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Chapter 1
Birth of a Discipline: Personalized 
and Precision Medicine (PPM) Informatics

Terrence Adam and Constantin Aliferis

 Introduction to PPM and Its Relationship with Informatics; 
Purpose of the Present Book

The terms “precision medicine”, and “personalized medicine”, used together in 
the present volume (Precision and Personalized Medicine, PPM for short) refer 
to the science, technology, and practice of medicine (and healthcare more 
broadly) such that preventative, diagnostic, and treatment decisions are tai-
lored to the characteristics and needs of the individual [1, 2]. The delivery of 
the right drug to the right patient at the right time at the right dose and the right 
route encapsulates the widely- accepted core principles of PPM and patient 
safety [3, 4].

But how new is this field? The recent prominence and explosive growth of pre-
cision medicine is not a truly new conceptual development but rather reflects a 
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recent revolution of technical approaches to prevention, medical diagnosis and 
treatment which have their conceptual roots to the medicine of antiquity [5, 6]. 
Across millennia of medical practice and health science inquiry, as researchers and 
scholars increased their knowledge of anatomy, physiology, biology, microbiology, 
biochemistry, genetics and pathophysiology they inevitably evolved systems of 
disease and therapeutics moving from systems with generality to systems with 
greater specificity.1 Consider, as an illustrative example, the evolution of under-
standing of anemia. Whereas an initial distinction may focus on  anemia due to 
reduced blood cell production (Hypoplastic or Aplastic Anemia), blood loss or 
increased blood cell destruction (Haemolytic Anemia) (three patient types), his-
torical discovery of mechanisms driving each of these subtypes introduced many 
new subtypes (e.g., Iron deficiency anemia vs. hereditary Fanconi anemia as sub-
types of aplastic/hypoplastic anemia; Sickle cell anemia vs. anemia due to sys-
temic lupus erythematosus as subtypes of hemolytic anemias, and so on). Similar 
evolution from more general types of disease to more specific (i.e., with higher 
precision) are obvious in the evolution of understanding of jaundice/hepatitis, dia-
betes, cardiac failure, growth abnormalities, and most other diseases of the human 
body.

In addition to the implicit movement to PPM embedded in disease understanding 
and classification, some of the historical PPM forms have been explicit, mainly 
codified as risk modeling and genetic counseling which have existed for most of 
modern medicine (i.e., since the nineteenth century and onward).

However the big watershed moment that signaled the phase transition to large- 
scale and rapid transition to increased precision and personalization was the recent 
emergence of large scale genomic technologies coupled with extremely powerful 
computational methods. These developments introduced new and previously 
unimaginably powerful (and complex) forms of PPM. For example, this new PPM 
has had monumental influence on oncology because it has re-defined cancer on a 
molecular basis, has introduced targeted treatments and personalized testing and 
treatment modalities with great impact on outcomes. All of this has been accom-
plished in the span of less than 20 years.

The explosive development of modern PPM is reflected in the scientific literature 
which is undergoing an explosive growth in PPM publications in recent years. 
Indicatively, Pubmed contains  9 PPM papers  that were published through 1999, 
155  papers  from 2000–2004, 1,353 papers from 2005–2009, 9,766 papers from 
2010–2014, and 22,186 papers from 2015-May 9, 2019. [7].

1 Over the years, disease categories have been refined, abolished, merged or established as underly-
ing common mechanisms of previously thought unrelated diverse symptom clusters (syndroms). 
Regardless of the re-organization of the nosological taxonomies the inexorable evolutionary trend 
is from less refined to more refined disease subtypes and related patient groups of increasing 
granularity and smaller sizes.

T. Adam and C. Aliferis
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 Purpose of Present Volume

The following tenets underlie the intent of the present work:

 (a) PPM is extremely important for medicine and health. The depth and speed of 
modern PPM is having great impact on the science and practice of medicine. Its 
potential is hard to overstate and the transition to a PPM-centric health science 
and healthcare of tomorrow is inevitable.

 (b) There are many different PPM formats and workflows (for both scientific dis-
covery and care delivery). The plurality of PPM forms often creates confusion 
because even PPM researchers or clinical practitioners are not typically well 
versed on all PPM forms. In order to remove confusion, it is essential to study 
and be aware of all forms of PPM  and reveal their commonalities and 
differences.

 (c) Informatics is inextricably linked with PPM. We define, for our purposes, infor-
matics as the discipline that develops, validates, and applies computational 
methods for the capture, storage, protection and transmission of biomedical 
data; for the discovery of new knowledge by analysis of data and prior knowl-
edge; and for the optimal delivery of medical knowledge for the purpose of 
optimal prevention, diagnosis and treatment of disease and enhancement of all 
aspects of health, longevity and well-being. Figure 1.1 shows a high-level view 
of how informatics sub-fields enable critical PPM-related areas.

 (d) A working, non-superficial understanding of PPM is by necessity interdisciplin-
ary. PPM requires simultaneously an understanding of, on one hand, the variety 
of forms of PPM and how they exist in modern health science research and 
healthcare; and on the other hand, an understanding of the new computational 
and genomics science and technology that enable PPM. Because of the relation-
ship between informatics and PPM, professionals well-versed at the intersec-
tion will be well-positioned to advance PPM and the underlying informatics. 
PPM researchers or practitioners will have to be sufficiently versed in informat-
ics that enables PPM.

 (e) Informaticists are increasingly working in PPM regardless of the form of infor-
matics they practice. PPM informatics is a meaningful interdisciplinary area of 
inquiry. In the future, every informaticist will be dealing with one or more forms 
of PPM.

PPM RELATED COMPONENTS

INFORMATICS

Genetics, 
Genomics, 
Other Omics

Learning Health
System

Evidence Based
Medicine

Data capture, protection, storage and transmission

Machine Learning, Big Data Analytics, Data Science

Decision Support, Medical AI, EHR & Clinical 
Information Systems

Fig. 1.1 Informatics enabling critical components of PPM. Green cells represent areas of very 
significant informatics importance

1 Birth of a Discipline: Personalized and Precision Medicine (PPM) Informatics
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Consequently, we set out to create this edited volume with a set of concrete 
objectives:

Objective 1: to review the present state of the art in PPM and the associated 
PPM informatics and especially to map out all major forms of PPM and systematize 
them for better understanding and communication.

The focus of the present volume is on the computational part, and for reasons 
explained above, we need to understand PPM within the various development and 
delivery formats and contexts in which PPM manifests, since there are so many of 
them and while they do share commonalities, they also exhibit stark differences 
from one another. For the lack of a better term, we chose the term “PPM workflow” 
to describe the type, format, context, informational architectures, and overall set of 
situational factors that determine the various processes via which PPM exists. The 
PPM workflow builds on our traditional understanding of clinical and research 
workflows [8–10] and incorporates the PPM capacity.

This book will thus identify all characteristic PPM formats and workflows which 
address both emerging and traditional forms of PPM. Via the contributions of sev-
eral highly experienced authors, who are notable researchers, practitioners and lead-
ers in the field of PPM and PPM informatics, the book will introduce readers to how 
the various forms of PPM workflows and their supporting architecture function and 
how they are already changing both research and clinical approaches to how health 
sciences gather, organize and interpret information about health as well as disease. 
The contributing authors provide complementary perspectives on the covered top-
ics, and occasionally use different language, but this naturally reflects the speed of 
development of the field and occasional lack of standards or conceptual or nomen-
clature consolidation across all of the PPM “tribes”. We note that since PPM does 
not exist as a separate discipline or profession, the contributing authors were not 
trained in formal PPM programs; however, as the readers will find out, they have 
very rigorous approaches to PPM.

Objective 2: to review trends and future developments in PPM and PPM infor-
matics and outline concrete areas of high value research in PPM informatics.

From the perspective of Biomedical Informatics, the core principles and best 
practices of the discipline of informatics remain as valid and useful a toolkit and 
guide to understanding and implementing PPM as anywhere else. For example, 
among the many necessary elements of a successful PPM effort, the value of data 
acquisition and storage which adheres to data representation standards; terminolo-
gies and ontologies which facilitate the development and sharing of high quality 
datasets (EHRs as well as omics ancillary systems) for primary (patient care) and 
secondary use (research and QI) is as useful as in any other form of informatics. 
However, the rapid growth in the types of available relevant data, such as the emerg-
ing availability of behavioral and genetic data which is being actively operational-
ized by innovators outside the traditional health care system, have important 
implications for consumer engagement to make it possible for fundamental changes 
in our approaches in understanding, promoting or restoring health [11–13].

T. Adam and C. Aliferis
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An especially exciting and novel area where informatics, and data science in 
particular, plays an important role is in the analysis of large, multi-modal datasets 
with the intent to diagnose disease, re-define disease based on high-resolution 
instruments, predict outcomes and especially predict the effect of various actions 
(e.g., different prevention, care management or treatment strategies) [14]. Circa 
2019, the analysis of datasets with millions of variables to elicit complex predictive 
patterns for example, is a routine endeavor, and a routinely successful endeavor we 
should add, as long as it is executed correctly.

Objective 3: to provide a consolidated and up to date PPM survey that can assist 
with the training of PPM researchers and practitioners (including informatics and 
non-informatics students and professionals). Although this book is written primar-
ily for informaticists, because it gives a comprehensive and detailed survey of PPM, 
we believe that most health science researchers interested in PPM can benefit from 
the material here (such readers can safely ignore the most intricate informatics 
details).

 Contents and Structure of the Book

 Classical Personalized and Precision Medicine

Clinical risk assessment and prediction (Chap. 2). In earlier days of health care, 
providers focused on their individual clinical judgement to make decisions. 
However, with the availability of data for clinical risk assessment and prediction, 
the first elements of personalized and precision medicine began to develop infor-
matics models of population normals, nomograms and disease staging using popu-
lation science and statistical approaches to standardize and simultaneously 
personalize aspects of health care. Improvements in computing have facilitated the 
development of computational approaches to modeling disease including outcome 
prediction models. These risk prediction models have typically been developed with 
an iterative approach and incorporated new variables into the models to improve 
predictive capacity. The application of risk assessment and clinical decision making 
is explored using hypertension as a use case for disease classification and treatment 
in describing the principles of guideline-driven health informatics (Chap. 3).

Genetic counseling at the intersection of clinical genetics and informatics (Chap. 
4). The traditional approaches to disease risk prediction have focused on the obser-
vation of phenotypic characteristics of patients and use of this observational data to 
identity subjects with genetic abnormalities and then attempt to predict the risk in 
subsequent generations. This type of early PPM has been challenging for non- 
specialist clinical providers for diagnostic and family planning purposes, resulting 
in the development of specialist providers to fill this clinical area. The evidentiary 
basis behind genetic counseling has continued to evolve alongside the understand-

1 Birth of a Discipline: Personalized and Precision Medicine (PPM) Informatics
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ing of genetics and this has been a key area where precision medicine is impacting 
health care. Traditional clinical work in newborn screening, carrier screening, diag-
nostics and predictive testing have been evolving with this evidence base. Results 
management, regulatory compliance, practice guidelines, counseling practice evo-
lution and other legal and ethical concerns are among the issues which affect 
 precision medicine work for the genetic counseling field in addition to the growing 
availability of information related to patient genetic data [15, 16].

A final area of classical personalized and precision medicine has been the funda-
mentals of drug metabolism and pharmacogenomics (Chap. 5). The variations in 
response to drug therapy have been a long-standing problem requiring a series of 
trial and error efforts to attempt to optimize therapy for the average patient. With the 
observation of the variance in medication responses over time, the ability to identify 
individual drug responses has  improved, leading to better understanding  of the 
absorption, distribution, metabolism and excretion of medications. The understand-
ing of individual responses to drug therapy was noted with the recognition of the 
p450 pathway which affects drug metabolism leading to a subsequent elucidation of 
a number of different p450 subtypes as well as a number of other metabolic activa-
tion and clearance pathways which affect an individual’s response to drug therapy 
[17, 18]. Ongoing developments in pharmacogenomics will continue to influence 
our understanding of medication therapy with a growing number of approaches 
becoming available to better identify patient responses to drug treatment in a pro-
spective fashion to predict therapeutic efficacy and avoid drug toxicity. 
Pharmacogenomics is a key area at the transition from traditional to emerging PPM 
and includes a long track record of clinically actionable information which has been 
made available for clinical decision making and is an essential element of a learning 
health system. In the efforts to create applications to use pharmacogenomics, the 
work at OneOme is described in the growing medication problem: perspective from 
industry (Chap. 6). The OneOme efforts are representative of industry approaches 
to developing solutions to better incorporate pharmogenomics into clinical care as 
well as identifying some current barriers.

 Newer and Emerging Forms of PPM

In recent years, developments in Machine Learning has introduced major quantita-
tive and qualitative enhancements to the ability to use clinical data for risk stratifi-
cation and prognosis using predictive modeling and big data approaches (Chap. 7) 
for patient assessment, public health and research applications. These developments 
have facilitated the analysis of high dimensional biomedical data with feature selec-
tion and feature extraction methods. Predictive model performance can vary among 
different methods and model selection is essential for optimizing productivity. 

Much of the work in this space has focused on smaller data sets at individual 
sites, cohort studies, or with clinical consortiums. However, the growing availability 
of electronic health record data coupled with Machine Learning-enabled analytics 
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allows for the creation of PPM models from patient care delivery to facilitate 
research and quality improvement as part of a “Learning Healthcare System” [19].

An additional emerging PPM area focuses on the informatics methods for molec-
ular profiling (Chap. 8). The workflows for developing and deploying molecular 
profiling start from feasibility assessment studies followed by clinical-grade 
 molecular profile construction and testing. The field of molecular profiling has 
evolved since the late 1990s with the availability of high dimensional omics data for 
diagnosis and outcome prediction. Its use has been expanding since that time and 
currently covers a number of diseases and allows for individualized prognosis, 
choice of optimal treatments and the capacity to reduce healthcare costs. Molecular 
profiling has been established predominantly in several areas of cancer care, but is 
extensible to other areas as well. The primary workflows in this space support fea-
sibility work, optimization, validation and deployment, however, this work is com-
plex and needs to take into consideration the clinical context, data science, assays, 
health economics, development costs and deployment factors. A case example in 
ovarian cancer provides a perspective on the development of molecular profiling for 
patient care.

Among the organizations providing major support for cancer research discovery 
is the National Cancer Institute (NCI) which has provided software development 
resources to support biomedical scientists and statisticians by constructing software 
for cancer research discovery (Chap. 9). The NCI workbench tools provide analyti-
cal support to address single gene queries, multi-gene correlation work, and tran-
scription factor analysis. They can also be applied to gene expression changes over 
time to analyze gene pathways and other tasks of the user’s interest. The availability 
of tools to facilitate collaboration between data analysts and biomedical scientists 
promotes effective team science discovery.

The ability to support platform-independent gene-expression based classifica-
tion for molecular sub-typing of cancer (Chap. 10) is another area where informat-
ics plays an important role in obtaining the correct diagnoses as well as optimizing 
treatment selection. Currently, stratification of cancer can use high-throughput plat-
forms such as microarrays or NextGen sequencing which can reveal distinct tumor 
subtypes. Compared to classification of tumors using traditional histological fea-
tures, the availability of molecular signatures can enhance how tumors can be clas-
sified much more effectively by incorporating large scale genomics data and 
providing the capacity for isoform analysis. However, the results from these high- 
throughput platforms have not been fully integrated into electronic health records. 
This critical workflow of deriving and then transferring gene-signatures at the point 
of care is work in progress.

Tumor sequencing (Chap. 11) has a growing role in the practice of oncology for 
tumor characterization and diagnosis including using next generation sequencing. 
Continued informatics innovations have provided support for whole genome 
sequencing, whole exome sequencing, and RNA transcriptome sequencing. These 
approaches have been applied to a number of focused cancer areas including gastric, 
colorectal, breast, gynecological and non-small cell lung cancers [20]. The work has 
identified a number of mutations and gene signatures of interest. In particular, tar-
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geted treatments for tumors may be facilitated through sequencing work to improve 
therapeutic responses. The cancer exome and panel sequencing work can help with 
finding potential new drug therapy targets and improving response rates among can-
cers under existing treatments. The use of next generation data also benefits from 
data sharing and re-use  in order to understand disease prognosis and treatment 
optimization.

The development of largescale distributed PPM databases (Chap. 12) can 
enhance the impact on clinical care and research when data are linked across institu-
tions to create large PPM cohorts and clinical genomics data sharing consortia. The 
ability to share the data across members of the consortia provides the capacity to 
better understand relatively rare outcomes. The large personalized and precision 
medicine cohorts can also enhance the understanding of common clinical conditions 
by providing the capacity for effective disease subtyping. The National Institutes of 
Health All of Us program is an example of national large cohort development initia-
tive and one of several which are taking place globally [21]. Such large cohorts have 
substantial potential for research exploration. Large cohorts which incorporate ele-
ments from a variety of source datasets to create an individual’s phenotype will 
require substantial data standardization and harmonization for effective use.

