
A Generic Functional Simulation
of Heterogeneous Systems

Sebastian Rachuj(B), Marc Reichenbach, and Dietmar Fey

Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
{sebastian.rachuj,marc.reichenbach,dietmar.fey}@fau.de

Abstract. Virtual Prototypes are often used for software development
before the actual hardware configuration of the finished product is avail-
able. Today’s platforms often provide different kinds of processors form-
ing a heterogeneous system. For example, ADAS applications require
dedicated realtime processors, parallel accelerators like graphics cards
and general purpose CPUs. This paper presents an approach for cre-
ating a simulation system for a heterogeneous system by using already
available processor models. The approach is intended to be flexible and to
support different kinds of models to fulfill the requirements of a hetero-
geneous system. Simulators should easily be exchangeable by simulators
with the same architecture support. It was possible to identify the Sys-
temC connection of the considered general purpose CPU models as a
bottleneck for the simulation speed. The connection to the realtime core
suffers from a necessary connection via the network which is evaluated
in more detail. Combining the GPU emulator with the rest of the sys-
tem reduces the simulation speed of the CUDA kernels in a negligible
manner.

1 Introduction

The degree of automation in vehicles rises every year. There are already many
different Advanced Driver Assistance Systems (ADAS) that help the driver and
are even capable of taking full control of the car [7,8]. Providing the necessary
performance and still allowing the safety-critical parts to get certified requires
heterogeneous systems. These kinds of systems are already established in the
realm of ADAS. They include general purpose processors, many core acceler-
ators, and real-time processors. The Nvidia Drive PX 2 is an example for a
development board of a system that contains AArch64 compatible ARM cores,
Nvidia Pascal GPUs, and an Infineon AURIX [16]. Audi proposes another plat-
form called zFAS containing multi-core processors, reconfigurable hardware and
specialized DSPs [2].

During the software development of new ADAS systems, the final hardware
setup is usually not yet determined. Depending on the real-time requirements,
kind of algorithm and necessary computing power, different characteristics of the
final processing system have to be satisfied. For that reason, choosing the correct
components and writing the software should be done cooperatively. This can be
c© Springer Nature Switzerland AG 2019
M. Schoeberl et al. (Eds.): ARCS 2019, LNCS 11479, pp. 128–141, 2019.
https://doi.org/10.1007/978-3-030-18656-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18656-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-18656-2_10


A Generic Functional Simulation of Heterogeneous Systems 129

achieved by using virtual prototypes of the hardware that offer different levels of
abstraction [11]. While very abstract emulation reaches high execution speeds, it
suffers in accuracy of predicting the nonfunctional properties like required energy
and runtime behavior. On the other hand, a very detailed simulation of the het-
erogeneous system might reach nearly real world values for the predicted values
but is too slow for greater workloads as they might occur in ADAS algorithms.

Since a heterogeneous system contains multiple different kinds of processors
(e.g. CPUs, GPUs, specialized ASICs, etc.), a virtual platform is required that
also provides models for all of these components including their interconnections.
A lot of processor simulators are available separately but can be connected to
a SystemC runtime, a framework for implementing discrete simulations [10].
This allows the usage of already available models within virtual prototypes of
heterogeneous systems.

The goal of this paper is to show how to combine multiple unrelated simu-
lation models with the help of their SystemC bindings to create a mere func-
tional simulation of a heterogeneous system as it might be used in current or
future vehicles. Especially models that can be extended by means of determin-
ing nonfunctional properties are taken into account. However, their ability is not
used yet. Another aim is to stay generic in a way that allows the inclusion and
interchangeability of arbitrary SystemC compatible simulation models into the
heterogeneous virtual platform and to avoid changes within the taken models.
Hence, the approach was implemented with gem5 [3], OVP from Imperas, and
the ARM Fast Models to simulate general purpose CPUs, GPU Ocelot [6] and
GPGPU-Sim [1] to provide support for a CUDA-compatible accelerator core,
and the AURIX model from Infineon to offer a realtime processor. After pre-
senting the connection approaches, the simulation runtime performance impacts
are identified and evaluated.

