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Preface

The 32nd International Conference on Computer Architecture (ARCS 2019) was
hosted at the Technical University of Denmark (DTU) close to Copenhagen in Lyngby,
Denmark, May 20–23, 2019. It was organized by the special interest group on
“Architecture of Computing Systems” of the GI (Gesellschaft für Informatik e. V.) and
ITG (Informationstechnische Gesellschaft im VDE).

The ARCS conferences series has over 30 years of tradition reporting leading-edge
research in computer architecture, operating systems, and other related low-level
system software, and a wide range of software techniques and tools required to exploit
and build new hardware systems efficiently. ARCS addresses the complete spectrum
from fully integrated, self-powered embedded systems up to plant-powered
high-performance systems and provides a platform covering new emerging and
cross-cutting topics, such as autonomous and ubiquitous systems, reconfigurable
computing and acceleration, neural networks and artificial intelligence, as well as
outlooks on future topics like post-Moore architectures and organic computing.

The focus of the 25th conference was set on architectures for complex real-time
systems like autonomous control systems, as well as safety and security critical
systems. This included upcoming architectures and technologies, exploitable archi-
tectural features, languages, and tooling.

ARCS 2019 attracted 40 submissions from authors in 19 countries world-wide,
including Canada, New Zealand, Russia, Japan, and the USA. Each submission was
reviewed by a diverse and dedicated Program Committee. Ten submissions received
three qualified reviews and the remaining 30 submissions got the requested number of
four reviews. There was a total of 150 reviews of which 99 were provided by the
members of the Program Committee while 51 were from external reviewers.

The Program Committee selected 24 submissions to be presented at ARCS and
published in the proceedings, which corresponds to a 60% paper acceptance rate. The
accepted papers form eight entertaining sessions with 25-minute slots per presentation:
Dependable Systems (2 papers), Real-Time Systems (3 papers), Special Applications
(3 papers), Architecture (4 papers), Memory Hierarchy (3 papers), FPGA (3 papers),
Energy Awareness (3 papers) as well as a session on NoC/SoC (3 papers).

Every conference day was opened by an interesting top-level keynote presentation
from academia and industry, starting with “Static vs. Dynamic Hardware Security
Protection Mechanisms” by Avi Mendelson from Technion, Israel. The second day was
introduced by Benoît Dupond de Dinechin, CTO from Kalray (France) with “Kalray’s
MPPA® Manycore Processor: At the Heart of Intelligent Systems,” followed by
Wolfgang Schröder-Preikschat, University of Erlangen-Nürnberg (Germany),
“Predictability Issues in Operating Systems” on the third day.



ARCS has a long tradition of hosting associated workshops. The following three
workshops were held in conjunction with the main conference this year:

– VERFE 15th Workshop on Dependability and Fault Tolerance
– FORMUS3IC 4th FORMUS3IC Workshop
– SAOS 7th International Workshop on Self-Optimization in Autonomic and Organic

Computing Systems

We thank the many individuals who contributed to the success of ARCS 2019, in
particular the members of the Program Committee and all the additional external
reviewers for their time and effort in carefully reviewing and judging the submissions.
We further thank all authors for submitting their work to ARCS and presenting
accepted papers. The workshops were organized and coordinated by Carsten Trinitis,
the proceedings were compiled by Thilo Pionteck, and the website was maintained by
Markus Hoffmann. Thanks to all these individuals and all the many other people who
helped in the organization of ARCS 2019.

May 2019 Martin Schoeberl
Christian Hochberger

Sascha Uhrig
Jürgen Brehm

vi Preface
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Static vs. Dynamic Hardware Security
Protection Mechanisms

Avi Mendelson

Visiting Professor at the CS and EE Departments at the Technion and in the EEE
Department, NTU Singapore

Abstract. As numbers of transistors on a single die increases in an exponential
pace, the complexity of systems increases accordingly and so, it makes systems
to be vulnerable to errors, incomplete specifications, and other cyber-related
attacks. It seems that the overall complexity of modern systems reaches the point
that it is near to impossible to truly test and verify the correctness of all the
possible usage models and execution paths. Thus, this presentation will claim
that static protection on the system is not feasible anymore and a new approach
is needed.
In my talk, I will claim that more dynamic approach is needed in order to

protect such complex systems and presents new ideas which are motivated by
fault tolerance and systems’ testing techniques.

Avi Mendelson is an IEEE Fellow and a second VP of the IEEE Computer
Society. He is a visiting professor at the CS and EE departments at the Technion
and in the EEE department, NTU Singapore. He has a blend of industrial and
academic experience in several different areas such as Computer architecture,
Power management, security and Real-Time systems.
Prof. Mendelson published more than 130 papers in refereed Journals

conferences and workshops and holds more than 25 Patents. Among his
industrial roles, he worked for National semiconductors, Intel and Microsoft.



Kalray’s MPPA® Manycore Processor: At
the Heart of Intelligent Systems

Benoît Dupont de Dinechin

CTO Kalray, France

Abstract. Intelligent systems can be defined as cyber-physical systems with
integration of high-integrity functions, such as control-command, along with
high-performance functions, in particular signal processing, image processing
and machine learning. Such intelligent systems are required by defense and
aerospace applications, and by automated vehicles.
The Kalray MPPA3 manycore processor is designed as a building block for

such intelligent systems. Its architecture comprises multiple compute units
connected by on-chip global fabrics to external memory systems and network
interfaces. Selecting compute units assembled from fully programmable cores, a
large local memory and an asynchronous data transfer engine enables to match
the high performance and energy efficiency of GPGPU processors, while
avoiding their limitations.
For the high-performance functions, we illustrate how the MPPA3 processor

accelerates deep learning inference by distributing computations across compute
units and cores, and by offloading tensor operations to the tightly coupled
coprocessor connected to each core. For the high-integrity functions, we present
a model-based systems engineering approach based on multicore code genera-
tion from the synchronous-reactive language SCADE Suite from Ansys.

Benoît Dupont de Dinechin is the Chief Technology Officer of Kalray. He is
the Kalray VLIW core main architect, and the co-architect of the Multi-Purpose
Processing Array (MPPA) processor. Benoît also defined the Kalray software
roadmap and contributed to its implementation. Before joining Kalray, Benoît
was in charge of Research and Development of the STMicroelectronics
Software, Tools, Services division, and was promoted to STMicroelectronics
Fellow in 2008. Prior to STMicroelectronics, Benoît worked at the Cray
Research park (Minnesota, USA), where he developed the software pipeliner
of the Cray T3E production compilers. Benoît earned an engineering degree in
Radar and Telecommunications from the Ecole Nationale Supérieure de
l’Aéronautique et de l’Espace (Toulouse, France), and a doctoral degree in
computer systems from the University Pierre et Marie Curie (Paris) under the
direction of Prof. P. Feautrier. He completed his post-doctoral studies at the
McGill University (Montreal, Canada) at the ACAPS laboratory led by Prof.
G. R. Gao.
Benoît authored 14 patents in the area of computer architecture, and published

over 55 conference papers, journal articles and book chapters in the areas of
parallel computing, compiler design and operations research.



Predictability Issues in Operating Systems

Wolfgang Schröder-Preikschat

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract. Predictability is always subject to the underlying assumptions being
made. For real-time systems, time response of processes in relation to the
strictness of deadlines is of particular importance. With an additional focus on
embedded systems, space and energy requirements become relevant as well and
need to be considered in combination. As far as software is concerned, structure
and organisation of the programs to be executed determines whether or not
predictable processes will take place in a given computing system. Design for
predictability is an overarching aspect that crosscuts the whole computing
system and particularly addresses operating systems.
This talk is about structuring principles of non-sequential programs - in the

shape of but not limited to operating systems - to abet predetermination of
quality attributes of non-sequential (real-time) processes, it is not about
analytical methods to effectively predetermine these attributes. Issues in oper-
ating systems as to space, timing, and energy requirement are touched.
Emphasis thereby is on coordination of cooperation and competition between
processes, namely synchronisation. It is shown how measures of process syn-
chronisation against the background of many-core processors cater to these
issues.

Dr. Wolfgang Schröder-Preikschat studied computer science at the Technical
University of Berlin, Germany, where he also received his doctoral degree and
venia legendi. After a decade of extra-university research at the German
National Research Center of Computer Science (GMD), Research Institute for
Computer Architecture and Software Technique (FIRST), Berlin, he became a
full professor for computer science at the Universities of Potsdam, Magdeburg,
and Erlangen-Nuremberg (FAU), Germany. He is elected member of the DFG
(German Research Foundation) Review Board on subject area Operating,
Communication, Database and Distributed Systems, his main research interests
are in the domain of real-time embedded distributed/parallel operating systems.
He is member of ACM, EuroSys, GI/ITG, IEEE, and USENIX.
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Hardware/Software Co-designed Security
Extensions for Embedded Devices

Maja Malenko(B) and Marcel Baunach

Institute of Technical Informatics, Graz University of Technology, Graz, Austria
{malenko,baunach}@tugraz.at

Abstract. The rise of the Internet of Things (IoT) has dramatically
increased the number of low-cost embedded devices. Being introduced
into today’s connected cyber-physical world, these devices now become
vulnerable, especially if they offer no protection mechanisms. In this
work we present a hardware/software co-designed memory protection
approach that provides efficient, cheap, and effective isolation of tasks.
The security extensions are implemented into a RISC-V-based MCU
and a microkernel-based operating system. Our FPGA prototype shows
that the hardware extensions use less than 5.5% of its area in terms of
LUTs, and 24.7% in terms of FFs. They impose an extra 28% of context
switch time, while providing protection of shared on-chip peripherals and
authenticated communication via shared memory.

Keywords: Memory protection · Resource protection ·
Inter-task communication · RISC-V · MPU

1 Introduction

The number and heterogeneity of embedded devices which are emerging with
the rise of the IoT is increasing massively. Their span ranges from very small
and lightweight devices up to very complex computer systems, many of which
implement security and safety critical operations [7,11]. Therefore, they must
offer some form of protection mechanism which will ensure isolated execution of
applications. There is an extensive research in this area at the moment, focused
on finding lightweight solutions and protection mechanisms. A lot of concepts
have been developed, each with a different purpose, but so far, none of them has
solved all the problems.

In this paper our focus are low-cost microcontrollers (MCUs) which operate
in a single physical address space. Devices that are based on such MCUs are
especially susceptible to attacks, intentional or not, and an efficient isolation
mechanism is necessary to protect them. In order to reduce cost and energy
usage, due to their lightweight nature, these devices often lack any form of pro-
tection. Thus, even though tasks might be designed to cooperate, not trying
to intentionally harm each other, a small bug in one of them can potentially
corrupt the whole system. The security solution must be implemented in a very
c© Springer Nature Switzerland AG 2019
M. Schoeberl et al. (Eds.): ARCS 2019, LNCS 11479, pp. 3–14, 2019.
https://doi.org/10.1007/978-3-030-18656-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18656-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-18656-2_1


4 M. Malenko and M. Baunach

efficient manner, regarding both memory and hardware consumption. If real-
time constraints are present, the security implementation should not impose
significant runtime overhead, but must still provide integrity and confidential-
ity guarantees. Many hardware and software-based security architectures have
recently emerged, isolating the execution of sensitive operations on a wide range
of devices. They all differ in the type of devices they are tackling and the amount
of hardware and software in their Trusted Computing Base (TCB). In higher-
end systems a very common approach is to have a trusted operating system
which uses a Memory Management Unit (MMU) to isolate processes in their
private virtual address space. This approach requires a lot of hardware and has
big TCB. Researches recently have been working on developing Protected Mod-
ule Architectures (PMAs) [15] as a more efficient and lightweight approach for
memory isolation in a shared physical address space, using small-sized TCBs
[5,6,8,12,14]. Some of them completely exclude the software from the TCB,
while others implement just the most necessary software operations.

We propose a hardware/software co-designed embedded platform which pro-
vides dependability at low-cost. The architecture is based on a RISC-V vscale1

implementation on which a minimal microkernel (SmartOS) [4] is running. All
memory accesses are mediated by a tailored Memory Protection Unit (MPU)
which provides three essential isolation concepts: isolation of private code and
data regions of individual tasks, protecting the usage of shared on-chip memory-
mapped peripheral devices from unauthorized access, and providing protected
communication between tasks.

The paper is structured as follows. First we describe the protection concept
and introduce the platform used for implementation and evaluation (Sect. 2).
Then, a detailed description of each protection mechanism is given along with
the hardware and software implementation (Sect. 3). Next, several test cases
and measurement results are presented (Sect. 4). We relate our work to similar
approaches (Sect. 5) and discuss the differences and benefits from our approach.
Finally, we draw a conclusion (Sect. 6).

2 Concept and Platform Overview

The goal of most embedded computer systems is to run applications securely and
efficiently. To achieve this goal both the hardware and the software should coop-
erate as effectively as possible. However, especially in today’s security-related
research the co-design aspect of hardware and software seems to be missing. In
this work we explicitly target low-cost embedded devices and we try to close this
gap by developing a hardware/software co-designed memory protection architec-
ture.

In a multitasking environment where concurrent tasks reside in a single
address space and extensively use shared resources, attacks from malicious or
malfunctioning tasks are expected to happen. We propose an inexpensive and

1 https://github.com/ucb-bar/vscale.

https://github.com/ucb-bar/vscale
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effective approach for isolated execution of preemptable tasks in an environ-
ment with frequent interactions. In order to have an isolated task execution, we
must ensure several properties: protect the internal state of the running task
(private code and data), ensure correct resource usage by enforcing access poli-
cies of the resources the task owns, and finally, authenticate communication
between cooperating tasks using protected shared memory. The ultimate goal of
our hardware/software co-designed architecture is to achieve efficient (in terms
of hardware and software) task-based protection for low-cost MCUs, at the same
time trying not to violate the real-time characteristics of the underlying OS by
keeping the context switch time constant, and trying to avoid expensive system
calls as much as possible. Thus, we implement kernel-based security mechanisms,
which are then enforced by lightweight hardware extensions.

2.1 RISC-V

The MCU we are using is based on a vscale processor, which is a single-issue,
three stage pipeline implementation of the RISC-V ISA [16,17]. We decided to
use a RISC-V-based MCU mainly because of its simplicity, minimalism, open-
ness, and room for extensions. The vscale implementation already comes with
two privilege modes, which are the main prerequisite for implementing protec-
tion. Tasks can request services from the kernel only by system calls, which
trap into machine mode. The MCU includes several on-chip peripherals, which,
as in most embedded devices, are mapped into a single address space with the
memories, and if no memory protection is available they are fully accessible to
everyone. The architectural overview of the system is given in Fig. 1.

2.2 SmartOS

SmartOS is a small, modular, real-time operating system suitable for low-cost
embedded devices [4]. It is ported to vscale and uses two operational modes: the
kernel runs in privileged machine mode, while tasks as well as the libraries run
in user mode. Tasks are preemptive, use individual stacks and execute all API
functions in their context. The kernel uses its own stack and is responsible for
priority-aware scheduling, system call execution, interrupt handling, dynamic
resource management, and inter-task synchronization using events. The kernel
code and data, including the control blocks for tasks, events, and resources, can
only be accessed using system calls, which are atomic and executed in machine
mode.

In order to properly design a secure system where tasks and OS coexist in a
single address space, we must ensure that an incorrect (or malicious) task cannot
interfere with the proper operation of the system and other tasks. That is why
the linker is instructed to efficiently organize the memory map into regions, as
shown in Fig. 1. Each task is associated with its individual code and data (stack)
regions, as well as a shared region for API functions. On demand, the OS also
grants access to additional regions for accessing peripherals and shared memory
for inter-task communication.
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Resource Management. In order to protect shared resources (i.e. peripherals)
from unsynchronized access by several tasks and enable collaborative resource
sharing, SmartOS uses a resource management concept, based on the Highest
Locker Protocol (HLP) [18], which due to its simple implementation, is frequently
used in RTOSs. It allows dynamic access coordination to temporarily shared, but
exclusive resources and prevents a resource from being used by a task as long as
it is allocated to another task. Each resource at compile time or system startup
receives a ceiling priority, which is the highest priority of all registered tasks that
announced the usage of that resource. As soon as a task successfully allocates a
resource, its priority is raised to the resource’s ceiling priority.

The resource concept in SmartOS enables, but does not enforce synchroniza-
tion on physical resources without hardware support. The kernel can not prevent
(neither detect, nor block) illegal access attempts to a peripheral by a task which
does not hold it as a resource. To avoid this, instead of a very slow approach of
allocating/deallocating the resource inside each driver function which has direct
access to it, we are proposing a hardware-based enforcement of the HLP, which
locks peripherals in order to protect them from unauthorized access. Without
an additional hardware support there is a risk that even though one task has
claimed the resource for itself, another task uses it in an unprotected way.

Inter-task Communication. Tasks in SmartOS are not self-contained, they
frequently interact with each other and with the environment. For that reason,
explicit synchronization between tasks is achieved through events, which can
be invoked by tasks or interrupt service routines (ISRs). In this work we are
extending the event synchronization concept of SmartOS and provide an effective
solution for authenticated data exchange between tasks.

3 Implementation Details

In order to achieve flexible memory separation for variable-sized regions, each
defined with its start and end address, we are using a segmentation-based mem-
ory protection approach. Our MPU is configured with four Control and Status
Registers (CSRs), as specified in the RISC-V privilege architecture [17], which
hold the address ranges of task’s private code and data regions. Two more reg-
isters store the address range of the API functions, called libraries in Fig. 1, and
are not reprogrammed on every context switch. By configuring few additional
registers we also enable efficient and lightweight access protection to shared
resources, including memory for communication (see Fig. 1).

3.1 Basic Memory Protection

When a programmer creates a task, she specifies the priority, the amount of stack
to be used as well as the entry function of the task. When a task is loaded, the
kernel assigns unique code and data (including stack) memory regions, which are
stored in the Task Control Block. Since drivers in our system are executed in the
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Fig. 1. Architectural overview of the system

context of the currently running task, by placing all API functions sequentially
in memory, we reduce the number of MPU registers needed for protecting the
shared code area accessible to all tasks.

In vscale, in order to achieve basic memory protection, we take advantage
of its two privilege levels. The MPU configuration is allowed only in privileged
machine mode and is done by the kernel on every dispatch of a newly scheduled
task. While in user mode, the MPU monitors all bus activities and raises an
exception in case of an access violation. We made several modifications to the
vscale pipeline by introducing three new exception vectors: instruction access
fault, load access fault, and store access fault vector. The MPU’s data-access
policy implies that memory locations accessed by store and load instructions
can be performed only within the task’s data regions (including the authorized
peripheral and shared memory addresses) which are implicitly non-executable,
while the control-flow policy implies that the control-transfer instructions must
stay within the memory reserved for the task’s code and library regions which
are implicitly non-writable.

The MPU is attached to the vscale pipeline and the exception signal it pro-
duces is then handled by the controller module in the decode/execute stage. The
processor invalidates the executing instruction by flushing the pipeline, saves the
exception vector number in the mcause CSR, the faulty instruction in the mepc
CSR, and immediately jumps to a predefined exception handler. From there, the
kernel handles the exception appropriately.
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3.2 Peripheral Protection

In SmartOS the kernel’s resource management protocol implies that all shared
peripherals must be declared as resources. Tasks can request an access and if
granted, they can use the peripheral as specified by the HLP protocol. By intro-
ducing hardware checks, we force tasks to explicitly request a resource before
using it. If a task hasn’t previously announced usage of the resource, or if the
resource is currently being used by another task, access is not granted (the
en periph[i] signal for the particular peripheral i in Fig. 2 is disabled) and a
data access exception is raised.

Resources in SmartOS are declared in so-called driver constructors, and their
declaration is mandatory. Every task announces its resource usage at creation
time (OS REGISTER RESOURCE macro in Fig. 2), in order for the HLP to
calculate the resource’s ceiling priority, and an MPU bitfield peripheral register
is appropriately programmed (periph reg in Fig. 2). Each peripheral that is used
by the task is encoded with a ‘1’ in the bitfield register on its specific index. The
index of the peripheral is associated with the ordinal number the peripheral has
in memory (in our MCU implementation, each peripheral has a fixed memory
address range). The order in which resources are used is announced during run-
time by two system calls (getResource() and releaseResource()). Task-awareness
is integrated into the hardware by storing the id of the currently executing task
(task id register in Fig. 2) as well as the id of the task which was granted access
to a peripheral (periph owner register in each peripheral in Fig. 2).

The MPU needs only one register for protecting up to 32-peripherals, which
is sufficient for most small embedded systems. The peripheral access is checked
by hardware on each peripheral register access (load or store), which is more
efficient (both in terms of execution time and required software) than performing
expensive software checks in device drivers.

Fig. 2. Protected usage of shared peripherals
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3.3 Protected Inter-Task Communication

We implement a shared memory approach for communication between tasks,
since it has been proven to be a very versatile architectural choice, mainly
because of the constant access time to variable-sized values. The shared mem-
ory region is divided into pages of configurable, but mutually equal sizes. Every
page is easily indexed with the lower bits of the address (page index in Fig. 3),
which are used as the page’s position in the MPU bitfield register (comm reg
in Fig. 3). For each task, this register has a ‘1’ only if the communication is
requested and acknowledged by both sending and receiving tasks. When the
sender wants to communicate, it explicitly grants privileges for communication
to the receiver task, by specifying the receiver task’s id and the size of the mes-
sage. But, only when the receiver task acknowledges the request, the shared
memory region is open for both of them. The system calls (registerSharedMem()
and ackSharedMem()) used for establishing the mutually authenticated commu-
nication are shown in Fig. 3, and are used to configure the values which will be
placed inside the comm reg register. After successful authentication, every com-
munication between the two tasks is done in user mode, by calling the functions
sendData() and receiveData(), thus preventing expensive system calls. When a
task requests memory area for communication, the kernel inspects which pages
are still free, and designates them to both communicating tasks. Tasks authenti-
cate each other with their id-s, which are unique for each task and are maintained
by the kernel. When running out of memory, the kernel rejects any request for
new communication, until memory is freed. The nature of communication can
be asynchronous in order to prevent blockage due to unresponsive tasks, or can
be made synchronous by using the SmartOS’s event concept.

In hardware, every time a data memory operation is performed in the des-
ignated shared memory area for communication, the MPU calculates the page
index, checks the comm reg register, and raises a data memory access exception
if the executing task has no privileges to use the indexed page. This approach
is substantially faster then completely software-based implementation, because
no system calls are involved for the communication itself. The more expensive
authentication is only done once, before establishing the communication.

4 Test Cases and Performance Evaluation

We implemented the presented protection concept into our research platform
consisting of a vscale-based MCU with several on-chip memory-mapped periph-
erals (e.g., UART, GPIO), on which SmartOS is running. For the MCU imple-
mentation we use the Basys3 Artix-7 FPGA board from Digilent2.

First, we are going to present two test cases, along with the simulation
results3, which show an invalid way of accessing memory. On the left side of
Fig. 4 the disassembly of task1 ’s entry function is shown. In this example task1

2 https://reference.digilentinc.com/reference/programmable-logic/basys-3/start.
3 Performed by Vivado Simulator 2017.3.

https://reference.digilentinc.com/reference/programmable-logic/basys-3/start
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Fig. 3. Protected and authenticated communication between tasks

tries to change the control-flow by jumping into the address space of task2. As
can be seen from the simulation output, at the time the jump instruction is
executed with the address which does not belong to task1 ’s code region, an
instruction access fault exception is raised. After the exception, the code contin-
ues from a predefined exception handling routine (0x100). The scenario in Fig. 5
shows a task trying to access the GPIO OUT register, when it hasn’t requested
it before. A load access fault exception is raised, and as in the previous example,
the processor jumps to the exception handling routine.

Hardware Footprint. To evaluate the used FPGA resources of our MPU
implementation we measured the hardware footprint of the baseline system as
well as the one just for the protection hardware components. The overall uti-
lization of lookup tables for logic (LUTs) and flip-flops (FFs) as reported after
synthesis by Xilinx Vivado 2017.3 is shown in Table 1.

Execution Time Overhead. Context switches are one of the most costly
operating system operations in terms of CPU time. The context frame which is
saved on the stack on each context switch when dispatching a newly scheduled
task consists of a total of 36 load operations. Out of those, configuring the code
and data regions takes only 4, while both peripheral and communication pro-
tection information counts for another 4 load operations, giving a total increase
of 28%. However, except the initial peripheral allocation and communication
authentication which happens at task’s load time, during task execution the
kernel does not perform any additional checks.

In order to compare the number of clock cycles needed for protected com-
munication, besides the communication using shared memory, we implemented
a simple message queue-based communication, as specified in [1]. As shown in
Table 2 the number of clock cycles for creating a message queue and registering
a shared memory address for same-sized messages are similar, since both are
implemented as system calls. However, the number of clock cycles for actual
communication is significantly lower when using shared memory, because send-
Data() unlike xQueuePut() is not a implemented as a syscall.
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Fig. 4. Invalid control-flow memory access

Fig. 5. Invalid GPIO peripheral access

Table 1. Synthesis results of our hardware extensions.

Category Components LUTs (Util%) FFs (Util%)

Baseline system vscale 2547 (4.02%) 1293 (1.02%)

Our hardware
resources

Basic MPU 75 (0.36%) 192 (0.46%)

Added resource protection 106 (0.51%) 256 (0.62%)

Added communication protection 140 (0.67%) 320 (0.77%)

Total % over Baseline system 5.5% 24.7%

Table 2. Clock cycles for protected communication.

Category System call/Function Clock cycles

Message queue xQueueCreate (len, msgSize) 135

XQueuePut (handle, msg) 115

Protected shared memory registerSharedMem (taskId, msgSize) 150

sendData (addr, msg) 30
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5 Related Work

We analyzed several security architectures, both from the mainstream comput-
ing domain and the embedded domain. On conventional high-end systems, soft-
ware isolation is usually realized by a trusted operating system, which relies on
advanced hardware support in a form of an MMU [13]. Since this mechanism is
too costly to be used in embedded systems, a lot of work is recently concentrat-
ing on creating Protected Module Architectures (PMAs) which provide cheap,
small, and effective isolation in a shared address space, usually with a very small
Trusted Computing Base (TCB). Architectures like SMART [9] and Sancus [14],
with a zero-software TCB, have a static way of loading self-contained secure mod-
ules (SMs), which have very limited access to shared resources. This implies that
SMs must claim a resource for themselves in order to have security guarantees on
it and are not able to share it with other modules. Even more, Sancus requires
that the peripheral is wired in the same contiguous data region of the SM that
owns it. Other architectures like TrustLite [12] and TyTAN [5], in order to pro-
vide greater flexibility, have created many kernel-like services and put them in
the TCB. There is a difference between Trustlite and Sancus in the way they
enforce the PC-based memory access control rules. While in Sancus there is a
dedicated hardware-based Memory Access Logic (MAL) circuit per SM, which
provides the code section with an exclusive access to a single contiguous data
section, in TrustLite the access rules are programmed in a fixed-size Execution-
aware MPU (EA-MPU) hardware table. Multiple non-contiguous private data
sections per trusted module, or protected shared memory between trusted mod-
ules can be configured, but such flexibility is limited by the number of entries
in the hardware table. Regarding peripheral protection, TrustLite allows limited
number of EA-MPU’s data regions to be used for securing peripherals, which are
allowed for access only to trusted modules. Our peripheral protection approach
allows for configuration of up to 32 peripherals which do not have to be mapped
in a contiguous memory addresses. ARM TrustZone [2] is another security archi-
tecture which separates a computer’s resources into a secure and a non-secure
world. While the secure world can access everything, the non-secure world is
limited only to non-secure memory regions. Peripherals are also split between
the two worlds. TrustZone requires a security kernel for managing the secure
world, which increases the size of the TCB.

Since SmartOS has a very small kernel code base, which performs almost all
the functions which in [5] are put in a TCB, we are considering it to be trusted
and to be part of our system’s TCB. In contrast to the above mentioned archi-
tectures, SmartOS does not distinguish between secure and non-secure worlds.
It equally protects all tasks, not just their own code and data, but it allows for
greater flexibility and more fine-grained protection regarding shared peripher-
als and shared memory for communication. The above mentioned architectures
don’t do much to improve the security of the software that runs in the secure
world, except to prevent unwanted access by normal world software. Therefore,
it is the developer who determines that software is trusted, typically through
rigorous development processes, testing, and certification.
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Regarding the communication between tasks, in many operating systems like
L4 [10] and FreeRTOS [3] the communication for security reasons goes through
the kernel, which is a very costly operation. In L4, each time a communication
is performed, a task loads the receiver’s id, the message, and executes a system
call. Then, the kernel switches the address space to the receiver task’s, loads
the sender id, and returns to user mode. Only after that, the receiver task gets
the message. On the other hand, in TrustLite, the ability to achieve fine-grained
communication via shared memory is limited by the number of MPU regions the
platform offers. In order to avoid expensive context switches every time tasks
need to communicate, we are proposing hardware-checked authenticated com-
munication, which the kernel establishes only once, and afterwards is performed
in user mode. The communication memory that tasks use is configurable and
fine-grained, in terms of consecutive memory locations.

6 Conclusion

In this paper we present a hardware/software co-designed architecture for iso-
lated execution of tasks in low-cost embedded devices. Besides the basic isolation
of private code and data regions, in an environment where tasks have frequent
peripheral access and mutual communication, we allow for efficient protection of
shared resources. By installing task-awareness into the MPU, kernel’s operations
are supported by inexpensive hardware-enforced security checks.

Acknowledgment. This work was conducted within the Lead-Project “Dependable
Internet of Things in Adverse Environments”, subproject “Dependable Computing”
(funded by TU Graz).
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Abstract. Scalable Software Support for Dependable Embedded Sys-
tems (S3DES) achieves fault tolerance by utilizing spatial software-based
triple modular redundancy for computational and voter processes on
application level. Due to the parallel execution of the replicas on dis-
tinct CPU cores it makes a step towards software-based fault tolerance
against transient and permanent random hardware errors. Addition-
ally, the compliance with real-time requirements in terms of response
time is enhanced compared to similar approaches. The replicated voters,
the introduced mutual voter monitoring and the optimized arithmetic
encoding allow the detection and compensation of voter failures without
the utilization of backward recovery. Fault injection experiments on real
hardware reveal that S3DES can detect and mask all injected data and
program flow errors under a single fault assumption, whereas an uncoded
voting scheme yields approx. 12% silent data corruptions in a similar
experiment.

Keywords: Fault tolerance · Multi-core · Arithmetic encoding ·
Triple modular redundancy · Replicated voting

1 Introduction

The availability of affordable, power efficient and high performance multi-
core processors has impacted embedded system design considerably. An exam-
ple among many includes the automotive industry where powerful systems—
reasonably equipped for the radical changes in the industry by emerging topics
such as autonomous driving, sensor fusion and new powertrain technologies—
offer new possibilities in system design. In consequence of this development,
the software code base, e.g., implementing automated driving functionality is
growing in both complexity and size, which leads to a move to commercial off-
the-shelf (COTS) hardware that provides high performance. Simultaneously, the
semiconductor industry continues with structure and voltage down-scaling due
to diminishing design margins and stringent power constraints. This trend leads
to highly integrated hardware, on the one hand, whilst provoking an increase
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in sensitivity against random hardware faults. Recent studies provide support-
ing evidence of an increase in random hardware faults in CPUs and memories
which, if not masked at hardware level or detected by fault detection mech-
anisms, can lead to Silent Data Corruptions (SDC), i.e., undetected incorrect
results of computations [12]. These defects are reaching from transient faults,
introduced by radiation effects or electromagnetic interference (e.g. bit flips or
multi-bit flips [3,4,14,15,19]), to permanent faults arising from manufacturing
process variations, aging and wear out effects [10,21] in memories and CPUs.

Established conservative fault tolerance solutions which ensure a safe exe-
cution of the software are based on hardware approaches which usually include
triple/dual modular redundancy such as cycle-by-cycle synchronized lockstep
processors, flip-flop hardening, watchdogs, etc. [2]. However, such hardware-
based approaches imply higher hardware costs and commercially available pro-
cessors that are especially designed and manufactured for safety-critical appli-
cations typically only offer limited computing power in comparison to modern
COTS. Furthermore, the integrated hardware mechanisms commonly only sup-
port fail-safe operation since they are only able to detect errors. However, future
safety-critical applications in domains such as autonomous driving will require a
fail-operational execution on high-performance microcontrollers which are lack-
ing specific fault detection and recovery mechanisms. Multi-core systems have
strong potential to support cost-efficient fault tolerance due to their inherent spa-
tial redundancy by the use of multiple cores. Suitable fault tolerance approaches
could counteract the rising frequency of transient and permanent faults. To uti-
lize this inherent redundancy, Software-Implemented Hardware Fault Tolerance
(SIHFT) [8] approaches at different architecture levels such as instruction- [17],
thread- [11], and process- [22,24] level redundancy are under active research.
These methods could lower costs and increase flexibility by achieving fault toler-
ance via software-only methods whilst not requiring specialized hardware. How-
ever, in spite of experimental studies clearly indicating the occurrence of per-
manent and intermittent errors in CPUs and memories, most SIHFT techniques
assume only transient errors. Furthermore, existing SIHFT techniques either
yield low fault coverage [18], are impractical in terms of performance due to
high execution time penalties [20] or utilize backwards recovery in presence of
failures [24]. The latter could hamper compliance with real-time requirements
in domains such as electrical powertrain system where the hardest real-time
requirements for the application software are in the range of 200 microseconds
deadline and the maximum allowed fault reaction time is in the area of a few
milliseconds.

We propose a concept which utilizes software-based triple modular redun-
dancy and arithmetic encoding on process-level (similar to [24]) while taking
in the advantage of the inherent spatial redundancy of multi-core controller to
enable software-based fault tolerance against permanent and transient single
and multiple hardware errors within the CPU and memory. Scalable Software
Support for Dependable Embedded Systems (S3DES) achieves that by replicat-
ing computational and voter processes, enabling mutual voter monitoring and
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optimized arithmetic encoding to ensure fault detection and error handling on
application level. Computational processes are replicated and executed in parallel
on distinct cores, followed by replicated arithmetic encoded voting processes. The
parallel executed replicated voters determines the majority among the encoded
results to detect and compensate errors which occurred within the computation.
The voters are arithmetic encoded to detect errors within each voter and are
arranged in hierarchy which allows mutual monitoring and error compensation
in case of a voter failure without the utilization of backwards recovery. Our con-
tributions are: (1) Optimized arithmetic encoding which eliminates signature
management and prevents fault propagation. (2) A voter replication concept
with mutual voter monitoring, single voter output determination and failure
compensation which is beneficial for real-time requirements. (3) An evaluation
of the concept with fault injection by injecting transient faults in the underlying
hardware which trigger data and program flow errors on application level.

2 Background and Related Work

2.1 Arithmetic Encoding

Arithmetic Encoding, commonly referred to as coded processing, is a non sys-
tematic encoding scheme based on the theory of arithmetic codes which allows
error detection and recovery of random hardware errors in CPUs and memory.
Arithmetic codes were already successfully applied by several error detection
techniques [5,17,25,26]. There exist different strategies and coding rules for the
implementation of arithmetic encoding which differ mainly in their supported
arithmetic operations and their coverage with regard to the fault model. The
simplest representative of arithmetic codes is called AN-encoding. With AN-
encoding, an integer n is encoded by multiplying it with a constant A. The
resulting integer n̂ = A ∗ n is called a code-word and the number of bits for the
word representation is doubled. Due to the multiplication with the constant, the
distance between two valid code-words is increased. The original domain of 2n

words is extended by k check bits which results in 2n+k possible code-words. As
a consequence, if a random hardware error alters the code-word n̂, it results in
an invalid word with high probability. If n̂ still represents a code word, n̂ mod A
equals 0; if the result of the modulo operation is unequal to 0, a random hardware
error is detected. To decode the code word, a division n = n̂/A is performed.
The number of tolerable faults depends on the value of the encoding constant
A. Several publications identified suitable values for A in a 32-bit AN-encoding
scheme such as 58659, 59665, 63157, 63877 by Ulbrich [24] which is compliant
with the results of Braun et al. [6]. These values are characterized by their ham-
ming distance of six and therefore allow the detection of up to five faults in a code
word. AN-encoding supports all relevant operations including the division of the
encoded values. However, some operations (e.g. bit-wise operations) require more
sophisticated implementations which can hamper performance and/or require
intermediate decoding of operands. Furthermore, AN-encoding allows the detec-
tion of data errors but is not able to detect control flow errors and erroneous
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or lost data access. To detect these types of errors, variants of AN-encoding
were developed, namely ANB- and ANBD-encoding. ANB-encoding introduces
the static signature B which allows the determination of the identity of the
data [26]: n̂ = A ∗ n + B. B represents a unique signature for each operation
(e.g constant value) [25]. As a result, swapped data/operations and control flow
errors can be detected during the decoding phase. To allow the detection of a
lost update, i.e., in case a store operation was omitted, the additional dynamic
signature D is introduced: n̂ = A∗n+B+D where D is represented by a times-
tamp [5]. ANBD-encoding provides very high fault coverage, but if applied on
source-level, i.e., encoding every operation (e.g. by code-transformation tools),
it incurs very high penalties regarding execution time since more computational
effort is required for executing the encoded operations and performing complex
signature calculations during run-time. Execution time penalties range form 3x
(AN-encoding) [18] up to 250x (ANBD-encoding) [20] compared to uncoded exe-
cution. This fact makes encoding on source-level—in combination with further
drawbacks—impractical for most use cases.

2.2 Redundancy and Replication

A key mechanism to achieve fault tolerance is the replication of components
in e.g. hardware (processors, memory) or software (entire programs or parts of
it) [7]. A widely used replication paradigm is represented by the N-modular
redundancy (NMR) pattern, where N characterizes the number of replicated
components which process the same data. A well-known representative is triple
modular redundancy (TMR) which uses three elements and a majority voter.
After completing the operation, the voting element compares the three results
and selects the correct one by majority [7]. TMR is—besides the higher cost
in terms of resources—a powerful approach since the system can continue the
execution by masking the faulty element. This contributes to a higher system
availability and depending on the type of realization the number of replicas can
be increased as long as the necessary resources are available [7]. TMR can be
implemented as a temporal or spatial design. While spatial redundancy performs
the same operation on distinct hardware components, temporal redundancy indi-
cates that the same operation is independently performed sequentially on the
same hardware.

The weak spot of TMR, if implemented purely in software, is the majority
voter. It depicts a single point of failure (SPOF) and therefore has to meet high
reliability requirements [7]. To eliminate this SPOF in software, a concept called
Combined Redundancy (CoRed) was proposed [24]. CoRed protects an appli-
cation by temporal (sequential) software-based triple modular redundancy on
process-level, applying ANBD-encoding to increase the reliability of the software
voter and utilizing rollback recovery in case of a voter failure. Experimental eval-
uation of the voter by fault injection experiments depicts full single and dual bit-
flip data error fault coverage [24]. Drawbacks of this approach are e.g. increased
response time due to temporal redundancy as well as re-execution of the vot-
ing process in case of a failure (rollback recovery). Furthermore, the concept
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does not consider permanent faults, does not take into account floating-point
values as input for the computational or voting process and requires additional
external logic for the management of the arithmetic encoding signatures so that
subsequent processes following the voter are able to decode the voting result.

3 S3DES

Scalable Software Support for Dependable Embedded Systems (S3DES) uti-
lizes process-level redundancy for computational (P) and voter (V) processes,
mutual voter monitoring and optimized arithmetic encoding to ensure fault
detection and error handling on application level. S3DES exploits the inher-
ent spatial redundancy of multi-core systems and reduces the response time by
executing the replicated processes in parallel (on different cores) and utilizing
compensation in case of process (computation and voting) failures.

3.1 Fault Assumption

Figure 1 establishes two different fault assumptions: (1) For the replicated
computational processes (P) only a single fault assumption is considered. (2)
Whereas the replicated voting processes can tolerate up to two voter failures.
This was deliberately chosen and only serves as a reference example for the
concepts described in the following sections. In this paper and the subsequent
evaluation we consider—as most of the public available concepts—a single fault
assumption where exactly one transient fault occurs during the replica execution
within the CPU and memory. Nevertheless, we argue that the transient single
fault assumption is not sufficient as studies [10,21] showed that memories are not
only affected by transient bit flips, but also permanent faults. Although the per-
manent fault rate is lower than the fault rate of transient faults, we will consider
this extended assumption in our future work and discuss the aspects which are

Fig. 1. Replicated computational (P r
i,j) and voting (V r

i,j) processes on each core (Cn)
and the applied arithmetic encoding scheme (application i, job j, replica r, core
number n)
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already covered by S3DES. Furthermore, we assume that the occurring fault in
the CPU and memory leads to data and program flow errors on application level
and do not consider timing and byzantine errors. Additionally, since multi-core
processors represent a single-chip solution, purely software-implemented fault-
tolerance approaches cannot prevent common mode failures by nature. Faults
affecting shared chip logic, e.g., the power supply, require further measures such
as redundant hardware designs, but these concerns are out of scope.

3.2 Concept

Figure 1 depicts a model example of the concept. For the sake of simplicity we
assume the input values for the computational processes (P ) are already AN-
encoded, replicated correctly and are provided to the process in a determinis-
tic way. The considered multi-core platform provides three processing elements
respectively cores (C), which execute the replicated processes (P and V ) in paral-
lel. The parallel execution has two advantages over a sequential execution on one
core (temporal redundancy): (1) it makes a step towards fault tolerance against
permanent random hardware errors, since a repeated execution of a replica on
a faulty core would probably lead to the same faulty result and therefore would
stay undetected and (2) it enhances the compliance with real-time requirements
in terms of response time of the application compared to a sequential execution
on one core. In contrast to other approaches such as Safely Embedded Software
(SES) [5], arithmetic encoding is not applied to the entire calculation process
to minimize the run-time execution overhead which would be otherwise intro-
duced by complex signature calculation [24]. During the process prologue (D),
each replicated computational process decodes the received AN-encoded values
and executes the computation (P ). During the time-span where values are pro-
cessed uncoded, the execution is protected by the replicated execution. After
the computation is finished, the computation results are AN-B-encoded during
the process epilogue (E), i.e., the replica result is multiplied with the constant
signature A and a replica specific B (Bx, By, Bz) signature is added. The B sig-
nature allows the determination of the identity of the winner or the diagnosis of
the failed replica in a subsequent phase, e.g., to enable recovery or repair mech-
anisms. Afterwards, each of the replicated voters determine the majority among
the AN-B-encoded results to detect and mask errors which occurred during the
computational process. Beyond that, each voter replica performs a self-check as
well as mutual voter monitoring in order to detect failures in one of the other
voters and to prevent fault propagation. In case of a voter failure, one of the cor-
rect voters which is determined by a hierarchy carries out the distribution of the
voting result. Thereby the voter failure is compensated without the utilization
of backwards recovery which is beneficial for the overall response time of the
application. Prior to the result distribution, the replica specific signature B is
substracted and an AN-encoded value is forwarded to the subsequent (replicated
or non-replicated) process.



S3DES - Scalable Software Support for Dependable Embedded Systems 21

Fig. 2. (a) Calculation of the static control flow signature; (b) Self-check for control flow
and data errors; (c) Determination and application of dynamic control flow signature;
(d) Encoded voting procedure.

3.3 Optimization of Encoding Signatures

Beside the parallel execution of the replicas and the replication of the voter,
the initially proposed encoding (AN-BD) of the voting procedure [24] allows
several optimizations while maintaining the established fault assumption: (1)
Elimination of B signature management required for subsequent decoding
within the computational processes. (2) Reduction of potential fault propa-
gation between voter and computational processes. In the original approach,
the voting procedure returns a result value which was encoded as follows:
vc = A ∗ n + Bdyn + Breplica and a constant jump signature Be which are both
provided to the subsequent process replicas. Bdyn represents the dynamic jump
signature which is calculated during the voting based on the AN-B-encoded input
values, Breplica describes the replica-specific B signature of the voting winner and
Be the constant jump signature which is uniquely defined for each control flow
branch and is calculated from the replica-specific B signatures during the vot-
ing. Be is persisted together with the voting result or managed by an external
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data structure to allow the subsequent processes to lookup the value in order
to evaluate if the control flow of the voting was correct and to decode the vot-
ing result. We assume the control flow check is performed in the following way:
(vc −BemodA) = Breplica. For a correct control flow of the voter, the remainder
of the check has to correspond to one of the replica-specific B signatures which
are stored in a lookup table, otherwise an error is detected. This causes two
issues: (1) The Be signatures have to be managed by an external data structure
for each result of the voting process and the replica-specific B signature must
be stored in lookup tables. This increases the complexity and the susceptibility
to errors as well as the memory consumption and (2) because the control flow is
only checked during the decoding phase of the consuming process, errors could
propagate beyond the borders of the voter. In the event of a control flow error
during the voting, the subsequent process could detect the deviation, but none
of the replicas could determine the correct value which would lead to a detected
but unrecoverable error.

For our optimization we aim to eliminate the static signature Be and to
reallocate the checks for voting errors to the voter itself. We first calculate the
expected static value for the correct control flow Bprecalc based on the voters
input values (see Fig. 2(a)). During the voting the replica specific B signature
is subtracted from the input value (see Fig. 2(d) - lines 7, 11, 14) and replaced
by a control flow dependent signature Bdyn (see Fig. 2(b)) which results in an
A ∗ n + Bdyn encoded value. After the winner of the voting is identified, a self-
check is performed in which the precalculated control flow signature Bprecalc

is compared with the remainder of A ∗ n + BdynmodA. An equal remainder
and precalculated signature implies that the control flow was correct and no
data error occurred. Subsequently, the control flow dependent signature Bdyn is
substracted from the result which leaves an AN-encoded winner. An AN-encoded
result is sufficient for the protection against data errors during the transaction
to the subsequent processes. Due to this optimization only AN-encoded values
are stored or transmitted and as a consequence the external management logic
for the B signature and the resulting additional complexity are eliminated as
any subsequent process can decode the value by the division with the constant
signature A. Furthermore, the error detection is moved to the voter instead of
the subsequent processes, and thus error propagation can be prevented as voter
errors are detected and compensated by one of the replicated voters during the
mutual voting monitoring. This optimization still holds with the transient single
fault assumption and the results of the evaluation by fault injection will be
provided in a latter section.

3.4 Mutual Voter Monitoring

The parallel executed replicated voters determine the majority among the
encoded results to detect and compensate errors which occur during the com-
putation. The voters are arithmetic encoded as described earlier and perform
mutual monitoring. In case of a voter failure errors are compensated by an avail-
able correct voter (see Fig. 3). After the self-check of the voting result for control
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Fig. 3. Mutual voter monitoring for error detection

flow and data errors of each voter was executed, each voter checks the other vot-
ers for errors prior to the output of the result. The control flow of each voter
is represented by a voter-specific flag (B signatures) which is calculated dur-
ing the voter execution and contains the information, if every critical function
(e.g. pre calculate jump, vote, apply, self-check) was executed. Depending on
the flag value (1) each voter knows if the other voters were executed correctly
and (2) the output hierarchy between the voter is determined. In the case that
the control flow flag of a voter is incorrect, one of the correct voter persists
the result. In case an erroneous voter transmits its result without performing,
e.g., a self-check or the voting itself, the other voters detect the error due to
an erroneous flag and overwrite the already persisted value. The current design
is able to compensate up to two voter failures. Due to this design change the
compliance to real-time requirements can be eased and—depending on the sys-
tem configuration—permanent or multiple fault coverage can be introduced to
a certain degree. The singular output of the replicated voters prevents—in com-
parison to a common TMR system with replicated voters – error propagation to
the subsequent computational processes and allows the output of a single result
without having to repeat or perform a final voting on the voting result.

4 Evaluation

The evaluation of the dependability properties of an application can be accom-
plished by applying Software-Implemented Fault Injection (SWiFI) techniques
which emulate random hardware faults at software level [13,23]. SWiFI tech-
niques are widely adopted [1,9,27] and typically operate at the assembly level
of the application to emulate hardware faults at the low level which propagate
up to the application level. For our fault injection campaigns we used our self-
implemented framework called PyFI (Python-backend for Fault Injection) [16].
PyFI utilizes an iSystem iC5000 on-chip analyzer to inject faults in the ele-
ments of the microarchitectural level (e.g. register and memory locations) which
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are addressable by the debugger. Faults injected on this level will propagate
through the Instruction Set Architecture (ISA) level to the operating system
and application level where finally a deviation of the correct behavior can be
perceived. In order to reduce the spanned fault-space of all possible injection
points and fault model combinations, PyFI utilizes the trace functionality of the
on-chip debugger. It captures program execution traces and applies fault-space
reduction algorithms to reduce the overall execution time of the conducted cam-
paigns. The results of the fault campaign are recorded during the experiment
and evaluated afterwards.

Table 1. Fault injection results - Transient single data and program flow errors

Data error Program flow error

Uncoded Encoded Uncoded Encoded

Benign fault 1956 16234 490 997

Detected - S3DES - 5440 - 2942

Detected - Trap 52 936 20 0

SDC 264 0 73 0

Sum 2272 22640 583 3939

For the assessment of the fault tolerance properties of our concept was imple-
mented on an Infineon AURIX TriBoard TC277 1 (three cores) with Erika Enter-
prise 2.7.0 and fault injection campaigns were performed with PyFI. To simplify
our fault injection analysis, the implemented application consists only of three
parallel executed voting processes which receive their AN-encoded input data
from our fault injection framework. The processes are scheduled by a fixed pri-
ority non-preemptive scheduling policy and the code is executed from RAM.
For our experiments we implemented an encoded voter (146 instructions) which
consists of the functions shown in Fig. 3 and an uncoded voter (17 instructions).
The uncoded voting experiment is not fully suited for a comparison but acts as a
baseline for the evaluation of silent data corruptions. Each voting experiment is
conducted with four different input value sets for the voter which represent the
four possible branch decisions of the voter. We do not evaluate the voter under
three different input values which would lead to detected unrecoverable errors
and leave this evaluation for future work. Our goal was to trigger two types of
errors on application level: (1) Data errors and (2) program flow errors. Data

1 We selected the Aurix TriBoard platform to allow comparability with other
approaches which used similar hardware. In the future S3DES will be evaluated on
a more suitable and representative ARM system such as the Renesas R-Car series
which executes a POSIX compliant operating system and lacks already integrated
hardware safety mechanisms. The R-Car platform provides two Quad-Core CPUs
and consequently states reduced requirements regarding resource consumption in
terms of core usage.
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errors are represented by single transient bit-flips which were injected prior to the
read and write access of every used data and address register during the voting.
Furthermore, faults were also injected into registers containing condition vari-
ables (e.g. PSW register). Program flow errors are injected by manipulating the
program counter. The target addresses for the program counter which represent
the erroneous jumps were determined automatically by PyFI through extracting
the basic blocks of the program and generating all possible jump or sequence
faults for the voting process. The results of the fault injection experiments are
sorted into 4 categories: benign faults (do not affect execution), S3DES detected
(detected and masked by S3DES voting scheme), trap detected (a fault triggered
a hardware exception), SDC (undetected silent corruption of data). Further cat-
egories which are not listed because none of the injected faults triggered them in
the current setup are OS detected (detected by OS) and hang (program hanged
because of the fault).

The results of our fault injection experiments are shown in Table 1. An total
of 2855 faults were injected into the uncoded voter. 2446 of the injected faults
were masked on hardware level and had no effect on the application while a
significant number of 337 SDCs were observed which corresponds to approx.
12% of all injected data and program flow errors. On the other side, the S3DES
variant which utilizes the optimized arithmetic encoding, replicated voters in
combination with mutual monitoring experiences no SDCs during the injection
of a total of 26579 faults. The higher number of injected faults compared to the
uncoded variant can be explained by the higher number of instructions of the
coded voter.

5 Conclusion

Many concepts consider only transient errors. Although the error rate for per-
manent errors is significantly lower, we include this assumption in our consid-
erations. Due to the execution of the replicated processes on different cores, a
step towards the detection and compensation of permanent errors on homoge-
neous systems can be made, which could be reinforced by applying the concept
on heterogeneous platforms. In addition, the parallel execution of the process
replicas (computation and voters) reduces the response time of the system and
thus the real-time capability is promoted. Due to the replication of the major-
ity voter, mutual monitoring and the established voter hierarchy, the previously
required backward recovery can be eliminated. In case of a voter failure, one of
the correct voter detects the failure and persists the correct results depending
on the output hierarchy. We showed by fault injection that the mutual voting
monitoring in combination with the arithmetic encoding optimizations is able to
detect all injected faults which lead to program and data flow errors.

Depending on future system requirements (e.g. fail-safe, fail-operational),
system design (e.g. static, dynamic) and optimization goals (e.g. memory con-
sumption, number of available cores) different variants of the concept regarding
the system configuration will be evaluated. In case a system design only requires
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a fail-safe operation and no hardware mechanisms such lockstep cores are avail-
able, the concept could be scaled to dual modular redundancy with an encoded
comparison instead of voting. This would decrease the maximum overall CPU
load while allowing the detection of CPU and memory faults.
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Abstract. Multi-core processors, despite their technical and economic
advantages, are yet hesitantly adopted in safety-critical embedded appli-
cation domains such as automotive and avionics. A key issue is the poten-
tial interference on shared resources, such as interconnect and memory,
between applications of different criticality which are running on a Multi-
Processor System-on-Chip (MPSoC) with tens of individual cores. In this
paper we propose the introduction of established protection switching,
known from synchronous data networks, to a hybrid Network-on-Chip
(NoC) in order to provide fault-tolerance for critical connections. Our
hybrid NoC combines configurable Time-Division-Multiplexing (TDM)
for critical task traffic with conventional packet switching for Best-Effort
(BE) traffic. We analyze three different protection switching schemes for
their worst case latencies in case of faulty NoC links and their resource
overheads. Simulations with random traffic and 10% reserved resources
for TDM connections reveal that the degradation of BE traffic perfor-
mance due to the proposed TDM protection switching for critical traffic
remains limited to about a 5% lower injection rate even in case of 1+1
protection, which can hence be considered affordable. We conclude that
the proposed hybrid NoC is a suitable way to provide both hard real-
time guarantees and fault-tolerance for critical connections in advanced
MPSoCs.

Keywords: NoC · TDM · Hybrid · Fail-operational ·
Hard real-time · Fault-tolerance · Protection switching

1 Introduction

Modern Multi-Processor System-on-Chips (MPSoC) can embed tens to, in the
near future, hundreds or even thousands of processing elements [5]. All these
processing elements must be connected to each other and, due to scalability
issues, bus-based solutions are no longer feasible and are dropped in favor of
Network-on-Chips (NoC) [4].

When integrating multiple applications on such an MPSoC it is vital to
ensure strict isolation between applications of different criticality and to provide
c© Springer Nature Switzerland AG 2019
M. Schoeberl et al. (Eds.): ARCS 2019, LNCS 11479, pp. 31–44, 2019.
https://doi.org/10.1007/978-3-030-18656-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18656-2_3&domain=pdf
http://orcid.org/0000-0001-6900-4761
http://orcid.org/0000-0002-8156-9025
https://doi.org/10.1007/978-3-030-18656-2_3


32 M. Koenen et al.

Guaranteed Service (GS) to critical applications so that all safety critical hard
real-time applications run unobstructed by any low- or non-critical application
and always meet their deadline. Moreover, in order to enable fail-operational
applications the communication of a critical application must not be affected by
a fault in the NoC. All this must be considered when implementing a NoC for
an MPSoC that is to be used in a safety-critical environment.

There are two common types of NoCs: packet-switched and circuit switched.
Today, most research seems to concentrate on packet-switched NoCs [15]. They
offer a good flexibility and different approaches to implement fault-tolerance
exist. However, it has proven rather difficult to implement hard-real-time guar-
antees and most implementations give only statistical latency guarantees [11].
Circuit-switched NoCs on the other hand are well suited for providing guar-
antees since resources are reserved for every connection [9,15]. However, this
typically leads to a lower utilization and less flexibility than in packet-switched
NoCs. Furthermore, to the best of our knowledge, no work exists considering
fault-tolerance in circuit switched NoCs.

Hybrid NoCs were proposed to combine the strengths of both NoC types but
the proposed approaches are mostly targeted towards maximizing the utilization
of the NoC rather than guaranteeing hard real-time communication [6,16,20].
Other works use circuit switching to provide GS but typically set up the connec-
tions at runtime by using packet switched best-effort (BE) traffic. This means
that guarantees can be given once a connection is established, but not about the
time it takes to set the connection up or whether it can be established at all.

In our work we propose a hybrid NoC combining Time-Division-Multiplexing
(TDM) and packet-switching that can not only provide GS but also fault-
tolerance to safety critical applications, while still providing BE traffic for non-
critical applications. We do that by applying a protection switching scheme to
the NoC, as known from SONET/SDH [2]. We define two paths for the critical
applications at compile time which are then set up at the startup time of the
system. In case of a fault along the main path, the system can immediately (and
transparently to the application) switch to the predefined backup path.

The remainder of the paper is structured as follows. In Sect. 2 we discuss
related work. We describe the basic concept of our approach in Sect. 3 before
providing a formal analysis of the achievable guarantees in Sect. 4. In Sect. 5
we describe our experimental setup and evaluate our proposed design. Section 6
concludes our results and gives an outlook to future work.

2 Related Work

Several NoC designs that provide GS have been proposed in prior research. To
the best of our knowledge, Goossens et al. have been the first to propose a
hybrid NoC design in their Æthereal NoC [8], composed of a TDM part for GS
and packet switching for BE traffic. The TDM schedules in the Æthereal NoC
are defined at design time. Other works based on the Æthereal NoC are aelite
[10] and dAElite [19] which both only implement GS traffic.
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The Argo NoC [12] uses TDM to provide GS and describes how a TDM
scheme can be applied to asynchronous and mesochronous environments. It uses
a completely static scheduling. Sørensen et al. have proposed an extension of the
Argo NoC in order to support reconfiguration at run-time in [18].

XNoC [17] also uses TDM to provide GS and provides a non-intrusive way
to reconfigure connections at runtime within a predictable latency. This is done
by using a distributed control plane.

A combination of Space-Division-Multiplexing (SDM) and TDM based
circuit-switching together with packet-switching has been proposed by Lusala
and Legat [16]. They effectively use two separate networks. One implement-
ing several links between neighboring routers (SDM), each with their own TDM
schedule, for GS traffic, the other implementing a standard packet-switched NoC
for BE traffic.

Yin et al. have proposed a hybrid NoC composed of a packet-switched NoC
with virtual channels and a TDM part [20]. Packet-switched messages are used
to set up TDM channels for bandwidth-heavy applications. Slot table sizes can
be adjusted at runtime (causing a reset of all TDM connections). Their main
concern has been energy-efficiency and network utilization.

Another TDM/packet-switched hybrid NoC has been proposed by Chen et al.
[6,7]. Their network applies the TDM schedule either by using slot tables in each
router and Network Interface (NI) or by using source routing and slot tables only
in the NIs. A central NoCManager is responsible for scheduling connections per
request. Dedicated wires or TDM channels are used for the connection requests.
Their main concerns have been power-efficiency, higher utilization, and channel
set up time.

Kostrzewa et al. have proposed an approach to provide GS in a packet-
switched NoC by introducing a Resource Manager (RM) [13,14]. Each NI imple-
ments a client that requests a channel from the RM. The path of each channel is
pre-calculated at design time so the RM only has to arbitrate overlapping paths.

An extension layer for the NI of an existing NoC has been proposed by
Ahmadian et al. in [3]. They differentiate between time-triggered and event-
triggered messages and ensure that time-triggered messages can traverse the
NoC unobstructed by other messages by restricting traffic injection.

To provide GS the approaches mentioned above use either completely static
scheduling that cannot be changed at runtime or dynamic scheduling that tries
to set up communication channels on demand and tears them down afterwards.
The latter makes it impossible to give hard real-time guarantees, which always
require that at least the critical connections are reserved and mapped at compile
time [11]. None of these works consider fault-tolerance. To the best of our knowl-
edge our proposed approach is the first one to provide not only hard real-time
guarantees but also fault-tolerance for the critical communication, while at the
same time providing the flexibility of run-time reconfigurations and BE traffic.
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3 Hybrid TDM NoC Architecture with Protection
Switching

This section describes the concept for the hybrid NoC and the implementation of
fault-tolerance. First, the definition of the applied TDM scheme will be covered,
as different approaches are taken in related work and there does not seem to be
a single state of the art solution. Furthermore, the composition of the hybrid
NoC as well as the protection switching scheme and its adoption for NoC are
described.

3.1 The Hybrid NoC Architecture

In our work we use the “contention-free routing” scheme for TDM NoCs
described in [8] as a basis. Each network node (i.e. router and NI) has a slot
table T with S slots that stores the routing information for each output and
each time slot. All nodes cycle through their slot tables synchronously. In each
time slot t, the output ports of the routers forward a flit from a defined input
port according to their slot table entry. A path for a connection is set up by
configuring consecutive slot tables along the path to forward flits in subsequent
time slots t+ 1. The NIs write/read flits to/from the network according to their
slot tables.

This form of routing is advantageous for GS traffic since the pipelined for-
warding guarantees a deterministic latency. A formal analysis of the achievable
worst case latencies (of both, a single TDM connection as well as the protection
switching schemes proposed in Sect. 3.2) is given in Sect. 4. Contentions cannot
occur per design, since the time slots for each connection are reserved before-
hand. The disadvantage, however, is that reserved resources cannot be used by
other connections, even if they are not used at a time. This typically leads to a
low resource utilization.

To mitigate the downsides of pure TDM routing and to support applications
with different and more flexible communication requirements, we use a hybrid
NoC, similar to the one proposed in [20]. The idea is to use the described TDM
schedule for the critical connections and use the remaining time slots for packet-
switched BE traffic. This requires buffers at each router input in order to store
incoming BE flits in case of contention between BE and TDM traffic, or between
two BE flits that request the same output port of a router. It is important to
note that the TDM routing is still contention-free since a scheduled TDM flit
will always have precedence over BE traffic and two TDM flits can never collide.
The described router architecture is shown on the right side of Fig. 1.

The use of a hybrid NoC increases the overall network utilization compared
to a pure TDM NoC since the BE flits fill otherwise unused time slots. The BE
traffic can even use reserved but unoccupied TDM slots, a technique known as
slot-stealing [20]. Furthermore, the BE part of the NoC is more flexible which can
be useful in case non-critical applications are started and dynamically mapped
at runtime. On the downside, the implementation of BE traffic adds complexity
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to the routers which now not just require buffers but also routing and arbitration
logic. However, the implementation does not need to be as complex as a pure
packet-switched NoC that wants to implement Quality of Service (QoS) since
packet-switching is not used for any critical communication. A system developer
has a degree of freedom regarding the complexity of the packet-switched part of
the NoC (e.g. number of virtual channels, traffic classes, etc.).

Fig. 1. Proposed architecture with system manager and control network

3.2 Protection Switching in NoC

In this section we describe the implementation of fault-tolerance for the critical
connections by applying protection switching. The basic idea behind protection
switching is to define alternative paths that can instantly be switched to in case
a fault occurs on the active path. The principle is known from SONET/SDH
[2] and requires some adjustments of the NoC in order to be applicable. It is
important to note that we give the fault-tolerance and hard real-time guarantees
of the critical traffic the highest priority which is why these connections are
determined at compile time, set up at startup time, and only reconfigured in
case of a fault.

To implement protection switching in our NoC two (or more) disjunct paths
are reserved for each connection at compile time. For the remainder of this paper
we will always consider two paths, and we will call the path that is actively being
used for communication the primary path, and the backup path the secondary
path. The first necessary adjustment to the NoC is to provide a second link
between each NI and the router it is connected to. Otherwise, no two paths
could ever be completely disjunct (i.e. have no common links). Both paths can
traverse the same router as long as they use different input and output ports
(we assume that each output port has its own slot table and no single fault can
affect the whole router). We examine three protection switching variants in our
research: 1:n, 1:1, and 1+1 protection.

In SONET/SDH 1:n protection means that several connections share the
same backup path. In a TDM NoC it means that the alternative paths of 2 or
more connections overlap in at least one time slot of at least one router port.
This has three consequences. Firstly, n connections can tolerate one fault on any
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of their paths at most. Secondly, more connections can be scheduled in a NoC,
since fewer time slots need to be reserved for secondary paths. Lastly, at least
parts of each secondary path, specifically the overlapping time slots, cannot be
configured at startup time, which leads to a longer delay when a fault occurs.
This is because only when a fault occurs it is known which secondary path must
actually be activated.

When using 1:1 protection, each connection has its own secondary path that
is not overlapping with any other path in the NoC (primary or secondary). In
comparison with 1:n protection, more resources are reserved which leads to a
lower number of possible connections. The advantage is that each connection
can tolerate a fault and the secondary path can be set up completely at startup
time, just as the primary path, leading to a lower latency when switching paths.

1:n protection and 1:1 protection are similar in that only one path is being
used at a time. In normal operation at least parts of the secondary channels are
set up but not used, allowing the resources to be utilized by BE traffic. In case
of a fault, any flits that were in transmission over the NoC must be resent over
the secondary path. This means that these flits must be kept at the sending NI
until it can be sure that they have arrived. The switching is done at the sending
NI, which requires another adjustment to the NoC: a feedback channel from
the routers to all NIs to inform the NIs about the occurrence of a fault. For our
proof-of-concept described in Sect. 5 we use a low-throughput overlay network as
control network. This network is used for two things. At startup time a central
system manager uses this network to configure the slot tables of the NIs and
routers before the normal operation of the system starts. During operation this
network is used to broadcast the occurrence of any fault in the NoC to all NIs,
which then decide whether or not they need to switch paths. It is important to
note that the described central system manager is not required for the protection
switching, which is done in a distributed manner by the sending NIs. However,
in case of a fault the system manager can try to find and set up a new secondary
path for any broken connection to return the system into a fault-tolerant state.
Figure 1 shows the proposed architecture with system manager, control network,
and a primary and secondary path from node A to node B.

A different approach is taken with 1+1 protection, which sends each flit
over both paths. This again has several consequences. Firstly, there is hardly
any flit delay in case of a fault, since no retransmission is necessary. Secondly,
the sending NI does not need to store any flits, since in case of a fault on one
channel all flits will still arrive on the other channel. The consequence is that the
sending NI does not need to know about the fault, which means solutions without
the previously mentioned control network as feedback channel are possible. The
fault can simply be detected at the receiving NI, which can then inform a higher
software layer about the lost fault-tolerance. However, the downside is that more
resources are used, leading to fewer time slots available for BE traffic.

To guarantee that all sent data is received and nothing is delivered twice to
the receiving task some kind of data synchronization is necessary. For instance,
if a fault occurs on the primary path while multiple flits are being transmitted it
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is possible that the first few flits still arrive. When the sending NI sends the same
flits again over the secondary path the receiving NI needs to know which flits
are duplicates that must be discarded. To solve this issue, we periodically insert
checkpoints into the data stream. If some data is retransmitted over the sec-
ondary path the last checkpoint number is retransmitted as well. The receiving
NI can thereby detect any duplicate flits in the received data.

The proposed protection switching scheme does not differ between permanent
and transient faults. The highest priority is given to the fault-tolerance which
is why in case of any fault the connection will switch to the secondary path.
However, it would be possible to send test vectors over the primary path after a
switch to check whether the path is still faulty and, if not, use it as new backup
path.

4 Formal Analysis

In this section we present a formal analysis of the three different protection
switching schemes regarding their worst case latency. There are several param-
eters that have an impact on the worst case latency of a TDM connection: the
latency per hop, the number N of hops, the size S of the slot tables, and the
number of slots s assigned to a connection.

The latency per hop in a TDM NoC is typically 1 cycle and is therefore
not further considered here. The hop-count N in our proposed architecture will
typically be relatively low since the critical applications are mapped at compile
time which allows to optimize the mapping for short paths. The size S of the
slot tables is a major design parameter and must be decided at system design
time. This parameter limits the number of connections that can share a single
link. It also defines the minimal bandwidth BWmin that can be assigned to
any TDM connection, which at the same time denotes the quantization of the
available bandwidth BW (BWmin = BW/S). The number of slots s assigned to
a connection defines the maximum bandwidth BWmax the connection can use
(BWmax = s · BWmin) but also has an influence on the worst case latency of a
single flit or a packet composed of multiple flits.

From the cycle that a TDM flit is injected into the NoC its latency is: N + 1
(one cycle per hop plus one cycle until it reaches the NI). However, a flit might
have to wait for up to S − s cycles at the sending NI until it can get injected
into the NoC. Hence, the worst case latency C1 in cycles for a single flit is:

C1 = (S − s) + (N + 1) (1)

When sending multiple flits between two checkpoints the total latency heavily
depends on the slot table size S, the number of assigned slots s, and the number
of flits f , and only to a minor degree on the hop count N . The reason is that
only s flits can be sent every S cycles. After the initial worst case delay, flits can
be sent in the following s − 1 cycles before the next flit must wait for another
S − s cycles. In the simplest case (s = 1) the flits following the first flit have an
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additional delay of S · (f − 1) cycles, causing a total worst case latency C2 of:

C2 = (S − s) + (N + 1) + (S · (f − 1)) = S · f − s + N + 1 (2)

This equation can be further generalized to also include cases where more
than one slot is reserved for a connection. Equation 3 describes the worst case
latency C for any TDM path. It can easily be seen that the hop count only has
a minor influence on the worst case latency when sending multiple flits.

