007/978-3-030-00244-2_4
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1109/ESARS-ITEC.2018.8607523
https://doi.org/10.1109/ESARS-ITEC.2018.8607523
https://doi.org/10.1007/978-3-319-33951-1
https://doi.org/10.1007/978-3-319-57288-8_11
https://doi.org/10.1007/978-3-319-33951-1_6
https://doi.org/10.1007/978-3-030-02852-7_12
https://doi.org/10.4236/jtts.2018.83010

Connected or Autonomous Trains? 19

26. de Ruiter, J., Thomas, R.J., Chothia, T.: A formal security analysis of ERTMS train
to trackside protocols. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail
2016. LNCS, vol. 9707, pp. 53–68. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33951-1 4

27. Sanders, W.H.: Quantitative security metrics: unattainable holy grail or a vital
breakthrough within our reach? IEEE Secur. Priv. 12(2), 67–69 (2014). https://doi.
org/10.1109/MSP.2014.31

28. Schulz, O., Peleska, J.: Reliability analysis of safety-related communication architec-
tures. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 1–14. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15651-9 1

29. Shift2Rail Joint Undertaking: Multi-annual action plan, November 2015. http://
ec.europa.eu/research/participants/data/ref/h2020/other/wp/jtis/h2020-maap-
shift2rail en.pdf

30. UIC: Virtually coupled trains. http://www.railway-energy.org/static/Virtually
coupled trains 86.php. Accessed 24 Feb 2019

31. Whitwam, F., Kanner, A.: Control of automatic guided vehicles without wayside
interlocking. Patent US 20120323411, A1 (2012)

32. Zimmermann, A., Hommel, G.: Towardsmodeling and evaluation of ETCS real-time
communication and operation. J. Syst. Softw. 77(1), 47–54 (2005). https://doi.org/
10.1016/j.jss.2003.12.039

https://doi.org/10.1007/978-3-319-33951-1_4
https://doi.org/10.1007/978-3-319-33951-1_4
https://doi.org/10.1109/MSP.2014.31
https://doi.org/10.1109/MSP.2014.31
https://doi.org/10.1007/978-3-642-15651-9_1
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/jtis/h2020-maap-shift2rail_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/jtis/h2020-maap-shift2rail_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/jtis/h2020-maap-shift2rail_en.pdf
http://www.railway-energy.org/static/Virtually_coupled_trains_86.php
http://www.railway-energy.org/static/Virtually_coupled_trains_86.php
https://doi.org/10.1016/j.jss.2003.12.039
https://doi.org/10.1016/j.jss.2003.12.039

Railways System and Infrastructure
Advance Modelling

Towards a Tool-Based Domain Specific
Approach for Railway Systems Modeling

and Validation

Akram Idani1,2(B), Yves Ledru1,2, Abderrahim Ait Wakrime2,
Rahma Ben Ayed2, and Philippe Bon2,3

1 Univ. Grenoble Alpes, Grenoble INP, CNRS, LIG, 38000 Grenoble, France
{Akram.Idani,Yves.Ledru}@imag.fr

2 Institut de Recherche Technologique Railenium, 59300 Famars, France
{abderrahim.ait-wakrime,rahma.ben-ayed}@railenium.eu
3 Univ Lille Nord de France, IFSTTAR, COSYS, ESTAS,

59650 Villeneuve d’Ascq, France
philippe.bon@ifsttar.fr

Abstract. In the railway field, graphical representations of domain con-
cepts are omnipresent thanks to their ability to share standardized infor-
mation with common knowledge about several railway mechanisms: track
circuits, signalling rules. . . This paper proposes a domain specific app-
roach for railway systems modeling and validation by combining the
Model-Driven Engineering (MDE) paradigm and a formal method. First,
an example of a graphical DSL is defined thanks to MDE tools, and
then the formal B method is used to define its underlying operational
semantics and to guarantee the correctness of the model’s behaviour with
respect to its safety properties. Our approach is assisted by the Meeduse
tool which animates and visualizes execution scenarios of domain mod-
els. Starting from a given model designed in the DSL tool, Meeduse asks
ProB to animate B operations and gets the reached state by means of
B variables valuations. Then, it translates back these valuations to the
initial DSL resulting in automatic modifications of the domain model.
Our approach allows a more pragmatic domain-centric animation than
current visual animation techniques since the resulting DSL tool allows
domain experts, who are not necessarily trained in formal methods, to
design and validate by themselves the various domain models.

Keywords: MDE · DSL · Formal methods · Visual animation

1 Introduction

In railway control and safety systems, the application of formal methods is
becoming a strong requirement as recommended by CENELEC EN 50128 stan-
dard1. However, while formal methods provide solutions to the verification prob-
lem, human errors may lead to erroneously validate the specification, and hence
1 https://standards.globalspec.com/std/13113133/en-50129.

c© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 23–40, 2019.
https://doi.org/10.1007/978-3-030-18744-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_2&domain=pdf
https://standards.globalspec.com/std/13113133/en-50129
https://doi.org/10.1007/978-3-030-18744-6_2

24 A. Idani et al.

to produce the wrong system. Indeed, even if formal proofs succeed, a formal
specification can be wrong for two main reasons [7]: misunderstandings of the
users needs or errors in the expression of these needs. In order to deal with these
shortcomings, several formal tools provide graphic animation and visualization
techniques [8,14,17] which help in the exploration of alternative behaviors in
a step-by-step approach. This technique favours the communication between a
formal methods engineer and the domain expert by using domain specific visu-
alizations which is crucial during the validation activity.

Unfortunately, mapping a given graphical representation to the formal spec-
ification is a rather time-consuming task (several days or several weeks) and the
creation of custom visualizations is often done when the formal model reaches an
advanced stage during the modeling process. This is counterproductive since the
identification of misunderstandings often leads to enhancements of the formal
specifications which in turn impacts the implementation of the visualization. Fur-
thermore, the domain specific visualizations are created by the formal methods
engineer who would like to remedy the poor readability of his own specifica-
tions and hence, the resulting visualizations may lack of real-user perspective.
In [3], Bjørner states that before we can formulate requirements, we must under-
stand the [application] domain, meaning that domain specific representations are
required before starting to think about formal models. In a pragmatic approach,
these representations should be provided by the domain expert who has a greater
knowledge of the application domain than the formal methods engineer.

In the railway domain, specific representations (textual or graphical) of
domain concepts are omnipresent thanks to their ability to share standardized
information with common knowledge about several railway mechanisms: track
circuits, signalling rules, interlocking systems. . . Nowadays, there are more and
more attempts to define DSL tools [12,20,22], based on these specific representa-
tions, allowing the domain expert himself to provide useful models to the software
system engineer. In this paper, we propose a formal tool-based domain specific
approach that defines a DSL for railroad topologies with a concrete graphical
syntax and associated formal semantics. The DSL tool is developed in a well-
known Model Driven Engineering paradigm (MDE) based on EMF [19] and it is
intended to be used by the domain expert in order to design interesting business
models. The formal part of our approach is assisted by the Meeduse tool2 which
automatically translates the DSL meta-model into an equivalent B specification
[1] gathering the structure of the meta-model as well as basic operations like con-
structors, destructors, getters and setters. The operational semantics of the DSL
are then defined using the formal B method which guarantees the correctness of
the model’s behavior with respect to its invariant properties. Meeduse allows the
animation of underlying execution scenarios using the ProB tool [16]. Starting
from a given business model, it asks ProB to animate B operations and retrieves
the reached state by means of B variables valuations. Then, Meeduse translates
back these valuations to the initial DSL resulting in automatic modifications of

2 http://vasco.imag.fr/tools/meeduse/.

http://vasco.imag.fr/tools/meeduse/

A Domain Specific Approach for Railway Systems 25

the business model which gives rise to a more pragmatic domain-centric anima-
tion than current visual animation techniques.

Section 2 provides the static semantics of a railroad DSL done thanks to
the MDE paradigm. In Sect. 3, we show how our DSL is enhanced by a formal
specification in order to define its operational semantics. Finally Sect. 5 draws
the conclusions and the perspectives of this work.

2 A Simple Railroad DSL

The adoption of model-driven engineering (MDE) paradigms in industry is
increasing because MDE is assisted by numerous tools for creating and exploit-
ing domain models such as: EMF3, Xtext4, Sirius5, GMF6, . . . These tools had
several successful applications thanks to the solutions they provide for rapid-
prototyping of DSLs. The application of MDE in order to define DSLs for railway
systems promotes readability of these systems and enables stakeholders without
experience in programming or formal languages, like certification authorities,
to create the models as long as they possess domain knowledge. In MDE, the
definition of a DSL follows three steps:

1. The definition of model’s semantics via a meta-model which is a central arte-
fact because it allows interoperability between tools such as language analy-
sers (e.g. Xtext [2]), code generators (e.g. Acceleo [6]), and also model trans-
formation tools (e.g. ATL [13]);

2. The expression of contextual constraints using the OCL language in order to
enhance the DSL semantics with invariant properties which are not covered
structurally by the meta-model;

3. The creation of a palette of concrete syntax elements (textual or graphical)
and their relationships with the meta-model.

2.1 Meta-model Definition

Figure 1 gives a simplified meta-model of a DSL dedicated to railroad topologies
and signalling systems. The DSL features three main concepts: trains (class
Train), sections of a railway track (class Portion), and train movement authority
(class MA) which are authorizations given to a train in order to move to a given
portion. In this paper, we make some simplifying assumptions such as association
between Train and Portion considering that a train occupies a single portion,
and then the whole train moves instantly from one portion to another. We also
assume that switches move instantly (in practice, this takes about ten seconds).
These simplifications do not impact our approach and one could lift them at the
price of a more complicated model.
3 EMF: https://www.eclipse.org/modeling/emf/.
4 Xtext: https://www.eclipse.org/Xtext/.
5 https://www.obeo.fr/fr/produits/Eclipse-sirius.
6 http://www.Eclipse.org/modeling/gmp/.

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/Xtext/
https://www.obeo.fr/fr/produits/Eclipse-sirius
http://www.Eclipse.org/modeling/gmp/

26 A. Idani et al.

Classes Light and AutoTrStop define a signalling equipment with traffic lights
(in state on or off) and automatic train stop mechanisms which may be armed
or disarmed. These devices are associated to the portion where they are located.

Fig. 1. Simplified meta-model of the RailRoad DSL

2.2 Concrete Syntax Definition

There exists several tools dedicated to the instantiation of meta-models. In this
work we used Sirius7 because its main advantage in comparison with other EMF-
based modeling tools is its facility to define conditional styles with an OCL-like
syntax. For example, the color representation of a portion would depend on
three states like presented in Fig. 2: free, reserved or occupied. States, free and
occupied depend on the presence or not of a train over the portion. A portion is
called reserved as soon as it is concerned by a movement authority.

Fig. 2. Portion representations depending on OCL expressions

7 https://www.obeo.fr/fr/produits/Eclipse-sirius.

https://www.obeo.fr/fr/produits/Eclipse-sirius

A Domain Specific Approach for Railway Systems 27

The proposed concrete syntax of our Railroad DSL is inspired by graphi-
cal representations that we found in several references [9,23,24]. Figure 3 is a
snapshot of the resulting DSL tool showing a railroad under construction by a
domain expert where five track sections are being assembled.

Fig. 3. Railroad under construction in a domain-specific syntax

The meta-model defines three kinds of portions depending on values of asso-
ciations A main, B straight and C divergent. The first kind of portions repre-
sents railroad extremities (e.g. portions 1, 4 and 5) and they refer only to their
next portion through relation A main. The second kind is a middle horizontal
portion like portion 2 that refers to both main and straight portions by means of
relations A main and B straight. Finally, the third kind of portions deals with
switches such as portion 3 which divides into two: track B (linked to the straight
portion) and track C (linked to the diverging portion). The horizontal line rep-
resents the state of the switch, pointing towards the straight (B) or diverging
(C) end. It depends on values of attribute switch in class Portion. In the case
of portion 3, this attribute is set to straight. Two traffic lights are introduced
in this model in order to control the access to portions 2 and 3. Their graphical
concrete representations depend on values of attributes state (on or off) and
direction (even or odd) defined in class Light. An automatic train stop (ATS)
device is also positioned on portion 2 and it is by default disarmed.

Track layout of Fig. 4 is the final model issued from Fig. 3 after hiding portion
connections and where two trains, T1 and T2, are positioned respectively on
portions 1 and 5. In this example, the travelling directions are odd for T1 and
even for T2. Note that directions of trains and portions are independent; they
don’t impact each other. However, the directions of lights are relevant for train
movements. Indeed, trains are concerned by lights which are oriented in the same
travelling direction.

28 A. Idani et al.

Fig. 4. A simple railroad model with two trains (Color figure online)

2.3 Contextual OCL Constraints

Meta-models are not powerful enough to represent all static semantics of a given
DSL. In fact, they define context-free models which are models without any other
restrictions than those defined in the meta-model and hence these models are not
necessary conformant to the well-definedness rules required by the application
context. In our example, the usage context of a railroad requires that tracks
follow some rules such as the absence of holes, etc. In order to enhance the static
semantics of our DSL, we use the OCL language which is integrated within EMF
thanks to the OCLinEcore tool. Our OCL rules deal only with structural aspects
of railroads, and basically they define how portions must be linked to each others.
Three main invariants are defined depending on portion kinds: AMainPortion,
BStraightPortion and CDivergentPortion.

Every portion has a successor portion (called main portion) with respect to
association A main in the meta-model of Fig. 1. Invariant AMainPortion is the
well-definedness rule of this association and assesses that given two portions P1
and P2 such that P2 is the main portion of P1, then if P1 and P2 have opposite
directions, then P1 must be also the main portion of P2, otherwise P1 is the
straight or the divergent portion of P2. In Fig. 3 for example, PORTION1 and
PORTION2 have opposite directions then every portion is the main portion
of the other. Based on the same example, PORTION3 is the main portion of
portions PORTION4 and PORTION5 and such that the three portions have the
same direction, then none of PORTION4 and PORTION5 is the main portion
of PORTION3.

Context Portion inv AMainPortion:

(A main.direction <> {direction} implies A main.A main = {self}) and

(A main.direction = {direction} implies

A main.B straight = {self} or A main.C divergent = {self})
Invariants BStraightPortion and CDivergentPortion define rules for asso-

ciations B straight and C divergent. They allow to strengthen invariant
AMainPortion for portions which are not linked via association A main. For
example, if two portions P1 and P2 have opposite directions and such that P2 is
the straight or the divergent portion of P1 then P1 must be either the straight
or the divergent portion of P2.

Context Portion inv BStraightPortion:

self.B straight -> notEmpty() implies

A Domain Specific Approach for Railway Systems 29

(B straight.direction <> {direction} implies

B straight.B straight = {self} or B straight.C divergent = {self})
and (B straight.direction = {direction} implies A main.A main = {self})

Context Portion inv CDivergentPortion:

self.C divergent -> notEmpty() implies

(C divergent.direction <> {direction} implies

C divergent.B straight = {self} or C divergent.C divergent = {self})
and (C divergent.direction = {direction} implies A main.A main = {self})

The EMF platform provides a validation mechanism that checks OCL invari-
ants provided a given input model. Figure 4 is a valid model with respect to the
above invariants. This validation is interesting for the domain expert who defines
informally the various management rules and who becomes able thanks to the
tool to check their validity on his own models. Note that railway domain experts
are not intended to write OCL expressions by themselves. In fact, the DSL tool
development is the task of MDE experts who has the ability to define meta-
models with associated static constraints.

2.4 Discussion

This section has shown how the MDE paradigm with associated tools is applied
in order to develop a DSL for the railway domain. At this stage we didn’t yet
start the creation of a formal model contrary to classical techniques where the
development process starts by a formal language. Our approach starts by the def-
inition of a DSL tool like that presented in this section which allows to efficiently
involve the domain expert in the development process.

Thanks to the DSL tool, the domain expert becomes able to provide various
domain representations (e.g. Figs. 4 and 5) and also to check whether the asso-
ciated contextual rules are respected or not. For example, based on the model
of Fig. 4, the domain expert can informally explain that if a train T1 is located
on PORTION1, it cannot move to PORTION2 due to the red light. This would
allow an other train T2 located on PORTION5 to go to PORTION4 after cross-
ing first PORTION3 and next PORTION2 where it will be able to change its
direction. The straight direction of the switch allows T2 to reach PORTION4
when it comes from PORTION2. If train T1 violates the red signal the ATS
should be armed automatically and the train will be stopped over PORTION2.

In general, movements of trains are more difficult to represent than this sim-
ple informal description, because in addition to the complexity of realistic railway
track layouts (like that of Fig. 5) and the corresponding signalling systems, they
also refer to movement authority given by traffic agents to the train drivers. In
order to play useful scenarios from a domain-centric point of view, the DSL must
be enhanced by behavioural aspects showing how routes are assigned to trains
and how these trains can move in a safe (or unsafe) way.

30 A. Idani et al.

Fig. 5. Realistic example inspired by [24] (Color figure online)

3 Formal Operational Semantics

Operational semantics of our DSL are structured into several formal models
which are linked using the inclusion mechanism of the B method: (i) a functional
model which is automatically extracted from the meta-model, (ii) a safety-free
model in which train accidents may happen, and (iii) a safe model applying
authorization rules in order to control the train movements and avoid critical
situations.

Our approach, summarized by Fig. 6, first translates the meta-model into a
functional formal B specification using a UML-to-B transformation technique
[10]. Then starting from a given instance of this meta-model, we apply the Mee-
duse tool in order to animate domain-centric scenarios based on the operational
semantics defined in the formal models. The tool injects any valid instance of a
meta-model into the functional specification by applying valuations to its vari-
ables. In Meeduse, animation of B specifications is done using the ProB tool [16].
Meeduse asks ProB to animate B operations and gets the new variable valua-
tions and then it translates back these valuations to the initial graphical model

Fig. 6. Overall methodology

A Domain Specific Approach for Railway Systems 31

resulting in an automatic visual animation. Demonstration videos of Meeduse
with graphical and textual DSL animation can be found at: http://vasco.imag.
fr/tools/meeduse/.

3.1 Functional Formal Model

In this step we use the B4MSecure platform [10] which translates the structural
aspects of the meta-model as follows:

– A meta-class Class gives an abstract set named CLASS representing pos-
sible instances and a variable named Class representing the set of existing
instances such that existing instances belong to the set of possible instances.

– An enumeration is translated into a enumerated set (e.g. LightState).
– Basic types (e.g. integer, boolean) become B types (Z, Bool, . . .).
– Attributes and references lead to functional relations.

Figure 7 shows the declarative part of the B specification extracted from
classes Train, Portion as well as the association between these classes. In this
specification single valuated features are represented by partial or total functions
with respect to their optional/mandatory character. For example, the A main
feature of a portion is single-valuated and mandatory (it leads to a total function)
contrary to features B straight and C divergent which are optional (they lead
to partial functions).

Fig. 7. Subset of the generated functional machine

The behavioural part of the functional B machine provides all basic oper-
ations such as getters, setters, constructors and destructors. For example,
operation Train SetTrain position of Fig. 8 is the basic setter of feature
train position associated to class Train in the meta-model. This operation

http://vasco.imag.fr/tools/meeduse/
http://vasco.imag.fr/tools/meeduse/

32 A. Idani et al.

Fig. 8. B Setter of feature train position in class Train

puts a train (parameter aTrain) on any portion (parameter aTrain position)
provided that the portion is different from the current train position.

From our meta-model, B4MSecure produced a B specification whose length
is about 900 lines with 29 variables, 73 operations for which the Atelier B prover
generated 127 proof obligations that it was able to prove automatically. In fact,
operations produced by B4MSecure are correct by construction with respect to
the typing invariants generated automatically from the meta-model structure.
The introduction of additional invariants requires improvements of operations
that may violate them. There are two kinds of invariants: those about the railroad
topology, and those that deal with train movements. In this work it is not neces-
sary to use B in order to specify the well-definedness rules like those expressed in
OCL. Indeed, our formal operational semantics focus on train behaviours which
are operations that don’t modify the railroad topology. As domain models are
provided by the domain expert and validated thanks to the EMF validation
mechanism based on OCL constraints, we have the guarantee that trains would
not move over deficient railroads and hence we choose to keep this functional B
machine as simple as possible. Train behaviours will be specified together with
their corresponding invariants in the two other formal specifications defining the
DSL operational semantics. The functional machine provides, on the one hand,
data structures which conform to the meta-model and, on the other hand, util-
ity operations useful for the definition of train routes and movements. Portions
where accidents happen are defined by reference accidents in the meta-model
and the corresponding B structure is variable Portion accidents defined as:
Portion accidents ⊆ Portion. Operation Portion SetAccidents is its basic
update operation (Fig. 9):

Fig. 9. B Setter for accidents

A Domain Specific Approach for Railway Systems 33

3.2 Safety-Free Formal Model

In general, the safety of a railway system is defined by a set of operating rules
that must be followed by railway agents, like stopping the train when the light
is red. Unfortunately several real situations show that human errors (accidental
or intentional) can lead to rule violations and hence to accidents. The safety-free
operational semantics address behaviours which are uniquely governed by the
laws of physics. For example, if physical devices, like ATS in our DSL, are not
actioned in order to block a train, then the train has the ability to move and
may induce accidents. We define the following B operations:

– Portion ChangeSwitch: given a portion aPortion with a switch like POR-
TION3 in Fig. 4 (i.e. aPortion ∈ dom(Portion C Divergent)), this operation
changes the switch direction (straight or divergent), or leads to an accident
if the portion is occupied (TrainOfPortion−1[{aPortion}] �= ∅). Figure 10
shows the effect of this operation on PORTION3 starting from two different
initial states: free and occupied by train T1.

– Train ChangeDirection: changes the direction of a train aTrain from even
to odd and vice-versa, or produces an accident if the train is located on a
switch portion (TrainOfPortion(aTrain) ∈ dom(Portion C Divergent)). Our
DSL semantics assume that it is dangerous to change the direction of a train
on a switch. A safe scenario is when the train leaves the switch portion before
it changes its direction, otherwise an accident happens.

– MA AddPortion: adds a movement authority aMA to a portion aPortion pro-
vided that the portion is not already concerned by a movement authority
(PortionMA[{aPortion}] = ∅)8. Considering that aMA is linked to one train,
this operation is useful in order to create train routes.

– Light Switch: switches a light from red to green and vice-versa.
– AutoTrStop Arm: arms and disarms an ATS.
– Train Move: moves a train from a portion P1 to a portion P2 provided that

P1 is not concerned by an accident and also the ATS (if it exists) of P2 is
disarmed. This operation may produce accidents in two cases: derailment if
the train tries to leave a track extremity in the wrong direction, or collision
if the train enters on a portion occupied by an other train.

Fig. 10. Animation of operation Portion ChangeSwitch(PORTION3) (Color figure
online)
8 PortionMA is a partial function mapped from the association between classes MA

and Portion.

34 A. Idani et al.

For space reasons, in the following we’ll focus only on the specification of
operation Train Move. Given a train aTrain (aTrain ∈ Train), this operation is
feasible under two preconditions:

Precondition (Pre1): the current portion is not concerned by an accident, i.e.
it does not belong to set Portion Accidents.

TrainOfPortion(aTrain) �∈ Portion Accidents

Precondition (Pre2): if the current portion is associated to an ATS then the
ATS has a different direction than the train or it is disarmed.

((TrainOfPortion(aTrain) ∈ ran(ATSOfPortion)) ⇒ (
(AutoTrStop direction(ATSOfPortion−1(TrainOfPortion(aTrain)))

�= Train direction(aTrain))
∨ (AutoTrStop state(ATSOfPortion−1(TrainOfPortion(aTrain)))=disarmed))

)

Actions of operation Train Move address several situations depending on the
current portion of the train and also the portion to which the train is intended
to move. First we compute, based on two definitions next portion odd and
next portion even, the next portion with respect to the traveling direction of
a train (even or odd) and also to the portion connexions whose semantics were
defined by the OCL invariants. In the following we present only next portion odd
since next portion even is analog.

next portion odd == {p1, p2 | p1 ∈ Portion ∧ p2 ∈ Portion
∧ (p1 �∈ dom(Portion B straight)

⇒ (Portion directionOfA(p1) = even ∧ p2 = Portion A main(p1)))
∧ ((p1 ∈ dom(Portion B straight) ∧ p1 �∈ dom(Portion C divergent))

⇒ ((Portion directionOfA(p1) = odd ∧ p2 = Portion B straight(p1))
∨ (Portion directionOfA(p1) = even ∧ p2 = Portion A main(p1))))

∧ (p1 ∈ dom(Portion C divergent)
⇒ ((Portion directionOfA(p1) = odd

∧ ((Portion switch(p1)=straight ∧ p2 = Portion B straight(p1))
∨ (Portion switch(p1)=divergent ∧ p2 = Portion C divergent(p1)))
∨ (Portion directionOfA(p1) = even ∧ p2 = Portion A main(p1)))))

}

Given the railroad of Fig. 4, the application of relations next portion odd and
next portion even to PORTION3 gives respectively PORTION4 and POR-
TION2. Relation giving all next portions is thus a partial function defined as:

next portion == {dd, np | dd ∈ Direction ∧ np ∈ Portion �→ Portion
∧ (dd = even ⇒ np = next portion even)
∧ (dd = odd ⇒ np = next portion odd) }

Definition (Def1): curr portion is the portion on which aTrain is positioned:

curr portion = TrainOfPortion(aTrain)

A Domain Specific Approach for Railway Systems 35

Definition (Def2): nxt port is the portion to which aTrain should move:

nxt port = (next portion(Train direction(aTrain)))(curr portion)

Condition (Accident1): defines a situation where the train derails.

(Train direction(aTrain) = even ∧ curr portion �∈ dom(next portion even))
∨ (Train direction(aTrain) = odd ∧ curr portion �∈ dom(next portion odd))

Condition (Accident2): the next portion is already occupied by an other train.

card(TrainOfPortion−1[{nxt port}]) > 0

Condition (MoveAuthorization): the train enters into a portion on which it
has a movement authority.

aTrain ∈ ran(TrainMA) ∧ nxt port ∈ dom(PortionMA) ∧
PortionMA(nxt port) = TrainMA−1(aTrain)

Operation Train Move, presented below, moves the train from one portion
to an other, by applying operation Train SetTrain position, or produces an
accident using operation Portion SetAccidents. If the train enters a portion
for which it has a movement authority then the authority is consumed using
operation MA RemovePortionsOfMA which removes a link between a portion and
a movement authority. These operations are a part of the basic operations pro-
vided by the functional B specification.

Train Move(aTrain) ==
PRE

aTrain ∈ Train ∧ (Pre1) ∧ (Pre2)

THEN
LET curr portion BE (Def1) IN

IF (Accident1) THEN
Portion SetAccidents(Portion Accidents ∪ {curr portion})

ELSE
LET nxt port BE (Def2) IN

Train SetTrain position(aTrain, nxt port);
IF (Accident2) THEN

Portion SetAccidents(Portion Accidents ∪ {nxt port})
END ;
IF (MoveAuthorization) THEN
MA RemovePortionsOfMA(PortionMA(nxt port), nxt port)

END
END

END
END

END

36 A. Idani et al.

3.3 Safe Formal Model

Operational semantics of the safety-free model allow the domain expert to visu-
alize critical situations and simulate the corresponding scenarios in the DSL
tool. In fact, in the safety-free model the driver is able to override movement
authority and traffic lights. For example, given the model of Fig. 4 animation
of operation Train Move(T1), moves train T1 from PORTION1 to PORTION2
which means that the driver violated two safety rules: the red light of POR-
TION2 and the entry into a portion without an authorization. Furthermore, as
the ATS of PORTION2 is disarmed, the train can continue its way.

Operational semantics defined by the safe formal model apply restrictions to
operations of the safety-free model in order to keep behaviours without accidents
and take into account authorizations given by the railway operating rules. First,
conditions (Accident1) and (Accident2) must be false, and then condition
(MoveAuthorization) must be true, meaning that the train cannot move if
the next portion is not concerned by any movement authority or the movement
authority associated to the next portion concerns an other train. In addition to
the portion reservation mechanism assured by movement authority the driver
must also respect signalling rules.

Condition (LightAuthorization): means that if the portion to which the train
should move is concerned by a light, then this light is either oriented to the
opposite direction than that of the train or it is green.

nxt port �∈ ran(LightOfPortion) ∨
Light direction(LightOfPortion−1(nxt port)) �= Train direction(aTrain) ∨
Light state(LightOfPortion−1(nxt port)) = on

The safe version of Train Move, named Safe Train Move, restricts the call
to Train Move by grouping all safety conditions in its precondition:

Safe Train Move(aTrain) ==
PRE

aTrain ∈ Train ∧ (Pre1) ∧ (Pre2) ∧
LET curr portion BE (Def1) IN

not(Accident1) ∧
LET nxt port BE (Def2) IN

not(Accident2) ∧ (MoveAuthorization) ∧ (LightAuthorization)

END
END

THEN
Train Move(aTrain)

END

The safe formal model applies the same principles than those discussed for oper-
ation Train Move, to the other operations and also introduces safety invariants
such as Portion Accidents = ∅, which guarantees the absence of accidents. Ani-
mation of the safe operations in Meeduse gives the possibility for the domain

A Domain Specific Approach for Railway Systems 37

expert to attest whether the railway operating rules as specified in B, are valid
or not. A by-product of validation through simulation is that it allows also to
detect availability bugs. Indeed, it is quite easy to build a safe system, just
prevent the trains and switches from moving. The use of simulation allows the
domain experts to also assess the availability of the safe system. Note that vali-
dation by proofs and model-checking of the safe model is discussed in [15].

Figure 11 gives different states of the domain model (left hand side) with the
list of B operations (right hand side) that can be enabled by the animator at every
state. In the first state, on top of this figure, the domain expert can: (i) change the
direction of trains TRAIN1 and TRAIN2; (ii) change the switch from straight to
divergent; (iii) arm the ATS of PORTION2; and (iv) compose train routes using
instances of operation Safe MA AddPortion. In this situation the light cannot be
turned to green, it can only be kept to red due to the rules that we considered
for this example. Animation of operation Safe MA AddPortion(MA2,PORTION3)
followed by Safe MA AddPortion(MA2,PORTION2), reaches the state presented
in the middle of Fig. 11 where the color of PORTION2 and PORTION3
became orange meaning that these portions are reserved for some train. In
this state, operation safe Train Move can be enabled in order to start moving
TRAIN2. Since PORTION2 and PORTION3 are reserved for TRAIN2, opera-
tion Safe Train Move(TRAIN2) can be animated twice which leads to the state
in bottom of Fig. 11 where TRAIN2 occupies PORTION2 after consuming the
authorizations provided by its route.

Fig. 11. Meeduse animation of a railroad model with safe operational semantics (Color
figure online)

38 A. Idani et al.

4 Related Works

This paper has shown the application of our approach and its tool support, to the
railway field using a simple railroad DSL. In a more general context, besides the
contributions discussed along the paper to visual animation techniques [8,14,17],
our work presents an advancement in comparison with existing approaches [4,21]
where DSLs are mixed with formal methods. In fact, in these works, once the
formal model is defined (manually [4] or semi-automatically [21]), they don’t
offer any way to animate jointly the formal model and the domain model. Often
translation techniques, start from a DSL definition and then they get lost in the
formal process. In [21], the authors propose to use classical visual animation by
applying BMotion Studio [14] to the formal specifications. Unfortunately, this is
not only time consuming but also requires some additional verifications in order
to address the compatibility between the initial DSL and the graphical represen-
tations used in BMotion Studio. Our approach applies well-known MDE tools
for DSL creation (EMF, OCLinEcore and Sirius) and automatically manages
the traceability between the formal model and the domain model.

The extraction of B specifications from a meta-model applies a UML-
to-B translation technique using the B4MSecure tool [10]. The advantage of
B4MSecure in comparison with other UML-to-B tools [5,18] is that it offers an
extensibility facility allowing to easily add new UML-to-B rules or to modify
existing rules depending on the application context. B4MSecure is an open-
source MDE platform which gathers several transformations and hence it allows
to experiment transformations issued from various approaches. An other tech-
nical advantage of B4MSecure with respect to other tools is that it generates
a trace file in which links between the initial UML model and the resulting
B specification are registered. In order to translate back a state computed by
ProB to the initial DSL model, Meeduse requires such a trace file with a cor-
responding meta-model. Finally, Meeduse is conceived for formal (graphical or
textual) DSL definition, while existing tools [5,18] are concerned by UML nota-
tions only. We have experimented Meeduse on several DSLs: petri-nets, light
regulator, process scheduler, tic-tac-toe, puzzle game, lift, family model. . . The
results were concluding for a rigorous MDE development with end-user valida-
tion. It was also interesting for debugging the formal specifications thanks to the
joint domain views.

5 Conclusion

In the railway field, there are more and more attempts to define domain specific
models based on graphical representations [12,20,22]. For example the Rail-
TopoModel initiative introduced in 2013 [9] gives a common visual standard
in railway infrastructure modelling. Unfortunately, these DSLs lack of formal
operational semantics and hence they don’t apply reasoning tools to address
the correctness of their dynamic aspects. Our technique addresses this challenge
and allows domain experts, without any knowledge in formal methods, to design

A Domain Specific Approach for Railway Systems 39

railway models in a formally defined DSL and then to simulate safety-critical
behaviours like those producing accidents. The SafeCap platform [11] proposes
a railway DSL with formal static semantics using the EMF framework. Since
Meeduse fits well to EMF-based DSLs, we think that it can contribute to this
platform in order to formally specify and simulate its operational semantics.

This mix of MDE and B has several perspectives. In addition to the appli-
cation to existing railway standards like ERTMS/ETCS, we plan to address
multi-views modeling and interactions between various models. Indeed, a rail-
way DSL can be better structured into several views which can be animated
together in Meeduse: driver views showing train interactions with signalling sys-
tems, traffic agent views managing movement authorizations and train routes,
global views...

Acknowledgments. This work is funded by the NExTRegio project of IRT Raile-
nium. The authors would like to thank SNCF Réseau for its support. We also thank
German Vega for his contributions to B4MSecure and Meeduse.

References

1. Abrial, J.-R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing, Birmingham (2013)

3. Bjørner, D.: Rôle of domain engineering in software development—why current
requirements engineering is flawed !. In: Pnueli, A., Virbitskaite, I., Voronkov, A.
(eds.) PSI 2009. LNCS, vol. 5947, pp. 2–34. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11486-1 2

4. Bodeveix, J.-P., Filali, M., Lawall, J., Muller, G.: Formal methods meet domain
specific languages. In: Romijn, J., Smith, G., van de Pol, J. (eds.) IFM 2005.
LNCS, vol. 3771, pp. 187–206. Springer, Heidelberg (2005). https://doi.org/10.
1007/11589976 12

5. Dghaym, D., Poppleton, M., Snook, C.: Diagram-led formal modelling using iUML-
B for hybrid ERTMS level 3. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K.
(eds.) ABZ 2018. LNCS, vol. 10817, pp. 338–352. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-91271-4 23

6. Eclipse. Acceleo (2012). http://www.eclipse.org/acceleo/
7. Gaudel, M.C.: Advantages and limits of formal approaches for ultra-high depend-

ability. Predictably Dependable Computing Systems. ESPRIT BASIC, pp. 241–
251. Springer, Berlin (1995)

8. Hallerstede, S., Leuschel, M., Plagge, D.: Validation of formal models by refinement
animation. Sci. Comput. Program. 78(3), 272–292 (2013)

9. Hlubuek, A.: RailTopoModel and RailML 3 in overall context. Acta Polytech. CTU
Proc. 11, 16 (2017)

10. Idani, A., Ledru, Y.: B for modeling secure information systems. In: Butler, M.,
Conchon, S., Zäıdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 312–318. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25423-4 20

https://doi.org/10.1007/978-3-642-11486-1_2
https://doi.org/10.1007/978-3-642-11486-1_2
https://doi.org/10.1007/11589976_12
https://doi.org/10.1007/11589976_12
https://doi.org/10.1007/978-3-319-91271-4_23
https://doi.org/10.1007/978-3-319-91271-4_23
http://www.eclipse.org/acceleo/
https://doi.org/10.1007/978-3-319-25423-4_20

40 A. Idani et al.

11. Iliasov, A., Lopatkin, I., Romanovsky, A.: The SafeCap platform for modelling rail-
way safety and capacity. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFE-
COMP 2013. LNCS, vol. 8153, pp. 130–137. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40793-2 12

12. James, P., Knapp, A., Mossakowski, T., Roggenbach, M.: Designing domain spe-
cific languages – a craftsman’s approach for the railway domain using Casl. In:
Mart́ı-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 178–194.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37635-1 11

13. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: ATL: A QVT-like
transformation language. In: 21st ACM SIGPLAN Symposium on Object-oriented
Programming Systems, Languages, and Applications, OOPSLA 2006, USA, pp.
719–720. ACM (2006)

14. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising Event-B Models with
B-Motion Studio. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009.
LNCS, vol. 5825, pp. 202–204. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04570-7 17

15. Ledru, Y., Idani, A., Ben-Ayed, R., Ait Wakrime, A., Bon, P.: A separation of
concerns approach for the verified modelling of railway signalling rules. In: Interna-
tional Conference on Reliability, Safety, and Security of Railway Systems - RssRail
2019, Lille, France, June 2019

16. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

17. Li, M., Liu, S.: Integrating animation-based inspection into formal design speci-
fication construction for reliable software systems. IEEE Trans. Reliab. 65, 1–19
(2015)

18. Snook, C., Savicks, V., Butler, M.: Verification of UML models by translation to
UML-B. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010.
LNCS, vol. 6957, pp. 251–266. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25271-6 13

19. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley, Reading (2009)

20. Svendsen, A., Haugen, Ø., Møller-Pedersen, B.: Synthesizing software models: gen-
erating train station models automatically. In: Ober, I., Ober, I. (eds.) SDL 2011.
LNCS, vol. 7083, pp. 38–53. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25264-8 5

21. Tikhonova, U., Manders, M., van den Brand, M., Andova, S., Verhoeff, T.: Apply-
ing model transformation and Event-B for specifying an industrial DSL. In: MoD-
eVVa@ MoDELS, pp. 41–50 (2013)

22. Vu, L.H., Haxthausen, A., Peleska, J.: A domain-specific language for railway inter-
locking systems. In: 10th Symposium on Formal Methods for Automation and
Safety in Railway and Automotive Systems, pp. 200–209, January 2014

23. Wikipedia. Railroad switch (2015). https://en.wikipedia.org/wiki/Railroad switch
24. Winter, K., Robinson, N.J.: Modelling large railway interlockings and model check-

ing small ones. In: ACSC, Adelaide, South Australia, February 2003, volume 16 of
CRPIT, pp. 309–316. Australian Computer Society (2003)

https://doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/10.1007/978-3-642-37635-1_11
https://doi.org/10.1007/978-3-642-04570-7_17
https://doi.org/10.1007/978-3-642-04570-7_17
https://doi.org/10.1007/978-3-642-25271-6_13
https://doi.org/10.1007/978-3-642-25271-6_13
https://doi.org/10.1007/978-3-642-25264-8_5
https://doi.org/10.1007/978-3-642-25264-8_5
https://en.wikipedia.org/wiki/Railroad_switch

Statistical Model Checking of Hazards
in an Autonomous Tramway

Positioning System

Davide Basile1(B) , Alessandro Fantechi2 , Luigi Rucher3,
and Gianluca Mandò3

1 Department of Statistics, Computer Science and Applications,
University of Florence, Florence, Italy

davide.basile@unifi.it
2 Department of Information Engineering, University of Florence, Florence, Italy

3 Thales Italia S.p.A., Florence, Italy

Abstract. One promising option to improve performance and con-
tain costs of current tramway signalling systems is to introduce an
Autonomous Positioning System (APS) in substitution of traditional
occupancy detecting sensors. APS is an onboard system that uses a plu-
rality of sensors (such as GPS or inertial platform) and a Sensor Fusion
Algorithm (SFA) to autonomously estimate the position of the tram with
the needed levels of uncertainty and protection. Autonomous positioning
however introduces, even in absence of faults, a quantitative uncertainty
with respect to traditional sensors. This paper investigates this issue in
the context of an industrial project: a model of the envisaged solution
is adopted, and the Uppaal Statistical Model Checker is used to study
possible hazards induced by the substitution of legacy track circuits with
on-board satellite positioning equipment.

1 Introduction

Modern computer-based, safety-critical railway signalling systems are often con-
sidered expensive both for what concerns investment costs to equip railway lines,
and for the costs of their accurate maintenance.

Substitution of costly occupancy sensors (such as track circuits or axle coun-
ters) by on-board positioning platforms based on satellite positioning is one
promising option to contain such costs; such alternative has however to preserve,
or even improve, the safety level of consolidated sensor technologies. This option
is one of the themes under the Multiannual Programme of the Shift2Rail Joint
Initiative [19] (Innovation Programme 2, Technical demonstrator 2.4 “Fail-Safe
Train Positioning, including satellite technology”) and is the subject of several
research projects.

The SISTER project, funded by Tuscany Region, has focused on a scaled
down objective at this respect, that is, substituting track circuits installed on

c© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 41–58, 2019.
https://doi.org/10.1007/978-3-030-18744-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_3&domain=pdf
http://orcid.org/0000-0002-7196-6609
http://orcid.org/0000-0002-4648-4667
https://doi.org/10.1007/978-3-030-18744-6_3

42 D. Basile et al.

tramway lines with an integrated on-board solution including satellite position-
ing and an inertial navigation platform. In such applications, track circuits are
adopted for detecting track occupancy for an interlocking system to be able to
grant free routes through the junction to incoming trams. Notice that while in
the prospected railway applications satellite positioning is mainly proposed for
train distancing purposes (e.g. within the ERTMS/ETCS framework), in the
case of tramways safe distancing responsibility is left to the human driver, and
track occupancy is used only for determining safe routes through a junction.

The substitution principles are based on computing on board of a tram its
current location on the basis of received satellite signals to be fused through
complex mathematical algorithms with other information (e.g. IMU (Inertial
Measurement Unit), odometry, radar and other different sensor data), and to
communicate this information to the interlocking system in order to know which
track sections are occupied. Satellite positioning comes however with uncertainty,
enhanced in urban environments by buildings along the tramway tracks, which
create the so-called “urban canyons”. This is known as the multi-path problem in
signal reception, i.e., interferences due to waves refraction and reflection. These
problems could in principle generate false track section occupancy detections,
or miss some true track section occupancy, with obvious consequences on the
safety of the overall system.

For this reason, the SISTER project has developed a safety assessment proce-
dure, particularly focused on the added hazards introduced by satellite position-
ing uncertainties. In this paper, we address such hazards by means of a formal
model of the SISTER system, in which Stochastic Timed Automata are used
to enable reasoning on the probability of events, by means of Uppaal SMC, a
Statistical Model Checker. Our primary interest is to investigate whether some
particular hazard may actually occur, and the relation of their probability of
occurrence with respect to the known uncertainty sources.

In the paper, we first describe the system and how substitution impact on
its principles of operations (Sect. 2); after a short background section (Sect. 3),
the formal model is presented (Sect. 4), and the conducted analysis (Sect. 5)
shows how it was possible by the formal modelling and tools adopted to detect
a hazard which was not previously considered. Finally, related work is in Sect. 6
while conclusion and future work are in Sect. 7.

2 Description of the System

The goal of the SISTER project is to provide a new localization system that
replaces the old positioning devices such as track circuits and axle counters with
virtual ones. A major advantage of adopting such solution is to reduce the cost
of maintenance of ground-based equipment. Moreover, the deployment of such
equipment suffers by physical constraints, especially in the urban environment
in which a tramway is built: these constraints can be overcome by equipment
virtualization, freely optimizing the position and number of virtual devices.

The new localization system is based on a proprietary sensor fusion algo-
rithm developed by Thales, which we consider to be a black box. This algorithm

Statistical Model Checking for an Autonomous Tramway Positioning System 43

calculates the (virtual) position of the tram based on different sensors including
satellite tracking, IMU, odometer. The position is provided together with an
estimate of the uncertainty. This is of help for reducing the satellite uncertainty
when, for example, a tram is traversing a gallery and the satellite signal is not
available.

In this paper we will focus on the satellite-based positioning and we assume
the positioning information in terms of current point on a line and of a related
uncertainty estimation: for the purpose of studying rare, but possible hazards,
we take a pessimistic approach about uncertainty estimation. The positioning
information is communicated periodically (for example, at a frequency of 10 Hz)
by a tram to the relevant interlocking (IXL) and to the operations control centre
(OCC).

A first, upward compatible, solution proposal is aimed at leaving unchanged
the configuration parameters of the existing system, i.e. the position and number
of tram detectors on the ground are exactly the same of their virtual counterpart.
This solution still takes into account physical installation constraints that are
no longer necessary, but does not require modification and a consequent new
certification of the specific IXL application.

Figure 1 shows the principles of operation of the legacy system vs. the new
solution, when a tram is approaching a junction. Notice that in tramway systems
junctions are relatively simple, and traffic over the line between two junctions
is not subject to signalling. A local IXL system is used instead for guarantee-
ing a safe transit through a junction: when approaching a junction, a tramway
has to ask for a route among those available through the junction: this is auto-
mated in the legacy solution by reading a Tag and consequently asking the local
IXL for a route. The route is assigned by IXL on the basis of the occupancy of
Track Circuits (TC) (green ones are free, the red one is busy), points are set
according to the route, and the protecting signal is set to green. Notice that
it is driver’s responsibility to drive safely through the assigned route, respect-
ing signals. Although very simple, the example junction layout of Fig. 1 can be
considered representative enough of the few different junction layouts that are
typically considered in a tramway system.

In the satellite-based solution, shown in the lower part of Fig. 1 the tram
knows its position, and compares it with an onboard map listing the Virtual Tags
(VT) coordinates on the network. If the position matches a VT, a connection
is established with the local IXL (that is, the IXL controlling the junction area
referred by the VT), requesting a route to tram’s destination. The connection
establishes a communication session in which a tram periodically communicates
its position to IXL, which maps the received position on Virtual Track Circuit
(VTC) coordinates, to know about track occupancy. Indeed, in order to keep
the legacy IXL unchanged, connection and VTC mapping are performed by a
wrapper layer that interfaces to IXL. Route, points and signals setting is the
same as in the legacy solution. The connection session terminates when a tram
leaves the junction area.

44 D. Basile et al.

Fig. 1. Substituting track circuits with satellite positioning (Color figure online)

Notice that the correct mapping of position to VTC is a safety-critical func-
tion, rated SIL4, as are the other IXL functions. On the converse, the position-
to-VT mapping is not considered safety critical. Indeed, the failure to connect
to an IXL does not open any protecting signal, and there are no safety threats.

Communication with OCC by trams and IXLs (not depicted in Fig. 1) is
aimed at monitoring and performing high level functions of traffic regulation.
Being not safety critical, OCC will not be modelled in Sect. 5. Notwithstanding
its safety-critical nature, the IXL is not modeled either, because it is considered
a legacy system, already certified at SIL4, which is not changed at all in this
solution.

In the following, we assume that position information (i.e. coordinates of
tram, VT and VTC) are actually unidimensional, i.e., are mapped over posi-
tions on a line (representing the route a tram is following). Indeed, the current
setting of points (for track branches) is assumed to be performed according to the
assigned route allowing therefore precise positioning information at this respect.
In particular, the experiments that will be discussed in Sect. 5 do not require
multiple routes assigned to several trams. Hence, abstracting away from two
dimensional space is of help for improving performances and complexity factors.

Virtual Tags and Virtual Track Circuits are two new components of the
SISTER system.

– Virtual Track Circuits (VTC) correspond to location ranges (track sections)
within a virtual map on the ground system (i.e., interlocking, operations
centre): they are hence considered as intervals.

Statistical Model Checking for an Autonomous Tramway Positioning System 45

– Virtual Tags (VT) are similar but are only available on the map of each
tram. Traditional tags could be seen as points on the line. However, in order
to properly compare the satellite-based position with the tag position, it is
safer to define a VT as a (shorter) interval as well.

In both cases, the detection (i.e. if a tram occupies a VTC or has read a VT),
will be implemented through a function (called LocationReferencing) that will
compare the coordinates of the tram with the map, where both VTC and VT
are identified by intervals [a, b].

3 Background

Statistical Model Checking (SMC) [2,16,17] is concerned with running a suffi-
cient number of (probabilistic) simulations of a system model to obtain statisti-
cal evidence (with a predefined level of statistical confidence) of the quantitative
properties to be checked. SMC offers advantages over exhaustive (probabilistic)
model checking. Most importantly: SMC scales better, since there is no need to
generate and possibly explore the full state space of the model under scrutiny,
thus avoiding the combinatorial state-space explosion problem typical of model
checking, and the required simulations can be easily distributed and run in par-
allel. This comes at a price: contrary to (probabilistic) model checking, exact
results (with 100% confidence) are out of the question. Another advantage of
SMC is its uptake in industry: compared to model checking, SMC is very simple
to implement, understand and use.

Uppaal SMC [14] is an extension of Uppaal [10], a well-known toolbox for
the verification of real-time systems modelled by (extended) timed automata,
which was introduced specifically for modelling and analysing cyber-physical sys-
tems. Uppaal SMC models are stochastic timed automata. These are finite state
automata enhanced with real-time modelling through clock variables. Moreover,
their stochastic extension replaces non-determinism with probabilistic choices
and time delays with probability distributions (uniform for bounded time and
exponential for unbounded time). These automata may communicate via (broad-
cast) channels and shared variables.

Uppaal SMC allows to check (quantitative) properties over simulation runs
of an Uppaal SMC model (i.e. a network of stochastic timed automata). These
properties must be expressed in a dialect of the Metric Interval Temporal Logic
(MITL) [12]. In particular, we will use the query P(<>[t, t′] ap) that denotes
the probability that a random simulation run of a model M reaches a configura-
tion satisfying the atomic proposition ap in the interval of time that goes from
t to t′ time units.

A drawback of SMC is that it can have difficulties in efficiently observing rare
events. Being based on a large number of simulation runs, which can however
be not exhaustive, rare events can be found in only a small fraction of runs, or
even in no one at all. Since we are interesting in evaluating the probability of
occurrence of particular hazards related to positioning uncertainty, we easily run

46 D. Basile et al.

in this problem. To avoid this, we artificially inflate the probability of occurrence
of such hazards, so to be able to observe them in some run (see Sect. 5).

4 Formal Model

The two main entities modelled are the On-board Computer (OBC – one for
each tram) and the Interlocking (IXL – one for each junction area). This model
abstracts away from other intermediary entities. Global constants are used in the
model to instantiate various quantities, as for example, the number of trams, the
number of IXLs, the number of VT and VTC (of each IXL). Indeed, thanks to
the template mechanism of Uppaal, this model is highly configurable and many
operative scenarios (and specific applications) can be modelled and analysed.
The model and experiments are available at https://github.com/davidebasile/
rssrail2019.

Description of the Components. Each OBC, uniquely identified by its iden-
tifier, is modelled as a set of automata that are composed together. They are
called OBC PL (used to simulate the protection level, see below), OBC SendPosIXL
(used to periodically send the position to the IXL when connected), OBC Drive
(used to simulate the tram movement), OBC Mitigation (used to collect the
various alerts for entering a degraded mode and actuating the mitigations),
OBC IXLConnectionSupervision (used to issue connection requests to the IXL
and monitoring the connection). A special automaton, OBC VT, is used to check
periodically if a VT has been read. OBC VT takes as parameters its unique iden-
tifier, the interval [a, b] on the map, and the identifier of the IXL to be read by
a tram.

Each IXL has its unique identifier, that is a parameter of the automata
whose composition builds the IXL module. The automata are: IXL Connect
(used for serving the connection request from a tram), IXL ReceivePos
(used to collect the positions of trams and update the IXL status),
IXL Lsafemargin Supervision (used to check if PL exceeds the maximum limit
allowed, see below), IXL Mitigation (used to trigger mitigations in case of an
alert), IXL Disconnect (used for disconnecting a tram once it has released its
assigned route). The IXL Disconnect automaton takes in input as parameters
also the identifier of the last VTC involved in the assigned route, and a boolean
condition stating whether the disconnection occurs when the corresponding VTC
is occupied or when it is freed (in the legacy system these are called release con-
ditions). Finally, IXL VTC is an automaton used to model a VTC. It takes as
parameters its unique identifier, its location interval [a, b] and the identifier of
the IXL that includes it. Note that all the IXL components we modelled are
part of the SISTER layer shown in Fig. 1. Indeed, we do not model nor analyse
the legacy system, but only the SISTER layer. Thus we abstract from, e.g., how
route requests are managed by the IXL.

https://github.com/davidebasile/rssrail2019
https://github.com/davidebasile/rssrail2019

Statistical Model Checking for an Autonomous Tramway Positioning System 47

4.1 Formalising Virtual Track Circuits

Due to the complexity of the model, the analysis will be limited to the main
aspects involved in changing from the legacy system to the new SISTER system.

First, the function for checking if a VTC is occupied is formally defined.
Let Lv be the virtual coordinates of a tram (i.e. the positioning data calculated
by the algorithm on board the tram), and let L be its actual coordinates (in a
given moment of time). As a first contribution, we argue that the safety must
be guaranteed assuming the presence of an error ε between Lv and L such that
L = Lv ± ε. If such uncertainty is ignored, potential hazards are introduced, as
it will be described in Sect. 5.

Fig. 2. Example of the protection level PL reducing the capacity of the network

These safety requirements are inspired by their aeronautical counterparts [1,
18]. In particular, the actual error is unknown, hence an uncertainty ε is intro-
duced which is an aleatory variable that follows a Normal distribution with
average zero (denoted ϕ0,σ2). The Sensor Fusion Algorithm periodically provides
Lv and ϕ0,σ2 . The protection level (PL) is a statistical bound error computed
from Lv and ϕ0,σ2 so as to guarantee that the probability of the (unknown) real
position error exceeding PL is smaller than or equal to a target value (called
integrity risk (IR)). In other words, the interval [Lv − PL, Lv + PL] contains the
real position with probability greater or equal to 1 − IR (e.g. 1 − 10−9). The
alert limit (AL) is the maximum value of PL allowed. Finally, the time-to-alert
(TTA) is the maximum allowable time elapsed in which PL > AL before an
alert is issued and a degraded operation mode is entered.

In this paper, these quantities are either abstracted away or they are global
constants and global variables to be instantiated. For simplicity, it is assumed
that the satellite receiver is located in the centre of the tram and hence Lv is
centered in the tram. The location Lv is refreshed in the automaton OBC Drive
according to a constant travelling speed. More importantly, to simulate the
behaviour of the SFA, the automaton OBC PL selects non-deterministically and
periodically a value of PL from a given interval. Hence, we completely abstract
away from the way in which PL is calculated and consider the Sensor Fusion
Algorithm as a black box which provides both Lv and PL.

48 D. Basile et al.

Let l be the length of the tram, then the corresponding VTC is occupied if
LocationReferencingV TC(Lv, PL, a, b) = true (where a and b identify the inter-
val associated with the VTC); otherwise it is free, formally:

LocationReferencingV TC(Lv, PL, a, b) = (a− PL− l

2
≤ Lv) ∧ (Lv ≤ b+ PL+

l

2
) (1)

With virtual positioning, an uncertainty about the real position of the trams
is thus introduced. This implies an approximation of the number of occupied
VTC.

Example 1. Figure 2 shows a vehicle that physically (black tram) occupies VTC
1 and VTC 2, but virtually (grey tram) also VTC 3. Indeed in this example Lv−
PL < L < Lv and the physical position is behind the virtual one, but inside the
protection level PL provided by the virtual position. Note that, in case PL would
be ignored, VTC 1 would be erroneously considered free (i.e. a false negative).
Through PL this false negative is removed but a false positive is introduced (i.e.
VTC 3 is detected occupied but it is free). Indeed, LocationReferencingV TC
computes an over-approximation of the real track occupancy and in this example
will evaluate true for all the three intervals.

Fig. 3. The template automaton IXL VTC.

We are now ready to describe the automaton IXL VTC that implements the
logic described above and in Sect. 2. The model is depicted in Fig. 3. We remark

Statistical Model Checking for an Autonomous Tramway Positioning System 49

that Uppaal allows to define templates: the parametric automata will be instan-
tiated in the declaration phase by assigning constant parameters to the instances.
As previously stated, the VTC template takes as input a unique identifier id,
a unique idixl IXL identifier, two integers a, b which identify the track section
where the VTC is positioned. The VTC has two main states: Free and Occupied,
which intuitively identify the occupation and release status of the VTC. The ini-
tial transition assigns the respective parameters to globally shared variables.
Both the initial state and the remaining two states are marked as urgent states,
i.e. instantaneous states in which the system spends zero units of time. These
states are used to divide different operations that are performed in sequence,
but at the same time.

Each transition of an automaton in Uppaal can contain a guard, a send (!)
or receive (?) signal and an update of variables. From state Free, a transition
is triggered by the reception of a signal on the channel checkloc[idixl]?, a signal
coming from the relevant IXL to check the position received by a tram against
the VTC. Uppaal does not primitively allow value-passing, hence buffer vari-
ables (named x, y and z) are used to transmit data together with the signal.
The tid variable stores the unique tram identifier for which the occupation is to
be controlled. Likewise, the variable pos will contain the position of the tram
tid. This transition is divided into two possible behaviours through the interme-
diate urgent state. In particular, it returns to the Free state in the event that
LocationReferencing evaluates to false (conditions expressed in the transition
guards). Otherwise, two operations are performed: firstly a signal is sent to the
interlocking to acknowledge the occupation of the VTC via occupied[idixl]!, then
the tram identifier is stored in a temporary variable and both the VTC and tram
identifiers are written to the output buffer, to be used for further operations, and
the status reached is Occupied.

Fig. 4. A critical scenario where a tram is derailed if the protection level PL is ignored

From state Occupied a transition is triggered similarly to the transition that
exits the Free state. However, there are three different conditions exiting the
urgent state. In the case where LocationReferencing evaluates to true, the
target state remains Occupied: the tram has not yet freed the VTC. In this
case the temporary identifier of the last tram entered is updated. In the event
that LocationReferencing evaluates to false, there are two possibilities. If the

50 D. Basile et al.

tram that has freed the VTC is the same stored in the temporary variable, this
means that it was the last tram to have occupied the VTC. The VTC goes
to the Free state. Otherwise, some other trams are still potentially occupying
the V TC (recall the presence of an uncertainty), so the VTC remains in the
Occupied state.

5 Formal Analysis of Virtual Track Circuits

In this section, the formal analysis of the model (in particular the VTC template)
will be described.

We anticipate that, thanks to the formalization and analysis, some defects
in the previous SISTER specification have been identified and fixed.

Three Hazards and Three Mitigations. As discussed in Sect. 2, in the initial
specification the substitution of physical devices with virtual ones was considered
enough to preserve the safety of the legacy system. In what follows, three different
hazards will be analysed through the formal model, and mitigations will be
proposed. These hazards are a result of particular set-ups of parameters, which
at this stage of development of the system have to be considered plausible in
order to cover worst case scenarios.

These hazards will be analysed on a safety critical scenario depicted in Fig. 4.
In this scenario there are two trams and two VTCs. Tram 2 is traversing its
assigned route whilst Tram 1 is waiting at a red signal for its route to be assigned
by IXL. VTC 1 is used to detect the occupation of a route, whilst VTC 2 is
used to detect the release of a route. It is assumed that a tram is disconnected
instantaneously from the IXL when it has released its assigned route, hence
the events route release and disconnection are coupled. Our analysis will focus
on the event disconnection that is part of the SISTER layer, and not the route
release, an event belonging to the legacy IXL application. Once Tram 2 has been
disconnected, the IXL will proceed to create the route to be assigned to Tram 1.
Creating a route involves moving the switch (that Tram 2 is actually traversing in
Fig. 4) and setting signals. The misalignment is represented by depicting in grey
the virtual positions of the trams and in black their physical one. In particular,
in Fig. 4 Tram 2 is behind its virtual position, but inside PL.

Table 1. Set-up of experiments and their results

Formula Protection level Release condition Result

Exp 1 2 [200, 250] Free [0.995, 1]

Exp 2 3 [200, 250] Free [0,0.005]

Exp 3 3 [200, 250] Occupied [0,995, 1]

Exp 4 3 [0, 50] Occupied [0.158198, 0.168198]

Exp 5 3 [0, 250] Free [0.0221134, 0.0321134]

Exp 6 3 (Use alert limit) Free [0, 0.005]

Statistical Model Checking for an Autonomous Tramway Positioning System 51

Table 2. Performances of the experiments

Verification/kernel/elapsed time used Resident/virtual memory usage peaks

Exp 1 293,657 s/0,172 s/293,888 s 145.536KB/310.060KB

Exp 2 782.938 s/0.078 s/783.69 s 75,736KB/165,432KB

Exp 3 144.328 s/0.109 s/144.519 s 142,188KB/300,160KB

Exp 4 563.391 s/0.11 s/563.782 s 176,944KB/468,928KB

Exp 5 1,364.172 s/0.062 s/1,366.364 s 242,432KB/601,588KB

Exp 6 1,604.281 s/0.047 s/1,605.323 s 74,316KB/164,548KB

In all the experiments discussed in this section, it will be assumed that the
tram is travelling at constant speed of 5 m/s (18 km/h) and its length is 50 m.
Additionally, VTC 1 has interval [350, 450] (meters) and the time upperbound
(for each simulation) is of 150 s, that is, enough for the tram to cover 750 m and
traverse the whole junction area. More importantly, the system is assumed to
be working in nominal operation conditions in the sense of Stanford Diagram,
(i.e. the alert limit is considered to be greater than the protection level and
the protection level greater than the position error), so excluding unavailability
conditions and/or misleading information provided.

Finally, the analysed formulae will detect “bad” scenarios, hence their value
should be closer to zero. A summary of the various experiments, their parameters
and their results is in Table 1.

Set-Up of the Experiments. In the experiments, Uppaal SMC academic ver-
sion 4.1.19 (rev. 5649) has been used. During the experiments, the statistical
parameters have been tuned (for all evaluated properties) to the values displayed
in Figs. 5 and 6. This set-up allowed to quickly evaluates the various experiments
with a confidence that was sufficient thanks to the “inflated” values of PL. In
particular, this set-up required the model-checker to perform 119830 simulations
for each experiment to reach confidence 0.995. Table 2 reports the performances
for the experiments, run on a machine with Processor Intel(R) Core(TM) i7-8700
CPU at 3.20 GHz, 3192 Mhz, 6 Core(s), 12 Logical Processor(s) with 16 GB of
RAM, running 64-bit Windows Version 10.0.17134 Build 17134.

Experiment 1. This experiment will evaluate the first hazard by assuming that
the function LocationReferencing does not consider any misalignment between
L and Lv (as it was in the original specification), and that the route is released
when VTC 2 is freed (i.e. release condition of VTC 2 is set to free). In this case,
the route assigned to Tram 2 is released because it has virtually (and erroneously)
freed VTC 2. Indeed, the virtual position of Tram 2 is already beyond VTC 2,
whilst its physical position is behind it. Hence, the route required by Tram 1 can
be created. The IXL proceeds to move the switch, with the consequent possible
derailment of Tram 2. This critical scenario can be detected by the formula:

Pr(<> [0, 150](L + l/2 < VTCa)&&(Lv − l/2 > VTCb)) (2)

52 D. Basile et al.

Fig. 5. Plot for formula detecting Hazard 1

This formula evaluates the probability that, within 150 time units, there
exists a configuration in which the tram has not yet (physically) reached VTC 2,
but virtually (that is, by adding PL) it has already passed it. In experiment it
is assumed that L is the actual location of Tram 2 whilst its virtual one is
Lv = L + PL, i.e. the gap between the two positions is the worst allowed by
the integrity risk. It will also be assumed that PL varies non-deterministically
between 200 and 250 m, i.e. a worst-case scenario with a large PL. Moreover,
l is the length of Tram 2, V TCa and V TCb are the parameters [a, b] of an
instantiation of template IXL VTC. Of course the value of such formula strictly
depends on the instantiation of the parameters.

For this particular experiment the statistical model checker evaluates the
value of the formula to be in the interval [0.995, 1] with confidence 0.995. In
Fig. 5 it is shown how the probability switches to one as soon as 55 time units
have passed. Indeed, after 55 s the tail of the tram will be at 250 m. By summing
up the smallest possible PL (i.e. 200 m) the estimated position will be beyond
450 m, that is, enough to fully traverse VTC 2 and so satisfy Lv − l/2 > V TCb.

Experiment 2. The mitigation to the first hazard, already described in Sect. 4,
will be evaluated. It consists in using a LocationReferencing function where
a protection level PL is considered. To evaluate the proposed mitigation, the
following formula will be used:

Pr(<> [0, 150](IXLD 0.Disconnecting&&(Lv + l/2 < VTCa))) (3)

In this formula, IXLD 0 is an instantiation of the template IXL Disconnect.
Moreover, it is still assumed that the physical position L is such that Lv− PL ≤
L ≤ Lv. This formula evaluates the probability that, within 150 time units,
there exists a configuration in which Tram 2 has been disconnected (and hence

Statistical Model Checking for an Autonomous Tramway Positioning System 53

has released its route) (state IXLD 0.Disconnecting is reached) but it has not
yet reached VTC 2 (and therefore it could be still traversing a junction) (i.e.
(L + l/2 < Lv + l/2 < V TCa)).

The value of PL in this case is the same of Formula 2. The statistical model
checker evaluates the value of Formula 3 to be in the interval [0, 0.005] with
confidence 0.995. Indeed, with this set-up of parameters, this hazard becomes
unlikely, even in the presence of a non-negligible PL.

Experiment 3. In this experiment the second hazard is detected whilst the first
mitigation is applied by slightly changing the scenario. In particular, apart from
applying the first mitigation, the release condition of VTC 2 is set to occupied.
This means that the route is released as soon as Tram 2 occupies VTC 2. The
statistical model checker evaluates the value of Formula 3 to be in the interval
[0.995,1] with confidence 0.995. An intuitive explanation of the causes of such
hazard follows: due to the introduction of PL in LocationReferencing (see For-
mula 1), the tram is “stretched” in such a way that VTC 2 can be occupied
virtually, before than physically. It must be noted that this hazard is not trig-
gered by a wider PL. Indeed, even in the presence of a small PL the hazard is
likely to happen, as discussed in the next experiment.

Experiment 4. In this experiment the second hazard is further evaluated. The
value of PL will be (non-deterministically) updated periodically selecting a value
in the interval [0, 50] meters. The statistical model checker evaluates Formula 3
to be in the interval [0.158198, 0.168198] with confidence 0.995.

Experiment 5. The second mitigation consists in removing the occupied release
condition and force a route to be released only after the last VTC involved (in
this case VTC 2) is completely traversed. Since in Experiment 2 the release
condition is free, this mitigation has been already evaluated to be effective. Note
that this mitigation violates the assumption made by the initial specification
(see Sect. 2), and in particular that the configuration parameters of the legacy
system should remain unchanged in the new system. Indeed, all VTC must have
release condition set to free.

In this experiment the third hazard is finally discussed. This hazard is pos-
sible even if the two previous mitigations above take place (i.e. consider PL and
remove the occupied release condition). In particular, this new hazard can be
observed if the instantiation of parameters is such that PL can vary from 0 to 250
(due for example to bad weather conditions). In this experiment, it is assumed
that PL varies in the interval [0, 250] meters. Now the statistical model checker
evaluates Formula 3 to be in the interval [0.0221134, 0.0321134] with confidence
0.995.

Figure 6 shows the probability distribution of Formula 3 for this experiment.
It can be observed that, similar to Fig. 5, the mean of the displayed sample is
48.38 s, that is, when the tram approaches VTC 2. Moreover, the variation of
values of PL can be observed in the probability distribution that “jumps” from
zero to the target value periodically, according to the fact that in this model a

54 D. Basile et al.

new position is communicated and a new PL is computed every 5 s. This can be
intuitively explained as follows: since the values of PL can vary from 0 to 250 m,
the length of the tram can be “stretched” and “shrinked” quickly (every 5 s)
and in such a way that VTC 2 may switch from occupied (when the tram is
stretched because of an higher PL) to free (when the tram is shrinked because of
a small PL), even if the tram has not yet physically reached VTC 2. When IXL
detects VTC 2 to switch from occupied to free it proceeds to release the route
and disconnects Tram 2.

Fig. 6. Plot for Experiment 5

Experiment 6. In the last experiment a third (and final) mitigation is proposed.
It is possible to mitigate such hazard by substituting the protection level with the
alert limit in the LocationReferencing function. Indeed, whilst the protection
level PL varies dynamically (and this variation may potentially lead to hazards
as explained above), the alert limit is fixed. Moreover, in case PL exceeds the
alert limit the system will enter a degraded mode, where due operations will
take place to restore normal conditions. By applying the third mitigation (in
the implementation of LocationReferencing function in the VTC template),
and by considering again PL in the interval [0, 250] meters and the alert limit
set-up to 300 m (so that the results are not tampered by a degraded mode), the
statistical model checker evaluates Formula 3 to be in the interval [0, 0.005] with
confidence 0.995.

Remarks. The analysis described in this section has proved that the adoption
of formal methods (in this particular case statistical model checking) may be
of help for detecting in the early design phase of a system potentially critical

Statistical Model Checking for an Autonomous Tramway Positioning System 55

bugs in the specification. Whilst the first hazard has been noted prior to the
formalisation step (and indeed the mitigation is already present in the model),
the other two were noticed only after the analysis has been carried on. By altering
the probability of hazards (i.e. worst values of PL in our case) we have been able
to detect such hazards and evaluate the corresponding mitigations even without
using higher accuracy levels of the statistical model checker, and even more
without actually visiting the whole state space of the system (which is up to
millions of states).

The adoption of a state-machine formalism has also been of help in sharing
results with the industrial partners of this project.

We wish to stress that our aim was not a quantitative evaluation of depend-
ability attributes of the proposed system. Indeed, we used SMC as a fast tool
to enlighten possible hazards in the design of a safety-critical system affected
by uncertainty: the obtained probability values for the hazards are not realis-
tic, but call for a further accurate quantitative evaluation that could be used
to demonstrate that their probability of occurrence is well below any reasonable
risk level, and a possible refinement of the system specification.

It can be observed that the experiments take a substantial amount of time,
and so they may appear to be not scalable to larger designs. On the other hand,
SMC does not need to exhaustively visit the state-space of the model, which
in our case is very large, so that a conventional model checking approach could
result to be even less scalable. However, the studied hazards were related to
the substitution of the track circuits with autonomous positioning, and did not
include malfunctioning of legacy components, such as the IXL system, whose
safety is considered already assessed. Indeed, the substitution principles studied
on an example junction are actually quite independent from the junction itself
and from its size. Moreover, if deemed necessary, the experiments can be inde-
pendently repeated for each junction of a line, with an execution time growing
linearly with the number of junctions.

6 Related Work

Statistical model checking, and Uppaal SMC in particular, has been applied to
other case studies belonging to the transport domain [4,9,13].

In the European Horizon 2020 Shift2Rail project ASTRail (SAtellite-based
Signalling and Automation SysTems on Railways along with Formal Method and
Moving Block Validation), formal methods and tools are evaluated on a moving
block signalling scenarios [6]. In this context, Uppaal SMC has also been used
to model and analyse the ASTRail specification, as discussed in [5].

Two different formalisations, stochastic hybrid automata and Stochastic
Activity Networks (SAN) have been compared in [7] regarding their capabil-
ity to evaluate the reliability of systems of rail road switch heaters and their
energy consumption, with the aim of comparing and tuning different policies of
energy consumption, according to the case study presented in [3].

56 D. Basile et al.

Stochastic Petri net (SPN) models have been used as well in the context of
dependability evaluation of railway signalling systems: Evaluation of the prob-
ability of emergency stops due to GSM-R failures is notably addressed in [21],
a result later extended in [11,20], showing the capability of SPNs for evaluating
dependability attributes.

A separate task in the SISTER project has been related to detection, through
installed radars, of unavailability of track sections, for example due to obstruc-
tion of stuck cars. In the last RSSRail conference [15], we presented an Integer
Linear Programming (ILP) model for addressing route planning inspired to the
SISTER system [8]. Traditionally, ILP models are used to statically plan routes
to meet their time-schedule. The presented model instead works at run-time
as mitigation in case some track section is detected unavailable. Routes of all
vehicles are recomputed up to their next target station, so to avoid obstructed
tracks, guaranteeing safety and optimising the overall time-schedule.

7 Conclusion and Future Work

In this paper a formal evaluation of hazards in the SISTER project has been car-
ried on. The goal of the SISTER project is the substitution of physical positioning
devices with virtual ones in tramway lines. Such devices are safety-critical, and
the new system calls for a rigorous analysis with state-of-the-art techniques.

