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Chapter 7
Risk Stratification and Prognosis Using 
Predictive Modelling and Big Data 
Approaches

Shyam Visweswaran and Gregory F. Cooper

�Introduction to Predictive Models in Medicine

Prediction is critical to many activities in clinical medicine, such as assessing risk 
of developing disease in the future (risk assessment and stratification), determining 
the presence or absence of disease at the current time (diagnosis), forecasting the 
likely course of disease (prognosis), and predicting treatment response (therapeu-
tics) [1]. In addition to clinical medicine, prediction plays a critical role in public 
health and in biomedical research. Predictive models that are derived from data can 
improve predictions and help guide decision-making in clinical medicine and in 
public health. Often predictive models are probabilistic models that compute the 
prediction as a probability, and such models are typically estimated from data using 
statistical and, more recently, machine-learning methods.

The better the predictive models, the better the decisions and the ensuing out-
comes are likely to be for the individual and for the public at large. Even small 
improvements in predictive performance can have meaningful impact on individual 
and public health outcomes and costs. The burgeoning field of precision and person-
alized medicine aims to tailor risk assessment, diagnosis, prognosis and therapeu-
tics to the characteristics of individuals that go beyond those measured during 
routine clinical care. The goal is to deliver the right treatment at the right time to the 
right patient based on complex patient characteristics that may be obtained from a 
range of molecular, clinical, and environmental measurements.

Traditionally, predictive models in medicine have been developed from data 
such as clinical findings, laboratory test results, and findings from clinical imag-
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ing studies. Recent advances in two areas are making available big biomedical 
data at an unprecedented scale for use in clinical medicine, public health, and 
research. Electronic health records (EHRs) are widespread and are capturing ever 
more clinical data. EHR data coupled with administrative claims data are increas-
ingly used for characterization of disease progression and outcomes, comparative 
effectiveness of treatments, and predictive and prognostic modeling. Such obser-
vational healthcare data sets contain data on millions to tens of millions of patients 
and hold the promise of enabling research into less frequent diseases and out-
comes. Another advance is the burgeoning use of low cost omics technologies, 
which is producing a rich base of high-throughput molecular data, such as genomic 
variant, gene expression, proteomic, and metabolomic data. Omics data in con-
junction with EHR data hold the promise of better prediction of diseases before 
their occurrence, increased accuracy of diagnosis of complex diseases, and more 
precisely targeted therapies.

�Examples of Applications

Predictive models have applications in the domains of clinical practice, in public 
health, and in biomedical research. Table  7.1 gives illustrative examples of the 
application of predictive models for risk assessment across all three domains.

In clinical medicine, both predictive models and clinical decision rules are useful 
in assisting clinicians with decision making. Predictive models generate probabili-
ties but do not recommend actions and the interpretation of the probabilities is left 
to the clinician. Clinical decision rules, in addition, suggest actions based on prob-
abilities generated by a predictive model. Risk assessment models are useful in 
evaluating risk for developing disease that informs the initiation of preventive mea-
sures. An example of a risk assessment model is the Framingham Risk Score that 
predicts the 10-year risk of developing coronary heart disease from age, total and 
HDL cholesterol, blood pressure, diabetes, and smoking status [2]. This score is 
used clinically to identify those at high risk and initiate life style changes and cho-
lesterol lowering pharmacotherapy.

Table 7.1  Illustrative examples of prediction that guide decision-making

Domain Prediction task Decision to make

Clinical 
medicine

Will an individual have a heart 
attack in the coming year?

Prescribe aspirin or not

Public health How many residents of a county 
will have a heart attack in a year?

Determine the number of paramedics to be 
trained to perform electrocardiograms in 
ambulances

Biomedical 
research

How many heart attacks are 
likely to occur in the control arm 
of a clinical trial?

Enroll fewer or more participants
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Predictive models are also useful for deciding whether or not to perform diagnos-
tic testing. When the probability of the presence of disease is relatively high, diag-
nostic testing is indicated to confirm or rule out disease, while if the probability is 
low, no immediate testing is indicated. For example, sepsis is a relatively rare but a 
life-threatening cause of infection, and the definitive diagnostic test is a blood cul-
ture to detect bacteremia (presence of viable bacteria in circulating blood). A clini-
cal decision rule has been described to selectively perform blood cultures in 
Emergency Department patients who are predicted to be at high risk of bacteremia. 
Features of the history, co-existing illnesses, physical examination, and laboratory 
testing were used to create a clinical decision rule that consists of major and minor 
criteria, and blood culture is indicated if at least one major criterion or two minor 
criteria are present [3, 4].

