
Applying the Concept of Artificial DNA
and Hormone System

to a Low-Performance Automotive
Environment

Uwe Brinkschulte1(B) and Felix Fastnacht2

1 Institut für Informatik, Goethe Universität Frankfurt am Main,
Frankfurt, Germany

brinks@es.cs.uni-frankfurt.de
2 Intedis GmbH & Co. KG, Würzburg, Germany

Felix.Fastnacht@intedis.com

Abstract. Embedded systems are growing very complex because of the
increasing chip integration density, larger number of chips in distributed
applications and demanding application fields e.g. in autonomous cars.
Bio-inspired techniques like self-organization are a key feature to handle
the increasing complexity of embedded systems. In biology the structure
and organization of a system is coded in its DNA, while dynamic control
flows are regulated by the hormone system. We adapted these concepts
to embedded systems using an artificial DNA (ADNA) and an artifi-
cial hormone system (AHS). Based on these concepts, highly reliable,
robust and flexible systems can be created. These properties predestine
the ADNA and AHS for the use in future automotive applications.

However, computational resources and communication bandwidth are
often limited in automotive environments. Nevertheless, in this paper we
show that the concept of ADNA and AHS can be successfully applied
to an environment consisting of low-performance automotive microcon-
trollers interconnected by a classical CAN bus.

Keywords: Artificial DNA · Artificial hormone system ·
Self-organization · Automotive environment · CAN bus

1 Introduction

Embedded systems are growing very complex because of the increasing chip inte-
gration density, larger number of chips in distributed applications and demand-
ing application fields e.g. in autonomous cars. Bio-inspired techniques like self-
organization are a key feature to handle the increasing complexity of embedded
systems. In biology the structure and organization of a system is coded in its
DNA, while dynamic control flows are regulated by the hormone system. We
adapted these concepts and developed the Artificial DNA (ADNA) by which

c© Springer Nature Switzerland AG 2019
M. Schoeberl et al. (Eds.): ARCS 2019, LNCS 11479, pp. 87–99, 2019.
https://doi.org/10.1007/978-3-030-18656-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18656-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-18656-2_7

88 U. Brinkschulte and F. Fastnacht

the blueprint of the structure and organization of an embedded systems can be
described. The ADNA can be stored in every processor of the system (like the
biological DNA is stored in every cell of an organism). The tasks described by the
ADNA are distributed to the processors in a self-organizing way by an artificial
hormone system (AHS). The combination of ADNA and AHS allows to create
very robust and flexible systems providing so-called self-X features like self-
configuration, self-optimization and self-healing. We have already demonstrated
these features in previous publications [8] using an autonomous self-balancing
robot vehicle (see e.g. a video in [5]).

In this publication we investigate the applicability of the ADNA and AHS
concept to automotive environments. Today’s cars are equipped with several
processors (electronic control units, ECUs) which perform the tasks necessary
to operate the cars’ powertrain, safety systems, driving assistants and board
entertainment. These systems have to operate at a very high level of robustness
and fault-tolerance. So the self-X capabilities of the ADNA and AHS would offer
a great potential in this area. However, computational resources and communi-
cation bandwidth are often limited in automotive environments. To save costs,
ECUs frequently use low-performance microcontrollers with limited computa-
tional and memory resources. Furthermore, common automotive bus systems
like the CAN bus strictly limit the bandwidth and message sizes.

In the following we show that these limitations can be overcome and the con-
cept of ADNA and AHS can be successfully applied to an environment consist-
ing of low-performance automotive microcontrollers interconnected by a classical
CAN bus. Our contribution in this paper is four-fold:

1. We demonstrate the applicability of ADNA and AHS for automotive ECU
systems.

2. We compute the memory needs of the ADNA and AHS.
3. We propose an efficient communication scheme for the ADNA and AHS on

CAN bus.
4. We evaluate performance measures and the resulting communication and pro-

cessor load in these systems.

The paper is structured as follows: Related work is presented in Sect. 2.
Section 3 describes both the ADNA and the AHS and its application to auto-
motive systems. The adaptation to the target platform of automotive ECUs is
presented in Sect. 4. Section 5 shows the evaluation results while Sect. 6 concludes
this paper.

