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Abstract Digital twins, Internet of Things (IoT), block chains, and Artificial Intel-
ligence (AI) may redefine our imagination and future vision of globalization. Digital
Twin will likely affect most of the enterprises worldwide as it duplicates the physical
model for remote monitoring, viewing, and controlling based on the digital format.
It is actually the living model of the physical system which continuously adapts to
operational changes based on the real-time data from various IoT sensors and devices
and forecasts the future of the corresponding physical counterparts with the help of
machine learning/artificial intelligence. We have investigated the architecture, appli-
cations, and challenges in the implementation of digital twin with IoT capabilities.
Some of the major research areas like big data and cloud, data fusion, and security
in digital twins have been explored. AI facilitates the development of new models
and technology systems in the domain of intelligent manufacturing.

Keywords Digital twins · Internet of things (IoT) · Artificial intelligence (AI) ·
Machine learning · Big data · Cyber-physical systems (CPS)

1 Introduction

There had been various advancements in new generation information technologies
like IoT, AI, big data, cloud computing, edge computing, etc. that have wide appli-
cations in smart manufacturing [1]. The advanced computing and analytics in the
cyber world has opened a bright perspective to smart manufacturing. The increase
in digitization of manufacturing opens up various opportunities. It is predicted by
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Gartner in 2016 that more than 20 billion devices (majority from the manufacturing
industry) would be connected to each other by 2020, which further will generate 40
zettabytes of data in raw form as unstructured, semi-structured, and unstructured [2,
3]. Hence, there is a need to organize, analyze, and extract information from this raw
data to obtain valuable information with the use of advanced computing mechanisms
and algorithms [4, 5].

In conventional approach, the designers use the computer-aided simulation and
engineering tools to design and predict the life cycle and perform various physi-
cal testing mechanisms. They do optimize design to maximize performance and cut
down design cost. But in this approach, there is a limitation on tolerances, strategies
relationships amongst the configurations, planning, etc. [6]. However, the develop-
ment of computing industry with artificial intelligence, faster processing, enhanced
algorithms, and increasing computational power in the field of products and pro-
duction line—digital twin—enable the ability of real-time control and digitization
[7–10]. Physical object, process or system can be represented with the help of dig-
ital twin. With the combination of data and intelligence that represent the structure,
context, and behavior of a physical system, it offers an interface that allows mon-
itoring the past and present operation and makes prediction about the future [11].
Therefore, digital twin, integrate AI, software analytics, andmachine learning data to
create digital simulation models that update and change as their physical equivalents
change. This provides real-time monitoring and updates frommultiple sources at the
same time. It creates virtual models for physical objects in the digital way to simulate
their behavior [12]. The virtual models could understand the state of physical entities
through sensing data, to estimate and analyze the dynamic changes. The digital twin
would achieve the optimization of the whole production process [13].

This chapter is organized as follows. The concepts and architecture of digital
twin is reviewed in Sect. 2. The applications and challenges are also discussed in
this section. Section 3 discusses the related work in the area of digital twins. Smart
and intelligent manufacturing with AI evolution is explored in Sect. 4, followed by
conclusions.

2 Digital Twin—Concept and Architecture

The growth of advanced technologies is paving way for the smart cities, where all
the physical objects will have embedded computing and communication capabilities
so that they can sense the environment and communicate with each other to provide
the services. These intelligent interconnections and interoperability are also termed
as IoT or machine-to-machine (M2M) communications [14]. Some of the important
domains of a smart city are the smart energy, smart home, smart transport system,
and smart manufacturing. Because of the affordability and availability of the sensors
and actuators, data acquisition has become relatively easier. Monitoring and diag-
nosing the manufacturing machines through the Internet is a challenging task. The
convergence of the physical and virtual worlds of manufacturing is still one of the
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major challenges in the field of Cyber-Physical Systems (CPS), which needs more
research. To tackle these challenges, Industry 4.0 was conceptualized [15], which
mentioned that if the production systems are made intelligent and smart, they can
function more efficiently [16, 17]. There have been many developments to enable
this, one of which is digital twin [18].

