
Evaluating Dynamic Task Scheduling
in a Task-Based Runtime System
for Heterogeneous Architectures

Thomas Becker1(B), Wolfgang Karl1, and Tobias Schüle2

1 Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
{thomas.becker,wolfgang.karl}@kit.edu

2 Siemens AG, Corporate Technology, 81739 Munich, Germany
tobias.schuele@siemens.com

Abstract. Heterogeneous parallel architectures present many chal-
lenges to application developers. One of the most important ones is the
decision where to execute a specific task. As today’s systems are often
dynamic in nature, this cannot be solved at design time. A solution is
offered by runtime systems that employ dynamic scheduling algorithms.
Still, the question which algorithm to use remains.

In this paper, we evaluate several dynamic scheduling algorithms on a
real system using different benchmarks. To be able to use the algorithms
on a real system, we integrate them into a task-based runtime system.
The evaluation covers different heuristic classes: In immediate mode,
tasks are scheduled in the order they arrive in the system, whereas in
batch mode, all ready-to-execute tasks are considered during the schedul-
ing decision. The results show that the Minimum Completion Time and
the Min-Min heuristics achieve the overall best makespans. However,
if additionally scheduling fairness has to be considered as optimization
goal, the Sufferage algorithm seems to be the algorithm of choice.

Keywords: Dynamic task scheduling · Heterogeneous architectures

1 Motivation

Today’s computer systems are highly parallel and possess additional accelerators.
Such complex heterogeneous architectures present many challenges to applica-
tion developers. One of the most important questions developers are faced with
is on which processing unit the execution of tasks of an application is most effi-
cient, which may refer to best performance, lowest energy consumption or any
other optimization goal. As many systems are dynamic in nature, meaning that
they do not always execute the same tasks, and tasks start at unknown points
in time, e.g., triggered by signals or user interactions, a static partitioning at
design time is not able to optimize the system for all scenarios. To solve this
problem, dynamic runtime systems may be employed, which abstract from the
underlying system. The application developer simply defines his or her compute
c© Springer Nature Switzerland AG 2019
M. Schoeberl et al. (Eds.): ARCS 2019, LNCS 11479, pp. 142–155, 2019.
https://doi.org/10.1007/978-3-030-18656-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18656-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-18656-2_11


Evaluating Dynamic Task Scheduling 143

kernels representing specific functionality and is then allowed to either provide
implementation variants himself or use implementation variants provided by e.g.
a library. As dynamic runtime systems also take control of the execution, they
can decide at runtime which implementation processing unit pair to use. To
make such decisions, dynamic scheduling algorithms are needed. In the litera-
ture, a variety of different dynamic algorithms are described. Considering the
fact that modern systems are used in a wide range of different scenarios and
fields of application, the question remains which algorithm should be used in
which scenario and which field of application. Therefore, the goal of this work is
to study dynamic scheduling algorithms in several scenarios designed for hetero-
geneous parallel systems with an additional focus on characteristics of embedded
systems, and thereby providing usage guidelines.

Hence, in this work, we evaluate selected dynamic scheduling algorithms
in real-world scenarios. We utilize the Embedded Multicore Building Blocks
(EMB2), an open source runtime system and library developed by Siemens,
which has been specifically designed for embedded applications, to operate the
algorithms on a real system. In particular, we make the following contributions:

– We select six dynamic scheduling heuristics that we think are appropriate for
the considered field of application.

– We extend the existing scheduling approach in EMB2 with more sophisticated
ones for heterogeneous systems.

– We evaluate these algorithms on a real system using a GPU as accelerator
and investigate their behavior in terms of different metrics.

– We give guidelines which algorithms to choose.

The remainder of this paper is structured as follows: In Sect. 2, we briefly intro-
duce the fundamentals of our work. The scheduling algorithms, EMB2 and the
extensions to EMB2 are presented in Sect. 3. Section 4 describes the experimen-
tal setup and presents the results. Finally, we discuss related work (Sect. 5) and
conclude with directions for future work (Sect. 6).