2 Related Work

Our approach relies on self-organization in automotive applications. IBM’s and
DARPAS’s Autonomic Computing project [13,15] deals with self-organization of
IT servers in networks. Several so-called self-X properties like self-optimization,
self-configuration, self-protection and self-healing have been postulated.

Applying the Concept of Artificial DNA 89

The German Organic Computing Initiative was founded in 2003. Its basic
aim is to improve the controllability of complex embedded systems by using
principles found in organic entities [26,27]. Organization principles which are
successful in biology are adapted to embedded computing systems.

Self-organization for embedded systems has been addressed especially at the
ESOS workshop [4]. Furthermore, there are several projects related to this topic
like ASOC [1,21], CARSoC [16,17] or DoDOrg [14]. In the frame of the DoDOrg
project, the Artifical Hormone System AHS was introduced [9,14]. [28] describes
self-organization in automotive embedded systems. None of these approaches
deal with self-organization using DNA-like structures.

DNA Computing [10] uses molecular biology instead of silicon based chips for
computation purposes. In [20], e.g. the traveling salesman problem is solved by
DNA molecules. In contrast, our approach uses classical computing hardware.

Several authors in [22] emphasize the necessity of redundant processors and
sensors in future autonomous cars, however, they do not propose such a fine-
grained approach as possible by the ADNA.

In [11] a redundancy scheme for processors in automotive applications is
proposed where a voting algorithm is used to determine the validity of results
of redundant processors. This is different from our approach which improves the
exploit of redundancy using the ADNA.

Our approach relies on classical computing hardware using DNA-like struc-
tures for the description and building of the system. This enhances the self-
organization and self-healing features of embedded systems, especially when
these systems are getting more and more complex and difficult to handle using
conventional techniques. Our approach is also different from generative descrip-
tions [12], where production rules are used to produce different arbitrary entities
(e.g. robots) while we are using DNA as a building plan for a dedicated embedded
system.

To realize DNA-like structures, we have to describe the building plan of
an embedded system in a compact way so it can be stored in each processor
core. Therefore, we have adapted well known techniques like netlists and data
flow models (e.g. the actor model [19]) to achieve this description. However,
in contrast to such classical techniques our approach uses this description to
build the embedded system dynamically at run-time in a self-organizing way.
The description acts like a DNA in biological systems. It shapes the system
autonomously to the available distributed multi/many-core hardware platform
and re-shapes it in case of platform and environment changes (e.g. core failures,
temperature hotspots, reconfigurations like adding new cores, removing cores,
changing core connections. etc.). This is also a major difference to model-based
[23] or platform-based design [25], where the mapping of the desired system to
the hardware platform is done by tools at design time (e.g. a Matlab model).
Our approach allows very high flexibility and robustness due to self-organization
and self-configuration at run-time while still providing real-time capabilities.

90 U. Brinkschulte and F. Fastnacht

3 Conception of the Artificial Hormone System and DNA

This section briefly describes the concept of the artificial DNA and the under-
lying artificial hormone system (AHS). For detailed information see [6,7,9].

3.1 Artificial DNA

The approach presented here is based on the observation that in many cases
embedded systems are composed of a limited number of basic elements, e.g.
controllers, filters, arithmetic/logic units, etc. This is a well known concept in
embedded systems design. If a sufficient set of these basic elements is provided,
many embedded real-time systems could be completely built by simply com-
bining and parameterizing these elements. Figure 1 shows the general structure
of such an element. It has two possible types of links to other elements. The
Sourcelink is a reactive link, where the element reacts to incoming requests. The
Destinationlink is an active link, where it sends requests to other elements.

Each basic element is identified by a unique Id and a set of parameters. The
sourcelink and the destinationlink of a basic element are compatible to all other
basic elements and may have multiple channels.

The Id numbers can be arbitrarily chosen, it is important only that they
are unique. Figure 2 gives an example for a PID controller which is often used
in closed control loops. This element has the unique Id = 10 and the parameter
values for P, I, D and the control period. Furthermore, it has a single sourcelink
and destinationlink channel.