“Digital twin” is a concept that creates a model of a physical asset for predictive
maintenance. This model will continually adapt to changes in the environment or
operation using real-time sensory data and can forecast the future of the correspond-
ing physical assets [19]. It can monitor and identify potential issues with its real
physical counterpart. In addition, it allows the prediction of the remaining useful life
(RUL) of the physical twin by leveraging a combination of physics-based models
and data-driven analytics. It consists of three main parts: (i) physical products in
real space (ii) virtual products in virtual space, and (iii) the connections of data and
information that will tie the virtual and real products together. Therefore, collect-
ing and analyzing a large volume of manufacturing data to find the information and
connections has become the key to smart manufacturing.

The concept of digital twin presented by Grieves at one of his presentations in
2003 on Product Lifecycle Management (PLM) at University of Michigan [20]. GE
has started its digital transformation journey centered on Digital Twin, by building
critical jet engine components that predict the business outcomes associated with the
remaining life of those components [21].

The work done in [22] was the first initiative to come up with a dynamic Bayesian
network approach for digital twin, where they utilized the concept of digital twin for
tracking the evolution of time-dependent variables to monitor aircraft structure.

2.1 Architecture

The basic architecture of digital twin consists of the sensor and measurement tech-
nologies, Internet of Things, andmachine learning. From the computational perspec-
tive, the key technology to propel a digital twin is the data and information fusion that
facilitates the flow of information from raw sensory data to high-level understand-
ing and insights [23]. The key functionality of digital twin implementation through
physics-based models and data-driven analytics is to provide accurate operational
pictures of the assets [24]. This helps the digital twin mirror the activities of its cor-
responding physical twin with the capabilities of early warning, anomaly detection,
prediction, and optimization. The IoT system carries out real-time data acquisition
through its smart gateway and edge computing devices. The preprocessed online
sensory data is fused to feed the digital twin model. The offline data, after processing
with text/data mining algorithms and then inputted to the digital twin as well. The
offline computing resources utilized to train deep learning models. The digital twin
combines modeling and analytics techniques to create a model of a specific target,
e.g., flight critical component, etc. Hence, digital twin use is specified as predictive
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maintenance workflow to enable the delivery of accurate forecasting, using the data
that is continuously acquired with IoT sensors via machine learning algorithms.

2.2 Applications of Digital Twin

Digital Twin determines the best course of action by eliminating the guesswork to
service the critical assets in the manufacturing units. The increasing adoption of the
IoT is ideal for enterprises to leverage digital twin platforms to boost their services
and platforms. Some of the applications are given as follows [25]:

– Performance Optimization—Digital twin helps to determine the optimal set of
parameters and actions that can help maximize some of the key performance met-
rics and provide forecasts for long-term planning. For example, NASA proposed
and adopted for monitoring and optimization on safety and reliability optimiza-
tions of spacecraft [26, 27].

– Healthcare—Digital twin can be used for capturing and visualize a hospital system
in order to create a safe environment and test the impact of potential changes on
system performances. Not just operations, it also helps to improve the quality of
health services delivered to the patients. For example, a surgeon can use it for a
digital visualization of the heart, before opening it.

– Improve customer experience—As customers play a key role in influencing the
strategies and decisions in any business. Enhancing the customer experience to
retain and explore new customer base is the goal for the businesses. By directly
creating a digital twin of the customer-facing applications, they can get feedback
that boost the services directly offered to the customers.

– Maintenance—Digital twin can analyze performance data collected over time and
under different conditions. For example, a racecar engine can be visualized to
identify the required maintenance such as the component that is about to burn out.

– Machine Building—Digital twin is also used as a digital copy of the real machine
that is created and developed simultaneously. Data from the real machine is loaded
into the digital model to enable simulation and testing of ideas even before actual
manufacturing starts.

– Smart Cities—Capturing the special and temporal implications to optimize urban
sustainability. For example, “Virtual Singapore”, a part of the Singapore gov-
ernment’s smart nation Singapore initiative, is the world’s first digital twin of an
existing city-state, providing Singaporeans an effectiveway to engage in the digital
economy and urbanization.
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2.3 Challenges of Digital Twin

Some of the challenges to build and implement digital twins are as follows:

– The challenge to build a digital twin model combining product lifecycle manage-
ment, manufacturing execution system and operations management system [28,
29]. After releasing process plans to the manufacturing execution system, using
digital twin model in the cloud server to generate detailed work instructions asso-
ciated with the production process design. Therefore, if there is any change from
a production environment, the entire process is updated accordingly in the design
and plan [30].