Furthermore, predictive models are useful for selecting treatment such that the 
anticipated benefit exceeds the risk of harm. For example, in patients with atrial 
fibrillation, antithrombotic agents are effective in reducing the risk of stroke while 
concurrently increasing the risk of serious bleeding. Predictive models that estimate 
a patient’s stroke risk and bleeding risk are useful in identifying the appropriate 
antithrombotic agent for which the reduction in the risk of stroke most strongly 
outweighs the increased risk of bleeding [5].

In public health, predictive models are useful in surveillance and forecasting of 
epidemics like influenza. Traditional surveillance that is provided, for example, by 
the Centers for Disease Control and Prevention (CDC) relies on clinical findings, 
virology laboratory results, hospital admissions, and mortality data. Newer digital 
surveillance employs sources such as over-the-counter retail sales of medications, 
social network activity, and internet search engine queries [6]. Such surveillance 
produces forecasts that assist health officials to inform public health actions and 
allocate resources.

In biomedical research, predictive models may be useful in selection and strati-
fication of participants in terms of baseline as well as predicted characteristics for a 
study such as a clinical trial. This allows enrollment of more refined subgroups and 
improves statistical analyses. For example, a trial in traumatic brain injury may 
exclude patients with high likelihood of a poor outcome. A prognostic model that 
predicts 6-month mortality in traumatic brain injury can be used to select patients 
who have a small probability of mortality [7].

�Prognostic Versus Predictive Factors

Some authors in the biomedical literature differentiate between prognostic and pre-
dictive factors or biomarkers. A prognostic factor is defined as a clinical or biologi-
cal characteristic that is associated with a clinical outcome such as development or 
progression of disease, irrespective of the treatment. A predictive factor is defined 
as a characteristic that is associated specifically with response or lack of response to 
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a particular therapy [8, 9]. For example, a prognostic factor for primary breast can-
cer is any measurement available at the time of diagnosis or surgery that is associ-
ated with disease-free or overall survival in the absence of systemic adjuvant 
therapy, while a predictive factor is one that is associated with response or lack of 
response to systemic adjuvant therapy [8]. In this framework, a prognostic factor is 
predictive of a clinical outcome and a predictive factor is predictive of differences 
in response to a therapy. However, in this chapter, the terms prognostic and predic-
tive are considered to be synonymous and denote the ability of a factor to predict 
outcomes.

�Workflow of Development and Validation of Predictive Models

The development of predictive models in medicine consists of two phases, namely, 
derivation (or training) and validation (or external validation) [10, 11]. The work-
flow in the two phases is shown in Fig. 7.1. The derivation phase consists of collec-
tion of training or derivation data, preprocessing of the data that includes handling 
missing values and feature selection, building a multivariable model, and perform-
ing internal validation to assess the model’s predictive performance for discrimina-
tion and calibration. Internal validation is performed by splitting the data into 
training and test, by cross-fold validation or by leave-one-out validation. To perform 
cross-fold validation, data is partitioned into several equal parts; all parts except one 
are combined and the model is derived from it and evaluated on the left out part; this 
process is performed once for each part.

Training or derivation
data set

Preprocessing
including feature

selection

Model building

Internal validation

Model

Validation data set

Adjustment

Updated model

Derivation ValidationFig. 7.1  Workflow of 
development of clinical 
predictive models. The two 
phases are derivation 
followed by validation. 
(Adapted from Fig. 1 in 
Ref. [10])
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In the external validation phase, the predictive performance of the model is eval-
uated on data that is obtained independently of the derivation data. External valida-
tion is needed to assess generalizability of the model, such as temporal generalizability 
across data from different time periods, geographical generalizability across data 
obtained from different physical locations, and spectrum generalizability across 
data that possess differing disease severity or varying prevalence of the outcome. 
When external validation suggests that model performance needs to be improved, 
the model may have to be rebuilt or updated using the validation data. If the model 
is updated, the new model should be assessed for external validity on data that is 
obtained independently of the derivation and validation data before it is considered 
for deployment.