2 Fundamentals

2.1 Problem Statement and Task Scheduling

In the basic scheduling problem, a set of n tasks T := {t1, . . . , tn} has to be
assigned to a set of m resources P := {p1, . . . , pm}. Next to mapping a task ti to
a resource pj , scheduling also includes the assignment of an ordering and time
slices.

Scheduling problems are generally considered to be NP-hard [10]. As there is
no algorithm that can solve all scheduling problems efficiently, there exist many
different heuristics. These can be classified into static and dynamic algorithms.
The main difference is that static algorithms make all decisions before a single
task is executed, whereas dynamic algorithms schedule tasks at runtime. Hence,
static algorithms have to know all relevant task information beforehand, while
dynamic ones do not need full information and are able to adapt their behavior.



144 T. Becker et al.

2.2 Optimality Criterion

The standard optimization criterion is the makespan, which is the time an appli-
cation or a set of tasks spends in a system from start to finish. If several appli-
cations are scheduled simultaneously, only considering the makespan can lead
to stalling one application in favor of the others. Therefore, it is sensible to also
evaluate the algorithms regarding fairness.

A criterion that better reflects scheduling decisions for single tasks is the
flow time Fi, which is defined as Fi = Ci − ri, where Ci is the completion time
and ri the release time of a task ti. Generally speaking, Fi is the time ti spends
within the system. So, the flow time is able to reflect how long a task is in the
system before being executed and combines this with its execution time. As the
two objectives efficiency and fairness are fundamentally at odds, Bansal et al. [2]
suggest minimizing the lp-norm of the flow time ‖F‖lp for small values of p.
‖F‖lp is defined as follows:

‖F‖lp =

(∑
i

F p
i

) 1
p

, (1)

where p is a value chosen by the user.

3 Dynamic Scheduling Algorithms

This section presents the algorithms and the extensions to EMB2. We selected
these algorithms on the basis of their runtime overhead, scheduling decisions
have to be made as fast as possible in dynamic systems, their implementation
complexity, and their ability to work with limited knowledge about the set of
tasks to be executed. These heuristics can be classified into immediate and batch
mode. Immediate mode considers tasks in a fixed order, only moving on to the
next task after making a scheduling decision. In contrast, batch mode considers
tasks out-of-order and so delays task scheduling decisions as long as possible,
thereby increasing the pool of potential tasks to choose from.

3.1 Immediate Mode Heuristics

Opportunistic Load Balancing (OLB). [8] estimates the completion time
of the irrevocably scheduled tasks as a measure of load on a processing unit
pj . OLB then assigns a task ti to the processing unit pj that has the earliest
completion time for its already assigned tasks.

Minimum Execution Time (MET). [7] maps a task ti to the processing unit
pj that minimizes its execution time. The heuristic considers a task in isolation,
not taking the actual load of the processing units in account when making a
scheduling decision. Thus, this heuristic can easily lead to load imbalances if for
all or most of the tasks a processing unit dominates.



Evaluating Dynamic Task Scheduling 145

Minimum Completion Time (MCT). [1] combines the execution time of a
task ti with the estimated completion time of the already assigned tasks of a
processing unit pj . In total, MCT predicts the completion time of a task ti and
assigns ti to the processing unit pj that minimizes the completion time of ti.

3.2 Batch Mode Heuristics

Min-Min. [11] extends the idea of MCT by considering the complete set of
currently ready-to-execute tasks. The heuristic then assigns the task ti that
has the earliest completion time to the processing unit pj that minimizes the
completion time of ti. In general, the core idea is to schedule shorter tasks first
to encumber the system for as short a time as possible. This can lead to starvation
of larger tasks if steadily new shorter tasks arrive in the system.

Max-Min. [14] is a variant of Min-Min that is based on the observation that
Min-Min often leads to large tasks getting postponed to the end of an execution
cycle, needlessly increasing the total makespan because the remaining tasks are
too coarse-granular to partition equally. So, Max-Min schedules the tasks with
the latest minimum completion time first, leaving small tasks to pad out any
load imbalance in the end. However, this can lead to starvation of small tasks if
steadily new longer tasks arrive.

