
Asynchronous Critical Sections
in Real-Time Multiprocessor Systems

Michael Schmid(B) and Jürgen Mottok

Laboratory for Safe and Secure Systems - LaS3,
University of Applied Sciences Regensburg, Regensburg, Germany

{michael3.schmid,juergen.mottok}@oth-regensburg.de

Abstract. Sharing data across multiple tasks in multiprocessor systems
has intensively been studied in the past decades. Various synchronization
protocols, the most well-known being the Priority Inheritance Protocol
or the Priority Ceiling Protocol, have been established and analyzed
so that blocking times of tasks waiting to access a shared resource can
be upper bounded. To the best of our knowledge, all of these proto-
cols share one commonality: Tasks that want to enter a critical section,
that is already being executed by another task, immediately get blocked.
In this paper, we introduce the Asynchronous Priority Ceiling Protocol
(A-PCP), which makes use of aperiodic servers to execute the critical sec-
tions asynchronously, while the calling task can continue its work on non-
critical section code. For this protocol, we provide a worst-case response
time analysis of the asynchronous computations, as well as necessary
and sufficient conditions for a feasibility analysis of a set of periodic tasks
using the proposed synchronization model on a system that preemptively
schedules the tasks under the rate-monotonic priority assignment.

1 Introduction

Sharing data between various tasks plays a very important role in real-time
systems. Therefore, over the last few decades, synchronization protocols have
intensively been established and studied in order to provide bounded blocking
times for tasks. The best known of such protocols are the Priority Inheritance
Protocol (PIP) and the Priority Ceiling Protocol (PCP), both covered by Sha
et al. in [8]. However, all of the real-time synchronization protocols we found in
the state of the art are based on mutual exclusion and thus, immediately block
tasks that want to enter the critical section which is already being executed by
another task. In this paper, we consider asynchronous critical sections, i.e. the
execution of the critical section is relocated to an aperiodic server associated with
the shared resource while the tasks waiting on the result of the asynchronous
computations can continue their execution in order to carry out other work that
does not access shared resources. The proposed model introduces a few benefits:

(1) The data locality is improved as the computations always take place on
the same processor and thus, reduces the amount of data moved around in
distributed systems and non-uniform memory access (NUMA) architectures.

c© Springer Nature Switzerland AG 2019
M. Schoeberl et al. (Eds.): ARCS 2019, LNCS 11479, pp. 56–67, 2019.
https://doi.org/10.1007/978-3-030-18656-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18656-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-18656-2_5

Asynchronous Critical Sections in Real-Time Multiprocessor Systems 57

(2) Tasks that make use of asynchronous critical sections continue their execu-
tion with their normal priority and thus, priority inversions can only occur
on processors running aperiodic servers.

(3) Blocking times and the amount of context switches are reduced as the tasks
only block and yield when the results of the asynchronous computations are
not available at the time instant when they are needed.

The last item is only beneficial when the work that the task performs after
raising a request for the asynchronous critical section is larger than the execution
time of the critical section. As an example, we assume that the shared resource
is not being accessed and a task raises a request for an asynchronous critical
section. The execution of the critical section will immediately start while the task
runs non-critical code in the meantime. Both threads are considered to execute
without preemption. As soon as the task finishes running the non-critical code,
it self-suspends to wait for the result of the asynchronous computations. This
does not happen when the task tries to acquire the result of the asynchronous
computations after the execution of the critical section has finished or in the
case where the critical section is executed directly by the task as it is done
in common synchronization protocols. However, as critical sections tend to be
short compared to non-critical sections [1], tasks should rarely be blocked by
asynchronous critical sections.

1.1 Contribution and Structure

Following contributions are added to the state of the art:

(1) A real-time multiprocessor synchronization protocol that allows the asyn-
chronous execution of critical sections through the use of aperiodic servers.

(2) A model for the proposed protocol that upper bounds the worst-case
response times of the asynchronous critical sections under rate-monotonic
preemptive scheduling.

(3) Necessary and sufficient conditions for a feasibility analysis of a task set
using the Asynchronous Priority Ceiling Protocol.

