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Abstract. The rise of the Internet of Things (IoT) has dramatically
increased the number of low-cost embedded devices. Being introduced
into today’s connected cyber-physical world, these devices now become
vulnerable, especially if they offer no protection mechanisms. In this
work we present a hardware/software co-designed memory protection
approach that provides efficient, cheap, and effective isolation of tasks.
The security extensions are implemented into a RISC-V-based MCU
and a microkernel-based operating system. Our FPGA prototype shows
that the hardware extensions use less than 5.5% of its area in terms of
LUTs, and 24.7% in terms of FFs. They impose an extra 28% of context
switch time, while providing protection of shared on-chip peripherals and
authenticated communication via shared memory.

Keywords: Memory protection · Resource protection ·
Inter-task communication · RISC-V · MPU

1 Introduction

The number and heterogeneity of embedded devices which are emerging with
the rise of the IoT is increasing massively. Their span ranges from very small
and lightweight devices up to very complex computer systems, many of which
implement security and safety critical operations [7,11]. Therefore, they must
offer some form of protection mechanism which will ensure isolated execution of
applications. There is an extensive research in this area at the moment, focused
on finding lightweight solutions and protection mechanisms. A lot of concepts
have been developed, each with a different purpose, but so far, none of them has
solved all the problems.

In this paper our focus are low-cost microcontrollers (MCUs) which operate
in a single physical address space. Devices that are based on such MCUs are
especially susceptible to attacks, intentional or not, and an efficient isolation
mechanism is necessary to protect them. In order to reduce cost and energy
usage, due to their lightweight nature, these devices often lack any form of pro-
tection. Thus, even though tasks might be designed to cooperate, not trying
to intentionally harm each other, a small bug in one of them can potentially
corrupt the whole system. The security solution must be implemented in a very
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efficient manner, regarding both memory and hardware consumption. If real-
time constraints are present, the security implementation should not impose
significant runtime overhead, but must still provide integrity and confidential-
ity guarantees. Many hardware and software-based security architectures have
recently emerged, isolating the execution of sensitive operations on a wide range
of devices. They all differ in the type of devices they are tackling and the amount
of hardware and software in their Trusted Computing Base (TCB). In higher-
end systems a very common approach is to have a trusted operating system
which uses a Memory Management Unit (MMU) to isolate processes in their
private virtual address space. This approach requires a lot of hardware and has
big TCB. Researches recently have been working on developing Protected Mod-
ule Architectures (PMAs) [15] as a more efficient and lightweight approach for
memory isolation in a shared physical address space, using small-sized TCBs
[5,6,8,12,14]. Some of them completely exclude the software from the TCB,
while others implement just the most necessary software operations.

We propose a hardware/software co-designed embedded platform which pro-
vides dependability at low-cost. The architecture is based on a RISC-V vscale1

implementation on which a minimal microkernel (SmartOS) [4] is running. All
memory accesses are mediated by a tailored Memory Protection Unit (MPU)
which provides three essential isolation concepts: isolation of private code and
data regions of individual tasks, protecting the usage of shared on-chip memory-
mapped peripheral devices from unauthorized access, and providing protected
communication between tasks.

The paper is structured as follows. First we describe the protection concept
and introduce the platform used for implementation and evaluation (Sect. 2).
Then, a detailed description of each protection mechanism is given along with
the hardware and software implementation (Sect. 3). Next, several test cases
and measurement results are presented (Sect. 4). We relate our work to similar
approaches (Sect. 5) and discuss the differences and benefits from our approach.
Finally, we draw a conclusion (Sect. 6).

2 Concept and Platform Overview

The goal of most embedded computer systems is to run applications securely and
efficiently. To achieve this goal both the hardware and the software should coop-
erate as effectively as possible. However, especially in today’s security-related
research the co-design aspect of hardware and software seems to be missing. In
this work we explicitly target low-cost embedded devices and we try to close this
gap by developing a hardware/software co-designed memory protection architec-
ture.

In a multitasking environment where concurrent tasks reside in a single
address space and extensively use shared resources, attacks from malicious or
malfunctioning tasks are expected to happen. We propose an inexpensive and

1 https://github.com/ucb-bar/vscale.
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effective approach for isolated execution of preemptable tasks in an environ-
ment with frequent interactions. In order to have an isolated task execution, we
must ensure several properties: protect the internal state of the running task
(private code and data), ensure correct resource usage by enforcing access poli-
cies of the resources the task owns, and finally, authenticate communication
between cooperating tasks using protected shared memory. The ultimate goal of
our hardware/software co-designed architecture is to achieve efficient (in terms
of hardware and software) task-based protection for low-cost MCUs, at the same
time trying not to violate the real-time characteristics of the underlying OS by
keeping the context switch time constant, and trying to avoid expensive system
calls as much as possible. Thus, we implement kernel-based security mechanisms,
which are then enforced by lightweight hardware extensions.