Sufferage. [14] ranks all ready-to-execute tasks according to their urgency
based on how much time the task stands to lose if it does not get mapped to
its preferred resource. The ranking is given by the difference between the task’s
minimum completion time and the minimum completion time the task would
achieve if the fastest processing unit for this task would not be available. Tasks
that do not have a clear preference for a processing unit are prone to starvation.

3.3 Implementation

We integrated the algorithms into EMB2, a C/C++ library and runtime system
for parallel programming of embedded systems.1 EMB2 builds on MTAPI [9], a
task model that allows several implementation variants for a user-defined task. A
developer defines a specific functionality, e.g., a matrix multiplication, and is then
allowed to provide implementations for this task. MTAPI allows a developer to
start tasks and to synchronize on their completion, where the actual execution
is controlled by the runtime system. Thereby, the user has to guarantee that
only tasks that have their dependencies fulfilled are started. Tasks are executed
concurrently to other tasks that have been started and it is allowed to start new
tasks within a task. The scheduling implementation of the current EMB2 version
distributes the task instances between heterogeneous processing units based on
the number of already scheduled instances of the same task. For homogeneous

1 https://embb.io/.

https://embb.io/


146 T. Becker et al.

multicore CPUs, an additional work stealing scheduler [3,15] is used. As of yet,
necessary data transfers for the accelerators are not considered separately. EMB2

is designed and implemented in a modular fashion that allows developers to add
further scheduling policies. However, a few extensions were necessary.

We added a general abstraction for processing units and grouped identical
units in classes to allow a uniform treatment. Every unit is implemented using
an OS-level worker thread. Workers corresponding to CPU cores are pinned to
their respective cores but are assigned a lower priority than device workers.

Scheduling algorithms need task execution times to make sophisticated deci-
sions. These can either be given by the user, an analysis step or predicted at
runtime. In this work, we focus on dynamic systems which means static analyses
are not possible. Therefore, we extended EMB2 by a monitoring component that
measures task execution times and stores them within a history data base with
the problem size as key similar to the mechanism used in [13]. As data transfers
are not yet considered explicitly in EMB2, the execution times on accelerators
include necessary data transfers. The stored data is then used to predict execu-
tion times of upcoming tasks to improve scheduling decisions. If there is already
data stored for a particular task’s implementation version and problem size, the
data can be used directly. If there is data for a task’s implementation version
but with different problem sizes, interpolation is used to predict the execution
time. If there is no data available at all, the runtime system executes a profiling
run of this implementation version.

4 Experiments

To evaluate the scheduling heuristics, we considered a video-processing appli-
cation using EMB2’s dataflow component, three benchmarks of the Rodinia
Benchmark Suite [5], RabbitCT [19], and a benchmark with independent het-
erogeneous jobs. We chose them as they provide different characteristics, have
sufficient problem sizes and thereby running time and possess an easily to par-
allelize kernel. We included benchmarks where the CPU outperforms the GPU,
a benchmark, where the GPU strongly outperforms the CPU, and a benchmark
where the difference between the GPU and CPU implementation is not as big.
The independent heterogeneous jobs benchmark resembles dynamic systems as
the task instances are started sporadically thereby adding a random component
to the starting point of a task instance.

All experiments were executed ten times. For the single application bench-
marks, we focus on the makespan because a user expects this to be optimized for
a single application. We additionally evaluate the average flow time and the lp-
norm (Sect. 2.2) for p = 3 for the independent heterogeneous job benchmark. The
following figures contain the average, the minimum and the maximum makespan
of 10 evaluation runs as errorbars. We omitted the errorbars in the figure for the
independent heterogeneous job benchmark to make it more readable.



Evaluating Dynamic Task Scheduling 147

4.1 Experimental Setup

The experiments were performed on a server with two Intel Xeon E5-2650
v4 CPUs a 12 cores each, an NVIDIA Tesla K80, and 128 GB a 2400 MHz
DDR4 SDRAM DIMM (PC4-19200). The software environment includes Ubuntu
16.04.5, the Linux 4.4.0-138-generic kernel, glibc 2.23, and the nvidia-387 driver.
EMB2 was compiled with the GCC 5.4.0 compiler at optimization level-O3. The
scheduling algorithms presented in Sect. 3 operate in the so-called pull mode in
our experiments. In pull mode, the scheduler gets triggered iff at least one pro-
cessing unit is idle. We chose this mode because it allows the scheduler to collect
a set of tasks, which is needed to benefit from the batch mode heuristics.