Starting from natural language requirements and operative scenarios pro-
vided by the industrial partners, we formalised the functioning of the SISTER
system through stochastic timed automata and Uppaal SMC. The result is a
parametric formal model for a generic application, to be instantiated with param-
eters of a specific application. Such model is thus highly reusable and different
operational scenarios can be evaluated.

Through the formal analysis it has been possible to detect hazards in the
informal specification that were not considered in the first specification. The
output of the analysis is a refined specification where proper mitigations are
in place. Moreover, the new specification is described through a state-machine
formalism, and it is ready to be used in the first stage of development of the
system.

Future Work. As future work we are planning to formalise other entities that
have not been considered so far, e.g. the operation control centre. Whilst in
this paper the analysis has been focussed on improper route release due to bad
positioning errors, other critical aspects need to be analysed. For example, in case
the alert limit is exceeded proper alarms must be issued within specific time units
to not incur in hazardous scenarios. Generally, wireless communication must be
monitored and proper mitigations have to be in place in case of failures in the
communications. Finally, we aim at refining the model for generating PL, which
is now non-deterministic, into a model that computes PL starting from the error
distribution ϕ0,σ2 .

Statistical Model Checking for an Autonomous Tramway Positioning System 57

Aknowledgements. This work has been partially supported by the Tuscany Region
project POR FESR 2014-2020 SISTER “SIgnaling & Sensing Technologies in Railway
application”.

References

1. https://gssc.esa.int/navipedia/index.php/Integrity#Protection Level
2. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.

Comput. Simul. 28(1), 6:1–6:39 (2018)
3. Basile, D., Di Giandomenico, F., Gnesi, S.: Tuning energy consumption strategies

in the railway domain: a model-based approach. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9953, pp. 315–330. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47169-3 23

4. Basile, D., Di Giandomenico, F., Gnesi, S.: Statistical model checking of an energy-
saving cyber-physical system in the railway domain. In: Proceedings of the 32nd
Symposium on Applied Computing (SAC 2017), pp. 1356–1363. ACM (2017)

5. Basile, D., ter Beek, M.H., Ciancia, V.: Statistical model checking of a moving
block railway signalling scenario with Uppaal SMC. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2018. LNCS, vol. 11245, pp. 372–391. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03421-4 24

6. Basile, D., et al.: On the industrial uptake of formal methods in the railway domain.
In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 20–29. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98938-9 2

7. Basile, D., Di Giandomenico, F., Gnesi, S.: On quantitative assessment of reli-
ability and energy consumption indicators in railway systems. In: Kharchenko,
V., Kondratenko, Y., Kacprzyk, J. (eds.) Green IT Engineering: Social, Business
and Industrial Applications. SSDC, vol. 171, pp. 423–447. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-00253-4 18

8. Basile, D., Giandomenico, F.D., Gnesi, S.: Dependable dynamic routing for urban
transport systems through integer linear programming. In: Fantechi et al. [15], pp.
221–237

9. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: A framework for quan-
titative modeling and analysis of highly (re)configurable systems. IEEE Trans.
Softw. Eng. (2018)

10. Behrmann, G., et al.: UPPAAL 4.0. In: Proceedings of the 3rd International Con-
ference on the Quantitative Evaluation of SysTems (QEST 2006), pp. 125–126.
IEEE (2006)

11. Biagi, M., Carnevali, L., Paolieri, M., Vicario, E.: Performability evaluation of the
ERTMS/ETCS - level 3. Transp. Res. Part C: Emerg. Technol. 82, 314–336 (2017)

12. Bulychev, P., David, A., Larsen, K.G., Legay, A., Li, G., Poulsen, D.B.: Rewrite-
based statistical model checking of WMTL. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 260–275. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35632-2 25

13. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 46

14. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppall SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)

https://gssc.esa.int/navipedia/index.php/Integrity#Protection_Level
https://doi.org/10.1007/978-3-319-47169-3_23
https://doi.org/10.1007/978-3-319-47169-3_23
https://doi.org/10.1007/978-3-030-03421-4_24
https://doi.org/10.1007/978-3-030-03421-4_24
https://doi.org/10.1007/978-3-319-98938-9_2
https://doi.org/10.1007/978-3-030-00253-4_18
https://doi.org/10.1007/978-3-642-35632-2_25
https://doi.org/10.1007/978-3-642-35632-2_25
https://doi.org/10.1007/978-3-319-47166-2_46

58 D. Basile et al.

15. Fantechi, A., Lecomte, T., Romanovsky, A.B. (eds.): RSSRail 2017. LNCS, vol.
10598. Springer, Heidelberg (2017)

16. Larsen, K.G., Legay, A.: Statistical model checking past, present, and future.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 135–142.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8 10

17. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 11

18. Legrand, C., Beugin, J., Conrard, B., Marais, J., Berbineau, M., El-Miloudi, E.K.:
Approach for evaluating the safety of a satellite-based train localisation system
through the extended integrity concept. In: Proceedings of ESREL 2015 - European
Safety and Reliability Conference (2015)

19. Shift2Rail Joint Undertaking: Multi-Annual Action Plan, 26 November 2015.
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/jtis/h2020-
maap-shift2rail en.pdf

20. Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative
evaluation of dense-time reactive systems. IEEE Trans. Softw. Eng. 35(5), 703–719
(2009)

21. Zimmermann, A., Hommel, G.: Towards modeling and evaluation of ETCS real-
time communication and operation. J. Syst. Softw. 77(1), 47–54 (2005)

https://doi.org/10.1007/978-3-662-45231-8_10
https://doi.org/10.1007/978-3-642-16612-9_11
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/jtis/h2020-maap-shift2rail_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/jtis/h2020-maap-shift2rail_en.pdf

Performance Evaluation of Metro
Regulations Using Probabilistic

Model-Checking

Nathalie Bertrand1, Benjamin Bordais2, Löıc Hélouët1(B), Thomas Mari2,
Julie Parreaux2, and Ocan Sankur1

1 Univ. Rennes, Inria, CNRS, IRISA, Rennes, France
{nathalie.bertrand,loic.helouet}@inria.fr, ocan.sankur@irisa.fr

2 ENS Rennes, Rennes, France
{Julie.Parreaux,Benjamin.Bordais,Thomas.Mari}@ens-rennes.fr

Abstract. Metros are subject to unexpected delays due to weather con-
ditions, incidents, passenger misconduct, etc. To recover from delays and
avoid their propagation to the whole network, metro operators use regu-
lation algorithms that adapt speeds and departure dates of trains. Reg-
ulation algorithms are ad-hoc tools tuned to cope with characteristics of
tracks, rolling stock, and passengers habits. However, there is no univer-
sal optimal regulation adapted in any environment. So, performance of
a regulation must be evaluated before its integration in a network.

In this work, we use probabilistic model-checking to evaluate the per-
formance of regulation algorithms in simple metro lines. We model the
moves of trains and random delays with Markov decision processes, and
regulation as a controller that forces a decision depending on its partial
knowledge of the state of the system. We then use the probabilistic model
checker PRISM to evaluate performance of regulation: We compute the
probability to reach a stable situation from an unstable one in less than d
time units, letting d vary in a large enough time interval. This approach
is applied on a case study, the metro network of Glasgow.

1 Introduction

Urban Train Systems (UTS) play an increasing role in modern cities: they pro-
vide connections from work to residential areas, and have become a key ele-
ment for economical and environmental concerns. Usually, UTS are operated by
private or semi-public companies, whose role is to provide services with con-
tractualized performance. A typical demand of local authorities is to guarantee
departures with a high pace (for instance one train every two minutes) dur-
ing peak hours to avoid networks congestion, and then ensure punctual/regular
departures at lower pace for the rest of the day. Form a contractual point of
view, performance is often specified in terms of Key Performance Indicators [12]
(or KPIs for short). KPIs are measures for trains punctuality, passenger com-
fort, average trip times, etc. They are evaluated a posteriori from weekly or
c© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 59–76, 2019.
https://doi.org/10.1007/978-3-030-18744-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-18744-6_4

60 N. Bertrand et al.

monthly logs recorded during operation of the network. Failing to meet fixed
quality objectives may result in financial penalties.

A normal behavior of a train in a metro network is a succession of arrivals at
stations and departures, usually scheduled at precise dates, or cadenced accord-
ing to chosen departure rates at each station. Operators often rely on an a priori
schedule called a timetable, that fulfills the KPI objectives if realized properly.
Now, even during a normal day of operation, departures and arrivals of trains
cannot match exactly such a precise schedule: trains are frequently delayed, due
to passenger misbehavior, weather conditions, incidents on tracks, etc. Further,
incidents are not independent: as trains have to maintain security distances, a
primary delay on a train rapidly propagates to the following trains. To recover
from delays and eventually meet quality objectives, UTS are equipped with regu-
lation algorithms. Regulation algorithms consider the state of the network (train
positions, delays w.r.t. a timetable, etc.), and compute advices to adapt trains
dwell times or speeds. Several strategies such as trying to recover delays, sticking
to existing timetables, or trying to equalize distances between trains.

It is well known that there is no universal and optimal regulation algorithm:
efficiency of a particular regulation depends on the targeted KPI objective, on the
topology of a line, on the number of trains in the network, and even on passenger
behavior. It is hence important to evaluate and compare performance of several
algorithms to provide the most adapted solution in a given situation. Evaluation
of regulation is hence often seen as a performance evaluation question.

In this work, we use the probabilistic model checker PRISM [10] to evalu-
ate the performance of regulation schemes. We model UTS as Markov decision
processes (MDPs for short) [5], and regulation algorithms as controllers that
make decisions in MDPs (i.e. implement a strategy). The approach is the fol-
lowing: a metro network is seen as a finite number of discrete locations. The
behaviors of trains are modeled as processes which maintain discrete variables
memorizing their positions, and have probabilistic guarded transitions, that ran-
domly increment the position of a train. Regulation is also specified as a process
whose decisions synchronize with the rest of the system to allow or prevent some
transitions of trains. The overall behavior of the network is a form of product
between processes, with safety constraints (trains shall not collide), which gives a
Markov Decision Process. The accuracy of the model is chosen by appropriately
discretizing time and space, and choosing probabilities to define models with
sensible distributions of trips durations. We then study performance of regula-
tion in a ring network equipped with a simple regulation algorithm with PRISM.
More precisely, we initialize the system in a highly perturbed state (some signif-
icant delays have occurred), and compute the probability to get back to a stable
situation (i.e. a situation in which the network has recovered from delay) in less
that d time units, letting d vary in a significant time interval. Getting back to a
normal situation in less than d time units is encoded with a PCTL formula [6].

The results obtained show that one can obtain the exact values of probabili-
ties for fleets of 4 trains with a reasonable discretization factor. For larger fleets
and larger discretization factors, one has to rely on statistical model checking

Performance Evaluation of Metro Regulations 61

techniques. Another lesson learned is that without regulation, the probability to
recover from a delay by chance is close to zero.

Model checking of railway systems has already been addressed in a Boolean
setting, mainly with safety objectives (see for instance [7]). Verification of rail-
way crossing, for instance, is a standard case study for model-checkers (see for
instance [3]). Boolean verification mainly addresses safety issues (critical sections
must not be violated), but usually cannot address quantitative properties, such
as the time needed to recover from a primary delay. These quantitative notions
are often addressed using simulation tools dedicated to performance evaluation.
To evaluate a regulation policy, one can design a model of an UTS, and simulate
a large sample of runs representing operation days with incidents, and derive
statistics. Dedicated tools address railway systems modeling at a microscopic
or macroscopic level. Macroscopic tools such as NEMO [8] use abstract models
(a graph representing the network), and do not consider details such as adher-
ence of trains to tracks, passenger flows. They are mainly used by infrastructure
managers. On the other hand, tools working at microscopic level (e.g. Open-
track [11]) consider every detail of rail systems: characteristics of rolling stocks
and tracks, weather conditions... Then, simulation steps compute the evolution
of the network during a fixed time period (typically, one second). However,
micro-steps simulation is time and space consuming. Microscopic and macro-
scopic approaches used for mainline trains can be adapted for metros, but metro
networks have two characteristics that need to be considered: first they embed
regulation algorithm, and second, decisions have to be made in a few seconds
to avoid delays and their propagation. This makes a big difference, for instance,
with macroscopic models of mainlines, where track occupancy schedules can
be easily maintained in case of short delay impacting only a few trains. The
SimMETRO tool [9] is specialized for simulation of metro systems. It includes
regulation schemes, and was used to simulate performance of regulation in the
Boston Metro network. The work in [2] uses a macroscopic simulation approach
based on a Petri Net variants to model metro system equipped with regulation.
The approach presented in this paper is a quantitative and macroscopic one,
based on model checking. When the considered model is of reasonable size, the
values computed are exact values, and hence provide strong performance guar-
antees. However, as subway systems are complex, their state space can rapidly
exceed the limits of standard model-checkers that compute exact probabilities of
properties from an explicit representation of the state space of the system. Even
in this case, Statistical Model Checking can be used to obtain these probabilities,
but only with a confidence interval.

This paper is organized as follows: Sect. 2 describes the Glasgow metro net-
work, that will be used as a case study to illustrate our approach. Section 3
defines the formal material used later in the paper, namely Markov Decision
Processes and PCTL properties, and shows how to use them to evaluate Per-
formance in a regulated metro network. Section 4 gives experimental results,
and comments them these results. Section 5 concludes this work and gives some

62 N. Bertrand et al.

perspectives. Due to lack of space, some technical elements are not detailed in
this paper, but can be found in an extended version available at [4].

2 A Case Study: A Metro Network in Glasgow

The usual behavior of metros is the following. A metro travels at a given speed
between two stations, and then dwells in station for a predetermined duration.
Commercial speed of metros usually lies between 30 and 40 km/h. When the
dwell time has expired, the doors close, and the train leaves for the next station.
This is where some incident may delay a train: doors may not close well, usually
when passengers try to alight while doors are closing. This can result in delays
of several seconds w.r.t. the expected departure date.

We consider the metro line of Glasgow [1], a bi-directional ring of 10.5 km
with 15 stations, depicted in Fig. 1. Train can travel both clockwise and coun-
terclockwise, using distinct tracks in separate tunnels; therefore, we only study
a unidirectional line. The ring has no intersection with other lines. Completing
a full round trip takes approximately 24 min. Several trains are used to provide
optimal service: if 4 trains are in use, then a metro leaves a station every 6 min.
The planned service is one metro every 4 min at peak hours and every 6 to 8 min
otherwise. The average dwell time in stations is around 30 s.

Fig. 1. A schema of the subway line of Glasgow

Ideally, providing a high quality service requires to maintain the network in a
stable configuration, i.e. a situation where distances between consecutive trains
are approximately equal (up to some small deviations appearing when trains stop
or suffer delays of a few seconds). Such situations are ideal to enforce arrivals and
departures at a regular pace. As in the Glasgow network the expected service
is one train every 6 min, maintaining such balanced situations is a good way
to fulfill the fixed quality objectives. However, networks do not remain in stable
configurations without external help. As delays tend to accumulate, one may face
the following situation: a train that is delayed arrives late at the next station,
which increase the size of the crowd, and results in new door incidents, and
penalizes the late train with an additional delay. Usually, as people tend to rush
in trains as soon as they arrive in station, fewer passengers will enter the next
train alighting at this station. This situation repeats all along the line, causing

Performance Evaluation of Metro Regulations 63

delays. As trains cannot overtake, accumulation of delays results in a bunching
phenomenon, i.e. in a situation where a crowded train is followed closely by
almost empty trains. Regulation should avoid such situation and improve KPIs.

A regulation is an algorithm that gives advice to trains: these pieces of advice
can be about changing the speed between two stations or the dwell time at a
station, depending on the global state of the network. The range of values that
can be returned by a regulation algorithm are of course bounded: there is a
minimal and maximal running speed for trains, and similarly, a minimal dwell
time allowing a sufficient number of passengers to leave trains or alight. In com-
plex line topologies, a standard way to address regulation is to build precom-
puted timetables, and to try to stick as much as possible to these schedules. Of
course, timetables are never realized exactly as specified, they are simply ideal-
ized schedules. A standard regulation called hold-on technique tries to return to
this schedule by reducing dwell times and increasing trains speeds when a delay
is measured. In the case of rings such as Glasgow network, the most relevant
objective is to maintain a constant duration between arrivals at each station.
Considering that characteristics of rolling stocks allow all trains to have the
same speed ranges, this pace objective can be addressed as a distance objective,
by requiring trains to maintain equal spacing among them. In practice, as dis-
tances between stations in metro networks are short, changing train speeds has
little impact on delay recovery. We will hence consider regulation policies that
change dwell times in stations in order to equilibrate distances among trains.

For the Glasgow network, we will build a stochastic model encompassing
train behaviors, the possible perturbations, a regulation algorithm, then study
the performance of this algorithm with a probabilistic model checker. To achieve
this objective, we will compute the probability to reach a stable situation from
an unstable one in less than d minute, letting d vary in interval [0; 250].

3 Models

Unpredictable external events can affect the durations of dwelling and of trips
from one station to the next one: it is natural to model them using probabilities.
These events delay trains, and as explained in Sect. 2, regulation policies are
then used to recover from primary delays and avoid their propagation to the
whole network. Given the current state of the system, an appropriate regulation
decision is chosen from a set of possible options and given as instructions to
the trains. To represent a metro system, we thus need a model that combines
probabilities (for the unpredictable events) and non-determinism (for the choice
of regulation decisions), hence we choose Markov decision processes (MDP). In
this section, we first define the mathematical model of MDP. Then we provide a
model of a generic ring metro line with several trains as an MDP with parame-
ters. We explain how to tune the values of the parameters for the Glasgow case
study, to reflect the number of trains in the network and the average trip dura-
tions. Finally, we define properties on this instantiated MDP model, that are of
particular interest to evaluate the performances of regulation policies.

64 N. Bertrand et al.

3.1 Markov Decision Processes

Definition 1. A Markov decision process (MDP) is a tuple M =
(S, s0,Act, δ,AP, �), where S is a set of states, s0 is the initial state, Act is a
finite set of actions, δ : S × Act × S → [0, 1] is the probabilistic transition func-
tion such that for every s ∈ S and α ∈ Act,

∑
s′∈S δ(s, α, s′) ∈ {0, 1}, AP is a

set of atomic propositions, and � : S → 2AP is the labeling function.

An action α ∈ Act is enabled in state s if
∑

s′∈S δ(s, α, s′) = 1. The semantics
of a Markov decision process M = (S, s0,Act, δ,AP, �) operates in discrete time
as follows: from some state s ∈ S, when an enabled action α is chosen, the
probability to be in s′ at the next time instant is δ(s, α, s′). Actions in M thus
model the possible choices one has to guide the system. A path in an MDP is
a finite or infinite alternating sequence of the form s0.α0.s1α1.s2 . . . such that,
for every i ≥ 0, δ(si, αi, si+1) > 0, that is, the probability to reach si+1 from si

when choosing action αi is positive. We denote by PathM (resp. PathM
fin) the

set of all paths (resp. all finite paths) of M. Figure 2 is an example MDP, with
S = {sa, s1, s2, sgoal}, s0 = sa, Act = {α, β}, and AP = {a, goal}, and �(sa) =
{a}, �(s1) = �(s2) = ∅ and �(sgoal) = {goal}. The transition relation of this MDP
is given by: δ(sa, α, s1) = 1, δ(s1, α, s2) = 0.3, δ(s1, α, sa) = 0.7, δ(s2, α, sa) =
0.5, δ(s2, α, s2) = 0.5, δ(s1, β, s1) = 0.5, δ(s1, β, s2) = 0.1, δ(s1, β, sgoal) = 0.4,
δ(s2, β, sa) = 0.9, δ(s2, β, sgoal) = 0.1, δ(sgoal, β, sgoal) = 1 and δ(s, γ, s′) = 0 for
all other states s, s′ and action γ ∈ Act.

sa

s2

s1

sgoal

α : 1

α : 0.7

α : 0.3

α : 0.5

α : 0.5

β : 0.5

β : 0.1

β : 0.4

β : 0.9

β : 0.1

β : 1

Fig. 2. An example MDP

Given an MDP, a policy resolves the non-determinism by choosing an enabled
action after each history of states and actions seen so far, that is for every finite
path of M. Formally,

Definition 2. A policy for the MDP M = (S, s0,Act, δ,AP, �) is a function
σ : PathM

fin → Act.

Performance Evaluation of Metro Regulations 65

S0 S1γ : 1

0.6 0.6 0.6

0.8 0.8 0.8

β : 0.4
0.4 0.4

α : 0.2
0.2 0.2

1 1

Fig. 3. Part of the MDP model for a train, representing the journey between stations
S0 and S1 and with two intermediate locations.

Given an MDP M, each policy σ defines a probability measure on infinite
paths of M originating from initial state s0, that we write P

σ
M. Reasonable

sets of paths A are measurable: one can write P
σ
M(A) for the probability that a

sampled path of M starting from s0 and following σ belongs to A.

3.2 An MDP Model for the Glasgow Network

As argued earlier, MDPs are well suited to model random events occurring in
a metro, as well as non-determinism for the choice of the regulation decision.
However, MDPs are discrete models, whereas metro networks are continuous
systems, both in space and time. We thus propose to approximate their behavior
with a fine enough discretization of space and time. In this discrete model, each
state of the MDP will indicate the trains positions, and if some trains are stopped
their remaining dwell time. Each discrete step in the MDP model corresponds
to changes (in the positions and remaining dwell times) occurring during a fixed
delay. To obtain a relevant model, we associate a position to each station, but
we also consider intermediate positions between two stations, i.e. we discretize
the distance between two stations by adding k intermediate positions between
two consecutive stations of the network. The number of intermediate positions
is one of the parameters of the model that need to be fixed a priori. We will call
location either a station or one of these intermediate positions.

As for regulation policies, the interesting elements to consider are arrival and
departure dates, and train positions. The behavior of each train Ti traveling
in the network can then be seen as an individual MDP Mi, in which states
are locations of the network, and actions are regulation decisions. In this MDP,
train Ti applies an action α ∈ ActMi

(that represents a regulation decision), and
moves to the next location in the network with some probability pα, or stays at
its current position with probability 1 − pα.

Figure 3 represents the MDP model of the individual behavior of a train
between two stations S0 and S1, with two intermediate points. At each loca-
tion (that correspond to states of the MDP), there are three possible actions,
representing the three different target speeds. Action α, labeling green transi-
tions represents the behavior of the trains when running at their standard speed,

66 N. Bertrand et al.

action β (blue transitions) symbolizes the reduced speed mode, and action γ (red
transitions) the stopped mode.

In the following, we will restrict to train models with the three possible
running modes α, β, γ illustrated in Fig. 3: one mode in which the train is running
at its standard commercial speed, one mode in which it travels at reduced speed,
and a last mode where the train is stopped. Intuitively, the intermediary mode
will be used if some other train is too close ahead, and the stopped mode will
be used to avoid collisions. However, the model easily extends to an arbitrary
number of target speeds, but at the cost of an increased the number of actions
and transitions in the model.

The overall behavior of the metro network is also an MDP, obtained as a
product

⊗ Mi ⊗ MR of all individual MDP models for each train and of reg-
ulation, with safety constraints. An important constraint is that the product
forbids two trains (or more) to be at the same location at the same moment.
This safety requirement can be easily be implemented as a constraint on the
enabled transitions in each state of the product MDP. For example, if a train Ti

is in location x and at the same instant another train Tj is in the next location,
i.e. x + 1, then all transitions that send Ti in location x + 1 are forbidden. This
restriction guarantees that trains never collide.

In our MDP model for each train, probabilities attached to transitions allow
one to reflect the time a train will take to travel from a station Si to the next
station Si+1. For each action α, β, γ, at each step, a train can stay at its current
location with probabilities pα, pβ , pγ , respectively, or go to the next location with
probabilities 1 − pα, 1 − pβ , 1 − pγ . The parameters pα, pβ , pγ must be adjusted
to reflect the speed instructions (normal, reduced, 0). To simplify our model, we
will assume that the distance between two consecutive stations is the same in
the whole network. The distance Δd between two consecutive locations is hence
also uniform, and depends on the number k of intermediate positions. Each step
in the execution of a MDP symbolizes elapsing of a fixed duration Δt. We will
explain how to choose Δt once the probability parameters are fixed.

First of all, let us consider the speed induced by the choice of a particular
action by regulation. In our model, we want the speed induced by action α to
be the usual speed of trains, and the speed corresponding to action β to be a
lower speed occurring when trains slow down for safety reasons (if the next train
is too close), finally γ corresponds to stopping the train. Start for example with
action α. The probability of going to the next location in one step under action
α is set to pα = 0.8. In every location of the network, the probability to stay
in there under action α during m steps is thus (1 − pα)m, and the probability
to move to the next location exactly at the mth step is (1 − pα)m−1 × pα. More
generally, the number of steps needed to move to the next location follows a

geometric law, whose expected value is Eα =
1
pα

. With the parameters of Fig. 3,

Eα =
1

0.8
= 1.25, so that in average, it takes 1.25 steps to go from a location to

the next one, assuming the regulation decision is always α.

Performance Evaluation of Metro Regulations 67

The standard speed vα of a train traveling at speed given by regulation
instruction α is obtained by dividing the distance Δd between two successive
locations by the average time needed to go from a location to the next one
under action α. The first parameter Δd can be easily computed as soon as k, the
number of intermediary locations, is fixed. In the Glasgow line, the total length
of the network is 10.5 km, and there are 15 stations. So the distance between
two consecutive stations is Δd = 10500/15 · k. Similarly, for a geometric law of
parameter pα, the expected number of discrete steps to move from one station
to the next one is Eα · k. We know that the total duration of a round trip in the
Glasgow line is 1440 s, including a dwell time of 30 s at each station. Hence the
total running time in seconds is ttot = 1440−(30×15) = 990. The time needed to
move from a station to another, in seconds, is thus tstat = 990/15 = 66. Fixing
parameter k, we should have Eα.k.Δt = 66. If we choose to have k = 5 locations
between two stations, we obtain Δd = 140 m and Δt = 10.56 s. We finally obtain

the commercial speed vα =
Δd

Eα × Δt
= pα.

Δd

Δt
≈ 10.6 m·s−1 ≈ 38.2 km·h−1.

In a similar way, we can compute the average speed of trains when their
behavior is dictated by regulation instruction β. The expected number of steps
needed to go from a location to the next one is now Eβ = 1/pβ . We hence

have vβ = pβ · Δd

Δt
. If pβ = 0.6 as in the model of Fig. 3, we obtain a reduced

speed vβ ≈ 7.95 m·s−1 ≈ 28.6 km·h−1. Finally, for action γ that represents
the instruction not to move, the speed is obviously vγ = 0. All in all, using
three types of actions, associated each with a probability to move one location
forward in the next step, we were able to model three regulation instructions for
the speed of trains.

Notice that as soon as the discretization constant k is known, the value of
Δd follows from the length of the line. Similarly, considering that the dwell time
in stations, the total duration of a round trip are known, it suffices to choose
the value of pα to obtain the value of Δt. As we had no data on round trip
durations in Glasgow, we have chosen a value for pα such that the distribution
of trip durations in our model matches statistics recorded for a track portion
in another line with similar characteristics. We refer interested reader to the
extended version of this paper [4] to see how this fitting was performed, and how
value pα = 0.8 was chosen to model duration of trips from a station to the next
one at standard commercial speed.

3.3 Integrating a Regulation Policy in the Model

Regulation policies decide which instruction to give to the trains, given their
positions (and possibly other useful data). In this work, we assume that a sig-
naling system is used to determine the safe speed of running trains at every step.
We also consider that trains run at their usual commercial speed whenever this
speed is allowed. We thus consider regulation policies that only choose the dwell

68 N. Bertrand et al.

times at stations, that is, determining whether a given train should leave the
station early or continue waiting.

The signaling system works as follows. Between two stations, trains travel
at their commercial speed (following α-transitions) if there is no train too close
ahead, at reduced speed (β-transitions) if the train ahead is close, and stop
moving to prevent collision or if they have to stay longer in a station.

A regulation policy aims at avoiding delays or recovering from them.
In a train networks, delay can be interpreted as a difference between an
arrival/departure date and the expected date of realization of this event in a
pre-computed timetable. However, in metros like Glasgow, emphasis is put on
regularity of departures, not on precise schedules. To formalize delays, we com-
pute, for each state q of the MDP representing the whole network, a function
balq : 1..nbtrains → R that measures whether time intervals between trains are
similar or not in state q. In a state q, let us call pos(q, i) a number between 0
and k.15 − 1 denoting the position of train i in sate q. Then, for a particular

train i, we define: balq(i) =
dq(i, i + 1)

dq(i − 1, i) + dq(i, i + 1)
where dq(i, j) measures the

difference between the position of trains Ti and Tj in sate q. It has to be noted
that balq cannot be equal to 0 nor 1 since two trains cannot be in the same
location.

An ideal situation is when αq(i) = 0.5 for every train Ti in the network,
which means that each train is positioned precisely in the middle of the space
delimited by its predecessor and its successor. Maintaining this equilibrium is
a way to guarantee regularity of service. However, it cannot be achieved unless
the movements of trains are quasi synchronous, which is too much requiring, as
distances between trains always vary due to dwell in stations. We will say that
the position of train Ti is balanced in state q if αq(i) ∈ [0.4, 0.6], and unbalanced
otherwise. We say that the current state of the network is balanced if all train
positions are balanced. As this definition only depends on the current state, one
can attach an atomic proposition balanced to every balanced state of the global
MDP. Similarly, we can associate a tag collision to a state if pos(q, i) = pos(q, j)
for some i �= j ∈ 1..nbtrains, that is to represent that a collision occurs.

We can now define our regulation policy as a linear function Dwell : [0, 1] →
[20, 40] applies from the value balq(i) for every train Ti. In each state of the
system, when a train Ti arrives in station, the regulation algorithm imposes a
dwell time of Dwell(balq(i)) to train Ti. If balq(i) is close to 1, the train has to
leave the station early, and if it is close to 0, it has to dwell in station for a
longer duration than the nominal dwell time. Due to the discretization of time,
the dwell duration in station depends on the interval to which balq(i) belongs
and not the exact value of balq(i). For instance, with Δt 	 5 s, the dwell time
was set as follows:

Performance Evaluation of Metro Regulations 69

Dwell(v) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

4 × Δt if v ∈ [0.875, 1]
5 × Δt if v ∈ [0.625, 875]
6 × Δt if v ∈ [0.375, 0.625]
7 × Δt if v ∈ [0.125, 375]
8 × Δt if v ∈ [0, 0.125]

(1)

Similarly, if Δt = 10s, we have set Dwell(v) = 2 × Δt if v ∈ [0.667, 1],
Dwell(v) = 3 × Δt if v ∈ [0.334, 0.666] and Dwell(v) = 4 × Δt if v ∈ [0, 0.333].

3.4 Logical Properties for MDP

The overall objective of our experiment is to assess the performances of regula-
tion policies from a metro model. To do so, we use relevant quantitative proper-
ties. For example, we evaluate the probability of a regulation policy to recover
from a delay in less than 30 min. This can be done by writing “from initial state,
the MDP reaches a balanced state within 30 min” as a property ϕ in logics, and
then computing the probability of this event in the MDP given the policy σ
corresponding to the regulation at hand. One can also evaluate the maximum
probability for this event when σ ranges over all possible regulation policies.
Such an optimal policy σ can be computed: we have P

σ
M(ϕ) = maxτ P

τ
M(ϕ)

where τ ranges over a finite number of policies (see the extended version [4] for
details). Typically, we will denote this value by P

max
M (ϕ).

The mentioned property ϕ is usually written using a formula F≤30balanced in
linear temporal logics [13]. Such a property ϕ is a bounded reachability property :
the aim is to reach a given set of states (here the balanced ones) within a given
number of steps (or seconds). We are also interested in (unbounded) reachability
properties, such as F collision that expresses that eventually a collision occurs,
yet with no time bound. For our metro system, we aim at proving that under all
regulation policies the probability of F collision is 0, showing that collisions are
impossible. This constraint can be expressed as maxτ P

τ
M(F collision) = 0, or in

a more compact way P
max
M (F collision) = 0.

To compute such optimal probabilities, we use the probabilistic model checker
PRISM [10]. We describe our metro model as processes in the PRISM language:
each train is a process, whose state encodes the position of the train in the net-
work. Regulation is also a process. The underlying semantics of these processes is
the MDP depicted in Sect. 3.2. A first sanity check for our PRISM model is thus
to verify that the safety requirement is met, i.e. that the resulting MDP M for
the network behavior (obtained as the product of processes for trains) satisfies
the formula P

max
M (F collision) = 0. Then to evaluate the efficiency of a regula-

tion algorithm, we will compute values such a P
max
M (F≤q balanced) for q a given

number of steps. This value is the maximal probability, among all regulation
policies, i.e. considering choices of actions that are not decided by regulation,
that the system recovers a balanced situation within q steps (or equivalently
within q × Δt seconds). We will also measure P

σ
M(F≤q balanced) to evaluate

efficiency of a policy σ. Letting the system start from an unbalanced state, we

70 N. Bertrand et al.

can compute this probability for different values of q and obtain performance
measures for a regulation algorithm.

4 Experimental Results

We performed several experiments with PRISM on the MDP models we con-
structed for the Glasgow metro. The objective was to evaluate the value of
quantitative formulas given in Sect. 3.4 to study performances of the simple reg-
ulation algorithm (balancing of trains positions on the ring) defined in Sect. 3.3.
Usually, PRISM explicitly builds the MDP resulting from the processes descrip-
tion, and then computes the values for the properties to check by value iteration
(see [5] for a description of the algorithms). As an alternative to the explicit
MDP construction, in case the model is too large (in terms of state space, and
transition table) to be stored, PRISM can perform statistical model checking
(SMC), i.e., generate on the fly a set of sample runs, to approximate, with a
given confidence, the values one aims at computing.

For our case-study, the size of the MDP depends on the discretization factor
k, and on the number of trains running in the system. The tests we performed
were conducted for two discretization values (k = 5 and k = 10) and two possible
number of trains (nbtrains = 4 and nbtrains = 6). As described in Sect. 3.2, all
processes representing trains were designed with three distinct possible speeds
α, β, γ, corresponding respectively to standard commercial speed, reduced speed,
and train stopped. These speeds were modeled using intermediary locations as
in Fig. 3, with probabilities pα = 0.8, pβ = 0.6, pγ = 0.

As initial state of our MDP, we chose a very unbalanced configuration, in
which trains occupy consecutive stations, with no free location between them.
This configuration is certainly the worst for the network. We then computed
three probabilities, for increasing values of q, the bound on the number of steps
to recover a balanced configuration. We first consider the policy σbal defined in
Sect. 3.3, which chooses dwell times for each train in order to move the train to
the middle of the previous and the next train. This probability is thus denoted
P

σbal

M (F≤q balanced). Second, we computed the maximum probability when the
policy ranges over all possible ones. This is written as Pmax

M (F≤q balanced). Note
that when computing this probability, PRISM also determines how to optimize
this value, and returns a policy. Third, we defined a fixed regulation policy σfix

which always picks the dwell time of 30 s regardless of the current state. This
probability is thus denoted P

σfix

M (F≤q balanced). This choice corresponds to an
absence of regulation policy. We expect that σfix should perform worse than σbal

since the latter makes clever choices to equilibrate distances.
Obviously, the size of the models increases with the discretization factor k

and with the number of trains. With the smallest values k = 5 and nbtrains = 4,
PRISM was not able to build the complete state space of the model, and hence
could not compute that optimal policy. A standard technique to overcome this
limit is to use abstraction. Abstraction allows to consider some states as equiva-
lent, and then perform model checking on a quotient (w.r.t. equivalence classes)

Performance Evaluation of Metro Regulations 71

Fig. 4. Probability to recover from a delay with nbtrains = 4 and k = 5

of the original MDP (which is then smaller). We have used a sound abstraction
of states up to a rotation of positions in the network. Indeed, in the Glasgow
ring, the dwell time decided for a train only depends on the distance to the pre-
decessor and successor, and not on the visited station. This abstraction allowed
to reduce the state space of the original MDP, while preserving values of the for-
mulas (as behaviors of trains and the balanced property of states are equivalent
up to rotation). We do not detail here the formal definition of abstraction up to
rotation, and refer interested readers to the extended version [4] for details.

The Table 1 below shows the effect of abstraction on the size of the MDP
computed by PRISM, for a discretization k = 5, with and without abstraction.
Abstraction up to rotation reduces the number of states by a factor 1000 for 3
trains, and allows PRISM to compute explicitly and MDP for 4 trains, which
is not possible without abstraction. However, even with abstraction, taking as
discretization factor k = 10 or a fleet of 6 trains exceeded the size of models
for which PRISM can return an exact value for a simple property. With these
parameters, one necessarily have to rely on SMC.

Table 1. Size of the MDP models in terms of number of states and transitions (k = 5)

Model number of trains Before abstraction After abstraction

Three trains 2.1 × 108 states 3.5 × 105 states

3.4 × 109 transitions 8.3 × 105 transitions

Four trains Not built in PRISM 2.0 × 107 states

5.7 × 107 transitions

72 N. Bertrand et al.

Fig. 5. Probability to recover from a delay with nbtrains = 4 and k = 10

We can now show the results obtained from our experiment. Figure 4 shows
the probability to return to a balanced state in x minutes when starting from a
very unbalanced situation. Absiscae represents time elapsed, and ordinates the
probability. The green curve is the exact value of the probability computed from
the MDP (an MDP - quotiented by the rotation abstraction- was explicitly built
by PRISM) when an optimal policy is used to regulate trains. The red curve is
the result obtained with our simple regulation policy σbal, and the blue curve the
results obtained when constant time regulation σfix is used. For the red and blue
series of measures, statistical model checking had to be used. Indeed, introducing
a particular regulation scheme may require the use of additional information in
states and increases the size of the underlying MDP. Note that on the figure, as
the results are obtained with statistical model checking, the probabilities in the
red and blue curse are not given as a single point but as an interval. This figure
shows that the best possible choices when doing regulation cannot do better
than returning to a balanced state with probability 0.5 in 52 min, and with
probability 0.8 in 58 min. The regulation policy σbal needs respectively 129 min
and 161 min to reach probabilities 0.5 and 0.8. One can however notice that this
regulation improves the performance of the metro network, as the regulation σfix

that sticks to standard dwell times of 30 s in stations has a probability to return
to a balanced state that stays close to 0.

Let us now compare these results with the curves obtained for k = 10 and
nbtrains = 4 (Fig. 5) and for k = 10 and nbtrains = 6 (Fig. 6). As explained before,
these values do not allow PRISM to compute and store the whole state space
of the MDP and hence to obtain the green curve representing results achieved
with an optimal policy. However, measures for regulation σbal or σfix can still
be obtained with statistical model checking. We can now discuss the effect of

Performance Evaluation of Metro Regulations 73

Fig. 6. Probability to recover from a delay with nbtrains = 6 and k = 10

discretization by comparing the red curve in Figs. 4 and 5. One can notice that
the global shape of the curve is the same, but that with a discretization factor of
10, it takes 120 min (instead of 129) to return to a balanced state with probability
0.5. Similarly, it takes a slightly smaller time (140 min instead of 161) to get
back to a balanced state with probability 0.8. This can be explained by several
facts. First, when choosing a rough discretization, one gives regulation the ability
to take fewer choices, and starting from less precise information than with a
finer discretization. A second aspect is that trains reduce their speed when they
approach their predecessor (i.e. the number of locations between the two trains
is low), and stop when moving to the next location would cause a collision. So,
with a coarse discretization, trains will slow down and stop more frequently,
which will delay the date of recovery.

Let us compare the curves of Figs. 5 and 6, respectively obtained with values
(k = 10, nbtrains = 4) and (k = 10, nbtrains = 6). Returning to a balanced situ-
ation take a longer time with 6 trains than with 4: the network needs 142 min
instead of 120 to get back to a balanced state with probability 0.5, and 167 min
instead of 140 to return to a balanced state with probability 0.8. Indeed, each
train introduces randomness in the system, and increasing the number of trains
increases the probability to move to an unbalanced state.

Let us now address the time needed by PRISM to compute the curves. We
recall that the green curve in Fig. 4 is the exact probability to reach a stable
configuration in x steps achievable with an optimal regulation scheme, for k = 5
and nbtrains = 4. Each point in this curve took less than 1 hour to compute on
an average laptop. For statistical model checking, with a confidence level of 99%,
the time needed to compute each interval in the red curves of Figs. 4, 5 and 6

74 N. Bertrand et al.

(i.e., the probability to return to an equilibrate situation in x minutes with our
regulation algorithm) is less than 2 min per interval.

5 Conclusions

We have proposed a quantitative evaluation scheme for metro networks with
simple ring topologies. This experiment showed interesting results. First, for a
coarse discretization and a small number of trains, we can compute the exact
value of properties probabilities. The size of the MDP rapidly exceeds the model-
checker’s limits, but SMC still works for finer discretization and larger number
of trains. The parameters used to model the network of Glasgow are bounded
in terms of discretization (k ≤ 10) and number of trains. Regarding the number
of trains, as far as the Glasgow network is concerned, the limits allow to model
the activity of the network at peak hours. For discretization, it has to be noted
that the state space of the MDP is greater than (K × k)nbtrains where K is the
number of stations and k the discretization factor. Overall, appropriately chosen
parameters allow to obtain a fair estimation of the distribution of time needed
to return to normal situations. The durations obtained may seem rather high
(on the average 150 min), but the initial state of simulation is the worst possible
situation for the network. A natural extension of this work is to consider the
time needed to recover from less severe perturbations (e.g. when a single train
is delayed).

One advantage when working with explicitly built MDP models in PRISM, is
that computing the optimal value for a formula also gives a finite memory strat-
egy to reach this optimal. However, these strategies are state-based, and cannot
be interpreted immediately as a regulation algorithm. An interesting issue is
hence to understand better the output of quantitative model checkers to be able
to synthesize efficient strategies in terms of user-understandable rules. Another
possible extension for this work is to consider more complex topologies, and
more complex regulation techniques, for instance network topologies with forks
and joins where trains complete distinct trips, networks with parking locations
allowing to remove a train from the network or insert it at the most appropriate
moment to improve performance of the network...

This work also helped to discover strengths and weaknesses of generic model-
checking techniques. Undoubtedly, generic model checking tools such as PRISM
have flexible enough input languages to model complex systems such as regulated
metro networks. They also build on solid theory to obtains values for probabilistic
properties. However, they also have some weaknesses. First of all, as already
mentioned in the paper, the MDP of a metro network, even for a simple topology
such as the Glasgow ring is huge. This has an impact on the applicability of exact
techniques such as value iteration, that need to build a complete state space to
obtain results. With respect to this drawback, abstraction techniques can help
reducing the size of MDPs. In this paper, the reduction used is a symmetry, and
is an exact abstraction: the value of a property checked on the abstract model
is exactly the value of the property on the original model. Exact reductions via

Performance Evaluation of Metro Regulations 75

symmetries work mainly for ring-like lines, but should be more difficult to obtain,
and less efficient for other topologies. Then, one can rely on other techniques that
group sets of states into equivalence classes, but at the cost of an approximation
in the obtained results.

Discretization is a factor that increases a lot the state space considered by
model-checkers. The choice of the discretization levels chosen for the experiment
were mainly guided by the will to model accurately the distributions of tran-
sit times between stations. Hence, shapes of network topologies do not impact
too much the discretization level of a model. However, the discretization level
is an important parameter of our models: when discretization increases, the
distribution of transit times that can be obtained approach a Gaussian distribu-
tion. Further, if discretization is too coarse, the space between two intermediate
locations may cover more than one block. As a consequence, information about
block occupation ahead a train is pessimistic, and trains may have to brake
more often in the simulated model that in the real network, which decreases
the performances of the simulated system. Hence, a rather high level of dis-
cretization is preferable to model realistic train movements (at least intermedi-
ate locations should not cover several blocks). It should be noted, however, that
improving discretization by a factor c results is a blowup of cnbtrains of the size
of the MDP.

We hence face several generic difficulties that are inherent to model-checking
tools (and not only to PRISM): a very precise model leads to a state space explo-
sion, which disallows computation of exact values for probabilities. To overcome
this problem, one can reduce the discretization level of the model, and obtain
pessimistic results for the performance of regulation. The other possibility is to
find a good abstraction, but as long as an abstraction is not exact, this leads
to a loss of precision in the results. The other possibility is to use statistical
model checking. As shown in this paper, SMC allows to deal with models of
larger sizes (in our case 6 trains and a discretization factor of 10, i.e., a sys-
tem with more than 1013 states), but computes a confidence interval. It shall
be noted that the precision of the confidence interval can be set in most SMC
tool by choosing a confidence level. Of course, the computation time needed to
obtain small confidence intervals increase with the required confidence, but the
loss of precision when using SMC for performance evaluation from a faithful
model can be controlled. All these consideration advocate for the use of SMC
for evaluation of regulation in metro networks. Another possible approach is to
use SMC with continuous representations of train trajectories instead of discrete
positions. This is the approach followed in [2]. The price to pay here is that
evolution of the system over time is not discretized and one has to compute the
next occurrence date of events (arrival, departure, braking...). This calculus can
also become costly when the size of the model grows.

76 N. Bertrand et al.

References

1. Glasgow subway webpage (2018). http://www.spt.co.uk/subway/
2. Adeline, B., Dersin, P., Fabre, E., Hélouët, L., Kecir, K.: An efficient evaluation

scheme for KPIs in regulated urban train systems. In: Fantechi, A., Lecomte, T.,
Romanovsky, A. (eds.) RSSRAIL 2017. LNCS, vol. 10598, pp. 195–211. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-319-68499-4 13

3. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL 4.0 (2006)
4. Bertrand, N., Bordais, B., Hélouët, L., Mari, T., Parreaux, J., Sankur, O.: Perfor-

mance evaluation of metro regulations using probabilistic model-checking (draft).
In: Preprint of RSSRAIL 2019 HAL (2019). hal.inria.fr/hal-02065365

5. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21455-4 3

6. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

7. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Trans. Softw. Eng. 26(8), 687–701 (2000)

8. Kettner, M., Sewcyk, B., Eickmann, C.: Integrating microscopic and macroscopic
models for railway network evaluation. In: Association for European Transport
(2003)

9. Koustopoulos, H.N., Wang, Z.: Simulation of urban rail operations: model and cal-
ibration methodology. In: Transport Simulation, Beyond Traditional Approaches,
pp. 153–169 (2009)

10. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

11. Nash, A., Huerlimann, D.: Railroad simulation using opentrack. In: Computers in
Railways IX, pp. 45–54 (2004)

12. UITP (International Association of Public Transports). Metro service performance
indicators, a UITP information sheet (2011)

13. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science FOCS 1977, pp. 46–57. IEEE (1977)

http://www.spt.co.uk/subway/
https://doi.org/10.1007/978-3-319-68499-4_13
http://hal.inria.fr/hal-02065365
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

Scheduling and Track Planning

Automated Planning of ETCS Tracks

Stefan Dillmann(B) and Reiner Hähnle

Department of Computer Science, Technische Universität Darmstadt,
Darmstadt, Germany

{dillmann,haehnle}@cs.tu-darmstadt.de

Abstract. Planning of railway tracks at Deutsche Bahn (DB) so far is
done manually by planning experts with the help of CAD tools. This
incurs substantial cost and planning time which is exacerbated by the
complex planning rules laid down in ETCS regulations mandatory for
new tracks. In a project performed for DB Netz AG we explore the
possibility of automating a large part of the ETCS rail track planning
process. We report on our experience in building a prototypic automated
ETCS planning tool. It takes a standardized object-oriented track model
as input and provides output in the same format with all required ETCS
track elements placed at their correct position. The tool can be integrated
into manual planning processes and allows manual fine-tuning. Our app-
roach uses algorithmic sequencing of formalized planning rules based on
the knowledge and best practices obtained from experienced track plan-
ners. The result of the planning tool can be visualized for the purpose
of conformance checking with the ETCS planning rulebooks to simplify
the certification process. A model-based, domain-specific test coverage
criterion has been developed to validate correctness and completeness of
the algorithmic rendering of the rules.

1 Introduction

The introduction of the European Train Control System (ETCS) in Germany
poses a formidable challenge to the responsible infrastructure provider DB Netz
AG. On the one hand, important trans-European corridors such as Rotterdam-
Genoa pass though Germany and require an ETCS upgrade to allow interoper-
ability. On the other hand, vendor support for the existing national LZB safety
system ends and must be replaced in the near future. Therefore, a large number
of ETCS tracks must be planned in coming years.

At present, the planning process is performed mostly by hand. Only limited
tool support is available, essentially assisting in the mere drawing process by
providing symbol libraries and CAD tools (lower layer in Table 1). All neces-
sary signalling elements are placed onto the plan individually and their correct
position is calculated manually. Neither can drawing tools check whether the
plan is compliant to the ETCS rules [5]: this is established in a complex review

The work reported in this paper was supported by DB Netz AG in project FormETCS,
part of the Innovationsallianz TU Darmstadt/Deutsche Bahn AG.

c© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 79–90, 2019.
https://doi.org/10.1007/978-3-030-18744-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_5&domain=pdf
http://orcid.org/0000-0003-0912-2189
http://orcid.org/0000-0001-8000-7613
https://doi.org/10.1007/978-3-030-18744-6_5

80 S. Dillmann and R. Hähnle

Table 1. Information layers of the planning domain

Layer Type of Information Tool Capability Type of Tool Example
Pragmatics Algorithmic Automation Planner, Validator EPlan
Semantics Function, Purpose Interoperability OODB, XML ProSig
Factual Geometry, Id Draw, Visualize CAD AutoCAD

procedure. Therefore, currently the planning of an ETCS compliant track is a
time-consuming, expensive, and error-prone process.

In the last years DB Netz AG has been developing the XML-based inter-
change standard PlanPro [9] for rail tracks. PlanPro started to be rolled out in
commonly used commercial planning tools such as ProSig.1 In addition to the
mere layout and identification of signalling elements, PlanPro contains seman-
tic information (middle layer in Table 1) about their function and purpose. For
example, it can group signals, switches, and other track elements that belong
together. Technically, PlanPro consists of an object-oriented model with an asso-
ciated XML-based linearization schema. PlanPro makes it possible for different
tools to interoperate in a semantics-preserving manner. This is the basis for the
partial automation of the planning process described in this paper.

Physical
Infrastructure

Existing
Planning Tools

Proposed
Planning Tool

Legacy
Track

ETCS Com-
pliant Track

ProSig

Other Tool

Plan-
Pro

XML

EPlan
Manual

Elicitation

Manual Edit Generate Plan

Automatic

Fig. 1. Usage schema of EPlan

To assist planners, we were asked by DB Netz AG to develop the tool EPlan
for automated generation of valid ETCS plans based on the PlanPro XML for-
mat, see Fig. 1 on the right. EPlan takes as input a legacy track layout and
additional information such as block definitions and a legacy (conventional) sig-
nalling system represented as a PlanPro XML file. It then automatically com-
putes the components required for ETCS compliance and determines their posi-
tions according to ETCS planning rules (top layer in Table 1, on the right in
Fig. 1). The new components are added to the existing PlanPro XML file which
can be processed by other tools. This interoperability has important advantages:

1 http://www.ivv-gmbh.de/de/prosigr.html.

http://www.ivv-gmbh.de/de/prosigr.html

Automated Planning of ETCS Tracks 81

– As EPlan starts with a given track layout with optional conventional sig-
nalling, it is ideally suited for upgrading legacy tracks with ETCS components
in parallel to persisting national systems.

– Its PlanPro output can be further processed in editing tools such as ProSig,
allowing manual fine-tuning and adjustment of generated plans.

– Existing PlanPro-compatible tools can be used to generate the input for our
tool and process its output, for example, to generate data tables for the plan
review process.

– Since the PlanPro format is intended as the future interchange standard for
digital planning of signalling systems at DB, our tool can easily be integrated
into any designated planning workflow.

In this paper we describe the architecture and design of EPlan, as well as
some strategies for testing and validation. In Sect. 2 we give a very compact
account of ETCS planning rules, in Sect. 3 we describe the PlanPro data model
[9], in Sect. 4 we document how we arrived at the planning algorithms and give
implementation and performance details. In Sect. 5 we lay down our validation
and verification strategy, finally we discuss related work and conclude.

2 ETCS Planning Rules

The main planning rulebook for all signalling systems in the German railway
network is Ril (Richtlinie) 819 [5]. It is divided into several submodules. Most
important for our case are module 819.1344 for executive planning of ETCS
Level 2 and module 819.1348 for ETCS Level 1. Both require that an interlocking
system (including routes, block definitions, possibly signals) has already been
planned. They define several types of data points (balise groups with a specific
meaning and a common set of included packets) and according placement rules.
Placement is relative to a reference point, in most cases a signal2.

Most distances relevant for placement are defined as intervals, i.e. a minimum
and maximum allowed distance to the reference point, inside which the final
position can legally vary. For example, a data point of type 23 must be placed
300 m in front of a main signal with an allowed deviation of ±50 m. The interval
boundaries may depend on conditions, such as the distance to other objects. It
is also possible to specify that within a certain area around particular objects
no data point is placed. In this case, alternative placement instructions apply.

If the placement intervals of two data points intersect, then these data points
should be merged to reduce the total number of required balises. In some cases
the placement rules specify already how this can be achieved. For example, if two
signals facing in opposite direction have a distance between 350 m and 700 m, the
data points of type 23 for both signals (as described above) can be merged into
a single one, placed at the center between both signals. In cases where merging

2 If a track is planned without signals, the ETCS stop marker boards Ne 14 [4] are
used as reference points instead.

82 S. Dillmann and R. Hähnle

rules are not explicitely stated, it is up to the planner to detect these situations
manually and to optimize the plan accordingly.

All rules are described in a declarative manner. They constitute a set of
conditions that any final plan must satisfy as a whole. The rules do not include
an algorithm to obtain a valid plan starting from a blank sheet of paper (or from
a given legacy layout). Experienced track planners have elaborated strategies
in which order to place data points. They perform their task as an iterative
process: data points are placed onto the plan until it is not possible to place any
further data point without violating the rules (we provide more details on this in
Sect. 4.1 below). Then it is necessary to backtrack, adjust a suitable data point
position, and re-try until the plan is complete and valid—a time-consuming and
tedious task.

It is important to realize that the rules in [5] are mere guidelines, representing
the state of the art, and do not have the status of a law. This entails that it is
possible to deviate from the rules if they cannot possibly be fulfilled for a given
track layout. However, in this case a “proof of equal safety” must be provided,
attesting that the probability of a safety-critical situation is not higher as if the
rules had been satisfied. This can be a complex task, hence satisfying the rules
drastically simplifies the certification process and normally is by far preferable.

3 The PlanPro Data Model

Prerequisite for automated plan generation is a digital track model that contains
sufficient semantic information about the function of track elements and their
relation. As explained in Sect. 1, we use the PlanPro object model [9] developed
by DB Netz for the planning of digital interlocking systems.

PlanPro is an object-oriented model. It defines classes that contain objects
corresponding to all elements of a signalling system: the track layout (as nodes
and edges), switches (with their mechanical and electrical components), signals,
block definitions, train control system components (PZB magnets, ETCS balises,
etc.), and train detection devices [3]. All objects have properties, including an
id (for referencing), a position, and, where applicable, a direction, build type,
etc. The classes in PlanPro form a hierarchy. As usual in OO models, properties
common to subclasses are factored out to their superclass to render the descrip-
tion succinct. For example, all objects with a geographical location inherit from
a parent PointObject, where the properties for position information are declared.

The PlanPro Model makes it possible to store track plans in some form of
OO database (see Table 1), which in the simplest case can be just a sequence
of property lists. Cross referencing between PlanPro objects is realized by refer-
encing an object id, which is a 128 bit UUID conforming to RFC 4122 [6]. There
is an XML schema for the PlanPro object model that allows to linearize it for
(XML) file-based interchange (export and import).

PlanPro was originally intended as a data storage and exchange for-
mat between different planning stages (for example, planners and component
providers or planners and certifiers). The main use case so far is to generate

Automated Planning of ETCS Tracks 83

from the PlanPro model the layout plans and data tables for the review pro-
cess. An automation of the planning task was not intended when the format
was developed. Therefore, one objective of our work is to evaluate whether the
PlanPro model contains sufficient information and hence is usable for automated
planning.

4 From Planning Rules to Planning Program

4.1 Elicitation of Planning Algorithm

Our starting point is a digital track layout in PlanPro format, possibly with
legacy signalling, and the ETCS planning rules in paper form. One planning
approach is to formalize the rules, for example, as logic constraints and then use
a logic programming language to start a systematic, complete search over all
rules applicable to the given track layout. Such an unguided search is bound to
be inefficient, because the rules embody few semantic constraints which leads to
a very high branching factor. In addition, even when exhaustive search generates
a valid track plan, the result would be not necessarily perceived as “good” or
intuitive by a human expert. It would also be not straightforward to incorporate
optimization (for example, minimizing the balise count) into such an approach.

Key Insight 1:
We decided to replace exhaustive search with a heuristically guided construc-
tion algorithm, informed by the experience and strategy of the human planners.
Put differently, instead of formalizing the rulebooks, we formalize the heuristic
knowledge of human planners.

The data in the rulebooks are merely used to compute the position, where
an object must be placed and to verify each single construction step. This is
not formalized as a rule, but incorporated into the placement algorithm. This is
possible, because, even though there is a large number of rules in Ril 819, there is
only a relatively small number of placement constructions that are used over and
over again. Hence, only a small fraction of the content of the rulebook, namely
that relating to automatic placement, had to be formalized in algorithmic form.

Obviously, such a heuristic approach only works in a highly specific domain,
where the heuristic knowledge of the human expert is sufficiently explicit. It
was not obvious from the beginning whether this is the case. Therefore, we
conducted a series of interviews with experienced ETCS track planners from DB
Engineering & Consulting. The goal was to find out how a planner constructs
a plan from scratch and the order in which each single step is performed. We
needed to establish whether the heuristic knowledge of the planners is sufficiently
structured and explicit to be rendered algorithmically. We also wanted to know
which tasks should be automated and which are better performed manually.

84 S. Dillmann and R. Hähnle

Key Insight 2:
The track planners proceed in a highly structured manner whereby the plan-
ning process is divided into clearly distinguishable sequential phases among
which no backtracking occurs. This structure reflects an implicit hierarchy
among the track elements to be placed that is not obvious from the rulebooks.

The following staged approach for ETCS Level 2 planning can be formulated,
which makes the planning heuristics explicit:

1. Start with the placement of data points located directly at main signals or
that have a fixed distance to them. This includes the data point types 20,
21 which disallow a train to proceed in Staff Responsible (SR) mode and the
positioning data point type 23, always located 300 m in front of a signal.

2. Place the positioning data points type 28 for Start-of-Mission (SoM) areas
providing position information for starting trains. Each SoM area contains
up to eight separate data points (up to 14 single balises) and their position
depends on the distance to a signal and a following switch, as well as on
the track speed. The rules contain many variations and special cases which
makes manual placement laborious and error-prone. The relevant rules also
prescribe combinations with the second location data point in front of signals
(data point type 24) which is also placed at this stage.

3. Place data point type 24 as standalone where no combination with type 28
is possible.

4. Place the Temporary Speed Restriction (TSR) data points (type 26), restrict-
ing speed when approaching a signal in SR mode. Their position depends on
the track gradient and they must be repeated when another signal resides
between them and the related signal.

5. Place TSR Revocation data points (type 37) on all branches after data point
type 26 that do not lead to the guarded signal.

6. Place positioning data points (type 25) for route detection on faulty switches.
For this the shortest possible route after a switch must be calculated and all
data points already existing on it must be taken into account. Data point 25
is only placed if the existing data points cannot determine the used route.
Manual calculation of these positions is a complex and error-prone task.

7. Place positioning data points (type 25) between any already placed data
points that have a distance of more than 1800 m. This is needed to reduce
the uncertainty of train position reports.

In 1–7 the list of PlanPro objects is traversed until a potential reference
point is found. From there positions where data points have to be placed are
calculated, the objects are created and added. For example, in 7 the list of already
placed data points is traversed, their neighbors are determined and distances
calculated. If a distance is above 1800 m, the path is repeatedly divided into
smaller subsegments of equal length, with new data points of type 25 in between
them, until no more gaps above 1800 m are present.

It was decided not to consider other data points at this time: they can either
be easily placed manually, or are only relevant in special cases, or they require

Automated Planning of ETCS Tracks 85

input external to the model. For example, the transition area between ETCS
and national systems must be defined by the planner or the ordering party. For
ETCS Level 1 (mode Limited Supervision), we only place those data points at
main- and presignals that correspond to PZB track magnets. Level 1 is a proof
of concept for now—more extensive support will be realized at a later stage.

4.2 Tool Implementation

EPlan is realized as a console application written in Java. All necessary plan-
ning parameters, such as the ETCS level, input and output files, etc., are pro-
vided as command line parameters. As mentioned in Sect. 2, the ETCS planing
rules require an already planned interlocking system which must be part of the
input PlanPro file. Main signals or legacy train control systems are not needed,
however. The output file contains the new ETCS components like data points,
any other information from the input file remains unchanged. The overall control
flow is as follows:

1. Command line arguments are parsed.
2. The PlanPro XML file is loaded, its content parsed and stored as an hierar-

chical DOM tree [11].
3. For each item 1–7 described in Sect. 4.1, an algorithmic construction for place-

ment of track elements is implemented. It accesses the complete DOM tree to
calculate placement parameters (such as distances to specific objects). The
new data points are created as DOM nodes and added to the tree.

4. The resulting DOM tree is written out as a PlanPro XML file.

The placement algorithm accesses several helper functions. These operate on
the DOM tree and provide functionalities such as tracking graph traversal, dis-
tance calculation between two objects, or calculation of positions with a relative
distance to an object considering all possible track branches. These functions
are used in the placement algorithms to evaluate placement conditions and to
calculate the positions of the data points.

Performance. The planning tool consists of over 2,000 lines of Java code. The
PlanPro input files we use for evaluation can have a size of over 25 MB, contain
up to 3,900 objects with more than 35,000 attributes (including Base64-encoded
binary data as specified in RFC 4648). This corresponds to a complete layout
for a typical mid-sized station with eight tracks, 140 signals, 30 switches, and
75 train detection components. The generation of a track plan in this case takes
ca. 5 s. All real ETCS plannings we have seen so far have a comparable size, so
we do not expect performance issues for a real-life application.

Evaluation. We presented the generated plans of small to medium-sized sta-
tions to planning experts who confirmed that the placement of track elements is
reasonable and correct up to minor adjustments.

86 S. Dillmann and R. Hähnle

5 Validation and Verification

5.1 General Considerations

A perfect V & V strategy for our setting would require to (i) validate that all
rules in [5] have been correctly interpreted and formalized (ii) formally verify
that the planning tool implements them correctly and produces only ETCS-
compliant plans.Given that for the foreseeable future all created plans must
pass a review process before they are approved for construction, and it is far
from clear whether certification of a fully verified tool is possible or even wished
by the responsible authorities, the above vision seems over-ambitious.3

Our priority at this point is to get a usable prototype out into the production
environment as soon as possible. We are able to afford weaker demands on cor-
rectness, because errors in the generated plan will be detected and corrected in
the review process, just as for manually generated plans. However, to achieve an
acceptable level of trust (and, therefore, usability) it is important to minimize
the need for manual modification of generated plans. Here it is important to
realize that only the plan reviewers have the knowledge to tell whether a plan is
correct or not. But reviewers can only evaluate final planning results, not indi-
vidual planning steps. Therefore, it is not useful to specify separate correctness
properties for the various stages of the planning algorithm at this time. Instead
we pursue a two-pronged approach focusing on final plans: To help planners
validating generated plans we developed a visualization tool (following section).
To verify the EPlan tool we use a domain-specific test coverage criterion: a set
of generated test plans that cover all possible planning cases is submitted for
review. This allows to infer correctness of the algorithms from the correctness of
the reviewed plans relative to coverage (Sect. 5.3).

5.2 Visualization and Data Analysis Tool

Raw XML output is unintuitive and must be rendered in a human-readable
format to amenable for review.

Key Insight 3:
From our discussions with the planners we learned that visualization and in-
teractive querying of generated track plans is essential for effective validation.

Unfortunately, the currently available tools that can process data in Plan-
Pro format have been designed for planning conventional signalling systems and
do not yet support PlanPro data with ETCS Level 2 objects. Therefore, we
developed our own PlanPro visualization tool. It is capable of generating a track
layout plan from a PlanPro XML file. The layout contains all objects with a geo-
graphical position (signals, data points, train detection components, etc.). It is
3 Still, it is clearly of great interest to validate a suitable formalization of the rulebooks

(item (i) above), because it minimizes errors in the generated plans and increases
trust on side of the planners who use it. This activity is currently pursued in the
FormETCS project and will be reported in a follow-up paper. In Sect. 6.1 we report
on an automated verification tool for manually created plans.

Automated Planning of ETCS Tracks 87

designed to resemble the track overview plans employed in certification reviews
and provides sufficient information on the generated plan, including the positions
of the components relative to each other. Figure 2 shows two screenshots from
the PlanPro visualization tool, demonstrating the changes EPlan makes to a
given track layout. Figure 2a is the basic track plan with conventional signalling
given as input to EPlan. Figure 2b shows the same plan after the execution of
EPlan, where the ETCS Level 2-compliant placement of new track elements is
shown as yellow circles.

(a) Input track plan

(b) Track plan after placement of ETCS elements with EPlan

Fig. 2. Screenshots from the PlanPro visualization tool.

All objects, including logical objects without position (telegrams, signal
aspects, etc.), can be separately listed and queried. The tool allows interactive
inspection of object attributes as well as search for object ids. A feature to cal-
culate the distance between two arbitrary selected, placeable objects is included.
This distance measurement is a common (and tedious) task in a plan review pro-
cess. Correctly computed distances are crucial for safety, so the implementation
of this function is a prime candidate for formal verification, see Sect. 6.2.

5.3 Rule Coverage

Rulebook [5] is organized into placement rules for each data point type. Each
placement rule has several conditions, forming branches and subrules within the
main rule. However, not all available rules need to be applied to place a specific
data point—the rules that are triggered depend on the planning situation and,
as explained above, the placement algorithm constitutes no one-to-one imple-
mentation of the rules.

Key Insight 4:
Generic, code-based test coverage criteria [2] are unsuitable for programs such
as EPlan whose output is a complex DOM object. Like for compilers and
other code transformers, it is more adequate to define a domain-specific test
criterion and build an according test suite.

88 S. Dillmann and R. Hähnle

To increase trust in the correctness of an automated planning process, all
possible subrules must be selected at least once in a scenario of the set suite.
We call this rule coverage. For each test scenario an expected generated plan is
constructed that must be approved by the certifier once. A test oracle can be
constructed from it simply by comparing the expected plan for each test scenario
with the actually generated plan (modulo renaming and DOM tree traversal
sequence). This is the basis, for example, for automated regression testing.

Another way to view our testing strategy is as an instance of model-based
testing [10], where the (formalized) rulebook [5] plays the role of the model.

6 Related and Future Work

6.1 Related Work

There is a large body of work on formal models and verification of interlocking
systems, generally on dynamic aspects of railway operation. This is not the focus
of our project which is about automated planning of static infrastructure.

We are not aware of much work on automated ETCS-compliant track plan-
ning. Closest to what we do is the Norwegian NFR project RailCons4, jointly
pursued by University of Oslo and the company RailCOMPLETE AS. The lat-
ter markets a CAD-based infrastructure planning tool similar to ProSig, which
extends AutoCAD with railway-specific semantic data. In the project the pro-
gram has been extended with additional semantic information, based on the
standardized Railway Markup Language railML5 and stored directly in the Auto-
CAD files. The railML model can be extracted from the CAD files and verified
against formalized planning rules [8]. In contrast to our approach they encode
rulebooks into a generic logic programming language. They evaluate their app-
roach with track data from a real construction project and show that non-trivial
properties can be verified in seconds. The RailCons project is complementary to
our work in being about automated rule-based verification of manually created
plans. In FormETCS we automate, at least partially, the planning process. The
RailCons model seems to be somewhat more abstract than ours and the rules
used for verification seem to be incomplete. Specifically, ETCS regulations are
mentioned as future work in [8].

6.2 Future Work

As a next step, a real ETCS track in operation in the DB network will be re-
planned with our tool and the results will be compared by the DB planning
team. This is a further step towards verification of the algorithmic rendering in
EPlan. It will also demonstrate that our tool is usable for a real life scenario.
For use in production it will be necessary to provide support for ETCS Level 1.

4 https://www.mn.uio.no/ifi/english/research/projects/railcons.
5 https://www.railml.org.

https://www.mn.uio.no/ifi/english/research/projects/railcons
https://www.railml.org

Automated Planning of ETCS Tracks 89

A companion project to FormETCS is FormbaR6, where the rulebooks for
the operation of trains are formalized in an executable model [7] that permits
simulation as well as static cost estimation. It would be desirable to connect both
projects: First one generates with EPlan different variants of a track plan (for
example, ETCS Level 1 and 2). These are then evaluated with the FormbaR
tool for relative performance in various traffic load situations. This would allow
to base decisions in capacity planning at the track planning stage on fine-grained,
highly realistic, dynamic models.

As mentioned in Sect. 5.1, while it makes limited sense to formally verify or
even specify EPlan as a whole, it is desirable to verify the most safety-critical
and error-prone parts such as distance calculations. Formal verification of this
kind of Java code is completely feasible [1].

7 Conclusion

We presented a concept for automating large parts of the planning process for
rail tracks, in particular with respect to the ETCS Level 2 regulations. We con-
centrated on well-structured aspects, where the application of placement rules
is governed by explicit heuristics and no or little search is involved. Our work
proved that the PlanPro model contains sufficient information to be used in
automated planning.

We took great care that the automated planner can be integrated into the
existing workflow and tool chains. We found that the capability to visualize,
inspect and interact with the generated plans is essential.

We designed a pragmatic validation and verification strategy based on visu-
alization and automatable, model-based testing with a domain-specific test cri-
terion. Formal validation and verification is possible as future work.

Acknowledgments. We are very grateful to the planning team of DB Engineering &
Consulting in Karlsruhe for being generous with their time and expertise. We thank the
reviewers for their suggestions that helped to improve the final version of this paper.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P., Ulbrich, M.
(eds.): Deductive Software Verification-The KeY Book: From Theory to Practice.
LNCS, vol. 10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
319-49812-6

2. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press, Cambridge (2008)

3. DB Netz AG: PlanPro-Glossar 1.8.0. http://confluence.plan-pro.org/display/
G180/Index

4. Deutsche Bahn AG, Frankfurt: Richtlinie 301: Signalbuch
5. Deutsche Bahn AG, Frankfurt: Richtlinie 819: LST-Anlagen planen

6 https://formbar.raillab.de/en/about-2.

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
http://confluence.plan-pro.org/display/G180/Index
http://confluence.plan-pro.org/display/G180/Index
https://formbar.raillab.de/en/about-2

90 S. Dillmann and R. Hähnle

6. ISO: Standard on Generation and registration of Universally Unique Identifiers
(UUIDs) and their use as ASN.1 Object Identifier components (2005). ISO/IEC
9834–8:2005

7. Kamburjan, E., Hähnle, R., Schön, S.: Formal modeling and analysis of railway
operations with active objects. Sci. Comput. Program. 166, 167–193 (2018)

8. Luteberget, B., Johansen, C.: Efficient verification of railway infrastructure designs
against standard regulations. Formal Methods Syst. Des. 52(1), 1–32 (2018)

9. Maschek, U., Klaus, C., Gerke, C., Uminski, V., Girke, K.J.: PlanPro:
Durchgängige elektronische Datenhaltung im ESTW-Planungsprozess. Sig-
nal+Draht 104(9), 22–26 (2012)

10. Utting, M., Legeard, B.: Practical Model-Based Testing - A Tools Approach. Mor-
gan Kaufmann, Burlington (2007)

11. W3C: Document Object Model DOM 4, November 2015. https://www.w3.org/
TR/dom/

https://www.w3.org/TR/dom/
https://www.w3.org/TR/dom/

The Recent Applications of Machine Learning
in Rail Track Maintenance: A Survey

Muhammad Chenariyan Nakhaee1(&), Djoerd Hiemstra1,
Mariëlle Stoelinga2,3, and Martijn van Noort4

1 Data Science, University of Twente, Enschede, The Netherlands
{m.cnakhaee,d.hiemstra}@utwente.nl

2 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
m.i.a.stoelinga@utwente.nl

3 Software Science, Radboud University Nijmegen, Nijmegen, The Netherlands
4 ProRail, Utrecht, The Netherlands

martijn.vannoort@prorail.nl

Abstract. Railway systems play a vital role in the world’s economy and
movement of goods and people. Rail tracks are one of the most critical com-
ponents needed for the uninterrupted operation of railway systems. However,
environmental conditions or mechanical forces can accelerate the degradation
process of rail tracks. Any fault in rail tracks can incur enormous costs or even
results in disastrous incidents such as train derailment. Over the past few years,
the research community has adopted the use of machine learning (ML) algo-
rithms for diagnosis and prognosis of rail defects in order to help the railway
industry to carry out timely responses to failures. In this paper, we review the
existing literature on the state-of-the-art machine learning-based approaches
used in different rail track maintenance tasks. As one of our main contributions,
we also provide a taxonomy to classify the existing literature based on types of
methods and types of data. Moreover, we present the shortcomings of current
techniques and discuss what research community and rail industry can do to
address these issues. Finally, we conclude with a list of recommended directions
for future research in the field.