�Emerging Informatics Methods

Challenges abound in the development of predictive models. This chapter focusses 
on four challenges and new approaches to surmount them. A critical challenge in 
the developing predictive models from big data is dimensionality reduction, which 
is the process of reducing the number of features in the data. Another challenge is 
the development of models that can not only adequately discriminate between indi-
viduals who will have an outcome and those who will not but also possess adequate 
calibration to predict accurately the actual risk of outcome [12]. For example, the 
European System for Cardiac Operative Risk Evaluation Score (EuroSCORE), a 
model to predict mortality from cardiac surgery, showed excellent discrimination 
but had poor calibration because it overestimated the risk of mortality in elderly 
patients (e.g., the model predicted mortality risk of 15% when the actual risk of 
dying after surgery was 8.8%) [13]. An updated version of the score called 
EuroSCORE II was developed to improve calibration [14]. A third challenge is 
developing models that perform well not only on the population as a whole but also 
perform well in the individual. Personalized modeling approaches can produce high 
performing and simpler models that are tailored to the individual. Finally, explana-
tions for predictions produced by predictive models are necessary for real-world 
deployment.

�Dimensionality Reduction

Two main approaches to dimensionality reduction are feature selection and fea-
ture extraction. Feature selection is the process of selecting a subset of the original 
set of features, to obtain a smaller subset, and feature extraction is the process of 
creating a new, smaller set of features from the original set of features. Thus, fea-
ture selection preserves a subset of the original features while feature extraction 
creates new ones.
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In biomedical data sets where the number of features is in the tens of thousands 
or more, many of the potential predictor features are either redundant or irrelevant 
for predicting the target outcome. Predictive modeling techniques, including regres-
sion and classification methods, often perform poorly when all features are included, 
due to irrelevant features introducing noise. One approach is to preprocess the data 
set by selecting a reduced subset of features, and use that subset for predictive mod-
eling. In addition to improving the predictive model’s performance, feature selec-
tion reduces the computational cost and may provide better interpretability of the 
underlying processes that generated the data [15].

A good feature selection method identifies the smallest number of features that 
deliver maximal predictive performance. Feature selection methods can be broadly 
categorized into wrapper and filter methods. Wrapper methods evaluate feature sub-
sets using the predictive model and select the best performing subset. Filter methods 
do not use the predictive model but instead apply statistical criteria to select the 
features and then construct the model with the selected features.

A filter-type feature selection approach that has been investigated extensively is 
based on identifying the Markov blanket of the outcome or target [16]. The Markov 
blanket of a target is defined as a minimal set conditioned on which all other mea-
sured features become independent of the target. A variety of Markov blanket dis-
covery algorithms have been developed and evaluated on biomedical data [17].

�Markov Blanket Algorithms

A Bayesian network (BN) model is a graphical model that represents probabilistic 
relationships among a set of features X. A BN contains a graphical model structure 
that is a directed acyclic graph (DAG) that contains a node for every feature Xi and 
an arc between every pair of nodes if the corresponding features are directly proba-
bilistically dependent. Conversely, the absence of an arc between a pair of nodes 
denotes probabilistic independence (often conditional) between the corresponding 
features. In addition, a BN contains a set of parameters θ that encode the probability 
distributions. In a BN, the immediate predecessors of a node Xi are called the par-
ents of Xi, the immediate successors are called the children of Xi, and the remote 
successors are called the descendants of Xi. The joint probability distribution over 
X, represented by the parameters θ can be factored into a product of probability 
distributions defined on each node in the network.

The Markov blanket (MB) of a target Xi, is a set of features such that conditioned 
on the MB, Xi is conditionally independent of all other features. The MB consists of 
the parents, the children, and the parents of the children of Xi (see Fig. 7.2). The MB 
of a node Xi is noteworthy because it identifies a minimal set of features that are 
maximally predictive of Xi. A comprehensive review of the methods for the discov-
ery of MBs from data is provided in [17, 18].

One of the earliest algorithms that discover MBs from data is the Grow-Shrink 
(GS) algorithm that works in two stages [19]. In the growing phase, it identifies 
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features that are strongly associated with the target and in the shrinking phase, it 
reduces the estimated MB from the growing phase using conditional independence 
tests. The shrinking phase of the GS algorithm is not sound; this phase is improved 
in the Incremental Association Markov Blanket (IAMB) algorithm [20]. The grow-
ing phase of IAMB identifies all features that have a strong association with the 
target using a conditional mutual information test that conditions on the features in 
the MB so far. Falsely included features are removed in the shrinking phase that 
uses a conditional independence test between each feature in the MB and the target 
given the remaining features in the MB. The IAMB was shown to select MB fea-
tures that when used in predictive models out performed classification algorithms 
when applied directly to the data without filtering. Moreover, though the MB itself 
can be used directly as a predictive model, it was out performed by other classifica-
tion algorithms that used the features selected by IAMB [20]. Furthermore, IAMB 
and its variants were the first of the MB algorithms that were shown to scale to high-
dimensional data sets.