The rest of this paper is organized as follows: Sect. 1.2 presents related work
on real-time synchronization. The notations used throughout this paper are pre-
sented in Sect. 2 together with the model of the A-PCP. Subsequently, in Sect. 3,
the response time analysis of asynchronous critical sections on systems using
rate-monotonic preemptive scheduling is conducted and followed by the feasi-
bility analysis in Sect. 4. At last, the outcome of this paper is summarized in
Sect. 5.

1.2 Related Work

Many different real-time synchronization protocols can be found in the state
of the art. The two best-known are described by Sha et al. in [8], namely the
Priority Inheritance Protocol and the Priority Ceiling Protocol. They derive a

58 M. Schmid and J. Mottok

set of sufficient conditions under which a set of periodic tasks can be scheduled
by rate-monotonic preemptive scheduling on a single processor. Both protocols
deal with uncontrolled priority inversion problems by temporarily raising the
priority of the task holding the critical section. An important advantage of the
PCP over PIP is that the former protocol prevents transitive blocking and dead-
locks. In [5,6], Rajkumar et al. made necessary adaptions to the Priority Ceiling
Protocol that allow a schedulability analysis for tasks executing in parallel on
distributed (Distributed PCP, D-PCP) and shared (Multiprocessor PCP, M-
PCP) memory multiprocessor systems, respectively. Both previously mentioned
papers provide a pessimistic analysis of worst-case blocking times of tasks. A
more detailed analysis of the Multiprocessor PCP is covered in various papers,
e.g. by Lakshmanan et al. [2] and Yang et al. [10]. For a more detailed survey of
real-time synchronization protocols the reader is referred to [4].

As mentioned before, all real-time resource sharing protocols known to us
share the commonality that a task that wants to enter a critical section is blocked
when the shared resource is already being accessed by another task. In the sec-
tor of distributed computing, the Active Object pattern [7] describes a way of
providing synchronized access to a shared resource by relocating the computa-
tions to a thread of execution residing in the control of the shared resource.
Thereby, the execution of the critical sections is done asynchronously, allowing
the task to continue its computation on non-critical section code. To the best of
our knowledge, no real-time analysis of this pattern has been conducted in order
to prevent unbounded blocking times and priority inversions of tasks using this
pattern. As a result, our work is the combination of the Active Object pattern
and the D-PCP.

2 Notations and Model

We now present the notations used for the task model and the asynchronous
critical sections, as well as the assumptions that are necessary for the response
time and feasibility analysis of the A-PCP.

2.1 Asumptions and Notations

In this paper, we consider a task set Γ of n periodic tasks scheduled on a shared-
memory multiprocessor with m identical processing cores p1, p2, ..., pm. Note that
we will use the words processor and cores interchangeably. Each task τi (with
1 ≤ i ≤ n) is represented by a 2-tuple τi = (Ti, Ci), where Ti is the period
of the task and Ci denotes the worst-case execution time (WCET). The task
periodically releases a job, at multiples of Ti, which executes for Ci units of
time. The l-th job of task τi is denoted as Ji,l and is released at time instant
ri,l. An arbitrary job of τi is denoted as Ji,∗ with its release time being ri,∗.
Furthermore, we consider implicit deadlines, i.e. the deadline of Ji,l is equal to the
release time ri,l+1 of the subsequent job. Each job may be preempted by higher
priority jobs and resume its execution later on. The time instant at which job

Asynchronous Critical Sections in Real-Time Multiprocessor Systems 59

Ji,l finishes its execution is denoted as the completion time fi,l. The worst-case
response time (WCRT) of a task τi is defined as Ri = max∀l(fi,l − ri,l). As in
[6], we assume that tasks are statically allocated to processors and assigned a
fixed priority based on the rate-monotonic algorithm. The priority Pi is shared
by all jobs of task τi. We assume that lower indices represent a higher priority,
i.e. task τi has a higher priority than τj if i < j. The sets of tasks with a higher
and lower priority than τi are denoted as hpi(Γ) and lpi(Γ), respectively.