4.2 Heterogeneous Video-Processing Application

The dataflow component of EMB2 takes an arbitrary task graph describing the
computation of a single data item, and parallelizes the computations over con-
tiguous chunks of a data stream. They get submitted by a window sliding sched-
uler to the actual scheduler through reduction to fork-join parallelism while
maintaining sequential execution of tasks. So, only tasks that are ready to exe-
cute are submitted to the actual scheduler. The application consists of a video-
processing pipeline, performing the following steps:

1. Read and decode the next frame from an H.264-encoded video file. The cor-
responding process in the dataflow network is serial.

2. Convert the frame from the codec-native color space to RGB. This process
is again serial because the conversion accesses a shared libswscale context.
libswscale is a library that performs highly optimized image scaling and
colorspace and pixel format conversion operations.

3. Apply the image transformation in two steps:
(a) Perform a 3 × 3 box blur.
(b) Cartoonify by performing a Sobel operator with a threshold selecting

black pixels for edge regions and discretized RGB values for the inte-
rior. The Sobel operator consists of two convolutions with different 3× 3
kernels followed by the computation of an Euclidean norm.

4. Convert the frame back from RGB to the codec-native color space.

The two image transformation operations have a CPU and GPU implemen-
tation. The cartoonify kernel has an average execution time of 165.97 ms on
the CPU and 3.1 ms on the GPU for the kodim23.png test image by the East-
man Kodak Company. The box blur operation runs on average for 72.8 ms on
the CPU and for 3.4 ms on the GPU. As input, we used a 30 s long test video
encoded in 854:480 resolution with 30 fps at a bitrate of 2108 kb/s. The results
are shown in Fig. 1. The best results are achieved by MCT, Min-Min, Max-Min,
and Sufferage with MCT having the best results with an average of 10.3 s. OLB
obtains a significantly worse result than the other algorithms with an average
of 29.63 s because OLB does not consider task execution times, but rather just
takes the next free processing unit, which in our implementation always starts
with the CPU cores, and thereby only uses the, in this case slower, CPU.



148 T. Becker et al.

Fig. 1. Makespans for 10 runs of the video application benchmark

4.3 Rodinia Benchmark Suite

Hotspot3D iteratively computes the heat distribution of a 3d chip represented
by a grid. In every iteration, a new temperature value depending on the last
value, the surrounding values, and a power value is computed for each element.
We chose this computation as kernel function for a parallelization with EMB2

and parallelized it over the z-axis. The CPU implementation then further splits
its task into smaller CPU specific subtasks. This is done manually and statically
by the programmer to use the underlying parallelism of the multicore CPU and
still have a single original CPU task that handles the same workload as the GPU
task. For the evaluation, we used a 512 × 512 × 8 grid with the start values for
temperature and power included in the benchmark, and 1000 iterations. The
average runtime on the CPU is 5.03 ms and 7.36 ms on the GPU.

Figure 2 shows the results of the Hotspot3D benchmark. Min-Min, OLB,
MCT, Max-Min, and Sufferage all have an average of around 17 s with Min-Min
having the lowest average of 16.94 ms by a very small margin compared to the
group’s highest average of 17.53 s by Max-Min. In this case, OLB benefits from
the fact that it first distributes the load to the CPU. MET obtained the worst
result because it does not consider the load of the processing units and just
schedules all tasks to the fastest processing unit and so to the same CPU core.

Particlefilter is the implementation of a particle filter, a statistical estimator of
the locations of target objects given noisy measurements, included in Rodinia.
Profiling showed that findIndex() is the best candidate for a parallelization.
findIndex() computes the first index in the cumulative distribution function array
with a value greater than or equal to a given value. As findIndex() is called for
every particle, we parallelized the computation by dividing the particles into
work groups. The CPU implementation again further divides those groups into



Evaluating Dynamic Task Scheduling 149

subtasks. We used the standard parameters 128 for both matrix dimensions,
100 for the number of frames, and 50000 for the number of particles for the
evaluation. The average task runtime on the CPU is 17.8 ms and 6.5 ms on the
GPU. The results of the Particlefilter benchmark can be seen in Fig. 2. Here, the
EMB2 upstream algorithm got the best result with an average of 15.93 s where
all other algorithms except OLB have an average of around 18 s. These results
indicate that a distribution of tasks between the CPU and the GPU leads to the
best result.