The use of genomics to better define disease is not confined to cancer. Genomics 
coupled with big data analysis has been used to re-define disease in other disease 
areas as well. The Research Domain Criterion (RDoC) (Chap. 13) initiative was 
launched to deal with issues around defining psychiatric disease on biological and 
causal terms in part by investigating pathological brain circuits incorporating 
genomic information [22, 23]. The RDoC includes five transdiagnostic domains 
that are associated with brain circuits and upstream and downstream causal pro-
cesses used for diagnosis/classification. The chapter shows how this work is applied 
to Post-Traumatic Stress Disorder as a case study. In the realm of computational 
psychiatry, the initial steps of data integration are certainly not an inconsequential 
task and involve data integration from the patient. The data available currently 
promises to lead to a series of PPM modalities that will help inform decisions on the 
appropriate interventions to be considered for clinical care delivery. The scale of 
data growth has created a number of problems for providers and health systems. 
Applying these methods for personalized and precision medicine via machine learn-
ing approaches including the use of causal modeling is positioned to help achieve 
both predictive and mechanistic objectives.

PPM is helping overcome some of the limitations of traditional Clinical Trials 
(CTs). These studies often do not represent the broader population’s variation. A 
newer approach is to focus on pragmatic trials (Chap. 14) which utilize electronic 
medical record data to analyze, model and understand treatment outcomes in real- 
life contexts across the spectrum of all patients receiving a medication. The second-
ary use of the EMR data is essential as are advanced informatics data analytics. The 
approaches can increase our capacity to improve our scientific knowledge when 
information can be effectively shared and exchanged across institutional boundar-
ies. The electronic health record is, moreover, a key tool for replacing traditional 
phase IV trials both to explore potential new purposes for medications and also to 

T. Adam and C. Aliferis



11

track adverse drug events. By having shared information across sites, it is possible 
to identify events which may otherwise be too rare for detection at smaller individ-
ual sites. Informatics drivers for the key workflows in pragmatic trials include 
 available pharmacovigilance reporting standards and terminologies along with nat-
ural language processing, machine learning and statistical methods to extract infor-
mation for event identification.

Precision trials informatics (Chap. 15) is another modern form of PPM. Such 
trials can assign patients to treatment groups based on the patient’s individualized 
molecular information and constitute a new means to maximize the effectiveness of 
treatments and minimize sample sizes needed for successful trials. In medication 
applications of precision medicine, much of the work focuses on finding the right 
drug to be used at the right dose at the right time. This approach is important for the 
day-to-day delivery of clinical care, but is also important for drug development 
including clinical trials. A particular focus area of great clinical interest is oncology 
due to the high costs of medications, the high risk of toxicity associated with the 
medications, and the risk to the patient of a suboptimal therapeutic response to 
therapy. Two key studies include the National Cancer Institute MPACT trial and the 
GeneMed informatics system which provide a test case and support system for pre-
cision trial management.

Informatics for a precision learning healthcare system (Chap. 16) describes a 
number of infrastructural elements and methods to reach consumers where they can 
engage the health care system to improve their health and to manage genomic data 
for clinical operations and research. Substantial resources must be allocated to these 
efforts to ensure success and they need to be accompanied with appropriate plan-
ning efforts particularly if the efforts are to align with and support a learning health 
care system.

Gaining an understanding of how a large integrated healthcare delivery system 
was able to implement and deliver precision medicine can provide important 
insights to other institutions considering similar efforts. Such implementation work 
can start by initially seeking to understand an organization’s current capacity, espe-
cially areas of excellence on which PPM initiatives can be built. An understanding 
of the needs and interests of the patient population served is essential in helping to 
guide the work.

The lessons learned on how to build biobanks, link electronic health record data 
with whole exome data and collaborate with industry partners provide examples of 
how to creatively solve problems in the precision medicine space. For those intend-
ing to replicate these efforts, it is useful to understand the full development process 
including the consent process for patients as well as the issues with sample collec-
tion both in terms of architectural and workflow challenges. Once eligible patients 
are identified and consent is obtained, the specimen is collected and placed in a 
biorepository for sequencing and data analysis. For those with reportable results, 
the results are confirmed and reported to the patients and for non-reportable 
sequences, the exomes are saved for future work. The reporting workflows and 
implementation challenges are explored along with the potential for genomic deci-
sion support.
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Genomic medical records and the associated OMIC ancillary systems (Chap. 
17) are essential for delivery of most forms of PPM. A number of issues arise with 
the use of omic data including its heterogeneity related to the source of the sample, 
the type of data that is generated, and the clinical significance of the result interpre-
tation. The size of omics data also creates a number of data management problems 
to address both in terms of data representation and its integration into the electronic 
health record. The omic data also has problems which are similar to typical elec-
tronic health data including knowledge management, information display, and data 
standards. However, omic data has more unique challenges regarding the size of 
data, ethical concerns and potential economic questions about its management. 
Ultimately, the availability of omic data follows a path to create information and 
knowledge and eventually generates clinical actions. This follows a similar pathway 
that would be pursued for the traditional translational work from the bench to the 
bedside, but requires management of the unique omic data characteristics for suc-
cessful development and implementation efforts.

The architecture and implementation of large-scale PPM informatics (Chaps. 18 
and 19) capabilities (e.g., at state levels or beyond) is an unavoidable stage in the 
evolution of PPM informatics, but one that is currently a work in progress. 
Architectural and workflow components include first and foremost architectures for 
horizontally scalable and high performance interoperable decision support but also 
health economics analyses, legal and technical protections of patient privacy, data 
security, evidence based synthesis and creation of computable guidelines, consent, 
integration with the EHR, portability of clinico-genomic data, feeding research and 
learning health system functions with the transactional care systems, and more.

An effective precision medicine workforce requires specialized PPM training for 
those who are currently in the workforce and for those wishing to have careers in the 
precision medicine space. Personalized and precision medicine informatics educa-
tion (Chap. 20) recognizes the elements which are fundamental to the informatics 
world as well as those which are unique to precision medicine. This education can 
take various forms such as just-in-time, certificate training, specialized courses, and 
advanced degree training.  Students may engage  in PPM Informatics learning at 
multiple points in their professional careers.

The landscape of PPM informatics and the future of medicine (Chap. 21) con-
cludes the present volume by discussing the key lessons learned about the state of 
the art in PPM and opportunities for implementation or new scientific discovery, 
across the map of PPM formats and workflows. This last chapter also provides a set 
of more open-ended and speculative (but testable) hypotheses about the evolution of 
PPM and the health sciences and healthcare around PPM.
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Chapter 2
Clinical Risk Assessment and Prediction

Vigneshwar Subramanian and Michael W. Kattan

 Overview of Early PPM Modalities

Initial attempts to apply formal PPM modalities focused on easily obtainable objec-
tive measurements, beginning with growth curves of height and weight. PPM then 
expanded beyond normal physiology to pathological processes. A push was made in 
the latter half of the twentieth century to identify factors that predisposed individu-
als to a disease for the purposes of screening and prevention.

 Growth Curves

Growth curves have been used in a variety of fields to quantify the change in some 
property over time. Since the seventeenth century, biologists have used these curves 
to model the growth of populations of organisms, like bacteria [1]. In the sphere of 
personalized medicine, the concept typically refers to the practice of charting a 
child’s height and weight to assess their growth. The first such growth chart is attrib-
uted to Count Philibert de Montbeillard in the eighteenth century, who plotted his 
son’s height across time from birth to the age of 18 [2].

Today, the growth chart is a key screening tool in pediatric practice; a child’s 
growth is typically plotted against a reference chart, which illustrates the distribu-
tion of growth curves from a population of healthy children [2]. This allows the 
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doctor to check a child’s progression against a standard that reflects the diverse 
nature of human growth—what is healthy for a very tall child may differ from 
another. A person’s growth can thus be expressed in the form of a percentile, where 
that individual is said to exhibit greater growth than that percentage of the reference 
population [2]. Growth curves also allow for the measurement of growth velocity; a 
child who is growing too quickly or too slowly may have deeper nutritional, endo-
crine, or behavioral issues.

 Risk Factors

The term risk factor was coined in 1961 by the late Dr. William Kannel, former 
director of the long-running Framingham Heart study [3]. Kannel defined a risk fac-
tor as a characteristic associated with susceptibility to develop coronary heart dis-
ease [4]. Today the concept of risk factors is widely used to understand and manage 
essentially all diseases. Risk factors can be particular to an individual (e.g. age or 
BMI) or originate from an environmental exposure (e.g. pollution). Many risk fac-
tors are also biomarkers: substances or structures that can be measured as indicators 
of biological or disease processes [5].

Identification of new risk factors can be important for multiple reasons. For 
example, a new biomarker could improve our understanding of the underlying dis-
ease biology. However, new risk factors are most commonly used to improve our 
predictions about patients with respect to some outcome. Note that risk factors do 
not necessarily need to reflect disease biology, so long as their inclusion improves 
the accuracy of our predictions (e.g. socioeconomic status) [6].

 Delivery of Classical PPM Tools at Point of Care

Risk factors for disease are an integral part of physician-patient discussions during 
most clinical encounters. In differential diagnosis of disease, the presence or absence 
of a particular risk factor can provide important clues about the underlying condi-
tion. Patient management, including treatment decisions, are also often made in the 
context of specific risk factors. For example, lifestyle changes are targeted at reduc-
ing BMI, cholesterol, or other such risk factors. Medication decisions can also be 
discussed in the same vein, e.g. the use of antihypertensives to reduce blood pres-
sure and therefore decrease long-run risk of stroke.

Similarly, clinical prediction tools are designed to serve as decision-making aids. 
However, patients and physicians alike tend to have difficulty interpreting statistical 
risks and probabilities [7, 8]. Therefore, many classical PPM tools incorporate 
graphical visualizations to facilitate their use in patient counseling. Growth charts 
usually depict a series of curves, representing multiple percentiles of height or 
weight, which allows the physician to explain the trajectory of a patient’s growth 
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over multiple visits to the patient or family [2]. Similarly, nomograms enable physi-
cians to illustrate the computation of risk in the presence of a patient by drawing out 
the conversion of individual risk factors to points, and demonstrating how the sum 
of points maps to a probability [9]. These representations enable clearer communi-
cation, improve physician and patient understanding of risks, and reduce the black 
box effect that often accompanies the use of these tools.

 Modeling Disease Severity and Risk

When evaluating a patient, doctors must assess the severity of their disease and the 
risk of complications in addition to the cause. Choice of treatment, how a patient is 
counseled, and the disease management strategy can all change as a disease becomes 
more serious or an event becomes more likely. Doctors can use a patient’s history 
and their exam findings to make judgments, but these estimates are subjective and 
can differ between doctors, particularly in complex cases. Objective methods of 
quantifying severity and risk are thus of great use in managing complicated dis-
eases. These measures are also useful when studying outcomes, assessing quality of 
care, or deciding how to allocate resources.

 Disease Staging

Disease staging was originally developed in the 1960s to cluster patients for quality 
assurance analyses [10]. Today, disease stages exist for many chronic diseases, like 
various cancers and neurodegenerative conditions. The goal of these systems is to 
classify patients into multiple groups with others who are similar with respect to 
prognosis (e.g. low risk, medium risk, high risk) and require similar treatments [10]. 
To benefit from staging, a disease must have a broad progression and heterogeneity 
in outcomes; otherwise there is little distinction between groups, and no real benefit 
to classifying patients.

Grouping of patients is done on the basis of diagnostic findings or risk factors 
[10]. Consider most cancers, which are usually classified into stages I–IV. The first 
stage usually has little to no complications, and the tumors may be relatively small. 
As the cancer progresses into later stages, the tumor usually grows in size and com-
plications begin to manifest, at first locally. In stage IV, the cancer spreads to other 
parts of the body (i.e. metastasizes) and causes systemic damage [10]. As the stage 
advances, more aggressive treatments are required, and the prognosis becomes pro-
gressively poorer.

Disease staging systems have some advantages. They typically make use of com-
monly available tests or diagnostic criteria, and are relatively simple to implement 
and use [11]. However, they do not make accurate predictions about an individual’s 
prognosis, as they group patients into relatively broad bins; the cancer staging 
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 system discussed previously makes the assumption that all patients can be grouped 
into four homogenous groups, whereas the condition in reality may exhibit large 
heterogeneity in severity and outcome [11]. Patients may also have difficulty inter-
preting the significance of a particular stage without the doctor’s assistance. A more 
granular approach is needed to make personalized predictions.

 Prediction Models

Clinical models are used to obtain personalized predictions based on an individual’s 
specific risk factors. They generally require information on some combination of 
predictor variables, and identify each factor’s relative impact on the outcome. 
Predictions can be made about the onset of disease (diagnosis) or the occurrence of 
future events during the course of a disease (prognosis). Figure 2.1 illustrates the 
general workflow for developing a prediction model.

Consider a patient with three risk factors, F1, F2, and F3. These three factors can 
range from patient characteristics, like age or BMI, to their scores on clinical tests, 
such as a prostate-specific antigen (PSA) screening. The factors may not be equally 
important, and can therefore be assigned corresponding weights W1, W2, and W3. If 
we know the weights, we can make a prediction of an outcome O [9]:

 O WF W F W F= + +1 1 2 2 2 3 (2.1)

Define outcome of
interest

Identify relevant
predictor variables

Estimate model
coefficients

Validate model

Use model to make
new predictions

Fig. 2.1 A workflow for developing clinical prediction models. First, the outcome of interest is 
rigorously defined. Next, associated risk factors are identified either through literature review, 
preliminary analysis, or clinical judgment. The model is then derived through regression or 
machine learning methods. Internal and external validation are performed to assess model perfor-
mance. Finally, the model can be used to aid in decision making for new patients
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If we have a dataset with thousands of sets of risk factors matched with their 
outcomes, we can use statistical methods to estimate a set of weights. With our 
newly determined weights we can then predict the outcome for new patients. This 
approach essentially distills the characteristics of all of the individuals in our origi-
nal dataset to a set of weights that best fit our particular cohort. It can be generalized 
to any number of risk factors, from 1 to n. The risk factors can be continuous, like 
age; discrete, either present or absent; or capture qualitative characteristics, like 
gender and ethnicity [9].

A typical family of statistical analyses used to estimate weights and generate our 
prediction model for an outcome is regression. We choose an appropriate regression 
method based on the properties of our outcome of interest. The model defined in 
(Eq. 2.1) is an example of a linear regression model. It is sometimes used for out-
comes that vary continuously (e.g. blood levels of a pathogen).

 Modeling Risk of Binary Events

More often, we are interested in predicting the probability of a binary event. In a 
certain period of time these events either occur or they do not. Some examples of 
binary events include organ transplant rejection, surgical complications, or infec-
tions. Most clinical decisions are made on the basis of preventing or treating a 
binary event; therefore an accurate assessment of risk can be very valuable for the 
purposes of stratifying patients or prescribing more aggressive treatments.

If we try to fit a linear relationship between a probability and our predictors, we 
run into an issue: probabilities must, by definition, take a value between 0 and 1, 
whereas the sum of our predictors is unbounded; i.e., W1F1 + W2F2 + … + WnFn can 
take any value between negative and positive infinity. To get around this, we can 
instead use logistic regression. We monotonically transform our probability, p, by 
the logit: log(p/1 − p), which is now also unbounded. We can now make the logit of 
our probability a linear function of our risk factors as previously:

 
log

p

p1 1 1 2 2 2 3-
= + +WF W F W F

 
(2.2)

We can then solve for our probability:

 
p

e W F W F W F
=

+ - + +( )
1

1 1 1 2 2 3 3  
(2.3)

Logistic models can predict whether an event will occur in a specified period, but 
give us no information about the timing of the event. Sometimes we are interested 
in predicting how long it will take for a specific outcome to occur (e.g. death). This 
is called time to event data, and we can model this outcome using Cox proportional 
hazards regression. Proportional hazards regression was originally proposed by Sir 
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David Cox in 1972 [12]; the seminal paper is one of the top 25 most cited publica-
tions in history, having been referenced over 48,000 times [13]. The hazard is 
defined as the instantaneous risk of failure, i.e., the probability of suffering the event 
of interest at a certain time, given survival to that time point. The Cox proportional 
hazards regression model can be written as follows:

 h t h t e b X1 b x2 bnxn( ) = ( ) + ¼( )
0

1 2

 (2.4)

The outcome, h(t), is the predicted hazard at time t. The baseline hazard, h0(t), is 
the hazard when predictors X1 through Xn equal zero: i.e., the effect of time. X1 
through Xn capture the effect of our risk factors or covariates.

Machine learning approaches like artificial neural networks and random forests 
can also be used to generate predictive models. They are generally more flexible 
than traditional statistical methods and do not require a linear relationship between 
variables [11]. However, this greater flexibility does not always result in better pre-
dictive accuracy, which is the goal of clinical modeling.

 Evaluating Prediction Models

Regardless of the approach used to derive it, a prediction model’s performance 
always heavily depends on the underlying data. If the training cohort is not repre-
sentative of the broader population, or if the model fits specific characteristics of the 
data set too well, the results may not be generalizable. For example, a model trained 
on a European cohort may not be applicable to an Asian population, if the relative 
effects of the predictors differ between the two groups. To assess model perfor-
mance, empirically derived prediction models are usually validated: external valida-
tion tests the model on an entirely new external data set (e.g., a cohort of similar 
patients from a different hospital), while internal validation tests the model by resa-
mpling or splitting the original data set [14].

Two common methods for internal validation are cross-validation and bootstrap-
ping [14]. In cross-validation, the original data is partitioned into a number of 
equally sized training sets. The subset of the data that is not sampled in any given 
partition forms the validation set for that training set. A model is fit on each partition 
and tested on its corresponding validation set, and the individual results are com-
bined. Conversely, in bootstrapping we generate a large number of data sets by 
sampling the original data set with replacement. Each bootstrapped data set is equal 
in size to the original data set, and will contain some observations multiple times 
and omit some observations entirely. A model is fit on each bootstrapped data set 
and tested on the original data set, and the individual results are again combined. 
Figure 2.2 illustrates these two methods.