Throughout this paper, the accesses to shared resources �1, �2, ..., �x are pro-
tected by aperiodic servers α1, α2, ..., αx following the rules of A-PCP. When-
ever a job of τi wants to access a shared resource, it raises a request to the
corresponding aperiodic server of the shared resource. This server is responsible
for executing the critical section. Each request μi,l is characterized by a 3-tuple
μi,l = (ρi,l, ζi,l, γi,l), where l denotes the l-th request raised by an arbitrary job of
task τi, ρi,l indicates the time instant when Ji,∗ raises the request, ζi,l represents
the worst-case execution time of μi,l and γi,l is the time instant when the result
is needed by Ji,∗ in order to continue its execution. It must be noted that the
execution requirements ζi,∗ do not contribute to the execution time Ci of task τi.
The completion time φi,l denotes the time instant when the aperiodic server has
finished the computation of μi,l and has provided a result to the respective job.
If φi,l > γi,l, i.e. the task needs the result of an asynchronous critical section that
has not yet finished its execution, the task is suspended until φi,l. The worst-case
response time σi,l is defined as the maximum difference φi,l −ρi,l among all jobs
of τi. Arbitrary requests and their properties are denoted as μi,∗, ρi,∗, ..., σi,∗.
The set of requests raised by τi to an aperiodic server αn is represented by Mn

i ,
in addition Mi = ∪∀nMn

i is the set of all requests raised by task τi. The priority
of all requests in Mi is equal to the priority of τi. Finally, we do not allow nested
asynchronous critical sections, i.e. aperiodic server αx is not allowed to raise a
request to αy when x �= y and each task may only have one pending request, i.e.
γi,l < ρi,l+1.

To clarify the notations, an example is shown in Fig. 1. Two tasks τx, τy and
the aperiodic server run on three distinct processors p1, p2 and p3. In the interval
[0, 3), the aperiodic server is executing a critical section with a computation
time ζ... from a request which was raised before t = 0. During the same interval
the queue of the aperiodic server is considered empty. When task τy raises an
arbitrary request μy,∗ at t = ρy,∗ = 1, the request is stored in the queue of the
server for later execution. At t = ρx,∗ = 3, task τx also raises a request μx,∗ which
is stored in the queue and the aperiodic server finishes the computations of ζ....
The server then decides which request to run next. In this case, we consider
the priority of task τy greater than the priority of τx and thus, request μy,∗ is
executed next for ζy,∗ units of time. At time t = γy,∗ = 5, task τy needs the results
of the computations ζy,∗ in order to continue its execution. As the results are not
available yet, the task suspends itself. At time instant t = φy,∗ = 8, the aperiodic
server finishes the execution of ζy,∗ and returns the result to τy which allows the
task to continue its execution. Again, the aperiodic server picks the next request
from the queue, which is request μx,∗, and executes it. At t = φx,∗ = 10, the

60 M. Schmid and J. Mottok

p1

p2

p3

ρy,∗ γy,∗ φy,∗ρx,∗ γx,∗

φx,∗

ζ... ζy,∗ ζx,∗

σx,∗
σy,∗

Server τAS

Task τy

Task τx

t0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 1. Example of an asynchronous critical section

server finishes ζx,∗ and returns the result to τx. As γx,∗ > φx,∗, task τx does not
need to self-suspend.

In concurrent programming languages, a way of returning the results of asyn-
chronous computations is through the use of future-objects: On the function call
which raises a request, tasks receive a future-object from the aperiodic server.
When the task needs to retrieve the result, it calls the respective method of the
future (in C++ and Java, this method is called get), which blocks the task in
case the server has not yet stored the result in the future. An example is shown
in the C++ code of Listing 1: In line 2, the task raises a request to the aperiodic
server and receives a future in return. The server is responsible for executing the
function int modify_resource(int arg) which modifies a shared resource. In the
meantime, the task is able to perform some different non-critical section code.
As soon as the task needs the result of the asynchronous computations, i.e. the
return value of modify_resource, it calls the method get of the future, which
either blocks when the result is not ready or returns the result otherwise.