2 Related Work

Heterogeneous simulators are no new invention. Coupling virtual prototypes of
general purpose processors with GPU emulation tools has been done before. A
prominent example is gem5-gpu which also uses GPGPU-Sim and connects it
to gem5 [13]. Power et al. created patches that modify the source code of the
two simulators to allow the integration. They also took care about modeling
the memory system including cache coherency protocols. Software can be run
on the simulated GPU by using a wrapper for the CUDA runtime library. This
enables the usage of available CUDA code but requires the binary to be linked
to the wrapper before it can be deployed on gem5-gpu. In this paper a similar
approach is presented that implements the coupling in a more generic way by
offering memory mapped input and output registers. This allows not only gem5
to be used as a simulator for the general purpose CPU but also OVP and the
ARM Fast Models. Still, a small software wrapper for the applications is required
to exploit the simulated GPU.



130 S. Rachuj et al.

A direct integration of a GPU simulation into gem5 was done by AMD. They
added an accelerator model that is compatible to the GCN version 3 instruc-
tion set architecture and achieved an average absolute error of 42% [9]. Major
difference to gem5-gpu and this paper is the supported runtime environment.
AMD’s approach is available to all languages supported by their HCC compiler
including OpenCL, C++AMP, etc. while only CUDA and OpenCL is supported
by GPGPU-Sim.

Further works include FusionSim (formerly on www.fusionsim.ca but not
available anymore) and Multi2Sim [17] which both don’t support SystemC cou-
pling out of the box. Thus, they were not in line for connecting the real-time
processor since that would have meant changes within the provided models. To
the authors’ knowledge, there is no generic coupling of processor models and
many core accelerator models to realtime processor simulators available yet.

3 Virtual Prototype for Heterogeneous Systems

The proposed virtual prototype for heterogeneous systems uses the TLM library
of SystemC for loosely timed simulations as its core because most available sim-
ulation models allow coupling with it. Figure 1 shows an overview of the system
that was created for this paper. An arrow denotes a possible connection between
an initiator socket (beginning of the arrow) and a target socket (end of the
arrow). The prototype includes components often found on today’s embedded
ADAS platforms like general purpose CPUs, parallel accelerators and a depend-
able realtime CPU which is certified according to ISO 26262. There are already
simulator models for these processors available. However, the connection to the
realtime CPU and the linkage to the CUDA accelerators was newly created for
this paper. Additionally, the central router which is the only strictly required
part of the prototype and the peripherals had to be supplied. Excluding the bus,
all models can freely be replaced or omitted allowing a generic adaption to the
needs of the developed application. However, connecting the native simulators
comes with an impact that is analyzed in Sect. 4.

3.1 General Purpose CPU

Most heterogeneous systems still contain a powerful general purpose CPU. Since
the target application is an embedded system as it might be deployed in an ADAS
application, the choice was to use the AArch64 instruction set architecture as
a reference. Hence, it is sensible to consider the ARM Fast Models as an ARM
instruction set simulator which allow a high simulation speed. Like the other
processor models, it offers SystemC bindings and can easily be connected to
the bus system. For this paper it was used in combination with the support
libraries provided by Synopsys. Open Virtual Platforms (OVP) which is offered
by Imperas is similar to the ARM Fast Models but also support many differ-
ent instruction set architectures. It has already been used in research and was
extended by runtime and power estimation functionality [5,15].

www.fusionsim.ca


A Generic Functional Simulation of Heterogeneous Systems 131

Fig. 1. The heterogeneous virtual prototype. General purpose CPUs can be provided
by OVP, gem5 and the ARM Fast Models, the CUDA accelerator is implemented by
GPU Ocelot or GPGPU-Sim. The real-time CPU is supplied by the Infineon AURIX
model. Only the central bus is required.