Basic Element

Id
Parameters

Sourcelink

1
 …

n

C
ha

nn
el

s

Destinationlink

C
ha

nn
el

s
1

 …
 m

Fig. 1. Structure of a basic element (task)

PID
(Id = 10, parameters =

P,I,D, period)

Sourcelink

PID Controller

Destinationlink

1 1

Fig. 2. Sample basic element

Embedded systems can be composed by using these basic elements as building
blocks. Figure 3 shows a very simple example of a closed control loop based on

ALU
 (Id = 1, parameter = Minus)

PID
(Id = 10, parameters = P,I,D,

period)

Sensor
(Id = 500, parameters =

resource, period)

Actor
(Id = 600, parameter =

resource)

Constant
(Id = 70, parameter =

constant value, period)

1

1 1 1 1
1

1

 2

Fig. 3. A closed control loop consisting of basic elements

Applying the Concept of Artificial DNA 91

basic elements. An actor (defined by its resource id, e.g. a motor) is controlled by
a sensor (also defined by its resource id, e.g. a speed sensor) applying a constant
setpoint value. If we consider the closed control loop to be the function of the
embedded system, it is divided by the ADNA into tasks: the basic elements.

If a sufficient set of standardized basic elements with unique Ids is available,
an embedded system will no longer be programmed, but composed by connect-
ing and parametrizing these elements. The building plan of the system can be
described by a compact netlist containing the basic elements, its parameters and
interconnections. This netlist can be stored in each processor of the system. It
therefore represents a digitial artificial DNA (ADNA) which allows to partition
and build the system at run-time. Detailed examples and a very memory efficient
format to store an ADNA are presented in [6] and [7].

3.2 Building the System from Its ADNA by the AHS

Using the ADNA the system is divided into functions (e.g. control functions,
closed control loops, data processing, filtering, etc.) and tasks (the basic elements
of a function). Each processor has a local copy of the ADNA and therefore knows
all these functions, tasks and their interconnections. It passes this information
to the local instance of its artificial hormone system (AHS). The AHS is a com-
pletely decentralized mechanism to assign tasks to distributed computing nodes,
see [9]. It uses artificial hormones (emulated by short messages) to find the most
suitable computing node for each task based on node capability, load and tasks
interconnection. It can also detect failing nodes and tasks by missing hormone
values. So all basic elements of the ADNA are assigned as tasks at run-time
by the AHS to the available processors. These elements are then interconnected
according to the ADNA. This means the functions build themselves at runtime
in the best possible way on the available processor resources. In case of a pro-
cessor failure the basic elements are autonomously reassigned and reconnected
to other processors as long as there is enough computing power left. Assign-
ment and reassignment of tasks is done in real-time (with a time complexity of
O(n), where n is the number tasks) as proven in [9] and demonstrated by a self-
balancing robot vehicle in [7]. The ADNA therefore enables an extremely robust
and fine-grain distribution of functions to processors. A function is not bound to
a single processor but can be split among several processors on the task (basic
element) level. In case of processor failures only the affected basic elements are
automatically moved to other processors. Also the importance of basic elements
can be derived from the ADNA and used to operate the most important parts if
not enough computation power is left to assign all tasks. A detailed description
of building a system from the ADNA and complex examples can be found in [7].

3.3 Application of the ADNA and AHS Concept to Automotive
Systems

In automotive applications the system functions (anti-locking brake, traction
control, stability control, engine control, driving assistants, infotainment, etc.)

92 U. Brinkschulte and F. Fastnacht

are executed by the car’s processors, the ECUs. Many of these systems require
fail-operational behavior. So a highly robust design is necessary. In classical
approaches a function is usually mapped to an ECU (e.g. anti-locking brake
to the anti-locking brake ECU). To provide fail-operational behavior, critical
ECUs have a backup ECU (1:1 redundancy). In more advanced approaches like
e.g. the AutoKonf project [2], several ECUs share a single backup ECU (n:1
redundancy) to reduce the overhead. These approaches apply redundancy on
the function level. In contrast, the self-healing process of the ADNA and AHS
concept provides redundancy on the task (basic element) level. This enables the
best possible use of the available ECU resources.