C = (S − s) + (N + 1) + (S ·
⌊
f − 1
s

⌋
+ (f − 1) mod s) (3)

For 1+1 protection C also denotes the worst case latency in case of a fault
during the transmission, since it can be applied to both the primary and the
secondary path. In case of 1:n or 1:1 protection two other parameters must
be considered: the latency F caused by the feedback via the overlay network
described in Sect. 3.2, and, in case of 1:n protection, the latency P to set up
the secondary path. In both cases all flits since the last safe checkpoint must
be retransmitted over the secondary path, which also has the worst case latency
C (assuming the two paths are equidistant, otherwise N is different for the two
paths). A checkpoint can be considered safe as soon as the next checkpoint has
been inserted and C + F cycles have passed. Assuming a fault occurs on the
last hop for the last flit before a new checkpoint, the total worst case latency of
transmission and retransmission is: 2C − 1. In combination with the parameters
F and P (P = 0 for 1:1 protection) we get the worst case latency for 1:n and
1:1 protection.

C3 = (2C − 1) + F + P (4)

Both F and P are implementation dependent parameters, and can only be
approximated here. It can be assumed, though, that both parameters will, in
the worst case, grow linearly with the number of hops, making short paths more
desirable. Furthermore, since for 1:n and 1:1 protection all flits since the last
safe checkpoint must be retransmitted and C heavily depends on the number
of flits f between two checkpoints, it makes sense to keep f low by inserting
more checkpoints. For an actual application the tolerable worst case latency
must be considered when deciding which protection switching to use and how to
dimension S, s, f , and N .

5 Experimental Setup and Evaluation

The following subsections describe the experimental setup and the simulation
that has been done to evaluate the proposed architecture. No simulation would
be required for the critical communication and the fault-tolerance since they
are deterministic by design. Instead, the simulation is intended to evaluate the
impact the TDM traffic has on the BE traffic and the overall network utilization.
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5.1 Experimental Setup

To get adequate results concerning the interference of TDM and BE traffic we
made cycle-accurate simulations. We implemented a hybrid router in SystemVer-
ilog HDL and created an 8× 8 NoC mesh. The implemented packet switched part
of the router uses static X-Y-routing and does not employ virtual channels. Syn-
opsys VCS is used to simulate the implemented NoC. The remaining parts of
the system (i.e. the NIs, the overlay network, the system manager, the comput-
ing nodes, and the processes running on them) are currently abstracted in a
testbench created with cocotb [1] and Python.

Fig. 2. Scenario 1 - 11 task graphs Fig. 3. Scenario 2 - 3 task graphs

We used 4 randomly-generated task graphs to represent a set of critical appli-
cations for our simulations. All graphs have one source and one sink vertex, are
directed, acyclic, and have vertices with a degree of up to 3. We simulated two
scenarios with different sets of task graph mappings, different TDM injection
rates, and different protection switching schemes.

For the first scenario we spread 11 task graphs taken from the set of randomly-
generated task graphs across the entire 8× 8 system. We simulated both a 5%
and 10% flit injection rate for the TDM traffic. These injection rates describe
the net traffic meaning they are effectively twice as high for 1+1 protection.
Furthermore, the injection rates define the average across all nodes, meaning that
the injection rate of a single node can be significantly higher as not all nodes
inject TDM traffic into the NoC. Figure 2 shows the logical connections that
are configured for the critical communication (each connection has a disjunct
primary and a secondary path, not shown in the figure). All nodes send and
receive uniform random BE traffic to measure the effect the TDM traffic has on
the packet-switched traffic.
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For the second scenario we mapped 3 task graphs to just 16 nodes clustered
in one quarter of the system, shown in Fig. 3. In this scenario, due to the dense
mapping only an overall TDM flit injection rate of 5% could be achieved (which
means the 16 participating nodes have an average per node injection rate of 20%,
or 40% for 1+1 protection, since only a quarter of the NoC is used). Random
BE traffic is sent and received by the remaining 48 nodes meaning the critical
and BE applications are separate.
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Fig. 4. Average BE latency - Scenario 1

The BE packets have an average size of 30 flits and each router has an input
buffer that can hold 16 flits. We simulated a per node BE flit generation rate of
10% to 30% in 2.5% steps to measure at which point the network would saturate.
After a warmup period of 10 000 cycles, after which the link load has stabilized,
we simulated 100 000 cycles. Longer simulation runs did not change the results
significantly.

5.2 Results and Evaluation

The Figs. 4 and 5 show the average BE packet latencies for the two simulated
scenarios. Both figures include a reference simulation without any TDM traffic in
the NoC. The measured packet latencies are from the applications point of view,
i.e. from the generation of a packet (and queuing at the NI) until its delivery
(not from injection into the NoC until delivery). For the results this means that
at a certain threshold the flit generation rate exceeds the achievable injection
rate and the BE buffer queues at the sending NIs would grow infinitely.
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The results for scenario 1, depicted in Fig. 4, show that the TDM traffic
negatively affects the BE traffic, which causes the earlier saturation points for
BE traffic. However, this degradation of the BE traffic was expected and is still
acceptable considering the trade-off for real-time guarantees and fault-tolerance
for the critical communication. The results also show that the combined flit
injection rate of BE and TDM traffic (obtained by adding the 5% or 10% TDM
injection rate to the respective curve in the diagram) can even be higher than
the one of the reference simulation with only BE traffic. The simulations for 1:n
and 1:1 protection show very similar results which is caused by the fact that they
both only use one path at a time. Furthermore, the results for 1+1 protection
with a 5% injection rate and the ones for 1:n and 1:1 protection with a 10%
injection rate are also similar, which reflects the fact that 1+1 protection uses
twice the amount of resources.
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Fig. 5. Average BE latency - Scenario 2

The results of scenario 2, depicted in Fig. 5, show a different outcome. Here,
the TDM traffic has almost no effect on the BE traffic. Furthermore, the satu-
ration point for the reference simulation is considerably lower than in scenario
1. The results can be explained by two effects. First, the nodes creating and
consuming BE traffic are no longer evenly distributed throughout the NoC. This
causes an uneven utilization of the available links in the NoC (caused by the
static X-Y-routing) which creates bottlenecks on some links and thereby leads
to an earlier saturation point. Second, only a small amount of the BE traffic tra-
verses the area with the TDM traffic, which is also caused by the X-Y-routing.
Therefore, only a small amount of the BE traffic is affected by the TDM traffic.

The results indicate that it is beneficial to spread out the critical applica-
tions rather than clustering them. This would also increase the overall resilience
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since a single fault in the NoC would affect fewer critical paths. However, more
simulations with different mappings are needed to verify this assumption, which
will be done in future work. Furthermore, different BE routing schemes and net-
work topologies should be investigated as the results of scenario 2 indicate a
strong influence on the BE traffic performance of both. Overall, we believe that
the results justify the use of 1+1 protection rather then 1:n or 1:1 protection.
In our opinion the additional resource utilization of 1+1 protection is tolerable,
especially when considering the lower worst case latency and the fact that 1+1
protection would allow for an architecture without additional control network.

6 Conclusion and Future Work

In this paper we described a hybrid NoC architecture using TDM for critical
communication and packet-switching for BE communication. We proposed the
introduction of protection switching to TDM NoCs, enabling not only hard real-
time guarantees but also fault-tolerance for critical communication. Three dif-
ferent protection switching schemes were investigated and evaluated considering
the necessary hardware adjustments in a system: 1:n, 1:1, and 1+1 protection.
Furthermore, we gave a formal analysis of the achievable worst case latencies for
the different schemes which justifies their usage for hard real-time applications.
It was found that 1+1 protection has the highest overhead considering reserved
NoC resources but a lower overhead regarding the necessary hardware adjust-
ments in a system and a lower worst case latency. The subsequently discussed
simulation results confirmed the higher degradation of BE traffic in case of 1+1
protection, but also showed that this is an affordable trade-off.

In conclusion, we presented a NoC architecture that, to the best of our knowl-
edge, is the first one to provide not only hard real-time guarantees but also
fault-tolerance to critical connections. We believe that the gain is well worth the
trade-off and that especially 1+1 protection is well suited to implement fault-
tolerance in NoCs.

There are several aspects that we plan to address in our future work. First,
we want to investigate tools that automatically find possible mappings and the
required slot table size for a given set of critical applications with provided
constraints, since mapping is currently done manually. This will allow us to
simulate a larger number of mapping scenarios to validate our current results
as well as examine different network topologies and their effect on the overall
achievable NoC utilization. We also plan to research ways to deal with accesses to
heavily shared resources (such as I/Os and memories), possibly by using different
slot table sizes throughout the NoC, or multiple interfaces. Lastly, we want to
examine the protection switching schemes in combination with the migration of
a critical task and in combination with multicasts.

Acknowledgement. The work presented in this paper is supported by the German
BMBF project ARAMiS II with funding ID 01 IS 16025.



Fail-Operational and Hard Real-Time Communication in MPSoC 43

References

1. Cocotb manual. https://cocotb.readthedocs.io/en/latest/. Accessed 22 Nov 2018
2. ITU-T G.841: Types and characteristics of SDH network protection architectures.

Technical report. International Telecommunication Union, October (1998)
3. Ahmadian, H., Obermaisser, R., Abuteir, M.: Time-triggered and rate-constrained

on-chip communication in mixed-criticality systems. In: 2016 IEEE 10th Interna-
tional Symposium on Embedded Multicore/Many-core Systems-on-Chip, MCSOC,
pp. 117–124, September 2016

4. Benini, L., Micheli, G.D.: Networks on chips: a new SoC paradigm. Computer
35(1), 70–78 (2002)

5. Borkar, S.: Thousand core chips: a technology perspective. In: Proceedings of the
44th Annual Design Automation Conference, DAC 2007, pp. 746–749. ACM, New
York (2007)

6. Chen, Y., Matus, E., Fettweis, G.P.: Combined packet and TDM circuit switching
NoCs with novel connection configuration mechanism. In: 2017 IEEE International
Symposium on Circuits and Systems, ISCAS, pp. 1–4, May 2017

7. Chen, Y., Matus, E., Fettweis, G.P.: Register-exchange based connection allocator
for circuit switching NoCs. In: 2017 25th Euromicro International Conference on
Parallel, Distributed and Network-based Processing, PDP, pp. 559–566, March
2017

8. Goossens, K., Dielissen, J., Radulescu, A.: Æthereal Network on Chip: concepts,
architectures, and implementations. IEEE Des. Test Comput. 22(5), 414–421
(2005)

9. Goossens, K., Hansson, A.: The Æthereal network on chip after ten years: goals,
evolution, lessons, and future. In: Design Automation Conference, pp. 306–311,
June 2010

10. Hansson, A., Subburaman, M., Goossens, K.: Aelite: a flit-synchronous Network
on Chip with composable and predictable services. In: 2009 Design, Automation
Test in Europe Conference Exhibition, pp. 250–255, April 2009

11. Hesham, S., Rettkowski, J., Goehringer, D., Ghany, M.A.A.E.: Survey on real-time
Networks-on-Chip. IEEE Trans. Parallel Distrib. Syst. 28(5), 1500–1517 (2017)

12. Kasapaki, E., Sparsø J.: The Argo NOC: combining TDM and GALS. In: 2015
European Conference on Circuit Theory and Design, ECCTD, pp. 1–4, August
2015

13. Kostrzewa, A., Saidi, S., Ernst, R.: Dynamic control for mixed-critical Networks-
on-Chip. In: 2015 IEEE Real-Time Systems Symposium, pp. 317–326, December
2015

14. Kostrzewa, A., Saidi, S., Ecco, L., Ernst, R.: Ensuring safety and efficiency in
Networks-on-Chip. Integr. VLSI J. 58(Suppl. C), 571–582 (2017)

15. Liu, S., Jantsch, A., Lu, Z.: Analysis and evaluation of circuit switched NoC and
packet switched NoC. In: 2013 Euromicro Conference on Digital System Design,
pp. 21–28, September 2013

16. Lusala, A.K., Legat, J.D.: A hybrid NoC combining SDM-TDM based circuit-
switching with packet-switching for real-time applications. In: 10th IEEE Interna-
tional NEWCAS Conference, pp. 17–20, June 2012

17. Nguyen, T.D.A., Kumar, A.: XNoC: A non-intrusive TDM circuit-switched
Network-on-Chip. In: 2016 26th International Conference on Field Programmable
Logic and Applications, FPL, pp. 1–11, August 2016

https://cocotb.readthedocs.io/en/latest/


44 M. Koenen et al.

18. Sorensen, R.B., Pezzarossa, L., Sparso, J.: An area-efficient TDM NoC support-
ing reconfiguration for mode changes. In: 2016 Tenth IEEE/ACM International
Symposium on Networks-on-Chip, NOCS, pp. 1–4, August 2016

19. Stefan, R.A., Molnos, A., Goossens, K.: dAElite: a TDM NoC supporting QoS,
multicast, and fast connection set-up. IEEE Trans. Comput. 63(3), 583–594 (2014)

20. Yin, J., Zhou, P., Sapatnekar, S.S., Zhai, A.: Energy-efficient time-division multi-
plexed hybrid-switched NoC for heterogeneous multicore systems. In: 2014 IEEE
28th International Parallel and Distributed Processing Symposium, pp. 293–303,
May 2014



Resource-Aware Parameter Tuning
for Real-Time Applications

Dirk Gabriel1(B), Walter Stechele1, and Stefan Wildermann2

1 Chair of Integrated Systems, Technical University of Munich,
Munich, Germany

{dirk.gabriel,walter.stechele}@tum.de
2 Chair of Computer Science 12,

Friedrich–Alexander University Erlangen–Nürnberg, Erlangen, Germany
stefan.wildermann@fau.de

Abstract. Executing multiple applications on a multi-core system while
the workload of all applications varies brings the challenge of dynamically
adapting resource allocations and parametrizing with respect to con-
straints e.g. timing limits of real-time applications. We present a hybrid
approach which extracts a set of Pareto-optimal operating points dur-
ing design time which are used to dynamically parameterize the periodic
application during run-time. The setup is done at the beginning of each
iteration of the execution and exclusively allocates processing elements
from the system depending on the current workload. The parametriza-
tion is performed with the observed information about workload com-
plexity and allocated resources. Therefore guarantees on time limits can
be granted for all iterations including situations when the number of
available processing elements has been decreased sharply.

Keywords: Self-aware application · Resource-aware application ·
Reliability · Parameter tuning · Resource reservation

1 Introduction and Related Work

Multi-core systems are commonly used in data-centers and consumer electronics
like mobile devices and desktop workstations. Multiple applications running on
such systems share the available hardware resources and can adapt their distri-
bution dynamically during run-time. This allows an adjustment according to the
current workload and optimizes the resource utilization.

But still the majority of automotive and aviation systems is built up by
hundreds of single core control units. This results in a more inefficient design
as more hardware components are required while their utilization remains low.
Nevertheless, single core architectures are preferred in real-time systems as they
simplify the granting of guarantees for the maximum execution time of a sin-
gle application. Calculating worst-case execution times (WCETs) on multi-core
platforms is in some cases achievable [6,11] but requires a known and therefore
static task assignment.
c© Springer Nature Switzerland AG 2019
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Furthermore, applications in embedded system usually follow a periodic pat-
tern. They repeat a basic processing task which handles a single input data
set, e.g. a network packet or camera image. We use this behavior to adapt the
resource allocation and configuration of run-time parameters between two itera-
tions. For being able to give guarantees on the WCET of the task for processing
one input data, no changes are allowed during the execution of one iteration.
This way workload changes can be compensated while still giving processing
time guarantees.

1.1 Feedback Control System

Hoffmann et al. [5] introduced the PowerDial Control System which enables
applications to adapt their dynamic parameters in order to achieve constant
latency while the available power capacity changes. The user defines a set of
parameters and their corresponding ranges. The influence of the parameters on
the execution time and quality of service (QoS) is analyzed. All points which
lead to an optimal combination of speedup versus QoS are collected and build a
Pareto-optimal front.

During run-time the application can switch between different operating
points of the precalculated Pareto-front. Therefore, the inserted Dynamic Knobs
are controlled by a feedback loop based on the Heartbeats Framework presented
in [4]. The system measures the error of the current execution time and calcu-
lates the required speedup to compensate the error. The speedup value is used
to select a new optimal operating point and setup the Dynamic Knobs and
respective all application parameters for the next iteration. This way the QoS is
maximized with respect to the timing constraint.

As long as only slight changes occur on the workload and set of available
hardware resources, the PowerDial Control System achieves very good results.
Since the system relies on a feedback mechanism based on a measured error,
sudden changes in the amount of available resources or the input complexity
lead to an high error before the system adapts to the new situation. This control
delay affects real-time applications which have to rely on a guaranteed WCET.

1.2 Explicit Resource Allocation

Even without variations of the workload other applications might influence the
timing behavior by sharing the same resources. To overcome this impact Teich [9]
introduced a method of explicit resource allocation. The applications perform
the allocation in a cyclic pattern consisting of three stages. First they request
processing elements like general purpose cores and accelerators from the system
using an invade call. Then the jobs are distributed on the granted resources by
calling infect. After the execution has been completed the resources are given
back to the system by triggering retreat.

Weichslgartner et al. [10] extended this approach with a graph structure
representing the required resources and a methodology how to map them onto
the hardware. This graph representation and mapping algorithm is used in the
run-time system of this work.
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2 Resource-Aware Parameter Tuning

To overcome the delay of feedback mechanisms (like [5]) we propose a direct
control flow for real-time applications as depicted in Fig. 1. It relies on a known
set of operating points provided by a design space exploration (DSE). During
run-time, the selection of the optimal operating point is based on the information
available within one single iteration and does not depend on an error calculated
by previous runs. In order to achieve reliable decisions it is mandatory to predict
the current workload. This information is presented by a complexity class which
is directly calculated or estimated based on the input data. It is not necessary
for the complexity class to have a mathematical relation to the execution time.
It is only required that different inputs with the same complexity class show the
same timing behavior.

Fig. 1. Run-time workflow of resource-aware parameter tuning.

Based on the complexity class, a set of operating points that match this
class is selected and the corresponding hardware resources are requested from
the system. The point with the highest quality of service level whose resource
request can be fulfilled by the system is finally selected. The dynamic parameters
are now used to configure the application and execute the job within the granted
resource set. After the execution has been completed the resources are given back
to the system or a new iteration starts immediately.

2.1 Operating Points

One operating point is characterized by the setting of the Dynamic Knobs (or
run-time parameters) together with the achievable quality of service. This is
similar to Hoffmann et al. [5]. However, in addition, we associate each operating
point with hardware resource requirements (given by a constraint graph accord-
ing to Weichslgartner et al. [10]). Furthermore, each operating point is provided
with the set of complexity classes for the processing of which it is suitable. This
combination leads to following entries building a single operating point:
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– Hardware Resources: The parameter tuning system allocates the resources
at the beginning of each iteration which are used exclusively by the applica-
tion. The resource graph contains the number and type of the used pro-
cessing elements like cores and accelerators, the minimal required operating
frequency and bandwidth of communication channels between the different
elements. Following this (spatial) isolation scheme, we obtain composability
(see Akesson et al. [1]). This allows independent analysis of multiple applica-
tions which are combined on the heterogeneous multi-core system.

– Run-time Parameters: The setting of all configuration parameters is pro-
vided by the selected operating point. Each point contains only one valid set
of dynamic parameters. Their values remain constant during the execution of
a single iteration. Due to the composability property of our approach, we can
determine and evaluate the parameter setting per operating point at design
time: Its impact on QoS or execution time is independent on other appli-
cations and operating points running in the system. As the set of hardware
resources is part of the operating points even run-time parameters relying on
specific hardware allocated by the respective operating point can be included
into the setting.

– Complexity: The complexity of the input data may change over the time.
As it may have a high influence on the execution time it is included into the
operating point. In some cases it is easy to observe the complexity, e.g. if
it depends on the compression ratio or data packet size these values can be
classified directly. In other cases it may be necessary to predict the complexity
class. Such predictions can introduce inaccuracies into the system and have
to be made with respect to the requirements. Pessimistic estimations lead to
a high chance of fulfilling the timing constraints but decrease the hardware
utilization and QoS. Therefore the user selects a suitable trade-off respective
to the application and usecase.

– Quality of Service: Modifications of the run-time parameters usually influ-
ence the quality of service. As this metric needs to be maximized, their calcu-
lation is be provided by the user. This value is only used during design time,
hence the calculation can be based on information which is not available
during run-time but the design process.

– Execution Time: The execution time is the major constraint of real-time
applications and depends on the other values of the operating point. When-
ever a static WCET analysis is applicable, it can be used to determine the
execution time. In soft-real-time systems an observation based measurement
can be used instead.

– Non-functional Requirements: Further goals can be included into the
optimization process. Thus it is possible to optimize non-functional require-
ments e.g. minimizing the energy consumption.
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Fig. 2. Evolutionary workflow of design space exploration [10].

2.2 Design Space Exploration

During design time, a list of possible operating points is extracted from the appli-
cation and optimized to form a Pareto-front. For this purpose an evolutionary
algorithm is used. Weichslgartner et al. [10] presented the workflow consisting
of three stages as shown in Fig. 2. The stages are iteratively executed to achieve
an optimal result over time. In the exploration phase, new hardware constraints
and dynamic parameters are derived from previous operating points. For the
first iteration, random operating points are generated. During the evaluation
phase, the quality of service levels and execution times are determined. There-
fore, either a static WCET analysis or a hardware profiling approach is used.
After gathering all values, the archive of operating points is updated in order
to contain dominating points building the Pareto-front. This workflow is carried
out for each relevant complexity class. Corner cases which might happen on the
complexity class are included into the DSE to ensure proper behavior in all cases.

2.3 Context Conditions

Depending on the current situation, the user might change application con-
straints. In some cases, it is for example necessary to achieve the best result
whereas a long execution time can be tolerated. In other cases, a low time limit
must not be exceeded. Each situation is described by a set of constraints for
resource and time limits. This set is called context within the following descrip-
tions. During run-time, the current context of different applications is usually
selected by a global control unit.

The design space exploration is performed for each context defined by the
user. Each evaluated operating point is stored in a global storage. Thus different
executions of the DSE need not to rerun the evaluation step but can use the
stored values directly if one operating point is generated for different contexts.
This is possible as the context only influences the update stage which decides
whether a point is accepted and included into the Pareto-front. The other stages
are independent of the context.
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2.4 Run-Time Decision

The found Pareto-optimal operating points are stored in a directory within the
application. The directory has a hierarchical and ordered structure as depicted
in Fig. 3. The first stage filters by the current context. The application therefore
has to provide the current context id. Systems which run always within the same
context skip this stage by setting the context id constantly to zero.

Fig. 3. Hierarchical structure of operating point directory stored in run-time system.

The second stage selects a list of possible resource graphs based on the current
complexity. The complexity is provided by a function added by the user. It
estimates the class based on the observed data input. The resource set returned
by the directory is requested from the system using the invade call. As multiple
applications are executed on the system, resources may be granted to other
applications. Thus the first invade call can fail. Then the next setting with a
lower known QoS is tried to be allocated until the request can be fulfilled. The
resource sets are stored in decreasing order of QoS levels which results in the
selection of the highest QoS value currently achievable by the system.

The last stage of the directory contains the dynamic parameters which are
used to setup the application for the current iteration. After the resources are
allocated and the allocation is configured the application is executed. At the end
of the iteration immediately a new iteration is configured and executed or the
resources are returned to the system.

3 Experimental Setup and Results

The full resources-aware parameter tuning workflow is shown with an application
developed by Azad et al. [2]. The application takes a camera image as input and
searches for textured objects within the frame. Therefore multiple steps are
executed after each other.

The Harris Corner algorithm [3] is used to find pixel regions with high
entropy. If the corner score of a pixel is higher than the defined threshold a
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scale invariant feature transform (SIFT) is calculated to describe the region [7].
The calculated SIFT-features are compared with pretrained features of a known
object. If enough features match the known object it is considered to be found
within the image and a affine transformation is calculated using the RANSAC
algorithm in order to determine the position. This application supports high
parallelization and parametrization with values like the Harris Corner threshold
and number of RANSAC iterations. Paul et al. [8] has shown that the threshold
can be used to trade of between execution time and the number of considered
feature points which is used as a quality of service metric.

The complexity value is derived from the previous frame. Therefore the num-
ber of pixels in the Harris Corner image above a specific threshold value are
counted. The weight of the pixels is increasing in steps from 1 for pixels above
a threshold of 100 up to 5 if the value is higher than 1900.

The application is executed on a multi-core platform consisting of 4 IntelR©

XeonR© E7-4830 CPUs with each 12 physical cores. The cores support Hyper-
threading hence the overall systems contains 96 virtual cores. The application has
to process images with a size of 2048×1536 pixels within 500 or 800 milliseconds,
depending on the selected context. This setup has been optimized using the
design space exploration with application profiling method.

Simultaneously two further applications following the same approach are exe-
cuted on the system. Thus some resources are occupied by them and are not
available to the object detection application. The workload of all applications
varies over the time which influence the set of available resources.
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Fig. 4. Compensated effect of reduced amount of processing elements on the execution
time with the proposed approach.

Figure 4 shows the execution time of the object detection application using
the resource-aware parameter tuning while the number of available cores changes
but complexity and context remain the same. Even directly after a reduction of
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the number of available cores the execution time stays reliably below the time
limit of 500 ms. The increasing threshold reduces the computational amount so
the result can be produced with fewer processing elements. Although the number
of extracted SIFT-features and likewise the quality of service is decreased the
trained object is detected always during the test. Increasing amounts of available
resources can be used immediately. Thus iterations with underutilization are
prevented the quality is increased as soon as possible.
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Fig. 5. Calculating the required speedup based on the timing error of the last iteration
as done by Dynamic Knobs [5] needs multiple iterations to compensate the effect of
variations of available resources.

Dynamic Knobs [5] controls the operating point selection based an the
required speedup calculated from the timing error of the previous iteration.
This way resource changes are not detected within the first iteration which can
cause a violation of the timing constraints. Figure 5 shows the execution of the
application using the Dynamic Knobs approach to regulate the execution time
to a target value of 410 ms which equals the observed average of the parameter
tuning system. Both times the timing limited of 500 ms is exceeded at the first
iteration after the number of available cores has been reduced. Once the error
reached 140 ms.

In our proposed approach the application informs the parameter tuning stage
about context changes before starting the corresponding iteration. Therefore
the selection of a suitable operating point happens immediately. Figure 6 shows
the adaption to context changes. The execution time directly jumps to the new
range. The higher execution time limit in the middle of the test causes a reduced
resource requirement while the threshold and thus the quality of service remains
at an optimal value.

The workload complexity of this application depends to a large extent on
the features contained in the input image. As it is not possible to determine this
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Fig. 6. Immediate adaption to context changes with the proposed approach.
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Fig. 7. Violation of timing constraint at first iteration of increased complexity due to
wrong user based prediction.

number without intensive calculations, our estimation of the complexity is based
on previous frames. This approach can lead to wrong predictions of the complex-
ity class. Figure 7 shows the execution time raising above the timing constraint.
This happens at a single iteration when the complexity has increased suddenly.
Further iterations are not affected because then the complexity prediction is
based on the high value of the previous frame.

The overhead of all functions added by the resource-aware parameter tuning
is depicted in Fig. 8. The configuration time depends on the number of failed
invade calls but stayed below 25 µs for all 512 iterations executed during the
tests. Compared to the execution time of the algorithm the setup makes up less
than 0.1% and is negligible.
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Fig. 8. Setup time of resource-aware parameter tuning.

4 Conclusion

Multi-core systems allow dynamic distributions of their hardware resources to
the different applications and thus are able to adapt their mapping to current
workload scenarios. The resource-aware parameter tuning allows such adoptions
between different iterations of real-time applications. The parameter tuning col-
lects all required information from the system and user predictions to select
an optimal operating point for each iteration. Thus the parameter settings and
resource graphs are determined.

Even though dynamic variation happen on the system, guarantees on the
timing constraints can be given for each iteration. Changes in the set of avail-
able resources and the context constraints can be compensated within the same
cycle. Variations on the complexity must be predicted by the user. Therefore
the reliability of the overall behavior depends on the accuracy and delay of the
complexity estimation.

Additionally it was shown that the added overhead is negligible which allows
the usage of the proposed approach in embedded systems.
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Abstract. Sharing data across multiple tasks in multiprocessor systems
has intensively been studied in the past decades. Various synchronization
protocols, the most well-known being the Priority Inheritance Protocol
or the Priority Ceiling Protocol, have been established and analyzed
so that blocking times of tasks waiting to access a shared resource can
be upper bounded. To the best of our knowledge, all of these proto-
cols share one commonality: Tasks that want to enter a critical section,
that is already being executed by another task, immediately get blocked.
In this paper, we introduce the Asynchronous Priority Ceiling Protocol
(A-PCP), which makes use of aperiodic servers to execute the critical sec-
tions asynchronously, while the calling task can continue its work on non-
critical section code. For this protocol, we provide a worst-case response
time analysis of the asynchronous computations, as well as necessary
and sufficient conditions for a feasibility analysis of a set of periodic tasks
using the proposed synchronization model on a system that preemptively
schedules the tasks under the rate-monotonic priority assignment.

1 Introduction

Sharing data between various tasks plays a very important role in real-time
systems. Therefore, over the last few decades, synchronization protocols have
intensively been established and studied in order to provide bounded blocking
times for tasks. The best known of such protocols are the Priority Inheritance
Protocol (PIP) and the Priority Ceiling Protocol (PCP), both covered by Sha
et al. in [8]. However, all of the real-time synchronization protocols we found in
the state of the art are based on mutual exclusion and thus, immediately block
tasks that want to enter the critical section which is already being executed by
another task. In this paper, we consider asynchronous critical sections, i.e. the
execution of the critical section is relocated to an aperiodic server associated with
the shared resource while the tasks waiting on the result of the asynchronous
computations can continue their execution in order to carry out other work that
does not access shared resources. The proposed model introduces a few benefits:

(1) The data locality is improved as the computations always take place on
the same processor and thus, reduces the amount of data moved around in
distributed systems and non-uniform memory access (NUMA) architectures.
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(2) Tasks that make use of asynchronous critical sections continue their execu-
tion with their normal priority and thus, priority inversions can only occur
on processors running aperiodic servers.

(3) Blocking times and the amount of context switches are reduced as the tasks
only block and yield when the results of the asynchronous computations are
not available at the time instant when they are needed.

The last item is only beneficial when the work that the task performs after
raising a request for the asynchronous critical section is larger than the execution
time of the critical section. As an example, we assume that the shared resource
is not being accessed and a task raises a request for an asynchronous critical
section. The execution of the critical section will immediately start while the task
runs non-critical code in the meantime. Both threads are considered to execute
without preemption. As soon as the task finishes running the non-critical code,
it self-suspends to wait for the result of the asynchronous computations. This
does not happen when the task tries to acquire the result of the asynchronous
computations after the execution of the critical section has finished or in the
case where the critical section is executed directly by the task as it is done
in common synchronization protocols. However, as critical sections tend to be
short compared to non-critical sections [1], tasks should rarely be blocked by
asynchronous critical sections.

1.1 Contribution and Structure

Following contributions are added to the state of the art:

(1) A real-time multiprocessor synchronization protocol that allows the asyn-
chronous execution of critical sections through the use of aperiodic servers.

(2) A model for the proposed protocol that upper bounds the worst-case
response times of the asynchronous critical sections under rate-monotonic
preemptive scheduling.

(3) Necessary and sufficient conditions for a feasibility analysis of a task set
using the Asynchronous Priority Ceiling Protocol.

The rest of this paper is organized as follows: Sect. 1.2 presents related work
on real-time synchronization. The notations used throughout this paper are pre-
sented in Sect. 2 together with the model of the A-PCP. Subsequently, in Sect. 3,
the response time analysis of asynchronous critical sections on systems using
rate-monotonic preemptive scheduling is conducted and followed by the feasi-
bility analysis in Sect. 4. At last, the outcome of this paper is summarized in
Sect. 5.

1.2 Related Work

Many different real-time synchronization protocols can be found in the state
of the art. The two best-known are described by Sha et al. in [8], namely the
Priority Inheritance Protocol and the Priority Ceiling Protocol. They derive a
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set of sufficient conditions under which a set of periodic tasks can be scheduled
by rate-monotonic preemptive scheduling on a single processor. Both protocols
deal with uncontrolled priority inversion problems by temporarily raising the
priority of the task holding the critical section. An important advantage of the
PCP over PIP is that the former protocol prevents transitive blocking and dead-
locks. In [5,6], Rajkumar et al. made necessary adaptions to the Priority Ceiling
Protocol that allow a schedulability analysis for tasks executing in parallel on
distributed (Distributed PCP, D-PCP) and shared (Multiprocessor PCP, M-
PCP) memory multiprocessor systems, respectively. Both previously mentioned
papers provide a pessimistic analysis of worst-case blocking times of tasks. A
more detailed analysis of the Multiprocessor PCP is covered in various papers,
e.g. by Lakshmanan et al. [2] and Yang et al. [10]. For a more detailed survey of
real-time synchronization protocols the reader is referred to [4].

As mentioned before, all real-time resource sharing protocols known to us
share the commonality that a task that wants to enter a critical section is blocked
when the shared resource is already being accessed by another task. In the sec-
tor of distributed computing, the Active Object pattern [7] describes a way of
providing synchronized access to a shared resource by relocating the computa-
tions to a thread of execution residing in the control of the shared resource.
Thereby, the execution of the critical sections is done asynchronously, allowing
the task to continue its computation on non-critical section code. To the best of
our knowledge, no real-time analysis of this pattern has been conducted in order
to prevent unbounded blocking times and priority inversions of tasks using this
pattern. As a result, our work is the combination of the Active Object pattern
and the D-PCP.

2 Notations and Model

We now present the notations used for the task model and the asynchronous
critical sections, as well as the assumptions that are necessary for the response
time and feasibility analysis of the A-PCP.

2.1 Asumptions and Notations

In this paper, we consider a task set Γ of n periodic tasks scheduled on a shared-
memory multiprocessor with m identical processing cores p1, p2, ..., pm. Note that
we will use the words processor and cores interchangeably. Each task τi (with
1 ≤ i ≤ n) is represented by a 2-tuple τi = (Ti, Ci), where Ti is the period
of the task and Ci denotes the worst-case execution time (WCET). The task
periodically releases a job, at multiples of Ti, which executes for Ci units of
time. The l-th job of task τi is denoted as Ji,l and is released at time instant
ri,l. An arbitrary job of τi is denoted as Ji,∗ with its release time being ri,∗.
Furthermore, we consider implicit deadlines, i.e. the deadline of Ji,l is equal to the
release time ri,l+1 of the subsequent job. Each job may be preempted by higher
priority jobs and resume its execution later on. The time instant at which job
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Ji,l finishes its execution is denoted as the completion time fi,l. The worst-case
response time (WCRT) of a task τi is defined as Ri = max∀l(fi,l − ri,l). As in
[6], we assume that tasks are statically allocated to processors and assigned a
fixed priority based on the rate-monotonic algorithm. The priority Pi is shared
by all jobs of task τi. We assume that lower indices represent a higher priority,
i.e. task τi has a higher priority than τj if i < j. The sets of tasks with a higher
and lower priority than τi are denoted as hpi(Γ ) and lpi(Γ ), respectively.

Throughout this paper, the accesses to shared resources �1, �2, ..., �x are pro-
tected by aperiodic servers α1, α2, ..., αx following the rules of A-PCP. When-
ever a job of τi wants to access a shared resource, it raises a request to the
corresponding aperiodic server of the shared resource. This server is responsible
for executing the critical section. Each request μi,l is characterized by a 3-tuple
μi,l = (ρi,l, ζi,l, γi,l), where l denotes the l-th request raised by an arbitrary job of
task τi, ρi,l indicates the time instant when Ji,∗ raises the request, ζi,l represents
the worst-case execution time of μi,l and γi,l is the time instant when the result
is needed by Ji,∗ in order to continue its execution. It must be noted that the
execution requirements ζi,∗ do not contribute to the execution time Ci of task τi.
The completion time φi,l denotes the time instant when the aperiodic server has
finished the computation of μi,l and has provided a result to the respective job.
If φi,l > γi,l, i.e. the task needs the result of an asynchronous critical section that
has not yet finished its execution, the task is suspended until φi,l. The worst-case
response time σi,l is defined as the maximum difference φi,l −ρi,l among all jobs
of τi. Arbitrary requests and their properties are denoted as μi,∗, ρi,∗, ..., σi,∗.
The set of requests raised by τi to an aperiodic server αn is represented by Mn

i ,
in addition Mi = ∪∀nMn

i is the set of all requests raised by task τi. The priority
of all requests in Mi is equal to the priority of τi. Finally, we do not allow nested
asynchronous critical sections, i.e. aperiodic server αx is not allowed to raise a
request to αy when x �= y and each task may only have one pending request, i.e.
γi,l < ρi,l+1.

To clarify the notations, an example is shown in Fig. 1. Two tasks τx, τy and
the aperiodic server run on three distinct processors p1, p2 and p3. In the interval
[0, 3), the aperiodic server is executing a critical section with a computation
time ζ... from a request which was raised before t = 0. During the same interval
the queue of the aperiodic server is considered empty. When task τy raises an
arbitrary request μy,∗ at t = ρy,∗ = 1, the request is stored in the queue of the
server for later execution. At t = ρx,∗ = 3, task τx also raises a request μx,∗ which
is stored in the queue and the aperiodic server finishes the computations of ζ....
The server then decides which request to run next. In this case, we consider
the priority of task τy greater than the priority of τx and thus, request μy,∗ is
executed next for ζy,∗ units of time. At time t = γy,∗ = 5, task τy needs the results
of the computations ζy,∗ in order to continue its execution. As the results are not
available yet, the task suspends itself. At time instant t = φy,∗ = 8, the aperiodic
server finishes the execution of ζy,∗ and returns the result to τy which allows the
task to continue its execution. Again, the aperiodic server picks the next request
from the queue, which is request μx,∗, and executes it. At t = φx,∗ = 10, the
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p1

p2

p3

ρy,∗ γy,∗ φy,∗ρx,∗ γx,∗

φx,∗

ζ... ζy,∗ ζx,∗

σx,∗
σy,∗

Server τAS

Task τy

Task τx

t0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 1. Example of an asynchronous critical section

server finishes ζx,∗ and returns the result to τx. As γx,∗ > φx,∗, task τx does not
need to self-suspend.

In concurrent programming languages, a way of returning the results of asyn-
chronous computations is through the use of future-objects: On the function call
which raises a request, tasks receive a future-object from the aperiodic server.
When the task needs to retrieve the result, it calls the respective method of the
future (in C++ and Java, this method is called get), which blocks the task in
case the server has not yet stored the result in the future. An example is shown
in the C++ code of Listing 1: In line 2, the task raises a request to the aperiodic
server and receives a future in return. The server is responsible for executing the
function int modify_resource(int arg) which modifies a shared resource. In the
meantime, the task is able to perform some different non-critical section code.
As soon as the task needs the result of the asynchronous computations, i.e. the
return value of modify_resource, it calls the method get of the future, which
either blocks when the result is not ready or returns the result otherwise.

1 // raise request to the aperiodic server task

2 future <int > future_obj = T_as.raise(modify_resource , 5);

3
4 // perform other work here , while the aperiodic server

calls modify_resource with the argument ’5’

5
6 int r = future_obj.get() //this line blocks if the

result was not stored in the future yet

Listing 1. Programming example of a task raising a request

2.2 Asynchronous Priority Ceiling Protocol

Due to its simplicity and its ability to suspend itself when the job queue is empty
and restart once a new job is enqueued, we decided to use a deferrable server
for the execution of the asynchronous critical sections. Typically, a deferrable
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server is used to provide high responsiveness to aperiodic tasks. In our case, we
will use the server to serialize the execution of the critical sections and thus,
introduce synchronized access to a shared resource. We therefor briefly revisit
the deferrable server model introduced by Strosnider et al. [9]: Each deferrable
server is represented by a periodic task τDS with period TDS and a capacity
CDS . The server is ready to execute at the beginning of its period and services
aperiodic tasks until it exhausts its execution budget CDS . The capacity is fully
replenished at the end of each period.

Before deriving the worst-case response time and feasibility analysis, we
define the properties of the A-PCP. In the A-PCP, each shared resource ρn

is assigned a deferrable server αn with period Tn
DS and execution budget Cn

DS .
Tasks that want to access a shared resource, raise a request to the corresponding
deferrable server. The request is stored in a priority ordered queue, while the
server repeatedly pops the highest prioritized request from the queue and exe-
cutes the respective critical section. As a shared resource is only accessed by one
deferrable server and the critical sections are run to completion by the server,
accesses to shared resources take place in a synchronized fashion.

Notation. We use Γn to denote the set of tasks that access the resource ρn at
any given time.

Notation. We denote the set of tasks, both periodic and aperiodic server tasks,
running on the same processor as the aperiodic server αn as sp(αn).

Definition. Let PH be the priority of the highest priority task in the system.
The priority ceiling Ωn of a shared resource ρn is defined to be the sum of PH

and the highest priority of the tasks accessing ρn:

Ωn = PH + max
τi∈Γn

{Pi}

Every aperiodic server must run with the priority given by the priority ceiling
of the corresponding shared resource. As a result of the rate-monotonic priority
assignment, we need to determine a suitable period and a capacity which is large
enough to handle the critical sections of all tasks accessing the shared resource.
The period Tn

DS can be defined such that it is slightly smaller than the period of
the next lesser prioritized task running on the same processor. Having the value
of Tn

DS , the execution budget can be calculated by summing up the execution
times ζ of all requests by all jobs running in the given period:

Tn
DS = min

∀i
{Ti|(τi ∈ sp(αn)) ∧ (Pi < Ωn)} − 1

Cn
DS =

∑

τi∈Γn

⌈
Ti

Tn
DS

⌉ ∑

μi,j∈Mn
i

ζi,j

Note that the aperiodic server tasks with smaller priority ceilings also have
to be considered for the determination of Tn

DS .
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3 Response Time Analysis

In this section, we derive upper bounds for worst-case response times of asyn-
chronous critical sections. We start by showing that the execution of the asyn-
chronous critical sections only depends on other asynchronous critical sections:

Lemma 1. The response times of asynchronous critical sections is a function
of other asynchronous critical sections only.

Proof. As the deferrable server tasks are given the highest priorities on the
processor, they are not subject to preemption by periodic tasks and also do not
depend on the execution of tasks in other circumstances. Therefore, a deferrable
server can only be preempted by a higher priority aperiodic server running on the
same processor. As a result, the response times of asynchronous critical sections
is only dependent on the execution of other asynchronous critical sections.

Following Lemma 1, we now consider job Ji,∗ to raise an arbitrary request
μi,∗ and derive the maximum amount of computations done by the deferrable
server before it is able to execute μi,∗.

Lemma 2. Each time a job Ji,∗ raises a request μi,∗ for an asynchronous critical
section to a deferrable server αn, the execution of the critical section is delayed
by lower priority critical sections running on αn for at most

dl
i = max{ζj,k|μj,k ∈ {Mn

j |τj ∈ lpi(Γn)}} − 1. (1)

Proof. The proof follows from the fact that the execution of asynchronous critical
sections on the deferrable server αn can not be preempted by other requests to
the same server. As lower priority requests will not be scheduled prior to μi,∗,
only a request which is already being executed by the deferrable server delays
the execution of μi,∗. The maximum delay dl

i occurs when the longest request
by lower priority tasks starts execution exactly one time instant before μi,∗ is
raised.

Lemma 3. Each time a job Ji,∗ raises a request μi,∗ to a deferrable server αn,
the execution of the critical section is delayed by higher priority critical sections
running on αn for at most

dh
i (Δt) =

∑

τj∈hpi(Γn)

⌈
Δt

Tj

⌉ ∑

μj,k∈Mn
j

ζj,k (2)

during the interval Δt.

Proof. During the interval Δt, a higher priority task τj can release at most �Δt
Tj

�
jobs. Every time a job Jj,∗ runs, it can request

∑
μj,k∈Mn

j
ζj,k time units of

computation from the deferrable server αn. Summing up the amount of work
imposed on the deferrable server by all higher priority jobs results in dh

i (Δt).
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As aperiodic servers can be subject to preemption by higher prioritized
servers, the execution time of the critical sections run by those servers has to
be taken into account as well. The delay is accounted for in the equation shown
in Lemma 4. It must be noted that servers always run with the priority ceiling
of the shared resource. Due to this constraint, also a lower prioritized task τL

can increase the response time of a request raised by a high priority task τH , if
the aperiodic server of the request μL,∗ has a higher priority than the server of
request μH,∗.

Notation. We denote the set of aperiodic server tasks that run on the same
processor and have a higher priority than αn as hpn(α).

Lemma 4. Each time a job Ji,∗ raises a request μi,∗ to a deferrable server αn,
the execution of the critical section is delayed by higher prioritized aperiodic
servers for at most

dα
i (Δt) =

∑

αm∈hpn(α)

∑

τj∈Γm,
τj �=τi

⌈
Δt

Tj

⌉ ∑

μj,k∈Mm
j

ζj,k (3)

during the interval Δt.

Proof. All higher prioritized servers can preempt αn. During the time interval
Δt, jobs of a task other than τi raising requests to higher prioritized servers
can execute for at most �Δt

Tj
� times. Every time such a job Jj,∗ executes, it will

impose
∑

μj,k∈Mm
j

ζj,k time units of work to the higher prioritized server αm.
Summing up the work of all tasks imposed to higher priority aperiodic servers
running on the same processor as αn results in Eq. 3.

Notation. We use di(Δt) to denote the sum of the previously derived delays of
Lemmas 2, 3 and 4 and denote ei,∗(Δt) as the sum of dα

i (Δt) and the execution
time ζi,∗:

di(Δt) = dl
i + dh

i (Δt) + dα
i (Δt) (4)

ei,∗(Δt) = ζi,∗ + dα
i (Δt) (5)

Equation 4 characterizes the delay imposed on the execution of μi,∗ by
requests that run before μi,∗ is scheduled on αn, as well as higher priori-
tized servers. Once μi,∗ starts executing, only requests to higher prioritized
servers can delay the response time σi,∗. This is represented by Eq. 5 which
accounts for the execution time of μi,∗ and the amount of time higher prior-
ity servers execute prior to the aperiodic server αn. The maximum delay can
be determined by finding the solutions dmax

i and emax
i,∗ of the recursive func-

tions dz+1
i (dz

i ) and ez+1
i,∗ (ez

i,∗), respectively. The iteration starts with d0i = dl
i and

ends when dz+1
i = dz

i . Equivalently, ez+1
i,∗ (ez

i,∗) starts and ends with e0i,∗ = ζi,∗
and ez+1

i,∗ = ez
i,∗, respectively. Note that the above computations of dmax

i and
emax
i,∗ yield a pessimistic estimation and can be reduced by considering the exact
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amount of asynchronous critical sections requested to the deferrable servers in
the two intervals.

Combining our previous results we can derive an upper bound for the worst-
case response time σi,∗ of a request μi,∗.

Theorem 1. Each time a job Ji,∗ raises a request μi,∗ the worst-case response
time σi,∗ of μi,∗ can be upper bounded by:

σi,∗ = dmax
i + emax

i,∗ (6)

Proof. This theorem follows directly from the previous lemmas: Lemma 1 states
that the computations of the deferrable server are only a function of other asyn-
chronous critical sections, while Lemmas 2, 3 and 4 consider the amount of com-
putations imposed by critical sections of other tasks. Finally, according to the
model, Ji,∗ may only have one pending request at a time and thus, only the
computations ζi,∗ are imposed on the deferrable server by Ji,∗. Before μi,∗ is
scheduled by the server the requests considered in Lemmas 2, 3 and 4 contribute
to σi,∗. The maximum amount of time those requests execute prior to μi,∗ is
accounted for in dmax

i . As soon as μi,∗ is running on the aperiodic server αn,
only higher priority servers can delay the response time σi,∗ by preempting αn.
This is considered by emax

i,∗ . Therefore, the sum of dmax
i and emax

i,∗ results in the
worst-case response time.

4 Feasibility Analysis

Following the results of the previous section, we now provide sufficient condi-
tions for a schedulability analysis. In our model, tasks can be considered to
self-suspend themselves if the result of an asynchronous critical section is not
available in time. We utilize this behavior to conduct the schedulability analysis
conformable to [3,6], where the total amount of time a task remains suspended
is added to the computation of the schedulability test. We rephrase Theorem 10
of [6] to match the wording of [3]:

Theorem 2. A set of n periodic self-suspending tasks can be scheduled by the
rate-monotonic algorithm if the following conditions are satisfied:

∀i, 1 ≤ i ≤ n,
C1

T1
+

C2

T2
+ ... +

Ci + Bi

Ti
≤ i(21/i − 1), (7)

where Bi is the worst-case suspension time of task τi and n is the number of
tasks bound to the processor under test.

Notation. We denote M b
i as the set of requests to aperiodic servers that lead

to a self-suspension of job Ji,∗:

M b
i = {μi,j |φi,j > γi,j}
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Every processor has to be tested separately with the conditions of Eq. 7. If
the processor under test does not run a deferrable server, the following portions
contribute to Bi (adapted from [3]):

(1) The blocking time bi(np) of non-preemptive regions (e.g. local critical sec-
tions) of lower priority tasks on the processor that runs τi: Each time a
job Ji,∗ suspends itself it can be blocked for bi(np) = maxi+1≤k≤n θk units
of time, where θk denotes the worst-case execution time of non-preemptive
regions on the processor. In this paper, we do not consider local critical sec-
tions, however, it is possible to run the common Priority Ceiling Protocol
on local shared resources. If |M b

i | requests lead to a self-suspension of job
Ji,∗, then (|M b

i | + 1) ∗ bi(np) is added to Bi.
(2) The duration bi(ss1) due to self-suspension of τi: The upper bound of the

duration that a job of τi remains self-suspended due to μi,j can be deter-
mined by subtracting the instant when Ji,∗ self-suspends from the worst-case
completion time (φi,j = ρi,j +σi,j) of the asynchronous critical section. Sum-
ming up the durations a job remains self-suspended due to all of its requests
yields in bi(ss1):

bi(ss1) =
∑

μi,j∈Mb
i

(φi,j − γi,j)

(3) The duration that accounts for deferred execution of higher priority self-
suspending tasks on the same processor as τi:

bi(ss2) =
∑

τk∈hpi(Γ )

min(Ck, bk(ss1))

Notation. We use spi(Mj) to denote the set of requests a task τj raises to
aperiodic servers running on the same processor as task τi.

Since tasks allocated to a processor that runs at least one deferrable server
can be blocked by every asynchronous critical section (even by their own requests
and requests of lower priority tasks), Bi has to be computed differently:

Bi =
∑

τj∈Γ

∑

μj,k∈spi(Mj)

ζj,k

Theorem 2 provides sufficient conditions for a feasibility analysis. In [3], Liu
derives a set of necessary and sufficient conditions based on the time-demand
analysis. We can use the previously calculated values of Bi in order to determine
the worst-case response time Ri of the tasks and identify the feasibility of the
system:

Theorem 3. A set of n periodic self-suspending tasks can be scheduled by the
rate-monotonic algorithm if the following conditions are satisfied:

∀i, 1 ≤ i ≤ n,Rl+1
i = Ci + Bi +

i−1∑

k=1

⌈
Rl

i

Tk

⌉
Ck ≤ Ti, (8)
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where Bi is the worst-case suspension time of task τi and n is the number of
tasks bound to the processor under test.

The worst-case response time of task τi can be determined by finding the
solution to the recursive function in Eq. 8. The iteration starts with R0

i = Ci+Bi

and ends either when Rz+1
i = Rz

i ≤ Ti, indicating that the task τi is schedulable
or when Rz+1

i > Ti, which means that the task set is not feasible.

5 Conclusion and Future Work

In this paper, we introduced the asynchronous execution of critical sections
through our proposed synchronization protocol named Asynchronous Priority
Ceiling Protocol, which is a combination of the Distributed Priority Ceiling
Protocol [6] and the Active Object pattern [7]. In the Asynchronous Priority
Ceiling Protocol, each shared resource is assigned to a distinct aperiodic server
that is responsible for executing the critical sections in a sequential manner.
We therefor established a model and subsequently derived a worst-case response
time analysis of the asynchronous computations for task sets using the proposed
protocol and scheduled under rate-monotonic preemptive scheduling. The worst-
case response times of the asynchronous critical sections allowed us to derive the
worst-case suspension times of tasks and by making adaptions to the schedu-
lability analysis of Rajkumar et al. [6] and Liu [3], we provided necessary and
sufficient conditions that allow to determine the feasibility of a task set using
the proposed synchronization protocol.

Our computation of the worst-case response times of the asynchronous crit-
ical sections yields a pessimistic bound and can be improved by considering the
exact amount of requests a task raises to aperiodic servers. As a result, schedu-
lability tests would benefit greatly from more accurate computations. Another
important item of future work are evaluations and comparisons to common
mutual exclusion based synchronization protocols. This can be done in terms
of schedulability tests, simulations or on an actual system.
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Abstract. The availability and sophistication of Advanced Driver Assis-
tance System (ADASs) are becoming increasingly important for cus-
tomers when making purchasing decisions and thus also for the manu-
facturers of such systems. The increased demands on functionality have
also increased the demands in computing power and today’s standard
processors in automotive Electronic Control Unit (ECUs) struggle to pro-
vide enough computing power for those tasks. Here, heterogeneous sys-
tems, for example consisting of Central Processing Unit (CPUs), embed-
ded Graphics Processing Unit (GPUs), and Field-Programmable Gate
Array (FPGAs) provide a remedy. These heterogeneous systems, how-
ever, increase the development effort and the development costs enor-
mously.

In this paper, we analyze the extent to which it is possible to automat-
ically generate code with the help of a Domain-Specific Language (DSL)
for typical algorithms in the field of environment perception and environ-
ment mapping. We show that with the Heterogeneous Image Processing
Acceleration (Hipacc) framework it is possible to generate program code
for CPUs, GPUs, and FPGAs. After that, we compare for selected algo-
rithms the execution times of the automatically generated code with
hand-written variants from the literature.

Keywords: Advanced Driver Assistance Systems ·
Domain-specific languages · Code generation

1 Introduction and Related Work

The sector for ADAS and autonomous driving has experienced enormous growth
in recent years, but the most significant growth is yet to come. However, this
enormous increase is accompanied by increasing demands on sensors, algorithms,
and hardware. Sensors must have higher resolutions in order to perceive the envi-
ronment more accurately, e.g., cameras with a higher resolution have to be used
to detect the facial expressions of humans. More complex algorithms must be
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used to evaluate the sensor data more precisely. In the end, this leads to enor-
mously increasing computing power requirements that can no longer be met with
conventional single-core processors, which are in today’s standard ECUs. Here,
heterogeneous systems that include besides a CPU an accelerator such as a GPU,
an FPGA, or both can show their advantages. Even embedded GPUs have hun-
dreds of Arithmetic Logic Unit (ALUs) at a similar power envelope as a standard
CPU despite significantly higher computing power. To use these architectures
efficiently, the programming model has to be switched from the predominant
single-threaded programming model to a multi-threaded one or to specific hard-
ware development paradigms, which increase the development effort for such
systems enormously. The manual implementation of the algorithms for the dif-
ferent architectures would, on the one hand, cost a lot of time and money, and
on the other hand, would require software specialists for the respective hardware
architectures. Here, DSLs, like Hipacc, can exploit their benefits. With Hipacc
it is possible to write the desired algorithm in a language close to C++ and auto-
matically generate code for CPUs, GPUs, or FPGAs. The Hipacc framework has
knowledge about the respective target architecture, e.g., cache/memory hierar-
chy, which can be used directly for optimization. Initially, this framework was
developed for image processing, but also other algorithms can be implemented
in Hipacc. In this work, we examine to what extent algorithms from the automo-
tive sector can be realized in this framework. Furthermore, we analyze for each
architecture, how the different algorithms scale with different sensor resolutions.
On the one hand, we picked computer vision algorithms that are used to extract
information from camera images for ADAS. These include the Sobel filter and
the Harris corner detector [12]. On the other hand, we analyze algorithms for
creating environment maps [6,7], at the example of the occupancy grid map.
Finally, we compare our results with results known from the literature for these
algorithms.

The remainder of the paper is structured as follows: Next, we discuss the
differences of our approach compared to related work. In Sect. 2, we describe the
framework Hipacc, the basics of the analyzed algorithms and also the implemen-
tation of the algorithms in the framework. In Sect. 3, experimental results are
presented and discussed. Finally, we conclude the paper in Sect. 4 and give an
outlook on future work.

1.1 Related Work

DSLs are used in many different fields, such as financial services [1], machine
learning [22], virtual reality [10], operating systems [18], or image processing
[17]. Some of these DSLs also focus on specific computer architectures or pro-
gramming dogmas, e.g., ExaSlang, which is used for the specification of numerical
solvers based on the multigrid method targeting distributed memory systems [20].
Some works focus only on domain-specific optimization, like [9], which adopts its
algorithm to the hardware to generate highly optimized code. Another approach
in the image processing domain is PARO [11], but it generates only dedicated
hardware accelerators and does not support multi- and many-core architectures.
A DSL-based approach similar to ours is Darkroom [13], but it does not support



DSL-Based Acceleration of Automotive Environment Perception 73

advanced language constructs such as border treatment. In the automotive area,
many works combine DSLs with Controlled Natural Language (CNLs). CNLs
are a subset of natural languages, which reduce language proficiency to decrease
complexity and eliminate ambiguity. Bock et al. used such a language in [2] to
describe the requirements of an automotive system, to improve the transitions
between the different development stages. In [23], Volker et al. introduced a
framework, based on a DSL to support the development process and the safe-
guarding of algorithms in C in the automotive domain, e.g., it is possible to
annotate mathematical expressions with which the tool verifies the correctness
of the code. The two DSLs above are used for specification and validation, but
none of them deals with parallelization and code generation for heterogeneous
architectures. In this paper, we focus on the code generation for image process-
ing and environment maps in the automotive area. We evaluate, how and which
of those algorithms can be implemented in Hipacc [17] and appraise the per-
formance of the generated code across multiple platforms. To the best of our
knowledge, it is the first time that code for algorithms for creating environment
maps is generated by a DSL-based approach automatically.

2 DSL-Based Approach and Algorithmic ADAS
Building Blocks

2.1 Hipacc

Hipacc [17,19] is a DSL embedded in C++ and a compiler framework for the
domain of image processing. It captures domain knowledge in a compact and
intuitive language and employs source-to-source translation combined with var-
ious optimizations to achieve excellent productivity paired with performance
portability. The Hipacc approach has been applied and evaluated for a broad
variety of parallel accelerator architectures, including many-core processors such
as Nvidia and AMD GPUs and Intel Xeon Phi, embedded CPUs and GPUs,
Xilinx and Intel/Altera FPGAs, and vector units. The structure and the differ-
ent target platforms of Hipacc are illustrated in Fig. 1.

2.2 ADAS Building Blocks

In the following, we select and briefly introduce characteristic algorithmic build-
ing blocks, which are widely used in ADAS applications. Here, we further dis-
tinguish between two main algorithm categories: (a) computer vision and (b)
environment maps.

Computer Vision: A critical basis for many ADAS applications is the apparent
motion of surfaces and other objects, the so-called optical flow. Optical flow
algorithms serve as a basis for object detection and tracking, and they are in
turn often based on feature extraction (e.g., edges or corners of an image).

The Sobel operator, named after Irwin Sobel and Gary Feldman, is used in
image processing for detection of edges. An example application for the Sobel
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Fig. 1. Overview of the structure of Hipacc [19].

operator is the extraction of vehicles from camera images, where the operator is
part of the processing cascade [16]. The goal of this work is to track objects, and
the Sobel filter is used in a preprocessing step to find out right-angled objects.
To detect edges, changes in intensity to adjacent pixels are considered. The Sobel
operator is a convolution operator, which calculates the first derivative of the
pixel brightness values, where at the same time the orthogonal to the direction
of derivation is being smoothed.

The Harris operator [12] detects corners in images. Corners are points where
two edges intersect or pixels where the neighbors are brighter or darker. These
areas are called points of interest. With the help of that points, for example, the
same objects in different images can be recognized. For ADAS it can be used,
e.g., for estimating the motion vector of a pedestrian [15].

Environment Maps: Environment maps are essential for ADASs and
autonomous driving. Such maps store all information from the vehicle environ-
ment that is important for ADASs. That information can be other vehicles,
obstacles, lane markings, or other objects of interest. One of the best known
environmental maps is the occupancy grid map.

The idea of an occupancy grid map [5] is to represent the environment
through a fine-grained grid. It was originally designed to map the environment
of a robot but is now also used in ADAS. As illustrated in Fig. 2, the environ-
ment is rasterized in equally sized rectangles, so-called cells. For every cell, a
probability p ∈ [0, 1] is calculated, whether the cell is occupied (p = 1) or free
(p = 0), based on sensor measurements. Typically, the posterior probability is
used in the occupancy grid map algorithm [21]:

p(m|z1:t, x1:t) (1)

where m is the map, z1, ..., zt are the measurements from the first to the mea-
surement at time t, and x denotes the corresponding known poses of the vehicle
also from the first to the measurement at time t. Due to the high-dimensional
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space, the posterior cannot be determined readily. So the problem is reduced to
calculate the posterior of each cell separately:

p(mi|z1:t, x1:t) (2)

To take into account all previous measurements without explicit storage, the
Bayes rule is applied to p(mi|z1:t), and we get:

p(mi|z1:t) =
p(mi|zt) · p(zt) · p(mi|z1:t−1)

p(mi) · p(zt|z1:t−1)
(3)

To eliminate some hard computable terms and to avoid numerical instabilities
for probabilities near zero or one, the so-called log-odds form is used:

log
p(mi|z1:t)

1 − p(mi|z1:t) = log
p(mi|zt)

1 − p(mi|zt)+log
1 − p(mi)
p(mi)

+log
p(mi|z1:t−1)

1 − p(mi|z1:t−1)
(4)

To recover the probabilities, as later shown in Listing 1.2, the following equation
is used:

p(mi|z1:t) = 1 − 1

1 + explog(
p(mi|zt)

1−p(mi|zt )+log(
p(mi|z1:t−1)

1−p(mi|z1:t−1
)

(5)

It is assumed that the Markov property holds. Typically the real world 3D
environment is broken down to a 2D occupancy grid map. With the aid of this
assumption and the fact that the probability for each cell is computed separately,
without dependencies to any other cells, the problem is ideal to be calculated on
a GPU.

Fig. 2. Illustration of an occupancy grid map. The direction of travel is indicated with
the orange arrow and the measurement range of the laser sensor by the black line.
(Color figure online)

The creation of environment maps often requires the basic algorithms as
identified in [6] and illustrated in Fig. 3. At this point, only a brief description
of the individual basic algorithms will be given, and for a detailed description,
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laser measurement

coordinate transformation:
-intrinsic calibration (sensor model)

-extrinsic calibration (sensor model))

ego-motion compensation

(fusion model)

map update with association of 
measurements

prediction of ego-motion

prediction of laser measurement

Fig. 3. Overview of the sub-algorithms which are necessary to create an environment
map.

we refer to the corresponding literature. A laser sensor is often used to create an
occupancy grid map. However, this sensor provides the measurements in polar
coordinates, whereas the occupancy grid map is in Cartesian coordinates. There-
fore, in a first step, a coordinate transformation from polar to Cartesian coor-
dinate space has to be performed. After that, the ego-motion of the vehicle has
to be compensated. The compensation of the vehicle’s own motion is necessary
so that the measurements made at time t − 1 can be correctly associated with
the measurements from time t. For example, if the vehicle has moved ten meters
forward between the two measurements and the other object has not moved, the
laser beam to the object is ten meters shorter in the current measurement than
in the previous measurement. Various methods exist for the compensation of the
ego-motion. The simplest method for an occupancy grid map, however, is to use
a 2d ring buffer to store the cells [3]. For the ego-motion in x- and y-direction,
a pointer is shifted accordingly. The rotation of the vehicle is compensated by
rotating it on the map. If there are several sensors, the measurements have to
be synchronized in time and merged accordingly together, e.g., the speed of a
vehicle, measured by a radar sensor, is combined with the detected vehicle by a
laser scanner. Finally, the map has to be updated. Several methods exist for this
purpose, such as the Bresenham algorithm [4] or the cell-based algorithm [8]. In
our work, we use the Bresenham algorithm to update the map. The laser beam
is entered in the map from the origin of the measurement, the laser sensor, to
the measured object. This method is like the standard Bresenham line drawing
algorithm, where a line on a rasterized grid is drawn between two points. The
probability of occupancy of the affected cells is calculated with Eq. (4). Since the
measurements often contain noise, a Kalman filter is used to reduce it [14]. In
this work, due to space constraints, we will focus on coordinate transformation,
ego-motion compensation, and map update.
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Listing 1.1: Hipacc kernel code for the coordinate transformation from polar
(angle, distance) to Cartesian (x, y) coordinate space.

1 void kernel () {

2 float x_coord = 0;

3 float y_coord = 0;

4

5 if(valid ()!=-1.){ //ray is valid!

6 x_coord = distance () * cosf(( angle ()*PI)/180.f);

7 y_coord = distance () * sinf(( angle ()*PI)/180.f);

8 if(y_coord <0){

9 y_coord *=-1;

10 }

11 x_coord = x_coord + carth_width /2;

12 int x_final = (int) x_coord;

13 int y_final = (int) y_coord;

14 output () = (x_final |(y_final <<16));

15 }

16 }

Since the Hipacc framework was originally developed for image processing,
there are some peculiarities in the implementation of the basic algorithms for
the environment maps, which will be discussed in more detail below. The under-
lying algorithms must always be adapted in such a way that they resemble the
processing of images, e.g., a pixel in an image is representing a cell of an occu-
pancy grid map. The Hipacc kernel code for the coordinate transformation from
polar to Cartesian coordinate space is shown in Listing 1.1. A kernel in Hipacc is
similar to a kernel in CUDA. The kernel is executed in parallel for each element
(Hipacc: over the complete IterationSpace). Accessors are in Hipacc objects that
access the input data or a certain region of interest. Furthermore, interpolation is
supported, such as nearest neighbor, bilinear filtering, bicubic filtering, and Lanc-
zos resampling. The angle and the distance of a laser beam should be passed
to the kernel, which are then converted to x and y coordinates. As accessors,
we have for the kernel distance, angle, and valid. All structures, including the
output structure, have the same size, which corresponds to the number of laser
beams. Since Hipacc does not support complex data structures, such as structs,
some workaround has to be implemented. After the coordinate transformation
has been applied, the x and y coordinate has to be placed in an integer using a
bitshift operator. This is necessary to place the two coordinates in one element
(a.k.a. pixel). It would also be possible for storing the x and y coordinate in two
different elements. However, this is not necessary and would only increase the
memory transfer.

In the next step, the occupancy grid map from time t− 1 is updated with the
measurement from time twith the Bresenham algorithm [4]. The algorithm gets as
input data the list with the x and y coordinates. The data structure for the input
is an image that consists of one line. Each entry (pixel) in this line consists of an
x and y coordinate, which was obtained using the algorithm in Listing 1.1. The
output of the algorithm is an image that has the same size as the occupancy grid
map. One pixel of the image corresponds to one cell of the occupancy grid map.
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Listing 1.2: Hipacc kernel code for the ego-motion compensation and the map
update with the Bresenham algorithm.

1 void kernel () {

2 int x0 = input () & 0xFFFF; //undo bitshifting

3 int y0 = (input () >> 16) & 0xFFFF; //undo bitshifting

4 int dx = abs(x1 - x0), sx = x0 < x1 ? 1 : -1;

5 int dy = abs(y1 - y0), sy = y0 < y1 ? 1 : -1;

6 int err = (dx > dy ? dx : -dy) / 2, e2;

7 for (;;) {

8 if (((x0) + out_width_bres * (out_height - y0 - 1)) < 0) {

break; }

9 float map_value = input_map.pixel_at(x0+vel_x ,out_height -y0

-1+ vel_y);

10 float meas_value = 0.1f;

11 float new_probability = 1.0f / ((1.0f + expf(logf ((1.0f -

meas_value) / meas_value) + logf ((1.0f - map_value) /

map_value))));

12 output_at(x0 ,out_height - y0 - 1) = new_probability ;

13 if (x0 == x1 && y0 == y1) {

14 meas_value = 0.9f;

15 new_probability = 1.0f / ((1.0f + expf(logf ((1.0f -

meas_value) / meas_value) + logf ((1.0f - map_value) /

map_value))));

16 output_at ((int)x_coord ,( out_height - (int) y_coord - 1) )

= new_probability ;

17 break;

18 }

19 e2 = err;

20 if (e2 > -dx) { err -= dy; x0 += sx; }

21 if (e2 < dy) { err += dx; y0 += sy; }

22 }

23 }

Here, the problem is that the input image has not the same size as the output
image. Therefore, to update the map with the Bresenham algorithm, global index-
ing is necessary. This is possible in Hipacc for output data with the function out-
put at(). Listing 1.2 shows the Hipacc code for the map update with ego-motion
compensation. In line 15, the calculation of the new occupancy probability of a
cell takes place. In this case, the ego-motion of the vehicle is directly compen-
sated by calculating the new probability of a cell, taking the momentary measured
value and accessing the relevant old position of the cell, i.e., the cell’s old position,
which has been cleared for the velocity vector of the vehicle. If the coordinates of
a measured obstacle coincide with the coordinates of the measurement, this cell
is assumed to be occupied. Due to the uncertainty of measurement, the probabil-
ity of occupancy is given with p = 0.9 (line 13–15). Otherwise, if no object was
detected at the cell’s location, the probability of occupancy is assumed to be p =
0.1 (lines 10–11).
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3 Evaluation

3.1 Evaluation Platform

For the evaluation of the algorithms, we used on the one hand, the Nvidia Jet-
son board. The board embodies an embedded GPU, the Nvidia Tegra K1 with
192 CUDA Cores clocked at 850 MHz. The CPU is a quad-core ARM Cortex-
A15 with 2.3 GHz. On the other hand, the execution time of the code generated
for the FPGA is only determined by a post-place and route simulation on an
xc7z045ffg900-2 FPGA from Xilinx. This FPGA is among others on the Xilinx
Zynq-7000 SoC ZC706 board. Generally, in our experiments and the experiments
in the literature, the block size was set to 128 threads arranged in 32×4 threads.
Furthermore, the CPU versions of the algorithms are a single-threaded ones.