More efficient and scalable algorithms that were introduced after IAMB 
include HITON and Max-Min Markov Blanket (MMMB) [21, 22]. These algo-
rithms were shown to find MBs in a scalable and efficient manner. When HITON 
was evaluated in clinical, text, genomic, structural and proteomic data it was 
shown to have excellent performance in terms of parsimony and classification 
performance. Progress in developing scalable MB algorithms continues includ-
ing the development of better conditional independence tests such as the kernel-
based tests [23].

�Biologically Motivated Feature Extraction

A commonly used technique of feature extraction is Principal Component Analysis 
that constructs a small set of discriminative features from the original features. 
Another technique is to use available knowledge to extract features. For example, 
features in gene expression data that contain measurements of individual genes are 

X1 X2 X3

X7X6

X4

X9X8

X10 X11

X5

Fig. 7.2  An example MB. The MB of 
the node X6 (shown stippled) consists of 
parents, X2 and X3, children, X8 and X9, 
and parents of the children, X5 and X7. 
Nodes X1, X4, X10 and X11 are not part of 
the MB of X6
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combined to create pathway features based on current knowledge of known genes 
that are members of signaling and metabolic pathways. The pathway features are 
used to develop predictive models such as outcomes in cancer. This approach can 
also be viewed as automated, biologically inspired dimensionality reduction where 
the features are extracted automatically inspired by the types of pathways that are 
likely driving outcomes.

�Model Averaging

When predictive models are estimated from data, multiple models often fit the data 
more or less equally well. It is usual, then, to select one of the models according to 
some criteria like model fit to the data or predictive performance of the model. The 
selection of one model over others that are almost as good can lead to overconfident 
predictions since it ignores the uncertainty in choosing one model to the exclusion 
of all others. Hence, it is desirable to model this source of uncertainty by appropri-
ate selection and combination of multiple models. One coherent approach to deal-
ing with the uncertainty in model selection is Bayesian model averaging (BMA) 
that is an extension of standard Bayesian inference. Typical Bayesian inference 
models parameter uncertainty through prior distributions, and BMA extends this 
approach to model uncertainty by estimating posterior distributions for both model 
parameters and the model structure [24].

BMA estimates the outcome as a weighted average of the outcome predictions 
of a set of models, with more probable models influencing the prediction more 
than less probable ones. In practical situations, the number of models to be con-
sidered may be enormous, and averaging the predictions over all of them by enu-
merating each model is infeasible. In selected model families, a closed form 
solution is available. The next section describes one such example where predic-
tion using the naïve Bayes model can be performed efficiently by averaging over 
all naïve Bayes models. In most situations, a closed form solution will not be 
available. A pragmatic approach, then, is to average over a few good models, 
termed selective Bayesian model averaging, which serves to approximate the pre-
diction obtained from averaging over all models.

Madigan and Raftery show that BMA is expected to have better predictive per-
formance than any single model [25]. Empirically, the superior performance of 
BMA is supported by a range of case studies. Yeung et al. applied BMA to select 
genes from DNA microarray data to predict prognosis in breast cancer and showed 
that BMA identified smaller numbers of relevant genes that had comparable predic-
tion accuracy to other methods that identified larger numbers of genes [26]. Wei 
et  al. applied BMA to high-dimensional single nucleotide polymorphism (SNP) 
data and showed that it has better predictive performance than model selection [27]. 
A good overview of BMA is provided in [24] and a comprehensive review of the 
applications of BMA is described in [28].
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�Model Averaged Naïve Bayes

Bayesian model averaging of naïve Bayes (NB) models can improve predictions 
over a single NB model. The single NB model is widely used because of good 
discriminative performance and computational efficiency. However, on high-
dimensional data sets, such as genome-wide single nucleotide polymorphisms 
(with features in the hundreds of thousands to millions), the predictions of NB 
tend to be poorly calibrated so that the predictions are too extreme with proba-
bilities that are too close to 0 and 1. The model-averaged naïve Bayes (MANB) 
algorithm produces predictions by performing BMA over all possible NB mod-
els produced by feature selection on a given set of available predictors [29]. 
MANB averages over the predictions of these models, weighted by the posterior 
probability of each model. Compared to NB, MANB addresses the challenges of 
feature selection and tends to have better calibration than NB.  MANB has 
almost the same computationally efficiency as NB.  When evaluated on a 
genome-wide association dataset to predict late-onset Alzheimer’s disease, 
MANB performed significantly better than NB, in terms of both discrimination 
and calibration [27].