– Another challenge is how to build a more comprehensive digital-twin-driven
physical-cyber-social connected production line [31–33]. The preliminary func-
tion of digital twin model is to help enterprises to design and manufacture of
excellent products. However, the main aim of a digital twin model is to continue
to accumulate knowledge of the design and manufacturing is reused and improved
continuously [34].

– One of the most important challenges is to incorporate the big data analytics [35]
into digital twin model. When directly collect real-time data from the production
equipment, it will cover the information on the digital twinmodel.When compared
to design with actual manufacturing result, the big data analytics are supposed to
identify whether there is a difference and find out the cause of the differences [36,
37]. In addition, intelligent decoupling of combined problems is desirable.

– Currently, there are no optimized methods to integrate the different engineering
models on the digital twin. There are data transfer mechanisms between domain-
specific engineering tools. Besides technical reasons, a cross-domain collaboration
also has a challenge of employing modularization methods as a multi-domain
mechatronic system as viewed from a physically oriented or a function-oriented
perspective [38].

3 Machine Learning, Artificial Intelligence, and IoT
to Construct Digital Twins

Digital twin consists of the sensors and measurement technologies, IoT, simula-
tion, and modeling and machine learning technologies. IoT devices are expected
to generate a significant amount of data as their use becomes ubiquitous. IoT-cloud
communicationmodels and big data generated by devices results in increased latency
and incremental data of cloud services and upstream data on behalf of IoT services.
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3.1 Related Work

There are various fields, which contribute to the digital twin implementation—net-
working, cloud/edge computing, machine learning, sensors, etc. In the field of arti-
ficial intelligence, work done by [39] were the first one to initialize with a dynamic
Bayesian network approach for digital twin, wherein they utilized the concept of dig-
ital twin for tracking the evolution of time-dependent variables to monitor aircraft
structure.

In IoT world, AI will enhance the functionalities of digital twins in which a
dynamic software model is formed of a physical thing or system that relies on sensor
data to understand its state, respond to changes, improve operations, and add value.
In [13], authors proposed digital-twin-driven product design, manufacturing, and
servicewith big data, but theirworkhas beenmostly investigative in nature.Currently,
the Industrial Internet or Industrial Internet of Things (IIoT) use digital twins for
implementation in manufacturing industry. The work done in [40] discusses how IoT
devices and IoT systems can be managed and optimized throughout their lifecycle
using the mechanism of digital twins.

In manufacturing, IoT devices generate the data from product lifecycle, such as
design, manufacturing, MRO, etc., [41]. Manufacturing data are generally from the
following aspects [21]:

– Data from the manufacturing systems, e.g., MES, PDM, SCM, ERP, etc., and from
other computer-aided systems like CAD/CAM, CAE, etc.

– Data from Internet/users, e.g., from e-commerce—Amazon, Walmart, Facebook,
twitter, etc.

– Data from manufacturing equipment with respect to real-time performance, mate-
rial of product data, environmental data, etc.

Processing of the collected data should go through various steps to extract
the information. As the data collected via various ways like sensors, application-
programming interface (API), software development kit (SDK), etc., undergoes
cleaning before processing and analyzing [42–44]. This cleaned data integrates and
stored for the exchange and sharing for manufacturing data at all levels. Further, the
real-time data or offline data analysis and mining by advanced data analysis methods
and tools like AI and machine learning, deep learning, etc. utilize cloud comput-
ing [45–47]. The valuable information extracted from large number of dynamic and
fuzzy data enables manufacturers to deepen their understandings of various stages
of product lifecycle. Hence, this helps the manufacturers to make more rational and
informed decisions.