2.1 RISC-V

The MCU we are using is based on a vscale processor, which is a single-issue,
three stage pipeline implementation of the RISC-V ISA [16,17]. We decided to
use a RISC-V-based MCU mainly because of its simplicity, minimalism, open-
ness, and room for extensions. The vscale implementation already comes with
two privilege modes, which are the main prerequisite for implementing protec-
tion. Tasks can request services from the kernel only by system calls, which
trap into machine mode. The MCU includes several on-chip peripherals, which,
as in most embedded devices, are mapped into a single address space with the
memories, and if no memory protection is available they are fully accessible to
everyone. The architectural overview of the system is given in Fig. 1.

2.2 SmartOS

SmartOS is a small, modular, real-time operating system suitable for low-cost
embedded devices [4]. It is ported to vscale and uses two operational modes: the
kernel runs in privileged machine mode, while tasks as well as the libraries run
in user mode. Tasks are preemptive, use individual stacks and execute all API
functions in their context. The kernel uses its own stack and is responsible for
priority-aware scheduling, system call execution, interrupt handling, dynamic
resource management, and inter-task synchronization using events. The kernel
code and data, including the control blocks for tasks, events, and resources, can
only be accessed using system calls, which are atomic and executed in machine
mode.

In order to properly design a secure system where tasks and OS coexist in a
single address space, we must ensure that an incorrect (or malicious) task cannot
interfere with the proper operation of the system and other tasks. That is why
the linker is instructed to efficiently organize the memory map into regions, as
shown in Fig. 1. Each task is associated with its individual code and data (stack)
regions, as well as a shared region for API functions. On demand, the OS also
grants access to additional regions for accessing peripherals and shared memory
for inter-task communication.
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Resource Management. In order to protect shared resources (i.e. peripherals)
from unsynchronized access by several tasks and enable collaborative resource
sharing, SmartOS uses a resource management concept, based on the Highest
Locker Protocol (HLP) [18], which due to its simple implementation, is frequently
used in RTOSs. It allows dynamic access coordination to temporarily shared, but
exclusive resources and prevents a resource from being used by a task as long as
it is allocated to another task. Each resource at compile time or system startup
receives a ceiling priority, which is the highest priority of all registered tasks that
announced the usage of that resource. As soon as a task successfully allocates a
resource, its priority is raised to the resource’s ceiling priority.

The resource concept in SmartOS enables, but does not enforce synchroniza-
tion on physical resources without hardware support. The kernel can not prevent
(neither detect, nor block) illegal access attempts to a peripheral by a task which
does not hold it as a resource. To avoid this, instead of a very slow approach of
allocating/deallocating the resource inside each driver function which has direct
access to it, we are proposing a hardware-based enforcement of the HLP, which
locks peripherals in order to protect them from unauthorized access. Without
an additional hardware support there is a risk that even though one task has
claimed the resource for itself, another task uses it in an unprotected way.

Inter-task Communication. Tasks in SmartOS are not self-contained, they
frequently interact with each other and with the environment. For that reason,
explicit synchronization between tasks is achieved through events, which can
be invoked by tasks or interrupt service routines (ISRs). In this work we are
extending the event synchronization concept of SmartOS and provide an effective
solution for authenticated data exchange between tasks.

3 Implementation Details

In order to achieve flexible memory separation for variable-sized regions, each
defined with its start and end address, we are using a segmentation-based mem-
ory protection approach. Our MPU is configured with four Control and Status
Registers (CSRs), as specified in the RISC-V privilege architecture [17], which
hold the address ranges of task’s private code and data regions. Two more reg-
isters store the address range of the API functions, called libraries in Fig. 1, and
are not reprogrammed on every context switch. By configuring few additional
registers we also enable efficient and lightweight access protection to shared
resources, including memory for communication (see Fig. 1).