1 // raise request to the aperiodic server task

2 future <int > future_obj = T_as.raise(modify_resource , 5);

3
4 // perform other work here , while the aperiodic server

calls modify_resource with the argument ’5’

5
6 int r = future_obj.get() //this line blocks if the

result was not stored in the future yet

Listing 1. Programming example of a task raising a request

2.2 Asynchronous Priority Ceiling Protocol

Due to its simplicity and its ability to suspend itself when the job queue is empty
and restart once a new job is enqueued, we decided to use a deferrable server
for the execution of the asynchronous critical sections. Typically, a deferrable

Asynchronous Critical Sections in Real-Time Multiprocessor Systems 61

server is used to provide high responsiveness to aperiodic tasks. In our case, we
will use the server to serialize the execution of the critical sections and thus,
introduce synchronized access to a shared resource. We therefor briefly revisit
the deferrable server model introduced by Strosnider et al. [9]: Each deferrable
server is represented by a periodic task τDS with period TDS and a capacity
CDS . The server is ready to execute at the beginning of its period and services
aperiodic tasks until it exhausts its execution budget CDS . The capacity is fully
replenished at the end of each period.

Before deriving the worst-case response time and feasibility analysis, we
define the properties of the A-PCP. In the A-PCP, each shared resource ρn

is assigned a deferrable server αn with period Tn
DS and execution budget Cn

DS .
Tasks that want to access a shared resource, raise a request to the corresponding
deferrable server. The request is stored in a priority ordered queue, while the
server repeatedly pops the highest prioritized request from the queue and exe-
cutes the respective critical section. As a shared resource is only accessed by one
deferrable server and the critical sections are run to completion by the server,
accesses to shared resources take place in a synchronized fashion.

Notation. We use Γn to denote the set of tasks that access the resource ρn at
any given time.

Notation. We denote the set of tasks, both periodic and aperiodic server tasks,
running on the same processor as the aperiodic server αn as sp(αn).

Definition. Let PH be the priority of the highest priority task in the system.
The priority ceiling Ωn of a shared resource ρn is defined to be the sum of PH

and the highest priority of the tasks accessing ρn:

Ωn = PH + max
τi∈Γn

{Pi}

Every aperiodic server must run with the priority given by the priority ceiling
of the corresponding shared resource. As a result of the rate-monotonic priority
assignment, we need to determine a suitable period and a capacity which is large
enough to handle the critical sections of all tasks accessing the shared resource.
The period Tn

DS can be defined such that it is slightly smaller than the period of
the next lesser prioritized task running on the same processor. Having the value
of Tn

DS , the execution budget can be calculated by summing up the execution
times ζ of all requests by all jobs running in the given period:

Tn
DS = min

∀i
{Ti|(τi ∈ sp(αn)) ∧ (Pi < Ωn)} − 1

Cn
DS =

∑

τi∈Γn

⌈
Ti

Tn
DS

⌉ ∑

μi,j∈Mn
i

ζi,j

Note that the aperiodic server tasks with smaller priority ceilings also have
to be considered for the determination of Tn

DS .

62 M. Schmid and J. Mottok

3 Response Time Analysis

In this section, we derive upper bounds for worst-case response times of asyn-
chronous critical sections. We start by showing that the execution of the asyn-
chronous critical sections only depends on other asynchronous critical sections:

Lemma 1. The response times of asynchronous critical sections is a function
of other asynchronous critical sections only.

Proof. As the deferrable server tasks are given the highest priorities on the
processor, they are not subject to preemption by periodic tasks and also do not
depend on the execution of tasks in other circumstances. Therefore, a deferrable
server can only be preempted by a higher priority aperiodic server running on the
same processor. As a result, the response times of asynchronous critical sections
is only dependent on the execution of other asynchronous critical sections.

Following Lemma 1, we now consider job Ji,∗ to raise an arbitrary request
μi,∗ and derive the maximum amount of computations done by the deferrable
server before it is able to execute μi,∗.

Lemma 2. Each time a job Ji,∗ raises a request μi,∗ for an asynchronous critical
section to a deferrable server αn, the execution of the critical section is delayed
by lower priority critical sections running on αn for at most

dl
i = max{ζj,k|μj,k ∈ {Mn

j |τj ∈ lpi(Γn)}} − 1. (1)

Proof. The proof follows from the fact that the execution of asynchronous critical
sections on the deferrable server αn can not be preempted by other requests to
the same server. As lower priority requests will not be scheduled prior to μi,∗,
only a request which is already being executed by the deferrable server delays
the execution of μi,∗. The maximum delay dl

i occurs when the longest request
by lower priority tasks starts execution exactly one time instant before μi,∗ is
raised.