Keywords: Rail track � Machine learning � Maintenance � Deep learning

1 Introduction

Railway systems are one of the most important means of transportation and play a
crucial role in the world’s economy [1]. Compared to other means, railways provide a
more comfortable experience. Besides, they are more affordable, which make them one
the most popular way of commuting. Railway tracks are one of the most important
components of railway systems. However, the continuous impact of repetitive passing
of trains, high railroad network velocity, axle loads and environmental conditions cause
rail deterioration. The presence of even a small flaw in rail tracks might introduce more
severe defects and broken rails which can lead to huge maintenance costs and reduce
the reliability and availability of the system [2]. But more importantly, broken rail track

© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 91–105, 2019.
https://doi.org/10.1007/978-3-030-18744-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-18744-6_6

can lead to train derailments which subsequently endanger the safety of the passengers
and train crews [3]. For example, over the past decade, around one-third of all railroad
accidents in the US have been caused by track related defects [4]. Thus, to avoid risks
and system disruptions, rail tracks need to be monitored and maintained regularly [5,
6]. However, railway track maintenance is one of the most expensive maintenance
activities in railway engineering. For instance, the estimates reveal that approximately
each year half of the maintenance budget in the Netherlands is spent only on railway
track maintenance activities [7]. Therefore, to reduce the costs and risk associated with
rail track failures and to improve the safety and maintenance operations novel tech-
niques and approaches should be developed and be adopted.

Nowadays due to the rapid technological advances and the extensive deployment of
low-cost connected devices and sensors, the industrial Internet of Things (IoT) plays an
increasing role in the effective implementation of maintenance strategies across a wide
range of industries [8]. The railway industry has also embraced the integration of
connected devices, sensors and big data technologies to improve their daily mainte-
nance operations [9]. Over the past two decades, machine learning (ML) has revolu-
tionized a wide range of fields such as computer vision, natural language processing,
and speech recognition. With the explosion in the amount of data collected by
advanced monitoring devices such as wireless sensor networks or high resolution video
cameras which are being widely used to inspect critical railway infrastructure, machine
learning is also gaining in popularity to improve the operations and reliability of
railway systems, and to minimize the daily maintenance costs and risks [10].

To address this demand from the rail industry, a great deal of research has been
done over the past few years and various machine learning models have been employed
for condition monitoring of rail tracks. Although the application of machine learning
for maintenance has been reviewed in other domains such as machine health moni-
toring [8] and wind turbines [11], to the best of our knowledge no other paper has
surveyed the existing literature on the application of machine learning in the rail track
maintenance. The aim of this paper is to provide a thorough literature review on current
machine learning techniques used for the condition monitoring of rail tracks while also
discussing drawbacks of these methods along with what researchers and industry can
do to improve the performance and trustworthiness of existing approaches.

This paper is organized as follows: In Sect. 2, the paper introduces different
paradigms of machine learning. Section 3 discuss what kinds of flaws can be observed
in rail tracks and which types of tools are utilized to inspect rail defects. Section 4,
explores the existing machine learning algorithms used in the context of rail track
maintenance. In Sect. 5, we describe the shortfalls of current techniques and present a
set of new research directions. Finally, in Sect. 6 we present our conclusion.

2 A Brief Introduction to Machine Learning

An ML algorithm usually defined as an algorithm that can learn the underlying patterns
from data without being explicitly programmed by human experts. Supervise learning
algorithms are a subset of ML models that can learn to predict a target variable from a
set of predictive variables also called as features or attributes. On the other hand,

92 M. Chenariyan Nakhaee et al.

unsupervised learning techniques try to infer the inherent structure or represent the
input data into a more compressed and interpretable way without being provided with
labeled datasets. For instance, principal components analysis (PCA) which is one of the
most widely-used unsupervised techniques, takes a dataset stored as a set of potentially
correlated variables and compress the dataset by generating a set of new variables that
have no linear correlation. Machine learning techniques can also be divided into
shallow algorithms and deep algorithms. The main distinction between shallow and
deep learning algorithms is in their level of representation. Shallow learning-based
techniques use hand-crafted features, manual feature extraction/selection techniques
and algorithms such as Support Vector Machines (SVM) [12], Decision Trees [13] and
Random Forests [14] for learning the mapping between predictive variables and the
target [8]. Moreover, this set of algorithms often use structured datasets such as tables
as an input. For example, a decision tree algorithm incrementally learns a set of
decision- rules represented as decision nodes and leaf nodes from a dataset that has
multiple rows and columns. At each decision node, the decision tree algorithm splits
the observations into smaller subsets based on a feature in the dataset that gives higher
homogeneity among observations in each subset. A random forest algorithm -is an
ensemble of multiple decision trees. In each iteration of a random forest algorithm, a
decision tree model is trained on a subset of features and a subset of data samples.
Then, the algorithm aggregates the outputs of individual trees to make a prediction.
Random forests can be an extremely powerful machine learning technique since they
add an extra randomness element to a simple decision tree and they combine the
predictions of multiple decision trees.

However, deep learning algorithms rarely require hand-engineered features and
they can learn the representation directly from the data (e.g. raw images). For this
reason, deep learning is sometimes referred to as “representation learning” [15]. This
property partially eliminates the need for feature engineering, which gives deep
learning algorithms an edge over shallow learning algorithms. Over the past couple of
years, the research community has also taken advantage of deep learning for rail defect
inspection and monitoring. Even some researchers believe deep learning may become a
potential element in the ultimate fully automated rail inspection systems [6].

Convolutional neural networks (CNN) are a special case of deep artificial neural
networks (ANN) which have been especially used for computer vision tasks. In CNN
models, the fully connected layers in normal neural networks are replaced by convo-
lutional layers. The main difference between the fully-connected and convolutional
layer is that in a convolutional layer each neuron is not connected to all neurons in the
previous and next layers and the weights are shared between groups of layers [16]. It
has been shown that this difference give CNNs a unique property. The early layers of
CNNs store low-level feature like edges and curves, while the last layers of a CNN
contain the information about the more complex features such as eyes [17]. This is
considered to be an interesting characteristic of CNNs as it gives the CNN the ability to
use the knowledge (weights) learnt from solving a problem to solve a new problem,
also widely known as transfer learning. For example, the weights of a CNN trained on a
very large dataset such as ImageNet database [18] can be used to train a new CNN
network for detecting tumors in medical applications [19]. CNNs have been success-
fully applied to various computer vision problems and even beat both humans and the

The Recent Applications of Machine Learning in Rail Track Maintenance 93

existing algorithms in tasks such as image classification and object detection [20, 21].
In the following section we can also see a surge in the number of publications that
trained CNNs to recognize faults in rail tracks.

Besides CNNs there are other classes of deep learning algorithms which have been
widely used in the literature to predict time series data [22]. For example, long short-
term memory (LSTM) networks, a variant of recurrent neural networks (RNNs) [23],
can learn the long-term temporal dependencies by utilizing special mechanisms called
memory cells [24]. Lately LSTM networks have shown promising results in predicting
the remaining useful life of industrial equipment using IoT data [25].

3 Rail Track Data

The rail inspection data can differ based on different rail defects and measurement
methods. In addition, rail data can be stored as structured, semi-structured and
unstructured formats. These differences determine which kind of processing techniques
and algorithms are more suited for a certain problem. For instance, rail track data such
as records of previous maintenance activities collected by human operators can be
stored as a structured table and later used by shallow learning algorithm such as
random forests. On the other hand, deep learning algorithms are the natural choice for
dealing with unstructured data like images. Therefore, in this section we draw a dis-
tinction between different defects and data sources which later will be used in our
proposed taxonomy.

3.1 Type of Rail Track Faults

Rail defects can develop and grow in different parts of a railway track and therefore
they have been categorized in different ways by the researchers. However, in general,
rail track defects can be divided into structural defects and track geometry irregularities
[1]. Track geometry defects such as rail misalignments are characterized by undesirable
deviation of rail geometric parameters from their designed value. Structural defects
describe the structural degradations of rail track components such as rail, ballast and
fasteners [26]. However, It should be noted that not only track geometry irregularities
are responsible for train accidents and directly impact the safety of the rail network but
they can also lead to the birth of structural defects [4, 27]. More information on
different geometry defects can be found in [28]. Readers can also refer to [29] to find a
more complete overview of different structural rail track defects.

3.2 Rail Inspection Methods and Tools

Numerous non-destructive methods and tools are utilized in the rail industry to inspect
the condition of rail tracks and data collection. These techniques include manual
inspection, ultrasonic devices, high resolution video cameras, 3D-laser cameras, eddy
current inspection, magnetic flux leakage etc. A more comprehensive description and
comparison of rail inspection tools and methods can be found in [10, 30]. While each
method can be used to detect failures in different parts of the rail track and collect

94 M. Chenariyan Nakhaee et al.

specific information about the condition of the rail, not all of them have been used in
machine learning literature. However, in recent years, visual inspection systems and
particularly video cameras have become one of the most important and effective
inspection tools for automatic and flexible rail track monitoring [2]. Video cameras
mounted on specialized trains can capture high-resolution images of rail tracks from
different angles. In that case, a large number of images are collected which later can be
used to train machine learning algorithms to detect anomalies in the rail track. How-
ever, large scale deployment of video cameras can present some technical challenges as
they require a key infrastructure for efficient storage and processing of streaming data.
For instance, each year video cameras collect roughly 10 terabytes of image data in the
Dutch railway system [31]. Moreover the existence of some residuals such as oil and
dust which might be present in the collected images can have a negative impact on the
performance of machine learning algorithms [32].

4 Machine Learning for Track Defect Detection

In this section, we summarize different machine learning techniques adopted by
researchers to help the rail industry overcome its maintenance challenges. The current
literature has been divided into two major classes of techniques based on the taxonomy
we have presented throughout the paper (Table 1). The first group represents the
experiments that were carried out with shallow learning algorithms and the second
group specifically includes deep learning-based approaches. Further, Table 1 offers
more information on other parts of our taxonomy.

4.1 Shallow Learning-Based Algorithms for Rail Track Maintenance

Before 2012 and when deep learning made its first breakthrough in the field of com-
puter vision by AlexNet [33], researchers mainly used complex features extracted
manually from images and then trained a shallow learning algorithm such as SVM for
image classification and object detection [15]. Likewise, in classical defect detection
literature and before the emergence of deep learning techniques, various feature
extraction and transformation techniques such as histogram of oriented gradients
(HoG) have been applied to image datasets [34]. For instance, Xia et al. [35] extracted
Haar-like features to detect broken fasteners in the railway network by an AdaBoost
algorithm. To reduce the dimensionality of the input data, Santur et al. [36] first applied
various feature extraction techniques such as PCA, kernel principal component analysis
(KPCA), singular value decomposition (SVD) and histogram match (HM) techniques
to a dataset which comprised a number of non-defective image and an artificially
generated image dataset of non-defective images. Next, they trained a random forest
algorithm on a set of extracted features. They concluded that features created by PCA
provided the most accurate result. Gao et al. [37] merged three different data sources in
what they described as ‘combined systems method’ which comprised of ultrasonic,
eddy current and surface imaging video measurements. Then they fed the features
extracted from applying a clustering algorithm on their database to an SVM algorithm
for detecting squats. Sadeghi et al. [38] employed four neural network models with

The Recent Applications of Machine Learning in Rail Track Maintenance 95

each with one hidden layer to predict the defect density of rail tracks which was defined
as the fraction of a rail segment that is defective. To train the neural network models
they combined various attributes such as track quality index of gauges collected
through manual inspection.

In the case of rail geometry defects, using a subset of RAS Problem Solving
Competition 2015 dataset, Hu et al. [39] attempted to use an SVM algorithm to forecast
when a less severe track defect will develop into a more severe type of defect.
Famurewa et al. [40] presented a systematic data methodology for rail condition
monitoring which consists of descriptive, diagnostic, predictive, and prescriptive steps.
As a part of their descriptive and diagnostic strategy, the authors aimed their attention
to detect anomalous patterns in sharp curves using PCA algorithm and data acquired by
manual inspection from the Swedish railway network. Jiang et al. [41] proposed a
hybrid approach to recognize rolling contact fatigue from data obtained in laser
ultrasonic experiments. In their proposed approach, the measurement signals were
decomposed into a new set of features using a wavelet packet transform (WPT). Next,
to reduce the dimensionality of data and to remove the effect of correlated features.
Similarly, to better understand and visualize high dimensional track geometry data into
a more compressed representation, Lasisi et al. [4] applied PCA, a well-known
dimensionality reduction algorithm, to a dataset of 31 features collected from a section
of US Class I railway network. KPCA, a nonlinear variant of PCA technique, was
applied to new features. Finally, the output of the KPCA algorithm was used as an
input to an SVM model to detect four kinds of surface defects.

Lee et al. [42] made use of artificial neural networks (ANNs) and SVM algorithms
to predict track quality index (TQI) based on simulation data generated from various
important track parameters such as type of curvatures. They concluded that while the
ANN algorithm slightly performs better that the SVM algorithm, the difference
between these two algorithms is mostly insignificant. Furthermore, they stated that at
least two years of data is required for more stable predictions.

In some real-world cases, the railway defect dataset might consist of only positive
(defective) and unlabeled observations which essentially means that the conventional
classification metrics cannot be computed accurately. Motivated by this problem,
Hajizadeh et al. [43] introduced a new metric called Positive and Unlabeled Learning
Performance (PULP) to assess the performance of classifiers on datasets with only
defective observations. They tested their proposed metric on a rail vibration datasets
using two SVM models and stated that a model with a better PULP performance can
detect more failures compared to a model with inferior PUPL performance. In another
similar work, Hajizadeh et al. [44] proposed a semi-supervised technique which added
the unlabeled observations to the training dataset to improve the balance between the
two classes of squat defects and non-defects.

4.2 Deep Learning-Based Algorithms for Rail Track Maintenance

One of the earliest attempts to employ deep learning techniques for rail defect detection
was carried out by Soukup et al. [45]. They designed a CNN network with two layers to
distinguish defective and non-defective cases using photometric stereo images. Since
they had a relatively small dataset, and the methodology appeared to be vulnerable to

96 M. Chenariyan Nakhaee et al.

over-fitting, sparse autoencoders and data augmentation were also used in their
experiment to tackle this issue. After the successful implementation of CNNs for rail
defect detection, other researchers gradually started to apply CNNs to other image
databases. In [46], Gibert et al. applied a CNN network with 4 convolutional layers to a
set of manually annotated images collected on US Northeast Corridor and classified rail
track materials. Then they used the trained parameters of the CNN model for defect
detection and semantic segmentation of railroad ties. As an extension of their previous
research and based on their proposed approach in [47] which used an SVM to classify
fastener defects, Gibert et al. [6] designed and trained a custom CNN architecture with
five convolutional layers on the same dataset to categorize the condition of rail fas-
teners as missing, broken or good. To make their machine learning model more robust
against unusual situations, they also used data augmentation and used re-sampling to
add more hard-to-classify images to their training dataset.

To provide a tool for automatic defects detection in rail surface, Faghih-Roohi et al.
[34] trained 3 different-sized CNN architectures on a manually labeled image dataset
collected from approximately 700 km of rail tracks in the Netherlands. Based on the
results of their experiment, they concluded that the deepest architecture outperforms the
other two models on the multi-class classification of squat defects. The designed
architecture for the medium-sized CNN network proposed in this paper is shown in
Fig. 1. Jamshidi et al. [31] also classified squat defects with different levels of severity
using a simple CNN architecture and a real-world image dataset. They also assessed the
visual growth of a defect and its severity using an image database. However, the
interesting contribution of their work is that not only they used image data for squat
defect classification but they also analyzed crack growth using data collected from
ultrasonic measurements and then combined it with image analysis results to provide a
failure risk model.

Fig. 1. Illustration of the medium-sized CNN network proposed in [34]

The Recent Applications of Machine Learning in Rail Track Maintenance 97

In one of their other works, Santur et al. [48] proposed 3D laser cameras as a viable
solution for fast and accurate rail inspection. To test their approach they described
training a CNN model on data collected through 3D laser cameras to classify rail tracks
as either “faulty” or “healthy”. However, the specification of the CNN architecture (e.g.
the number of convolutional layers) was not mentioned in their research. However, in
their next experiment, Santur et al. [49] used normal video cameras and proposed a
three-stage pipeline with a blur elimination step and trained a three-layers CNN model.

Table 1. An overview of current ML publications for rail track maintenance

Year Authors Defect type ML class ML algorithm Data Source

2010 Xia et al. [35] Structural Shallow learning Ada-Boost Video cameras

2012 Sadeghi et al. [38] Structural Deep learning ANN Manual inspection

2014 Soukup et al. [45] Structural Deep learning CNN/

Autoencoders

Photometric sensors

2014 Hajizadeh et al. [43] Structural Shallow learning SVM Video cameras

2015 Gibert et al. [6] Structural Shallow learning SVM Video cameras

2015 Gibert et al. [46] Structural Deep learning CNN Video cameras

2016 Hajizadeh et al. [44] Structural Shallow learning SVM Video cameras

2016 Hu et al. [39] Geometry Shallow learning SVM Manual inspection

2016 Faghih-Roohi et al. [34] Structural Deep learning CNN Video cameras

2017 Santur et al. [36] Structural Shallow learning PCA/KPCA/

SVD/HM/

Random forest

Video cameras

2017 Gibert et al. [6] Structural Deep learning CNN Video cameras

2017 Santur et al. [48] Structural Deep learning CNN 3D-laser cameras

2017 Famurewa et al. [40] Geometry Shallow learning PCA Manual inspection

2017 Jamshidi et al. [31] Structural Shallow learning CNN Ultrasonic/

Video cameras

2018 Gao et al. [37] Structural Shallow learning SVM Ultrasonic/

Eddy current/

Video cameras

2018 Lee et al. [42] Geometry Shallow learning ANN Simulation

2018 Santur et al. [49] Structural Deep learning CNN Video cameras

2018 Rauschmayr et al. [50] Structural Deep learning Faster R-CNN/

GAN

Video cameras

2018 Wang et al. [51] Structural Deep learning Pre-trained CNN Video cameras

2018 Lasisi et al. [4] Geometry Shallow learning PCA Manual inspection

2018 Jamshidi et al. [27] Structural Deep learning CNN Video cameras

2018 Ritika et al. [52] Geometry Deep learning Pre-trained CNN Video cameras

2019 Jiang et al. [41] Structural Deep learning KPCA/

SVM

Laser ultrasonic

98 M. Chenariyan Nakhaee et al.

As a part of a more comprehensive big data-oriented methodology, Jamshidi et al.
[27] in their recent analysis, trained a CNN network on both Axle Box Acceleration
(ABA) inspection data and a manually labeled image dataset collected from a specific
section of the Dutch rail network. In the other major contribution of this paper, the
output of deep learning model, designed to classify the state of rail tracks as a normal,
light squat defect and sever squat defect, was later used along with input from analysis
of degradation factors and domain experts to define an optimal maintenance strategy.

Lately, the research community has also adopted more advanced deep learning
techniques in railway engineering. For instance, to reduce the maintenance expense and
enhance the safety of Swiss Federal Railways (SBB) system, Rauschmayr et al. [50]
employed several state-of-the-art deep learning algorithms to detect defect and to locate
the defective parts on the tracks. First of all, by using a pre-trained faster R-CNN
model, they segmented track surfaces and clamps to identify anomalies. Then they
made use of Generative Adversarial Networks (GAN) to cluster normal and anomalous
observations. In this case, if an observation does not belong to certain clusters, more
likely it will be a defect. Further, they discussed the feasibility of this approach as an
alternative to replace the manual labeling. Wang et al. [51] also performed an exper-
iment with two well-known deep learning architectures and transfer learning, known as
AlexNet and ResNet, to recognize fasteners defects using a hand-annotated image
dataset acquired from two separate lines of rails in the US. They concluded that the pre-
trained ResNet not only achieved more accurate and reliable results, but it could
generalize well on classification of different track lines. To detect geometry defects,
Ritika et al. [52] applied several data augmentation techniques to generate artificial
images with sun kinks defects. Then, they used a pre-trained Inception V3 CNN
architecture to identify sun kinks in rail tracks.

5 Discussion

As one can observe in Table 1, deep learning algorithms have been the most exten-
sively used technique for the detection of structural defects. That has happened thanks
to the large-scale usage of video cameras by the industry which subsequently provides
the research community with a vast amount of data to experiment with more advanced
methods. The table further demonstrates the extensive applications of shallow learning
techniques for geometry irregularities. Yet the current state of the literature on the
applications of machine learning in rail track maintenance suffers from a few short-
comings. To accelerate the machine learning research progress and machine learning
adoption in the railway systems, it is the responsibility of both the research community
and the industry to focus on what they can do to address for these shortcomings:

• Small number of defective observations: One major property of rail defects
datasets is the highly skewed distribution of defective and non-defective classes. In
general, a substantial majority of observations belong to the non-defective com-
ponents while only a slim portion of observations are in fact defective (often less
than 1 percent). This can negatively affect the performance of machine learning
models as they often favor the majority class [53]. In machine learning literature,

The Recent Applications of Machine Learning in Rail Track Maintenance 99

various techniques have been proposed to deal with imbalanced datasets. For
instance, under-sampling and over-sampling are the two most common approaches
used to mitigate the effect of the imbalanced number of classes on training machine
learning algorithms [54]. However, in rail maintenance literature only a few number
of attempts have been made to address the class imbalance problem or to study the
effectiveness of current techniques on rail data. The only known research con-
cerning this issue are carried out by Hajizadeh et al. [44]. Thus, the research
community needs to focus more on developing or applying new techniques for
overcoming the problem of imbalanced observations in rail defect datasets.

• Availability of labeled datasets: The performance of machine learning models
heavily depends on the availability and quality of a sufficiently large and labeled
dataset. However, while due to the huge amount of measurements most of the time
the size of a dataset is not a problem, the presence of enough labeled samples can
pose a more serious challenge. Especially this issue becomes more visible in image
datasets since manual labeling of the rail track images is a labor-intensive and
expensive process, and requires a high level of expertise and domain knowledge. As
a result, often the existing datasets cannot satisfy the amount of data needed for
machine learning systems. Although several research papers have been published
and a few tools have been developed to partially automate the dataset labeling
problem, these issues have been overlooked by researchers in the rail domain and in
the intelligent maintenance community. So far, only Rauschmayr et al. [50] and
Hajizadeh et al. [44] have tried to develop techniques to automatically label rail
images.

• Lack of a public benchmark dataset: There are several well-known public
datasets that have been widely used and studied as a benchmark for comparing
different techniques and approaches in other maintenance domains [55]. However,
only a few small datasets are available for rail track defects and often the datasets
used by researches are proprietary and not sharable. This issue makes training,
evaluating and comparing the results of machine learning algorithms more chal-
lenging. Thus, as long as there is no public dataset available, not all machine
learning researchers outside the rail industry can contribute to the research progress
in this domain which subsequently could slow down the progress and stifle the
innovation in the domain. Therefore, it is necessary that the rail industry grants the
academia access to the rail track data.

• Explainability of machine learning models: As mentioned at the beginning of this
section, a significant number of papers published in rail maintenance domain
exploited CNN models and recommended the use of CNNs for automatic defect
detection in real-world scenarios. However, CNNs are considered to be black-box
models and are not inherently interpretable. In other words, the machine learning
researcher is not able to explain how a CNN model came up with its predictions or
prove its trustworthiness to the end user [56]. So far the question of how we can
trust ML models has not been addressed by the research community. Therefore,
developing accurate black-box machine learning algorithms should not be the only
goal but actually how these algorithms classify defects needs to be taken into
consideration.

100 M. Chenariyan Nakhaee et al.

• Combining domain knowledge with machine learning models: How defects
evolve, which factors contribute to the degradation of rail track components and
domain expert knowledge can significantly influence the effective scheduling of rail
maintenance operations [27]. For instance, rail track areas with a high concentration
of light squats can be fixed by a grinding process. However, if these light squats
develop into more severe defects, not only a replacement is needed to fix rail track
faults, but the risk of more serious damages also increases [57]. Fault tree analysis
(FTA) is a powerful model-based method for risk assessment of complex systems.
Fault trees have been used by a vast array of industries, to model how malfunctions
in system components lead to the failure of the system [58]. ML techniques can be
used together with fault trees to better learn how a system fails [59].

6 Conclusion

This paper has reviewed major machine learning techniques for fault detection. First of
all, we have found that especially in the past few years, deep learning algorithms have
become the prevailing tool for identifying structural rail defects. Similarly, the results
of our survey show that video cameras are the most popular data source for machine
learning applications.

However, the current research publications are exposed to a number of short-
comings that we have highlighted throughout our paper. Data quality issues such as
highly imbalanced datasets, limitation of manual labeling process and the absence of a
comprehensive public database for training and evaluating different approaches is
slowing down the progress on the side of research community. The issues related to
explaining how an algorithm identifies defects which is absolutely necessary to earn the
trust of the industry and incorporating the domain knowledge in ML approaches hinder
the progress on the deployment side of ML research. To overcome these shortcomings
several research directions and suggestions have been proposed. We believe that the
research community needs to focus more on issues including data quality, explain-
ability and trustworthiness of machine learning algorithms and combining the expert
knowledge with their machine learning models while the industry should provide the
academia the access rail track datasets to facilitate the progress of ML research and to
encourage more researchers to contribute and improve the existing methods.

Acknowledgment. This research is supported by ProRail and the Netherlands Organization for
Scientific Research (NWO) under the Sequoia project.

References

1. Sharma, S., Cui, Y., He, Q., Mohammadi, R., Li, Z.: Data-driven optimization of railway
maintenance for track geometry. Trans. Res. Part C: Emerg. Technol. 90, 34–58 (2018)

2. Zhuang, L., Wang, L., Zhang, Z., Tsui, K.L.: Automated vision inspection of rail surface
cracks: a double-layer data-driven framework. Transp. Res. Part C Emerg. Technol. 92, 258–
277 (2018). https://doi.org/10.1016/j.trc.2018.05.007

The Recent Applications of Machine Learning in Rail Track Maintenance 101

http://dx.doi.org/10.1016/j.trc.2018.05.007

3. Liu, X., Saat, M., Barkan, C.: Analysis of causes of major train derailment and their effect on
accident rates. Transp. Res. Rec. J. Transp. Res. Board. 2289, 154–163 (2012). https://doi.
org/10.3141/2289-20

4. Lasisi, A., Attoh-Okine, N.: Principal components analysis and track quality index: a
machine learning approach. Transp. Res. Part C Emerg. Technol. 91, 230–248 (2018).
https://doi.org/10.1016/j.trc.2018.04.001

5. Durazo-Cardenas, I., et al.: An autonomous system for maintenance scheduling data-rich
complex infrastructure: fusing the railways’ condition, planning and cost. Transp. Res.
Part C Emerg. Technol. 89, 234–253 (2018). https://doi.org/10.1016/j.trc.2018.02.010

6. Gibert, X., Patel, V.M., Chellappa, R.: Deep multitask learning for railway track inspection.
IEEE Trans. Intell. Transp. Syst. 18, 153–164 (2017). https://doi.org/10.1109/TITS.2016.
2568758

7. Zoeteman, A., Dollevoet, R., Li, Z.: Dutch research results on wheel/rail interface
management: 2001–2013 and beyond. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit.
228, 642–651 (2014). https://doi.org/10.1177/0954409714524379

8. Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., Gao, R.X.: Deep learning and its
applications to machine health monitoring: a survey, 14, 1–14 (2016). https://arxiv.org/abs/
1612.07640

9. Thaduri, A., Galar, D., Kumar, U.: Railway assets: a potential domain for big data analytics.
Proc. Comput. Sci. 53, 457–467 (2015). https://doi.org/10.1016/j.procs.2015.07.323

10. Li, Q., Zhong, Z., Liang, Z., Liang, Y.: Rail inspection meets big data: methods and trends
(2015)

11. Stetco, A., et al.: Machine learning methods for wind turbine condition monitoring: a review.
Renew. Energy. 133, 620–635 (2018). https://doi.org/10.1016/j.renene.2018.10.047

12. Widodo, A., Yang, B.S.: Support vector machine in machine condition monitoring and fault
diagnosis. Mech. Syst. Signal Process. 21, 2560–2574 (2007). https://doi.org/10.1016/j.
ymssp.2006.12.007

13. Sun, W., Chen, J., Li, J.: Decision tree and PCA-based fault diagnosis of rotating machinery.
Mech. Syst. Signal Process. 21, 1300–1317 (2007). https://doi.org/10.1016/j.ymssp.2006.06.
010

14. Cerrada, M., Zurita, G., Cabrera, D., Sánchez, R.V., Artés, M., Li, C.: Fault diagnosis in spur
gears based on genetic algorithm and random forest. Mech. Syst. Signal Process. 70–71, 87–
103 (2016). https://doi.org/10.1016/j.ymssp.2015.08.030

15. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.
org/10.1038/nature14539

16. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural
Comput. 1, 541–551 (1989)

17. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet,
D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

18. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput.
Vis. 115, 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

19. Kim, S., Kim, W., Noh, Y.K., Park, F.C.: Transfer learning for automated optical inspection.
In: International Joint Conference on Neural Networks (IJCNN), May 2017, pp. 2517–2524
(2017). https://doi.org/10.1109/ijcnn.2017.7966162

20. Karpathy, A.: What I learned from competing against a convnet on imagenet (2014). http://
karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-
imagenet

21. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks, pp. 1–14
(2017). https://doi.org/10.1109/CVPR.2018.00745

102 M. Chenariyan Nakhaee et al.

http://dx.doi.org/10.3141/2289-20
http://dx.doi.org/10.3141/2289-20
http://dx.doi.org/10.1016/j.trc.2018.04.001
http://dx.doi.org/10.1016/j.trc.2018.02.010
http://dx.doi.org/10.1109/TITS.2016.2568758
http://dx.doi.org/10.1109/TITS.2016.2568758
http://dx.doi.org/10.1177/0954409714524379
https://arxiv.org/abs/1612.07640
https://arxiv.org/abs/1612.07640
http://dx.doi.org/10.1016/j.procs.2015.07.323
http://dx.doi.org/10.1016/j.renene.2018.10.047
http://dx.doi.org/10.1016/j.ymssp.2006.12.007
http://dx.doi.org/10.1016/j.ymssp.2006.12.007
http://dx.doi.org/10.1016/j.ymssp.2006.06.010
http://dx.doi.org/10.1016/j.ymssp.2006.06.010
http://dx.doi.org/10.1016/j.ymssp.2015.08.030
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1007/978-3-319-10590-1_53
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/ijcnn.2017.7966162
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet
http://dx.doi.org/10.1109/CVPR.2018.00745

22. Lipton, Z.C., Kale, D.C., Elkan, C., Wetzel, R.: Learning to Diagnose with LSTM Recurrent
Neural Networks. 1–18 (2015). https://arxiv.org/abs/1511.03677

23. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for
sequence learning, pp. 1–38 (2015). https://arxiv.org/abs/1506.00019

24. Hochreiter, S., Urgen Schmidhuber, J.: Ltsm. Neural Comput. 9, 1735–1780 (1997). https://
doi.org/10.1162/neco.1997.9.8.1735

25. Zhang, W., et al.: LSTM-based analysis of industrial iot equipment. IEEE Access. 6, 23551–
23560 (2018). https://doi.org/10.1109/ACCESS.2018.2825538

26. Ghofrani, F., He, Q., Goverde, R.M.P., Liu, X.: Recent applications of big data analytics in
railway transportation systems: a survey. Transp. Res. Part C Emerg. Technol. 90, 226–246
(2018). https://doi.org/10.1016/j.trc.2018.03.010

27. Jamshidi, A., et al.: A decision support approach for condition-based maintenance of rails
based on big data analysis ☆. Transp. Res. Part C 95, 185–206 (2018). https://doi.org/10.
1016/j.trc.2018.07.007

28. Soleimanmeigouni, I., Ahmadi, A., Kumar, U.: Track geometry degradation and mainte-
nance modelling: a review. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 232, 73–102
(2018)

29. Alahakoon, S., Sun, Y.Q., Spiryagin, M., Cole, C.: Rail flaw detection technologies for safer,
reliable transportation: a review. J. Dyn. Syst. Meas. Control 140, 020801 (2017). https://doi.
org/10.1115/1.4037295

30. Papaelias, M.P., Roberts, C., Davis, C.L.: A review on non-destructive evaluation of rails:
state-of-the-art and future development. Proc. Inst. Mech. Eng. 222, 367–384 (2008). https://
doi.org/10.1243/09544097JRRT209

31. Jamshidi, A., et al.: A big data analysis approach for rail failure risk assessment. Risk Anal.
37, 1495–1507 (2017). https://doi.org/10.1111/risa.12836

32. Santur, Y., Karaköse, M., Akın, E.: Condition monitoring approach using 3D-modelling of
railway tracks with laser cameras (2017)

33. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.)
Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran
Associates, Inc. (2012)

34. Faghih-Roohi, S., Hajizadeh, S., Nunez, A., Babuska, R., De Schutter, B.: Deep
convolutional neural networks for detection of rail surface defects. In: Proceedings
International Joint Conference on Neural Networks (IJCNN), October 2016, pp. 2584–2589
(2016). https://doi.org/10.1109/ijcnn.2016.7727522

35. Xia, Y., Xie, F., Jiang, Z.: Broken railway fastener detection based on adaboost algorithm.
In: Proceedings - 2010 International Conference Optoelectronics and Image Processing,
ICOIP 2010, vol. 1, pp. 313–316 (2010). https://doi.org/10.1109/icoip.2010.303

36. Santur, Y., Karakose, M., Akin, E.: Random forest based diagnosis approach for rail fault
inspection in railways. In: 2016 National Conference on Electrical, Electronics and
Biomedical Engineering (ELECO) (2017)

37. Gao, S., Szugs, T., Inspection, E., Ahlbrink, R.: Use of combined railway inspection data
sources for characterization of rolling contact fatigue (2018)

38. Sadeghi, J., Askarinejad, H.: Application of neural networks in evaluation of railway track
quality condition. J. Mech. Sci. Technol. 26, 113–122 (2012). https://doi.org/10.1007/
s12206-011-1016-5

39. Hu, C., Liu, X.: Modeling track geometry degradation using support vector machine
technique (2016)

The Recent Applications of Machine Learning in Rail Track Maintenance 103

https://arxiv.org/abs/1511.03677
https://arxiv.org/abs/1506.00019
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/ACCESS.2018.2825538
http://dx.doi.org/10.1016/j.trc.2018.03.010
http://dx.doi.org/10.1016/j.trc.2018.07.007
http://dx.doi.org/10.1016/j.trc.2018.07.007
http://dx.doi.org/10.1115/1.4037295
http://dx.doi.org/10.1115/1.4037295
http://dx.doi.org/10.1243/09544097JRRT209
http://dx.doi.org/10.1243/09544097JRRT209
http://dx.doi.org/10.1111/risa.12836
http://dx.doi.org/10.1109/ijcnn.2016.7727522
http://dx.doi.org/10.1109/icoip.2010.303
http://dx.doi.org/10.1007/s12206-011-1016-5
http://dx.doi.org/10.1007/s12206-011-1016-5

40. Famurewa, S.M., Zhang, L., Asplund, M.: Maintenance analytics for railway infrastructure
decision support. J. Qual. Maint. Eng. 23, 310–325 (2017). https://doi.org/10.1108/JQME-
11-2016-0059

41. Jiang, Y., Wang, H., Tian, G., Yi, Q., Zhao, J., Zhen, K.: Fast classification for rail defect
depths using a hybrid intelligent method. Optik (Stuttg). 180, 455–468 (2019). https://doi.
org/10.1016/j.ijleo.2018.11.053

42. Lee, J.S., Hwang, S.H., Choi, I.Y., Kim, I.K.: Prediction of track deterioration using
maintenance data and machine learning schemes. J. Transp. Eng. Part A Syst. 144, 4018045
(2018). https://doi.org/10.1061/JTEPBS.0000173

43. Hajizadeh, S., Li, Z., Dollevoet, R.P.B.J., Tax, D.M.J.: Evaluating classification performance
with only positive and unlabeled samples. In: Fränti, P., Brown, G., Loog, M., Escolano, F.,
Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 233–242. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44415-3_24

44. Hajizadeh, S., Núñez, A., Tax, D.M.J.: Semi-supervised rail defect detection from
imbalanced image data. IFAC-PapersOnLine. 49, 78–83 (2016). https://doi.org/10.1016/j.
ifacol.2016.07.014

45. Soukup, D., Huber-Mörk, R.: Convolutional neural networks for steel surface defect
detection from photometric stereo images. In: Bebis, G., et al. (eds.) ISVC 2014. LNCS, vol.
8887, pp. 668–677. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14249-4_64

46. Giben, X., Patel, V.M., Chellappa, R.: Material classification and semantic segmentation of
railway track images with deep convolutional neural networks. In: Proceedings International
Conference Image Processing ICIP, December 2015, pp. 621–625 (2015). https://doi.org/10.
1109/icip.2015.7350873

47. Gibert, X., Patel, V.M., Chellappa, R.: Robust fastener detection for autonomous visual
railway track inspection. In: 2015 IEEE Winter Conference on Applications of Computer
Vision, pp. 694–701 (2015)

48. Santur, Y., Karaköse, M., Akin, E.: A new rail inspection method based on deep learning
using laser cameras (2017)

49. Santur, Y., Karakose, M., Akin, E.: An adaptive fault diagnosis approach using pipeline
implementation for railway inspection. Turk. J. Electr. Eng. Comput. Sci. 26, 987–998
(2018). https://doi.org/10.3906/elk-1704-214

50. Rauschmayr, N., Hoechemer, M., Zurkirchen, M., Kenzelmann, S., Gilles, M.: Deep
Learning Of Railway Track Faults using GPUs Swiss Federal Railways (SBB) Swiss Center
for Electronics and Microtechnology (CSEM) (2018)

51. Dai, P., Du, X., Wang, S., Gu, Z., Ma, Y.: Rail fastener automatic recognition method in
complex background. In: Tenth International Conference Digital Image Processing (ICDIP)
2018, vol. 314, p. 1080625 (2018). https://doi.org/10.1117/12.2503323

52. Ritika, S., Rao, D.: Data augmentation of railway images for track inspection (2018)
53. García, V., Sánchez, J.S., Mollineda, R.A.: On the effectiveness of preprocessing methods

when dealing with different levels of class imbalance. Knowl.-Based Syst. 25, 13–21 (2012).
https://doi.org/10.1016/j.knosys.2011.06.013

54. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21,
1263–1284 (2009). https://doi.org/10.1109/TKDE.2008.239

55. Nectoux, P., et al.: PRONOSTIA : an experimental platform for bearings accelerated
degradation tests. In: IEEE International Conference on Prognostics and Health Manage-
ment, pp. 1–8 (2012)

56. Ribeiro, M.T., Guestrin, C.: Why should I trust you ? Explaining the predictions of any
classifier (2016)

104 M. Chenariyan Nakhaee et al.

http://dx.doi.org/10.1108/JQME-11-2016-0059
http://dx.doi.org/10.1108/JQME-11-2016-0059
http://dx.doi.org/10.1016/j.ijleo.2018.11.053
http://dx.doi.org/10.1016/j.ijleo.2018.11.053
http://dx.doi.org/10.1061/JTEPBS.0000173
http://dx.doi.org/10.1007/978-3-662-44415-3_24
http://dx.doi.org/10.1016/j.ifacol.2016.07.014
http://dx.doi.org/10.1016/j.ifacol.2016.07.014
http://dx.doi.org/10.1007/978-3-319-14249-4_64
http://dx.doi.org/10.1109/icip.2015.7350873
http://dx.doi.org/10.1109/icip.2015.7350873
http://dx.doi.org/10.3906/elk-1704-214
http://dx.doi.org/10.1117/12.2503323
http://dx.doi.org/10.1016/j.knosys.2011.06.013
http://dx.doi.org/10.1109/TKDE.2008.239

57. Jamshidi, A., Nunez, A., Li, Z., Dollevoet, R.: Maintenance decision indicators for treating
squats in railway infrastructures. In: Transportation Research Board 94th Annual Meeting
(2015)

58. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling,
analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015). https://doi.org/10.1016/j.cosrev.
2015.03.001

59. Nauta, M., Bucur, D., Stoelinga, M.: LIFT: learning fault trees from observational data. In:
McIver, Annabelle, Horvath, Andras (eds.) QEST 2018. LNCS, vol. 11024, pp. 306–322.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2_19

The Recent Applications of Machine Learning in Rail Track Maintenance 105

http://dx.doi.org/10.1016/j.cosrev.2015.03.001
http://dx.doi.org/10.1016/j.cosrev.2015.03.001
http://dx.doi.org/10.1007/978-3-319-99154-2_19

Safe and Time-Optimal Control
for Railway Games

Shyam Lal Karra(B), Kim Guldstrand Larsen, Florian Lorber, and Jǐŕı Srba

Department of Computer Science, Aalborg University,
Selma Lagerløfs Vej 300, 9220 Aalborg East, Denmark

kgl@cs.aau.dk

Abstract. Railway scheduling is a complex and safety critical problem
that has recently attracted attention in the formal verification commu-
nity. We provide a formal model of railway scheduling as a stochastic
timed game and using the tool Uppaal Stratego, we synthesise the
most permissive control strategy for operating the lights and points at
the railway scenario such that we guarantee system’s safety (avoidance of
train collisions). Among all such safe strategies, we then select (with the
help of reinforcement learning) a concrete strategy that minimizes the
time needed to move all trains to their target locations. This optimizes
the speed and capacity of a railway system and advances the current
state-of-the-art where the optimality criteria were not considered yet.
We successfully demonstrate our approach on the models of two Dan-
ish railway stations, and discuss the applicability and scalability of our
approach.

1 Introduction

Railway networks are complex safety critical systems where one has to guaran-
tee safety despite the unpredictable behaviour of external factors influencing the
system operation. This unpredictable behaviour arises from the fact that the
durations taken by trains to change positions in the railway network are influ-
enced by human operators as well as other factors like weather conditions etc. In
addition to that, trains can move concurrently on multiple independent tracks
and it becomes hard to manually control the lights and points (switches) in
order to avoid trains collisions or derailment. This becomes particularly impor-
tant, once we try to increase the throughput in the railway network and minimize
the train travel times, as this requires more concurrency where dangerous sit-
uations can be easily overlooked by a human operator. There is hence a clear
demand on the employment of automatic methods that will assist with a safe
and time-optimal operation of a railway network, and this is the main focus of
our paper.

We shall first introduce our railway scheduling problem by an example. An
instance of the problem is given in Fig. 1 and consists of two trains, each travelling
in a given (and fixed) direction. At any moment, each train is placed on a

c© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 106–122, 2019.
https://doi.org/10.1007/978-3-030-18744-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-18744-6_7

Safe and Time-Optimal Control for Railway Games 107

Fig. 1. A railway network with two trains t0 and t1, four points p0, p1, p2 and p3, nine
sections s0 . . . s8 and three lights l0, l1 and l2.

clearly identified part of a track called section. In our example, the train t0 is
located at the section s1 and travels from the left end-point of the section to its
right end-point, assuming that the duration of such a move has some predefined
probabilistic distribution with the expected value of 2 time units. Similarly, the
train t1 starts at the right end-point of section s3 and moves in the right-to-
left direction with the expected travel time of 4 time units to cross section s3.
Sections are connected with points (switches), like the point p0 that depending
on its mode can connect the section s3 with either the section s7 as depicted in
our figure, or with the section s0. Ends of sections can be guarded by lights that
signal to the trains whether they are allowed to leave a given section and move
to the connected section (depending on the mode of the points). We assume that
passing a point is instantenious and that trains follow the light signals (i.e. never
pass a light that is red).

The railway scheduling problem (also known as dynamic routing problem) is
given by a track layout together with the initial positions of trains in the network
and the target positions (sections) for each train. The role of the controller is to
operate the lights and points such that the trains move to their target positions
in a safe way (without the possibility of a collision, under the assumption that
they respect the lights), while at the same time optimizing the time it takes
before all trains arrive to their target sections.

Returning to our example, let us assume that the target section for the train
t0 is s6 and that the trains t1 aims to reach s0. Note that we can change the points
so that both trains simply drive straightforward and reach the target sections
without the risk of a crash. However, the controller has an alternative choice
for the train t0 to navigate it through the sections s7, s3 and s8 instead, where
the expected arrival time is shorter than passing through the section s4. Now,
the optimal strategy depends on the fact how fast the train t1 leaves the section
s3. If it does so early (depending on the respective stochastic distribution), then
it is worth for the controller to direct the train t0 along the faster route that
includes the section s3, otherwise (in case t1 is for some reason delayed) it is
more time-optimal to guide the train t0 in the straight line.

108 S. L. Karra et al.

In our work, we propose a method to construct such smart/adaptive con-
trollers that guarantee both safety and time optimal behaviour. We propose a
two-step controller synthesis procedure, which in the first step ensures safety, and
in the second step optimises the controller to reduce the time needed for all trains
to reach their goals. To achieve this, we first introduce a formal model of railway
games and provide its encoding to the tool Uppaal Stratego [6]. Uppaal
Stratego first computes the most permissive strategy for the given railway
game represented as a two-player game. Here the controller decides the modes
of points and light configurations, while the opponent (environment) moves the
trains around in the network, respecting the lights guarding each section. The
speed of the trains in this game is completely unconstrained, meaning that they
may stay in a section forever or move immediately to the other end of the
section without any time contraints. This guarantees that the synthetised strat-
egy is safe, irrelevant of the speed of the trains (including the possibility that
a train breaks and does not move at all). The tool Uppaal Stratego is able
to synthesise the most permissive strategy that includes all safe operations of
the railway network. In the second step, we add stochastic behaviour to the
trains so that they take a random amount of time for crossing a section which
is chosen according to the rates for a given probabilistic distribution associated
with the train and the concrete section in the network. From all safe strategies,
we then (again using Uppaal Stratego) select the fastest one by employing
reinforcement learning. This provides us with the control strategy that is (near)
time-optimal and provably safe.

Our main contributions can be summarized as follows:

– We generalize previous attempts to solve the train scheduling problem by
allowing for concurrent moves of trains and we extend the existing railway
models with stochastic information about the expected times for trains to
travel along a section.

– We provide both the untimed and timed semantics for a railway network
that allows us to argue about safety and time-optimality and we show their
encoding in the model of stochastic timed automata.

– We explain the application of the tool Uppaal Stratego for solving network
scheduling problems and by means of two existing railway stations in Aalborg
and Lyngy, we prove that the tool is able to compute safe and near-optimal
control strategies.

Related Work. Railway safety was studied e.g. in [3,5,14,16] with a focus
on model checking of safety properties in railway networks, however, these
approaches do not consider controller synthesis.

The work in [12] considers controller synthesis problem for the railway
scheduling problem and the safety condition by translating it to strictly alternat-
ing two-player game and provides a number of abstractions in order to reduce
the state space of the underlying game graph. In [10] this approach has been
explored with the use of on-the-fly controller synthesis techniques, however, these
approaches do not allow for concurrent train moves in order to reduce the com-
plexity of the problem. The controller synthesis problem for railway network

Safe and Time-Optimal Control for Railway Games 109

safety and deadlock avoidance was addressed in [9] by its modelling in Petri
nets. In [11] automatic generation and verification of formal safety conditions
from an interlocking tables of a relay interlocking system are discussed. How-
ever, none of these approaches consider the timing aspects in combination with
controller synthesis and to the best of our knowledge, our work is the first one
that synthetizes a schedule that is both safe and time-optimal at the same time.

Uppaal Stratego has been used in several case studies, where first a safe
strategy is generated, and then an optimization step is performed. Examples
include adaptive cruise control [13] and the intelligent control of traffic lights [8].
While the approach for the controller synthesis used in this paper is similar to
these works, it is applied to a completely new area, which requires an efficient
modeling of problem and nontrivial effort in order to boost the performance of
the tool, including the use of a new learning method recently implemented in
Uppaal Stratego.

2 Formal Definition of Railway Games

We first introduce a game graph that is used to give the semantics to our railway
scheduling problem. A game graph is a tuple G = 〈V, , , v0,Bad,Goal 〉
where V is a finite set of vertices, ⊆ V ×V is the set of controller transitions,

⊆ V × V is the set of environmental transitions, v0 ∈ V is the initial vertex,
Bad ⊆ V is the set of bad vertices where controller loses and Goal ⊆ V is the
set of vertices controller aims to eventually reach.

Given a game graph G, a run is a finite or infinite sequence ρ = 〈v0, v1, v2, . . .〉
of vertices such that either vi vi+1 or vi vi+1 for every relevant i. A run ρ
is a maximal run if it is either infinite or ρ = 〈v0 . . . vk〉 and there is no vk+1

such that vk vk+1 or vk vk+1. The set of all maximal runs starting at the
vertex v0 is denoted by MaxRuns(v0).

A controller strategy σ : V ↪→ V is a partial function such that for every
v ∈ V we have v σ(v) or σ(v) is undefined in case that v has no outgoing
controllable transitions. Given a strategy σ, the outcome of the game under σ
from the vertex v0 is defined as the set of all possible maximal runs that follow
the strategy σ, formally

Outcomeσ(v0) =
{〈v0, v1, . . .〉 ∈ MaxRuns(v0) | vi vi+1 or σ(vi) = vi+1 for all i}.

A run ρ = 〈v0, v1, . . .〉 is called safe if there is no i such that vi ∈ Bad.
A strategy σ is a safe strategy if all the runs from Outcomeσ(v0) are safe. A
strategy σ is a winning strategy if it is safe and for every run ρ = 〈v0, v1 . . .〉 ∈
Outcomeσ(v0) there is an i such that vi ∈ Goal.

2.1 Railway Topology

We are now ready to formalise the railway topology. A railway topology is
a tuple R = (S, P, L, γ,E) where S = {s0, s1 . . . sm}, P = {p0, p1 . . . pr}

110 S. L. Karra et al.

and L = {l0, l1, l2 . . . lt} are the sets of sections, points and lights, respec-
tively. Each section s ∈ S has two ends denoted by s.left and s.right and
each point p has three ends p.up, p.down, p.main. We shall use the notation
Sends = {s.left, s.right | s ∈ S} and P ends = {p.up, p.down, p.main | p ∈ P}.
The injective function γ : L → Sends assigns each light to a section. A light at
a left (right) end of a section can only control a train moving on that section
in the direction right to left (left to right). Finally, the connectivity of the sec-
tions and points is represented by undirected edges E such that E ⊆ [V]2 where
V = P ends ∪ Sends and [V]2 = {Z ⊆ V | |Z| = 2} satisfying

– if e1 �= e2 then e1 ∩ e2 = ∅ for all e1, e2 ∈ E,
– {s.left,s.right} /∈ E for each section s ∈ S, and
– for each p.z ∈ P ends there is an s.x ∈ Sends such that {p.z, s.x} ∈ E.

In other words, each end can connect to at most one other end, we allow point
ends to connect only to section ends and section-loops as well as isolated point
ends are not allowed.

2.2 Untimed Semantics of Railway Games

Consider a railway topology R = (S, P, L, γ,E). We shall define its associated
game graph for a given number of trains T = {t0, t1 . . . tk−1}. The vertices of
the game graph consist of configurations where each train is located at a section
end and has a direction in which it is moving. For each point p ∈ P , a mode
up/down is associated with it in the configuration, indicated by p.mode. Finally,
for each light l ∈ L, there is a colour red/green associated with it in a given
configuration. The underlying semantics is given as a game graph GR = 〈C, ,

, c0,Bad,Goal〉 defined in the rest of this section.

Configurations. The set of configurations is C ⊆ (Sends × {left, right})T ×
{up, down}P × {red, green}L so that a configuration c ∈ C is a triple of three
functions of the form (pos,mod, col) where

– pos : T → Sends×{left, right} stores the location and direction of each train t ∈
T . For each train t ∈ T , pos(t) is an ordered pair of the form (pos1(t), pos2(t))
where pos1(t) indicates the section end in which t is currently located and
pos2(t) indicates the train direction,

– mod : P → {up, down} records the mode of each point, and
– col : L → {red, green} remembers the current lights setting.

We assume a given initial configuration c0 with the initial placement of
all trains and a fixed color lights and modes of points, as well as a set of
goal configurations Goal where all trains are in their target sections and the
positions of points and light colors can be arbitrary. The set Bad contains
all configurations where two trains are located on the same sections, for-
mally Bad = {(pos,mod, col) ∈ C | there is t, t ′ ∈ T where t �= t′, pos1(t) =
s.x and pos1(t ′) = s.y for some x,y ∈ {left,right}}.

Safe and Time-Optimal Control for Railway Games 111

Transitions. We shall first define a function nextSec :
(
Sends × (P →

{up, down})
) → Sends that, given the modes of points, determines what are

the neighbouring sections in the network (we assume that x,y ∈ {left,right} and
z ∈ {main, up, down}):

– nextSec(s.x,mod) = s ′.y if {s.x, s ′.y} ∈ E
– nextSec(s.x,mod) = s ′.y if there exists a p ∈ P such that {s.x, p.z} ∈ E and

• z =main and mod(p) =up such that {p.up, s ′.y} ∈ E, or
• z =main and mod(p) =down such that {p.down, s ′.y} ∈ E, or
• z =down or z =up such that {p.main, s ′.y} ∈ E

– nextSec(s.x,mod) = s.x otherwise.

Let c = (pos,mod, col) be a configuration from C. We shall also define a
set of movable trains movableTrains(pos, col) ⊆ T that, given the position of
trains and colours of all lights, returns the set of all trains (if any) that are
at the end of their sections and their corresponding lights (if any) are green
in colour. Formally, movableTrains(pos, col) = {t ∈ T | pos(t) = (s.x, x) where
x ∈ {left,right} and col(l) = green for all l ∈ L such that γ(l) = s.x}.

We are now ready to define the controllable and environmental transitions
in the graph.

Controllable Transitions: These are transitions modelling the moves made by
the controller in the game. Whenever there is a train at the end of a section,
the controller can change the modes of points and the colours of lights, with the
restriction that if a train is moving in a section where there is green light, it is
not allowed to suddenly change it to red (as instanteniously stopping a moving
train is not a realistic behaviour). The controller move is finished by placing all
movable trains to the connected sections, unless there is a train that can crash
to another train, in which case this train moves alone and the crash is detected
by the fact that the target configuration belongs to the set Bad . Formally, we
write (pos,mod, col) (pos ′,mod ′, col ′) if

– there exists a t ∈ T such that pos(t) = (s.x, x) where x ∈ {left,right},
– for every t ∈ T where pos(t) = (s.y, x) for x, y ∈ {left,right} if for every light

l ∈ L where γ(l) = s.x holds col(l) = green then col ′(l) = green,
– and moreover

• if there is t ∈ movableTrains(pos, col ′) s.t. nextSec(pos1(t),mod ′) = pos(t′)

for some t′ ∈ T �{t} then pos ′(t) =
(
nextSec

(
pos1(t),mod ′), pos2(t)

)
and

for every other t′ ∈ T � {t} we have pos ′(t′) = pos(t′),

• otherwise pos ′(t) =
(
nextSec

(
pos1(t),mod ′), pos2(t)

)
for every

t ∈ movableTrains(pos, col ′) and pos ′(t′) = pos(t′) for every other t′.

Environmental Transitions: Finally, we can define the transitions controlled by
the environment modelling the uncertainty whether the trains move along the
sections and what set of trains move concurrently. We define (pos,mod, col)
(pos ′,mod, col) if

112 S. L. Karra et al.

– movableTrains(pos, col) = ∅,
– for every t ∈ T either pos ′(t) = pos(t), or pos ′(t) = (s.y,y) provided that

pos(t) = (s.x,y) for x, y ∈ {left,right}), and
– pos �= pos ′.

The first condition guarantees that if there are some movable trains at the end
of the sections, then they move to their neighbouring sections (by means of con-
trollable transitions). The second condition gives the environment the freedom
to decide any subset of trains that (concurrently) arrive at the ends of their
respective sections and the last conditions guarantees that at least one train
moves in order to guarantee progress (we want to avoid environmental self-loops
as the game will not have any winning strategy in this case). Notice that the
environment cannot influence the modes of points nor the setting of lights.

Example 1. The railway network shown in Fig. 1 is in the initial configuration
c0 = (pos,mod, col) where pos(t0) = (s1.left, right), pos(t1) = (s3.right, left), and
mod(p0) = mod(p1) = up, mod(p2) = mod(p3) = down, and say that col(l0) =
col(l1) = col(l2) = red. There are no controllable transitions in c0 as no trains
are at the ends of the sections, i.e., movableTrains(pos, col) = ∅. However, the
environment can move either the train t0 from s1.left to s1.right or the train
t1 from s3.right to s3.left, or both of them at the same time. Suppose it is the
second case and the train t1 arrives at s3.left . Now the controller can swap the
mode of p0 and set the light l2 to green, which implies that the train t1 moves
to s0.right . Now it is the environmental turn and say that the train t0 arrives
to s1.right . The controller can safely set the light l1 to green and without any
further control, also the train t0 eventually arrives to its target section s6.

2.3 Stochastic Semantics for Railway Games

In the railway game provided in the previous section, the movement of trains
along sections has been purely discrete with no information about the timing
of these movements. In this section we refine this view by assuming that the
time it takes a train t to pass a section s is given by a distribution μt,s. Here
we shall assume that the passage-time distributions are given by exponential
distributions. Choosing exponential distributions simplifies the technical presen-
tation due to the memoryless property of exponential distributions, however, in
Uppaal Stratego there is a support for several other distributions as well as
for the possibility to make the distribution parameters depend on weather con-
ditions and other external factors (see [7]). However, assuming only knowledge
about the expected passage-time, exponential distribution is anyway the most
appropriate choice in terms of entropy.

A stochastic railway game for a set of trains T is a tuple (S, P, L, γ,E,R),
where (S, P, L, γ,E) is a railway game and R : T × S → R≥0 provides for
each train t ∈ T and each section S the rate R(t, s) of an exponential distribu-
tion being the passage-time distribution μt,s. We recall that for an exponential
distribution with rate r, the density of passage-time d is r exp−r·d, and the prob-
ability that the passage-time will be less than d is 1−exp−r·d. Also, the expected

Safe and Time-Optimal Control for Railway Games 113

passage-time is 1
r . Finally, given two trains t1 and t2 with passage-time rates r1

and r2, the probability that t1 completes its passage first is r1
r1+r2

.
In the full railway game, various trains (all the ones that are not stopped by

a red light at the end of a section) are independently moving along different sec-
tions simultaneously with the passage-times given by exponential distributions
with rates prescribed by R. One of these trains will reach its end first1. This calls
for a stochastic refinement of the uncontrolled train transitions of the railway
game. Consider the untimed train transition (pos,mod, col) (pos ′,mod, col),
where train t – non-deterministically choosen between the moving trains – is
the unique train reaching the end of its section s, i.e. pos(t) �= pos ′(t). In the
stochastic refinement we will assign a density δ for this transition happening at
time d. Now let M ⊆ T describe the set of trains moving excluding the winning
train t. Also for t′ ∈ M , let s(t′) denote the section along which t′ is moving.
Then a timed train transition is of the form:

(pos,mod, col) d
δ(pos

′,mod, col)

where d is a passage-time and δ is given by:

δ = R(t, s) · exp−R(t,s)·d ·
∏

t′∈M

exp−R(t′,s(t′))·d

In the above the first two terms of the product – R(t, s) · exp−R(t,s)·d – is the
density that train t passes section s in d time-units. However, the density δ of
the train transition must also reflect that t is the first train to reach the end of
its section. This is expressed by the last product term. Note that exp−R(t′,s(t′))·d

is the probability that train t′ has not completed the passage of its section s(t′)
in d time-units. Due to the assumed independence of the passage-times of trains,
the product among all these equals the probability that no other moving train
but t has reached the end of its section before d.

The above notion of density of a timed train transition extends to densities
on finite timed runs by simple multiplication of the densities of the timed train
transitions appearing in the run. Now constrained by a strategy σ, the railway
game becomes fully stochastic as the non-deterministic choices of the controller
are resolved by the strategy. Hence – by integration and addition – the densities
on runs determine a probability measure Pσ on sets of outcomes under σ. In
particular, for a given strategy σ we may determine the probability of the set of
runs leading to a crash of two trains. If no crash under the strategy can occur,
we may determine the expected time until all trains have reached their goal.

Example 2. Reconsider the railway network from Fig. 1. Assume that all lights
are green (sounds dangerous, and it is!). A possible control strategy σ1 could try
to avoid disaster by turning point p2 up once any of the two trains reached the
end of the initial section. However, there is still a possibility of crash as train t1

1 The event that two or more trains reach the end of their sections simultaneously has
measure zero and may be ignored.

114 S. L. Karra et al.

may complete both sections s3 and s7 before train t0 completes section s1. The
following shows that the probability of this is 2

9 .

Pσ1(Crash) = Pσ1(t1 completes s3 and s7 before t0 completes s1)
= Pσ1(t1 completes s3 before t0 completes s1) ·

Pσ1(t1 completes s7 before t0 completes s1)

=
1
4

1
4 + 1

2

·
1
1

1
1 + 1

2

=
1
3

· 2
3

=
2
9

Example 3. Again consider the railway network from Fig. 1. In this scenario we
assume that all lights are initially red (sounds better from a safety point of view).
Here we consider a safety strategy σ2, where whenever a train (t1 respectively
t0) reaches its end the corresponding light (l2 respective l1) is turned green and
at the same time the corresponding point (p0 respective p2) is moved (down
respectively up). This strategy guarantees safety, so the probability of the two
trains crashing is 0. The expected time until both trains are at their goal location
under σ2 is 13 as seen by:

Eσ2 [Goal] = max
{
Eσ2 [t1 in goal], Eσ2 [t0 in goal]

}

= max{4 + 2, 2 + 2 + 7 + 2} = 13

Example 4. As a final example, consider yet again the railway network from
Fig. 1. Let us first consider that t0 is the first train to reach the end of its
section. The optimal strategy σo for the controller is now to move p2 up, and
drive straight for the goal, with an expected time of 13. If, however, t1 is the
train to reach its end first, t0 can move through the sections s7, s3, s8, with an
expected time of 8. The expected time for both trains to reach their goal under
this strategy is 12.3, as calculated below.

Eσo
[Goal] = max{Eσo

[t1 in goal], Eσo
[t0 in goal]}

= max
{
4 + 2, Pσo

(t0 completes s1 before t1 completes s3)
·(2 + 2 + 7 + 2) +

Pσo
(t0 completes s1 after t1 completes s3)
·(2 + 1 + 4 + 1 + 2)

}

= max
{
4 + 2,

7
9

· 13 +
2
9

· 10
}

= 12.3

3 Railway Games in Uppaal Stratego

After having introduced the theoretical foundations of our untimed railway game
and its stochastic extension, we shall discuss the encoding of our approach into
timed automata in the Uppaal-style and use the tool Uppaal Stratego [6]
to synthetise (near) time-optimal and safe control strategies.

Safe and Time-Optimal Control for Railway Games 115

Fig. 2. An example of a timed game automaton of the tool Uppaal Stratego

3.1 Translation to Timed Game Automata

Uppaal Stratego uses timed game automata as models, which are an exten-
sion of timed automata [2]. Timed automata extend finite state machines with
a number of real-valued clocks that enable them to measure the progress of
time. The automata used by Uppaal are extended further, by allowing for addi-
tional model features, e.g. C-like syntax, explained below. Timed game automata
additionally divide transitions into controllable and uncontrollable transitions.
Figure 2 provides an example of a timed game automaton in Uppaal Stratego,
containing all feature used in the presented models. The automaton consists of
one location (Loc1), which contains an exponential rate (2) determining how
long we have to stay in that location before performing a transition. The tran-
sition on top is controllable, denoted by the solid line. The controller can only
execute the transition, if the turn variable is currently 0. The transition sends a
signal (PlayerMove!) to other automata (run in parallel and not showed in the
figure) when executed. Finally, the controller can choose a value for the variable
temp, which will be assigned to the global variable turn. If it assigns the value 1,
its the opponent’s turn, which means it can execute the transition below (dotted
line). Before such a transition is executed, we again delay according to the expo-
nential rate of the location, and the opponent can choose to keep broadcasting
on the channel OpponentMove! until it decides to change the value of turn.

Fig. 3. Controller of a railway game modelled as a timed automaton

When encoding our railway games into Uppaal Stratego, we applied
two main optimizations in order to reduce the state space of the games. One

116 S. L. Karra et al.

Fig. 4. A train in a railway game modelled as a timed automaton

optimization was inspired by [12], and it separates lights and points into rele-
vant and irrelevant sets. Only lights that are on sections currently occupied by a
train are considered relevant for the controller. The same applies to points, that
is, only points connected to occupied sections are relevant. When the controller
moves, it can only change the configuration of currently relevant lights/points.
All other lights/points are set to their default values (red/down). The second
optimization is a static analysis of the railway network. For each train we per-
form an exploration of the connectivity in railway network and collect all the
sections it may visit in order to be still able to reach its target section. If a
mode of a given point leads to a section from which it is not feasible to move
the train to its target location, we remove this mode choice from the controller
for this specific train. This further reduces the state-space that Uppaal Strat-
ego needs to explore during the controller synthesis. Both optimizations do not
change the existence of winning strategies nor remove any time-optimal strate-
gies. Another optimization was to enforce green light for at least one train, every
time the controller sets the lights. This will ensure progress by forcing at least
one train to move at any given point.

Figures 3 and 4 show a (simplified) example of the used timed automata
models2. The models are split into one automaton for the controller, and one
automaton for each train. Only one template of the trains is shown. In addition,
the Uppaal files contain C-line code, including variables for storing the layout
of the stations, and the current configuration.

In Fig. 3 we show the controller: the controller is responsible for initializing
the railway station (setting all the variables for the layout), before the game
starts. After that, it can chose the mode of the relevant lights, setting them to
either green or red. Then it can set the mode of the relevant points. In this
example, we consider only two trains, hence only two lights/points need to be
set here. After setting the lights and points, if there is a possibility for a crash,
the controller sets the crash variable to true. Note that if the controller has a
winning strategy, this will never occur. If no train can crash, all trains that are
waiting for green light are notified that the configuration changed. When these

2 Our experiment files can be found online at http://people.cs.aau.dk/∼florber/
TrainGames/ExperimentFiles.rar.

http://people.cs.aau.dk/~florber/TrainGames/ExperimentFiles.rar
http://people.cs.aau.dk/~florber/TrainGames/ExperimentFiles.rar

Safe and Time-Optimal Control for Railway Games 117

steps are done, the controller waits for a train to arrive at the end of a section,
at which point it will be able to change the settings again.

Figure 4 illustrates a train: initially, trains are starting at the end of a section,
waiting to pass to the next section. If the train receives the signal that the
configuration was changed (moveWaitingTrains?) and is has green light now, it
can move to the next section and start driving there. When a train moves to the
next section, several variables are updated. First, the train updates its current
position according to the nextSec function, then it checks whether it reached its
final destination, and finally it updates its rate to the rate of the section it is
currently driving on. If it reaches the end of the section, it will signal this to the
controller, which is done via sending the trainArrived! signal. The duration until
a train reaches the end of a section is given by the rate of the current section,
which in the figure is illustrated next to the driving location.

In Fig. 5 is an excerpt of the nextSec function implemented in case of the
railway network shown in Fig. 1 which either reports a crash or returns the next
section end of the train, depending on the settings of points and lights. For
example, if the current position of the train is s1.right (stored in the variable
pos), the train is going towards the right, the light l1 is green and point p2 is in
down mode, the train ends up in s7.left. Now if s7 is already occupied then it
results in a crash otherwise the position of the train is updated accordingly.

section_End nextSec(int tId){
...

pos=currentPosition[tId];

if(pos == s1.right and dir == right)

if(colour[1] == green)

if(mode[2]= down)

if(sectionOccupied[7] == false) pos=s7.left;

else crash=true;

else

if(sectionOccupied[2] == false) pos=s2.left;

else crash=true;

else

pos=s1.right;
...

return pos;

}

Fig. 5. Fragment of Uppaal C-code for changing a train position

118 S. L. Karra et al.

G
Timed

Train Game
Safety

Strategy

P
Stochastic

Timed
Train Game

P|

Safety property φ
synthesis

UPPAAL TIGA

abstraction

optimized
Strategy

synthesis
(learning)

Cost
UPPAAL Stratego

Fig. 6. Overview of the functionality of Uppaal Stratego

3.2 Uppaal Stratego

Uppaal Stratego [6] combines the two branches Uppaal TIGA [4] and
Uppaal SMC [7]. Uppaal TIGA provides an on-the-fly algorithm for synthesis
of reachability and safety objectives for timed games. Uppaal SMC provides
statistical model-checking for stochastic timed games. The workflow of Uppaal
Stratego which combines the two tools can be seen in Fig. 6. To run Uppaal
Stratego, one has to define queries for the model checker. We used two types
of queries to generate the strategies.

The query below synthesises the safe strategy. It asks the model checker for
a control strategy, such that the Boolean variable crash is always false.

strategy safe = control:A[] not crash

The optimization of our strategy with machine learning requires the specification
of a cost function. In our case, the cost is given by the time passing, while there
is a reward for bringing a train to its destination. We simulate for at most 151
time units (or until all trains exited), thus we set the reward to 150, such that
exiting the train is always of higher priority than ending fast. This optimization
is performed while adhering to the safe strategy. The query is given below.

strategy opt = minE (time - 150*(exited[0])) [<=151]:
<> (time>=150 || exited[0]) under safe

The second step does not provide necessarily the time-optimal strategy (as the
problem is in general undecidable), however, by the use of reinforcement learning
it approaches the optimal solution and works convincingly in practice.

4 Experiments

We shall now present the experiments and results we achieved using Uppaal
Stratego. We analyzed two Danish railway stations, Aalborg and Lyngby.
The railway layout for Lyngby was based on the layout presented by Kasting
et al. [12] that we extended by the rates associated to each section. The layout
used for Aalborg is based on a track plan found online [1] where we considered

Safe and Time-Optimal Control for Railway Games 119

Table 1. Specifics about the Lybgy and Aalborg station

Station # Sections # Lights # Points # Trains

Lyngby 11 14 6 2 to 5

Aalborg 26 41 14 2 to 5

the main tracks, disregarding the cargo tracks. We assumed that each entry to
a point is guarded by a light. The rates for both stations were estimated by
using Google Maps to figure out the length of the sections, and assuming that
trains drive with 80 kmh outside of the station, and 40 kmh in the proximity of
the platforms. To achieve that all rates are higher than 1, the rates of Lyngby
were multiplied by 66, and all rates in Aalborg by 20. Thus, one time unit in an
experiment with Lyngby/Aalborg below corresponds to 66/20 s, respectively.

4.1 Setup

We considered the problem with 2, 3, 4 and even 5 trains concurrently moving
at the station in order to explore the scalability of our approach. The initial and
final locations for the trains in the Lyngby station were chosen similarly to [12].
The trains in Aalborg are placed in a way to make their travel as complex as
possible, i.e., they always have to travel from one side to the other, taking several
points and cross each others paths. The models with less than 5 trains were
produced by removing trains from the complete model with a maximum number
of trains. The specifics about the stations can be found in Table 1, showing that
Aalborg is about twice the size of Lyngby. The experiments were executed on
AMD Opteron 6376 processor running at 2,3 Ghz with 10 GB memory limit.

4.2 Results

In Table 2 we report on the time to compute the safety strategy. The runtime
for computing the strategy depends on the size of the station and, as expected,
it grows exponentially with the number of trains (Aalborg with 5 trains timed
out). This means that for this high number of trains, the proposed approach is
at the moment infeasible without further state-space reductions. However, even
at the larger stations like Aalborg, in reality there should rarely be more than
three trains approaching the station at the same time.