If we have e.g. f critical functions, the classical 1:1 redundancy approach
requires 2f ECUs. Fail-operational behavior can no longer guarantied if 2 or
more ECUs fail (the failure of 2 ECUs can disable a function, if the original
and the backup ECU are affected). So the fail-operational limit is 2

2f = 1
f . In

a 2:1 redundancy approach, �3f/2� ECUs are required. Like for the 1:1 app-
roach, fail-operational behavior can no longer be guarantied if 2 or more ECUs
fail. However, due to the lower number of ECUs used, the fail-operational ECU
limit is better: 2

�3f/2� . In general, the classical n:1 redundancy results in a fail-
operational ECU limit of 2

�(1+1/n)f� .
Using the ADNA/AHS approach, the self-healing mechanism reassigns the

tasks of the functions to the remaining ECUs in case of an ECU failure. As
long as enough ECUs are available, all functions will stay operational. If we use
the same number of 2f ECUs for f critical functions like in the classical 1:1
redundancy approach, f ECUs might fail without the loss of a function (since
f ECUs are sufficient to execute f functions). So the fail-operation ECU limit
is f+1

2f . If we use �3f/2� ECUs like in the 2:1 approach, this limit calculates to
�3f/2�−f+1

�3f/2� . In general, if we use e ≥ f ECUs, the fail-operational limit calculates

to e−f+1
e . Figure 4 compares the fail-operational limits for different approaches

and different number of functions. It can be seen that from this theoretical point
of view the ADNA/AHS approach clearly outperforms the classical solutions.
Furthermore, in current safety-critical automotive applications usually a fail-
safe state is entered if one more failure would lead to a critical event. For the
classical redundancy approaches shown above this happens after 1 ECU failure.
For the ADNA/AHS approach this happens not before e− f failures. Therefore,
it seems reasonable to apply the ADNA/AHS concept to the automotive area.
The major question is if the available computational, memory and bandwidth
resources are sufficient there to operate this concept. This will be investigated
in the next sections.

4 Adaptation to the Target Platform

As target platform we have chosen the Renesas µPD70F35XX microcontroller
family [24]. This family contains a dual lockstep V850E2 32 bit processor core
and is a common controller for safety-critical ECUs. It is e.g. also used for the

Applying the Concept of Artificial DNA 93

AutoKonf project [2] mentioned above. The controller offers a classical CAN
bus interface [3], which is a frequently used communication bus in automotive
systems. Table 1 shows key features of the family. The main bottleneck is the
low amount of data memory, together with the limited bandwidth and message
size of the CAN bus. Clock frequency and program memory are less critical since
the ADNA/AHS requires low computational resources and has a small program
memory footprint [8].

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19

Fa
il-
op

er
at
io
na
l
Li
m
it
(%

)

Number of Functions (f)

Classical Redundancy 2f ECUs (1:1)
Classical Redundancy 1.5f ECUs (2:1)
Classical Redundancy 1.25f ECUs (4:1)
ADNA Redundancy 2f ECUs
ADNA Redundancy 1.5f ECUs
ADNA Redundancy 1.25f ECUs

Fig. 4. Fail-operational limits of different redundancy configurations

Table 1. µPD70F35XX microcontroller family key features

Controller: µPD70F3504 µPD70F3506 µPD70F3508

Data memory: 24 kBytes 40 kBytes 80 kBytes

Program memory: 384 kBytes 512 kBytes 1024 kBytes

Data flash: 32 kBytes 32 kBytes 32 kBytes

Max. clock frequency: 80 MHz 80 MHz 160 MHz

The ADNA/AHS system is completely written in Ansi C 99 and therefore
could be easily compiled for the target platform using a GreenHill C compiler
for this microcontroller family. Mainly, two modules had to be adapted:

– AHSBasicOSSupport, which implements the basic multithreading and syn-
chronization mechanisms for the AHS and ADNA.