Another simulation framework that was investigated for this paper is gem5
which supports different instruction set architectures and also offers multiple
architecture backends. Available backends are the TimingSimple model imple-
menting a single cycle CPU with the possibility to add a fine grained memory
hierarchy. Additionally, the O3 model offers an out-of-order processor pipeline
simulation which requires simulated caches to work correctly. In comparison to
the previous two simulators, gem5 is much slower since it does not provide just-
in-time compilation of the guest code. However, due to the detailed architecture
description, a better runtime prediction can be achieved when using the detailed
backends. The SystemC connection was established by Menard et al. who added
a new slave type to gem5 allowing to interface with custom TLM targets [12].
Since the goal of this paper is to provide a heterogeneous virtual platform for
functional emulation, the TimingSimple backend of gem5 was used. It allows
adding a custom memory hierarchy but avoids an in-depth simulation of the
microarchitecture. The generic approach presented in this paper allows all of
these three general purpose CPU simulators to be chosen and integrated into
the prototype. They can act as initiators of a TLM connection which makes
it possible to directly connect them to the central bus system without further
modifications.

3.2 GPU

Alongside the general purpose CPUs, an approach for emulating CUDA com-
patible accelerator cores was also accomplished. Parallel processors of this kind
are very important for supporting computer vision applications like required for
pedestrian or traffic sign recognition. There are two GPU simulators available
that provide a CUDA runtime library to intercept the API calls and forward
it to the backend. One of them is GPU Ocelot which implements a dynamic
translation framework for translating PTX code into native machine code of the
host CPU using LLVM [6]. To the authors’ knowledge, it is not developed any



132 S. Rachuj et al.

more. GPGPU-Sim, on the other hand, is a simulator for CUDA or OpenCL
compatible GPUs which is still actively extended1 [1].

The connection of the GPU simulators to the virtual prototype that had to
be implemented for this paper was done by providing memory mapped input
and output registers. They can be used to set the parameters of CUDA runtime
functions and eventually to also call the function itself. Internally, arguments
representing virtual addresses of the main memory are translated into global
pointers of the SystemC instance which enable direct access to the underlying
memory buffers. This is accomplished with the help of TLM’s direct memory
interface (DMI) that is used to request pointers from the central bus (compare
the arrow from the CUDA accelerator back into the bus in Fig. 1). Delivering a
pointer also requires the RAM implementation to support the DMI. Finally, the
processed parameters are forwarded to the global CUDA runtime function avail-
able in the simulator. Depending on the library, the simulation binary is linked
to, the functions of GPU Ocelot or GPGPU-Sim are used. It is even possible
to use the real graphics card of a system by taking the standard CUDA run-
time library deployed by Nvidia. This allows a Hardware-In-The-Loop approach
which might be helpful for evaluation tasks with a fixed GPU architecture.

Another approach to integrate a GPU simulator implementing a runtime API
into processor simulators is realized by gem5-gpu and the GCN3 implementation
of AMD which use the Syscall Emulation (SE) facilities of gem5 [9,13]. How-
ever, this requires strongly simulator dependent code which should be avoided
for the generic virtual prototype. OVP also supports adding additional syscalls
by using the intercept library that allows the definition of callbacks when the
requested syscalls are executed. But this method is not portable between differ-
ent simulators and contradicts to the stated aim of this paper to offer a generic
virtual prototype with exchangeable processor cores. Hence, this mode was not
considered for the proposed platform.

3.3 Realtime Processor

The automotive industry always had a requirement for reliable and deterministic
processor cores. As a result, specialized CPUs were created that offer distinct
features like lockstep execution and the possibility to get accurate runtime pre-
dictions. Examples include the ARM Cortex-R and the Infineon TriCore families
offering ISO 26262 compliance. Latter can be simulated by a so-called c-model
that offers simulation models of an AURIX System-On-Chip. It contains multi-
ple TriCores, common accelerators and bus transceivers for protocols often found
in vehicles like CAN and FlexRay.