Table 2. Time (in seconds) for computing the most permissive safe strategy

Station 2 Trains 3 Trains 4 Trains 5 Trains

Lyngby 0.04 0.16 3.37 55.93

Aalborg 0.24 16.57 858.91 timeout

120 S. L. Karra et al.

Table 3. Strategy optimization, including the runtime of safe strategy synthesis (in
seconds), and the expected time until all trains reach their destinations

Station Aal2 Aal3 Aal4 Aal5 Lyn2 Lyn3 Lyn4 Lyn5

Uppaal runtime 650.53 1501.46 3990.49 — 66.79 143.86 244.38 382.33

Expected time 1.8 2.62 2.65 — 1.06 2.6 2.27 2.72

Fig. 7. 1000 random runs on Lyngby, the right plot is under the optimized strategy

In Table 3 we investigate how Uppaal Stratego performs in optimizing
the constructed safe strategy. We use a currently unpublished learning method
of Uppaal Stratego relying on Q-learning [15]. We use 50 iterations and each
of 1000 runs for learning the strategies for Lyngby, and 5000 runs for Aalborg,
as the increased state-space requires a higher learning effort. We report the time
needed to produce the safe strategy plus to its optimization in Uppaal Strat-
ego, the expected time until all trains reach their goals under the synthesised
strategies where e.g. Aal3 means the Aalborg station with 3 trains. The expected
time was computed by simulating 2000 random runs under the strategy. The pre-
sented values are an average computed from repeating the experiments 20 times.
The stochastic nature of the trains can of course influence the observed timed
behaviour, and lead to small time fluctuations in the expected time.

Figure 7 shows the frequency histogram of the arrival times of the train num-
ber 4 during 1000 simulations on Lyngby with 5 trains, where the unoptimized
safe strategy is on the left side and the guided optimized strategy is on the right
side. The x-axis represents the train arrival time in minutes and the y-axis the
number of times the train arrived at the given time. Clearly, the unguided strat-
egy has a majority of simulation where the train did not arrive within 8 min,
whereas the optimized strategy makes the train number 4 to arrive on average
in 1.6 min.

5 Conclusion

We presented a game-theoretic approach for controlling of a railway network
as a two player game between the controller (setting up the lights and modes

Safe and Time-Optimal Control for Railway Games 121

of points) and the environment (moving the trains). Our approach guarantees
safety (absence of trains simultaneously entering the same section) by computing
the most permissive safe strategy in the untimed game. This strategy is further
optimized in the model enhanced with stochastic semantics, approximating the
time trains use to travel across a section, in order to optimize the speed of trains
arriving to their target sections.

The main novelty of the proposed approach is the support for concurrently
moving trains and the synthesis of (near) time-optimal controllers that are safe.
Both these steps can be automatically realized in our tool Uppaal Stratego.
This is an important step towards reflecting the behaviour of trains in reality.
Our approach was demonstrated and evaluated on two Danish railway stations,
using different number of trains. The experiments clearly show the feasibility of
our approach, however, for one of the stations, the highest number of trains led
to a timeout, highlighting also the limitations of our current implementation.

In the future work, we shall work on improving the performance of our tool
and on applying reduction techniques in order to decrease the size of the state-
space, similarly as it was done in [10] for the untimed and strictly alternating
game. We will also look at the scheduling problem where each train has a pre-
defined route like in [11]; this is a realistic assumption and it will likely reduce
the complexity of the control synthesis. Furthermore, we can without any effort
use cost functions of different types e.g. to prioritize or penalize certain trains
depending on their importance. For further evaluation of our strategies, we plan
on making it easier to extract them from our tool, so that they can be applied to
simulations in other software or control directly model trains in a demonstrator
that we plan to build. Finally, in our railway model we made a few simplifying
assumptions that we plan to relax in our future work. For example, we shall add
a travel time through a point (at the moment we assume that it is instantaneous)
and make sure that points are not operated while trains are passing over them
in order to prevent derailment.

Acknowledgments. We would like to thank to Peter G. Jensen for his support with
the experiments and advice on Uppaal Stratego. We also thank the anonymous
reviewers for their detailed comments and in particular for pointing out a problem in
our original formal model that could have made the constructed controller potentially
unsafe. The research leading to these results has received funding from the project
DiCyPS funded by the Innovation Fund Denmark, the Sino Danish Research Center
IDEA4CPS and the ERC Advanced Grant LASSO. The fourth author is partially
affiliated with FI MU, Brno, Czech Republic.

References

1. Danish railway station plans. https://www.sporskiftet.dk/wiki/danske-spor-og-
stationer-sporplaner-og-link/. Accessed 14 Jan 2019

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

https://www.sporskiftet.dk/wiki/danske-spor-og-stationer-sporplaner-og-link/
https://www.sporskiftet.dk/wiki/danske-spor-og-stationer-sporplaner-og-link/

122 S. L. Karra et al.

3. Aristyo, B., Pradityo, K., Tamba, T.A., Nazaruddin, Y.Y., Widyotriatmo, A.:
Model checking-based safety verification of a Petri net representation of train inter-
locking systems. In: 2018 57th Annual Conference of the Society of Instrument and
Control Engineers of Japan (SICE), pp. 392–397, September 2018

4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

5. Cimatti, A., Giunchiglia, F., Mongardi, G., Romano, D., Torielli, F., Traverso, P.:
Formal verification of a railway interlocking system using model checking. Formal
Aspects Comput. 10(4), 361–380 (1998)

6. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–
211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 16

7. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transfer 17(4), 397–415 (2015)

8. Eriksen, A.B., et al.: Uppaal stratego for intelligent traffic lights. In: 12th ITS
European Congress (2017)

9. Giua, A., Seatzu, C.: Modeling and supervisory control of railway networks using
Petri nets. IEEE Trans. Autom. Sci. Eng. 5(3), 431–445 (2008)

10. Hansen, M.R.: On-the-Fly Solving of Railway Games (work in progress). Waldén,
M. (ed.), p. 34 (2017)

11. Haxthausen, A.E.: Automated generation of formal safety conditions from railway
interlocking tables. STTT 16(6), 713–726 (2014)

12. Kasting, P., Hansen, M.R., Vester, S.: Synthesis of railway-signaling plans using
reachability games. In: Proceedings of the 28th Symposium on the Implementation
and Application of Functional Programming Languages, IFL 2016, pp. 9:1–9:13.
ACM, New York (2016)

13. Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Safe and optimal adaptive cruise
control. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design.
LNCS, vol. 9360, pp. 260–277. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23506-6 17

14. Petersen, J.L.: Automatic verification of railway interlocking systems: a case study.
In: Proceedings of the Second Workshop on Formal Methods in Software Practice,
FMSP 1998, pp. 1–6. ACM, New York (1998)

15. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)
16. Winter, K.: Model checking railway interlocking systems. In: Proceedings of the

Twenty-fifth Australasian Conference on Computer Science, ACSC 2002, vol. 4,
pp. 303–310. Australian Computer Society Inc., Darlinghurst (2002)

https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-319-23506-6_17
https://doi.org/10.1007/978-3-319-23506-6_17

Safety Process and Validation

A Tool-Supported Model-Based Method
for Facilitating the EN50129-Compliant

Safety Approval Process

Faiz Ul Muram1 , Barbara Gallina1(B) , and Samina Kanwal2

1 School of Innovation, Design and Engineering, Mälardalen University,
Väster̊as, Sweden

{faiz.ul.muram,barbara.gallina}@mdh.se
2 National University of Sciences and Technology, Islamabad, Pakistan

saminakanwal5231@gmail.com

Abstract. Compliance with the CENELEC series is mandatory during
the planning of as well as development of railway systems. For compli-
ance purposes, the creation of safety plans, which define safety-related
activities and all other process elements relevant at the planning phase,
is also needed. These plans are expected to be executed during the devel-
opment phase. Specifically, EN 50129 defines the safety plan acceptance
and approval process, where interactions between the applicant and the
certification body are recommended: after the planning phase, to ensure
the compliance between plans and standards, and after the development
phase, to ensure the effective and not-deviating-unless-justified execution
of plans. In this paper, we provide a tool-supported method for facili-
tating the safety approval processes/certification liaison processes. More
specifically, the facilitation consists in guidance for modelling planned
processes and the requirements listed in the standards in order to enable
the automatic generation of baselines, post-planning processes and evi-
dence models, needed during the execution phase and change impact
tracking for manual monitoring of the compatibility between plans and
their execution. The applicability of the proposed method is illustrated
in the context of EN 50126-1 and EN 50129 standards.

Keywords: EN 50129 · EN 50126-1 · Safety management ·
Safety processes · Regulatory compliance · Safety plans ·
Model transformation

1 Introduction

In the context of railway systems engineering, the Comité Européen de Nor-
malisation Electrotechnique (CENELEC) standard series defines a set of norms
as well as a set of processes to be followed. Process planning is one of these
processes, which involves development of safety plans, which define: the units
of work (such as phases, activities, tasks), expected to be executed during the
c© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 125–141, 2019.
https://doi.org/10.1007/978-3-030-18744-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_8&domain=pdf
http://orcid.org/0000-0001-6613-4149
http://orcid.org/0000-0002-6952-1053
https://doi.org/10.1007/978-3-030-18744-6_8

126 F. Ul Muram et al.

development; a set of methods to be used; work products to be taken as input
or produced as output; involved roles, expected to take responsibility for the
execution of the work. In avionics, DO-178C [19], the de-facto standard for air-
borne software development defines the certification liaison process, where the
interactions (Stages of Involvement-SOI) between the applicant and the certifi-
cation body are expected to take place throughout the life-cycle of a project. In
particular, the first interaction (SOI#1) is expected to take place after the plan-
ning phase to ensure that plans are compliant with DO-178C objectives. The
second interaction (SOI#2) is expected to take place after the execution phase
to assess the project-specific implementation against the approved plans and
the DO-178C requirements (i.e., to ensure that the activities to be undertaken
are fully congruent). Similarly, in the context of railway systems, the EN 50129
standard [10] defines the reviews (safety acceptance and approval process), which
shall be carried out at appropriate stages in the life-cycle. For the safety plan
approval, a checklist of activities and items shall be produced in compliance with
the CENELEC standard series. The review of the safety plan after each safety
life-cycle phase is also recommended.

For getting the approval of safety plans from the certification body, the com-
pliance between the safety plans and the CENELEC standard series requirements
should be shown. Furthermore, for the getting the approval for the evidence pro-
duced during the development, compatibility between the executed process and
the planned process should also be shown. Therefore, it is necessary to pro-
vide a reference between the safety plans and the CENELEC standard series
requirements as well as a reference between the executed process (including
the corresponding evidence) and the planned process. Managing manually such
traceability is a tedious and challenging task because of the large amount of infor-
mation, which needs to be handled. Also, since most of the exiting approaches
used to document process models representing plans are natural language-based,
the automation of such task is hindered. To facilitate the approval process and
more specifically the automatic management of process-related compliance infor-
mation, in this paper, we provide a novel tool-supported method, which consists
of: guidance for modelling (in compliance with the Process Engineering Meta-
model (SPEM) 2.0 [18], and more specifically with its reference implementation,
implemented in EPF (Eclipse Process Framework) Composer1) safety plans and
the requirements listed in the standards in order to enable the execution of our
proposed model transformation for generating baselines, post-planning processes
and evidence models (in compliance with Common Assurance and Certification
Metamodel (CACM) [4], implemented in OpenCert2, which enables the evolu-
tion and traceability of models during the development phase), needed during
the systems development phase. The transformation is achieved by using Epsilon
Transformation Language (ETL)3. Specifically, a set of ETL transformation
rules are used to transform the CENELEC standard series requirements into the

1 https://www.eclipse.org/epf/.
2 https://www.polarsys.org/proposals/opencert.
3 https://www.eclipse.org/epsilon/doc/etl/.

https://www.eclipse.org/epf/
https://www.polarsys.org/proposals/opencert
https://www.eclipse.org/epsilon/doc/etl/

Method for Facilitating the EN50129-Compliant Safety Approval Process 127

baseline models and diagrams; whereas the safety processes are transformed into
the first-view of post-planning processed and evidence models. By automatically
generating baseline and evidence models within an environment that supports
traceability, this model transformation facilitates the compliance demonstration
and thus the plan and its substantiation’s approval. Moreover, once the modelling
of the standards is completed, process engineers might dedicate their time to
the manual production of portions of expected outputs/deliverables that strictly
require human intervention. The applicability of the proposed method is illus-
trated for EN 50126-compliant design specification [9] and EN 50129-compliant
safety plan acceptance and approval process [10], focusing on the safety demon-
stration for a generic product (i.e. independent of application).

The rest of this paper is organized as follows: Sect. 2 presents essential back-
ground information. Section 3 describes the tool-supported model-based method
for the transformation of standard compliant planned process models to baseline,
post-planning process and evidence models. Section 4 illustrates the application
of our approach for CENELEC EN 50126 and EN 50129 standards. Section 5
presents the related work. Finally, Sect. 6 concludes the paper and presents future
research directions.

2 Background

This section recalls the background information on which the presented work
is based: in particular, Sect. 2.1 recalls the necessary information regarding
the CENELEC standard series. Section 2.2 presents the process modelling lan-
guage used in this paper. Section 2.3 recalls basic information about EPF Com-
poser. Section 2.4 recalls essential information about CACM metamodel and the
OpenCert tool. Finally, Sect. 2.5 recalls basic information regarding model-driven
engineering principles and techniques.

2.1 CENELEC Series

The CENELEC series is a set of standards, which contains requirements and rec-
ommendations concerning processes to be followed during the planning, devel-
opment, deployment and maintenance of the railway systems. EN 50126-1 [9] is
part of the CENELEC series. EN 50126-1 provides a fourteen-phase life-cycle
process, known as the RAMS process, for developing railway systems by focus-
ing on Reliability, Availability, Maintainability and Safety. The verification and
validation activities take place throughout each phase of life-cycle process. In
this paper, we limit our attention to Phase 6 (Design and Implementation). The
main objective of this phase is to design the sub-systems and components in
conformity with RAMS requirements. This phase includes general tasks (e.g.,
planning, design and development, design analysis and testing, implementation,
and verification and validation) and the safety tasks (e.g., preparation and appli-
cation of safety cases, and the justification of safety related decisions). The ver-
ification tasks associated with this phase include the verification of design and

128 F. Ul Muram et al.

realisation of sub-systems and components against RAMS requirements, future
life-cycle plans, competence of all personnel, methods, tools and techniques used
in this phase, and verification of safety case design and application etc. Each
task is associated with the expected output/deliverable or artefacts showing the
evidences of requirements. EN 50129 [10], also part of the CENELEC series,
defines the three conditions that shall be satisfied in order that a safety-related
electronic railway system/sub-system/equipment can be accepted as adequately
safe for its intended application. These three conditions are: (1) evidence of
quality management (including quality planning and organisational structures)
to be documented in the quality management report; (2) evidence of safety
management, expected to be consistent to the RAMS process recommended in
EN 50126-1 and expected to be documented in the Safety Management Report;
and (3) evidence of functional and technical safety. This paper facilitates the
satisfaction of the first two conditions.

2.2 Process Engineering Metamodel

SPEM 2.0 [18] is the Object Management Group’s (OMG) standard. SPEM
2.0 provides the necessary concepts for modelling, documenting, interchanging,
and presenting systems and software development processes. The conceptual
framework of SPEM 2.0 consists of Method Content and the Process. Method
Content allows users to define reusable process content, i.e., partially ordered
tasks, work products (which can be a type of artifact, deliverable, or outcome),
roles and guidances, and the Category such as disciplines, role sets, domains
and tools. Process describes the systematic development processes as sequences
of phases and milestones for the specific types of projects. To define a process,
tasks can be grouped to form an activity and a set of nested activities can
be grouped into iteration (to indicate that the set can be repeated more than
once). A process can be a capability pattern, which describes reusable clusters
of activities or a delivery process, which describes a complete end-to-end project
life-cycle. Table 1 shows the main structural elements for defining the process in
SPEM 2.0.

Table 1. Process modelling elements in SPEM 2.0

Delivery Process Capability Pattern Activity Iteration Phase Milestone Task

Role Work Products Guidance Practice Role Sets Tool Disciplines

SPEM 2.0 supports variability management in the Method Content package,
which allows elements to modify or reuse elements in other content packages

Method for Facilitating the EN50129-Compliant Safety Approval Process 129

without directly modifying the original content. SPEM 2.0 defines five types
of variability relationships: not assigned (na)—the default value, contributes,
replaces, extends, and extends and replaces [18]. In the scope of this paper, we
consider Extends variability and Contributes variability.

2.3 Modelling Standards and Safety Plans in EPF Composer

EPF Composer is an extensible process framework, based on the Unified Method
Architecture (UMA) metamodel, which covers most of the SPEM 2.0 [18] con-
cepts, needed for our purposes. It is worth to highlight that EPF Composer
has been recently ported from Eclipse Galileo 3.5.2 to Eclipse Neon 4.6.3 in the
context of the AMASS project [13]. As presented in [6,16] and [3], based on
Mc Isaac’s approach [14] conceived for the commercial version of EPF Com-
poser, EPF Composer can be used to model standards and safety plans, as well
as to show that plans comply with standards. In EPF Composer, method plu-
gins are containers of process related information (i.e., Method Content and
Processes), while a configuration is a selection of sub-sets of library content
to be shown in the browsing perspective. To model the requirements listed in
the standards, the guidance type Practice can be customized with an icon in
a separate plugin (customized icon). The standard requirements plugin captures
the standard’s requirements and has the variability relationship Extends with
the previously mentioned customized icon plugin. Requirements can be nested
(i.e., a requirement inside another requirement to respect the nesting existing
in the standards), as shown in Fig. 1a. The process lifecycle plugin defines the
process life-cycle (i.e., content elements, categories and processes), as shown in
Fig. 1b. To define the mapping, standard requirements are copied in mapping
requirements plugin. These copied requirements have a variability relationship
Contributes with original requirements modelled in standard requirements plugin.
In addition, the links between process elements (such as tasks) to each “stan-
dard requirement” have been established through “references” tab. The mapped
requirements can be grouped in Custom Categories to facilitate their visualiza-
tion in the browsing perspective. To do so, a Custom Category, named Mapped
Requirements, is created in the mapping requirements plugin and all requirements
are assigned through the “Assign” tab. Figure 1c shows the mapped requirements
in EPF Composer.

(a) (b) (c)

Fig. 1. A cut of the EN 50126-compliant models in EPF Composer-focus on Phase 6

130 F. Ul Muram et al.

2.4 CACM and OpenCert Within the AMASS Platform

Common Assurance and Certification Metamodel (CACM) is created for the
AMASS platform. CACM consists of several packages/metamodels. More specif-
ically, CACM incorporates: (1) the System Component Metamodel, which is
based on the modelling language (CHESSML) [7], to support the specification of
system-specific details and decisions; (2) the Assurance Case Metamodel, which
is based on the Structured Assurance Case Metamodel (SACM) [17], to sup-
port the modelling assurance cases; (3) the Compliance Management Metamodel
group, which, in turn, consists of several metamodels such as Process Definition
Metamodel—based on the UMA metamodel, Assurance Project Definition, Base-
line Definition Metamodel and etc. These metamodels focus on what is planned
to be done in a project. The Evidence Management Metamodels group based
on three OpenCert metamodels: Artifact Metamodel, Executed Process Meta-
model and Traceability Metamodel (AssuranceAsset). These metamodels deal
with what has actually been done.

Three tools compose the AMASS platform: EPF Composer, OpenCert4 and
CHESS Toolset5. The interested reader may refer the AMASS platform presen-
tation, hosted within the new OpenCert space6.

In this paper, we focus on Baseline Definition Metamodel, Artifact Meta-
model, Executed Process Metamodel of OpenCert tool. The main elements of
metamodels and their semantics are given in the following subsections.

Baseline Definition Metamodel. The Baseline Definition Metamodel
(BDM) defines what is planned to be complied with a concrete standard, in
a specific assurance project. In the following list, we recall the BDM elements
used in the remaining of this paper:

– BaseFramework is a main container to model the concepts against which
safety and system engineering aspects of a given system are developed and
assessed.

– BaseActivity is the first-class modelling entity of process specifications, which
describes a phase, activity or tasks depending on the activity granularity
level defined in a standard or company process. The base activity can be
decomposed into one or more fine-grained base activities, called subActivity.

– BaseRequirement specifies the criteria (e.g., objectives) that a base framework
defines (or prescribes) to comply with it.

Artefact Metamodel. The Artefact Metamodel specifies the classes and rela-
tionships that can be used to support the reasoning of managed artefacts as an
evidence of standards compliance. In the following list, we recall the elements of
Artefact Metamodel used in the remaining of this paper:

4 https://www.polarsys.org/projects/polarsys.opencert.
5 https://www.polarsys.org/chess/index.html.
6 https://www.polarsys.org/opencert/.

https://www.polarsys.org/projects/polarsys.opencert
https://www.polarsys.org/chess/index.html
https://www.polarsys.org/opencert/

Method for Facilitating the EN50129-Compliant Safety Approval Process 131

– ArtefactModel defines the root element of a model representing a set of Arte-
facts.

– ArtefactDefinition specifies a distinguishable abstract unit of data to manage
in an assurance project, which represents the whole life-cycle resulting from
the evolution, in different versions of Artefacts. In particular, it is a template
of a work product involved in an activity.

– Artefact describes the instance of artefacts characterised for a version and a
set of resources modelling tangible artefact resources or files. An Artefact can
be composed of other artefacts or artefact parts.

Executed Process Metamodel. The Executed Process Metamodel supports
the specification of process-specific compliance needs that might have to be con-
sidered in an assurance project, such needs include not only the activities to
execute, but also artefacts to manage. In the following list, we recall the ele-
ments of Executed Process Metamodel used in the remaining of this paper:

– ProcessModel is a container of root elements to model a set of Process ele-
ments. The Process model corresponds to the actual execution of a process
with data related to the results to the process.

– Activity models a unit of work performed in a product life-cycle. An Activity
is a specification of an activity already executed.

– Person models individuals that are involved in a product life-cycle.
– Tool models software tools used in a product life-cycle.
– Organization corresponds to the groups of people (e.g., companies, societies,

associations, etc.) that are involved in a product life-cycle.
– Technique is used in the Activity to generate the produced Artefacts.

2.5 Model-Driven Engineering

As summarised in [11], Model-driven Engineering (MDE) is a model-centric soft-
ware development methodology aimed at raising the software at different levels
of abstraction and increasing automation in software development. For automa-
tion purposes, model-to-model transformation is used to refine models. In par-
ticular, model-to-model transformation transforms the source model (compliant
with one metamodel) into a target model compliant with the same or a differ-
ent metamodel. A standard transformation can be defined as a set of rules to
map source to the target. A transformation can be defined by using transforma-
tion languages. Epsilon Transformation Language (ETL)7 is a hybrid, rule-based
model-to-model transformation language and provides the enhanced flexibility
to transform arbitrary number of source models to an arbitrary number of target
models. An ETL transformation is typically organised in modules ETLModule
and each module can contain any number of transformation rules Transforma-
tionRule and Epsilon Object Language (EOL) operations.

7 See https://www.eclipse.org/epsilon/doc/etl/.

https://www.eclipse.org/epsilon/doc/etl/

132 F. Ul Muram et al.

b) Evidence approval during
development -- OpenCert

Modelling of planned
process(es)

a) Safety plan approval -- managing
compliance in EPF Composer

Modifying baseline
model and diagram

Create/Update post-
planning process

Update evidence
model

Generation of post-planning
process and evidence model

Generation of baseline
model and diagram

Managing compliance via
mapping of requirements

Modelling of the requirements
listed in standards

Evidence of
compliance

Evidence of compliance
of executed process

Automated Task

Update plan

Fig. 2. Overview of the proposed method for facilitating the safety approval process

3 Tool-Support Model-Based Method

In this section, we present our tool-supported model-based method for facil-
itating the safety approval process. The overview, given in SPEM2.0, of our
method is illustrated in Fig. 2. As the activity diagram illustrates, for getting
the approval of the safety plans, the compliance between the safety plans and the
CENELEC series requirements has to be shown. All this is done in EPF Com-
poser by modelling the requirements, the plans, and the compliance (shown, in
this paper, via a simple mapping between standards requirements and safety
plans through references in EPF Composer as shown in Sect. 2.3, see Fig. 1.
Alternatively, compliance could be explained via argumentation as presented
in [16], where process-based arguments (model and diagram) can be derived
automatically from process models. Next, the compliant evidence is given to
the certification body for approval, afterwards OpenCert tool is used for the
execution of the process (safety plan).

For facilitating the compliance between the executed process (including the
corresponding evidence) and the planned process, the transformations of stan-
dards requirements and planned process from EPF Composer into baselines,
post-planning process and evidence models into OpenCert are performed. In
particular, the requirements modelled in EPF Composer as “Practice” under
the Content Packages are proceeded to generate the baseline model and diagram
using implemented Baseline Generator plugin (see Sect. 3.1); while the delivery
process modelled in EPF Composer is proceeded to generate an evidence model
and a process model in OpenCert by using Process and Evidence Models Gen-
erator plugin (see Sect. 3.2). These transformations help process engineers to

Method for Facilitating the EN50129-Compliant Safety Approval Process 133

get the baseline model and diagram, a first version of their post-planning pro-
cess model and evidence model, which enables the evolution and traceability of
models during the development phase. The baseline model and diagram, post-
planning process and evidence models are generated locally as well as in the
CDO8 (Connected Data Objects) repository. CDO is a development-time model
repository as well as a run-time persistence framework, which offers transac-
tions with save points, change notifications, queries, transparent temporality,
and etc. OpenCert supports engineers to update or evolve the models during the
development phase (Fig. 2b) and evidence of compliance is provided for review.

3.1 Generating Baseline Model from Standard Requirements

In this subsection, we explain how we generate the baseline model and diagram
from standard requirements for providing the convincing justification to the cer-
tification body about compliance means. For this, the mapping between standard
requirements compliant with SPEM/UMA and baseline elements compliant with
BDM (part of CACM) has been implemented. In order to get the nested require-
ments and differentiate between them (for example, which process element (i.e.,
phase, activity, task) is mapped to a standard requirement), we retrieve the infor-
mation from the mapping requirements plugin through “activityReferences” and
“contentReferences”. The main mapping between these metamodels is described
in Table 2. In particular, the ContentPackage that contains the requirements
is mapped into a BaseFramework, whereas the top-level requirement Practice
related to the Delivery Process or Capability pattern is mapped to the BaseAc-
tivity. These requirements are decomposed into sub-requirements associated to
phases, in turn, for each phase all sub-requirements associated to activities and
so on; until the sub-requirements associated to tasks are reached we mapped
them into BaseRequirements in the Baseline model. Id, name and description of
requirements are mapped into Id, name and description of baseline elements.

Table 2. Mappings concepts of requirements

SPEM/UMA BDM

ContentPackage BaseFramework

Practice (top-level requirement) BaseActivity

subPractice (requirement
associated to Phase/Activity)

subActivity

subPractice (requirement
associated to Task)

BaseRequirement

Id, name and description Id, name and description

8 http://www.eclipse.org/cdo/.

http://www.eclipse.org/cdo/

134 F. Ul Muram et al.

Algorithm 1. Generating Baseline Model
Input: UMA: ContentPackage, ProcessComponent, Baseline Definition Metamodel, Executed

Process Metamodel

Output: BaseFramework

while childPackages.isTypeOf.ContentPackage = “CoreContent” do

BaseFramework ← getElementsByTagName(uma : ContentPackage)

Transform

(BaseFramework ← ContentPackage);

// Map all three attributes for all elements <element>.id,

<element>.name, <element>.briefDescription

for contentElements.isTypeOf(uma : Practice) do

for activityReferences in Practice.activityReferences do

(BaseActivity ← Practice);

for subPractice in Practice.subPractices() do

for activityReferences in subPractices.activityReferences do

(subActivity ← subPractice);

end for

// subPractices linked with role, task, work product

for contentReferences in subPractices.contentReferences do

(BaseRequirement ← subPractice);

end for

end for

end for

end for

end while

The mapping is achieved by using ETL, in particular, a Baseline Gener-
ator plugin has been implemented in the AMASS platform, which automati-
cally transforms the requirements into baseline model and diagram. The gen-
erated baseline model and diagram are visualized via the Baseline editor in
OpenCert. The generated baseline model and diagram are also stored in the
CDO Repository. Algorithm 1 shows the skeleton of generation of baseline model
and diagram.

3.2 Generating Post-planning Processes and Evidence Models

In this subsection, we present our algorithmic solution for the generation of the
post-planning process and the evidence model in OpenCert, from the planned
process, modelled in EPF Composer. The mapping is focused on the Work Break-
down Structure of Delivery Process in EPF Composer. In particular, a Delivery
Process in EPF Composer is contained in the metamodel class ProcessCompo-
nent which provides additional information to the process description like its
version, authors or team profiles required for the execution of the process. How-
ever, the user does not explicitly require creating a ProcessComponent in the
EPF Composer; they are automatically created each time a delivery process or
capability pattern is created. The main mappings between UMA/SPEM and
CACM Executed Process and Artefact metamodels are described in Table 3.
OpenCert provides the Assurance Process and Evidence Model wizard to visu-
alise generated process model and evidence model, respectively.

Method for Facilitating the EN50129-Compliant Safety Approval Process 135

Table 3. Mappings concepts of process and artefacts

SPEM/UMA Executed process and aretfact metamodels

ProcessComponent ProcessModel, ArtefactModel

CapabilityPattern Activity

Activity, Phase, Iteration,
TaskDescriptor, Milestone

subActivity

RoleDescriptor Person

Guideline, Practice Technique

ToolMentor Tool

RoleSet, TeamProfile Organization

WorkProductDescriptor ArtefactDefinition, Artefact

Id, name and description Id, name and description

In general, evidences are specified and managed by evidence models. Within
this model, objects for Artefacts and Artefact Models can be created. The seman-
tics of ArtefactDefinition and Artefact are slightly different in CACM and UMA
metamodels. In the case of CACM, ArtefactDefinition is a template of a work
product involved in an activity, whereas an Artefact represents the specific work
product involved in the activity which uses particular template. On the other

Algorithm 2. Generating Post-planning Process and Evidence Model
Input: UMA: ProcessComponent, Executed Process Metamodel, Aretfact Metamaodel

Output: ProcessModel, ArtefactModel

while ProcessComponent.isTypeOf(DeliveryProcess) do

ProcessModel ← getElementsByTagName(uma : ProcessComponent)

Transform

(ProcessModel & ArtefactModel ← ProcessComponent);

for all CapabilityPattern do

(Activity ← CapabilityPattern);

// Map all three attributes for all elements <element>.id,

<element>.name, <element>.briefDescription

if CapabilityPattern.breakdownElements.isTypeOf(Phase)! = null then

for Phase in CapabilityPattern.breakdownElements.isTypeOf(Phase) do

(Activity ← Phase);

end for

end if

if Activity.getTaskDescriptors(Activity.breakdownElements)! = null then

for TaskDescriptors in Activity.getTaskDescriptors(Activity.breakdownElements)! =

null do

(Activity ← TaskDescriptors);

if TaskDescriptor.WorkProductDescriptor! = null then

for WorkProductDescriptor in TaskDescriptor.WorkProductDescriptor do

Call operations getexternalInput(); getoptionalInput(); getmandatoryInput();

getoutput();

(ArtefactDefinition & Artefact ← WorkProductDescriptor);

end for

end if

end for

end if

end for

end while

136 F. Ul Muram et al.

hand, in UMA, Artifact is an element that belongs to the Method Content pack-
age and WorkProductDescriptor is an instantiation of an artefact in the context
of an activity. Therefore, an ArtefactDefinition and an initial version of Artefact
are generated from the WorkProductDescriptor, shown in Table 3. The mapping
is achieved by using ETL, in particular, Process and Evidence Generator plugin
has been implemented in the AMASS platform. Algorithm starts by searching
the ProcessComponent if it is the type of Delivery Process and considers the
Work Breakdown Structure (decomposed) linked elements such as phases, activ-
ities etc. Algorithm 2 shows the skeleton of our transformation.

4 An Illustrative Example

In this section, we apply our tool-supported method to show how it facilitates the
safety plan acceptance and approval process defined in the EN 50129 standard.
Our focus is on the safety demonstration for a generic product (i.e. independent
of application) as indicated in EN 50129, Part 5.5.2. Moreover, our focus is lim-
ited to Phase 6 (Design and Implementation) of the EN 50126-RAMS life-cycle,
which must be taken into consideration for the definition of the portion of the
safety plan regarding design and implementation. Based on that, we model: the
custom practice for representing a generic requirement modelling element, the
requirements from that phase (which inherit from the generic requirement), the
portion of the safety plan, which is expected to comply with those requirements,
and the compliance (achieved via a mapping through references in mapping
requirements plugin). The basic compliance between the requirements listed in
the Phase 6 (Design and Implementation) of EN 50126 standard and planned
process is shown in Fig. 3b.

(a) (b)

Fig. 3. Mapping of planned process and standards in EPF Composer

Method for Facilitating the EN50129-Compliant Safety Approval Process 137

This modelling activity is performed in EPF Composer by following the
guidelines mentioned in Sect. 2.3. As a results, as shown in Fig. 3a, four EPF
Composer plugins are created. Concerning the plan, we model: activities, work
products, methods, roles, etc. Concerning roles, since EN 50126 is less prescrip-
tive than EN 50128 [8], we have decided to borrow from EN 50128 to plan the
responsibilities and competence required at system design level. Due to space
limits, the complete visualization of the result of our modelling activity cannot
be shown. The interested reader can access the complete EPF Composer project
regarding Phase 6 [15].

The OpenCert tool allows users to model baselines as requirements. Instead
of manually creating the baselines, the baseline model and diagram are automat-
ically generated from the ContentPackage using our Baseline Generator plugin
(see Sect. 3.1). Figure 4 shows generated baseline model and diagram, compliant
to the BDM that are visualised in baseline editor in OpenCert. The generated
baseline model and diagram are also stored in the CDO Repository.

Fig. 4. Generated baseline model and diagram

Finally, for the getting the approval for the evidence produced during the
development, compatibility between the executed process and the planned pro-
cess has also to be shown or the deviations should be tracked and explained.
For this, the safety plans compliant with the EN 50126 requirements (includ-
ing the work products) modelled in EPF Composer are transformed into post-
planning process and evidence model in OpenCert. Specifically, the transforma-
tion is performed using the Process and Evidence Models Generator plugin by
right-clicking on ProcessComponent (i.e. delivery process) from the EPF Com-
poser (see Sect. 3.2). The generated evidence model listing all the artefacts to be
produced during the execution phase. The generated post-planning process and
evidence model can evolve during the life-cycle. Figure 5 shows generated post-
planning process and evidence model in OpenCert. The generated models are
also stored in the corresponding in the CDO Repository under “PROCESSES”
and “EVIDENCE” folder. Both transformations took few seconds to generate

138 F. Ul Muram et al.

Fig. 5. Generated post-planning process and evidence model

the baseline (model and diagram), post-planning process and evidence model.
Without the automatic generation of these models, engineers would have to
model them manually from scratch which requires huge effort, also managing
manual traceability between executed process and the planned process is very
difficult.

5 Related Work

In the literature, as far as we know, no work has addressed the facilitation of
the safety plan acceptance and approval process (/certification liaison process)
during both phases: planning and execution. However, in the literature, several
works exist on execution of process models and on transformations from models
created in technological spaces for process definition to models derived within
technological spaces for their execution/exchange (Gallina et al. [12] propose an
extension of SPEM 2.0, called S-TunExSPEM, for modelling and exchanging
safety processes; Bendraou et al. [5] present a model-driven approach, which
includes the mapping between UML4SPM, used for the definition of software
processes, and WS-BPEL, used for process execution; Alajrami et al. [2] pro-
pose and extension of SPEM2.0, called EXE-SPEM for enabling process models
execution on the Cloud). In addition, Adedjouma et al. [1] present an approach
that transforms the text-based standards to a tree-like structure relying upon
the JSON transducer, and then from the JSON tree-like structure to a graphical
BPMN model for easy visualisation and navigation. In Adedjouma et al.’s app-
roach non-textual standard elements such as figures, tables are formatted manu-
ally by the user. Our work does not automate the digitalisation of the standards

Method for Facilitating the EN50129-Compliant Safety Approval Process 139

yet. However, it provides full guidance for their manual digitalisation, includ-
ing complex recommendation tables, which populate the standards. Schoitsch
et al. [20] propose the certification process in DECOS (Dependable Embedded
Components and Systems), which is implemented in a modular way and uses
the concept of generic safety cases. The proposed approach is supported by the
Generic Test Bench to generate the safety cases by providing generic v-plans
for safety standards, documentation support in order to generate the validation
report from the completed v-plans and built-in user guidance in terms of a help
file. As compared to these works, our tool-supported method facilitates the safety
approval process by offering a browsing perspective of compliance management,
within EPF Composer during the planning phase and within OpenCert via the
evidence management during the execution phase. Our method supports the
modelling of plans in compliance with the standards and the automatic gener-
ation of post-planning process (including corresponding evidence) required for
the execution phase.

6 Conclusion and Future Work

EN 50129-compliant safety plan acceptance and approval process (similar to
the DO-178C-compliant certification liaison process) requires the interaction
between the applicant and the certification body in order to get approval first for
the plans and then for the evidence (which represents the substantiation of the
plans). This process is delicate and time consuming due to the necessity of show-
ing that all pieces of evidence produced comply with the CENELEC standard
series. In this paper, we have presented a tool-supported method for facilitating
such process. Specifically, our method supports: the modelling of the standards,
the modelling of the plans in compliance with the standards, the automatic
generation of corresponding process-related representations needed for the exe-
cution phase and for impact-change tracking. As a consequence, it facilitates the
compliance demonstration during the planning phase and the manual review of
the safety plan after the execution of each safety life-cycle phase to track alter-
ations or extensions. We have illustrated the usage of our method for facilitating
the approval of a portion of an EN 50126/9-compliant safety plan targeting the
design specification.

At the current stage of development, our method automatically generates
the process-related representations needed for the execution phase. However, in
case of alterations and/or extensions made during the execution phase, back
transformation from the executed processes to the planned processes is not sup-
ported yet. As future work, we intend to investigate the back-propagation of the
changes. Based on our gathered experience, such propagation could be achieved
by defining similar transformation rules, as presented in this paper, but on the
opposite directions. We also intend to conduct a proper evaluation of the app-
roach to achieve a quantitative measurement of the gain that users might get
via application of our method. To do that, we will not only consider a generic
safety plan, but we will consider its instantiation at a specific project level for

140 F. Ul Muram et al.

the design and implementation of a real subsystem. This in-depth evaluation is
planned to be carried out in the context of the AMASS case study 6 (Automatic
Train Control Formal Verification) in cooperation with Alstom.

Acknowledgment. This work is supported by EU and VINNOVA via the ECSEL
Joint Undertaking under grant agreement No. 692474, AMASS project. We thank
Inmaculada Ayala for her contribution on requirements modelling using customised
elements in EPF Composer.

References

1. Adedjouma, M., Pedroza, G., Smaoui, A., Dang, T.K.: Facilitating the adoption of
standards through model-based representation. In: Proceedings of the 23rd Interna-
tional Conference on Engineering of Complex Computer Systems (ICECCS 2018),
Melbourne, Australia, 12–14 December 2018 (2018)

2. Alajrami, S., Gallina, B., Romanovsky, A.: EXE-SPEM: towards cloud-based exe-
cutable software process models. In: 4th International Conference on Model-Driven
Engineering and Software Development, MODELSWARD, pp. 517–527 (2016)

3. AMASS: AMASS User guidance and Methodological framework (2018). https://
www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/D2.5 User-
guidance-and-methodological-framework AMASS Final.pdf. Accessed 5 Mar 2018

4. AMASS: AMASS platform validation D2.9 (2019). https://www.amass-ecsel.eu/
sites/amass.drupal.pulsartecnalia.com/files/documents/D2.9 AMASS-platform-
validation AMASS Final.pdf. Accessed 5 Mar 2019

5. Bendraou, R., Jezéquél, J.-M., Fleurey, F.: Combining aspect and model-driven
engineering approaches for software process modeling and execution. In: Wang,
Q., Garousi, V., Madachy, R., Pfahl, D. (eds.) ICSP 2009. LNCS, vol. 5543, pp.
148–160. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01680-
6 15

6. Castellanos Ardila, J.P., Gallina, B., Ul Muram, F.: Enabling compliance checking
against safety standards from SPEM 2.0 process models. In: 44th Euromicro Con-
ference on Software Engineering and Advanced Applications, SEAA 2018, Prague,
Czech Republic, 29–31 August 2018, pp. 45–49 (2018). https://doi.org/10.1109/
SEAA.2018.00017

7. CHESS-Team: CHESSML (2018). https://www.polarsys.org/chess/start.html
8. European Commitee for Electrotechnical Standardization (CENELEC): EN 50128

- railway applications - communication, signalling and processing systems - software
for railway control and protection systems (2011)

9. European Commitee for Electrotechnical Standardization (CENELEC): EN 50126–
1: railway applications - the specification and demonstration of reliability, avail-
ability, maintainability and safety (RAMS), part 1 generic RAMS process (2017)

10. European Commitee for Electrotechnical Standardization (CENELEC): EN50129:
railway applications - communication, signalling and processing systems - safety
related electronic systems for signalling (2018)

11. Gallina, B.: A Model-driven safety certification method for process compliance. In:
2nd International Workshop on Assurance Cases for Software-Intensive Systems,
joint event of ISSRE, Naples, Italy, 3–6 November 2014, pp. 204–209. IEEE (2014).
https://doi.org/10.1109/ISSREW.2014.30

https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/D2.5_User-guidance-and-methodological-framework_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/D2.5_User-guidance-and-methodological-framework_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/D2.5_User-guidance-and-methodological-framework_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.9_AMASS-platform-validation_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.9_AMASS-platform-validation_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.9_AMASS-platform-validation_AMASS_Final.pdf
https://doi.org/10.1007/978-3-642-01680-6_15
https://doi.org/10.1007/978-3-642-01680-6_15
https://doi.org/10.1109/SEAA.2018.00017
https://doi.org/10.1109/SEAA.2018.00017
https://www.polarsys.org/chess/start.html
https://doi.org/10.1109/ISSREW.2014.30

Method for Facilitating the EN50129-Compliant Safety Approval Process 141

12. Gallina, B., Pitchai, K.R., Lundqvist, K.: S-TunExSPEM: towards an extension
of SPEM 2.0 to model and exchange tunable safety-oriented processes. In: Lee,
R. (ed.) Software Engineering Research, Management and Applications. Studies
in Computational Intelligence, vol. 496, pp. 215–230. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-319-00948-3 14

13. Javed, M.A., Gallina, B.: Get EPF Composer back to the future: a trip
from Galileo to Photon after 11 years. EclipseCon, Toulouse, France, 13–14
June (2018). http://www.es.mdh.se/publications/5091-Get EPF Composer back
to the future A trip from Galileo to Photon after 11 years

14. McIsaac, B.: IBM rational method composer: standards mapping. Technical report,
IBM Developer Works (2015)

15. Muram, F.U., Gallina, B.: EPF Composer Library for EN 50126–9 compli-
ant process authoring, limited to Phase 6 (2019). https://www.dropbox.com/sh/
1o7cf12nqvmyvqc/AACi0EZymqzbQJKinutcNAzsa?dl=0. Accessed 5 Mar 2019

16. Muram, F.U., Gallina, B., Rodriguez, L.G.: Preventing omission of key evidence
fallacy in process-based argumentations. In: 11th International Conference on the
Quality of Information and Communications Technology (QUATIC), Coimbra,
Portugal, 4–7 September 2018, pp. 65–73. IEEE (2018). https://doi.org/10.1109/
QUATIC.2018.00019

17. Object Management Group (OMG): Structured Assurance Case Metamodel
(SACM), Version 2.0 (2018). https://www.omg.org/spec/SACM/2.0. Accessed 5
Mar 2019

18. OMG: Software & Systems Process Engineering Metamodel Specification (SPEM),
Version 2.0 (2008). http://www.omg.org/spec/SPEM/2.0/. Accessed 5 Mar 2019

19. RTCA Inc: Software Considerations in Airborne Systems and Equipment Certifi-
cation, RTCA DO-178C (EUROCAE ED-12C), Washington DC (2011)

20. Schoitsch, E., Althammer, E., Sonneck, G., Eriksson, H., Vinter, J.: Modular
certification support - the DECOS concept of generic safety cases. In: 2008 6th
IEEE International Conference on Industrial Informatics, pp. 258–263, July 2008.
https://doi.org/10.1109/INDIN.2008.4618105

https://doi.org/10.1007/978-3-319-00948-3_14
http://www.es.mdh.se/publications/5091-Get_EPF_Composer_back_to_the_future__A_trip_from_Galileo_to_Photon_after_11_years
http://www.es.mdh.se/publications/5091-Get_EPF_Composer_back_to_the_future__A_trip_from_Galileo_to_Photon_after_11_years
https://www.dropbox.com/sh/1o7cf12nqvmyvqc/AACi0EZymqzbQJKinutcNAzsa?dl=0
https://www.dropbox.com/sh/1o7cf12nqvmyvqc/AACi0EZymqzbQJKinutcNAzsa?dl=0
https://doi.org/10.1109/QUATIC.2018.00019
https://doi.org/10.1109/QUATIC.2018.00019
https://www.omg.org/spec/SACM/2.0
http://www.omg.org/spec/SPEM/2.0/
https://doi.org/10.1109/INDIN.2008.4618105

Efficient Data Validation for Geographical
Interlocking Systems

Jan Peleska1(B), Niklas Krafczyk1, Anne E. Haxthausen2, and Ralf Pinger3

1 Department of Mathematics and Computer Science, University of Bremen,
Bremen, Germany

{peleska,niklas}@uni-bremen.de
2 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

aeha@dtu.dk
3 Siemens Mobility GmbH, Braunschweig, Germany

ralf.pinger@siemens.com

Abstract. In this paper, an efficient approach to data validation of geo-
graphical interlocking systems (IXLs) is presented. It is explained how
configuration rules for IXLs can be specified by temporal logic formulas
interpreted on Kripke structure representations of the IXL configura-
tion. Violations of configuration rules can be specified using formulas
from a well-defined subset of LTL. By decomposing the complete con-
figuration model into sub-models corresponding to routes through the
model, the LTL model checking problem can be transformed into a CTL
checking problem for which highly efficient algorithms exist. Specialised
rule violation queries that are hard to express in LTL can be simpli-
fied and checked faster by performing sub-model transformations adding
auxiliary variables to the states of the underlying Kripke structures. Fur-
ther performance enhancements are achieved by checking each sub-model
concurrently. The approach presented here has been implemented in a
model checking tool which is applied by Siemens for data validation of
geographical IXLs.

Keywords: Data validation · Interlocking systems · LTL · CTL ·
Model checking

1 Introduction

Background. Railway interlocking systems (IXLs) are designed according to
different paradigms [13, Chap. 4]. Two of the most widely used are (a) route-
based interlocking systems and (b) geographical interlocking systems. The former
are based on predefined routes through the rail network and use interlocking
tables specifying safety conflicts between different routes and the point positions
and signal states to be enforced before a route may be entered by a train. For
design type (b), routes through the railway network can be allocated dynamically
by indicating the starting and destination points of trains intending to traverse

c© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 142–158, 2019.
https://doi.org/10.1007/978-3-030-18744-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-18744-6_9

Efficient Data Validation 143

the railway network portion controlled by the IXL under consideration. In the
original technology, electrical relay-based circuits were applied, whose elements
and interconnections were designed in one-to-one correspondence with those of
the physical track layout. The electric circuit design ensured dynamic identifica-
tion of free routes from starting point to destination, the locking of points and
setting of signals along the route, as well as on neighbouring track segments for
the purpose of flank protection. In today’s software-controlled electronic inter-
locking systems, instances of software components “mimic” the elements of the
electric circuit. Typically following the object-oriented paradigm, different com-
ponents are developed, each corresponding to a specific type of physical track
element, such as points, track sections associated with signals, and others with
axle counters or similar devices detecting trains passing along the track. Simi-
lar to connections between electric circuit elements, instances of these software
components are connected by communication channels reflecting the track net-
work. The messages passed along these channels carry requests for route alloca-
tion, point switching and locking, signal settings, and the associated responses
acknowledging or rejecting these requests. The software components are devel-
oped for re-use, so that novel interlocking software designs can be realised by
means of configuration data, specifying which instances of software components
are required, their attribute values, and how their communication channels shall
be connected.

IXL design induces a distinguished verification and validation (V&V) step
which is called data validation. For route-based IXLs, its main objective is to
ensure completeness and correctness of interlocking tables. For geographical
IXLs, the objective is to check whether the instantiation of software compo-
nents is complete, each component is equipped with the correct attribute values,
and whether the channel interconnections are adequate. The data validation
objectives are specified by means of rules, and the rule collection is usually
quite extensive (several hundreds), so that manual data validation would be a
cumbersome, costly, and error-prone task. Also, manually programmed checking
software is not a satisfactory solution, since the addition of new rules would
require frequent extensions of the code. These extensions are costly, since data
validation tools need to be validated according to tool class T2, as specified in
the standard [5].

Previous Work. This paper is a follow-up contribution to [9], where a solution
to the data validation problem for geographical IXLs by means of bounded model
checking (BMC) had been presented.1 During practical evaluation of the results
described there, it turned out that the BMC approach was highly effective as
a bug-finder: if violations of configuration rules were present, these were uncov-
ered effectively and within acceptable running time. The configuration experts
from Siemens, however, criticised that the tool would not prove the absence of

1 The text of the previous paragraph describing the general problem and the more
detailed description in Sect. 2 have been reproduced here in slightly modified form
from [9], in order to make the present paper self-contained.

144 J. Peleska et al.

configuration errors. Typical for BMC algorithms, the running time of the checks
sometimes increased exponentially with the search depth, so that an exploration
of the model up to its recurrence diameter2 would have resulted in unacceptable
running time and storage consumption.

Main Contributions. As a consequence of the experiences gained with the
application of BMC technology described in [9], an alternative approach has been
elaborated and implemented in a new data validation tool, the DVL-Checker
(Data Validation Language Checker). The new approach is described in the
present paper, and it is based on the following key insights which, to our best
knowledge, have not been explored before for the purpose of IXL data validation.

1. Exploiting known results about the temporal logic LTL, it is shown that
violations of safety-properties can be represented by a syntactic subset of
LTL which is denoted as data validation language (DVL). This ensures that
violations of IXL configuration rules can be specified using this subset.

2. Exploiting known results about LTL and CTL, we show how LTL formulae
φ representing safety violations (so-called DVL-queries) can be translated
to CTL formulae Φ(φ), such that CTL model checking of Φ(φ) is an over-
approximation for LTL model checking of φ in the sense of abstract inter-
pretation. This means that the absence of witnesses3 for CTL formula Φ(φ)
implies the absence of solutions for LTL formula φ, which proves that no rule
violation specified by φ is present.

3. For CTL, highly efficient and well-explored global model checking algorithms
can be applied. These have complexity O(| f | · (|S | + |R |)), where | f | is
the number of sub-formulae in CTL formula f , |S | is the size of the state
space, and |R | is the size of the transition relation. Moreover, the application
of CTL model checking is generally more efficient than that of LTL model
checking, since the latter represents an NP-hard problem [6, Section 4.2] which
is PSPACE-complete [16].

4. A decomposition of the complete IXL configuration into sub-models corre-
sponding to directed routes through the railway network allows for (1) sig-
nificant reduction of false alarms that might result from the fact that CTL
checking for witnesses of Φ(φ) is an over-approximation of LTL checking for
φ4, and (2) significant speed-up of the checking process by processing sub-
models concurrently.

Related Work. Data validation for railway interlocking systems is a well-
established V&V task in railway technology. At the same time, it is a very
2 The recurrence diameter denotes the number of steps to be performed by a BMC

algorithm to achieve exhaustive model exploration [3].
3 A witness is a sequence of states fulfilling a temporal logic formula.
4 This reduction of false alarms is achieved because the sub-models corresponding to

directed routes do not contain as many branches as the full network, and it is well
known that on linear paths, LTL and corresponding CTL formulas are equivalent.

Efficient Data Validation 145

active research field, since the complexity of today’s IXL configurations requires
a high degree of automation for checking their correctness. There seems to be
an agreement among the research communities that hard-coded data validation
programs are inefficient, due to the large number of rules to be checked and
the frequent adaptations and extensions of rules that are necessary to take into
account the requirements of different IXLs. These observations are confirmed by
numerous publications on IXL data validation, such as [1,7–10].

It is interesting to point out that some V&V approaches for IXLs do not
explicitly distinguish between data validation and the verification of dynamic
IXL behaviour; this is the case, for example, in [4,10]. We agree, however,
with [7], where it is emphasised that data validation should be a separate activ-
ity in the IXL V&V process. This assessment is motivated by the analogy with
software verification, where the correctness of static semantics – this corresponds
to the IXL configuration data – is verified before the correctness of dynamic pro-
gram behaviour – this corresponds to the dynamic IXL behaviour – is analysed.

As observed in [2], data validation approaches based on the B tool family
seem to be the most widely used both in industry and academia in Europe, we
name [1,7,8,10] as noteworthy examples for this fact.

The methodology and tool support described in the present paper differs
significantly from the B methodology: whereas the methods based on the B
family require specifications in first-order logic and perform verification by theo-
rem proving or constraint (model) checking, our approach is based on temporal
logic and CTL model checking. Moreover, our methodology strictly specialises
in geographical interlocking systems, while – in principle – the B-methods can
be applied to any type of IXL technology. Our more restricted approach, how-
ever, comes with the advantage that rule specifications are simpler to construct
than in B, since temporal logic formulae do not require quantification over vari-
ables. Moreover, the sub-model construction technique used in our methodology
ensures that the proper verification by CTL model checking is always fully auto-
matic and fast, whereas the B-approaches may require interactive user support
during theorem proving [8].

Overview. In Sect. 2, the data validation approach to geographical IXLs
is explained from an engineering perspective. The mathematical foundations
required to enable automated complete detection of IXL configuration rule viola-
tions are elaborated in Sect. 3. This is done without any reference to the intended
application. The latter is described in Sect. 4, where the application of the math-
ematical theory to IXL data validation is presented in detail. In Sect. 5, a con-
clusion is presented.

A more detailed technical report containing all formal definitions, theorems,
proofs, and algorithms on which the DVL-Checker is based can be found in [14].

2 Data Validation for Geographic Interlocking Systems

As indicated above, the software controlling geographical interlocking systems
consists of objects communicating over channels, each instance representing a

146 J. Peleska et al.

physical track element or a related hardware interface. A subset of these channels
– called primary channels in the following – reflect the physical interconnection
between neighbouring track elements which are part of possible routes, to be
dynamically allocated when a request for traversal from some starting point to
a destination is given (Fig. 1). Other channels – called secondary channels –
connect certain elements s1 to others s2, such that s1 and s2 are not necessarily
neighbouring elements on a route, but s2 may offer flank protection to s1, when
some route including s1 should be allocated. Since geographical interlocking
is based on request and response messages, each channel for sending request
messages from some instance s1 connected to an instance s2 is associated with a
“response channel” from s2 to s1. Primary channels are subsequently denoted by
variable symbols a, b, c, d , while secondary channels are denoted by e, f , g ,
Only points and diamond crossings use c-channels, and d -channels are used by
diamond crossings only.

11

21

12

22

32

id = 33
t = t1

id = 25
t = t1

id = 14
t = t1

id = 32
t = sig

id = 22
t = sig

id = 12
t = sig

id = 21
t = sig

id = 11
t = sig

id = 10
t = t3

id = 20
t = t3

13

23

24

id = 13
t = pt

id = 23
t = pt

id = 24
t = pt

a a

c

b

b

b a

b

a

b

a

c

a

b

a a

a

a

a

a

b

b

a

c

20

10

33

25

14

Fig. 1. Physical layout, associated software instances and channel connections.

For signals, the driving direction they apply to is along channel a. For points,
the straight track (point position “+”) is always represented by the channel
connections from a to b and vice versa, and the diverging track (point position
“−”) always from a to c and vice versa. The stems of a point are denoted
by A,B,C-stems according to the channels associated with the stem. The entry
into/exit from the track network controlled by the interlocking systems is always
marked by border elements of a special type. In Fig. 1, these types are denoted
by the fictitious identifiers t1 and t3. Some track sections may be crossed in both
directions, so a border element may serve both as entry and exit element. This
is discussed in more detail in the context of sub-model creation in Sect. 4.

Efficient Data Validation 147

All software instances are associated with a unique id and a type t corre-
sponding to the track element type they are representing. Depending on the
type, a list of further attributes a1, . . . , ak may be defined for each software
instance. By using default value 0 for attributes that are not applicable to a
certain component type, each element can be associated with the same complete
list of attributes. Each valuation of a channel variable contains either a default
value 0, meaning “no connection on this channel”, or the instance identification
id > 0 of the destination instance of the channel.

Data validation rules state conditions about admissible sequences of element
types and about admissible parameters.

Example 1. A typical pattern of data validation rules checks the existence of
expected follow-up elements for an element of a given type.

Rule 1. From channel a of an element of type sig pointing in downstream
direction, an element of the same type with its b-channel pointing upstream is
found, before a border element of type t1 or t3 is reached.

Every rule can be transformed into a rule violation condition. For Rule 1, the
violation would be specified as

Violation of Rule 1. From channel a of an element of type sig pointing in
downstream direction, no element of the same type with its b-channel pointing
upstream is found, before a border element of type t1 or t3 is reached.

The configuration in Fig. 1 violates Rule 1, because, for example, the path
segment π1 = s21.s23.s24.s22.s25 contains the follow-up element s22, but this
points with its a-channel towards signal 21. Practically, this means that the
signal with id 22 does not point into the expected driving direction, so the
expected route exit signal along π1 is missing. An example of a path segment
which is consistent with this rule is π2 = s32.s24.s23.s13.s11.s10. �

Example 2. Another typical pattern of data validation rules refers to the element
types that are required or admissible in certain segments of a route marked by
elements of specific type.

Rule 2. Between channel a of an element of type sig and channel b of the
associated downstream element of the same type sig , there must be at least one
element of type t3.

The corresponding rule violation can be specified as

Violation of Rule 2. Between channel a of an element of type sig and channel
b of the associated downstream element of type sig , there does not exist any
element of type t3.

The configuration in Fig. 1 violates this rule, because the path segments
connecting the signals of type sig do not contain any element of type t3. �

3 Logical Foundations

In this section, the logical foundations of the model checking method for data
validation are summarised. The underlying theory is described without references

148 J. Peleska et al.

to their practical application in the IXL context; the latter is explained in Sect. 4.
A comprehensive description of these foundations can be found in [14].

Kripke Structures. A State Transition System is a triple TS = (S ,S0,R),
where S is the set of states, S0 ⊆ S is the set of initial states, R ⊆ S × S is the
transition relation. The intuitive interpretation of R is that a state change from
s1 ∈ S to s2 ∈ S is possible in TS if and only if (s1, s2) ∈ R. A Kripke Structure
K = (S ,S0,R,L,AP) is a state transition system (S ,S0,R) augmented with a
set AP of atomic propositions and a labelling function L : S → 2AP mapping
each state s of K to the set of atomic propositions valid in s. Furthermore, it is
required that the transition relation R is total in the sense that ∀ s ∈ S : ∃ s ′ ∈
S : (s, s ′) ∈ R. It is assumed that AP always contains the truth values false,
true.

A computation of a state transition system (or a Kripke structure) is an
infinite sequence π = s0.s1.s2 · · · ∈ Sω of states si ∈ S , such that the start state
is an initial state, that is, s0 ∈ S0, and each pair of consecutive states is linked
by the transition relation, that is, ∀ i > 0 : (si−1, si) ∈ R. The terms path or
execution are used synonymously for computations. In the context of this paper,
state spaces S consist of valuation functions s : V → D mapping variable names
from V to their actual values in D . For the context of this paper, it suffices to
consider D = int, because all configuration parameters used for the interlocking
systems under consideration may be encoded as integers. For the Boolean values
true, false, the integer values 1, 0 are used, respectively.

First Order Formulae and Their Valuation. Given a Kripke Structure K
with variable valuation functions s : V → int as states, expressions are evaluated
in the usual way by replacing free variables v with their actual value s(v) in this
state. We write s |= f for an unquantified first-order expression, if and only if
f becomes true when replacing all symbols v by s(v). Atomic propositions are
constructed by composing variables, constants, or arithmetic expressions using
comparison operators. An (unquantified) first-order formula f over V is a logical
formula with atomic propositions over V , composed by logical operators ¬,∧,∨.

Linear Temporal Logic LTL. Given a Kripke structure with state valuations
over variables from V , we use unquantified first-order LTL with the following
syntax.

– Every unquantified first-order formula over V as specified above is an unquan-
tified first-order LTL formula.

– If f , g are unquantified first-order LTL formulae, then ¬f , f ∧ g , f ∨ g , Xf
(Next), Gf (Globally), Ff (Finally), fUg (Until), and fWg (Weak Until)
are also unquantified first-order LTL formulae.

Operators X, G, F, U, and W are called path operators. The models of LTL
formulae are infinite paths π = s0.s1.s2. · · · ∈ Sω; we write π |=LTL f if formula

Efficient Data Validation 149

f holds on path π according to the semantic rules specified in Table 1.5 We
use notation πi = si .si+1.si+2 . . . to denote the path segment of π starting at
element π(i). A Kripke structure K fulfils LTL formula f (K |=LTL f) if and
only if every computation of K is a model of f .

Table 1. Semantics of LTL formulae.

πi |=LTL true for all i � 0

πi �|=LTL false for all i � 0

πi |=LTL f iff π(i) |= f if f is an unquantified first-order formula over V

πi |=LTL ¬ϕ iff πi �|=LTL ϕ

πi |=LTL ϕ ∧ ψ iff πi |=LTL ϕ and πi |=LTL ψ

πi |=LTL ϕ ∨ ψ iff πi |=LTL ϕ or πi |=LTL ψ

πi |=LTL Xϕ iff πi+1 |=LTL ϕ

πi |=LTL Gϕ iff πi+j |=LTL ϕ for all j � 0

πi |=LTL Fϕ iff there exists j � 0 such that πi+j |=LTL ϕ

πi |=LTL ϕUψ iff there exists j � 0 such that πi+j |=LTL ψ and

πi+k |=LTL ϕ for all 0 � k < j

πi |=LTL ϕWψ iff

πi+k |=LTL ϕ for all k � 0,

or there exists j � 0 such that πi+j |=LTL ψ and

πi+k |=LTL ϕ for all 0 � k < j

Safety Properties. A safety property P is a collection of computations π ∈ Sω,
such that for every π′ ∈ Sω with π′ 	∈ P , the fact that π′ does not fulfil P can
already be decided on a finite prefix of π′. It has been shown in [15] that every
safety property P can be characterised by a Safety LTL formula f , so that the
computations in P are exactly those fulfilling f . The Safety LTL formulae are
specified as follows [15, Theorem 3.1]:
(1) Every unquantified first-order formula is a Safety LTL-formula. (2) If f , g
are Safety LTL-Formulae, then so are f ∧ g , f ∨ g , Xf , fWg , and Gf .

Observe that in these safety formulae, the negation operator must only occur
in first-order sub-formulae. Suppose that a safety property P is specified by
Safety LTL formula f . When looking for a path π violating f , the violation
5 The operators ∨, G, F, U are redundant and can be expressed using the remain-

ing LTL operators alone. Therefore, they are sometimes introduced as syntactic
abbreviations. For the purpose of this paper, however, it is better to represent their
semantics in an explicit way.

150 J. Peleska et al.

π |=LTL ¬f can be equivalently expressed by a formula containing only first-
order expressions composed by the operators ∧,∨,X,U. This is stated in the
following theorem proven in [14].

Theorem 1. Let f be a Safety LTL formula. Then ¬f can be equivalently
expressed using first-order expressions composed by operators ∧,∨,X,U. �

Safety Violation Formulae on Finite Paths. It will be explained in
Sect. 4 how IXL configurations may be interpreted as Kripke structures. This
interpretation needs one relaxation of the Kripke structure definition K =
(S ,S0,R,L,AP): we admit state transition systems (S ,S0,R) whose transition
relation is no longer total. This leads to finite computations, because some states
do not possess any post-states under R.

From Theorem 1 above we know that the LTL formulae we are interested in
– these express safety violations – can be represented by ∧,∨,X,U. For these
operators, the LTL semantics can be easily extended to finite computations by
declaring the evaluation result to be false if the end of the path has been
reached before the truth of the formula could be shown. The LTL semantics
on finite computations has been investigated in [3], we only need a simplified
version thereof, because it will only be applied to acyclic sub-models of IXL
configurations.

Computation Tree Logic CTL. While LTL formulae have computations
of Kripke structures as models, CTL has trees of computations as models. As
a consequence, two new path quantors are introduced in addition to the path
operators already known from LTL: quantors E and A denote existential and
universal path quantification, respectively. The CTL syntax is defined by the
following grammar, where f denotes unquantified first-order formulae as specified
above, formulae φ are called state formulae, and formulae ψ are called path
formulae.

CTL-formula ::=φ
φ ::= f | ¬φ | φ ∨ φ | φ ∧ φ | Eψ | Aψ
ψ ::= φ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xφ | Fφ | Gφ | φUφ | φW φ

According to this grammar, the path operators X,F,G,U,W can never be
prefixed by another temporal operator in CTL. Only pairs consisting of a path
quantifier and a temporal operator can occur in a row.

The semantics of CTL formulae is explained using a Kripke structure K ,
specific states s of K and computations π of K . We write K , s |=CTL φ to
express that φ holds in state s of K . We write K , π |=CTL ψ to express that ψ
holds along path π through K . For CTL formulae φ we say φ holds in the Kripke
model K and write K |=CTL φ if and only if K , s0 |=CTL φ holds in every initial
state s0 of K . The semantics of the subset of CTL formulae we are interested in
is specified in Table 2, where f denotes unquantified first-order formulae, φ, φi

denote state formulae, and ψ,ψj denote path formulae. First-order formulae are
interpreted just as in LTL.

Efficient Data Validation 151

Table 2. Semantics of CTL subset required for data validation.

K , s |=CTL f iff s |= f for any unquantified first-order formula f
K , s |=CTL φ1 ∨ φ2 iff K , s |=CTL φ1 or K , s |=CTL φ2

K , s |=CTL φ1 ∧ φ2 iff K , s |=CTL φ1 and K , s |=CTL φ2

K , s |=CTL Eψ iff there is a path π from s such that K , πi |=CTL ψ
K , πi |=CTL φ iff K , π(i) |=CTL φ
K , πi |=CTL ψ1 ∨ ψ2 iff K , πi |=CTL ψ1 or K , πi |=CTL ψ2

K , πi |=CTL ψ1 ∧ ψ2 iff K , πi |=CTL ψ1 and K , πi |=CTL ψ2

K , πi |=CTL Xψ iff K , πi+1 |=CTL ψ
K , πi |=CTL ψ1Uψ2 iff there exists j ≥ 0 such that K , πi+j |=CTL ψ2 and

K , πi+k |=CTL ψ1 for all 0 � k < j

Over-Approximation of LTL Safety Violation Formulae by CTL. Full
LTL and CTL have different expressiveness, and neither one is able to express
all formulae of the other with equivalent semantics [6]. It can be shown, however,
that any safety violation specified by an LTL formula f on a path π can also
be detected by applying CTL model checking to a translated formula Φ(f) on
any Kripke structure K containing π as a computation. This is, however, an
over-approximation, in the sense that witnesses for Φ(f) in K will not always
correspond to single paths π where π |=LTL f holds. It will be shown in Sect. 4
how the choice of sub-models significantly reduces the number of such false
alarms.

Recalling from Theorem 1 that any safety violation can be specified using
first-order formulae and operators ∧,∨,X,U, we specify a partial transformation
function Φ : LTL
→ CTL as follows, where f denotes a first-order formula and
ψ1, ψ2 denote formulas containing path operators.

Φ(f) = f
Φ(ψ1 ∧ ψ2) = Φ(ψ1) ∧ Φ(ψ2) Φ(ψ1 ∨ ψ2) = Φ(ψ1) ∨ Φ(ψ2)
Φ(Xψ1) = EX(Φ(ψ1)) Φ(ψ1Uψ2) = E(Φ(ψ1)UΦ(ψ2))

With this transformation at hand, the following theorem states that the
absence of witnesses for Φ(f) in K guarantees the absence of a rule violation f
on π.

Theorem 2. Let π be any path and f an LTL formula specifying a safety vio-
lation on π. Let K be a Kripke structure over state space S containing π as a
computation. Then π |=LTL f implies K |=CTL Φ(f). �

With Theorem 2 at hand, we can apply the classical CTL model checking
algorithms from [6] with small modifications related to first-order expressions,
the resulting algorithms are specified in [14]. There, it is also shown that the

152 J. Peleska et al.

algorithms are sound and complete for Kripke structures with finite computa-
tions. The algorithms have running time O(| f | · (|S | + |R |)), where | f | is the
number of sub-formulae in CTL formula f , |S | is the size of the state space,
and |R | is the size of the transition relation. As a consequence, the running
time is affected by the model size in a linear way only, while model size may
affect the running time of BMC in an exponential way. The running time is also
lower than using LTL model checking algorithms directly, since the latter are
PSPACE-complete [16].

4 Model Checking of IXL Configurations

IXL Configurations as Kripke Structures. The configurations for geo-
graphical IXLs described in Sect. 2 give rise to Kripke structures K =
(S ,S0,R,L,AP) with variable symbols from some set V as follows (symbol d
denotes int-values).

V = {id , t} ∪ C ∪ A
C = {c | c is a primary or secondary channel symbol}
A = {a | a is an attribute}
S = {s : V → int | There exists a configuration instance with

id, type, channel, and attribute valuation s}
S0 = S
R = {(s, s ′) | ∃ c ∈ C : s(c) = s ′(id)}

AP = {id = d | ∃ s ∈ S : s(id) = d} ∪ {t = d | ∃ s ∈ S : s(t) = d} ∪
{c = d | c ∈ C ∧ ∃ s ∈ S : s(c) = d} ∪
{a = d | a ∈ A ∧ ∃ s ∈ S : s(a) = d}

L : S → 2AP ; s
→ {v = d | v ∈ V ∧ s(v) = d}

Each K-state in S is represented by a valuation function s mapping id, type,
channel, and attribute symbols to corresponding integer values, such that there
is a configuration element with exactly these values. The atomic propositions
consist of all equalities v = d , where v is a symbol of V and d an integer value
occurring for v in at least one configuration element. Every K-state is an initial
state, because configuration rules are checked from any element as starting point.
Two elements s, s ′ are linked by the transition relation whenever s has a channel
c connected to s ′; this is expressed by s(c) carrying the id of s ′. The labelling
function maps each state s exactly to the propositions v = s(v), v ∈ V that are
valid in this state. Using the state valuation rules specified in Sect. 3, this can
be equivalently expressed by L(s) = {v = d | s |= v = d}.

With the Kripke structure at hand, IXL configuration rules can be expressed
by LTL Safety formulas, so rule violations may be expressed in LTL using first-
order formulas and operators ∧,∨,X,U, as shown in Sect. 3. Specifying rule
violations on Kripke structure K representing a complete IXL configuration,

Efficient Data Validation 153

however, is quite complicated, because most rules refer to routes traversed in a
certain driving direction, whereas K ’s transition relation connects any pair of
configuration elements linked by any channel. This results in computations that
do not correspond to any “real” route through the network.

Example 3. The Kripke structure corresponding to the configuration shown in
Fig. 1 has a path s10.s11.s13.s23.s21.s20, because all elements in this sequence are
linked by some channel a, b, c. This path, however, cannot be realised as a train
route, due to the topology of points s13 and s23. �

In [9], this problem has been overcome by using existentially quantified LTL
with rigid variables as introduced in [12]. Apart from the fact that quantified
LTL formulae are harder to create and understand, this would not allow for
the over-approximation by means of CTL as described in Sect. 3. Therefore, we
will now introduce sub-models of full configuration models where the problem
of infeasible paths no longer occurs.

Sub-models. The border elements of an IXL configuration can be identified by
the fact that only one of the main channels a, b is connected to another element,
while the other channel is undefined. Element 20 in Fig. 1, for example, is a
border element, because it has channel a connected to element 21, while channel
b remains unconnected. Points or diamond crossings are never used as border
elements, so only channels a, b need to be considered when identifying them
in the Kripke structure K representing the complete configuration. Each border
element introduces a well-defined driving direction specified by the channel which
is defined and, therefore, “points into” the network specified by the configuration.

A sub-model is now created for every border element sb as a Kripke structure
K (sb) according to the following rules.

1. The driving direction corresponds to the direction specified by the defined
channel a or b of border element sb .

2. The sub-model is induced by the largest acyclic directed graph G with initial
element sb , such that

– each element which is reachable in driving direction is part of this graph,
– for points entered by their B-stem or C-stem, the only continuation is via

the element connected to the points’ A-stem,
– for points entered by their A-stem, the continuations are via the elements

connected to the points’ B-stem or C-stem,
– for diamond crossings entered via A, B, C, D-stem, the only possible con-

tinuations are via elements connected to the D, C, B, A-stems, respec-
tively.