�Personalized Modeling

Much of predictive modeling in biomedicine has been based on the expected out-
come of an average patient. Data from a population of patients with the same 
disease are pooled together for statistical analysis, and models derived from the 
analysis inform the management of future patients. In other words, the typical 
approach for modeling clinical outcomes is to derive a single predictive model 
from a dataset of individuals for whom the outcomes are known, and then to apply 
the model to predict outcomes for future individuals. Such a model is called a 
population-wide model since it is intended to be applied to an entire population of 
future individuals and is optimized to have good predictive performance on aver-
age on all members of that population. This approach has often been quite suc-
cessful; however, it ignores important individual differences during model 
construction, such as differences in treatment response. Precision medicine aims 
to tailor clinical therapy to individual patients, with the goal of delivering the right 
treatments at the right time to the right patient [30]. An approach for better captur-
ing individual differences during modeling is called patient-specific modeling, 
and it focuses on learning models that are tailored to the characteristics of the 
individual at hand for whom we wish to make a prediction. The basic notion is 
that patient-specific models that are optimized to perform well for a specific indi-
vidual are likely to have better predictive performance for that patient than a pop-
ulation-wide model that is optimized to have good predictive performance on 
average on all future individuals [31, 32].
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�Personalized Decision Trees

An example of a patient-specific modeling method is the personalized decision tree 
model that takes advantage of the particular features of an individual [33]. The 
authors introduce several methods that derive personalized decision trees (a deci-
sion path, in fact). When compared to the Classification And Regression Tree 
(CART) population-wide decision-tree model, the personalized methods performed 
better in both discrimination and calibration.

�Personalized Bayesian Model Averaging

Another example that combines personalized modeling with BMA is a patient-
specific algorithm that uses MB models, carries out Bayesian averaging over a set 
of models to predict the outcome for an individual, and employs a patient-specific 
heuristic to locate a set of suitable models to average over [31, 34]. When compared 
to a range of population-wide models, the MB patient-specific models had better 
performance in both discrimination and calibration.

�Explanations

With the increasing complexity of predictive models, a critical bottleneck in their 
widespread use is the availability of explanations that describe the basis of individual 
predictions [35]. For example, the insight that an explanation provides about why a 
particular patient is predicted with high probability to develop a disease, may lead a 
clinician receiving it to gain trust in that prediction. Such explanations may assist 
clinicians in making clinical decisions. Explanations differ from model interpretabil-
ity that refers to understandability or intelligibility of the model in terms of structure 
and parameters. Some predictive models, such as logistic regression and decision 
trees, are easier to interpret. Most machine learning models are more opaque. 
Predictive explanation provides reasoning for the prediction that is made by a model 
for an individual. Good explanations are parsimonious so that they are readily and 
rapidly understood by the clinician user and use concepts that are understandable to 
the user, such as clinical features that are not modified or transformed [36]. Predictive 
explanations are potentially more useful than interpretable models in the context of 
clinical decision making, although they are complementary.

Predictive explanations may be based on the structure and parameters of the predic-
tive model that yielded the prediction or may be based on an independent method that is 
applied after the predictive model has produced its prediction. The latter types of meth-
ods can be used with any type of predictive model and have wider applicability. A 
recently developed method is the Local Interpretable Model-Agnostic Explanations 
(LIME) that provides an explanation for a prediction by learning an interpretable model 
locally around the patient for whom we wish to make a prediction [37]. Figure 7.3 pro-
vides an example of the application of LIME to explain a clinical outcome prediction.
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�Emerging Informatics Standards and Technologies

While many clinical predictive models are developed, few are validated externally, 
and even fewer are adopted in clinical practice. A key obstacle to the more wide-
spread use of predictive models is the paucity of reporting standards, computable 
standards, and technologies. Moreover, while the workflow for development and vali-
dation of predictive models from research study data is well developed (see section 
“Workflow of Development and Validation of Predictive Models”), similar workflow 
for development of models from observational healthcare data is not yet mature.