3.1 Basic Memory Protection

When a programmer creates a task, she specifies the priority, the amount of stack
to be used as well as the entry function of the task. When a task is loaded, the
kernel assigns unique code and data (including stack) memory regions, which are
stored in the Task Control Block. Since drivers in our system are executed in the
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Fig. 1. Architectural overview of the system

context of the currently running task, by placing all API functions sequentially
in memory, we reduce the number of MPU registers needed for protecting the
shared code area accessible to all tasks.

In vscale, in order to achieve basic memory protection, we take advantage
of its two privilege levels. The MPU configuration is allowed only in privileged
machine mode and is done by the kernel on every dispatch of a newly scheduled
task. While in user mode, the MPU monitors all bus activities and raises an
exception in case of an access violation. We made several modifications to the
vscale pipeline by introducing three new exception vectors: instruction access
fault, load access fault, and store access fault vector. The MPU’s data-access
policy implies that memory locations accessed by store and load instructions
can be performed only within the task’s data regions (including the authorized
peripheral and shared memory addresses) which are implicitly non-executable,
while the control-flow policy implies that the control-transfer instructions must
stay within the memory reserved for the task’s code and library regions which
are implicitly non-writable.

The MPU is attached to the vscale pipeline and the exception signal it pro-
duces is then handled by the controller module in the decode/execute stage. The
processor invalidates the executing instruction by flushing the pipeline, saves the
exception vector number in the mcause CSR, the faulty instruction in the mepc
CSR, and immediately jumps to a predefined exception handler. From there, the
kernel handles the exception appropriately.
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3.2 Peripheral Protection

In SmartOS the kernel’s resource management protocol implies that all shared
peripherals must be declared as resources. Tasks can request an access and if
granted, they can use the peripheral as specified by the HLP protocol. By intro-
ducing hardware checks, we force tasks to explicitly request a resource before
using it. If a task hasn’t previously announced usage of the resource, or if the
resource is currently being used by another task, access is not granted (the
en periph[i] signal for the particular peripheral i in Fig. 2 is disabled) and a
data access exception is raised.

Resources in SmartOS are declared in so-called driver constructors, and their
declaration is mandatory. Every task announces its resource usage at creation
time (OS REGISTER RESOURCE macro in Fig. 2), in order for the HLP to
calculate the resource’s ceiling priority, and an MPU bitfield peripheral register
is appropriately programmed (periph reg in Fig. 2). Each peripheral that is used
by the task is encoded with a ‘1’ in the bitfield register on its specific index. The
index of the peripheral is associated with the ordinal number the peripheral has
in memory (in our MCU implementation, each peripheral has a fixed memory
address range). The order in which resources are used is announced during run-
time by two system calls (getResource() and releaseResource()). Task-awareness
is integrated into the hardware by storing the id of the currently executing task
(task id register in Fig. 2) as well as the id of the task which was granted access
to a peripheral (periph owner register in each peripheral in Fig. 2).

The MPU needs only one register for protecting up to 32-peripherals, which
is sufficient for most small embedded systems. The peripheral access is checked
by hardware on each peripheral register access (load or store), which is more
efficient (both in terms of execution time and required software) than performing
expensive software checks in device drivers.

Fig. 2. Protected usage of shared peripherals
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3.3 Protected Inter-Task Communication

We implement a shared memory approach for communication between tasks,
since it has been proven to be a very versatile architectural choice, mainly
because of the constant access time to variable-sized values. The shared mem-
ory region is divided into pages of configurable, but mutually equal sizes. Every
page is easily indexed with the lower bits of the address (page index in Fig. 3),
which are used as the page’s position in the MPU bitfield register (comm reg
in Fig. 3). For each task, this register has a ‘1’ only if the communication is
requested and acknowledged by both sending and receiving tasks. When the
sender wants to communicate, it explicitly grants privileges for communication
to the receiver task, by specifying the receiver task’s id and the size of the mes-
sage. But, only when the receiver task acknowledges the request, the shared
memory region is open for both of them. The system calls (registerSharedMem()
and ackSharedMem()) used for establishing the mutually authenticated commu-
nication are shown in Fig. 3, and are used to configure the values which will be
placed inside the comm reg register. After successful authentication, every com-
munication between the two tasks is done in user mode, by calling the functions
sendData() and receiveData(), thus preventing expensive system calls. When a
task requests memory area for communication, the kernel inspects which pages
are still free, and designates them to both communicating tasks. Tasks authenti-
cate each other with their id-s, which are unique for each task and are maintained
by the kernel. When running out of memory, the kernel rejects any request for
new communication, until memory is freed. The nature of communication can
be asynchronous in order to prevent blockage due to unresponsive tasks, or can
be made synchronous by using the SmartOS’s event concept.