Due to platform restrictions of the involved models and their supported oper-
ating systems, it was not possible to run the whole heterogeneous system on the
same machine within the same SystemC runtime environment. For this reason,
a method for distributed SystemC simulation had to be implemented for this
paper to enable a combined simulation of the realtime processor with the rest of

1 As of February 2019.



A Generic Functional Simulation of Heterogeneous Systems 133

the proposed prototype. It is loosely based on SystemC-Link [18] in the way that
it uses latencies within the modelled design to reduce the experienced latency
of the host network. To realize this connection, two major challenges had to be
managed. First, a synchronization mechanism of simulation time was required to
avoid one simulation instance to run ahead of the other one. Second, a possibility
for data exchange had to established.

Synchronization can be done by periodically sending messages containing
the current simulation time stamp of one SystemC instance to the other one.
At the beginning of the simulation or after the last received foreign time stamp
message, a time equal to the predefined latency can be simulated. If during this
time another time stamp message is received, the simulation will execute with its
maximal speed and no waiting times have to be introduced. This corresponds to
the best case part of Fig. 2 where both simulators run their full speed. However,
if one SystemC instance is faster than the other one, it will find out that the
received time stamps lack far behind. When the difference between the local
and the remote time gets greater than a predetermined threshold, the faster
simulation will be paused until the difference got smaller again. This allows the
both parts to be run with a resulting simulation speed, in terms of simulated
seconds, of the slower participating simulation. If no further foreign time stamp
message was received during the latency time, the simulation also has to be
paused until new information about the other part arrived. This can be seen
as the worst case part of Fig. 2 where the execution of both SystemC instances
cannot resume until the new message is received.

Data exchange is accomplished by directly sending messages containing a
write or a read request. While the initiating process is waiting for a response,
the simulation time can proceed until the simulated round-trip time is reached.
If there is still enough local work available, the speed of the virtual prototype
will not be diminished. In case, the read data is mandatory for continuing the
local simulation, the SystemC instance has to be paused until the response was
received. This is depicted in Fig. 2 at the right-hand side.

real time
SystemC

Simulation
SystemC

Simulation
SystemC

Simulation
SystemC

Simulation

Best Case Worst Case

SystemC
Simulation

SystemC
Simulation

Synchronization Read/Write Access

Fig. 2. Best and worst case of the presented approach for time synchronization and
a data exchange example between two SystemC instances. Gray boxes are show when
the simulation on the machine progresses. The arrows depict messages.



134 S. Rachuj et al.

3.4 Peripherals

Components like memory are often provided by frameworks like OVP and gem5.
However, accessing the data is only possible from within these simulators which
makes usage from the outside difficult. As a consequence, the necessary memory
and the input and output devices had to be implemented as reusable SystemC
modules. This allows access of the GPU and realtime CPU models with their
specific requirements like the need to directly access the data using pointers.
After the creation of the virtual prototype, an evaluation of possible bottlenecks
was done. The following Section gives an insight into the hindrances of the given
approach.

4 Evaluation

All of the presented simulation models are already available as standalone ver-
sions. However, connecting them to a SystemC runtime causes speed impacts
by making certain optimization methods like just-in-time compilation difficult
or even impossible. Figure 3 shows the data paths that are analyzed in this
Section. Section 4.1 covers the overhead introduced by using the SystemC con-
nectors of the mentioned general purpose CPU simulators. This corresponds to
data path (1) within the Figure. (2) belongs to the overhead of the newly written
CUDA connector module and the data exchange between the CUDA runtime
library and a test memory which is measured in Sect. 4.2. Data path (3) of the
module created for the distributed SystemC simulation is evaluated in Sect. 4.3.
Its messages are exchanged with another SystemC instance which can be located
on the same computer or on another computer.