�Transparent Reporting of Predictive Models

One issue has been the poor quality and nonstandard reporting in published articles 
of descriptions of predictive models in medicine. The lack of a comprehensive, 
standard way of reporting the key details of studies that develop and validate models 
makes it difficult for the scientific and healthcare community to judge the validity 
and applicability of multivariable predictive models. To address this obstacle, a 
guideline for the Transparent Reporting of a multivariable predictive model for 
Individual Prognosis Or Diagnosis (TRIPOD) was introduced [38]. It provides a 
22-item checklist that focuses on reporting how a predictive model study was 
designed, conducted, analyzed, and interpreted. This checklist provides guidance on 
reporting of items such as title, abstract, descriptions of predictors, outcomes and 
blinding, descriptions of development and validation data, model specification, 
development, performance and updating for both model development and external 
validation (see Table 7.2). A recent study showed that more than half of the items on 
the checklist were either absent or inadequately reported. Critical information for 

ContradictoryDire outcome probability
yes
no

0.91 pO2 = 38 mmHg

Lungs status = congested

BP(systolic) = 107 mmHg

Headache = no

Hgb = 13.5 g/dL

Number of prior episodes of pneumonia = 0

–0.2 –0.1 0.0 0.1 0.2

0.09

Supportive

Fig. 7.3  An example explanation obtained from LIME for a patient with pneumonia who was 
predicted to have a very high probability of a dire outcome (i.e., death or severe complication). The 
plot at the top left shows the predicted probability distribution for dire outcome. The plot on the 
right shows the explanation for the prediction. The explanation is limited to six top ranked features 
by magnitude. The magnitude on the horizontal axis represents the weight of a feature. Green bars 
represent the magnitude of predictors that support the predicted outcome, while red bars represent 
the magnitude of contradictory features
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Table 7.2  TRIPOD checklist for predictive model development and validation

Section/topic Item Checklist item

Title and abstract

Title 1 D;V Identify the study as developing and/or validating a 
multivariable predictive model, the target population, and the 
outcome to be predicted.

Abstract 2 D;V Provide a summary of objectives, study design, setting, 
participants, sample size, predictors, outcome, statistical 
analysis, results, and conclusions.

Introduction

Background 
and objectives

3a D;V Explain the medical context (including whether diagnostic or 
prognostic) and rationale for developing or validating the 
multivariable predictive model, including references to existing 
models.

3b D;V Specify the objectives, including whether the study describes 
the development or validation of the model or both.

Methods

Source of data 4a D;V Describe the study design or source of data (e.g., randomized 
trial, cohort, or registry data), separately for the development 
and validation data sets, if applicable.

4b D;V Specify the key study dates, including start of accrual; end of 
accrual; and, if applicable, end of follow-up.

Participants 5a D;V Specify key elements of the study setting (e.g., primary care, 
secondary care, general population) including number and 
location of centers.

5b D;V Describe eligibility criteria for participants.
5c D;V Give details of treatments received, if relevant.

Outcome 6a D;V Clearly define the outcome that is predicted by the predictive 
model, including how and when assessed.

6b D;V Report any actions to blind assessment of the outcome to be 
predicted.

Predictors 7a D;V Clearly define all predictors used in developing or validating 
the multivariable predictive model, including how and when 
they were measured.

7b D;V Report any actions to blind assessment of predictors for the 
outcome and other predictors.

Sample size 8 D;V Explain how the study size was arrived at.
Missing data 9 D;V Describe how missing data were handled (e.g., complete-case 

analysis, single imputation, multiple imputation) with details 
of any imputation method.

Statistical 
analysis 
methods

10a D Describe how predictors were handled in the analyses.
10b D Specify type of model, all model-building procedures 

(including any predictor selection), and method for internal 
validation.

10c V For validation, describe how the predictions were calculated.
10d D;V Specify all measures used to assess model performance and, if 

relevant, to compare multiple models.
10e V Describe any model updating (e.g., recalibration) arising from 

the validation, if done.
Risk groups 11 D;V Provide details on how risk groups were created, if done.
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Table 7.2  (continued)

Section/topic Item Checklist item

Development 
vs. validation

12 V For validation, identify any differences from the development 
data in setting, eligibility criteria, outcome, and predictors.