3.2 Evaluation of Computer Vision Algorithms

In the first experiment on the computer vision algorithms, we evaluated the
execution time of the Sobel filter on the three different platforms (ARM CPU,
GPU, and FPGA). In order to keep the measurement noise as low as possible,
the respective filter is used 100 times, and the results are illustrated in box
plots. The box plots contain the median, the quartiles, as well as the 5th and
95th percentile. In order to ensure that the execution times of the computer
vision algorithms have a high independence from a specific image, ten different
ones were used for the experiments. Each of these images is available in six
different resolutions (128 × 128, 256 × 256, 515 × 152, 1024 × 1024, 2048 × 2048,
4096 × 4096). In Fig. 4, the execution times for the Sobel filter are shown. The
reason for the high standard deviation in the execution time on the CPU and
the FPGA is that one of the ten images contains relatively many black pixels.
For these pixels, the algorithm does not has to be executed on the CPU and the
FPGA. However, this has hardly any influence on the execution times on the
GPU. Once a pixel in a warp (consisting of 32 threads) has to be computed, the
other 31 threads must wait until that calculation is completed. As can be seen in
Fig. 4, the filter on the CPU needs the longest execution time. Both the FPGA
and the GPU have a significantly shorter execution time for the algorithm, with
the GPU beating the FPGA. The reason that the GPU is faster than the FPGA
is that the Sobel filter has only little mathematical complexity. For the FPGA,
the execution time depends mainly on the amount of data to be processed. For
an FPGA, only the processing of one new pixel can be started per cycle. A cycle
is also called Iteration Interval (II). In this case, the II is 1 and 93 cycles are
required to process one pixel. The smallest resolution of the input images is
128 × 128 pixels. So already 128 × 128 = 16384 cycles are necessary to start the
calculation of all pixels. Therefore, the calculation time for the FPGA depends
hardly on the complexity of the calculation, which does not apply to the GPU.
Here, the mathematical complexity has a much stronger influence, because the
calculation of a pixel on a CUDA core lasts much longer and therefore, the whole
execution time increases. Furthermore, Hipacc also optimizes the GPU code, for
example by using shared memory.
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Fig. 4. In (a), the execution times of the Sobel filter on the CPU are shown. In (b),
the execution times of the Sobel filter on the GPU and FPGA are shown.
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Fig. 5. In (a), the execution times of the Harris corner filter on the CPU are shown. In
(b), the execution times of the Harris corner filter on the GPU and FPGA are shown.

The Harris corner filter runs with the same settings and on the same three
hardware architectures as the Sobel filter. The results of the Harris corner filter
are given in Fig. 5. It can be seen again that the CPU needs the longest execution
time for the Harris corner filter. Comparing the execution time with the Sobel
filter, it can be realized, that the Harris corner filter takes much longer on the
CPU and GPU. However, on the FPGA, the absolute execution time does not
increase very much, compared to the Sobel filter. As a result, the execution time
for this filter on the FPGA is lower than on the GPU. The rationale is that
the Harris filter has a higher mathematical complexity. This has a much greater
impact on the execution time of the CPU and GPU, as described above for the
Sobel filter, than on the execution time of the FPGA.
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Fig. 6. In this experiment, the coordinate transformation from polar to Cartesian coor-
dinate space was evaluated on an embedded CPU, GPU, and FPGA. The program code
for the different platforms was generated with Hipacc. In (a), the results for the CPU,
GPU, and FPGA are shown and in (b) only the results for the GPU and FPGA are
shown for a better overview.

3.3 Evaluation of Environment Mapping Algorithms

In the following experiments for the basic algorithms of the environment map,
an occupancy grid map of size 2048 × 2048 is used. At first, we evaluated the
coordinate transformation from polar to Cartesian coordinate space. For this
algorithm, it was possible to generate automatically code for all three platforms.
The results are shown in Fig. 6. As can be seen from Fig. 6, the algorithm has
on the CPU the longest execution time. The execution time on the CPU and
FPGA increases linearly with the increase of the laser measurements. For a
small number of laser measurements, the algorithm has on the FPGA a smaller
execution time as on the GPU. This can be explained on the one hand, for a
small number of laser measurements, the GPU is not fully exploited because
there are not enough threads to use every CUDA core since each thread enters
a laser beam into the occupancy grid map. On the other hand, the threads on
the GPU are always grouped into blocks of 128 threads. Since the number of
measurement data is often not a multiple of 128, not all threads may be fully
utilized. This is particularly important for a small number of measurements.
Compared to the work in [6], the execution time of our automatic generated
code is ten times faster on the GPU and five times slower on the CPU. The
reason for this is that although the coordinate transformation can be described
as a Hipacc kernel, Hipacc does not provide any abstraction for this algorithm.
Yet, GPU results were better than the handwritten code.

In the next experiment, we evaluated the map update with the Bresenham
algorithm, including the ego-motion compensation. The results are shown in
Fig. 7. It is again clearly visible that the execution time on the CPU is much
longer compared to the GPU. That the execution time on the GPU, in relation
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Fig. 7. Execution times of the occupancy grid map update with the Bresenham algo-
rithm, including the ego-motion compensation in ms.

to the CPU, is quite short has two main reasons. The first reason is the high
parallelizability of the algorithm. The second reason is that the cache that is
available to the individual blocks can be used very well for this algorithm. If
the same cells are being updated by threads that are in the same block, then
the corresponding data can to be cached. Threads are grouped on GPUs into
blocks, which often consist of 128 threads. If a cell of the environment map is
then updated by several threads, which are within a block, they can immediately
access the data in the cache. This is especially relevant for cells near to the laser
sensor, as multiple beams often cover these cells. Unfortunately, it was not possi-
ble to synthesize the Bresenham algorithm for Vivado with Hipacc. The reason
is that Hipacc does not support global indexing of output images for FPGAs.
One possible solution to synthesize a larger part of the algorithm for an FPGA
would be to perform only the Bresenham algorithm on a CPU or GPU without
the map update and ego-motion compensation. After that, with this method,
code for all three hardware platforms could then be automatically generated for
the ego-motion compensation and for the map update, i.e., merging the previous
map with the current map. Compared to the work in [6], the generated code for
the CPU and GPU is slower. The main reason for this is that in the referenced
work the used algorithm filters out a lot of data in advance and therefore the
data does not enter the map anymore. If we compare our work with the work in
[7], then our execution times on the CPU are about 30% longer, but our code
for the GPU is seven times faster.

To further analyze the performance of the algorithms (coordinate transforma-
tion and the Bresenham algorithm with motion compensation), a roofline model
[24] was created for both the CPU and GPU. Figure 8 shows the roofline model
for the CPU and Fig. 9 shows the roofline model for the GPU. The compute
intensity (number of operations per fetched/stored byte) remains constant for
the respective algorithm since we only changed the number of measurements
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Fig. 8. Classification of the coordinate transformation and the Bresenham algorithm
with ego-motion compensation within the roofline model for different numbers of laser
measurements on the CPU. Please note especially the y-axis scaling.
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Fig. 9. Classification of the coordinate transformation and the Bresenham algorithm
with ego-motion compensation within the roofline model for different numbers of laser
measurements on the GPU.

without modifying any code. Both algorithms are compute-bound on the CPU.
On the contrary, on the GPU, only the map update is compute-bound, and
the coordinate transformation is memory-bound. This is due to the significantly
lower processing power of the CPU in relation to the GPU. When comparing
the coordinate transformation with the Bresenham algorithm, one recognizes
that the former has a much lower computation intensity than the latter. This
can be explained by the fact that relatively few computations are required for
the coordinate transformation (see Listing 1.1) in contrast to the map update
(see Listing 1.2). With increasing measurement data for the coordinate transfor-
mation, the utilization of the hardware also increases, especially on the GPU.
The reason is that for a small number of measurement data the GPU cannot
be fully utilized. For both algorithms, there is a clear distance to the roofline.
For the coordinate transformation, the reason is that trigonometric functions are
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necessary which are solved with Special Function Units SFUs. For example, the
Nvidia Tegra K1 GPU has 192 CUDA cores but only 32 SFUs. One explana-
tion for the low performance of the Bresenham algorithm is due to its properties.
The Bresenham algorithm does not access coalesced the memory where the occu-
pancy grid map is stored. Instead, for each cell that is updated, a new row must
be loaded from memory into the cache. Furthermore, it can be seen that the
performance of a large number of laser beams decreases slightly. If a large num-
ber of laser beams is entered into an occupancy grid map, which always has the
same size, it comes in particular in the vicinity of the laser sensor to an increased
synchronization effort, since the cells are overlapped close to the laser sensor of
multiple laser beams.

4 Conclusion and Future Work

In this paper, we have examined typical ADAS algorithms for their suitability
to be written in a DSL and, which hardware architecture is best suited for the
execution of these algorithms. Overall, our analyzed algorithms achieved the
best results on average on a GPU, followed by an FPGA and CPU. We demon-
strated that a DSL-based approach drastically shortens design time thanks to
a compact, intuitive algorithmic description and avoiding low-level implementa-
tion details and parallelization effort. With one description of the algorithm in a
C++-embedded DSL, it was possible to generate program code for three complete
different hardware architectures automatically. In a next step, we use the char-
acterized building blocks to systematically co-partition and map ADAS applica-
tions to embedded Multiprocessor System-on-Chip (MPSoC) architectures such
as CPU/GPU systems (e.g., Nvidia Tegra) or CPU/FPGA (e.g., Xilinx Zynq).
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Abstract. Embedded systems are growing very complex because of the
increasing chip integration density, larger number of chips in distributed
applications and demanding application fields e.g. in autonomous cars.
Bio-inspired techniques like self-organization are a key feature to handle
the increasing complexity of embedded systems. In biology the structure
and organization of a system is coded in its DNA, while dynamic control
flows are regulated by the hormone system. We adapted these concepts
to embedded systems using an artificial DNA (ADNA) and an artifi-
cial hormone system (AHS). Based on these concepts, highly reliable,
robust and flexible systems can be created. These properties predestine
the ADNA and AHS for the use in future automotive applications.

However, computational resources and communication bandwidth are
often limited in automotive environments. Nevertheless, in this paper we
show that the concept of ADNA and AHS can be successfully applied
to an environment consisting of low-performance automotive microcon-
trollers interconnected by a classical CAN bus.
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1 Introduction

Embedded systems are growing very complex because of the increasing chip inte-
gration density, larger number of chips in distributed applications and demand-
ing application fields e.g. in autonomous cars. Bio-inspired techniques like self-
organization are a key feature to handle the increasing complexity of embedded
systems. In biology the structure and organization of a system is coded in its
DNA, while dynamic control flows are regulated by the hormone system. We
adapted these concepts and developed the Artificial DNA (ADNA) by which

c© Springer Nature Switzerland AG 2019
M. Schoeberl et al. (Eds.): ARCS 2019, LNCS 11479, pp. 87–99, 2019.
https://doi.org/10.1007/978-3-030-18656-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18656-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-18656-2_7


88 U. Brinkschulte and F. Fastnacht

the blueprint of the structure and organization of an embedded systems can be
described. The ADNA can be stored in every processor of the system (like the
biological DNA is stored in every cell of an organism). The tasks described by the
ADNA are distributed to the processors in a self-organizing way by an artificial
hormone system (AHS). The combination of ADNA and AHS allows to create
very robust and flexible systems providing so-called self-X features like self-
configuration, self-optimization and self-healing. We have already demonstrated
these features in previous publications [8] using an autonomous self-balancing
robot vehicle (see e.g. a video in [5]).

In this publication we investigate the applicability of the ADNA and AHS
concept to automotive environments. Today’s cars are equipped with several
processors (electronic control units, ECUs) which perform the tasks necessary
to operate the cars’ powertrain, safety systems, driving assistants and board
entertainment. These systems have to operate at a very high level of robustness
and fault-tolerance. So the self-X capabilities of the ADNA and AHS would offer
a great potential in this area. However, computational resources and communi-
cation bandwidth are often limited in automotive environments. To save costs,
ECUs frequently use low-performance microcontrollers with limited computa-
tional and memory resources. Furthermore, common automotive bus systems
like the CAN bus strictly limit the bandwidth and message sizes.

In the following we show that these limitations can be overcome and the con-
cept of ADNA and AHS can be successfully applied to an environment consist-
ing of low-performance automotive microcontrollers interconnected by a classical
CAN bus. Our contribution in this paper is four-fold:

1. We demonstrate the applicability of ADNA and AHS for automotive ECU
systems.

2. We compute the memory needs of the ADNA and AHS.
3. We propose an efficient communication scheme for the ADNA and AHS on

CAN bus.
4. We evaluate performance measures and the resulting communication and pro-

cessor load in these systems.

The paper is structured as follows: Related work is presented in Sect. 2.
Section 3 describes both the ADNA and the AHS and its application to auto-
motive systems. The adaptation to the target platform of automotive ECUs is
presented in Sect. 4. Section 5 shows the evaluation results while Sect. 6 concludes
this paper.

2 Related Work

Our approach relies on self-organization in automotive applications. IBM’s and
DARPAS’s Autonomic Computing project [13,15] deals with self-organization of
IT servers in networks. Several so-called self-X properties like self-optimization,
self-configuration, self-protection and self-healing have been postulated.
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The German Organic Computing Initiative was founded in 2003. Its basic
aim is to improve the controllability of complex embedded systems by using
principles found in organic entities [26,27]. Organization principles which are
successful in biology are adapted to embedded computing systems.

Self-organization for embedded systems has been addressed especially at the
ESOS workshop [4]. Furthermore, there are several projects related to this topic
like ASOC [1,21], CARSoC [16,17] or DoDOrg [14]. In the frame of the DoDOrg
project, the Artifical Hormone System AHS was introduced [9,14]. [28] describes
self-organization in automotive embedded systems. None of these approaches
deal with self-organization using DNA-like structures.

DNA Computing [10] uses molecular biology instead of silicon based chips for
computation purposes. In [20], e.g. the traveling salesman problem is solved by
DNA molecules. In contrast, our approach uses classical computing hardware.

Several authors in [22] emphasize the necessity of redundant processors and
sensors in future autonomous cars, however, they do not propose such a fine-
grained approach as possible by the ADNA.

In [11] a redundancy scheme for processors in automotive applications is
proposed where a voting algorithm is used to determine the validity of results
of redundant processors. This is different from our approach which improves the
exploit of redundancy using the ADNA.

Our approach relies on classical computing hardware using DNA-like struc-
tures for the description and building of the system. This enhances the self-
organization and self-healing features of embedded systems, especially when
these systems are getting more and more complex and difficult to handle using
conventional techniques. Our approach is also different from generative descrip-
tions [12], where production rules are used to produce different arbitrary entities
(e.g. robots) while we are using DNA as a building plan for a dedicated embedded
system.

To realize DNA-like structures, we have to describe the building plan of
an embedded system in a compact way so it can be stored in each processor
core. Therefore, we have adapted well known techniques like netlists and data
flow models (e.g. the actor model [19]) to achieve this description. However,
in contrast to such classical techniques our approach uses this description to
build the embedded system dynamically at run-time in a self-organizing way.
The description acts like a DNA in biological systems. It shapes the system
autonomously to the available distributed multi/many-core hardware platform
and re-shapes it in case of platform and environment changes (e.g. core failures,
temperature hotspots, reconfigurations like adding new cores, removing cores,
changing core connections. etc.). This is also a major difference to model-based
[23] or platform-based design [25], where the mapping of the desired system to
the hardware platform is done by tools at design time (e.g. a Matlab model).
Our approach allows very high flexibility and robustness due to self-organization
and self-configuration at run-time while still providing real-time capabilities.
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3 Conception of the Artificial Hormone System and DNA

This section briefly describes the concept of the artificial DNA and the under-
lying artificial hormone system (AHS). For detailed information see [6,7,9].

3.1 Artificial DNA

The approach presented here is based on the observation that in many cases
embedded systems are composed of a limited number of basic elements, e.g.
controllers, filters, arithmetic/logic units, etc. This is a well known concept in
embedded systems design. If a sufficient set of these basic elements is provided,
many embedded real-time systems could be completely built by simply com-
bining and parameterizing these elements. Figure 1 shows the general structure
of such an element. It has two possible types of links to other elements. The
Sourcelink is a reactive link, where the element reacts to incoming requests. The
Destinationlink is an active link, where it sends requests to other elements.

Each basic element is identified by a unique Id and a set of parameters. The
sourcelink and the destinationlink of a basic element are compatible to all other
basic elements and may have multiple channels.

The Id numbers can be arbitrarily chosen, it is important only that they
are unique. Figure 2 gives an example for a PID controller which is often used
in closed control loops. This element has the unique Id = 10 and the parameter
values for P, I, D and the control period. Furthermore, it has a single sourcelink
and destinationlink channel.
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Embedded systems can be composed by using these basic elements as building
blocks. Figure 3 shows a very simple example of a closed control loop based on
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Fig. 3. A closed control loop consisting of basic elements
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basic elements. An actor (defined by its resource id, e.g. a motor) is controlled by
a sensor (also defined by its resource id, e.g. a speed sensor) applying a constant
setpoint value. If we consider the closed control loop to be the function of the
embedded system, it is divided by the ADNA into tasks: the basic elements.

If a sufficient set of standardized basic elements with unique Ids is available,
an embedded system will no longer be programmed, but composed by connect-
ing and parametrizing these elements. The building plan of the system can be
described by a compact netlist containing the basic elements, its parameters and
interconnections. This netlist can be stored in each processor of the system. It
therefore represents a digitial artificial DNA (ADNA) which allows to partition
and build the system at run-time. Detailed examples and a very memory efficient
format to store an ADNA are presented in [6] and [7].

3.2 Building the System from Its ADNA by the AHS

Using the ADNA the system is divided into functions (e.g. control functions,
closed control loops, data processing, filtering, etc.) and tasks (the basic elements
of a function). Each processor has a local copy of the ADNA and therefore knows
all these functions, tasks and their interconnections. It passes this information
to the local instance of its artificial hormone system (AHS). The AHS is a com-
pletely decentralized mechanism to assign tasks to distributed computing nodes,
see [9]. It uses artificial hormones (emulated by short messages) to find the most
suitable computing node for each task based on node capability, load and tasks
interconnection. It can also detect failing nodes and tasks by missing hormone
values. So all basic elements of the ADNA are assigned as tasks at run-time
by the AHS to the available processors. These elements are then interconnected
according to the ADNA. This means the functions build themselves at runtime
in the best possible way on the available processor resources. In case of a pro-
cessor failure the basic elements are autonomously reassigned and reconnected
to other processors as long as there is enough computing power left. Assign-
ment and reassignment of tasks is done in real-time (with a time complexity of
O(n), where n is the number tasks) as proven in [9] and demonstrated by a self-
balancing robot vehicle in [7]. The ADNA therefore enables an extremely robust
and fine-grain distribution of functions to processors. A function is not bound to
a single processor but can be split among several processors on the task (basic
element) level. In case of processor failures only the affected basic elements are
automatically moved to other processors. Also the importance of basic elements
can be derived from the ADNA and used to operate the most important parts if
not enough computation power is left to assign all tasks. A detailed description
of building a system from the ADNA and complex examples can be found in [7].

3.3 Application of the ADNA and AHS Concept to Automotive
Systems

In automotive applications the system functions (anti-locking brake, traction
control, stability control, engine control, driving assistants, infotainment, etc.)
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are executed by the car’s processors, the ECUs. Many of these systems require
fail-operational behavior. So a highly robust design is necessary. In classical
approaches a function is usually mapped to an ECU (e.g. anti-locking brake
to the anti-locking brake ECU). To provide fail-operational behavior, critical
ECUs have a backup ECU (1:1 redundancy). In more advanced approaches like
e.g. the AutoKonf project [2], several ECUs share a single backup ECU (n:1
redundancy) to reduce the overhead. These approaches apply redundancy on
the function level. In contrast, the self-healing process of the ADNA and AHS
concept provides redundancy on the task (basic element) level. This enables the
best possible use of the available ECU resources.

If we have e.g. f critical functions, the classical 1:1 redundancy approach
requires 2f ECUs. Fail-operational behavior can no longer guarantied if 2 or
more ECUs fail (the failure of 2 ECUs can disable a function, if the original
and the backup ECU are affected). So the fail-operational limit is 2

2f = 1
f . In

a 2:1 redundancy approach, �3f/2� ECUs are required. Like for the 1:1 app-
roach, fail-operational behavior can no longer be guarantied if 2 or more ECUs
fail. However, due to the lower number of ECUs used, the fail-operational ECU
limit is better: 2

�3f/2� . In general, the classical n:1 redundancy results in a fail-
operational ECU limit of 2

�(1+1/n)f� .
Using the ADNA/AHS approach, the self-healing mechanism reassigns the

tasks of the functions to the remaining ECUs in case of an ECU failure. As
long as enough ECUs are available, all functions will stay operational. If we use
the same number of 2f ECUs for f critical functions like in the classical 1:1
redundancy approach, f ECUs might fail without the loss of a function (since
f ECUs are sufficient to execute f functions). So the fail-operation ECU limit
is f+1

2f . If we use �3f/2� ECUs like in the 2:1 approach, this limit calculates to
�3f/2�−f+1

�3f/2� . In general, if we use e ≥ f ECUs, the fail-operational limit calculates

to e−f+1
e . Figure 4 compares the fail-operational limits for different approaches

and different number of functions. It can be seen that from this theoretical point
of view the ADNA/AHS approach clearly outperforms the classical solutions.
Furthermore, in current safety-critical automotive applications usually a fail-
safe state is entered if one more failure would lead to a critical event. For the
classical redundancy approaches shown above this happens after 1 ECU failure.
For the ADNA/AHS approach this happens not before e− f failures. Therefore,
it seems reasonable to apply the ADNA/AHS concept to the automotive area.
The major question is if the available computational, memory and bandwidth
resources are sufficient there to operate this concept. This will be investigated
in the next sections.

4 Adaptation to the Target Platform

As target platform we have chosen the Renesas µPD70F35XX microcontroller
family [24]. This family contains a dual lockstep V850E2 32 bit processor core
and is a common controller for safety-critical ECUs. It is e.g. also used for the
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AutoKonf project [2] mentioned above. The controller offers a classical CAN
bus interface [3], which is a frequently used communication bus in automotive
systems. Table 1 shows key features of the family. The main bottleneck is the
low amount of data memory, together with the limited bandwidth and message
size of the CAN bus. Clock frequency and program memory are less critical since
the ADNA/AHS requires low computational resources and has a small program
memory footprint [8].
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Table 1. µPD70F35XX microcontroller family key features

Controller: µPD70F3504 µPD70F3506 µPD70F3508

Data memory: 24 kBytes 40 kBytes 80 kBytes

Program memory: 384 kBytes 512 kBytes 1024 kBytes

Data flash: 32 kBytes 32 kBytes 32 kBytes

Max. clock frequency: 80 MHz 80 MHz 160MHz

The ADNA/AHS system is completely written in Ansi C 99 and therefore
could be easily compiled for the target platform using a GreenHill C compiler
for this microcontroller family. Mainly, two modules had to be adapted:

– AHSBasicOSSupport, which implements the basic multithreading and syn-
chronization mechanisms for the AHS and ADNA.

– AHSBasicCommunication, which implements all basic communication func-
tions for the AHS and ADNA.

In the following sections, we describe these adaptions as well as the resulting
data and program memory footprint.
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4.1 Basic Operating System Support

This module usually connects the ADNA/AHS system to the operating sys-
tem. Implementations for Windows and Linux already exist. On this automotive
microcontroller target platform, no Windows or Linux support exists. Therefore
we have chosen AtomThreads [18] as a basis to implement the AHSBasicOSSup-
port module. AtomThreads is a lightweight open source multithreaded library,
which can be easily adapted to a dedicated microcontroller. AHSBasicOSSup-
port implements functions to create, terminate, suspend, resume and schedule
threads preemptively with different fixed priorities. Furthermore it realizes syn-
chronization functions like mutexes, semaphores, events and timers. To build this
efficiently on top of AtomThreads, the AtomThreads library has been extended:

– Functions to suspend, resume and terminate threads have been added.
– Event management has been added.
– To save data memory, the idle thread (which is active when no other thread

is ready to run) has been replace by an idle loop. This idle loop does not
require its own stack.

– To save more data memory, the initial thread activating the AtomThread
scheduler has been turned into a regular thread of the scheduler so it can be
further used. In the original implementation this thread is never used again.

– Idle time measurement has been added to the idle loop. This allows to deter-
mine the system load.

Overall, using the modified AthomThreads library a very lightweight and
efficient basic operating system support module could be built.

4.2 Basic Communication with CAN Bus

The ADNA/AHS system sends messages and hormones via the AHSBasicCom-
munication module. Hormones are bundled up to a telegram length of 256 Bytes.
The maximum length of message telegrams is also 256 Bytes. So the AHSBasi-
Communication module has to offer functionality to send and receive telegrams
up to that size. The user accessible fields of a classical CAN bus telegram con-
sist of an identifier section of 11 Bits (standard CAN format), a length section
of 4 bits and a data section of up to 64 bits (8 bytes). The identifier section
also serves for bus-arbitration using a CSMA/CR policy. A logical 0 dominates
a logical 1 so as more 0 are in the identifier as higher is the priority of the
telegram. To transfer telegrams of up to 256 Bytes via the classical CAN bus,
they have to be divided in chunks. We have chosen a division scheme shown in
Fig. 5, which is optimized for the format of the hormone and message telegrams.
The first byte of these telegrams distinguishes between hormones and messages.
Hormone telegrams are broadcasted to all ECUs, while the receiver ECU id of a
message telegram is given in the second byte. So we use the 11 bit identifier field
to contain the 8 bit sender ECU id, a hormone/message distinction bit (to allow
different priorities for hormones and messages) and a 2 bit chunk id to determine
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the first chunk of a telegram (10), an even chunk (00), an odd chunk (01) and
a last chunk1 (11). So we can fully use the CAN bus data payload to send and
receive hormones and messages, a n byte telegram is divided into �n/8� chunks.
As mentioned above, in case of a message the second byte of the payload of the
first chunk indicates the receiver ECU id. Since a sender ECU never sends a new
message or hormone telegram before the previous one is completely transmitted,
the receiver ECU id of the first chunk can be applied to all following chunks from
the same sender ECU id. The distinction of even and odd chunks additionally
allows to detect an odd number of lost chunks.

8 Bit 1 Bit 2 Bit 4 Bit up to 64 Bits
Sender ECU Id Hormone/Message Chunk Id Len Payload

Identifier Length Data

Fig. 5. CAN Bus telegram organization

4.3 Memory Footprint

One of the most critical issues is the low amount of data memory on the target
platform. The data memory needs of the ADNA/AHS system can be divided into
static and dynamic memory needs. Both could be optimized during the adaption
process by e.g. reducing list management overhead, using bit based structures
and shrinking oversized buffers. As a result, the dynamic memory needs of the
ADNA/AHS could be reduced to:

dynMem = 221 + (gt · 32) + (at · 80) + (lt · (96 +mb)) + (rt · 15) + cb+ ab Bytes

with: gt: global number of tasks (basic elements) in the system, at: number
of tasks the ECU applies for, lt: number of tasks running on the ECU, rt: num-
ber of related tasks, mb: task communication message buffer size, cb: CAN bus
communication buffer size, ab: ECU communication message buffer size.

Additionally, AtomThreads need 900 Bytes stack per thread, which is also
allocated dynamically. Since we have 2 system threads, the stack memory needs
related to the number of running tasks on an ECU calculates to:

dynMemstack = 900 · (lt + 2) Bytes

Finally, when a DNA is read from the data flash memory, administrative
memory to operate this DNA is allocated dynamically:

dynMemDNA = (dl · 14) + (ln · 4) + ps Bytes

with: dl: number of DNA lines, ln: number of destination links, ps: parameter
size
1 Only needed if the payload data of a chunk is completely filled, otherwise a length

less than 8 bytes indicates the last chunk.
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The static data memory needs of the ADNA/AHS system are constant at

statMem = 11960 Bytes

To give a real-number example, an ADNA to realize an anti-locking brake
and traction control system2 requires 16 DNA lines (dl) with 23 destination links
(ln) and 210 Bytes parameter space (ps). The resulting number of tasks3 is 9
(gt). If each ECU in the system applies for all tasks (at = 9) and in worst case a
single ECU runs all of them (lt = 9), each task is related to another task (rt = 9)
and we have a message buffer size for each task of 128 Bytes (mb), the CAN bus
buffer size is 3000 Bytes (cb) and the ECU communication message buffer size
is 128 Bytes (ab), the overall data memory needs for this application are:

data memory = dynMem + dynMemstack + dynMemDNA + statMem

= 6508 + 9900 + 582 + 11960 = 28950 Bytes

This easily fits the two bigger controllers of the family (µPD70F3506 and
µPD70F3508), see Table 1. For the smallest controller (µPD70F3504) it is a
bit too much. However, a major part of the data memory is consumed by the
thread stack. So the smallest controller could run 4 tasks at maximum. Due to
the dynamic nature of the AHS (a memory overflow automatically produces a
suppressor hormone which reduces the number of running tasks on an ECU) the
system would autonomously adapt to this situation. This enables the use of the
smallest controller if enough are present.

The program memory footprint of the entire ADNA/AHS system is 138
kBytes. So this easily fits all three controllers. Please note that this includes
all basic elements, the application itself does not require any additional program
and data memory. The running application is stored via the DNA in the data
memory using dynMemDNA bytes as calculated above. Also the data flash mem-
ory (32 kBytes) used to persistently store different DNAs is by far large enough
for a big number of DNAs.

5 Evaluation Results

For the evaluation we have chosen the mid-size controller µPD70F3506. We have
used several DNAs from our self-balancing robot vehicle (Balance, BalanceAGV,
BalanceFollow, BalanceTurn) as well as two experimental automotive DNAs
realizing an anti-locking brake plus traction control (AntiLockTraction) and an
anti-locking brake plus traction and cruise control (AntiLockTrCruise). Three
different configurations were used: (1) A single ECU was interconnected with
the environment via CAN bus. (2) Two ECUs were interconnected to each other
and the environment via CAN bus. (3) Two ECUs were interconnected via CAN
bus, two more virtual ECUs (on a Windows PC) were interconnected via UDP

2 Experimental AntiLockTraction DNA from Sect. 5.
3 Not necessarily all DNA lines require a task, e.g. actor lines.
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and UDP/CAN was interconnected by a hub. The results are given in Table 2.
The table shows the resulting CAN bus load (at 1 MHz CAN bus frequency)
and the computational load of the most occupied real (not virtual) ECU. The
hormone cycle time used was 50 ms and the fastest message cycle time was 15 ms.
It can be seen that neither the CAN bus load nor the ECU load exceeds critical
bounds.

Table 2. Evaluation results

DNA 1 × CAN (1) 2 × CAN (2) 2 × (CAN+UDP) (3)

CAN load ECU load CAN load ECU load CAN load ECU load

Balance 21% 9% 21% 6% 10% 3%

BalanceAGV 26% 12% 26% 10% 15% 5%

BalanceFollow 28% 13% 28% 10% 23% 8%

BalanceTurn 28% 12% 28% 10% 23% 7%

AntiLockTraction 40% 14% 40% 12% 37% 9%

AntiLockTrCruise 45% 18% 46% 15% 31% 10%

6 Conclusion

In this paper we have shown that it is possible to apply the self-organizing
ADNA/AHS concept to an automotive environment with low performance
microcontrollers and a classical CAN bus. Due to its self-healing capabilities, this
approach can contribute to improve the fail-operational behavior and flexibility
of automotive systems. Its failure robustness exceeds traditional approaches.
In future, more powerful controllers and busses (like e.g. CAN-FD) will even
increase the potential of the ADNA/AHS concept.

In the work presented we have used a modified AtomThreads OS and a
proprietary CAN bus protocol. As next step we are investigating the possibility
to adapt this concept also to a pure automotive OS like classical AUTOSAR
and an AUTOSAR compliant use of the CAN bus. This is challenging due to
the static nature of classical AUTOSAR. However, first experiments made using
e.g. thread pools show these limitations can be overcome. This would add a
completely new quality to AUTOSAR.
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Abstract. This paper presents a framework to support parallel swarm
search algorithms for solving black-box optimization problems. Looking
at swarm based optimization, it is important to find a well fitted set
of parameters to increase the convergence rate for finding the optimum.
This fitting is problem dependent and time-consuming. The presented
framework automates this fitting. After finding parameters for the best
algorithm, a good mapping of algorithmic properties onto a parallel hard-
ware is crucial for the overall efficiency of a parallel implementation.
Swarm based algorithms are population based, the best number of indi-
viduals per swarm and, in the parallel case, the best number of swarms in
terms of efficiency and/or performance has to be found. Data dependen-
cies result in communication patterns that have to be cheaper in terms of
execution times than the computing in between communications. Taking
all this into account, the presented framework enables the programmer to
implement efficient and adaptive parallel swarm search algorithms. The
approach is evaluated through benchmarks and real world problems.

Keywords: Particle Swarm Optimization · Parallelization ·
Adaptive algorithm · Optimization problems ·
Interplanetary space trajectory

1 Introduction

Numerical optimization presents a comprehensive and contemporary description
of the most effective methods in continuous optimization and it has been widely
used in engineering to solve a variety of complex problems in different areas
such as finance [7], medicine [21], electrical engineering [15], and aerospace [13] to
name but a few. It responds to the growing interest in optimization in these fields
by focusing on methods that are best suited to practical real-world problems.
Due to the lack of information about the internal working of these systems and
their complexity, they can be classified as black-box problems.

Stochastic iterative global search methods such as Evolutionary Algorithms
(EAs) and swarm algorithms have been shown to solve many real-world com-
plex problems. The Particle Swarm Optimization (PSO) [17] algorithm is one
c© Springer Nature Switzerland AG 2019
M. Schoeberl et al. (Eds.): ARCS 2019, LNCS 11479, pp. 100–111, 2019.
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of the most important representative of the swarm algorithms paradigm. The
advantage of using PSO is that it does not use the gradient of the problem to
be optimized, thus, it can be successfully applied to both, large scale and com-
plex optimization problems. This versatility comes at a price, as three major
restrictions limit the solution efficiency. Firstly, real-world problems are get-
ting larger and complicated, which requires significant resources in time and
hardware. Secondly, optimization problems are characterized by multiple local
optima, requiring a method to avoid early stagnation. Thirdly, PSO may need
some problem dependent tuning of its behavioral parameters.

The first problem can be solved by taking advantage of the computer architec-
ture. Most of the publications concentrate on implementing the PSO on Graphics
Processing Units (GPUs) [14,18,22]. Furthermore, there are a few shared mem-
ory, usually via Open Multi-Processing (OpenMP)1, implementations [8,20]. All
the referred approaches focus either on the algorithm or on how to implement it
on a cluster or GPUs processor. None of the implementations investigates how
the algorithm can preferably be mapped on a parallel architecture.

The second problem is treated in several ways: on one hand, once a stagnation
is detected it can be remedied by restarting the algorithm [5,28]; on the other
hand, early stagnation can be averted by using a decentralized approach [1].

The third problem, as well as the second one, is treated in several ways too.
The spectrum goes from a brute-force search [24] to meta-heuristic approaches
for finding the best parameters [6]. While a brute-force search is associated with
a lot of time, the meta-heuristic approach just shifts the dilemma of the best
parameters one level above.

Eventually, almost all the presented approaches focus either on solving one of
the mentioned problems, or changing the PSO to fit a specific problem domain.
This leads to a better performance for the investigated domain, but a deteriora-
tion in other domains.

In this study, we present a Parallel Adaptive Swarm Search (PASS) frame-
work for solving a wide range of different optimization problems. Our goal is
to smooth out simultaneously all the major PSO obstacles and to increase the
effectiveness of the algorithm. Considering the ‘No Free Lunch Theorems for
Optimization’ [26], we tend to achieve good performance over diverse classes of
problems, without focusing on a specific one. As it will be shown, this approach
can lead to improved overall optimization performance.

2 Background

The PSO is a population-based, non-deterministic optimization algorithm, pro-
posed by Kennedy and Eberhard in 1995 [17]. In the original definition of PSO,
the main idea is to model all solution candidates as a moving swarm of particles,
which is attracted in the direction of the swarm-wide best position found so far,
as well as each particle’s individual best position from previous measurements.

1 https://www.openmp.org/. Accessed 2 Dec 2018.

https://www.openmp.org/
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where i ∈ {1, 2, . . . , P} and d ∈ {1, 2, . . . ,D}, with P denoting the number of
particles and D denoting the dimensionality at S. The so called inertia weight
w, the maximal global attraction c1 and maximal local attraction c2 are user
defined values, used to parameterize the algorithm. u1 and u2 are independent
and uniformly distributed random values within [0, 1].

Several modifications have been applied to the original algorithm to improve
its performance [10,23], which led to the current Standard Particle Swarm Opti-
mization 2011 (SPSO2011) [27], a baseline for future PSO improvements and
performances. The SPSO2011 algorithm is the basis of our approach.

3 Parallel Adaptive Swam Search Framework

Figure 1 illustrates the proposed approach. PASS consists of three main parts:

(a) Hardware Analysis: the goal is to find out if it is worth using shared memory
for parallelization. For further details, refer to Sect. 3.1.

(b) Parameter Selection: the goal is to find the best parameters for the consid-
ered black-box problem. For further details, refer to Sect. 3.2.

(c) Parallel Swarm Search: is an extended PSO algorithm implementation
explained in Sects. 3.1 and 3.3.

Both, Hardware Analysis and Problem Specific Best Parameters generate a result
which can be used in the future. The first result is an Architecture Cost Model
and the second one is a result with the best parameters for the actual prob-
lem. The first two steps above are only done once for a target machine, till the
computer architecture changes or we have to optimize a new black-box problem.

3.1 Parallelization

One strategy to parallelize the PSO algorithm is to use shared memory. The par-
allelization process through OpenMP always comes together with overhead like



PASS Framework 103

Fig. 1. PASS approach.

thread start-up time, synchronization, thread termination time etc. The imple-
mentations in [8,20] deliver a parallel version of PSO without considering the
costs of overhead. Consequently, we have to identify the process with the largest
computational time. Accordingly, the evaluation step is a candidate than will be
parallelized. Through this change in the algorithm, we go from an asynchronous
(Algorithm 1) version of PSO to a synchronous one (Algorithm 2). According to
[11] the sequential method seems to be slightly more efficient, experimentally.
On the other hand, for big problems with a large evaluation time, it should be
necessary to run the algorithm in parallel.

Algorithm 1. Asynchronous
while not stopping condition do

for all Particles p in Swarm do
p.evaluate();
p.update();

end for
end while

Algorithm 2. Synchronous
while not stopping condition do

for all Particles p in Swarm do
p.evaluate();

end for
for all Particle p in Swarm do

p.update();
end for

end while

The Hardware Analysis procedure of PASS identifies through Machine Learn-
ing if the problem is big enough to activate parallelization. This is done in four
steps:

Step 1: Generate training data (i.e. problems with different evaluation time)
Step 2: Evaluate the problems and calculate the speedup2

2 The ratio of the sequential execution time to the parallel execution time.
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Step 3: Build a cost model with the gathered data (e.g. regression analysis)
Step 4: Estimate the speedup of the given problem through the cost model

Some tests on our High Performance Computing Cluster (HPCC) (see Sect. 4)
shows that for problems with very small evaluation time, the overhead for par-
allelization is larger than the achievable speedup. In these circumstances no
OpenMP activation is needed.

3.2 Parameter Selection

A well fitted parameter setting is a crucial factor in the performance of the
algorithms. Changing the PSO constants can lead to a change of the algorithm
behavior. In [9] it is analyzed what an influence the change of parameters have in
stability, local convergence, and transformation sensitivity of the PSO algorithm.
The ratio between the global attraction c1 and the social attraction c2, for exam-
ple, controls if the algorithm aims to an exploration or exploitation of the search
space. As a result, we need to find the best possible parameters for the investi-
gated problem. The difficulty in this process lies on the wide configuration range
of the parameters. Through the literature (e.g. [9]), we can reduce the configu-
ration range to a minimum possible. That enables us to develop a method which
is noticeably faster than brute force or meta-heuristic search. Global attraction
c1 and social attraction c2 have values within [0, 2.5]. The number of particles
P are in the range [10, 100] and the inertia weight w in [−1, 1]. The main idea
of the parameter selection is to use a binary search3 finding the best parameter
setting. At the first step of the binary search, a random element from every
side is picked. Then, we run the PSO algorithm with this parameter setting
and compare the two parts with each other. Equation 5 is used to determine
the winner. The side with the higher score is selected. This process continues
iteratively up to a defined granularity. The finer the granularity, the longer the
search process will be.

Scoreleft =
|#Eval.left − #Eval.right|

#Eval.left
+

Successleft

|Successleft − Successright|

Scoreright =
|#Eval.right − #Eval.left|

#Eval.right
+

Successright

|Successright − Successleft|

(5)

3.3 Island Model

The island model has been proposed in [19] and it has evolved through the
last years. With the dawn of parallel computing machines, this model gained
significant importance. Its intention is to improve the diversity of solutions and
thus delaying stagnation. In a parallel implementation of an island model, each

3 https://xlinux.nist.gov/dads/HTML/binarySearch.html. Accessed 2 Dec 2018.

https://xlinux.nist.gov/dads/HTML/binarySearch.html
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machine executes a PSO algorithm and periodically exchanges a piece of their
population. A multi-swarm can be defined as a triple 〈MP, T , C〉, where MP =
{MP1, ...,MPn} is the number of swarms, T is the topology of the swarm, and
C is the migration-selection strategy.

C is defined as a four-tuple 〈α, β, γ, δ〉, where α is the frequency of the
exchange, β indicates the number of particles that will migrate from one swarm
to another, γ shows which particles have to be migrated and δ indicates how the
replacement is done.

A wide variety of tests to find out the best parameters for the island model
led us to the following configuration: MP = 14, for T we use a maximum com-
munication (i.e. every swarm communicates with the rest). After every swarm
iteration (α), we change the worst particle of each swarm (δ) with the best global
particle (γ).

4 Experimental Setup

All tests have been conducted on a HPCC with 17 compute nodes. Each node
consists of 12 cores, each with an Intel(R) Xeon(R) CPU with 2.67 GHz clock
rate. All source codes were written in C++ and compiled with gcc (version 8.2.0)
using openMP (see Sect. 3.1) when needed. The implementation of the island
model (see Sect. 3.3) is done through the Message Passing Interface (MPI)4.
Each node serves as a unique swarm. Figure 2 gives an overview of the HPCC
parallel implementation. On the basis that we use the same algorithm for every
population MP (i.e. the execution time is almost the same), the communication
is done synchronously. Further implementation details can be gathered from the
website5.

Fig. 2. Parallel implementation of PASS in HPCC.

4 https://www.mcs.anl.gov/research/projects/mpi/. Accessed 2 Dec 2018.
5 https://github.com/rshuka/PASS. Accessed 2 Dec 2018.

https://www.mcs.anl.gov/research/projects/mpi/
https://github.com/rshuka/PASS
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To evaluate our approach, we consider some non-linear benchmark func-
tions with diverse properties (e.g. separability, uni- and multimodal). They are
reported in Table 1. Next, we select some cases from the Global Trajectory Opti-
mization (GTOP) database (see Sect. 4.1).

Within this paper, the problems used for evaluation are real-parameter, real-
valued, bound-constraint black-box optimization problems (BBOPs). By con-
vention, the optimization problem is viewed as a minimization problem (6).

Minimize f(x) (x ∈ R
n)

subject to: x1 ≤ x ≤ x2 (x1, x2 ∈ R
n) (6)

Table 1. Benchmark problems from [12].

Name Benchmark functions Domain

[Xmin, Xmax]
D

Error

goal

Dim. D

De Jong f1 =
∑n

i=1 x2
i [−5.12, 5.12]D 10−6 40

Rastrigin f2 = 10n +
∑n

i=1(x
2
i − 10cos(2πxi)) [−5.12, 5.12]D 10−4 5

Rosenbrock f3 =
∑n−1

i=1 (100(x2
i − xi+1)

2 + (1 − xi)
2) [−2.048, 2.048]D 10−1 10

Griewank f4 = 1 + 1
4000

∑n
i=1 x2

i − ∏n
i=1 cos(

xi√
i
) [−600, 600]D 10−6 40

Schwefel f5 =
∑n

i=1(−xisin(
√|xi|)) + 418.982887 · n [−500, 500]D 101 5

The evaluation process is divided into two steps:

– First step: as mentioned in Sect. 2, the SPSO2011 algorithm is the baseline
for the PASS algorithm. In order to demonstrate the performance increase of
the proposed approach, five well-known benchmark functions from literature
were adopted [12]. All the benchmark functions have their global minimum
at 0.0. Table 1 reports the formula, domain, error goal and dimension. The
SPSO2011 algorithm is initialized with the default values (see Sect. 4.2). The
optimization process terminated when the global minimum was found or a
maximum of 10,000 function evaluations was reached. Every experiment was
repeated 50 times. If the problem was solved, the success rate, maximum
number of evaluations, minimum number of evaluations, average number
of iterations and the standard deviation of the benchmark functions were
recorded. In order to display the best results, we bolded them. The results
are listed in Table 3.

– Second step: we compare PASS with the algorithms mentioned in Sect. 4.2
using two real-world problems from the GTOP database. We select the eas-
iest and the most difficult problem: Cassini 1 and Messenger (full). The
optimization process terminated when a maximum of 500,000 function eval-
uation was reached. Every experiment was repeated 1000 times. For each
set of data, the best objective function, the worst objective function, average
of objective functions and the standard deviation were recorded.
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4.1 Global Trajectory Optimization

Since 2005, the Advanced Concept Team (ACT) of the European Space Agency
(ESA) publishes a database of GTOP problems [3] which can be used as bench-
mark of interplanetary space mission problems. A set of eight different real-
world benchmark problems like Cassini, Sagas, and Messenger are included in
this database.

Table 2. GTOP database benchmark problems.

Problem name Variables Number of submissions Time between first and
last submission

Messenger (reduced) 18 3 11 months

Messenger (full) 26 10 63 months

Cassini2 22 7 14 months

Rosetta 22 7 6 months

Sagas 12 1 -

GTOC1 8 2 24 months

Cassini1 6 3 6 months

Tandem* 18 - -

*Tandem has 50 different instances and each instance has its own submissions

The GTOP benchmark problems are all highly non-linear and non-convex
and they are known to be very difficult to solve. This difficulty can be seen
at the time span between the first and last solution submission as reported in
Table 2. It took more than 5 years for the community to achieve the current best
found solution for the hardest problem (Messenger full). The complexity of this
problem is represented with a state from the ESA website [4]:

...it was hardly believable that a computer, given the fly-by sequence
and an ample launch window, could design a good trajectory in complete
autonomy without making use of additional problem knowledge.

All the problems in the GTOP database are represented as optimization
problems [2].

4.2 Algorithms

We selected some of the most popular algorithms that have proved their effec-
tiveness in the past years.

1. SPSO2011: Standard Particle Swarm Optimization 2011 - We use the default
recommended parameters in [11].

2. DE: Differential Evolution - This algorithm was introduced by Storn and
Price [25] in 1997. The algorithm parameters are set to be CR = 0.9 and
F = 0.8.
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3. ABC: Artificial Bee Colony - This algorithm was introduced by
Karaboga [16] in 2007. We use the default recommended parameters.

5 Numerical Results

5.1 Experiment #1: PASS vs. SPSO2011

The accumulated results presented in Table 3 show that the proposed approach
out-performs the SPSO2011 algorithm. Using the parameter setting, we adapt
the algorithm better to the problem characteristics and using the island model
we can avoid early stagnation. Although having to compute more function eval-
uations we observe a better overall performance for our approach. We can even
solve problems that are not solved through the SPSO2011. Taking a look at the
De Jong benchmark function, we notice that both algorithms achieve a 100%
success, but PASS converges faster than SPSO2011.

Table 3. Comparison between PASS and SPSO2011.

Benchmark Algorithm Suc. (%) Min. Max. Mean St.D

De Jong PASS 100 200 310 252.4 25.3

SPSO2011 100 455 589 532.46 28.1

Rastrigin PASS 100 17391 25619 21456.38 2038.3

SPSO2011 48 195 1209 510.95 309.8

Rosenbrock PASS 96 20440 24640 22904 1613.5

SPSO2011 78 1693 2492 2233.66 181.9

Griewank PASS 76 1904 2082 1092.81 403.2

SPSO2011 54 1007 1196 1080 45.7

Schwefel PASS 92 1840 29400 11821.33 6840

SPSO2011 10 346 1087 682.6 353.9

5.2 Experiment #2: PASS vs. DE vs. ABC vs. SPSO2011

Figure 3 presents a histogram of values in data using the number of bins equal to
the square root of the number of elements. The X-axis represents the objective
function value and the Y-axis represents the frequency of such values among
all 1000 solutions. The red curve represents the normal distribution fit. Table 4
presents detailed information of the algorithms.

Comparing the results from all test runs, it can be seen that on average
PASS had a better performance than the other algorithms on both problems.
The overall best solutions are achieved by PASS. For Cassini 1, it corresponds
to an objective value of f(x) = 4.9486 and for Messenger full, it corresponds to
an objective value of f(x) = 8.6049.
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(b) DE
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(c) ABC
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(d) SPSO2011

Fig. 3. Histogram of the algorithms for the messenger full problem.

Table 4. Results from 1000 runs.

Benchmark Algorithm Min. Max. Mean St.D

Cassini 1 PASS 4.9486 5.357 5.258 0.086

SPSO2011 5.3309 19.915 12.188 3.571

DE 4.9507 16.715 8.789 3.359

ABC 5.4286 11.390 6.745 0.801

Messenger full PASS 8.6049 19.154 15.693 1.409

SPSO2011 11.8651 30.770 19.025 2.974

DE 9.6816 22.873 16.566 1.987

ABC 10.8451 33.132 22.629 3.523

6 Conclusions

In this paper, we present a framework for solving black-box optimization prob-
lems. We introduce an effective selection strategy for finding the best parameters
for the PSO algorithm. Furthermore, mapping the algorithm to the hardware
and using the benefits of parallel computing can lead to a noticeable speedup.
The island model is used to avoid early stagnation and to increase the PSO
algorithm convergence. Through these steps, we can solve the major problems
that face stochastic iterative global search methods like the PSO. It is important
to say that no code changes are needed and everything is automated.

We do not restrict ourselves only to one specific problem class (e.g. GTOP).
We can deliver good results for all kind of black-box problems. The presented



110 R. Shuka and J. Brehm

approach can be applied in the future to other population based algorithms,
prior code changes are necessary to achieve the maximum possible speedup.
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Abstract. An accumulator instruction set architecture is simpler than
an instruction set of a (reduced instruction set computer) RISC archi-
tecture. Therefore, an accumulator instruction set that does within
one instruction less than a typical RISC instruction is probably more
“reduced” than a standard load/store register based RISC architecture.

This paper presents Leros, an accumulator machine and its support-
ing C compiler. The hypothesis of the Leros instruction set architecture
is that it can deliver the same performance as a RISC pipeline, but con-
sumes less hardware and therefore also less power.

Keywords: Embedded systems · Minimal processor

1 Introduction

The invention of the reduced instruction set computer (RISC) [9,12,13] in the
early 80’s was a sort of a revolution. Since then most embedded processors
have been designed as RISC processors, and from the Pentium Pro, the x86,
a typical complex instruction set computer (CISC), uses RISC style instruc-
tions internally. Recently the free RISC-V instruction set [19], also developed at
the University of California, Berkeley is gaining momentum. First silicon imple-
mentations are available. Even a many-core architecture with more than 4096
RISC-V processors on a single die is under development by Esperanto [7] and
expected to ship mid-2019.

The RISC architecture promises to provide a simpler instruction set that
is cheaper to implement and more natural to pipeline to achieve high perfor-
mance by a higher clock frequency and fewer clocks per instructions. A typi-
cal RISC architecture has: 32-bit instructions, 32 registers, operation with two
source and one destination register, and load and store instructions with dis-
placement addressing.

This paper takes the RISC approach one step further and provides an even
more RISCy instruction set: Leros, an accumulator machine. An accumulator
instruction set is even simpler than a RISC instruction set. This processor is

c© Springer Nature Switzerland AG 2019
M. Schoeberl et al. (Eds.): ARCS 2019, LNCS 11479, pp. 115–127, 2019.
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named Leros, after the Greek island Leros.1 Leros is an accumulator machine
with direct addressing of 256 memory words. Those 256 words are considered a
large register file. Leros implements basic logic and arithmetic operations with an
accumulator and one of the registers or a constant. Memory is accessed indirectly
via an address register. All instructions are 16-bit wide. Leros can be configured
to be a 16, 32, or 64-bit architecture. We optimize Leros for an FPGA, by using
an on-chip memory for the large registers file.

The Leros architecture hypothesizes that it will deliver the same performance
as a RISC pipeline, but consumes fewer hardware resources and therefore also
less power. The Leros accumulator architecture will execute more instructions
than a RISC architecture. However, the accumulator architecture compensates
this by two facts: (1) The simple architecture shall allow clocking the pipeline
with a higher clock frequency. (2) The shorter instructions (16 instead of 32 bits)
need less instruction memory and instruction cache.

A further goal of Leros is to be a good target for a C compiler. Therefore,
the data width shall be 32 bits. We present a port of the LLVM [10] C compiler
for Leros.

The contributions of this paper are: (1) a definition of a minimal accumulator
based instruction set architecture (ISA), (2) an implementation of that ISA in
two simulators and in an FPGA, and (3) a C compiler ported to target the Leros
ISA.

This paper is organized in 7 sections: The following section presents
related work. Section 3 describes the Leros instruction set architecture. Section 4
describes one possible implementation of the Leros processor. Section 5 intro-
duces the C compiler for Leros. Section 6 evaluates the architecture, the compiler,
and an FPGA implementation of Leros. Section 7 concludes.

2 Related Work

Many small processor cores for FPGAs have been developed or are developed
as assignments for courses in computer architecture. With Leros, we also aim
to be an instruction set definition that can be used in teaching. In this section,
we restrict the discussion to a few successful cores and point out the differences
from our Leros design.

PicoBlaze is an 8-bit processor for Xilinx FPGAs [21]. PicoBlaze is optimized
for resource usage and therefore restricts the maximum program size to 1024
instructions and data to 64 bytes. PicoBlaze can be implemented with one on-
chip memory and 96 logic slices in a Spartan-3 FPGA. PicoBlaze provides 16
8-bit registers and executes one instruction in two clock cycles.

The central theme behind Leros is similar to PicoBlaze. However, we target
a processor that is useful with a C compiler. Thus, the resource consumption
of Leros is slightly higher as PicoBlaze. The PicoBlaze code is at a low level of
abstraction composed out of Xilinx primitive components. Therefore, the design
1 The initial version of the processor has been designed on the island Leros: https://
www.leros.gr/en/.

https://www.leros.gr/en/
https://www.leros.gr/en/
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is optimized for Xilinx FPGAs and practically not portable. Leros is written in
vendor agnostic Chisel [2] and compiles unmodified for Altera and Xilinx devices.

The SpartanMC is a small microcontroller with an instruction and data width
of 18 bits [8]. The authors optimized this width for FPGAs that contain on-chip
memories that can be 18-bit wide (the additional bits are initially for parity
protection). The processor has two operand instructions with 16 registers and is
implemented in a three-stage pipeline. The register file uses on-chip memory and
a sliding register window is used to speed up function calls (similar to the SPARC
architecture). SpartanMC performs comparably to the 32-bit RISC processors
LEON-II [6] and MicroBlaze [22] on the Dhrystone benchmark.

Compared to the SpartanMC, we further optimized Leros for FPGAs using
fewer resources. Leros simplifies the access to registers in on-chip memory by
implementing an accumulator architecture instead of a register architecture.
Although an accumulator architecture is, in theory, less efficient, the resulting
maximum achievable clock frequency may offset the higher instruction count.

Intel (former Altera) provides the Nios II [1] processor, which is optimized for
Intel FPGAs. Nios is a 32-bit RISC architecture with an instruction set similar
to MIPS [9] with three register operations. The sizes of its instruction and data
caches are configurable.

Although Nios II represents a different design from Leros, it is a clear com-
petitor, as one can configure Nios for different resource consumption and perfor-
mance targets. Three different models are available: the Fast core is optimized
for high performance, the Standard core is intended to balance performance and
size, and the Economy core is optimized for smallest size. The smallest core needs
less than 700 logic elements (LEs). It is a sequential implementation, and each
instruction takes at least six clock cycles. Leros is a smaller, accumulator-based
architecture, and with a pipelined implementation of Leros, most instructions
can execute in a single clock cycle.

The Supersmall processor [15] is optimized for low resource consumption (half
of the Nios economy version). This is achieved by serializing ALU operations to
single bit operations. The LE consumption is comparable to Leros.

The Ultrasmall MIPS project [11] extends the Supersmall architecture. The
main difference is the change of the ALU serialization to perform two-bit oper-
ations each cycle instead of single bits. Therefore, a 32-bit operation needs 16
clock cycles to complete. The Ultrasmall processor consumes 137 slices in a Xil-
inx Spartan-3E, which is 84% of the resource consumption of Supersmall. The
serialization of the ALU operations results in an average of 22 clock cycles per
instructions. According to the authors, “Ultrasmall is the smallest 32-bit ISA
soft processor in the world”. We appreciate this effort of building the smallest
32-bit processor. With Leros, we aim similar for a small 32-bit processor.

Wolfgang Puffitsch developed the Ø processor.2 It is an accumulator machine
aiming at low resource usage. The bit width of the accumulator (and register
width) is configurable. An instance of an 8-bit Ø processor executing a blinking
function consumes 176 LEs and 32 memory bits.

2 https://github.com/jeuneS2/oe.

https://github.com/jeuneS2/oe
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An early processor targeting FPGAs is the DOP processor [3]. DOP is a 16-
bit stack oriented processor with additional registers, such as address registers
and a work register. As the work register is directly connected to the ALU,
DOP is similar to Leros an accumulator oriented architecture. The authors do
not provide resource consumptions for the DOP design.

Lipsi is a processor that aims to be one of the smallest processors available
for an FPGA [18]. Lipsi is small as it can use just a single block RAM for
instructions and data. Therefore, each instruction executes in at least two clock
cycles. The datapath of Lipsi is 8-bit. The aims of Lipsi and Leros are similar
to build small embedded processors. However, with Leros, we target a processor
that is well suited for a modern C compiler. Therefore, the default datapath
width is 32-bit but is configurable to be 16, 32, or 64 bits.

The first version of Leros [16] was a hardcoded 16-bit accumulator machine.
It consisted of a two-stage pipeline, where the pipeline delays are visible in the
instruction definition. Compared to this initial version of Leros, we make a clear
definition of the instruction set architecture, independent from any implemen-
tation in this paper. Furthermore, we allow that the bit width is configurable.
And we provide a port of the LLVM C compiler for Leros. The porting of the C
compiler also provided feedback on the instruction set that we changed accord-
ingly. Therefore, the presented version of Leros is not binary compatible with
the early version of Leros.

3 The Leros Instruction Set Architecture

The instruction set architecture, or short ISA, is the most important interface
of a processor. It defines the language that the processor understands. It is
the interface between the hardware and the compiler. IBM first introduced an
ISA with the 360 series of computers. IBM introduced several implementations
of the 360 series, with different price tags, that all implemented the same ISA.
Therefore, it was possible to reuse software and compilers on different computers.

The ISA defines the programmer visible state, e.g., registers and memory, and
instructions that operate on this state. The processor state that is not visible to
the programmer, e.g., caches, are not part of the ISA. Some parts of a processor,
e.g., address translation and memory protection, are not visible in the user ISA,
but only available in a supervisor mode (usually used by an operating system
kernel).

Leros is an accumulator machine. Therefore, the dominant register is the
accumulator A. Furthermore, Leros defines a small memory area that can be
directly addressed. We call those 256 memory words registers. Leros performs
operations with the accumulator and those registers. E.g., Adding a register to
the accumulator, storing the accumulator into a register. Basic operations are
also available with immediate values, e.g., adding a constant to A.

Memory operations use an address register, called AR, plus an 8-bit displace-
ment. All memory accesses use this address register. The load destination is the
accumulator, and the store source is also the accumulator.
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Table 1. The Leros instruction set.

Opcode Function Description

add A=A+Rn Add register Rn to A

addi A=A+ i Add immediate value i to A (sign
extend i)

sub A=A−Rn Subtract register Rn from A

subi A=A− i Subtract immediate value i from A
(sign extend i)

shr A=A ≫ 1 Shift A logically right

and A=A and Rn And register Rn with A

andi A=A and i And immediate value i with A

or A=A or Rn Or register Rn with A

ori A=A or i Or immediate value i with A

xor A=A xor Rn Xor register Rn with A

xori A=A xor i Xor immediate value i with A

load A=Rn Load register Rn into A

loadi A= i Load immediate value i into A
(sign extend i)

loadhi A31−8 = i Load immediate into second byte
(sign extend i)

loadh2i A31−16 = i Load immediate into third byte
(sign extend i)

loadh3i A31−24 = i Load immediate into fourth byte
(sign extend i)

store Rn=A Store A into register Rn

jal PC=A, Rn = PC+2 Jump to A and store return
address in Rn

ldaddr AR=A Load address register AR with A

loadind A=mem[AR+(i � 2)] Load a word from memory into A

loadindbu A=mem[AR+ i]7−0 Load a byte unsigned from memory
into A

storeind mem[AR+(i � 2)] = A Store A into memory

storeindb mem[AR+ i]7−0 = A Store a byte into memory

br PC=PC + o Branch

brz if A==0 PC=PC+o Branch if A is zero

brnz if A != 0 PC=PC+o Branch if A is not zero

brp if A>=0 PC=PC+o Branch if A is positive

brn if A < 0 PC=PC+o Branch if A is negative

scall scall A System call (simulation hook)
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All instructions are 16-bit. The data width of Leros is configurable to be: 16,
32, or 64 bits. The default implementation of Leros is 32-bit.

A set of branch instructions perform unconditional and conditional branches
depending on A (zero, non-zero, positive, or negative). For larger branch targets,
indirect jumps, and calls, Leros has a jump and link instruction that jumps to
the address in A and stores the address of the next instruction in a register.
Furthermore, we define a system call instruction for operating system calls.

Leros is designed to be simple, but still a good target for a C compiler. The
description of the instruction set fits in less than one page, see Table 1. In that
table A represents the accumulator, PC is the program counter, i is an immediate
value (0 to 255), Rn a register n (0 to 255), o a branch offset relative to PC, and
AR an address register for memory access.

4 A Leros Implementation

With the Leros ISA, we do not define any specific implementation. Sequential,
single cycle, or pipelined implementations are all proper implementations of the
Leros ISA. The initial Leros 16-bit processor [16] used the pipeline implementa-
tion as part of the ISA definition, which limits the usefulness of an ISA definition.
Therefore, we remove this restriction with the current definition. Instruction
dependencies within a pipeline need to be resolved in hardware (by forwarding
or stalling). No pipeline effects shall be visible in the ISA (except in the execution
time of an instruction).

As a golden reference, we have implemented a Leros ISA simulator in Scala.
The simulator is a large match/case statement and is implemented in around 100
lines of code. The simulator also reflects the simplicity of the Leros ISA.

Writing an assembler with an expressive language like Scala is not a big
project. Therefore, we wrote a simple assembler for Leros, which is possible
within about 100 lines of code. We define a function getProgram that calls the
assembler. For branch destinations, we need a symbol table, which we collect
in a Map. A classic assembler runs in two passes: (1) collect the values for the
symbol table and (2) assemble the program with the symbols obtained in the
first pass. Therefore, we call the assembler twice with a parameter to indicate
which pass it is.

The ISA simulator and the hardware implementation of Leros call the func-
tion getProgram to assemble a program at simulation or hardware generation
time.

We have chosen Scala for the simulator and the assembler as we use Chisel,
which is a Scala library, to describe the hardware implementation. We can share
constants that define the instruction encoding between the simulator, the assem-
bler, and the hardware implementation.

The 256 registers of Leros are similar to the work registers of the
TMS9900 CPU, the processor that was used in the first 16-bit personal com-
puter TI-99/4A.3 The TMS9900 had 16 registers, which are kept in RAM.
3 https://en.wikipedia.org/wiki/Texas Instruments TI-99/4A.

https://en.wikipedia.org/wiki/Texas_Instruments_TI-99/4A
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An implementation of Leros may map those registers into the main memory and
cache it in a data cache. Or it can implement the registers in on-chip memory,
also called scratchpad memory. The Leros ISA does not define this implemen-
tation details. The ISA specification does not assume that the registers can be
read or written with memory load and store instructions.

For testing, we wrote a few test programs in assembler with the convention
that at the end of the test the accumulator shall be 0. Those tests are executed
in the software simulator of Leros and in the hardware simulation in Chisel.

Furthermore, as we implemented the hardware description and the software
simulator in the same language, we can do co-simulation. With co-simulation, we
compare after each instruction the content of A between the software simulation
and the hardware. Any (relevant) difference/error will eventually show up in A
as all data flows through A.

5 The Leros C Compiler

We implemented a C compiler and accompanying toolchain for the Leros instruc-
tion set with the LLVM compiler infrastructure. A detailed description of the
compiler and tools for Leros can be found in [14].

The LLVM compiler infrastructure is a collection of toolchain applications
built around the LLVM core libraries. The LLVM core is a modular compiler
infrastructure, allowing for separate implementation of front-, optimizer, and
backends. We implemented an LLVM backend that targets the Leros instruction
set.

5.1 Using LLVM for Accumulator Machines

A difficulty in using LLVM for Leros arises when we directly use the intermediate
representation (IR) of LLVM. LLVM follows the common notion of compiler IR
wherein the IR should resemble the target instruction set format, to facilitate
various steps such as optimizations and instruction selection. An example LLVM
IR sequence may be the addition of two variables:

%c = add i32 %a, %b

The format of the LLVM IR resembles 3-operand RISC instruction sets, which
facilitates instruction selection and emission for instruction sets such as ARM
and RISC-V. For Leros, virtually no LLVM IR instructions can be directly
matched to Leros instructions.

The method for matching the LLVM IR during instruction selection has been
to implement a 3-operand version of the Leros instruction set, denoted as the
Leros pseudo instruction set. An example expansion of a Leros pseudo instruction
is as follows:

%c = add %a %b load %a

add %b

store %c
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Having mappings such as shown above allows for instruction selection with the
ease enjoyed by the 3-operand upstream backends of LLVM. After scheduling,
SSA optimizations and register allocation the Leros pseudo instructions are
expanded to their corresponding sequence of Leros machine instructions. Whilst
incurring a code-size overhead, the method does not require any modifications
to the DAG which is provided as the input for the backend as well as the built-in
scheduler, SSA optimization- and register allocation passes, which are desired to
be left as default to minimize implementation time as well as the possibility for
compiler issues.

5.2 Accumulator Optimizations

A consequence of the pseudo instruction set is an overhead in the size of the
compiled programs, mainly due to redundant instructions which are a side-effect
of the pseudo instruction set. Therefore, we implemented various optimizations
to detect and modify code sequences where a program may reuse the accumulator
content. An example is the removal of redundant load and stores. Figure 1 shows
an example of Leros machine code after pseudo instruction expansion. We can
see that the intermittent load- and store to %tmp is redundant, and the compiler
may remove it if the register %tmp is dead after the load %tmp instruction.

Fig. 1. Left: the LLVM IR sequence, center: expanded pseudo instructions, and right:
an optimal sequence.

As of this writing, we have implemented three optimization passes in the
backend:

Redundant loads: Identifies code sequences as shown in Fig. 1 where a reg-
ister is loaded wherein the value of the register is already present in the
accumulator.

Redundant stores:Identifies code sequences as shown in Fig. 1 where a regis-
ter is used to store an intermediate result. Redundant store instructions are
identified and removed by reverse traversal of a basic-block, checking register
liveness and usage.

Redundant ldaddr: All ldind and stind instructions emit a ldaddr instruc-
tion, resulting in code sequences where multiple ldaddr instructions will load
an unmodified value into the address register. This pass mimics the redundant
store pass, tracking the usage of the register which is currently loaded into
the address register and removes ldaddr instructions if deemed redundant.
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5.3 Further Optimizations

Some pseudo instruction expansions require the use of bit masks. An exam-
ple is the expansion of arithmetic right shift instructions. In this, the bitmask
0X80000000 is required for sign-extending a (logically right shifted) value. The
compiler generates immediate values through subsequent loadi# instructions.

Given that the compiler knows the required set of constants for instruction
expansion at compile time, these constant can be stored in registers. The abun-
dance of registers in Leros allows for using some of the registers for constants.
With this, we define some constant registers for Leros, which the start function
initializes. These constant registers are furthermore able to be referenced during
instruction selection.

For custom inserters in which more instructions are required to express the
action than what the compiler emits as function call overhead, we should move
these to a runtime library. Using library functions addresses the current issue of
identical pseudo instruction expansions being repeated multiple times through-
out code. Furthermore, given that these runtime functions will be often called
the addresses of these functions may be kept in registers. The expected effect
of this is a slight performance decrease given the call overhead but a significant
reduction in code size.