Lemma 3. Each time a job Ji,∗ raises a request μi,∗ to a deferrable server αn,
the execution of the critical section is delayed by higher priority critical sections
running on αn for at most

dh
i (Δt) =

∑

τj∈hpi(Γn)

⌈
Δt

Tj

⌉ ∑

μj,k∈Mn
j

ζj,k (2)

during the interval Δt.

Proof. During the interval Δt, a higher priority task τj can release at most �Δt
Tj

�
jobs. Every time a job Jj,∗ runs, it can request

∑
μj,k∈Mn

j
ζj,k time units of

computation from the deferrable server αn. Summing up the amount of work
imposed on the deferrable server by all higher priority jobs results in dh

i (Δt).

Asynchronous Critical Sections in Real-Time Multiprocessor Systems 63

As aperiodic servers can be subject to preemption by higher prioritized
servers, the execution time of the critical sections run by those servers has to
be taken into account as well. The delay is accounted for in the equation shown
in Lemma 4. It must be noted that servers always run with the priority ceiling
of the shared resource. Due to this constraint, also a lower prioritized task τL

can increase the response time of a request raised by a high priority task τH , if
the aperiodic server of the request μL,∗ has a higher priority than the server of
request μH,∗.

Notation. We denote the set of aperiodic server tasks that run on the same
processor and have a higher priority than αn as hpn(α).

Lemma 4. Each time a job Ji,∗ raises a request μi,∗ to a deferrable server αn,
the execution of the critical section is delayed by higher prioritized aperiodic
servers for at most

dα
i (Δt) =

∑

αm∈hpn(α)

∑

τj∈Γm,
τj �=τi

⌈
Δt

Tj

⌉ ∑

μj,k∈Mm
j

ζj,k (3)

during the interval Δt.

Proof. All higher prioritized servers can preempt αn. During the time interval
Δt, jobs of a task other than τi raising requests to higher prioritized servers
can execute for at most �Δt

Tj
� times. Every time such a job Jj,∗ executes, it will

impose
∑

μj,k∈Mm
j

ζj,k time units of work to the higher prioritized server αm.
Summing up the work of all tasks imposed to higher priority aperiodic servers
running on the same processor as αn results in Eq. 3.

Notation. We use di(Δt) to denote the sum of the previously derived delays of
Lemmas 2, 3 and 4 and denote ei,∗(Δt) as the sum of dα

i (Δt) and the execution
time ζi,∗:

di(Δt) = dl
i + dh

i (Δt) + dα
i (Δt) (4)

ei,∗(Δt) = ζi,∗ + dα
i (Δt) (5)

Equation 4 characterizes the delay imposed on the execution of μi,∗ by
requests that run before μi,∗ is scheduled on αn, as well as higher priori-
tized servers. Once μi,∗ starts executing, only requests to higher prioritized
servers can delay the response time σi,∗. This is represented by Eq. 5 which
accounts for the execution time of μi,∗ and the amount of time higher prior-
ity servers execute prior to the aperiodic server αn. The maximum delay can
be determined by finding the solutions dmax

i and emax
i,∗ of the recursive func-

tions dz+1
i (dz

i) and ez+1
i,∗ (ez

i,∗), respectively. The iteration starts with d0i = dl
i and

ends when dz+1
i = dz

i . Equivalently, ez+1
i,∗ (ez

i,∗) starts and ends with e0i,∗ = ζi,∗
and ez+1

i,∗ = ez
i,∗, respectively. Note that the above computations of dmax

i and
emax
i,∗ yield a pessimistic estimation and can be reduced by considering the exact

64 M. Schmid and J. Mottok

amount of asynchronous critical sections requested to the deferrable servers in
the two intervals.

Combining our previous results we can derive an upper bound for the worst-
case response time σi,∗ of a request μi,∗.