Results

Participants 13a D;V Describe the flow of participants through the study, including 
the number of participants with and without the outcome and, 
if applicable, a summary of the follow-up time. A diagram may 
be helpful.

13b D;V Describe the characteristics of the participants (basic 
demographics, clinical features, available predictors), 
including the number of participants with missing data for 
predictors and outcome.

13c V For validation, show a comparison with the development data 
of the distribution of important features (demographics, 
predictors and outcome).

Model 
development

14a D Specify the number of participants and outcome events in each 
analysis.

14b D If done, report the unadjusted association between each 
candidate predictor and outcome.

Model 
specification

15a D Present the full prediction model to allow predictions for 
individuals (i.e., all regression coefficients, and model 
intercept or baseline survival at a given time point).

15b D Explain how to the use the predictive model.
Model 
performance

16 D;V Report performance measures (with CIs) for the predictive 
model.

Model-
updating

17 V If done, report the results from any model updating (i.e., model 
specification, model performance).

Discussion

Limitations 18 D;V Discuss any limitations of the study (such as nonrepresentative 
sample, few events per predictor, missing data).

Interpretation 19a V For validation, discuss the results with reference to 
performance in the development data, and any other validation 
data.

19b D;V Give an overall interpretation of the results, considering 
objectives, limitations, results from similar studies, and other 
relevant evidence.

Implications 20 D;V Discuss the potential clinical use of the model and implications 
for future research.

Other information

Supplementary 
information

21 D;V Provide information about the availability of supplementary 
resources, such as study protocol, web calculator, and data sets.

Funding 22 D;V Give the source of funding and the role of the funders for the 
present study.

Adapted from Table 1 in Ref. [38]
Items relevant only to the development of a predictive model are denoted by D, items relating solely 
to a validation of a predictive model are denoted by V, and items relating to both are denoted D;V
From Annals of Internal Medicine, Moons, Karel G.M.; Altman, Douglas G, Transparent Reporting 
of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation 
and Elaboration, 162(1), 1–73. Copyright © 2015 American College of Physicians. All Rights 
Reserved. Reprinted with the permission of American College of Physicians, Inc.
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using the model, including model specification and performance, was inadequately 
reported for more than 80% of the models [39]. Increased adherence and further 
refinement of the TRIPOD checklist will enhance more transparent reporting of 
clinical predictive models.

�Computable and Portable Predictive Models

Widespread use of predictive models in clinical medicine requires deployment of 
models in computable formats so that they can be applied to EHRs to automatically 
provide predictions and recommend actions in the context of a patient. Currently, 
well-described human-readable predictive models require manual translation to 
computable formats that is slow and resource -intensive. Rapid deployment of com-
putable models will require development of new standards and technologies. These 
include the creation of standards for a computable representation of predictive mod-
els, development of tools to enable standards-based authoring of models, construc-
tion of infrastructure for execution of models in a variety of EHR systems, and 
digital libraries for collecting, storing, and sharing models.

In the domain of data, the FAIR Data Principles are a set of guiding principles 
that have been put forth to make data findable, accessible, interoperable, and reus-
able [40]. These principles facilitate the ability of computers to automatically find 
and use data and enable its reuse. A similar set of principles are needed for making 
computable predictive models findable, accessible, interoperable, and reusable. As 
an example, a computable phenotype is defined as a set of clinical features that can 
be determined from the data in EHRs, and efforts are ongoing to develop a set of 
standards for developing a computable phenotype representation that is easily 
authored, portable and executable. The recently described Knowledge Object 
Reference Ontology provides a framework to help make computable biomedical 
knowledge that includes computable phenotypes and predictive models findable, 
accessible, interoperable, and reusable [41].