In Intelligent manufacturing (IM) area, the first book was published in 1988 [48],
which resulted in the emergence of many methods, applications, and techniques in
various areas of manufacturing like design, scheduling, production, control, model-
ing, testing, etc. [49]. In [49], the authors surveyed the relevant AI methods intro-
duced in the field of manufacturing and grouped them as knowledge-based/expert
systems, fuzzy logic,multi-agents, neural networks, evolutionary genetic algorithms,
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and simulated annealing. Introduction of knowledge-based/expert systems efficiently
in computer integrated manufacturing (CIM) components but intelligent, manufac-
turing system (IMS) in industry were mainly in large companies [50]. The most
famous IMS research was the international scheme of joint research called Intelli-
gent Manufacturing System found in 1995 that influenced from dated back to 1989
from Japan [51]. In 90’s, agent-based systems for intelligent manufacturing were
developed followed by the web service-based systems for manufacturing and crowd-
sourcing [52–55]. The agent-method seemed to be the potential solution as it offered
a proper paradigm for the intelligent CIM components and IMS [56–58]. Intelligent
agents are used in distributed AI and such an agent-based approach can handle the
issues of the present software applications, specifically those working conditions that
are highly dynamic and uncertain [59]. However, most agent-based systems are still
at a research and prototype stage in labs and not widely adopted in manufacturing.

4 Intelligent and Smart Manufacturing with AI Evolution

Some of the key research areas, which we have studied in this chapter, are Fusion
of Big Data, Cloud and Cyber-Physical Systems, Information and Data Fusion in
Decision-Making, Security in Digital Twins/Smart Manufacturing.

4.1 Fusion of Big Data, Cloud and Cyber-Physical Systems

The cyber-physical systems (CPS) is another name for digital twin phenomena that
makes possible the data analysis based control of the resources or physical environ-
ments with much ease. Here, the physical systems collect sensory information from
the real world and send them to the digital twin computational modules through
communication technologies (wireless). It is challenging to incorporate big data
analytics into CPS [60]. The technologies used for the implementation of smart
manufacturing span a wide spectrum of domains, which are initially referred to as
the IoT technologies, and then many other related techniques such as the Internet
of services (IoS), CPS, big data, and advanced robotics [61] have been a part. The
rise of IoT/CPS and small objects (phones) has made the products more connected
and accessible, from which the wealth of data generated allows accurate targeting
and further enabling proactive management of enterprises through informed, timely
in-depth decision execution [62]. Therefore, the fusion of human, data and smart and
intelligent algorithms has far-reaching effects on manufacturing efficiency.

Collection, visualization, and analysis of the large volume of manufacturing data
is the key to smart manufacturing. From the input of rawmaterial to the output of fin-
ished products, the digital twin manages and optimizes the complete manufacturing
process [63]. The virtual workshop or factory include the geometrical or physical
models of operators, material, equipment, tools, environment, etc., as well as the
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behaviors, rules, dynamics, and many other factors [64]. The virtual model of prod-
uct is created to establish the product digital twin. The product digital twin would
always keep in company with the product to provide the value-added services [65].
Some of these are given as follows [66]:

– The product in use is monitored in real-time, as the product digital twin continu-
ously records the product usage status, environmental data, operating parameters,
etc.

– The virtual model can simulate the operation conditions of the product in differ-
ent environments. Hence, it can confirm what effects the different environmental
parameters and operation behaviors would have on health, lifetime, and perfor-
mance to control the status and behavior of the physical product.

– Based on real-time data from the physical product and historical data, the product
digital twin predicts the product remaining life, faults, etc.

Based on the predictions for health condition, remaining life and faults, the proac-
tive maintenance is carried out to avoid the sudden downtime. In addition, when the
faults occur with the high fidelity virtual model of the product, the fault would be
visually diagnosed and analyzed, so that the position of the faulty part and the root
cause of fault displayed to the users [67]. These operations–maintenance and repair
operations (MRO) which include disassembly sequence, spare parts, etc. provide
sustainability. Before starting the actual MRO, the walkthrough about MRO strate-
gies executed in the virtual world based in the virtual reality and augmented reality
to impose predictive analysis. As the virtual models faithfully reflect the mechanical
structure of the parts and the coupling between each other, it can identify whether
the MRO strategies are effective, executable and optimal. The data from the dif-
ferent stage of product lifecycle are accumulated and inherited to contribute to the
innovation of the next generation product.