Fig. 2. Makespans for 10 runs of the Rodinia benchmarks

Streamcluster is taken from the PARSEC benchmark suite and solves the
online clustering problem. For a stream of input data points, the algorithm finds a
user given number of clusters. The main kernel of the algorithm pgain() computes
if opening a new cluster reduces the total cost. In every iteration pgain() is called
for each data point, so we parallelized the function by dividing the points into
work groups. Again, the CPU implementation then further divides the work
group into smaller chunks. We do not provide execution times as Streamcluster
iteratively reduces the number of points considered, thereby varying in execution
time. The results for the Streamcluster benchmark, see Fig. 2, show that all
algorithms except OLB and the EMB2 upstream version achieved an average
makespan of around 80 s with Max-Min getting the best average by a small
margin with 80.28 s compared to the second best average of 80.39 s by MCT and
the group’s worst average of 81.07 s by MET.

4.4 RabbitCT

RabbitCT is a 3D cone beam reconstruction benchmark framework that
focuses on the backprojection step. It was created to fairly compare different



150 T. Becker et al.

backprojection algorithms. In backprojection, each voxel is projected onto the
projection data, then the data is interpolated and finally, the voxel value is
updated. As this means that in every iteration the algorithm iterates over a 3D
array, we parallelized the algorithm with EMB2 by partitioning the volume by
the z-axis. The CPU implementation then further partitions these chunks. We
measured an average task runtime of 45.9 ms for the CPU and 97.7 ms for the
GPU. RabbitCT provides an input data set which we used with a problem size
of 512.

Fig. 3. Makespans for 10 runs of the RabbitCT benchmark

Figure 3 contains the results for the RabbitCT benchmark. We excluded MET
as it was significantly worse then the other algorithms with an average of 400.17 s,
thereby hiding details in the figure. MCT and Min-Min achieved the best results
with MCT achieving an average makespan of 80.56 s and Min-Min achieving a
slightly better average makespan of 80 s.

4.5 Independent Heterogeneous Jobs

Additionally, we evaluated the algorithms in a scenario with independent hetero-
geneous jobs. We chose three video-processing tasks that have both an OpenCL
and a CPU implementation:

– J1 (Mean): A 3 × 3 box blur.
– J2 (Cartoonify): The cartoonify operation introduced in Sect. 4.2.
– J3 (Black-and-White): A simple filter which replaces (R,G,B) values with

their greyscale version (R+G+B
3 , R+G+B

3 , R+G+B
3 ).

All operations were applied to the kodim23.png test image. The three opera-
tions execute for 72.8 ms, 165.97 ms, and 11.4 ms on the CPU and 3.4 ms, 3.1 ms,



Evaluating Dynamic Task Scheduling 151

and 3.1 ms on the GPU. We used a sporadic profile to create task instances of
these three jobs. New task instances were released with a minimum interarrival
time of 1

k secs, where k is the parameter to control the load, plus a random delay
drawn from an exponential distribution with parameter λ = k. By varying k,
we can generate a range of different loads. The evaluation workload consists of
3000 tasks corresponding in equal proportions to instances of all three jobs. We
conducted the experiment from k = 500 to 2000 with increments of 500. For this
experiment, we measured the average makespan, the average flowtime and the
l3-norm. The EMB2 upstream algorithm was excluded from the flowtime and
l3-norm measurements. In contrast to the other algorithms, which only schedule
a new task iff at least one processing unit is idle, the EMB2 upstream version
always schedules a task as soon as it arrives in the system. Thereby, the time a
task spends in the system is not really comparable to the other algorithms. The
makespan results are shown in Fig. 4.