5.4 Toolchain

By leveraging the LLVM compiler infrastructure, a number of different tools
have been integrated with support for the Leros instruction set. Clang is used
as the C frontend of choice, as well as being a compiler driver for the remain-
der of the toolchain. LLVMs lld linker has been modified with support for
the Leros relocation symbols, and shall be used in place of system linkers like
gold. Furthermore, LLVM provides a slew of binary utilities akin to the GNU
Binutils collection of applications such as llvm-dis, the LLVM disassembler,
llvm-readelf, the LLVM ELF reader with support for Leros relocation flags,
llvm-objcopy, llvm-objdump and others.

For simpler simulators as well as executing Leros code on hardware the
llvm-objdump tool may be used to extract the .text and .data segment of the

int test(int A, int B, int C)

test.c

test.c;0;5;1;2;4;1;2;8;2

test(0,2,2) test(0,2,4) test(0,2,6) test(0,3,2) 
test(0,3,4) test(0,3,6) test(1,2,2) test(1,2,4) 
test(1,2,6) test(1,3,2) test(1,3,4) test(1,3,6)
test(2,2,2) test(2,2,4) test(2,2,6) test(2,3,2) 
test(2,3,4) test(2,3,6) test(3,2,2) test(3,2,4)
test(3,2,6) test(3,3,2) test(3,3,4) test(3,3,6)
test(4,2,2) test(4,2,4) test(4,2,6) test(4,3,2)
test(4,3,4) test(4,3,6)

Test specification Test vector

host
exec.

leros-sim

=

Fig. 2. The test suit compiles and executes the test specification (source file and input
ranges) for all combinations of the input ranges on the host- and target systems, with
host results serving as golden references.
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compiled program, yielding a flat binary which may be executed from address
0X0, removing the need for a simulater reading ELF files or some hardware to
interpret ELF files.

6 Evaluation

6.1 Automated Test Suite

While LLVM contains many fuzzing tools used for verifying that a backend can
select all instructions of the LLVM IR, it cannot check the semantics of the
produced code. We developed an automated test suite to check the semantics of
the generated code. The test suite compiles the programs with a host compiler
and with our compiler for Leros and executes them on the host and in the Leros
simulator. The test compares then the outputs of the two runs.

The test suite is a Python script which given a test specification file may
control the host and Leros compilers as seen in Fig. 2. Each line in the test
specification file contains a reference to a test file as well as a range and step
for all input arguments. The test source file is compiled for the host system
as well as using the Leros compiler, whereafter the program is executed using
the set of all combinations of arguments. All test programs return a value. The
test suit compares the test return value of the host and simulator execution.
The test suite has proved a valuable asset in identifying issues and verifying the
correctness of instruction expansion and optimization passes. Furthermore, it
functions as a regression test suite allowing for fewer errors to propagate to the
source repositories.

6.2 Leros ISA Performance

To validate the compiler as well as generate indicators of the efficacy of the
ISA, we use the CoreMark benchmark [4]. CoreMark is a synthetic benchmark
designed for embedded systems which aims to be an industry standard bench-
mark for embedded systems, replacing the older DhryStone benchmark [20].

Figure 3 shows the Leros CoreMark score and ELF .text section size for
various optimization levels.

The CoreMark scores generated from the Leros simulator assumes a memory
access time of 1 cycle and an IPC of 1. The Leros CoreMark score is comparable
to other low-end embedded devices, such as the STMicroelectronics STM32L053
[5]. This device is based on the Arm Cortex-M0+ architecture and manages a
score of 39.91 at a clock frequency of 16 MHz.

In Fig. 3 we can see a significant code size difference between Leros and
the RISC-V compilation. We can find several factors for this overhead. An
accumulator-based instruction set as Leros will usually require more instruc-
tions to execute an action than a 3-operand instruction set (such as RISC-V).
A single RISC instruction may need up to three instructions (load, op, store)
in an accumulator machine.
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4,5 5

Fig. 3. Leros CoreMark results

The custom inserters used by Leros incurs an overhead through the require-
ment to emit many instructions, in place of what a single instruction in RISC-V
can express, e.g., arbitrary shifts and sign-extended loads.

In general, code size will correlate to the efficacy of the instruction set. For
CISC instruction sets code size will be smaller compared to the semantically
equivalent code produced for a RISC instruction set. The same pattern shows
for Leros in comparison to RISC-V, wherein Leros is arguably more RISC than
RISC-V.

Comparing −O14,5 to −O15, the accumulator optimization passes manage
a code size reduction of 12.75%. Comparing −O15 to −O1, the introduction
of constant registers shows a further decrease of 10.82%. These are significant
reductions in code size. We expect to decrease further when we implement more
accumulator optimizations and build a runtime library for the custom inserters.

The successful compilation and execution of the CoreMark benchmark show
that the Leros ISA is a valid C target.

6.3 Leros in Teaching

The simplicity of Leros makes it a good candidate for teaching an introductory
class in computer architecture. The description of the Leros ISA fits in less than
one page in this paper format, see Table 1. Therefore, one can quickly memorize
the ISA. A simple exercise for a lab would be the implementation of a Leros
software simulator and then explore the usage of the instructions from compiled
C programs. In a larger project, for students with hardware design knowledge,
implementing Leros in an FPGA would be a good project, as the infrastructure
(C compiler, assembler, and simulator) are available.
4 No accumulator optimizations
5 No constant registers
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Leros is used in a Chisel textbook [17] as a medium sized project in one of
the last chapters. That chapter contains a detailed description of the hardware
designed in Chisel and simulator and assembler in Scala. Leros serves as an
example of the powerful combination of Chisel and the general purpose language
Scala. E.g., an assembler, written in Scala, is executed as part of the hardware
generation process.

6.4 Source Access

The Leros processor, compiler, and other related repositories are available in
open source at https://github.com/leros-dev.

7 Conclusion

In this paper, we present a minimal instruction set architecture (ISA): the Leros
accumulator machine. The idea behind this ISA is the same as the one for a
RISC instruction set: provide just basic instructions and let the more complex
functions be done by the compiler. Leros takes that step further and defines
an even simpler ISA than a RISC processor, which shall still be a useful target
for C.

That simple ISA leads to the simple implementation of simulators and hard-
ware in an FPGA. We have ported the LLVM compiler to support Leros. Besides
serving as a small embedded processor, the simplicity of Leros makes it also a
good example for an introductory course in computer architecture. Leros also
serves as a running example in a final chapter of a digital design textbook in
Chisel.
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Abstract. Virtual Prototypes are often used for software development
before the actual hardware configuration of the finished product is avail-
able. Today’s platforms often provide different kinds of processors form-
ing a heterogeneous system. For example, ADAS applications require
dedicated realtime processors, parallel accelerators like graphics cards
and general purpose CPUs. This paper presents an approach for cre-
ating a simulation system for a heterogeneous system by using already
available processor models. The approach is intended to be flexible and to
support different kinds of models to fulfill the requirements of a hetero-
geneous system. Simulators should easily be exchangeable by simulators
with the same architecture support. It was possible to identify the Sys-
temC connection of the considered general purpose CPU models as a
bottleneck for the simulation speed. The connection to the realtime core
suffers from a necessary connection via the network which is evaluated
in more detail. Combining the GPU emulator with the rest of the sys-
tem reduces the simulation speed of the CUDA kernels in a negligible
manner.

1 Introduction

The degree of automation in vehicles rises every year. There are already many
different Advanced Driver Assistance Systems (ADAS) that help the driver and
are even capable of taking full control of the car [7,8]. Providing the necessary
performance and still allowing the safety-critical parts to get certified requires
heterogeneous systems. These kinds of systems are already established in the
realm of ADAS. They include general purpose processors, many core acceler-
ators, and real-time processors. The Nvidia Drive PX 2 is an example for a
development board of a system that contains AArch64 compatible ARM cores,
Nvidia Pascal GPUs, and an Infineon AURIX [16]. Audi proposes another plat-
form called zFAS containing multi-core processors, reconfigurable hardware and
specialized DSPs [2].

During the software development of new ADAS systems, the final hardware
setup is usually not yet determined. Depending on the real-time requirements,
kind of algorithm and necessary computing power, different characteristics of the
final processing system have to be satisfied. For that reason, choosing the correct
components and writing the software should be done cooperatively. This can be
c© Springer Nature Switzerland AG 2019
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achieved by using virtual prototypes of the hardware that offer different levels of
abstraction [11]. While very abstract emulation reaches high execution speeds, it
suffers in accuracy of predicting the nonfunctional properties like required energy
and runtime behavior. On the other hand, a very detailed simulation of the het-
erogeneous system might reach nearly real world values for the predicted values
but is too slow for greater workloads as they might occur in ADAS algorithms.

Since a heterogeneous system contains multiple different kinds of processors
(e.g. CPUs, GPUs, specialized ASICs, etc.), a virtual platform is required that
also provides models for all of these components including their interconnections.
A lot of processor simulators are available separately but can be connected to
a SystemC runtime, a framework for implementing discrete simulations [10].
This allows the usage of already available models within virtual prototypes of
heterogeneous systems.

The goal of this paper is to show how to combine multiple unrelated simu-
lation models with the help of their SystemC bindings to create a mere func-
tional simulation of a heterogeneous system as it might be used in current or
future vehicles. Especially models that can be extended by means of determin-
ing nonfunctional properties are taken into account. However, their ability is not
used yet. Another aim is to stay generic in a way that allows the inclusion and
interchangeability of arbitrary SystemC compatible simulation models into the
heterogeneous virtual platform and to avoid changes within the taken models.
Hence, the approach was implemented with gem5 [3], OVP from Imperas, and
the ARM Fast Models to simulate general purpose CPUs, GPU Ocelot [6] and
GPGPU-Sim [1] to provide support for a CUDA-compatible accelerator core,
and the AURIX model from Infineon to offer a realtime processor. After pre-
senting the connection approaches, the simulation runtime performance impacts
are identified and evaluated.

2 Related Work

Heterogeneous simulators are no new invention. Coupling virtual prototypes of
general purpose processors with GPU emulation tools has been done before. A
prominent example is gem5-gpu which also uses GPGPU-Sim and connects it
to gem5 [13]. Power et al. created patches that modify the source code of the
two simulators to allow the integration. They also took care about modeling
the memory system including cache coherency protocols. Software can be run
on the simulated GPU by using a wrapper for the CUDA runtime library. This
enables the usage of available CUDA code but requires the binary to be linked
to the wrapper before it can be deployed on gem5-gpu. In this paper a similar
approach is presented that implements the coupling in a more generic way by
offering memory mapped input and output registers. This allows not only gem5
to be used as a simulator for the general purpose CPU but also OVP and the
ARM Fast Models. Still, a small software wrapper for the applications is required
to exploit the simulated GPU.
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A direct integration of a GPU simulation into gem5 was done by AMD. They
added an accelerator model that is compatible to the GCN version 3 instruc-
tion set architecture and achieved an average absolute error of 42% [9]. Major
difference to gem5-gpu and this paper is the supported runtime environment.
AMD’s approach is available to all languages supported by their HCC compiler
including OpenCL, C++AMP, etc. while only CUDA and OpenCL is supported
by GPGPU-Sim.

Further works include FusionSim (formerly on www.fusionsim.ca but not
available anymore) and Multi2Sim [17] which both don’t support SystemC cou-
pling out of the box. Thus, they were not in line for connecting the real-time
processor since that would have meant changes within the provided models. To
the authors’ knowledge, there is no generic coupling of processor models and
many core accelerator models to realtime processor simulators available yet.

3 Virtual Prototype for Heterogeneous Systems

The proposed virtual prototype for heterogeneous systems uses the TLM library
of SystemC for loosely timed simulations as its core because most available sim-
ulation models allow coupling with it. Figure 1 shows an overview of the system
that was created for this paper. An arrow denotes a possible connection between
an initiator socket (beginning of the arrow) and a target socket (end of the
arrow). The prototype includes components often found on today’s embedded
ADAS platforms like general purpose CPUs, parallel accelerators and a depend-
able realtime CPU which is certified according to ISO 26262. There are already
simulator models for these processors available. However, the connection to the
realtime CPU and the linkage to the CUDA accelerators was newly created for
this paper. Additionally, the central router which is the only strictly required
part of the prototype and the peripherals had to be supplied. Excluding the bus,
all models can freely be replaced or omitted allowing a generic adaption to the
needs of the developed application. However, connecting the native simulators
comes with an impact that is analyzed in Sect. 4.

3.1 General Purpose CPU

Most heterogeneous systems still contain a powerful general purpose CPU. Since
the target application is an embedded system as it might be deployed in an ADAS
application, the choice was to use the AArch64 instruction set architecture as
a reference. Hence, it is sensible to consider the ARM Fast Models as an ARM
instruction set simulator which allow a high simulation speed. Like the other
processor models, it offers SystemC bindings and can easily be connected to
the bus system. For this paper it was used in combination with the support
libraries provided by Synopsys. Open Virtual Platforms (OVP) which is offered
by Imperas is similar to the ARM Fast Models but also support many differ-
ent instruction set architectures. It has already been used in research and was
extended by runtime and power estimation functionality [5,15].

www.fusionsim.ca
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Fig. 1. The heterogeneous virtual prototype. General purpose CPUs can be provided
by OVP, gem5 and the ARM Fast Models, the CUDA accelerator is implemented by
GPU Ocelot or GPGPU-Sim. The real-time CPU is supplied by the Infineon AURIX
model. Only the central bus is required.

Another simulation framework that was investigated for this paper is gem5
which supports different instruction set architectures and also offers multiple
architecture backends. Available backends are the TimingSimple model imple-
menting a single cycle CPU with the possibility to add a fine grained memory
hierarchy. Additionally, the O3 model offers an out-of-order processor pipeline
simulation which requires simulated caches to work correctly. In comparison to
the previous two simulators, gem5 is much slower since it does not provide just-
in-time compilation of the guest code. However, due to the detailed architecture
description, a better runtime prediction can be achieved when using the detailed
backends. The SystemC connection was established by Menard et al. who added
a new slave type to gem5 allowing to interface with custom TLM targets [12].
Since the goal of this paper is to provide a heterogeneous virtual platform for
functional emulation, the TimingSimple backend of gem5 was used. It allows
adding a custom memory hierarchy but avoids an in-depth simulation of the
microarchitecture. The generic approach presented in this paper allows all of
these three general purpose CPU simulators to be chosen and integrated into
the prototype. They can act as initiators of a TLM connection which makes
it possible to directly connect them to the central bus system without further
modifications.

3.2 GPU

Alongside the general purpose CPUs, an approach for emulating CUDA com-
patible accelerator cores was also accomplished. Parallel processors of this kind
are very important for supporting computer vision applications like required for
pedestrian or traffic sign recognition. There are two GPU simulators available
that provide a CUDA runtime library to intercept the API calls and forward
it to the backend. One of them is GPU Ocelot which implements a dynamic
translation framework for translating PTX code into native machine code of the
host CPU using LLVM [6]. To the authors’ knowledge, it is not developed any
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more. GPGPU-Sim, on the other hand, is a simulator for CUDA or OpenCL
compatible GPUs which is still actively extended1 [1].

The connection of the GPU simulators to the virtual prototype that had to
be implemented for this paper was done by providing memory mapped input
and output registers. They can be used to set the parameters of CUDA runtime
functions and eventually to also call the function itself. Internally, arguments
representing virtual addresses of the main memory are translated into global
pointers of the SystemC instance which enable direct access to the underlying
memory buffers. This is accomplished with the help of TLM’s direct memory
interface (DMI) that is used to request pointers from the central bus (compare
the arrow from the CUDA accelerator back into the bus in Fig. 1). Delivering a
pointer also requires the RAM implementation to support the DMI. Finally, the
processed parameters are forwarded to the global CUDA runtime function avail-
able in the simulator. Depending on the library, the simulation binary is linked
to, the functions of GPU Ocelot or GPGPU-Sim are used. It is even possible
to use the real graphics card of a system by taking the standard CUDA run-
time library deployed by Nvidia. This allows a Hardware-In-The-Loop approach
which might be helpful for evaluation tasks with a fixed GPU architecture.

Another approach to integrate a GPU simulator implementing a runtime API
into processor simulators is realized by gem5-gpu and the GCN3 implementation
of AMD which use the Syscall Emulation (SE) facilities of gem5 [9,13]. How-
ever, this requires strongly simulator dependent code which should be avoided
for the generic virtual prototype. OVP also supports adding additional syscalls
by using the intercept library that allows the definition of callbacks when the
requested syscalls are executed. But this method is not portable between differ-
ent simulators and contradicts to the stated aim of this paper to offer a generic
virtual prototype with exchangeable processor cores. Hence, this mode was not
considered for the proposed platform.

3.3 Realtime Processor

The automotive industry always had a requirement for reliable and deterministic
processor cores. As a result, specialized CPUs were created that offer distinct
features like lockstep execution and the possibility to get accurate runtime pre-
dictions. Examples include the ARM Cortex-R and the Infineon TriCore families
offering ISO 26262 compliance. Latter can be simulated by a so-called c-model
that offers simulation models of an AURIX System-On-Chip. It contains multi-
ple TriCores, common accelerators and bus transceivers for protocols often found
in vehicles like CAN and FlexRay.

Due to platform restrictions of the involved models and their supported oper-
ating systems, it was not possible to run the whole heterogeneous system on the
same machine within the same SystemC runtime environment. For this reason,
a method for distributed SystemC simulation had to be implemented for this
paper to enable a combined simulation of the realtime processor with the rest of

1 As of February 2019.
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the proposed prototype. It is loosely based on SystemC-Link [18] in the way that
it uses latencies within the modelled design to reduce the experienced latency
of the host network. To realize this connection, two major challenges had to be
managed. First, a synchronization mechanism of simulation time was required to
avoid one simulation instance to run ahead of the other one. Second, a possibility
for data exchange had to established.

Synchronization can be done by periodically sending messages containing
the current simulation time stamp of one SystemC instance to the other one.
At the beginning of the simulation or after the last received foreign time stamp
message, a time equal to the predefined latency can be simulated. If during this
time another time stamp message is received, the simulation will execute with its
maximal speed and no waiting times have to be introduced. This corresponds to
the best case part of Fig. 2 where both simulators run their full speed. However,
if one SystemC instance is faster than the other one, it will find out that the
received time stamps lack far behind. When the difference between the local
and the remote time gets greater than a predetermined threshold, the faster
simulation will be paused until the difference got smaller again. This allows the
both parts to be run with a resulting simulation speed, in terms of simulated
seconds, of the slower participating simulation. If no further foreign time stamp
message was received during the latency time, the simulation also has to be
paused until new information about the other part arrived. This can be seen
as the worst case part of Fig. 2 where the execution of both SystemC instances
cannot resume until the new message is received.

Data exchange is accomplished by directly sending messages containing a
write or a read request. While the initiating process is waiting for a response,
the simulation time can proceed until the simulated round-trip time is reached.
If there is still enough local work available, the speed of the virtual prototype
will not be diminished. In case, the read data is mandatory for continuing the
local simulation, the SystemC instance has to be paused until the response was
received. This is depicted in Fig. 2 at the right-hand side.

real time
SystemC

Simulation
SystemC

Simulation
SystemC

Simulation
SystemC

Simulation

Best Case Worst Case

SystemC
Simulation

SystemC
Simulation

Synchronization Read/Write Access

Fig. 2. Best and worst case of the presented approach for time synchronization and
a data exchange example between two SystemC instances. Gray boxes are show when
the simulation on the machine progresses. The arrows depict messages.
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3.4 Peripherals

Components like memory are often provided by frameworks like OVP and gem5.
However, accessing the data is only possible from within these simulators which
makes usage from the outside difficult. As a consequence, the necessary memory
and the input and output devices had to be implemented as reusable SystemC
modules. This allows access of the GPU and realtime CPU models with their
specific requirements like the need to directly access the data using pointers.
After the creation of the virtual prototype, an evaluation of possible bottlenecks
was done. The following Section gives an insight into the hindrances of the given
approach.

4 Evaluation

All of the presented simulation models are already available as standalone ver-
sions. However, connecting them to a SystemC runtime causes speed impacts
by making certain optimization methods like just-in-time compilation difficult
or even impossible. Figure 3 shows the data paths that are analyzed in this
Section. Section 4.1 covers the overhead introduced by using the SystemC con-
nectors of the mentioned general purpose CPU simulators. This corresponds to
data path (1) within the Figure. (2) belongs to the overhead of the newly written
CUDA connector module and the data exchange between the CUDA runtime
library and a test memory which is measured in Sect. 4.2. Data path (3) of the
module created for the distributed SystemC simulation is evaluated in Sect. 4.3.
Its messages are exchanged with another SystemC instance which can be located
on the same computer or on another computer.

Fig. 3. The analyzed impacts. Each arrow represents one of the three analyzed data
paths. The white, purple, and gray boxes are modules that were implemented for this
paper. (Color figure online)

4.1 General Purpose CPU

To evaluate the impact of modeling the bus and memory system with the means
of SystemC instead of the native possibilities of gem5 and OVP, two virtual
prototype designs were created for each model. For gem5, the first design includes
the SimpleMemory module as main memory. The second one uses the presented
bus and memory system for heterogeneous simulation. Similar to this, the first
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design of OVP uses its native main memory while the second variant uses the
presented memory layout. The ARM Fast Models use the SystemC Modeling
Library, which is developed by Synopsys and compatible to TLM 2, to connect
to the memory. Since there is no native way to provide a memory implementation,
the SystemC overhead could not be analyzed in an isolated way.

As reference benchmarks CoreMark2, an implementation of the Ackermann
function, a Monte Carlo algorithm for calculating Pi, and the Sieve of Eratos-
thenes were used. These programs are expected to represent different kinds of
real world problems that could be run on a general purpose processor. Table 1
shows the slowdown experienced for each benchmark from the native use of
peripherals in comparison to the SystemC versions.

Table 1. The overhead introduced by coupling the simulators with SystemC. A value
of one means no overhead while a value of two means that twice the time is required.

CoreMark Ackermann Monte Carlo Sieve

gem5 2.7 3.0 3.1 3.1

OVP 798 377 284 1291

Gem5’s slowdown ranges from 2.7 to 3.1 which means that the time required
to run one of the programs with SystemC is approximately three times as long as
the native implementation. An investigation about the cause of this slowdown
using the SystemC version showed that around 43.8% of the simulation time
was spent in the runtime and peripheral code. Additionally, marshalling and
unmarshalling packages from gem5 to and from TLM takes some time. This in
combination with memory allocations and memory copy operations is account-
able for another 19.3% of the time. Only 32.7% of the time is actually used for
simulating the processor. The remaining 4.2% are spent in various C or C++
runtime functions.

OVP suffers a much larger slowdown due to lost optimization potentials when
using the SystemC coupling for the main memory. The code morphing (OVP’s
name for Just-In-Time compilation) cannot deliver enough speedup any more
because OVP cannot assume that the instructions stay the same. Thus, it has to
fetch them every time anew always suffering a round-trip time to the SystemC
memory implementation and back. In total, 85% of the simulation time is spent
in the SystemC part of the virtual platform.

As shown in this Section, the simulation performance of the general purpose
simulators is tremendously diminished when the SystemC binding is used. This
is caused by the overhead introduced by converting the data requests from the
internal representation to a TLM compatible one. Additionally, no features of
TLM are used which would allow a speedup again. For example, the DMI can be

2 https://www.eembc.org/coremark (accessed on 2018-12-04).

https://www.eembc.org/coremark
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used to obtain a pointer into the memory which avoids a lot of overhead which
was measured in this Section. Hence, some optimizations should be implemented
to increase simulation speed.

4.2 GPU

The SystemC module for linking against GPU Ocelot and GPGPU-Sim does
not introduce relevant overhead. This was evaluated by measuring the time of
the CUDA simulations once without the SystemC connection as the libraries
are intended to be used and once with a CPU model and the SystemC con-
nection in place. To get only the impact on the accelerator code without inter-
ference from the required host code, the CUDA runtime library source code
was modified to cumulate the time used within the CUDA runtime functions.
Multiple different algorithms were run to even out software specific anomalies.
The benchmarking applications include a vector addition (vecAdd) which was
done for a vector containing one million elements, ten matrix multiplications
(matrixMult) of 320 × 320 and 320 × 640 matrices, 128 iterations of the Black
Scholes algorithm [4] with a problem size of 5000, and a sobel algorithm which
is sometimes used as a component of an ADAS application, e.g. in lane detec-
tion algorithms [14]. From a set of at least ten measurements always the fastest
results were used and the overhead determined. It is shown in Table 2 for all four
algorithms. The Host Runtime corresponds to the time measured without any
SystemC involvement while the simulation runtime (Sim. Runtime) corresponds
to the time measured with the CUDA library connected to the virtual prototype.

Table 2. Overhead introduced by the SystemC connection module in comparison to
native usage of the CUDA simulation libraries for different benchmark algorithms.

vecAdd matrixMult Black Scholes Sobel

Overhead 3.7% 0.5% 1.3% 2.0%

Host Runtime 6.6 s 587.6 s 13.3 s 23.4 s

Sim. Runtime 6.8 s 590.7 s 13.5 s 23.9 s

As can be seen from Table 2 the overhead is relatively small and stays below
4% for all investigated benchmarks. Especially long running algorithms like the
matrix multiplication are hardly affected by the SystemC module. Short running
ones like the vector addition display a bigger overhead which is still small in
comparison to the overhead introduced to the general purpose CPU models for
example. The source of the overhead lies within the SystemC connector that has
to copy the operands from the virtual prototype to the CUDA runtime library
and is responsible for performing the address translations. Since the remaining
work which contains the work-intensive tasks like the kernel code is executed
separately from the virtual prototype, the impact is kept low. Hence, the longer
a kernel runs the less overhead is experienced.
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4.3 Realtime Processor

Since the AURIX model uses a network connection to connect to the rest of the
simulation, the impacts of this code on the system was investigated. To determine
the overhead introduced by the proposed approach, synthetic benchmarks were
created. They consist of a worker thread that has to be dispatched once each
simulated nanosecond meaning a frequency of 1 GHz. It was run first without
any networking code to obtain a reference runtime that can be compared. Each
measurement was done at least ten times and the average of all runs was taken
to minimize the impacts from the host operating system on the results.

At first, only the overhead introduced by the periodic synchronization events
was determined. For this, different times between sending the synchronization
messages were considered. A period interval of one nanosecond means that the
worker thread and the synchronization thread are run alternately. A period inter-
val of two nanoseconds means that for two runs of the worker thread body, one
run of the synchronization thread occurs. Figure 4 shows the relative runtime
the synchronization messages introduce on the worker thread. A value of zero
represents no overhead while a value of one implies a runtime that takes twice
as long as the local reference. The measurements were done with two different
computers connected via an Ethernet switch and locally on one host by using
the loopback device. Additionally, the standard deviation for the measurements
was calculated.

Fig. 4. The relative runtime and its standard deviation with the synchronization mes-
sages enabled in comparison to the local reference time once done over network and
once using the local loopback device.
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As can be seen, a period interval of 1000 ns reduces the overhead to 20–25%.
This means that having an interval length that is 1000 times longer than the
default clock rate of the system should reduce the impact from more than 300% in
case every nanosecond a message is sent to only 20–25%. A similar shape can be
seen in Fig. 5 which shows the overhead depending on the allowed simulation time
discrepancy between the two SystemC instances. The period was fixed to 1000 ns
to reduce the overhead introduced by the periodic sending operation. With an
allowed discrepancy of about 8000 ns, the measurable overhead is nearly the
same as with only sending the synchronization messages: A little bit above 25%.
This should be the time of the best case presented in Fig. 2. It is noticeable that
the major impact on the overhead introduced by the synchronization mechanism
is depending on the selected period (1000 ns) since the overhead gets reduced
at steps of 1000 ns of allowed discrepancy. This is due to the fact that each
instance waits for the synchronization message while it is not sent yet. It can
be concluded that the allowed discrepancy should be approximately eight times
the period time to reduce the overhead.

Fig. 5. The relative runtime and its standard deviation with depending on the allowed
simulation time discrepancy in comparison to the local reference time once done over
network and once using the local loopback device.

Finally, the overhead when sending TLM packages via the network was anal-
ysed. The period was fixed to 1000 ns and the discrepancy to 8000 ns. Since the
overhead introduced is directly depending on the SystemC design and a generic
result cannot be given, the indirect overhead of another TLM data exchange
on the synthetic worker was measured. Thus, another thread was introduced
that sends as much data as the latency allows. Figure 6 shows that the complete
overhead via network is around 50% even for the smallest and greatest evalu-
ated latencies. As a consequence, no real advice can be given regarding the best
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suitable latency. The best case would be if the latencies between the remote
and the local simulator instances can be set equal to the latencies of the real
hardware. When using the loopback device, the overall overhead can be reduced
to approximately 30%. However, this cannot be done for the presented virtual
prototype due to the requirement of different host computers.

Fig. 6. The overhead and its standard deviation introduced by another thread sending
TLM messages using the presented network approach. This was once done via network
and once via the loopback device.

5 Future Work

From the analysis, the speed can be identified as a major issue in regard to the
usability of the system. While evaluation of small workloads on the heteroge-
neous system can be feasible, larger sensor processing algorithms (e.g. working
on camera pictures) will take too long for a functional run on the simulated plat-
form. Hence, certain optimization steps from within the involved processor mod-
els should be implemented. One simple improvement can be the usage of DMI
as already stated above. Additionally, assertions should be given to allow the
complete exploitation of Just-In-Time techniques. For example, direct changes
of the underlying SystemC memory that may also contain instructions should be
forbidden. Callback functions may then be used to invalidate the memory (like
done for the DMI) if it is changed.

From the findings of this paper, other connection approaches without uncon-
ditional compatibility might also achieve higher speeds. Since the isolated way
of execution of the CUDA simulation achieves the best speed, it seems benefi-
cial to also isolate the general purpose CPUs. However, this comes with its own



140 S. Rachuj et al.

additional challenges like how to realize direct pointers into the host memory
which are required by the GPU emulation.

Further improvements can be expected by using models or enabling features
in the selected models that determine the runtime and power behavior of the
real hardware when the simulated software is run on it. While this is supported
by gem5 and GPGPU-Sim to a certain degree, there are still deviations from
the reference hardware. Additionally, the whole bus system has to be modelled
accurately which is difficult without further insight into today’s ADAS platforms.
These enhancements could lead to a virtual prototype allowing a very detailed
evaluation of a heterogeneous system as it might be required for certification.

6 Conclusion

In this paper, an approach for functionally simulating a heterogeneous system
using already available processor models was shown. SystemC was used as a
common communication language and additional modules for connecting the
CUDA GPU simulator, and a remote connection to realtime processors were
created. In comparison to standalone simulation, severe performance penalties
were noticed. As bottlenecks, no longer functioning performance optimizations of
the general purpose CPU emulators were identified slowing down the simulation
by a factor between 2.7 (best case with gem5) up to a factor of 1291 (worst case
with OVP). Additionally, the overhead introduced by the remote connection used
to communicate with the realtime processor was analyzed. It could be shown that
it stays below 65% for the synthetic benchmarks. For the GPU binding, a very
small simulation runtime impact could be observed that stayed below 4% for the
observed benchmark applications.
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Abstract. Heterogeneous parallel architectures present many chal-
lenges to application developers. One of the most important ones is the
decision where to execute a specific task. As today’s systems are often
dynamic in nature, this cannot be solved at design time. A solution is
offered by runtime systems that employ dynamic scheduling algorithms.
Still, the question which algorithm to use remains.

In this paper, we evaluate several dynamic scheduling algorithms on a
real system using different benchmarks. To be able to use the algorithms
on a real system, we integrate them into a task-based runtime system.
The evaluation covers different heuristic classes: In immediate mode,
tasks are scheduled in the order they arrive in the system, whereas in
batch mode, all ready-to-execute tasks are considered during the schedul-
ing decision. The results show that the Minimum Completion Time and
the Min-Min heuristics achieve the overall best makespans. However,
if additionally scheduling fairness has to be considered as optimization
goal, the Sufferage algorithm seems to be the algorithm of choice.

Keywords: Dynamic task scheduling · Heterogeneous architectures

1 Motivation

Today’s computer systems are highly parallel and possess additional accelerators.
Such complex heterogeneous architectures present many challenges to applica-
tion developers. One of the most important questions developers are faced with
is on which processing unit the execution of tasks of an application is most effi-
cient, which may refer to best performance, lowest energy consumption or any
other optimization goal. As many systems are dynamic in nature, meaning that
they do not always execute the same tasks, and tasks start at unknown points
in time, e.g., triggered by signals or user interactions, a static partitioning at
design time is not able to optimize the system for all scenarios. To solve this
problem, dynamic runtime systems may be employed, which abstract from the
underlying system. The application developer simply defines his or her compute
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M. Schoeberl et al. (Eds.): ARCS 2019, LNCS 11479, pp. 142–155, 2019.
https://doi.org/10.1007/978-3-030-18656-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18656-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-18656-2_11


Evaluating Dynamic Task Scheduling 143

kernels representing specific functionality and is then allowed to either provide
implementation variants himself or use implementation variants provided by e.g.
a library. As dynamic runtime systems also take control of the execution, they
can decide at runtime which implementation processing unit pair to use. To
make such decisions, dynamic scheduling algorithms are needed. In the litera-
ture, a variety of different dynamic algorithms are described. Considering the
fact that modern systems are used in a wide range of different scenarios and
fields of application, the question remains which algorithm should be used in
which scenario and which field of application. Therefore, the goal of this work is
to study dynamic scheduling algorithms in several scenarios designed for hetero-
geneous parallel systems with an additional focus on characteristics of embedded
systems, and thereby providing usage guidelines.

Hence, in this work, we evaluate selected dynamic scheduling algorithms
in real-world scenarios. We utilize the Embedded Multicore Building Blocks
(EMB2), an open source runtime system and library developed by Siemens,
which has been specifically designed for embedded applications, to operate the
algorithms on a real system. In particular, we make the following contributions:

– We select six dynamic scheduling heuristics that we think are appropriate for
the considered field of application.

– We extend the existing scheduling approach in EMB2 with more sophisticated
ones for heterogeneous systems.

– We evaluate these algorithms on a real system using a GPU as accelerator
and investigate their behavior in terms of different metrics.

– We give guidelines which algorithms to choose.

The remainder of this paper is structured as follows: In Sect. 2, we briefly intro-
duce the fundamentals of our work. The scheduling algorithms, EMB2 and the
extensions to EMB2 are presented in Sect. 3. Section 4 describes the experimen-
tal setup and presents the results. Finally, we discuss related work (Sect. 5) and
conclude with directions for future work (Sect. 6).

2 Fundamentals

2.1 Problem Statement and Task Scheduling

In the basic scheduling problem, a set of n tasks T := {t1, . . . , tn} has to be
assigned to a set of m resources P := {p1, . . . , pm}. Next to mapping a task ti to
a resource pj , scheduling also includes the assignment of an ordering and time
slices.

Scheduling problems are generally considered to be NP-hard [10]. As there is
no algorithm that can solve all scheduling problems efficiently, there exist many
different heuristics. These can be classified into static and dynamic algorithms.
The main difference is that static algorithms make all decisions before a single
task is executed, whereas dynamic algorithms schedule tasks at runtime. Hence,
static algorithms have to know all relevant task information beforehand, while
dynamic ones do not need full information and are able to adapt their behavior.
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2.2 Optimality Criterion

The standard optimization criterion is the makespan, which is the time an appli-
cation or a set of tasks spends in a system from start to finish. If several appli-
cations are scheduled simultaneously, only considering the makespan can lead
to stalling one application in favor of the others. Therefore, it is sensible to also
evaluate the algorithms regarding fairness.

A criterion that better reflects scheduling decisions for single tasks is the
flow time Fi, which is defined as Fi = Ci − ri, where Ci is the completion time
and ri the release time of a task ti. Generally speaking, Fi is the time ti spends
within the system. So, the flow time is able to reflect how long a task is in the
system before being executed and combines this with its execution time. As the
two objectives efficiency and fairness are fundamentally at odds, Bansal et al. [2]
suggest minimizing the lp-norm of the flow time ‖F‖lp for small values of p.
‖F‖lp is defined as follows:

‖F‖lp =

(∑
i

F p
i

) 1
p

, (1)

where p is a value chosen by the user.

3 Dynamic Scheduling Algorithms

This section presents the algorithms and the extensions to EMB2. We selected
these algorithms on the basis of their runtime overhead, scheduling decisions
have to be made as fast as possible in dynamic systems, their implementation
complexity, and their ability to work with limited knowledge about the set of
tasks to be executed. These heuristics can be classified into immediate and batch
mode. Immediate mode considers tasks in a fixed order, only moving on to the
next task after making a scheduling decision. In contrast, batch mode considers
tasks out-of-order and so delays task scheduling decisions as long as possible,
thereby increasing the pool of potential tasks to choose from.

3.1 Immediate Mode Heuristics

Opportunistic Load Balancing (OLB). [8] estimates the completion time
of the irrevocably scheduled tasks as a measure of load on a processing unit
pj . OLB then assigns a task ti to the processing unit pj that has the earliest
completion time for its already assigned tasks.

Minimum Execution Time (MET). [7] maps a task ti to the processing unit
pj that minimizes its execution time. The heuristic considers a task in isolation,
not taking the actual load of the processing units in account when making a
scheduling decision. Thus, this heuristic can easily lead to load imbalances if for
all or most of the tasks a processing unit dominates.
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Minimum Completion Time (MCT). [1] combines the execution time of a
task ti with the estimated completion time of the already assigned tasks of a
processing unit pj . In total, MCT predicts the completion time of a task ti and
assigns ti to the processing unit pj that minimizes the completion time of ti.

3.2 Batch Mode Heuristics

Min-Min. [11] extends the idea of MCT by considering the complete set of
currently ready-to-execute tasks. The heuristic then assigns the task ti that
has the earliest completion time to the processing unit pj that minimizes the
completion time of ti. In general, the core idea is to schedule shorter tasks first
to encumber the system for as short a time as possible. This can lead to starvation
of larger tasks if steadily new shorter tasks arrive in the system.

Max-Min. [14] is a variant of Min-Min that is based on the observation that
Min-Min often leads to large tasks getting postponed to the end of an execution
cycle, needlessly increasing the total makespan because the remaining tasks are
too coarse-granular to partition equally. So, Max-Min schedules the tasks with
the latest minimum completion time first, leaving small tasks to pad out any
load imbalance in the end. However, this can lead to starvation of small tasks if
steadily new longer tasks arrive.

Sufferage. [14] ranks all ready-to-execute tasks according to their urgency
based on how much time the task stands to lose if it does not get mapped to
its preferred resource. The ranking is given by the difference between the task’s
minimum completion time and the minimum completion time the task would
achieve if the fastest processing unit for this task would not be available. Tasks
that do not have a clear preference for a processing unit are prone to starvation.

3.3 Implementation

We integrated the algorithms into EMB2, a C/C++ library and runtime system
for parallel programming of embedded systems.1 EMB2 builds on MTAPI [9], a
task model that allows several implementation variants for a user-defined task. A
developer defines a specific functionality, e.g., a matrix multiplication, and is then
allowed to provide implementations for this task. MTAPI allows a developer to
start tasks and to synchronize on their completion, where the actual execution
is controlled by the runtime system. Thereby, the user has to guarantee that
only tasks that have their dependencies fulfilled are started. Tasks are executed
concurrently to other tasks that have been started and it is allowed to start new
tasks within a task. The scheduling implementation of the current EMB2 version
distributes the task instances between heterogeneous processing units based on
the number of already scheduled instances of the same task. For homogeneous

1 https://embb.io/.

https://embb.io/
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multicore CPUs, an additional work stealing scheduler [3,15] is used. As of yet,
necessary data transfers for the accelerators are not considered separately. EMB2

is designed and implemented in a modular fashion that allows developers to add
further scheduling policies. However, a few extensions were necessary.

We added a general abstraction for processing units and grouped identical
units in classes to allow a uniform treatment. Every unit is implemented using
an OS-level worker thread. Workers corresponding to CPU cores are pinned to
their respective cores but are assigned a lower priority than device workers.

Scheduling algorithms need task execution times to make sophisticated deci-
sions. These can either be given by the user, an analysis step or predicted at
runtime. In this work, we focus on dynamic systems which means static analyses
are not possible. Therefore, we extended EMB2 by a monitoring component that
measures task execution times and stores them within a history data base with
the problem size as key similar to the mechanism used in [13]. As data transfers
are not yet considered explicitly in EMB2, the execution times on accelerators
include necessary data transfers. The stored data is then used to predict execu-
tion times of upcoming tasks to improve scheduling decisions. If there is already
data stored for a particular task’s implementation version and problem size, the
data can be used directly. If there is data for a task’s implementation version
but with different problem sizes, interpolation is used to predict the execution
time. If there is no data available at all, the runtime system executes a profiling
run of this implementation version.

4 Experiments

To evaluate the scheduling heuristics, we considered a video-processing appli-
cation using EMB2’s dataflow component, three benchmarks of the Rodinia
Benchmark Suite [5], RabbitCT [19], and a benchmark with independent het-
erogeneous jobs. We chose them as they provide different characteristics, have
sufficient problem sizes and thereby running time and possess an easily to par-
allelize kernel. We included benchmarks where the CPU outperforms the GPU,
a benchmark, where the GPU strongly outperforms the CPU, and a benchmark
where the difference between the GPU and CPU implementation is not as big.
The independent heterogeneous jobs benchmark resembles dynamic systems as
the task instances are started sporadically thereby adding a random component
to the starting point of a task instance.

All experiments were executed ten times. For the single application bench-
marks, we focus on the makespan because a user expects this to be optimized for
a single application. We additionally evaluate the average flow time and the lp-
norm (Sect. 2.2) for p = 3 for the independent heterogeneous job benchmark. The
following figures contain the average, the minimum and the maximum makespan
of 10 evaluation runs as errorbars. We omitted the errorbars in the figure for the
independent heterogeneous job benchmark to make it more readable.
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4.1 Experimental Setup

The experiments were performed on a server with two Intel Xeon E5-2650
v4 CPUs a 12 cores each, an NVIDIA Tesla K80, and 128 GB a 2400 MHz
DDR4 SDRAM DIMM (PC4-19200). The software environment includes Ubuntu
16.04.5, the Linux 4.4.0-138-generic kernel, glibc 2.23, and the nvidia-387 driver.
EMB2 was compiled with the GCC 5.4.0 compiler at optimization level-O3. The
scheduling algorithms presented in Sect. 3 operate in the so-called pull mode in
our experiments. In pull mode, the scheduler gets triggered iff at least one pro-
cessing unit is idle. We chose this mode because it allows the scheduler to collect
a set of tasks, which is needed to benefit from the batch mode heuristics.

4.2 Heterogeneous Video-Processing Application

The dataflow component of EMB2 takes an arbitrary task graph describing the
computation of a single data item, and parallelizes the computations over con-
tiguous chunks of a data stream. They get submitted by a window sliding sched-
uler to the actual scheduler through reduction to fork-join parallelism while
maintaining sequential execution of tasks. So, only tasks that are ready to exe-
cute are submitted to the actual scheduler. The application consists of a video-
processing pipeline, performing the following steps:

1. Read and decode the next frame from an H.264-encoded video file. The cor-
responding process in the dataflow network is serial.

2. Convert the frame from the codec-native color space to RGB. This process
is again serial because the conversion accesses a shared libswscale context.
libswscale is a library that performs highly optimized image scaling and
colorspace and pixel format conversion operations.

3. Apply the image transformation in two steps:
(a) Perform a 3 × 3 box blur.
(b) Cartoonify by performing a Sobel operator with a threshold selecting

black pixels for edge regions and discretized RGB values for the inte-
rior. The Sobel operator consists of two convolutions with different 3× 3
kernels followed by the computation of an Euclidean norm.

4. Convert the frame back from RGB to the codec-native color space.

The two image transformation operations have a CPU and GPU implemen-
tation. The cartoonify kernel has an average execution time of 165.97 ms on
the CPU and 3.1 ms on the GPU for the kodim23.png test image by the East-
man Kodak Company. The box blur operation runs on average for 72.8 ms on
the CPU and for 3.4 ms on the GPU. As input, we used a 30 s long test video
encoded in 854:480 resolution with 30 fps at a bitrate of 2108 kb/s. The results
are shown in Fig. 1. The best results are achieved by MCT, Min-Min, Max-Min,
and Sufferage with MCT having the best results with an average of 10.3 s. OLB
obtains a significantly worse result than the other algorithms with an average
of 29.63 s because OLB does not consider task execution times, but rather just
takes the next free processing unit, which in our implementation always starts
with the CPU cores, and thereby only uses the, in this case slower, CPU.
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Fig. 1. Makespans for 10 runs of the video application benchmark

4.3 Rodinia Benchmark Suite

Hotspot3D iteratively computes the heat distribution of a 3d chip represented
by a grid. In every iteration, a new temperature value depending on the last
value, the surrounding values, and a power value is computed for each element.
We chose this computation as kernel function for a parallelization with EMB2

and parallelized it over the z-axis. The CPU implementation then further splits
its task into smaller CPU specific subtasks. This is done manually and statically
by the programmer to use the underlying parallelism of the multicore CPU and
still have a single original CPU task that handles the same workload as the GPU
task. For the evaluation, we used a 512 × 512 × 8 grid with the start values for
temperature and power included in the benchmark, and 1000 iterations. The
average runtime on the CPU is 5.03 ms and 7.36 ms on the GPU.

Figure 2 shows the results of the Hotspot3D benchmark. Min-Min, OLB,
MCT, Max-Min, and Sufferage all have an average of around 17 s with Min-Min
having the lowest average of 16.94 ms by a very small margin compared to the
group’s highest average of 17.53 s by Max-Min. In this case, OLB benefits from
the fact that it first distributes the load to the CPU. MET obtained the worst
result because it does not consider the load of the processing units and just
schedules all tasks to the fastest processing unit and so to the same CPU core.

Particlefilter is the implementation of a particle filter, a statistical estimator of
the locations of target objects given noisy measurements, included in Rodinia.
Profiling showed that findIndex() is the best candidate for a parallelization.
findIndex() computes the first index in the cumulative distribution function array
with a value greater than or equal to a given value. As findIndex() is called for
every particle, we parallelized the computation by dividing the particles into
work groups. The CPU implementation again further divides those groups into
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subtasks. We used the standard parameters 128 for both matrix dimensions,
100 for the number of frames, and 50000 for the number of particles for the
evaluation. The average task runtime on the CPU is 17.8 ms and 6.5 ms on the
GPU. The results of the Particlefilter benchmark can be seen in Fig. 2. Here, the
EMB2 upstream algorithm got the best result with an average of 15.93 s where
all other algorithms except OLB have an average of around 18 s. These results
indicate that a distribution of tasks between the CPU and the GPU leads to the
best result.

Fig. 2. Makespans for 10 runs of the Rodinia benchmarks

Streamcluster is taken from the PARSEC benchmark suite and solves the
online clustering problem. For a stream of input data points, the algorithm finds a
user given number of clusters. The main kernel of the algorithm pgain() computes
if opening a new cluster reduces the total cost. In every iteration pgain() is called
for each data point, so we parallelized the function by dividing the points into
work groups. Again, the CPU implementation then further divides the work
group into smaller chunks. We do not provide execution times as Streamcluster
iteratively reduces the number of points considered, thereby varying in execution
time. The results for the Streamcluster benchmark, see Fig. 2, show that all
algorithms except OLB and the EMB2 upstream version achieved an average
makespan of around 80 s with Max-Min getting the best average by a small
margin with 80.28 s compared to the second best average of 80.39 s by MCT and
the group’s worst average of 81.07 s by MET.

4.4 RabbitCT

RabbitCT is a 3D cone beam reconstruction benchmark framework that
focuses on the backprojection step. It was created to fairly compare different
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backprojection algorithms. In backprojection, each voxel is projected onto the
projection data, then the data is interpolated and finally, the voxel value is
updated. As this means that in every iteration the algorithm iterates over a 3D
array, we parallelized the algorithm with EMB2 by partitioning the volume by
the z-axis. The CPU implementation then further partitions these chunks. We
measured an average task runtime of 45.9 ms for the CPU and 97.7 ms for the
GPU. RabbitCT provides an input data set which we used with a problem size
of 512.

Fig. 3. Makespans for 10 runs of the RabbitCT benchmark

Figure 3 contains the results for the RabbitCT benchmark. We excluded MET
as it was significantly worse then the other algorithms with an average of 400.17 s,
thereby hiding details in the figure. MCT and Min-Min achieved the best results
with MCT achieving an average makespan of 80.56 s and Min-Min achieving a
slightly better average makespan of 80 s.

4.5 Independent Heterogeneous Jobs

Additionally, we evaluated the algorithms in a scenario with independent hetero-
geneous jobs. We chose three video-processing tasks that have both an OpenCL
and a CPU implementation:

– J1 (Mean): A 3 × 3 box blur.
– J2 (Cartoonify): The cartoonify operation introduced in Sect. 4.2.
– J3 (Black-and-White): A simple filter which replaces (R,G,B) values with

their greyscale version (R+G+B
3 , R+G+B

3 , R+G+B
3 ).

All operations were applied to the kodim23.png test image. The three opera-
tions execute for 72.8 ms, 165.97 ms, and 11.4 ms on the CPU and 3.4 ms, 3.1 ms,
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and 3.1 ms on the GPU. We used a sporadic profile to create task instances of
these three jobs. New task instances were released with a minimum interarrival
time of 1

k secs, where k is the parameter to control the load, plus a random delay
drawn from an exponential distribution with parameter λ = k. By varying k,
we can generate a range of different loads. The evaluation workload consists of
3000 tasks corresponding in equal proportions to instances of all three jobs. We
conducted the experiment from k = 500 to 2000 with increments of 500. For this
experiment, we measured the average makespan, the average flowtime and the
l3-norm. The EMB2 upstream algorithm was excluded from the flowtime and
l3-norm measurements. In contrast to the other algorithms, which only schedule
a new task iff at least one processing unit is idle, the EMB2 upstream version
always schedules a task as soon as it arrives in the system. Thereby, the time a
task spends in the system is not really comparable to the other algorithms. The
makespan results are shown in Fig. 4.

Fig. 4. Average makespan for 10 runs of the independent jobs benchmark

Here, Max-Min, Min-Min, MCT, and Sufferage nearly got the same results
with Max-Min achieving the best results. Clearly, the worst results were obtained
by MET. The figure of the average flowtimes (see Fig. 5) also show the best
results for Max-Min, Min-Min, MCT, and Sufferage. However, for greater values
of k there is a distinction between Max-Min and Sufferage, and Min-Min and
MCT with the later two obtaining a worse average flowtime. Figure 6 shows the
results for the l3-norm. We excluded MET from the figure as its results were by
far worse and so important details would get lost. Again, Sufferage and Max-Min
got the best results. but this time for larger values of k Sufferage achieved better
results.
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Fig. 5. Average flowtime for 10 runs of the independent jobs benchmark

Fig. 6. Average l3-norm for 10 runs of the independent jobs benchmark

5 Related Work

Task scheduling is a well-known research field which has lead to many heuris-
tics for dynamic task scheduling. These can generally be classified into list
scheduling heuristics [14,20], clustering heuristics [16], immediate mode heuris-
tics [1,8,15], duplication scheduling heuristics [12] and guided-random-search-
based algorithms including genetic algorithms [17,18], and swarm intelligence
algorithms [6]. List scheduling heuristics sort all ready-to-execute tasks accord-
ing to a priority criterion and then map the tasks to processing units in that
order. In contrast, immediate mode heuristics assign a task to a processing unit
as soon as it arrives. Clustering heuristics assume that communication costs are
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a main factor of the total makespan. They try to minimize communication by
clustering tasks and executing a cluster on a single processing unit. The goal
of duplication scheduling is to reduce communication costs by executing key
tasks on more than one processor, thereby avoiding data transfers. Contrary to
the heuristic-based algorithms, guided-random-search-based algorithms try to
efficiently traverse the search space by sampling a large number of candidates
while also allowing temporary degradation of the solution quality. These algo-
rithms are often only evaluated in simulations making it hard to judge their real
world applicability. There also exist extensive studies that evaluate and com-
pare different scheduling algorithms. Kim et al. [14] evaluate dynamic schedul-
ing heuristics with independent tasks and task priorities. Braun et al. [4] com-
pare eleven static scheduling heuristics that could also be used as batch-mode
heuristics in a dynamic system. However, the heuristics are again evaluated in
simulations only.

6 Conclusion and Future Work

In this work, we evaluated six heuristics. We integrated immediate and batch
mode heuristics to see if it is possible to leverage sophisticated scheduling deci-
sions in real-world scenarios. To evaluate the algorithms on a real system, we
integrated them into EMB2. The added heuristics and the EMB2 upstream ver-
sion were evaluated with six different benchmarks. In particular, we used a video-
processing application, Particlefilter, Streamcluster and Hotspot3D of Rodinia,
RabbitCT, and a benchmark consisting of three image filter jobs. As evaluation
metric, we used the makespan for the application benchmarks. Additionally, we
used the average flowtime and the l3-norm for the independent jobs to measure
fairness.

In five of six makespan-focused benchmarks, MCT and Min-Min achieved the
lowest makespan or are within a 5% margin of the best makespan. The exception
is Particlefilter where the best result is obtained by the EMB2 upstream algo-
rithm with a speed up of 11.6% to Sufferage. MCT and Min-Min still lie within
a 17.9% and a 13.9% margin or a total difference of around 2.5 s. Max-Min and
Sufferage also achieve the best or close to the best results in five out of six bench-
marks but have a bigger outlier with the RabbitCT benchmark. Here, Max-Min
and Sufferage have an makespan increase of around 70% or around 55 s. MET,
OLB and the EMB2 upstream algorithm constantly have worse results than
the aforementioned ones. Considering the flowtime and the l3-norm, Sufferage
achieves the best results for the larger k values and is close to the best result
for the smaller values. MCT and Min-Min both have increasingly worse results
with larger values of k for both the average flowtime and the l3-norm. In the
worst case, the result increases by over 500%. So, in summary iff the focus only
lies on the makespan, MCT or Min-Min seem to be the best choice with MCT
being the significantly simpler algorithm. If fairness is an additional considera-
tion, Sufferage seems to be the best choice. As future work, we want to consider
task priorities, thus enabling soft real-time. The aforementioned starvation issues
can also be improved by adding task priorities.



154 T. Becker et al.

References

1. Armstrong, R., Hensgen, D., Kidd, T.: The relative performance of various map-
ping algorithms is independent of sizable variances in run-time predictions. In:
Proceedings of 1998 Seventh Heterogeneous Computing Workshop, (HCW 98),
pp. 79–87, March 1998. https://doi.org/10.1109/HCW.1998.666547

2. Bansal, N., Pruhs, K.: Server scheduling in the Lp norm: a rising tide lifts all
boat. In: Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of
Computing, STOC 2003, pp. 242–250. ACM, New York (2003). https://doi.org/
10.1145/780542.780580

3. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720–748 (1999)

4. Braun, T.D., et al.: A comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing systems. J. Parallel
Distrib. Comput. 61(6), 810–837 (2001). https://doi.org/10.1006/jpdc.2000.1714

5. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: Pro-
ceedings of the 2009 IEEE International Symposium on Workload Characteriza-
tion (IISWC), IISWC 2009, pp. 44–54. IEEE Computer Society, Washington DC,
(2009). https://doi.org/10.1109/IISWC.2009.5306797

6. Elhady, G.F., Tawfeek, M.A.: A comparative study into swarm intelligence algo-
rithms for dynamic tasks scheduling in cloud computing. In: 2015 IEEE Seventh
International Conference on Intelligent Computing and Information Systems (ICI-
CIS), pp. 362–369, December 2015. https://doi.org/10.1109/IntelCIS.2015.7397246

7. Freund, R.F., et al.: Scheduling resources in multi-user, heterogeneous, comput-
ing environments with SmartNet. In: Proceedings of 1998 Seventh Heterogeneous
Computing Workshop, HCW 1998, pp. 184–199, March 1998. https://doi.org/10.
1109/HCW.1998.666558

8. Freund, R.F., Siegel, H.J.: Guest editor’s introduction: heterogeneous processing.
Computer 26(6), 13–17 (1993). http://dl.acm.org/citation.cfm?id=618981.619916

9. Gleim, U., Levy, M.: MTAPI: parallel programming for embedded multicore sys-
tems (2013). http://multicore-association.org/pdf/MTAPI Overview 2013.pdf

10. Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approximation in
deterministic sequencing and scheduling: a survey. In: Hammer, P., Johnson, E.,
Korte, B. (eds.) Discrete Optimization II, Annals of Discrete Mathematics, vol. 5,
pp. 287–326. Elsevier, Amsterdam (1979)

11. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on
nonidentical processors. J. ACM 24(2), 280–289 (1977). https://doi.org/10.1145/
322003.322011

12. Josphin, A.M., Amalarathinam, D.I.G.: DyDupSA - dynamic task duplication
based scheduling algorithm for multiprocessor system. In: 2017 World Congress
on Computing and Communication Technologies (WCCCT), pp. 271–276, Febru-
ary 2017. https://doi.org/10.1109/WCCCT.2016.72

13. Kicherer, M., Buchty, R., Karl, W.: Cost-aware function migration in heterogeneous
systems. In: Proceedings of the 6th International Conference on High Performance
and Embedded Architectures and Compilers, HiPEAC 2011, pp. 137–145. ACM,
New York (2011). https://doi.org/10.1145/1944862.1944883

https://doi.org/10.1109/HCW.1998.666547
https://doi.org/10.1145/780542.780580
https://doi.org/10.1145/780542.780580
https://doi.org/10.1006/jpdc.2000.1714
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IntelCIS.2015.7397246
https://doi.org/10.1109/HCW.1998.666558
https://doi.org/10.1109/HCW.1998.666558
http://dl.acm.org/citation.cfm?id=618981.619916
http://multicore-association.org/pdf/MTAPI_Overview_2013.pdf
https://doi.org/10.1145/322003.322011
https://doi.org/10.1145/322003.322011
https://doi.org/10.1109/WCCCT.2016.72
https://doi.org/10.1145/1944862.1944883


Evaluating Dynamic Task Scheduling 155

14. Kim, J.K., Shivle, S., Siegel, H.J., Maciejewski, A.A., Braun, T.D., Schneider,
M., Tideman, S., Chitta, R., Dilmaghani, R.B., Joshi, R., Kaul, A., Sharma, A.,
Sripada, S., Vangari, P., Yellampalli, S.S.: Dynamically mapping tasks with pri-
orities and multiple deadlines in a heterogeneous environment. J. Parallel Dis-
trib. Comput. 67(2), 154–169 (2007). https://doi.org/10.1016/j.jpdc.2006.06.005.
http://www.sciencedirect.com/science/article/pii/S0743731506001444

15. Mattheis, S., Schuele, T., Raabe, A., Henties, T., Gleim, U.: Work stealing strate-
gies for parallel stream processing in soft real-time systems. In: Herkersdorf, A.,
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Abstract. Coarse-Grained Reconfigurable Arrays (CGRAs) promise
higher computing power and better energy efficiency than field pro-
grammable gate arrays (FPGAs). Thus, they are attractive not only for
embedded applications, but also for high-performance computing (HPC).
Yet, in such applications floating point (FP) operations are the main
workload. Most of the previous research on CGRAs considered only oper-
ations on integral data types, which can be executed in one clock cycle.
In contrast, FP operations take multiple clock cycles and different oper-
ations have different latencies. In this contribution, we present a new
mechanism that resolves data and structural hazards in processing ele-
ments (PEs) that feature in-order issue, but out-of-order completion of
operations. We show that our mechanism is more area efficient than
scoreboarding in most of the relevant cases. In addition, our mechanism
is universal, i.e. not only restricted to PEs in CGRAs, but also applicable
to microprocessors.

Keywords: Coarse-Grained Reconfigurable Array ·
Floating point unit · Processor pipeline

1 Introduction

CGRAs consist of arrays of PEs which perform computations in parallel and can
transmit their results to neighboring PEs. CGRAs are most commonly used for
accelerating multimedia applications. In this application domain, the PEs only
have to support integer operations, as demonstrated in [7]. Since the latencies
of integer operations are low (≈1 clock cycle), handling data dependencies is
achieved with little hardware effort such that an application can immediately
make use of the parallelism of the CGRA architecture.

Other application domains such as HPC can also benefit from the parallelism
in CGRAs. In contrast to multimedia applications, HPC applications require the
support of FP operations. When using results of FP operations in the same PE
which usually take mutliple clock cycles, either a hardware mechanism must be
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implemented in these PEs which will detect and prevent read-after-write (RAW),
write-after-read (WAR), write-after-write (WAW) Hazards, and structural haz-
ards or the compiler or programmer has to anticipate such conflicts and prevent
them to guarantee the correct processing. In this document, we explore the
hardware option. We will explain the implications on the hardware in detail in
Sect. 4. The area overhead of such a mechanism must be as small as possible,
as this overhead is proportional to the number of PEs. In addition, this mecha-
nism should enable the efficient use of pipelined FP units (FPUs) via dynamic
scheduling since this can further improve the performance. Hence, we propose
an area-efficient, yet performance-optimized dynamic scheduling mechanism in
each PE for handling long-latency operations as in FPUs.

In the remainder of this paper, we will proceed as follows: In Sect. 2 we
analyze related work. Then we briefly explain the crucial points of our PEs in
Sect. 3 which are necessary to understand our proposed mechanism in Sect. 4.
After that, we evaluate our proposal in Sect. 5 and conclude in Sect. 6.

2 Related Work

In this section, we first review three other dynamic scheduling algorithms which
enable the efficient use of FPUs or, more generally, pipelined functional units
(FUs) with high latencies in CPUs in general. To the authors’ knowledge, there
are no CGRAs whose PEs use register values after they have performed a FP
operation in the same PE. Nevertheless, we analyze CGRAs which also support
FP operations.

Beside [10], scoreboarding [9] is one of the early techniques for dynamic
scheduling in computer architecture and still used where small area is preferred
over performance. Scoreboarding will stall the instruction pipeline if a RAW, a
WAW, or a structural hazard is detected until the hazard disappears. If a short-
latency operation is issued after a long-latency operation, and no hazards are
present, the short-latency operation might finish earlier than the long-latency
operation. To achieve this functionality, a scoreboard monitors the status of the
instructions, of the FUs, and of the registers and detects said hazards based on
the information in these status registers. Our approach behaves similar to this
approach but occupies less area according to our estimation.

Because of the simplistic pipeline stalling when using scoreboarding, perfor-
mance is not optimal. Therefore, in [10] a more sophisticated solution is proposed
which lays the foundation for out-of-order execution in microprocessors. The
key techniques here are register renaming and the use of reservation stations.
Although this algorithm is very efficient, it occupies significantly more chip area
than scoreboarding.

The author of [4] proposes an out-of-order execution architecture which
requires special compiler support, but is more area efficient than [10]. By delay-
ing the execution of the instructions with the help of compiler annotations, i.e.
statically, the instructions are executed in another order than initially speci-
fied. In summary, the area savings are traded for a static out-of-order execution
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instead of a dynamic one. This approach requires additional register bits in the
program memory for the timing annotations done by the compiler, and thus, is
probably more costly than [9] with a reasonably sized program memory.

In [8], a CGRA called WaveScalar is proposed whose PEs can process FP
values but always forward the results to other PEs while our architecture can
forward and reuse results from FPUs. Due to the strict dataflow architecture, the
PE’s instructions can be executed in out-of-order fashion. The CGRA performs
approximately as well as superscalar processors, but requires less area.

The concept proposed in [1] also enables FP operations. It is a data-driven,
yet instruction-processing architecture similar to our CGRA. A token generator
manages multiple FUs and instructs them how to deal with the input values
by sending tokens to the FUs. Therefore, detecting and resolving hazards are
the responsibility of the central token generator, and are not decentralized as
designed in our approach. Hence, it is the obligation of the token generator to
schedule operations accordingly.

The architecture proposed in [3] is a CGRA embedded as an execution
pipeline in the OpenSPARC architecture. It can process FP values in a few
PEs, but the PEs do not reuse their results and, hence, do not have to resolve
data or structural hazards.

Most of the other CGRAs, e.g. [6,7], and [2], only feature support of inte-
ger operations as they target multimedia applications. Although the PEs of all
of them can use previously computed results in each PE, data and structural
hazards do not occur because the PEs are not pipelined and their latencies are
zero.

3 The Processing Element

The architecture of our proposed PE is depicted in Fig. 1. The bold arrows rep-
resent multiple bit wide wires (i.e. data and addresses), and the thin arrows
represent one bit wires used for control signal transmission. The block shapes
indicate how the according modules behave: Rounded rectangles represent com-
binatorial modules, normal rectangles represent registers/memories which can
combinatorially be read, but written data is only visible after one time step.
Normal rectangles with bold lines are standard registers. Rounded rectangles
with bold lines are complex modules with inner states. The trapezoidal blocks
labeled MUX are multiplexers. The ALU and the FP adder are depicted only for
demonstration purposes. In general, there can be various and more FUs in one
PE. These FUs might also have different pipeline lengths. The dashed blocks
are optional result registers. They are optional, because for operations with
latency = 0, they are necessary for a reliable timing closure, but for pipelined
long-latency operations they might be unnecessary and only increase the pro-
cessing latency of an algorithm without adding any benefit.

Basically, a PE is a RISC-like processor pipeline which can fetch, decode, and
execute contexts (which are similar to instructions), and write-back the results
to the internal register file. Besides that, they can exchange data with other PEs
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and with the memory. The blocks of interest are the decoder, the data hazard
detector (DHD), and the structural hazard detector (SHD). The former resolves
data and structural hazards by stalling the pipeline, while the two latter detect
data and structural hazards, respectively. A detailed description of the entire
CGRA an remaining PE architecture is beyond the scope of this paper but is
explained in [5].

Fig. 1. Overview of a processing element

The DHD consists of a vector of bits, each associated with an internal register
file entry. Such a bit or flag will be set if its associated internal register file entry
is the destination of computation’s result and this computation is in execution.
As soon as the result is written back, the according flag is reset. This module is
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connected to the decoder which can read and set it. The reset signal is sent by
the SHD. The SHD is discussed in Sect. 4.

The presence of data hazards is detected by checking the DHD to which the
current context refers. If the flag of a source operand is set, a RAW will be
detected. If the flag of the destination operand is set, a WAW hazard will be
detected. In both cases, the decoder stalls the pipeline until the conflicting flag is
reset. WAR hazards cannot occur since contexts are issued in order and register
values are read before writing them back in our processing pipeline.

4 The Structural Hazard Detector

A PE can consist of several FUs which may have differing latencies and supported
initiation intervals (IIs), i.e. pipelined or not. The purpose of the SHD is to allow
no more than one write-back at a time step. If two FUs are anticipated to write-
back at the same time step, the SHD considers this as a structural hazard and
notifies the decoder module. The decoder module will then resolve the hazard
by delaying the current context issue.

In order to deal with different IIs among the FUs, a counter for each FU is
provided which counts down from the II value to zero. If the respective counter
is zero, the FU can accept new operands.

As soon as an FU finishes its computation, it either stores its result in the
optional result register (FP Sum and ALU Result in Fig. 1) or immediately
forwards it to the destination register. In addition, an also optional flag accom-
panying a result register is set. It signalizes to the PE that the operation has
finished. The flags of all FUs control the following multiplexer which can forward
only one result at a time, i.e. only one result is produced at one time step. This
ensures that no structural hazards occur during write-back. But this also implies
that we have to care about properly scheduling the operations in advance, i.e.
for an operation with latency l, it must be guaranteed that the result can be
written back l time steps later. This is done by the SHD.

Figure 2 shows the block diagram of the SHD. It is a cutout from Fig. 1 but
with an inside view of the SHD. The meaning of the block shapes is the same as
in Fig. 1. The clouds are wildcards for logic and registers and follow the design
pattern between the lightgrey registers labeled “1” and “0”. The dotted lines
are the wildcards for the respective signals, i.e. they might represent multiple
signals.

The SHD (Fig. 2) schedules the write-back time slots for all the FUs. Basi-
cally, it consists of two shift registers: one for reserving a time slot or ticket
(light grey; the label corresponds to the shift register’s index) and another one
for the according destination address (dark grey). The length of the SHD’s shift
registers is equal to the longest latency of the FUs implemented in the respective
PE, plus one.

When a context is processed by an FU, the reservation shift register at the
index equal to the latency of the FU is set to one, and the destination address
is stored in the accompanying address shift register (dark grey in the figure).
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In each time step, those shift registers move their information (ticket) towards
index zero. When such a pair reaches index zero, the according FU concurrently
finishes its computation, and the SHD grants write access for either writing
to the output registers or to the internal register file, depending on the target
address.

Fig. 2. Structural hazard detector (lightgray: ticket shift register (ticket SR); darkgray:
address SR)

Structural hazards during write-back are anticipated and resolved as follows:
If an enable signal from the decoder is set, it is checked whether the write-back
time slot required in the future is available by looking at the reservation one
time step before. If the preceding time slot is already reserved, the operation
has to wait until it is available, resulting in a pipeline stall. If it has not been
reserved yet, the operation may proceed. For instance, in Fig. 2 the enable ALU
signal is set. An ALU operation has a latency of 0, meaning that in the next
time step the result will be available if the operation is performed. If reservation
register 1 already has a reservation, the free signal will turn zero; the decoder
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has to try again in the next time step. If no reservation has been made before,
the reservation will succeed and the ALU operation is performed. This simple
mechanism can be enhanced such that even more than two FUs can be handled
both with equal and different latencies.

Beside the write access, the respective control signals are set (valid for the
output registers, reset for the DHD). Also, if back-pressure is detected, shifting
is disabled, i.e. the PE halts execution. Back-pressure occurs when an output
register wants to transmit a value to another PE, but the respective input reg-
ister still contains a value which has not been processed by the receiving PE.
The receiving PE notifies the sending PE about this circumstance (wait sig-
nal = 1) and the sending PE waits for the receiving PE until it uses the input
register value. When this conflict is resolved (wait signal = 0), the sending PE
can continue to process other contexts.