– The graph expansion stops when an element is reached for the second
time.

– The graph expansion stops when a border element is reached by its defined
channel, so that no outgoing channel is available.

3. The states of K (sb) are the nodes of G .

154 J. Peleska et al.

4. Every state is an initial state.
5. The transition relation of K (sb) contains all pairs of states (s, s ′), such that

there exists an edge from s to s ′ in G .
6. Every element of the sub-model is equipped with additional attributes dirA,

dirB , dirC , dirD with value 1 if its respective channel a, b, c, or d points in
driving direction; otherwise the attribute carries value 0.

6. Further auxiliary attributes are added to each sub-model state as described
in Sect. 4 below.

Example 4. The complete IXL configuration depicted in Fig. 1 has border ele-
ments s10, s20, s33, s25, s14. The sub-model resulting from border element s33 is
shown in Fig. 2, together with the new auxiliary attributes dirA, . . . (the mean-
ing of attribute pCnt is explained in Sect. 4 below). Element s33 induces the
driving direction along its channel a; since it is a border element, its channel b
is not linked to another element. �

id = 33
t = t1

id = 32
t = sig

id = 21
t = sig

id = 11
t = sig

id = 10
t = t3

id = 20
t = t3

id = 13
t = pt

id = 23
t = pt

id = 24
t = ptb a

c
b

a a

a
a

dirA = 0
dirB = 0
dirC = 0
dirD = 0
pCnt = 2

dirA = 0
dirB = 1
dirC = 0
dirD = 0
pCnt = 2

dirA = 0
dirB = 1
dirC = 1
dirD = 0
pCnt = 2

dirA = 1
dirB = 0
dirC = 0
dirD = 0
pCnt = 1

dirA = 1
dirB = 0
dirC = 0
dirD = 0
pCnt = 0

dirA = 1
dirB = 0
dirC = 0
dirD = 0
pCnt = 0

dirA = 0
dirB = 0
dirC = 0
dirD = 0
pCnt = 0

dirA = 1
dirB = 0
dirC = 0
dirD = 0
pCnt = 0

dirA = 1
dirB = 0
dirC = 0
dirD = 0
pCnt = 3

driving direction

Fig. 2. Sub-model created from border element s33 in Fig. 1.

Specifying Rule Violations on Sub-models. The description of rule viola-
tions in LTL becomes rather straightforward when specified for sub-models; this
is illustrated in the following examples.

Example 5. The rule violation specified in Example 1, when applied to a sub-
model as the one depicted in Fig. 2, may be expressed in unquantified first-order
LTL as φ1 ≡ t = sig∧dirA = 1∧X

(
(t 	= sig∨dirA = 0)U(t = t1∨ t = t3)

)
. This

LTL formula is translated via Φ defined in Sect. 3 into CTL formula Φ(φ1) ≡
t = sig ∧ dirA = 1 ∧ EX

(
E

(
(t 	= sig ∨dirA = 0)U(t = t1 ∨ t = t3)

))
. The only

Efficient Data Validation 155

witness for Φ(φ1) in the sub-model shown on Fig. 2 is the path s32.s24.s23.s21.s20,
and this is also a witness for φ1, so the CTL over-approximation does not produce
any false alarms in this case. �

Example 6. The rule violation specified in Example 2, when applied to a sub-
model, may be expressed in unquantified first-order LTL as φ2 ≡ t = sig ∧
dirA = 1 ∧ X

(
t 	= t3U(t = sig ∧ dirA = 1)

)
. This LTL formula is translated via

Φ defined in Sect. 3 into CTL formula Φ(φ2) ≡ t = sig ∧ dirA = 1 ∧ EX
(
E

(
t 	=

t3U(t = sig ∧ dirA = 1)
))

. It is easy to see that for the sub-model shown in
Fig. 2, the only witness is given by path s32.s24.s23.s13.s11, so, again, there are
no false alarms possible for this rule violation. �

Query Simplification by Auxiliary Parameters. We have seen that auxil-
iary attributes can be introduced during sub-model creation, in order to facilitate
the construction of rule violation formulae. Moreover, these attributes may be
used to speed up the checking process.

Example 7. Another typical pattern of data validation rules restricts the number
of elements of a certain type that may be allocated between two elements of
another type. The following fictitious rule illustrates this pattern (the real rules
are slightly more complex and refer to other element types).

Rule 3. From channel a of a signal of type sig pointing in downstream direction,
no more than k points (t = pt) are allowed, before the corresponding signal with
type sig and channel b pointing in upstream direction is reached.

Violation of Rule 3. From channel a of a signal of type sig pointing in down-
stream direction, more than k points (t = pt) are encountered, before the cor-
responding signal with type sig and channel b pointing in upstream direction is
reached. �

In principle, rule violations as the one specified in Example 7 could be spec-
ified using Counting LTL, an extension of LTL allowing to check whether a
path fulfils constraints referring to the number of states fulfilling certain proper-
ties [11]. Checking Counting LTL formulae, however, is EXPSPACE-complete,
and therefore, we cannot expect to find model checking algorithms for Counting
LTL that are as efficient as the CTL-algorithms presented above.

Instead, a new auxiliary attribute pCnt is introduced during sub-model cre-
ation. In every state of the sub-model, this attribute contains the number of
points encountered in driving direction so far. It is reset to 0, as soon as a
downstream signal is reached. This is illustrated in Fig. 2.

Example 8. With auxiliary attribute pCnt at hand, the violation of Rule 3 from
Example 7 is specified in LTL as φ3 ≡ t = sig ∧ dirA = 1 ∧X

(
(t 	= sig ∨ dirA =

0)UpCnt > k
)
. Translated to CTL, this results in

Φ(φ3) ≡ t = sig ∧ dirA = 1 ∧ EX
(
E

(
(t 	= sig ∨ dirA = 0)UpCnt > k

))

156 J. Peleska et al.

Assuming that k � 3, there are obviously no witnesses for Φ(φ3) in the sub-
model from Fig. 2. For k = 2, checking Φ(φ3) results in witness s32.s24.s23.s13,
and again, this is also a witness for the LTL formula φ3. �

By analogy with the example shown here, further auxiliary attributes are
added by the DVL-Checker during sub-model creation.

Parallelisation. The concept to use sub-models for verifying DVL-queries
allows for parallelisation of checking activities. The concurrent checking pro-
cess receives file names of the DVL-query and the IXL configuration model to
be verified. After the query and the configuration have been successfully parsed,
all jobs to be performed are placed into a queue. A job consists of a triple (query,
id, direction), where id is the identification of a border element. Attribute direc-
tion is A or B, depending on whether channel a or b of the border element is
defined.

A predefined number of worker threads process these jobs concurrently, until
the job queue is empty. Each thread pops a job from the (thread-safe) queue
and creates the sub-model identified by id and direction. After that, the CTL
checker functions are executed, and any witness found in the sub-model for the
given query is written to the output interface.

Evaluation. The efficiency of the CTL model checking algorithms in combina-
tion with the parallelisation allows for checking queries interactively, because the
results are obtained in less than five seconds on standard PC hardware, even for
the largest configurations used by Siemens. No false alarms have been encoun-
tered with the DVL-queries checked so far on the IXL configurations provided
by Siemens.

The bounded model checking version used before as described in [9] could
also produce witnesses for faulty configurations in acceptable time (less than
10 s), but was unable to prove the absence of errors, due to running time that was
exponential in the length of the search paths and very high memory consumption.

5 Conclusion

We have presented an efficient model checking approach for data validation of
geographical interlocking systems, which is fast enough to uncover violations of
configuration rules or prove the absence of rule violations directly while design-
ing the IXL configuration. The checking speed has been achieved by translating
LTL formulae specifying rule violations to CTL formulae and using the “clas-
sical” global CTL model checking algorithms. It has been shown that for the
class of LTL formulae specifying rule violations, CTL model checking is an over-
approximation for the (slower) alternative checking for witnesses of LTL formu-
lae directly. Therefore, the absence of CTL witnesses proves the absence of path
segments fulfilling the original rule violation formula specified in LTL. Further
speed-up has been achieved by running checks concurrently on configuration

Efficient Data Validation 157

sub-models augmented by auxiliary attributes, instead of performing a single
check on the full model.

The concepts and algorithms presented here have been implemented in the
DVL-Checker tool which is used by Siemens for the validation of IXL configura-
tions in new interlocking systems provided by Siemens for Belgian railways.

During the checks performed so far, no false alarms due to CTL over-approxi-
mation have been observed. It is planned to implement an automated detection
of potential false alarms in the future: when CTL model checking results in an
alarm for some rule violation Φ(φ), it can be checked whether one of the finite
paths π through the sub-model fulfil the original LTL formula φ. Since each
sub-model is an acyclic directed graph, the paths π can be enumerated with low
effort, and the LTL checks can also be parallelised. For checking the validity of
φ on a finite path, the linear encodings of bounded LTL described in [3] are very
efficient.

References

1. Badeau, F., Doche-Petit, M.: Formal data validation with event-B. arXiv:1210.7039
[cs], October 2012

2. Basile, D., et al.: On the industrial uptake of formal methods in the railway domain.
In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 20–29. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-319-98938-9 2

3. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encod-
ings of bounded LTL model checking. Log. Methods Comput. Sci. 2(5) (2006).
arXiv: cs/0611029

4. Celebi, B.T., Kaymakci, O.T.: Verifying the accuracy of interlocking tables for
railway signalling systems using abstract state machines. J. Mod. Transp. 24(4),
277–283 (2016). https://doi.org/10.1007/s40534-016-0119-1

5. CENELEC: EN 50128:2011 Railway applications - Communication, signalling and
processing systems - Software for railway control and protection systems (2011)

6. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

7. Fredj, M., Leger, S., Feliachi, A., Ordioni, J.: OVADO. In: Fantechi, A., Lecomte,
T., Romanovsky, A. (eds.) RSSRail 2017. LNCS, vol. 10598, pp. 87–98. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68499-4 6

8. Hansen, D., Schneider, D., Leuschel, M.: Using B and ProB for data validation
projects. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016.
LNCS, vol. 9675, pp. 167–182. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33600-8 10

9. Haxthausen, A.E., Peleska, J., Pinger, R.: Applied bounded model checking for
interlocking system designs. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS,
vol. 8368, pp. 205–220. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
05032-4 16

10. Keming, W., Zheng, W., Chuandong, Z.: Formal modeling and data validation
of general railway interlocking system. WIT Trans. Built Environ. 181, 527–538
(2018)

http://arxiv.org/abs/1210.7039
https://doi.org/10.1007/978-3-319-98938-9_2
http://arxiv.org/abs/cs/0611029
https://doi.org/10.1007/s40534-016-0119-1
https://doi.org/10.1007/978-3-319-68499-4_6
https://doi.org/10.1007/978-3-319-33600-8_10
https://doi.org/10.1007/978-3-319-33600-8_10
https://doi.org/10.1007/978-3-319-05032-4_16
https://doi.org/10.1007/978-3-319-05032-4_16

158 J. Peleska et al.

11. Laroussinie, F., Meyer, A., Petonnet, E.: Counting LTL. In: Markey, N., Wijsen,
J. (eds.) TIME 2010–17th International Symposium on Temporal Representation
and Reasoning, Paris, France, 6–8 September 2010, pp. 51–58. IEEE Computer
Society (2010). https://doi.org/10.1109/TIME.2010.20

12. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems
- Specification. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-
0931-7

13. Pachl, J.: Railway Operation and Control. VTD Rail Publishing, Mountlake Ter-
race (2002)

14. Peleska, J., Krafczyk, N., Haxthausen, A.E., Pinger, R.: Efficient data validation
for geographical interlocking systems. Technical report, Embedded Systems Test-
ing Benchmarks Site, 13 Jan 2019. http://www.informatik.uni-bremen.de/agbs/
jp/papers/dvl2019.pdf

15. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects Comput.
6(5), 495–511 (1994). https://doi.org/10.1007/BF01211865

16. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32(3), 733–749 (1985). https://doi.org/10.1145/3828.3837

https://doi.org/10.1109/TIME.2010.20
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
http://www.informatik.uni-bremen.de/agbs/jp/papers/dvl2019.pdf
http://www.informatik.uni-bremen.de/agbs/jp/papers/dvl2019.pdf
https://doi.org/10.1007/BF01211865
https://doi.org/10.1145/3828.3837

Formal Model Validation Through
Acceptance Tests

Tomas Fischer1(B) and Dana Dghyam2

1 Thales Austria GmbH, Vienna, Austria
tomas.fischer@thalesgroup.com

2 ECS, University of Southampton, Southampton, UK
dd4g12@ecs.soton.ac.uk

Abstract. When formal systems modelling is used as part of the devel-
opment process, modellers need to understand the requirements in order
to create appropriate models, and domain experts need to validate the
final models to ensure they fit the needs of stakeholders. A suitable mech-
anism for such a validation are acceptance tests.

In this paper we discuss how the principles of Behaviour-Driven Devel-
opment (BDD) can be applied to (i) formal modelling and (ii) validation
of behaviour specifications, thus coupling those two tasks. We show how
to close the gap between the informal domain specification and the for-
mal model, thus enabling the domain expert to write acceptance tests in
a high-level language matching the formal specification.

We analyse the applicability of this approach by providing the Gherkin
scenarios for an Event-B/iUML-B formal model of a ‘fixed virtual block’
approach to train movement control, developed according to the Hybrid
ERTMS/ETCS Level 3 principles specified by the EEIG ERTMS Users
Group and presented as a case study on the 6. International ABZ Con-
ference 2018.

Keywords: Formal methods · Validation · Acceptance tests ·
Event-B · iUML-B · Gherkin · Cucumber

1 Introduction

A fully proven formal model is still pointless if it does not represent the cus-
tomer’s needs. Therefore formal models must be thoroughly validated in order
to show that they capture useful functionality. Although today’s formal methods
tools offer great verification1 support through techniques like automated theo-
rem proving and model checking, their assistance with the model validation2 is
basically limited to the model visualization and animation [12]. This leaves the
interpretation of the results to the user, so it remains essentially a manual task,
e.g. expert review, which is tedious, time consuming and error prone. Rigorous
1 Ensuring that the developers build the thing right.
2 Ensuring that the developers build the right thing.
c© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 159–169, 2019.
https://doi.org/10.1007/978-3-030-18744-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-18744-6_10

160 T. Fischer and D. Dghyam

tracing of model elements to the requirements solves the problem only partially,
as it can only represent static relationships, but not the dynamic behavior of a
model.

One widely-used and reliable validation method is acceptance testing, which,
assuming adequate coverage, can provide assurance that a system (in our case
embodied by the formal model) does indeed represent the informal customer
requirements. Acceptance tests describe a sequence of stimulation steps involving
concrete data examples to test the functional responses of the system and can be
thus considered to be a definitive specification of the behavioural requirements
of a system. The high level nature of acceptance tests, which are both human-
readable and executable, makes their verification and validation possible with
much less effort than directly ensuring the correspondence of formal specification
and informal requirements [4].

Behavior-driven development (BDD) methodology [15] combines the general
techniques and principles of test-driven development with ideas from domain-
driven design and object oriented methods. It advocates that tests should be
written first, describing desired functionality. Then the actual functionality
should be implemented (or as in our case, a model should be created) to match
the formulated requirements. Our approach is to combine BDD principles with
formal methods in order to validate a formal model using scenarios written in
the Gherkin language [19].

The remainder of the paper is structured as follows. In Sect. 2 we give a
brief overview of an Event-B/iUML-B formal model of a ‘fixed virtual block’
approach to train movement control. In Sect. 3 we provide a short description of
the Gherkin notation and Cucumber framework and demonstrate the validation
of the presented Event-B/iUML-B models using Gherkin acceptance tests. In the
same section we analyse discovered problems and challenges and suggest future
improvements. In Sect. 4 we summarise the benefits of the presented approach
for validating formal models and outline how the proposed method and tools
will integrate into the process being developed in the ENABLE-S3 project.

2 Hybrid ERTMS/ETCS Level 3

In this paper we use the Event-B model of a hybrid ERTMS/ETCS Level 3
(HL3) [8] specification presented in [7] as an example. HL3 is a ‘fixed virtual
block’ approach to train movement, where the trackside train detection (TTD)
derived from wayside equipment is augmented by information obtained from
information sent by trains3 The hardware derived TTD section is divided into a
fixed number of virtual sections (VSS). A train movement controller called the
Radio Block Centre (RBC) manages the Movement Authority (MA) granted to
each train in mission. This granted MA is the permission for a train to move
safely to a specific location avoiding train collisions. However, in order for the
RBC to grant a MA it needs to know which sections are free. The status of the
3 Trains may or may not be specially equipped with the necessary equipment, hence

the term hybrid.

Formal Model Validation Through Acceptance Tests 161

virtual sections is calculated by the Virtual Block Detector (VBD) depending
on the information it receives from the environment:

• Track occupancy received from the trackside.
• Position reports and integrity confirmations received from the trains.
• Timer expiry.

The state of a VSS can be one of the four states:

• Free: there is no train on the section.
• Unknown: there might be zero or more trains on the section.
• Ambiguous: there might be one or more trains on the sections.
• Occupied : there is one train on the section.

Fig. 1. Section conventions (taken from [8])

The RBC uses free sections to calculate the MA, while the other states
are necessary for example to mitigate against possible roll-back of disconnected
trains, and to optimise the use of sections in a safe manner (Fig. 1).

The transitions from one state to the other can only happen under certain
conditions, which are represented as guards in the Event-B model. The VSS state
machine is fully connected and the transition table in the specification presents
12 transitions, some of which decomposed into different alternatives. Addition-
ally, we also explicitly model the start and the completion of the statemachine
run. There are also explicit events to model the expiry of started timers.

For example take transition #T4A which has only one condition: “TTD is
free”. However, in Event-B this event is modelled as follows:

162 T. Fischer and D. Dghyam

event T4A unknown free refines T4 unknown free
any vss // generated class instance
where
@isin unknown: vss ∈ unknown
@grd1: Sections∼(vss) /∈ occupiedTTD
@grd2: startVSSUpdate = TRUE
@grd3: vss /∈ updatedVSS

then
@act1: updatedVSS := updatedVSS ∪{vss}
@leave unknown: unknown := unknown \{vss}
@enter free: free := free ∪{vss}
@act disconnectProp: disconnectPropagationTimer(vss) := Idle
@act integProp: integrityLossPropagationTimer(vss) := Idle

end

Such events can be difficult to validate due to the complexity of the conditions
which are difficult to explain to domain experts, hence the need to bridge the
gap between domain experts and formal modelling experts.

3 Model Validation

Our approach was to create executable acceptance tests on the plain Event-B
level first and to switch to the visual and thus easier to comprehend iUML-B
level afterwards. This procedure gives us the opportunity to solve some low-level
technical challenges (described in more detail later in this chapter) first and then
to deal with the gap between the domain model and the formal model.

3.1 Acceptance Tests for Event-B Models

Gherkin. Gherkin [19] is a language that defines lightweight structures for
describing the expected behaviour in plain text as a collection of features, read-
able by both domain experts and developers, yet still automatically executable.

A feature is a description of one single piece of business value, best structured
as a story , which gives an
answer to three fundamental questions – who requires what and why.

The features contain a list of scenarios, every scenario representing one use
case. In the simplest case the scenario also contains the test data and thus
represents an individual test case. A scenario outline describes a group of similar
usage scenarios and contains placeholder for the particular test data specified as
a list of examples, each data set representing one individual test case.

Each scenario consists of steps describing the interaction with the system
under test: ,
providing an initial state for the test, test input (execution trigger) as well as
expected output, the observable outcome shall be compared with.

Formal Model Validation Through Acceptance Tests 163

Cucumber. Cucumber is a framework for executing acceptance tests written in
Gherkin language and provides Gherkin language parser, test automation as well
as report generation. In order to make such test cases automatically executable,
the user must supply the actual step definitions providing the gluing code, which
implements the interaction with the System Under Test (SUT).

Compound steps may encapsulate complex interaction with a system caused
by a single domain activity, thus decoupling the features from the technical
interfaces of the System Under Test (SUT). This defines a new domain-related
testing language, which may simplify the feature description. The description of
the business functionality shall, however, still be contained in the features.

Event-B. Event-B [2,9] is a formal method for system development, supported
by the Rodin Platform (Rodin) [3], an extensible open source toolkit. A machine
in Event-B corresponds to a transition system where variables represent the state
and events specify the transitions.

Cucumber for Event-B. In the scope of this project we have developed Cucumber
for Event-B as a custom Cucumber extension, which allows to execute Gherkin
scenarios on an Event-B model. It is a collection of step definitions providing
means for the Event-B state space traversal:

Given machine with ”�formula�”
Setup constants with the given constraints and initialize the machine.

When fire event ”�name�”with ”�formula�”
Fire the given event with the given parameters constraints.

Then event ”�name�”with ”�formula�”is enabled/disabled
Check if the given event with the given parameters constraints is enabled/disabled.

Then formula ”�formula�”is TRUE/FALSE

Check if the given formula evaluates to TRUE or FALSE.

An essential property of acceptance tests is reproducibility. The user shall
assure that the tested machine is deterministic and, if not, refine it further.

Cucumber for Event-B can be found under https://github.com/tofische/
cucumber-event-b and has been released under Eclipse Public License 2.0.

Environment Definition. Let us deal with the very basic scenario of a train
entering the controlled section.4

4 Please note that the provided example is only a snippet of an end-to-end test sce-
nario, which checks the functionality from the end user’s perspective.

https://github.com/tofische/cucumber-event-b
https://github.com/tofische/cucumber-event-b

164 T. Fischer and D. Dghyam

Background:
Given machine
When fire event ”VBD start vss update”
And fire event ”4A unknown free” with ”vss=VSS11”
And fire event ”4A unknown free” with ”vss=VSS12”
And fire event ”4A unknown free” with ”vss=VSS21”
And fire event ”4A unknown free” with ”vss=VSS22”
And fire event ”4A unknown free” with ”vss=VSS23”
And fire event ”4A unknown free” with ”vss=VSS31”
And fire event ”4A unknown free” with ”vss=VSS32”
And fire event ”4A unknown free” with ”vss=VSS33”
And fire event ”VBD vss update complete”

Scenario: Enter HL3 area
When fire event ”ENV enter HL3 area” with ”tr=TRAIN1”

And fire event ”VBD start vss update”
And fire event ”1A free unknown” with ”ttd=TTD10 & vss=VSS11”
And fire event ”1A free unknown” with ”ttd=TTD10 & vss=VSS12”
And fire event ”self free” with ”vss=VSS21”
And fire event ”self free” with ”vss=VSS22”
And fire event ”self free” with ”vss=VSS23”
And fire event ”self free” with ”vss=VSS31”
And fire event ”self free” with ”vss=VSS32”
And fire event ”self free” with ”vss=VSS33”
And fire event ”VBD vss update complete”
Then is TRUE formula ”free = {VSS21,VSS22,VSS23,VSS31,VSS32,VSS33}”
Then is TRUE formula ”occupied = {}”
Then is TRUE formula ”ambiguous = {}”
Then is TRUE formula ”unknown = {VSS11,VSS12}”
When fire event ”ENV start of mission” with ”tr=TRAIN1”
...

This example reveals the fact, that there are two kinds of events which must
be treated differently. The environment events represent some relevant change in
the environment and are thus triggered from outside of the modeled system (in
our case through the tests). The system events on the other side represent the
reaction of the modeled system to the external stimulus and shall therefore be
considered as an implementation detail not prescribed by the acceptance tests.

The acceptance tests being of black box nature shall contain environment
events only. Nevertheless, when running the tests, the system must be given
the opportunity to fire all internal events according to the assumed execution
strategy. For our purposes run to completion semantic is sufficient – after an
environment event (according to the test scenario) fires, the particular step def-
initions shall automatically trigger all enabled internal events until the system
stabilizes and only environment events are enabled. However, this requires some
kind of naming convention (e.g. event name prefix) which allows the steps to
distinguish the event kind (environment from system).

Formal Model Validation Through Acceptance Tests 165

The previous example would be then reduced to the following snippet, includ-
ing domain events only:

Scenario: Enter HL3 area
When fire event ”ENV enter HL3 area” with ”tr=TRAIN1”
And fire event ”ENV start of mission” with ”tr=TRAIN1”
...

Event Selection. During the refinement process an event is often decom-
posed into different alternatives, e.g. ENV exit HL3 area into ENV exit HL3 area
and ENV exit HL3 area free ttd. The acceptance tests shall not be aware of this
decomposition, so that they may reference an abstract event, ENV exit HL3 area
in this case. The step definitions shall then descend the refinement hierarchy
and select an appropriate enabled concrete event. This process is deterministic
as long as all concrete refinements of one abstract event are disjunct, otherwise
the event selection fails and the model must be adjusted. In order to utilize this
capability it might be necessary to rename decomposed events so that they can
be clearly distinguished from the refined abstract ones.

Timeouts. While unsolicited environment events (caused by some unexpected
change in the environment) may occur at any time, answers to previously issued
system commands shall happen within a defined time period, otherwise the sys-
tem shall assume an error in the environment and process an appropriate cor-
rective action.

There are several techniques how to model time. If both events (answer and
timeout) are enabled simultaneously, the environment (in our case the acceptance
tests) must be able to choose, which situation happens. This approach simplifies
the model, however the acceptance tests must be aware of the timeout names.

...
When fire event ”VBD ghost timer expires” with ”ttd=TTD10”
...

Another possibility is to consider the timeouts as an internal model concept,
and only trigger the time progress (ticks) by the environment. However, the
explicit notion of time clutters the model and has therefore been omitted from
our model and left for further analysis.

Data. While the event parameters are often simple values, the attribute values
may have complex types. This raises the issue of how to describe such data for
the setup of constants on one side and for the attribute value checks on the other
side. We want to represent the data in a table form, but we have to overcome
different viewpoints: class instance groups the values of all attributes (row by

166 T. Fischer and D. Dghyam

row), while in Event-B one variable represents the value of one attribute for all
instances (column by column). This is still an open point left for future work.

There is no technical difference between attributes and associations. However,
there is a logical distinction between an attribute and an association, which shall
be respected by the test language.

3.2 Acceptance Tests for iUML-B Models

iUML-B. Customer requirements are typically based on a domain model, which
is often expressed in terms of entities with attributes and relationships. State-
machines and activity diagrams are used to describe the behaviour.

It is desirable to express the acceptance tests in terms of the domain model
so that domain experts who are not familiar with the formal notations can easily
create and validate them.

iUML-B [13,16,17], an extension of the Rodin Platform, provides a ‘UML
like’ diagrammatic modelling notation for Event-B in the form of class-diagrams
and state-machines, with automatic generation of Event-B formal models.
iUML-B is a formal notation which is much closer to the domain model and
makes therefore the formal models more visual and thus easier to comprehend.

Class diagrams provide a way to visually model data relationships. Classes,
attributes and associations are linked to Event-B data elements (carrier sets,
constants, or variables) and generate constraints on those elements. Methods
elaborate Event-B events and contribute additional parameter representing the
class instance.

A state-machine automatically generates Event-B data elements (sets, con-
stants, axioms, variables, and invariants) to implement the states, and con-
tributes additional parameters representing the state machine instance, as well
as guards and actions representing state changes to existing events elaborated by
transitions. State-machines support nested states (hierarchical state machiness)
and may be also lifted to the instances of a class so that the behaviour of each
instance of the class is modelled by an independent instance of the state-machine
(see example in Fig. 2).

Fig. 2. iUML-B state machine diagram – Train states

Formal Model Validation Through Acceptance Tests 167

Cucumber for iUML-B. Cucumber for iUML-B provides a collection of step
definitions translating the iUML-B constructs into the corresponding underlying
Event-B model elements (events and variables), allowing the acceptance tests to
use the notation provided by iUML-B. The acceptance tests can then refer to
domain elements like classes and their methods, attributes and associations as
well as state machine states and transitions.

However, this requires a great deal of discipline on the part of modelers, as
only the strict adherence to the Domain Driven Design principles, especially
a rigorous compliance to an ubiquitous language shared between the domain
experts and the formal modeling experts is crucial, as each deviation leads to
failed tests and hence to manual rectifications.

The following steps are defined for validating state-machines:

Then transition ”�trans�”is enabled/disabled
Check if the given state machine transition is enabled/disabled.

Then is in state ”�state�”

Check if the state machine is in the given state.

Given state machine ”�name�:�inst�”
Preset the given instance of the given state machine.

When trigger transition ”�trans�”
Trigger the given state machine transition.

The following steps are defined for validating class diagrams:

Given class ”�name�:�inst�”

Preset the given class with the given instance.
When call method ”�name�”with ”�formula�”

Call the given class instance method.
Then method ”�name�”with ”�formula�”is enabled/disabled

Check if the given class instance method is enabled/disabled.
Then attribute ”�attr�”is ”�value�”

Check if the given class instance attribute is equal to the given value.

In general, class attributes and associations can be any binary relation (i.e.,
not necessarily functional), hence further checks can be defined accordingly.

4 Conclusion

Many works have been done to ensure that the formal model represents the
desired behaviour. For this reason, some works focused on modelling control
flow explicitly in state-based formalisms, such as [6,10] and [5,14], which have
explicitly specified and verified control flow in Event-B and its predecessor the
B-method [1]. Control flow is implicitly modelled in B and Event-B machines,
making the validation and model checking of complex control systems cumber-
some.

In [18], the authors define a methodology to support the formal development
and verification of railway interlocking systems. They use a combination of for-
mal methods and domain specific language (DSL), where a generator takes the

168 T. Fischer and D. Dghyam

DSL and a generic model to provide a concrete behavioural model as an input
to the model checker. While [11], presents some of the challenges of model based
testing and propose a solution based on static model analysis to the automatic
generation of requirements-based test cases. All the previously mentioned efforts
improve the verification and validation process.

In this paper we have discussed how BDD principles can be utilized for
formal model validation and also demonstrated the applicability of this approach
by applying the Gherkin scenarios to an Event-B/iUML-B formal model of a
‘fixed virtual block’ approach to train movement control. In summary, we have
confirmed the benefits of validating the formal models using the acceptance tests.

In addition we also pointed out, how to close the gap between the informal
domain specification and the formal model, thus enabling the domain expert to
write acceptance tests in a high-level language matching the formal specification.

Finally, we analysed the advantages of such an approach and proposed mea-
sures to mitigate identified drawbacks.

Once validated, the acceptance tests can also be used in order to show the
conformity of the implementation with respect to the formal model. This tran-
sition has been left for the future work.

Recommendations. We recommend to adopt the BDD methodology already dur-
ing requirement elicitation phase before modeling activities, as the subsequent
adaptation of tests to the existing model is tedious and costly.

Furthermore, we intend to enhance the Cucumber for Event-B framework
according to the aforementioned proposals and also integrate it tightly with the
iUML-B plugin.

Acknowledgements. This work has been conducted within the ENABLE-S3 project
that has received funding from the ECSEL Joint Undertaking under Grant Agree-
ment no. 692455. This Joint Undertaking receives support from the European Union’s
HORIZON 2020 research and innovation programme and Austria, Denmark, Germany,
Finland, Czech Republic, Italy, Spain, Portugal, Poland, Ireland, Belgium, France,
Netherlands, United Kingdom, Slovakia, Norway.

ENABLE-S3 is funded by the Austrian Federal Ministry of Transport, Innovation
and Technology (BMVIT) under the program “ICT of the Future” between May 2016
and April 2019. More information https://iktderzukunft.at/en/.

References

1. Abrial, J.R., Hoare, A., Chapron, P.: The B-Book: Assigning Programs to Mean-
ings. Cambridge University Press, New York (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010). https://doi.org/10.1007/s10009-010-0145-y

4. Adzic, G.: Specification by Example: How Successful Teams Deliver the Right
Software, 1st edn. Manning Publications Co., Greenwich (2011)

https://iktderzukunft.at/en/
https://doi.org/10.1007/s10009-010-0145-y

Formal Model Validation Through Acceptance Tests 169

5. Butler, M., Leuschel, M.: Combining CSP and B for specification and prop-
erty verification. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005.
LNCS, vol. 3582, pp. 221–236. Springer, Heidelberg (2005). https://doi.org/10.
1007/11526841_16

6. Dghaym, D., Butler, M., Fathabadi, A.S.: Extending ERS for modelling dynamic
workflows in Event-B. In: 22nd International Conference on Engineering of Com-
plex Computer Systems, 08 November 2017, pp. 20–29, February 2018. https://
eprints.soton.ac.uk/413608/

7. Dghaym, D., Poppleton, M., Snook, C.: Diagram-led formal modelling using iUML-
B for Hybrid ERTMS Level 3. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K.
(eds.) ABZ 2018. LNCS, vol. 10817, pp. 338–352. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-91271-4_23

8. EEIG ERTMS Users Group: Principles: Hybrid ERTMS/ETCS Level 3. Ref.
16E042 Version 1A, July 2017. http://www.ertms.be/sites/default/files/2018-03/
16E0421A_HL3.pdf

9. Hoang, T.S.: An introduction to the Event-B modelling method. In: Romanovsky,
A., Thomas, M. (eds.) Industrial Deployment of System Engineering Methods, pp.
211–236. Springer, Heidelberg (2013)

10. Iliasov, A.: Use case scenarios as verification conditions: Event-B/Flow approach.
In: Troubitsyna, E.A. (ed.) SERENE 2011. LNCS, vol. 6968, pp. 9–23. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24124-6_2

11. Peleska, J., Brauer, J., Huang, W.: Model-based testing for avionic systems proven
benefits and further challenges. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018.
LNCS, vol. 11247, pp. 82–103. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03427-6_11

12. Reichl, K., Fischer, T., Tummeltshammer, P.: Using formal methods for verification
and validation in railway. In: Aichernig, B.K.K., Furia, C.A.A. (eds.) TAP 2016.
LNCS, vol. 9762, pp. 3–13. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-41135-4_1

13. Said, M.Y., Butler, M., Snook, C.: A method of refinement in UML-B. Softw. Syst.
Model. 14(4), 1557–1580 (2015). https://doi.org/10.1007/s10270-013-0391-z

14. Schneider, S., Treharne, H.: Communicating B machines. In: Bert, D., Bowen,
J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 416–435.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45648-1_22

15. Smart, J.F.: BDD in Action: Behavior-Driven Development for the Whole Software
Lifecycle. Manning Publications, Shelter Island (2014)

16. Snook, C.: iUML-B statemachines. In: Proceedings of the Rodin Workshop 2014,
Toulouse, France, pp. 29–30 (2014). http://eprints.soton.ac.uk/365301/

17. Snook, C., Butler, M.: UML-B: formal modeling and design aided by UML.
ACM Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006). https://doi.org/10.1145/
1125808.1125811

18. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modelling and verification of inter-
locking systems featuring sequential release. Sci. Comput. Program. 133, 91–115
(2017). http://www.sciencedirect.com/science/article/pii/S0167642316300570.
Formal Techniques for Safety-Critical Systems (FTSCS 2014)

19. Wynne, M., Hellesøy, A.: The Cucumber Book: Behaviour-Driven Development for
Testers and Developers. Pragmatic Programmers, LLC, Raleigh (2012)

https://doi.org/10.1007/11526841_16
https://doi.org/10.1007/11526841_16
https://eprints.soton.ac.uk/413608/
https://eprints.soton.ac.uk/413608/
https://doi.org/10.1007/978-3-319-91271-4_23
https://doi.org/10.1007/978-3-319-91271-4_23
http://www.ertms.be/sites/default/files/2018-03/16E0421A_HL3.pdf
http://www.ertms.be/sites/default/files/2018-03/16E0421A_HL3.pdf
https://doi.org/10.1007/978-3-642-24124-6_2
https://doi.org/10.1007/978-3-030-03427-6_11
https://doi.org/10.1007/978-3-030-03427-6_11
https://doi.org/10.1007/978-3-319-41135-4_1
https://doi.org/10.1007/978-3-319-41135-4_1
https://doi.org/10.1007/s10270-013-0391-z
https://doi.org/10.1007/3-540-45648-1_22
http://eprints.soton.ac.uk/365301/
https://doi.org/10.1145/1125808.1125811
https://doi.org/10.1145/1125808.1125811
http://www.sciencedirect.com/science/article/pii/S0167642316300570

Modelling

A Separation of Concerns Approach
for the Verified Modelling of Railway

Signalling Rules

Yves Ledru1,2(B), Akram Idani1,2, Rahma Ben Ayed2,
Abderrahim Ait Wakrime2, and Philippe Bon2,3

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
{yves.ledru,akram.idani}@imag.fr

2 Institut de Recherche Technologique Railenium, 59300 Famars, France
{rahma.ben-ayed,abderrahim.ait-wakrime}@railenium.eu
3 Univ Lille Nord de France, IFSTTAR, COSYS, ESTAS,

59666 Villeneuve d’Ascq Cedex, France
philippe.bon@ifsttar.fr

Abstract. This paper proposes a modelling approach for railway sig-
nalling rules. It adopts a separation of concerns approach similar to the
one used in information systems security. It first models the effect of
operations, and then specifies permissions involving the agent perform-
ing the action and the conditions that must be satisfied before perform-
ing this action. These models are expressed in SecureUML diagrams
enhanced with B assertions. It then takes advantage of the B4MSecure
tool to translate these diagrams into B machines. It finally relies on
the ProB tool to verify the model using model-checking and animation.
Model-checking assesses the reachability of desired states, and verifies
the absence of accidents. The approach proceeds by introducing human
errors, checking their consequences, and deploying counter-measures.

1 Introduction

Railway systems are critical systems whose safety has been studied for a long
time. Safety results from a combination of physical devices (e.g. brakes, lights,
. . .), policies (e.g. signalling rules) and cooperation between agents (e.g. train
driver, traffic agent, . . .). New technologies are considered to improve railway
systems. For example, GNSS (Global Navigation Satellite System) is based on
GPS to acquire the position of the train. New standards such as the European
ERTMS/ETCS (European Rail Traffic Management System/European Train
Control System) have emerged to replace signalling systems. New signalling rules
must be designed to take this new equipment into account. Their critical char-
acter requires verification and validation efforts to guarantee their safety.

Formal methods, especially the B method [1], have been used for more than
25 years in the field of railway systems. In Chap. 17 of [2], Abrial describes the
requirements for an interlocking system, and its formal specification, structured
c© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 173–190, 2019.
https://doi.org/10.1007/978-3-030-18744-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-18744-6_11

174 Y. Ledru et al.

by four refinement steps. Success stories of the use of the B method in this field
[18] include the development of the Météor subway line in Paris [4] or moderni-
sation of the New York Subway [19]. Over the years, a community has grown in
European projects such as FMERail, and conferences such as RSSRail [10]. In
2018, the ABZ conference [8], which gathers amongst others the B community,
proposed a case study to model ERTMS/ETCS level 3.

Recently, we have proposed [5,6] to structure B specifications of signalling
rules in the same way as secure information systems are described in SecureUML
[17]. In [5], exchange of information between a train, and the traffic control
center, is described as a class diagram associated with a security model where
agents (human or software agents) must have permissions to access the objects.
This approach promotes a separation of concerns between the objects involved
in the system, and the rules allowing the agents to manipulate these objects. In
this approach, the B4MSecure tool [12] provides support to translate SecureUML
diagrams into B specifications. The ProB tool [15] is then used as an animator
to validate the model [5] and the AtelierB prover is used to discharge the proof
obligations linked to railway safety invariants [6].

In this paper, we propose an approach for the modelling and verification
of signalling rules in a railway system. This approach improves the approach
adopted in our previous work with respect to the following topics:

1. Lightweight formal method. Our approach involves several verification steps,
corresponding to reachability assessment and invariant preservation. These
verifications are performed with the ProB model-checker. In this study, reach-
ability was verified in a few minutes, while invariant preservation may last
several hours.

2. Impact of human errors. The railway system involves human agents. Hence,
human errors may happen (e.g. because the agent is tired) and lead the agents
to violate the rules. In this paper, we model such behaviours and evaluate
their potential consequences.

3. Our previous studies [6] focused on the protocols between the train and the
traffic agent. Here we consider a more global system which includes the track
layout. Moreover, verification is performed here using model-checking instead
of animation and proof.

This paper is organized as follows. Section 2 introduces an illustrative exam-
ple. Section 3 surveys the steps of our modelling and verification approach.
Section 4 details its application on the example. Finally, Sect. 5 discusses model-
checking to verify our models. Section 6 compares our contribution to related
work, and Sect. 7 draws the conclusions and perspectives of this work.

2 An Illustrative Example

This paper will be illustrated by the track layout of Fig. 1. This track layout is
composed of 10 track portions (also called “sections”). Two of these portions
(3 and 6) correspond to railroad switches (also called “points”). We make the

A Separation of Concerns Approach for the Verified Modelling 175

Light0

Light5

Light2

Light4 Light6Light3

Light1

Portion1 Portion2
Portion3

Portion4 Portion14

Portion6 Portion7 Portion8Portion15 Portion5

Fig. 1. Track layout

simplifying hypothesis that, at a given time, a train occupies a single portion,
i.e. the whole train moves instantly from one portion to the next one. This
simplification can be avoided by handling operations to move the head and the
tail of the train, as was done by Abrial [2] or Vu [11]. Also, we assume that train
integrity is guaranteed (i.e. the train does not separate from several passenger
cars). In our initial state, we will systematically deploy two trains: train1 on
Portion1 and train2 on Portion8.

Although simple, this railway system leaves space for accidents. We consider
several cases for accidents, including:

– the case where two trains occupy the same portion of the track (collision),
– the case where a railroad switch is changed while a train is on the switch

(derailment),
– the case where the train goes over the end of the track (collision with the

buffer stop).

In order to prevent accidents, a signalling system is deployed. It is based on
lights located at the beginning of some portions. For example, Light0 is located
at the beginning of portion 2. It is applicable to trains traveling from the left
hand side of the figure to its right hand side. Trains coming from the right hand
side do not see the state of the light.

A signalling rule requires the driver of a train to stop when the light is off,
and grants him permission to move to the next portion if the light is on.

There are two kinds of human agents in this system: train drivers who move
the trains and traffic agents who switch the lights on and off.

3 Modelling Approach

Separation of Concerns. Our modelling approach is based on separation of con-
cerns between an uncontrolled model only governed by the laws of physics, where
accidents may happen (step 1 of Fig. 2), and a model controlled by signalling
rules, where bad things should not happen (step 4 of Fig. 2).

This is similar to the distinction made in secure information systems between
data and associated functions, described in a so-called “functional” model, and
the permissions that rule the accesses of users to these data, described in a
“security” model. It must be noticed that the use of the term “security model”
in this study is confusing, since we worry about safety rather than security.

176 Y. Ledru et al.

Therefore, in the sequel, we will use the term “control model” instead. For similar
reasons, we will use the term “uncontrolled model” to designate the “functional”
model, except where the term “functional” is mandated by the B4MSecure tool.

Each operation of the uncontrolled model has a controlled version in the con-
trol model (Fig. 3). This version adds guards to check the relevant permissions.
In our example, trains, tracks, lights and their associated operations correspond
to the uncontrolled model. Train drivers and traffic agents must follow the rules
that constrain the call to these operations, as modelled by the controlled ver-
sion of these operations. It must be noted that separation of concerns allows
to experiment with several sets of rules, i.e. several control models, while the
uncontrolled model remains unchanged.

Verification. The ProB model-checker is used to verify several properties:

– The possibility of accidents should be shown in the uncontrolled model, using
model-checking (step 2). In this model, signalling rules do not apply, so the
train located in Portion1 can move and collide with the train in Portion8,
provided that the railroad switches are positioned appropriately.

– Reachability of a desired state without causing accidents (step 3) is the next
property to establish. Before designing the control model, one may check
that the uncontrolled model allows to avoid accidents while performing useful
tasks. In our example, we show that the train in Portion1 can cooperate with
train 2 and move to Portion8 without causing accidents.

– In the control model, agents must follow the rules, and we expect that the
rules governing the management of lights and train movements guarantee the
absence of accidents (step 5).

– Reachability of a desired state is the final property to establish. A trivial
way to prevent accidents is to forbid movements of the trains, resulting in a
useless railway system. Therefore, one must show that train movements are
possible when the signalling rules are followed (step 6). In our example, we
check that the signalling rules still allow train 1 to move to Portion8. In the
control model, this requires to switch appropriate lights on and off, to position
the railroad switches appropriately and to move both trains, according to the
signalling rules.

ProB can verify both kinds of properties. Reaching a given state is a classical
task for model-checkers. This corresponds to steps 2 (reaching an accidental

1. Build an uncontrolled model of the physical world
2. Check that accidents are possible

3. Check reachability without accidents
4. Build a control model with signalling rules

5. Check that the model forbids accidents
6. Check reachability

Fig. 2. The modelling and verification process

A Separation of Concerns Approach for the Verified Modelling 177

Uncontrolled Model
(physical world)

Control Model
(world controlled by rules)

op1

op2 controlled_op2

controlled_op1

Fig. 3. Uncontrolled and control models

state), 3 and 6 (reaching a desired state). Step 5, i.e. proving that signalling
rules do not lead to accidents, requires to explore the whole state space of the
model. This is usually out of the scope of model-checking, due to the state
space explosion problem. But if the state space is small enough, invariants can
be proven by exhaustive coverage of the state space, as it is the case in our
example.

Human Errors. The control model does not only introduce permissions, it also
features agents. The safety of the railway system assumes that agents follow the
rules. But human errors can lead to rule violations. E.g. a tired train driver can
forget to stop at a light and hence enter a portion occupied by another train. The
“irresponsive” behaviour of agents can be described in the control model, and
animation or model-checking can be used to check the possibility of accidents.
In our example, it will show that accidents are possible if a train driver does
not follow the rules. This highlights the responsibilities and the impact of each
agent on the safety of the railway system.

In order to mitigate the consequences of human errors, additional devices may
be deployed on the track. For example, automatic train stop systems (ATS) can
be installed on the same portions as lights. When a train enters a portion where
an ATS is armed, the ATS will trigger an emergency brake of the train, and
the train will no longer move until the ATS is disarmed. The behaviour of these
additional devices should be modeled as an extension of the uncontrolled model,
and signalling rules should be adapted. This is where verification activities such
as model-checking will bring benefits. Although animation is sufficient to show
that a driver who does not follow the rules can cause an accident in the original
model, model-checking or proof is necessary to show that an irresponsive driver
cannot cause accidents in a modified model, featuring ATS and appropriate
signalling rules. Verification activities should also be performed on these modified
models to show that reachability remains.

4 Formal Modelling and Verification

Our work takes advantage of several tools, associated with the B method:
B4MSecure and ProB. B4MSecure [12] transforms a graphical SecureUML model
into B. ProB [15] is a model-checker used to animate and verify B specifications.

178 Y. Ledru et al.

4.1 Uncontrolled Model

Package Functional in Fig. 4 gives the uncontrolled model of our railway system.
The central element is the track Portion. A portion can be connected to up to
three other portions. For example, portion 3 in Fig. 1 is connected to portions 2,
4 and 15. This is recorded in the attributes A main, B straight and C divergent
of class Portion. The direction of the portion (ie. whether connection A is on
the left or on the right) is also recorded. If the portion is a railroad switch, its
current status (straight or divergent) is recorded.

Our model does not support diamond crossings. It could be modeled as two
straight portions with mutual exclusion, which requires to add this mutual exclu-
sion notion in the UML model. This would have impact on the uncontrolled
model, but our overall approach remains valid.

Accidents is a static attribute associated to class Portion. It records the set
of portions where an accident happened. We consider that there is an accident
as soon as two trains occupy the same track portion. Accidents also result from
changing a switch while a train is on the switch, or when a train tries to exit the
portion through an end which is not connected to another portion (e.g. moving
to the left while in portion 1). Variable Accidents will be updated by operations
Move and ChangeSwitch if needed.

The Train class features the Move operation which moves the train to the
next portion according to the current direction of the train (odd for left to right,
even for right to left). Operation ChangeDirection changes the direction of the
train, e.g. when it has reached the last track portion.

A train is located on a single track portion, as described in Sect. 2. The
association between trains and portions allows several trains to occupy the same
portion, leaving the possibility of accidents. Class Light corresponds to signalling
equipment. A light may be in state on or off. A light can only be seen by the
trains moving in the same direction as the light, recorded in attribute direction.
Lights are associated with the portion where they are located. They are located
at the start of the portion to prevent a train from entering it.

Portions, lights and trains are physical objects of our model. Class Route,
discussed in Sect. 4.2, introduces a necessary notion to express signalling rules.

Translation of the Uncontrolled Model. B4MSecure translates this uncon-
trolled model into a single B machine. Each class is translated to an abstract set,
including all possible objects of the class, and a variable including all objects of
the class currently created. For example, class Train is translated as:

MACHINE
Functional

SETS
TRAIN; . . .

ABSTRACT VARIABLES
Train, . . .

INVARIANT

Train ∈ F (TRAIN) ∧ . . .

A Separation of Concerns Approach for the Verified Modelling 179

Fig. 4. Uncontrolled model

Associations between classes, and attributes of the classes are translated as
functions or relations. For example, the association between trains and portions
is translated as a total function which links a train to its current position:

TrainOfPortion ∈ Train → Portion ∧ . . .

By default, the translation includes the synthesis of basic operations (setters
and getters) for the attributes of each class, and the associations. Basic opera-
tions can be used to build structurally correct instances of the class diagram.

The user may also define specific operations, like Move in class Train. In
this case, the body of the operation and specific preconditions are added as
annotations to the graphical model. Figure 5 gives the B specification of Move.

The body of Move is user-defined. It first computes curr portion, the cur-
rent portion occupied by the train. It then checks that this current portion has
a neighbour when traveling in the direction of the train. If there is no such
neighbour, then moving the train in this direction leads to an accident, and
the current portion is added to Portion Accidents, the static attribute of class
Portion. Else, if there is a neighbour, it is stored in nxt port, and the position
of the train is updated. In parallel, the operation checks that the neighbour was
not already occupied by a train, which leads to an accident.

180 Y. Ledru et al.

Train Move(aTrain) =
PRE aTrain ∈ Train ∧ TrainOfPortion(aTrain) �∈ Portion Accidents
THEN LET curr portion BE curr portion=TrainOfPortion(aTrain) IN

IF (Train direction(aTrain) = even ∧ curr portion �∈ dom(next portion even))
∨ (Train direction(aTrain) = odd ∧ curr portion �∈ dom(next portion odd))

THEN
Portion Accidents := Portion Accidents ∪ {curr portion}

ELSE LET nxt port
BE nxt port = (next portion(Train direction(aTrain)))(curr portion) IN

TrainOfPortion(aTrain) := nxt port
||
IF card(TrainOfPortion −1 [{nxt port}])>0
THEN Portion Accidents := Portion Accidents ∪ {nxt port} END

|| . . . /* update the associated route (not detailed here for space reasons) */
END;

Fig. 5. Uncontrolled version of Move

The first conjunct of the precondition of Train Move is a typing constraint,
automatically generated by the tool. The second one expresses that the train is
not currently involved in an accident which would prevent it from moving.

Initial State. A B machine describes a set of state variables, invariant proper-
ties and operations. It also describes the initial state of the machine. B4MSecure
generates an empty initial state. E.g. it generates empty sets of trains, portions,
lights, and the B functions corresponding to attributes and associations are also
empty. In order to reason on the track layout of Fig. 1 with 10 portions and 2
trains, it must either be constructed manually from this empty initial state using
the setters of these classes, or be captured in a manually defined initial state as
follows:

INITIALISATION

Portion := {PORTION1,PORTION2,. . . PORTION15} ||
Train := {TRAIN1,TRAIN2} ||
. . .

TrainOfPortion := {(TRAIN1 �→ PORTION1),(TRAIN2 �→ PORTION8)} ||
Portion switch := {(PORTION3 �→ straight),(PORTION6 �→ divergent)} ||
Train direction := {(TRAIN1 �→ odd),(TRAIN2 �→ even)} ||
. . .

We have also developed a tool, named Meeduse, which helps us construct
such initialisations through a graphical user interface [13].

One must take care that this initial state features several properties that are
not expressed in the invariant and hence not shared by all possible initial states
(see Sect. 5 for a discussion of this point).

A Separation of Concerns Approach for the Verified Modelling 181

Fig. 6. ProB finds a sequence leading to an accident

Verification of the Uncontrolled Model. Verification of the uncontrolled
model corresponds to steps 2 and 3: one must check that accidents are possible,
and that desired states can be reached. Otherwise, it would be useless to design
signalling rules to prevent accidents.

Possibility of Accidents. Showing that accidents are possible can be done by
animating the model and playing a scenario which leads to an accident, or by
providing an appropriate goal to the ProB model-checker. Here the goal expresses
that both trains may end up in the same portion:

GOAL == TrainOfPortion(TRAIN1) = TrainOfPortion(TRAIN2)

In the Functional machine, the track portions are not expected to change.
Therefore we remove the getters, setters, constructors and destructors of the
class from the model. We keep only the Move and ChangeDirection operations
for class Train, and the ChangeSwitch operation for class Portion. Figure 6 shows
that ProB easily finds a scenario where this accident happens after 18 steps.
It finds this scenario in about 2.1 s, using the default strategy (mixed depth-
first/breadth-first), on a 16 Gb machine with Intel Core i7 CPU 2.80 GHz. ProB
also reports that the search went through 342 states and 4857 transitions.

Reachability. Checking reachability of a desired state on the uncontrolled model
will guarantee that this goal is within the reach of this model, and that its failure
on the control model would result from the permission rules. In our example, we
checked reachability of the following goal:

GOAL == TrainOfPortion(TRAIN1) = PORTION8∧Portion Accidents = ∅

This goal ensures that there exists a scenario where TRAIN1 will reach
portion 8, on the right hand side of the tracks. This also requires that the other
train will leave portion 8 and move to a place that TRAIN1 will not visit.

ProB finds a 37 steps scenario, reaching this goal, by checking 1723 states
and 24549 transitions of the Functional machine in 11 s.

182 Y. Ledru et al.

4.2 Control Model: Expressing the Signalling Rules

So far, we simply modelled a railway system that only obeys the laws of physics:
trains must follow the tracks and must stop when involved in an accident. Lights
can be on or off but have no link with the train movements. Verification has
shown that accidents are possible, but also that some useful portions can be
reached by a train without causing an accident, provided that the other train
cooperates in the scenario. This reachability property opens perspectives to
exploit the railway system with appropriate signalling rules without causing
accidents.

Signalling rules involve two kinds of actors: (1) the train driver executes the
Move and ChangeDirection operations and pays attention to the state of the
lights; (2) the traffic agent has a global view of the position of trains and can
modify the state of lights to coordinate train movements. He can also act on
the railroad switches to guide a train to a given portion. These two kinds of
actors will correspond to the roles of our control model. This model expresses
the permissions granted to roles to access the operations of the uncontrolled
model’s classes.

The Notion of Route. A naive attempt to define signalling rules is to only
rely on the position of the trains and the state of lights. A light may be switched
on when there is no train between the light and the next off-light in the direction
of the train. Unfortunately, this naive approach is not safe, because trains move
in both directions and the railroad switches can be modified while a train moves
towards it.

A more robust approach is to make reservations on track portions and to lock
these reservations. This is expressed in our uncontrolled model by the notion of
route. A route is a set of contiguous portions between a train and an off signal.
These portions are reserved for the train. The route is constructed incrementally
by adding adjacent portions. It can be locked as soon as the next signal has been
reached, provided that this signal is in the off state.

Routes are objects that are managed by the traffic agent. The traffic agent
first draws the routes by adding portions and positioning railroad switches. The
agent then locks the route and uses its information to switch lights on.

The train driver has no direct access to the information of the routes. He has
only to follow the instructions of the lights.

Graphical Model of the Control Policy. Figure 7 shows that role Driver
has permission to operate Move of class Train. This permission is conditioned
by an authorisation constraint, expressed in the B language, stating that:

– the train is in a portion which has a neighbour in the direction of the train;
– either this neighbour portion has no light,
– or the light is oriented in the opposite direction,
– or the light is on.

A Separation of Concerns Approach for the Verified Modelling 183

Fig. 7. Permission to move the train

From this model, B4MSecure generates the specification of the controlled
version of Move (Fig. 8). Its precondition is the same as the one of the uncon-
trolled version of Move. Its SELECT clause includes the check that the current
role has permission to execute Move, and the authorisation constraint expressed
in B in the permission diagram. If the SELECT clause is satisfied, the operation
executes the uncontrolled version of Move.

Permissions are expressed for all operations of the uncontrolled model. Then,
the B4MSecure tool generates a B machine, named RBAC Model which includes
the Functional machine and defines a controlled version of its operations.

Initialisation. The initial state of this control model features two users: Alice
is a traffic agent, and Dan is a driver. Please note that the model allows this
single driver to drive both trains. A more realistic model would associate each
train with its driver, and authorisation constraints would take it into account.
The initial state also assigns a single empty route to each train.

Verifying the Absence of Accidents. It should now be shown that the sig-
nalling rules of machine RBAC Model prevent accidents. This can be expressed
as an invariant in this machine stating the absence of accidents:

Portion Accidents = ∅
Unfortunately, the current version of B4MSecure does not allow to express

invariants in the control model. They can only be expressed in the uncontrolled
model. So instead of expressing this property as an invariant, we express its
negation as a goal for the model checker:

GOAL == Portion Accidents �= ∅
ProB searches through the entire state space for a path to this goal and

reports that the goal was not found. This exhaustive search proves that the

184 Y. Ledru et al.

controlled Train Move(aTrain) =
PRE aTrain ∈ Train ∧

TrainOfPortion(aTrain) �∈ Portion Accidents
THEN

SELECT
Train Move Label ∈ isPermitted[currentRole] ∧
(Driver ∈ currentRole ⇒

TrainOfPortion(aTrain) ∈ dom(next portion(Train direction(aTrain))) ∧
LET new portion BE new portion =

(next portion(Train direction(aTrain)))(TrainOfPortion(aTrain))
IN
new portion �∈ ran(LightOfPortion)
∨

Light direction(LightOfPortion −1 (new portion)) �= Train direction(aTrain)
∨
Light state(LightOfPortion −1 (new portion)) = on
END)

THEN
Train Move(aTrain)

END
END;

Fig. 8. Controlled version of Move

model will not allow accidents when started from the initial state. We performed
this experiment with three variants of the track layout of Fig. 1 (see Table 1).
Each variant keeps the same topology of track portions, but the number of
lights varies. Each of the three searches reports the absence of accidents, but the
state space clearly suffers state explosion. The third example, which corresponds
to the layout of Fig. 1 with its 7 lights, takes 9 h and seems representative of
the limits of our model-checking approach to prove the absence of accidents.
The verification of larger state spaces will require to decompose the layout as
proposed by Limbrée [16] or Winter [20]. It may also benefit from the use of
advanced model-checking techniques: for example, Vu [11] used Bounded Model-
Checking combined with k-induction to verify larger track layouts (46 portions,
23 points, 49 signals and 59 routes).

Table 1. Exhaustive search for an accident using ProB (using Depth-First strategy,
on a 16 Gb machine with Intel Core i7 CPU 2.80 GHz)

Lights present in the
track layout

Time to perform
exhaustive search

Number of states
visited

Number of
transitions visited

0, 1, 4, 5 34 min 77 471 693 787

0, 1, 2, 3, 4, 5 3 h 40 min 553 487 5 429 529

0, 1, 2, 3, 4, 5, 6 9 h 1 384 747 14 208 413

A Separation of Concerns Approach for the Verified Modelling 185

We also experimented that the model-checker is an efficient tool to rapidly
find errors in new versions of the signalling rules or to discard an erroneous
initial state. For example, if we change the direction of Light0 in Fig. 1, which
leaves too much freedom to train 1, ProB finds a counter-example leading to an
accident in 34 steps and 92 s (checking 3768 states and 42486 transitions).

Reachability of Desired States. We can also check that the rules are not too
strict and still allow a scenario where TRAIN1 reaches PORTION8. The model-
checker finds a scenario of 49 steps after exploring 6577 states and 72651 tran-
sitions in 166 s. This reachability scenario is slightly more complex than the one
of the uncontrolled model because it must alternate the current user between
Alice, who positions the point switches, makes portion reservations and changes
the lights, and Dan who moves the train.

4.3 Human Errors

The verification of the signalling rules assumes that users follow the rules, i.e.
they only access operations that are permitted, and follow authorisation con-
straints. These assumptions are not valid in the case of human errors. In our
example, there can be several kinds of human errors: (1) the train driver can
overlook an off light and enter a forbidden track portion, ignoring the authori-
sation constraint; (2) the traffic agent can switch on a light ignoring the corre-
sponding authorisation constraint. Such human errors can be the consequence
of tiredness. In 2016, Infrabel, the Belgian railway company, reported that 91
trains (out of 1,3 million) ignored a red light [14].

Our models can be adapted to take into account errors of these agents. We
add a state variable, named irresponsive, which records the set of users who do
not follow the rules. E.g., in the initial state, Dan appears as irresponsive.

VARIABLES
irresponsive

INVARIANT
irresponsive ⊆ USERS

INITIALISATION

irresponsive := { Dan }
We can then modify the Move operation to take into account the irrespon-

sive character of the current user (Fig. 9). This version checks that the role of
the current user has permission to execute Move, i.e. that it is a train driver.
But it bypasses the authorisation constraint for irresponsive users, calling the
uncontrolled version of Move instead of the controlled one.

It must be noted that, in the controlled model, the train driver have only
access to Move through controlled Train Move2. As a result, the train driver
must either follow the rules or be irresponsive to execute Move.

The current version of B4MSecure does not support the modelling of irre-
sponsive users. In order to experiment with these concepts, we have modified
manually the specifications of a simpler signalling model. Model-checking has

186 Y. Ledru et al.

controlled Train Move2(aTrain)=
PRE
aTrain ∈ Train

∧ TrainOfPortion(aTrain) �∈ dom(Portion Accidents)
THEN SELECT

Train Move Label ∈ isPermitted[currentRole]
THEN IF currentUser ∈ irresponsive

THEN Train Move(aTrain)
ELSE controlled Train Move(aTrain) END

END
END

Fig. 9. Controlled version of Move, taking irresponsive users into account

shown that irresponsive users may cause accidents. In order to prevent such
human errors, additional devices, such as automatic train stop systems, can be
deployed on the track, and block a train which overlooks an off signal. The
model, equipped with these counter-measures, can be model-checked to show
the absence of accidents and the reachability of desired states.

5 Model-Checking

In this work, we have adopted a lightweight approach to formal methods, replac-
ing theorem proving by model-checking.

Verification was aimed at guaranteeing the absence of accidents and finding
scenarios which establish the reachability of desired states.

Checking reachability was successful. The goals are reached in a few minutes
by the model-checker. When the search becomes more difficult, it is still possible
to guide the ProB model-checker by providing CSP specifications which rule the
sequence of operations. Using these CSP specifications, it is possible to instruct
the model-checker to perform the connection of users at the beginning of the
sequence, and to avoid connection operations after this initial sequence. This
directed model-checking accelerates reachability searches.

Checking the unreachability of a goal or establishing an invariant property
requires to explore the whole state space. This is subject to the state explosion
problem and in our case, it limits the number of objects involved in the track
layout. A promising approach is to decompose the track layout into sub-layouts
and verify the correctness of each sub-layout, and the interactions between sub-
layouts. This approach has been experimented successfully by Limbrée [16] and
Winter [20]. We intend to experiment with a similar approach as future work.

Influence of the Initial State. Model-checking guarantees that all states reachable
from the initial state preserve the invariant. But other initial states can still
lead to dangerous situations. For example, an initial state with two trains, and
without lights allows accidents to take place. So model-checking only proves

A Separation of Concerns Approach for the Verified Modelling 187

the correctness of signalling rules for a given initial state. Given a track layout,
model-checking should be performed several times varying the number of trains
involved, the initial state of lights and railroad switches.

This also means that there exist implicit properties of the initial state that
were not identified in our model. Some initial states verify these properties and
lead to a safe behaviour. Others do not and may lead to accidents. These prop-
erties should be identified and captured as invariants.

Nevertheless, we have noticed that erroneous rules or erroneous initial states
are rapidly detected by the model-checker, typically in a few minutes. We have
reported on a mutation of the track layout of Fig. 1 which was detected in 92 s.
So, model-checking appears as an efficient tool to find errors, and when the
search for accidental states lasts longer, it usually indicates that the model is
correct, but that its state space exploration takes a long time.

6 Related Work

The B method has been successfully used to model real railways systems. [18]
reports on 4 studies where safety properties were modeled and proven. The
combination of UML and B or Event-B has already been experimented to model
such systems. For example, [7] reports on the use of iUML-B to generate Event-B
specifications from UML class and state diagrams. That study uses refinement
steps to structure the model. In our group, [3] used B4MSecure to translate a
class diagram model of the ERTMS/ETCS signaling system level 3. The resulting
model was completed with event-B specifications and the whole was verified using
animation and model-checking.

None of the above mentioned works used the separation of concerns approach
presented in this paper. This approach was initially experimented by our group
in [5,6] to model the exchange of information between the traffic agent, the train
and its driver. The current study considers a larger system which includes the
track layout. It also discusses the case of irresponsive agents, which is a new
contribution.

The present work uses model-checking for verification purposes. Numerous
teams have used various model-checking tools to verify railway systems. For
example, Fantechi [9] proposed and modelled a distributed organisation of inter-
locking, and verified the absence of collision and derailments on a track layout
with up to 10 stations. It must be noted that this work focuses on routes and
does not model the trains. Another formalisation is proposed by Vu [11] who
uses Bounded Model-Checking and k-induction to address large track layouts
(46 portions, 23 points, 49 signals and 59 routes).

Our work is closer to the work of Winter [20] who models the routes and
the trains, and model-checks the control tables using ASM and NuSMV. Since
that model suffers the state explosion problem, [20] proposes to decompose the
layout, taking each route into account. This is an interesting approach to scale
up model-checking, but it requires a predefined set of routes, which is not the
case in our model. [16] also decomposes the track layout in order to support

188 Y. Ledru et al.

model-checking. This decomposition is not based on the notion of route, but on
the identification of connection points between sublayouts. We intend to study
both works in order to scale up model-checking in our modelling approach.

7 Conclusion

We have presented an approach which uses formal methods to model and verify
railway signalling systems. The novelty of this approach is to use concepts from
the Access Control domain to separate concerns between an uncontrolled model,
which describes the behaviour of the railway system in the absence of rules,
and a control model, which describes the signalling rules which control this
railway system. The control model also introduces users of the railway system
and associates them to roles. This allows to take into account human actors and
their potential errors.

We have shown how irresponsive behaviours can be expressed in our control
model. Additional work is needed to further detail these irresponsive behaviours.
For example, a tired train driver may miss an off signal, but will not arbitrarily
perform a change of direction which requires several conscious actions.

Verification of these models exploits model-checking to show the presence
of accidents in uncontrolled models, their absence in the control model. It also
shows that the uncontrolled model allows to reach some desired states, and that
signalling rules do not prevent the trains from reaching their destination.

ProB allowed us to adopt a lightweight approach to formal methods where
proof is not necessary to establish invariant preservation for a given initial state.
For other initial states, the exhaustive search must be performed again.

Further work will address the state space explosion problem by the decompo-
sition of a given track layout into sublayouts which can be verified independently
and in reasonable time. It will also consider the modelling of further equipment,
like Automatic Train Stop systems, or the detection of the position of the train
using the ERTMS Eurobalise, or GNSS (Global Navigation Satellite System).

Acknowledgments. This work is funded by the NExTRegio project of IRT Raile-
nium. The authors would like to thank SNCF Réseau for its support. We also thank
German Vega for his support of B4MSecure.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

3. Ait Wakrime, A., Ben Ayed, R., Collart-Dutilleul, S., Ledru, Y., Idani, A.: For-
malizing railway signaling system ERTMS/ETCS using UML/Event-B. In: Abdel-
wahed, E.H., Bellatreche, L., Golfarelli, M., Méry, D., Ordonez, C. (eds.) MEDI
2018. LNCS, vol. 11163, pp. 321–330. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00856-7 21

https://doi.org/10.1007/978-3-030-00856-7_21
https://doi.org/10.1007/978-3-030-00856-7_21

A Separation of Concerns Approach for the Verified Modelling 189

4. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application
of B in a large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999.
LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48119-2 22

5. Ben Ayed, R., Collart-Dutilleul, S., Bon, P., Idani, A., Ledru, Y.: B formal valida-
tion of ERTMS/ETCS railway operating rules. In: Ait, A.Y., Schewe, K.D. (eds.)
ABZ 2014. LNCS, vol. 8477, pp. 124–129. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43652-3 10

6. Ben Ayed, R., Collart-Dutilleul, S., Bon, P., Ledru, Y., Idani, A.: Formalismes
basés sur les rôles pour la modélisation et la validation des règles d’exploitation
ferroviaires. Technique et Science Informatiques 34(5), 495–521 (2015). https://
doi.org/10.3166/tsi.34.495-521

7. Butler, M.J., et al.: Formal modelling techniques for efficient development of rail-
way control products. In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds.) RSS-
Rail 2017. LNCS, vol. 10598, pp. 71–86. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-68499-4 5

8. Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.): ABZ 2018. LNCS, vol.
10817. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4

9. Fantechi, A., Haxthausen, A.E., Nielsen, M.B.R.: Model checking geographically
distributed interlocking systems using UMC. In: PDP 2017, pp. 278–286. IEEE
Computer Society (2017). https://doi.org/10.1109/PDP.2017.66

10. Fantechi, A., Lecomte, T., Romanovsky, A. (eds.): RSSRail 2017. LNCS, vol. 10598.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68499-4

11. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modeling and verification of inter-
locking systems featuring sequential release. In: Artho, C., Ölveczky, P.C. (eds.)
FTSCS 2014. CCIS, vol. 476, pp. 223–238. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-17581-2 15

12. Idani, A., Ledru, Y.: B for modeling secure information systems - the B4MSecure
platform. In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM 2015. LNCS, vol.
9407, pp. 312–318. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25423-4 20

13. Idani, A., Ledru, Y., Ait Wakrime, A., Ben Ayed, R., Bon, P.: Towards a tool-based
domain specific approach for railway systems modeling and validation. In: Collart-
Dutilleul, S., et al. (Eds.) RSSRail 2019. LNCS, vol. 11495, pp. 23–40. Springer,
Heidelberg (2019)

14. Infrabel: Stabilisation du nombre de dépassements de signaux sur le rail en
2016, Januray 2017. https://www.infrabel.be/fr/presse/stabilisation-du-nombre-
depassements-signaux-rail-2016

15. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008). https://doi.org/10.1007/s10009-007-0063-9

16. Limbrée, C., Cappart, Q., Pecheur, C., Tonetta, S.: Verification of railway inter-
locking - compositional approach with OCRA. In: Lecomte, T., Pinger, R.,
Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 134–149. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33951-1 10

17. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: a UML-based modeling lan-
guage for model-driven security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.)
UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45800-X 33

https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/978-3-662-43652-3_10
https://doi.org/10.1007/978-3-662-43652-3_10
https://doi.org/10.3166/tsi.34.495-521
https://doi.org/10.3166/tsi.34.495-521
https://doi.org/10.1007/978-3-319-68499-4_5
https://doi.org/10.1007/978-3-319-68499-4_5
https://doi.org/10.1007/978-3-319-91271-4
https://doi.org/10.1109/PDP.2017.66
https://doi.org/10.1007/978-3-319-68499-4
https://doi.org/10.1007/978-3-319-17581-2_15
https://doi.org/10.1007/978-3-319-17581-2_15
https://doi.org/10.1007/978-3-319-25423-4_20
https://doi.org/10.1007/978-3-319-25423-4_20
https://www.infrabel.be/fr/presse/stabilisation-du-nombre-depassements-signaux-rail-2016
https://www.infrabel.be/fr/presse/stabilisation-du-nombre-depassements-signaux-rail-2016
https://doi.org/10.1007/s10009-007-0063-9
https://doi.org/10.1007/978-3-319-33951-1_10
https://doi.org/10.1007/3-540-45800-X_33
https://doi.org/10.1007/3-540-45800-X_33

190 Y. Ledru et al.

18. Sabatier, D.: Using formal proof and B method at system level for industrial
projects. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS,
vol. 9707, pp. 20–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33951-1 2

19. Sabatier, D., Burdy, L., Requet, A., Guéry, J.: Formal proofs for the NYCT line
7 (flushing) modernization project. In: Derrick, J., et al. (eds.) ABZ 2012. LNCS,
vol. 7316, pp. 369–372. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30885-7 34

20. Winter, K., Robinson, N.J.: Modelling large railway interlockings and model check-
ing small ones. In: ACSC2003, pp. 309–316. Australian Computer Society (2003).
http://crpit.com/confpapers/CRPITV16Winter.pdf

https://doi.org/10.1007/978-3-319-33951-1_2
https://doi.org/10.1007/978-3-319-33951-1_2
https://doi.org/10.1007/978-3-642-30885-7_34
https://doi.org/10.1007/978-3-642-30885-7_34
http://crpit.com/confpapers/CRPITV16Winter.pdf

RBS2HLL
A Formal Modeling of Relay-Based Interlocking

Näım Aber(B), Benjamin Blanc, Nathalie Ferkane, Mohand Meziani(B),
and Julien Ordioni

RATP, ING/STF/QS, 54 rue Roger Salengro, 94724 Fontenay-sous-Bois, France
{naim.aber,benjamin.blanc,nathalie.ferkane,

Mohand-ameziane.meziani,julien.ordioni}@ratp.fr

Abstract. The safety of railway systems is a major challenge due to the
serious consequences that may result from a design error in the context
of a growing complexity. Formal methods play a more and more impor-
tant role to tackle these issues. A key part of the safety strategy relies
on the rules and procedures embedded in the interlocking and signal-
ing system. RATP already applied formal methods for computer-based
implementation of such systems. However a large part of current inter-
locking systems are still relay-based. This paper presents a translation
tool, called RBS2HLL (for Relay Based System To HLL) aiming at pro-
viding RATP with a formal specification of a relay based interlocking
system. The main features of our tool are: first, the formal modelisa-
tion is based on the minimal set of guaranteed safety requirements, and
second, the translation result allows the verification of generic proper-
ties parameterized by application data. This tool was initially developed
for the new RATP product named PHPI, and successfully applied on a
section of Paris Metro Line 6.