Fig. 4. Average makespan for 10 runs of the independent jobs benchmark

Here, Max-Min, Min-Min, MCT, and Sufferage nearly got the same results
with Max-Min achieving the best results. Clearly, the worst results were obtained
by MET. The figure of the average flowtimes (see Fig. 5) also show the best
results for Max-Min, Min-Min, MCT, and Sufferage. However, for greater values
of k there is a distinction between Max-Min and Sufferage, and Min-Min and
MCT with the later two obtaining a worse average flowtime. Figure 6 shows the
results for the l3-norm. We excluded MET from the figure as its results were by
far worse and so important details would get lost. Again, Sufferage and Max-Min
got the best results. but this time for larger values of k Sufferage achieved better
results.



152 T. Becker et al.

Fig. 5. Average flowtime for 10 runs of the independent jobs benchmark

Fig. 6. Average l3-norm for 10 runs of the independent jobs benchmark

5 Related Work

Task scheduling is a well-known research field which has lead to many heuris-
tics for dynamic task scheduling. These can generally be classified into list
scheduling heuristics [14,20], clustering heuristics [16], immediate mode heuris-
tics [1,8,15], duplication scheduling heuristics [12] and guided-random-search-
based algorithms including genetic algorithms [17,18], and swarm intelligence
algorithms [6]. List scheduling heuristics sort all ready-to-execute tasks accord-
ing to a priority criterion and then map the tasks to processing units in that
order. In contrast, immediate mode heuristics assign a task to a processing unit
as soon as it arrives. Clustering heuristics assume that communication costs are



Evaluating Dynamic Task Scheduling 153

a main factor of the total makespan. They try to minimize communication by
clustering tasks and executing a cluster on a single processing unit. The goal
of duplication scheduling is to reduce communication costs by executing key
tasks on more than one processor, thereby avoiding data transfers. Contrary to
the heuristic-based algorithms, guided-random-search-based algorithms try to
efficiently traverse the search space by sampling a large number of candidates
while also allowing temporary degradation of the solution quality. These algo-
rithms are often only evaluated in simulations making it hard to judge their real
world applicability. There also exist extensive studies that evaluate and com-
pare different scheduling algorithms. Kim et al. [14] evaluate dynamic schedul-
ing heuristics with independent tasks and task priorities. Braun et al. [4] com-
pare eleven static scheduling heuristics that could also be used as batch-mode
heuristics in a dynamic system. However, the heuristics are again evaluated in
simulations only.

6 Conclusion and Future Work

In this work, we evaluated six heuristics. We integrated immediate and batch
mode heuristics to see if it is possible to leverage sophisticated scheduling deci-
sions in real-world scenarios. To evaluate the algorithms on a real system, we
integrated them into EMB2. The added heuristics and the EMB2 upstream ver-
sion were evaluated with six different benchmarks. In particular, we used a video-
processing application, Particlefilter, Streamcluster and Hotspot3D of Rodinia,
RabbitCT, and a benchmark consisting of three image filter jobs. As evaluation
metric, we used the makespan for the application benchmarks. Additionally, we
used the average flowtime and the l3-norm for the independent jobs to measure
fairness.

In five of six makespan-focused benchmarks, MCT and Min-Min achieved the
lowest makespan or are within a 5% margin of the best makespan. The exception
is Particlefilter where the best result is obtained by the EMB2 upstream algo-
rithm with a speed up of 11.6% to Sufferage. MCT and Min-Min still lie within
a 17.9% and a 13.9% margin or a total difference of around 2.5 s. Max-Min and
Sufferage also achieve the best or close to the best results in five out of six bench-
marks but have a bigger outlier with the RabbitCT benchmark. Here, Max-Min
and Sufferage have an makespan increase of around 70% or around 55 s. MET,
OLB and the EMB2 upstream algorithm constantly have worse results than
the aforementioned ones. Considering the flowtime and the l3-norm, Sufferage
achieves the best results for the larger k values and is close to the best result
for the smaller values. MCT and Min-Min both have increasingly worse results
with larger values of k for both the average flowtime and the l3-norm. In the
worst case, the result increases by over 500%. So, in summary iff the focus only
lies on the makespan, MCT or Min-Min seem to be the best choice with MCT
being the significantly simpler algorithm. If fairness is an additional considera-
tion, Sufferage seems to be the best choice. As future work, we want to consider
task priorities, thus enabling soft real-time. The aforementioned starvation issues
can also be improved by adding task priorities.