– AHSBasicCommunication, which implements all basic communication func-
tions for the AHS and ADNA.

In the following sections, we describe these adaptions as well as the resulting
data and program memory footprint.

94 U. Brinkschulte and F. Fastnacht

4.1 Basic Operating System Support

This module usually connects the ADNA/AHS system to the operating sys-
tem. Implementations for Windows and Linux already exist. On this automotive
microcontroller target platform, no Windows or Linux support exists. Therefore
we have chosen AtomThreads [18] as a basis to implement the AHSBasicOSSup-
port module. AtomThreads is a lightweight open source multithreaded library,
which can be easily adapted to a dedicated microcontroller. AHSBasicOSSup-
port implements functions to create, terminate, suspend, resume and schedule
threads preemptively with different fixed priorities. Furthermore it realizes syn-
chronization functions like mutexes, semaphores, events and timers. To build this
efficiently on top of AtomThreads, the AtomThreads library has been extended:

– Functions to suspend, resume and terminate threads have been added.
– Event management has been added.
– To save data memory, the idle thread (which is active when no other thread

is ready to run) has been replace by an idle loop. This idle loop does not
require its own stack.

– To save more data memory, the initial thread activating the AtomThread
scheduler has been turned into a regular thread of the scheduler so it can be
further used. In the original implementation this thread is never used again.

– Idle time measurement has been added to the idle loop. This allows to deter-
mine the system load.

Overall, using the modified AthomThreads library a very lightweight and
efficient basic operating system support module could be built.

4.2 Basic Communication with CAN Bus

The ADNA/AHS system sends messages and hormones via the AHSBasicCom-
munication module. Hormones are bundled up to a telegram length of 256 Bytes.
The maximum length of message telegrams is also 256 Bytes. So the AHSBasi-
Communication module has to offer functionality to send and receive telegrams
up to that size. The user accessible fields of a classical CAN bus telegram con-
sist of an identifier section of 11 Bits (standard CAN format), a length section
of 4 bits and a data section of up to 64 bits (8 bytes). The identifier section
also serves for bus-arbitration using a CSMA/CR policy. A logical 0 dominates
a logical 1 so as more 0 are in the identifier as higher is the priority of the
telegram. To transfer telegrams of up to 256 Bytes via the classical CAN bus,
they have to be divided in chunks. We have chosen a division scheme shown in
Fig. 5, which is optimized for the format of the hormone and message telegrams.
The first byte of these telegrams distinguishes between hormones and messages.
Hormone telegrams are broadcasted to all ECUs, while the receiver ECU id of a
message telegram is given in the second byte. So we use the 11 bit identifier field
to contain the 8 bit sender ECU id, a hormone/message distinction bit (to allow
different priorities for hormones and messages) and a 2 bit chunk id to determine

Applying the Concept of Artificial DNA 95

the first chunk of a telegram (10), an even chunk (00), an odd chunk (01) and
a last chunk1 (11). So we can fully use the CAN bus data payload to send and
receive hormones and messages, a n byte telegram is divided into �n/8� chunks.
As mentioned above, in case of a message the second byte of the payload of the
first chunk indicates the receiver ECU id. Since a sender ECU never sends a new
message or hormone telegram before the previous one is completely transmitted,
the receiver ECU id of the first chunk can be applied to all following chunks from
the same sender ECU id. The distinction of even and odd chunks additionally
allows to detect an odd number of lost chunks.

8 Bit 1 Bit 2 Bit 4 Bit up to 64 Bits
Sender ECU Id Hormone/Message Chunk Id Len Payload

Identifier Length Data

Fig. 5. CAN Bus telegram organization

4.3 Memory Footprint

One of the most critical issues is the low amount of data memory on the target
platform. The data memory needs of the ADNA/AHS system can be divided into
static and dynamic memory needs. Both could be optimized during the adaption
process by e.g. reducing list management overhead, using bit based structures
and shrinking oversized buffers. As a result, the dynamic memory needs of the
ADNA/AHS could be reduced to:

dynMem = 221 + (gt · 32) + (at · 80) + (lt · (96 +mb)) + (rt · 15) + cb+ ab Bytes

with: gt: global number of tasks (basic elements) in the system, at: number
of tasks the ECU applies for, lt: number of tasks running on the ECU, rt: num-
ber of related tasks, mb: task communication message buffer size, cb: CAN bus
communication buffer size, ab: ECU communication message buffer size.