As a side-effect, due to the different latencies of the FUs, contexts which
are issued later than others, might overtake and finish earlier, i.e. it features
in-order-issue and out-of-order-completion of contexts. This is valid, since the
decoder resolves data hazards in advance. For instance, an integer operation
following a FP operation will likely overtake. In the end, the conditions which
allow overtaking are similar to scoreboarding.

5 Evaluation

The scope of this section is, firstly, to show the benefit of implementing our
approach over a naive implementation, and secondly, to compare our approach
with scoreboarding with respect to area.

Our CGRA is modeled and simulated using SystemC to verify its functional-
ity. The model is parametrizable, and for evaluating our proposal, we simulated
a CGRA with one PE. The correct behaviour of a PE under back-pressure was
verified by testing two neighboring PEs, but this is not the focus of this section
since we only want to test the aspects mentioned above.

5.1 Performance

To analyze the performance impact of our approach, two PEs, one without and
one with the SHD, are tested with the same contexts. The sole purpose of this
subsection is to demonstrate that our approach works similarly to scoreboarding.

For preserving a correct execution of the contexts, the PE without the SHD
waits until each operation has finished its execution because it must presume
that there is a data hazard. Both PEs provide result registers at the output of
the FUs. The measurements on the PE without the SHD will serve as a base-line.
In the following, we refer to these PEs as PEB for the base-line PE and PET

for our approach. For the evaluation, we run synthetic test cases which target
certain corner cases to examplary demonstrate the impact of our mechanism and
behaviour when data hazards are present.
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For the first test case (A in Table 1), we generate contexts with no data
hazards. Therefore, the contexts only rely on PE internal values and only write
to the PE’s internal register file, so the contexts do not have to wait for val-
ues from other PEs or that results are accepted by other PEs. Also no con-
text operand depends on another context’s result to exclude RAWs, WARs, and
WAWs (WARs are impossible anyway since data is read before writing back
in our PE design). The contexts themselves execute (precisely: issue) 100 long-
latency operations on pipelined FUs, i.e. II= 1 and latency = 9.

For the second test case (B in Table 1), we test a context with II = 1, and
latency = 3 followed by a context with II = 1, and latency = 1, i.e. in total two
contexts. We measure the number of clock cycles from issuing the first context
through the write-back of the second result. Also, both contexts are data inde-
pendent. For the other two test cases (C and D in Table 1), we slightly change
test case B such that C has a RAW, and D has a WAW while the rest is exactly
setup as B.

The test case A shows that PET is significantly quicker than PEB. The
required clock cycles per context (CPC) are 9.82 for PEB and 1 for PET, disre-
garding the configuration time. In test case B, out-of-order completion is demon-
strated since the second context, although issued in-order, writes back its result
before the first context. If the first context executed solely, i.e. without the sec-
ond, the cycle count would also be 6. The measurements of C and D proof that
when a hazard is detected both PEs perform the same.

In summary, the PET will reach a CPC of 1 if no RAW or WAW are present.
The PEB’s CPC is approximately 1 + latency.

Table 1. Execution time evaluation

Test case PE Number of clock cycles

A PEB 982

PET 100

B PEB 8

PET 6

C PEB 10

PET 10

D PEB 10

PET 10

5.2 Area

In this section, we compare scoreboarding with our approach with respect to
area under the aspects

– number of FUs to manage in one PE,
– maximal latency among all FUs in one PE, and
– the maximal II among all FUs in one PE.
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As the CGRA is only simulated in SystemC, we have estimated the occupied
area of both designs. In order to estimate the area, we determine the number
of required registers. A single one bit register occupies significantly more area
on a chip than any logic gate and, hence, the overall number of registers gives
a profound point of comparison of two designs. Yet, in the following, we use the
terms area and number of registers synonymously.

n := number of FUs
r := number of register file entries

lmax := maximal latency of all FUs in a PE
AS := area overhead of scoreboard (in bit)
AT := area overhead of DHD-SHD (in bit)
AS ≈ 2 · 4 bit

︸ ︷︷ ︸

instruction status

+ r bit
︸︷︷︸

internal register file
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⇒ lmax <
1

1 + �log2 r�
· ((r + 2n) · �log2 n�

+ (3 · �log2 r� + 2)n + 7 − r − �log2 r�) (5)
∀i ∈ ∪k∈nII(FUk) : (i = lmax + 1)

⇒ (1 + �log2 r�) · lmax + n�log2(lmax + 1)� < (r + 2n)
· �log2 n� + (3�log2 r� + 2)n + 7 − r − �log2 r� (6)

Formulas (1) and (2) compute the number of register bits of scoreboarding
and our DHD-SHD combination, respectively (ticket shift register (ticket SR),
and address SR are both components of the SHD module).

The requirement that the area of our mechanism is smaller than the area
of the scoreboard implementation is stated in (3). As long as it holds, our area
overhead is smaller than that of scoreboarding.

From this inequation we can deduce bounds for the maximal latency of all
FUs in a PE which have to hold for the DHD-SHD to be smaller. For instance,
if the FUs are pipelined such that every II = 1, the sum term in (2) disappears
and we get inequation (5) as a lower bound. The upper bound II= maximal
latency + 1 is given, since there cannot be a larger II. If we assume that every
FU hits this bound, we get (6). This is the worst case regarding the II property.
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Fig. 3. Area comparison DHD-SHD vs. scoreboard, 32 registers, address width= 5 b

In Fig. 3, the design space is depicted. The three axes are number of FUs,
maximum II, and maximum latency. The surface shown in the figure is the set of
points in which our approach requires as much area as scoreboarding. The set of
data covered by this surface from the viewer’s perspective comprises the points in
the design space for which the DHD-SHD occupies less area than scoreboarding.
Scoreboarding is better when choosing any design point in front of the surface
from the viewer’s perspective. For example, given an ALU (latency = 0, II = 1),
an integer multiplier (latency = 0, II= 1), a FP adder (latency = 3, II = 1), and
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Fig. 4. Area comparison DHD-SHD vs. scoreboard, 128 registers, address width= 7 b

a FP multiplier (latency = 3, II = 1), the point n = 4, lmax = 3, and II= 1 lies in
the space where DHD-SHD is more area-efficient than scoreboarding.

Figure 3 illustrates how well DHD-SHD scales with the number of FUs to
manage in contrast to scoreboarding, in particular with three and more FUs.
For completeness, the impact of the number of the register file entries on the
design space is illustrated in Fig. 4. The general shape of the inequation surfaces
in both figures hint that the scalability of DHD-SHD is almost indifferent to the
number of registers to manage.

6 Conclusion

In summary, we propose a mechanism which handles multiple long-latency oper-
ations even with data dependencies in a similar way as scoreboarding [9], but
requires less storage elements than scoreboarding for the more relevant points in
the design space. We explain how data and structural hazards are detected by
the SHD and DHD, as well as resolved by the decoder.

Obviously, for pipelined FUs, our approach scales better than for non-
pipelined approaches according to our comparison with scoreboarding. Even
when more registers need to be handled, our approach scales better than score-
boarding. The II’s impact on the number of registers is almost negligible. For a
few FUs with very high latencies and a few register file entries, scoreboarding
uses less registers.

In conclusion, our approach scales better in terms of the number of storage
elements than scoreboarding which suggests that this rationale also applies to
the area overhead, since registers occupy significantly more area than logic gates
on a chip. In the future, we will implement our PE with the DHD and the SHD
on a chip and evaluate how much area it will actually occupy.
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Abstract. Off-the-shelf multi-core processors provide a cost-efficient
alternative to expensive special purpose processors at the cost of com-
plex time predictability due to shared resources like buses, caches and
the memory itself. This paper presents an operating system concept that
takes control over the shared cache to minimize contention, by creating
a component-based operating system, that is structured in small data
chunks to allow better control over data and code movement in and out
of the cache. An evaluation of the operating system shows that the sys-
tem is able to reduce the difference between the ACET and observed
WCET of a synthetic memory load test by 93% for ARM and 98% for
Intel systems. Some noteworthy improvements were also achieved for the
TACLe benchmarks.

Keywords: Operating system · Multi-core ·
Component-based design · Timing predictability · Real-time

1 Introduction and Related Work

Today’s commercially available off-the-shelf multi-core processors offers high per-
formance at a very attractive price point, making them a compelling platform
for designers of embedded or cyber-physical systems. The raw computational
power would allow for several real-time applications to be run on such a proces-
sor. The necessity for timing guarantees, however, presents a challenge as the
processors are usually not analyzable with existing tools due to an increase in
complexity. It stems from shared resources like memory controllers, caches and
interconnects, which enable high computational performance at cheap manufac-
turing costs. The use of shared resources however introduces variations to the
execution times of tasks running in parallel. A simplified multi-core hardware
architecture with the main contention points of shared resources highlighted is
shown on Fig. 1.

Special hardware units are used to mitigate the effect of shared resources on
the execution times. A memory prefetching unit can be used to hide the latency
c© Springer Nature Switzerland AG 2019
M. Schoeberl et al. (Eds.): ARCS 2019, LNCS 11479, pp. 171–182, 2019.
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Fig. 1. Simplified exemplary tar-
get hardware with contention
points highlighted

Table 1. Hardware platforms used for evaluation
purposes (CPU speed in GHz, memory speed in
MHz).

Platform Architecture CPU Mem.

i.MX6 ARMv7 (Cortex-A9) 1.2 880

Exynos 4412 ARMv7 (Cortex-A9) 1.4 1600

Xeon E5-1620 v4 AMD64 (Broadwell) 3.5 2400

caused by simultaneous accesses to the main memory from different processor
cores. These prefetching units can detect common memory access patterns [11]
and therefore try to prefetch the data that will be requested in the future by
an application. The performance of a prefetching unit depends on the access
pattern an application exhibits and on the ability to fetch the data in time
before the access occurs. Another way to hide memory access latency is to use
caches to keep necessary data local to the processor and thereby reducing the
need for bus and memory accesses. A disadvantage however is that the hardware
is in control of the caches that commonly is only optimizing the average case of
execution times. Furthermore, multiple processor cores are competing over space
of a shared cache which results in execution times depending on the load of all
other processor cores - an undesirable scenario for real-time applications.

Cache management strategies can be used to reduce the impact of caches on
execution times. Instruction cache partitioning during compilation shows that it
is possible to reduce the cache miss rate substantially [9]. Similar methods are
applicable on data caches as well, which is known to increase the predictability
of a system with caches [10]. Both techniques rely on comprehensive knowledge
of the hardware the software is executed on after compilation, which makes the
approach inflexible, because hardware changes are not possible without recom-
pilation. An alternative to compilation-based cache partitioning is operating
system controlled cache partitioning with virtual to physical address transla-
tion and memory page colouring [7]. Further work on the integration of cache
coloring with cache locking was done for mixed criticality systems [12]. Cache
management strategies also have been integrated within an existing operating
system [8]. Instead of locking a whole dataset of a task within the cache the
approach works by profiling applications on a Linux system and determining
which memory pages are important for the applications. These memory pages
are preloaded and locked within the cache to prevent eviction. A problem of
existing operating systems is that they usually do not control the flow of data
within applications which can result in data spread over a large range within the
memory, thus making it challenging to keep applications data and code inside
the cache and therefore creating accesses to contended resources and causing
execution time variations.
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We present an operating system, called CyPhOS (Cyber Physical
Operating System), that is designed to overcome the challenge with a
component-based design that features an operating system-based cache man-
agement system to partition the cache on a global scale. In Sect. 3 we explain
how the system manages the cache to isolate components. While Sect. 4 provides
an overview of implementation details, a survey of the performance is given in
Sect. 5. The basic idea behind this paper was published before as a research pro-
posal paper [3], but since then it has been implemented completely for ARM
and x86 and is evaluated as a whole only now.

Other component-based operating systems have been publicized before. One
popular example is the operating system TinyOS [6]. Although some of TinyOS
properties are similar to CyPhOS, the main focus is a different one. TinyOS was
designed for very small footprint devices that feature only few resources with no
multi-processor support. The interaction between components however is similar
in that both systems provide an event-based system for interaction and are not
permitting blocking operations.

2 System Model

In general embedded software systems are built by creating a single binary file
that consists of both the application and the operating system, mostly arbitrar-
ily linked together with respect to the hardware’s memory layout (e.g. ROM vs.
RAM placement). With this approach the operating system can hardly control
how different applications compete within a shared cache because data is widely
spread across the memory. A function call from one task to, for example, an oper-
ating system function could even evict the task’s own data from the cache. The
hereby presented concept differs from this approach by creating self-contained
software components that are independent of other components. These compo-
nents contain the program code and all data the components require for their
execution. The logical arrangement of program code and data is done statically
by the linker for the final binary and thus confining components to a contiguous
memory region.

Interaction between components is strictly regulated to allow the operating
system to maintain complete control over data and control flow. For this an
event-driven approach is chosen. This prevents direct function calls between
components. Instead components can export events that are broadcast within
the operating system. Other components are able to subscribe to these events
with so-called triggers, that will be executed if a subscribed event is triggered.
This concept ensures that the operating system will never loose control over
inter-component communication. This concept shares some similarities with the
concept of a microkernel [1], as the operating system itself provides only very
limited functionality, mainly to moderate communication between components.
One of the key differences to most existing microkernel is that CyPhOS only
allows asynchronous communication between components whereas microkernel
often allow synchronous communication.
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Fig. 2. Schematic overview of the operating system’s
structure

t

P0

P1

P2

P3

PL EXE WB

Preloading
Execution

Writeback

Fig. 3. Exemplary task exe-
cution for a quad-core system
(PL - Preloading, EXE - Exe-
cution, WB - Writeback)

The concept of events and triggers allows to create a system that is not
dependent on the execution of traditional tasks or processes. Instead of start-
ing traditional tasks with a main entry point, an initial trigger of a component
can be called to start an application. Alternatively a system can be designed to
only react to external events that are converted to internal software events by a
minimal interrupt handling system. This enables components to react to outside
events in the same manner as to internal events. A device driver component
would need to subscribe to the interrupt event of its corresponding device to
be able to react to the interrupt requests. The operating system executes only
one trigger per component simultaneously, ensuring that no data is modified
or read by multiple triggers at once. This synchronization mechanism is com-
parable to the monitor synchronization. It will automatically serialize all data
access to components and renders further synchronization of data unnecessary.
Data sharing between multiple components is possible by defining dependencies
between components. A trigger can depend on another component which ensures
that no other access to the dependent component will occur during the trigger
execution.

A schematic overview of the operating system’s structure is shown in Fig. 2
with multiple drivers and two example applications accessing a shared com-
ponent. The block at the bottom represents the critical memory region that
contains all operating system functionality that is vital for the execution of
components triggers, including at least one stack per processor. It also includes
a basic IRQ handler, that forwards all hardware interrupts as software events to
the subscribed corresponding driver components, and commonly used function-
ality like generic lists and the event handling code itself. Above this layer three
driver components are located that can communicate to example applications
over shared buffers. The access to the shared buffers is possible with normal
memory access, for example via pointer passing.
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3 Cache Management

In this section we describe how a cache management system can be designed to
make use of the aforementioned operating system model and therefore reduce
execution time variations caused by the access of contended resources. The idea
of the cache management is to give the operating system more knowledge about
the memory hierarchy it is running on to be able to reduce the contention of
shared resources. With this knowledge the system should be able to execute trig-
ger functions with all necessary data inside the shared cache, so that not a single
main memory access occurs. To achieve this the execution of a components trig-
ger is split up into a preloading phase, an execution phase and a writeback phase.
The preloading phase will load the complete component including all dependen-
cies to a part of the shared cache that is not in use by another core. This can be
done using prefetching instructions [2], which have a rather predictable execution
time due to their sequential memory access pattern. Following the preloading
phase the component can be run without any main memory access because the
data is guaranteed to reside in the cache. Any modification of component’s data
will flag the data as dirty, in need to be written back to the main memory when
the component gets deactivated. This can be forced with selective cache cleaning
operations, e.g. the CLFLUSH instruction on AMD64 or a clean by way operation
on ARM. This phase is called the writeback phase.

Several precautionary measures are necessary to be able to control the cache
content from the system software, otherwise the components will just evict each
other during the preloading phase. One way to prevent cache eviction is partial
cache locking [12] that would allow parts of a shared cache to stay locked, so that
no eviction in a locked range occurs. A similar technique is cache partitioning [12]
which allows to dedicate a part of a shared cache to one processor core, preventing
other cores from allocating new data in the same space. Although hardware-
based mechanism for cache locking and cache partitioning are preferred, they are
not mandatory for the hereby presented concept. If a system does not feature
the ability to lock down or partition the cache by processor core granularity, it
is important, that only one processor at a time is executing a preloading phase,
thus changing the content of the shared cache. Otherwise the cache content would
be unpredictable. This increases the complexity of the schedulability analysis of
a system and affects overall system performance. The critical memory region,
see Fig. 2, is loaded at system boot-up and stays locked permanently within the
cache.

When a trigger of a component is activated the system will create a task
that handles the execution of a component’s method to react to an event. These
tasks are scheduled by a fixed-priority non-preemptive scheduler. This method
is selected to reduce the number of cache preloading and writeback phase exe-
cutions as each preemption could result in two of each. This might increase
the worst-case response time of the operating system. A possible mitigation
would be to use short trigger functions and multiple processor cores for inter-
rupt handling. A simplified view of a possible execution of tasks is shown in
Fig. 3 with four processors running tasks. Each task’s execution is preceded by a
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preloading phase and superseded by a writeback phase. Only one processor at
a time is accessing the main memory (via the preloading or writeback phase).
To mitigate the effect of the preloading and writeback phase on the system’s
response time, the system can be configured, so that components stay inside the
cache until the space is needed by other components. The eviction could, for
example, be done by selecting the least recently used component to be evicted.

4 Implementation

We created a prototype implementation of the presented operating system model
to evaluate if it is feasible to use it for real-world applications and how the cache
management reduces the execution time variations. The component-based design
calls for something that is able to structure program code accordingly. Therefore,
C++ was chosen as the programming language. Its object-orientated programming
model properly represents the component-based design. In addition, it is possible
to make use of namespaces to group several classes of C++ code. This is used
to specify to which operating system component (OSC) a class belongs.

This information is used during compilation of the operating system to link
the operating system components correctly together. This process is done in two
steps. At first, each source file is compiled separately. Components are identified
by their namespace. This information is picked up by a linker-script generation
tool that scans all object files for component names. Afterwards a contiguous
data block is created for each found component namespace.

To evaluate the concept, the used hardware has to fulfill two conditions:
First, it is necessary for the software to be able to control cache allocation of
data. This means that the operating system can control at which part of the
shared cache new data is loaded from the main memory. The second requirement
that should be fulfilled by the hardware is the ability for software to prevent
eviction of cache content from the shared level cache. Both features are available
on two platforms for which the prototype implementation, called CyPhOS, is
developed. One platform is the ARM Cortex-A9 processor that uses an external
cache controller (PL310) with the ability to lock cache allocation by cache way
granularity. This mechanism is called lockdown by way and can be used to force
data to a specific cache way and preventing data eviction by locking all cache
ways for new allocations, thus freezing the content of the cache.

The second platform is based on an Intel Xeon processor that provides a
similar hardware feature called Cache Allocation Technology [5]. This technol-
ogy provides an interface to the system software to partition the shared level
cache between participating processor cores. For each hardware thread (e.g. a
physical or logical processor core) a class of service (COS) can be assigned. For
each COS a bitmask within the processors exists that specifies which part of the
cache is assigned to the COS. Although no official mapping between a bit of the
bitmask to cache ways exists, our tests have shown that the processor presents a
bitmask with a length of the number of cache ways.1 Two of the available cache
1 Evaluated on an Intel Xeon E5-1620 v4 processor with 20 cache ways.
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ways are in shared use with integrated peripherals, e.g. the GPU, and cannot
be used exclusively by a processor core, resulting in 18 usable cache ways. With
this feature it is also possible to specify to which part of the shared cache new
data is allocated, comparable to the lockdown by way feature. Prevention of data
eviction would, in theory, be possible by setting the bitmask to zero, thus deac-
tivating the allocation of new data altogether. A requirement of the technology,
however, is that a bitmask is never allowed to be set to zero, otherwise a Gen-
eral Protection Fault is thrown. To work around this limitation each hardware
thread needs to be set to a parking cache way configuration during component
execution. Two solutions for this problem exist. The first solution is to the set
the bitmask to the so called shared bitmask which is shared by peripheral hard-
ware components. An evaluation of this solution however revealed that this will
result in bad timing behavior as execution times are subject to great variations.
An alternative to this would be to dedicate a cache way for each processor core
that is used as a standby cache way. This method results in much more stable
execution times during component execution and was selected as the preferred
method. A disadvantage of this is, that the number of cache ways available for
component execution is reduced by the number of processor cores.

Another necessity for the cache management is the ability to force data
from the main memory to the managed shared cache. Both the AMD64 and
the ARMv7 architecture provide an instruction to preload data in the cache.
Although the preload instruction of the ARM-ISA is only a hint to the proces-
sor, tests have shown that, at least for the used Cortex-A9 processors, the use
of the instruction will result in data being preloaded to the shared level cache.2

The ARM Cortex-A9 platform with its cache controller features 1 MiB of
second level cache with an associativity of 16. This means that the operating
system can simultaneously hold 16 components with a size of 64 KiB in the cache.
This data can be used to generate a linker script that aligns every component
to a 64 KiB boundary. The alternatively used Intel-based platform features a
associativity of 20 (18 available exclusively) with a cache way size of 512 KiB,
resulting in a cache size of 10 MiB for the last level cache.

5 Evaluation

In order to evaluate the presented approach several experiments were conducted.
The main focus of the evaluation is to demonstrate that hardware-based cache
management, controlled by the operating system, can be used to reduce execu-
tion time variations substantially. All tests were done on three platforms listed
in Table 1. SMT (Hyper-Threading) was disabled for the Intel processor because
it will only result in cache and compute resource contention on level 1 and level 2
of the cache hierarchy, thus having a negative impact on the cache management
at level 3.

2 Verified on NXP i.MX6 and Samsung Exynos 4412.
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Fig. 4. Comparison of maximum memory load execution times without (nCM) and
with cache management (CM) (Access count per component execution: 0.5 * size of
cache ways)

All measurements were done using cycle counters provided by the hardware.
They are accessible by reading out cycle counter registers of the PMU (perfor-
mance measurement unit) on ARM and with the help of the RDTSCP instruction
for the Intel-based system. It was ensured that no system management interrupts
(SMI) occurred during the experiments with the help of a machine-specific regis-
ter. All tests were compiled with GCC at version 8.2 and optimization level O3.

To generate an extreme workload, a test-case was created to stress the whole
memory subsystem with a synthetic load, running in parallel on all available pro-
cessor cores. Dummy OSCs that only stress the memory subsystem with load
instructions in a loop are generated to test the approach at maximum mem-
ory load possible. Although the load is not completely realistic it provides an
overview of the limits of the cache management. For the evaluation 128 dummy
components were used. The memory access count per component execution is
relative to the cache way size of the architecture, so that the results are com-
parable for both the ARM and the Intel system architecture. The components
were generated with a size depending on the cache way size of the architecture,
specifically set to 90% of the cache way size. The resulting components have a
size around 58 KiB for the ARM-based system and about 461 KiB for the Intel-
based system. After each loop a component finishes its execution and another
stress test component is called, thus being preloaded, executed and evicted from
the cache. Each experiment is repeated for 80 000 times. The memory access pat-
tern executed by these components is random (within the component’s memory
range) to prevent hardware prefetching mechanisms from hiding the memory
latency. Although a random access pattern is used, each execution of a com-
ponents trigger is done with the same random seed, thus resulting in the same
access pattern for each execution. All execution times are given in processor
cycles. Absolute execution times can be calculated with the help of the clock
speeds given in Table 1.
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Table 2. Relative standard deviations (a) and reduction of difference between observed
WCET and ACET (b) of stress test components for different access counts (relative to
the cache way size) in %, without (nCM) and with (CM) cache management.

Access size 0.25 0.5 1 2 4

Platform (a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

i.MX6 nCM 26.39
75.08

26.12
74.78

26.13
76.18

25.54
75.76

25.61
74.99

CM 1.14 0.68 0.47 0.43 0.40

Exynos
4412

nCM 40.41
82.91

37.60
80.37

39.76
85.63

40.13
92.51

21.13
67.00

CM 1.68 2.01 2.07 1.98 1.85

Xeon nCM 20.76 −2.64
18.56

98.02
18.56

97.64
2.41

97.32
1.21

94.82
CM 0.62 0.27 0.28 0.28 0.27

The results of one example configuration are shown in Fig. 4. The used con-
figuration for this diagram is an access count of 0.5 times the size of the archi-
tectures cache way (in bytes), resulting in 32 768 accesses for the ARM system
and 262 144 for the Intel system per component execution. It is apparent that
the cache management has a significant impact on the execution times for all
three systems. Both the average execution time and the measured worst-case
execution time were reduced by a significant amount. For the Xeon system the
difference between ACET and observed WCET was reduced by 98.0%. It is note-
worthy that though both ARM systems run at nearly the same CPU clock rate,
the i.MX6 system is almost twice as fast as the Exynos system. This is probably
owed to the fact that the memory of the i.MX6 CPU is clocked at twice the
rate, see Table 1. A broader overview of benchmark results is given by Table 2. It
shows the relative standard deviations and reduction of difference between the
ACET and observed WCET for all three platforms and five configurations that
were evaluated. Overall it is noticeable that all configurations reduce the varia-
tions of execution times by some degree. For all but one configuration, caused by
few outliers, the cache management is able to considerable reduce the difference
between ACET and observed WCET. With higher access counts the Intel system
is able to compensate the variations via a sophisticated hardware caching strat-
egy, that is effective for repeated memory accesses within the same range. The
hardware cache controller of the Cortex-A9 systems evidently is not as capable
as the Intel one.

For a more realistic load the TACLe benchmark suite, containing multiple
applications with real-world scenario workloads, is used [4]. Each benchmark
from the suite is bundled in one component and executed independently of each
other repeatedly per OSC execution. To provide a baseline all tests were run
without an additional load on the system, providing a best-case measurement,
with no contention and no interrupts enabled. Then the tests were repeated
with an additional stress load, generated by the aforementioned dummy compo-
nents, once with the cache management disabled and enabled. Each benchmark
component was executed 100 000 times with a repetition of 20 per component
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Fig. 5. Selected execution times of TACLe benchmarks (20 repetitions per OSC execu-
tion on i.MX6). From left to right: baseline (no additional load), no cache management
(additional load), cache management (additional load)

execution to reduce the baseline variation of the benchmarks a bit. A selection of
benchmark results is shown on Fig. 5 that shows results for the i.MX6 platform,
because it is the main platform for this work and showed the most promising
results for the synthetic load as well. It is noticeable that the dummy load has
a large impact on the execution time variations for all benchmarks and that the
cache management is able to reduce the variations significantly for this plat-
form, bringing it close to the optimal baseline results, but with the dummy load
active. Although the cache management was able to reduce the variations for
all 21 benchmarks of the TACLe benchmark on the i.MX6 system, the OS was
only able to reduce the variations for 16 benchmarks on the Xeon system and
11 on the Exynos system. The results for the Exynos system might be caused
by an locked down TrustZone of the system with potential management code
polluting the shared cache during the preloading phase. This circumstance calls
for further investigation in the future.

Finally the execution times of both the preloading and the writeback phases
were evaluated, to verify whether the approach will shift the unpredictable
behavior of memory accesses to those phases. The results are listed in Table 3
and show that both preloading and writeback is more stable than the execution
phases without cache management. Although the variations for the ARM-based
systems appear quite high it should be noted that the minimum and maximum
preload time for the Exynos system was 51 792 and 91 911 (69 137/83 807 for
writeback) which is comparable low to the variations of the stress test itself, s.
Figure 4b, that exhibit a minimum of 1 157 943 and a maximum of 5 535 192 with-
out and respectively 1 840 559 and 3 081 563 with cache management active. This
demonstrates that it is possible for applications, under certain circumstances, to
run faster with cache management enabled, even if preloading and writeback is
considered.
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Table 3. Relative standard deviations in % of preloading and writeback phases for all
three platforms (without and with stress load)

Platform PL (no load) WB (no load) PL (load) WB (load)

i.MX6 3.6% 1.2% 1.9% 1.4%

Exynos 9.4% 5.7% 2.3% 0.5%

Xeon 0.9% 0.2% 1.0% 0.2%

6 Future Work and Conclusion

Multi-core (and future many-core) processors provide very cheap computing
power at the cost of predictability. Memory hierarchies are becoming more com-
plex and need operating system support to be fully utilized by applications
running on these systems. We present an operating system concept that is able
to greatly reduce the variations of execution times and, thus, providing a more
stable execution base by controlling which data is inside the cache at which
point of time. This is achieved by grouping the data, necessary to execute cer-
tain applications, within components that can easily be swapped in and out of
the cache. The approach enables a maximum reduction of the difference between
ACET and the measured WCET of about 92% for an ARM-based system and
about 98% for the Intel-based system. The real-world tests conducted with help
of the TACLe benchmarks showed some noteworthy improvements as well. To
provide a base for further research and verification of the results, the concept
operating system is made available as open source software.3

Although the OS currently is limited to ARM Cortex-A9 and Intel CAT,
AMD also published an documentation for QoS extensions for their future pro-
cessors, providing a potential new platform for CyPhOS.4 At the moment this
approach is limited to hardware platforms providing some kind of hardware
cache management interface, but the concept would also work on other systems,
e.g. with scratchpad memories. Future work can be done by leveraging software
cache partitioning strategies, for example page coloring [13], thus, getting rid
of the hardware requirement. Another interesting research topic could be an
automatic optimization to load multiple components at once during preloading.
This would decrease the necessary preloading phases for commonly used compo-
nents. Dynamic memory management is also a topic of research interest for this
operating system, especially the question of how to design the memory allocator
interface and how to structure dynamic data to fit well in a cache component.

3 The source code of the prototype implementation is available under: https://github.
com/ESS-Group/CyPhOS.

4 https://developer.amd.com/wp-content/resources/56375.pdf.

https://github.com/ESS-Group/CyPhOS
https://github.com/ESS-Group/CyPhOS
https://developer.amd.com/wp-content/resources/56375.pdf
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Abstract. The CPU cache memory was invented to reduce access
latency between the processor and the main memory. Instructions and
data are fetched from a fast cache instead of a slow memory to save
hundreds of cycles. But new kinds of cache interferences were introduced
with the arise of multi-core technology.

Safety-critical systems and especially higher functional integrated sys-
tems in avionics require an assurance that interferences do not influence
functionality to maintain certification capability. Furthermore, interfer-
ences caused by cache misses result in a decrease of the processors overall
performance.

This paper focuses on the investigation of the L2 cache interferences
of a modern commercial-of-the-shelf (COTS) PowerPC based processor
as in to how and why they occur. The investigation regards to interfer-
ences caused by the multi-core design. In order to realise the problem,
a comprehensive understanding of the underlying architecture and the
principle function of cache is a necessary prerequisite.

A detailed analysis investigates vulnerabilities in the architecture
before these are then exploited by the use of targeted memory arith-
metic. A series of measurements performed by a simulation framework,
reveals the extent to which these vulnerabilities can affect the runtime
of applications.

The results clearly show that the design of a multi-core processor
(SMT) not only brings benefits but also risks in terms of performance
and runtime. Thus, interferences due to the multi-core design should be
avoided if possible, especially given safety-critical guidelines.

1 Introduction

High performance embedded architectures seek to accelerate performance in the
most energy-efficient and complexity-effective manner. The current development
for computation platforms is shifting from increasing the frequency to increasing
the numbers of cores on the same die. Driven by the ongoing challenge of more
performance, smaller physical size and reducing costs multi-core processors which
have been evolving over the last decades, have become very interesting. But with
the advent of the new technology, new problems arise. The limited complexity of
c© Springer Nature Switzerland AG 2019
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single-core based systems compared to multi-core systems allows a partitioned
development of individual steps. But this is no longer possible with multi-core
systems, since the dependencies caused by the architecture can lead to significant
critical interactions between functionally independent components. Among the
most important are the conflicts between cores that are resulting from the limited
capacity of the memory hierarchy, above all shared caches.

These systems have their own challenges with regards to safety certification
such as preserving determinism and assuring certifiability. Ideally, safety critical
systems would like to reap the same benefits considering consolidation, perfor-
mance and migration while keeping certification costs as low as possible. There
are well-known challenges including interrupt handling and bus contention, but
with multi-core processors new problems have occurred. It has been shown that
highly associative shared caches have a number of potential areas of conflict.

As an example for such potential conflicts this paper will be investigating
the shared L2 cache of a NXP QorIQ T4240 processor on interferences caused
by the multi-core design. The results are intended to shed light on how much
the L2 cache can influence the runtime of processes in the worst case scenario.
Deriving from this, guidelines for software development can be devised.

2 Related Work

Chip Multiprocessor (CMP) which the QorIQ T4240 belongs to, are currently
the prevalent architecture for most modern high-performance processors. The
performance advantage of the principle of sharing components is followed by
the problem of interferences occurring. Investigations concerning interferences
in the memory subsystem were carried out by [3] and [7]. There has also been a
considerable amount of research into what types of cache interferences there are
and to how to reduce them [1,2,4]. Most solutions are based on the technique
of providing a fair distribution of interferences across the participating threads
or by using Quality of Service (QoS), for instance by partitioning all shared
resources amongst the threads. However, with regard to safety-critical systems,
the technique of a fair distribution of interferences is not an option, due to the
lack of determinism. Partitioning shared resources is also a very common method,
but performance degradation due to segregation is often so severe that single-
core processors outperform multi-core ones. Furthermore, most investigations
concentrate on the impact of the summary of interferences within the entire
memory subsystem, instead of focusing on individual layers.

This work on the other hand focuses on the research of worst case scenarios of
L2 cache interferences based on the multi-core architecture. It provides realistic
values related to the QorIQ T4240 to indicate the worst case scenarios due to
shared cache interferences. These values are intended to help evaluate concurrent
running applications within a safety-critical environment.



Investigation of L2-Cache Interferences in a Multi-core Processor 185

3 Processor Architecture QorIQ T4240

The T4240 has three L2 caches each serving a cluster of four physical cores. One
of the cluster shared L2 caches has a total size of 2 MB. It is divided into 4 banks
of 512 KB, which are organised as 16 ways and 512 sets. A bank can only handle
one access at a time. It is inclusive for cache lines storing data and generally
inclusive for ones storing instructions. The write hit policy is implemented as
write-back, as the platform cache would not support write-though due to is
smaller size. The write-miss policy is unknown as it is not stated by the manual.
Furthermore, to maintain coherency of the cluster cores’ L1 caches the MESI
protocol is fully implemented [6].

4 Detailed Analysis

4.1 Identifying Architectural Weaknesses

To identify the architectural weaknesses it is necessary to provoke as many cache
misses as possible. In other words, the more misses occur, the more the archi-
tectural weakness affects cache performance. Cache misses can be classified into
four categories: Compulsory miss, capacity miss, conflict miss and coherency
miss.

The T4240 consists of a shared set associative L2 cache which is split into
banks each of them shared by 4 cores. In view of these facts all four types of
misses are able of occurring. But because compulsory misses are inevitable and
capacity misses boil down to the cache size, which cannot be changed, they are
not covered by this investigation. Conflict and coherency misses on the other
hand, are among the types of misses caused by multi-core technology and they
can be avoided through targeted implementation.

4.2 Expected Interferences

The T4240 with its twelve e6500 cores is a complex construct, offering multiple
kinds of L2 cache interferences. Considering the construction of there are the
following possibilities to induct an interference:

Private Memory on Same Cluster. The first and most obvious way to
cause an interference is by letting multiple processes which are each individually
assigned to a different core, discard each others data in the L2 cache. The single
assignment of a process to a core is essential to prevent influences coming from
other components. There are basically two ways to cause this condition. Firstly,
by filling the entire cache until there is no alternative to having to discard data
(capacity miss). Another possibility is to only occupy a single cache set until no
cache line of this set is available (conflict miss).
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Various Load Distribution on Cache Banks. A cluster shared L2 cache has
4 banks to prevent access congestion. The second way to cause an interference is
to let multiple cores utilise only one of four banks. Due to the fact that one bank
can only handle one access at a time, the expected performance is approximately
the reciprocal value of the number of cores accessing it simultaneously. This test
provides information about how large the performance loss is by parallel use of
a single cache bank.

Using Shared Memory on Different Clusters. The clusters are connected
by a bus system which implements the MESI protocol to prevent cache incoher-
ence. The third way is to use shared memory for threads which are distributed
over different clusters. Thereby, the L2 caches have to be kept coherent by the
bus system. This test is not a true interference but it is a flaw that can be
traced back to the architectural design of the L2 cache. Without the multi-core
architecture, the division into clusters would not be required.

5 Evaluation

5.1 Evaluation Setup

The Test Bench. The aim of this investigation is to do a theoretical research
on how the L2 cache can be stressed in such a manner, that it causes interfer-
ences. To verify and prove the findings of the detailed analysis, a test bench was
written in the shape of a software application. The approach to using a software
application instead of hardware-based solutions (e.g. performance counters) is
to make it independent of the underlying architecture.

– Selection of executable cores (from 0–23 and any combination up to 4 cores)
– Memory type (shared or private)
– Number of cache ways (up to 20)
– Number of cache sets (greater than 1)
– Cache bank occupancy (mixed, thread assigned or single bank)
– Data structure alignment (aligned or unaligned)
– Data arrangement (contiguous or non-contiguous)

The Core Algorithm. The pseudocode of Algorithm 1 is an extracted core
function corresponding to the benchmark with n ways. It starts by setting the
step size and the offset depending on the bank occupancy. Due to the fact that
processors fulfil memory transaction in size of a cache line, it is sufficient to
request a single item in a cache line to load the entire line. Therefore the step
size over the data is a multiple of a cache line size. The actual operation takes
places within the inner loops. The arrays start from the calculated offset and
increments with the set step size. The loops work in a cyclic way by assigning
the subsequent element to the current one. The decisive factor here is the final
assignment just after the loop has ended. This assignment connects the last
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Algorithm 1. The core of a 2-way benchmark
function n-Ways(data, num sets, bank occupancy)

δ = SetStepSize(bank occupancy)
γ = SetOffset(bank occupancy)
imax = num sets
way0 = data[0]
way1 = data[1]
...
wayn = data[n − 1]

StartTimeMeasuring()
for n = 0 to nmax do

for i = γ to imax do
way0[i] = way0[i + δ]
i = i + δ

end for
way0[imax] = way1[γ]
for i = γ to imax do

way1[i] = way1[i + δ]
i = i + δ

end for
way1[imax] = way0[γ]
...
for i = γ to imax do

wayn[i] = wayn[i + δ]
i = i + δ

end for
wayn[imax] = wayn[γ]

end for
StopTimeMeasuring()

end function

element of the current loop to the first element of the next loop. Without this
connection the compiler would optimise the assembler code to the extent of
cutting out the entire loop. It would recognise the redundancy while unrolling
the loop and thus perform only a single iteration.

After assigning the number of sets, the data array is split into its ways.
This happens due to performance reasons. It is also the reason why there are
separate functions for each number of ways. The division from a 2-dimensional
into multiple 1-dimensional arrays removes unwanted pointer arithmetic.

The fast and unhindered execution of the operation itself is crucial to the
measurement, to minimise the influence of the execution units. According to
[5], the assignment operation is performed by the simple unit of which there
are four in one e6500 core. Although the redundancy of an execution unit does
not guarantee the exclusion of influences from it, but it at least minimises them
substantially.

5.2 Evaluation Considerations

Cache Pollution. In order to raise the accuracy of the results, all non-
participating cores in the affected cluster should be left untouched by the OS
and other applications during the benchmark. The concerning reason is not the
utilisation of the core but the pollution of its L1 and L2 caches. For this reason
a spinlock is invoked on the concerning cores during the benchmark.
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Hugepages. To recap the hardware specifications, the L2 cache has 16 ways of
which each have 4 × 512 sets yielding 128 KB per way. In order to store data
in specific sets, specific physical memory addresses are required. For reasons of
efficiency, Linux allocates memory in pages of 4 KB, which are not necessarily
contiguous.

The problem with pages of 4 KB is that they do not offer the possibility of
placing data in certain areas of the L2 cache. However, this is a prerequisite for
the benchmark. To make sure that the memory is contiguous Hugepages were
used by the test bench application for the following measurements.

6 Synthetic Interferences

6.1 Private Memory on Same Cluster

Number of Participating Cores. The lines plotted in Fig. 1 correspond to
measurements that were performed with 1, 2, 3 and 4 parallel running cores
within a single cluster. Considering two concurrently running cores for instance,
the first performance drop is during the transition from 8 to 9 ways. But in
contrast to the sharp increase of the blue curve at 17 ways, this increase is
significantly smaller.
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Fig. 1. Runtime of private, contiguous and L2 way aligned memory

In order to get a better insight into why the performance drop is divided into
two steps, it is necessary to review the single runtimes. The relative runtime of
each core is a good indicator to estimate how the interferences are distributed
across the cores with a balanced time showing each core sacrificing the same
amount of performance to interferences and an unbalanced time indicating that
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they are unevenly spread. Thus, Fig. 2 illustrates exemplary the sacrifice of per-
formance to interferences of 2 cores. The same applies to measurements with 3
and 4 cores. Figure 2 shows the uneven distribution of L2 cache interferences.
The test bench uses s thread barrier (POSIX) to synchronise the threads and
although the implementation of a thread barrier is closely tied to the hardware
and consists of atomic operations, it does not perfectly synchronise all threads.
When the barrier is released, the threads are released almost simultaneously -
but only almost.

This situation is aggravated by the cache replacement strategy (SPLRU).
Regarding the core algorithm, this means as soon as the leading core reaches the
end of the last available L2 cache way, the replacement strategy starts replacing
least recently used data. The least recently used data at this point is the first way
of the leading core. But because it is reused for the next operation it cannot be
replaced. Instead, the first way of another core is replaced, which in turn causes
interferences for the core in question. Thus, if only one of the threads receives a
very small lead, the impact on the interference distribution is substantial.

Note that this effect is due to the way the core algorithm works and does not
represent a general L2 cache issue.

Data Alignment. Most architectures do not support unaligned memory access,
but since Freescale does, the possible penalty for reading or writing misaligned
memory needs to be investigated.

The solid lines show a significant drop in performance at all levels compared
to the dotted ones. The use of unaligned memory is not primarily associated with
performance degradation as long as the data is within a cache line. But dealing
with unaligned memory overlapping cache lines involves much more effort than
it does dealing with aligned memory (Fig. 3).
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The e6500 core supports the access on unaligned data but at the cost of
performance degradation, as it is necessary to perform a realignment process to
prepare the data for the upcoming use. For loads that hit in the cache, the load
and store units throughput degrades to a third of its normal speed, as it has to
handle an interrupt. It takes 3 cycles to translate an unaligned store to make it
readable. In addition, after the translation has taken place, the unaligned store
is treated as two distinct entries in the load and store queue, each requiring a
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cache access [6]. In other words, the access of unaligned data overlapping cache
lines requires an extra translation and an additional cache access compared to
aligned data or unaligned data within one cache line.

Data Arrangement. When memory gets allocated by the application, the
allocation takes place in the main memory. Figure 4 shows that it makes no
difference considering the L2 cache whether the memory was allocated contiguous
or non-contiguous.

6.2 Various Load Distributions on Cache Banks

Cores Assigned to Individual Banks. The assignment of cores to individual
banks is strictly speaking no measurement of interferences as non occur. Never-
theless, it is interesting to see that assigning cores to banks actually improves
performance compared to a default distribution.

From now on, default memory is referred to as memory, which is dis-
tributed evenly amongst all banks, as it is the default case for standard memory
allocations (Fig. 5).
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Fig. 5. Runtime of private, contiguous and L2 way aligned memory

Cores Assigned to the Same Bank. The second constellation considering
the L2 cache banks is to assign all cores to the same bank. This case is highly
unlikely given the use of an operating system, but it still needs be considered.

The deliberate assignment of several cores to a single bank shows very clearly
to which extent L2 cache bank conflicts affect performance. Considering the
impact of bank conflicts when the data is stored in the L2 cache, one can see that
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performance drops significantly. Regarding the measurement of two cores, bank
conflicts cause a penalty of 35% performance loss. This allegedly mild penalty
shows, above all, that the processor spends more time transferring memory and
performing arithmetic operations than it does solving bank conflicts. However,
for each additional participating core, the penalty accumulates by another 35%.
With three cores this already means a doubling of the time (Fig. 6).

6.3 Shared Memory on Different Clusters

Number of Participating Clusters. Considering the number of participating
clusters first, one can see that the impact of keeping the cache lines coherent is
significant. No matter how many L2 cache ways are occupied, every read or
write operation causes a bus transaction and these take a lot of time. It hardly
makes any difference whether 2 or 3 clusters participate during the measurement
(Fig. 7).

Number of Participating Cores Within a Cluster. The next step is to
investigate whether interferences by bus contention can be increased by adding
a second core per cluster (Fig. 8).

The results show that more cores do not affect the performance any more
than 1 core did already. The interferences are caused by the interconnect bus,
that has to switch between the cluster on every coherency miss. It does not seem
to be the amount of data being transferred from one cluster to the other that
causes the loss, but switching between the clusters which requires time. And
as the bus needs to switch forth and back between the clusters no matter how
many cores participate, all bus transactions are done within the time window
two clusters are connected with each other.
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7 Conclusion

The Detailed Analysis pointed out three kinds of interferences that occur based
on conflict and coherency misses - private memory on the same cluster, shared
memory on different clusters and the load distribution over the L2 cache banks.
All three kinds of interferences differ in the performance impact, but what all
have in common is that they should be avoided if possible.
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The results revealed that cache interferences significantly reduce overall pro-
cessor performance to such an extent in the worst case that multithreading does
not yield a profit, since inter-thread interferences are greater than the benefit.

The NXP T4240 was developed and for general purposes, foremost in network
solution. It is a universal-processor, highly optimised for the average usecase. In
particular, embedded or real-time applications for which worst case scenarios are
critical should pay close attention to a targeted use of the storage subsystem,
as this is a key factor in achieving good application performance on multicore
processors.
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Abstract. This paper presents the MEMPower power model. MEM-
Power is a detailed empirical power model for GPU memory access. It
models the data dependent energy consumption as well as individual core
specific differences. We explain how the model was calibrated using spe-
cial micro benchmarks as well as a high-resolution power measurement
testbed. A novel technique to identify the number of memory channels
and the memory channel of a specific address is presented. Our results
show significant differences in the access energy of specific GPU cores,
while the access energy of the different memory channels from the same
GPU cores is almost identical. MEMPower is able to model these dif-
ferences and provide good predictions of the access energy for specific
memory accesses.

Keywords: GPU · Memory · Power modeling · Data dependent power

1 Introduction

GPUs focus on applications with high computational requirements and substan-
tial parallelism that are insensitive to latency [1]. Large caches are ineffective
for GPUs due the execution of thousands of parallel threads [2]. These factors
cause GPUs and many GPU applications to require memory interfaces that
provide significantly higher DRAM bandwidth than what is required and pro-
vided for regular CPUs. GPUs usually achieve the high memory bandwidth by
using special graphics DRAM memories with lower capacity but wider and faster
interfaces, such as GDDR5. These high throughput memory interfaces consume
a significant amount of power. Modeling their power consumption accurately is
thus important for architectural GPU power simulators.

In our previous work, we have shown that data values influence the energy
consumption of GPU ALU operation significantly [3]. While executing the same
sequence of instructions the power consumption changed from 155 W to 257 W,
when the processed data values were changed. In this work we demonstrate that
energy cost of memory transaction also is influenced significantly by the data
values written to the DRAM or read from the DRAM. MEMPower provides
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predictions that consider the data values used in transaction as well as the
location of the transaction.

Most current discrete GPUs employ GDDR5 or GDDR5X memories [4,5].
Both employ pseudo open drain signaling (POD) [6]. In POD signaling, current
flows when transmitting a zero, while no current flow happens when transmit-
ting a one. To improve energy consumption as well as to limit the number of
simultaneously switching outputs, both types of memories use data bus inver-
sion (DBI) [7,8]. DBI encoding transmits data inverted, if that results in a lower
energy consumption and uses an extra signal line to allow the receiver to reverse
the inversion of the data, if required. POD signaling, together with DBI encod-
ing, is a source of data dependent energy consumption of the memory interface.

CMOS circuits consume dynamic power when their internal circuit nodes are
recharged to a different state. How much energy is consumed, depends on the
load capacitance of this node and the voltages. Bus wires providing long on-chip
distance routing are usually structures with high load capacitance. External off-
chip interfaces, also contain large loads in their drivers, receivers, wires as well
as parasitic package capacitances. How often each of the wires is recharged,
depends on the data and the encoding of the data transmitted over the wire.
The recharging of wires and other circuit nodes partly explains, why the energy
cost of memory transaction depends on the transmitted data.

Memory transactions are generated within the GPU cores, also called stream-
ing multiprocessors (SM). In the GTX580 GPU, the SMs are organized into
graphics processor clusters (GPCs) [9]. Each GPC contains 4 SMs. The GTX580
uses a full GF100 die with all four 4 SMs activated in each of the 4 GPCs.

This paper is structured as follows: We present related work in Sect. 2.
Section 3 describes our experimental setup including our microbenchmarks. The
following Sect. 4 shows how latency measurements can be used to discover the
mapping between memory addresses and memory channels. It also describes
the properties of the mapping and insights gained from latency measurements.
Section 5 introduces the design of the data dependent power model and evaluates
the accuracy of the model. Section 6 concludes the paper.

2 Related Work

GPUWattch [10] and GPUSimPow [11] do not take data values and locations
into account when predicting the energy cost of each memory transaction. MEM-
Power takes data values into account and thus bridges the gap between archi-
tectural simulators and slow but precise RTL power simulators.

Wattch [12] collects some activity factors related to data for some memories
and busses but does not model high performance GPUs and graphics DRAM.

Wong et al. used microbenchmarking to reveal various latency and cache
characteristics of the GT200 [13], but do not consider energy and memory chan-
nel mapping. Mei and Chu used microbenchmarks to analyze the structure of
the caches, shared memory as well as latency and throughput of the DRAM in
more recent NVidia GPUs [14].
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Table 1. GPU configuration in experimental evaluation.

Parameter Value Parameter Value

GPU cores (SMs) 16 Integer units/core 16

GPCs 4 Float units/core 32

Core clock 1.5 Ghz Memory clock 2Ghz

CUDA 6.5 Driver 343.36

3 Experimental Setup

For our experiments, we used an NVidia GTX580 GPU with a full GF100 chip
using the Fermi architecture [9]. A short overview of its parameters is provided
in Table 1. This GPU was selected for two main reasons: 1. GPGPU-Sim cur-
rently does not support more recent GPU architectures. Energy was measured
using a GPU power measurement testbed that has been described in a previous
work [11]. 2. Our previous work resulted in a data-dependent power model for
the ALUs of this GPU [3]. This work adds the missing memory power model
to enable the creation of architectural power model of the GTX580 GPU, that
includes both ALU and memory data dependent power.

In order to measure the power consumption of memory transactions we
developed custom microbenchmarks. These microbenchmarks execute the tested
memory transaction millions of times. This allows us to measure the small energy
used per transaction. In order to measure only the data dependent energy of each
transaction we measure every transaction twice: Once with the test vector and
once with a baseline vector of all ones. Then the energy consumed by the base-
line vector is subtracted to calculate the energy difference caused by the specific
test vector. Both measurements are performed at nearly the same time to ensure
that the GPU temperature stays approximately constant in both measurements
to avoid errors. Without this step GPU temperature variations could result in
different amounts of static (leakage) power.

The microbenchmarks use inline PTX assembler to generate special load
and store instructions that mostly bypass the L2 cache (ld.global.cv.u32 and
st.wt.u32). Even with these instructions, using the nvprof profiler, we detected
that multiple accesses to the same address, issued at nearly the same time, are
still combined at the DRAM. Our microbenchmark was then redesigned to avoid
this issue by making sure that the different SMs are not generating accesses to
the same location at nearly the same time. The profiler was used to verify that
our microbenchmark generates the expected number of memory transactions.
Each measurement was performed 128 times and averaged. The order of the
measurements was randomized.
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4 Memory Layout

According to NVIDIA the GTX580 features 6 different memory channels [9].
CUDA allows us to allocate space in the GDDR5 but does not provide any
control over which memory channels are used for the allocation. We suspected
that the different memory channels might have different properties in terms of
energy consumption due to different PCB layout of the memory channels as well
as internal layout GF100 differences. To use all available memory bandwidth,
allocations are typically spread over all memory channels, so that all the capacity
can be used and all memory bandwidth can be utilized. However, when we want
to measure a specific memory channel we need to identify where a specific mem-
ory location is actually allocated. As no public API is available to query that
information, we hypothesized that the differences in physical distance between
the GPU cores and the memory channels would also result in slightly differ-
ent latencies when accessing the memory. CUDA offers a special %smid register
that can be used to identify the SM executing the code and a %clock register
that allows very fine-grained time measurements. We used these two features to
measure the memory latency of reading from each location from each SM. We
measure the latency of each location 32 times and averaged our measurements to
reduce measurement noise. For each location, this results in a 16 element latency
vector, where each element of the vector shows the average memory read latency
from that SM to the memory location. We detected that the latency to the same
memory location is indeed different from different SMs and different memory
locations show different latency patterns. We noticed that the latency pattern
stays constant for 256 consecutive naturally aligned bytes. This means the gran-
ularity of the mapping from addresses to memory channels is 256 bytes, and we
only need to perform our latency measurements once for each 256 byte block to
identify the location of the whole block.

As the memory latency is not completely deterministic but changes slightly,
e.g. due to background framebuffer accesses running in parallel to the measure-
ment, all the latency vectors are slightly different. We solved this issue using
k-means clustering [15]. We initially tried to map our latency vectors into six
clusters corresponding to the six memory controllers listed in NVIDIA’s descrip-
tions of the GF100 [9]. This, however, failed to provide a plausible mapping of
the memory locations, but mapping the latency vectors into twelve clusters was
successful.

When we assume twelve clusters, all latency vectors are located close to one
of the twelve centroids and the second closest centroid is much farther away. The
number of points that gets assigned to each cluster is also approximately equal.
When we access only locations mapped to one centroid, we achieve approxi-
mately 1/12 of the bandwidth achieved, when all locations from all channels are
used. This pattern also continues if we selected larger subsets of the centroids,
e.g. selecting locations from two clusters results in 1/6 of the bandwidth. The
nvprof profiler also provides additional hints that the identified mapping is cor-
rect: Many DRAM counters are provided twice, one counter for something called
subpartition 0 and another counter for subpartition 1. If we access only locations
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from a single cluster, we notice that only one of these two performance counters
is incremented significantly, while the other counter stays very close to zero. This
indicates all locations in each of the clusters are part of the same subpartition.

Lopes et al. list six L2 Cache banks with two slices each for GTX580 [16].
The GTX580 has a 384-bit wide memory interface. Six 64-bit wide channels
together with the 8n prefetch of GDDR5 would result in a fetch-granularity
of 64 bytes per burst. Memory access patterns that only access 32 consecutive
bytes and do not touch the next 32 bytes would always overfetch 32 bytes per
transaction and would result in an effective bandwidth of less than half the peak
bandwidth. However, our experiments showed better than expected performance
for 32 byte fetches. An additional hint at 32 byte transaction is also provided
by the NVIDIA profiler, where many DRAM related performance counters are
incremented by one per 32 bytes. This indicates that the GTX580 can fetch
32 bytes at a time, which is consistent with twelve 32-bit channels. From these
findings, we estimate that the GTX580 uses six memory controllers with two
subpartitions in each controller and one 32-bit wide channel per subpartition.

As twelve is not a power of two, the GTX580 cannot simply use a few address
bits to select the memory channel. Round-robin mapping of addresses to memory
channels is conceptually simple but would require a division of the addresses by
twelve.

Figure 1 provides a graphical representation of the recovered memory map-
ping of 1 MB block of memory. Each pixel represents a 256 byte block, each of
the 64 lines represents 64 × 256B = 16 kB. The memory mapping seems to be

Fig. 1. 1 MB memory block with recovered memory channel mapping, each pixel is
equivalent to a 256 byte block
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structured, but does not use any simple round robin scheme. With this mapping
twelve consecutive 256B blocks, on average, use 10.6 different memory channels.
A simple round robin scheme would likely result in some applications having
biased memory transaction patterns that favor some memory channels over oth-
ers, which would result in a performance reduction. The mapping is likely the
output of a simple hash function, that makes it unlikely for applications to use
a biased memory access patterns by chance. Sell describes a similar scheme used
by Xbox One X Scorpio Engine [17].

We also analyzed the latency vectors (Table 2) to reveal more information
about the internal structure of the GPU. We first notice that all SMs in the
same GPC have nearly the same latency pattern for the memory channels. The
first SM in each GPC seems to have the lowest latency. The other SMs are
approximately 2, 6 and 8 cycles slower. This additional latency within the GPC
does not depend on the memory channels addressed. It is also identical for all
four GPCs. This indicates an identical layout of all four GPCs and a shared
connection of all SMs of a GPC to the main interconnect. The latency of four
memory channels is lowest at GPC1. This is also true for GPC2 and GPC3.
There are no memory channels where GPC0 provides the lowest latency. We
suspect that is the result of a layout such as shown in Fig. 2. This also matches
well with the PCB layout of a GTX580 where DRAM chips are located on 3 of
the four sides of the GF100 and the PCIe interface can be found at the bottom.
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Table 2. DRAM latency.

GPC0 GPC1 GPC2 GPC3

Added latency vs. GPC1

3.6 - 3.6 7.5

3.9 - 3.8 7.5

7.4 - 3.7 11.2

11.3 - 5.7 15.1

Added latency vs. GPC2

3.6 3.8 - 0.0

3.8 3.8 - 0.1

9.4 3.8 - 5.8

11.2 2.0 - 7.6

Added latency vs. GPC3

4.0 7.6 4.0 -

3.9 7.7 3.9 -

3.9 9.5 5.9 -

3.8 9.6 5.7 -



MEMPower 201

5 Data-Dependent Energy Consumption

As already described in the introduction, we expect two main reasons for data
dependent energy consumption: 1. Special signaling lines such as the GDDR5
DQ lines with additional energy consumption at a certain signal level. 2. State
changes of wires and other circuit nodes. Our model allows a fast and simple
evaluation, for this reason, we selected a simple linear model. Every memory
transaction is mapped to a small vector that describes the relevant properties
of the block. A dot product of this vector with a coefficient vector results in
the estimated energy consumption for this transaction. The coefficient vector is
calculated in a calibration process.

SM GPC L2
DRAM
Ctrl.

DRAM

? ? ? 32

Fig. 3. Memory datapath

The following properties of the block are used to estimate the energy con-
sumption. We model signal level related energy consumption by including the
population count of the block. The population count is the number of set bits.
We also need to estimate the amount of recharging of internal wires and circuitry
caused by the transaction. Memory transactions travel through several units and
various connections until they finally reach the DRAM. A simplified diagram is
shown in Fig. 3. We know that the transaction travels through a 32-bit wide
interface between DRAM and memory controller. Unless a reordering of bits is
performed, we know which bits will be transmitted through the same wire and
could cause switching activity on these wires, e.g: bits 0, 32, 64, ... are transmit-
ted on the same DQ line, bits 1, 33, 65, ... are transmitted on the next DQ line,
etc. While we know the width of the DRAM interface itself, the width of the
various internal interconnections is unknown. We assume the internal link width
are powers of two and are at least byte wide. The coefficients for all potential
link sizes are first added to the model. During the calibration of the model, the
best subset of coefficients is selected, and we indirectly gain knowledge about
the internal interconnections. Because GDDR5 memory can use DBI encoded
data, an extra version of each of the previously described coefficients is added
to our model. This second version assumes DBI encoded data.

A synthetic set of test vectors was generated to calibrate the model. The cal-
ibration test vectors are designed to span a wide range of combinations in terms
of toggles at various positions and in terms of population count. We measured
the real energy consumption of our test vectors. Initially, the model uses a larger
number of coefficients and some of these likely have no corresponding hardware
structure in the GPU. This causes a significant risk of overfitting the coeffi-
cients to our calibration measurements. We avoid this issue by using LASSO
regression as an alternative to regular least square fit [18]. Instead of fitting the
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calibration data as closely as possible LASSO also tries to reduce the number
of used coefficients and reduces their size. The hyperparameter α controls the
trade off between number and size of the coefficients and prediction error with
the calibration set.

In addition to the set of calibration vectors, we generated another set of test
vectors to validate our model. The validation vectors are generated to mimic real
application data. The vectors use various integer and floating-point data types, a
mixture of random distributions with different parameters was used to generate
realistic data. Real application data is often also highly correlated, some test
vectors used a Gaussian process to provide correlated data.

Figure 4 shows the prediction error at various values of α. α = 0.007 results
in the smallest error in the validation set for store transaction. Smaller values of
α overfit the calibration set, while larger values discard important coefficients.
Table 3 shows the coefficients, it should be noted that the coefficients were cal-
culated per 512 bitflips for numerical reasons. None of the DBI coefficients are
used, which indicates that the GPU is not using DBI encoding for stores. The
largest coefficient corresponds to a 32 byte wide link. Coefficients for 4 and 8

Fig. 4. Store access prediction accuracy vs. α

Table 3. 128B transaction coefficients

Store
Coefficient DBI Value (nJ)

Const No 7.631
Pop Cnt. No -3.060
Pop Cnt. Yes -0.551
Toggle 1 No 0.031
Toggle 1 Yes 0.036
Toggle 2 No 0.013
Toggle 2 Yes 0.025
Toggle 4 No 0.933
Toggle 4 Yes 0.084
Toggle 8 No 0.810
Toggle 8 Yes -0.035
Toggle 16 No 2.276
Toggle 16 Yes 0.042
Toggle 32 No 9.354
Toggle 32 Yes 0.156
Toggle 64 No 5.169
Toggle 64 Yes 0.132

Load
Coefficient DBI Value (nJ)

Const No 9.001
Pop Cnt. No -3.905
Pop Cnt. Yes -0.491
Toggle 1 No 0.009
Toggle 1 Yes -0.005
Toggle 2 No 0.011
Toggle 2 Yes -0.018
Toggle 4 No 1.676
Toggle 4 Yes 0.000
Toggle 8 No 0.435
Toggle 8 Yes -0.004
Toggle 16 No 1.021
Toggle 16 Yes 0.000
Toggle 32 No 7.446
Toggle 32 Yes 0.020
Toggle 64 No 9.919
Toggle 64 Yes 1.872
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Fig. 5. MEMPower energy prediction for store access

byte wide links are small. Narrow 1 or 2 byte wide links are not employed. The
large coefficient for a 64 byte wide link could be linked to SM internal power
consumption, as the SMs use 16 wide SIMD units with 32-bits per unit.

The heatmap in Fig. 5 shows the prediction accuracy of our model for 128
byte store transactions. If the model would offer perfect prediction all points
would be on the dashed white line. However, all our predictions are very close
to the line which indicate a great prediction accuracy. Our RMS error is 0.39 nJ
and the relative error is just 3.1%. Smaller transactions use different coefficients,
results are not shown here because of the limited space. But one interesting result
is that register values from disabled threads influence the energy consumption.
Likely these register values are still transmitted through parts of the interconnect
but marked as inactive. Taking data values into account instead of assuming a
constant average energy per transaction improves the prediction error from an
average error of 1.7 nJ to a error of just 0.39 nJ.

Figure 6 shows the prediction accuracy of our load model. In general, the
model achieves a good prediction accuracy of 9.1% but tends to underestimate
the energy required for cheaper transactions. Our load kernel achieves a signif-
icantly lower bandwidth than the store kernel as it will not send the next load
transaction before the last transaction returned, while stores will be pipelined.
The lower bandwidth results in a reduced signal to noise ratio of the measure-
ments. The load coefficients printed in Table 3 indicate that load transaction are
employing DBI encoding. Error improves from 2.3 nJ to 1.43 nJ.
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Fig. 6. MEMPower energy prediction for read access

Fig. 7. Normalized memory channel energy consumption
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We combined the microbenchmarks with the memory channel identification
technique from Sect. 4 to check for energy differences between different memory
channels and SMs. We tested the first SM from each GPC and used simplified
test vectors to check for changes of our most important coefficients. The nor-
malized results are shown in Fig. 7. We detected only small differences between
the different SMs, however, the blue coefficient for switching activity on a 4 byte
wide bus shows a large variance between different memory channels. Memory
transactions to channels 8 to 11 are significantly cheaper than memory transac-
tions on Channels 0 to 3 and 5 to 7. Memory transactions on Channels 3 and
4 are more expensive. As these results are consistent for all four GPCs, these
differences are likely the result of slightly different PCB layout of the different
memory channels instead of chip internal routing.

6 Conclusion

In this paper, we have presented the MEMPower power model for GPU memory
transactions. Our contributions can be summarized as follows:

– We presented a novel technique to identify in which memory channel a specific
memory address is located.

– Our microbenchmarks uncovered previously unknown architectural details of
GF100-based GPUs.

– We show that memory channels are not completely identical, but differ in
latency and energy consumption.

– The MEMPower model improves the energy predictions accuracy by on aver-
age 37.8% for loads compared to non-data dependent models and provides a
77.1% improvement on our validation set for stores.

At peak bandwidth data dependent changes to energy can influence the total
power consumption of the GTX580 GPU by more than 25 W or around 10% of
the total power. Future Work includes software and hardware techniques to
reduce the energy consumption. Common but expensive data patterns could be
recoded to patterns with reduced energy consumption. As memory transactions
are significantly more expensive than simple ALU operations, even software solu-
tions could be beneficial. Programmer control over data allocation could allow
rarely used data to be placed in memory channels with costlier memory access
and often used data in memory channels with reduced energy consumption.

Acknowledgements. This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 688759
(Project LPGPU2). A prior version of this work is part of the first author’s defended,
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Abstract. As throughputs of digital networks and memory interfaces
are on a constant rise, there is a need for ever-faster implementations of
error-detecting codes. Cyclic redundancy checks (CRC) are a common
and widely used type of codes to ensure consistency or detect accidental
changes of transferred data. We propose a novel FPGA architecture for
the computation of the CRC values designed for general high-speed data
transfers. Its key feature is allowing a processing of multiple independent
data packets (transactions) in each clock cycle, what is a necessity for
achieving high overall throughput on very wide data buses. The proposed
approach can be effectively used in Ethernet MACs for different speeds,
in Hybrid Memory Cube (HMC) controller, and in many other technolo-
gies utilizing any kind of CRC. Experimental results confirm that the
proposed architecture enables reaching an effective throughput sufficient
for utilization in multi-terabit Ethernet networks (over 2 Tbps or over
3000 Mpps) on a single Xilinx UltraScale+ FPGA. Furthermore, a bet-
ter utilization of FPGA resources is achieved compared to existing CRC
implementation for HMC controller (up to 70% savings).

Keywords: FPGA · CRC · High-speed processing · Ethernet · HMC

1 Introduction

The Cyclic Redundancy Check (CRC) codes are widely deployed in digital com-
munications and storage systems to detect accidental error introduced into data.
The binary data are divided into transactions (packets) and each transaction is
subjected to a CRC which results in a fixed-length binary check sequence. The
computed check sequence value is then attached to the original data to deter-
mine its correctness. After being transferred/processed, the data are subject to
the same CRC computation one more time and the new result is compared with
the older attached CRC value. In case of a match, the data transaction is most
likely not corrupted. Because of their simple implementation in hardware and
good characteristics, the utilization of CRCs is very popular [5,6].

c© Springer Nature Switzerland AG 2019
M. Schoeberl et al. (Eds.): ARCS 2019, LNCS 11479, pp. 211–223, 2019.
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The computation of CRC codes is based on the remainder of a polynomial
division where coefficients are elements of the finite field GF (2). There are many
different CRC codes, each defined by a specific dividing polynomial and output
(code) width. The mathematical background of CRC and forms of its hardware
representation have been extensively studied in various works like [10,11,13] and
is not the primary focus of this paper. All we need to know is that an approach
capable of processing multiple input bits in parallel exists and is based on XOR
equations set up for each output bit. A specific set of these equations (CRC
table) can be easily constructed for any given dividing polynomial and input data
word width. Furthermore, multiple results of these CRC tables can be aggregated
(accumulated) together to obtain code value of longer data transaction.

Although basic CRC computation can be easily represented, practical pro-
cessing of high-speed data is much harder. The data packets usually have variable
lengths and are not completely aligned with data bus words. Unaligned ends and
starts must be handled correctly, which requires additional logic and more com-
plex architecture than a single CRC table. Furthermore, as the data bus width is
growing to raise throughput, transfers of multiple packets per clock cycle (data
bus word) must be supported. This challenge must be addressed in practical
high-speed CRC implementation and that is indeed the main focus of our work.

We propose a novel FPGA architecture for practical computation of CRC
codes for general high-speed transfers of data packets with variable lengths. The
architecture enables effective computation of multiple values per clock cycle in
a single pipeline thus allows handling of multiple packets in each data bus word.
Furthermore, it supports configurable pipelining (before synthesis) so optimal
tradeoff between frequency (throughput) and utilized resources can be selected.
When fully pipelined, the CRC architecture achieves unprecedented throughput
of over 2 Tbps or 3000 millions of packets per second (Mpps) in a single FPGA.