154 T. Becker et al.

References

1. Armstrong, R., Hensgen, D., Kidd, T.: The relative performance of various map-
ping algorithms is independent of sizable variances in run-time predictions. In:
Proceedings of 1998 Seventh Heterogeneous Computing Workshop, (HCW 98),
pp. 79–87, March 1998. https://doi.org/10.1109/HCW.1998.666547

2. Bansal, N., Pruhs, K.: Server scheduling in the Lp norm: a rising tide lifts all
boat. In: Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of
Computing, STOC 2003, pp. 242–250. ACM, New York (2003). https://doi.org/
10.1145/780542.780580

3. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720–748 (1999)

4. Braun, T.D., et al.: A comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing systems. J. Parallel
Distrib. Comput. 61(6), 810–837 (2001). https://doi.org/10.1006/jpdc.2000.1714

5. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: Pro-
ceedings of the 2009 IEEE International Symposium on Workload Characteriza-
tion (IISWC), IISWC 2009, pp. 44–54. IEEE Computer Society, Washington DC,
(2009). https://doi.org/10.1109/IISWC.2009.5306797

6. Elhady, G.F., Tawfeek, M.A.: A comparative study into swarm intelligence algo-
rithms for dynamic tasks scheduling in cloud computing. In: 2015 IEEE Seventh
International Conference on Intelligent Computing and Information Systems (ICI-
CIS), pp. 362–369, December 2015. https://doi.org/10.1109/IntelCIS.2015.7397246

7. Freund, R.F., et al.: Scheduling resources in multi-user, heterogeneous, comput-
ing environments with SmartNet. In: Proceedings of 1998 Seventh Heterogeneous
Computing Workshop, HCW 1998, pp. 184–199, March 1998. https://doi.org/10.
1109/HCW.1998.666558

8. Freund, R.F., Siegel, H.J.: Guest editor’s introduction: heterogeneous processing.
Computer 26(6), 13–17 (1993). http://dl.acm.org/citation.cfm?id=618981.619916

9. Gleim, U., Levy, M.: MTAPI: parallel programming for embedded multicore sys-
tems (2013). http://multicore-association.org/pdf/MTAPI Overview 2013.pdf

10. Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approximation in
deterministic sequencing and scheduling: a survey. In: Hammer, P., Johnson, E.,
Korte, B. (eds.) Discrete Optimization II, Annals of Discrete Mathematics, vol. 5,
pp. 287–326. Elsevier, Amsterdam (1979)

11. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on
nonidentical processors. J. ACM 24(2), 280–289 (1977). https://doi.org/10.1145/
322003.322011

12. Josphin, A.M., Amalarathinam, D.I.G.: DyDupSA - dynamic task duplication
based scheduling algorithm for multiprocessor system. In: 2017 World Congress
on Computing and Communication Technologies (WCCCT), pp. 271–276, Febru-
ary 2017. https://doi.org/10.1109/WCCCT.2016.72

13. Kicherer, M., Buchty, R., Karl, W.: Cost-aware function migration in heterogeneous
systems. In: Proceedings of the 6th International Conference on High Performance
and Embedded Architectures and Compilers, HiPEAC 2011, pp. 137–145. ACM,
New York (2011). https://doi.org/10.1145/1944862.1944883

https://doi.org/10.1109/HCW.1998.666547
https://doi.org/10.1145/780542.780580
https://doi.org/10.1145/780542.780580
https://doi.org/10.1006/jpdc.2000.1714
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IntelCIS.2015.7397246
https://doi.org/10.1109/HCW.1998.666558
https://doi.org/10.1109/HCW.1998.666558
http://dl.acm.org/citation.cfm?id=618981.619916
http://multicore-association.org/pdf/MTAPI_Overview_2013.pdf
https://doi.org/10.1145/322003.322011
https://doi.org/10.1145/322003.322011
https://doi.org/10.1109/WCCCT.2016.72
https://doi.org/10.1145/1944862.1944883