�Modeling Using Large Scale Observational Data

Observational healthcare data, that includes EHRs and administrative claims data, 
are increasingly available for secondary use and research through federated data 
networks. The PCORnet, funded by the PCORI, is a U.S.-wide federated network of 
EHR, claims, and patient reported outcome data on over 100 million patients [42].
The Accrual to Clinical Trials (ACT) network, funded by the NIH, is another U.S. 
federated network of EHR and claims data on over 40 million patients [43]. The 
Observational Health Data Sciences and Informatics (OHDSI) collaboration is a 
network of loosely collaborating sites with EHR and claims data on hundreds of 
millions of patients [44]. These networks have adopted similar data models that 
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specify standardized structure and content for observational data. In contrast to 
research study data that consist of specified measurements that are expressly mea-
sured for the study, observational healthcare data consists of clinical measurements 
across a range of domains (such as diagnoses, procedures, medications, and labora-
tory test values) that are captured during the process of care. Compared to study 
data, observational healthcare data are typically much larger with tens of thousands 
of measurements on tens of millions of individuals. For research use, healthcare 
data are standardized to common terminologies, such as ICD-9 and ICD-10 codes 
for diagnoses and procedures, RxNorm and National Drug Codes (NDC) for medi-
cations, and Logical Observation Identifiers Names and Codes (LOINC) for labora-
tory test results. Standardization of the data requires considerable time and resources 
to map the source data to standard terminologies and transform it in accordance to 
the data model specifications.

The use of healthcare data for predictive modeling is still in its infancy. It holds 
the promise of revolutionizing clinical predictive modeling on very large scales and 
across several different diagnoses, outcomes, and treatments simultaneously. The 
OHDSI community has introduced a framework for developing and validating pre-
dictive models using observational healthcare data. Moreover, open-source soft-
ware is available that implements this framework for data that has been transformed 
to the Observational Medical Outcomes Partnership (OMOP) data model. This 
framework was applied to develop predictive models using several machine learn-
ing methods for 21 different outcomes in a population of pharmaceutically-treated 
depression patients across four observational data sets that contained a total of over 
230 million patients. For some outcomes, high performing models were obtained 
while for other outcomes the models performed poorly, suggesting that observa-
tional data sets are likely to be useful for some outcomes but not for all, and that, 
healthcare data complement research study data [45].

�Policy, Ethical, and Legal Challenges

The increasing availability of big biomedical data and the growing application of 
new statistical and machine learning methods for developing complex models from 
big data provide an opportunity for widespread development of clinical predictive 
models. When such models are deployed to provide targeted care, to improve out-
comes, and to lower healthcare costs, several policy, ethical, and legal challenges 
arise. A comprehensive consideration of such issues is presented in a recent publica-
tion [46], and a few key issues are summarized in the next paragraph.

A primary consideration is that data used in model derivation and validation is 
representative of the whole population. Historically, members of certain racial and 
ethnic groups, people with disabilities, individuals in prison, and members of other 
vulnerable groups have been underrepresented in research studies. Such inequitable 
representation can lead to models that are not valid for parts of the population. In addi-
tion to extensive validation, models need to be evaluated in real-world settings before 
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deployment. A second consideration is that the models are developed both in human-
readable and machine-readable forms using standards that are transparent and repli-
cable. A third consideration is liability. Makers as well as users of predictive models 
may face liability if there are errors in the model or the model malfunctions. A fourth 
consideration is that population-wide models that are designed to improve outcomes 
in a population may produce a sub-optimal prediction for a specific patient. As a 
simple illustrative example, a population-wide model that predicts future morbidity 
may not include human immunodeficiency virus (HIV) status as a predictor because 
the proportion of HIV positive patients in the data is very small. Such a model will 
produce sub-optimal predictions for patients with positive HIV status, and a patient-
specific model that includes HIV status as a predictor will provide better predictions. 
Ethical obligations of clinicians to act in the best interests of a patient may lead to 
increased use of patient-specific models over population-wide ones.

�Conclusions

With increasing availability of big biomedical data, valid and high-performing pre-
dictive modeling methods are needed to leverage the data for clinical medicine, 
public health, and biomedical research. Several current trends indicate that biomedi-
cal data will become more readily available and that will accelerate the development 
of predictive models in medicine. For example, the National Institutes of Health’s 
strategic plan for data science provides a roadmap for storing, managing, standard-
izing and publishing the vast amounts of data produced by biomedical research [47]. 
The Director of the National Library of Medicine at the National Institutes of Health 
anticipates an important role for a library of models that will identify, collect and 
archive biomedical models [48]. In addition to the expertise in academia, companies 
with expertise in artificial intelligence like Microsoft, Google, Baidu, and Apple are 
developing predictive models for healthcare [49]. The General Data Protection 
Regulation (GDPR) that was recently adopted by the European Union includes a 
“right to explanation” with regard to predictive models that seeks to enforce the 
availability of explanations for predictions made by models [50]. Thus, the coming 
decade will likely see increasing development and validation of predictive models 
from big biomedical data and will include advances in feature selection, high perfor-
mance, personalization of models, and explanations of predictions.
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