2 Related Work

The mathematical background of CRC computation has been extensively stud-
ied in many previous works like [7,10,11,13] and it is not the focus of this paper.
Rather, we want to use the results and proposed effective hardware represen-
tation of basic CRC calculations from these papers as primary constructional
blocks of a new architecture. However, the challenge of practical high-speed
CRC computation for variable-length data packets is more complicated.

Some attempts to address this additional challenges are made in [4]. Archi-
tectures arranging basic CRC calculation into more complex structures are pro-
posed to enable processing of unaligned packets ending. However, the proposed
architectures are shown to scale well only up to throughputs around 10 Gbps
(256 b wide bus) what is insufficient for current high-speed data handling.

More advanced general CRC implementations are described in many papers
like [1,3,15]. All of them use a kind of advanced pipelining and parallelization to
achieve higher frequencies (throughputs) than other simpler solutions. The Eth-
ernet CRC-32 implementations by these architectures use input data widths of
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64 to 512 bits and can run at hundreds of MHz. This leads to reported through-
puts sufficient for wire-speed traffic processing of up to 100 Gbps Ethernet. But
scaling for higher speeds is not properly addressed in any of these works and
would bring exponential growth in required FPGA area or significant degrada-
tion of effective throughput on short packets (i.e. data rate limited by packet
rate). Furthermore, the extension of these architectures to allow multiple packets
per clock cycle (i.e. sufficiently increasing their packet rate) would be non-trivial.

Interesting CRC architecture [8,9] uses pipelining similar to the above works
to achieve high throughput and focuses primarily on reconfigurability of CRC
polynomial, but it also partially addresses the challenge of limited packet rate on
short packets. The architecture can process parts of two subsequent packets in a
single clock cycle (data bus word). A maximal throughput of 40 Gbps reported
in the paper can be thus easily scaled up to 100 or even 200 Gbps. But because
the parallel processing is structurally limited to only two packet parts, further
scaling would again hit the same obstacles as mentioned above.

Fastest commercially available CRC architecture is part of Ethernet MAC
IP core [14]. In the product description, its authors claim to be able to achieve
up to 400 Gbps line-rate processing of packets using only a small portion of
FPGA area. But no throughput measurements nor exact resource requirements
are provided to back up those claims. Furthermore, any details about their CRC
architecture or its parameters (e.g. frequency, data bus width) are also lacking.

3 Architecture Design

Here we describe the proposed CRC architecture. First, data bus format with
multiple packets per clock cycle is defined. This is crucial for efficient scaling
above 100 Gbps. After that, basic utilized CRC computing blocks are introduced.
Finally, the architecture itself is presented in serial and parallel versions.

3.1 Input Bus Format

To enable multiple packets per clock cycle, we define the input data bus word
format as illustrated in Fig. 1. The figure also shows an example of possible
packet placement under the proposed format. One should notice that without
the support of multiple packets per clock cycle, each of the depicted data frames
should occupy separate word on the bus (5 words would be required), but word
sharing enables more dense packing (only 3 words are needed in the example).
The proposed bus format is shown at the bottom of the figure, each data word is
divided into several regions. These restrain the maximum number of data packets
per word as at most one packet can start and one end (can be a different one) in
each region. Each region is further separated into multiple blocks of basic data
elements (items) to constraint possible positioning of packet starts. Notice that
each packet must start aligned with the start of a block, but can end on any
data element (packets A and B both end in the middle of a block).
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To support the described bus format, additional metadata must accompany
each data word. For each region the following information must be given:

– a flag for the presence of a packet start (SOP),
– a flag for the presence of a packet end (EOP),
– a position of packet start if present (SOP POS),
– a position of packet end if present (EOP POS).

Fig. 1. Data bus format illustration. Fig. 2. CRC end realizations possibilities.

The proposed data word format enables definitions of multiple bus versions with
different parameters. We describe them by these four attributes:

– Number of regions (n) match the maximal number of packets per word.
– Region size (r) defines the number of blocks in a region.
– Block size (b) states the number of elements in a block.
– Element width (e) defines the size of the smallest piece of data in bits.

Using these attributes, we derive bus word width in bits like dw = n× r× b× e.

3.2 CRC Computation Blocks

In both versions of the proposed architecture, we utilize 4 basic computational
units: (1) basic CRC table for fixed input width, (2) accumulation logic capable
of aggregating multiple intermediate CRCs, (3) correction of input data based on
packet start position, and (4) finalization of CRC based on packet end position.

As already mentioned in the Introduction, based on given dividing polyno-
mial and input width a specific implementation of basic CRC table can be
easily generated [13]. It has a form of parallel XOR equations on input bits, one
equation for each output (code) bit. In FPGAs, these XORs are implemented
in LUTs. The CRC table basically only converts the input data word into an
intermediary CRC code value without regard to packet borders.

Specific CRC accumulation can be similarly generated for any polynomial.
It has a form of parallel XOR equations and it aggregates two or more interme-
diary CRC values computed from separate parts of data (e.g. by CRC tables).
This enables to divide handling of longer data packets in multiple smaller steps.
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Correction of CRC start based on packet position can be achieved by mask-
ing – the part of the input before packet start is filled with zeros. CRC com-
putations are based on XOR operations and zero is a neutral value for them
(0 xora = a for any a). Therefore, it is possible to show that extension of any
data by prepending any number of leading zeros has no effect on computed CRC
value, which remains the same as for original data [7]. Note, that also the initial
(intermediary) value of CRC register must be shifted and applied accordingly.

Finally, correct handling of CRC end is a bit more complicated. Masking
similar to start correction cannot be directly applied, as appending trailing zeros
to data will change the computed CRC value. A workaround is to use a barrel-
shifter to shift the last data part so that the end of the packet is aligned with
the end of the region. This way, the masking operation is converted from trailing
zeros into leading zeros and can be applied in the same way as in CRC start.
Another possible type of approach is to utilize some arrangement of multiple
smaller CRC tables [4]. Illustration of these arrangements for 32 bit wide region
and e = 8 are shown in Fig. 2. On the left, we can see a serial version, where
multiple tables are pipelined each processing one input data element and correct
output code is selected afterward based on packet end position. In the middle,
there is a parallel version, where each possible position of the end has its own
accordingly wide table. These basic approaches do not scale well for wider data
buses – depth of the pipeline (critical path) in (a) or amount of resources in (b).
To issue the scaling challenge a more sophisticated approach illustrated as (c)
can be used. Each pipeline step corresponds to one layer of a binary search tree
and performs CRC computation with a gradually halving table width which
can be applied or bypassed. The binary tree is evaluated for a given packet end
position (MUX ctrl) and bypass multiplexors at each pipeline step are controlled
accordingly. At the end an implicit CRC finalization table with width e is present.
For example, for the computation of 24 bit long packet end only the middle 8 bit
table is bypassed, and for 16 bit end the top 16 bit table is bypassed.

Thanks to division and encapsulation of all basic CRC computations into
the described blocks, the subsequently designed architecture will be general and
easily usable for any given division polynomial. Because, the change of the poly-
nomial only requires re-generation of used CRC tables (XOR equations) in these
blocks and will not affect structure of the whole architecture.

3.3 Serial and Parallel Architectures

Both versions of the proposed CRC architecture divide processing of input data
word between n submodules – one for each region. Each submodule can process
an independent packet in each clock cycle or they can cooperate together and
handle longer packets. Serial and parallel version differ primarily in the distribu-
tion of intermediate CRC values between these submodules. Figure 3 shows top
level structure of the serial implementation. One region of the input bus (width
rw = r× b× e) is connected to each submodule. The submodule calculates final
CRC value if an end of the packet is present in his part of input bus. To support
cooperation on longer packets, each submodule is passing its intermediate CRC
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Fig. 3. Serial top level architecture. Fig. 4. Serial submodule internal structure.

result to the next submodule. The last submodule is passing its result to the
first over a register, so the calculation can continue in the next data bus word.

In Fig. 4 we can see internal structure of one serial submodule. It is composed
of several logic stages and optional registers for better timing. Base CRC table
of width rw is used as a core computational block and handling of corrections
required for starting, ending or continuing packets is realized by multiple separate
blocks around it. They are controlled by metadata about packet positioning in
the assigned region of the bus. The CRC start block masks input data before
the packet start so that subsequent base CRC calculation is performed correctly
for starting packets. If no start of a packet is present, the input data word is not
altered. If a packet continuing from the previous words is present in the input
data, the output value of CRC table is aggregated with an intermediate CRC
value from the previous submodule in accumulation block. Otherwise (starting
packet), the input CRC value is masked and no aggregation is performed – only
locally computed result is passed. The output of accumulation block is used as
intermediate CRC value on the input of the next submodule. Finally, CRC end
block performs CRC calculation for packets ending in data region assigned to
this submodule. When the whole packet data (start and end) are present in the
region of this submodule, the final CRC value is calculated only from masked
input data. Otherwise, output CRC value is calculated from the intermediate
result from the previous submodule and unaltered input data.

The serial implementation has a weak point – long critical path from the out-
put of the CRC register, through CRC aggregation in all submodules, and back
to the register (Fig. 3). This critical path cannot be resolved using pipelining
as correct CRC intermediate value must be present in the register when pro-
cessing of the next word starts. That is why, we propose the parallel version of
CRC aggregation. In Fig. 5 we can see that, the output value of CRC submod-
ule is shared with each subsequent submodule not just with the next one. In
Fig. 6 we can see internal structure of CRC submodule accommodated for the
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parallel aggregation. There are several major changes present. The output value
of CRC accumulation block now serves only for the final CRC calculation in the
CRC end block of the next submodule. So, the intermediate CRC results are
not accumulated in steps through the whole pipeline of submodules. Now, each
CRC accumulation block must independently aggregate intermediate CRC val-
ues from all previous submodules including value stored in the top-level register.
The other parts of the parallel implementation remain the same as in the serial
one. This version has significantly improved critical path and allows to achieve
much higher operating frequencies. On the other hand, it requires considerably
more logic resources as more complicated CRC accumulation modules are used.

Fig. 5. Parallel top level architecture. Fig. 6. Parallel submodule internal structure.

4 Measured Results

We evaluate the proposed CRC architecture in two high-speed cases: Ethernet
networks and HMC controller. CRC ensures consistency of data packets in both
cases, but different polynomials are used. A detailed evaluation is performed
for the networking case, where effects of various architecture parameters are
explored. In HMC case we directly select the best configurations and compare
them with existing CRC implementation in the OpenHMC controller.

4.1 Ethernet Based Networks

Ethernet uses CRC with the CRC-32 division polynomial [6] as a frames check
sequence. As already discussed in the Related Work, published architectures
can be effectively used for Ethernet traffic processing at speeds up to 200 Gbps
and commercially available solutions promise throughputs of up to 400 Gbps.
Their scaling towards higher speeds is limited by insufficient packet rates on
the shortest packets for wider data buses. The proposed architecture addresses
exactly this issue and should be able to scale well even at higher throughputs.
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When adjusting the proposed architecture for Ethernet, the parameters of
the bus format should be configured to appropriate values. Ethernet operates
with bytes (octets) as the smallest data elements – therefore e = 8. Lower layers
of Ethernet (PCS/PMA layers) usually operate with frame starts aligned at
8 B lanes – so b = 8 is convenient. Size of a region should correspond with the
size of the smallest allowed packets (64 B) – so r = 64/b = 8. Smaller regions
would needlessly allow more packets per word than possible and larger regions
would reduce bus saturation for the shortest packets. Using these attributes
(r = b = e = 8) and considering the shortest packets to be 64 B long, the bus
format impose no more than b− 1 = 7 bytes of alignment overhead per packet.
Furthermore, as lower layers of Ethernet operate with larger overhead per packet
(20 B of preamble and IFG), our bus enables us to achieve effective throughput
sufficient for wire-speed processing of Ethernet packets even in the worst case.
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Fig. 7. Throughput and logic of S-S.
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Fig. 8. Throughput and logic of S-T.
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Fig. 9. Throughput and logic of P-S.
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Fig. 10. Throughput and logic of P-T.

Evaluation for Ethernet compares four versions of the proposed architecture:
(1) S-S – serial architecture with shifter CRC end, (2) S-T – serial architecture
with tree CRC end, (3) P-S – parallel architecture with shifter CRC end, and (4)
P-T – parallel architecture with tree CRC end. For each, we measure results for
different data bus widths (dw = 512, 1024, 2048, 4096) and various combinations
of pipeline registers. In all cases, we use data bus parameters r = b = e = 8 that
are sufficient for wire-speed processing of even the shortest frames, only the value
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of n is changing with the width of the bus. The results of all the combinations
form the state space of CRC implementations with different throughput, working
frequency, latency and resource usage. All values are obtained for the Xilinx
Virtex-7 XCVH870T or UltraScale+ XCVU7P FPGAs using the Vivado 2017.3.

Figures 7, 8, 9, and 10 compare the four versions of Ethernet CRC archi-
tecture. They show resource utilization and achieved throughput on the Ultra-
Scale+ FPGA. Each point represents one specific implementation with a differ-
ent combination of parameters (data width and pipeline enabling). The resources
utilization linearly increases with the achieved throughput in both parallel ver-
sions (Figs. 9 and 10). Unfortunately, in both serial versions (Figs. 7 and 8) the
resources increase considerably faster with throughput. In the case of the P-S
and the P-T implementations, we are able to reach effective throughputs of well
over 2 Tbps (over 3000 Mpps). Achieved throughputs for the S-S and the S-T
implementations are notably worse while the used resources remain similarly
high. This is because the serial CRC generators reach notably lower frequencies
due to an expected longer critical path.
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Fig. 11. Throughput and latency of S-S.
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Fig. 12. Throughput and latency of S-T.
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Fig. 13. Throughput and latency of P-S.

0 500 1000 1500 2000 2500
0

10

20

30

40

50

Input bus throughput [Gbps]

La
te

nc
y 

[n
s]

512b, US+
1024b, US+
2048b, US+
4096b, US+

Fig. 14. Throughput and latency of P-T.

Figures 11, 12, 13, and 14 bring the latency into the picture. Generally, the
latency depends on the number of enabled pipeline registers in CRC implemen-
tations and achieved working frequency. From the graphs, we can see that the
latencies of the serial implementations are increasing notably as the achieved
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throughput (word width) is rising. On the other hand, the latencies of the paral-
lel implementations remain approximately within the same bounds. This is again
due to the higher frequency of parallel implementations even for wider buses.

Figure 15 shows the evaluated four versions of Ethernet CRC implementa-
tions together. Only Pareto optimal set of results in resource utilization and
achieved throughput space is selected for each implementation version. From the
graph, we can more clearly see the difference between the serial (dashed lines)
and the parallel (full lines) implementations in achieved throughput. The par-
allel implementations are able to reach the effective throughput of over 2 Tbps,
while the serial implementations cannot reach significantly more than 600 Gbps.
Furthermore, parallel-tree has slightly better resource utilization than parallel-
shifter.

Figure 16 shows Pareto optimal results of latency to achieved throughput
for the four evaluated versions of Ethernet CRC implementations. Again, we
can see the notable difference between the serial (dashed lines) and the parallel
(full lines) implementations. The latency of the serial implementations steeply
increases with the throughput (bus width), but the latency of parallel implemen-
tations raises only rather slowly. Better parallel implementation version in terms
of latency is the parallel-shifter one. This is due to smaller number of registers
in CRC end module for shifter version compared to tree version.

Figure 17 compares results between different FPGAs – magenta for the Ultra-
Scale+ and blue for the Virtex-7 FPGA. It shows the best parallel implemen-
tations in resource utilization to achieved throughput space. To compensate for
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Fig. 15. Best throughput× logic results.
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Fig. 16. Best throughput× latency results.
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the 1.5-2 times lower achieved frequencies on the Virtex-7 chip compared to the
UltraScale+, nearly 2 times larger implementations must be used when trying
to achieve the same throughputs. The stairs in the graphs are caused by the
changing data bus width. Finally, Fig. 18 compares latencies of the best parallel
implementations of Ethernet CRC generator between different FPGAs. Again,
we can see the positive effect of the higher frequencies and sparser registering
on the UltraScale+, where the latency is nearly 2 times better.

4.2 OpenHMC Controller

Hybrid Memory Cube (HMC) is a high-performance RAM interface that uses a
32 bit version of CRC with the CRC-32K (Koopman) division polynomial [2,12].
Again, an appropriate adjustment of the data bus format parameters should be
considered first. HMC operates with data divided into 128 bit wide ‘flits’ as the
smallest data elements, therefore e = 128. Each data transaction (packet) is a
continuous sequence of 1 or more flits, so r = b = 1. Finally, the number of
regions n depends on the width of the memory interface, commonly used widths
are 4, 6 or 8 flits. This kind of bus arrangement leads to a considerably simplified
computation in each submodule. As packets start and end only aligned to the
region borders, CRC start and CRC end blocks are not needed.

Table 1. Comparison of OpenHMC CRC implementation to the proposed.

Bus width Implementation LUTs FFs Fmax

512 OpenHMC 4988 2477 700MHz

proposed 2262 1858 807MHz

768 OpenHMC 12071 3778 594MHz

proposed 3935 2791 802MHz

1024 OpenHMC 23599 5125 517MHz

proposed 6340 3728 798MHz

An existing opensource controller implementation of HMC interface is called
OpenHMC controller [2]. It utilizes its own specific implementation of CRC
architecture capable of handling multiple flits per clock cycle. The CRC imple-
mentation is a critical part of the whole controller, as it consumes the majority
of all FPGA logic required. We compare this default implementation to our pro-
posed CRC architecture in the parallel version for different data widths. The
results for the UltraScale+ FPGA are provided in the Table 1. While our archi-
tecture is configured to have the same latency and throughput as the OpenHMC
default CRC implementation, a clear difference in resource utilization is visible.
Our implementation requires less than half of the logic and around 75% of regis-
ters for 512 b (4 flits) wide bus. Resource saving increases even further for wider
data buses, up to only a quarter of logic and around 70% of registers. Achieved
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frequency is also better in our implementations, it especially scales considerably
better with rising bus width compared to default OpenHMC implementation.

5 Conclusion

This paper introduces and elaborates a novel FPGA architecture of general CRC
computation that enables achieving very high processing throughputs. The pro-
posed architecture is able to process multiple packets per clock cycle and offers
good scalability even for very wide data buses. Thanks to a well defined and
configurable structure, the architecture can be easily adjusted for CRC compu-
tation based on any given polynomial. Furthermore, we can optimize achieved
parameters for specific application requirements in terms of processing latency,
FPGA resources utilization, and total computational throughput.

Our experimental evaluation shows, that when computing CRC (FCS) for
Ethernet frames in high-speed networks the proposed concept enables to achieve
unprecedented wire-speed throughput. At a cost of just a few percents of total
resources available in a single UltraScale+ FPGA, the achieved throughput can
be as high as 2.4 Tbps (over 3500 Mpps). That is, to our knowledge, consider-
ably higher than in any other published work. It is especially thanks to favorable
frequency scaling of the designed parallel version of the proposed architecture.
The second part of the measurements shows results of our CRC architecture
adjusted for high-speed HMC interface. Our approach achieves much better
results than default CRC implementation inside OpenHMC controller in terms
of both resources as well as frequency (throughput). For the same data width
(number of parallel flits), we can save up to 73% logic and 27% registers.

The proposed architecture has been verified in simulations and is also cur-
rently tested on a real FPGA as part of our semi-finished implementation of
400 GbE MAC. As part of our future work, we want to propose a feasible app-
roach to high-speed RS-FEC computation in a single FPGA. RS-FEC is based
on similar mathematical principles as CRC (finite fields) and is required part of
400G Ethernet implementation.
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Abstract. FPGAs are rapidly gaining traction in the domain of HPC
thanks to the advent of FPGA-friendly data-flow workloads, as well
as their flexibility and energy efficiency. However, these devices pose a
new challenge in terms of how to better support their communications,
since standard protocols are known to hinder their performance greatly
either by requiring CPU intervention or consuming excessive FPGA
logic. Hence, the community is moving towards custom-made solutions.
This paper analyses an optimization to our custom, reliable, intercon-
nect with connectionless transport—a mechanism to register and track
inbound RDMA communication at the receive-side. This way, it provides
completion notifications directly to the remote node which saves a round-
trip latency. The entire mechanism is designed to sit within the fabric
of the FPGA, requiring no software intervention. Our solution is able to
reduce the latency of a receive operation by around 20% for small mes-
sage sizes (4 KB) over a single hop (longer distances would experience
even higher improvement). Results from synthesis over a wide parameter
range confirm this optimization is scalable both in terms of the number of
concurrent outstanding RDMA operations, and the maximum message
size.

Keywords: FPGA · Transport layer · Micro-architecture · Reliability

1 Introduction

The use of FPGAs as the main compute element within HPC systems is becom-
ing very attractive, as we are seeing burgeoning demands from potentially com-
munication bound workloads such as Deep Learning. These workloads are well
suited to FPGA based architectures as they can use data-flow style process-
ing [11], and are capable of leveraging custom data types (lower precision than
floating-point). One of the key issues towards the uptake of FPGAs for HPC is
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the need to truly decouple the FPGA resources from the host CPU [1,16]. This
way, the FPGA will be able to communicate with other FPGA resources directly,
rather than having to initiate transactions via the CPU, which will dramatically
reduce the latency of communications and better facilitate data-flow style pro-
cessing among FPGAs. In theory this is relatively simple, and IP cores are avail-
able and can be readily used to provide Ethernet based communications within
the fabric of the FPGA. Unfortunately these existing solutions are unsuited for
HPC, due to the requirements for high reliability in the network. Packet drop-
ping is simply not an option within HPC environments, as guarantee of delivery
is required. Leveraging these IPs with a TCP stack is not really feasible since it
would require either either a software implementation (running in the CPU) or
a full hardware-offloaded solution. The former is antithetical to our requirement
that the FPGA acts as an independent peer on the network. The latter is also
inappropriate due to high resource consumption and limited scalability due to
its connection-based nature. In prior work [2,9] we discussed in greater detail
why traditional network protocols are unsuited for FPGA-based HPC systems,
and presented a Network Interface (NI) to enable FPGA based communication
using RDMA (Remote Direct Memory Access) and NUMA (Non-Uniform Mem-
ory Access) type communications over a custom HPC network protocol. Our NI
is leveraged along with our custom FPGA-based switch design [2], which lowers
area and power overheads by means of a geographic addressing scheme.

The main contribution in this work is the presentation of a micro-
architectural design which provides a significant enhancement in the architecture
over the preliminary RDMA infrastructure presented in [9]. RDMA is a tech-
nique for transferring data to remote nodes which frees the CPU to perform
useful work while network transactions are in progress, and is supported in the
majority of high performance interconnection networks today. We enhance the
performance of receive operations in our system by tracking incoming RDMA
transfers in order to provide a receive side notification upon completion. Thus
avoiding the round trip latency for the ACK, required for sender-side notifica-
tions. We show results of a send and receive operation using varying message
sizes and show that the latency of small messages can be improved significantly.
Our results show that we are able to scale the mechanism out to a large number
of outstanding DMA operations, and achieve a latency reduction of up to 20%
on small RDMA operations over a single hop distance.

Our mechanism is able to handle out-of-order packet delivery, maintaining
a fully connectionless (datagram based) approach to the transport layer, and
enabling the use of fully adaptive routing at packet level granularity within the
network. A connectionless approach is essential to provide full decoupling of CPU
and FPGA resources. Managing connection state information and the associated
retransmission buffers is complex [10]. This is prohibitively expensive to imple-
ment within the FPGA fabric, given that the amount of Block RAM is limited
(around 35 Mb on the Zynq Ultrascale+ [17]). This is particularly true in a HPC
context where the number of outstanding connections may be very large. This is
the main reason why reliability is typically offered as a software solution; because
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the complexity of offloading is too great when rapid connection setup/teardown
is required, especially for large number of concurrent connections. We argue for
a connectionless approach for just this reason, to reduce the area overhead of the
transport layer, and increase the scalability by reducing the information required
in the NIC. For example, we need no retransmission buffering for RDMA, and
push the responsibility for flow control into the network. As well as this, having
the ability to route packets adaptively (as our switch design does [2]) presents the
opportunity for much better load balancing within the network and enhanced
fault tolerance due to the ability to properly utilize path-diversity [3].

2 Related Work

Our earlier work [9] has shown that traditional protocols such as Ethernet and
Infiniband are unsuitable for use in FPGA based HPC systems, due to perfor-
mance and area concerns respectively. We therefore propose the use of a cus-
tom protocol in order to avoid some of the issues with traditional networking
stacks. Likewise, the majority of solutions for offering reliable communications
in FPGAs are also unsuitable for our needs. This is because they typically rely
on software mechanisms to enable retransmission, or hold connection states. We
argue that a connectionless approach is necessary in order to enable accelera-
tors to communicate directly with one another without CPU involvement (a key
requirement for harnessing the potential of FPGAs within a HPC context [16]),
and that hardware offloading of the whole transport mechanism is the only way
to achieve this.

There are several FPGA based TCP-offload engines available commercially
such as [12] and [13]. TCP offloading aims to either offload fully or partially the
functionality of the TCP protocol into hardware. They are often touted as a good
solution to the performance issues associated with the TCP/IP software stack.
(These problems being latency issues due to excessive memory copying and con-
text switching etc.) However, the TCP stack is very complex, and as such fully
offloading the transport layer to hardware is very difficult, particularly for FPGA
implementations. The majority of solutions therefore only offload portions of the
stack to hardware such as checksumming or segmentation. To our knowledge,
the only fully hardware offloaded solutions for FPGA are used for financial trad-
ing. These systems are latency-critical so the solution is fully offloaded at the
expense of dramatically reduced scalability [12,13]. Obviously this is inappro-
priate in the context of HPC. In [15] a solution is proposed to overcome this
scalability issue, allowing for over 10,000 simultaneous connections. However,
this connection based approach still suffers massive memory utilization. They
require external session buffers in DRAM, amounting to 1.3 GB for 10,000 ses-
sions. Without a huge dedicated RAM for the offload engine this is extremely
wasteful in terms of both memory usage and memory bandwidth.

The Infiniband specification defines a reliable, connectionless transport [8],
but there is no actual hardware implementation. Grant et al. [5] propose a scheme
for performing RDMA transfers using “Unreliable Datagrams” in Ethernet or
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Fig. 1. Architecture of the transport layer for RDMA communications within our
custom NI.

Infiniband networks. They propose a method of using existing structures present
in the iWARP protocol [14], writing the incoming RDMA to memory as normal
at the receiver, but recording the incoming datagrams and posting to a com-
pletion queue, which indicates that segments of a full RDMA operation have
completed successfully. Their solution eliminates much of the network stack pro-
cessing but is implemented in SW and does not consider reliability.

A similar approach to ours is presented by Xirouchakis et al. [18]. It describes
the design of a system composed of a virtualized RDMA engine and mailboxes [6].
This features several key differences in design from our own. They do not describe
a method to store and retransmit shared memory operations as we do in [9]. They
rely on software-based retransmissions, meaning that accelerator logic within the
FPGA fabric is incapable of talking directly to the NI without CPU involvement.
While the authors target user-level initiation of transfers to avoid the TCP/IP
stack overheads, they still use a connection based approach, and only allow for
multiple paths to be taken at the granularity of blocks forming these connections,
not fully adaptive multipath routing and support for out-of-order delivery at the
packet level as we do [9].

3 Implementation

Figure 1 shows the architecture of our hardware-offloaded transport mechanism
for RDMA transfers. It can be seen here that both FPGA based accelerator logic
and the hard CPU are able to utilize the NIC, issuing commands and pushing
data to the network in exactly the same manner. The NIC provides reliable trans-
missions and allows for out-of-order packet reception using a connectionless app-
roach. This is split into two major separate control and data-paths, one for the
sending side and one for the receiving side. On the send side the CPU/accelerator
issues DMA operations which are then pulled by the DMA engine from the com-
mand queues. The DMA engine is currently the Xilinx CDMA IP, running in
Scatter-Gather mode. Every new operation which is pulled by the DMA engine
is logged in the DMA OP Table in the NI. This table issues an OP number for
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Fig. 2. Overlapping communication and computation by segmenting the DMA opera-
tions into smaller ones.

Fig. 3. Shows the update of the “Large Command” queue head for an operation of
1 Mb, to be split into 64K transfers.

every packet within the operation which is sent to the network and returned in
the acknowledgement, keeping a count of the number of successful transfers in a
given operation. Individual packets are tracked in the DMA Transaction Table.
This keeps a timeout for individual packets, and builds retransmission operation
entries in the event of lost/timed out or negatively acknowledged packets. Noti-
fication of completion is given locally, to let the processor know that a DMA
operation has finished sending data, and remotely, to tell the remote processor
that it has new data at a given location.

3.1 Segmentation

Due to our connnectionless approach and out-of-order delivery of packets, the
receiver needs to know when a whole operation is finished before it can begin
work on the data, as it cannot guarantee which data has arrived at which point.
Due to the importance of overlapping computation and communication for many
data-intensive workloads [4] we attempt to ameliorate the additional latency that
this imposes on the system by allowing for segmentation of large RDMA transfers
into multiple smaller ones (as in Fig. 2). Doing this is simple as the RDMA
commands issued by the CPU/accelerator pass through the NI, and information
can be captured and altered at this point. Figure 3 shows how the segmentation
mechanism works. If a given command is seen to be over a certain threshold size
it can be sent to a special “Large Transfer” queue. In this instance when the
command is processed it can be assigned a status flag in the DMA Operation
table. When an operation completes with this special status flag then no local
notification is posted; only the notification to the receiver.
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If the command is of size M, and the segment size is N, then the head of the
“Large Transfer” queue remains in place for M/N operations. The offset for the
base address and the number of bytes to be transferred are simply updated at
the head of the queue following a new segmented command being pulled by the
DMA engine (Fig. 3). Upon the issue of the last command, the special status flag
remains deasserted, so local completion notification for the original full transfer
can be formed. The threshold for the optimal maximum size of a segmented
operation is highly dependent on the structure of the application and so should
be defined by the programmer during configuration of the NI.

There is little overhead in actually performing these modifications to the
DMA commands. The DMA engine is set up in a cyclic buffer mode so it simply
posts read requests to the NIC to pull new operations into the engine. The
only difference in this instance is that the DMA engine will see a modified work
item from that which the CPU/accelerator posted to the NI. Since the DMA
engine can queue the next command to be performed internally, the new modified
command can be formed while the current operation is in flight, so no additional
latency is caused by this mechanism.

3.2 Receiver Registration

To reduce latency we track the receive side RDMA operations to provide local
completion notification, and to handle out-of-order packets. Upon receiving an
RDMA transaction, the operation can be logged in the Receive Registration
Table (see Fig. 1). It may or may not require registration depending on the
transfer size (this will be discussed further in Sect. 4). Operations are registered
by using a special entry in the “Type” field in the packet header, which is given
to the first transfer of an operation. When the receiver sees this transaction they
register the range of addresses which are expected from the whole operation.

Out-of-order packet delivery is handled here by creating an escape channel
for any packets which currently have not had a table entry created. Until the first
packet has arrived any out-of-order packets which arrived first will be put in the
escape channel in order not to stall the pipeline. We are able to do this because
the data that enters the NI is written to memory in a store-and-forward fashion.
The data cannot be allowed to enter into memory until a CRC has confirmed
the validity of the packet, so there is an (X cycles) latency corresponding to the
number of flits within the packet. In this time we are able to drain the previous
packet into the escape channel.

Once the first packet associated with the DMA is seen, registration of the
operation is completed and a mask is used to determine when all corresponding
packets have been received for the operation, and to drop duplicates. An initial
mask is required to account for the fact that an operation may be smaller than
the maximum possible registered operation (Maskbitwidth×Packetsize). This
mask is created by a barrel shifter which uses a field in the header of the first
packet of the operation, which denotes the number of expected packets. We shift
in zeroes to form the appropriate initial operation state. A single 1 is added
to the end of this process (as the first packet must have arrived to begin this
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Fig. 4. Creating the bitmask for the new dma data, to check for duplicates and com-
pletion status.

registration process). For example, if we assume a 4 KB operation, a 16 KB
mask size and a packet size of 512 B, the initial mask after registration would be
‘b1111 1111 1111 1111 1111 1111 0000 0001 (8 packets are needed and the first
one is received).

3.3 Receiver Notification and Duplicate Data

Every time a new packet arrives the table is checked in order to determine
whether any existing entry matches with the new packet. This is done by calcu-
lating whether the incoming destination is within the range of the entry currently
being checked. If there is no corresponding entry in the table then the data is
sent to the escape channel, and an associated timer is started. If this times out
then the packet and its associated data is dropped. This timeout can happen
for two reasons: (i) The packet is a duplicate and the corresponding operation
has already completed. The packet is rightfully dropped as the operation has
completed and been removed from the table of active operations. In this case
dropping the packet is safe because the previous packet must have sent a correct
acknowledgement back to the sender. (ii) The first packet in the operation is
severely delayed or lost in the network, so registration never happens. In this case
dropping the packet is safe because the sender will have received no acknowl-
edgement or negative acknowledgement, and will itself time out and retransmit
the packet. In the event that data is found to correspond to an entry in the table,
but is a duplicate, the data can be safely dropped straight away and there is no
need for the timer.

Figure 4 shows how the mask is updated upon receiving a new packet. If the
table entry being checked is found to match the incoming data, then it proceeds
to create a new mask. The base address of the entry and the number of bytes of
the operation are used to calculate whether the operation being checked in the
table relates to the new packet arriving. An offset is then created for a barrel
shifter, which generates a mask to cause a bit flip. If the mask is found to be
all 1’s then the operation must be completed. If Newmask == Originalmask
then the packet must be a duplicate and can be dropped.

Once a full operation has been completed the receiver is notified locally of
the RDMA operation, which saves a full round-trip packet latency compared to
waiting for the sender to provide a completion notification upon receiving the last
acknowledgment (see Fig. 5). The notification is currently sent to a queue which
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Fig. 5. Time for send and receive operations to complete for registered and unregistered
transfers.

can be polled by the receiver. Doing this allows for a non-blocking or a blocking
receive to be performed in the application. Polling the notification queue when
empty returns a special default value. This can be used to effectively create a
spin-lock in the software, only returning from the blocking receive function when
the notification has indeed been posted, and the return value is not equal to the
default value.

3.4 Non-Registered Operations

There may be points where either registering an operation is unnecessary, or is
not sensible given the number of communications (for example in a many-to-one
collective involving many nodes). In this case the operation remains unregistered
and we must suffer the additional round trip latency for acknowledgement. How-
ever, in this case there is no need to track and handle duplicate packets, or out-of-
order delivery. The addresses of the packets which form the DMA operations are
simply memory locations within a global virtual address space (described in [7]),
it does not matter if this memory location is overwritten, because the acknowl-
edgement for the operation happens only once all the corresponding packets
have been acknowledged to the sender. We provide strong ECC protection for
ACK packets so that they will only be lost or corrupted in the most exceptional
circumstances. If packets arrive out-of-order then they are simply written to the
correct place in memory regardless, as the packet has a base address associated
with it, which is formed in the DMA engine at the sender.

4 Evaluation

The Network Interface, and thus all the components shown and discussed in
Sect. 3 are implemented completely within the fabric of the FPGA. For all eval-
uation within this Section we use the Xilinx Zynq Ultrascale+ ZCU102 devel-
opment board (part number EK-U1-ZCU102-G). The test setup is shown in
Fig. 6. There are two entirely segregated datapaths within the FPGA, emulat-
ing completely the action of a distributed setup except we implement the send
node’s IP and the receiving node’s IP within a single FPGA. We have shown
in previous work communication over a complete networked solution includ-
ing the router/switch [2,9], but in order to more accurately measure time, we
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Fig. 6. Experimental setup on the Zynq Ultrascale+ FPGA.

use a loopback setup. Using the NIC in conjunction with the switch allows for
a much higher number of connections to/from a single node. The processing
system contains four hard-core ARM-A53 processors, as well as cache-coherent
interconnect, IOMMU, DRAM controller etc, while the programmable logic is
just that; the FPGA fabric of the device. It can be seen that the current DMA
engine is the Xilinx CDMA IP, and we use Aurora PHY IP to enable 10G line-
rate across the links. This IP is used simply to perform serialization and 64/66b
line encoding/decoding, and does not wrap the packet using any other proto-
col. The frequency of all components implemented within the FPGA fabric is
156.25 MHz. The processing system runs at 1GHz.

4.1 Latency of Send and Receive Operations

In order to balance the requirements for low latency transfers with reduced
area overheads, only a limited range of message size for registration is required.
Figure 7 shows the results of an experiment to show the performance benefits
of registered receive side transactions. This shows the latency for the transfer
of data and notification of completion in a user-space application for a single
hop transfer. The latency of the send operation is the time taken to configure
the DMA engine from user-space, and for notification to be received at the
sender that the DMA engine has pushed all the data into the network. The
measurement we take is thus for a non-blocking send, for the data to simply
enter the network. A blocking send operation would have higher latency than
the registered receive operation since it must wait for the last ACK to arrive.
The latency of receive operations are measured from the time the sender begins
to initialize the transfer, until the receiver gets notification that the DMA data
is placed in memory, either by local notification from the NI (Registered), or as
a notification packet from the sender.

As shown in Fig. 7, the latency of a receive operation for a 1 KB transfer is
around 5.23µs, and for a registered receive is only 4.21µs, cutting ≈20% from
the latency of the receive side being notified of the transaction. We also see that
the performance gains from this registration technique diminish with transfer
size and become insignificant at around 32 KB. At much larger transfers the
measured latency for send/recv/registered recv are very similar, as is seen in the
convergence of the results in Fig. 7. This is because the extra round trip latency
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Fig. 7. Latency of a send/recv operation over a single hop distance.

is dwarfed by the overall transfer time for the data. What this means in practice
is that registered transactions will only show significant benefits within a certain
range of smaller message sizes. Although this is dependent on the distance from
the destination and the network load (affecting latency). As the distance between
source and destination increase, or the load of the network goes up, we would see
larger and larger message sizes be able to benefit from receive side registration.
The distance between sender and receiver can be worked out easily owing to the
geographical routing scheme which we employ [2], so adjusting the threshold for
registration based upon this would be trivial. However, dynamically adjusting
these thresholds based upon the network load may be very difficult and be
potentially very wasteful of resources.

4.2 Area of Receiver Registration Module

Clearly there will be high variability in the performance gains of registering the
receive side operations, depending on the distance of communications. It there-
fore seems appropriate to perform a parameter sweep for various configurations
of number of simultaneous outstanding operations the node can handle, and the
largest possible size of operation for receiver registration. Table 1 shows the area
utilization of the Receive Registration module (shown in Fig. 1), under differing
configurations. We consider bitmasks for between 32 KB and 512 KB, using a
packet size of 512B–a small packet size is used to ease congestion and help with
load balancing. We vary the number of outstanding operations (table entries)
between 64 and 1024.

The results show that varying the maximum DMA operation size for reg-
istration has little effect on the number of LUTs. This is because the logic to
decode/encode the mask is not significant, compared with other components in
the module. The number of BRAMs jumps considerably at certain boundaries,
which is due to the odd bit width of the table entries. Effectively this creates a
scenario where we can gain “free” entries to the table because of the fixed size
BRAMs being utilized more efficiently. It is also worth noting that the number
of BRAMs for the smallest 64 × 64 configuration does not correspond to the
utilization of the table. This is because the storage for the data in the escape
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Table 1. Area utilization (% total) for various combinations of max packet size and
table depth. Total LUTs = 274080, total BRAMs = 912.

Bitmask vector size

64 (32KB) 128 (64KB) 256 (128KB) 512 (256KB) 1024 (512KB)

LUT BRAM LUT BRAM LUT BRAM LUT BRAM LUT BRAM

Table size 64 2230
(0.81)

47
(5.15)

2936
(1.07)

49
(5.37)

4286
(1.56)

53
(5.81)

6589
(2.40)

60
(6.58)

11072
(4.04)

74
(8.11)

128 2282
(0.83)

47
(5.15)

2942
(1.07)

49
(5.37)

4289
(1.56)

53
(5.81)

6501
(2.37)

60
(6.58)

11092
(4.04)

74
(8.11)

256 2266
(0.82)

47
(5.15)

2973
(1.08)

49
(5.37)

4366
(1.59)

53
(5.81)

6842
(2.49)

60
(6.58)

11124
(4.05)

74
(8.11)

512 2298
(0.84)

47
(5.15)

2974
(1.08)

49
(5.37)

4367
(1.59)

53
(5.81)

6843
(2.49)

60
(6.58)

10965
(4.00)

74
(8.11)

1024 2273
(0.83)

47
(5.15)

2976
(1.09)

52
(5.70)

4363
(1.59)

57.5
(6.30)

6575
(2.39)

68
(7.45)

11088
(4.04)

89.5
(9.81)

channel is set to enable 64 full packets to be held in the NI. This uses 43 BRAMs,
which is why we still see a baseline for the BRAM utilization at this small con-
figuration. Although this value is highly acceptable, and not prohibitive for the
implementation of accelerators in combination with our NI, with the largest pos-
sible configuration only requiring 10% of the total BRAMs, and uses no DSP
slices, which are key for performing efficient floating point arithmetic.

5 Conclusions

In this paper we have presented an optimization for the hardware-offloaded
transport layer of an FPGA based Network Interface. A micro-architecture is
presented which allows for the receiver of an RDMA operation to register the
operation, thereby enabling receive side notification upon completion of the oper-
ation. We show that for small RDMA operations the latency of the receive oper-
ation can be reduced by ≈20%. This can be leveraged with a method of segment-
ing large DMA operations into a number of smaller ones, thereby enabling us
to maintain a connectionless (datagram based) approach to our transport layer,
while allowing communication and computation to overlap. The connectionless
approach maintains scalability of the system, and allows for fully adaptive rout-
ing at packet level granularity, giving better load-balancing properties to the
network.

We provide an analysis of the area utilization of various configurations of the
receive-side registration module, and show that, due to the fixed sized BRAMs
and the odd bit-width of table entries, certain configurations make better use of
the BRAMs. In the most aggressive implementation, the total BRAM use of the
receive registration module is below 10% of the available, whereas the number
of LUTs is around 4%. More reasonable configurations lower these to around
6% and 1.5%, respectively. Hence, the overall area utilization is very acceptable,
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leaving plenty for use by accelerator blocks etc. Particularly when noting that
our implementation does not utilize any DSP blocks on the FPGA.
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Abstract. Convolutional Neural Networks (CNNs) require highly par-
allel Hardware (HW) accelerators in the form of Graphical Processing
Units (GPUs), Application Specific Integrated Circuits (ASICs) or Field
Programmable Gate Arrays (FPGAs) to build low latency solutions nec-
essary for implementing image processing applications. FPGAs have the
ability to provide a right balance between flexibility, performance and
energy efficiency. The design of FPGA based accelerator design tradi-
tionally required a tedious Register Transfer Level (RTL) design flow
process. To improve design productivity, the proposed work uses High-
Level Synthesis (HLS), described in OpenCL, to generate the FPGA
bitstream for the CNN model. The 2D Winograd transformation is inte-
grated in the pipeline to reduce the overall number of Multiply and Accu-
mulate (MAC) operations in the CNN. Instead of increasing the batch
size to improve the throughput, this work discusses a mixed precision
approach which can counter the limited memory bandwidth issue within
the CNN. The obtained results are competitive against other FPGA
based implementations proposed in literature. The proposed accelera-
tor can achieve more than 1.9× higher energy efficiency compared to an
embedded Nvidia Jetson TX1 implementation of VGG-16.

Keywords: FPGA · CNN · Winograd transform · HLS · Quantization

1 Introduction

In the last few years, Deep Learning has emerged as the most promising app-
roach for solving problems in various fields like image classification [1], video
classification [2], object detection [3], speech recognition [4] and natural lan-
guage processing [5]. CNNs are biologically inspired algorithms which are able to
detect prominent features and provide an output as image classification or object
detection. Previously in the field of computer vision, hard-coded algorithms were
required for image processing. Over the years, popular CNN architectures like
AlexNet [1], VGG-16 [6], ResNet-152 [7] have increased the classification accu-
racy and further serve as feature extractors for well known object detectors such
as SSD [8] or FCN [9]. This makes the CNN a promising candidate for computer
c© Springer Nature Switzerland AG 2019
M. Schoeberl et al. (Eds.): ARCS 2019, LNCS 11479, pp. 236–249, 2019.
https://doi.org/10.1007/978-3-030-18656-2_18
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vision applications. However, the improved prediction accuracy of CNNs comes
at the expense of higher computational and memory demand. The state-of-the-
art CNN architectures require millions of training parameters and billions of
operations to process one single image. For instance, AlexNet [1] requires more
than 1.4 billion Floating-Point Operations (FLOPs) to process a single image
and produces a Top-1 accuracy of 57.6% on ImageNet 12 validation dataset.
Whereas, ResNet-152 [7] takes more than 22.6 GFLOP and produces a Top-1
accuracy of 77%. Caziani et al. [10] show that the inference time and model
accuracy follows a hyperbolic relationship as small increment in accuracy results
in lot of computation time. The computational demand for image segmentation
and scene labelling tasks is even higher. Therefore, deployment of CNN infer-
ence task on the right HW platform and applying HW friendly optimization
techniques are really important.

The hardware accelerators such as GPUs, FPGAs and ASICs are commonly
used to accelerate CNNs. The GPU is the most common choice among these
accelerators because of its high compute capability and memory bandwidth.
However, the model deployment using GPUs is costly and energy inefficient,
which is a major concern in low power embedded and real-time applications.
On the other extreme end, ASIC design can achieve high throughput with lower
power consumption. However, it requires long development time and offers less
flexibility compared to other solutions. The re-configurable hardware in the form
of an FPGA is another potential alternative which can accelerate the existing
CNNs and provide a balance between performance, energy efficiency and flexi-
bility. The conventional FPGA design flow requires a hardware design method-
ology, which involves programming in VHSIC Hardware Description Language
(VHDL) or Verilog making it difficult to design and debug. Complicated accel-
erator designs such as CNNs would result in higher time to market. The intro-
duction of HLS tools enables the developers to program the FPGA in high-level
languages such as C++ or OpenCL to accelerate the development process.

This work places importance to both FPGA accelerator design and network
level optimization methods for obtaining higher performance and energy effi-
ciency compared to the state-of-the-art approaches. For this purpose, WinoCNN,
a CNN based FPGA accelerator design is proposed, which can reduce the high
compute and memory demand by leveraging the Winograd convolution and
mixed precision approach. The main contribution of this work is the design
of flexible FPGA accelerator which can support different kinds of optimization
methods for different CNN layers to reduce internal pipeline stalls and improve
the overall performance. Section 2 discusses about related work concerning var-
ious quantization techniques and FPGA based accelerator designs. Section 3
describes about the Winograd fast convolution algorithm, mixed precision app-
roach and the proposed accelerator design. Section 4 evaluates the performance
of the accelerator on various CNN models like VGG-16 and FCN-8s.
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2 Related Work

The existing CNN models are computationally expensive and memory intensive,
preventing their deployment in devices with low memory resources or in applica-
tions with strict latency requirements. On one side, there are improvements on
applying optimization techniques to CNN models and on the other side there are
on-going efforts to develop specialized hardware architectures to suite compute
requirements of CNNs.

The most common method to deploy CNN models on embedded or low power
hardware platforms is to approximate them using low precision data types with
minimum accuracy loss, without needing to re-train the model. Using quantiza-
tion methods, weights, activations, biases are represented with smaller bit width
and the complexity of MAC operation is reduced. Popular CNN approxima-
tion framework named Ristretto by Gysel et al. [11], converts the weights and
activations in Caffe-based neural networks to fixed-point format. It has the abil-
ity to automatically determine the number of integer, fractional bits and scale
factors for weights and activations of each layer, which is necessary to avoid
serious degradation of the resulting classification accuracy. The authors are able
to quantize AlexNet to 8-bit weights and activations with an accuracy drop well
below 1%. Binarized Neural Networks proposed by Courbariaux et al. [12] con-
verts both weights and activations to binary format. This effectively replaces
the power hungry MAC operation to an XNOR and popcount operation. The
work by Rastegari et al. [13], investigate larger CNN models like AlexNet using
XNOR Networks. However, the accuracy degradation is still visible. In this work,
a mixed precision approach adopting 16-bit weights and activations in convolu-
tional layers, binary weights for Fully Connected (FC) layers is adopted in order
to tackle the accuracy degradation and decrease the demand for external memory
bandwidth and local memory requirement for FC layers.

Many FPGA based accelerator designs have been proposed in the literature
to accelerate CNN models. In order to accelerate both convolutional and FC lay-
ers, high performance computing libraries such as NVIDIA’s cuBLAS in GPU
and Intel’s MKL in CPU are used during inference and leverage the conventional
Matrix Multiplication (MM) representation resulting in transformation of filters
and input feature maps. The work proposed by Suda et al. [14], adopts similar
MM approach to FPGA based CNN implementation. They flatten the filters,
rearrange the input feature maps and output maps are thereby calculated using
matrix multiplication. The matrix multiply approach comes at an expense of
data duplication of input feature maps and filters. Thus, MM approach finally
ends up being memory bounded and throughput limited especially in FPGA
platforms. Zhang et al. [15] show that the data duplication can result upto 25×
more DRAM memory access for AlexNet. Thus, they propose an FPGA based
CNN accelerator Caffeine adapting a convolutional MM representation. Caffeine
converts the FC layers to convolutional MM representation, which is compati-
ble with both convolutional and FC layers. Additionally, they have integrated
the accelerator with a Deep Learning framework Caffe on Xilinx KU060 FPGA.
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Wang et al. proposed PipeCNN in [16], which is an OpenCL based CNN accel-
erator using similar approach as [15]. They employ a sliding window based data
buffering scheme to maximize the data reuse and reduce the number of external
memory accesses. They further reduce the demand for external memory band-
width by fusing CNN operations like convolution, max pooling without the need
to store inter layer results back. This framework can be further deployed in wide
number of FPGA devices just by changing few compile hardware parameters.

Winograd minimal filter algorithm and Fast Fourier Transformation (FFT)
are well known algorithms to accelerate the convolution operation resulting
in Element Wise Matrix Multiplication (EWMM) in their respective domains.
Compared to traditional convolutions and Winograd, FFT is more efficient with
kernel size greater than 5. The complexity of the FFT depends on the size of the
output feature map and becomes ineffective for smaller filter sizes [17]. The work
by Zhang et al. [18] propose an FFT based CNN accelerator design using overlap
and add method to further reduce the arithmetic complexity and perform well
on small filter sizes. Aydonat et al. [19] accelerate AlexNet using OpenCL based
Deep Learning Accelerator (DLA) using 1-D Winograd transform to reduce the
arithmetic complexity in convolutional layers and thus achieves higher perfor-
mance. DLA performs multiplications using half precision 16-bit floating point
weights, activations and stores the intermediate input feature maps in local mem-
ory to improve the performance.

As the current trend of deep CNN topologies such as FCN-8s use small fil-
ters and more convolutional layers, the proposed accelerator in this work uses
2D Winograd algorithm to reduce the number of multiplications by 2.25× in the
convolutional layers. As the computational demand in the convolutional layers is
high, the amount of logic and buffer sizes required for the intermediate Winograd
transformation is decided using design space exploration to avoid intermediate
stalls in the pipeline. The previous CNN based FPGA accelerators in the liter-
ature simultaneously classify multiple images grouped as a batch to reuse the
filters of each layer. As a result, the global memory accesses significantly reduces
and further increases the throughput per image. In low latency applications
like in the field of autonomous driving, there is significantly less advantage by
implementing batch parallelism. Thus, accelerator design in this work is strictly
limited to batch size of 1 and leverages the mixed precision approach.

3 Methodology

3.1 Winograd Convolution

The traditional convolution usually works by sliding the filters across an input
activation. As an alternative, convolution can be implemented more efficiently
using Winograd algorithm by reducing the number of MAC operations which was
generalized for CNNs by Lavin et al. [20]. The traditional convolution computes
every output feature map separately, whereas 2D Winograd convolution gener-
ates output maps in tiles. It reduces the number of multiplication by reusing
the intermediate outputs and is suitable for small kernel size and stride values.
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The work in [20] demonstrates that the Winograd algorithm using F(2×2, 3×3)
has the ability to produce theoretical speed up of 2.25× and F(4 × 4, 3 × 3) can
produce a speed up of 4×. Nevertheless, it introduces intermediate transforma-
tion which can be computed using addition, subtraction and bit shift operations.
Winograd convolution follows a four stage approach (a) Input transform (b) Ker-
nel transform (c) Element wise multiplication in Winograd domain (d) Inverse
Winograd transform of the output feature maps.

The proposed accelerator uses 2D Winograd Convolution F (2 × 2, 3 × 3),
where the generated output tile size is 2 × 2 and the filter size is 3 × 3. The
required input tile size is 4 × 4 (4 = 3 + 2 − 1). The output of the Winograd
convolution can be expressed as shown in Eq. 1. Here g and b are input activation
and filter before Winograd transform respectively.

Y = AT
[
GT gG � BT bB

]
A (1)

For F (2 × 2, 3 × 3), the constant matrices required for transformations G, B,
and A are expressed in Eq. 2. The element wise multiplications are performed
using the DSP blocks in FPGA and the input transformations are computed on
FPGA logic.

G =

⎡
⎢⎢⎢⎣

1 0 0
1
2

1
2

1
2

1
2 − 1

2
1
2

0 0 1

⎤
⎥⎥⎥⎦B =

⎡
⎢⎢⎣

1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

⎤
⎥⎥⎦A =

⎡
⎢⎢⎣

1 0
1 1
1 −1
0 −1

⎤
⎥⎥⎦ (2)

This work performs the weight transformations during the compile time and
stores the transformed weights in the external DRAM to save additional logic
utilization. However, it comes with an expense of extra local memory utilization.
It is also challenging to implement Winograd convolutions using low precision
integers. Each transformed input feature map is obtained after 4 addition/-
subtraction operations. Thus, the intermediate transformations could result in
overflows to the transformed matrices and can affect the overall model accu-
racy. As an example, performing Winograd convolution with 8-bit activations
and weights, is effectively equivalent to performing a traditional convolution
with 6-bit activations and 8-bit weights. In this case, the Winograd layers must
be retrained to avoid accuracy degradation. However, proposed accelerator in
this work considers only 16-bit weights and activations to perform Winograd
convolutions.

3.2 Mixed Precision Approach

Unlike the convolutional layers, the FC layers do not share the weights and
typically require higher off-chip memory bandwidth. Thus, the mixed precision
approach is leveraged to reduce the pipeline stalls. The mixed precision approach
leverages the 16-bit weights in the convolutional layers and binary weights in
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the FC layer. The training procedure for mixed precision approach is similar to
the proposed Binary Weight Network proposed in [13]. The training procedure
for VGG-16 is demonstrated in the Algorithm 1. In each iteration of training,
there are three steps; 1. forward propagation, 2. backward propagation and 3.
parameter update. In the forward propagation, the weights of only FC layers
are binarized as shown in lines 1–7. In case of VGG-16, the layer 14 to 16 are
FC layers as shown in line 2. In the backward propagation, the gradients of the
binarized weights are calculated in line 8. In the parameter update phase, the
calculated gradients are updated to full precision weights of the FC layers as
line 9.

The mixed precision approach decreases the demand of external memory
bandwidth as the weights are reduced from 16-bit to 1-bit. The FC layers with
16-bit weights demand higher local memory which remains unused for the convo-
lutional layers. Thus, the mixed precision approach can also be adopted to avoid
the higher local memory demand. As the binary weights are leveraged, the out-
put of the FC layers can be performed using additions/subtraction operations.
The compute units of mixed precision approach can be mapped to FPGA logic.

Algorithm 1. Training the FC layers of CNN model with binary weights
Input: Minibatch of training dataset with Images, labels, predictions (I, Y, Y ), cost
function C(Y, Y ), time step t, current full precision weights W t and learning rate ηt

Output: updated full precision weights W t+1, FC layers with binary weights W b
fc and

learning rate ηt+1

1: Binarizing the FC layers:
2: for i = 14 to 16 do
3: Weightmean ← Mean(W t

i )
4: for kth weight ith layer do
5: W b

ik ← sign(W t
ik)

6: W b
ik ← W b

ik × Weightmean

7: Y ← Forward(I, W t, W b
fc)

8: ∂C
∂Wt

, ∂C

∂W b
fc

← Backward(I, W t, W b
fc)

9: W t+1 ← UpdateParameter(W t, ∂C
∂Wt

, ∂C
∂Wf cb

, ηt)

10: ηt+1 ← UpdateLearningRate(ηt, t)

3.3 WinoCNN Accelerator Design

The high level architecture description of the proposed WinoCNN accelerator is
presented in Fig. 1, which can accelerate large variety of layers in CNN models.
WinoCNN consists of a set of OpenCL kernels which can be interconnected
using Intel’s OpenCL extension channels. Four of the subsystems are directly
connected to the external DDR which can fetch the input feature maps, weights
and write back the layer outputs using high throughput data streams of different
bandwidth. WinoCNN accelerator involves design parameters like convolution
group n, parallelization factors Mvec and Dvec, quantzation Q which effect the
utilization of local memory, compute units and logic.
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Fig. 1. High level architecture design of WinoCNN described in OpenCL.

The Local Response Normalization (LRN) subsystem directly fetches the
features from the DDR, normalizes them and sends it back again to the DDR.
It is isolated from the pipeline as the LRN operation can be started only after
computing all the output feature maps of a particular layer. Each layer of the
CNN fetches the input feature maps and stores it in the input buffer. Since the
neighbouring output of the convolution operations share input features, one can
leverage the data reuse opportunity. The convolution can be performed in groups
and the input features required for one group can be buffered. The corresponding
features are sent either to the Winograd transform units or directly to the com-
pute units of the convolution system when input maps do not need Winograd
transformation. This is particularly useful when kernel size of the convolutional
layer is not 3×3. The Winograd transformation units in the WinoCNN accelera-
tor are limited to 3×3 kernel size. Winograd transformation stages are bypassed
for layers with non 3 × 3 kernel sizes such as 1 × 1, 4 × 4, 5 × 5, 7 × 7 and reg-
ular convolution bypassing Winograd transformations is performed. The input
buffer system is also capable to rearrange the input and pad additional zeros
in between and across the borders when the layer is required to perform the
transpose convolution.

The weight buffer system fetches the required weights from the external DDR
and provides it to the compute units of the convolution system. The size of the
interconnect between the DDR and weight buffer is naturally higher than the
size of the input buffer interconnect, as more number of weights are required to
calculate an output tile than input feature maps. Due to the limited external
memory bandwidth of FPGAs, the input and weights are first cached to the
local memory before being fed to the compute units of the convolution system.
Thus, the double buffers are helpful which are operated in a pipelined manner
to make sure data transfer and computation does not overlap. The Winograd
transformation for the weights are performed at compile time after the training
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phase to prevent additional logic utilization on FPGA. However, it has a limita-
tion of additional local memory requirement as the kernel size is increased from
3 × 3 to 4 × 4.

WinoCNN also provides an option of computing the convolution with binary
weights. As an example, in VGG-16, the weights due to FC layer contribute 90%
of the overall CNN’s weights of the CNN. Further, the amount of local memory
allocated to the weight buffer depends on the amount of weights in FC6. Thus,
most of the local memory remains unused for other CNN layers. This problem
can be prevented by leveraging binary weights for the FC layers resulting in
minimal accuracy loss. On the hardware side, separate weight buffer could be
used to perform binary convolutions.

When the Winograd convolution mode is desired, the input feature maps
must undergo Winograd transformation before feeding it to the compute units.
For this sake, the Winograd transform kernel buffers array of 4 × 4 tiles of
input feature maps. Since the input Winograd transformation consists of only
addition and subtraction operations, additional DSP blocks are not required and
the complete transformation can be implemented in logic. Using additional local
memory replication of buffered input feature maps, the Winograd transformation
of all the 16 elements can be performed in parallel. This would obviously result
in higher Block RAM (BRAM) utilization due to the limited number of read
and write ports of M20K block1. The transformed input features are stored in
a buffer before passing it to the compute units to implement the data flow in a
pipelined manner.

The most compute intensive unit is the Compute Unit kernel which can per-
form convolution or element wise multiplications. It contains several processing
elements which get mapped to the underlying DSP blocks of the FPGA, per-
forming fixed-point multiplications. Each DSP block can perform two 8-bit or
16-bit multiplications on Arria-10 FPGA platform. If desired, these processing
elements can be leveraged for computation of FC layers. As mixed precision
approach performs binary convolutions in the fully connected layers, dedicated
compute units which can perform multiplication operation with 16-bit and 1-bit
operands are synthesized on logic.

Apart from these kernels, other OpenCL kernels responsible for pooling, LRN
and an output kernel for writing back the layer outputs to the DDR are included.
Pooling kernel is flexible to perform down sampling for both Winograd and tile
based convolution outputs. CNN topologies like AlexNet can leverage the LRN
kernel. Output kernel is responsible to transfer the outputs of convolution/Pool-
ing kernel to DDR. It can also perform the functionality of fuse layer, whereby
output of the previously generated layer must be added to the output generated
by the current layer. This feature is required for fuse layers of FCN-8s.

1 Each M20K block of Arria 10 consists of 3 read ports and 1 write port. Double
pumping is possible with 2 × clock frequency.
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4 Experimental Results

4.1 Case Study: VGG-16

The mixed precision model is retrained on ImageNet dataset by initializing the
convolutional layers with pretrained full precision weights and FC layers are
initialized using Gaussian distribution with zero mean and 0.005 standard devi-
ation. ImageNet is a large-scale dataset from ILSVRC challenge [21]. The train-
ing dataset contains 1000 classes and 1.2 million images. The validation dataset
contains 50,000 images, 50 images per class. The classification performance is
reported using Top-1 and Top-5 accuracy. Top-1 accuracy measures the pro-
portion of correctly-labeled images. If one of the five labels with the largest
probability is a correct label, then this image is considered to have a correct
label for Top-5 accuracy. The validation accuracy of the mixed precision app-
roach is compared with different fixed-point implementations in the convolution
layers and also the full precision implementation of VGG-16 in Table 1. There is
no accuracy degradation with more than 18× reduction in weights compared to
the full precision model after retraining. The mixed precision approach cannot
be used in the case of FCN-8s as it does not use FC layers.

Table 1. Accuracy comparison of mixed precision VGG-16.

Precision Conv
layer weights

Precision FC
layer weights

Top-1
accuracy

Top-5
accuracy

Parameters

32-bit float 32-bit float 68.08% 88.00% 560 MB

32-bit float Binary 69.85% 89.65% 72 MB

16-bit fixed Binary 69.56% 89.40% 44MB

8-bit fixed Binary 69.24% 89.12% 30 MB

VGG-16 consists of 13 convolutional layers with 3×3 kernels. Since WinoCNN
is based on F(2 × 2, 3 × 3) Winograd algorithm, there is scope for increase in
throughput for 13 convolutional layers because they can leverage the Winograd
convolutions. The remaining three layers can use binary weights to avoid the
higher local memory demand. The effect of Mvec and Dvec (parallelization fac-
tors) is investigated in terms of resource utilization and performance for VGG-16
with mixed precision quantization. The Table 2 discusses the HW resource uti-
lization and throughput for mixed precision VGG-16 using WinoCNN. To sum-
marize, using Winograd convolutions and mixed precision approach, an overall
throughput of 24img/sec with a batch size of 1 is achieved for VGG-16.

4.2 Case Study: FCN-8s

The semantic segmentation on Cityscapes dataset [22] is evaluated using FCN-
8s architecture. VGG-16 is used as the feature detector and additional layers
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Table 2. Resource consumption of mixed precision VGG-16 implementation.

Parallelization
Mvec × Dvec

Throughput
measurement (ms)

BRAM usage DSP
usage

Logic
(ALM)

16 × 16 121.83 1.561 MB/6.6 MB 12% 28%

16 × 32 71.15 2.42 MB/6.6 MB 20% 45%

16 × 64 41.766 5.44 MB/6.6 MB 37% 61%

are added for up-sampling the image. The convolutional layers are initialized
with the weights obtained for ImageNet classification and the upsampling layers
are trained in an iterative manner as [9]. The Intersection over Union (IOU) is
an essential metric which calculates the number of pixels overlapped between
ground truth labels and the obtained predictions. The IOU score is evaluated
for each class in the dataset separately and finally mean Intersection over Union
(mIOU) is obtained by taking average over all the IOU values. The mIOU are
compared for different quantizations in Table 3.

Table 3. Comparing mIOU for FCN-8s with different quantizations.

Precision mIOU Parameters

32-bit float 61.0% 537 MB

16-bit fixed 59.8% 269 MB

8-bit fixed 58.4% 134 MB

The proposed FCN-8s in [9] consists of more than 102M training parameters
and demands more than 52.6 billion MAC operations to execute the FC6 layer.
As the kernel size is not 3 × 3, WinoCNN accelerator cannot leverage Winograd
algorithm. Further, this layer demands 6.4 MB of local memory only for weight
buffer with Mvec = 16, Dvec = 64 and Q = 16. The local memory in the form of
BRAMs are also leveraged for input buffer and Winograd transformations. Thus,
the kernel size is changed from 7 × 7 to 3 × 3 in FC6 layer and modified version
of FCN-8s is retrained. The 7 × 7 kernel is observed to be too large and results
in redundancy for Cityscapes dataset as a similar accuracy is achieved with
3 × 3 kernel. The computations of the last upscore layer have been reduced by
upsampling with a factor of 2 instead of 8. This change would result in a smaller
segmentation output with dimension 128×256. The input of modified FCN-8s is
512×1024 image and output is 128×256. The overall computational complexity
of modified FCN-8s is 358 GOP. For Mvec = 16, Dvec = 64, Q = 16, we obtain
a throughput of 494 ms on Arria10 GX FPGA to perform inference using the
modified version of FCN-8s. The theoretical and practical inference times in ms
is presented for FCN-8s with various degrees of parallelization factors (Mvec and
Dvec) in Fig. 2. The theoretical values are obtained after realizing a similar kind
of roof-line model in [15] for WinoCNN.
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Fig. 2. Throughput comparison of 16-bit FCN-8s for different parallelization schemes.

4.3 Comparision with Related Work

The best performance results obtained from WinoCNN for VGG-16 is compared
with the state-of-the-art FPGA accelerators in Table 4. The overall performance
is calculated in Giga Operations Per Second (GOPS) by dividing the computa-
tional complexity of CNN architecture in GOP and inference time. The proposed
accelerator design extracts the best performance per DSP block and also offers
best performance for VGG-16 while there is further scope for increase in per-
formance with the future release of Altera Offline Compiler (AOC) compiler.
Currently, the DSP utilization is less than 40% and still delivers best perfor-
mance for VGG-16. We also present the performance results without Winograd
convolution and Mixed Precision quantization for VGG-16 indicating as “Non
Optimal”. The work in [19] applies 1-D Winograd on AlexNet using Arria-10
FPGA with float-16 as their quantization scheme. They achieve 6.89× better
performance than WinoCNN as they use Winograd algorithm for all the con-
volutional layers with maximum DSP utilization. Further, they were using a
batch size of 96 for FC layers. The obtained result is reported for FCN-8s also
in Table 4. GPU delivers better throughput for VGG-16 (5.2×) compared to the
proposed accelerator design. However, the power consumption is an important
parameter for real-time and embedded applications. WinoCNN dominates by
a factor of 1.8× in VGG-16 compared to the full precision GPU implementa-
tion in terms of energy efficiency measured in (GOPS/Watt). WinoCNN also
achieves 1.9× better energy efficiency than full precision embedded GPU Jet-
son TX1 implementation for VGG-16. The energy efficiency comparison against
Jetson TX1 is based on the results produced by Caziani et al. [10]. The power
consumption on Arria 10 GX development kit is measured using the MAX V
device on board which communicates with host using JTAG bus. There is also
standalone application for power monitoring GUI which measures power across
various power rails.
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Table 4. Performance comparison with state-of-the-art FPGA accelerators for different
VGG-16.

Work FPGA

platform

CNN model Batch

size

Quantization

scheme

Overall

performance

GOPS

Performance

per DSP

GOPS/DSPa

Ours Arria-10

GX 1150

FCN-8s 1 16-bit fixed 724.692 1.36

Ours Arria-10

GX 1150

VGG-16 1 Mixed precision 742.478 1.47

Non

optimal

Arria-10

GX 1150

VGG-16 1 16-bit fixed 286.416 0.56

[14] Stratix-V

GSD8

VGG-16 1 16-bit fixed 117.9 0.11

[18] QuickAssist

QPI

VGG-16

conv

1 32-bit Float 123.48 0.55

[15] Ultrascale

KU060

VGG-16 32 16-bit fixed 266 0.66

[15] Virtex 690t VGG-16 32 16-bit fixed 354 0.16

[23] Arria-10 GX

1150

VGG-16 1 16-bit fixed 645.25 0.424

GPU Nvidia-TitanX VGG-16 1 32-bit float 3722 -

Embedded

GPU

Nvidia-Jetson

TX1

VGG-16 1 32-bit float 172 -

a Arria-10 consists of 1536 DSP elements. Only 37% of the DSP blocks are leveraged with the current

release of AOC compiler.

5 Conclusion

This work uses OpenCL to describe the CNN based FPGA accelerator and
reduces overall design time. The Winograd based fast convolutional algorithm is
leveraged for kernel size of 3 × 3 to decrease the number of MAC operations by
2.25× and thereby achieving close to theoretical speed up values on FPGA. The
reuse of filter weights, feature maps is maximized to perform the convolution for
a given channel and decrease the amount of DRAM access. The buffered feature
maps are also parallely used for computing outputs from various channels. The
Intel OpenCL channels have been efficiently used to fuse various operations of a
layer such as Winograd transformations, convolution and pooling.