Additionally, AtomThreads need 900 Bytes stack per thread, which is also
allocated dynamically. Since we have 2 system threads, the stack memory needs
related to the number of running tasks on an ECU calculates to:

dynMemstack = 900 · (lt + 2) Bytes

Finally, when a DNA is read from the data flash memory, administrative
memory to operate this DNA is allocated dynamically:

dynMemDNA = (dl · 14) + (ln · 4) + ps Bytes

with: dl: number of DNA lines, ln: number of destination links, ps: parameter
size
1 Only needed if the payload data of a chunk is completely filled, otherwise a length

less than 8 bytes indicates the last chunk.

96 U. Brinkschulte and F. Fastnacht

The static data memory needs of the ADNA/AHS system are constant at

statMem = 11960 Bytes

To give a real-number example, an ADNA to realize an anti-locking brake
and traction control system2 requires 16 DNA lines (dl) with 23 destination links
(ln) and 210 Bytes parameter space (ps). The resulting number of tasks3 is 9
(gt). If each ECU in the system applies for all tasks (at = 9) and in worst case a
single ECU runs all of them (lt = 9), each task is related to another task (rt = 9)
and we have a message buffer size for each task of 128 Bytes (mb), the CAN bus
buffer size is 3000 Bytes (cb) and the ECU communication message buffer size
is 128 Bytes (ab), the overall data memory needs for this application are:

data memory = dynMem + dynMemstack + dynMemDNA + statMem

= 6508 + 9900 + 582 + 11960 = 28950 Bytes

This easily fits the two bigger controllers of the family (µPD70F3506 and
µPD70F3508), see Table 1. For the smallest controller (µPD70F3504) it is a
bit too much. However, a major part of the data memory is consumed by the
thread stack. So the smallest controller could run 4 tasks at maximum. Due to
the dynamic nature of the AHS (a memory overflow automatically produces a
suppressor hormone which reduces the number of running tasks on an ECU) the
system would autonomously adapt to this situation. This enables the use of the
smallest controller if enough are present.

The program memory footprint of the entire ADNA/AHS system is 138
kBytes. So this easily fits all three controllers. Please note that this includes
all basic elements, the application itself does not require any additional program
and data memory. The running application is stored via the DNA in the data
memory using dynMemDNA bytes as calculated above. Also the data flash mem-
ory (32 kBytes) used to persistently store different DNAs is by far large enough
for a big number of DNAs.

5 Evaluation Results

For the evaluation we have chosen the mid-size controller µPD70F3506. We have
used several DNAs from our self-balancing robot vehicle (Balance, BalanceAGV,
BalanceFollow, BalanceTurn) as well as two experimental automotive DNAs
realizing an anti-locking brake plus traction control (AntiLockTraction) and an
anti-locking brake plus traction and cruise control (AntiLockTrCruise). Three
different configurations were used: (1) A single ECU was interconnected with
the environment via CAN bus. (2) Two ECUs were interconnected to each other
and the environment via CAN bus. (3) Two ECUs were interconnected via CAN
bus, two more virtual ECUs (on a Windows PC) were interconnected via UDP

2 Experimental AntiLockTraction DNA from Sect. 5.
3 Not necessarily all DNA lines require a task, e.g. actor lines.

Applying the Concept of Artificial DNA 97

and UDP/CAN was interconnected by a hub. The results are given in Table 2.
The table shows the resulting CAN bus load (at 1 MHz CAN bus frequency)
and the computational load of the most occupied real (not virtual) ECU. The
hormone cycle time used was 50 ms and the fastest message cycle time was 15 ms.
It can be seen that neither the CAN bus load nor the ECU load exceeds critical
bounds.