Fig. 3. The analyzed impacts. Each arrow represents one of the three analyzed data
paths. The white, purple, and gray boxes are modules that were implemented for this
paper. (Color figure online)

4.1 General Purpose CPU

To evaluate the impact of modeling the bus and memory system with the means
of SystemC instead of the native possibilities of gem5 and OVP, two virtual
prototype designs were created for each model. For gem5, the first design includes
the SimpleMemory module as main memory. The second one uses the presented
bus and memory system for heterogeneous simulation. Similar to this, the first



A Generic Functional Simulation of Heterogeneous Systems 135

design of OVP uses its native main memory while the second variant uses the
presented memory layout. The ARM Fast Models use the SystemC Modeling
Library, which is developed by Synopsys and compatible to TLM 2, to connect
to the memory. Since there is no native way to provide a memory implementation,
the SystemC overhead could not be analyzed in an isolated way.

As reference benchmarks CoreMark2, an implementation of the Ackermann
function, a Monte Carlo algorithm for calculating Pi, and the Sieve of Eratos-
thenes were used. These programs are expected to represent different kinds of
real world problems that could be run on a general purpose processor. Table 1
shows the slowdown experienced for each benchmark from the native use of
peripherals in comparison to the SystemC versions.

Table 1. The overhead introduced by coupling the simulators with SystemC. A value
of one means no overhead while a value of two means that twice the time is required.

CoreMark Ackermann Monte Carlo Sieve

gem5 2.7 3.0 3.1 3.1

OVP 798 377 284 1291

Gem5’s slowdown ranges from 2.7 to 3.1 which means that the time required
to run one of the programs with SystemC is approximately three times as long as
the native implementation. An investigation about the cause of this slowdown
using the SystemC version showed that around 43.8% of the simulation time
was spent in the runtime and peripheral code. Additionally, marshalling and
unmarshalling packages from gem5 to and from TLM takes some time. This in
combination with memory allocations and memory copy operations is account-
able for another 19.3% of the time. Only 32.7% of the time is actually used for
simulating the processor. The remaining 4.2% are spent in various C or C++
runtime functions.

OVP suffers a much larger slowdown due to lost optimization potentials when
using the SystemC coupling for the main memory. The code morphing (OVP’s
name for Just-In-Time compilation) cannot deliver enough speedup any more
because OVP cannot assume that the instructions stay the same. Thus, it has to
fetch them every time anew always suffering a round-trip time to the SystemC
memory implementation and back. In total, 85% of the simulation time is spent
in the SystemC part of the virtual platform.

As shown in this Section, the simulation performance of the general purpose
simulators is tremendously diminished when the SystemC binding is used. This
is caused by the overhead introduced by converting the data requests from the
internal representation to a TLM compatible one. Additionally, no features of
TLM are used which would allow a speedup again. For example, the DMI can be

2 https://www.eembc.org/coremark (accessed on 2018-12-04).

https://www.eembc.org/coremark


136 S. Rachuj et al.

used to obtain a pointer into the memory which avoids a lot of overhead which
was measured in this Section. Hence, some optimizations should be implemented
to increase simulation speed.

4.2 GPU

The SystemC module for linking against GPU Ocelot and GPGPU-Sim does
not introduce relevant overhead. This was evaluated by measuring the time of
the CUDA simulations once without the SystemC connection as the libraries
are intended to be used and once with a CPU model and the SystemC con-
nection in place. To get only the impact on the accelerator code without inter-
ference from the required host code, the CUDA runtime library source code
was modified to cumulate the time used within the CUDA runtime functions.
Multiple different algorithms were run to even out software specific anomalies.
The benchmarking applications include a vector addition (vecAdd) which was
done for a vector containing one million elements, ten matrix multiplications
(matrixMult) of 320 × 320 and 320 × 640 matrices, 128 iterations of the Black
Scholes algorithm [4] with a problem size of 5000, and a sobel algorithm which
is sometimes used as a component of an ADAS application, e.g. in lane detec-
tion algorithms [14]. From a set of at least ten measurements always the fastest
results were used and the overhead determined. It is shown in Table 2 for all four
algorithms. The Host Runtime corresponds to the time measured without any
SystemC involvement while the simulation runtime (Sim. Runtime) corresponds
to the time measured with the CUDA library connected to the virtual prototype.