Completed models are typically evaluated for discrimination, the ability to dif-
ferentiate individuals with the condition from those without, and calibration, how 
well observed risks agree with predicted risks [14]. A model’s discrimination can be 
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quantified using a measure called the concordance index (also known as a c-index 
or c-statistic) [14]. This statistic is the probability that for any randomly selected 
pair of patients, the patient who experienced a worse outcome will also have a worse 
predicted outcome [14]. The c-index is equal to the area under the receiver operating 
characteristics curve, and ranges from 0.5 (chance or a coin flip) to 1 (perfect ability 
to rank patients) [14].

Although it is very widely used in the literature, the c-index may not be an appro-
priate scoring rule when predicting the risk of an event after a given number of 
years, as is frequently done in models of time to event outcome (such as Cox 
proportional- hazards) [15]. In such models, the concordance index assesses whether 
the predictions agree with the order of event times, instead of the order of event 
status, leading to the possibility to find a higher concordance index for a mis- 
specified model than an accurate one [15].

An alternative scoring rule that does not suffer from this issue is the index of 
prediction accuracy (IPA) [16]. It is derived by rescaling the Brier score, a mea-
sure of predicted accuracy that is calculated as the mean squared error of the 
prediction [16].

IPA has several advantages relative to other measures: it is a valid scoring rule for 
both binary and time to event outcomes; reflects both discrimination and calibration 
of a model; and remains relatively straightforward to interpret (100% reflects a 
 perfect model; values ≤0 reflect useless models, with negative values suggesting 
harm) [16].
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Dataset
2,4,…,n

Dataset
1,3,…,n/k

Model

Cross-Validation

Validation

Model

Dataset
1,2,3,4…,n

Sample
1,3,3,…,n

Bootstrapping

Validation

Fig. 2.2 Schematic representation of cross-validation and bootstrapping. Cross-validation 
involves partitioning the data into a training subset, upon which the model is fit, and a validation 
subset, upon which the model is tested. Bootstrapping involves generating a sample of equal size 
to the data set with replacement, upon which the model is fit, and validating the model on the origi-
nal data Editors’ note: the reader is cautioned that the Bootstrap estimator of a predictive model’s 
error is biased, that is exhibits a systematic error that needs correction by the analyst. The cross- 
validation estimator by contrast is unbiased
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In general, a model should be accurate while remaining relatively easy to use. If a 
model makes inaccurate predictions, it has no clinical value. An accurate model that 
is difficult to employ (e.g., requiring an uncommon lab test) is also unlikely to be used.

 Selection of New Risk Factors

Identification of new risk factors is a critical step within the previously described 
workflow. A new marker is usually proposed on the basis of clinical suspicion or 
existing research. Validation of the marker requires a data set that contains informa-
tion on the new marker, the outcome of interest, and existing markers that are known 
to be associated with the outcome. The prognostic value of the new marker—i.e., 
whether it improves the accuracy of predictions compared to existing models—is 
then investigated.

Typically, the marker is first shown to be associated with the outcome of interest 
[6]. If the outcome is time to event, this can be done by subsetting patients by level 
of the marker and using Kaplan-Meier curves (Fig. 2.3).

Although Kaplan-Meier curves demonstrate differences in time to failure for 
groups of patients on the basis of the new marker, established markers have not been 
considered [6]. This analysis does not answer the question of whether the marker 
provides additional predictive information that existing markers have not captured. 
If the new marker is perfectly correlated with an existing marker, or the survival dif-
ferences demonstrated by the new marker can already be captured by some combi-
nation of existing markers, then the new marker is redundant. It offers no additional 
value, unless it is in some way cheaper or easier to collect than existing markers [6].
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Fig. 2.3 Kaplan-Meier 
curves for a new marker 
(Reproduced from Fig. 1, 
Ref. [6]). The proportion 
of individuals for whom 
the event has not yet 
occurred (surviving 
individuals) is plotted as a 
function of time for 
multiple groups. Here, 
there are two levels: one 
with high expression of the 
new marker, and one with 
low expression of the new 
marker
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Multivariable regression analyses are usually done to test the value of new mark-
ers. A common approach is to generate a model that incorporates the existing risk 
factors and a new marker, for each new potential marker (Table 2.1a) [6]. The result-
ing measures of effect report the expected change in outcome per unit change in the 
marker [6]: for Cox proportional hazards regression, this is the hazards ratio; for 
logistic regression, the odds ratio. The p-value tests whether the measure of effect is 
significantly different from 1—i.e., no difference in outcome based on the level of 
the marker [6].

However, there are a number of issues with this approach. The numerical value 
of measure of effect depends to some extent on how the new and existing markers 
were coded (e.g. continuous vs. categorical); which other markers were included 
in the model; and how the variables were fit [6]. Because continuous variables tend 
to have smaller effect measures than categorical, this approach can encourage cat-
egorization of continuous information, which can be difficult [6]. This analysis 
also assumes that the modeling method used gives the most accurate predictions; 
an alternative approach may make better use of the existing markers and new infor-
mation [6].

The purpose of including a new marker is if, given everything else already known 
about the patients, the new marker improves predictions by some capacity. One way 
to assess an improvement in predictive accuracy is to use IPA. Instead of consider-
ing an effect measure, the change in IPA can be measured when the new marker is 
included versus when it is omitted, in a model that also contains the existing mark-
ers (Table 2.1b) [16]. The p-value now tests whether the change in IPA is signifi-
cantly different from 0 [16]. A marker that is shown to significantly improve the IPA 
can then be included in future models, as it improves predictive accuracy [16].

One might be tempted to ask which risk factors are most important, or make the 
best predictions. However, the goal is not to compare or replace existing markers, 
but instead to improve upon the performance of currently existing models [6]. If a 
new marker contributes to the ability to predict an outcome, we should consider 
using it, so long as it is feasible to measure and include.

Table 2.1 Multivariable analysis of new markers

(a) Conventional approach comparing effect measures. Adjusted indicates that the model 
incorporates some existing covariates (e.g. age, an established biomarker) in addition to the 
new marker.

Adjusted hazard 
ratio (95% CI) p-value

New marker 1 1.5 (1.2–1.9) 0.03
New marker 2 0.8 (0.7–0.95) 0.04
(b) Proposed approach comparing IPA as a measure of predictive accuracy.

Increase in IPA 
(95% CI) p-value

New marker 1 0.05 (0.04–0.08) 0.02
New marker 2 0.1 (0.8–0.12) 0.01
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 Nomograms

Prediction models now exist for many diseases and outcomes of interest, but they 
can be difficult to use or interpret for a typical end user without a background in 
statistics. In the digital age, these models are commonly circulated as web forms, 
into which a patient’s parameters can be entered to generate a prediction [9]. 
Although this enables widespread dissemination of prediction models, internet 
applications can further complicate proper interpretation by creating a black box 
effect: a sequence of values information is inputted into a computer and produces a 
mysterious output number, with no window into the underlying process [9].

Crucially, once a prediction is calculated, the doctor must be able to explain it to 
the patient. In order for patients to make an informed decision, they need to fully 
understand what the prediction means and how it was obtained. Previous research 
has shown both patients and doctors often have difficulty interpreting statistics and 
risk values [8].

Nomograms can facilitate the interpretation and explanation of prediction mod-
els by providing a visual demonstration of the computation. A nomogram is a 
graphical prediction tool in which points are separately determined for each of a 
patient’s risk factors, and the sum of the points can be mapped to a predicted prob-
ability of the outcome [9]. Each risk factor occupies a separate row in the chart. The 
size and layout of the scale on that row corresponds to the weight for that factor 
from the regression model [9]. Figure 2.4 is a nomogram that predicts the prognosis 
of prostate cancer patients who undergo a radical prostatectomy [17].
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Nomograms were invented by French engineer Maurice d’Ocagne in 1899 to 
facilitate graphical computation of formulas [18]. In 1928, Harvard physiologist 
L.J. Henderson was the first to apply the nomogram in a medical context, to describe 
the chemical properties of blood [18]. Medical nomograms became more common 
beginning in the 1950s [18], but the field truly took off with the advent of digital 
computing, with over 6100 related publications since 1990.

Medical nomograms offer several advantages. They simplify a mathematical 
model into a compact and intuitive document [9]. Unlike lookup tables, nomograms 
allow for the use of continuous predictors [9]. Whereas disease staging systems 
separate patients into homogenous groups, like low or high risk, medical nomo-
grams produce patient-specific predictions on a continuous scale, allowing for more 
accurate predictions [11]. The computation can be done quickly, with sufficient 
precision and accuracy for clinical practice [9]. Clinicians can also use the docu-
ment to demonstrate the calculation with the patient present, enabling better under-
standing of the prediction [9]. Nomograms are also cheap and easy to  distribute, 
which can facilitate use of prediction models in resource-poor settings that lack 
reliable access to computers [9].

For each of the six factors—pretreatment PSA, clinical stage, pretreatment erec-
tile function, biopsy grade, months from the radical prostatectomy, and age at radi-
cal prostatectomy—, the doctor traces from the patient’s value on the scale up the 
chart to find the corresponding number of points. The doctor then traces down from 
the sum of points on the Total Points scale to compute the outcome, the Trifecta 
Probability—the probability that the patient is free of recurrence, regains conti-
nence, and regains sexual function.

 Looking Forward

Early applications of PPM utilized relatively coarse, high-level information to 
make predictions. In recent years, the explosion of genomics, including the advent 
of inexpensive sequencing and functional assays, offers the potential to more 
finely tailor information to each individual. However, the clinical utility of such 
information must be further investigated. The current state of the field suggests 
that the individual effects of specific alleles, especially rare variants, on risk or 
severity of disease are likely relatively small for multifactorially determined con-
ditions. In concert, however, multiple genes may combine to drive a significant 
portion of the variation in susceptibility. It is possible that most of the predictive 
utility of genetic information may be captured by a few genes that are most com-
monly altered [19].

As personalized precision medicine becomes the standard of care, nomograms 
will likely continue as a foundation of presenting and explaining risk modeling. From 
a clinician’s perspective, nomograms distill a model into an inexpensive and easy-to-
use document. The graphical representation of a prediction will remain a useful aid 
to facilitate patient counseling, and will also reduce the previously described black 
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box effect, for clinician and patient alike. From a research perspective, nomograms 
remain the most effective method to display a risk model in a publication. Although 
a table of effect measures and p-values provide useful information about the relative 
impacts of each risk factor, nomograms concisely and clearly explain how a model 
generates predictions.
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Chapter 3
Principles of Guideline-Driven  
PPM Informatics

Donald Casey

 Guidelines Driving Precision Care

As healthcare organizations look to improve the health of the populations they 
serve, it is a critically important strategic priority that these entities develop and 
implement an effective evidence-driven standardization of care enabled by appro-
priate informatics infrastructure, especially for common medical conditions. In this 
chapter, we will highlight a use case for conceptualizing an informatics framework 
for electronic health records (EHRs) that can be used to effectively diagnose and 
manage one of the most common conditions (high blood pressure). Such EHR- 
delivered guidelines are important examples of established personalized and preci-
sion medicine (PPM) because they are instantiated with each specific patient’s 
characteristics and deliver a patient-specific recommendation.

Failing to correctly diagnose and control high blood pressure can put many peo-
ple at risk for cardiovascular disease, stroke, and renal failure, among other health 
issues. Recent analysis suggests that more than 100 million Americans currently 
have high blood pressure, and the 2013–14 US National Health and Nutrition 
Examination Survey estimated that 46% of U.S. adults had uncontrolled high blood 
pressure. Of that proportion, 33.1% were unaware they had the condition [1]. In 
addition, individuals with hypertension face on average nearly $2000 more in 
annual healthcare expenses compared to those without hypertension [2].

To address this critically important public health problem, the American College 
of Cardiology and American Heart Association (ACC/AHA) published a joint clini-
cal practice guideline for high blood pressure diagnosis and management in 2017 [3]. 
This guideline includes more than 100 new recommendations for the diagnosis and 
treatment of high blood pressure, including:
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• A new blood pressure classification system which categorizes blood pressure as 
normal, elevated blood pressure, or stage 1 or stage 2 hypertension, as high-
lighted in Table 3.1.

• Standardized methods for accurate measurement and documentation of blood 
pressure measurement.

• Appropriate treatment of high blood pressure, including recommendations per-
taining to the decision to use blood pressure-lowering medications and nonphar-
macological interventions through lifestyle modifications.

• Strategies for high blood pressure control including recommendations to pro-
mote lifestyle modification, implementation of comprehensive care plans by 
healthcare teams and accurate monitoring of patients on blood pressure medica-
tions by clinicians and in non-healthcare settings by patients.

ACC/AHA deploys a standardized approach to developing and publishing guide-
line recommendations. This process includes:

• A full evaluation of relevant published information by an “Evidence Review 
Committee”

• Grading of specific guideline recommendations based on level of evidence 
(LOE) (Table 3.2)

• A classification of recommendation (COR) for each recommendation
• Using a standardized lexicon for each recommendation based on specific combi-

nations of LOE and COR where: COR = class (strength) of recommendation; 
EO  =  expert opinion; LD  =  limited data; LOE  =  level (quality) of evidence; 
NR = nonrandomized; R = randomized; RCT = randomized controlled trial.

With this consensus-based approach, the ACC/AHA class of recommendation 
and level of evidence applies to all clinical strategies, interventions, treatments, or 
diagnostic testing in patient care in every published guideline. The outcome or 
result of the intervention should be specified (an improved clinical outcome or 
increased diagnostic accuracy or incremental prognostic information).

COR and LOE are determined independently (any COR may be paired with any 
LOE). A recommendation with LOE C does not imply that the recommendation is 

Table 3.1 ACC/AHA blood pressure classification system

BP Classification (JNC 7 and ACC/AHA Guidelines)
SBP DBP JNC7 2017 ACC/AHA

<120 and <80 Normal BP Normal BP
120–129 and <80 Prehypertension Elevated BP
130–139 or 80–89 Prehypertension Stage 1 hypertension
140–159 or 90–99 Stage 1 hypertension Stage 2 hypertension
≥160 or ≥100 Stage 2 hypertension Stage 2 hypertension
 • Blood Pressure should be based on an average of ≥2 careful readings on ≥2 occasions
 • Adults with SBP or DBP in two categories should be designated to the higher BP category
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weak. Many important clinical questions addressed in guidelines do not lend them-
selves to clinical trials. Although Randomized Controlled Trials (RCTs) are often 
unavailable, there may be a very clear clinical consensus among experts that a par-
ticular test or therapy is useful or effective. For comparative-effectiveness recom-
mendations (COR I and IIa; LOE A and B only), studies that support the use of 
comparator verbs should involve direct comparisons of the treatments or strategies 
being evaluated [3].

The ACC/AHA method of assessing quality of evidence continues to evolve, 
including the application of standardized, widely used, and preferably validated 
evidence grading tools and, for systematic reviews, the incorporation of an Evidence 
Review Committee. From an informatics standpoint, this type of approach to guide-
line development provides an opportunity to set priorities for automation of clinical 
decision support (CDS) in three dimensions as presented in the Fig. 3.1:

Hence, the COR and LOE can help to determine and prioritize the extent of 
automation of clinical decision support (CDS) intelligence rules based on this type 
of guideline recommendation classification and to help develop and determine the 
physical displays and nuanced syntactical/taxonomic differentiators for each clas-
sification. This process also should include the development of key parameters 
designed to enable rapid inclusion/exclusion decision making for guideline recom-
mendations, especially those with lower quality of evidence and weak support.

Table 3.2 ACC/AHA ACC/AHA strength (COR) and quality of evidence (LOE) supporting 
recommendations

Class (strength) of recommendation Level (quality) of evidence

I Strong: Benefit  
>>> Risk

A High quality evidence from >1 RCT or 
meta-analysis

IIa Moderate: Benefit  
>> Risk

B-R Moderate quality evidence from ≥1 
RCT or meta-analysis (Randomized)

IIb Weak: Benefit ≥ Risk B-NR Moderate quality evidence from ≥ 1 
well designed/executed non-
randomized, observational or registry 
studies or meta-analyses of such studies 
(Nonrandomized)

III: No 
Benefit

Moderate: Benefit = Risk C-LD Moderate quality evidence from 
randomized, observational or registry 
studies, meta-analyses of such studies,  
or physiological/mechanistic studies in 
humans  
(Limited Data)

III: Harm Strong:  
Risk > Benefit

C-EO Consensus of expert opinion (Expert 
Opinion)

Reproduced with permission of the American College of Cardiology and the American Heart 
Association
COR class (strength) of recommendation, EO expert opinion, LD limited data, LOE level (quality) 
of evidence, NR nonrandomized, R randomized, RCT randomized controlled trial
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 Computable Guidelines and Informatics Considerations

Figure 3.2 shows an example of two critically important recommendations related 
to blood pressure control that have a high degree of relevance to a very large number 
of clinicians and patients:

An important feature of the 2017 ACC/AHA High Blood pressure guideline is 
that the writing committee translated related/bundled recommendations into 
 “informatics ready” algorithmic decision trees (such as Fig. 3.3) for making deci-
sions about specific management recommendations for each stage of High Blood 
Pressure:

Priority/Importance

a

b

Quality/Level of
EvidenceStrength/Category of

Recommendation

All three dimensions
are important in
determining the
“engineering”
specifications and
requirements for
translating a guideline
recommendation into
an electronic end-user
environment.