The performance bottlenecks caused by the fully connected layers have been
identified in VGG-16 due to higher external memory bandwidth demand. As the
fully connected layers consist of 90% of the weights in VGG-16, they demand for
higher on chip memory which remains unused for other convolutional layers and
thus limits the amount of parallelism in accelerator design. Thus, the pipeline
stalls have been reduced by introducing a mixed precision approach with no
accuracy loss in VGG-16. This approach uses binary weights and higher preci-
sion activations leveraging the dedicated on chip memory and compute logic on
FPGA. With these HW and SW optimizations, WinoCNN achieves 1.8× better
energy efficiency than full precision implementation of Nvidia-Titan X. Finally,
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a practical application like semantic segmentation is implemented using FCN-8s
CNN model with the same accelerator design achieving an overall throughput
of 725 GOPS.
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Abstract. Leakage power has been a significant concern in power con-
strained processor design as manufacturing technology has scaled down
dramatically in the last decades. While power gating has been known
to deliver leakage power reductions, its success has heavily relied on
judicious power gating decisions. Yet delivering such prudent decisions
has been particularly challenging for out-of-order processors due to the
unpredictability of execution order. This paper introduces an intelligent
power gating method for out-of-order embedded and mobile processor
execution units by monitoring and utilizing readily available hints on
the pipeline. First, we track the counts of different instruction types in
the instruction queue to identify the execution units slated to remain idle
in the near future. As the presence of an instruction is not a definite indi-
cator of its execution start due to stalls, our second guidance improves
the accuracy of the first approach by tracking the stalling instructions
in the instruction queue due to memory dependencies. While tracking
IQ content delivers dramatically better results than the state-of-the-art
timeout-based methods in the literature with 48.8% energy reductions,
the memory-aware guidance boosts energy savings up to 72.8% on aver-
age for memory intensive applications.

Keywords: Power gating · Embedded and mobile processors ·
Out-of-order execution

1 Introduction

Distributed computing at the edge with embedded and mobile devices creates
numerous opportunities for a variety of applications. While empowering The
Internet of Things (IoT), mobile devices and distributed intelligent systems,
embedded and mobile processors need high-performance hardware and acceler-
ators to meet real-time processing requirements. For instance, today’s high-end
mobile processors have deeper pipelines than before, they contain specialized
hardware to accelerate common tasks and they exploit the performance bene-
fits of out-of-order execution [1]. At the same time, most embedded or mobile
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devices have to operate on a strict energy budget unlike desktop and server sys-
tems, and the workload characteristics can vary dramatically during the device
operation which necessitates aggressive power saving methods while keeping the
specialized execution units available when they are needed.

Micro-architectural techniques for execution unit power gating are widely
explored in the literature for in-order embedded processors for almost a decade
now. The embedded and mobile processors have dramatically evolved since then
by employing out-of-order and super-scalar execution and equipping various
accelerators. The clock speeds have also scaled by an order of magnitude from
a few hundred MHz to the GHz range as reported by Halpern et al. [2] whereas
memory latency has failed to keep up with the down-scaling of processor cycle
times. Therefore, despite a slew of emerging memory technologies, the mem-
ory bottleneck remains a limiting factor for these high-performance computing
devices which require an extensive amount of data to fully utilize their compu-
tational power. In addition, the memory requirements of applications continue
to expand, consequently forcing a larger amount of RAM to be integrated into
these systems to meet computation requirements. While the memory access times
increase proportionally with the memory size, the impact has become even more
striking today when it is measured in the scaled processor cycle times. As a
result, the previous methods fall short of providing effective power gating guid-
ance due to being oblivious to the unpredictability of the out-of-order execution
and large memory stall times in the decision process.

Leakage power is a critical problem for low-power embedded devices, consti-
tuting a significant portion of the total energy consumption as CMOS technology
is being scaled down in the last few decades. As a solution, it is possible to cut
off the leakage power by turning off the circuit components when they are not
needed. The previous works in the literature focused on power gating cache lines
[3], re-sizing the branch predictor [4] or turning off the individual cores on a
multicore system [5]. Modern embedded and mobile processors contain a variety
of execution units including multiple integer ALUs (arithmetic logical units),
FPUs (floating point units), vector units, and specialized accelerators embedded
into the pipeline. The diversity of the execution units in embedded processors
notwithstanding, most applications utilize a subset of them during a particular
time window, with many units not being used at all in numerous intervals during
the application execution. If these units are not put into sleep mode, they dissi-
pate power as static leakage. While the benefits can be appreciable, power gating
the execution units is a challenging problem in the face of execution uncertainty,
as outlined by Kaxiras and Martonosi [6], because their idle periods tend to be
much shorter and less predictable than other processor elements.

The primary challenge in execution unit power gating is to find “long enough”
intervals so that the leakage energy saved by turning off the processor exceeds
the energy dissipated by switching between on and off states. This period is
denoted as Tbreak−even (break-even point) in prior literature. Also, an execution
unit that is off, but needed, requires a certain amount of time (Twake−up) to
become ready for execution. As a result, the idle interval should be greater than
the sum of these two values as shown in Eq. 1 to deliver overall savings at no
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performance penalty; otherwise, power gating the units unnecessarily may not
only cause energy loss, but it might also affect the performance of the processor.

Tidle > Tbreak−even + Twake−up (1)

The solution to this problem in in-order processors is evident because of the pre-
dictable nature of the execution pipeline. It can be solved by using a compiler
analysis to determine the distance between two consecutive same type instruc-
tions and if warranted issuing turn-off signals through the instruction set. These
methods are not readily applicable to out-of-order cores because the processor
can dynamically reorder the instruction execution. The existing power gating
methods in out-of-order execution do not aim to strictly satisfy the requirement
given in Eq. 1 as pessimism in the face of uncertainty will result in forgoing
many profitable power gating opportunities; instead, a predictive approach opti-
mizes the decisions so that Eq. 1 will be with rare exceptions satisfied, resulting
in overall energy savings. Previous works [7,8] in out-of-order processors rely
on predictive methods such as timeouts to turn-off the execution units after
observing prolonged idle periods. Although predictive methods can perform well
in numerous cases, their accuracy inherently depends on how past instructions
correlate with future execution. When the correlation fails to be satisfied for
a particular application, prediction based methods not only fail to deliver any
benefit but can induce a severe energy and performance penalty.

Although out-of-order cores have a significant amount of unpredictability in
the execution, the pipeline contains numerous information sources which can be
tracked easily and used as a hint for smart power gating decisions. This paper
aims to discover the useful and readily trackable information sources and utilize
them for smart power gating decisions. The guidance obtained from the pipeline
consequently reduces the reliance on prediction and dramatically improves deci-
sion accuracy. We introduce two primary sources of guidance and the required
hardware to track this information. We follow this up by measuring their impact
on energy reduction and outline the results in the following sections. We empha-
size the following points in this work as our contribution to the literature:

1. Use of IQ (instruction queue) content as a lookup for future instructions to
be executed leading to making power gating decisions accordingly.

2. Introduction of a comprehensive methodology for “snooze bits” based track-
ing of missed load dependencies and consequent selective turn off of the exe-
cution units.

3. Utilization of the out-of-order execution flexibility to extend the sleep time
and eliminate expensive early wake-ups without degrading performance.

2 Related Work

In [7], Hu et al. present a time-based and branch misprediction guided power
gating policy for execution units in out-of-order processors. They turn off the
execution units after observing prolonged periods of idleness or upon undergo-
ing a branch misprediction. Since the success rate of the timeout-based power
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gating is strictly related to the determined timeout value, Bournoutian et al. [8]
examine instruction type ratios in one application to determine timeout values
of execution units in a timeout-based policy. Their method targets out-of-order
mobile processor execution units with reservation stations. MAPG [9] turns off
the in-order cores in a multiprocessor system when a load instruction misses on
the cache. It is reasonable in this context to turn off the entire in-order core as it
would stall until the processor retrieves the data from memory. Similarly, TAP
[10] provides lower bound estimates for memory access time using tokens with
out-of-order cores turning off themselves when they access the main memory,
resulting in an aggressive overcompensation for an out-of-order processor which
may continue executing instructions which do not depend on the load result on
the same core while waiting for the memory.

A number of previous works as in [11–14] use a combination of compiler-based
analysis and architectural support to determine the minimum cycle distance
between two consecutive same type instructions, and signal turn-off commands
to hardware when the former instruction is issued if there is sufficient distance
between them. Wake-up is achieved by using explicit instructions or when the
second instruction is decoded in the pipeline. These works present in the context
of in-order execution, with their approaches being challenging to adapt to out-of-
order processors as instructions may end up being executed differently than the
program order. As an alternative method, pipeline balancing [15] dynamically
changes the issue width and turns off pipeline resources when the applications
fail to exhibit sufficient parallelism to utilize them. The approach saves power
by monitoring the processor performance and setting the execution resources
accordingly.

3 Power Gating Method

3.1 Instruction Queue Based Power Gating Guidance

Out-of-order processors look ahead in the instruction window to find sufficient
parallelism in the code and utilize the pipeline resources more efficiently. Perfor-
mance efficiency is typically attained by dispatching many instructions into the
IQ and issuing instructions out-of-order when their operands are ready. Since
the IQ holds the instructions to be executed in the near future, the information
content of IQ can be exploited to make more accurate decisions and diminish
the need for prediction in this process. The monitoring in IQ is performed by
dynamically tracking the count of each instruction group that is executed on
the same type of execution unit. We update the counts of each group by setting
two checkpoints in the pipeline. We check the instruction opcode and increment
the corresponding counter when an instruction is dispatched into IQ. When an
instruction completes execution, we decrease its group’s counter. The hardware
issues a turn-off signal to the execution units whose group counter becomes
zero. If a counter makes a transition from zero to a non-zero value, it issues a
turn-on signal to the related execution unit so that it can wake itself up and
become ready within the next few cycles. The main advantage of this aspect of
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our proposed approach is its simplicity and the improvement it provides over
the timeout-based methods. It requires no more hardware or energy than any
timeout-based method (in fact, the same timeout counters can be utilized for
tracking instruction counts) but it yields dramatically higher average sleep ratios
at the cost of the same performance penalty.

3.2 Memory-Aware Power Gating Guidance

The IQ content provides information regarding the instructions which will be
executed in the future. In this aspect, the information is useful but incomplete, as
many instructions continue to reside in the IQ despite their inactivity and cause
the system to pessimistically turn on the units even though they are neither
being executed nor slated for execution in the near future. If perfect information
of the stall times were available, it would be possible to make highly accurate
power gating decisions. It is possible to design a system which can track all
dependency chains to provide an accurate estimation of the execution times.
Yet such tracking requires a significant amount of information with the tracking
hardware easily overpowering the improvement that is hoped for. As the majority
of the stalls are in the order of few cycles, tracking them provides no benefit
over counting instructions in the IQ. However, one primary source of long stalls
is the lower-level cache and memory access latency. When a load instruction
misses on the first-level cache, it causes all directly and indirectly dependent
dispatched instructions to stall in the IQ for tens of cycles until it retrieves its
result. Tracking such information can boost the accuracy of decisions made with
IQ guidance by particularly favoring the applications with high cache miss rates.

We introduce a memory-aware power gating guidance with a hardware mech-
anism to keep track of instructions which directly or indirectly depend on the
missed load instructions on the L1 cache. We mark these instructions temporar-
ily by using snooze bits and exclude them from consideration while making power
gating decisions. Snooze bits display similarities to poison bits [16] which imple-
ment a speculation inheritance mechanism to enable squashing of misprediction-
reliant instructions. In our context, we store snooze bits per each instruction
instead to track missed load dependencies. The decision algorithm is similar to
the method which is presented with instruction queue-based guidance, but it
excludes the instructions from the count when they are snoozed.

The determination of the number of unmarked instructions necessitates addi-
tional effort over merely counting the instructions in the IQ. To achieve this, we
keep the snooze bits explicitly in the IQ for each instruction. It is to be noted
that an instruction can be snoozed by multiple loads in the pipeline. In addition
to these multiple snooze bits, we add one more bit and denote therein the logical
OR of all the snooze bits of an instruction as the overall snooze bit.

An instruction’s snooze bits can be marked as a result of two events: while
an instruction is being dispatched, it can inherit snooze bits from its parents,
namely the instructions which provide its source operands. Besides, when a load
instruction misses on L1, it can snooze its descendants, namely all the instruc-
tions which are directly or indirectly in the dependency chain of the missed load.
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The snoozing event marks an instruction’s snooze bit indicated with the missed
load’s ID. If the instruction had no marked snooze bits previously, the overall
snooze bit is also marked. Similarly, when a previously missed load instruction
retrieves its result, it clears its descendants’ snooze bits affiliated with its load
ID, and the instructions’ overall snooze bits are also cleared if this is the only
missed load instruction which they depend on. As a result of these events, we
distinguish three distinct scenarios to update the unmarked instruction counts:

1. An instruction increments the unmarked instruction count of its group when
it is dispatched unless it inherits snooze bits from its parents.

2. An instruction decrements the unmarked instruction count of its group when
its execution is completed.

3. In addition, when a load instruction misses on L1 or returns data after the
miss, we track how many of its descendants have changed their overall snooze
bit, and adjust the counters accordingly.

Even though the memory-aware guidance requires quite a bit of information
to track, we show that the necessary hardware can be implemented by utilizing
the existing issue logic to update the snooze bits. As a result, the update process
is dramatically simplified, and it can be performed no differently than the update
of other information in the IQ. The described implementation method in Sect. 4.2
conveniently achieves these tasks with only four basic operations and without
needing any associative look-ups in the IQ. As a result, these operations do not
impact timing, and the energy impact is minimized.

In addition, we deliberately avoid an early wake-up mechanism to cut down
on the hardware cost, but this design decision necessitates examination of the
concomitant performance issues. To illustrate, an instruction may become ready
for the execution in the cycle subsequent to receiving the awaited result from the
memory, but it might end up waiting for the execution unit wake-up. Although
this is a critical problem for an in-order processor, the incurred wake-up time
overhead barely leads to any performance loss because of the flexibility of out-of-
order execution. Unless the wake-up stalling instructions clog the IQ and impede
further instruction dispatch, no consequent material performance issue ensues.
The experimental results confirm that the extra performance loss is negligible
as we expected.

4 Hardware Design

4.1 Base Hardware to Track IQ Content

The IQ tracking hardware and power gating control logic can be implemented
as in Fig. 1. We employ an execution unit detector to detect the type of dis-
patched instructions. The detector consists of a combinational logic which maps
the instruction opcodes into execution groups. We keep the count of the instruc-
tions in the IQ for each execution unit by using shift registers. The length of each
shift register equals the IQ size. We use a shift register as a counter because it
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Fig. 1. Overview of the IQ tracking hardware

reduces dynamic power consumption due to the reduced number of bit flips and
it simplifies the update logic. We initialize each counter to “0. . .01” indicating
the zero value where the position of bit “1” shows the instruction count. The
counter is shifted left to increment and right to decrement. In this hardware
scheme, we can directly use the least significant bit as an empty signal with-
out checking the entire register. Finally, each execution unit has a simple FSM
(finite state machine) with three states as its transition diagram shows in Fig. 2
which indicates the conditions for the transitions to happen (bold) as well as the
asserted signals (italics) in each state. The FSM controls the gating transistor
and the ready signal to inform the pipeline control logic when the execution unit
is ready.

Fig. 2. FSM transition diagram

4.2 Extension Hardware to Track Memory Dependencies

This section introduces our novel IQ extension hardware to track cache-missed
load dependencies. Its design helps us to fully utilize the existing issue logic in
the pipeline, and perform the tracking by making use of simple operations at
each stage. To keep the load dependencies and the snooze bits, we introduce
2N +1 extra bits to each IQ entry where N is the LQ (Load Queue) size. N bits
are used to indicate dependencies with an additional N bits to indicate snooze
bits and 1 bit for the OR’ed summary of the snooze bits as shown in Fig. 3. A
bit in the ith dependency column indicates that the instruction is dependent on
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Fig. 3. Extension hardware to track missed memory dependencies

the load instruction in LQ’s ith entry. Similarly, a mark in the snooze column i
indicates that the instruction is snoozed by the missed load instruction at LQ’s
ith entry. The overall snooze summary bit becomes “1” if at least one snooze bit
is “1”. The dependency and the snooze bits are updated as follows:

– When an instruction is dispatched, its dependency bits are set to the OR of
the dependency bits of the instructions which provide its operands. Similarly,
its snooze bits are set to the OR’ed version of its parents’ snooze bits.

– When a load instruction (LQ ID i) is dispatched, it marks its ith dependency
bit in addition to the dependencies inherited by its parents.

– When a load instruction (LQ ID i) misses on L1, it copies the ith dependency
column of all IQ entries into the ith snooze column.

– When a load instruction (LQ ID i) returns data, it clears the ith dependency
and snooze column of all IQ entries.

Tracking missed memory dependencies requires some modifications to the
counter update logic as shown in Fig. 1. We need to override the increment
signal and prevent the counter from increasing if the dispatched instruction is
snoozed by its parents. Since executed instructions are snooze mark free, we
can decrement the associated counter without checking their mark. Finally, we
need to check the group of instructions which changed their overall snooze bit
due to load related events (cache miss and returning result). Both load miss
and load result return after miss can trigger counter updates if they cause an
instruction’s overall snooze bit to flip. In this case, the hardware detects how
many instructions changed their overall snooze bit and updates the counters
accordingly.

5 Experimental Results

We implemented the proposed design by modifying the out-of-order CPU model
in the gem5 simulator [17]. The pipeline resources of the processor are shown
in Table 1. We tested the proposed system with various SPEC2006 integer
and floating point benchmarks by assuming Tbreak−even as 10 cycles. We used
various typical Twake−up latency values to observe the performance impact.
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The Tbreak−even and Twake−up values are selected to be within a similar range
as in the previous out-of-order processor focused work [7,8] and in the most
recent publications on power gating [18]. We have taken measurements for Inte-
ger ALU, Integer Multiply/Divide Unit and Floating Point Unit. The reported
average values refer to arithmetic means unless stated otherwise for a particu-
lar value. Some geometric mean values are used for comparison with previous
work [7].

Table 1. Implemented out-of-order CPU parameters

Clock frequency 1 GHz

Dispatch & Issue width 4-Wide

L1I cache, L1D cache 32 kB, 2-Way, 2 Cyc. Lat.

L2 cache 128 kB, 4-Way, 20 Cyc. Lat.

Memory latency 120 ns

IQ size, LQ size, ROB size 16, 16, 32 entries

Int-ALU, FP-ALU, Int-Mult Count 4, 2, 1

Figure 4 illustrates the sleep time of the execution units as a percentage of
the total execution time for a variety of benchmarks. IQG represents the model
only with instruction queue guidance. IQG+MAG monitors the IQ content and
makes use of the cache miss information to snooze instructions. We have also
included the total idle cycles and for comparison the power gating potential,
the sum of all idle periods which are larger than Tbreak−even + Twake−up, as
defined in [7]. The power gating potential incorporates all idle periods in which
power gating delivers a net energy profit, without affecting performance; yet the
reader will note that this idealistic assessment is not achievable without a perfect
oracle of future execution. IQG provides 66.2% and 53.4% average sleep ratio
for integer and floating point units, respectively. The memory-aware guidance
boosts these rates up to 73.6% and 75.1%, thus considerably extending the sleep
rate for the floating point units. A remarkable observation may be the occurrence
of cases when IQG+MAG exceeds the power gating potential that we can see
in some benchmarks in Fig. 4. While this augurs well, no energy benefit should
be expected as this excess stems from the inability to predict the appropriate
reactivation times of components in an out-of-order environment. Actually a
concern in this context may be that conversely the aggressive policy of turning
off units when they are not needed at a particular time point may be impacted
by the arrival of an instruction soon after the turn-off. Figure 5 shows that this
concern is unwarranted as the energy savings of IQG+MAG track the potential
savings closely.

Figure 5 shows the summary of total energy savings for each benchmark. We
have used the simulation statistics together with the static and dynamic power
values in [13,19] to calculate the energy savings in the execution pipeline which
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Fig. 4. Execution unit sleep time percentage

combines execution units, IQ and scheduling logic. The calculations include static
and dynamic power consumption of each unit, the switching cost of power gat-
ing decisions, the static and dynamic energy cost of the additional hardware,
and the energy cost of the extended execution time due to the performance
impact of these methods. We use a realistic non-zero leakage model as in [13]
to account for when the execution unit is turned off. The energy impact of the
additional hardware is incorporated in the reported energy values by first cal-
culating the extra bit requirements for each guidance type, followed up by a
scaling of the area, leakage and dynamic power of the IQ to accurately model
the energy overhead introduced by the tracking hardware. In a quite pessimistic
scenario, IQG and MAG can approximately lead to 10% and 120% inflation in
the IQ area and consequently to a similar increase in static and dynamic energy
consumption. Despite the dramatic energy cost of the tracking hardware, we still
attain 48.8% net energy savings in average by merely monitoring the IQ con-
tent. Memory-aware guidance helps to increase the average energy savings up to
72.8%. Interestingly, IQG+MAG results in slightly smaller energy savings than
IQG for bzip2 despite a higher sleep rate because the energy overhead of tracking
stalling instructions counteracts its benefit if the gain is short of substantial for
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Fig. 5. Total energy savings Fig. 6. Performance impact

a particular benchmark. Memory-aware guidance improves the energy savings as
the cache miss rate increases. The performance impact of the suggested models
is also demonstrated in Fig. 6. We obtain the relative performance values under
the assumption of 4 cycles Twake−up. The average performance reduction with
IQG and IQG+MAP is around 2.1% and 3.1% respectively.

The main advantage of only monitoring IQ is its simplicity, yet it achieves
remarkable power savings when compared to the timeout-based power gating
methods in out-of-order processors. Hu et al. [7] can put the floating point
units to sleep at 28% (geometric mean) of the execution cycles with around 2%

Fig. 7. The impact of processor parameters on the sleep ratio
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performance loss. IQG achieves 45% ratio (geometric mean) at a similar perfor-
mance loss. IQG even outperforms the branch misprediction guided technique in
the same work which enables up to 40% sleep cycles (geometric mean) for fixed-
point units by reaching 51% ratio (geometric mean). Similarly, Bournoutian et
al. [8] claims around 27% and 19% pipeline power reduction for integer and float-
ing point benchmarks. IQG attains a 48.8% average power reduction rate with
comparable hardware, and no application profiling required. We further improve
the energy savings up to 72.8% on the average by snoozing cache-missed load-
dependent instructions.

Finally, we repeated the experiments with various architectural parameters
to measure the effect of IQ size, L2 latency, memory latency and the cache sizes
on the result. The results shown in Fig. 7 indicate that the average number of
sleep cycles never fluctuate more than 6–8% for either of the policies despite
the remarkable variance in processor parameters. While IQG results almost stay
constant as the parameter changes, the sleep rate of IQG+MAG positively cor-
relates with the cache and memory latencies as we expected. Larger cache sizes
have a minor negative impact on IQG+MAG due to the reduced number of
cache miss rates. Larger IQ sizes also reduce the benefit of IQG+MAG, but the
benefits still stay prominent over IQG for practical IQ sizes.

6 Conclusion

A shift to out-of-order execution is taking place in the embedded and mobile pro-
cessor space influenced by the strict performance requirements in mobile devices
and real-time embedded systems. Yet these devices also have a tight energy
budget, unlike desktop and server processors. The proper adaptation and the
enhancement of power saving methods are essential to pursue energy efficiency
in these architectures. We keep track of the readily available information on the
pipeline and use power gating to cut down the leakage power when the exe-
cution units are idle. We obtain significant energy savings by monitoring the
instruction queue content and reducing the role of prediction in this process.
Memory-aware guidance helps us to track stalling instructions due to memory
latency and consequently improves our decisions. The proposed techniques in
this work promise to alleviate the growing leakage energy expenditures, thus
ensuring the viability of high-performance out-of-order processors particularly
in the context of challenging embedded and mobile processing environments.
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Abstract. Machine learning based convolutional neural networks
(CNN) are becoming increasingly popular for identification tasks like
image classification or speech recognition. However, CNNs have high
memory and computational demands which makes it challenging to
implement them on cost-efficient and energy-autonomous hardware. To
cope with this challenge we present a heterogeneous and reconfigurable
embedded architecture implemented on an inexpensive and widely avail-
able entry-level system on chip (SoC). Our architecture combines an
ARM CPU and a coarse-grained reconfigurable architecture (CGRA)
which execute a CNN in parallel to reach a higher energy-efficiency. Our
results show up to 130% higher performance and 78% better energy-
efficiency compared with an embedded Nvidia GPU.

1 Introduction

Embedded computer vision systems are becoming an important part of our
everyday life. For instance, smartphones are used for object classification and
face recognition. Also safety critical systems like highly automated driving cars
employ computer vision systems for trajectory planning and obstacle avoidance,
which often rely on convolutional neural networks (CNNs) to extract information
from images due to their high precision [1,2]. However, CNNs have large mem-
ory and computational demands which leads to outsourcing CNN executions
from mobile devices to data centers equipped with high performance general
purpose graphics processor units (GPGPUs). Outsourcing solves the problem of
computational and memory demands, but introduces latency and privacy issues.
Moreover, the high energy demand and cost of GPGPUs need to be taken into
account. To cope with those issues energy-autonomous and inexpensive embed-
ded hardware for the execution of CNNs is necessary.

In this paper we present a heterogeneous and reconfigurable embedded archi-
tecture for energy-efficient offline execution of CNNs. To address cost-efficiency
our architecture is implemented on an entry-level Xilinx Zynq SoC making it
low-cost and easily adoptable for mid and large-scale deployment. We use the
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ARM Cortex-A53 quad-core CPU and the FPGA of the Xilinx Zynq Ultra-
Scale+ MPSoC in parallel to accelerate CNN layers. On the FPGA a coarse-
grained reconfigurable architecture (CGRA) is implemented which enables us
to almost arbitarily connect the digital signal processors units (DSPs) for the
execution of different CNN layers without the need of a time consuming FPGA
synthesis and implementation. On the ARM Cortex-A53 CPU the packed SIMD
NEON registers and the available CPU cores are used to execute CNN layers.
Those two pieces of hardware are connected through the 128-bit wide accelerator
coherency port (ACP), which provides a low-latency and high-bandwidth com-
munication via the level-2 (L2) cache of the ARM CPU. With this architecture
we are able to achieve a 78% higher energy-efficiency and up to 130% better per-
formance compared with a Nvidia Tegra K1 GPU when executing a LeNet-5 [1]
inspired CNN.

2 Convolutional Neural Networks

Convolutional neural networks are a variant of artificial neural networks which
have been used very successfully for the detection, classification and segmenta-
tion of objects in images [4]. In addition, new precision records are being set
continuously [1,3,5,6].

Fig. 1. Typical structure of a CNN [7]. (Color figure online)

CNNs are composed of several layers which successively filter abstract fea-
tures from the input data and pass them on to the next layer. The most common
layers are convolution, pooling, and fully-connected. In Fig. 1 a typical CNN
structure with the mentioned layers is depicted. This CNN is based on LeNet-5
[1] a CNN which is used to classify grayscale images of hand-written digits from
0 to 9 of the MNIST data set [7]. The convolution layer (marked red) applies
a convolution operation with previously trained filter kernels to its input data
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channels and emphasizes local features in those channels. Usually, several dif-
ferent filter kernels are applied to the same input data channel which leads to
many more output data channels than input data channels. This can be seen
in Fig. 1 where the first convolution layer takes the original image with only
one grayscale channel as input and applies 20 different filter kernels to it, which
produces 20 output data channels. Convolution layers are often followed by a
pooling layer (marked green) which reduces the output data of the previous layer
by only selecting the maximum (max pooling). This brings formerly emphasized
local features closer together and makes it possible to combine them into a more
global feature. Pooling also drastically shrinks the data size which helps to reduce
memory consumption and the execution time of following layers. The last CNN
layers are generally an array of fully-connected layers. A fully-connected layer
takes all input elements from all channels and combines them into one vector of
global features. This global feature vector is then further reduced by successive
fully-connected layers until the vector size is equal to the number of classes. In
Fig. 1 the fully-connected layers (marked blue) reduce their input data consisting
of 800 elements down to 10, which represent the classes 0 to 9. In the very last
step of the CNN in Fig. 1 a softmax function is applied to the feature vector,
which converts the elements to pseudo-probabilities that represent to which class
the original input image belongs.

Fig. 2. Convolution operation.

The most computationally demanding layer is the convolution layer. The
input data of this layer forms a tensor I with a width wI , height hI , and depth
(channels) dI . The filter kernels K of a convolution layer are usually quadratic
with a width and height of n. The stride s describes how many pixels the filter
kernel will be moved after it was applied to the input data I. In each single appli-
cation of a filter kernel all filter elements are multiplied with the corresponding
elements of the input data channel. All products of those multiplications are
summed up and a bias b is added to the sum, which forms one output data
element O∗,∗. Figure 2 shows the application of a filter kernel K and bias b to
input data I and the resulting output data O.

3 Related Work

Due to the broad range of applications where CNNs can be used [4] and due to
the high computational and memory demands a lot of research efforts have been
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undertaken to accelerate the execution of CNNs on different hardware architec-
tures. The most popular platform for the acceleration of CNNs are GPGPUs
[2,8,9] because of the existence of software libraries [8,10,11] which offer great
flexibility to train and execute CNNs. However, GPGPUs have an extremely high
energy demand up to 650 W [12], which is not suitable for energy-autonomous
applications. Also the use of application specific integrated circuits (ASICs) to
energy-efficiently accelerate CNNs has been studied extensively [13–21]. ASICs
offer a much better energy-efficiency than GPGPUs since all circuits can be tai-
lored to the given problem set. On the other hand, designing, layouting, and
actually manufacturing an ASIC is very costly and time consuming. Moreover,
an ASIC can mostly only be used to execute the specific task it was designed
for while meeting the given performance and energy constraints. A good trade-
off between the flexible programmability of GPGPUs and the energy-efficiency
of ASICs are FPGAs. FPGAs offer programmable logic blocks which are con-
nected together over a configurable network. This enables programmers to tailor
the FPGA resources to efficiently execute a given algorithm. Due to the flexi-
bility, energy-efficiency and relatively low costs of FPGAs they have become a
popular platform for the energy-efficient acceleration of CNNs [22–25]. Since the
configuration of FPGAs through a synthesis and implementation process is time
and memory consuming CGRAs are often used for CNN accelerator architec-
tures [14,16,18,19,22]. In contrast to FPGAs, which offer complex fine-grained
bit level configurability, CGRAs provide highly regular data path configurability
on word level [26]. This makes it possible to change the data path in a CGRA
on-the-fly without the need for a time consuming synthesis and implementation.

Contemporary embedded systems consist of different pieces of hardware such
as multiple multi-core CPUs, GPUs, and FPGAs [27]. In [24] and [25] heteroge-
neous embedded systems are used, however, the CPU and FPGA only execute
certain tasks on their own rather than working in real parallel fashion where
both pieces of hardware are combined to execute a task.

4 Hardware

Our heterogeneous architecture is implemented on a Xilinx Zynq UltraScale+
MPSoC (ZU3EG) using the ARM Cortex-A53 quad-core CPU (APU) and the
programmable logic (PL/FPGA). Both hardware components are used to exe-
cute a CNN in parallel. Figure 3 shows an overview of our architecture with
computing elements, storages blocks, and their connections over data busses.

4.1 Configurable Reconfigurable Core (CRC)

On the PL/FPGA side the Configurable Reconfigurable Core (CRC) [28,29]
is implemented. The CRC is a two-dimensional systolic array composed of
28 identical processing elements (PEs) connected over a nearest-neighbor net-
work, which can be reconfigured at run time, block RAMs (BRAMs) to store
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Fig. 3. Hardware architecture overview.

computation and configuration data, and two finite-state machines (FSMs) which
take care of communication with the APU and configuration of the PE network
(see Fig. 3).

The PEs are connected through a nearest-neighbor network with a data width
of 2 × 16-bit. Via the North and South, PEs are able to send and receive data
over two channels. From the West, PEs can only receive data and, vice versa,
can only send data to the East. All PE-to-PE connections are implemented as
FIFO buffers. To enqueue and dequeue data into and from a FIFO each 16-bit
data channel is accompanied by a valid and a ready wire. The valid wire signals
the FIFO whether data coming from a PE is valid and can be enqueued. The
valid wire also signals the receiving PE that the FIFO holds data. The ready
wire signals the FIFO if the receiving PE is ready to process the data at its
input. Those PE-to-PE connections can be seen on the left hand side of Fig. 4.
Additionally, each PE is connected to a 32-bit wide configuration data wire to
load a configuration or a numeric constant. Inside of each PE resides a 16-bit
constant register to store a numeric value, a 32-bit configuration register which
is connected to multiplexers and demultiplexers (MUX/DEMUX) to configure a
PE’s internal data path, and a functional unit (FU) which acts as an arithmetic
logic unit. Each PE output has a 16-bit register that stores the data which is
going to be enqueued into the connected FIFO during the next clock cycle. Those
PE internals are depicted on the right hand side of Fig. 4.

The FU has three 16-bit fixed point data inputs and is capable of the follow-
ing operations: addition, subtraction, multiplication, multiply-accumulate, and
maximum of two or three numbers, which are implemented using the digital
signal processor resources (DSPs) of the PL/FPGA. Through the PE’s MUXes
all input data channels from the North, West, South, and the constant register
can be configured as input for each of the three FU data inputs (see Fig. 4). In
each clock cycle the FU checks whether all data values for the configured oper-
ation are present at its data inputs by checking the corresponding valid wires.
If all input data values are present and all configured valid wire are set, the FU
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Fig. 4. CRC nearest-neighbor network and PE internals.

executes the operation and sets the valid wire at its output to store the result
in the configured output registers. However, if not all data values are available,
the FU unsets the ready wires for the inputs on which the data is available. This
stalls the data paths leading to those data inputs, which is propagated through
the whole PE network, until all required data values are valid.

This stalling mechanism allows for two-dimensional data pipelining. One-
dimensional instruction pipelining is a well known technique employed in all
modern processors. It speeds up the overall run time of programs by overlap-
ping the execution of consecutive instructions. This is accomplished by splitting
instructions into different steps whereas each step is then processed by the corre-
sponding pipeline stage while all stages work in parallel [30]. Complex arithmetic
expressions, like a convolution, can also be split into steps whereas each step rep-
resents a single operation. Those single operations are mapped onto PEs. Via
the nearest-neighbor network those single operations on PEs are connected to
form the desired arithmetic expression. On the left hand side of Fig. 5 such a
mapping is shown using a 3× 3 convolution. The elements of the kernel K and
the bias b are stored in the constant register of the PEs.

The border PEs (PE∗, 0 and PE{0; 3}, ∗ in Figs. 4 and 5) are connected to
a shift register which supplies those PEs with the input data I. Because for the
calculation of adjacent output data elements O∗,l and O∗,l+1 of a n×n convo-
lution the input data columns I∗,l+s, . . . , I∗,l+n−s are needed the shift register
only has to be shifted n · s times to apply the kernel K to the next part of
the input data I. This shifting mechanism exploits data locality of the row-wise
application of a kernel for s < n.

On the right hand side of Fig. 5 the data flow graph of the three PEs in
the northmost row and the connected shift register cells for a 3× 3 convolu-
tion is extracted and displayed at four consecutive points in time (t0, . . . , t3).
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Fig. 5. Mapping and data flow of a 3× 3 convolution onto the CRC. (Color figure
online)

The rectangular vertices on the left hand side represent the shift register cells
and the rectangular vertices at the bottom represent the constant registers. The
circular vertices depict the configured PE function whereas each column of ver-
tices in the data flow graph represents one PE. At t0 all vertices are ready to
process data (marked green) and no data path leading to any vertex is stalled.
In the next step t1 all shift register cells and constant registers have valid data.
Since the multiply-accumulate operation in PE0,2 is missing the operand coming
from PE0,1 the data path coming from the shift register is stalled (marked red).
At t2 the multiply and forward operation in PE0,0 have been processed and the
data values for the next kernel application are present in the shift register. In
the last step t4 all operands for the multiply-accumulate operation in PE0,2 are
available such that the stalled data path coming from the shift register can be
unlocked.

By employing two-dimensional data pipelining it is possible to have input
and intermediate data values of multiple consecutive kernel applications of a
convolution simultaneously and in a chronological order on the CRC. If the
pipeline is completely filled one output value is calculated in each clock cycle.
By mapping multiple consecutive kernel applications onto the CRC this can be
increased further by employing intra and inter output feature map parallelism
(intra/inter-OFMP) [17].

The configuration, kernel, and input data for the CRC is read from a config-
uration file stored on flash memory and placed into the L2 cache by the APU.
The APU sends a command over the 32-bit wide AXI4 bus to the CRC FSM
containing the address and number of the configurations, kernels, and input data
in the L2 cache. The ACP FSM then loads this data over the 128-bit wide ACP
bus from the L2 cache of the APU into the corresponding BRAMs. Afterwards
the APU sends a start command to the CRC FSM which triggers the config-
uration of the distributors, PEs, and collectors. This takes one clock cycle for
each component. The distributors are responsible for reading input data from
the BRAMs and inserting it into the shift registers. The distributors are pro-
grammed to generate complex address patterns to read data from the sequential
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BRAMs like column-wise input data as seen in Fig. 5. The collectors either store
the output data into the output data BRAM or the intermediate data BRAM.
The intermediate data BRAM is used if an arithmetic expression is too large
to fit onto the 28 PEs and has to be split. When all configurations have been
executed on the CRC it signals the APU that the result is stored in the output
data BRAM (see Fig. 3).

4.2 Application Processor Unit (APU)

The APU is an ARM Cortex-A53 64-bit quad-core processor with a clock speed
of 1.1 GHz. It supports the ARMv8 instruction set and the packed SIMD NEON
extension with 128-bit wide registers, which can hold up to four 32-bit floating
point values at once. Each APU core has an in-order two-way superscalar 8-stage
pipeline, two separate 32 kB level-1 caches for instructions (L1-I) and data (L1-
D). All four cores share a coherent 1 MB level-2 cache (L2) for instructions and
data. Each core has master access to the 32-bit wide AXI4 bus which is connected
as slave to the PL/FPGA. The 128-bit wide Accelerator Coherency Port (ACP)
is connected as master to the PL/FPGA and as slave to the APU’s L2 cache
(see Fig. 3). The ACP allows the implemented hardware on the PL/FPGA, in
our case the CRC, to coherently share data with the APU over a low latency
interconnect. Each transaction over the ACP consists of 64 Byte of data, which
is equal to the length of one L2 cache line. The APU is also connected to 2 GB
DDR4 RAM which serves as main memory [27].

5 Software (Pico-CNN)

Pico-CNN [32] is responsible for the execution of CNNs on the APU and the com-
munication with the CRC. It runs under Ubuntu Linux 16.04 LTS on the APU.
Pico-CNN is completely written in C and implements convolution, max-pooling,
fully-connected, and softmax optimized for the ARM Cortex-A53 processor cores
and the packed SIMD NEON extension. Except for the softmax layer all layers
are implemented in a parallel fashion using OpenMP [31] to utilize all available
four APU cores.

Figure 6 shows how a single kernel application of a 5×5 convolution is mapped
onto the packed SIMD NEON registers Q. Each Q register is 128-bit wide, which
makes it possible to execute four 32-bit floating point operations in parallel.
After loading all elements of the input data I and the kernel K into registers
Q0–Q5 and Q6–Q11 (left hand side of Fig. 6) all products Pi,j are calculated by
multiplying each input data element Ii,j with the corresponding kernel element
Ki,j (middle part of Fig. 6). Subsequently, all products Pi,j will be accumulated
into a single 128-bit register. In the end, the partial sums S0, . . . , S3 will be
summed up and the bias b is added to form one output element Ok,l (right hand
side of Fig. 6).

Due to the fact, that each kernel of a convolution will be applied to the whole
input data set it is easy to distribute the computation of each convolution layer
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Fig. 6. Mapping of a 5×5 convolution onto packed SIMD NEON registers.

to multiple hardware components. In case of our architecture the input data of
a convolution layer is split into four parts. Three of those parts are of equal
size and intended for the APU. The fourth part is intended for the CRC. The
APU-CRC split ratio is determined by executing each layer separately and then
picking the CRC ratio which leads to the highest energy-efficiency for this layer.
This step is repeated for each CNN layer. Since the input data size and the
structure of a CNN is fixed the execution time is the same for different inputs
such that the CRC ratios only have to be determined once.

On the APU all CNN layers are processed using 32-bit floating point data
values. The CRC, however, uses 16-bit fixed point values for its calculations. This
means all kernel elements are available as 32-bit floating point and 16-bit fixed
point values. This conversion of kernel elements is only done once. The CRC
input and output data has to be converted for each layer and each execution
of a CNN. This conversion is carried out by one APU core and consists of one
multiplication and one type cast using the packed SIMD NEON extension, which
allows us to calculate four conversions at once. After the conversion of CRC input
data is done it is placed into the L2 cache and read by the CRC. When the CRC
has finished its calculations it moves its output data to the L2 cache where it will
be converted to 32-bit floating point values. The 16-bit fixed point values are not
overwritten since those can be reused for the next layer to save computational
resources. This conversion affected the classification accuracy by less than 2%.
The read and write operations on the L2 cache and the communication via the
AXI4 and ACP busses are implemented as Linux kernel modules.

The configuration of the CRC is done manually using a graphical editing
program, which allows us to set the PEs’ internal data paths, FU operations,
and PE-to-PE connections [33]. The configuration can be assessed using a cycle-
accurate simulator. The final CRC configuration is imported into Pico-CNN,
which takes care of actually configuring the CRC during the execution of a
CNN.

6 Results

To evaluate our heterogeneous architecture we executed a LeNet-5 [1] inspired
CNN depicted in Fig. 1. This CNN consists of eight layers and was trained, using
the Caffe LeNet tutorial [34], to classify grayscale images of hand-written digits
from 0 to 9 taken from the MNIST data set [7]. For the classification of one
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image 4.6 GOP have to be executed. Table 1 provides detailed information for
each layer.

Table 1. Detailed layer overview of the LeNet-5 inspired CNN.

Layer Data values [w × h× d] #Opera. [OP]

No. Name Input Output Kernels

1 Convolution 5×5 28 × 28 × 1 24 × 24 × 20 5 × 5 × 20 576,000

2 Max-Pooling 2 × 2 24 × 24 × 20 12 × 12 × 20 0 11,520

3 Convolution 5 × 5 12 × 12 × 20 8 × 8 × 50 5 × 5 × 1000 3,200,000

4 Max-Pooling 2 × 2 8 × 8 × 50 4 × 4 × 50 0 3,200

5 Fully-Connected 800 500 500 × 800 × 1 800,000

6 ReLU 500 500 0 500

7 Fully-Connected 500 10 10 × 500 × 1 10,000

8 Softmax 10 10 0 30

To determine the best CRC ratio we executed each convolution layer and
max-pooling layer separately for four different architecture configurations and
measured the number of input data frames it is able to process per second (FPS).
During the execution we measured the power by requesting it through PMBus
commands [35] send to the voltage regulators of the UltraZed-EG IO Carrier
Card which contains the Xilinx UltraScale+ MPSoC (ZU3EG) with our imple-
mented architecture. We either set a 100 MHz or 250 MHz CRC clock speed
and used either one or three APU cores. Figure 7 shows the measured perfor-
mance in FPS (1st row), mean power in W (2nd row), and the resulting energy-
efficiency in GOP s−1 W−1 (3rd row) for the convolution and max-pooling layers
with different CRC ratios. One can clearly see that the best performance and
energy-efficiency for the convolution layers can be reached with a CRC at a
250 MHz clock speed and one APU core. This is due to the fact, that the per-
formance increase of a 2.5 times higher CRC clock speed only increases mean
power by an average of 10%. The fact that the use of one APU core clearly
dominates the use of three APU cores can be explained by the small input data
size such that the accelerated execution can not compensate the communica-
tion overhead of OpenMP. The same can be seen for the max-pooling layers
where a parallel execution on the APU and the CRC leads to a performance and
energy-efficiency drop. The best energy-efficiency for the first convolution layer
is reached with a CRC ratio of 0.75 at 0.32 GOP s−1 W−1 and a 0.2 CRC ratio
at 0.14 GOP s−1 W−1 for the second convolution layer.

We compared our heterogeneous architecture with the Nvidia Tegra K1 ASIC
[36]. We executed the LeNet-5 inspired CNN with Pico-CNN on two architecture
configurations with the previously determined optimal CRC ratios. On the Tegra
K1 GPU we executed the same CNN using Caffe with CUDA acceleration [8]
and measured the FPS and the mean power to determine the energy-efficiency.
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Fig. 7. Evaluation of different architecture configurations and CRC ratios.

The results of those measurements are depicted in Fig. 8. Both of our archi-
tecture configurations show an up to 2.3 times better performance than the
Tegra K1 GPU. However, the Tegra K1 shows a lower mean power than our
architecture configurations which have a 1.78 times higher energy-efficiency of
0.132 GOP s−1 W−1 when executing the LeNet-5 inspired CNN.
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Fig. 8. Comparison of the Tegra K1 GPU with our heterogeneous architecture.

7 Conclusion

In this paper we presented a novel heterogeneous and reconfigurable embed-
ded architecture for energy-efficient execution of convolutional neural networks.
Our architecture successfully combines a general purpose CPU with a coarse-
grained reconfigurable architecture. It is implemented on an inexpensive and
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largely available system on chip which makes it cost-efficient and allows for quick
deployment. We introduced two-dimensional data pipelining for optimal utiliza-
tion of compute resources in CGRAs. Our architecture offers an up to 130%
better performance and a 78% higher energy-efficiency compared to a Nvidia
Tegra K1 GPU.

In the future we plan to evaluate alternative communication and caching
strategies for heterogeneous architectures to reduce communication overhead in
order to increase performance and energy-efficiency. Furthermore, we plan to
investigate different heterogeneous architectures including embedded GPUs and
heterogeneous multi-core CPUs.
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280 K. Lübeck and O. Bringmann

27. Xilinx: Zynq UltraScale+ Device Technical Reference Manual, UG1085 v1.7 (2017)
28. Oppold, T., Schweizer, T., Oliveira, J.F., Eisenhardt, S., Kuhn, T., Rosenstiel, W.:

CRC - concepts and evaluation of processor-like reconfigurable architectures. Inf.
Technol. IT 49(3), 157–164 (2007). https://doi.org/10.1524/itit.2007.49.3.157
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Abstract. Energy management is very important and sometimes critical for
certain classes of hard real-time systems. In this paper, we present effective
energy reduction techniques for hard real-time systems developed in Java, which
execute on bare metal and run on a time-predictable specialized Java processor.
We modified traditional clock gating and dynamic frequency scaling methods to
include the hardware-based run-time slack calculation in periodic tasks, thus
reducing energy consumption in hard real-time systems. Two methods for
energy reduction are employed leading to Energy Aware Java Optimized Pro-
cessor (EAJOP). The first method includes task execution time monitoring and
comparison with the estimated worst-case execution time to calculate the slack
and bringing the processor to sleep for the slack duration upon task completion.
The second method introduces real-time residual slack calculation at so-called
checkpoints inside the periodic task, which are then used to lower the system
frequency of the rest of the task dynamically, resulting in lower energy con-
sumption. We compare EAJOP with baseline JOP when implemented on FPGA
and demonstrate gains in energy consumption.

Keywords: Real-time and embedded systems � Processor � Compiler �
Energy management

1 Introduction

Java is a platform-independent object-oriented programming language used in the
embedded and real-time world, especially after the introduction of Real Time Speci-
fication for Java (RTSJ) and Safety-Critical Java (SCJ). Using Java in embedded
systems suffered from a few inherent issues like the use of an extra software layer in the
form of the Java Virtual Machine (JVM) and unpredictability in execution time due to
automatic garbage collection. Few attempts have been made to solve the extra software
layer issue by architecting JVM directly in hardware. A prominent case is Java Opti-
mized Processor (JOP) [1] which also offers timing predictability of execution of Java
bytecodes and is open for research and modifications.

Energy consumption is an important concern in real-time embedded applications,
especially for battery powered devices. The energy consumption reduction of any

© Springer Nature Switzerland AG 2019
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processor is achieved by using different techniques, which are based on processor
architecture, static analysis of programs and run-time control, which, however consume
additional time and energy. We introduce an approach to energy management and
reduction targeting hard real-time systems executing on bare metal processor, which
relies on compiler additions, analysis of Worst-Case Execution Time (WCET) of a task
and new hardware dedicated for run-time slack calculation, supported with small mod-
ifications (additions) of original time-predictable JOP processor in the form of energy
management modes. The new processor called Energy Aware JOP (EAJOP) provides a
hardware-based mechanism for slack measurement at different points (called check-
points) in the program and it also implements energy reduction algorithms which use
hardware-based run-time slack calculation (RTSC). EAJOP together with the Energy
Aware Compiler Tool (EACT) constitutes the main contribution of this paper. Close
affinity with JOP enables the use of all JOP compilation tools, while the modified tool-
chain enables evaluation of the results of energy saving algorithms implemented in
EAJOP by comparing it with baseline programswhich do not utilize energymanagement.

The rest of the paper is organized as follows: Sect. 2 introduces our motivations,
task model and methods of energy consumption reduction. Section 3 explains the
modifications that led to EAJOP. Section 4 explains EACT used to support energy
consumption reduction. Section 5 presents analysis and validation of the approach
containing experimental setup and results. Section 6 presents related works. Section 7
concludes the work and indicates some future research directions.

2 Preliminaries

2.1 Task Model and Energy Optimizations

A Java application may consist of one or more tasks which must execute with pre-
defined dependencies, where a task is a unit of work which can be scheduled and
executed on the processor. In this presentation, we focus on a single periodically
executed task, represented by a Java program and its control flow graph (CFG). The
time interval between two successive execution of the task is called the period of the
task. A task has many paths from the beginning to the end of its execution. A task T
will take time ET to execute with ET 2 [LB, UB], where LB and UB are lower and
upper bound on the execution time, respectively. In hard real-time systems, ET must
not exceed the UB, which is considered as the Worst-Case Execution Time (WCET).
This WCET can be found by using static timing analysis of programs assuming time-
analyzable execution architecture [2].

The time difference between the measured total execution time for the task in clock
cycles and WCET time in clock cycles is called slack. This slack can be utilized for
energy reduction: (1) by bringing the processor to sleep for the duration of slack, where
Sleep mode may be implemented using power gating or clock gating inside the pro-
cessor or (2) by stretching the non-WCET path to WCET by continuously adjusting
system frequency, thereby increasing processor utilization to close to 100% on every
path in the task. Huang et al. [3] proposed a method for calculating intra-task DVFS
schedules called Checkpoint Insertion Method. Checkpoints are the points which serve
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as hints to the run-time system for taking power/energy management actions. Check-
points are added to the program by the compiler after the static analysis of the program.
In our approach, each checkpoint is also annotated with Worst-Case Remaining Cycles
(WCRC) which is a static parameter computed by the compiler considering worst-case
execution cycles required from the checkpoint to the end of the task. During run-time,
processor calculates a dynamic parameter called Remaining Cycles (RC), by subtracting
current execution time (CET) at the checkpoint from the WCET. New system frequency
can be calculated at each checkpoint dynamically using the following equation:

Fnext ¼ WCRC�Fminð Þ=RC ð1Þ

where Fnext is new frequency and Fmin is the minimum frequency at which worst-case
execution times are satisfied. Since processor supports a finite set of frequencies, Fnext
is approximated to next higher frequency in the set of supported frequencies, which is
closest to calculated frequency.

Checkpointing method can be implemented in software, which calculates frequency
at the checkpoints and as explained in Sect. 5.1, it results in a big overhead, motivating
us to use a hardware solution. Processor changes frequency when it encounters
checkpoints by using frequency change instructions. Since the time taken by check-
pointing and frequency change instructions is fixed and pre-defined, the time-
predictability of the original processor is preserved.

2.2 Hardware Based Run-Time Slack Calculation and Energy
Management

In this section, we introduce two energy saving methods for a real-time embedded
processor, which use hardware-based run-time slack calculation (RTSC) either at the
end of the task or at different checkpoints in the code during program execution.
Figure 1 shows CFG of a small program with four paths from start to finish of the
program. Execution times (ETi) of these paths in increasing order can be shown by the
following relation

ET1\ET4\ET2\ET3

where Path3 (ET3) is the WCET path and Path1 (ET1) is the best-case execution time
path. We will use CFG in Fig. 1 for explaining the energy saving methods. Also, we
assume that Path1 to Path4, if taken, are executed in a sequence respectively and then
repeated ad-infinitum.

RTSC with Sleep Mode. Compiler’s static analysis tool calculates the WCET in clock
cycles for a task. This WCET is inserted in the program code at the start of the task by
the compiler. Also, the start and end of each task are marked in the program code. The
final slack (in clock cycles) is calculated by hardware at the end of the task execution
and the processor goes to Sleep mode for the duration of slack. Figure 2 illustrates the
RTSC-Sleep method for the CFG shown in Fig. 1. When the processor completes
Path1, Path2 or Path4, it has slack which can be used to put the processor to sleep,
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whereas when the processor is executing WCET path (Path3) it has no slack, so the
processor remains in Normal mode.

RTSC with DFS. In this method, the clock frequency for paths with slack is reduced
so that they finish at WCET time. Since the frequency of operation is chosen from a
finite set of frequencies, the program execution finishes at the nearest time to WCET
that is feasible with the available system frequencies. The task program code is marked
with checkpoints by compiler’s static analysis tool based on the algorithm given in [3].
Checkpoints are inserted on two types of edges in the CFG:

1. Forward branches
2. Outgoing edges from loop body

An example of checkpoint insertion is shown in the CFG of Fig. 1. Compiler
calculates WCRC for every checkpoint. Each checkpoint in the program code is
annotated by the compiler using a special instruction with the value of WCRC as an
operand to the instruction. Compiler re-calculates WCET after insertion of checkpoints
and it also inserts WCET at the start of the program code using a special instruction.
During task execution, when the processor encounters any checkpoint, it calculates RC
using WCET and CET and then calculates the new frequency of operation using Eq. 1.
Figure 3 shows that after the application of this method, the execution time for all paths
is extended to a time closer to WCET.

Entry

B1

B2

B3

B4

B5

Exit

B

     Path1: B1D1B3D2B5
     Path2: B1D1B3D2B4B5
     Path3: B1D1B2B3D2B4B5
     Path4: B1D1B2B3D2B5

Checkpoint

Decision Block

Basic Block

Fig. 1. CFG of a small program

Entry

WCET

Sleep Mode

Exit

Exit

Exit

Exit

Path1 Path2 Path3 Path4

Fig. 2. RTSC with sleep

Path1 Path2 Path3 Path4

Exit

Exit

Exit

Exit

Entry

WCET

Original Execu on

Modified Execu on

Fig. 3. RTSC with DFS

284 M. Tewary et al.



3 Energy Aware Java Optimized Processor (EAJOP)

EAJOP is a new energy-aware processor based on the JOP architecture, which intro-
duces three modes of processor operation and five new bytecodes for energy man-
agement. Figure 4 shows the hardware layout of the EAJOP processor, with the
following additions to the original JOP:

1. New bytecodes and microcodes to the core for energy management.
2. A Power Control Circuit (PCC) which implements processor modes (Normal,

Sleep, DFS) for energy saving methods.
3. New logic in IO interface for holding (registering) the incoming external events

when the core is in Sleep mode.
4. Additional logic and memory in IO interface to store experimental data used in

energy measurements.

EAJOP saves energy by either adjusting the frequency or gating clocks of the
following processor blocks: EAJOP core, memory interface, and other system com-
ponents except for PCC and IO interface, which are always active.

EAJOP Core. Changes in JOP core were made to introduce energy management in
the architecture without losing its time analyzability. EAJOP core includes five new
bytecodes which can be used by the programmer and compiler for energy management
actions on PCC. They are supported by five new microcodes. Each energy management
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bytecode is implemented using a sequence of microcodes. A new bus called power
management bus (PMB) connecting the core to the power control circuit (PCC) was
added, as shown in Fig. 4. New bytecodes are explained below.

Mode Bytecode (Mode). The processor has three modes of operation, Sleep, DFS
and Normal mode. Each mode can be chosen by executing Mode bytecode with a
specific operand.

Clock Change Bytecode (CCI). CCI bytecode changes the frequency of the EAJOP
processor where the frequency is given as an operand to the bytecode.

Worst Case Execution Time Bytecode (WCET). WCET bytecode is dual purpose, it
marks the start of a task and it is also used to transmit WCET value (which it takes as
an operand) to the PCC.

End of Task Bytecode (EOT). End of each task can be marked by EOT bytecode.
Check Point Bytecode (CP). CP bytecode is used to mark each checkpoint in the

program code and it takes WCRC as an operand.
Checkpoint Minimum Distance Filter (CMDF). CP bytecode adds a time and

energy overhead which can be bigger than the effects of lowering frequency, if the
execution time between two checkpoints is too short. To circumvent this issue, we have
included a CMDF in the Bytecode Fetch block to do a forced hardware abort of CP
bytecode, if the last occurrence of CP bytecode was within a pre-defined number of
cycles.

Power Control Circuit (PCC). PCC changes the processor’s mode of operation and
it also implements the energy management logic. The three modes of operation are
Normal, Sleep and DFS modes. In Normal mode, no energy optimization technique is
used. In Sleep mode, when EOT instruction is encountered then PCC deducts system
clock counter value from WCET to calculate slack and then goes to sleep mode for the
duration of slack. A counter in PCC decrements the slack value until it reaches zero, the
clock gating is removed at this point and processor resumes normal operation. In DFS
mode, when CP instruction is encountered then the new frequency is calculated and
applied as per the logic given in Sect. 2.2. Figure 5 shows the functional organization
of the PCC block.

All the new energy management bytecodes add fixed execution time as shown in
Table 1. Each bytecode is made up of new microcode instructions and a fixed sequence
of nop’s. New microcode instructions take fixed defined hardware actions (register
transfers). This fact keeps EAJOP’s WCET analyzable just like JOP. Though the real
processor implementation would contain both the methods, but for comparison EAJOP
was synthesized in two different flavors, the first one called EAJOP-Sleep implements
RTSC-Sleep technique and the second one called EAJOP-DFS implements RTSC-DFS
technique.

4 EACT – Energy Aware Compiler Tool for EAJOP

EACT is an EAJOP energy aware compiler tool written in Java, which takes standard
Java compiled class file as input and generates an energy-aware memory and exe-
cutable files for EAJOP as output. The baseline of EACT tool is the original
JOP WCET tool (WCA) [2]. WCA uses freely available LpSolve Mixed Integer Linear
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Programming (MILP) solver (available as a Java library) to get the worst-case exe-
cution time estimates. EACT extends WCA functionality by adding the capability to
get WCET estimates for checkpoints (called WCRC). A CMDF was implemented in
the EACT to reduce the number of checkpoints in the application. Figure 6 shows the
compilation steps involved in the generation of Jop executable files for three different
execution platforms.

5 Analysis and Validation

5.1 Comparison with Software-Based Implementation of Bytecodes

Hardware actions implemented for the bytecodes and algorithms explained in Sect. 3
may be implemented in software (Java), which can calculate frequency at the check-
points and switch to new frequency using clock change instruction with current exe-
cution time calculated by a software routine. A comparison between software
implementation and EAJOP-DFS bytecode implementation is shown in Table 1, it
shows that hardware implementation for checkpointing is around a thousand times less
expensive than the software implementation.

5.2 EAJOP – Two Execution Platforms

As mentioned before, we synthesized EAJOP in two flavors, thus developing two
different energy aware platforms. The results of synthesis for a Cyclone-V Altera (Intel)
chip are shown in Table 2.

Java Source 
Files Java Compiler

EACT Checkpoint Inser on

EACT WCRC Calcula on

EACT Checkpoint WCRC Update

EACT WCET Calcula on

EACT WCET/EOT Inser on

JOPIZER

EAJOP-DFS 

EAJOP-Sleep/JOP 

EAJOP-Sleep / EAJOP-DFS

JOP

.Jop output files
For

EAJOP/JOP 

Fig. 6. Compilation steps for three processor platforms

An Energy Efficient Embedded Processor 287



EAJOP-DFS implementation increases the resource utilization by more than 20%
as it uses many adders, counters, and frequency selection logics.

5.3 EAJOP – Power Measurement and Energy Estimation

Vijay et al. [4] give a dynamic power estimation technique for FPGA based designs.
We use a reference value for JOP in Nanowatts per MHz for single ALM in targeted
FPGA. To get the estimated value for complete design, we multiply reference value
with the number of ALM used by the design. This total value can be multiplied by the
frequency in MHz to get the power consumption estimates at different frequencies of
operation. We use the same technique to estimate value for EAJOP-Sleep and EAJOP-
DFS platforms. Maximum frequency was constrained to 50 MHz in our current
implementation. Table 3 gives the estimated average dynamic power consumption for
three platforms, where P is average dynamic power consumption for one ALM.

Different power and energy estimation techniques have been explained in [5]. We
chose the instruction level power/energy estimation technique for our research. To
calculate the energy consumed by the program of a task, program was converted to a
sequence of Java bytecodes and then each bytecode was converted to a sequence of
microcodes. Since each microcode takes a fixed number of clock cycles to execute, we
could calculate the total time taken for execution at different frequencies and the
dynamic component of energy consumed then is simply found by multiplication of
average dynamic power consumed per unit of time with the total time taken by
application to execute.

Table 1. Comparison between EAJOP and software-based implementation

Bytecode EAJOP hardware clock cycles Software based implementation

Mode 7 2
CCI 16 28
WCET 7 17
EOT 16 17350
CP 19 22784

Table 2. Resource utilization across platforms

Platform JOP EAJOP-Sleep (%inc) EAJOP-DFS (%inc)

Total memory bits 3265536 3265536 (0%) 3265536 (0%)
ALMs 3034 3241 (6%) 3732 (23%)
Registers 1680 1817 (8%) 2288 (36.2%)
PLLs 1 1 3
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Let ET be execution time, ST be slack time, Pf be power at frequency f, Pcg the
power consumed at clock gated state, fmax be the maximum frequency supported by
processor and Pfmax be average power consumed at fmax. Let fs be the set of feasible
frequencies

fs ¼ f1; f2; f3; . . .. . .; fmaxf g

Then consumed energy can be defined by following equations:

Energy EAJOP Sleep ¼ ET � Pfmaxð Þ þ ST � Pcg
� �

Energy EAJOP DFS ¼
X

f2fs
ETf � Pf

5.4 Experimental Setup and Case Study

We used four applications (Bubble-Sort, Matrix-Multiplication, Sieve, and Lift-
Control) from Jembench suite from Java embedded benchmarks [6] for proof of
concept. Sixty input patterns were used for each application, each pattern chosen
randomly by the test program which calls the applications. WCET was calculated by
the EACT tool. Java compiled program was processed by EACT and JOP tools to
produce energy aware JOP executable files for experiments on all three platforms as
shown in Fig. 6. EAJOP stores the execution time (in clock cycles) of each code
section with its operation frequency inside a RAM. Java programs were written as
wrappers around applications to read data from EAJOP data RAM and calculate energy
consumed for every data point which can then be either stored in a text file or displayed
on standard output.

5.5 Experimental Results

Baseline energy consumption, calculated for the specific WCET of the program,
remains constant for every input pattern as the program is made to run for WCET
cycles irrespective of its ET. Each program has a different WCET, resulting in different
baseline energy consumption. Output file size across different platforms is shown in
Table 4. WCET comparisons for the four experimental applications normalized to JOP
are shown in Table 5. Normalized energy consumption for the four experimental
applications is shown in Table 6. RTSC Sleep method tends to save more energy than

Table 3. Average dynamic power consumption across platforms

Platform Operational freq (MHz) Average power consumption (NanoWatts)

JOP 50 (3034 � 50) � P
EAJOP-Sleep (Pfmax) 50 (3241 � 50) � P
EAJOP-Sleep (Pcg) Clock gated (184 � 50) � P
EAJOP-DFS (Pf) f (3732 � f) � P

An Energy Efficient Embedded Processor 289



RTSC DFS on an average execution path but on some paths with extremely high
slacks, RTSC DFS saves more energy.

Saving in the RTSC Sleep is nearly directly proportional to the ratio of slack to
WCET, this is due to near negligible time overhead in the RTSC Sleep which is fixed at
25 clocks irrespective of complexity and length of the program code. We observed that
average time overhead added by the RTSC DFS was 1100, 1800, 1500, 5000 cycles in
Bubble, Lift, Sieve, Matrix respectively, which on an average is about 1.5% to 13% of
WCET. Savings in the RTSC DFS was found to be proportional to left-over slack in the
execution path as some slack is consumed by time overheads. For paths with negligible
slack, EAJOP consumes more energy than JOP, this is due to higher average power in
EAJOP as compared to JOP.

6 Related Works

A survey of system level power-aware design techniques was done in [7]; this work is
directed towards real-time systems and provides foundations for our research. The
work in [8] was one of the seminal works utilizing compiler and OS assisted power
management in the program code to hint the processor on choosing the correct fre-
quency for a real-time system. Their work utilizes slack in the intra-task optimizations,
but their treatment uses OS to control and apply frequency changes. The work in [3]
defined the checkpoint insertion method for generating a Dynamic Voltage and Fre-
quency Scaling (DVFS) schedule. This method improves average energy savings by

Table 4. Output file size across platforms normalized with JOP output file size

Platform Lift Bubble Sieve Matrix

EAJOP-Sleep 1.001 1.006 1.005 1.005
EAJOP-DFS 1.010 1.076 1.041 1.037

Table 5. WCET across platforms normalized with JOP WCET

Platform Lift Bubble Sieve Matrix

EAJOP-Sleep 1.0023 1.0023 1.0023 1.0023
EAJOP-DFS 1.32 1.31 1.41 1.19

Table 6. Energy Consumption across platforms normalized with JOP Energy

Platform Lift Bubble Sieve Matrix

Min energy (EAJOP-Sleep) 0.59 0.12 0.04 0.06
MAX energy (EAJOP-Sleep) 0.66 0.52 0.21 1.018
Avg energy (EAJOP-Sleep) 0.64 0.40 0.14 0.36
Min energy (EAJOP-DFS) 0.782 0.09 0.024 0.009
Max energy (EAJOP-DFS) 0.785 0.58 0.228 1.184
Avg energy (EAJOP-DFS) 0.783 0.43 0.123 0.378
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3% to 15% depending upon the process technology. The research in [9] covers both
inter-task and intra-task power optimizations using both static and run-time opti-
mizations applied to real-time systems. The work in [10] presents the improvements
upon the checkpoint insertion method by implementing a technique to find the correct
place to insert checkpoints in the code. They proposed a method for estimating
remaining worst-case execution cycles at checkpoints by using execution trace mining
for applications. The work in [11] proposes a new online voltage scaling (VS) tech-
nique for battery-powered embedded systems with real-time constraints and a novel
rescheduling/remapping technique for DVFS schedules. All the above-mentioned
research works used OS or supervisory-task controlled energy management whereas
our current research focuses on energy management in real-time systems running on
bare metal without any controlling software task or OS.

7 Conclusions

In this paper, we presented a brief overview of real-time power aware Java processor
called EAJOP and discussed techniques of energy management for a hard-real-time
system based on EAJOP architecture. We compared the energy savings of RTSC Sleep
and RTSC DFS with baseline JOP platform and found that higher the slack in the
programs, more energy is saved by energy management methods implemented in
EAJOP. For current implementation and experiments, RTSC Sleep gives better savings
than RTSC DFS on low slack paths but on the path with very high slacks RTSC DFS
performs better. For any real-time application, selection of the correct platform could
be made based on desired WCET, FPGA size, and energy constraints. Our future
efforts are directed towards using EAJOP architecture and EACT tool for developing
new algorithms for energy optimizations, some of these are:

1. Extending the current work (on single task applications) to systems with multiple
periodic tasks.

2. Using the design space exploration technique to find the optimum hardware and
compiler solution considering energy, cost and performance for an application.

3. Using the methods in multicore NoC-based architecture context.
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Abstract. Network-on-chip implementations are typically complex in
the design of the routers and the network interfaces. The resource con-
sumption of such routers and network interfaces approaches the size of an
in-order processor pipeline. For the job of just moving data between pro-
cessors, this may be considered too much overhead. This paper presents
a lightweight network-on-chip solution. We build on the S4NOC for the
router design and add a minimal network interface. The presented archi-
tecture supports the transfer of single words between all processor cores.
Furthermore, as we use time-division multiplexing of the router and link
resources, the latency of such transfers is upper bounded. Therefore, this
network-on-chip can be used for real-time systems. The router and net-
work interface together consume around 6% of the resources of a RISC
processor pipeline.

Keywords: Network-on-chip · Network interface · Real-time systems ·
Multicore processor · Communication

1 Introduction

With the move to multicore processors to increase performance (both average
case and worst case), the emerging question is how those multiple cores commu-
nicate to execute a distributed workload. One of the main aims is to keep the
communication on-chip to avoid the time and energy cost of moving bits off-chip
to and from shared main memory. For this, on-chip communication networks-
on-chip (NoC) architectures have emerged.

The research field of NoC architecture and implementation is large and
diverse. While some general understanding of router designs have evolved (possi-
bly because routers implement well defined and limited functionality), the archi-
tecture and implementation of network interfaces (NIs) is more diverse, complex,
and difficult to compare.

NIs can be optimized for quite different uses. We identify five different uses of
NoCs: (1) supporting cache coherence protocols, (2) single word memory accesses
to a different core or input/output device, (3) access to a shared external memory,
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(4) supporting message passing between cores, and (5) supporting streaming
data. Depending on the types of traffic supported, the NoCs and in particular
the NIs providing the interface to the NoC may be rather diverse. We see a
tendency to implement more support functionality in hardware, e.g., end-to-
end flow control and buffer handling with DMA support. In combination with
different packet and bus interfaces this results in a large variety of NI designs
that are often quite advanced and expensive.