Table 2. Evaluation results

DNA 1 × CAN (1) 2 × CAN (2) 2 × (CAN+UDP) (3)

CAN load ECU load CAN load ECU load CAN load ECU load

Balance 21% 9% 21% 6% 10% 3%

BalanceAGV 26% 12% 26% 10% 15% 5%

BalanceFollow 28% 13% 28% 10% 23% 8%

BalanceTurn 28% 12% 28% 10% 23% 7%

AntiLockTraction 40% 14% 40% 12% 37% 9%

AntiLockTrCruise 45% 18% 46% 15% 31% 10%

6 Conclusion

In this paper we have shown that it is possible to apply the self-organizing
ADNA/AHS concept to an automotive environment with low performance
microcontrollers and a classical CAN bus. Due to its self-healing capabilities, this
approach can contribute to improve the fail-operational behavior and flexibility
of automotive systems. Its failure robustness exceeds traditional approaches.
In future, more powerful controllers and busses (like e.g. CAN-FD) will even
increase the potential of the ADNA/AHS concept.

In the work presented we have used a modified AtomThreads OS and a
proprietary CAN bus protocol. As next step we are investigating the possibility
to adapt this concept also to a pure automotive OS like classical AUTOSAR
and an AUTOSAR compliant use of the CAN bus. This is challenging due to
the static nature of classical AUTOSAR. However, first experiments made using
e.g. thread pools show these limitations can be overcome. This would add a
completely new quality to AUTOSAR.

References

1. Bernauer, A., Bringmann, O., Rosenstiel, W.: Generic self-adaptation to reduce
design effort for system-on-chip. In: IEEE International Conference on Self-
Adaptive and Self-Organizing Systems (SASO), San Francisco, USA, pp. 126–135
(2009)

2. BMBF: Autokonf projekt. http://autokonf.de/
3. Bosch: CAN Specifications Version 2.0. http://esd.cs.ucr.edu/webres/can20.pdf

http://autokonf.de/
http://esd.cs.ucr.edu/webres/can20.pdf

98 U. Brinkschulte and F. Fastnacht

4. Brinkschulte, U., Müller-Schloer, C., Pacher, P. (eds.): Proceedings of the Work-
shop on Embedded Self-Organizing Systems, San Jose, USA (2013)

5. Brinkschulte, U.: Video of the KDNA controlled robot vehicle. http://www.es.cs.
uni-frankfurt.de/index.php?id=252

6. Brinkschulte, U.: An artificial DNA for self-descripting and self-building embedded
real-time systems. Pract. Exp. Concurr. Comput. 28, 3711–3729 (2015)

7. Brinkschulte, U.: Prototypic implementation and evaluation of an artificial DNA
for self-describing and self-building embedded systems. In: 19th IEEE International
Symposium on Real-time Computing (ISORC 2016), York, UK, 17–20 May 2016

8. Brinkschulte, U.: Prototypic implementation and evaluation of an artificial DNA
for self-descripting and self-building embedded systems. EURASIP J. Embed. Syst.
(2017). https://doi.org/10.1186/s13639-016-0066-2

9. Brinkschulte, U., Pacher, M., von Renteln, A.: An artificial hormone system for
self-organizing real-time task allocation in organic middleware. In: Brinkschulte,
U., Pacher, M., von Renteln, A. (eds.) Organic Computing. UCS, pp. 261–283.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-77657-4 12

10. Garzon, M.H., Yan, H. (eds.): DNA 2007. LNCS, vol. 4848. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-77962-9

11. Yi, C.H., Kwon, K., Jeon, J.W.: Method of improved hardware redundancy for
automotive system, pp. 204–207 (2015)

12. Hornby, G., Lipson, H., Pollack, J.: Evolution of generative design systems for
modular physical robots. In: Proceedings of the IEEE International Conference on
Robotics and Automation, ICRA 2001, vol. 4, pp. 4146–4151 (2001)

13. IBM: Autonomic Computing (2003). http://www.research.ibm.com/autonomic/
14. Becker, J., et al.: Digital on-demand computing organism for real-time systems.