Evaluating Dynamic Task Scheduling 155

14. Kim, J.K., Shivle, S., Siegel, H.J., Maciejewski, A.A., Braun, T.D., Schneider,
M., Tideman, S., Chitta, R., Dilmaghani, R.B., Joshi, R., Kaul, A., Sharma, A.,
Sripada, S., Vangari, P., Yellampalli, S.S.: Dynamically mapping tasks with pri-
orities and multiple deadlines in a heterogeneous environment. J. Parallel Dis-
trib. Comput. 67(2), 154–169 (2007). https://doi.org/10.1016/j.jpdc.2006.06.005.
http://www.sciencedirect.com/science/article/pii/S0743731506001444

15. Mattheis, S., Schuele, T., Raabe, A., Henties, T., Gleim, U.: Work stealing strate-
gies for parallel stream processing in soft real-time systems. In: Herkersdorf, A.,
Römer, K., Brinkschulte, U. (eds.) ARCS 2012. LNCS, vol. 7179, pp. 172–183.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28293-5 15

16. Mishra, P.K., Mishra, A., Mishra, K.S., Tripathi, A.K.: Benchmarking the
clustering algorithms for multiprocessor environments using dynamic priority
of modules. Appl. Math. Model. 36(12), 6243–6263 (2012). https://doi.org/
10.1016/j.apm.2012.02.011. http://www.sciencedirect.com/science/article/pii/
S0307904X12000935

17. Nayak, S.K., Padhy, S.K., Panigrahi, S.P.: A novel algorithm for dynamic task
scheduling. Future Gener. Comput. Syst. 28(5), 709–717 (2012). https://doi.org/
10.1016/j.future.2011.12.001

18. Page, A.J., Naughton, T.J.: Dynamic task scheduling using genetic algorithms for
heterogeneous distributed computing. In: 19th IEEE International Parallel and
Distributed Processing Symposium, pp. 189a–189a, April 2005. https://doi.org/
10.1109/IPDPS.2005.184

19. Rohkohl, C., Keck, B., Hofmann, H., Hornegger, J.: RabbitCT— an open platform
for benchmarking 3D cone-beam reconstruction algorithms. Med. Phys. 36(9),
3940–3944 (2009). https://doi.org/10.1118/1.3180956. http://www5.informatik.
uni-erlangen.de/Forschung/Publikationen/2009/Rohkohl09-TNR.pdf

20. Topcuouglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002). https://doi.org/10.1109/71.993206

https://doi.org/10.1016/j.jpdc.2006.06.005
http://www.sciencedirect.com/science/article/pii/S0743731506001444
https://doi.org/10.1007/978-3-642-28293-5_15
https://doi.org/10.1016/j.apm.2012.02.011
https://doi.org/10.1016/j.apm.2012.02.011
http://www.sciencedirect.com/science/article/pii/S0307904X12000935
http://www.sciencedirect.com/science/article/pii/S0307904X12000935
https://doi.org/10.1016/j.future.2011.12.001
https://doi.org/10.1016/j.future.2011.12.001
https://doi.org/10.1109/IPDPS.2005.184
https://doi.org/10.1109/IPDPS.2005.184
https://doi.org/10.1118/1.3180956
http://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2009/Rohkohl09-TNR.pdf
http://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2009/Rohkohl09-TNR.pdf
https://doi.org/10.1109/71.993206

	Evaluating Dynamic Task Scheduling in a Task-Based Runtime System for Heterogeneous Architectures
	1 Motivation
	2 Fundamentals
	2.1 Problem Statement and Task Scheduling
	2.2 Optimality Criterion

	3 Dynamic Scheduling Algorithms
	3.1 Immediate Mode Heuristics
	3.2 Batch Mode Heuristics
	3.3 Implementation

	4 Experiments
	4.1 Experimental Setup
	4.2 Heterogeneous Video-Processing Application
	4.3 Rodinia Benchmark Suite
	4.4 RabbitCT
	4.5 Independent Heterogeneous Jobs

	5 Related Work
	6 Conclusion and Future Work
	References