Weak Recommendation/ 
Moderate to Low Quality of 
Evidence / Low Priority 

(e.g. Chest Radiograph in 
asymptomatic patients with 
potential exposure)

High level of 
automation in 

Electronic 
Guideline

Low/No level of 
automation in 

Electronic 
Guideline

Strong Recommendation/ 
High Quality of Evidence 

Major Priority (e.g. Universal 
Precautions for patient with 
direct exposure)

Fig. 3.1 (a) Dimensions for guiding translation of guidelines to computerized decision support. 
(b) High vs. low priority guideline classification for computerized decision support
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Informaticists also have to determine “need to know” stakeholders in terms of 
selection and completion of key guideline recommendations and how IT infrastruc-
tures support translation and transmission of information to end-users. This allows 
them to consider appropriate analytic and tracking approaches to monitoring and 
feedback, including alerts, gaps in care, performance dashboards, etc. The AHRQ- 
funded Massachusetts Clinical Decision Support Consortium [4] Knowledge 
Translation and Specifications (KTS) team has defined best practices for knowledge 
representation, data representation, and specification of knowledge content formats 
ranging from human readable expression of content, to expression of content for 
web services implementation. This foundational work included the development of 
a repository of CDS artifacts ranging from human-readable unstructured practice 
guidelines to highly structured, encoded executable knowledge. The initial clinical 
domains addressed for this effort included hypertension, coronary artery disease, 
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and diabetes mellitus. These best practices are now being incorporated into a next 
generation standards framework created by HL7 through its Fast Healthcare 
Interoperability Resources (FHIR) [5]. The KTS team originally specified four lev-
els of transformation and specification, which are both important to keep in mind 
and useful when translating guideline recommendations into CDS rules for digital 
health information technologies:

• Level 1—Any human readable guideline in any document format;
• Level 2—Unstructured: A guideline that has been deconstructed into rule state-

ments and associated metadata and follows an XML schema;
• Level 3—Structured and Encoded: A Level 2 guideline that now carries with it 

the relevant and disambiguated encoding information to enable rendering in 
XML for import and interpretation by an inference engine;

• Level 4—Implementation: Either executable code, and a description, illustration, 
or export from an authoring-environment that details a specific implementation 
of a clinical decision support system (e.g., rules fully specified and encoded for 
a rules engine) (Fig. 3.4).

Current approaches to implementing recommendations from clinical practice 
guidelines (such as those published by ACC/AHA) lack standardized approaches to 
the translation of key parameter inputs from multiple sources of data collected at the 
point of patient care into Level 4 formats necessary for effective CDS interfaces.

Traditional analytic approaches to case identification have relied mainly on the 
use of ICD diagnosis codes from insurance claims, which has been imprecise, 
resulting in significant false positive and false negative diagnostic classifications of 
patients, thereby leading to inaccurate and incomplete assessments of an overall 
population such as the large one for high blood pressure. In particular, only patients 
with insurance claims are included in many of these analyses, which do not rely on 
other parameter inputs from many other common and more precise sources of 
patient  information (such as EHRs, registries, pharmacy data, measurement and 
monitoring devices, self-reported patient data, etc.) See Fig. 3.5.
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Fig. 3.4 Decision support levels of translating guideline recommendations into CDS rules [6]
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In the 2017 AHA/ACC guideline, there are also two new recommendations 
supported by moderate to high quality of evidence supporting the importance of 
extracting multiple key parameters related to the accurate diagnosis and proper 
management of patients with high blood pressure from EHRs and qualified clinical 
data registries (QCDRs) [7] now used in the CMS Quality Payment Program for 
physicians. See Fig. 3.6.

The Centers for Disease Control as of the time of this writing, is creating a stan-
dardized approach for adapting clinical guidelines for digital implementation in 
accordance with a number of these concepts for all of its future guideline implemen-
tation efforts for public health and disaster preparedness. The American Medical 
Association is also promoting its Integrated Health Model Initiative (IHMI) [8], 
which is a collaborative effort across healthcare and technology stakeholders that 
provides a continuous learning environment to create interoperable technology 
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Fig. 3.6 2017 AHA/ACC High Blood Pressure guideline recommendations for the use of EHR 
and Patient Registries
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solutions and care models that evolve with real-world use and feedback for a com-
mon data model for organizing and exchanging information [9].

The translation of static clinical practice guideline recommendations into action-
able, intelligent decision support technologies that can be embedded directly into 
electronic health records, qualified clinical data registries, care management data 
exchange platforms, and emerging patient-centered digital technologies is much 
closer on the horizon than ever before. This process will require the health informat-
ics community to collaborate closely with clinical practice guideline developers, 
experts in evidence review and evaluation, digital technology developers, and 
Healthcare Information Technology regulators. Such collaboration will require each 
group to have fundamental understanding of the perspectives and logical reasoning 
of the other stakeholders to collaboratively impact the future quality and cost of 
patient care. Hopefully, one day in the not to distant future, all of these groups can 
work closely together at once in this regard.
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Chapter 4
Genetic Counseling at the Intersection 
of Clinical Genetics and Informatics

Andrew J. McCarty, Christine Munro, and Michelle Morrow

 Introduction

Applied bioinformatics is the science, technology, and professional practice involv-
ing the representation, capture, collection, classification/indexing, storage, retrieval, 
dissemination and optimal use of biomedical knowledge. As applied to health care, 
clinical informatics is essentially an information-based approach to healthcare 
delivery. The goal of clinical informatics is to improve health outcomes through the 
utilization of organized information.

One pathway to this goal is through personalized or precision medicine. 
According to Hood et al., personalized medicine is healthcare that is “predictive, 
preventative, personalized, and participatory” [1]. The terms “precision medicine” 
and “personalized medicine” are often used interchangeably. According to defini-
tions adopted by the National Research Council, the term “precision medicine” is 
preferred over the term “personalized medicine” to lessen the erroneous impression 
that treatments would be developed for the benefit of only one patient [2].

From a practical perspective, personalized medicine means that for each patient, 
information from that person’s health record is incorporated into a model that cre-
ates individually tailored output. The output should be the best plan of action for 
that patient based on elements of his or her medical history. This approach has 
enormous potential to improve healthcare services, and is widely considered to be 
the future of medicine [3–5].
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The field of clinical genetics is deeply entwined with clinical informatics and the 
movement toward precision medicine. The addition of more genetic and genomic 
information in the medical record improves our ability to create individualized man-
agement and treatment approaches. Overall, the quantity of genetic information 
available to providers is growing rapidly, making genetics a specialty that will gain 
from the application of informatics approaches. Taking another view, understanding 
the current models of genetic information delivery can inform the field of informat-
ics, as it provides a springboard from which we can build and strengthen strategies 
for the delivery of more and increasingly varied types of healthcare information.

Genetic counseling is a clinical specialty that lies at the junction between infor-
mation and clinical care. Although many of the technological advances that support 
informatics and precision medicine are new, the fundamental concepts underlying 
these innovations have been part of genetic counseling since the field’s inception in 
the 1970s.

Genetic counselors (GC) have specialized training in genetics and counseling 
techniques. This combination prepares practitioners to educate patients and families 
about basic genetic concepts, to estimate risk for family members, to interpret 
genetic testing results, and to assist clients in adapting to genetic diagnoses.

This chapter will outline the ways in which the principles used in the clinical 
application of genetic and genomic information align with the fundamental con-
cepts of informatics-based healthcare delivery. To better understand the current 
application of genetic information in clinical practice, we will first review roles of 
genetic counselors in the healthcare system.

 Genetic Counseling: Traditional Roles  
and Service Delivery Models

Until recently, the majority of genetic counselors were employed as clinical provid-
ers in one of three specialties, cancer, prenatal, or pediatric genetics. Briefly, cancer 
genetic counselors serve individuals and families with personal or family histories 
suggestive of a hereditary cancer disorder. Prenatal genetic counselors serve those 
who are considering pregnancy and those who are currently pregnant. Prenatal 
counseling clients may have risk factors for having a child with a genetic condition 
that include family history, pregnancy history, maternal age, and/or abnormal 
screening tests. Pediatric genetic counselors meet with families of children with 
developmental and/or health concerns that raise suspicion for a genetic condition. 
Pediatric counselors frequently work alongside a medical geneticist to provide ser-
vices in the context of a medical genetics evaluation.

In all three traditional specialties, counselors provide risk assessment based on 
family and medical history, provide information about the benefits and risks of 
genetic testing, facilitate testing, provide result interpretation with updated risk 
assessment, and provide resource referrals for patients and families.

In the traditional model of genetic counseling service delivery, the counselor 
meets with the patient and/or family in a clinic setting to determine a mutual agenda 
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for the session, gathers data on medical and family history, and provides any com-
bination of services including basic genetic education, risk assessment, pre-test 
counseling, psychosocial support in the decision-making and the post-test process. 
Tools to aid in this process include pedigree software, such as progeny and CDC 
family healthware. Additionally, informed decision-making tools are becoming 
more popular, such as the Genetic Support Foundations videos on prenatal screen-
ing options. Depending on the specialty, this session may or may not be done in 
conjunction with a physician visit. In addition to the traditional model, there are 
other forms of genetic counseling that have arisen to support the need.

An added consequence of an increased utilization of genetic testing is that there 
are currently not enough genetic counselors in the US to meet clinical demand. The 
genetic counseling shortage has inspired innovative changes in service delivery 
models. In addition to traditional clinic visits, genetic counseling services have been 
provided by telemedicine [6]. In some clinical settings, nurses or physicians fill 
genetic counseling roles including providing pre-test counseling and the delivery of 
negative results [7, 8]. Some institutions are making larger changes in service deliv-
ery. At UPMC Children’s Hospital of Pittsburgh, a centralized genetic counseling 
service is now available to serve multiple divisions throughout the hospital. In non- 
hospital settings, several genetic testing companies offer direct to consumer (DTC) 
testing. These organizations employ genetic counselors who provide services as- 
needed via telephone or web. Experimental models are also being explored, includ-
ing web-based counseling and group counseling [9, 10].

A general workflow of clinical genetic assessment is shown in Fig. 4.1.
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Variant Analysis
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lines  to determine if the results correlate
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Post-Test Counseling
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• Turn around time

• Cost

• Insurance Coverage

Pre-test Genetic Counseling and Risk Assessment
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 and personal health history

• Discussion of insurability e.g. GINA

Fig. 4.1 Typical workflow of a medical genetics assessment
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 Genetic Testing

There are numerous forms and roles genetic testing can play in healthcare. However, 
to properly utilize this resource, selection of an appropriate test must occur. A genetic 
counselor may be a key expert in assisting with the selection of a genetic test. 
Regarding clinical testing criteria a genetic counselor may consider the selection of 
a reputable lab, reasonable turnaround time, cost, appropriate oversight, inclusion or 
exclusion of appropriate variants, and of course the quality of the test itself. This 
quality may be measured by multiple factors, but will generally include high analytic 
and clinical validity, high predictive value, and useful clinical utility. Analytic valid-
ity is the ability of a test to measure an analyte accurately. Clinical validity is the 
ability of a test to detect or predict the presence of a particular disorder or syndrome. 
Predictive value, which may be either set as positive or negative, is defined as the 
ability of a test to identify the presence or absence of a disease. Lastly, clinical utility 
is in reference to the ability of the test to impact clinical outcomes [11]. Examples of 
tools assisting with this process include genetic test selection software available at 
concertgenetics.com allowing comparison of multiple genetic tests in terms of cost, 
comprehensiveness, turn-around time, and other quality measures.

Another important factor in the selection of a clinical lab is ensuring that they are 
appropriately accredited by organizations for laboratory oversight. This will vary 
from country to country, but within the United States, there are numerous organiza-
tions available for accreditation. At minimum this will typically include Clinical 
Laboratory Improvement Amendments (CLIA). In addition many labs will have a 
minimum of two oversight organizations such as the American College of Medical 
Genetics, the Association of Molecular Pathologist, or the College of American 
Pathologists [12]. In addition to accreditation, there are varying forms of genetic 
testing available which may be offered at different capacities by different labs.

 Genetic Testing Results

The genetic counselor plays an important role in the return of genetic testing results. 
The American College of Medical Genetics and Genomics has published guidelines 
for the interpretation of genetic testing results, which provide criteria for the clas-
sification of variants into one of five categories. In descending order of pathogenic-
ity, these are: pathogenic, likely pathogenic, variant of uncertain significance, likely 
benign, and benign (Fig. 4.2).

Each variant is classified based on multiple lines of evidence. Considerations 
include whether a variant occurs at a high frequency in populations, whether com-
putational algorithms predict that a genetic change will be harmful to a protein’s 
structure (such as Polyphen and SIFT), whether the variant is seen in other family 
members with the disease, whether the variant was inherited or occurred for the first 
time in the patient, and whether the variant has been previously reported. Other 
considerations may include whether a previously reported genotype-phenotype 
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Fig. 4.2 Process to determine the pathogenicity of variants utilized by both clinicials and other 
genetic professionals within the laboratory. This figure is based on the Standards and Guidelines 
established by the American College of Medication Genetics and Genomics and the Association of 
Molecular Pathology

association could have an alternate explanation, or whether the patient’s phenotype 
matches what would be expected given a defect in a particular gene [13]. ClinVar is 
a public database administered through the National Institutes of Health that lists 
variant-specific pathogenicity information from multiple laboratories, which 
enables a clinician to determine whether other laboratories have assessed a particu-
lar variant and how that variant was classified. Similar fee-based databases such as 
Mastermind and HGMD (Human Genome Mutation Database) amalgamate avail-
able pathogenicity information and link it to relevant literature. Gene and disease- 
specific databases also exist, such as those administered through the Leiden Open 
Variation Database, the dystrophinopathy-specific TREAT-UMD DMD global data-
base, or the CFTR mutation database.

Although there are five classification criteria, generally, genetic results are 
explained as positive, negative, or variant of uncertain significance. In the case of a 
positive finding, in which a genetic variant known to be associated with a disease is 
identified in the patient, the counselor can provide management guidance and refer-
rals to support resources. In the case of a negative result, the counselor can provide 
an appropriate interpretation, for example, distinguishing whether a negative result 
is informative or uninformative in the context of family history. The counselor may 
also offer further testing options. In the case of an equivocal result, also referred to 
as a variant of unknown significance, there is not enough evidence to determine 
whether a variant is disease-causing or benign. In this case, the counselor facilitates 
additional investigations as needed and provides support to assist the client in under-
standing and adapting to uncertainty. In both pre-test and post-test contexts, the 
client and the counselor work together toward the mutually agreed upon goals. A 
non-directive approach and shared responsibility throughout the process makes the 
counselor-client relationship distinct from many other healthcare settings.

4 Genetic Counseling at the Intersection of Clinical Genetics and Informatics
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When a physician and genetic counselor receive an uncertain or likely patho-
genic genetic test report, they interrogate that result further to determine if it fits the 
patient’s clinical phenotype. Examples of resources typically used include OMIM to 
better understand the phenotypic presentation of a particular disease and Oligo/SNP 
evaluation tools to investigate the genes located in a particular deletion or duplica-
tion and compare size to those previously reported. When a patient is diagnosed 
with a genetic condition, counselors will provide patient appropriate resources, such 
as Genetics Home Reference and disease specific registries and foundations.

Viewing the work of clinical genetic counselors through an information process-
ing lens, clinical genetic counselors facilitate the input of relevant information into 
the lab, either through choosing an appropriate test or by providing appropriate 
clinical information to the lab to assist them in analysis. Upon completion of testing, 
the counselor receives the lab output and validates it in the context of the complete 
medical and family history of the patient. The counselor then completes a third 
stage of processing, in which he or she uses the validated lab output to determine 
appropriate follow up in the form of management guidelines, which are largely 
generated through published statements by working groups or disease-specific 
experts, and support resources. It would go beyond the scope of this book to discuss 
all types in detail but below are provided a few examples of the differing forms of 
genetic testing that may be performed depending on indication. The four examples 
below provide a rough framework of several ways genetic testing is utilized to ulti-
mately impact the patient.

Figure 4.3 depicts the types of data used for determining benign and pathogenic 
variants, whereas Fig.  4.4 provides a comprehensive list of main informatics 
resources routinely used in the practice of clinical genetic counseling.

Fig. 4.3 Types of data used for determining benign and pathogenic variants
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Fig. 4.3 (continued)
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Fig. 4.4 Informatics resources 
commonly used in clinical genetic 
counseling
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 Carrier Screening

Carrier screening is typically performed in several different clinical settings. The 
primary setting is prior to or during a pregnancy to assess the risk of an affected child 
for an autosomal recessive condition. In recessive conditions, if both parents are car-
riers they will generally not express symptoms. However, the fetus or child has a 
one-in-four or 25% risk for a recessive condition. Additionally, carrier testing would 
also be performed as follow-up testing for an individual who is identified to carry a 
variant of unknown significance. In such cases, carrier testing of parents may be use-
ful to determine the risk to the patient based off of the results as well as the recur-
rence risk for both parents or if they themselves may be at risk [14, 15]. As an 
example, a genetic variant of unknown significance in an autosomal dominant gene 
may be identified; if this change was not inherited from a parent, the provider may be 
more suspicious that it is disease-causing. The genetic counselor’s role in this form 
of testing is primarily to discuss the risks of testing as well as the resultant genetic 
risk determined from any additional testing. It is essential to ensure the patient or 
family is provided this information in an appropriately understood format.