In: Workshop on Parallel Systems and Algorithms (PASA), ARCS 2006, Frankfurt,
Germany, March 2006

15. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput.
1, 41–50 (2003)

16. Kluge, F., Mische, J., Uhrig, S., Ungerer, T.: CAR-SoC - towards and autonomic
SoC node. In: Second International Summer School on Advanced Computer Archi-
tecture and Compilation for Embedded Systems (ACACES 2006), L’Aquila, Italy,
July 2006

17. Kluge, F., Uhrig, S., Mische, J., Ungerer, T.: A two-layered management archi-
tecture for building adaptive real-time systems. In: Brinkschulte, U., Givargis, T.,
Russo, S. (eds.) SEUS 2008. LNCS, vol. 5287, pp. 126–137. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87785-1 12

18. Lawson, K.: Atomthreads: open source RTOS, free lightweight portable scheduler.
https://atomthreads.com/

19. Lee, E., Neuendorffer, S., Wirthlin, M.: Actor-oriented design of embedded hard-
ware and software systems. J. Circ. Syst. Comput. 12, 231–260 (2003)

20. Lee, J.Y., Shin, S.Y., Park, T.H., Zhang, B.T.: Solving traveling salesman problems
with dna molecules encoding numerical values. Biosystems 78(1–3), 39–47 (2004)

21. Lipsa, G., Herkersdorf, A., Rosenstiel, W., Bringmann, O., Stechele, W.: Towards
a framework and a design methodology for autonomic SoC. In: 2nd IEEE Interna-
tional Conference on Autonomic Computing, Seattle, USA (2005)

22. Maurer, M., Gerdes, J.C., Winner, B.L.H.: Autonomous Driving - Technical, Legal
and Social Aspects. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-48847-8

23. Nicolescu, G., Mosterman, P.J.: Model-Based Design for Embedded Systems. CRC
Press, Boca Raton, London, New York (2010)

http://www.es.cs.uni-frankfurt.de/index.php?id=252
http://www.es.cs.uni-frankfurt.de/index.php?id=252
https://doi.org/10.1186/s13639-016-0066-2
https://doi.org/10.1007/978-3-540-77657-4_12
https://doi.org/10.1007/978-3-540-77962-9
http://www.research.ibm.com/autonomic/
https://doi.org/10.1007/978-3-540-87785-1_12
https://atomthreads.com/
https://doi.org/10.1007/978-3-662-48847-8
https://doi.org/10.1007/978-3-662-48847-8

Applying the Concept of Artificial DNA 99

24. Renesas: V850E2/Px4 user manual. http://renesas.com/
25. Sangiovanni-Vincentelli, A., Martin, G.: Platform-based design and software design

methodology for embedded systems. IEEE Des. Test 18(6), 23–33 (2001)
26. Schmeck, H.: Organic computing - a new vision for distributed embedded systems.

In: 8th IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2005), pp. 201–203. Seattle, USA, May 2005

27. VDE/ITG (Hrsg.): VDE/ITG/GI-Positionspapier Organic Computing: Computer
und Systemarchitektur im Jahr 2010. GI, ITG, VDE (2003)

28. Weiss, G., Zeller, M., Eilers, D., Knorr, R.: Towards self-organization in automotive
embedded systems. In: González Nieto, J., Reif, W., Wang, G., Indulska, J. (eds.)
ATC 2009. LNCS, vol. 5586, pp. 32–46. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-02704-8 4

http://renesas.com/
https://doi.org/10.1007/978-3-642-02704-8_4
https://doi.org/10.1007/978-3-642-02704-8_4

	Applying the Concept of Artificial DNA and Hormone System to a Low-Performance Automotive Environment
	1 Introduction
	2 Related Work
	3 Conception of the Artificial Hormone System and DNA
	3.1 Artificial DNA
	3.2 Building the System from Its ADNA by the AHS
	3.3 Application of the ADNA and AHS Concept to Automotive Systems

	4 Adaptation to the Target Platform
	4.1 Basic Operating System Support
	4.2 Basic Communication with CAN Bus
	4.3 Memory Footprint

	5 Evaluation Results
	6 Conclusion
	References