In hardware, every time a data memory operation is performed in the des-
ignated shared memory area for communication, the MPU calculates the page
index, checks the comm reg register, and raises a data memory access exception
if the executing task has no privileges to use the indexed page. This approach
is substantially faster then completely software-based implementation, because
no system calls are involved for the communication itself. The more expensive
authentication is only done once, before establishing the communication.

4 Test Cases and Performance Evaluation

We implemented the presented protection concept into our research platform
consisting of a vscale-based MCU with several on-chip memory-mapped periph-
erals (e.g., UART, GPIO), on which SmartOS is running. For the MCU imple-
mentation we use the Basys3 Artix-7 FPGA board from Digilent2.

First, we are going to present two test cases, along with the simulation
results3, which show an invalid way of accessing memory. On the left side of
Fig. 4 the disassembly of task1 ’s entry function is shown. In this example task1

2 https://reference.digilentinc.com/reference/programmable-logic/basys-3/start.
3 Performed by Vivado Simulator 2017.3.

https://reference.digilentinc.com/reference/programmable-logic/basys-3/start
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Fig. 3. Protected and authenticated communication between tasks

tries to change the control-flow by jumping into the address space of task2. As
can be seen from the simulation output, at the time the jump instruction is
executed with the address which does not belong to task1 ’s code region, an
instruction access fault exception is raised. After the exception, the code contin-
ues from a predefined exception handling routine (0x100). The scenario in Fig. 5
shows a task trying to access the GPIO OUT register, when it hasn’t requested
it before. A load access fault exception is raised, and as in the previous example,
the processor jumps to the exception handling routine.

Hardware Footprint. To evaluate the used FPGA resources of our MPU
implementation we measured the hardware footprint of the baseline system as
well as the one just for the protection hardware components. The overall uti-
lization of lookup tables for logic (LUTs) and flip-flops (FFs) as reported after
synthesis by Xilinx Vivado 2017.3 is shown in Table 1.

Execution Time Overhead. Context switches are one of the most costly
operating system operations in terms of CPU time. The context frame which is
saved on the stack on each context switch when dispatching a newly scheduled
task consists of a total of 36 load operations. Out of those, configuring the code
and data regions takes only 4, while both peripheral and communication pro-
tection information counts for another 4 load operations, giving a total increase
of 28%. However, except the initial peripheral allocation and communication
authentication which happens at task’s load time, during task execution the
kernel does not perform any additional checks.

In order to compare the number of clock cycles needed for protected com-
munication, besides the communication using shared memory, we implemented
a simple message queue-based communication, as specified in [1]. As shown in
Table 2 the number of clock cycles for creating a message queue and registering
a shared memory address for same-sized messages are similar, since both are
implemented as system calls. However, the number of clock cycles for actual
communication is significantly lower when using shared memory, because send-
Data() unlike xQueuePut() is not a implemented as a syscall.



Hardware/Software Co-designed Security Extensions for Embedded Devices 11

Fig. 4. Invalid control-flow memory access

Fig. 5. Invalid GPIO peripheral access

Table 1. Synthesis results of our hardware extensions.

Category Components LUTs (Util%) FFs (Util%)

Baseline system vscale 2547 (4.02%) 1293 (1.02%)

Our hardware
resources

Basic MPU 75 (0.36%) 192 (0.46%)

Added resource protection 106 (0.51%) 256 (0.62%)

Added communication protection 140 (0.67%) 320 (0.77%)

Total % over Baseline system 5.5% 24.7%

Table 2. Clock cycles for protected communication.