 Newborn Screening

Newborn screening, which is performed in most industrialized nations, is a form of 
testing that is not completely genetic in origin, but results in a significant amount of 
follow-up genetic testing. Newborn screening is generally performed after 48–72 h 
of life to determine if a child has one of a number of conditions for which interven-
tions or treatments may improve outcome [16, 17]. The conditions include bleeding/
blood disorders, congenital adrenal hyperplasia, hearing loss, immune deficiencies, 
and inborn errors of metabolism. Generally, the screening is not precise enough to 
be considered diagnostic, which leads to further functional or molecular testing. 
Genetic counselors hold positions in state newborn screening programs and are 
responsible for patient follow-up, including confirmatory testing, result disclosure, 
and family psychosocial support.

 Diagnostic and Predictive Testing

Diagnostic genetic testing encompasses any genetic testing that may be used to rule 
in or rule out a genetic condition in an individual who is currently expressing symp-
toms. This testing has value by providing a diagnosis which may aide in the patient’s 
treatment, redirection of care or potentially a cure. This varies from predictive test-
ing, where an individual is not currently expressing symptoms but may have an 
increased risk based on family or medical history. Cancer prediction software tools 
are commonly used to help assess a patient’s risks for carrying a hereditary cancer 
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predisposition mutation. In cases where an individual is tested for a pathogenic vari-
ant known in the family and is found to be negative, this may be considered informa-
tive, and allow for an individual to be considered at average population risk. These 
individuals may not require additional surveillance or screening. Similarly, those 
who are pre-symptomatic but found to carry a pathogenic variant associated with a 
health risk, can be more informed to modify life style behaviors, obtain additional 
screening, and make reproductive decisions from this information. As an example, 
an individual may present due to a personal history of numerous polyps on colonos-
copy. Pathology is suggestive of a cancer syndrome, for which their provider recom-
mends genetic testing. In this form, the testing would be diagnostic. On return of the 
testing, they are found to carry a pathogenic variant in the PMS2 gene associated 
with Lynch Syndrome and an increased risk for colon cancer [18]. This individual 
has multiple siblings who would now also be at risk. If they were to have testing with 
no prior history of cancer to determine if they carry the same genetic change, this 
would be predictive testing. If they tested negative, it would be informative for their 
management. The genetic counselor plays a role in best test selection, result interpre-
tation in the context of the clinical phenotype and family history, identifying appro-
priate family members who may carry the same diagnosis/mutation, and psychosocial 
counseling based on the implications and personal preferences of predictive or diag-
nostic testing. In addition, genetic counselors work to assess those who would obtain 
the most clinical utility from testing. Predictive models have been developed to bet-
ter assess lifetime risk. Although beyond the scope of this chapter, some models that 
can be used include BRCAPRO, The Gail Model, and Claus Model which can pro-
vide information such as lifetime risk and five-year risk by integrating family history, 
personal history, and other important health information [11, 19].

 Pharmacogenomics

An area of increasing interest in genomics is the relationship between genetic varia-
tion and the efficacy and safety of medication. A few brief examples of the use of 
pharmacogenomics to improve care include metabolizer status in relation to warfa-
rin dosing and testing for thiopurine methyltransferase and metabolizer status prior 
to treatment with 6-mercaptopurine in childhood leukemia or autoimmune disor-
ders both of which are considered companion diagnostics, defined as a test used to 
aid healthcare providers in appropriately treating by dosage, drug or intervention, 
including but not limited to genetic testing [20].

 Genetic Counseling Practice Guidelines

As discussed, the role of a genetic counselor has continued to expand. As such the 
need for appropriate guidelines to encompass these broad roles has grown accord-
ingly with this need. The practice of medical genetics and genetic counseling, has 
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long used clinical practice guidelines due to the breadth of knowledge required to 
ensure appropriate clinical care for many disparate conditions [21–23].

The primary advantage to using practice guidelines is that they are formed by 
integrating the expertise of many expert health professionals ensuring a well-
formed recommendation for use by clinicians treating a particular condition. For 
example, the high volume of data and information available in the field of cancer 
genetics has made the use of practice guidelines a necessity to ensure best patient 
outcome. Guidelines also serve to prevent overwhelming the healthcare system and 
its providers with difficult to interpret information. Prior to the use of formal infor-
matics within this field, providers would use broad based criteria indicating the 
potential for an increased familial risk and utility of genetic testing. This might 
include the presence of bilateral primary tumors, multifocal tumors, atypical age/
sex/site of tumor, rare tumor type, or a family history, to name a few. However, 
these criteria are non-specific and non-comprehensive. An integral tool used by 
providers are the National Comprehensive Cancer Network (NCCN) Diagnostic 
and Management Guidelines. These are employed to assist in the diagnosis, treat-
ment, management, and surveillance of cancer. These guidelines include guidance 
for treatment of cancer by site; detection, prevention, and risk reduction; supportive 
care; and age- related recommendations as well as patient friendly material. The 
NCCN criteria primarily used by clinical genetic counselors are for risk assessment 
and assist in decision making regarding to whom genetic testing should be recom-
mended [19, 24, 25].

 Genetic Counseling Educational Standards

In addition to practice standards, genetic counseling as a profession is regulated by 
a number of governing bodies within the United States. Regulation is needed to 
establish and maintain standards, ensure competency of those entering the profes-
sion, protect the public, and centralize appropriate organization and expansion of 
the profession [11]. In the United States, there are three major national groups 
involved with the genetic counseling profession. The first is The National Society of 
Genetic Counselors (NSGC) whose primary roles are to promote the profession, act 
as a resource for professional education, and act as an advocate for policy change 
affecting genetic counselors as well as their patients. The second is The American 
Board of Genetic Counseling (ABGC), whose primary roles are to provide and 
update the exam that certifies genetic counselors and to study the practice of genetic 
counseling in order to inform practicing GCs of new developments in the field [11, 
26]. This exam tests 22 core competencies organized into several core domains: 
genetics expertise; interpersonal, psychosocial, and counseling skills; education; 
and professional development and practice. These competencies are used to struc-
ture genetic counseling programs and are integral skills for competent practice and 
the support of complex decision making and data integration. These include the 
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integration of the skills needed for assessment, facilitation of genetic testing options, 
use of a range of genetic counseling skills and models to ensure informed decision 
making and to promote client-centered, informed, non-coercive decision making by 
the patient. Additionally, many programs are incorporating bioinformatics courses 
into their training programs to address the information retrieval and data integration 
complexities of genetic testing. Accreditation and reaccreditation of programs is 
performed by the third organization, the Accreditation Counsel for Genetic 
Counseling (ACGC). This organization is charged with ensuring that the schools 
instructing prospective genetic counselors are providing a minimum standard to 
which they must achieve [11]. Of important note, currently not all states have licen-
sure laws in place for genetic counselors. While certification in the U.S would be 
recognized in any state, licensure to practice as a genetic counselor is state specific 
and at of the time of writing, is not reciprocal [26].

 Ethical and Legal Considerations

An often neglected, but meaningful, topic to discuss are the ethical and legal impli-
cations of genetic testing. Genetic testing occupies a unique space regarding testing 
in that it has the potential to not only impact the individual who is tested but family 
members as well. As such, there are several unique considerations such as bioethics, 
privacy concerns, the genetic information nondiscrimination act (GINA), and the 
duty to warn. Genetic counselors must weigh these ethical and legal considerations 
with every patient.

 Autonomy, Beneficence, Non-maleficence, and Justice

As a provider, it is necessary to ensure the patient is receiving care in a moral and 
ethically appropriate manner. There are numerous ethical models for which to 
address these concerns; however, the most commonly cited approach is the bioethi-
cal model [27, 28]. The four primary tenants of the bioethical model are autonomy, 
beneficence, non-maleficence, and justice. In the setting of genetic testing, auton-
omy is the principle that protects an individual’s freedom to make their own deci-
sions while ensuring that the decision is made free from any false information or 
coercion by a third party or the provider. Beneficence describes an action performed 
with the goal to help others whereas non-maleficence is avoiding an action that 
would cause harm. In the setting of genetic testing this ensures a test is performed 
in the best interest of the patient. This is generally determined by weighing the ben-
efits of an action against the risks, while ensuring that a patient’s rights are main-
tained. Lastly the tenant of justice ensures fair distribution of limited resources and 
adherence to the laws where one practices.
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As a clinical example of how these ethical principles may come into play, con-
sider the following scenario:

A 27-year-old female presents to clinic as she wishes to know her status for Huntington’s 
disease (HD) prior to having any children. She requests this given that her paternal grand-
father was diagnosed at 62 with HD. However, her father has made it clear through multiple 
conversations that he does not wish to know his status. If a genetic counselor saw this fam-
ily they would need to consider the patient in front of them, as well as how this testing might 
affect others in the family, given a positive result would also diagnose the father. 
Considerations would include the autonomy of the father as well as the patient, ensuring 
that no harm, either physical or psychological comes to either, as well as ensuring a fair 
process to all involved. Using counseling and communication skills, a genetic counselor 
could attempt to facilitate a discussion for both individuals as well as the family unit to 
determine a decision that is mutually agreeable. However, despite counseling efforts, differ-
ences in viewpoints may remain. Such a situation would require insight by the provider and, 
potentially, an ethics group to come to a decision on how to proceed.

 The Health Insurance Portability and Accountability  
Act (HIPAA)

The Health Insurance Portability and Accountability Act (HIPAA) of 1996s primary 
goal has been to provide legislation to ensure data privacy and security for medical 
information. In an era of increasingly data rich medical information which incorpo-
rates highly individualized genetic testing results, the need for patient and consumer 
confidence has become a priority [29]. The Act has three main sections: the privacy 
rule, the security rule, and the breach notification rule. The Privacy rule protects 
private health information (PHI) by outlining how it may be used and disclosed. PHI 
itself is defined as information that is individually identifiable. The Security rule is 
a set of standards put in place to inform how health information must be handled in 
order to ensure confidentiality and availability of PHI as well as the identification 
and anticipation of threats to PHI. Additionally, it ensures that a workforce follows 
these guidelines. The third rule, the Breach Notification Rule, outlines the require-
ments in the event of a breach of information. This is generally enforced by the US 
Department of Health and Human Services division, if considered a civil charge. 
However, if criminal charges are to be enforced, the US Department of Justice 
would then become involved [29, 30].

 The Genetic Information Nondiscrimination Act of 2008

The primary role of the Genetic Information Nondiscrimination Act of 2008(GINA) 
is to prevent discrimination based on genetic information. This law applies, but is 
not limited, to employers, insurers, researchers, and the individual private citizens 
protected by the act [31].
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GINA prohibits a health insurer from modifying a premium based on genetic 
information or forcing an individual to have a genetic test for coverage. It does 
allow testing in cases for coverage of certain procedures, such as risk-reducing sur-
geries in the presence of a genetic predisposition; however, it disallows the use of an 
enrollment decision based on genetic information. Similarly, the act prevents 
employers with more than 15 employees from discriminating for hiring, firing, or 
compensation based on genetic information. Employers are not allowed to collect 
genetic information unless required for appropriate health care. Of note, there are 
restrictions to GINA; it does not apply to life insurance, long-term care, and dis-
ability insurance or to those insured under the Veterans Health Administration, 
TRICARE, and the Indian Health Service insurance; however for these entities, 
separate but similar regulations are in place [11]. Genetic counselors discuss the 
implications of this law with patients considering genetic testing ensuring fully 
informed consent.

 Duty to Warn

Duty to warn is the legal term stating a medical provider holds responsibility to 
inform or otherwise warn an individual of a particular health risk [32, 33]. This is 
acutely necessary if the genetic testing result may not only vastly increase a health 
risk for a patient but other family members as well. Numerous legal cases have been 
raised in regards to this issue, but at present a consensus has not been reached [32]. 
An area of similar discourse is the necessity of re-contacting a patient over time. 
Genetic testing results may often return with a variant of unknown significance. In 
this case, the test cannot clarify whether a genetic change impacts a health risk. Over 
time, these variants are eventually reclassified as benign or pathogenic, as discussed 
previously. Because case law is limited, there is uncertainty as to who is ultimately 
responsible for informing the patient of changes in the status of variants. The per-
forming lab or provider have been suggested as responsible parties. However, given 
the volume of testing and resources required to re-contact, it has been difficult to 
reach a consensus on this issue. Arguments for re-contact might include inclusion or 
omission of management that could improve the patients’ health outcomes or could 
potentially be lifesaving. Arguments against re-contact include the vast resource 
requirements to ensure contact and re-traumatization of a patient who, if given the 
choice, would elect not to discuss their genetic testing after the initial disclosure of 
results [32–34]. Genetic counselors have helped address these issues with patients 
by discussing patient responsibilities on VUS follow-up and providing patients with 
family letters to better help them disseminate genetic health information to extended 
relatives who may benefit from cascade screening. However, at the end of the day 
there is still lack of standardization within the industry leading to a risk to both 
patient and provider. The American Society of Human Genetics has published a 
statement attempting to address their stance stating in short that disclosure is permis-
sive in cases where disclosure by the patient/family has been unsuccessful and where 
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the risk for harm is high and serious and when prevention, monitoring, or treatment 
can vastly reduce risk. However, this discourse is ongoing, and standardization 
between professional groups and the law will require further assessment [32].

 Expanding Roles and Service Delivery Models  
for Genetic Counseling

The landscape of genetic counseling has widened in recent years to include a 
broader range of subspecialties such as ophthalmology and neurology. In addition, 
so-called “nontraditional” positions within laboratories and genetic testing compa-
nies, clinical research positions, and hospital utilization management roles have 
increased in number [11, 12].

Genetic counselors employed in laboratory settings are fluent communicators 
who work collaboratively with clinicians and laboratory scientists. When a test is 
ordered, clinical information may or may not be sent by the ordering providers. 
Counselors either obtain needed information or filter the relevant clinical input and 
send a curated data set to the lab. On the output side, laboratory counselors offer 
clarification and nuanced interpretation of laboratory findings to clinical providers.

Genetic counselors in clinical research are in the challenging position of filling 
both a clinical and a laboratory genetic counseling role. They recruit and consent 
subjects for research, provide pre-test genetic counseling, and provide post-test 
counseling when research results are disclosed. They also work hand-in-hand with 
the laboratory team.

A new role for genetic counselors is utilization management. These counselors 
are employed in the laboratory, insurance health plan, or hospital setting to manage 
the ever-growing numbers of genetic testing requests and to ensure appropriate use 
of the resources allotted for genetic testing. Because of the newness and expense 
involved in genetic technologies, insurance companies have been slow to adapt, and 
it has been challenging for hospitals to manage costs associated with testing. These 
counselors utilize algorithms to ensure appropriate use of testing. They collect data 
and produce information that allows the hospital to justify the allocation of resources 
for testing. The use of population level data for genetic tests being performed may 
help to better understand the value of particular tests. In these roles, genetic counsel-
ors are continuing to establish cost effectiveness criteria to aide in decision making.

 Genetic Counselors in Utilization Management

Healthcare costs are extremely high and constantly on the rise in the United States. 
With the increase in genetic test utilization, there is growing concern from a variety 
of healthcare stakeholders about how to balance the clinical utility and cost of 
genetic testing. Genetic testing costs are expected to be between $15 and $25 billion 
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USD by 2021 [35]. Government agencies, hospitals, healthcare insurance providers, 
and patients are among the major stakeholders affected by costs associated with the 
uptake in genetic testing. Genomic medicine will add to the cost burden of state 
Medical Assistance (MA) programs which may restrict availability of these services 
to MA members [36]. Hospitals struggle to meet the cost of genetic care when there 
is a lack of reimbursement from government and commercial insurance programs. 
Inpatient genetic testing costs are typically absorbed by the institution and outpatient 
institutional billing is not 100% reimbursable; however despite these difficulties, 
hospitals typically strive to provide state of the art care for their patients. Healthcare 
insurance providers strive to find a balance between best patient care practices, clini-
cal utility of genetic testing, and costs. Patients may struggle financially with signifi-
cant out of pocket costs depending on the amount of coverage their health plan may 
provide [36]. In order for sustained use of genetic testing, cost and benefits need to 
be justified and there needs to be demonstrated improvements in patient outcomes.

Pressure to reduce healthcare expenditures has highlighted the field of genetic 
test utilization management. Genetic counselors are playing a critical role in direct-
ing these efforts. Utilization management in genetic testing is focused on choosing 
the right test, for the right patient, at the right time. Limiting excessive or inappro-
priate testing and helping with test navigation and interpretation is leading to sub-
stantial downstream cost savings [37]. For example, studies in both commercial and 
academic laboratories report as high as a 30% test modification or cancellation rate, 
which has resulted in significant cost savings to reference laboratories, institutional 
laboratories, health insurance companies, and patients [35].

GCs in this role are able to identify [37]:

• Best test method

 – Single gene vs. panel
 – Reflexive testing options

• Best person to test

 – It is more informative to test a family member affected by breast cancer than 
testing an unaffected family member

• Best lab

 – Quality of the test reports, customer services, and turnaround times

• Best cost

 – Some commercial labs will offer volume discounts

GCs can assist with [37]:

• Insurance prior authorization processes
• Test interpretation

 – A negative result may not rule out a diagnosis
 – Variant of uncertain significance is not a diagnosis
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• Appropriate follow-up testing options

 – Parental testing may be informative if a variant of uncertain significance is 
identified as de novo

GCs can detect order errors [37]:

• Duplicate test orders

 – A panel or exome test already covered the gene of interest

• Incorrect gene or test selected

 – Test indication is not matching the test ordered

• Better test strategy options

 – Sequencing is ordered for the DMD gene when copy number variations are 
most common

Genetic counselors are performing these tasks every day in the clinical setting, 
but also in specialized roles within institutional laboratories, reference laboratories, 
and insurance provider settings, saving costs across the genetic testing spectrum. 
The genetic knowledge and the communication skillset of GCs make them ideal 
healthcare providers for this role.