Theorem 1. Each time a job Ji,∗ raises a request μi,∗ the worst-case response
time σi,∗ of μi,∗ can be upper bounded by:

σi,∗ = dmax
i + emax

i,∗ (6)

Proof. This theorem follows directly from the previous lemmas: Lemma 1 states
that the computations of the deferrable server are only a function of other asyn-
chronous critical sections, while Lemmas 2, 3 and 4 consider the amount of com-
putations imposed by critical sections of other tasks. Finally, according to the
model, Ji,∗ may only have one pending request at a time and thus, only the
computations ζi,∗ are imposed on the deferrable server by Ji,∗. Before μi,∗ is
scheduled by the server the requests considered in Lemmas 2, 3 and 4 contribute
to σi,∗. The maximum amount of time those requests execute prior to μi,∗ is
accounted for in dmax

i . As soon as μi,∗ is running on the aperiodic server αn,
only higher priority servers can delay the response time σi,∗ by preempting αn.
This is considered by emax

i,∗ . Therefore, the sum of dmax
i and emax

i,∗ results in the
worst-case response time.

4 Feasibility Analysis

Following the results of the previous section, we now provide sufficient condi-
tions for a schedulability analysis. In our model, tasks can be considered to
self-suspend themselves if the result of an asynchronous critical section is not
available in time. We utilize this behavior to conduct the schedulability analysis
conformable to [3,6], where the total amount of time a task remains suspended
is added to the computation of the schedulability test. We rephrase Theorem 10
of [6] to match the wording of [3]:

Theorem 2. A set of n periodic self-suspending tasks can be scheduled by the
rate-monotonic algorithm if the following conditions are satisfied:

∀i, 1 ≤ i ≤ n,
C1

T1
+

C2

T2
+ ... +

Ci + Bi

Ti
≤ i(21/i − 1), (7)

where Bi is the worst-case suspension time of task τi and n is the number of
tasks bound to the processor under test.

Notation. We denote M b
i as the set of requests to aperiodic servers that lead

to a self-suspension of job Ji,∗:

M b
i = {μi,j |φi,j > γi,j}

Asynchronous Critical Sections in Real-Time Multiprocessor Systems 65

Every processor has to be tested separately with the conditions of Eq. 7. If
the processor under test does not run a deferrable server, the following portions
contribute to Bi (adapted from [3]):

(1) The blocking time bi(np) of non-preemptive regions (e.g. local critical sec-
tions) of lower priority tasks on the processor that runs τi: Each time a
job Ji,∗ suspends itself it can be blocked for bi(np) = maxi+1≤k≤n θk units
of time, where θk denotes the worst-case execution time of non-preemptive
regions on the processor. In this paper, we do not consider local critical sec-
tions, however, it is possible to run the common Priority Ceiling Protocol
on local shared resources. If |M b

i | requests lead to a self-suspension of job
Ji,∗, then (|M b

i | + 1) ∗ bi(np) is added to Bi.
(2) The duration bi(ss1) due to self-suspension of τi: The upper bound of the

duration that a job of τi remains self-suspended due to μi,j can be deter-
mined by subtracting the instant when Ji,∗ self-suspends from the worst-case
completion time (φi,j = ρi,j +σi,j) of the asynchronous critical section. Sum-
ming up the durations a job remains self-suspended due to all of its requests
yields in bi(ss1):

bi(ss1) =
∑

μi,j∈Mb
i

(φi,j − γi,j)

(3) The duration that accounts for deferred execution of higher priority self-
suspending tasks on the same processor as τi:

bi(ss2) =
∑

τk∈hpi(Γ)

min(Ck, bk(ss1))

Notation. We use spi(Mj) to denote the set of requests a task τj raises to
aperiodic servers running on the same processor as task τi.

Since tasks allocated to a processor that runs at least one deferrable server
can be blocked by every asynchronous critical section (even by their own requests
and requests of lower priority tasks), Bi has to be computed differently:

Bi =
∑

τj∈Γ

∑

μj,k∈spi(Mj)

ζj,k

Theorem 2 provides sufficient conditions for a feasibility analysis. In [3], Liu
derives a set of necessary and sufficient conditions based on the time-demand
analysis. We can use the previously calculated values of Bi in order to determine
the worst-case response time Ri of the tasks and identify the feasibility of the
system:

Theorem 3. A set of n periodic self-suspending tasks can be scheduled by the
rate-monotonic algorithm if the following conditions are satisfied:

∀i, 1 ≤ i ≤ n,Rl+1
i = Ci + Bi +

i−1∑

k=1

⌈
Rl

i

Tk

⌉
Ck ≤ Ti, (8)

66 M. Schmid and J. Mottok

where Bi is the worst-case suspension time of task τi and n is the number of
tasks bound to the processor under test.