Table 2. Overhead introduced by the SystemC connection module in comparison to
native usage of the CUDA simulation libraries for different benchmark algorithms.

vecAdd matrixMult Black Scholes Sobel

Overhead 3.7% 0.5% 1.3% 2.0%

Host Runtime 6.6 s 587.6 s 13.3 s 23.4 s

Sim. Runtime 6.8 s 590.7 s 13.5 s 23.9 s

As can be seen from Table 2 the overhead is relatively small and stays below
4% for all investigated benchmarks. Especially long running algorithms like the
matrix multiplication are hardly affected by the SystemC module. Short running
ones like the vector addition display a bigger overhead which is still small in
comparison to the overhead introduced to the general purpose CPU models for
example. The source of the overhead lies within the SystemC connector that has
to copy the operands from the virtual prototype to the CUDA runtime library
and is responsible for performing the address translations. Since the remaining
work which contains the work-intensive tasks like the kernel code is executed
separately from the virtual prototype, the impact is kept low. Hence, the longer
a kernel runs the less overhead is experienced.



A Generic Functional Simulation of Heterogeneous Systems 137

4.3 Realtime Processor

Since the AURIX model uses a network connection to connect to the rest of the
simulation, the impacts of this code on the system was investigated. To determine
the overhead introduced by the proposed approach, synthetic benchmarks were
created. They consist of a worker thread that has to be dispatched once each
simulated nanosecond meaning a frequency of 1 GHz. It was run first without
any networking code to obtain a reference runtime that can be compared. Each
measurement was done at least ten times and the average of all runs was taken
to minimize the impacts from the host operating system on the results.

At first, only the overhead introduced by the periodic synchronization events
was determined. For this, different times between sending the synchronization
messages were considered. A period interval of one nanosecond means that the
worker thread and the synchronization thread are run alternately. A period inter-
val of two nanoseconds means that for two runs of the worker thread body, one
run of the synchronization thread occurs. Figure 4 shows the relative runtime
the synchronization messages introduce on the worker thread. A value of zero
represents no overhead while a value of one implies a runtime that takes twice
as long as the local reference. The measurements were done with two different
computers connected via an Ethernet switch and locally on one host by using
the loopback device. Additionally, the standard deviation for the measurements
was calculated.

Fig. 4. The relative runtime and its standard deviation with the synchronization mes-
sages enabled in comparison to the local reference time once done over network and
once using the local loopback device.



138 S. Rachuj et al.

As can be seen, a period interval of 1000 ns reduces the overhead to 20–25%.
This means that having an interval length that is 1000 times longer than the
default clock rate of the system should reduce the impact from more than 300% in
case every nanosecond a message is sent to only 20–25%. A similar shape can be
seen in Fig. 5 which shows the overhead depending on the allowed simulation time
discrepancy between the two SystemC instances. The period was fixed to 1000 ns
to reduce the overhead introduced by the periodic sending operation. With an
allowed discrepancy of about 8000 ns, the measurable overhead is nearly the
same as with only sending the synchronization messages: A little bit above 25%.
This should be the time of the best case presented in Fig. 2. It is noticeable that
the major impact on the overhead introduced by the synchronization mechanism
is depending on the selected period (1000 ns) since the overhead gets reduced
at steps of 1000 ns of allowed discrepancy. This is due to the fact that each
instance waits for the synchronization message while it is not sent yet. It can
be concluded that the allowed discrepancy should be approximately eight times
the period time to reduce the overhead.

Fig. 5. The relative runtime and its standard deviation with depending on the allowed
simulation time discrepancy in comparison to the local reference time once done over
network and once using the local loopback device.