 Genetic Counselors in the Public Health Setting

Public health involvement in genetic testing is nothing new, as newborn screening 
programs have been in existence since as early as the 1960s in many countries. 
However, public health involvement and policies are changing with new technolo-
gies. Public health perspectives require us to think about genetic testing in the con-
text of communities, nations, and the world. An expansion of public health genomic 
programs is needed to ensure evidence-based translation of genomic information, 
adequate education of providers and patients, improvements in equality and access 
to genetic testing, and prevention of genomic discrimination [38, 39]. Genetic coun-
selors are equipped with the knowledge and training to play a critical role in these 
program and policy developments, helping to find a balance between cost, informa-
tion, and utility. Recently, genetic counselor programs, such as the one at the 
University of Pittsburgh, have started offering dual degree opportunities in genetic 
counseling and public health genetics.

Currently, the majority of genetic testing is offered for rare single gene disor-
ders, however many monogenic disorders are of public health interest in the context 
of carrier screening (e.g., cystic fibrosis), diagnostic testing (e.g., hemochromato-
sis), and predictive testing (e.g., cancer predisposition genes). At this moment in 
time, multifactorial and monogenic diseases have very different utility in terms of 
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predictive power and actionability in the public health framework. Testing for com-
mon multifactorial diseases such as cancer and cardiovascular disease is expected 
to become more prevalent as the understanding of gene-gene and gene-environment 
interactions improves [38].

Examining the public health utility of a genetic test involves the consideration of 
a number of variables in addition to examining genetic testing and its utility on an 
individual scale; when determining utility on a public health scale there are addi-
tional considerations [38]:

• Prevalence of the disease in the population
• Morbidity and mortality of disease
• Age of onset
• Available treatment options and their costs
• Alternative non-genetic based tests such as an enzyme assay
• Prevalence of disease-causing variants in the general population
• Penetrance of disease-causing variants in a particular gene
• Specificity and sensitivity of a genetic test
• Cost of a genetic test
• Ethical and legal issues (e.g., result disclosure and cascade testing in family 

members)

An example would be population-based screening of the BRCA1 and BRCA2 
genes for predicting breast cancer. Breast cancer is common in the population, the 
penetrance of a BRCA1/2 mutation is high, and the frequency of these mutations in 
the general population is low. The sensitivity and specificity of the testing is high 
since these genes are well-characterized across different populations; therefore, the 
rate of variants of uncertain clinical significance may be lower than other cancer 
predisposition genes [40]. Costs of these tests range from the hundreds- to the 
thousand- dollar range. Finding a mutation in one of these genes provides women 
with preventative options such as increased screening, prophylactic mastectomy, 
and chemo preventative medications. Some experts argue that early detection would 
save money and improve patient outcomes. Other experts argue that increased 
screening can lead to unnecessary and costly biopsies and prophylactic surgeries, in 
turn leading to costly adverse outcomes [40]. Additionally, psychological implica-
tions and women’s preferences need to be considered; some women feel empow-
ered by the knowledge of a BRCA1/2 mutation because they can now “do something” 
about their risks, while other women may feel overwhelmed and anxious by the 
news of a mutation. Another expert concern is that the healthcare system lacks the 
support necessary for successful population screening. Physicians need support in 
order to provide individualized non-directive counseling, accurate test interpreta-
tion, and navigation of the insurance authorization process [39]. The example of 
BRCA1/2 population based screening highlights the complexities of assessing the 
public health utility of a genetic test, and it highlights the need for genetic trained 
experts, such as genetic counselors, to lead these conversations and initiatives.
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 Conclusion

Because genetic information is highly individualized, genetics professionals have 
long been at the forefront of the movement toward personalized medicine. Genetic 
counselors work at the institutional level to ensure that genetic testing is appropri-
ately and cost-effectively managed. By doing so, they essentially curate incoming 
genetic information. The information can then be managed and utilized as the input 
for a precision medicine-based approach to patient care. GCs at the laboratory and 
clinical level participate in the interpretation of genetic information and the transmis-
sion of this information to medical professionals and to patients. At the clinical level, 
GCs also mine available expert resources to help quantify future health risks and to 
determine the best management strategies for patients. They use genetic information 
to help patients make the most appropriate choices in family planning, health man-
agement for current conditions, and engagement in preventative health practices.

In the past, testing was available for very few genes, and there were limited 
medical management changes for particular genotypes. Now, with the increase in 
accessibility of genetic testing and the push toward identifying genotype-specific 
treatments, genetic counselors are responsible for the accumulation and retrieval of 
a much wider range of genetic information. GCs interpret genetic information for 
both practitioners and patients and educate these groups in how to use genetic medi-
cine to improve health outcomes.

As technology continues to advance, more genetic information will make its way 
into the average person’s health record. A future challenge for genetic counselors 
and all health providers will be in assimilating large amounts of information and 
incorporating this information into daily practice. This challenge extends to infor-
matics professionals, who enable efficient storage and retrieval of genetic informa-
tion, and those who develop applications to assist providers in meeting this challenge. 
Many current electronic medical records, which are essential to an informatics- 
based approach to healthcare, were not designed to incorporate genetic testing infor-
mation. As a result, it can be difficult for providers to find genetic information or to 
determine the significance of a test result. Fortunately, these challenges are now 
being considered and addressed [41, 42]. As the genetic testing landscape matures 
further, tools both on the professional and patient side will need to be developed to 
aide in these challenges. There are a number of online resources centered around 
patient driven data acquisition and analysis such as GeneMatcher and Promethease. 
GeneMatcher allows an individual to enter in the particular variant they have identi-
fied in an effort to be matched with other individuals with the same variant to help 
assist with reanalysis, whereas Promethease provides a number of available tools to 
further interpret data available both to scientists and the general public.

Genetic counseling service models incorporate the fundamental elements of pre-
cision medicine. Future progress in our ability to effectively utilize genetic and 
genomic information will depend on the ability of informatics and genetics 
 professionals to plan and collaborate on platforms for information storage, access, 
retrieval, and interpretation. Together, we can make personalized health recommen-
dations the standard of care.
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Chapter 5
Fundamentals of Drug Metabolism 
and Pharmacogenomics Within a Learning 
Healthcare System Workflow Perspective

Matthew K. Breitenstein and Erin L. Crowgey

 Introduction

Advancements in pharmacologic knowledge over recent decades have included 
extraordinary discoveries of common, heritable genetic variants that dramatically 
modify human response to small molecule drug pharmacotherapies. These genetic 
variants—known as pharmacogenetic determinants—can profoundly modify drug 
absorption, distribution, metabolism or excretion, leading to reductions in therapeu-
tic efficacy or unintended toxicity. A subset of pharmacogenetic determinants have 
become so clearly linked to impaired therapeutic response that they are now desig-
nated as being clinically actionable—these variants have corresponding clinical 
laboratory tests whose results are now readily implementable into electronic health 
record-based clinical workflows for precision medicine practice. To compliment 
these advances, our biological knowledge of pharmacogenetics has rapidly evolved 
to encompass a broader understanding of multiple genetic determinants (i.e. genom-
ics) as affecting therapeutic response for any given drug. In addition to traditional 
drug metabolism, these genomic determinants are understood to affect series of 
organic reactions, branching of biochemical pathways, or as disparate determinants 
of physiologic response—together these genomic determinants inform our contem-
porary perspective of pharmacogenomics. In parallel to an ever broadening scope of 
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pharmacogenomic knowledge, next-generation targeted agents (small molecule 
drugs, immunotherapies, and biologics) are being developed with increased sophis-
tication so as to be therapeutically efficacious within the aberrant pathophysiology 
of rare disease sub-populations, as single agents or within combination regimens. 
While at the writing of this chapter our underlying knowledge of pharmacogenom-
ics may not yet be amenable to informing truly personalized recommendations (i.e. 
for an N of 1 population), informatics within precision medicine is certainly well-
poised to advance tailoring of targeted therapeutics to smaller and smaller clinic-
based sub-populations within precision medicine practice.

 Foundations of Pharmacogenomics for Precision  
Medicine Informatics

 Origins of Pharmacogenetics

Throughout civilization, humans are thought to have administered biologically 
active organic compounds for the purpose of healing, and more generally, for the 
betterment of the human condition. Cuneiform clay tablets reveal that ancient 
Mesopotamian apothecaries, hybrid medicine-pharmacy practitioners, are amongst 
the earliest to connect treatments of disease symptoms to synthesis of organic com-
pounds [1]. Fast-forwarding through the centuries, drug discovery is thought to have 
progressed across most civilizations, albeit in a piecemeal fashion via trial and error. 
Until the modern era, efficacy—or therapeutic effectiveness—of these organic com-
pounds remained poorly understood, only recently being advanced with evidence 
gathered from statistical methodologies and standardized clinical trial protocols [2]. 
Coinciding with the maturation of chemistry in the twentieth century, advances in 
microbiology lead to a paradigm shift in medicine—a molecular revolution cata-
pulting medicine into a modern clinical science with a rapidly evolving understand-
ing of disease pathophysiology and an expanding war chest of prescriptible 
pharmacotherapies (‘medications’ or ‘drugs’). In the ensuing decades, advances in 
pharmacotherapies led to cures for infectious diseases [3] that were previously fatal, 
and the human lifespan dramatically increased. However, ‘diseases of age’ began to 
appear [4]. Developed countries assumed sedentary occupations [5] while assuming 
elevated caloric diets loaded with sugars and processed foods [6]—chronic condi-
tions began to permeate, and cancer incidence proliferated. Rapid development of 
pharmacotherapies buoyed by advancing medical knowledge helped alleviate dis-
ease symptomology and attenuate progression. However, for unknown reasons, 
medications deemed to be efficacious within the overall population were found to 
have highly variable responses by certain individuals. As we now know, heritable 
genetic traits—pharmacogenetic determinants—hold potential to dramatically 
modify therapeutic efficacy and patient response to medications [7].
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The origins of pharmacogenetics as an ‘observational science’ trace back to 
510 B.C. when Pythagoras realized that fava beans resulted in a fatal reaction, but 
only for certain individuals within the population [8, 9]. Our modern understanding 
of inheritance commenced with Mendel’s establishment of the ‘rules of heredity’ 
[10, 11]. Within the famous garden pea experiments, Mendel established a model 
system that determined presence or absence of certain gene alleles in the parents 
resulted in predictable ratios of phenotypic permeation in offspring—that is, 
 ‘hidden’ copies of gene alleles were present in the parent organism, but only became 
observable, or ‘penetrant’, when an offspring had two parents with ‘hidden’ copies 
of the gene allele. Of particular relevance to pharmacogenetics, Mendel established 
that major and minor gene allele copies dramatically modified phenotypic manifes-
tation—and that organisms without ‘observable’ penetrant alleles still often carried 
an altered allele copy in their genome. Fast-forwarding to the mid-twentieth cen-
tury, we marked the advent of pharmacogenetics [12, 13] on the heels of revolution-
ary breakthroughs in our understanding of deoxyribonucleic acid (DNA). Twin 
studies confirmed the role of heritable genome in the modification of drug metabo-
lism and therapeutic response [14, 15]. Those early insights of the fava bean by 
Pythagoras became to be understood as glucose-6-phosphate dehydrogenase defi-
ciency—now known to be one of the most common defects in human metabolism, 
affecting an estimated 400 million individuals worldwide [16]. Foundational under-
standing of polymorphisms linking to metabolic disorders and drug metabolism, 
included debrisoquine hydroxylase sparteine oxidase [17, 18] (later becoming 
known as CYP2D6) one of the major drug metabolizing enzymes [19] and an impor-
tant human pharmacogenetic determinant [20].

 Modern Pharmacogenomics

At the onset of the new millennium, pharmacogenetics began to rapidly mature into 
a sub-discipline of clinical pharmacology. An audacious vision was set forth for phar-
macogenetics to directly inform prescribing in routine clinical practice [7, 21]. Calls 
for treatment personalization based on a patient’s unique genome were soon to be 
augmented by emerging targeted therapies with increasingly refined biological speci-
ficity [22]. Advances in whole-genome sequencing [23] shifted the domain focus 
from single-gene pharmacogenetics, to pharmacogenomics, encompassing multiple-
gene effects and pathways [7]. Pharmacogenomic inquiry placed a renewed focus on 
deciphering the complex molecular determinants of therapeutic response [24], drug 
disposition, and unintended side effects [25]. The National Institutes of Health began 
to support ascertainment of pharmacogenomic knowledge on a large scale through 
the formation of the Pharmacogenomics Research Network (PGRN) [26, 27] and the 
repository for pharmacogenomics knowledge ‘PharmGKB’ [28]. Most noteworthy 
for precision medicine informaticists, the PGRN enjoyed a fruitful collaboration with 
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the eMERGE II Consortium [29], where electronic health record (EHR)-derived phe-
notypes where used to empower genomic medicine research [30, 31]. In pioneering 
work, eMERGE developed a compendium of portable EHR phenotype algorithms, 
that were replicated and validated across clinic-based eMERGE sites [32]. Further, 
the PGRN and eMERGE collaboration pioneered foundational translational infor-
matics infrastructure and interdisciplinary scientific expertise which spurred devel-
opment of large-scale linkage of EHR phenotypes to the sequenced whole-genome of 
consented patients for the purposes of secondary research.

Before we delve further into informatics perspectives or workflows, we felt it 
was important to provide the reader with a high-level overview of what pharma-
cogenomics encompasses as an academic discipline. Through a classical lens of 
pharmacology, when a patient orally ingests a medication, that compound is first 
absorbed, and then modified, across a series of one or many metabolic reactions. To 
be of intended therapeutic benefit (efficacious) to the patient, the resulting com-
pound must be distributed from the site of primary metabolism (most often liver 
hepatocytes) and then succesfully uptaken into the tissue/organ site upon which the 
physician aims to extert a therapeutic effect. Once uptaken, the compound must be 
presented to the intended receptor target in an active form, or be further modified 
through metabolic reaction(s), to ensure robust binding affinity between the drug 
(ligand) and protein target. After binding between the compound and complimen-
tary target occurs, the protein will synergistically operate so as to influence down-
stream enzymatic activity, exerting therapeutically efficacious perturbations upon 
selected downstream biological pathways. Eventually, any remaining unused or 
metabolized compounds will be excreted from this tissue and eliminated from the 
body via the renal system. How this process is synergistically modified, or uninten-
tionally perturbed, by one or multiple heritable genetic traits is the basis for 
 pharmacogenomics [7]. The broad physiologic mechanisms encompassing pharma-
cogenomics are delineated into two major classes—pharmacokinetics (PK) and 
pharmacodynamics (PD). In general, it is posited that a proper understanding of 
modification by heritable genetic traits requires considerations for multiple genes 
affecting drug efficacy across the PK and PD spectrum. Let us first consider phar-
macokinetics/PK: While drug metabolism is a major component, PK also encom-
passes distinct absorption, distribution, and excretion processes occurring across 
various organ sites across the human body. At present, the major milestones of PK 
for most small molecule drugs are relatively well understood. Now we consider the 
much more complex, physiologic-diffuse pharmacodynamic/PD determinants:  
First, PD determinants are known to exert/control therapeutic efficacy through con-
certed regulation of downstream reaction(s) activity occuring across multiple dispa-
rate biochemical pathways. Further, while genetic variation occurring within PD 
determinants is thought to profoundly affect primary drug response and therapeutic 
efficacy, their implications towards manifestation of adverse drug reactions (ADRs) 
and drug-drug interactions (DDIs) are much less understood. As a general senti-
ment, emerging literature suggests that compositions of the human gut microbiome 
carry profound potential to modify drug metabolism processes (PK). Further, 
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advancing our understanding of PK and PD mechanisms holds potential to uncover 
pharmacogenomic determinants that might affect combination therapy efficacy, 
adverse drug reactions, and drug-drug interactions.

At present, our knowledge of single-gene pharmacogenetics has evolved to 
encompass over 100 clinically actionable drug-gene variant pairings. Having these 
clincially actionable pharmacogenomics in hand, we now stand on the cusp of 
another paradigm shift toward precision medicine. Particularly, where medicines 
are being designed with increasingly targeted specificity, and are increasingly pre-
scriptible based on molecular phenotypes or sub-types of disease. The realization of 
pharmacogenomics at the bedside is readily achievable as a translational informat-
ics endeavor. However, assembling pipelines from which to generate new pharma-
cogenomic knowledge from the Learning Healthcare System necessitates 
development of carefully-constructed translational informatics workflows.

 Learning Healthcare System Workflow for Pharmacogenomics

Pharmacology is rooted in systematic perturbation of complex, physiologic systems 
for treatment of human disease. As a component of pharmacology, pharmacogenom-
ics seeks to understand the genetic underpinnings of biochemical reactions encom-
passing drug metabolism and transportation, and the down-stream processes that 
affect drug efficacy, or the unintended manifestations of adverse drug reactions. We 
know that pharmacogenomics encompasses understanding biochemical reactions of 
multiple genes, often in sequence, that occur across the PK and PD spectrum. 
However, as our underlying knowledge of disease pathophysiology and availability 
of targeted therapeutics rapidly evolves, operationalizing pharmacogenomics 
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considerations for a precision medicine workflow requires managing rapidly 
advancing knowledge and rapidly accumulating data points. This perspective oper-
ationalizes both ascertainment of additional pharmacogenomics knowledge from 
real-world populations and the incorporation of actionable pharmacogenetics 
information into clinical workflows. To guide the reader as they operationalize a 
translational informatics workflow for their selected precision medicine applica-
tion, we have outlined key milestones below within ‘A Translational Informatics 
Workflow for Pharmacogenomics as Informed by the Learning Healthcare System’ 
(Fig. 5.1). We present this workflow to the reader through the lens of a learning 
healthcare system [33–35], where insights gleaned from translational activities 
inform new precision medicine knowledge [36].