Moreover, in the design phase, product innovation relies on the accurate interpre-
tation of market preferences and customer demands, in accordance with the optimal
planning. Besides, once the design changes, the manufacturing process can be eas-
ily updated, including updating the bill of materials, processes, and assigning new
resources. As a result, the convergence of digital twin, big data and service, enables
the production, planning, optimizing and manufacturing process in real-time. In the
daily operation andMRO of the product, the virtual models of physical products syn-
chronize with the real state of the product through sensors. The operation status of the
product and the health status of the components generated in real-time. In addition
to the sensors data, digital twin also integrates the historical data, e.g., maintenance
records, energy consumption, etc. and through the analysis of this data, product dig-
ital twin can continuously predict the state of the product and remaining life of the
product and probability of faults. It can also analyze the unknown problems by com-
paring the actual product response and anticipating the product response in specific
scenarios. Hence, it improves product life and maintenance efficiency and reduces
the maintenance cost. Big data analytics is responsible for all the data acquired and
analyzed by the smart manufacturing. Therefore, the convergence of the digital twin
and the big data is very important for smart manufacturing [13].
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4.2 Information and Data Fusion for Decision-Making

More generally, the definition of information fusion is “the study of efficient meth-
ods for automatically or semiautomatically transforming information from different
sources and different points in time into a representation that provides effective sup-
port for human or automated decision-making.” [68]. Decision-making in big data
is driven by predictions—learning from data (experience) to predict, and actions are
taken in response to predictions [69]. Machine learning, which learns from data and
uses statistical approaches to assist decision-making that operates well in practice,
contrasts with the older expert system approach that aims to mimic the rules from
human experts with the help of programmers translating the explicit rules into soft-
ware code. Digital twin integrates the various data originating from the physical,
cyber, and social spaces through information and data fusion techniques to provide
human-understandable abstractions and inferences.

Data fusion with the multimodal data collected from heterogeneous data sources,
advanced mining techniques may be necessary to fuse the data. The data collected
may be in different scales of measurement [70]. This information and data fusion
layer consists of various statistical or logic-based methods to integrate the outputs
from the data processing layer to achieve a cohesive view of applications. The fusion
techniques ensure that there is a combination of computers, smart devices, and people
working together. Some of these techniques are given as follows [71]:

– Semantic Reasoning—Semantic web-based methods have been used to map pro-
prietary relational datasets, environmentmonitoring data streams and participatory
sensing data and this data then is combined (with match filters) with user prefer-
ences to form a dynamic social structure of things.

– Tensor Decomposition—The tensor-based methods exploit existing approaches
for data fusion that can detect hidden information. This method is generally to
analyze the behavior similarity of users. Group-centric data fusion is performed
based on the approximate tensor, with each element in the approximate tensor
representing the prevalence of the corresponding behavior in the group [72].

– Cross-space data fusion through correlation—Cross-space data fusion has taken
the form of statistical methods, to calculate correlation between numerical data
streams derived from the physical and social space. These include utilizing the
data generated by citizens in social networking platforms in conjunction with data
from sensor installations to build a model of the city’s dynamics.

Decision support mechanisms consists of prediction algorithms that support fur-
ther insights through data fusion. The flow of information from raw data to high-level
decision-making propels by sensor-to-sensor, sensor-to-model, and model-to-model
fusion. Therefore, manufacturers will make more rational, responsive, and informed
decisions and enhance their competitiveness.
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4.3 Security in Digital Twin

Bringing the Internet to the manufacturing industry offers opportunities but also new
challenges. The required information flow across many communication networks
raises questions about IT and data security that was not relevant when the machines
were not programmable and were not connected to any other infrastructure except
the power. Therefore, providing security or maintaining the security in the current
manufacturing system in organizations are becoming a challenging task due to the
cyberattacks and intrusions in current scenario. The security required for the man-
ufacturing system for the following five levels as depicted in the CIM model [73].
CIM is a highly integrated model that has been used and incorporated into many
models and standards in the manufacturing industry.

1. Enterprise/Corporate Level—At this level, the decisions related to operational
management which define the work flows to produce the end product are made.

2. Plant Management Level—This level manages the decisions locally on the plant
management network.

3. Supervisory Level—This level manages various manufacturing cells, each per-
forming a different manufacturing process.

4. Cell Control Level—At this level, processes perform different actions.
5. Sensor Actuator Level—Here, the sensors, actuators, controllers integrate to per-

form the physical process.