Finally, the overhead when sending TLM packages via the network was anal-
ysed. The period was fixed to 1000 ns and the discrepancy to 8000 ns. Since the
overhead introduced is directly depending on the SystemC design and a generic
result cannot be given, the indirect overhead of another TLM data exchange
on the synthetic worker was measured. Thus, another thread was introduced
that sends as much data as the latency allows. Figure 6 shows that the complete
overhead via network is around 50% even for the smallest and greatest evalu-
ated latencies. As a consequence, no real advice can be given regarding the best



A Generic Functional Simulation of Heterogeneous Systems 139

suitable latency. The best case would be if the latencies between the remote
and the local simulator instances can be set equal to the latencies of the real
hardware. When using the loopback device, the overall overhead can be reduced
to approximately 30%. However, this cannot be done for the presented virtual
prototype due to the requirement of different host computers.

Fig. 6. The overhead and its standard deviation introduced by another thread sending
TLM messages using the presented network approach. This was once done via network
and once via the loopback device.

5 Future Work

From the analysis, the speed can be identified as a major issue in regard to the
usability of the system. While evaluation of small workloads on the heteroge-
neous system can be feasible, larger sensor processing algorithms (e.g. working
on camera pictures) will take too long for a functional run on the simulated plat-
form. Hence, certain optimization steps from within the involved processor mod-
els should be implemented. One simple improvement can be the usage of DMI
as already stated above. Additionally, assertions should be given to allow the
complete exploitation of Just-In-Time techniques. For example, direct changes
of the underlying SystemC memory that may also contain instructions should be
forbidden. Callback functions may then be used to invalidate the memory (like
done for the DMI) if it is changed.

From the findings of this paper, other connection approaches without uncon-
ditional compatibility might also achieve higher speeds. Since the isolated way
of execution of the CUDA simulation achieves the best speed, it seems benefi-
cial to also isolate the general purpose CPUs. However, this comes with its own



140 S. Rachuj et al.

additional challenges like how to realize direct pointers into the host memory
which are required by the GPU emulation.

Further improvements can be expected by using models or enabling features
in the selected models that determine the runtime and power behavior of the
real hardware when the simulated software is run on it. While this is supported
by gem5 and GPGPU-Sim to a certain degree, there are still deviations from
the reference hardware. Additionally, the whole bus system has to be modelled
accurately which is difficult without further insight into today’s ADAS platforms.
These enhancements could lead to a virtual prototype allowing a very detailed
evaluation of a heterogeneous system as it might be required for certification.

6 Conclusion

In this paper, an approach for functionally simulating a heterogeneous system
using already available processor models was shown. SystemC was used as a
common communication language and additional modules for connecting the
CUDA GPU simulator, and a remote connection to realtime processors were
created. In comparison to standalone simulation, severe performance penalties
were noticed. As bottlenecks, no longer functioning performance optimizations of
the general purpose CPU emulators were identified slowing down the simulation
by a factor between 2.7 (best case with gem5) up to a factor of 1291 (worst case
with OVP). Additionally, the overhead introduced by the remote connection used
to communicate with the realtime processor was analyzed. It could be shown that
it stays below 65% for the synthetic benchmarks. For the GPU binding, a very
small simulation runtime impact could be observed that stayed below 4% for the
observed benchmark applications.

References

1. Aaamodt, T., Boktor, A.: GPGPU-Sim 3.x: a performance simulator for many-
core accelerator research. In: International Symposium on Computer Architecture
(ISCA) (2012). http://www.gpgpu-sim.org/isca2012-tutorial

2. Anwar Taie, M.: New trends in automotive software design for the challenges of
active safety and autonomous vehicles. In: FAST-zero’15: 3rd International Sym-
posium on Future Active Safety Technology Toward Zero Traffic Accidents 2015
(2015)

3. Binkert, N., et al.: The gem5 simulator. SIGARCH Comput. Archit. News 39(2),
1–7 (2011)

4. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit.
Econ. 81(3), 637–654 (1973)