Being informed by the learning healthcare systems framework, we see transla-
tional activities being most aptly delineated based on the direction of using data- 
driven insights to create knowledge and impact clinical practice: In reverse translation 
(section “Reverse Translation: Advancing Pharmacogenomics Knowledge with Real 
World Data”), described first, we use real-world data to create or enhance precision 
medicine knowledge. The informaticist synthesizes real world data in a systematic 
fashion so as to advance our underlying biological understanding of precision medi-
cine. At present, such an orientation manifests primarily as research activities, but 
perhaps might also encompass quality improvement processes. A productive reverse 
translation workflow sets the stage for future treatment personalization, or tailoring 
therapeutic recommendations to a single patient. In the following section we describe 
forward translation (section “Forward Translation: Augmenting Clinical Practice 
with Actionable Pharmacogenomics Knowledge”). Within a forward translational 
workflow, the informaticist harmonizes evidence in such a way as to augment preci-
sion medicine decision making in real-world clinical practice.

Regardless of the translational workflow, the informaticist works closely with 
medical and pharmacology subject matter experts, sub-specialized clinical 
 informaticists [37–39], and clinical pharmacologists to ensure the right drug is 
delivered to the right patient at the right dose. Informaticists are uniquely positioned 
to empower precision medicine utilizing quantitative skills to synthesize knowledge 
and help guide nuanced personalized medicine decision making. Within these sec-
tions, we outline foundational components of a precision medicine workflow for 
pharmacogenomics informed by the learning healthcare system.

 Reverse Translation: Advancing Pharmacogenomics 
Knowledge with Real World Data

With the genomic revolution brought about by the Human Genome Project [40], the 
lightning advances in computing throughout the past three decades, and large-scale 
adoption of EHRs, we now have unparalleled opportunity to advance pharmacoge-
nomics knowledge through reverse translational research.
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 Sequencing Technologies and Data Pre-processing

The process of sequencing DNA encompasses the precise identification and order-
ing of nucleotides contained within the DNA molecule. Early efforts to sequence 
DNA began in the 1970s when Fred Sanger and team developed a sequencing 
technique they termed “plus and minus system” [41]. This technique utilized poly-
acrylamide gel electrophoresis (known as PAGE) to amplify DNA fragments 
through polymerase chain reaction (PCR). With Sanger and colleagues’ enhanced 
chain- termination or dideoxy technique [42, 43], the entirety of a single DNA mol-
ecule could be sequenced (~700  bp). Over the ensuing four decades, Sanger 
sequencing methodologies were further refined and high-throughput pipelines 
were developed. While Sanger sequencing remains a cost-effective technique for 
single gene or single mutation evaluation [44], it is far too costly for whole genome 
sequencing of large clinic-based populations, such as biobanks. Next generation 
sequencing (NGS) technologies have largely supplanted traditional Sanger 
approaches as a cost-effective, scalable sequencing technology in whole-genome 
discovery research.

Over the past decade, NGS technology advancements have dramatically reduced 
the cost and improved the speed of DNA and cDNA sequencing. In general, NGS 
enables the massive parallelization of DNA sequencing, or high-throughput 
sequencing where millions of DNA molecules can be rapidly sequenced simultane-
ously. NGS sequencing relies on finely-controlled ‘cycle sequencing’ reactions in 
which cycles of template denaturation, primer annealing and primer extension are 
performed. The types of NGS technology can be broadly categorized based on their 
applications for either de novo discovery or targeted resequencing [44]: First, in de 
novo sequencing, randomly fragmented DNA is cloned into a high-copy-number 
plasmid, which is then used to transform bacteria—this approach is known by the 
neologism ‘shotgun sequencing’ due to the many random fragments produced. 
Second, for targeted resequencing, PCR amplification is carried out with primers 
that flank the target. A primer is selected to contain a sequence known to flank the 
genetic region of interest. The output of both approaches is an amplified template, 
either as many ‘clonal’ copies or as many PCR amplicons present within a single 
reaction volume. Regardless of the NGS approach, bioinformatics methodologies 
are critical to assembling sensible data from these measurements. Overtime, NGS-
based studies have broadened to encompass genome wide association studies 
(GWAS). NGS GWAS studies rely on known linkage disequilibrium (LD) regions 
to infer millions of single nucleotide polymorphisms (SNPs) (variation in base 
pairs) based on actual measurements of hundreds of thousands of DNA base pairs. 
Some of the earliest examples of GWAS applications in pharmacogenomics discov-
ery include CYP2D6 for warfarin [45–48].

A typical workflow for an NGS assay involves: (1) the isolation of DNA, (2) the 
capture of DNA molecules, (3) sequencing, and (4) bioinformatics analysis of the 
data. Being perhaps both a humbling revelation and tremendous opportunity, NGS 
sequencing technologies have so rapidly matured that bioinformatics is now com-
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monly viewed as the single biggest hurdle to applying NGS techniques in real time. 
The US Centers for Disease Control and Prevention (CDC) assembled a national 
working group, termed Next-generation sequencing: Standardization of Clinical 
Testing (Nex-StoCT) [49]. The goal of this initiative was to define platform- 
independent guidelines for using NGS in the clinical field [50–53]. These published 
guidelines detail key quality metrics that should be evaluated when developing and 
implementing a clinical NGS workflow. To ensure a robust perspective of rare and 
common variants, genetic epidemiologists have developed foundational quality 
control measurements [54]. Fine-mapping statistical approaches [55] are utilized to 
enhance GWAS tagging-SNP signals. In clinical trial and epidemiologic inquiry 
Sanger sequencing is held to be a gold standard for technical validation of GWAS 
signals generated using NGS technology [56]. In particular, Sanger biochemistry 
coupled with electrophoretic separation is the best option for continuous read-length 
and accuracy in DNA sequencing [44], which allows the investigator to understand 
the exact base pairs contained within a gene region of interest. To support NGS 
technical validation, commercial vendors have established NGS-to-capillary elec-
trophoresis (CE) sequencing pipelines.

DNA sequencing techniques have revolutionized our ability to study an indi-
vidual’s genome in real time and enable a broader analysis approach to linking 
genomic alterations to specific diseases. However, next generation GWAS signals 
are not without limitations and caveats. Often NGS-driven GWAS studies require 
unsustainably sized sample cohorts to overcome Bonferroni-based corrections 
below the conservative p  =  0.5e−8 threshold of statistical significance [57]. 
Furthermore, navigating annotations of common and rare allele frequencies can be 
fraught with limitations based on inadequate representation of racial/ethnic minor-
ity populations within study cohorts [58]—pharmacogenomic recommendations, 
such as warfarin [59], often poorly represent minority populations, potentially due 
to under-representation in research studies. Finally, clinical significance is poorly 
extrapolated from many variant annotations due to limitations in underlying scien-
tific evidence [60]. The aforementioned limitations are both a hurdle and an oppor-
tunity for informaticists to lead efforts for equitable pharmacogenomics for all 
populations, but particularly historically under-represented minorities.

 Publicly Available Data Sources and Resources

The genomics community, spanning across government, academia, and industry, 
has done an excellent job of establishing data sources and resources for analyzing, 
interpreting, and sharing genomic data. There are numerous different types of 
genetic alterations, including SNPs, insertions and deletions (InDels), structural 
variants (SV), and various resources for these types of variants. SNPs are single- 
base pair substitutions, and of interest a single individual has a SNP every ~500 bp 
within their genome [61, 62]. There are more than 14 million SNPs that have been 
discovered, and they are the most studied type of polymorphism in the human 
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genome. Of interest, the majority of these SNPs are not coded into RNA, and many 
have unknown biological function. There are numerous knowledge bases for depos-
iting SNP data and extracting SNP annotations. These include, but are not limited 
to: The single nucleotide polymorphism database (dbSNP) [63], ClinVar [64], 
Exome Aggregation Consortium (ExAC) [65], the genome aggregation database 
(gnomAD) [66] (http://gnomad.broadinstitute.org), and the clinical pharmacogenet-
ics Implementation Consortium (CPIC) [67].

 Translational Informatics Study Design

The selection of machine learning algorithms and statistical approaches dramati-
cally affect the ability of informaticists to detect signals within data and appropri-
ately place results within the perspective of existing knowledge. The type of data 
elements required for analysis, including EHR data, biological data, and environ-
mental factors, have signal-to-noise issues determined by the data measurement and 
capture techniques. Different types of data elements, for example biomarker versus 
EHR data, require specialized analysis approaches, so that a single modeling pro-
cess capable of translating data into knowledge across all diseases and data is not 
realistic. Therefore, it is not surprising the full potential of pharmacogenomics can 
only be realized with the aid of advanced computational tools and resources, care-
fully selected for appropriateness in a particular application. Ensuring selection of 
appropriate machine learning algorithms and statistical methodologies for a particu-
lar task is a critical study design contribution of an informaticist. Very few other 
members of scientific or clinical teams, if any, will have training of sufficient breadth 
and depth to navigate these nuanced considerations spanning data science and bio-
logical measurement. It is the role of informaticists to ensure robust components 
within analytical engines designed for translational activities.

Technological advancements in genomics have created massive data resources, 
including several of the knowledgebases mentioned above, that require the support 
of bioinformaticists. It is essential that tools are developed that enable clinical 
researchers access to these data in a meaningful way, as it is not possible to manu-
ally integrate all resources. As mentioned above, data capture techniques introduce 
a potential noise-to-signal issue, and often important considerations for a rigorous 
study design are not considered. The open source notebook tool by Project Jupyter 
(https://jupyter.org/) can be used to ensure pipeline transparency, code interpretabil-
ity, integrity of results, and potentially for publishing workflows [68]. Jupyter 
Notebooks deploy Python, R, and SAS code and store ascertained results within the 
notebook. Data science pipelines have various dependencies, package version con-
trol of these dependencies is critical to ensuring pipeline integrity and result valid-
ity. Open source package and environment management tools such as Anaconda 
(https://www.anaconda.com/) and Conda (https://conda.io/) ensure stable computa-
tional pipelines with precise version and dependency control. These tools run on 
most operating systems including macOS, Windows, and Linux, with opportunity 
for cloud deployments to enhance scalability.
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As institutions continue to improve their meaningful use of EHR data, it is essen-
tial to develop high quality data entry, data standards, data governance and sharing 
plan, and security standards. Reproducibility is essential for driving better discovery 
of pharmacogenomic variants linked to adverse events. As the approaches for com-
putable phenotypes and predictive modeling continue to evolve, the impact of infor-
matics study design takes an even more prominent position in secondary research 
using EHR data. Even within a single institution’s EHR, the specific source of EHR 
data fields (e.g. clinical notes vs. prescribed medications) have the potential to dra-
matically affect the perspective of the precision medicine phenotype ascertained 
[69]. Again, selection of appropriate machine learning algorithms and statistical 
approaches will dramatically affect detection of EHR-based signals and ascertained 
knowledge.

As new discoveries transition from de-identified research findings into precision 
medicine knowledge, and then evidence that is actionable at the clinical bedside, the 
law requires that clinically informative measurements be generated using clinically 
validated laboratory technology. This entails in practice using measurements ascer-
tained through CLIA-certified clinical laboratory tests [70] generated within a lab 
CLIA-certified to run that particular test. Outside the realm of genetic and genomic 
tests that inform clinical decisions, for sequencing measurements used for research, 
informaticists bear great responsibility for generating sequencing results of the best 
possible quality for the research design needs at hand, by using robust analytical 
engines and appropriate informatics best practices.

 Agnostic Signal Detection and Dimensionality Reduction

A difficult challenge in deploying supervised methods to study pharmacogenomics, 
or other pharmaco-‘omics’ big data projects, is the ability to quickly and accurately 
develop models that represent the inputted labeled features. While it might be 
empirically justifiable to deploy a single machine learning algorithm (e.g., random 
forests, linear discriminant analysis, or relief- based methods) when modeling a 
pharmacogenomics question, it is important to recognize that any single modeling 
approach is unlikely to capture all of the biologically-relevant variation, even within 
a single pharmacogenomics study. To streamline model identification and feature 
selection, research software has been developed to quasi-automate development of 
machine learning models [71, 72]. Such pipelines simultaneously i) recommend 
optimal machine learning models that best represent the data amongst a pre-loaded 
suite of algorithms, and then ii) selects features contained within the model(s) based 
on their relative importance to the model pipeline. Enhancing ascertained models 
with tandem perspectives of individual feature accuracy and rank/fit/importance 
hold opportunity to guide selection of biologically-relevant feature thresholds in 
agnostic pharmaco-‘omic’ profiling endeavors [73]. In supervised learning more 
broadly, regardless of the analytical engine, selected methods must be reasonably 
computationally efficient—so as to successfully complete the desired analytical 
tasks—, highly accurate, sensitive to complex or redundant signals [74]—so as to 
retain these informative features for downstream modeling—, and finally, output 
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results that are readily human interpritable. Properly selecting machine learning, 
deep learning, or statistical methods to most appropriately address the scientific 
question and generate biologically-informative insights is paramount to robust 
informatics study/workflow design for pharmacogenomics inquiry.

Dimensionality reduction, the process of reducing the number of random vari-
ables and data features, is also an important approach in pharmacogenomic data 
modeling endeavors. In particular, there are three main types of feature-related terms 
and concepts that are essential for understanding dimensionality reduction in either 
hypothesis-testing or hypothesis-generating endeavors: (1) feature extraction, (2) 
feature transformation, and (3) feature selection. Often data features can be in a for-
mat that is not analysis ready, and require complex extraction, called feature extrac-
tion. Application of feature extraction methods often reduce the number of features 
available for analysis (i.e. feature reduction), while enhancing the meaningfulness of 
those extracted. Feature transformation, on the other hand, is the process of inputting 
raw data and transforming them into entirely new feature matrices. Finally feature 
selection is the process in which data features are selected based on relevance to 
answering the question at hand, guided by an analytical engine. It is important to note 
that when navigating deployment of supervised vs. unsupervised algorithms/pipe-
lines there are varying considerations when performing feature selection and devel-
oping model predictions [75]. Research also suggests that deep learning pipelines 
outfitted with autoencoders might be suited for dimensionality reduction, due to their 
purported capability for generating human-interpretable feature matrices [76].

 Signal Tuning and Validation

A powerful and important deliverable from machine learning efforts, is the ability 
to do predictive modeling, or rather the ability to develop a model using test and 
training data that is capable of then “predicting” the outcome of blinded samples 
[77]. Oftentimes the challenge with developing these predictive models pharma-
cogenomics studies/workflows is optimizing, or tuning, the machine learning algo-
rithm due to having too few observations with labeled features. There are several 
issues related to algorithm tuning, including overfitting, and underfitting, when opti-
mizing parameters. Overfitting happens when the model leared from training data 
matches the training data but does not provide an accurate representation of the vali-
dation data, (alternatively, the concepts learned from the training data to not apply 
to the validation data). On the other hand, underfitting occurs when a model cannot 
appropriately utilize the training and test data, and therefore cannot be applied to the 
validation data (but does not perform well in training data either). An important 
principle dictates that a validation dataset should always be used only for validating 
a machine learning algorithm, and should be withheld from the model (test and 
training data) until the model is optimized.1

1 Editors’ note: for more details on machine learning algorithm and model selection, error estima-
tion and avoiding over- and under-fitting the reader can refer to  Chap. 8.

5 Fundamentals of Drug Metabolism and Pharmacogenomics Within a Learning…



70

 Signal Augmentation and a Priori Knowledge

The pharmacogenomics knowledgebase, termed PharmGKB [78], is a publicly 
available resource that includes dosing guidelines, potentially clinically actionable 
gene-drug associations and genotype-phenotype information. The PharmGKB is a 
platform which collects, curates and disseminates knowledge about genetic variation 
and drug response (https://www.pharmgkb.org/about). The PharmGKB consists of 
(as of October 2018): 645 drugs with variant annotations, 132 pathways implicated 
in pharmacogenomics, 100 dosing guidelines, and 509 annotated drug labels.

The PharmGKB consists of a partnership between CPIC [67], Pharmacogenomics 
Research Network (PGRN) [27], PrecisionFDA [79], and that Pharmacogenomics 
Clinical Annotation Tool, called PharmCat [80]. PharmGKB has submitted 396 
entries to ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/submitters/500295/), a 
knowledgebase that aggregates information about genomic variation and relation-
ship to human health. ClinVar [64] is publicly available and facilitates access to and 
the relationships between human variation and observed health status, along with 
the history of interpretation. This resource facilitates all levels of data submissions, 
from the simple representations of an allele and its interpretation, to detailed reports 
from multiple structure observational studies.

The Online Mendelian Inheritance in Man (OMIM) knowledgebase is also rele-
vant to pharmacogenomics, as it is a comprehensive resource of genes and genetic 
phenotypes [81]. The OMIM resource sites 6267 phenotypes for which a molecular 
basis is known, and 3967 genes with phenotype-causing mutations (https://www.
omim.org/statistics/geneMap).