Category System call/Function Clock cycles

Message queue xQueueCreate (len, msgSize) 135

XQueuePut (handle, msg) 115

Protected shared memory registerSharedMem (taskId, msgSize) 150

sendData (addr, msg) 30



12 M. Malenko and M. Baunach

5 Related Work

We analyzed several security architectures, both from the mainstream comput-
ing domain and the embedded domain. On conventional high-end systems, soft-
ware isolation is usually realized by a trusted operating system, which relies on
advanced hardware support in a form of an MMU [13]. Since this mechanism is
too costly to be used in embedded systems, a lot of work is recently concentrat-
ing on creating Protected Module Architectures (PMAs) which provide cheap,
small, and effective isolation in a shared address space, usually with a very small
Trusted Computing Base (TCB). Architectures like SMART [9] and Sancus [14],
with a zero-software TCB, have a static way of loading self-contained secure mod-
ules (SMs), which have very limited access to shared resources. This implies that
SMs must claim a resource for themselves in order to have security guarantees on
it and are not able to share it with other modules. Even more, Sancus requires
that the peripheral is wired in the same contiguous data region of the SM that
owns it. Other architectures like TrustLite [12] and TyTAN [5], in order to pro-
vide greater flexibility, have created many kernel-like services and put them in
the TCB. There is a difference between Trustlite and Sancus in the way they
enforce the PC-based memory access control rules. While in Sancus there is a
dedicated hardware-based Memory Access Logic (MAL) circuit per SM, which
provides the code section with an exclusive access to a single contiguous data
section, in TrustLite the access rules are programmed in a fixed-size Execution-
aware MPU (EA-MPU) hardware table. Multiple non-contiguous private data
sections per trusted module, or protected shared memory between trusted mod-
ules can be configured, but such flexibility is limited by the number of entries
in the hardware table. Regarding peripheral protection, TrustLite allows limited
number of EA-MPU’s data regions to be used for securing peripherals, which are
allowed for access only to trusted modules. Our peripheral protection approach
allows for configuration of up to 32 peripherals which do not have to be mapped
in a contiguous memory addresses. ARM TrustZone [2] is another security archi-
tecture which separates a computer’s resources into a secure and a non-secure
world. While the secure world can access everything, the non-secure world is
limited only to non-secure memory regions. Peripherals are also split between
the two worlds. TrustZone requires a security kernel for managing the secure
world, which increases the size of the TCB.

Since SmartOS has a very small kernel code base, which performs almost all
the functions which in [5] are put in a TCB, we are considering it to be trusted
and to be part of our system’s TCB. In contrast to the above mentioned archi-
tectures, SmartOS does not distinguish between secure and non-secure worlds.
It equally protects all tasks, not just their own code and data, but it allows for
greater flexibility and more fine-grained protection regarding shared peripher-
als and shared memory for communication. The above mentioned architectures
don’t do much to improve the security of the software that runs in the secure
world, except to prevent unwanted access by normal world software. Therefore,
it is the developer who determines that software is trusted, typically through
rigorous development processes, testing, and certification.
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Regarding the communication between tasks, in many operating systems like
L4 [10] and FreeRTOS [3] the communication for security reasons goes through
the kernel, which is a very costly operation. In L4, each time a communication
is performed, a task loads the receiver’s id, the message, and executes a system
call. Then, the kernel switches the address space to the receiver task’s, loads
the sender id, and returns to user mode. Only after that, the receiver task gets
the message. On the other hand, in TrustLite, the ability to achieve fine-grained
communication via shared memory is limited by the number of MPU regions the
platform offers. In order to avoid expensive context switches every time tasks
need to communicate, we are proposing hardware-checked authenticated com-
munication, which the kernel establishes only once, and afterwards is performed
in user mode. The communication memory that tasks use is configurable and
fine-grained, in terms of consecutive memory locations.

6 Conclusion

In this paper we present a hardware/software co-designed architecture for iso-
lated execution of tasks in low-cost embedded devices. Besides the basic isolation
of private code and data regions, in an environment where tasks have frequent
peripheral access and mutual communication, we allow for efficient protection of
shared resources. By installing task-awareness into the MPU, kernel’s operations
are supported by inexpensive hardware-enforced security checks.

Acknowledgment. This work was conducted within the Lead-Project “Dependable
Internet of Things in Adverse Environments”, subproject “Dependable Computing”
(funded by TU Graz).
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17. Waterman, A., Lee, Y., Asanović, K.: The RISC-V instruction set manual vol-
ume ii: Privileged architecture version 1.10. Technical report, EECS Department,
University of California, Berkeley, May 2017

18. Zhang, T., Guan, N., Deng, Q., Yi, W.: Start time configuration for strictly periodic
real-time task systems. J. Syst. Archit. 66(C), 61–68 (2016)


	Hardware/Software Co-designed Security Extensions for Embedded Devices
	1 Introduction
	2 Concept and Platform Overview
	2.1 RISC-V
	2.2 SmartOS

	3 Implementation Details
	3.1 Basic Memory Protection
	3.2 Peripheral Protection
	3.3 Protected Inter-Task Communication

	4 Test Cases and Performance Evaluation
	5 Related Work
	6 Conclusion
	References