Keywords: Interlocking · Formal methods ·
Safety-critical railway system · HLL

1 Introduction

RATP is one of the most important operator in Paris by carrying more than 3
billions of passengers per year. RATP has in charge the operation and the main-
tenance of the 16 urban lines of the Metro in Paris, 8 lines of Tramway, more than
350 lines of Bus and part of the most busiest suburban lines of Europe (RER A
& B, resp. more than 1,200 k and 900 k passengers/day). About 150 interlocking
installations controlling more than 3,000 routes are necessary to manage this
Metro and RER network. To ensure sustainability of those interlocking systems,
RATP started a renewal program in 2001: several Computer Based Interlock-
ing (CBI) systems were commissioned between 2001 and 2014. These systems
allowed to avoid a lot of night work (needed to perform final tests safely relating
to the passengers) and to formally demonstrate a part of the safety of the inter-
locking using a model checking approach. This work led to co-develop the very
c© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 191–201, 2019.
https://doi.org/10.1007/978-3-030-18744-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-18744-6_12

192 N. Aber et al.

first version of HLL (High Level Language). HLL [10] is a synchronous data-flow
language used today in our formal PERF Workshop [3]. The main issue met with
digital embedded technologies is the lifespan of the hardware components. On
the contrary, relay based technologies were in revenue service for a long period
of time. For instance some of interlocking systems on the RATP network are still
running today and this for more than 50 years. The CBIs commissioned in the
world and in particular at RATP are not this aged today but some issues have
already to be addressed concerning hardware availability. For instance the CBIs
installed in Japan since the middle of the 80s were planned to be changed right
after 20 years of service.

This is one of the reasons why RATP developed an hybrid interlocking sys-
tem, called PHPI, picking up the advantages of both technologies: the robustness
and long lifespan of electro-mechanical embedded components and the comput-
erized formal safety demonstration performed during office hour. Using formal
methods is almost natural for RATP because of our engagement in the domain
for more than 25 years [5] The PHPI safety validation is totally included in this
formal approach allowing to perform deep analysis leading to a very confident
safety level. Nevertheless, reaching a formal proof on a relay-based system is not
exactly the same as performing a formal verification on an interlocking software.
In the latter there is no physical issues due to the intangibility of the software.
To prove a PHPI system, RATP had to develop a specific translator to model
the whole electro-mechanical components of a project and, more difficult, to
model electricity behavior, mechanical phenomena and continuous time. This
translator, named RBS2HLL (for Relay Based System to HLL), builds its model
only on the safety guaranteed behavior of the relays. This is possible due to the
fact that all the interlocking principles used by RATP are based on the NS1-like
relays intrinsic safety characteristics (cf. French standards NF F 70-030).

Modeling such a system leads to make choices: not all physical phenomenons
would be part of the model. The work done here allowed RATP to achieve its
main goal: prove the safety properties of an interlocking system and exhibit the
different modeling assumptions and hypothesis used to do that. The latter should
be treated by other means than RBS2HLL. This paper explains how we choose
to model a relay-based system in HLL to perform a formal safety verification.

The paper is organized as follows: Sect. 2 gives a brief introduction of HLL
language and Sect. 3 some reminders about relay-based systems. The proposed
tool is described in Sect. 4. Section 5 is devoted to giving a case study of how the
tool can be used to validate an interlocking. Finally, in Sect. 6 we present the
main results that have been obtained and the future work currently in progress.

2 HLL

HLL [10] (High Level Language) is a formal declarative and synchronous data
flow language in the tradition of Lustre. HLL has been developed for certification
purposes for RATP and has recently been released as an open-source language.
An HLLmodel follows a cyclic execution: at each cycle, the set of inputs are
updated, and outputs are computed according to their data-flow definitions.

RBS2HLL: A Formal Modeling of Relay-Based Interlocking 193

This synchronous behavior is standard in control models that require a highly
regulated real-time response to their environment.

Inputs:

int i;

Declarations:

int tmp;

Definitions:

o = ...;

tmp = ... ;

Proof Obligations:

...

Models in HLL are defined by an unordered set of sections. Streams, representing
the traces of variables over time, are declared in Declarations, Inputs, or Outputs
blocks with type checking information; their values are given as expressions in
the Definitions blocks. The Proof Obligations block contains a set of properties
related to streams for verification purpose. Constraints block contains expres-
sions used to reduce the behavior of inputs streams. Expressions are composed
above boolean and integer streams with usual logical and arithmetic operators,
following a pointwise semantics: if a = (a1, a2, . . .) and b = (b1, b2, . . .) are infi-
nite streams, then a + b represents the stream (a1 + b1, a2 + b2, . . .). Temporal
operators can be used to refer to initial, past, or next values of streams. The
declarative nature of the language makes it suitable for the definition of formal
models as well as safety properties whose status must be true at every cycle of
the execution.

3 Relay-Based Systems Background

3.1 Safety Studies and Formal Modelling with Relays

The safety of a system is defined by the lack of unacceptable risks. Once these
risks have been identified, some failure reduction measures could be defined to
prevent or mitigate them through a deductive analysis (through experiences
feedback, domain knowledge, etc.).

On the other hand, an inductive method could define safety properties the
system has to ensure in order to prevent some faulty events. A safety property
is written to ensure that something unsafe will never happen. A property states
the absence of some observable outputs (signal states, route locking, track circuit
occupations) in a definite situation.

Due to the complexity of railways system, an automatization of the safety
assessment of the properties provides many benefits [3]. To be effective, the
formalization process shall guarantee that all possible means to trigger an unsafe
state are effectively reflected in the formal model (safe abstraction). Therefore,
when a proof is completed on the formal model, the proof can be applied to the
real system.

On the contrary, when a proof fails, a counter example scenario can be exhib-
ited as a sequence of inputs that leads to an unsafe state, following the internal

194 N. Aber et al.

computations of the model. This scenario could be performed on the real system
in order to exhibit the problematic behavior. But reaching this reproducibility
may be very difficult, especially when it comes to physical systems. Multi-physics
phenomena may be involved in the realization of a scenario.

These two outcomes of the proof process have different importance: the first
one is mandatory for the safety validation, while the second is helpful for the
functional validation. For its safety assessor role treated here, RATP is interested
in the first constraint.

3.2 Relay Based Systems

The proof process can be applied at different levels of the development process:
specification, conception or implementation. In order to gain the most confidence
on the safety demonstration, it must be performed on the lowest level possible.
When applied to a relay-based implementation, the circuit diagram encompasses
a view of the system before its realization and is therefore a good candidate
for the modeling. Before presenting these diagrams, let us first introduce basic
knowledge on relays.

Relays. A relay is an electrically operated or electromechanical switch com-
posed of an electromagnet, an armature, a spring and a set of electrical con-
tacts. The electromagnetic switch is operated by a small electric current (its
command) that turns a larger current on or off by either releasing or retracting
the armature contact, thereby cutting or completing the circuit.

Fig. 1. Basic electrome-
chanical relay

When the electromagnet (1 in Fig. 1) is powered,
it will break the initial connection between the left
(2) and the middle (3) pin and create a new connec-
tion between the middle (3) and the right (4) pin.
Pins (2) and (3) create normally closed (NC) con-
tacts; pins (3) and (4) normally open (NO) contacts.
Actual relays involve several devices in order to pro-
vide a more complex though more reliable output:

diodes or snubber circuits to smooth the transition from one state to the other,
spring or gravity to relax the electromagnet when deactivated, choice of mate-
rial for contacts according to their electrical resistance. Similarly, the fine-grain
study of a relay may reveal non-linear or faulty behaviors (rebounds, undesired
arcing between contacts, contacts welding shut, temperature sensitivity).

Circuit Diagrams. A circuit diagram as shown in Fig. 2 describes the electrical
wires connecting the command of the relays with their power supplies. The
diagram includes the following syntactic elements:

• Positive and negative power supplies: noted P+ and P - respectively;
• Physical adresses in the cabinet, allowing a unique identification (HA0.B3,

HA0.F10);

RBS2HLL: A Formal Modeling of Relay-Based Interlocking 195

Fig. 2. Execution diagram for the command of relay EAP.Z2

• Electric devices: relays, bistable relays, etc, with their command pins (pos-
itive L+ and negative L-). RCDV550 is a track circuit receptor, COE.Z2
corresponds to the confirmation light of signal Z2, etc.;

• Contacts of relays, either NO/NC, or left/right/translators for bistable relays,
with a unique identifier for each device. For instance, the NO contact of relay
RCDV550 is just next to the P+ supply, and is noted RCDV550 T1;

• Wires between them, either single or multiple.

4 RBS2HLL

RBS2HLL is a tool that provides an automatic translation of circuit diagrams
into an HLL model. The underlying formal model must capture enough infor-
mation about the circuit to allow its safety validation and capture the logic it is
implementing. The objective of the model is to find out what is the sequential
logic implemented by a given circuit. To do so we need to adopt a discrete and
relevant point of view on the electrical behavior to express it in HLL. Besides
capturing the logic, the model needs to allow a modular translation of a cir-
cuit. Modular means here that we want to separate the expression of the circuit
topology from the description of components behavior. This separation has the
advantage of allowing the introduction of new components without having to
modify the tool that translates the circuit description. Due to the complexity of
relay-based systems, building a formal model of such system is a big challenge.
In addition, the formal proof must be feasible with the model thus obtained.

4.1 A Model of Circuit Diagrams

Considering a circuit diagram, we can intuitively identify inputs, outputs, and
internal states needed to produce them:

Outputs: Wires used to provide current to an external actuator (a railway switch
point, a signal).

Internal States: Commands of devices that control these wires.
Inputs: Power supplies that are involved in commands.

196 N. Aber et al.

A first approximation is to consider that a command is a Boolean value: the
threshold at which the electromagnet is actually excited is considered a perfect
square function. This approximation does not take into account the value of the
current, especially if it is sufficient to trigger the electromagnet as specified in
its technical description. The command is true when there is an uninterrupted
flow of current between its two command pins and power supplies. This reflects
the connectivity property of electricity. A second approximation is to introduce
no timing delay to model the flow of electricity through the circuit. The electric
current is considered to flow instantaneously from one of a wire to the other.

Similarly, contacts along the path between the command pins and power
supplies are modeled as perfect switches, and therefore take Boolean values: True
means that the switch is closed or the power supply is present, False meaning the
opposite. A command is therefore defined by combining all the wire paths that
come out of the pins to the power supplies. A sequential path corresponds to
a conjunction of contacts and power supplies, while a parallel path corresponds
to a path disjunction. An HLL representation of the equation of command for
relay EAP.Z2, noted as the internal variable EAP.Z2 Cmd will be:

EAP.Z2_Cmd := ((RCDV550_T1 & HA0.S14)

#(EAP.Z2_T1 & COE.Z2_R6 & HA0.S14)

#(BR.Q2/V2B_G2 & COE.Z2_R6 & HA0.S14)) & ((HA1.Z5));

Indeed, the command is active when at least one of the paths to positive
power supply identified by its address HAO.S14 is true, and its path to the neg-
ative one HA1.Z5 also is. Each path is composed of a conjunction (operator &)
of contacts switches ending on a power supply. The three possible paths from
the positive pin of the relay are obtained by a graph traversal of the graphical
representation of the circuit and combined by a logical disjunction (operator #).

Note that this traversal does not rely on a specific direction for the electrical
current. For instance, when coming upon the right pin of the NC contact of relay
COE.Z2, the algorithm shall not only allow to go to its left pin, but also to the
bottom pin of the BR.Q1/V2B left contact. This path is finally discarded since it
encounters an already visited node.

4.2 A Simple Model of Relays

From this model of circuits, one has to add a logical model for every kind of
devices encountered in the system. For relays, the model shall explain the con-
straints between NO/NC contacts and command. A functional view of a relay
would state that a NO contact shall be equal to its command, delayed by a
tiny amount of time (time needed for electromagnet to be energized plus for the
rebounds to stop, for instance). A NC contact would do the exact opposite.
This can be performed in HLL by using the temporal delay operator pre:

EAP.Z2_T1 = pre(EAP.Z2_Cmd);

EAP.Z2_R1 = ~ EAP.Z2_T1;

The delay operator refers to the previous value of the infinite stream. It allows
the wellformedness of recursive definition like the one for EAP.Z2, since one of

RBS2HLL: A Formal Modeling of Relay-Based Interlocking 197

the energizing path contains the NO contact T1 of the same relay. In the second
equation, the HLL ~ operator (tilde) stands for the Boolean negation.

However, this functional view does not take into account failure modes,
mandatory for the safety analysis. Moreover, actual relays used in railway sys-
tems cannot ensure such a strong functional relationship. The normative descrip-
tion of relays, encoded in the French normative document NF F 70-030, only
states the following constraints:

• NO contacts shall be opened when the command is set to False;
• NO contacts and NC contacts shall not be set to True at the same time

The first constraint is a weakening of the previous equation. Indeed, it allows a
failure in contact switching on even though a command is set to True, but does
not allow the contrary (contacts welding shut). In this more general model, con-
tacts are declared as inputs and are only constrained by the HLL representation
of these constraints. The second constraint is also a weakening of the second
equation since it only forbids contacts to be true altogether, while allows them
to be false at the same time. For instance, for relay EAP.Z2, the two constraints
are:

EAP.Z2_T1 -> pre(EAP.Z2_Cmd);

~(EAP.Z2_T1 & EAP.Z2_R1);

These requirements describe the minimum guaranteed expected behavior of a
device outputs, as stated by a normative description, and that could be ensured
by other means. These requirements provide safe-states of the device, and thus
of the system. They can be established for every device involved in a relay-based
implementation of an interlocking system.

The drawback of such a loose model is that it may fail to prove any property,
due to a lack of relationship between inputs and outputs. On the contrary, when
a proof is completed, it allows a strong confidence in the system robustness for
the given property.

5 Application: PHPI Interlocking

The RBS2HLL tool is part of a generic software validation process applied by
RATP for interlocking systems. In this section, a case study of how this tool can
be used to validate a PHPI interlocking will be presented. Before presenting this
validation method, a brief description of the PHPI solution will be given.

5.1 PHPI Interlocking

PHPI (Poste Hybride à Procédé Informatique in French) is a new RATP inter-
locking product designed to embrace the advantages of both relay-based and
computer-based interlocking. As any interlocking system, the main function of
PHPI is to set train routes on railway networks. The logic of signaling functions
can be implemented by electromechanical relays or processed by computer. The
solution introduced by PHPI is a hybrid system involving two parts:

198 N. Aber et al.

Fig. 3. PHPI validation process

• the relay-based part implements interlocking functions;
• the computer-based part implements safety validation (formal proof) and

functional validation.

5.2 PHPI Validation Process

Figure 3 describes the validation process applied for the PHPI interlocking. This
process is an instance of the EN 50129 [2] generic approach which can fall under
3 categories: Generic Product, Generic Application and Specific Application.

Generic Product. The proof process is performed with RATP Proof Toolkit
(see [3] and [6]). This engine checks if a safety property is satisfied by an inter-
locking model. If the property is violated, the proof engine provides a counter-
example showing a possible scenario leading to the violation of the property.

Generic Application. In our study case, this generic application is the signal-
ing application for RATP network. The safety properties are obtained from pre-
liminary hazard analysis: trains collision and train derailment. These properties
are subsequently refined into more detailed requirements according to different
configurations such as front collision, rear collision, derailment due to a badly
set point, etc. These refined requirements constitute the database of IXL Safety
Requirements. Property P, given as example, is extracted from this database.

RBS2HLL: A Formal Modeling of Relay-Based Interlocking 199

Property P:

Dangerous high-level situation: Train derailment

Refinement: Derailment on a point

Refined Property: If signal ‘s’ origin of a route ‘r’ which includes

point ‘p’ is permissive, then point ‘p’ is not in motion.

Each generic safety requirement is formally modeled in HLL. This activity is
performed manually and leads to HLL Generic Safety Properties. The proof
obligations (PO) are independent from application data and design, they are
expressed only with signaling devices (routes, point, signals, etc) and generic
functions. The HLL PO of property P, called PO P, is given as follows:

PO_P := (ALL p : point__tab, s: signal__tab, r: route__tab

(route_signal_origin__param(r,s)

& point_on_route__param(p,r)

& signal_open__func(s))

-> ~(point_left__func(p) & point_right__func(p)));

The parameters and the functions appearing in PO P will be described below
with the corresponding phase.

Specific Application. The formal modeling of an interlocking system is com-
pletely automatic thanks to the RBS2HLL tool presented in this paper. This
tool takes the circuit diagrams as input and yields an HLL model as result. As
mentioned above, the tool was developed bearing in mind that its output file
would be used to perform formal proof. The data tables arising from the IXL
functional schematics are transformed into HLL format by ad-hoc scripts devel-
oped for the specific needs of the application (in the case of PHPI, these tables
were in Microsoft Excel format). The application data lists all instantiations of:

1. The track devices such as routes, points, signals, etc.
As an illustration, point tab, signal tab and route tab are tables that
respectively lists points, signals and routes;

2. The links between these devices.
For example, route original signal param(r,s) associates each route to
its original signal.

For each specific application, only a subset of the overall generic properties will
need to be proven. These are identified by analyzing the track configuration,
or the kind of trains running on it (automatic or manual). However, since the
properties are generic, an interface file is required to link each object from the
generic description to the actual names. For instance, property PO P uses the
following interface functions:

• signal open func(s) reads the state of the relay commanding the signal
opening s in the HLL model. It returns true if s is open and false otherwise;

• point right func(p) reads the state of the relay controlling if the point p
is positioned on the right in the HLL model. It returns true if p is positioned
on the right and false otherwise;

200 N. Aber et al.

• point left func(p) reads the state of the relay controlling if the point p is
positioned on the left in the HLL model. It returns true if p is positioned on
the left and false otherwise.

6 Conclusion

This paper presented RBS2HLL, the new RATP tool for relay based interlock-
ing system formal modelisation. It explained how an HLL model of the system
can be automatically generated, based on a minimal set of guaranteed safety
requirements.

Related Works. Using formal methods in order to assess the safety of inter-
locking systems gains more and more attractivity. It has been reported in many
applications and research papers (eg. [4,7,9,11]). More specifically, Haxthausen
and al. present in [8] a tool for formal modeling relay based interlocking systems.
The tool takes the circuit diagrams of a relay-based interlocking system as input
and gives as result a transition system. The resulting model is expressed in the
SAL language and uses the SAL model checker to verify required properties. The
tool has been applied to the circuit diagrams of Stenstrup station in Denmark.
However, the internal relay model used in this work has not been fully described.

RBS2HLL Validation Process. RBS2HLL is the result of a multi-disciplinary
collaboration: a real effort has been made to write the RBS2HLL specifica-
tion. Collaborations were set up with PHPI project manager Nazim Benaissa,
safety manager David Bonvoisin, signaling experts, hardware experts and formal
method experts to formally define the safety criteria guaranteed for each family
of relays. The RBS2HLL tool was developed according to the European stan-
dard NF EN 50128:2011 [1] recommendations for a T2 class tool, since it must
be used in RATP industrial context. The RBS2HLL tool contains two indepen-
dent translation chains which have been developed by two independent teams
with different technologies. The RBS2HLL tool is internally validated at RATP
and is currently being assessed as part of the PHPI project’s certification by an
external and independent certification authority.

First Application. RBS2HLL was applied to a section of Paris Metro line 6
with the following metrics: 11 routes, 17 track circuits, 4 points and 9 signals.
The obtained HLL model has 1974 lines of code, 1050 variables, 164 equations,
153 constraints and 100 devices.

Building the HLL model of the system with RBS2HLL merely took a few
seconds. Using the resulting model of the system, along with specific track data in
HLL format, a large variety of generic safety properties were proven (the project
contains 20 applicable properties). No new system shortcoming was identified,
but all our purposefully injected faults were detected.

RBS2HLL: A Formal Modeling of Relay-Based Interlocking 201

Future Works. This paper allowed to demonstrate the feasibility of automating
the formal modelisation of relay based interlocking systems. The next challenge
is to assess the capability of our tool to deal with larger interlocking systems.
RBS2HLL performance is currently being tested on the considerably more com-
plex system: Paris Metro line 14 end of line interlocking system which contains
35 routes, 16 track circuits, 9 points and 16 signals. The resulting model has
152500 lines of code, 79000 variables, 73000 equations, 1422 constraints and 468
devices.

This project is just starting, and yet the use of the RBS2HLL tool already
allowed us to detect two wiring failures in the IXL execution schematics.

References

1. 50128:2011, C.E.: Railway applications communications, signalling and processing
systems - software for railway control and protection systems (2011)

2. 50129:2003, C.E.: Railway applications - communications, signalling and processing
systems - safety related electronic systems for signalling, February 2003

3. Benaissa, N., Bonvoisin, D., Feliachi, A., Ordioni, J.: The PERF approach for
formal verification. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail
2016. LNCS, vol. 9707, pp. 203–214. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33951-1 15

4. Bonacchi, A., Fantechi, A., Bacherini, S., Tempestini, M.: Validation process for
railway interlocking systems. Sci. Comput. Program. 128, 2–21 (2016)

5. Bonvoisin, D.: 25 years of formal methods at RATP. In: IRSC, 2–7 October 2016
6. Breton, N., Fonteneau, Y.: S3: proving the safety of critical systems. In: Lecomte,

T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 231–242.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33951-1 17

7. Busard, S., Cappart, Q., Limbrée, C., Pecheur, C., Schaus, P.: Verification of rail-
way interlocking systems. In: Proceedings 4th International Workshop on Engi-
neering Safety and Security Systems, ESSS 2015, Oslo, Norway, 22 June 2015, pp.
19–31 (2015)

8. Haxthausen, A.E., Kjær, A.A., Le Bliguet, M.: Formal development of a tool for
automated modelling and verification of relay interlocking systems. In: Butler, M.,
Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 118–132. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21437-0 11

9. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modeling and verification of inter-
locking systems featuring sequential release. In: Artho, C., Ölveczky, P.C. (eds.)
FTSCS 2014. CCIS, vol. 476, pp. 223–238. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-17581-2 15

10. Ordioni, J., Colaço, N.B.J.L.: Hll vol 2.7 modelling language specification (2018)
11. Sun, P., Dutilleul, S.C., Bon, P.: A model pattern of railway interlocking system

by petri nets. In: 2015 International Conference on Models and Technologies for
Intelligent Transportation Systems (MT-ITS), Budapest, Hungary, 3–5 June 2015,
pp. 442–449 (2015)

https://doi.org/10.1007/978-3-319-33951-1_15
https://doi.org/10.1007/978-3-319-33951-1_15
https://doi.org/10.1007/978-3-319-33951-1_17
https://doi.org/10.1007/978-3-642-21437-0_11
https://doi.org/10.1007/978-3-319-17581-2_15
https://doi.org/10.1007/978-3-319-17581-2_15

Property-Based Modelling and Validation
of a CBTC Zone Controller in Event-B

Mathieu Comptier1, Michael Leuschel2(B), Luis-Fernando Mejia3,
Julien Molinero Perez1, and Mareike Mutz2

1 ClearSy System Engineering, Aix-en-Provence, France
{mathieu.comptier,julien.molineroperez}@clearsy.com

2 Institut für Informatik, Universität Düsseldorf, Düsseldorf, Germany
{michael.leuschel,mareike.mutz}@hhu.de

3 Alstom, St-Ouen, France
luis-fernando.mejia@alstomgroup.com

Abstract. This paper describes a formal analysis method applied at the
software design level. The objective is to prove that a software specifi-
cation and its implementation satisfy the expected system properties. In
our case the analysed design is that of the Zone Controller of a CBTC
developed using B. The B-Method is used to ensure that the implemen-
tation is correct wrt the software specification, but it does not guarantee
that the algorithms described in the specification are correct wrt the
system level requirements.

Our analysis overcomes this shortcoming, providing a stronger assur-
ance that the designed software meets its objectives. In particular, we
prove that the implemented algorithms ensure that the track portion
actually occupied by a train is covered by a protection envelope on the
software side. The analysis is formalised with an Event-B model that is
subject to tool-based inspections: animation with ProB and formal proof
with Atelier B. In contrast to the existing B-Method model, our Event-B
model links environment variables (the real position of the trains) with
software variables (protection envelopes) and models the assumptions
about the possible evolution of the environment.

This analysis was carried out on an industrial scale software, consist-
ing of 12000 lines of executable code, with immediate concrete results.
This paper shows that, in addition to demonstrating compliance, this
approach is clearly of interest from an industrial point of view.

Keywords: B-Method · Event-B · CBTC · Zone controller · Proof ·
Animation · Model checking

This research has been conducted within the project AMASS, that has received funding
from the ECSEL JU under grant agreement No 692474. This Joint Undertaking receives
support from the European Union’s Horizon 2020 research and innovation programme
and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

c© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 202–212, 2019.
https://doi.org/10.1007/978-3-030-18744-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-18744-6_13

Property-Based Modelling and Validation of a CBTC ZC in Event-B 203

1 Motivation

In this work we analyzed a CBTC (Communication-Based Train Control) system
whose functional part was developed with the B-Method. A formal model of the
software components was created, then formally refined and finally formally
implemented. The actual code was generated from B-Method implementations
in Atelier B [4]. This obviates the need for module and integration testing and
results in a very robust product. This approach to code generation has been
successful for other CBTC products [7,8]. However, while this formal approach
avoids errors in the coding process, it does not prevent errors made at the level of
the requirements specification. Thus it is important to also validate the high-level
specification of each component of a CBTC. In particular, we want to guarantee
system-wide safety properties

– in light of evolving requirements specification of the components,
– and taking into account optimisation to increase availability of the system.

In this paper we propose an approach to tackle these challenges:

– by developing a system model of one CBTC component and its relevant envi-
ronment.

– by using a property-driven approach, where a component has to maintain and
guarantee a clear set of formal properties and

– by translating these properties to the software level of the CBTC component
under consideration.

In this paper we present a property-based methodology which allows to
ensure safety of a system while improving its availability and flexibility. This
formal system modelling approach is validated through the analysis of one par-
ticular vital CBTC component: the zone controller (ZC). The presented process
and its associated tooling helps the future evolution of ZC and increases the
confidence in its correct functioning.

2 CBTC Background

A CBTC is a safety-critical system for automatic train operation on metro lines
and rail yards. It can deal with both driver-less and driver-operated trains. It is
composed of several communicating subsystems (ZC, CC, CBI, ATS) which aim
at ensuring safe passenger traffic and optimal service. To ensure the required
safety level, subsystems must exchange reliable information, and thus, must be
considered together in the safety demonstration.

For instance, the global system must ensure that there is no train derail-
ment. This function is mainly performed by the interlocking component (CBI),
which must guarantee for instance that no switch can move under a train. The
mechanisms implemented within the CBI are based on its knowledge of the track
occupancy. The occupancy status is gathered by equipment set along the track.
However, in some cases, it can be improved by taking advantage of the ZC’s

204 M. Comptier et al.

knowledge obtained via direct communication with talkative trains. This occu-
pancy status transmitted by the ZC to the CBI must thus be correct in order to
be able to perform safety functions (and so must be the locations communicated
by the carborne controller (CC) to the ZC).

Establishing a safe occupancy of the track is one of the main goals of the
ZC. It is called the “train tracking” function. The algorithms implemented to
achieve it are eminently safety critical, they represent the main complexity of the
software and can spread over several thousand lines of code. The study carried
out focuses on this specific feature of the ZC which is based on computation of
envelopes covering every possible track portion occupied by a train.

Specific Notions. An envelope is a ZC software concept represented by two
locations delimiting a continuous portion of the track. Envelopes cover the areas
that are (potentially) occupied by trains. They are transmitted to the CBI who
will declare an area free if no envelope intersects this area. When the ZC knows
the identity of the train covered by an envelope it associates these two entities.
In other cases the envelope is called a Non Identified Envelope.

A train is considered as talkative when ZC has recently received a valid
message from this train indicating its certified position on the track. Otherwise
it is considered as non talkative and its position is tracked only using specific
wayside equipment.

3 Methodology

The aim of this section is to describe the four methodological steps (Sects. 3.1–
3.4) and illustrate them on a concrete example.

3.1 Step 1: Inputs and Main Properties

The first step is to define the main property the system shall respect when
operating in its environment. To illustrate this on our real analysis, the main
property concerns the track occupancy information sent by the ZC to the CBI
which uses this information to lock/release portions of tracks and switches. More
precisely the property is the following:

“At any time, every location of the track beneath a train
is covered by at least one envelope.”

Then, the implementation is studied to understand how it guarantees the
property. This requires a good representation of the implementation, which can
be obtained either from: the specification (in natural language), the (B) abstract
models of the implementation, the code of the implementation itself, or experts’
knowledge of the system implementation.

Property-Based Modelling and Validation of a CBTC ZC in Event-B 205

3.2 Step 2: Key Sentences Identification

During this phase, the implementation’s founding principles, on which the main
property relies on, are identified. Indeed, the main property uses generic system
notions which are difficult to link to the implementation. Hence, this property
has to be refined in key principles closer to the implementation. These principles
are sub-properties connecting the software variables to the environment. They
must be:

1. sufficient to guarantee the main property (Sect. 3.1);
2. satisfiable by an initial state when starting the software;
3. preserved by the implemented functions of the system.

These sub-properties (or invariants) may be found during this analysis and/or
directly provided by experts depending on the project. In our concrete study,
the sub-properties obtained are:

– “Any talkative train, physically located on the CBTC controlled area, has to
be integrally covered by its own envelope ”

– “Any non-talkative train, physically located on the CBTC controlled area,
has to be integrally covered by a set of specific non-identified envelopes.”

This example illustrates that these sub-properties contain details specific to the
implementation which were not in the main property definition (talkative trains,
non-identified envelopes, . . .). At the end of this phase a list of “key sentences”
are obtained. These are sufficient to ensure the main property and all imple-
mented functions must preserve them, which is the aim of the following section.

3.3 Step 3: Systematic Use and Manual Justifications

Once the key sentences have been found, the method becomes systematic. For
each function of the system, we develop a semi-formal reasoning in natural lan-
guage to justify that the invariants are preserved. In other words, starting from a
correct situation the function shall not violate the sub-properties. The reasoning
may use additional hypotheses which are exported as requirements to different
sub-systems (CBI, ZC, CC...). For example in our case, the location reports sent
by CC must be correct.

As the reasoning is formalised, an irrefutable demonstration is obtained based
on well-defined and non-ambiguous notions. The advantage is that the reasoning
is based on properties and not on the scenario anymore. This is preponderant
since the scenario based analysis cannot be guaranteed to be complete.

Concrete Example. Let us illustrate this approach on a specific function that
deals with a train becoming talkative and associating an identified envelope to it.
Figure 1 illustrates this function of the ZC. Before the execution of the function
the concerned train was associated with a non-identified envelope also covering,
for instance, two other non-talkative trains. This function modifies the status of
several notions used in the definition of the key sentences:

206 M. Comptier et al.

– Talkative and non-talkative trains.
– Identified and non-identified envelopes.

As the status of these notions are updated, we have to argue how and why the
key sentences are preserved. This requires us to prove that when this ZC function
associates a train to an identified envelope:

– The concerned train is physically located in this envelope.
– All other non-talkative trains are still covered by non-identified envelopes.

As several non-talkative trains may have been covered by the initial non-identi-
fied envelope which becomes identified, non-identified envelopes have to be cre-
ated over these potential non-talkative trains. The creation of the two new non-
identified envelopes is mandatory. Indeed, without it the proof in the AtelierB
(presented in the next subsection) will not succeed.

Fig. 1. Talkative train envelope association

3.4 Step 4: Tooled Verification

The method is tooled as well. Indeed, nothing prevents errors in manual proofs
hence certified automatic provers are required. A powerful tool containing both
modelling environment and provers is AtelierB. It allows to model the reasoning
in B language and is able to prove that the sub-properties are preserved by all
the functions modelled. When all the functions of the system are “completely
proved” the system is proven safe. Another advantage of the B-Model is the
possibility of using a second convenient tool: ProB [10]. This tool allows to
check and animate the reasoning to check that the model matches the expected
system behaviour. The application on our study is presented in Sect. 4.

3.5 Illustration

Figure 2 illustrates the different phases of the method described above: It
emphasises that when the reasoning or the proof cannot be concluded this can
be due to two reasons:

Property-Based Modelling and Validation of a CBTC ZC in Event-B 207

Fig. 2. Property-driven approach to ensure safety and availability of systems.

– either the reasoning/model is at fault and we have to go back to the previous
step with additional hypotheses (corrections)

– or a fault is detected which leads to scenarios to be investigated. In this case,
new key sentences may have to be derived or a safety investigation needs to
be carried out.

4 Proof and Animation

In this section we illustrate how tooling has supported our methodology.

4.1 Abstract System Model

The formal development used in our activities contains three types of models:

1. core Event-B models for proof, containing relevant ZC operations (i.e., phases
of the ZC algorithm) and environment events. They contain the key sentences
as invariants.

2. instantiated core models for animation and model checking by ProB. These
“extend” the core Event-B models and fix the size of the track and the max-
imum number of trains,

3. a more operational model (scheduler.mch) which enforces a cyclic sequenc-
ing of the ZC operations and limits environment train movements to more
“natural” progressions.

In the core Event-B models we use two types of events: those which are
phases of the ZC’s algorithm, e.g., insert talkative train corresponding to
Fig. 1, and the events which relate to the environment. The core model itself
behaves in a very non-deterministic way: any environment evolution is allowed

208 M. Comptier et al.

as long as the invariants are maintained. The model also does not enforce that
the ZC algorithm’s individual phases are executed in order. In other words, we
try to prove that the ZC’s individual phases are all correct on their own, wrt the
properties (aka invariants). In the more operational model (4.1, scheduler.mch)
the trains move forward instead of jumping to any new location, and also the ZC
events can only be triggered in a specified order. This model serves the following
purposes:

– to enable a more “realistic” interaction with the model for domain experts,
– to find out whether problems found in the core models still persist when we

take ZC operation order into account. In other words, whether issues found
in the core Event-B model can be translated to counter example traces of the
real ZC software system and

– to restrict the non-determinism, leading to more tractable model checking.

In the abstract system model we have used a linear topology, i.e. the model
focuses on one particular path through the topology and puts particular emphasis
on chaining breakings (points), as a lot of complexity in the ZC’s operation stems
from dealing with chaining breakings. The topology is modelled as an interval
(i.e., a set of abscissas). Possible chaining breakings are a subset of said abscissas.

4.2 Validation Tools

We applied animation and model checking in addition to and ideally before
proof. This way we could provide concrete scenarios, detect missing invariants,
well-definedness errors, and deadlocks before attempting the (time-consuming)
proof. For these validations we used the animator and model checker ProB [10].
We used both the command-line version of ProB as well as a new graphical
interface (called ProB2-UI) based on JavaFX.

Visualization. To enable animation we extended ProB to support more of
Atelier B’s Event-B syntax.1 To provide a graphical visualisation of the state
of the model we wrote a ProB2-UI plugin, shown in Fig. 3. In the top row the
occupation status of the secondary detection devices is shown. Below we see
the trains on the track, including their status (talkative or not talkative). For
talkative trains we also see the minimum and maximum locations representing
the location error (shown as the yellow area surrounding the red train). The
track including a switch is shown, in the example given we have an active chain-
ing breaking over the switch (represented by the star), i.e. the switch is either
in reverse position or its position is unknown to the ZC. Below the track all
envelopes within their external extremities are shown: colour and text depict
the kind of envelope. The last line is reserved for the ZC itself: we can see the
last command executed by the ZC, the colour shows the status of the ZC, i.e.
if it is busy or not. Figure 3 actually shows an invariant violation uncovered by
model checking (on a faulty, preliminary version of our model).
1 ProB did already support Event-B within the Rodin platform, but for this devel-
opment we used Event-B as supported by Atelier-B.

Property-Based Modelling and Validation of a CBTC ZC in Event-B 209

Fig. 3. JavaFX visualisation of the state of the ZC model

Model Checking. Model checking was used as means of an additional vali-
dation before the proof. Exhaustive verification, however, was only possible for
very small topologies. For example, for 3 trains, 6 protections and a topology
with one point and abscissas from 0..4, and fixing many parameters to one par-
ticular value, exhaustive verification results in 66,056,638 states. But even small
increases in the above parameters the state spaces becomes so large as to be
intractable for explicit state model checking. Still, non-exhaustive model check-
ing was useful to detect well-definedness errors, errors before proof, and find
concrete scenarios leading to certain desired (or undesired states). In particular,
we have implemented a new directed model checking feature to extend a given
scenario to a full fledged counter example if it exists.

Proof. The formal proof has been performed using Atelier B release 4.5.0 which
will be made public during the second semester of 2019. Atelier B generates
proof obligations every time a variable is modified; its new value must satisfy
the expressed invariants. Atelier B verifies the systematic principle described in
Sect. 3.2: starting from a valid situation, every event in the model should preserve
the invariants.

In our case, the developed model results in a few hundred proof obligations,
around 55% of which are automatically proved. The others had to be done
manually. This part of the activity consists in transmitting the reasoning that
has been done “on paper” before, in order to validate that it does not contain
logical mistakes or implicit assumptions. This part of the project detected several
errors leading to invariants adjustment.

Once an event is proved (i.e., a ZC function), we know that it doesn’t create
any unsafe situation. Otherwise a scenario that violates the property can be
given. Once the entire model is proved, we know that the main property is
always true: the design is compliant with the system expectation.

5 Results

The presented formal analysis provides a fresh look at design, by isolating each
involved concept, whether internal or from another subsystem, and associating

210 M. Comptier et al.

its contribution to safety in the form of a clear and unambiguous property.
The overall safety of the system results from a combination of these properties.
Indeed, the combination provides all the necessary hypotheses to demonstrate
the safety property under consideration, and therefore the conformity of the
design wrt the system needs. Eventually, carrying out the proof with Atelier
B guarantees that the demonstration is mathematically correct and therefore
is indisputable. In our study, the main property was related to safety. It is also
possible to apply the approach for functional properties. This approach naturally
brings the following results:

– Retrieve and/or explain clearly the fundamental design principles.
– Exhibit and explain formally the assumptions made about the studied func-

tion inputs.
– Retrieve and formalise the historical reasoning of the designers and keep track

of their justification.
– Identify complexity that is not necessary to maintain the properties and has

become useless or obsolete, providing opportunities for functional improve-
ments and performance gains.

– Possibly detect corner cases where the properties are not fulfilled, providing
the safety teams the elements necessary to analyse the consequences.

– Propose design improvements.

Industrial Relevance. Beyond the results presented above, this approach con-
stitutes a real alternative to “traditional” design and safety analysis methods
based on scenario analysis.

From the point of view of the system teams at the origin of the design, the
key phrases are an aid: just remember that each function that can be executed
preserves these properties. It is no longer necessary to try to imagine all possible
combinations of functions. In return, any newly developed function must preserve
the invariant properties.

From the safety point of view, an implemented function (or an association of
functions) is safe as long as it preserves the key invariant properties as exhibited
by this study. To validate the safety of an evolution, it is therefore sufficient
to require a formal demonstration, and to ensure that it doesn’t contain logical
errors. For this part, the study already carried out is accompanied by models
supported by Atelier B in which any evolution can be mathematically proven
even before it enters the traditional software development cycle.

From a practical point of view, it does not seem reasonable to ask the domain
experts to produce this proof, but rather to a formal team working in parallel
and in collaboration with them.

Integrating this type of approach into an industrial development process
amounts to moving the analysis effort towards the upstream phase of devel-
opment. The goal is to disclose as soon as possible safety defects that otherwise
would be disclosed later (during the validation phase, or worse during commis-
sioning) and thus significantly reduce development costs.

Property-Based Modelling and Validation of a CBTC ZC in Event-B 211

6 Conclusion, Related and Future Work

Related Work. Several examples using Event-B for system modelling, notably
one railway example, can be found in Abrial’s book [2]. Several Event-B models
were developed for the ETCS hybrid level 3 principles [1,6,9,11]. ClearSy has
used Event-B in two previous projects [5,12] (Flushing Line for NYCT and Octys
for RATP) to perform a safety analysis of CBTC systems. These were system-
wide safety analyses and did not make the link to a software component, such as
in the presented case. We have applied a combination of proof, animation and
model checking, not just proof alone. This has helped us uncover some subtle
issues, and avoid positing axioms which cannot be satisfied in practice.

Future Work. In this work we have linked the Event-B system model of a
ZC component of a CBTC with its software model. In future, we would like
to examine the correctness of distributed system functions, which require to
examine at least two software components (such as the CC and the ZC). On
the tooling level, we want to improve the integration of proof and validation
activities: certain properties are important for proof but disturb animation and
vice-versa. We want to make it easier in ProB to hide certain axioms from the
animator, so that the animation and proof teams can work on the same formal
model. We also think about developing a tool for exploration of the CBTC
specification by domain experts without requiring B knowledge. In other words,
we would like to allow domain experts to formalise and check properties by
direct interaction with a graphical representation of the model. We want to use
ProB to generate MC/DC tests from the Event-B specification to test that the
B software model is a correct implementation of the ZC component.

Conclusion. We presented a new methodology which allows us to formally
prove that a system design and implementation are correct with relation to a
given property. This methodology was validated through consequent industrial
application: The train tracking function of Alstom CBTC representing around
12000 code lines and hundred pages of specifications.

We emphasise that our property based is an alternative to the scenario app-
roach. The main advantages and industrial relevance of this approach were dis-
cussed in Sect. 5 and are summarised here:

– It is complete. Contrary to the scenario approach, no cases can be forgotten.
Indeed, we do not need to think about all possible failure cases, but only need
to show that the invariants are preserved.

– The methodology brings immediate, concrete and understandable results.
– It could easily be integrated into an existing design process. It can also be

conducted independently.
– It is useful both for system validation and for system evolution.

In addition this method can be supported with tools for automatic proving
(such as AtelierB) and for model exploration (such as ProB).

212 M. Comptier et al.

Up to our knowledge this method is the first, applied on a real industrial sys-
tem, which links real entities (such as e.g. physical train positions) and variables
in executable software.

Acknowledgements. We would like to thank David Deharbe, Etienne Prun and
Fabien Belmonte for useful contributions to this research. We thank David Schneider
for developing the visualisation plugin seen in Fig. 3.

References

1. Abrial, J.: The ABZ-2018 case study with Event-B. In: Butler et al. [3], pp. 322–337
2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press, Cambridge (2010)
3. Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.): ABZ 2018. LNCS, vol.

10817. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4
4. ClearSy: Atelier B, User and Reference Manuals. Aix-en-Provence, France (2009).

http://www.atelierb.eu/
5. Comptier, M., Déharbe, D., Molinero-Perez, J., Mussat, L., Thibaut, P., Sabatier,

D.: Safety analysis of a CBTC system: a rigorous approach with Event-b. In:
Fantechi, A., Lecomte, T., Romanovsky, A.B. (eds.) RSSRail 2017. LNCS, vol.
10598, pp. 148–159. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
319-68499-4 10

6. Dghaym, D., Poppleton, M., Snook, C.F.: Diagram-led formal modelling using
iUML-B for hybrid ERTMS level 3. In: Butler et al. [3], pp. 338–352

7. Dollé, D., Essamé, D., Falampin, J.: B dans le transport ferroviaire. L’expérience
de Siemens Transportation Systems. Technique et Science Informatiques 22(1),
11–32 (2003)

8. Essamé, D., Dollé, D.: B in large-scale projects: the canarsie line CBTC experience.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 252–254.
Springer, Heidelberg (2006). https://doi.org/10.1007/11955757 21

9. Hansen, D., et al.: Using a formal B model at runtime in a demonstration of the
ETCS hybrid level 3 concept with real trains. In: Butler et al. [3], pp. 292–306

10. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

11. Mammar, A., Frappier, M., Fotso, S.J.T., Laleau, R.: An Event-B model of the
hybrid ERTMS/ETCS level 3 standard. In: Butler et al. [3], pp. 353–366

12. Sabatier, D.: Using formal proof and B method at system level for industrial
projects. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS,
vol. 9707, pp. 20–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33951-1 2

https://doi.org/10.1007/978-3-319-91271-4
http://www.atelierb.eu/
https://doi.org/10.1007/978-3-319-68499-4_10
https://doi.org/10.1007/978-3-319-68499-4_10
https://doi.org/10.1007/11955757_21
https://doi.org/10.1007/978-3-319-33951-1_2
https://doi.org/10.1007/978-3-319-33951-1_2

Formal Verification

Interlocking Formal Verification
at Alstom Signalling

Camille Parillaud1(B), Yoann Fonteneau2, and Fabien Belmonte1

1 Alstom Transport SA., 48 rue Albert Dhalenne, Saint-Ouen, France
camille.parillaud@alstomgroup.com

2 Systerel, Toulouse, France

Abstract. Over the past decade, the growing number of safety-critical
software in the railway signalling industry has led customers and indus-
trials to look for efficient, cost-effective, verification and validation tech-
niques. Formal methods, which have proven to be applicable and bene-
ficial in terms of accuracy and completeness, are good candidates. How-
ever, they are still far from being used systematically for the verification
of all safety-critical railway signalling systems. In order to evaluate their
applicability, Alstom successfully experimented on its interlocking sys-
tems the model checking methods and tools developed by Systerel. This
article describes the methodology used to industrialize this experimental
model checking application process.

Keywords: Railway signalling · Formal verification ·
Industrial usage · Interlocking · Safety-critical systems

1 Introduction

This article presents the interlocking formal verification performed at Alstom
Signalling using Systerel Smart Solver (S3) model checking solution. Apply-
ing formal verification to interlocking systems is not new, several use cases are
well known in the railway signalling domain (as shown in previous communi-
cation made by Systerel [2]). However, formal methods are neither used for all
interlocking systems nor for all signalling applications. This article argues that
formal verification of interlocking system is a step forward to introduce the
recent development of formal methods (such as optimization of model checking
tools) in railway signalling applications. This is a first step towards building
an industry-specific methodology. It starts with a presentation of the industrial
issues of applying model checking to interlocking systems (Sect. 2), followed by
a brief state-of-the-art (Sect. 3). Then the technical issue is described in Sect. 4.
Section 5 explains how model checking has been introduced in Alstom’s inter-
locking verification process before presenting the results in Sect. 6 and concluding
in Sect. 7.

c© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 215–225, 2019.
https://doi.org/10.1007/978-3-030-18744-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-18744-6_14

216 C. Parillaud et al.

2 Industrial Issues

Alstom’s signalling systems span from wayside equipment such as track circuits
to complete signalling solutions such as Communication Based Train Control
(CBTC) systems. The number of installed equipment since the 1970s grows
each year and in particular the number of integrated solutions. For instance, the
Urbalis 400 CBTC solution equips 56 lines around the world today and will soon
be deployed on another 54 lines. This extensive number of systems in operation
increases the risk exposure to safety-related hazards and potential accidents;
hence the need for efficient verification and validation techniques.

Software development of signalling subsystems has intensively benefited from
formal methods such as the B-Method which was used by Alstom to develop the
safety critical software of its mainline and urban Automatic Train Protection
Systems. However, formal methods have not been used at Alstom to develop
legacy subsystems such as interlocking since they rely on old principles inherited
from relay logic. Verification and validation of these old principles are performed
by highly skilled individuals and knowledge management of these skills is hard
to maintain. Moreover, several projects require the installation of CBTC sys-
tems interfaced with pre-existing relay-based interlocking systems which must
be adapted to the CBTC features. Alstom looked for a way to capture and
formalize critical knowledge of such systems, as well as an efficient method to
validate the new and the pre-existing interlocking systems.

2.1 Limits and Difficulties of Classical Verification
and Validation Process

The classical verification and validation process of interlocking subsystems relies
on wide testing campaigns performed on virtual stations. These stations are con-
ceived so that as many functional scenarios as possible are included. Their design
and implementation are difficult and time-consuming activities. It is especially
hard to demonstrate that all safety-related scenarios have been correctly tested.
Indeed, some ripple effects due to modifications can be hard to foresee and test
on a virtual station. When dealing with existing relay-based interlocking sys-
tems which have been improved and optimized over the years, extracting the
principles and the associated safety concepts is a challenging task. The assess-
ment of the potential impact on the global system functions and safety requires
important effort.

2.2 Expected Results from Formal Verification

For these reasons, Alstom is introducing formal methods in the verification and
validation process of its interlocking systems. Indeed, these methods are based
on mathematical logic and they ensure an exhaustive and sound verification of
the system. The objective is to formally verify conventionally developed inter-
locking systems whether they are computer-based or relay-based, prior to site
operation. Model checking is particularly suitable to verify that systems always

Interlocking Formal Verification at Alstom Signalling 217

satisfy a set of properties and since the development of the interlocking system
is already performed, formal development is not adapted. This is why model
checking has been favoured to other formal methods. The use of model checking
in Alstom’s interlocking verification process will be presented in the following
sections of this article. The expected benefits are numerous and they will improve
the competitiveness of the system on which the formal methods were used.

Exhaustive and Unambiguous. As previously mentioned, formal methods
are founded on mathematical theories. They aim at building precise models
of the system or software under development. Their common objective is to
eliminate any ambiguity or imprecision which may come from the use of natural
language in order for the results to be unambiguous. They are sound and ensure
that the system is exhaustively verified or proved. Consequently, using formal
methods eases the approval process of the system.

Shortened Time-to-Market and Costs Reduction. In the railway domain,
the majority of safety-related faults which are discovered late in the lifecycle of
the project (which are therefore problematic) are linked to unlikely scenarios
that were not foreseen beforehand. The completeness of the proof or verification
obtained with the use of formal methods allows discovering these safety-related
scenarios early in the development lifecycle. The necessary modifications can
then be made earlier and the amount of required rework will be limited. This
implies a substantial amount of time saved and costs reduction at project level.

2.3 Limitations

Despite the significant advantages they present, formal methods also have their
limitations. The first limitation is that the proof (or verification) performed for-
mally is based on a set of safety properties that are manually determined before-
hand. If this set of properties is erroneous or incomplete, the value of the formal
proof (or verification) is of little use. It is therefore crucial to establish a robust
process to list the necessary and sufficient safety properties to be proven. The
process Alstom uses is presented in Sect. 5. Moreover, formal methods are effi-
cient when they contribute to the safety demonstration of the system. However,
when it comes to proving non safety-related properties, these are very compli-
cated to determine as they must include all possible functional requirements
cases to be provable.

3 State of the Art

Interlocking systems, with their inherent boolean nature and overwhelming com-
binational complexity have been a privileged target of model checking techniques.
Pioneering work started as soon as sufficiently powerful model-checker software
came into existence in the early 2000s (e.g. [1,3,8]). All these contributions were

218 C. Parillaud et al.

analyzing manually crafted models of interlocking systems, somewhat distant
from the real installed safety critical systems. Moreover, at that time, it had
always been concluded that the huge state space of these systems could not be
handled without over-simplifications and/or splitting and compositional verifi-
cation techniques.

Over the past decade, model checking techniques have matured, increas-
ing the analysis power. After 2010, a renewed interest arose, leading to novel
attempts to solve the problem (e.g. [4–6]). Great progress has been made that
demonstrates the feasibility of the formal safety verification of real-world inter-
locking systems.

In this article, following the Systerel Smart Solver (S3) workflow presented
in a previous article (see [2]), we describe the use of these techniques in an
industrial and normative context.

4 Technical Issue

The formal safety verification of an interlocking system requires both a solution
to perform the analyses and the safety properties to be analysed under a num-
ber of environment constraints. This section focuses on the formal verification
solution, and Sect. 5 describes the safety properties.

Following the description given in [2], an S3 formal safety verification solution
involves the development of a translator from a given interlocking application
(given in its specific language/format) to a model of this application in HLL,
the S3 tool-chain input modelling language [7]. This model of the safety crit-
ical application shall be sound, in that it shall preserve the semantics of the
real application, so that any property proved on this model is valid on the real
application. A second translator is also needed to translate a description of the
track layout controlled by the given interlocking application. These data, usually
given in some form of database, contain the objects present on the tracks (e.g.
signals, points, routes, ...), and relations between these objects (e.g. origin sig-
nal of a route, points of a route, ...). They are translated in HLL as hierarchical
enumerations of objects, and predicates on these objects. These two translators
are specific to the given family of interlocking applications.

The obtained HLL models can then be concatenated with the desired safety
properties and environment constraints formalized in HLL to obtain the analysis
model. This model can then be analyzed by the standard S3 tool-chain. It is first
given to an expander tool that transforms the HLL model into a semantically
equivalent model in LLL, a purely boolean subset of HLL suitable for S3 analysis.
Two main types of analyses may be performed.

Bounded Model Checking (BMC). In this type of analysis, scenarios of
increasing length are investigated in order to find counter-examples of some
of the provided safety properties. Such a scenario, exercising the inputs of the
interlocking application (i.e. its sensors) in a way compatible with the provided
environment constraints, leads the application from its initial state to a state

Interlocking Formal Verification at Alstom Signalling 219

violating a safety property. For each safety property, the result of this analysis is
thus either a scenario violating the property, or the assurance that this property
holds for every scenario up to a given length (the higher the length, the longer
the analysis will take). This type of analysis is the first one to be attempted on
a new system or a new property, until no more counter-examples can be found,
and the BMC has reached a length large enough to have an intimate conviction
that the non-violated properties hold.

Induction over Time. In this mode, the analysis engine attempts to prove
that some safety property is valid, which means that there exist no scenario,
whatever the length, that leads the interlocking application to a violation of this
safety property (e.g [2,4]). This is performed using standard induction over the
length of the scenario. A first analysis shows that the property holds for every
scenario of length 1, and a second shows that if the property holds in some
state of the system, it will hold in any state reachable from this state in one
transition of the interlocking application. When these two analyses are successful,
the property is proved valid. If the first analysis fails, a counter-example to the
property has been found (similarly to the BMC analyses). However, when the
second analysis fails it either means that the property can be falsified with a long
scenario (longer than the length reached by a BMC on this property), or more
often, that the property is non-inductive. This means that the analysis engine
has found a scenario (called a step-counter-example) starting from a state of the
system in which the property holds, and which leads with a single transition of
the interlocking application to a state violating this property. This means that
this starting state is unreachable from the initial state of the system. The way
to deal with these non-inductive properties is by developing induction enforcing
lemmas, as explained in Sect. 5.

The analysis process starts by using the BMC strategy repeatedly and cor-
recting either the expression of the safety properties or the bugs found in the
interlocking application until no more counter-examples are found for a large
length. The process then reverts to an induction strategy, used iteratively to
find all lemmas until all properties are proved.

However, in the EN50128 normative context, this is not sufficient. This stan-
dard asks for some insurance on the results of the verification (T2) tool.

To achieve a high degree of confidence compatible with EN50128, a second set
of translators is developed in an independent way (different development team
and different programming language), a second independent expander from HLL
to LLL is also used. The resulting LLL models of the two translations expanded
by the two expanders are combined by a tool that creates a new LLL file express-
ing that the two models are sequentially-equivalent (i.e. provided with the same
inputs sequences, they produce the same output sequences). This resulting LLL
file is then given to the S3 analysis engine to prove the equivalence. Moreover,
the S3 analysis engine is equipped with a proof-log/proof-check mechanism, such
that for each proof that it finds (proofs of equivalence and of the safety proper-
ties), it outputs a proof-log file containing this proof expressed in a formalized

220 C. Parillaud et al.

proof system, and the correctness of each proof-log is independently verified by
a simple proof-checker software.

Therefore, the S3 solution is compatible with an EN50128 T2 verification
tool certification.

5 Industrial Process

5.1 Determination of Safety Properties

The first step towards proving that an interlocking system is safe through model
checking is to determine the safety properties that this system must satisfy.
These safety properties must be as high-level as possible in order to maintain a
black box approach and remain independent from the design of the interlocking
system. Thus, the safety properties are less likely to be biased and to hide a
possibly dangerous scenario. The identification of the adequate safety properties
is performed through the “Deductive Identification of Safety Properties” which
is a three-step process.

Deductive Tree Analysis. First, a top-down analysis is conducted. It aims
at identifying a comprehensive set of high-level functional safety properties to
be satisfied by the interlocking system. It is performed independently from the
detailed design, i.e. with a black-box approach, knowing only the external inter-
faces of the interlocking. Thanks to a user-level knowledge of the functions the
system must implement and to the definition of its scope, the influence of the
system on its external environment is studied based on the two following criteria:
What are the hazards that are likely to occur in the scope of the interlocking
system? How can the interlocking protect against these hazards by use of its
means of interaction with its external environment? This identification of pro-
hibited scenarios allows modelling the hazards associated with the functional
behaviour of the interlocking system. The properties, thus specified, ensure that
the system does prevent these hazards from occurring.

Failure Modes and Effects Analysis (FMEA). The previous deductive
approach has the advantage of being completely independent from the product.
However, some risks can originate from the design choices. This is why a FMEA,
which is inductive (or bottom-up), is performed. Instead of focusing on the haz-
ards and looking for the possible causes, it aims at determining the possible
effects of a failure of each function performed by the interlocking system and
defining mitigations should the risk be safety-related.

Convergence. In order to ensure the completeness of the list of safety prop-
erties, the two sets of requirements coming both from the deductive and the
inductive analyses are traced. This ensures that the high level properties of
the system do cover all possible hazards related to the interlocking system.

Interlocking Formal Verification at Alstom Signalling 221

The safety properties are the result of this traceability. They are based on the
wording of the requirements coming from the deductive analysis. Should there
be a requirement from the inductive analysis that cannot be traced with any
requirement of the deductive analysis, a new safety property is added, based
on the formalization of this requirement. Once this last task is performed, the
output is a complete set of safety properties expressed in natural language that
will be proven with model checking after being formalized.

5.2 Modelling

Environment. In order to adequately simulate the inputs of the interlock-
ing system, a model of its environment is created. This model describes the
behaviour of the systems interfaced with the interlocking by constraining their
outputs which are inputs of the interlocking system. This prevents impossible
scenarios from being considered and allows the proof to focus on realistic ones.
For instance, an impossible scenario could be a train not moving continuously
along the track.

The environment of the model can also include a similar system to the one
that is being proved (two systems managing different geographical parts of the
track). In that case, each system is proved separately. If some hypotheses must
be made on the behaviour of the first system to prove the second, they must
be proved when performing the proof of the first system. As the interlocking
conditions are different in the two systems, this methodology does not create
any reasoning loop and the proof of both systems stands. The asymmetrical
conditions come from track layout deployment rules.

Safety Properties. The model also includes the safety properties that have
been previously established. These properties rely on refined concepts that must
be formally modelled in order to rigorously remove any ambiguity that could be
introduced by using natural language.

Interlocking System. The model of the interlocking application and the track
layout data are obtained as described in Sect. 4.

Modelling Risks. In order for the proof to be effective and reliable, some pre-
cautions must be taken during the modelling phase. It is necessary for the model
to be as permissive as possible. It must allow all possible scenarios to occur, oth-
erwise a safety-related hazard could be missed during the proof process. Thus,
the constraints on the inputs must be carefully defined and checked with this
risk in mind.

5.3 Proof Process

The proof process is described in the Fig. 1. In this process there are two manual
tasks:

222 C. Parillaud et al.

Fig. 1. S3 formal verification process implemented at Alstom

Study of Counter-Examples. This task consists in exploring the counter-
example step by step to understand why a property is falsified. The bounded
model checking can find problems of three different categories:

– Environment modelling error: the model of the railway environment is too
abstract. The error is not reproducible on the track. Some constraints have
to be added to remove this behavior. In this case, the environment model has
to be fixed.

– Data error: there is an error in the data (chaining error, definition of flanking,
...) or the data of the interlocking are not compatible with some interlocking
principles usage restrictions. In this case, the track layout data has to be
fixed.

– Principles errors: error in the interlocking principles or the principles are not
compatible with the specific track configurations. In this case, the Specific
interlocking application has to be fixed.

Development of Lemmas. When a property is not proved, a step-counter-
example is generated. This counter-example is used to develop a lemma. A lemma
is a relation that holds between variables of the system. It is thus similar in
essence to a safety property, except that a property is usually expressed only in
terms of the inputs and outputs of the system whereas a lemma may also rely
on internal variables. Also, a safety property characterizes some aspect of the
safety of the system, whereas a lemma may be more general. Looking at the
unreachable state found in a step-counter-example, together with the knowledge
of the system design and especially of the principles ensuring its safety, it is
usually rather simple to express a relation between variables of the model that
eliminates this unreachable state.

Interlocking Formal Verification at Alstom Signalling 223

5.4 Insertion of Model Checking into Alstom’s Pre-existing Process

Interlocking Development Process. Alstom’s classical interlocking develop-
ment process is based on the development of a generic product which is then
customized through data to the different specific applications required by com-
mercial projects. This separation between generic product and specific applica-
tion ensures a high level of reusability of the different activities involved in the
development of the specific application (design, validation, safety demonstra-
tion). Regarding formal verification, it means that the model of the environment
and safety properties, which is based only on the generic product principles and
functions, is applicable to all specific applications based on the same version of
the generic product. When the interlocking principles are updated, usually in
order to incorporate a new functional gap for a client, so is the generic product
which in turn means the model has to be adapted as well. The proof, how-
ever, is always performed on a specific application as it requires the instantiated
principles of the interlocking system.

Occurrence in the Lifecycle of the Interlocking System. The proof is
performed on instantiated principles. It can therefore occur as soon as the first
version of these instantiated principles is available. The modelling phase can start
earlier though, during the design phase, as long as the principles and functions of
the system have been defined. The proof must then be repeated for each update
of the instantiated principles and system data.

6 Results

6.1 Technical Results

The S3 formal verification solution has been applied on several Smartlock 400 GP
interlocking applications on multiple subway lines (Amsterdam, Lusail, Guadala-
jara...). On the larger stations (1312 routes, 235 points, 398 signals, and 587
secondary detection devices), the analysis took up to 24 h of CPU time on an
intel i5-4670. While this duration is acceptable for the long BMC runs used to
find falsification of the safety properties, it reveals a burden when it comes to
the development of lemmas. For this phase of the project, a custom utility tool
has been developed to allow the splitting of a station on a small sub-region of
its track layout to allow for faster analysis time. However the final proofs are
obviously performed on the whole track-layout.

A total of 114 properties have been formalized, and 533 lemmas were needed
to ultimately prove these properties. During the analysis, a total of 5 iterations
have been needed to mature the environment modelling (driven by 5 environ-
ment modelling errors). The various long BMC runs have unveiled 3 data errors
(mainly around the definition of the flanking of points), and a single unlikely
principle error. After correction of all these errors, all considered interlocking
applications have been proved to respect the safety properties.

224 C. Parillaud et al.

6.2 Related to the Industrial Process

As implemented, model checking allows a non intrusive verification of the system
design. Thus, the design process of the interlocking system is not impacted by
the introduction of formal verification in the safety demonstration process. It
is only the verification and validation activities that are impacted as the model
checking proof can replace the safety-related tests performed for the interlock-
ing system, that is to say about 30% of the required tests. Indeed, the model of
the interlocking system is obtained by two independant translators and a proof
of equivalence between the two translations is established, ensuring the model
is totally compliant with the source code. Incidentally, the safety demonstra-
tion can be provided more quickly when using model checking compared to the
classical verification process. This compensates the additional modelling work
required by the model checking process.

Moreover, the use of model checking has proven to be beneficial as valid
counter-examples (whether they were related to the data or the interlocking
principles) were found earlier than with the classical process on the different
lines it was tested on. This confirms that introducing model checking in the
interlocking system verification and validation process does have added value.

7 Conclusion

Introducing model checking in Alstom’s verification and validation process of
interlocking systems has proven to be efficient as safety-related counter-examples
have been discovered more quickly than with the traditional process. In addition,
model checking is performed on a set of instantiated interlocking principles,
whereas the traditional verification process uses the generic principles. Therefore,
using model checking provides additional confidence in the safety demonstration
compared to the traditional process because the proof uses the real data of
the specific application. Today, this approach is applied on Alstom’s largest
interlocking project and the computation time is shorter than a day.

However, the sensibility to complex stations is linked to the lemmas iden-
tification for reuse. Indeed, the lemmas that must be defined for the inductive
proof can be difficult to find as they must be adequate for all track configurations
existing in the specific application. This means they could have to be modified
when switching from one application to another.

Overall, this new process was deemed beneficial and will be used on new
Alstom interlocking systems in the future.

References

1. Bernardeschi, C., Fantechi, A., Gnesi, S., Mongardi, G.: Proving safety properties
for embedded control systems. In: Hlawiczka, A., Silva, J.G., Simoncini, L. (eds.)
EDCC 1996. LNCS, vol. 1150, pp. 321–332. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-61772-8 46

https://doi.org/10.1007/3-540-61772-8_46
https://doi.org/10.1007/3-540-61772-8_46

Interlocking Formal Verification at Alstom Signalling 225

2. Breton, N., Fonteneau, Y.: S3: proving the safety of critical systems. In: Lecomte,
T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 231–242.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33951-1 17

3. Eisner, C.: Using symbolic model checking to verify the railway stations of Hoorn-
Kersenboogerd and Heerhugowaard. In: Pierre, L., Kropf, T. (eds.) CHARME 1999.
LNCS, vol. 1703, pp. 99–109. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48153-2 9

4. Haxthausen, A.E., Peleska, J., Pinger, R.: Applied bounded model checking for
interlocking system designs. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS,
vol. 8368, pp. 205–220. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
05032-4 16

5. James, P., et al.: Verification of solid state interlocking programs. In: Counsell, S.,
Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 253–268. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-05032-4 19

6. Mota, J.L., et al.: Safety demonstration for a rail signaling application in nominal
and degraded modes using formal proof. In: Formal Methods Applied to Industrial
Complex Systems, pp. 71–113, July 2014. https://doi.org/10.1002/9781119004707.
ch4

7. Ordioni, J., Breton, N., Colaço, J.L.: HLL vol 2.7 modelling language specifica-
tion. Other STF-16-01805, RATP, May 2018. https://hal.archives-ouvertes.fr/hal-
01799749

8. Winter, K.: Model checking railway interlocking systems, February 2002. https://
doi.org/10.1145/563857.563836

https://doi.org/10.1007/978-3-319-33951-1_17
https://doi.org/10.1007/3-540-48153-2_9
https://doi.org/10.1007/3-540-48153-2_9
https://doi.org/10.1007/978-3-319-05032-4_16
https://doi.org/10.1007/978-3-319-05032-4_16
https://doi.org/10.1007/978-3-319-05032-4_19
https://doi.org/10.1002/9781119004707.ch4
https://doi.org/10.1002/9781119004707.ch4
https://hal.archives-ouvertes.fr/hal-01799749
https://hal.archives-ouvertes.fr/hal-01799749
https://doi.org/10.1145/563857.563836
https://doi.org/10.1145/563857.563836

Survey on Formal Methods and Tools in
Railways: The ASTRail Approach

Alessio Ferrari1(B) , Maurice H. ter Beek1 , Franco Mazzanti1 ,
Davide Basile1,2 , Alessandro Fantechi1,2 , Stefania Gnesi1 ,

Andrea Piattino3, and Daniele Trentini3

1 ISTI–CNR, Pisa, Italy
{alessio.ferrari,m.terbeek,f.mazzanti,s.gnesi}@isti.cnr.it

2 Università di Firenze, Florence, Italy
{davide.basile,alessandro.fantechi}@unifi.it

3 SIRTI S.p.A., Genoa, Italy
{a.piattino,d.trentini}@sirti.it

Abstract. Formal methods and tools have been widely applied to the
development of railway systems during the last decades. However, no uni-
versally accepted formal framework has emerged, and railway companies
wishing to introduce formal methods have little guidance for the selec-
tion of the most appropriate methods and tools to adopt. A work pack-
age (WP) of the European project ASTRail, funded under the Shift2Rail
initiative, addresses this problem, by performing a survey that considers
scientific literature, international projects, and practitioners’ perspec-
tives to identify a collection of formal methods and tools to be applied
in railways. This paper summarises the current results of this WP. We
surveyed 114 scientific publications, 44 practitioners, and 8 projects to
come to a shortlist of 14 methods considered suitable for system mod-
elling and verification in railways. The methods and tools were reviewed
according to a set of functional, language-related, and quality features.
The current paper extends the body of knowledge with a set of publicly
available documents that can be leveraged by companies for guidance on
formal methods selection in railway system development.

Keywords: Formal methods · Model-based development · Railways

1 Introduction

The railway field is characterised by its rigorous development processes and
its robust safety requirements. During the last decades, formal methods and
tools have been widely applied to the development of railway systems (cf.,
e.g., [1,4–6,8,9,11,12,14,15,17,18,20–25,28,29]). Formal methods are men-
tioned as highly recommended practices for SIL 3–4 platforms [10,14] by the
CENELEC EN 50128 standard for the development of software for railway con-
trol and protection systems. The extensive survey on applications of formal meth-
ods by Woodcock et al. [30], which includes a structured questionnaire submitted
c© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 226–241, 2019.
https://doi.org/10.1007/978-3-030-18744-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_15&domain=pdf
http://orcid.org/0000-0002-0636-5663
http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0003-4562-8777
http://orcid.org/0000-0002-7196-6609
http://orcid.org/0000-0002-4648-4667
http://orcid.org/0000-0002-0139-0421
https://doi.org/10.1007/978-3-030-18744-6_15

The ASTRail Approach 227

to the participants of 56 projects, also identified the transport domain, including
railways, as the one in which the largest number of projects including applica-
tions of formal methods has been performed. Relevant examples are the usage
of the B method for developing railway signalling systems in France, like, e.g.,
Line 14 of the Paris Métro and the driverless Paris–Roissy Airport shuttle [1].
Another is the usage of Simulink/Stateflow for formal model-based development,
code generation, model-based testing, and abstract interpretation in the devel-
opment of the Metrô Rio ATP system [12]. Many projects have been also carried
out, often in collaboration with national railway companies, for the verification
of interlocking systems [7,16,18,27–29].

Also the EU’s Shift2Rail initiative1 considers formal methods to be funda-
mental to the provision of safe and reliable technological advances to increase
the competitiveness of the railway industry. In particular, a specific call was
issued asking for an analysis of the suitability of formal methods in support-
ing the transition to the next generation of ERTMS/ETCS signalling systems,
which will include satellite-based train positioning, moving block distancing, and
automatic driving. The Horizon 2020 Shift2Rail-RIA-777561 project ASTRail2

(SAtellite-based Signalling and Automation SysTems on Railways along with
Formal Method and Moving Block Validation) responds to this call. As part-
ners of this project, we are involved in a specific work package (WP) of the
ASTRail project, focussing on the contribution of formal methods to address
this challenging transition; this WP operates in the following two phases:

1. An analysis phase dedicated to a comparison and evaluation of the main
formal methods and tools that are currently being used in the railway industry
to guarantee that software bugs do not jeopardise safety;

2. An application phase in which selected formal methods are used to model
and analyse two main goals addressed by the project, namely moving block
distancing and automatic driving, in order to validate that the methods are
not only able to guarantee safety issues, but also—more in general—the long
term reliability and availability of the software.

This paper reports on the first phase. It illustrates the results from a survey
based on 114 publications and 8 projects, and a questionnaire filled in by 44
practitioners. Based on the results of the survey, a set of 14 formal tools have
been analysed according to a set of functional, language-related, and quality
features. Given the extensive amount of work, this paper only summarises the
results. The interested reader can refer to our public deliverable [13] for further
insights.