This paper presents a minimal NI that directly supports the synchronous
data flow model of computation [7]. It supports sending of single word packets
from a sender to a receiver. The resulting NI is lightweight and consumes a
fraction of resource compared to other NIs. The resource consumption of the NI
and the router is around 6% of the resources of the Patmos processor, which
we use in the evaluation. Support for message passing or streaming data can
be added in software on top of the service that the NI provides. If needed, flow
control can also be handled in software.

As a starting point, we use a simple NoC, the S4NOC [13], that is available
in open source.1 S4NOC uses time-division multiplexing (TDM) of the link and
router resources. The tool to generate TDM schedules [3] is also available in open
source. We extend the S4NOC with a simple NI with first-in-first-out (FIFO)
buffers and connect it to the T-CREST multicore platform [12], similar to the
one-way memory [11] project.

The proposed NoC and NI are optimized for the real-time domain. To enable
static worst-case execution time analysis of tasks, the computing platform and
the communication needs to be time-predictable. The S4NOC was designed to
be time-predictable. Therefore, our NI extension aims to be time predictable as
well.

The contributions of this paper are: (1) a reestablishing of a minimalistic
NoC using static TDM arbitration and simple routers and (2) a minimal NI
that supports message passing between processing cores on top of the low-cost
NoC. Furthermore, we present a benchmarking framework for NoCs that support
data flow applications.

This paper is organized in 6 sections: Sect. 2 presents related work. Section 3
provides background on the S4NOC architecture that we use to build upon.
Section 4 presents the minimal NI as a fit for the low-cost S4NOC architecture.
Section 5 evaluates the NI design for the S4NOC. Section 6 concludes.

2 Related Work

For time-predictable on-chip communication, a NoC with TDM arbitration
allows for bounding the communication delay. Æthereal [5] is one such NoC
that uses TDM where slots are reserved to allow a block of data to pass through

1 The original design is available in VHDL at https://github.com/t-crest/s4noc, while
a rewrite in Chisel [2] has been made available at https://github.com/schoeberl/one-
way-shared-memory.

https://github.com/t-crest/s4noc
https://github.com/schoeberl/one-way-shared-memory
https://github.com/schoeberl/one-way-shared-memory
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the NoC router without waiting or blocking traffic. We conform to the TDM app-
roach of Æthereal, but present a simpler NI in this paper. In comparison with
the aelite, which is one variant of the Æthereal family of NoCs, the S4NOC,
including our proposed NI, is considerably smaller. For a 2×2 NoC, the S4NOC
uses 1183 4-input LUTs and 1110 flip-flops. In contrast, aelite uses 7665 6-input
LUTs and 15444 flip-flops [16].

The PaterNoster NoC [10] avoids flow control and complexity in the routers
by restricting a packet to single standalone flits. The NI of PaterNoster is a simple
design to support single word packets. The NI is connected to the memory stage
of a RISC-V processor [9]. The RISC-V instruction set has been extended with
a transmit instruction that blocks until a free slot is available in the NoC and
a receive instruction that explores all input buffers in parallel to find a packet
for a source address. If no packet is available, the pipeline blocks. Our NoC uses
a similar architecture, but we use TDM based scheduling. Our NI is mapped
into an address and can be accessed by normal load and store instructions.
Furthermore, by avoiding a full lookup in the receive buffer, our NI is more than
a factor of 10 smaller than the PaterNoster NI.

The OpenSoC Fabric [4] is an open-source NoC generator written in Chisel.
It is intended to provide a system-on-chip for large-scale design exploration. The
NoC itself is a state-of-the-art design with wormhole routing, credits for flow
control, and virtual channels. Currently, the interface to the NoC is a ready/valid
interface receiving either packets or flits. An extension with a NI is planned. A
single OpenSoC router (in the default configuration) is as large as our complete
3 × 3 NoC including the NIs and open core protocol (OCP) interfaces.

Similar to Æthereal, the Argo NoC [6] uses a TDM based NoC, but also
uses the same TDM schedule in the NI [15]. The Argo NI and NoC offer time-
predictable transfer of data from a core local memory across the NoC and into
a local memory of another core. This TDM-based DMA mechanism is part of
the NI, and as a result, data is transferred without any buffering or (credit
based) flow control. In comparison with the NI presented in this paper, the Argo
NI is substantially larger, as the use of DMA-driven data transfer results in a
correspondingly higher throughput across the NoC when larger blocks of data
are transferred.

The one-way shared memory [11] project uses the S4NOC to implement
a special form of distributed shared memory. Each core contains a local on-
chip memory where blocks within those local memories are constantly copied
to other cores. The one-way shared memory is also a design with low resource
consumption, but the programming interface is very different from our NI.

3 The S4NOC Design

Our work builds on top of the S4NOC NoC design [13] by adding a minimal NI.
Therefore, we provide here background information on the S4NOC design. The
S4NOC implementation in Chisel does not contain a NI but is just used for a
one-way shared memory [11]. Therefore, we add a NI to the S4NOC with the
same design philosophy of building a lightweight NoC.
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The S4NOC is a statically scheduled, time-division multiplexed (TDM) NoC
intended for real-time systems. As all traffic is statically scheduled, there are no
conflicts on any shared resource, such as links or multiplexers. Without conflicts,
there is no need to provide buffering in the routers, flow control between routers,
or credit-based flow control between the NIs.

A static schedule for the TDM NoC is precomputed and results in a TDM
round with individual TDM slots. For single word packets, the TDM slot is a
single clock cycle. Each core can send one word to every other core in one TDM
round. The slot number identifies the virtual circuit to the receiving core. The
TDM round repeats for further packets.

The original design supports single word packets and single cycle hops
between routers. The routers contain one output register per port and a multi-
plexer in front of that register. The schedule is stored in the router and drives
the multiplexers for the five output ports.

The default configuration of the S4NOC is a bidirectional torus, resulting in
five output ports (north, east, south, west and local) and four inputs to the mul-
tiplexers, which form the crossbar. The default schedule is a one-to-all schedule
where each core has a dedicated virtual circuit to each other core. With such a
regular structure of a bidirectional torus and an all-to-all schedule, it is possible
to find one schedule that is executed in all routers [3]. That means it is the same
for all routers, e.g., if at one clock cycle a word is routed from west to north, it
is done in all routers.

The resulting hardware is lean. One register per port, one 4:1 multiplexer
per port, a counter for the TDM schedule, and a table for the schedule. With
Chisel, the table for the schedule is computed at the hardware generation time.

4 The Minimal Network Interface

Figure 1 shows an overview of a 9-core processor organized in a 3 × 3 grid. All
cores are connected via a NI to the network of routers. The NoC topology is a
bidirectional torus. The bidirectional torus minimizes the number of hops for a
packet to travel. The corresponding all-to-all core communication graph for N
cores has N × (N − 1) virtual circuits. For a 3 × 3 multicore, this results in 72
virtual circuits, which can be served by a 10 slot TDM schedule [3] for the NoC.
This is only 2 slots more than what is needed by the 8 outgoing and 8 incoming
virtual circuits. This short TDM schedule is possible due to the high bandwidth
provided by the 36 links connecting the 3 × 3 multicore.

A straightforward implementation of a NI could use separate FIFOs for each
virtual circuit endpoint; in the 9 core example, this would be 8 FIFOs for trans-
mitting data and 8 FIFOs for receiving data. The result would be a relatively
large design and a design that scales poorly with a growing number of cores.

In our design, the same functionality is implemented by a combination of
hardware and software. By exploiting the TDM scheduling used in the routers
and by sacrificing a small amount of bandwidth, we have been able to design a
NI that has only a single FIFO for transmission of data and a single FIFO for
reception of data. The result is a small NI design, as shown in Fig. 2.
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Fig. 1. A 3 × 3 multicore connected by a bi-torus NoC.

A virtual circuit can be identified at the senders end by the slot number in
which its data is transmitted and at the receivers end by the slot number when
its data is received. The slot number is stored in the transmit FIFO along with
the data to be transmitted. The slot number of the element at the head of the
transmit FIFO is compared against the TDM slot counter and the data is sent
at the scheduled point of time.

From the view of the processor, the NI is a peripheral device mapped into
the address space of the processor. It consists of a transmit and receive buffer
and two flags for the status of those buffers. The transmit buffer contains a flag
showing if the buffer is empty, the receive buffer contains a flag if there is some
data available. The sender and receiver have to poll these flags.
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Fig. 2. One processing node consisting of a core, our NI, and a router.
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Figure 2 shows the NI in detail. The NI contains two FIFO buffers: one receive
(RX) FIFO and one transmit (TX) FIFO. On the processor side, those buffers
are connected as an IO device via the OCP [1] interface. On the NoC side, the
buffers are connected to the local port (L) of the router. The TDM slot counter
compares the current count with the slot number of the packet at the head of
the TX FIFO and inserts it into the NoC if equal. On the receiving side, the NI
takes a valid packet from the local port and inserts it, together with the value
of the TDM slot counter, into the RX FIFO.

The data word and the slot number are the basic interfaces to the NI. To
transmit a word from core A to core B, at core A the sender needs to know which
slot number belongs to the virtual circuit from A to B. The mapping between
the slot number and the virtual circuit is derived from the static TDM schedule.
At the receiving end, core B reads the data and the receiving slot number when
the packet has arrived. The slot number when a word is received indentifies the
source node. Therefore, there is no further information needed in the packet or
in the NI to determine the source or destination of a packet.

At the sending side, we optimize the write into the NI by using the lower
bits of the address to determine the send slot number. E.g., when the processor
writes the data word to BASE ADDRESS + 3, it requests a send in time slot 3.
With the polling of the TX FIFO empty flag, sending a single word needs at
least one load and one store instruction.

When a packet is received from the network the payload data is written into
the RX FIFO along with the slot number when it was received, which identifies
the sender. Before reading the RX FIFO, the core must first read the data
available flag to ensure there is data to read. And based on this, the software
can identify the virtual circuit and, thus, the sender. The software is in charge
to dispatch packets received from different cores to different tasks waiting for
the packets. The NI only provides the virtual circuit number in form of the slot
number when the packet arrived.

On the receive side, we need two load instruction to read the data and to
determine the receiving slot number. Including the polling for data available this
results in a minimum of three load instructions. However, if the sender is known,
we can avoid reading the receive slot number, resulting in two instructions per
word, as at the sending part.

As the TX FIFO in the sender NI is shared among all the outgoing virtual
circuits, only the head of the queue can be sent into the switched structure of
the NoC. This can produce head-of-queue blocking when the destination of the
data injected in the TX FIFO by the processor is not ordered according to the
TDM schedule. To prevent this, the software inserts the packets in the order
according to the schedule. In this case, the worst-case waiting time for starting
to send the data in the TX FIFO queue is one TDM round. Once the head of
the queue is sent, the rest of the data in the RX FIFO is sent uninterruptedly,
since the destination of each data is ordered.

Having a dedicated TX FIFO per outgoing virtual circuit would remove the
head-of-queue blocking and the initial waiting for the TDM slot for the data at
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the head of the queue. In our approach, we trade a minor reduction in perfor-
mance (waiting for the head-of-queue TDM slot and ordering in software) for a
minimal and simple architecture.

The NI design (and TDM arbitration) might waste bandwidth. However, the
key parameter is what bandwidth can be achieved at what hardware cost. If our
design is small, we can waste bandwidth at a very low cost.

5 Evaluation

In this section, we evaluate and discuss the presented NI/NoC architecture in
terms of performance and hardware cost. As part of the evaluation, we present
the custom micro-benchmark framework based on the data flow model of com-
putation that we developed and used to characterize the NI/NoC performance.

The results are produced using Intel/Altera Quartus Prime (v16.1) targeting
the Intel/Altera Cyclone IV FPGA (model EP4CE115) which is used on the
DE2-115 board. Specifically, performance results are obtained by running the
benchmarks on a 3-by-3 multicore platform implemented on the same FPGA
using the Patmos [14] processors as cores.
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(g) General node

Fig. 3. Elementary structures that can be used to model data flow applications. Struc-
ture (c) to (f) are used as benchmarks.

5.1 Benchmarking Method

Our NI is intended to support message passing between processor cores. There-
fore, we introduce a benchmarking framework inspired by the synchronous data
flow model of computation [7]. In this model of computation, data are processed
by a statically ordered sequence of actors. When an actor receives enough input
tokens (data units), it starts the computation to produce output tokens to be
sent to the next actors.

The benchmarks consist of a selection of elementary structures that can be
used to model data flow applications. The actors are running on different nodes of
the platform and the NoC supports the communication channels between them.
In other words, the elementary structures can be considered as the building
blocks of any data flow applications.
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Figure 3 shows the elementary structures, where the ones of Figs. 3(c–f) are
directly used as benchmarks. The elementary structures are as follows: (a) A
producer, with a single output channel, that can produce at a pre-determined
rate. (b) An eager consumer, with a single input channel, that can receive as fast
as possible. (c) A producer directly connected to a consumer. This benchmark is
used to measure the pure NoC throughput between two actors placed in differ-
ent nodes. (d) A pipeline stage, with one input and one output channels. This
benchmark is used to characterize the overhead of the pipeline stage node. (e) A
fork stage, with one input and two or more output channels. This benchmark is
used to characterize the overhead of the fork node. (f) A join stage, with two or
more input and one output channels. This benchmark is used to characterize the
overhead of the join node. (g) The general case node, where an actor has n input
channels and m output channels. The above classifications are specializations of
this general node.

5.2 Performance

The maximum bandwidth offered by the NoC depends on the TDM schedule.
The following analysis assumes a schedule that implements a fully connected core
communication graph where each processor core has a (virtual) circuit towards
all other processors. The maximum bandwidth on a virtual circuit corresponds
to one word per TDM round. The TDM round for the 3 × 3 platform used for
the experiments is 10 clock cycles.

To evaluate the performance of the NoC/NI architecture, we measure the
bandwidth between actors (processor cores) for the elementary structures pre-
sented earlier. We assume a time-triggered system without any form of flow
control. In the experiments, we increase the transmission rate of the producer
until the consumer is saturated (i.e., just before it would start to miss pack-
ets/tokens).

Table 1. Maximum measured throughput, in clock cycles per word, for the four micro
benchmarks used in the evaluation.

Benchmark Throughput (clock cycles per word)

Producer/consumer 10.1

Pipelined stage 10.1

Fork 23.1

Join 25.1

Table 1 presents the measured maximum throughput, expressed in clock
cycles per word per channel, for the four elementary structures used in the eval-
uation. For the first two benchmarks, the measured throughput coincides with
the maximum theoretical one of one word per TDM round since all the actors
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involved are faster than the TDM round. For the fork and join test cases, the
throughput is lower. This can be explained by observing that the fork and the
join actors have to perform more operations before being able to send a token
to the next actors.

If flow-control is introduced in form of credits sent back from the receiver to
the sender, the maximum measurable throughput is reduced. Due to more soft-
ware overhead, the latency of individual words is increased. Hardware support
for flow-control would result in a shorter latency. We implemented a version of
the producer/consumer example with flow control using a single credit, and in
this case the throughput is 23.0 clock cycles per word (as opposed to 10.1 for
the time triggered organization).

All the results presented and discussed above are obtained using a FIFO
queue of 4 words. Further buffering is managed in software. The sending and
the receiving operations consist of two nested for-loops. The outer loop iterates
every time an entire buffer is sent or received by the inner loop, which iterates
for every word of a buffer. Figure 4 shows the maximum measured throughput
for the four benchmarks for buffer sizes from 1 to 64 words.

Fig. 4. Maximum measured throughput, in clock cycles per transferred word, for the
four micro-benchmark for different buffer sizes. The graphs for the pipelined stage and
the producer/consumer benchmarks fall on top of each other.

For all the graphs we observe a similar course or pattern: a decrease to a
minimum followed by an increase to a maximum and finally stabilization to
a value between the minimum and the maximum. This can be explained by
the effect of the loop unrolling executed by the compiler on the inner loop.
The minimum occurs when the compiler completely unrolls the loop, while the
maximum occurs when the number of loop iterations is too large for the loop to
be unrolled.

5.3 Hardware Cost

The resource consumption is given in 4-input look-up tables (LUT), flip-flops
(DFF), and memory consumption in bytes. The memory consumption only refers
to the memory used in the NoC (e.g., for schedule tables, etc.). The size for the
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local memory in the Argo NIs is configurable and therefore not shown in the
table. Maximum clock frequency is reported for the slow timing model at 1.2 V
and 85 C.

Table 2. Resource consumption, maximum frequency, and length of the TDM schedule
of different configurations of the S4NOC.

Configuration LUT DFF fmax (MHz) Sched. length

2 × 2 = 4 1784 1596 235.8 5

3 × 3 = 9 5351 4221 236.1 10

4 × 4 = 16 10761 7568 221.0 19

5 × 5 = 25 17732 11825 216.6 27

6 × 6 = 36 29136 17172 188.6 42

7 × 7 = 49 36783 23373 195.5 58

8 × 8 = 64 55423 30784 183.2 87

9 × 9 = 81 68079 38961 172.8 113

10 × 10 = 100 94540 48500 150.8 157

Table 2 shows the hardware resource consumption of the S4NOC (NI and
routers) in different configurations. We generate those synthesize results with
simple traffic generators (instead of the OCP interface) that drive the local
ports and merge the outputs of the local ports to FPGA pins. We also provide
the maximum clock frequency and the length of the TDM schedule in the table.

We observe a slightly higher than linear increase of the resource usage with
the increase in the number of nodes. This is a result of the larger schedule
tables in the routers for larger NoCs. Furthermore, we observe a decrease in the
maximum clocking frequency as the number of nodes increases. However, the
maximum frequency is still higher than the maximum frequency of the Patmos
core, which is below 80 MHz in the used FPGA.

Table 3 shows the hardware resource consumption of the S4NOC using the
presented NI with the OCP interface and other NoCs. The first group of entries
in Table 3 shows the resource consumption of a single S4NOC node including
the router and the NI for a configuration with 4 buffers in the FIFOs. The
resource consumption is further split into the router and NI components. The
resource numbers have been collected from a 3× 3 configuration, where we took
the median value of the resource consumption of the 9 nodes. The maximum
clock frequency of the 3× 3 configuration is 72 MHz. This critical path is in the
processor pipeline and not in any part of the S4NOC router or NI.

The next group of entries in Table 3 report the results for a single node of
the Argo NoC [6]. The Argo NoC is available in open source. Therefore, we can
obtain the results by synthesizing two configurations of the Argo NoC for the
same FPGA.
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The next group set of result in Table 3 is for the PaterNoster node for a 2×2
configuration. Similarly to S4NOC and Argo, the PaterNoster NoC is available
in open-source, which allows us to synthesize it for the same FPGA. From the
results, we can observe that the S4NOC node is more than 10 times smaller than
the PaterNoster node. The PaterNoster NI is relatively large, as it contains a
fully associative receive buffer to be able to read from any channel independently
of the receiving order.

Table 3. Resource consumption of different components of the S4NOC compared with
other designs.

Component LUT DFF Memory

S4NOC node 602 453 0

Router 266 165 0

Network interface 336 288 0

Argo node 1750 926 1.3 KB

Router 932 565 0

Network interface 849 361 1.3 KB

PaterNoster node 8030 3546 0

Router 1899 1297 0

Network interface 6131 2249 0

OpenSoC router 3752 1551 0.8 KB

3 × 3 S4NOC 5423 4382 0

3 × 3 Argo NoC 15177 8342 12.1 KB

The table also presents the results for a single router of the OpenSoC NoC [4].
For this result, we generated the Verilog code for the default configuration, which
is a 2× 2 mesh with routing based on virtual channels and one local port. From
the results, we can observe that the size of a single OpenSoC router is as large
as the entire 3 × 3 S4NOC with a single buffer.

The next group shows resource consumptions of complete 3 × 3 NoCs. The
S4NOC is around 3 times smaller than the Argo NoC. At this cost, the Argo
NoC provides hardware support for message passing and DMA handling.

When comparing an S4NOC node with the size of a Patmos core, which
consumes 9437 LUTs and 4384 registers, we can see that we achieved our goal
of a small NoC. The resource consumption of one NI and router is around 6%
of the Patmos core. When comparing our NoC with a leaner RISC core, such as
the RISC-V implementation that is part of the Real-Time Capable Many-Core
Model [8] and consumes 5375 LUTs and 1557 registers, our NoC is still in the
range of 11% of that RISC pipeline.
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5.4 Source Access

The source of the S4NOC and the NI is available as part of the Patmos project at
https://github.com/t-crest/patmos. Detailed instructions how to run the exper-
iments from this sections can be found at https://github.com/t-crest/patmos/
tree/master/c/apps/s4noc.

6 Conclusion

State-of-the-art network-on-chip implementations tend to provide a lot of func-
tionality in hardware. This results in complex design of the routers and the net-
work interfaces. The resource consumption of such routers and network interfaces
approache the size of a simple processor pipeline.

The paper presents a design at the other end of the spectrum: a lightweight
network-on-chip solution with a minimal network interface that supports the
transmission of single word packets between processor cores. The resulting design
consumes about 6% of the resources of a RISC processor pipeline per node. Fur-
thermore, as we use time-division multiplexing of the router and link resources,
the latency of the communication is upper bounded and we can use this network-
on-chip for real-time systems.
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Abstract. Providing a reliable and efficient communication infrastruc-
ture becomes more important and more demanding for current and future
Many-core System-on-Chips. The increased amount of communication
partners demands for efficient resource usage. At the same time, an on-
going feature size reduction and supply-voltage level reduction renders
the SoC vulnerable to bit errors. Our work aims at providing a general-
ized analysis of network-coded Networks-on-Chip with multicast support
and unreliable links. We compare network-coded with dimension-routed
NoCs in terms of their hop counts and achievable long-term rates. The
results show that for an 8× 8 2D-mesh setup, network-coding yields a
1.7× to 8.3× better hop count and can achieve a 1.2× to 3.7× higher
rate as dimension-routed 8× 8 NoCs for bit error probabilities of 10−12

to 10−3 and 10% multicast traffic.

1 Introduction

Networks-on-Chip (NoCs) have been developed to provide an efficient and scal-
able interconnect solution to cope with the high number of processor cores
enabled by an increase in silicon real estate. For the sake of more processing
resources, the design goals of many NoCs have been low complexity and small
area footprint. Nevertheless, if routers are not limited to minimum area designs,
one could invest in a higher router complexity.

About two decades ago, that same trend took place in computer networks
and culminated with Network Coding (NC), proposed by Ahlswede in 2000 [1]
who postulated a paradigm shift towards routing of information, rather than of
packets. The key idea was that network routers are not limited to only forwarding
incoming data but can perform almost arbitrary operations on the packet level,
such as combining the payload of multiple packets, promising an increase in
network utilization efficiency.

As NC finds its roots in information theory, it was quickly adopted by the
network community, delivering important contributions both towards under-
standing the theoretical foundations of NC and finding feasible NC schemes.
Therefore, with this idea of information routing, some of the early works tackled
the usage of NC for wireless communication having highly unreliable channels,
showing a considerable improvement in network performance [9].
c© Springer Nature Switzerland AG 2019
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With the on-going feature-size reduction, high switching frequencies, and
reduced supply voltages, unreliability is becoming now a challenge for SoC
designers [8] and NC is a promising candidate to mitigate those effects for the
communication infrastructure. Its benefits have, for instance, been shown by
Microsoft in a multicast setting [4].

In this paper, we provide an analysis of the benefit of NC over dimension-
routing for NoCs for session-operated applications and packet multicast in a
scenario with lossy links. We chose an analytic approach for our study, mainly
because it allows to assess NoCs with bit error rates as low 10−12, in contrast
to event-driven network simulations which, for small bit error rates, show slow
convergence and lack statistical confidence.

The benefits of NC in an NoC setting are demonstrated by studying the
efficiency gap of dimension-routed and network-coded NoCs (NC NoCs). We
assume, that the NoC is operated in sessions, where each session has a set of
active sources and associated sinks and thus impose a certain communication
demand on the communication infrastructure. We use two different metrics to
compare the efficiency of network-coded and dimension-routed networks: (1)
their resource utilization in terms of links or router-hops, and (2) their achiev-
able theoretic rate or long-term throughput. In the model we propose for the
comparisons, we do not account for both the code overhead in NC NoCs and
retransmission request-mechanisms in dimension-routed NoCs.

The paper is organized as follows. In Sect. 2, we review related work. In
Sect. 3, we first introduce the concept of NC and the unicast NC model which
is the basis of our evaluation. We extend that base model to model network
multicasts and provide network-coded metrics used for the comparison with
dimension-routed NoCs. Equivalent dimension-routed metrics are introduced
in Sect. 4. Section 5 shows the benefits of network-coded over dimension-routed
NoCs for 2D-mesh networks with lossy links. Section 6 concludes the paper.

2 Related Work

After NC has been proposed in [1], many information theory centric research
groups have focused on this topic. Theoretical foundations of the formulation
and the efficiency of network coding have been published [11,15,19]. Code con-
struction, a subproblem of coded networks, was addressed in [5,13] where linear
network codes have been proposed.

More practical results using NC have been provided in [4,12] in a peer-to-
peer context for content distribution and in [10,14] for wireless networks with
relay nodes. While both use-cases showed the benefit of using coded networks,
the results can not directly be transferred to NoCs. The key features leveraging
coded networks are long packets and user cooperation in the content distribu-
tion scenario, and the broadcast advantage as well as a shared wireless medium
bottleneck in the wireless networks scenario, which are features not found in
NoCs.
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Therefore, multiple publications tailored NC for NoCs. [7] presented a basic
feasibility analysis of network coded NoCs based on mapping butterfly commu-
nication patterns (cf. Fig. 1) onto a 2D-mesh NoC. Extending the work in [7],
[17,18] proposed algorithms to calculate the mid-point node to establish butter-
fly coded NoCs and compared the impact on the network performance of differ-
ent mid-point selection strategies. [2] showed a router design that stalls packets
in order to increase the event that packets that share the same destinations
can exploit the butterfly structure. A different NoC architecture was investi-
gated in [6], where unidirectional buses connecting multiple routers instead of
bidirectional point-to-point links where used to connect the routers in an NoC.
Although all those four works have already shown the potential of NC, their
results reflect butterfly communication patterns only.

Considering arbitrary multicast configurations, we have shown, in a prior
publication, the benefits of network-coded over dimension-routed NoCs in [20].
In contrast to the present work, we did not consider lossy network operation in
our comparison.

To achieve error resilience and an increase in efficiency for unicast connec-
tions in NoCs, random linear NC was proposed and evaluated in an analytic
model with flit error rates between 5% to 20% in [16]. While lossy networks are
addressed in this work as well, we consider using NC in a multicast setting that
leverages the potential of NC with bit error rates as low as 10−12.

A NC enabled network architecture that is based on clustering multiple nodes
into cooperation regions that combine 4 packets into one network-coded was pro-
posed in [22]. These cooperation regions are interconnected by dedicated links
that carry the network-coded packets. To recover the packets at the destination
region, the plain packets are sent in addition over a regular 2D-mesh NoC. In con-
trast, we want to focus on both a comparison of network-coded and dimension-
routed NoCs without increasing the network’s capacity by adding additional
links and the impact of lossy links in our work.

3 Network-Coded NoCs

In general, a network code is the design and mapping of a set of operations
performed on packets to distinct nodes in a network. As this definition is a
rather abstract one, we provide a short introduction to NC.

3.1 An Introduction to Network Coding

As stated in Sect. 1, by the observation of the increased processing and storage
capabilities of state-of-the-art network resources, such as routers and switches,
NC was introduced.

Two examples for small network codes are given in Fig. 1. In Fig. 1(a), intro-
duced in [1] and referred to as the Butterfly example, two sources A and B
want to transmit data concurrently to two joint sinks E and F. Limited by the
common edge connecting nodes C and D, serving both sinks at the same time
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Fig. 1. NC examples: (a) Butterfly, (b) Relay, and (c) Butterfly with super source. The
coded operation is indicated in blue. (Color figure online)

reduces the long-term throughput of the two cross connections A–F and B–E to
only half the throughput. Instead, with NC, node C performs an XOR (a⊕b) on
data streams, which is then forwarded to nodes E and F simultaneously by node
D. These changes eliminate the bottleneck and result in a decreased number of
edges and timeslots used as well. At the receivers, an additional XOR is required
to recover the original information.

In Fig. 1(b), introduced in [10] and referred to as the Relay example, we have
a 3 node wireless communication scenario: nodes A and C need to exchange
information but, due to distance, have no direct link established. Rather, node
B acts as a relay between A and C. Again, broadcasting a⊕ c is more efficient in
terms of channel and transmit energy than a consecutive transmission of a and
c, as B saves half its transmissions using NC.

These two examples show clearly that a network code requires both a set of
operations (forwarding and XOR in both examples) and an operation mapping
(choosing which node performs the coding operation on incoming packets) as
well as a transmission strategy (broadcasting the coded data to both sinks in
the Butterfly example or waiting for the reception of both a and c prior to coding
and broadcast in the Relay example).

3.2 Definitions and Notation

Let G = (N , E) be a network graph characterizing an arbitrary network with
N nodes, where N = {1, . . . , N} is the set of nodes and E = {(ij) | i, j ∈ N}
is the set of edges. The neighbors of node i ∈ N , Ni, are collected in the set
Ni = {j | j ∈ N , (ij) ∈ E}. As the interconnects of routers in 2D-mesh NoCs
are bidirectional, we model each link between two nodes by two unidirectional
edges. The capacity of an edge is p, which is 1 flit-per-edge-use for lossless and
0 ≤ p < 1 flit-per-edge-use for lossy networks.

When using NC, we focus on information routing rather than packet routing.
Therefore, we encapsulate multiple edges of a router into hyperarcs, which are
virtual connections carrying the same information. A node with Ni neighbors
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has Ni edges which can be combined into 2Ni − 1 hyperarcs, which are all com-
binations (excluding the empty set) of edges connecting the nodes. Hyperarcs
are denoted by the tuple iJ , where i ∈ N and J ⊂ Ni. The set of all hyperarcs
is A = {iJ | i ∈ N , J ⊂ Ni}. A packet P is injected into hyperarc iJ at node i
if it is sent simultaneously to the subset of neighbors in J .

As for the communication within the network, we consider a session operated
network with C ≤ N active sources Sc ∈ N , c = 1, . . . , C within one session.
Each source has Tc < N associated sinks t

(c)
1 , . . . , t

(c)
Tc

∈ Tc, Tc ⊂ N\Sc. The
union of all Tc forms the set of sinks T =

⋃
c=1,...,C Tc.

Finally, ziJ is the average injection rate of packets into hyperarc iJ by node

i ∈ N , and x
(t

(c)
k )

ij is the information flow from node i ∈ N to node j ∈ Ni

contributing to the communication from source Sc to sink t
(c)
k , i.e. the amount

of information that goes from i to j associated with the source-sink pair Sc, t
(c)
k .

3.3 Minimum-Cost Network Operation

In [15], the requirements for efficient network operation using NC has been for-
malized. The determination of the set of operations is referred to as the code
construction problem, whereas the right transmission strategy is referred to as
the subgraph selection problem, i.e. selecting paths for information flows from
the sources to the destinations. In other words, a network can be operated with
minimum-cost if (a) there exists a capacity achieving network code and (b) the
network supports certain injection rates and information flows. As an indepen-
dent solution to both problems does not sacrifice optimality, we focus on the
subgraph selection problem in our comparison. The code construction problem
can be solved using linear network codes (cf. [5,13]).

The Subgraph Selection Problem. According to [15], the rate of packets r
t
(c)
k

arriving at sink t
(c)
k per unit time interval can be supported by the network using

NC for every source-sink pair (Sc, t
(c)
k ), ∀ c = 1, . . . , C, t

(c)
k ∈ Tc, provided that

there exist (a) packet injection rates ziJ ≥ 0, ∀ (iJ) ∈ A and (b) information

flows for all source-sink combinations x
(t

(c)
k )

ij ≥ 0, ∀ i ∈ N , j ∈ Ni, t
(c)
k ∈ Tc, c =

1, . . . , C, such that the flows do not exceed the cut capacities of the network (cf.
paragraph 1 on p. 6), which relate to the max-flow/min-cut theorem. In addition,
within the network, information is neither generated nor consumed except by
sources and sinks (cf. paragraph 2 on p. 6). As we will see in the following
paragraphs, the constraints on the packet rate r

t
(c)
k

are linear in nature, which
means that the subgraph selection problem is a linear program and can be solved
using any common LP-solver.

Although the problem formulation of [15] suffices to solve the problem, we use
a modified version introduced in [19], as it reduces the problem formulation in
terms of flow variables and is more concise. Using the results of [15,19] a network
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can be operated with rates r
t
(c)
k

,∀t
(c)
k ∈ T , if the aforementioned constraints can

be fulfilled.

Associated Injection Limits. In a generalized multicast setting, each injection
ziJ encapsulates injections associated with a certain multicast group c, i.e. the
sum of partial injection rates y

(c)
iJ is upper bounded by the injection rate ziJ :

C∑

c=1

y
(c)
iJ ≤ ziJ . (1)

Cut Capacity Constraint. The flow of information x
(t

(c)
k )

ij of connection c flowing
through the cut K ⊂ Ni from node i to a subset of its neighbors K is bounded by
the capacity of the cut between i and K. This capacity depends on the associated
injection rates y

(c)
iJ , as higher injection rates lead to a higher flow of information.

If the network is lossy, the probabilities of transmission success influence the
information flow as well.

If piJL is the probability that exactly the nodes in L receive the information
injected into hyperarc iJ , then

biJK =
∑

{L⊂J|L∩K �=∅}
piJL, (2)

is the capacity associated with this hyperarc and the information flow is bounded:
∑

j∈K

x
(t

(c)
k )

ij ≤
∑

{J⊂Ni|J∩K �=∅}
biJK · y

(c)
iJ , ∀ i ∈ N , K ⊂ Ni, t

(c)
k ∈ Tc, c = 1, . . . , C.

(3)

Flow Conservation Law. As information is preserved within a node, the in- and
outgoing information flows have to be equal, except for sources and sinks.

∑

j∈Ni

x
(t

(c)
k )

ij −
∑

j : i∈Nj

x
(t

(c)
k )

ji =

⎧
⎪⎪⎨

⎪⎪⎩

r
t
(c)
k

, if i = Sc,

−r
t
(c)
k

, if i = t
(c)
k ,

0, otherwise,

∀ i ∈ N , t
(c)
k ∈ T , c = 1, . . . , C.

(4)

Medium Access Constraint. As we will consider both the link-usage as well as the
achievable throughput in our efficiency comparison between NC and dimension-
routed NoCs, we need an additional constraint modeling the medium access
(MAC) for the rate computation. From Eq. 1 we see that associated injections are
upper bounded by the overall injections. To constrain the injections themselves,
and therefore the injections associated with multicast group c, we have to upper
bound the sum of all injections originating at node i and ending at j by the
activity of the edge between i and j, eij :

∑

J : J∈A,j∈J

ziJ ≤ eij , ∀i ∈ N , j ∈ Ni. (5)
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Super Source Extension for Network-Coded NoCs. In contrast to the
simple examples in Figs. 1(a) and (b), the sources of an NC NoC have to be
synchronized somehow due to the network structure. If sources are not synchro-
nized, there is no need for a router to broadcast the message to multiple ports,
thus enabling path diversity. Rather, it would fall back to a basic one-to-one
connection scheme used by dimension-routed networks.

In our network model, source synchronization is introduced by adding a
super-source to the network that is connected to the real sources. The concept
and application of a super-source to a network that supports NC can be seen in
Fig. 1(c): without NC, the super-source can support both sinks only with a rate
of 1.5, needing 10 link uses to deliver both a and b to the sinks E and F instead
of rate of 2 with 9 link uses when using NC.

From this example, we can derive additional constraints and properties of an
NC NoC in the case of adding a super-source which (a) is connected to all sources,
(b) has unit capacity directed edges, and (c) must inject disjoints messages to
every source. This implies that, in addition to extending the network itself and
modifying the base constraints of Sect. 3.3 by the additional node, we also added
a medium access constraint on the links originating at the super-source to ensure
disjoint message injection.

3.4 Efficiency of Network-Coded NoCs

Without further constraints, following the ideas of [15], we can find injection
rates ziJ large enough such that any rate r

t
(c)
k

, ∀ t
(c)
k ∈ T can be supported.

Given that the routing resources, i.e. edges and routers, are limited in a
network and that a network should achieve a high throughput with the available
resources, we use two efficiency metrics to characterize the operation of a network
which are (a) the hop count or number of edges and (b) the rate at which sinks
can be served within a session for a certain communication request.

Hop Count. By dictating unit packet rate and finding the minimum injection
rates ziJ that support the packet rate, we get the utilization of hyperarcs. As
hyperarcs are virtual connections modeling injections into multiple edges at once,
we must also account for the size of an hyperarc to get to the edge utilization of
the NC approach. Minimizing the sum of weighted injection rates

γnc =
∑

i∈N

∑

J⊂Ni

|J | · ziJ , (6)

for some fixed rate r
t
(c)
k

= r, ∀ t
(c)
k ∈ T , yields the hop count when multiplied

with the number of flits per packet F :

Γnc = min
ziJ≥0: (iJ)∈A

F · γnc,

s. t. Eq. (1), (3), (4), (5), and r
t
(c)
k

= r = 1, ∀ t
(c)
k ∈ T .

(7)
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The hyperarc capacity, in flit per channel use in the case of NoCs just as for
regular point-to-point edges, is modeled by biJK (cf. Eq. (2)). The probabilities
in Eq. (2) can be calculated in the case of lossy NoCs by using pijj = (1−pout)B

as the edge capacity and using the fact that the edges contributing to hyperarc
iJ are disjoint. Therefore, this efficiency metric holds for both lossless and lossy
NC NoCs.

Rate. If we want to maximize the rates, we have to constrain the injections of
the network, otherwise the linear program becomes unbounded. Therefore, we
limit the activity of the edges to unit activity using the medium access constraint
(cf. Sect. 3.3), which upper-bounds the injection rates by the edge activity.

max
r
t
(c)
k

∑
t
(c)
k ∈T r

t
(c)
k

,

s. t. Eq. (1), (3), (4), (5), and eij = 1, ∀ (ij) ∈ E .

(8)

4 Dimension-Routed NoCs

For our comparison, we use XY-dimension routing, although advanced routing
algorithms have been proposed for NoCs, mainly because it (a) is well established
and therefore makes results more comparable, (b) is deadlock free, (c) comes with
low routing overhead, and (d) uses unique predetermined minimum distance
routes. Just as with NC NoCs, we base our efficiency characterization both on
the edge utilization of network nodes and the rates achievable.

Hop Count. Following a packet from source Sc ∈ N to one of its sinks t
(c)
k ∈ Tc,

the packet traverses the nodes along its route Rxy(Sc, t
(c)
k ), using the edges

between each two nodes for one cycle per flit, which sums up to |Rxy(Sc, t
(c)
k )|

edge usages per flit. For a multicast setting, a routing mechanism that spans
a tree and exploits overlapping routes originating from the same source has an
edge use per flit per connection

γxy,c =

∣
∣
∣
∣
∣

Tc⋃

k=1

Rxy(Sc, t
(c)
k )

∣
∣
∣
∣
∣
. (9)

For lossy NoCs, we have to account for retransmissions caused by invalid
packet data as well. We assume that retransmissions will be limited to the sinks
that received corrupt packets. Therefore, we have to calculate the probability
that the packet was received by the nodes in subset K ⊂ Tc but was not received
by the nodes in subset Tc\K, which we denote as QScK . The lossless edge use
per flit per connection γxy,c of Eq. (9) is then extended to

γxy,c =

∣
∣
∣
∣
∣

⋃

t∈Tc

Rxy(Sc, t)

∣
∣
∣
∣
∣
+

∑

K⊂Tc : K �=∅

∣
∣⋃

t∈K Rxy(Sc, t)
∣
∣

QScK
, (10)
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In our prior work [21], we provided an analytic estimation of end-to-end bit error
rates for NoC multicasts, modeling the network as a cascade of binary symmetric
channels. Inferring from that results, a recursive equation for QScK and packets
with B bits is

QScK = ps(K)B −
∑

L⊂{Tc\K} : L�=Tc\K
QSc{Tc\L}, ∀K ⊂ Tc, (11)

initialized with QScTc
= ps(Tc)

B, which is the probability that all sinks received
correct packets and not a single bit flipped at the sinks of multicast group c.
Here, ps(K) is the subset success probability for a single bit of the receivers in
subset K ⊂ Tc, i.e. the probability that the nodes in K received correct bits,
irrespective of the nodes in Tc\K. Due to space limitations, the proof for both
Eqs. (10) and (11) are omitted in this paper but can be developed based on the
results in [21].

The hop count we use for comparison is calculated as the sum of edge usages
per connection weighted with the packet length

γxy = F ·
∑C

c=1γxy,c. (12)

Rate. Having overlapping routes of traffic originating from different sources
means that at least one edge must be shared by all these sources. Every sink ends
up with a different rate, depending on the communication demand. The T rates
quantify the capabilities of the network. The rate of the connections is obtained
by counting the number of all multicast routes that have a common edge and
keeping the maximum values. For example, if two multicast connections have a
common edge, the long-term rate of both connections reduces to 0.5, whereas
disjoint connections have unit rate.

In the case of unreliable NoCs, we need to account for the information loss.
If packets are received incorrectly with a probability of pout, we get only every
1− poutth packet. Thus, we can sustain only a rate of 1− pout = ps(t

(c)
k )B of the

lossless long-term rate r
t
(c)
k

for packets with B bits.

5 Efficiency Assessment of Network-Coded NoCs

In this section we compare NC and dimension routed NoCs with respect to their
hop counts and rates as derived in Sects. 3 and 4.

5.1 Experimental Setup

Since the network is operated in sessions, we fix the number of sources and
sinks, randomly draw the respective number of communication partners in that
session, and calculate both hop counts and rates. An equivalent injection rate
per session is calculated from the number of sources active within one ses-
sion. In our analysis runs, we used random traffic and bit error probabilities
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(pe = {10−12, 10−9, 10−6, 10−3}). The first analysis run is an exhaustive sweep
for a 3 × 3 2D-mesh for a first interpretation of the basic behavior of NC and
routed NoCs. Then we used 4 different parameter sets (constrained random traf-
fic, multicast ratio, injection rate, and packet length) with different mesh sizes
(3 × 3 to 8 × 8). The comparison results are the mean of 1000 random session
realizations, where we sum up the obtained hop counts and average the calcu-
lated rates per network realization. If not stated otherwise, we use packets with
256 bit/packet divided into 8 flits/packet and 32 bit/flits.

5.2 Results

3-by-3 NoC. In a first step of our evaluation, we analyze the behavior of a
3 × 3 NoC. In this network, we can choose from 1 to 9 sources and 1 to 8 sinks
per source. To isolate the influence of the communication demand size, i.e. the
number of sources and sinks active within one session, we fix the number of
sources, and sinks per source to one distinct value.

Fig. 2. Averaged differences in hop count (left) and rates (right) of network-coded and
dimension-routed 3× 3 2D-mesh NoC with lossy links over all source-sink combinations.

The results of Fig. 2 show almost equal results for pe ∈ [10−12, 10−6] (bottom
surface); only at 10−3 can we see a considerable increase in the benefit of NC
(top surface). In terms of hop count reduction, we observe that NC is most
advantageous when all the nodes in the network are active but serve only about
half of the available nodes. In contrast to the almost lossless cases, the hop count
advantage increases at pe = 10−3 with a higher number of active sources and
the size of the multicast group. This is due to the coded-network being able to
recover the information with less redundancy as it distributes the information
over the network, therefore making better use of the link capacity. For the rates,
however, it is better to keep the number of active sources and sinks low, allowing
to exploit path diversity, which is limited in high-traffic scenarios.
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Constrained Random Traffic. Next, we investigate networks of different sizes
with a randomized communication demand with sources and sinks drawn, with-
out loss of generality, from the discrete uniform distribution U [1, 8] chosen to
have a higher variation for the analysis.
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Fig. 3. Averaged hop counts (top) and rates (bottom) of different network sizes and
bit error rates NoC for random numbers of sources and numbers of sinks.

In Fig. 3, we observe hop count increases of routed NoCs between 1.2–2× for
pe ∈ [10−12, 10−6], and between 1.9–4.5× for pe = 10−3 between the different
network sizes. Since the main difference in these networks is the packet travel
distance, we see that coded-networks perform especially well with increased net-
work sizes. For the rates, we see a local maximum of a 1.3× better rate for
NC NoCs in a 5 × 5 mesh and low error probability, which is attributed to the
comparatively dense traffic as opposed to the 8 × 8 mesh. However, as error prob-
abilities increase, the rate is affected more by the long routes as well, and thus
there is a 3.9× increase for the NC NoC in the 8 × 8 mesh.

Multicast Ratio. Since multicast traffic accounts for only a fraction of the
overall traffic [3], we investigate the influence of the multicast traffic percentage.
To this end, we generate combined uni- and multicast traffic at an equivalent
injection rate of 0.1 flit/cycle/node and use multicast groups of 8 sinks per
multicast connection [3].
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Fig. 4. Averaged hop counts (top) and rates (bottom) at different multicast ratios.
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The multicast traffic ratio has an interesting influence, as can be seen
from Fig. 4. For the hop count, we see an improvement of 1.7× to 2.0× for
pe ∈ [10−12, 10−6], which means that the coded network can better cope with
multicast groups. However, for pe = 10−3, the opposite is observed: we have a
8.4× to 6.8× increased hop count of the routed network. This means that the
NC NoC suffers from the increased traffic as well. For the rates, we see a steady
improvement from 1.2× to 1.3× from 10% to 30% multicast traffic in the low
error rate case to 4.0× in the high error rate case, meaning that NC exploits
path diversity more efficiently even in the case of high error probabilities.

Injection Rate. The influence on the network’s load is assessed in this section
for different network sizes at an error probability of 10−3. We generated traffic to
reach equivalent rates between 0.04 and 0.25 flit/cycle/node with 10% multicast
traffic and an 8-ary multicast.
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Fig. 5. Averaged hop counts (top) and rates (bottom) at equivalent injection rates.

From Fig. 5, we can see that the NC NoCs curves show a lower hop count
than those of the routed NoCs and have the same shape, meaning that NC does
not overly benefit from a higher network load. The rates, however, show that
NC can sustain almost unit rates, since an 8 × 8 has a high amount of network
resources and does not suffer from corrupted packets as much as the routed NoC.

Packet Length. To conclude our analysis, we investigate the influence of the
packet length in Fig. 6. The equivalent injection rate is about 0.1 flit/cycle/node
at 10% multicast traffic and multicast groups of size 8 in an 8× 8 NoC.

The hop count results show that the packet length has a huge impact on
the efficiency of the network. Indeed, while we have only a small increase in
hop count of less than 1.1× when using NC for pe = 10−12 and pe = 10−3, the
NoC can not be operated anymore using routing with retransmissions, as the
packet loss rate becomes too high. For the rates, the same effect can be observed.
The routed network is too busy retransmitting at pe = 10−3 while the NC NoC
sustains a high rate. For pe ∈ [10−12, 10−6], the 1.2× increased rates originate
from a better usage of path diversity.



320 M. Vonbun et al.

8 40 80 160
103
109
1015

H
op

C
ou

n t

8 40 80 160
0

0.33
0.66

1

Packet Length [flit/packet]

R
at

es

xy nc
1e-12 1e-12
1e-9 1e-9
1e-6 1e-6
1e-3 1e-3

Fig. 6. Averaged hop counts (top) and rates (bottom) of different packet sizes and bit
error rates for 8-by-8 2D-mesh NoC.

6 Conclusion

We extended a theoretical model to assess session operated multicasts in NC
NoCs with lossy links and modeled an equivalent dimension routed NoC based on
an analytic end-to-end packet error rate estimation as a reference. Our approach
allowed to evaluate NoCs with error probabilities as low as 1012 without the slow
convergence and statistical confidence issues a network simulator can face.

We showed that, already at low error probabilities (pe ∈ [10−12, 10−6]), NC
outperforms routed NoCs in terms of hop counts due to better link utilization. It
can also establish higher long-term rates between network routers due to a better
usage of path diversity. For higher error probabilities (pe = 10−3), a high number
of packet retransmissions renders the routed NoC inoperative, whereas the NC
NoC remains functional. Although this might seem artificial, recent research in
approximate or near-threshold computing have shown a trade-off between power
reduction and the additional effort needed to compensate errors. Another field
of application are space-grade MPSoCs where, due to an increased exposure to
radiation, common SoCs have to be hardened against a high number of bit errors.

In our comparison, we focused on an analytic model of synchronized NoCs
operated in sessions. To overcome the inherent limitation of sessions, time-
division-multiplexed NoCs, that offers synchronization and control by design,
are suitable candidates and will be subject to further research. Additionally, we
plan to cover hardware aspects in the analysis of NC NoCs by considering code
overhead, power consumption of coding operations as well as latency.
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Abstract. Multi and many-core SoCs (System-on-Chip) are the key solutions
to cater for extraordinary demands of high-performance embedded and other
applications. It has become more critical with the limits on sub-nanometer
technologies for chips that cannot be shrunk further. Network on Chip (NoC) is
a scalable interconnection structure that can provide efficient solutions for on-
chip interconnection problems of many-core SoCs such as re-configurability for
application specific applications. Most of the existing reconfigurable NoCs
improve performance of SoC in exchange of larger chip area and higher power.
We present a new reconfigurable NoC having improved performance and power
for variety of SoC applications. The synthesis and simulation results for our
approach show higher performance by comparing our NoC architecture with the
past on-chip interconnection structures.

Keywords: Reconfigurable on-chip SoCs � System-on-Chip �
NoC with router and switch layers � Application specific NoC

1 Introduction

Multi-core systems are continuously improving due to the shrinking of fabrication
technology. This trend has changed to integration of simpler processing cores on a
single chip [1]. Therefore, multi and many-core System-on-Chip (SoC) architectures
have become the new generation of high-performance embedded computer platforms.
In parallel with the above progress, the performance of interconnection system is also
growing, and Network-on-Chip (NoCs) have emerged to become the communication
backbone for systems depending on the application s requiring high performance.

Conventional NoCs (CNoC) is a generic NoC architecture consists of homogenous
nodes that are connected by links according to the NoC topology. A conventional
4 � 4 mesh-topology NoC, as part of the SoC is shown in Fig. 1. CNoCs are scalable
and suitable for many-core SoCs as well as generic multi-core CPU architectures [2].
CNoC nodes consist of routers with 5-input and 5-output ports, and communication
links for interconnection. Generally, a message is passed as a collection of packets,
where a packet is made of multiple flits. A flit is the smallest data unit that travels
through the NoC nodes in a pipelined fashion at the NoC clock rate. A wormhole
switching is generally employed, where a header flit passes through the network to
establish and reserve a route for all the packet flits [2].
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The main problem with the CNoC is its lack of flexibility, where the communi-
cation between two neighboring nodes is always faster than the communication
between far nodes (specifically for low/normal traffic). This is due to the pipelined
nature of communication where far nodes use more routers and pipeline stages than the
neighboring nodes. Application-oriented systems are designed to meet the needs of one
or a small set of applications. SoC cores placement for the NoC are fixed, however their
communicating targets may differ according to the application being executed on the
chip. Consider the NoC system given in Fig. 1, if the CPU core is required to directly
communicate with the Memory core (neighboring core) in one application and then it
may also have to communicate with the RF core (far core) for the 2nd application. For
high-performance SoC design, the NoC should provide adequate flexibility for the far
cores to communicate in the same fashion as the neighboring cores.

To alleviate delays of wormhole switching, Virtual Channels (VCs) have been
introduced. We argue that by removing or scaling down the VCs in exchange of
additional switches to NoC nodes, the NoC becomes more efficient and reconfigurable
for an application-oriented high-performance SoCs. Various reconfigurable NoCs have
been proposed as suitable interconnection system for high performance SoCs [3–6].
Most of them have added extra hardware to a generic NoC for creating a reconfigurable
architecture. Our NoC design approach does add some extra hardware components to
the CNoC, however these components also help to remove some of the routers to
reduce the hardware cost of NoC. Our reconfigurable NoC provides the flexibility
along with the balancing of hardware cost and communication speed.

2 Past Reconfigurable NoCs

A key past work on reconfigurable NoCs has been proposed by Stensgaard and Sparsø
[3]. They presented a reconfigurable NoC (ReNoC) that can be organized in the form of
a homogeneous topology, where the NoC node consists of a buffered router that is
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Fig. 1. SoC having a conventional 4 � 4 Mesh NoC.
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wrapped by an asymmetric Reconfigurable Switch (RS). The main drawback of ReNoC
is the utilization of a switch along with the router for each ReNoC node and it con-
sumes more hardware and power. ReNoC was further developed by Chen et al. and
they proposed ‘SMART’ NoC that reconfigures a mesh topology at runtime [4]. They
employed additional circuitry in the router that allows a packet to bypass all the way
from source to destination core in a single clock cycle.

Modarressi et al. have also built on ReNoC and presented a reconfigurable archi-
tecture for NoC to configure arbitrary application specific topologies [5]. The NoC
nodes are composed of routers and reconfigurable switches are used to interconnect
NoC nodes. They also propose another reconfigurable structure that provides more
flexibility by increasing the number of RSs between adjacent routers. The main
drawbacks of their approach are higher hardware cost and large delay (in-between two
adjacent cores) that is equivalent to two routers and one RS as compared to two router
delay in a CNoC. Sarbazi-Azad and Zomaya has further generalized the architecture
and explored different reconfigurable structures by altering the placement of routers and
RSs [6]. Their scheme also has the same drawbacks of higher cost and delays.
Suvorova et al. presented a newer version of the architecture presented by Modarressi
et al. [5] to mitigate fault tolerance in NoCs [7]. In their architecture, every router and
RS are also connected to eight neighboring routers and other RSs. The interconnection
configuration may have regular structure (torus, tree, etc.) as well as irregular or hybrid
structures. However, their NoC structure is very expensive in terms of hardware. Our
reconfigurable NoC is cheaper than CNoC due to savings of the high cost traditional
NoC routers.

3 High Performance Reconfigurable NoC

The main objective of our reconfigurable NoC presented in this paper is to design the
NoC with high flexibility in terms of topology and speed with acceptable increase of
hardware and power consumption. The proposed NoC architecture can be easily scaled
(in two dimensions) for any SoC application to satisfy the constraints of hardware
overhead and communication speed. An abstract level of our High Performance
Reconfigurable NoC (HPRNoC) architecture is illustrated in Fig. 2. A two-layer
HPRNoC architecture consists of separate networks of Reconfigurable Switches
(RS) and routers. The RS-network receives messages from the IP cores and passes
them through switches and the Router-network to implement the application. Figure 2
illustrates a 4 � 4 mesh example of our HPRNoC1 architecture that consists of two
communication layers i.e. RS-network and a router-network. These layers are inter-
connected together that the IP cores are connected to the router-layer through RS layer.
The RS-layer consists of reconfigurable switches that can also have other than mesh
topology. The router layer is a conventional router based NoC interconnection that can
be of any topology. The routers are active component having buffers, arbiter and
crossbar switch to communicate in a pipelined manner in-between the source and sink
cores (IPs) [2]. On the other hand, RSs are passive components that only connect their
input ports to their output ports. They do not have any buffers, and arbitration logic.
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One of the main features in our NoC design is that each IP core has an exclusive
access to a router port through one or more switches. It makes our HPRNoC a subset of
router based NoCs and when there is no route for a source core in the RS layer, there is
a route in the router layer. When a packet reaches to the router layer, it can benefit of all
the protocols and facilities associated with a conventional NoC. The cores that need a
high-speed communication route can communicate through RS layer.

A specific HPRNoC2 version of our HPRNoC structure is illustrated in Fig. 3. The
RS-layer has the same nodes as the IP layer, but the router layer is scaled down to the
extent that it provides a dedicated port for each IP core. The internal structure of a RS
node consists of a set of simple switches along with control logic to establish con-
nections between the incoming and outgoing links. The motivation for inserting the RS
layer over the router based layer is that the RS components are much more efficient in
terms of chip area, power and speed as compared to intelligent complex packet-
switching routers. Therefore, we intend to utilize fewer number of routers in the packet
communication process as we have employed 4 routers instead of 16 in a the HPRNoC
structure shown in Fig. 3. Six-port wormhole routers are used having input and output
ports, arbiter and a crossbar switch [2]. In the router micro-architecture, the input-ports
utilize buffers for VC organization, and the output ports are data buses. Virtual
Channels (VCs) alleviate the congestion and deadlock related routing problems in
addition to improving the performance of router layer communication.

Multi-core SoCs designed for multiple applications to be executed will require
configurable interconnections for fast execution. An efficient way of message passing
in our proposed re-configurable SoC is to put look-up tables in RS and router modules
enabling them to inter-connect various communication links according to the appli-
cations being executed. Routing mechanism in our proposed HPRNoC is similar to the

Fig. 2. 4 � 4 Mesh HPRNoC1: IP, RS & R represent cores, recon-switches & routers
respectively.
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CNoC, where the IP cores send data in the form of packets whose header (first) flit
contains the route information and the tail (last) flit closes the packet communication.
When a source core sends the header flit of a packet to an RS module, the RS module
connects the input-port from the IP core to a relevant output-port according to the
destination address of the header flit. Assume a packet moves only in the RS layer to
reach its destination that can be a router or an IP core. When the header flit enters a RS
on its route, it is switched toward the destination. The communication among RS layer
takes only one clock cycle for the header flit to reach its destination. The communi-
cation in the RS layer is fast as no pipelined stages and buffering are involved.

However, a packet may also have to pass through the router layer. When a header
flit reaches the input-port of a router, it is stored in the input-port buffer. Then, the
input-port issues a request signal to the arbiter. The arbiter performs arbitration among
the potential input-ports’ flits that are making requests to access the crossbar switch and
other shared resources [2]. When the flit wins arbitration and is granted to exit the
router, it passes through the crossbar switch. This form of communication in a router
needs at least four pipelined stages [2]. For routers utilizing VCs, the structure of router
input-port becomes more complex. The crossbar switch can be configured to connect
any input buffer of the router to any output port (channel), with the constraints that only
one input-port is connected to only one output-port. Arbiter also has a simple hardware
however, it will become complex for a VC based router.

We have mentioned a few advantages of our proposed HPRNoC architecture.
Firstly, the RS module structure is much smaller as compared to a router. Therefore, by
following our approach, the NoC designer can create an optimal NoC by using more
RS modules and fewer routers. For instance, in the 4 � 4 2D-mesh HPRNoC2 shown
in Fig. 3, only four routers are used. The input-ports of these routers are just enough for
accommodating sixteen IP cores in case they need to communicate through the router
layer. Moreover, faster communication in the RS layer as compared to the router layer
makes our HPRNoC an ideal communication subsystem for high-speed SoCs. We
can also increase the number of RS layers (such as 2 RS layers and one reduced

Fig. 3. 4 � 4 Mesh HPRNoC2 with 4 routers and 16 switches.
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router layer) to provide faster interconnection routes for IP cores. More IP cores can
communicate through the multiple RS layers and more cores can access through faster
RS layers. To summarize our HPRNoC has some advantages that are given below:

• The main advantage of our HPRNoC architecture is its homogeneity and scalability.
This feature makes it useful for widespread applications.

• Another feature is the high-speed interconnection required by high performance
SoCs. SoC cores can be connected via high speed RS-network layers.

• The third advantage is the flexibility of our HPRNoC architecture to trade between
performance and the hardware overhead. The hardware required by the RS layer is a
small fraction of the routers. Therefore, by decreasing the router layer size in
exchange of increasing the number of RS layers or RSs will lead to a flexible
structure with high performance and economical hardware.

• The architecture is scalable and separable in terms of hardware cost and speed.
The RS layer impacts the communication speed and the router layer has an impact
on the hardware cost.

• The negative point of our HPRNoC is its higher level of interconnection wiring due
to large number of RSs and one or more RS layers. It may turn the chip layout of
SoCs a bit difficult.

4 Experimental Results

In this section, HPRNoC architecture is compared with the conventional NoC (CNoC)
and reconfigurable NoC developed in the past. For the experimental results, we have
used 2D-mesh based NoC architectures, where each node consists of a router for a
4 � 4 mesh topology. The routers of a CNoC architecture are identical in terms of their
VCs, arbiter and crossbar switch.

4.1 Synthesis of HPRNoC and CNoCs

To investigate the hardware characteristics of our HPRNoC architecture, we have
investigated the NoCs given in Figs. 1, 2 and 3. The NoCs are synthesized in terms of
power consumption, chip area, and critical path delay. NoCs are implemented in
System-Verilog and chip area, power and critical path delay related parameters are
obtained by employing Synopsys Design Compiler with 15 nm NanGate ASIC
libraries [8]. A global operating voltage of 0.8 V and time-period of 1 nsec (1 GHz) is
applied for NoC synthesis. The communication links among the NoC nodes are
ignored. The input-ports of routers are setup to utilize zero, 2, 3 or 4 VCs and 8 buffer
slots. A buffer slot accommodates 16-bit flits. RS consumes much less hardware than a
no-VC router as it only needs a few multiplexer switches and a simple control logic
along with registers to keep the look-up table for a packet being transferred. The RS
switches the inputs to the outputs according to the routing address carried by the header
flit of a packet. Our Verilog-designs indicate that for NoC routers, the chip area of a
crossbar switch for a 6-port router is also much smaller than the overall chip area of the
router.
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We present the hardware characteristics of various size HPRNoCs, CNoCs and past
reconfigurable NoC in Table 1. The CNoCs have a mesh topology (5-ports) and listed
as CNoC1, CNoC2 and CNoC3 based on the number of VCs utilized in the input-ports.
The nodes of CNoC1 is made of simple routers without any VC, and the router of
CNoC3 has 3-VCs per input-port. HPRNoC architectures, HPRNoC1 (with no-VC
routers) and HPRNoC2 illustrated in Figs. 2 and 3 are evaluated. Table 1 also has two
columns presenting the power and area ratios of these NoCs with the 4 � 4 RS
network layer shown in Fig. 2. Both HPRNoC versions perform much better than
CNoCs due to fast inter-node communication through the RS layer. For our HPRNoCs
the delay is just two times of the RS delay. The minimum delay in CNoC router is 18
times of the RS delay. In addition to faster communication potential of HPRNoCs, they
consume less hardware. For example, HPRNoC2 uses much lower hardware because
only four routers are used as compared to 16 routers in other NoCs.

4.2 Performance Evaluation

NoC Performance metrics such as latency is also determined for the evaluation and
comparisons of HPRNoC by using ModelSim. We have explored four NoCs such as
CNoC1, CNoC2, CNoC3 and HPRNoC1 (given in Figs. 1 and 2) for commonly used
applications of Audio/Video Benchmark (AV) [9] and DVOPD. Double Video Object
Plane Decoder (DVOPD) with the capability to decode two streams in parallel [10].
DVOPD and AV Benchmark applications are mapped to 4 � 7 and 4 � 4 mesh
topologies as shown in Figs. 4 and 5 respectively. The mappings to various NoCs such
as CNoC1, CNoC2 and CNoC3 follow XY algorithm i.e. a mapping is done in X
direction to reach to the Y dimension of its destination, then it maps to Y direction to

Table 1. NoCs hardware characteristics

NoC ASIC design 15 nm NanGate Library

Area (µm2) aPower (mW) Characteristics
ratio with a
‘4 � 4 RS
Network’
Area Power

4 � 4 RS Network 8336 2.5 1.0 1.0
2 � 2 no-VC 6-port Router Network 18640 7.5 2.2 2.9
CNoC1 (Fig. 1)
4 � 4, no-VC 5-port Router Network

39972 14.4 4.8 5.6

CNoC2 (Fig. 1)
4 � 4, 2-VC 5-port Router Network

43180 16.3 5.2 6.3

CNoC3 (Fig. 1)
4 � 4, 3-VC 5-port Router Network

48668 19.0 5.8 7.4

HPRNoC1 (Fig. 2) 48308 17.0 5.8 6.6
HPRNoC2 (Fig. 3) 26976 10.1 3.2 3.9
aTotal dynamic and static power
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reach their destination. Figure 5 illustrates this mapping for AV benchmark application
for the CNoC2. The arrow lines indicate the direction of packet from sources to sinks.
These arrows also specify the number of VCs needed for each channel. For example,
three packets require 3 VCs to service the 3 packets without any blockage. AV
benchmark performance cannot be improved further with 3 or more VCs (see Fig. 5).

For a fair comparison, the mapping in HPRNoCs follows the mapping methodol-
ogy given below and the mapping is shown in Fig. 6 for the AV Benchmark
application.

• The mapping follows XY routing in the router layers, and any route mapping in the
RS layer. Routers have arbiters and buffers to implement message passing, where
RSs are setup in advance for any routing methodology.

Fig. 4. DVOPD mapped to 4 � 7 mesh CNoC.

Fig. 5. AV benchmark mapping to a CNoC2.
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• In the RS node, an output-port can receive packet from one input-port as RS does
not have buffer and arbiter to support the sharing of an output-port by multiple
input-ports. For example, consider the communications from source cores 0 and 5 to
a destination core 4 (Fig. 6). The RS 4 cannot deliver two packets to its output port
connected to sink 4. Therefore, such communication can only be mapped over the
router layer of Fig. 6.

• Mapping of the communications with higher rates and longer routes have priority
over the lower rate and short route communications in RS layers. For example,
among different communications to core 10, the communication from source core
15 has a higher rate and longer route, and therefore it is given priority to be mapped
over the RS layer in Fig. 6.

• A communication that cannot be mapped to only RS layer should be mapped via RS
and router layers.

The above mapping mechanism can be easily implemented for all the HPRNoCs as
each node of the NoC has access to RS and router layers.

Latency and throughput are measured for different flit injection rates. The inject rate
of ‘1’ means that one flit per time unit per node is injected to the NoC. We have set a
time unit to be equal to 9 clock cycles. Injection rate cannot be set beyond 9 in our
simulation meaning that 9 flits per time unit per node are injected to the NoC where a
source core cannot inject more than one flit per clock cycle.

To measure the latency and throughput, a specific number of packets are injected.
In the case of DVOPD and AV Benchmark 221888 and 1520512 packets are sent to
each NoC respectively. NoC communication is based on wormhole switching where
the channel width is equal to the flit size of 16-bits. A packet is made of 16 flits, and
each input-port has an 8-slot central buffer to implement VCs. As mentioned before, the
routers in CNoC1 and HPRNoC1 do not support VCs and the routers for CNoC2 and

Fig. 6. AV benchmark mapping for HPRNoC1
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CNoC3 has 2- and 3-VCs respectively in their input-ports. The flit arrival/departure for
all the routers takes 2 cycles. The NoCs throughput and latency results are presented for
DVOPD and AV benchmark in Figs. 7 and 8 respectively. Please note that AV
benchmark application only require two VCs due to which CNoC2 and CNoC3 based
results are identical. It can be observed from the results that the average latency in
HPRNoC1 is less than those of CNoC3, CNoC2, and CNoC3 for all the flit injection
rates. The average latencies of DVOPD and AV benchmark in HPRNoC1 are 37% and
58% less than those of CNoC3 respectively. The average throughput for HPRNoC1 is
higher than those of CNoC1, CNoC2, and CNoC3. For both applications, the average
throughputs for HPRNoC1 are 5% higher than CNoCs.

The advantage of HPRNoC1 becomes more interesting when we consider the
hardware characteristics. As we have observed form the synthesis data of Table 1, a
4 � 4 HPRNoC1 consumes 0.7% and 11% less area and power as compared to a
4 � 4 CNoC3 respectively. The critical path delay of HPRNoC1 is determined by its
slowest component that is a 5-port no-VC router, and in the case of CNoC3 5-port

(a) Latency for DVOPD traffic

(b) Latency for AV benchmark traffic

Fig. 7. Latency for DVOPD and AV benchmark for HPRNoC1 and CNoC mesh topologies.
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3-VC router is the slowest one. Therefore, the HPRNoC1 operating frequency can be
set almost three times faster than the CNoC3 clock.

The results presented in Fig. 7 depict non-linear latency graphs. This is due to
irregular communications among the nodes. Another consideration is that the con-
tentions in CNoC depend on the number of utilized VCs. Higher VC utilization
decreases the contention and improves performance. HPRNoC1 provides higher per-
formance at higher flit injection rates. For lower to moderate traffic, there are time
intervals without a flit injection, which leads to lower contention in CNoCs. However,
at a high injection rate of 7–9, HPRNoC1 delivers flits via RS along with the router
layers resulting in lower contention.

5 Conclusions

We have presented a High-performance Reconfigurable NoC (HPRNoC) architecture
that consists of a network of reconfigurable switches and a trimmed network of routers.
Our novel architecture has allowed us to reduce the number of routers to balance the
hardware cost due to additional RSs. HPRNoC design shows a minimal delay between

(a) Throughput for DVOPD traffic

(b) Throughput for AV benchmark traffic
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SoC cores with fewer RSs as compared to the past reconfigurable NoC architectures
[5]. The main features associated with our HPRNoC architectures are scalability, high
speed communication and lower hardware. The experimental results do not cover all
the benefits of our proposed HPRNoC architectures, however, the results can illustrate
the efficiency of our approach. For example, the average latencies of some well-known
application-specific SoCs such as DVOPD and AV benchmark are 37% and 58% less
than conventional NoCs. The average throughput in HPRNoC1 is also higher than
those of other conventional NoCs. The advantage of HPRNoC becomes more inter-
esting when we also consider the lower hardware overhead. A 4 � 4 HPRNoC1
consumes 11% less power and can run three times faster when compared to a con-
ventional 4 � 4 NoC.
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