The worst-case response time of task τi can be determined by finding the
solution to the recursive function in Eq. 8. The iteration starts with R0

i = Ci+Bi

and ends either when Rz+1
i = Rz

i ≤ Ti, indicating that the task τi is schedulable
or when Rz+1

i > Ti, which means that the task set is not feasible.

5 Conclusion and Future Work

In this paper, we introduced the asynchronous execution of critical sections
through our proposed synchronization protocol named Asynchronous Priority
Ceiling Protocol, which is a combination of the Distributed Priority Ceiling
Protocol [6] and the Active Object pattern [7]. In the Asynchronous Priority
Ceiling Protocol, each shared resource is assigned to a distinct aperiodic server
that is responsible for executing the critical sections in a sequential manner.
We therefor established a model and subsequently derived a worst-case response
time analysis of the asynchronous computations for task sets using the proposed
protocol and scheduled under rate-monotonic preemptive scheduling. The worst-
case response times of the asynchronous critical sections allowed us to derive the
worst-case suspension times of tasks and by making adaptions to the schedu-
lability analysis of Rajkumar et al. [6] and Liu [3], we provided necessary and
sufficient conditions that allow to determine the feasibility of a task set using
the proposed synchronization protocol.

Our computation of the worst-case response times of the asynchronous crit-
ical sections yields a pessimistic bound and can be improved by considering the
exact amount of requests a task raises to aperiodic servers. As a result, schedu-
lability tests would benefit greatly from more accurate computations. Another
important item of future work are evaluations and comparisons to common
mutual exclusion based synchronization protocols. This can be done in terms
of schedulability tests, simulations or on an actual system.

References

1. Brandenburg, B.B., Anderson, J.H.: A comparison of the M-PCP, D-PCP, and
FMLP on LITMUSRT. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008.
LNCS, vol. 5401, pp. 105–124. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-92221-6 9

2. Lakshmanan, K., de Niz, D., Rajkumar, R.: Coordinated task scheduling, allo-
cation and synchronization on multiprocessors. In: 2009 30th IEEE Real-Time
Systems Symposium, pp. 469–478, December 2009

3. Liu, J.W.S.: Real-Time Systems. Prentice Hall, Upper Saddle River (2000)
4. Midonnet, S., Fauberteau, F.: Synchronizations: Shared Resource Access Protocols,

pp. 149–191. Wiley, Hoboken (2014)
5. Rajkumar, R.: Real-time synchronization protocols for shared memory multipro-

cessors. In: Proceedings, 10th International Conference on Distributed Computing
Systems, pp. 116–123, May 1990

https://doi.org/10.1007/978-3-540-92221-6_9
https://doi.org/10.1007/978-3-540-92221-6_9

Asynchronous Critical Sections in Real-Time Multiprocessor Systems 67

6. Rajkumar, R., Sha, L., Lehoczky, J.P.: Real-time synchronization protocols for
multiprocessors. In: Proceedings Real-Time Systems Symposium, pp. 259–269,
December 1988

7. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture, Patterns for Concurrent and Networked Objects, vol. 2. Wiley, Hobo-
ken (2000)

8. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: an approach
to real-time synchronization. IEEE Trans. Comput. 39(9), 1175–1185 (1990)

9. Strosnider, J.K., Lehoczky, J.P., Sha, L.: The deferrable server algorithm for
enhanced aperiodic responsiveness in hard real-time environments. IEEE Trans.
Comput. 44(1), 73–91 (1995)

10. Yang, M.L., Lei, H., Liao, Y., Rabee, F.: Improved blocking time analysis and
evaluation for the multiprocessor priority ceiling protocol. J. Comput. Sci. Technol.
29(6), 1003–1013 (2014)

	Asynchronous Critical Sections in Real-Time Multiprocessor Systems
	1 Introduction
	1.1 Contribution and Structure
	1.2 Related Work

	2 Notations and Model
	2.1 Asumptions and Notations
	2.2 Asynchronous Priority Ceiling Protocol

	3 Response Time Analysis
	4 Feasibility Analysis
	5 Conclusion and Future Work
	References