The remainder of the paper is structured as follows. In Sect. 2, an overview of
the approach is provided. In Sects. 3–5, the results of a literature review, projects
review, and questionnaire are presented. In Sect. 6, the tools review is presented.
Section 7 provides final remarks.

1 shift2rail.org.
2 astrail.eu.

http://shift2rail.org/
http://astrail.eu/

228 A. Ferrari et al.

2 Context: Formal Methods and Tools in ASTRail

In this section, we briefly describe the context of our paper, namely the ASTRail
project and its specific concern for formal methods and tools.

2.1 ASTRail Objectives

ASTRail is one of the Shift2Rail initiatives to increase the competitiveness
of the European railway industry, in particular concerning the transition to
the next generation of ERTMS/ETCS signalling systems, which will include
satellite-based train positioning, moving block distancing, and automatic driv-
ing. ASTRail aims to introduce recent scientific results and methodologies as well
as cutting-edge technologies from other transport sectors, in particular avionics
and automotive, in the railway sector, leveraging on formal methods and tools
for careful analyses of the resulting novel applications and solutions in terms of
safety and performance.

One of the main focuses of ASTRail concerns the usage of the global naviga-
tion satellite system (GNSS) [26] for onboard train localisation. While satellite-
based positioning systems have been in use for quite some time now in the
avionics and automotive sectors to provide accurate positioning and distanc-
ing, the current train separation system is still based on fixed blocks (a block
is the section of the track between two fixed points), implemented by specific
equipment along the lines. One of ASTRail’s aims is to define a moving block sig-
nalling [2] (according to which a safe zone around the moving train can be com-
puted, thus optimising the line’s exploitation) and to perform its hazard analysis.
For this solution to work, it requires the precise absolute location, speed, and
direction of each train, to be determined by a combination of sensors: active and
passive markers along the track, as well as train-borne speedometers. One of the
current challenges in the railway sector is to make such moving block signalling
systems as effective and precise as possible, leveraging on an integrated solution
for signal outages (think, e.g., of tunnels) and the problem of multipaths [26]. A
related aim of the project is to study the possibility of deploying the resulting
precise and reliable train localisation to improve automatic driving technologies
in the railway sector.

2.2 Formal Methods and Tools in ASTRail

WP4 of the ASTRail project—discussed in this paper—aims to identify, on the
basis of an analysis of the state of the art, of the past experiences of the involved
partners and on work done in previous projects, the candidate set of formal
and semi-formal techniques that appear as the most adequate to be used in the
different phases of the conception, design, and development of railway systems in
general, and of the class of signalling systems that is the subject of the ASTRail
project in particular. In the following, when we will use the general term formal
method, we will implicitly include also semi-formal methods, i.e., those methods
that use languages for which the semantics is not formally defined but depends

The ASTRail Approach 229

Fig. 1. Overview of the approach adopted in the analysis phase of WP4

on its execution engine. Furthermore, given that in practice a formal method
always needs a support tool to be practically applicable, we will use the terms
formal methods and formal tools interchangeably.

Figure 1 presents the overall approach applied in the context of this analysis
phase. To address the goal of identifying the most mature formal/semi-formal
languages and tools to be applied for the development of railway systems, we
first performed a benchmarking task, by gathering information from three differ-
ent sources: Scientific Literature, information from other Projects, and Railway
Practitioners. Information from these sources were gathered through a System-
atic Literature Review (SLR), a Projects Review and a Survey submitted to
practitioners in the form of a questionnaire. The information was used to iden-
tify a set of main formal and semi-formal tools that appear to have been used
in the railway domain (Relevant Tools in Fig. 1). Specifically, scientific literature
was used as a primary source, since it provides more extensive information for
guidance in the selection of relevant formal methods, while other projects and
railway practitioners were used as sources to complement the information from
the literature review. Furthermore, Evaluation Criteria for the different tools
were defined based on collaboration between academic and industrial partners.
These were applied to carefully evaluate the selected tools in a Tools Review.

The SLR produced a Paper Analysis Matrix (included as Annex 1 in our
deliverable [13]), which may support the identification of the possible tools to
be used depending on the specific railway system to be developed, and depend-
ing on the life-cycle phase to address. Furthermore, a Tool Evaluation Matrix
(Annex 2) was defined for the different tools based on the tools review, and a
Tool Evaluation Report (Annex 3), which provides details about the evaluated
tools. The Tool Evaluation Matrix aims to support the selection of a formal
or semi-formal tool for the railway problem at hand, based on specific prefer-
ences selected by the user of the matrix, concerning different evaluation criteria
(e.g., functionalities supported by the tool, flexibility, usability) and guided by

230 A. Ferrari et al.

the information from the Paper Analysis Matrix. The Tool Evaluation Report
provides details to perform a more informed selection.

3 Literature Review on Formal Methods in Railways

The primary goal of the systematic literature review (SLR) was to identify the
most mature formal and semi-formal methods to be applied in railway devel-
opment. The SLR was conducted based on the guidelines of Kitchenham [19].
Performing a SLR requires to define a search string (e.g., “formal methods” and
“railways”) to automatically retrieve scientific papers from search engines, such
as Scopus and SpringerLink, and to extract the data of interests from the rele-
vant papers. The complete report of the SLR, including search string and data
analysis procedures, can be found in the project’s deliverable. Here, we present
the most relevant results.

The search was conducted on the 7th of December, 2017, while the analysis
and data extraction were performed during the following months. From the initial
search, and a first analysis of the abstracts of the papers, we identified a set
of 411 potentially relevant papers to use for data extraction. Given the large
amount of literature, and given that the focus of ASTRail is not on interlocking
systems, we decided to focus solely on studies that do not deal exclusively with
interlocking (hence, 124 papers focussing mainly on interlocking were excluded
from our analysis). We manually analysed 294 papers to check their quality and
to identify shorter versions of other papers in the set. We excluded 180 studies of
low quality, according to our quality checklist, or which turned out to be shorter
versions of other papers from the set. In the end, a set of 114 papers was used
for data extraction. Therefore, in the following, we report on the data extracted
from 114 high-quality, and non-interlocking studies.

When appropriate, the statistics in the following sections will distinguish
between the total number of papers considered in the review, and the papers that
had either an industrial evaluation, or that led to actually developed products.
These papers, identified as IND/DEV in the statistics, were considered more
important, since they show evidence of industrial maturity of a certain method
or tool.

3.1 Languages from the Literature Review

Figure 2 reports the results in terms of number of papers that use certain semi-
formal and formal languages. The list of languages is extensive, and, in the
statistics, we do not report on languages that appeared in only one non-industrial
paper. The most used input language, according to the analysed papers, is UML.
This is a semi-formal language, which is often used in the early phases of system
design, and it is typically translated into a formal language, like, e.g., the B lan-
guage, in the considered studies. State Machines or Statecharts, in their different
dialects, such as Simulink/Stateflow, are also frequently used. Also more formal

The ASTRail Approach 231

Fig. 2. Languages cited in the literature

languages, like Timed Automata, Petri Nets, CSP and Promela occur in a non-
negligible amount of papers. However, these formal languages are mainly used
in academic papers, while few industrial papers use them. Indeed, industrial
papers tend to privilege State Machines, UML and B/Event B, or the SCADE
language. It is also worth noticing that some industrial papers use several spe-
cific modelling languages, e.g. DSTM4Rail, that are used only in the context of
the paper, but not in purely academic papers.

3.2 Tools from the Literature Review

Figure 3 reports the results in terms of number of papers that use a certain
support tool. The list of tools mentioned in these papers is extremely extensive
and each paper uses a different combination of methods and tools. Therefore,
in the statistics we consider solely those tools for which there are at least two
papers using the tool. The most used tools are those that belong to the B family:
by summing up the contributions of Atelier B and ProB, we have 13 papers using
these tools (Rodin is normally used in combination with Atelier B or ProB). By
summing up the contribution of the two tools, they also dominate in industrial
studies. These B method tools are followed by Simulink, UPPAAL, NuSMV,
SPIN and other tools. We do not report the complete list of identified tools,
since this is particularly long, and because here we are interested in identifying
the most used tools for industrial studies in railways.

Interestingly, tools such as UPPAAL and SPIN, which appear frequently in
the papers, are less frequent in industrial papers, in which, besides Atelier B, we
see a greater usage of NuSMV, Simulink, Statemate and SCADE. We also see

232 A. Ferrari et al.

Fig. 3. Tools cited in the literature (tools marked with ∗ support semi-formal modelling
only, and do not have formal verification capabilities).

that, among the industrial papers, NuSMV appears to be more frequently used
than other tools, such as, e.g., Simulink, which is inherently more industry ori-
ented. We argue that this may be related to the particular capability of NuSMV
to deal with the formal verification of large, realistic systems. Simulink is more
oriented to modelling and simulation, and its formal verification tool, Simulink
Design Verifier, although used in industrial works, has been rarely used for for-
mal verification of large systems, but more of sub-components [12]. It should be
noted, however, that in the inspected industrial papers, modelling and formal
verification with NuSMV was not performed by railway practitioners, but by
formal methods experts [9]. This suggests that the usage of state-of-the-art for-
mal verification in industry still requires the support of formal methods experts
to be actually effective in practice.

Overall, we notice that there is a large fragmentation of the papers in terms
of used tools, and even the most used tools appear in no more than eight papers.
This indicates that in the literature there is no clear, indisputable evidence or
direction about which tools to employ in railway system development, and many
tools may be adequate for the same purpose.

The ASTRail Approach 233

3.3 Maturity of Formal Methods for Railways

To identify the most mature tools, we consider the papers that are marked
as IND/DEV, which indicate studies with industrial participation. We recall
that the answer to this question is given for the railway context, and
for non-interlocking systems. If we consider solely the tools and languages
used in industrial papers, the most mature languages appear to be State
Machines/Statecharts, UML and B/Event B. The literature shows an accept-
able amount of evidence in this sense, with more than five industrial scientific
publications for each language. Furthermore, non-industrial works also confirm
the dominance of these languages. Less evidence is available for tools. If we
arguably consider a tool to be industrially mature if it is used in at least two
industrial studies, then the tools that can be considered mature are: Simulink,
NuSMV, Atelier B, Prover, ProB, SCADE, IBM Rational Software Architect,
Polyspace, and S3. Statemate also appears to be mature, but there is no recent
work using the tool, and the tool appears not to be maintained anymore by IBM.
A similar situation occurs for VIS, which does not appear to be used in recent
publications, and does not appear to be currently maintained.

As mentioned, these considerations on tools are based on fragmented evi-
dence from the literature, and no empirically grounded answer can be given on
the most appropriate tools to employ for railway software development. How-
ever, in the context of ASTRail, this information was considered sufficient to
be used as first guidance for selecting relevant tools to be evaluated during the
tool review. It should also be noticed that these conclusions are applicable solely
based on the published evidence, and do not take into account possible experi-
ence performed in industry with formal tools, if they do not have an associated
scientific publication. To have an insight on tools that may be neglected by the
literature, we complement the SLR with a Projects Review and a Survey with
railway practitioners, which are presented in the following sections.

4 Projects on Formal Methods and Railways

The projects review has been based on the identification of projects from the
last twenty years that have addressed the use of formal methods and tools
in railway applications. The list of projects was identified based on pointers
from the papers analysed in the SLR, and based on the knowledge of the
authors. The available documentation for each project, like papers and web
pages, has been examined in order to list the formal methods used. We found
14 projects which, starting from 1998 to this day, have addressed the use of for-
mal methods and tools in railway applications. Among those projects, only 8
are not dealing solely with interlocking-related applications, namely: CRYS-
TAL, Deploy, DITTO, EuRailCheck, MBAT, OpenCOSS, OpenETCS-ITEA2,
and PERFECT.

Figure 4 shows the adopted modelling languages, while Fig. 5 shows the tools
used. The two figures substantially confirm the information extracted by the
SLR, with a prominence of the “B eco-system”, but otherwise confirming the

234 A. Ferrari et al.

Fig. 4. Languages used in the projects

Fig. 5. Tools used in the projects

industrial preference to UML/SySML as modelling languages, followed by dif-
ferent state machine-based languages, and the importance of a commercial tool
such as SCADE, emerging from a number of academic tools, mostly dedicated
to formal verification.

5 Survey with Practitioners

For the non-trivial task of obtaining a significant amount of data from industrial
stakeholders, a survey was carried out by means of a structured questionnaire,
submitted to the participants of the RSSRail’17 conference3, which is normally
attended by academics and practitioners interested in applying formal methods
in railways, and as such a promising source for a population sample that might
be able to provide a well-informed judgment. We have reported and discussed
the detailed results from the questionnaire in a recent paper [3]. Here, we report
the ones that are more relevant in the context of this paper.

3 http://conferences.ncl.ac.uk/rssrail/.

http://conferences.ncl.ac.uk/rssrail/

The ASTRail Approach 235

One of the goals of the questionnaire was to identify the current uptake of
formal and semi-formal methods and tools in the railway sector according to
the experience of practitioners. The first part of the questionnaire was dedicated
to identify the respondents in terms of affiliation and experience in railways
and in using formal/semi-formal methods and tools. The 44 respondents are
balanced between academics (50%) and practitioners (50%, of which 47.7% from
railway companies and 2.3% from aerospace and defense). A large percentage of
respondents had several years of experience in railways (68% more than 3 years
and 39% more than 10 years) and in formal methods (75% more than 3 years,
52% more than 10 years), which confirms that the sample provides informed
opinions on the proposed questions.

Tools. Among the various questions, the respondents were also asked to list the
tools used in the context of their projects. We believe it is interesting to separate
the results of industrial respondents from those of academics. In Fig. 6, we can see
that the large majority of industrial and academic respondents mentioned tools
belonging to the B method family (e.g. B, ProB, Atelier B, Event B, RODIN).
Actually, there are only slightly more industrial users than academic users in
our sample, but we recall that the academic users were asked to report on their
collaborative projects with industry. Other methods and tools mentioned by
both groups are the Matlab toolsuite, including Simulink and Stateflow, SCADE,
Petri nets/CPN tools and Monte Carlo Simulation: the overlap between tools
used in industry and in academia is actually limited to these five. Industrial

Fig. 6. Tools cited in the questionnaire (from [3])

236 A. Ferrari et al.

users named a few other tools as well, whereas a large list of other tools has
been named by academics, with popular model checkers like NuSMV and SPIN
leading this list. An interpretation of this can be that a frequent pattern of
collaboration between academia and industry includes the academic support in
adopting advanced formal verification techniques inside a collaborative project.

Quality Aspects. Figure 7 reports the most relevant quality aspects that a tool
should have to be applied in railways. The maturity of the tool (stability and
industry readiness) is considered to be among the most relevant quality aspects
by 75% of the respondents, followed by learnability by a railway software devel-
oper (45.5%), quality of documentation (43.2%), and ease of integration in the
CENELEC process (36.4%). Overall, the most relevant quality aspects are asso-
ciated with the usability of the tool. Less relevant are deployment aspects, such
as platforms supported (9.1%) and flexible license management (11.4%). Inter-
estingly, also the low cost of the tool (13.6%) appears to be a not so relevant
feature. This is a reasonable finding. Indeed, the development and certification
cost of railway products is high and, hence, if a company expects to reduce these
costs through a formal tool, it can certainly tolerate the investment on the tool.

Fig. 7. The most relevant quality aspects a (semi-)formal tool should have (from [3])

6 Tools Review

The main goals of the SLR was to identify the most mature formal and semi-
formal methods to be applied in railways. From the analysis of the papers, we

The ASTRail Approach 237

derived the following list: Simulink, NuSMV/nuXmv (latest version of NuSMV),
Atelier B, Prover, ProB, SCADE, IBM Rational Software Architect, Polyspace,
and S3. From this list, we discarded IBM Rational Software Architect because it
is just a design tool that does not allow any kind of formal verification, Polyspace
because it is a static analysis tool that does not support any kind of behavioural
verification, and Prover as well as S3 because of difficulties in finding sufficient
documentation and inability to access a demo version within the time allocated
to this project task. Thus, the subset of tools that have been selected for a fur-
ther, more specific evaluation are Simulink, NuSMV/nuXmv, Atelier B, ProB,
and SCADE. Furthermore, the results of the Survey with Practitioners indi-
cate two additional tools sometimes used in railway-related industrial projects,
namely SPIN and CPN Tools. Therefore, these tools have been also selected for
further specific evaluation. Additionally, we are aware of other relevant tools and
frameworks used in industrial projects, even if not widely used within the railway
sector so far. Without the ambition to make an exhaustive coverage, and with-
out any negative bias towards unselected tools, we wanted to experiment with a
spectrum of tools and verification techniques (e.g. Logical approaches, Process
Algebras, Statistical approaches) wider than that of the mainstream approaches.
Therefore, we have decided to extend our specific evaluations adding to our list
UPPAAL, FDR4, CADP, mCRL2, SAL, and TLA+. Finally, we have also taken
into consideration one more tool, namely UMC, which—even if lacking a solid
background in terms of industrial usage—has the uncommon feature of allow-
ing a direct verification of UML-based models. We recall that, according to the
SLR, UML is the most common semi-formal language used for the high-level
specification of railway systems. Hence, the final list of 14 tools or frameworks
selected for a deeper evaluation is as follows:

Simulink, nuXmv, Atelier B, ProB, SCADE, SPIN, CPN Tools, UPPAAL,
FDR4, CADP, mCRL2, SAL, TLA+, and UMC.

Each of these tools, with the exception of SCADE4, has been downloaded,
installed, and experimented with the design and verification of simple railway-
related cases studies. Part of the results were published in recent works [2,22].
The corresponding available tool documentation has been analysed with the
depth allowed by the project timeline. To evaluate the tools, a set of 34 evalua-
tion features was considered, including functional features (e.g., formal verifica-
tion, code generation), language-related aspects (e.g., support for concurrency,
non-determinism), and the quality aspects also considered in the questionnaire
(e.g., maturity, ease of use). The complete list of features is reported in the
deliverable [13].

4 In the case of SCADE, due to licensing issues, it was not possible to gain a hands-on
experience within the limited timespan of the project. Hence, our evaluation is based
on the analysis of the available official tool documentation and presentations, and
on the experiences reported in students’ assignments at the University of Florence,
carried out under the ANSYS SCADE Academic Program.

238 A. Ferrari et al.

6.1 Results and Discussion

The tools review produced two main reference documents. A Tool Evaluation
Report, in which for each feature a qualitative evaluation is given, together with
the motivation for the assigned evaluation, and a Tool Evaluation Matrix, which
summarises the evaluation for the tools. An excerpt of the matrix focussing on
quality aspects is presented in Fig. 8 (the matrix is reported in its entirety in
our deliverable). Overall, the majority of tools offer formal modelling and verifi-
cation through model checking, and they generally offer simulation in textual or
graphical form. Less frequent are features such as code generation, model-based
testing, and traceability. With few exceptions, such as SCADE and Simulink,
graphical user interfaces (GUIs) for these different tools are rather limited. Fur-
thermore, in terms of learnability, the tools mainly require medium to advanced
competences in formal methods, and, in the majority of the cases, require the
support of an expert to be successfully used. This is in contrast with the demands
of practitioners (Fig. 7), who primarily require tools that are easy to learn. It is
also worth noticing that only SCADE is fully certified according to CENELEC.

Fig. 8. Tool Evaluation Matrix (Excerpt)

7 Conclusion

The current paper reports ongoing results from WP4 of the ASTRail project.
We presented a number of activities aimed at supporting the identification of

The ASTRail Approach 239

the most suitable formal and semi-formal methods to be used for railway system
development. Specifically, a SLR was conducted to categorise 114 scientific pub-
lications on formal methods and railways according to features such as the type
of system and the phase of the development process addressed by the experi-
ence considered in the publication. The SLR was complemented with a projects
review and a survey with practitioners, to identify the most mature formal and
semi-formal methods and tools to be used in a railway context. This analysis
has shown a dominance of the UML modelling language for high-level represen-
tation of system models, and a large variety of formal tools being used, with
a dominance of the tools from the B family (ProB and Atelier B), followed by
several other tools, including Simulink, NuSMV/nuXmv, Prover, SCADE, IBM
Rational Software Architect, Polyspace, S3, SPIN, CPN Tools, etc. The projects
review and the survey with practitioners confirmed this scattered landscape. As
part of a tools review, tools supporting both modelling and formal verification
were considered for accurate experimentation and evaluation. A set of 14 tools,
considered to be the most promising, was carefully reviewed by means of a sys-
tematic evaluation based on a set of 34 evaluation features. The final product
of these activities is a set of informative documents to support the ranking and
selection of formal and semi-formal methods for railways, based on (a) the infor-
mation retrieved from the literature, summarised in a Paper Analysis Matrix,
(b) the information available from the tools evaluation, and (c) the Tool Eval-
uation Matrix, which allows practitioners to perform a fine-grained selection of
the most appropriate formal methods and tools, suitable to their specific needs.

Based on the results presented in this paper, we are currently conducting the
application phase of the project. In this phase, we first model the moving block
distancing principles by means of 8 formal tools, namely Simulink, SCADE,
NuSMV/nuXmv, SPIN, Atelier B, ProB, UPPAAL and UMC, selected based
on the previous results. We then perform a usability evaluation of the tools
together with railway practitioners. Finally, we further assess the applicability
of the tools, involving our industrial partners in the modelling of automated
driving principles.

Acknowledgements. This work has been partially funded by the ASTRail project.
This project received funding from the Shift2Rail Joint Undertaking under the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreement
No. 777561. The content of this paper reflects only the authors’ view and the Shift2Rail
Joint Undertaking is not responsible for any use that may be made of the included
information.

References

1. Abrial, J.R.: Formal methods: theory becoming practice. J. Univers. Comput. Sci.
13(5), 619–628 (2007). https://doi.org/10.3217/jucs-013-05-0619

2. Basile, D., ter Beek, M.H., Ciancia, V.: Statistical model checking of a moving
block railway signalling scenario with Uppaal SMC. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2018. LNCS, vol. 11245, pp. 372–391. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03421-4 24

https://doi.org/10.3217/jucs-013-05-0619
https://doi.org/10.1007/978-3-030-03421-4_24
https://doi.org/10.1007/978-3-030-03421-4_24

240 A. Ferrari et al.

3. Basile, D., et al.: On the industrial uptake of formal methods in the railway domain
– a survey with stakeholders. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS,
vol. 11023, pp. 20–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98938-9 2

4. ter Beek, M.H., Gnesi, S., Knapp, A.: Formal methods for transport systems. Int.
J. Softw. Tools Technol. Transf. 20(3), 237–241 (2018). https://doi.org/10.1007/
s10009-018-0487-4

5. Berger, U., James, P., Lawrence, A., Roggenbach, M., Seisenberger, M.: Verification
of the European rail traffic management system in real-time maude. Sci. Comput.
Program. 154, 61–88 (2018). https://doi.org/10.1016/j.scico.2017.10.011

6. Bjørner, D.: New results and trends in formal techniques and tools for the develop-
ment of software for transportation systems – a review. In: Tarnai, G., Schnieder,
E. (eds.) Proceedings of the 4th Symposium on Formal Methods for Railway Oper-
ation and Control Systems, FORMS 2003. L’Harmattan, Hungary (2003)

7. Bosschaart, M., Quaglietta, E., Janssen, B., Goverde, R.M.P.: Efficient formaliza-
tion of railway interlocking data in RailML. Inf. Syst. 49, 126–141 (2015). https://
doi.org/10.1016/j.is.2014.11.007

8. Boulanger, J.L. (ed.): Formal Methods Applied to Industrial Complex Systems—
Implementation of the B Method. Wiley, Hoboken (2014). https://doi.org/10.1002/
9781119002727

9. Chiappini, A., et al.: Formalization and validation of a subset of the European Train
Control System. In: Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering, ICSE 2010, vol. 2, pp. 109–118. ACM, USA (2010).
https://doi.org/10.1145/1810295.1810312

10. European Committee for Electrotechnical Standardization: CENELEC EN
50128—Railway applications – Communication, signalling and processing systems
– Software for railway control and protection systems, 1 June 2011. https://
standards.globalspec.com/std/1678027/cenelec-en-50128

11. Fantechi, A.: Twenty-five years of formal methods and railways: what next? In:
Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 167–183. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-05032-4 13

12. Ferrari, A., Fantechi, A., Magnani, G., Grasso, D., Tempestini, M.: The Metrô
Rio case study. Sci. Comput. Program. 78(7), 828–842 (2013). https://doi.org/10.
1016/j.scico.2012.04.003

13. Ferrari, A., et al.: Survey on formal methods and tools in railways technical report
on the activities performed within ASTRail, Deliverable D4.1. Technical report
396822, ISTI-CNR (2018). https://doi.org/10.5281/zenodo.2573921

14. Ferrari, A., Fantechi, A., Gnesi, S., Magnani, G.: Model-based development and
formal methods in the railway industry. IEEE Softw. 30(3), 28–34 (2013). https://
doi.org/10.1109/MS.2013.44

15. Flammini, F. (ed.): Railway Safety, Reliability, and Security: Technologies and
Systems Engineering. IGI Global, Hershey (2012). https://doi.org/10.4018/978-1-
4666-1643-1

16. Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construction
and verification of railway control systems. Formal Aspects Comput. 23(2), 191–
219 (2011). https://doi.org/10.1007/s00165-009-0143-6

17. Iliasov, A., Taylor, D., Laibinis, L., Romanovsky, A.: Formal verification of sig-
nalling programs with SafeCap. In: Gallina, B., Skavhaug, A., Bitsch, F. (eds.)
SAFECOMP 2018. LNCS, vol. 11093, pp. 91–106. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99130-6 7

https://doi.org/10.1007/978-3-319-98938-9_2
https://doi.org/10.1007/978-3-319-98938-9_2
https://doi.org/10.1007/s10009-018-0487-4
https://doi.org/10.1007/s10009-018-0487-4
https://doi.org/10.1016/j.scico.2017.10.011
https://doi.org/10.1016/j.is.2014.11.007
https://doi.org/10.1016/j.is.2014.11.007
https://doi.org/10.1002/9781119002727
https://doi.org/10.1002/9781119002727
https://doi.org/10.1145/1810295.1810312
https://standards.globalspec.com/std/1678027/cenelec-en-50128
https://standards.globalspec.com/std/1678027/cenelec-en-50128
https://doi.org/10.1007/978-3-319-05032-4_13
https://doi.org/10.1016/j.scico.2012.04.003
https://doi.org/10.1016/j.scico.2012.04.003
https://doi.org/10.5281/zenodo.2573921
https://doi.org/10.1109/MS.2013.44
https://doi.org/10.1109/MS.2013.44
https://doi.org/10.4018/978-1-4666-1643-1
https://doi.org/10.4018/978-1-4666-1643-1
https://doi.org/10.1007/s00165-009-0143-6
https://doi.org/10.1007/978-3-319-99130-6_7
https://doi.org/10.1007/978-3-319-99130-6_7

The ASTRail Approach 241

18. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.:
Techniques for modelling and verifying railway interlockings. Int. J. Softw. Tools
Technol. Transf. 16, 685–711 (2014). https://doi.org/10.1007/s10009-014-0304-7

19. Kitchenham, B.: Procedures for performing systematic reviews. Technical report
TR/SE-0401. University of Keele, UK, July 2004. https://goo.gl/vYU8Fu

20. Lecomte, T., Deharbe, D., Prun, E., Mottin, E.: Applying a formal method in
industry: a 25-year trajectory. In: Cavalheiro, S., Fiadeiro, J. (eds.) SBMF 2017.
LNCS, vol. 10623, pp. 70–87. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-70848-5 6

21. Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property verifica-
tion for large scale B models with ProB. Formal Aspects Comput. 23(6), 683–709
(2011). https://doi.org/10.1007/s00165-010-0172-1

22. Mazzanti, F., Ferrari, A.: Ten diverse formal models for a CBTC automatic train
supervision system. In: Gallagher, J.P., van Glabbeek, R., Serwe, W. (eds.) Pro-
ceedings of the 3rd Workshop on Models for Formal Analysis of Real Systems
and the 6th International Workshop on Verification and Program Transformation,
MARS/VPT 2018. EPTCS, vol. 268, pp. 104–149 (2018). https://doi.org/10.4204/
EPTCS.268.4

23. Mazzanti, F., Ferrari, A., Spagnolo, G.O.: Towards formal methods diversity in
railways: an experience report with seven frameworks. Int. J. Softw. Tools Technol.
Transf. 20(3), 263–288 (2018). https://doi.org/10.1007/s10009-018-0488-3

24. Mazzanti, F., Spagnolo, G.O., Della Longa, S., Ferrari, A.: Deadlock avoidance
in train scheduling: a model checking approach. In: Lang, F., Flammini, F. (eds.)
FMICS 2014. LNCS, vol. 8718, pp. 109–123. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10702-8 8

25. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Defining
and model checking abstractions of complex railway models using CSP‖B. In:
Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 193–208.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39611-3 20

26. Rispoli, F., Castorina, M., Neri, A., Filip, A., Di Mambro, G., Senesi, F.: Recent
progress in application of GNSS and advanced communications for railway sig-
naling. In: Proceedings of the 23rd International Conference Radioelektronika,
RADIOELEKTRONIKA 2013, pp. 13–22. IEEE (2013). https://doi.org/10.1109/
RadioElek.2013.6530882

27. Vanit-Anunchai, S.: Modelling and simulating a Thai railway signalling system
using Coloured Petri Nets. Int. J. Softw. Tools Technol. Transf. 20(3), 243–262
(2018). https://doi.org/10.1007/s10009-018-0482-9

28. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modelling and verification of inter-
locking systems featuring sequential release. Sci. Comput. Program. 133, 91–115
(2017). https://doi.org/10.1016/j.scico.2016.05.010

29. Winter, K., Robinson, N.J.: Modelling large railway interlockings and model check-
ing small ones. In: Oudshoorn, M.J. (ed.) Proceedings of the 26th Australasian
Computer Science Conference, ACSC 2003. Conferences in Research and Practice
in Information Technology, vol. 16, pp. 309–316. Australian Computer Society,
Australia (2003). http://crpit.com/confpapers/CRPITV16Winter.pdf

30. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal methods: prac-
tice and experience. ACM Comput. Surv. 41(4), 19:1–19:36 (2009). https://doi.
org/10.1145/1592434.1592436

https://doi.org/10.1007/s10009-014-0304-7
https://goo.gl/vYU8Fu
https://doi.org/10.1007/978-3-319-70848-5_6
https://doi.org/10.1007/978-3-319-70848-5_6
https://doi.org/10.1007/s00165-010-0172-1
https://doi.org/10.4204/EPTCS.268.4
https://doi.org/10.4204/EPTCS.268.4
https://doi.org/10.1007/s10009-018-0488-3
https://doi.org/10.1007/978-3-319-10702-8_8
https://doi.org/10.1007/978-3-319-10702-8_8
https://doi.org/10.1007/978-3-642-39611-3_20
https://doi.org/10.1109/RadioElek.2013.6530882
https://doi.org/10.1109/RadioElek.2013.6530882
https://doi.org/10.1007/s10009-018-0482-9
https://doi.org/10.1016/j.scico.2016.05.010
http://crpit.com/confpapers/CRPITV16Winter.pdf
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1145/1592434.1592436

B-Specification of Relay-Based Railway
Interlocking Systems Based

on the Propositional Logic of the System
State Evolution

Dalay Israel de Almeida Pereira1(B) , David Deharbe2 , Matthieu Perin3 ,
and Philippe Bon1

1 Univ. Lille Nord de France, IFSTTAR, COSYS/ESTAS,
59650 Villeneuve d’Ascq, France

dalay-israel.de-almeida-pereira@ifsttar.fr
2 ClearSy S.A., Aix-en-Provence, France

3 Institut de Recherche Technologique Railenium, 59300 Famars, France

Abstract. In the railway signalling domain, a railway interlocking sys-
tem (RIS) is responsible for controlling the movement of trains by allow-
ing or denying their routing according to safety rules. Relay diagrams are
a commonly used abstraction in order to model relay-based RIS, describ-
ing these systems by graph-like schemata that present the connections
between electrical components. The verification of these diagrams regard-
ing safety, however, is a challenging task, due to their complexity and
the lack of tools for the automatic proof and animation. The analysis
of relay diagrams by a specialist is the main method to verify the cor-
rectness and the safety of these systems. Nonetheless, human manual
analysis is error prone. This paper presents an approach for formally
specifying the behaviour of the systems described in relay diagrams in
the B-method formal language. Considering that each relay has only two
states, it is possible to describe the rules for the state evolution of a
system by logical propositions. Furthermore, it is possible to use ProB
in order to animate and model-check the specification.

Keywords: Railway interlocking systems · Relay diagrams ·
B-method · Propositional logic

1 Introduction

Railway Interlocking Systems (RIS) are built with the objective of controlling the
movement of trains by allowing and denying their movements in specific tracks
in order to avoid the occurrence of problems like collisions, for instance. The
first built RIS was purely mechanical, than it evolved to use new technologies,
becoming electrical mechanical systems, relay-based systems and, more recently,

Supported by the LCHIP (Low Cost High Integrity Platform) project.

c© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 242–258, 2019.
https://doi.org/10.1007/978-3-030-18744-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_16&domain=pdf
http://orcid.org/0000-0001-9698-5569
http://orcid.org/0000-0001-7589-3323
http://orcid.org/0000-0002-9726-2458
https://doi.org/10.1007/978-3-030-18744-6_16

B-Specification of Relay-Based Railway Interlocking Systems 243

computer controlled systems [10]. As critical systems, these RIS must be specified
and safety proved in order to guarantee the absence of critical errors, which, in
this case, may lead to the loss of people lives.

Despite the existence of new computer technologies, many old companies still
implement RIS as relay-based systems, which are electrical circuits containing
relays. However, the safety proof of these systems is a challenging task, since
they are modelled by electrical circuits drawings (relay diagrams) and the only
way to verify them is by manually inspecting and drawing conclusions, which is
error prone [11]. Consequently, the railway domain needs new methodologies for
the specification and verification of railway interlocking systems.

In this context, formal methods arises as a useful tool for the specification,
proof and analysis of RIS. Among many formal methodologies, the B-method has
excelled in the railway field. The work presented in [6] compares the applicability
of different formal methods to railway signalling and the B-method was shown
to be one of the strongest approaches that may be used in the verification of
such systems. Some of the reasons of this success are: the existence of rigorous
mathematical foundations, the well-developed underlying methodology and the
existence of reasonably advanced support tools, which allows the specification,
refinement and implementation of B-machines with automatic code generation
and performing verifications at each stage.

This paper presents a methodology for the specification of relay-based RIS
behaviours in B-method based on the preconditions for the state evolution of the
system electrical components. These conditions may be written in propositional
logic based solely on the specific behaviour of each component. From the spec-
ification of these preconditions, it is possible to specify the complete behaviour
of a RIS in B, which allows the proof of safety properties and the animation
of the system by using the B-method supporting tools. Another contribution of
this paper is to provide a non-exhaustive dictionary for the specification of state
evolution preconditions for each type of electrical components described in relay
diagrams, which is the basis of the specification of these systems in B.

There are many different formalisms and patterns that may be used in order
to model relay diagrams. In this work, we focus on the models used by SNCF (the
French National Railway Company) in order to implement their relay-based RIS.
The choice of using B-method as a targeting language is explained by the success
of the application of this language for the specification and proof of railway
systems [3,9,12]. Besides, B-method disposes of a complete set of supporting
tools that allows its specification, verification, refinement and automatic code
generation, which may be used in the future in order to transform theses systems
from relay-based to computer controlled RIS. Regarding components failures,
they are not taken into account in our approach, since it requires a complete
RIS failure model that is subject for a future work.

Many existing works have presented approaches for the formal specification
and verification of RIS in order to verify safety properties [8,10,17]. However,
only some of them focused on the specification of relay-based RIS [4,7,11,16],
which is a technology that is still used by many railway companies. Despite the

244 D. I. de Almeida Pereira et al.

fact that these works are in the same field, the context is a differentiating factor,
since each company uses different notations, patterns and languages in order to
model relay-based RIS.

In [11] it is presented an approach for the formal specification and verification
of relay-based RIS applied for the danish RIS specification. Unlike SNCF RIS
models, the relay diagrams presented in [11] use different patterns and notations,
besides the fact that it contains fewer different types of components, which makes
these systems less complex. Consequently, this work allows the behavioural trans-
lation of a smaller set of electrical components in comparison to our work, since
their context (danish systems) is different from ours context (SNCF systems).

Furthermore, although the proximity with our work, [11] focuses on the spec-
ification of the temporal logic of the system based on the process description
allowed by LTL [2] and our work focuses on the specification of the stable states
of the RIS in order to find possible unsafe states. A stable state is defined
as a moment when the system “waits” for an interaction (input changes) in
order to change its own state. Furthermore, B-method allows the specification
of abstract machines that can be refined in order to generate code. Our work
represents a first step towards a transformation from relay-based RIS towards
computer-controlled RIS, which may be supported by the B-method refinement
and automatic code generation processes.

The Sect. 2 of this paper presents some details about the modelling of RIS in
relay diagrams, followed by the formal methodology of specification, B-method,
in Sect. 3. Then, based on these specification languages, it is possible to discuss
about the specification of RIS behaviour in B-method based on relay diagrams
in Sect. 4. The last Section of this paper concludes our work and presents some
perspectives.

2 Relay-Based Modelling

Interlocking systems are the signalling functions controlling the trains move-
ments in a particular location in order to meet safety requirements [17]. Many
railways interlocking systems implemented by railway companies are relay-based
systems, which is formed by electrical circuits containing relays. Responsible for
the transmission, reception and use of information, a relay is an electromechan-
ical switching element comprised by electromagnets (coils) and contacts [14]. In
a relay-based RIS, an electrical circuit is composed by a source of energy, a com-
mand element (like contacts or levers, for instance) and a receiver (like relays or
outputs, for instance), which are connected by conductive wires. A component
or wire is electrified if it is connected to the positive and negative sources of
energy poles.

2.1 Relay-Based Railway Interlocking Systems Modelling

Relay-based RIS are usually modelled by relay diagrams, which are graph-like
representations of how the electrical elements are connected by wires. This

B-Specification of Relay-Based Railway Interlocking Systems 245

section presents some details about the modelling of RIS in industry, more specif-
ically, how SNCF uses relay diagrams in order to model railway interlocking
systems. An example of a relay diagram is presented in the Fig. 1 (detailed in
Sect. 2.2). Some graphical notations that may be used in a relay diagram are
presented in Table 1.

Fig. 1. Relay-based system model of the signalling control point A

Originally, a contact has two different states in a RIS: closed or opened. The
former state allows the electrical current to flow from a wire to another. In the
latter state, the contact is not connected to both wires, so it does not allow the
electrical current to flow. A contact may be closed or opened by the influence
of the gravity or by the electromagnetic influence of a relay. Furthermore, a
contact is “normally closed” if it is necessary a magnetic influence to open it (the
gravity maintains it closed otherwise). Following the same principle, a contact
is “normally opened” when the gravity maintains it opened as a way that it is
necessary a magnetic influence in order to close it.

There are two different types of relays: monostable and bistable. A monos-
table relay contains only one electromagnet that is responsible for attracting or
repulsing one or more movable contacts. In this case, the contacts related to a

246 D. I. de Almeida Pereira et al.

Table 1. Elements that may be used in a Relay-based diagram.

Electrical sources of energy poles
(negative and positive, respectively).

Couple button-lever.

Monostable and bistable relays,
respectively.

Blocks for timed activation and
deactivation, respectively.

A normally closed contact related to a
monostable relay and a contact related to
a bistable relay, respectively.

monostable relay are disposed horizontally in a way that the gravity may main-
tain these contacts closed or opened when the electromagnet is not electrified.
The relay is the responsible for changing and maintaining the states of the con-
tacts related to it. On the other hand, a bistable relay contains two coils, each
one may pull the contacts to one side. In this case, the contacts are disposed
vertically as a way that the coils may pull the contacts to the left or right side in
order to change their states. However, if both coils lose energy, the last contact
state is maintained by the gravity.

Blocks are not physical components in a railway system, but they represent
an important part in relay diagram models, since they allow the modelling of
timed relays. A block with a black thicker line on the top indicates that it delays
the activation of a relay. On the other hand, a block with a thicker black line
on the bottom is responsible for retarding the deactivation of a relay. Inside the
white part of the block it is indicated the time spent on these delays, which is
normally indicated in seconds.

There are many types of inputs that may be used in the relay diagrams
modelling, which represent the interface between these diagrams and the envi-
ronment. Some examples of inputs that allows the human intervention inside the
system are buttons and levers. A button acts like a contact since it may connect
two different wires. However, its states are controlled by the environment, which
means that it is not magnetically connected to a relay. A lever is similar to a
button, since it needs a physical force in order to change its states. However,
a lever controls the flow of electrical current in more than one pair of wires.
Furthermore, if a lever allows the current flow in one pair of wires and at the

B-Specification of Relay-Based Railway Interlocking Systems 247

same time it blocks the current in another pair, it will maintain these states
alternated after the external intervention by changing all the states together.

An input may also be represented by a contact whose associated relay is not
presented in the diagram. The behaviour of this abstracted relay is considered as
an input since it controls the state of the contact. As an example, the detection of
the position of a train may be modelled by abstracting the relay in the diagram,
since the train (environment) is the responsible for the activation of the relay,
which controls the state of the contacts represented inside the diagram.

The outputs of the RIS can be generally understood as a permission or denial
for a train to enter in a determined track. These outputs must be verified in order
to avoid giving permission to two different trains entering in the same track, for
instance, which may cause a collision. An industrial example of a model that
can be verified in order to avoid collisions is presented in the next subsection.
This model is used as an example throughout this paper.

2.2 Industrial Example

This subsection presents details about an example that is used in industry. The
diagram presented in Fig. 2 represents a track plan containing two tracks (one
for each direction) and the space between the signalling control point A and C.
In this example, we consider that a train that arrives in the point A may change
to the track below because of problems on its own track. In this case, this train
will start going on the “wrong way”, which may cause a frontal collision with a
train that may come from the point C. In order to avoid this type of collision,
there must exist a signalisation that indicates if a train may enter or not in this
portion of the tracks. In this example we focus on the signalisation existing in
the point A.

Fig. 2. Track plan from the signalling control point A to C

248 D. I. de Almeida Pereira et al.

In order to control the signalisation in the signalling control point A, a relay-
based RIS must be implemented according to the model presented in Fig. 1.
In this system, the pair button-lever L ITCS is responsible for indicating if the
tracks are working normally (DV - “Double Voie”) or if it is necessary to use only
one track (ES - “En Service”), which is a situation that may cause a collision if
not safety proved. After switching L ITCS to the ES state, it also changes the
bistable relay C CSS V2 to the ES state, which allows the train that arrives
in the point C to enter in the dangerous zone (activation of the output EF11),
since it refuses a train that arrives in point A to enter (KIT C 911 deactivated).
If L ITCS is set to DV, it means that the two tracks are working normally and
the signal is never closed.

If a train aim to enter in the dangerous zone from the point A, a permission
may be given by changing the state of the lever L C CSS to O, which also
changes the relay EIT C CSS to the O state. This action will deactivate the
output EF11, which no longer gives permission to trains in the point C to enter
in the dangerous zone. If the point C agrees with these changes, it may allow a
train in the point A to enter by activating the relay KSS E V2. These sequence
of actions may activate the relay SS E V2 after a delay of five seconds, counted
by the block TA.SS E V2.

After the activation of the relay KSS E V2, a permission is granted to a train
in the point A to enter in the dangerous zone by the activation of the relay KIT
C 911. This permission must be given only if EF11 is deactivated and vice versa.
This is a condition that must be guaranteed.

3 B-Method

According to [1], B is a method for specifying, describing and coding software
systems. By making use of a strong mathematical background, it allows the
specification and verification of systems in a formal manner in order to guar-
antee a high level of reliability. The first successful use of this method in an
industrial case was the Meteor line 14 drive-less metro [3], in Paris, in which
it was specified over than 110,000 lines of B-models, generating 86,000 lines of
code [12]. No one has ever detected a bug in this system in the functional and
integration validation, neither on the on-site test. Since then, other systems has
been successfully specified and implemented using B-method, like, for instance,
the COPPILOT [12] system. Besides, B has been also used for proving the cor-
rectness of other existing systems, like, for instance, SACEM [9].

The basic building block of a B-method specification is the abstract
machine [15]. One system may be specified by one or several machines. The
specification inside a machine is divided in many parts, each one under an appro-
priate heading (or clause) describing a different aspect of the specification. The
first heading, MACHINE, starts the specification of an abstract machine, whose
name must be described under this heading.

The local state of a machine is kept by the variables which are defined under
the VARIABLES clause and whose details are defined under the INVARIANT

B-Specification of Relay-Based Railway Interlocking Systems 249

heading. These details comprise variables typing and properties that must be
satisfied by the specification. The initial state of the machine must be described
in the INITIALISATION clause. It is also possible to describe constant infor-
mation, like, for instance, sets of constant information that can be used inside
the machine, which are described under the SETS heading.

It is also possible to define operations for a machine inside the OPERATIONS
clause. These operations may receive inputs, provide outputs and change the
state of the machine by changing the values of the variables. In order to define
an operation it is required to define the preconditions that must be met in order
to execute this operation.

Fig. 3. Example of a simple B-machine

A small example of a B-machine is depicted on Fig. 3. This example presents
how the clauses can be used in order to specify a machine that allows the storage
of an information of the type defined by the set ANSWERS. The information that
can be stored inside the variable answer are the elements yes or no. More details
about the clauses and notations used in order to specify a B-machine can be
found in [1].

4 B-Specification of Relay-Diagrams Behaviours

A relay-based RIS is composed of many components, each one with an indepen-
dent specific behaviour. The specification of an entire RIS may be described as
a combination of the behaviours of all the components that constitutes it. Fur-
thermore, in order to activate a component, an electrical current is required
(precondition) and the flux of electrical current may be controlled by other
components with other preconditions. This type of reactive behaviour can be
described inside a B-method abstract machine, which may be used for proof and
animation purposes, as it is presented in this section.

250 D. I. de Almeida Pereira et al.

4.1 Relay-Diagram Behavioural Logic

The most important components of a relay-based RIS are the relays. This com-
ponent is responsible for opening and closing the contacts, which controls the
flux of electrical current inside the wires. Therefore, the activation and deacti-
vation of relays commands the activation and deactivation of other components
by controlling the flow of electrical current inside the wires. Before specifying
any component behaviour, it is important to understand the precondition for a
component to be activated.

Definition 1 (Component Activation Precondition). An electrical component
is activated if both of its wires are connected to a different pole (positive and
negative) of energy sources as a way to allow the flow of electrical current inside
the component. This means that all contacts, buttons and levers between the
component and both poles of energy sources must be closed.

It is clear that a component is activated if there is electrical current flowing
inside it, however, the precondition for having electrical current is that each wire
connected to a component must be connected to a different pole of sources of
energy. A precondition for the component deactivation can also be defined.

Definition 2 (Component Deactivation Precondition). An electrical component
is deactivated if its wires are not connected to different poles (positive and neg-
ative) of energy sources as a way that there does not exist a flow of electrical
current inside it. This means that at least one contact, button or lever between
the component and one pole of energy source must be opened (considering that
there is no other connection to the same type of pole).

A monostable relay has two states: TRUE (activated) or FALSE (deacti-
vated). The former represents the state where there is current passing through
the coil and the latter represents the state where the coil is not electrified (accord-
ing to Definitions 1 and 2, respectively). The consequence of its activation or
deactivation is the state evolution of the contacts related to this relay. The state
of a monostable relay changes as soon as the precondition of this state is no
longer met.

A bistable relay has also two states: right or left, representing the activa-
tion of the right and left coils, respectively. Generally, the two coils will not be
activated at the same time, however, both coils may be deactivated. If the right
coil activates, the relay assumes the “right” state and it changes the state of the
contacts related to this relay. Then, this may change to “left” if, and only if, the
right coil is deactivated and the left coil activates, which changes the state of the
contacts as well. The main difference between a monostable and a bistable relay
relies on the fact that the latter may maintain its last state even if the coils are
no longer activated.

Considering that the contacts states are directly defined by the relays related
to them, the states of the contacts in the relay diagrams can be completely
abstracted by means of the relays states. As an example, the precondition for

B-Specification of Relay-Based Railway Interlocking Systems 251

the relay KIT C CSS to be activated in the relay diagram depicted on Fig. 1 is
that SS E V2 must be activated (in order to close the normally opened contact),
EIT C CSS must be set to the right (which closes the bistable contact) and INT
AC V2 must be activated (in order to close the normally opened contact).

Furthermore, there are two special cases concerning the logic of relays: timed
activated/deactivated and self-alimented relays. In the former case, the Defini-
tions 1 and 2 changes in the presence of a block. A relay connected to a block
that retards the activation will be activated if the block is activated (according
to Definition 1) after the time represented by the block. In this case the relay
deactivation occurs right after the deactivation of the block (not timed). Con-
trarily, a relay connected to a block that retards the deactivation activates right
after the activation of the block, however, this relay deactivates only after the
time defined inside the block when the block is deactivated. The relay SS E V2
is an example of timed-activation relay.

A relay can also be self-alimented when it controls a contact that may activate
it. In a case that the activation of a relay closes a contact that also aliments it
with energy (like the relay PG 911, for instance), this contact may never activate
the relay by itself, so it is not considered as a precondition for the relay activation.
Furthermore, this contact does not open unless the relay is deactivated, so it is
also not considered in the precondition for the deactivation of the relay either.
However this contact has a high importance in order to maintain the activated
state of the relay after its activation.

Similar to contacts, buttons and levers are responsible for the activation or
deactivation of other components, since they control the electrical current flow
inside the wires. However, the states of buttons and levers cannot be abstracted,
since they are controlled directly by the environment. So, these components may
be treated as inputs and the information inserted in the system by these inputs
are important for the definition of the system state.

Furthermore, the outputs are part of the general state of the diagram, rep-
resenting an important part on the safety analysis, since they represent the
response given to the environment calculated based on the inputs. In a relay-
diagram, an output may be connected to only one energy source pole (like EF11,
for instance), or to two different poles (like the INT.AC V2 lights, for instance)
in order to be activated. Besides, it may be depicted as another component, like
relays (KIT C 911, for instance). One verification that is possible to make in our
running example in order to analyse its safety is that it there must never exist
a state where the component KIT C 911 (permission for the train in the point
A to enter in the dangerous zone) and the component EF11 (permission for the
train in the point C to enter in the dangerous zone) are activated at the same
time, since it may cause a collision.

4.2 Relay-Based Logic Specification in B

Based on the relay diagrams and on the logic for the state evolution of the
electrical components, it is possible to specify the behaviour of the RIS in B-
method. In order to specify these systems, it is necessary to define what is inside

252 D. I. de Almeida Pereira et al.

each header of the B specification. After the MACHINE header, which contains
the machine, one must define sets containing the special states related to levers or
bistable relays under the SETS clause. Regarding the example used throughout
this paper, It is necessary to define the special states POS O and POS F for
the components EIT C CSS and L C CSS as well as the states POS DV and
POS ES for the component C CSS V2. When related to bistable relays, these
states represent the left (DV, F) or right (ES, O) state of these components.
These states represent the positions that these components may assume. Hence,
our running example can be initially specified as shown in Fig. 4.

MACHINE

itcs

SETS

O_OU_F = {POS_O, POS_F};

DV_OU_ES = {POS_ES, POS_DV}

VARIABLES

KIT_C_CSS,

SS_E_V2,

TA_SS_E_V2,

EIT_C_CSS,

C_CSS_V2,

PG_911,

EF11,

KIT_C_911

Fig. 4. B-method MACHINE, SET and VARIABLES clauses

In a B-method specification the variables (listed inside the VARIABLES
clause) define the state of a machine. In the RIS context, this state is defined by
the state of each component. Hence, in our methodology, the variables must rep-
resent components. However, in order to simplify the specification and decrease
a significantly number of variables and, by consequence, the number of possible
states, inputs and contacts are not treated as variables. As presented before,
the state of the contact is directly linked to the state of the relay in a way that
contact states can be easily abstracted. Furthermore, since inputs are respon-
sible for directly or indirectly changing the states of all other components, we
chose to specify them as the inputs for the operation responsible for the state
evolution. In other words, these components affect the system, but their states
are not maintained by the system, since they may be changed at any time by the
environment. This option does not affect negatively the safety verification and
neither the animation of the specification. In fact, by avoiding the specification
of inputs as variables we decrease the number of specified states, which allows a
faster and lighter model-checker verification.

A special case regarding variables is the specification of blocks. The state
of this component is maintained by the system because they are nor directly
activated by the environment. However, the environment has an effect over the
blocks, since the time has an important part on its behaviour. In this work,
time is considered as an environmental factor. So, this type of component must
not only be specified as a variable, but it must also be specified as an input of

B-Specification of Relay-Based Railway Interlocking Systems 253

the state evolution. This input represents the passing of time. In our running
example, the VARIABLES clause is specified as presented in Fig. 4.

Inside the INVARIANT clause, one must define the type of the variables. In
this case, regarding RIS components, the types represent the possible states that
the components may assume. As presented before, monostable relays may assume
the states TRUE or FALSE, in other words, they have the Boolean type. Since
the outputs may also be activated or deactivated, they also must be Boolean.
However, bistable relays may have special types defined inside the diagrams
in order to indicate the left and the right states. In our running example, for
instance, we have the types O OU F and DV OU ES for the relays EIT C CSS
and C CSS V2, respectively.

Moreover, inside the INVARIANT clause, it is also possible to define condi-
tions that must be respected at any possible state of the machine. In the case
of RIS specification, one may describe safety properties in order to guarantee
that the system will never reach a dangerous state. In our running example, for
instance, a safety property that must be always met is that the components KIT
C 911 and EF11 must never be activated at the same time in order to avoid col-
lision. The specification of this property and the complete INVARIANT clause
of our example are depicted in Fig. 5.

INVARIANT

KIT_C_CSS : BOOL &

SS_E_V2 : BOOL &

TA_SS_E_V2 : BOOL &

EIT_C_CSS : O_OU_F &

C_CSS_V2 : DV_OU_ES &

PG_911 : BOOL &

EF11 : BOOL &

KIT_C_911 : BOOL &

not(KIT_C_911 = TRUE &

EF11 = TRUE)

INITIALISATION

KIT_C_CSS := FALSE ||

SS_E_V2 := FALSE ||

EIT_C_CSS := POS_F ||

C_CSS_V2 := POS_DV ||

PG_911 := TRUE ||

TA_SS_E_V2 := FALSE ||

EF11 := FALSE ||

KIT_C_911 := FALSE

Fig. 5. B-Machine INVARIANT and INITIALISATION clauses

The initial state of the system is defined by the relay diagram drawing, since
it shows the initial position of the levers, bistable relays, and if the monostable
relays are connected to the energy or not. In our running example, the INITIAL-
ISATION clause is defined as presented in Fig. 5.

The state evolution of a railway interlocking system sheet may be specified
inside a B-method operation. The use of a unique operation allows us to reach all
the stable states only by changing the inputs given by the environment. Since
the inputs are the responsible for triggering the state evolution, they are the
inputs of the operation. Inside the precondition clause of the operation, all the
inputs must be typed. The operation must also be able to change the state of all

254 D. I. de Almeida Pereira et al.

variables considering that the state of one variable may affect the final state of
another. This type of behaviour can be specified in B by the following notation:

<<variables>>:(<<variables typing>> & <<variables information>>)

By using this expression, it is possible to change the value of a set of
variables (<<variables>>) by informing their types (<<variables typing>>)
and the conditions they must meet after the execution of this expres-
sion (<<variables information>>). Inside the conditions, it is possible to
define the values of the variables according to the inputs and other variables
states (activation and deactivation preconditions). As an example, the state evo-
lution of the variable KIT C CSS that must be described inside the <<variables
information>> part of the notation is the activation condition presented in
Fig. 6.

KIT_C_CSS = bool(SS_E_V2 = TRUE & EIT_C_CSS = POS_O &

INT_AC_V2 = TRUE & L_C_CSS = POS_O)

Fig. 6. Example of a state evolution

So, in order to activate the component KIT C CSS, SS E V2 and INT AC V2
must be electrified at the same time that EIT C CSS and L C CSS are in the O
position (POS O). Furthermore, it is possible to specify the same type of expres-
sion for each variable. The complete operation defined for our running exam-
ple can be defined as presented in Fig. 7, where all variables are represented
in red and all the inputs are represented in green for sake of clarification.

In some cases, in order to define the sate evolution of a relay, it is necessary
to consider its previous state (before the execution of the operation), which may
be specified by using the notation $0 after the name of the variable [5]. This rule
applies for the specification of bistable, self-alimented or timed relay behaviours.
In case of bistable relays (as for the relays EIT C CSS and C CSS V2, for
instance), one must consider that the previous state must be maintained if there
is no electricity inside the coils, since gravity maintains the contacts closed.

Regarding self-alimented relays, the component PG 911 is one example of
it. The contact related to this relay may never be responsible for changing the
relay state. However, although this contact does not directly interfere in the relay
activation and deactivation, it “blocks” other contacts that could be related to
the relay activation. For instance, although the contacts of the relays KAG a G
and RPD FA C 911 may deactivate the relay PG 911, they are not able to
activate it, since the PG 911 contact is not able to activate the relay.

In the last special case, timed relays, as the relay SS E V2, for instance,
one must consider the state of the blocks that they are related to. In order to
activate or deactivate timed relays, the input related to the block time must be
considered. This means that these relays can only be activated or deactivated
it the time has passed (input set to TRUE). In our operation responsible for

B-Specification of Relay-Based Railway Interlocking Systems 255

Fig. 7. State evolution of the signalling control point A specified in B-method

the state evolution, the input TA SS E V2 echue represents the passing of time
related to the block SS E V2. In this case, this input is only considered for the
activation of the relay.

256 D. I. de Almeida Pereira et al.

4.3 Animation and Verification

Many tools have been developed in order to support the B-method. One example
of these tools is the ProB [13], which allows not only the animation of the
machines but also their specification and model-checking. In this work, ProB
may be useful in order to animate the specification as a way to analyse the
system behaviour. During the animation, the tool allows operations to be called
and it always verifies if the machine state is valid according to the invariant.

Regarding the machine verification, ProB contains a model-checker that
allows the verification of each possible state of the machine in order to find
the existence of a state that does not meet the invariant. If an invalid state is
found, the tool presents it as an counter example.

In order to analyse the machine representing our running example, it is possi-
ble to animate and verify it. The animation provide an overview of the execution
of the system when implemented, and, in this case, the animation of the speci-
fication has shown to be accurate with the reality. Furthermore, the verification
of the system by the model-checker guaranteed that, in a case where all com-
ponents are working normally, two trains must not have the permission to go
in opposite ways in the same track at the same time, meaning that the invari-
ant not(KIT C 911 = TRUE & EF11 = TRUE) is false in every possible machine
state. The model-checking process took 3031 milliseconds, verifying the 36,865
possible transitions between the 18 existing states in order to analyse if any tran-
sition may lead to an inconsistent state. The verification was made by a 64 bits
Intel(R) Core(TM) i7-7600U 2.80 GHz CPU with 16 Gb RAM and running the
Windows 10 operating system in its professional version.

However, although this strategy of specification is able to guarantee the
absence of states that may lead to a collision, it is important to admit that
the verification is not enough in order to guarantee the complete absence of col-
lisions in the real field. The execution of the system in reality contains many
other variables related to the context that are not specified in this work. These
variables are related, for example, to the position of the trains in the tracks, the
decisions made by the driver or even the well functioning of each component.
This type of contextual information may be considered in the specification in
order to prove the safety of the system. The specification and use of context
variables in the B-method relay-based RIS specification are in our near future
agenda.

5 Conclusion

This paper presented a strategy for the formal specification of relay-based rail-
way interlocking systems in B-method based on the behavioural logic of the relay
diagram electrical components. Since the complete behaviour of a system is com-
prised by the behaviour of each of its components, it is possible to specify the
complete RIS system by using the specification of its components behaviours.
Furthermore, as a reactive system based on the activation and deactivation of
the components (boolean states), it is possible to specify the conditions for each

B-Specification of Relay-Based Railway Interlocking Systems 257

component to be activated and the effect of their activation by using proposi-
tional logic, which is supported by B-method. Moreover, by using B-method, it
is possible to animate and prove safety properties that should be enforced by
the relay diagrams by the use of the tools that supports B-method.

By using the strategy presented in this paper, an example of relay diagram
used in industry was specified in B and a safety property about this diagram was
proved. The Prob model-checker was used in order to verify the B-specification
and, as specified in the INVARIANT of the B-machine, the tool was able to
prove that two trains may not have the permission to enter in the same track
in opposite directions at the same time. Although this property is important in
order to avoid frontal collisions, it is not enough, since there are many contextual
variables that must be considered in order to prove the safety of the system.

In our upcoming agenda, we aim to be able to specify contextual variables
related to the environment of the RIS system. These variables may specify infor-
mation that must be considered in order to prove the safety of the system, like
the position of the train or the possibility of the driver to make unsafe decisions.
Besides, we aim to specify relay-based RIS based on the possibility of the com-
ponents to failure. By analysing this specification, we intend to demonstrate the
impact of these failures on the safety of the system and provide methodologies
in order to avoid dangerous states.

Furthermore, B-method disposes of methods for system refinement and
implementation, which may be explored in order to implement RIS as computer-
controlled systems in the future. This paper presents a first step towards the
possibility of evolving relay-based RIS into computer-controlled RIS by specify-
ing the logic of relay diagrams in B-method based on propositional logic. This
specification presents how the inputs affects the system in order to produce out-
puts, which may be refined in order to generate code that can be executed.
Once compiled, the implementation of this system may be used inside small
computers which are able to receive electrical inputs, process them based on the
implemented system and emit outputs also in the form of electrical signals that
manages the movement of the trains in the tracks.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. Beer, H.: The LTL Checker Plugins: A Reference Manual. Eindhoven University
of Technology, Eindhoven (2004)

3. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application
of B in a large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999.
LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48119-2 22

4. Cavada, R., Cimatti, A., Sessa, M.: Analysis of relay interlocking systems via SMT-
based model checking of switched multi-domain Kirchhoff networks. In: The Eigh-
teenth in a Series of Conferences on the Theory and Applications of Formal Meth-
ods in Hardware and System Verification (FMCAD 2018), vol. 18, pp. 179–187.
IEEE (2018)

https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/3-540-48119-2_22

258 D. I. de Almeida Pereira et al.

5. ClearSy: B Language Reference Manual, version 1.8.5
6. Fantechi, A., Fokkink, W., Morzenti, A.: B-specification of relay-based railway

interlocking systems based on the propositional logic of the system state evolution.
In: Formal Methods for Industrial Critical Systems: A Survey of Applications, pp.
61–84 (2013)

7. Ghosh, S., Das, A., Basak, N., Dasgupta, P., Katiyar, A.: Formal methods for
validation and test point prioritization in railway signaling logic. IEEE Trans.
Intell. Transp. Syst. 18(3), 678–689 (2017)

8. Gjaldbæk, T., Haxthausen, A.E.: Modelling and verification of interlocking systems
for railway lines. IFAC Proc. Vol. 36(14), 233–238 (2003)

9. Guiho, G., Hennebert, C.: SACEM software validation. In: 1990 Proceedings of the
12th International Conference on Software Engineering, pp. 186–191. IEEE (1990)

10. Hansen, K.M.: Formalising railway interlocking systems. In: Nordic Seminar on
Dependable Computing Systems, pp. 83–94. Citeseer (1998)

11. Haxthausen, A.E., Le Bliguet, M., Kjær, A.A.: Modelling and verification of relay
interlocking systems. In: Choppy, C., Sokolsky, O. (eds.) Monterey Workshop 2008.
LNCS, vol. 6028, pp. 141–153. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12566-9 8

12. Lecomte, T., Servat, T., Pouzancre, G., et al.: Formal methods in safety-critical
railway systems. In: 10th Brasilian Symposium on Formal Methods, pp. 29–31
(2007)

13. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

14. Rétiveau, R.: La signalisation ferroviaire. Presse de l’école nationale des Ponts et
Chaussées (1987)

15. Schneider, S.: The B-Method: An Introduction. Palgrave, Basingstoke (2001)
16. Sun, P., Collart-Dutilleul, S., Bon, P.: A model pattern of railway interlocking

system by Petri nets. In: 2015 International Conference on Models and Technologies
for Intelligent Transportation Systems (MT-ITS), pp. 442–449. IEEE (2015)

17. Winter, K.: Model checking railway interlocking systems. In: Australian Computer
Science Communications, vol. 24, pp. 303–310. Australian Computer Society, Inc.
(2002)

https://doi.org/10.1007/978-3-642-12566-9_8
https://doi.org/10.1007/978-3-642-12566-9_8
https://doi.org/10.1007/978-3-540-45236-2_46

Security

Threat Modeling in the Railway Domain

Christoph Schmittner1(B) , Peter Tummeltshammer2, David Hofbauer3,
Abdelkader Magdy Shaaban1, Michael Meidlinger2, Markus Tauber3,

Arndt Bonitz1, Reinhard Hametner2, and Manuela Brandstetter3

1 AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
christoph.schmittner@ait.ac.at

2 Thales Austria GmbH, Handelskai 92, 1200 Vienna, Austria
3 Fachhochschule Burgenland GmbH, Campus 1, 7000 Eisenstadt, Austria

Abstract. Connected and intelligent railway technologies like the Euro-
pean Rail Traffic Management System (ERTMS) introduce new risks in
cybersecurity. Threat modeling is a building block in security engineering
that identifies potential threats in order to define corresponding mitiga-
tion. In this paper, we show how to conduct threat modeling for railway
security analysis during a development life cycle based on IEC 62443. We
propose a practical and efficient approach to threat modeling, extending
existing tool support and demonstrating its applicability and feasibility.

Keywords: Railway · Cybersecurity · Threat modeling · IEC 62443 ·
Cybersecurity analysis

1 Introduction

The railway system is changing towards an Internet of Things (IoT)-based sys-
tem with an increased usage of Components of the Shelf (COTS) [21] and wireless
communication technologies [11]. With the transition to information and com-
munication systems, the cyber-attack surface has increased tremendously. Eval-
uations showed vulnerabilities and weaknesses in European Rail Traffic Manage-
ment System (ERTMS) [4,16] and a rail-based honeypot setup showed an active
threat landscape [15].

In order to address cybersecurity concerns, different existing standards have
been examined [5] and the IEC 62443 series [13] was selected. A pre-norm from
the German standardization committee DKE [8] provides guidance on how to
apply IEC 62443 in the railway domain. IEC 62443-3-2 [3] does not prescribe or
propose a methodology for the identification of cybersecurity risk.

In this paper, we present a novel Threat Modeling approach for identify-
ing threats in the safety critical railway domain. To the best of the authors’
knowledge, no previous works exist that treats threat modeling in the railway
domain in a systematic and concise manner. The remainder of this paper is struc-
tured as follows. Section 2 gives an overview about the Railway Domain, existing

c© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 261–271, 2019.
https://doi.org/10.1007/978-3-030-18744-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_17&domain=pdf
http://orcid.org/0000-0003-4430-6813
https://doi.org/10.1007/978-3-030-18744-6_17

262 C. Schmittner et al.

approaches towards security and Threat Modeling. Section 3 describes our app-
roach of Threat Modeling and a proof-of-concept. Finally, Sect. 4 concludes the
paper.

2 State of the Art

This section presents the State of the Art of the railway system based on ERTMS
and summarizes the current framework regarding safety. The focus was on the
already existing coverage of security. Section 2.3 presents the IEC 62443 series
as a security framework for the railway domain. The section is concluded by pre-
senting existing approaches towards railway security assessment and the existing
work for threat modeling.

2.1 Overview of the Railway System

ERTMS is a European Union initiative to create a common standard for train
signaling, control, communication and management. The goal is to increase effi-
ciency, especially for cross-border traffic [23].

The two main components of ERTMS are ETCS (European Train Control
System) and GSM-R (Global System for Mobile Communications – Railway) or
LTE-R (Long Term Evolution – Railway). ETCS is intended for safety-critical
signaling and control systems. In ETCS Level 3, trains find their positions them-
selves with the help of onboard sensors (tachometer, radar) and absolute posi-
tion reference (APR) beacons, called eurobalise, located on the track. The trains
continuously transmit their signals (position and speed) to the Radio Block Cen-
ter (RBC) which is further connected to a Control Centre. Based on the high-
resolution information which is received from all trains in the zone, the limit of
movement authority1 and speed is determined and fed back to the vehicle via
the GSM-R or LTE-R radio link, alongside some additional route information.

2.2 Safety Framework

In the railway domain, safety engineering is guided mainly by the following
standards.

EN 50126: The specification and demonstration of Reliability, Availability,
Maintainability and Safety (RAMS). This document defines security as the
resilience of a system to “vandalism and unreasonable human action”, but the
aspect of protection against cyber threats is outside the scope of this stan-
dard. However, “security hazards” are listed in system hazard analysis [9].

EN 50128: Software for railway control and protection systems. This standard
does not consider security because it is out of the scope of this standard [7].

1 i.e. the section on the tracks which is pre-approved for the train.

Threat Modeling in the Railway Domain 263

EN 50129: Safety related electronic systems for signalling. This standard
addresses “protection against unauthorized access” and the 2018 edition was
extended to include additional sections on IT security [10].

EN 50159: Safety-related communication in transmission systems. This stan-
dard is aimed at the safety-related usage of transmission systems which might
be endangered by security threats. The focus is on ensuring the integrity of
the communication, availability and confidentiality is excluded [6].

2.3 Security Framework

Based on an evaluation of different security standards [5], the IEC 62443 [13]
series was identified as a suitable security framework for the railway domain.
The IEC 62443 series “Security for industrial automation and control systems”
is divided into four groups. Note that not all parts of the standard have been
released yet, and the development is still ongoing.

The standard defines the following roles “Asset Operator”, “System Inte-
grator” and “Product Supplier”. Depending on the role, different parts of the
standard apply.

IEC 62443-1-x: General describes overarching concepts, terms and metrics for
secure IACS systems.

IEC 62443-2-x: Policies & Procedures present the management framework for
implementation, patching and operation.

IEC 62443-3-x: System is aimed at “Asset Operator” and “System Integrator”
and describes necessary activities and processes during the system engineer-
ing.

IEC 62443-4-x: Component is for “Product supplier” and describes how to
develop secure components for the integration in IACS.

IEC 62443 uses the following Security Level (SL).

Security Level Target (SL-T): Desired level of security, usually based on a
risk assessment.

Security Level Capability (SL-C): Level of security achievable if a system
or component is properly configured and installed.

Security Level Achieved (SL-A): Achieved level of security, based on an
assessment of system design or deployment.

The Asset Owner uses Part 3-2 to determine the security needs of the system
while considering safety and business criticality. Based on the security needs
and logical and functional distribution a security architecture is developed which
divides the system into zones and conduits. A zone collects systems with a similar
criticality level or security needs and has a SL-T assigned.

The System Integrator can use Part 3-3 to design a system which achieves
SL-A. For this, components and systems with a suitable SL-C have to be chosen.

The Product Supplier can use Part 4-1 and 4-2 to develop secure components
with SL-C. Part 4-1 describes security development life cycle and the required
capabilities for the process. Part 4-2 describe technical security requirements for
components.

264 C. Schmittner et al.

2.4 Existing Railway Risk Analysis Approaches

For both, the detailed and the high-level risk assessment, it is suggested to
use the same risk assessment methodology [3]. In [25], fault trees are used to
analyze safety and security in a Communication Based Train Control (CBTC)
system of urban railways. Security events are added as additional nodes in the
fault tree. There are however some drawbacks to that approach. First of all,
this approach requires all relevant security events to be identified beforehand.
The threat modeling approach presented in this paper provides a systematic
methodology to do so and can be used to resolve this issue. Additionally, once
the events have been identified, they need to be weighted by the probability of
their occurrence, which is difficult to assess.

More specifically, [24] extends hazard and operability studies (HAZOP) to
also take into account security threats in a Train Leader Telephone System.
The HAZOP guide-word driven system is used to formulate a set of generic
expressions which are then used to examine the system for potential threats.
This is similar –but less formal– than the approach of using an explicit “threat
model” with corresponding knowledge base of threats and vulnerabilities.

Another line of work [4] puts more focus on developing approaches towards
risk assessment, e.g. how to rate and classify identified threats.

The American Public Transportation Association published a Recommend
Practice [1] which already referred to the Microsoft Secured Development Life-
cycle (MS-SDL) [12] and listed STRIDE. Threat modeling is not mentioned as
method, instead attack trees are recommended. We assume one of the reasons
is that this Recommend Practice was published, before a threat modeling tool
was available, which could be adapted to different domains.