5. Delicia, G.S.P., Bruckschloegl, T., Figuli, P., Tradowsky, C., Almeida, G.M.,
Becker, J.: Bringing accuracy to open virtual platforms (OVP): a safari from high-
level tools to low-level microarchitectures. In: IJCA Proceedings on International
Conference on Innovations in Intelligent Instrumentation, Optimization and Elec-
trical Sciences ICIIIOES, no. 10, pp. 22–27. Citeseer (2013)

http://www.gpgpu-sim.org/isca2012-tutorial


A Generic Functional Simulation of Heterogeneous Systems 141

6. Diamos, G.F., Kerr, A.R., Yalamanchili, S., Clark, N.: Ocelot: a dynamic opti-
mization framework for bulk-synchronous applications in heterogeneous systems.
In: Proceedings of the 19th International Conference on Parallel Architectures and
Compilation Techniques, PACT 2010, pp. 353–364. ACM, New York (2010)

7. Dikmen, M., Burns, C.: Trust in autonomous vehicles: the case of tesla autopi-
lot and summon. In: 2017 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pp. 1093–1098, October 2017

8. Greenblatt, N.A.: Self-driving cars and the law. IEEE Spectr. 53(2), 46–51 (2016)
9. Gutierrez, A., et al.: Lost in abstraction: pitfalls of analyzing GPUs at the interme-

diate language level. In: 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 608–619, February 2018

10. IEEE Computer Society: IEEE Standard for Standard SystemC Language Refer-
ence Manual. IEEE Std 1666–2011 (2012)

11. Leupers, R., et al.: Virtual platforms: breaking new grounds. In: 2012 Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 685–690, March
2012

12. Menard, C., Jung, M., Castrillon, J., Wehn, N.: System simulation with gem5
and Systemc: the keystone for full interoperability. In: Proceedings of the IEEE
International Conference on Embedded Computer Systems Architectures Modeling
and Simulation (SAMOS). IEEE, July 2017

13. Power, J., Hestness, J., Orr, M.S., Hill, M.D., Wood, D.A.: gem5-gpu: a heteroge-
neous CPU-GPU simulator. IEEE Comput. Archit. Lett. 14(1), 34–36 (2015)

14. Reichenbach, M., Liebischer, L., Vaas, S., Fey, D.: Comparison of lane detection
algorithms for ADAS using embedded hardware architectures. In: 2018 Conference
on Design and Architectures for Signal and Image Processing (DASIP), pp. 48–53,
October 2018

15. Schoenwetter, D., Ditter, A., Aizinger, V., Reuter, B., Fey, D.: Cache aware instruc-
tion accurate simulation of a 3-D coastal ocean model on low power hardware. In:
2016 6th International Conference on Simulation and Modeling Methodologies,
Technologies and Applications (SIMULTECH), pp. 1–9, July 2016

16. Skende, A.: Introducing “parker”: next-generation tegra system-on-chip. In: 2016
IEEE Hot Chips 28 Symposium (HCS), August 2016

17. Ubal, R., Jang, B., Mistry, P., Schaa, D., Kaeli, D.: Multi2Sim: a simulation frame-
work for CPU-GPU computing. In: 2012 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 335–344, September 2012

18. Weinstock, J.H., Leupers, R., Ascheid, G., Petras, D., Hoffmann, A.: Systemc-
link: parallel systemc simulation using time-decoupled segments. In: 2016 Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 493–498, March
2016


	A Generic Functional Simulation of Heterogeneous Systems
	1 Introduction
	2 Related Work
	3 Virtual Prototype for Heterogeneous Systems
	3.1 General Purpose CPU
	3.2 GPU
	3.3 Realtime Processor
	3.4 Peripherals

	4 Evaluation
	4.1 General Purpose CPU
	4.2 GPU
	4.3 Realtime Processor

	5 Future Work
	6 Conclusion
	References