Because of its design, this model is vulnerable to security attacks. The various
protocols used to support this infrastructure—modbus, distributed network protocol
(DNP3), industrial Ethernet, PROFIBUS, building automation and control network-
ing (BACnet), etc. are only used for supervisory and control mechanisms but not
security and lack mechanisms to provide authentication, integrity, freshness of the
data, non-repudiation, confidentiality and measures to detect faults and abnormal
behavior. Following are the cyber liabilities for most of the manufactures [74]: inter-
ruption in business, data breach, cyber extortion, intellectual property, third party
damage.

Various solutions to counter these security discrepancies are:

– Public Key Infrastructure—To use device certificates and public key infrastruc-
ture (PKI) architectures. Implementing PKI into embedded systems secures the
communication layer, creating a system that verifies the authenticity, configura-
tion, and integrity of connected devices. This makes PKI ideal for large-scale
security deployments that require a high level of security with minimal impact on
performance [73].

– Encryption of the data—Highly confidential data must be encrypted to ensure
that only authorized users have access by deploying anti-malware and harden-
ing software on all IT and OT systems. In addition, use of symmetric encryption
algorithms, hybrid encryption schemes, cryptographic hash functions, digital sig-
natures, key agreement and distribution protocols are widely used to ensure only
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authorized entities. The work done in [75, 76] proposes key management systems
are studied and discussed.

– Intrusion detection systems—It is always necessary tomonitor the dynamic behav-
ior of the security systems and seek to find if there is an abnormal activity. Intru-
sion detection system (IDS) approaches tackle these issues. IDS are classified
by source of data (audit source)—also called network based or host based and
detection technique (the data needed for analysis)—also called knowledge-based
or behavior based. Receiver operating characteristics (ROC) curve, which depicts
the detection probability versus false alarm probability, evaluates the performance
of IDS. Studies [77–79] show that most work in this area has been in behavior-
based network intrusion systems since knowledge-based systems require detailed
knowledge of previous exploits to define characteristics of the attack. Hence, IDS
research for smart manufacturing and IoT systems is still in progress and face a
lot of challenges due to limited testbed availability and insufficient data from real
incidents.

– Policies and Regulations—There are various special guidelines to enforce security
mechanisms in smart manufacturing systems [74]. Some of these guides are Guide
to Industrial Control Systems (ICS) for SCADA systems, The National Institute of
Standards and Technology (NIST), Distributed Control Systems (DCS), Depart-
ment of Homeland Security (DHS), The Centre for the Protection of National
Infrastructure (CPNI), etc.

Planning for security involves understanding the nature of threats, identifying vul-
nerabilities, quantifying the value to be lost if in case security breach happens and
investing in security appropriately. This gives an autonomous model in which prod-
ucts and machines will become active participants in IoT behaving as autonomous
agents throughout the production line.

5 Conclusion

Digital Twin has been recognized by many developed companies like GE, IBM, and
Cisco as next-generation core infrastructure and are focusing more on developing
CPS-related technologies and utilization of platforms. IoT and Artificial Intelligence
in smart manufacturing was the initial step to recognize the sensors prerequisite into
the machine parts from where the real-time analytics will get the data. Fusion of
human, data and smart/intelligent algorithms has far-reaching effects on manufac-
turing efficiency. However, the intensive communication and high amounts of data
involved also bring in new challenges. In this chapter, we discussed the architecture
of the CPS, applications, and challenges involved in the implementation of Digital
Twins. It also discusses the related work in the area of machine learning, artifi-
cial intelligence in the field of smart manufacturing. Furthermore, the key research
areas—Fusion ofBigData, Cloud andCyber-physical systems, Information andData
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Fusion for decision-making and Security in Digital Twins/Smart manufacturingwere
discussed.

We have discussed the connection between the data about the physical product and
the information contained in the virtual product and its synchronization. By merging
the virtual product information as to how the product manufacturing takes place, we
can have an instantaneous and simultaneous perspective on how the manufactured
product is meeting its design specification goals. Hence, information on product
manufacturing is predicted and working in real-time as well is monitored. From
the security point of view, the potential consequences of security attacks on smart
manufacturing systems like, injuries, death, and damage to physical infrastructure,
equipment, and the environment are likely to occur simply because the actuators
in manufacturing system have connection to such things. It is important that the
adoption of IoT and machine learning embed security from the start, integrated with
functionality in smart manufacturing systems. Therefore, the convergence of IoT
and Machine Learning with Digital twins will improve productivity, uniformity, and
quality of the products.
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