2.5 Threat Modeling

Our approach proposed in Sect. 3 is based on threat modeling. Threat modeling
is a technique for the identification of security risks and has been promoted as
part of the MS-SDL [12]. It defines an abstract model of potential threats, which
is applied to the system model in order to identify representations of the threats.
In general, threat modeling can be divided into the following steps:

1. Model the system with all security related assumptions and necessary infor-
mation.

2. Model potential adversaries with capabilities, actions, tactics, techniques, and
procedures.

3. Apply the threat model to the system model to identify potential threats
4. Evaluate all identified threats and decide on the risk treatment
5. Update the system model with the security countermeasures
6. Repeat step 3 in order to identify missed or new threats

Systems are modeled in a Data- ow Diagram (DFD). There are five basic
elements in a DFD:

Threat Modeling in the Railway Domain 265

Processes are elements that, based on their input, perform actions and/or gen-
erate outputs.

Data stores are sinks or sources of data. Examples are databases or internal
storage.

Data flows represent the flow of information between elements. A data flow can
be a protocol specific communication link such as HTTPS or UDP.

External interactors are elements whose influence should be taken into
account, but which are outside the scope of the analysis.

Trust boundaries divide the elements in the diagram into different trust zones,
e.g. elements in open networks vs elements in internal networks.

Depending on the available system details and threat identification needs,
a high-level process can be further decomposed into multiple lower-level com-
ponents in a hierarchical way. One can use Spoofing, Tampering, Repudiation,
Information disclosure, Denial of Service, and Elevation of privilege (STRIDE)
to define a generic threat model (see Table 1). As an example, a Data Flow can
be tampered with, the transmitted information can be disclosed or a denial of
service can impact the Data Flow. Since a data flow is not an entity, it cannot
be spoofed.

Table 1. STRIDE threat model

Spoofing Tampering Repudiation Inf. disclosure DoS Elev. of priv.

Data flows × × ×
Data store × × ×
Processes × × × × × ×
Interactors × ×

Depending on the level of granularity and available information, threat mod-
els can contain more specific descriptions of threats. For example, if the Data
Flow is wireless one can define subcategories for Denial of Service like Jamming.

Research regarding threat modeling in the mobility domain has been car-
ried out in [22]. There, components are modeled for connected cars, which are
then used to derive a threat and vulnerability catalogue. With regards to the
automotive domain, threat models have been employed successfully in [14,17].

Consequently, we propose to use this approach also for modeling components,
threats and vulnerabilities in the railway domain, e.g. for autonomous trains.
One benefit of using threat modeling is the availability of tools which support
the method [20]. Microsoft developed a Threat Modeling Tool (TMT) which is
available as a free plugin for Microsoft Visio [18]. With the 2016 release of the
tool, it is possible to create own and domain specific templates. This allows for
the TMT to be applied to new domains such as rail, as we will present in the
upcoming Sect. 3.

266 C. Schmittner et al.

3 Railway Threat Modeling

In order to conduct a cybersecurity risk assessment according to IEC 62443,
we need a systematic approach to identify threats to a system. As Sect. 2.4 has
shown, the current approaches are either based on already identified threats
or rely on expert judgment and brainstorming for the identification of threats.
We developed a railway specific template, which allows the modeling of railway
systems and a railway threat model and integrate the Railway threat modeling
process with the IEC 62443 workflow.

3.1 Railway Template

The template is the central storage of modeling elements, threats, and corre-
sponding mitigation. It should be periodically updated with external information
regarding vulnerabilities and mitigation and experiences from applying threat
modeling. A Template describes in the threat modeling tool a collection of sten-
cils and corresponding threat types.

– Stencils: A collection of modelling elements with their properties. In Fig. 4 all
the elements used (red boxes, round circles, connections) need to be defined
as stencils. A part of this collection is shown on the right of Fig. 4. Each of
this modeling elements has a set of properties which can be used to describe
its security relevant behavior.

– Threat types: A collection of rules, describing when a specific threat is
relevant. This rules are defined, using names and properties of stencils, and
stored in a threat database. A threat type can be extended with additional
information, an example would be potential mitigation and comments. A
example for a rule is: source is [stencilname] and target is [stencilname] and
target.[property] is ‘Yes’.

When creating a new template, the most important parts are stencils for drawing
DFDs and threat types that define threat and mitigation catalogues. We created
stencils for railway components such as RBC or GSM-R. For each stencil, dif-
ferent properties and values are defined. Once defined, they can be used during
the threat modeling to define already known security relevant information.

The threat model in the template consists of threat types, classified based on
the STRIDE categories. Each threat type is described by title, threat description,
potential mitigation and include and exclude rule. The rules describe when a
threat is generated for an element in a data flow diagram. The grammar for the
rules can be found in the documentation of the threat modeling tool [19].

Threat modeling can be performed in further phases of the lifecycle as mon-
itoring activity to identify if new threats are relevant for a certain system.
This requires updating the data flow diagram to mirror the real system and
re-analyzing it with an updated threat database.

As an example, based on [16], we add the property Cipher Algorithm to
the GSM-R stencil (see Fig. 1). We can add different potential values for this

Threat Modeling in the Railway Domain 267

Fig. 1. Extensions of stencil properties and rules

property, to denote which cipher algorithm is used. The next step is to extend the
rule set accordingly. We can either extend an existing rule or add an rule. Figure 2
shows the rule definition interface with the additional rule. This rule checks if
a communication flow uses the insecure Cipher Algorithm and if this flow is
potentially susceptible to eavesdropping. The second part is checked with the
condition if the flow crosses a physical boundary, e.g. is transferred over a public
(or wireless) communication. Based on this in further evaluation of existing
models we will receive a warning that there are potential threats with 3DES.
If there are more concerns or real world attacks we can increase the suggested
impact and justification. Doing this allows us to document new concerns in
existing systems and monitor for new risks.

Fig. 2. New rule for 3DES

3.2 Proposed Process

Figure 3 shows our proposal how threat modeling can be used in the IEC 62443
workflow.

The specification of the system under consideration and the security related
properties is done by defining a data flow diagram of the system. The elements

268 C. Schmittner et al.

Fig. 3. Integration of threat modeling into IEC 62443 security analysis

in the data flow diagram need to be able to represent already implemented
security measures. Based on this data flow diagram, threats for the high level
cybersecurity risk assessment are identified. This is done by applying the railway
threat data base on the model and checking which elements of the model are
susceptible to a certain threat.

Figure 4 shows a data flow diagram we created for a rail use case using the
Microsoft TMT and the developed railway template. Applying the railway threat
types to this initial data flow diagram results in 103 identified threats. If we con-
figure this initial system with basic measures to protect confidentiality, integrity
and availability this number is already reduced to 82.

There are different likelihood scales proposed in [3], but all of them rely
on expert judgment to rate risks. We use the approach from Common Criteria
(ISO/IEC 15408) [2]. This approach is well established and has the additional
benefit that most of the factors are more or less stable over time. This means
that a risk analysis which is repeated or conducted by a different set of experts
should deliver similar results. In addition we can apply this analysis on different
levels of granularity without changing the likelihood scale.

The considered factors “Time taken to identify and exploit (Elapsed Time)”,
“Specialist technical expertise required (Specialist Expertise)”, “Knowledge
of the TOE design and operation (Knowledge of the TOE)”, “Window of

Threat Modeling in the Railway Domain 269

Fig. 4. Data flow diagram with a sub set of available stencils (Color figure online)

opportunity”, “IT hardware/software or other equipment required for exploita-
tion”. Based on this factors a attack potential is calculated (into five defined
levels), which is used to determine the likelihood of a successful attack. [3] pro-
poses a severity scale, considering Operational, Financial and HSE, divided into
three levels. Both qualitative values are be combined in a risk matrix to conduct
the risk assessment. The risk matrix can be tailored to the risk acceptance of the
organisation, legal and regulatory requirements. If no adjustments are planned,
the example of a 3× 5 risk matrix in Annex B of IEC 62443-3-2 [3] can be used
to determine the SL.

Based on its outcome, the system is partitioned into zones and conduits and
initial security measures are assigned. The zones are modeled by adding corre-
sponding trust boundaries and security measures into the diagram. Repeating
the threat modeling shows if the applied measures resolved the threats, or if
new threats are introduced. If the risks are still not tolerable additional threat
modeling for subsets of the first data flow diagram can be conducted. When all
threats are either accepted or resolved, the identified cybersecurity requirements
are documented and approved.

270 C. Schmittner et al.

4 Conclusion

Security is one of the biggest new challenges in the railway domain. While the
adoption of IEC 62443 was an important first step, there are still many open
points especially regarding detailed approaches to threat identification and risk
assessment. One step to improve the situation is shown in this paper: We demon-
strate that threat modeling is a viable solution with a sufficient tool support to
develop railway specific templates and apply it to real world use cases. This
enables a systematic identification of threats and can be integrated into a IEC
62443 based workflow. There are some restrictions on the expandability of the
Microsoft Threat Modeling tool. Due to the implementation as a Visio plugin
there is no possibility to integrate it into a model-based engineering tool. Further
the interface was not developed for ongoing maintainability to manage, update
and extend the stencils and threat rules. Further features like the integration of
an automated interface between the threat database and vulnerability databases
are also not possible. In addition, the restriction on DFD for the system model
requires, in most cases, to maintain a separate representation of the system model
for threat modeling. Although SysML and DFD are relative similar, there is cur-
rently no translation available. All currently available threat modelling software
are based on DFD and it was therefore also our first choice. Further steps are
to investigate if we can deduce a DFD from a SysML Model, to better integrate
threat modeling in the workflow. Due to these points we work on a new imple-
mentation of threat modeling in the tool Enterprise Architect which allows us
to integrate the method into a model-based engineering workflow.

Acknowledgments. This work is partially supported by the ECSEL projects Pro-
ductive4.0 and SECREDAS (contract no. 737459, 783119) and Austrian Research Pro-
motion Agency (FFG).

References

1. Securing Control and Communications Systems in Rail Transit Environments Part
II: Defining a Security Zone Architecture for Rail Transit and Protecting Criti-
cal Zones. RECOMMENDED PRACTICE APTA-SS-CCS-RP-002-13, American
Public Transportation Association, June 2013

2. Common Methodology for Information Technology Security Evaluation. Technical
report, CCMB-2017-04-004, April 2017

3. IEC 62443 Security for industrial automation and control systems - Part 3-2: Secu-
rity risk assessment and system design. Committee Draft for Vote (CDV) IEC
62443-3-2 ED1, France (2018)

4. Bloomfield, R., Bendele, M., Bishop, P., Stroud, R., Tonks, S.: The risk assessment
of ERTMS-based railway systems from a cyber security perspective: methodology
and lessons learned. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail
2016. LNCS, vol. 9707, pp. 3–19. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33951-1 1

5. Braband, J.: Towards an IT Security Framework for Railway Automation.
Toulouse, February 2014

https://doi.org/10.1007/978-3-319-33951-1_1
https://doi.org/10.1007/978-3-319-33951-1_1

Threat Modeling in the Railway Domain 271

6. CENELEC: EN 50159:2010: Railway applications - communication, signalling and
processing systems - safety-related communication in transmission systems

7. CENELEC, European Committee for Electrotechnical Standardization: EN 50128
Railway applications - Communication, signalling and processing systems - Soft-
ware for railway control and protection systems (2011)

8. DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik: Elec-
tric signalling systems for railways – Part 104: IT Security Guideline based on IEC
62443 (2014)

9. European Committee for Standardization: EN 50126–1 Railway applications - The
specification and demonstration of Reliability, Availability, Maintainability and
Safety (RAMS) - Part 1: Basic requirements and generic process (2010)

10. European Committee for Standardization: EN 50129, Railway applications - Com-
munication, signalling and processing systems - Safety related electronic systems
for signalling (2010)

11. He, R., et al.: High-speed railway communications: from GSM-R to LTE-R. IEEE
Veh. Technol. Mag. 11(3) (2016). https://doi.org/10.1109/MVT.2016.2564446.
http://ieeexplore.ieee.org/document/7553613/

12. Howard, M., Lipner, S.: The Security Development Lifecycle, vol. 8. Microsoft
Press, Redmond (2006)

13. International Electrotechnical Commission: IEC 62443: Industrial communication
networks - Network and system security

14. Karahasanovic, A., Kleberger, P., Almgren, M.: Adapting Threat Modeling Meth-
ods for the Automotive Industry, p. 11 (2017)

15. Koramis, Sophos: Whitepaper Project HoneyTrain. Technical report, September
2015

16. Lopez, I., Aguado, M.: Cyber security analysis of the European train controlsystem.
IEEE Commun. Mag. 53(10), 110–116 (2015)

17. Ma, Z., Schmittner, C.: Threat modeling for automotive security analysis. Adv.
Sci. Technol. Lett. 139, 333–339 (2016)

18. Microsoft: Microsoft Threat Modeling Tool (2016). https://www.microsoft.com/
en-us/download/details.aspx?id=49168

19. Microsoft - SDL Team: Introducing Microsoft Threat Modeling Tool
2014 (2014). https://www.microsoft.com/security/blog/2014/04/15/introducing-
microsoft-threat-modeling-tool-2014/

20. Meland, P.H., Spampinato, D.G., Hagen, E., Baadshaug, E.T.: SeaMonster: pro-
viding tool support for security modeling, p. 10 (2008)

21. Rong, H., Liu, W.: Development and research of train operation control system
and safety computer platform based on COTS. Bolet́ın Técnico 55(18), 7 (2017)

22. Strobl, S., Hofbauer, D., Schmittner, C., Maksuti, S., Tauber, M., Delsing, J.:
Connected cars—threats, vulnerabilities and their impact. In: 2018 IEEE Industrial
Cyber-Physical Systems (ICPS), pp. 375–380. IEEE (2018)

23. unife: From Trucks to Trains - How ERTMS Helps Making Rail Freight More
Competitive (2018)

24. Winther, R., Johnsen, O.-A., Gran, B.A.: Security assessments of safety critical
systems using HAZOPs. In: Voges, U. (ed.) SAFECOMP 2001. LNCS, vol. 2187,
pp. 14–24. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45416-0 2

25. Yi, S., Wang, H., Ma, Y., Xie, F., Zhang, P., Di, L.: A safety-security assessment
approach for communication-based train control (CBTC) systems based on the
extended fault tree. In: 2018 27th International Conference on Computer Commu-
nication and Networks (ICCCN), pp. 1–5. IEEE (2018)

https://doi.org/10.1109/MVT.2016.2564446
http://ieeexplore.ieee.org/document/7553613/
https://www.microsoft.com/en-us/download/details.aspx?id=49168
https://www.microsoft.com/en-us/download/details.aspx?id=49168
https://www.microsoft.com/security/blog/2014/04/15/introducing-microsoft-threat-modeling-tool-2014/
https://www.microsoft.com/security/blog/2014/04/15/introducing-microsoft-threat-modeling-tool-2014/
https://doi.org/10.1007/3-540-45416-0_2

Integration Approach for
Communications-Based Train Control

Applications in a High Assurance
Security Architecture

Thorsten Schulz(B) , Frank Golatowski , and Dirk Timmermann

Institute of Applied Microelectronics and CE, University of Rostock,
Rostock, Germany

{thorsten.schulz,frank.golatowski,dirk.timmermann}@uni-rostock.de

Abstract. The secure integration of model-based, safety-critical appli-
cations implemented in the programming suite Ansys SCADE is
explained with the help of a demonstrator. The interoperability between
the embedded devices of the demonstrator is achieved using the new
TRDP middleware. Remote connections are secured using the Wire-
Guard secure network channel. The demonstrator security concept
addresses the different life cycles of its heterogeneous components by
adoption of the robust MILS separation architecture. The goal of this
open demonstrator is to show how these essential technologies can be
composed to a secure safety-critical system.

Keywords: MILS · Security · Formal modeling · Railway · CPS

1 Introduction

From a systematic viewpoint, an application or device in a distributed system has
inputs, the application logic and outputs. For a physical system, the application
is hosted on hardware, typically abstracted from the application with a hard-
ware abstraction layer and an operating system. In an interoperable, networked
system, the inputs and outputs and their connection fabric are abstracted by a
middleware using a standardized network protocol. Networks can range from
dedicated, local connections to remote connections over untrusted networks.
Untrusted access must be secured with adequate measures, defined by norms
such as IEC 62443 or Common Criteria. Depending on the requirements of the
application, certain levels of security assurance require different security mea-
sures. Railway devices must be maintainable with regards to EN 50126. Even on
a dedicated network, they must secure their maintenance access and update fea-
tures. The update/maintenance provider may not part a certified of the system.

This puzzle of heterogeneous technologies potentially induces three pitfalls:
different life cycles, mismatching interfaces, complex integration. In this paper,

c© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 272–283, 2019.
https://doi.org/10.1007/978-3-030-18744-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_18&domain=pdf
http://orcid.org/0000-0003-0440-2261
http://orcid.org/0000-0003-0848-7784
http://orcid.org/0000-0001-9267-9695
https://doi.org/10.1007/978-3-030-18744-6_18

Integration Approach for Communications-Based Train Control Applications 273

we describe our approach for an educational technology demonstrator that
addresses these issues by applying the Multiple Independent Levels of Security
(MILS) architecture on a separation kernel [11,14].

A real-world device is based on technologies, e.g., network protocols and
hardware, with shorter life cycles compared to its core application logic. Differ-
ent levels of modularity and a separation architecture are required to achieve
a composed system certification. Such a separation architecture with different
levels of security and safety can sustain security patches or updates to compo-
nents without invalidating the safety certification of the application. This paper
describes the security architecture in the next Sect. 2, showing its feasibility with
the help of a demonstrator in Sect. 3.

In comparison to earlier approaches of our OpenETCS1 On-Board-Unit
(OBU) demonstrator [6], we have upgraded a basic middleware implementa-
tion with the new IEC 61375 standard based reference implementation of the
Train Real Time Data Protocol (TRDP) from the TCNopen consortium. The
adaptations and extensions to the TRDP Light library, we deemed necessary for
a smooth integration with the critical application’s interfaces, will be explained
in Sect. 4. Within the MILS architecture, the demonstrator also applies a novel,
state of the art encryption mechanism with minimal additional overhead for
embedded systems. We have selected this data encryption tunnel for communi-
cation between, in terms of the use-case, “non-local” devices. The motivation
will be discussed in Sect. 5.

2 Security Architecture for Critical Systems

Railway applications are required to be reliable, available, maintainable and safe
(RAMS) according to accepted and governing standards, in Europe EN 50126.
The properties are a result of qualified processes and guided methods, requiring
specially trained engineers, operators and maintainers to minimize application
risks. The processes specifically require that access is limited to that qualified and
authorized group to assure the integrity of the processes and the system. Physical
access barriers, e.g., locked cabinets, typically have a constant ratio between cost
of securing and effort to bypass, largely due to the required physical attendance
of the intruder with the specific knowledge to that barrier.

The introduction of networked or remote access to critical systems as Cyber-
Physical Systems (CPS), in principle, has not changed this paradigm, but
removed the latter physical appearance of an intruder. This has introduced neg-
ative scaling effects making even well secured systems with only a small secu-
rity vulnerability cheap for large-scale attacks. The current mitigation trend in
IT systems is to automate and improve testing methods, and to shorten time
to update, i.e., patch vulnerabilities. In contrast, critical systems have stricter
update policies and typically run on non-standardized hardware. Consequently,

1 ETCS, European Train Control System. OpenETCS was a research project fostering
an open reference implementation.

274 T. Schulz et al.

Fig. 1. Architecture of a base MILS system with a separation kernel, a safety appli-
cation and additional services. Components like the security protocol (green) and
the middleware must be instantiated separated to assure non-interference and correct
behaviour of the safety application. (Color figure online)

testing requires more effort for a much smaller number of operative products.
Modifying a critical system’s software requires re-certification – even for security
patches.

Current research is developing methodologies to reduce the fore-said re-
certification effort through dependable partitioning of a system, applying the
Multiple Independent Levels of Security (MILS) architecture (Fig. 1).

The demonstrator’s system design splits the system into a safe control compo-
nent, a communication middleware and an independent security component with
remote authorization, authentication and encryption. The safety function within
the control application is unaffected of corruptions within the transmission com-
ponent, if it can continue operation in degraded mode without that transmis-
sion data, e.g., safely issue an emergency command. The data flow between the
components is guarded by the MILS separation kernel, see Fig. 1, allowing only
predefined data flows between the partitions, i.e., application domains. This app-
roach is also covered by IEC 62443 as conduits connecting zones [9]. Depending
on attack vectors, system and application design, the security relevant trans-
mission components could then also be of lower software confidence level and
classified with a low Software Safety Integrity Level (SSIL), being less suscepti-
ble to re-certification requirements.

The separation kernel (SK) of a MILS system connects and controls the com-
ponents within its partitions. There are different kinds and implementations of
SK. For our demonstrator’s OBU we use Sysgo’s PikeOS. A different approach
following the same MILS architecture is implemented in Thales’ TAS platform
[7] building on a Linux KVM-hypervisor setup for security. The kernel security
development process follows different strategies to prove high assurance assump-
tions claiming interference-free execution of the composed system. Some rely
on rigorous testing, using different testing techniques such as systematic and
robustness testing (fuzz-testing), others rely on formal methods and a mixture
of these techniques [13].

Integration Approach for Communications-Based Train Control Applications 275

Fig. 2. Demonstrator concept view. On the left, the trackside control device has a
GUI and is connected to the demonstrator model. On the right are the On-Board
components, which are instantiated for each train. (Color figure online)

An additional security measure that is applied within the demonstrator
design is a cryptography data tunnel. This component can ensure the CIA prop-
erties of confidentiality, integrity and authenticity of external data access via
untrusted networks (i.e., IEC 62443 cat. 3). Most state-of-the-art encryption pro-
tocols provide these properties. However, they strongly differ in algorithmic and
integration complexity. Some technology choices are less desirable for carrying
process data of safety-critical systems. We will discuss our choice in Sect. 5.

In the next section, we will introduce the system structure of the demonstra-
tor and its applications. The safety-critical application has a longer life cycle
compared to a network-connected middleware or encryption tunnel. These need
to be able receive regular security patches, which is supported by the MILS
architecture. Therefore, we also separate the middleware described in Sect. 4.

3 Demonstrator Overview

The demonstrator show in Fig. 2 has three parts: The trackside control appli-
cation, termed “interlocking”. Then, for each train, the on-board components
and last, but not least, the physical demonstrator with model-trains. Larger
parts of the on-board application logic (see dark-red boxes in Fig. 2) are imple-
mented using the programming language Scade for safety-critical systems. Scade
is an extension of Lustre, a synchronous dataflow programming language for
reactive systems. It is graphically defined in the ANSYS SCADE Suite mod-
eller. A code generator creates C code for compilation into executable binaries.
The advantages of Scade are proofs towards causality errors, graphical verifica-
tion, immanent bounds checking and well defined behaviour. There exist other

276 T. Schulz et al.

Fig. 3. GUI output of the interlocking application. It also displays the brake inter-
vention locations received from each train. Here, due to the speed limitation imposed
by the upcoming switch, ETCS brake-target operation is activated, showing warning
(org.) and intervention (red). (Color figure online)

viable environments for critical implementations. However, the project decision
for Scade was based on the existing OpenETCS models.

The demonstrator use-case is a simplified distributed Communications-based
Train Control (CBTC) application: It consists of an interlocking, movement
authorization, movement supervision (OpenETCS), a driver-machine interface
(OpenETCS) and a train control with movement simulation or emulation on the
model railway. While the implemented approach is applying state-of-art technol-
ogy with real-world performance requirements, it is nevertheless, a technology
showcase with an uncommon use-case – the distributed calculation of the train’s
movement authorization. Nonetheless, the goal is to integrate practical compo-
nents in a MILS system for evaluation and education.

The dataflow is found in Fig. 2. The interlocking GUI application controls
the physical switches of the demonstrator model and communicates the current
track segments to all train instances. It also receives and broadcasts all train
positions. The “On-Board” devices are instantiated for each train, for both,
simulated or connected to a physical model train. The devices are a train control
instance, an ETCS Driver HMI (DMI) and the ETCS On-Board-Unit (OBU).
All these on-board applications are implemented as a Scade model. However,
for simplification of the demonstrator, the OBU application uses a subset of the
OpenETCS OBU with only the core module for Speed and Distance Monitoring
(SDM, [15]). The SDM reads a movement authorization, which is the reserved
track up to the next stopping point, and a track segment list with speed limits,
ascent-profile and special prohibitions. With this data, the SDM calculates safe
speed limits that need to be obeyed at upcoming locations. This data is sent
back to the interlocking GUI. The GUI captured Fig. 3 visualizes the ETCS
data for the demonstrator. If the derived deceleration curves are crossed, they
trigger brake commands, which are sent as intervention commands to the train
control. In a real ETCS application the movement authorization and the track
information is received from track data elements (balises), as well as the radio
block centre (RBC) via a mobile communication channel. In our demonstrator,
each train receives only the track map with the current switch settings and the

Integration Approach for Communications-Based Train Control Applications 277

Fig. 4. Overview of the combined technologies in the OBU device of the demonstrator.
All SW components are separated into partitions (see Fig. 1). The configuration for
each component, the scheduling setup and the regulated information flow is sourced
from a coordinated config pool.

locations of all trains (Fig. 2). The on-board application generates the necessary
data: the safe movement authorization and the track atlas, for a safe movement
of the train on the demonstrator.

The following sections focus on the integration of the SDM + movement
authorization application together with the networking components within a
MILS system.

4 Lightweight Middleware

A middleware is required to connect the interfaces of separate applications. The
most basic communication channels exist on the same hardware as Inter-Process-
Communication (IPC) techniques like message queues and shared memories with
signalling. However, basic IPC are not regarded as middleware, as they are pro-
vided and governed by the operating system kernel. Strictly defined IPC are also
one of the key features of the MILS system architecture, which will be discussed
in the following section. Middleware typically abstracts application’s interfaces
in a standardized way, independent of the underlying operating system or hard-
ware architecture to enable interoperability. For example, in the demonstrator
setup (Fig. 2), the OpenETCS component Speed and Distance Monitoring passes
a uniform data structure to the DMI, which is connected via Ethernet. The first
approach copied the output of one into a UDP packet and sourced it to the
ScadeDisplay DMI application on the other side. This worked, as long as both
ran the same hardware, same OS, same compiler, etc. When we changed one
device a from 32 to a 64 bit CPU architecture, the memory addresses of the
fields within the data structure changed due to specific memory alignments.
This is a typical issue addressed by middleware referred to as “marshalling”. We
will return to this later in this section.

Middleware nowadays are based on web services, XML, SOAP and other
service-oriented architectures. These are often not targeted for real-time appli-
cations on embedded, resource-constrained systems. More fitting alternatives for
machine-to-machine communications in industrial automation (IIoT) are CoAP,

278 T. Schulz et al.

MQTT, DDS and OPC UA. Despite its tremendous success in factory process
automation, OPC UA has lately been criticized for its standard’s complexity
leading to non-interoperable implementations. Beyond these open protocols,
there are also many proprietary industrial Ethernet technologies, like ProfiNET,
EtherCAT, SERCOS III, TTEthernet, which can provide safe data transmission
up to SIL 3, but this is out of scope of this demonstrator.

The railway industry has recently standardized a network protocol tailored
towards efficient on-board process communication, the Train Real Time Data
Protocol (TRDP, IEC 61375-2-3 [1]). It is intended to replace vendor proprietary
solutions based on legacy buses or numerous incompatible custom solutions. It
implements pull requests and cyclic push messages, as well as filtering based on
a publish-subscribe scheme. The accompanying TCN standards (Train Commu-
nication Network) also define discovery, topology and direction based services.
The payloads are predefined, immutable binary data structures. This makes it a
perfect fit interfacing with the Scade applications, which, in the generated code,
provide bare C-structures.

For the demonstrator, we used the open TRDP Light from the TCNopen
consortium. It provides a reference implementation of the core functionality of
TRDP. The Light implementation also provides the XML configuration func-
tionality ([1] Annex C), for memory, process and message (“telegram”) config-
uration for TRDP. Typically, TRDP functions are linked from a library to the
application code. However, following the MILS separation approach we integrate
TRDP as a generic component in our demonstrator. It obtains its specializing
configuration from the embedded operating system’s (here PikeOS) central data
provider, see Fig. 4.

For transferring the inputs and outputs of the Scade application component
with the TRDP component, we use a small shared-memory area. To ensure
synchronicity between the Scade application’s interface and TRDP’s related
telegram definition, we implemented a small “type bridge” tool that converts
between the data model descriptions. Coming back to the motivation of this
section, TRDP Light also provides dataset marshalling based on the provided
XML configuration. Different memory alignments and architecture endianness
(big endian vs. little endian) are taken care of. The IEC 61375 standard defines
16 basic types, considering character, integer, float and time types with different
bit-widths and, for integers, signedness. These data types can be combined to
custom dataset structures making up a telegram.

However, we could not use the stock marshalling function and had to imple-
ment a refined version. This is due to the OpenETCS applications being imple-
mented in a former version of Scade (6.4) that is limited to a single integer flow
type, e.g., int32 or int64. Our modified marshalling function can be configured
to take these type mappings into account, i.e., inflate an incoming int8 to the
Scade-defined type and vice-versa. This approach maybe also required for other
specialized programming environments.

To transport safety-critical SIL-2 process payloads, the Safe Data Trans-
mission extension ([1] Annex B) has to be used. The application-to-application

Integration Approach for Communications-Based Train Control Applications 279

safety channel needs implementation of the safety code (checksum) calculation
in the same safety context as the application, hence in Scade. This is, however,
still work in progress. Security assurance is achieved by having TRDP as a sep-
arate component as discussed. The MILS approach simplifies security patching
in case of a discovered weakness in the network protocol.

5 Secure Data Encryption Tunnel

Network traffic encryption for security can be applied on different layers of the
common ISO-OSI (Open Systems Interconnection model). The tunnelled traffic
of security protocols ranges from data link layer (2) up to the application layer
(7). When the data link layer, such as Ethernet, can be abstracted, as well as
application specific higher schemes are out of scope, OSI layer 3 layer encryption
(L3-VPN) is the most versatile choice to be used as a component. The section will
thus look at the choice of the Transport Layer Security protocol (TLS) as used
in OpenVPN, as well as the WireGuard protocol, a VPN implementation using
one specific configuration of the Noise protocol. Since IPsec is of even greater
complexity than TLS, according to evaluation by Schneier and Ferguson [5],
we do not consider it here. However, partner projects dealing with Distributed
MILS (D-MILS) approaches have well analysed this technology for deterministic
networking, see their results in [8]. Algorithms used within L3-VPNs are also
known from tunnel specific higher-level application protocols. For example, TLS
is used to turn the Hypertext Transport Protocol (HTTP) into its secured version
HTTPS and the Noise protocol is used by the widespread WhatsApp messaging
service.

TLS itself is standardized and can tunnel payload and higher level protocols
in many ways. For this reason, we will only refer to TLS in general in the
following paragraphs. In comparison, “Noise” rather is a protocol framework
that describes a protocol and requires a specific application implementation to
exist. Therefore, we will refer to WireGuard implementing exactly one crypto
algorithm and one protocol scheme.

For cryptography algorithms and security protocols, it is generally advisable
to stick to proven solutions ([16]). Even small weaknesses turn the whole imple-
mentation vulnerable. For this reason, TLS has been widely adopted. However,
a matured solution like TLS that has received continuous updates and adoptions
to many applications, also grows in complexity and becomes more susceptible
to implementation flaws, for example the infamous Heartbleed Bug published
in 2014. The implementation of TLS is accompanied by over 20 extensional
internet standards (RFC). E.g., the informational RFC 7457 exists alone to list
known vulnerabilities and weaknesses to TLS implementations. Common sources
of weaknesses in TLS are protocol downgrades to a broken cryptographic algo-
rithm, buffer overruns of message parser, weak implementations of algorithms
and dubious interpretation of certificates [17].

Some of those weaknesses of TLS are addressed in the latest version 1.3 [10],
which is now a proposed standard, RFC 8446. Major changes listed in the RFC:

280 T. Schulz et al.

Fig. 5. The WireGuard state-machine has few states. The initiator starts rekeying after
120 s. Otherwise, the responder discards its transport keys after a maximum of 180 s.

– Legacy encryption algorithms were removed.
– Only Authenticated Encryption with Associated Data (AEAD) alg.
– Static RSA and Diffie-Hellman (DH) suites were removed for ephemeral var.
– Key-exchange suites provide Perfect Forward Secrecy.
– The handshake state machine has been significantly restructured to be more

consistent and to remove superfluous messages.
– Elliptic curve algorithms move to base specification; signature algorithms

Ed25519 and Ed448 were added. Point format negotiation was removed.

As a result, current TLS Compliance Requirements (see Sect. 9 of the RFC
[10]) can be considered smaller than previous versions. The Subsect. 9.1 of the
RFC lists one mandatory and two optional to implement cipher suites for AEAD
and two Diffie-Hellman key exchanges. Which cipher suite is used for the applica-
tion data, is negotiated in the handshake process. The TLS handshake messages
have optional and mandatory extensions, e.g., the “KeyShare”, the certificate,
etc. As a result, the handshake messages are of variable length and of varying
complexity, which has led to vulnerabilities and implementation mismatches in
the past [17].

The WireGuard protocol [2] on the other hand, uses a much more simpli-
fied approach. Only one cipher suite is specified and certificates are not part of
the protocol. The control-flow in Fig. 5 has an untangled structure. Peer selec-
tion and verification is solely based on public keys. A more or less sophisticated
Public-Key-Infrastructure (PKI) may be implemented separately, but only if the
overall application requires this. Like in TLS 1.3, two message types are sent in
the handshake: the initiation and the response. A third message type can be sent
by the responder instead of a response msg., with low computational effort, if
the replying responder is unable to serve the costly Diffie-Hellman key calcula-
tion. This may be due to exhausting the real-time scheduling budget, when the
component is under heavy load (e.g., in an adversary attack), avoiding denial of
service complications. The fourth message type transports the application data.

Integration Approach for Communications-Based Train Control Applications 281

Fig. 6. The physical demonstrator component. Shown are the modified model trains
with the Bluetooth-LE (red PCB) back-channel to notify balise detection for odometry.
The IRDA balises are seen in the foreground tracks between the white ribbon-cables
connected to the IR-PCB. (Color figure online)

All four message types have a fixed length and a fixed structure. Hence, the
parser is immune against length and buffer-overrun vulnerabilities.

Recently in 2018, the authors of WireGuard have published their results of
the formal security verification of the protocol in [3]. The verification efforts
are based on the tool Tamarin, and assert the security properties of the mod-
elled protocol according to key agreement, key secrecy, session uniqueness and
identity hiding. Beyond these properties, due to numerous static data structures
and avoidance of dynamic memory allocations, the main C implementation of
WireGuard claims low risk of unsafe behaviour and was recently accepted as
a mainline Linux kernel driver module. The Linux implementation uses for-
mally verified implementations of the X25519 algorithm published in [18] and
[4], applying formal methods of F* and Coq.

As an alternative for use in safety-critical systems, we have also approached
implementing the WireGuard protocol as a Scade model based on previous
work in [12]. While the implementation reached proof-of-feasibility status for
the demonstrator within the OBU component, it is still work in progress. We
can conclude that the straightforward protocol state-machine and clear algo-
rithmic choices of WireGuard make such an implementation feasible with hard
real-time requirements. On the other hand, it must still be analysed whether a
special implementation in Scade is necessary or, if the mainline implementation
together with the anyway necessary security measures supported by the MILS
architecture provide enough assurance. The MILS separation architecture does
ensure non-interfering separation in terms of CPU time and memory space, for
each component independent of its assurance level.

282 T. Schulz et al.

6 Conclusion

In the previous sections, we argued our choice of components and the applied sys-
tem architecture to build a secure demonstrator composed of network-connected
devices hosting model-based safety-critical applications.

When used together with TRDP as a middleware, the Scade-generated code
does not require much boilerplate code, other than memory initialization and
cycle timing. TRDP needs only minor adaptations in terms of a modified Scade-
type dataset marshalling function and operating system layer modification.
PikeOS is not directly supported in TRDP Light, but via the POSIX adap-
tation layer. After modification, sourcing the TRDP-XML configuration from
the PikeOS rom-image property file system (pfs) unifies overall configuration
and removes the need for a full-blown file system. The WireGuard component
was also adapted to source the configuration for peer-public-keys and endpoint
addresses from the pfs. Building these components on the base of the MILS sep-
aration architecture ensures security assurance for different software integrity-
and assurance levels throughout the whole life cycle accommodating security
updates for individual components.

Ongoing work in the certMILS project will guide the discussed MILS sys-
tem architecture towards an accomplished certification methodology for secure
safety-critical products. This will be demonstrated on real-world pilots, such as a
power-grid control unit, a platform approach for SIL-4 railway applications and
a demonstrator for the Prague subway system. Our educational railway demon-
strator (Fig. 6) will also benefit from those pilot projects, applying developed
testing techniques, improving integration tooling and fixing bugs that still need
special procedures. In the short term, we also like to integrate the TRDP-SDT
extension with Scade models, as well as evaluate the performance of our formal-
ized WireGuard implementation and find an answer whether it is beneficial for
secure data transport in safety-critical applications. A vital part of this ongo-
ing work is to discuss the current real-time performance of the demonstrator on
competitive, i.e., related industrial hardware.

Acknowledgments. This work is part of the certMILS project, funded by the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreement
No. 731456.

References

1. CENELEC: Electronic railway equipment – train communication network (TCN)
– part 2-3: TCN communication profile (IEC 61375-2-3:2016). Technical report,
IEC (2017)

2. Donenfeld, J.A.: Wireguard: next generation kernel network tunnel. In: NDSS Sym-
posium (2017). https://www.wireguard.com/papers/wireguard.pdf

3. Donenfeld, J.A., Milner, K.: Formal verification of the wireguard protocol.
Technical report, Oxford University (2018). https://www.wireguard.com/papers/
wireguard-formal-verification.pdf

https://www.wireguard.com/papers/wireguard.pdf
https://www.wireguard.com/papers/wireguard-formal-verification.pdf
https://www.wireguard.com/papers/wireguard-formal-verification.pdf

Integration Approach for Communications-Based Train Control Applications 283

4. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Systematic genera-
tion of fast elliptic curve cryptography implementations. Technical report, MIT,
Cambridge, MA, USA (2017)

5. Ferguson, N., Schneier, B.: A cryptographic evaluation of IPsec. Counterpane Inter-
net Security, Inc. (2000). http://www.cs.fsu.edu/∼yasinsac/Papers/ipsec.pdf

6. Gorski, P., Özer, M., Schulz, T., Golatowski, F.: A modular train control system
through the use of certified COTS HW/SW and qualified tools. Elektronik 18,
42–49 (2016)

7. Hametner, R., Resch, S.: A platform approach for fusing safety and security on a
solid foundation. In: 4th International Workshop on MILS. Zenodo (2018). https://
doi.org/10.5281/zenodo.1306081

8. Hirschler, B., Jakovljevic, M.: Secure deterministic L2/L3 ethernet networking for
integrated architectures. resreport, SAE Technical Paper (2017)

9. IEC TC65 WG10: IEC TS 62443-2-4 Industrial communication networks - Network
and system security - Part 2-4: Requirements for IACS solution suppliers (2015)

10. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. Technical
report, IETF (2018). https://datatracker.ietf.org/doc/rfc8446/

11. Rushby, J.: A trusted computing base for embedded systems. In: Proceedings of
the 7th D/NBS Computer Security Conference (1984)

12. Schulz, T., Golatowski, F., Timmermann, D.: Evaluation of a formalized encryption
library for safety-critical embedded systems. In: IEEE International Conference on
Industrial Technology (ICIT) (2017). https://doi.org/10.1109/ICIT.2017.7915525

13. Schulz, T., Griest, C., Golatowski, F., Timmermann, D.: Strategy for security
certification of high assurance industrial automation and control systems. In: IEEE
13th International Symposium on Industrial Embedded Systems (SIES) (2018).
https://doi.org/10.1109/SIES.2018.8442081

14. Tverdyshev, S.: Security by design: introduction to mils. In: MILS Workshop
Embedded World Conference (2017). https://doi.org/10.5281/zenodo.571164

15. UNISIG: SUBSET-026 - System Requirements Specif. SRS 3.3.0, ERA (2012)
16. Victors, J.: TLS 1.3 and the future of cryptographic protocols. Technical report,

Synopsys (2016). https://www.synopsys.com/blogs/software-security/tls-1-3/
17. Walz, A., Sikora, A.: Exploiting dissent: towards fuzzing-based differential black

box testing of TLS implementations. IEEE Trans. Dependable Secure Comput. 1
(2017). https://doi.org/10.1109/TDSC.2017.2763947

18. Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: a veri-
fied modern cryptographic library. In: Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2017 (2017). https://doi.
org/10.1145/3133956.3134043

http://www.cs.fsu.edu/~yasinsac/Papers/ipsec.pdf
https://doi.org/10.5281/zenodo.1306081
https://doi.org/10.5281/zenodo.1306081
https://datatracker.ietf.org/doc/rfc8446/
https://doi.org/10.1109/ICIT.2017.7915525
https://doi.org/10.1109/SIES.2018.8442081
https://doi.org/10.5281/zenodo.571164
https://www.synopsys.com/blogs/software-security/tls-1-3/
https://doi.org/10.1109/TDSC.2017.2763947
https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1145/3133956.3134043

Merging Worlds – Aligning Safety
and Security

Christian Schlehuber1(&) and Dominik Renkel2(&)

1 DB Netz AG, Weilburger Str. 22, 60326 Frankfurt am Main, Germany
christian.schlehuber@deutschebahn.com

2 NEXTRAIL GmbH, Schaumainkai 91, 60596 Frankfurt am Main, Germany
dominik.renkel@nextrail.com

Abstract. Safety and security are important domains in current industrial
control systems. While safety protects the human and the system itself from
failures, security protects the system from malicious entities and their activities.
One is static, admitted, and is not allowed to change over years, the other has to
adopt dynamically to changes in the threat landscape. Due to digitalization and
the need for more performance and a better maintainability, isolated systems,
responsible for controlling signals in the railway domain or a power plant in the
energy sector, are connected to large networks, using standard protocols and
commercial-off-the-shelf components. Because of this change suddenly IT-
Security becomes an important topic and it must be integrated in safety com-
ponents, which due to the contradicting requirements of the domains can be
challenging.
In a first approach one could think of designing the safety system and applying

security to it as a shell afterwards. Although this approach may be applicable and
lead to a useable result, better methods may exist, which result in a more efficient
design process and amore secure solution. In our integrated approach security and
safety lifecycles are merged and several activities like estimating the impact of an
error only must be performed once for both domains. Especially in risk analysis,
the derivation of security requirements and the maintenance phase, several pro-
cesses can be combined and will be shown in this work.

Keywords: Safety � Security � Engineering � Industrial experience

1 Introduction

Control and safety systems take a central role in the safe operation of trains in European
rail networks since a long time. In the early days, around 1900, the safety of trains was
ensured by the usage of mechanical interlockings. Since then, the interlocking systems
have experienced a steady evolution, which resulted in the current electronic inter-
lockings (ESTW). ESTWs are computerized systems, on which the safety logic of the
interlocking is implemented. As a part of this evolution, also the general architecture
and behavior of the interlockings evolved; while only a minimum of interaction with
external systems was required in the beginning, modern electronic interlockings or
operations control centers are connected to a wide variety of systems. Partly also public
communication links are used for these connections.

© Springer Nature Switzerland AG 2019
S. Collart-Dutilleul et al. (Eds.): RSSRail 2019, LNCS 11495, pp. 284–295, 2019.
https://doi.org/10.1007/978-3-030-18744-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18744-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-18744-6_19

Each new interlocking design introduced improvements to the protective functions
in response to previous incidents. This continuous improvement process resulted in the
situation, that railway transportation is considered one of the safest public transports.
However, in recent years new challenges for the control and safety systems arose,
which are the result of a change in social structures and behavior. In 1900, the greatest
threats for the railway transportation were technical or human errors, this means errors
that are caused from actors of the system itself. Only in rare cases errors have been
caused intentionally by system-external actors.

With this recent change in social structures and behavior, it had to be observed, that
the railway is attacked more and more by external actors [1–3]. These types of
deliberate attacks on control and safety systems have only be considered in a certain
extent yet. Due to the increasing amount of such attacks and the potential degree of
damage, which may be caused by such an attack, these are no longer negligible and
must be treated properly to achieve adequate protection.

In the area of safety analysis standards, which define proper requirements and
safety levels (e.g. SIL), for critical systems have been introduced over the last decades.
Based on these safety levels a concrete implementation of a system can be evaluated for
a given level. In the area of security analysis, no experienced method for the analysis of
security requirements has been established so far, which may be a result from the
nature of security analysis itself. While for safety analyses you may decide on relatively
simple empirical values for the occurrence of an event or by targeted long-term tests, it
is very difficult to achieve a similar measure in the security area. That is because this
area is dependent on the actions of external actors and a simulation of possible
attackers’ behavior is almost impossible to develop.

This work is structured as follows: Sect. 2 gives an overview over related work in
standards. Afterwards Sect. 3 compares the areas of security and safety and tries to
show the differences in their processes. It is also shown how security for a safety
system can be assured. In Sect. 4 it is shown, how the shell design for securing a safety
system works and where the advantages and disadvantages are. Afterwards Sects. 5
and 6 show how an integrated approach could work and how this could result in a
secure and safe system using virtualization. Afterwards Sect. 7 concludes this paper.

2 Related Work

For current CCS systems (Control and command systems) a wide variety of safety
standards exists, for example [4] defines general requirements on reliability, avail-
ability, maintainability and safety (RAMS) of such systems. Additionally, to this
standard, several more specific standards like EN 50159 for setting up safety-related
communication channels over closed or open communication networks exist. A vendor
for interlocking systems therefore can prove the safety of his system by fulfilling the
requirements and advices in the given standards.

Security has not been covered to this point by now, which means that around security
no railway specific standards are existent. The security of common IT systems has been
covered by several national and international standards. For instance, the German Federal
Office for Information Security defined a process for security management in its

Merging Worlds – Aligning Safety and Security 285

“IT-Grundschutzhandbuch” (a basic protection manual on IT Security) and on the
international level the ISO defined its 2700x series of standards. These form a good basis
for securing a common IT system, but the domain of rail transportation has several
specialties, which are hard to handle with the former mentioned processes.

Most CCS systems in rail transportation are very persistent, e.g. interlockings from
the beginning of the 20th century are still in use, and if they are safety relevant, they are
required to fulfil strong admission requirements by the local authorities. This also
applies to updates to such systems. If a vendor discovers some vulnerability and
provides a patch for it, the patch also must be checked by the local authorities. Due to
these and other points general IT security standards are only partly applicable to the rail
domain.

Asides from these, ISA (International Society of Automation) is currently working
on its standard IEC 62443, which deals with IT security in automation systems. This
standard covers some of the former mentioned points, but lacks guidance on several
specialties of the rail domain.

3 Comparison of Safety and Security

While security in the area of railways is a quite new topic, processes for safety have
been defined over years and mature standards already exist for their application in the
railway domain. In general, for the development of a safety relevant system the V-
Development Cycle of [4] is applied. Within this lifecycle it is clearly stated, which
phases must be fulfilled, and which documents must be presented before the beginning
of the next phase.

The development always starts with a Concept in Phase 1, this should describe,
what the system should do in general. Afterwards this concept is elaborated to a System
Definition during Phase 2. In this phase the functional blocks of the system and the
behavior to different operating conditions are described. In Phase 3 a risk analysis is
performed based on the system design, which results in RAMS requirements on
specific parts of the system.

During the next phases the vendor of the system implements the system itself,
evaluates its functionality and afterwards hands the product to the operator. From there
on the system is evaluated and afterwards set into operation.

After these phases, the system gets maintained in specific intervals but in usual
cases it is not changed over several years, as the safety requirements on the system
normally will not change. Besides this also changes to the configuration of the system
could result in the need for a new admission. From a safety point of view these long
patch intervals may be completely acceptable, but if we consider the different context
of security it becomes obvious, that the processes are not sufficient.

For security the life cycle has lots of similarities to the safety development cycle,
but there also exist several differences. Before starting with the first phase of the
security process (Fig. 1), which namely is the definition of system requirements, the
engineer should become familiar with the domain and the values of the system.

286 C. Schlehuber and D. Renkel

Therefore, an analysis of the system assets should be performed, and the identified
assets should be used during the future steps, especially during the risk analysis.

In the requirements phase the information about functional and non-functional
requirements of the system are gathered. The operational environment and the affected
assets should be collected. Afterwards during the concept phase a security system
design is developed, which fulfils the former defined requirements. In addition, all
systems in this design must be documented.

During the System definition the system should be defined in terms of desired
functions and contained subsystems. The first part of this step is like every other system
concept phase, but afterwards the system must be parted into zones and conduits. In
this context a zone is an aggregation of similar devices and subsystems (similar
according to the required security level for those systems). Conduits act as connections
between different zones. At the end of this phase every object in the system design must
be assigned to a zone or a conduit. In an upcoming step each of these zones is assigned
different security requirements, which must be fulfilled. These are dependent on the
security analysis of the zone.

Requirements

Concept

System definition

Risk analysis

Security
Requirements

Assignment of the
Sec. Requirements

Construction and
Implementation Production Installation/

Assembly

System
Validation

System
acceptance

Operation and
MaintenanceMeasurement Upgrade

Decommissioning

Security
Incident
Report

Develops
abstract
version

Made
concrete

Defines reactions
to threats

Fig. 1. Security development process

Merging Worlds – Aligning Safety and Security 287

For identification of relevant threats and according security requirements a security
Risk analysis must be performed for every zone, which has been identified during the
“System definition” phase. During security engineering the risk analysis is performed
for every zone regarding the following requirement groups:

• Unauthorized access (AC)
• Unauthorized use (UC)
• Manipulation of the system (SI)
• Unauthorized disclosure of data (DC)
• Unwanted data flow (RDF)
• No timely reaction to an event (TRE)
• Unavailability of resources (RA)

For each of those seven elements a score is assigned. The scores are values ranging
from 1 to 4. For assigning a value, a group of experts must gather possible threats to
this element and then rate these threats in terms of how many resources (R), knowledge
(K) and motivation (M) would a possible attacker, which uses this threat, own. For R,
K and M values ranging from 2 (common or low) to 4 (extended or high) can be
assigned. After this the values are combined to a VSL, which is an intermediary
security level.

Due to the fact, that rail applications in some cases are only accessible from certain
locations or an attacker would be easy to identify, risk reducing factors can be con-
sidered. These are:

• Location of the attack (ORT)
• Traceability of the attack (NAC)
• Potential Damage (POT)

The factors are rated with scores from 0 (e.g. an attack can be performed from
everywhere) to 1 (an attack is only possible inside of a certain building). Now the
security level for the element can be calculated with the following formula:
SL = Maximum (1, VSL – Maximum{ORT, NAC, POT})

As a result, the risk analysis step finishes with a SL for each of the former men-
tioned 7 elements for every zone, which was defined earlier. The estimated SL-Vector
is afterwards used to select the necessary security requirements. In [5] lists with
security requirements (SR) have been defined for every requirement group with dif-
ferent requirements. An additional railway specific list of SRs can be found in [6]. In
the following construction phase, it must be ensured, that the vendor fulfils the
requirements, which are defined in the IEC 62443. Which means that several security
processes at the vendor must be in place.

In the domain of railway transportation systems validation and acceptance is
strongly related to admission by local authorities. Therefore, it is advised to include the
validation and acceptance process into the already existing processes from the EN
50128/50129 to keep the overhead as low as possible. Afterwards additional security
requirements for operation and maintenance are defined, which should be taken into
consideration by operators of such systems. There should be update features for the
security software on each system and a method for continuous measurement of the
elements must be available.

288 C. Schlehuber and D. Renkel

During the operation phase of the device life cycle a system should be able to deal
with potential incidents during normal operation. At this point the security cycle
(Fig. 2) takes place. It is a wishful dream that a system is free of any vulnerabilities or
bugs, which an attacker may use for performing an attack. In reality there is always an
entry point, which an ambitious attacker might use to compromise the system.
Therefore, the system should can deal with possible incidents. The phases, which may
occur if an attack happens, can be seen in the security cycle below.

During decommissioning of a security relevant system, it should be ensured, that all
sensitive data is removed from the system before it is sent in for repair or its complete
disposal. If the systems design may reveal information useful for an attacker, the
system should be securely disposed.

As it should have become obvious there are several similar points in both processes,
but also differences, because security requires jumps to former phases at several points
to ensure a secure solution.

4 Security by Shell

In a first approach to bring security into signaling systems the security shell was
introduced [7]. The shell approach aims at securing safety relevant systems without
interfering with the safety functions and the admission of those systems. This is done
by wrapping the safety core of a system within a security shell. After this all com-
munication to the system must pass through the security shell, which at least provides
encryption, authentication and filtering of data, and only valid data is passed to the
safety core of the system. There may also be other security functions implemented
within the security shell, but the former mentioned are essential. This approach can be
seen in Fig. 3. This concept assumes, that a safety communication protocol is in use

Secure
Operation

Occurrence
of an attack Detection of

an attack

Recovery
from attack

Security
Cycle

Patch

Fig. 2. Security cycle (part of operation and maintenance phase).

Merging Worlds – Aligning Safety and Security 289

between the safety core and the interlocking system, which cannot be altered by
accident by the security components in the communication channel. All communica-
tion must pass a security shell before it is passed to the safety part of the system
(marked red).

If now a new threat to the system is discovered a mitigation can be set in place
within the security shell, because the admission of the safety part is decoupled from the
security side. In this context it is important, that the interfaces and the performance (e.g.
minimum bandwidth and latency) indicators between the safety core and the security
shell have been clearly defined.

Nevertheless, the concept of defense-in-depth must be considered, which means
that safety and security are decoupled as far as possible, but also some elements are
implemented to the safety core of the system. The applied parts should be more static
defenses, which will only have to adapt after several years (for instance input validation
methods). Also, some countermeasures like physical protection must be implemented.

While this concept has the clear advantage, that incidents can be distinguished
between the security and the safety part and the parts can be developed mostly inde-
pendent of each other there are also several disadvantages. As the safety and the
security team can work independently, they may work with different assumptions on
the system and the results could be conflicting. For instance, zones could be inap-
propriately defined during the security risk analysis because the results of the safety
risk analysis are not known and not aligned. In general, it can be stated, that this
process results in a duplication of work and an increased cost due to the duplication of
tasks. During the safety engineering process requirements on the system could be
defined, which also affect the security risk analysis positively and by this could result in
lesser additional security requirements. Also, during safety risk analysis, the impact of
failures in functional blocks is defined and could be reused during the security engi-
neering process because the potential impact of a security or a safety problem is the
same.

Nevertheless, the shell methodology can be used for securing already defined
systems or even already built systems.

Fig. 3. Security shell around the safety core.

290 C. Schlehuber and D. Renkel

5 Security for Safety: Integrating Processes

As it was shown during the previous section the security shell may be a pragmatic and
applicable solution. Although this concept may be applicable for almost all systems it
still has several disadvantages, which could be – at least for new systems – avoided by
an integrated approach, which interconnects safety and security engineering. We will
now draft how such a process could look.

Figure 4 shows the interconnection between safety and security during the devel-
opment phases of the system lifecycle. On the left side the classic safety activities can
be seen and on the right side the security elements can be found. The system is defined
during phase 2 of [4] and during this work also security best practices should be
included. Afterwards there are 2 negative influences on the system that have to be taken
into account. From the safety perspective hazards can cause harm to the system and the
environment. Due to this fact a risk analysis is performed during phase 3, which results
in RAMS requirements. From a security perspective the system can also be influenced
by vulnerabilities, which are exploited by threats. These vulnerabilities then can have a
negative influence on the RAMS requirements of the system (e.g. availability can be
influenced by the ability to perform a denial-of-service attack on the system). To react
on this a Security Level (SL) is derived based on the risk analysis. This SL can be
mapped to foundational requirements afterwards, which then reduce the possibility to
exploit vulnerabilities to an acceptable level. RAMS requirements and Foundational
Requirements are then formulated as System Requirements and assigned to parts of the
System.

For the Security Engineering process, a more detailed view can be seen in Fig. 5.
The process is divided in specific and general steps. The general ones must be per-
formed on a regular basis without being in a specific development process and the
outcomes can then be used for all projects. The specific ones must be performed for
every system.

The Security Engineering process starts with a system definition, which is used as a
base for performing a high-level risk analysis to derive zones and conduits. After this
we analyze the operational assets of the system under consideration. The results from
the safety analysis can be taken as a base for this. Afterwards assumptions on the
system must be defined, for instance that all components are deployed in secured
housings and are only maintained by controlled and trained personnel. In those
assumptions we also must consider the RAMS requirements, because those can
potentially be able to mitigate certain forms of attacks. For instance, input validation
may be required by RAMS and can then be assumed to be effective by the security
team. The information gathered by now results into a basic documentation of the zones
and conduits.

For all the defined zones and conduits, we must check the potential threats. For
doing so we derive the threats from several resources. On the one hand we have general
mature threat landscaped to be considered, like the threats from ISO 27005 and from
national catalogues, like the “Grundschutzkatalog” in Germany. On the other hand,
railway specific threats should be considered, which must be derived from earlier
logged security incidents on existing systems. With the now derived list of threats we

Merging Worlds – Aligning Safety and Security 291

start an evaluation process against a railway specific attacker model to filter the relevant
threats. With those in mind a Security Level gets defined, which results in a certain set
of requirements. With those requirements we check our relevant threats again and try to
find attacks on the system that are still possible. Afterwards the SL gets refined. This
process continues until an acceptable level of risk is achieved.

6 Integration of Security and Safety on a Single Platform

A system developed by the previously described process offers a state-of-the-art
solution for protecting safety by security. An implementation on a single platform can
be seen in Fig. 6. The shown system has been crafted taking security and safety into
account. The base is built by a hardened and ruggedized hardware platform for railway
usage, which is developed to RAMS standards. On the one hand this hardware platform
offers the interfaces to a network and on the other hand the physical interfaces to the
field elements to be controlled. Besides this, hardware security features like a Trusted
Platform Module have been included.

On top of this a special SIL 4 operating system is implemented, which provides
virtualization technologies. Due to these virtualization technologies and a Separation
Kernel, which ensures that the virtual compartments are completely independent of
each other various improvements become possible. First, it is possible to bring safety
and security components on the same platform. Each component becomes its own
compartment and the traffic flows can be clearly defined. Besides this it is also possible
to create temporary compartments, which can be used during the update of the needed

Fig. 4. Interconnection between IT-security and safety.

292 C. Schlehuber and D. Renkel

compartments. The new software is deployed to a temporary compartment and after-
wards active and temporary compartments are changed. If something does not behave
as expected it is also possible to switch back to the last working compartment.

Systemdefinition

Analysis of Operational
Assets

Assumptions of the
System

Specific General

Definition of Zones and
Conduits

Basis Documentation
of Zones and Conduits

Derivation of Threats

General Threat
Landscape

Specific Threat
Landscape

BSI-GS G x

ISO 27005

Incident Database

Attacker Model

SL-Vector
Determination

Relevant Threats
(filter against Attacker Model)

IT-Sec Requirements
(Mitigation Actions)

Implementation

RAMS Requirements

Fig. 5. Security Engineering Process.

Merging Worlds – Aligning Safety and Security 293

7 Conclusion

In the paper we have shown how safety and security differs in the lifecycle of a system
and what these differences mean for processes and the development. Afterwards it was
shown how a security engineering process for a railway system could look like based
on IEC 62443 and some adjustments. It has been shown, how this process can be used
to establish a security shell, which can be used as a first approach to the security of a
railway system. The advantages and disadvantages have been discussed and the use
cases were shown. Later, the evolution to an integrated approach, which makes use of
the already implemented safety processes was presented and it was shown how this can
be used to reduce the overall workload of the development teams and the cost of a
system, as requirements are not duplicated, and results are reused. Following this
process, a virtualized system was presented, that has been built taking safety and
security into account. By using virtualized compartments and a Separation Kernel a
safety and a security compartment can be established and be exchanged by updated
ones without any interruption.

Acknowledgement. Parts of the presented work have been made within the German BMBF
funded research project HASELNUSS.

References

1. Ballard, J.D.: A preliminary study of sabotage and terrorism as transportation risk factors
associated with the proposed Yucca Mountain high-level nuclear facility. Technical report,
School of Criminal Justice - Grand Valley State University, July 1998

2. Riley, J.: Terrorism and rail security. Technical report, RAND Corporation, March 2004

Fig. 6. Integrated platform design (Source: HASELNUSS Consortium).

294 C. Schlehuber and D. Renkel

3. S. A. I. of India: Report no. 14 of 2011-12 (Railways) - Security Management in Indian
Railways. Technical report (2011)

4. Railway Applications - The Specification and Demonstration of Reliability, Availability,
Maintainability and Safety (RAMS), EN 50126 (2015)

5. Security for Industrial Automation and Control Systems, ISA/IEC 62443 (2017)
6. DKE: Elektrische Bahn-Signalanlagen – Teil 104: Leitfaden für die IT-Sicherheit auf

Grundlage der IEC 62443 (DIN VDE V 0831-104) (2014)
7. Schlehuber, C., Heinrich, M., Vateva-Gurova, T., Katzenbeisser, S., Suri, N.: A security

architecture for railway signalling. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.)
SAFECOMP 2017. LNCS, vol. 10488, pp. 320–328. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66266-4_21

Merging Worlds – Aligning Safety and Security 295

http://dx.doi.org/10.1007/978-3-319-66266-4_21
http://dx.doi.org/10.1007/978-3-319-66266-4_21

Author Index

Aber, Naïm 191
Ait Wakrime, Abderrahim 23, 173

Basile, Davide 41, 226
Belmonte, Fabien 215
Ben Ayed, Rahma 23, 173
Bertrand, Nathalie 59
Blanc, Benjamin 191
Bon, Philippe 23, 173, 242
Bonitz, Arndt 261
Bordais, Benjamin 59
Brandstetter, Manuela 261

Chenariyan Nakhaee, Muhammad 91
Comptier, Mathieu 202

de Almeida Pereira, Dalay Israel 242
Deharbe, David 242
Dghyam, Dana 159
Dillmann, Stefan 79

Fantechi, Alessandro 3, 41, 226
Ferkane, Nathalie 191
Ferrari, Alessio 226
Fischer, Tomas 159
Fonteneau, Yoann 215

Gallina, Barbara 125
Gnesi, Stefania 226
Golatowski, Frank 272

Hähnle, Reiner 79
Hametner, Reinhard 261
Haxthausen, Anne E. 142
Hélouët, Loïc 59
Hiemstra, Djoerd 91
Hofbauer, David 261

Idani, Akram 23, 173

Kanwal, Samina 125
Karra, Shyam Lal 106
Krafczyk, Niklas 142

Larsen, Kim Guldstrand 106
Ledru, Yves 23, 173
Leuschel, Michael 202
Lorber, Florian 106

Mandò, Gianluca 41
Mari, Thomas 59
Mazzanti, Franco 226
Meidlinger, Michael 261
Mejia, Luis-Fernando 202
Meziani, Mohand 191
Mutz, Mareike 202

Ordioni, Julien 191

Parillaud, Camille 215
Parreaux, Julie 59
Peleska, Jan 142
Perez, Julien Molinero 202
Perin, Matthieu 242
Piattino, Andrea 226
Pinger, Ralf 142

Renkel, Dominik 284
Rucher, Luigi 41

Sankur, Ocan 59
Schlehuber, Christian 284
Schmittner, Christoph 261
Schulz, Thorsten 272
Shaaban, Abdelkader Magdy 261
Srba, Jiří 106
Stoelinga, Mariëlle 91

Tauber, Markus 261
ter Beek, Maurice H. 226
Timmermann, Dirk 272
Trentini, Daniele 226
Tummeltshammer, Peter 261

Ul Muram, Faiz 125

van Noort, Martijn 91

	Preface
	Organization
	Abstracts of Invited Keynote Talks
	RailTopoModel - A Cornerstone to Foster the Federation of Railway Digital Models
	Scientific and Technological Obstacles to Achieve the Autonomy
	Contents
	Keynote Talk
	Connected or Autonomous Trains?
	1 Introduction
	2 Current Connected Trains
	2.1 Centralised Control
	2.2 Distributed Control

	3 Future Connected Trains
	3.1 Virtual Coupling
	3.2 Distributed Interlocking
	3.3 Fully Automated Train Operation

	4 Safety Concerns
	4.1 Qualitative Safety
	4.2 Quantitative Safety
	4.3 Uncertainty
	4.4 Security for Safety
	4.5 Software

	5 Autonomy as a Mean to Performability of Automated Operation
	5.1 Performability, Availability, Capacity
	5.2 Autonomy in Degraded Modes

	6 Conclusions
	References

	Railways System and Infrastructure Advance Modelling
	Towards a Tool-Based Domain Specific Approach for Railway Systems Modeling and Validation
	1 Introduction
	2 A Simple Railroad DSL
	2.1 Meta-model Definition
	2.2 Concrete Syntax Definition
	2.3 Contextual OCL Constraints
	2.4 Discussion

	3 Formal Operational Semantics
	3.1 Functional Formal Model
	3.2 Safety-Free Formal Model
	3.3 Safe Formal Model

	4 Related Works
	5 Conclusion
	References

	Statistical Model Checking of Hazards in an Autonomous Tramway Positioning System
	1 Introduction
	2 Description of the System
	3 Background
	4 Formal Model
	4.1 Formalising Virtual Track Circuits

	5 Formal Analysis of Virtual Track Circuits
	6 Related Work
	7 Conclusion and Future Work
	References

	Performance Evaluation of Metro Regulations Using Probabilistic Model-Checking
	1 Introduction
	2 A Case Study: A Metro Network in Glasgow
	3 Models
	3.1 Markov Decision Processes
	3.2 An MDP Model for the Glasgow Network
	3.3 Integrating a Regulation Policy in the Model
	3.4 Logical Properties for MDP

	4 Experimental Results
	5 Conclusions
	References

	Scheduling and Track Planning
	Automated Planning of ETCS Tracks
	1 Introduction
	2 ETCS Planning Rules
	3 The PlanPro Data Model
	4 From Planning Rules to Planning Program
	4.1 Elicitation of Planning Algorithm
	4.2 Tool Implementation

	5 Validation and Verification
	5.1 General Considerations
	5.2 Visualization and Data Analysis Tool
	5.3 Rule Coverage

	6 Related and Future Work
	6.1 Related Work
	6.2 Future Work

	7 Conclusion
	References

	The Recent Applications of Machine Learning in Rail Track Maintenance: A Survey
	Abstract
	1 Introduction
	2 A Brief Introduction to Machine Learning
	3 Rail Track Data
	3.1 Type of Rail Track Faults
	3.2 Rail Inspection Methods and Tools

	4 Machine Learning for Track Defect Detection
	4.1 Shallow Learning-Based Algorithms for Rail Track Maintenance
	4.2 Deep Learning-Based Algorithms for Rail Track Maintenance

	5 Discussion
	6 Conclusion
	Acknowledgment
	References

	Safe and Time-Optimal Control for Railway Games
	1 Introduction
	2 Formal Definition of Railway Games
	2.1 Railway Topology
	2.2 Untimed Semantics of Railway Games
	2.3 Stochastic Semantics for Railway Games

	3 Railway Games in Uppaal Stratego
	3.1 Translation to Timed Game Automata
	3.2 Uppaal Stratego

	4 Experiments
	4.1 Setup
	4.2 Results

	5 Conclusion
	References

	Safety Process and Validation
	A Tool-Supported Model-Based Method for Facilitating the EN50129-Compliant Safety Approval Process
	1 Introduction
	2 Background
	2.1 CENELEC Series
	2.2 Process Engineering Metamodel
	2.3 Modelling Standards and Safety Plans in EPF Composer
	2.4 CACM and OpenCert Within the AMASS Platform
	2.5 Model-Driven Engineering

	3 Tool-Support Model-Based Method
	3.1 Generating Baseline Model from Standard Requirements
	3.2 Generating Post-planning Processes and Evidence Models

	4 An Illustrative Example
	5 Related Work
	6 Conclusion and Future Work
	References

	Efficient Data Validation for Geographical Interlocking Systems
	1 Introduction
	2 Data Validation for Geographic Interlocking Systems
	3 Logical Foundations
	4 Model Checking of IXL Configurations
	5 Conclusion
	References

	Formal Model Validation Through Acceptance Tests
	1 Introduction
	2 Hybrid ERTMS/ETCS Level 3
	3 Model Validation
	3.1 Acceptance Tests for Event-B Models
	3.2 Acceptance Tests for iUML-B Models

	4 Conclusion
	References

	Modelling
	A Separation of Concerns Approach for the Verified Modelling of Railway Signalling Rules
	1 Introduction
	2 An Illustrative Example
	3 Modelling Approach
	4 Formal Modelling and Verification
	4.1 Uncontrolled Model
	4.2 Control Model: Expressing the Signalling Rules
	4.3 Human Errors

	5 Model-Checking
	6 Related Work
	7 Conclusion
	References

	RBS2HLL
	1 Introduction
	2 HLL
	3 Relay-Based Systems Background
	3.1 Safety Studies and Formal Modelling with Relays
	3.2 Relay Based Systems

	4 RBS2HLL
	4.1 A Model of Circuit Diagrams
	4.2 A Simple Model of Relays

	5 Application: PHPI Interlocking
	5.1 PHPI Interlocking
	5.2 PHPI Validation Process

	6 Conclusion
	References

	Property-Based Modelling and Validation of a CBTC Zone Controller in Event-B
	1 Motivation
	2 CBTC Background
	3 Methodology
	3.1 Step 1: Inputs and Main Properties
	3.2 Step 2: Key Sentences Identification
	3.3 Step 3: Systematic Use and Manual Justifications
	3.4 Step 4: Tooled Verification
	3.5 Illustration

	4 Proof and Animation
	4.1 Abstract System Model
	4.2 Validation Tools

	5 Results
	6 Conclusion, Related and Future Work
	References

	Formal Verification
	Interlocking Formal Verification at Alstom Signalling
	1 Introduction
	2 Industrial Issues
	2.1 Limits and Difficulties of Classical Verification and Validation Process
	2.2 Expected Results from Formal Verification
	2.3 Limitations

	3 State of the Art
	4 Technical Issue
	5 Industrial Process
	5.1 Determination of Safety Properties
	5.2 Modelling
	5.3 Proof Process
	5.4 Insertion of Model Checking into Alstom's Pre-existing Process

	6 Results
	6.1 Technical Results
	6.2 Related to the Industrial Process

	7 Conclusion
	References

	Survey on Formal Methods and Tools in Railways: The ASTRail Approach
	1 Introduction
	2 Context: Formal Methods and Tools in ASTRail
	2.1 ASTRail Objectives
	2.2 Formal Methods and Tools in ASTRail

	3 Literature Review on Formal Methods in Railways
	3.1 Languages from the Literature Review
	3.2 Tools from the Literature Review
	3.3 Maturity of Formal Methods for Railways

	4 Projects on Formal Methods and Railways
	5 Survey with Practitioners
	6 Tools Review
	6.1 Results and Discussion

	7 Conclusion
	References

	B-Specification of Relay-Based Railway Interlocking Systems Based on the Propositional Logic of the System State Evolution
	1 Introduction
	2 Relay-Based Modelling
	2.1 Relay-Based Railway Interlocking Systems Modelling
	2.2 Industrial Example

	3 B-Method
	4 B-Specification of Relay-Diagrams Behaviours
	4.1 Relay-Diagram Behavioural Logic
	4.2 Relay-Based Logic Specification in B
	4.3 Animation and Verification

	5 Conclusion
	References

	Security
	Threat Modeling in the Railway Domain
	1 Introduction
	2 State of the Art
	2.1 Overview of the Railway System
	2.2 Safety Framework
	2.3 Security Framework
	2.4 Existing Railway Risk Analysis Approaches
	2.5 Threat Modeling

	3 Railway Threat Modeling
	3.1 Railway Template
	3.2 Proposed Process

	4 Conclusion
	References

	Integration Approach for Communications-Based Train Control Applications in a High Assurance Security Architecture
	1 Introduction
	2 Security Architecture for Critical Systems
	3 Demonstrator Overview
	4 Lightweight Middleware
	5 Secure Data Encryption Tunnel
	6 Conclusion
	References

	Merging Worlds – Aligning Safety and Security
	Abstract
	1 Introduction
	2 Related Work
	3 Comparison of Safety and Security
	4 Security by Shell
	5 Security for Safety: Integrating Processes
	6 Integration of Security and Safety on a Single Platform
	7 Conclusion
	Acknowledgement
	References

	Author Index