General knowledgebase resources that might be of interest to the informati-
cist for annotating potentially novel variant findings, include ReactomeFIViz 
[82], KEGG [83], STRING [84], and UniProt [85]—these resources are focused 
on protein level data and connecting signaling molecules together. For example, 
Wilke et al. [86] have proposed a data analysis approach to large-scale pharma-
cogenomics studies that relies on a pathway-based step that informs subsequent 
downstream analytics and variation interpretation. These types of approaches are 
gaining momentum and have led to novel discoveries, such as Grados et al., [87] 
which utilized a pathway approach to identify several potential pharmacological 
targets for glutamate drugs. Gene ontologies (GO) [88], are also helping to drive 
new approaches for associating genotypes with biological implication. The Gene 
Ontology Consortium [89] maintains a knowledge base (http://www.geneontol-
ogy.org) that defines concepts and classes descriptive of gene functions, and the 
relationships between these concepts. There are three different types of classifiers: 
molecular function, cellular component, and biological process. Ontologies can 
increase knowledge integration by providing structured and standardized biomedi-
cal knowledge [90]. To inform a cheminformatics perspective, DrugBank [91] com-
bines drug data with drug target information and a Comparative Toxicogenomics 
Database (CTD) [92] which contains curated relations between chemicals, genes 
and diseases to create a chemical-gene-disease network for predicting novel rela-
tions [90].
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 Forward Translation: Augmenting Clinical Practice 
with Actionable Pharmacogenomics Knowledge

In forward translation, the informaticist harmonizes evidence in such a way as to 
augment precision medicine decision making in real-world clinical practice. This 
might encompass fine-tuning of models that help navigate potentially ambiguous or 
conflicting precision medicine recommendations. It also involves working closely 
with subject matter medical experts and providers, clinical informaticists and clini-
cal pharmacologists, to ensure the right drug is delivered at the right dose to the 
right patient. Close collaborations between groups of experts will only become 
more critical in the precision medicine era—where informaticists are uniquely 
empowered to utilize quantitative skills to synthesize knowledge and nuanced per-
sonalized medicine decisions and considerations. A learning healthcare system that 
is capable of delivering precision medicine has to incorporate genomic data into a 
knowledge-generating infrastructure [93]. Ultimately, patient care has to drive and 
inform research, and research must drive and inform care [36]. The use of EHR 
systems has been essential in helping to create the foundation for these concepts and 
drive precision medicine knowledge.

 “N of 1” and Comparable Populations

A major barrier for implementing pharmacogenomic testing at the bedside is the 
translation of a genomic variant into an actionable event when prescribing drugs. 
CPIC is focused on alleviating some of this burden by providing publicly available, 
peer-reviewed, evidence-based, updatable, and detailed gene and drug clinical prac-
tice guidelines (https://cpicpgx.org). Providing these types of guidelines is only one 
key aspect for implementing clinical use of pharmacogenomics data, however.

 Signal Robustness and Sequencing Technology Considerations

As technologies continue to fuel data-driven discovery approaches, it is difficult to 
translate these types of tests into something actionable [94, 95]. Often clinicians and 
researchers struggle to decide whether a variant is clinically actionable, as is evident 
in ClinVar and other resources where institutions deposit genomic findings. 
Traditionally, pharmacogenomics studies rely on assays that focus on known gene 
candidates and common SNPs. Sanger single molecule sequencing, is ideal for tech-
nical validation for these types of variants. For example, SNP variants in thiopurine 
S-methylatransferease (TPMT), a cytosolic metabolizing enzyme, can cause severe 
hematopoietic toxicities. Several common SNPs are known in this enzyme and are 
often screened for in cancer subjects receiving thiopurine drugs. Fortunately, the 

5 Fundamentals of Drug Metabolism and Pharmacogenomics Within a Learning…

https://cpicpgx.org


72

methodologies and analysis approaches for univariate single candidate gene and 
SNPs-phenotype association are simple and easy to interpret allowing for a con-
trolled probability of type I error rate (i.e., false positives), small sample size and 
low costs (when appropriate). However, these approaches have suboptimal ability to 
discover more genetically complex traits, since they are based on a monogenic trait 
paradigm.

 Knowledge Management and Representation

Present day management of genomics data in a meaningful way within a clinic-
based EHR represents a major challenge. Often pharmacogenomic results are 
returned to providers via scanned PDFs and lack granular data entry. The results are 
viewed as static and in non-computational readable formats, preventing scalability. 
Furthermore, the lack of clinical decision support tools within an EHR system can 
dramatically influence the use of these data at the bedside. It is essential that clinical 
providers have appropriate training on how best to prioritize and utilize pharmacoge-
nomic results, and that computerized decision support provides timely evidence- 
driven guidance (and education-on-demand) at the point of need. Collectively, an 
effective implementation approach that involves a multi- disciplinary team of infor-
maticist methodologists, clinical informaticists, medical subject experts, clinical 
geneticists, and clinical pharmacologists are suggested to create a high-quality and 
sustainable solution capable of realizing the impact of pharmacogenomic results.

Software tools such as ANNOVAR [96] allow for functional annotation of 
genetic variants. However, it is important to note our understanding of a specific 
genomic variant can change with time, commonly from technical changes in human 
genome reference builds intended to enhance reference accuracy and coverage of 
protein-coding genes [97, 98] or less frequently due to changes in our scientific 
understanding of a gene coding capabilities [99, 100].

Frequently, high-throughput genomic projects generate numerous variants of 
unknown significance (VUS); however, these variants can be described as benign or 
pathogenetic with additional research, and highlight the importance of an effective 
pharmacogenomic data management system needing a robust re-analysis technique. 
There is no hard rule about how often and how to run these types of re-analysis and 
how to best represent the data. There are several commercial platforms for this type 
of work, including ActX (https://www.actx.com/info/about), but a single interoper-
able system is not yet available.

 Computational Tools to Navigate Signals

Implementation science, the movement of evidence-based practice into routine clin-
ical usage, is becoming a key focus for pharmacogenomics [101]. There is often a 
major gap between incorporating translational research findings into clinical care. 
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Clinical decision support (CDS) tools need to increase clinical workflow efficien-
cies, avoiding alert fatigue, and preventing liabilities. They have the potential to 
enhance efficiency by influencing (1) when a pharmacogenomics test is ordered, (2) 
how the results are interpreted and used, and (3) the use of the genomics data across 
the lifespan of a patient. It is essential that providers receive appropriate educational 
resources for pharmacogenomics as this cannot be assumed to be part of the tradi-
tional training background of clinicians. It is also essential that patients are provided 
with educational materials and have access to appropriate clinical resources, such as 
genetic counselors, who are responsible for interacting with patients to help them 
understand their genetic findings and impact.

The NHGRI and NCI-sponsored Implementing GeNomics In Practice (IGNITE) 
Network [102] was established in 2013 for development, investigation, and dissemi-
nation of genomic medicine practice models that integrate genomic data into EHRs. 
The complimentary Clinical Sequencing Evidence-Generating Research (CSER) 
Consortium [103], also supported by NHGRI and NCI, was recently launched with 
similar goals, albeit focused on serving historically underrepresented or under-
served populations. Both of these initiatives study a spectrum of disease phenotypes 
within a variety of healthcare settings. Beyond developing foundational methods for 
integrate genomic data, or implementing CPIC recommendations into clinical prac-
tice, these initiatives aim to identify real-world barriers to integrating genomic 
within a healthcare system to populate a knowledgebase with utility to inform preci-
sion medicine clinical decision recommendations [93].

 Appropriate Conveyance of Knowledge

It is important to note, incorporation of pharmacogenomic-guided decision making 
into instutional EHRs workflows have been deliberately metered, with only a few 
premiere healthcare organizations, including Mayo Clinic, having implemented 
point-of-care programs. This metered uptake has been partially attributed to gaps in 
outcomes research that might inform needed best practice standards [104]. However, 
numerous other challenges exist, including development of secure cloud resources-
connected to the local EHR, optimization of clinical workflows, standardization of 
processing and use of data procedures, education for providers, and evidence-based 
studies that support the clinical and financial benefit of altering care based on 
genomics [105]. Although CPIC provides suggestions for altered clinical dosing 
recommendations based on genotypes (e.g. attenuated dosing of compound based 
on a genomic variant), a consensus for implementing these practices at the bedside 
across institutions remains to be developed. In addition “alert fatigue” is a well-
documented issue for providers [106] which likely affects delivery of pharmacoge-
nomics via clinical alerts within the EHR. Further, it is also important to recognize 
the “evolving” nature of data, and often times a variant may not be actionable at the 
one time, but perhaps it might be deemed to be clinically actionable a few years 
later. The rhetorical question quickly becomes, ‘how does a precision medicine 
workflow adapt to changes in foundational knowledge?’ Finally, successful 
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implementation of pharmacogenomics at the bedside is absolutely dependent on 
disseminating pharmacogenomics lab results in a meaningful way, particularly in a 
format that is readily interpretable by the provider [105].

 Future Directions

At the writing of this chapter, the U.S. Food and Drug Administration’s Center for 
Drug Evaluation & Research and Center for Biologics Evaluation & Research 
Office have launched an audacious challenge to generate informative knowledge 
from ‘real world data’. Within this ‘Real World Knowledge’ [107] program, data 
from the ‘real world’ (e.g. insitutional EHRs, patient wearbles, and other emerging 
data modalities) will be used to streamline drug approvals and inform future thera-
peutic respositioning endeavors. This grand challenge places translational informa-
ticians at the foci of drug development, including ascertainment of pharmacogenomic 
knowledge for traditional small molecule drugs and within the emerging class of 
biologic modalities—Biologics and designer therapies hold potential to disrupt the 
current understanding of pharmacogenomics. Within this framework the role of 
informatics in pharmacogenomics is simultaneously generating real world evidence 
from existing clinical practice data, and computationally overcoming knowledge 
gaps to generate real world knowledge.

Overcoming gaps in our knowledge of pharmacogenomics and computationally 
investigating counterfactual situations is a critical endeavor, and uniquely places 
informatics to advance precision medicine. Implementation of pharmacogenomics 
rules is amongst the lowest-hanging fruit in approaching precision medicine in the 
clinic. Spanning our existing pharmacogenomics knowledge to tailor it for special 
populations and predict potential drug-drug interactions in therapeutic combina-
tions that have never been truly evaluated in the clinic are important areas for inquiry 
with the potential to enhance medication safety.

 Summary and Conclusion

Prescribing the right drug to the right patient by tailoring clinical treatment deci-
sions informed by an individual patient genome within the context of current knowl-
edge is a primary goal of pharmacogenomics. In broadening our perspective of 
pharmacogenomics to encompass precision medicine, pharmacogenomics also 
seeks to maximize opportunity for drug efficacy and minimizes risk of potential 
ADRs or DDIs, all based on a patient’s unique molecular composition.

To foster the proliferation of precision medicine, we as informaticists must press 
to expand upon pharmacogenomics’ foundational focus on heritable traits, towards 
encompassing the complexity of a patient’s unique molecular make-up. We must 
develop rigorous quantitative engines inclusive of modifiable molecular processes 
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that affect therapeutic availability, delivery, and physiologic control. Further, infor-
maticists hold important professional responsibilities, within broad scientific and 
caregiving institutional endeavors, to ensure both accuracy and equitability in accru-
ing additional pharmacogenomics knowledge and actionability within the clinical 
setting. Informaticists must recognize that we hold special scientific roles with 
potential to profoundly affect the quality and scope of newly discovered pharma-
cogenomic knowledge. Most pronounced, informaticists have significant opportu-
nities to lead, or significantly contribute to, broader efforts that ensure health equity 
surrounding pharmacogenomics knowledge. Finally, informaticists must ensure 
that pharmacogenomics be utilized to reduce opportunity for health and healthcare 
disparities, particularly amongst traditionally underserved populations of color. 
This might be accomplished by both ensuring that these minority populations are 
appropriately sampled (with sufficient statistical power) within local pharmacoge-
nomic knowledgebases, and remaining vigilant to safeguard against potentially 
endangering these same patients from inappropriate EHR-based recommendations 
that either lack appropriate specificity or where the underlying pharmacogenomic 
knowledge was obtained from non-representative training data.
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Chapter 6
The Growing Medication Problem: 
Perspective from Industry

Jason Ross

 Introduction

According to the IMS Institute for Healthcare Informatics, over four billion pre-
scriptions are filled each year [1]. While many people experience effective therapy, 
not all drugs are effective for all people. In fact, response rates for many drugs are 
only 50–75% [2]. In addition, adverse drug reactions produce more than 3.5 million 
physician office visits [3] and approximately 1 million emergency department visits 
[4] annually, as well as contributing an estimated $3.5 billion to U.S. healthcare 
costs [5]. These issues are largely thought to be related to a few paradigms in drug 
delivery and development. First, today’s standard of care for prescribing medica-
tions is still largely dependent on a “trial and error” approach. Second, pharmaceuti-
cal companies utilize observed population averages to establish medication 
guidelines, including dosages, disease effectiveness and side effects. Third, our 
genetics play a significant role in the effectiveness of many medications, however, 
very few providers have access to, understand, or use this information effectively 
when making prescription decisions.

In 2014, following the discovery that advances in genomic testing and interpreta-
tion can help to mitigate issues with today’s prescribing practices, leading pharma-
cogenomic experts from Mayo Clinic co-founded OneOme. Their vision was to 
give healthcare providers access to high quality pharmacogenomic solutions to help 
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them make more informed prescription decisions based on an individual’s specific 
genetic makeup, and to make those solutions available to everyone.

 RightMed® Comprehensive Solution

Since 2014, OneOme has been focused on creating and providing the most credible, 
comprehensive pharmacogenomic solution in the world. OneOme identified the 
most relevant medications influenced by genetics for common medical conditions. 
This process led OneOme to develop complex pharmacological and genetic models 
that have the ability to predict drug response for over 250 medications. These mod-
els are the foundation of the RightMed® comprehensive solution, which samples an 
individual’s DNA (obtained by cheek swab), performs genetic testing for 27 differ-
ent genes, and predicts how variants in your genome may impact the medication 
response for all 250 medications, spanning over 30 medical conditions.

 Precision Medicine Information Challenge

One of the largest challenges within precision medicine is making complex scien-
tific information understandable and actionable for healthcare providers. Even in 
the age of precision medicine, many providers have limited genetic training and 
require solutions that aid them in interpretation and clinical action. For pharma-
cogenomics, this involves providing genetic results, explaining how these results 
affect an individual’s response to medication(s), and providing relevant clinical 
action (when possible). OneOme has addressed this challenge in the RightMed 
comprehensive report, through the use of icons, colors, graphics and concise infor-
mation to help providers to quickly identify potential medication issues for a patient. 
In addition to the comprehensive report, OneOme offers additional reports and 
interactive applications that enables providers to tailor the level and amount of 
information presented based on the providers’ medical specialty and patient needs.

Another challenge is that commercial electronic health record (EHR) systems 
dictate most providers’ workflows and access to clinical information. These systems 
are wonderful at offering standardized information and functionality for common, 
well established diagnostic testing; however they often are unable to manage and 
utilize a patient’s genomic information. To overcome this challenge, OneOme has 
developed solutions to integrate with the providers’ EHR. Integration capabilities 
include direct test ordering in the EHR and real-time alerts at the point of prescrib-
ing. This solution creates further value by providing only relevant information about 
the patient, as needed.
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 OneOme Future Plans

Pharmacogenomics is at the forefront of bringing precision medicine into routine 
care and has the potential to impact each and every person utilizing medication ther-
apies. Yet, barriers still remain to adoption, including lack of provider understand-
ing, limited clinical evidence, and problems with workflow integration. To address 
these barriers we need to develop innovative solutions and awareness through pro-
vider education. At OneOme, we continue focusing on all of these barriers through 
the following approaches: (1) Creation of educational events and programs that 
allow providers to experience testing and benefits for themselves; (2) Completion of 
clinical trials to demonstrate clinical utility; (3) Provision of educational materials to 
patients about the issues and benefits of pharmacogenomics; (4) Development of 
technology solutions that provide real-time medication insight to providers within 
existing EHR systems; (5) Building tools to help identify patients who are at higher 
risk of adverse events or poor therapeutic response.

The promise of precision medicine is real and can fundamentally change the 
practice of healthcare in the near future. We need to be ready to understand and 
leverage these rapid advancements so that potential patient benefits become reality.
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Chapter 7
Risk Stratification and Prognosis Using 
Predictive Modelling and Big Data 
Approaches

Shyam Visweswaran and Gregory F. Cooper

 Introduction to Predictive Models in Medicine

Prediction is critical to many activities in clinical medicine, such as assessing risk 
of developing disease in the future (risk assessment and stratification), determining 
the presence or absence of disease at the current time (diagnosis), forecasting the 
likely course of disease (prognosis), and predicting treatment response (therapeu-
tics) [1]. In addition to clinical medicine, prediction plays a critical role in public 
health and in biomedical research. Predictive models that are derived from data can 
improve predictions and help guide decision-making in clinical medicine and in 
public health. Often predictive models are probabilistic models that compute the 
prediction as a probability, and such models are typically estimated from data using 
statistical and, more recently, machine-learning methods.

The better the predictive models, the better the decisions and the ensuing out-
comes are likely to be for the individual and for the public at large. Even small 
improvements in predictive performance can have meaningful impact on individual 
and public health outcomes and costs. The burgeoning field of precision and person-
alized medicine aims to tailor risk assessment, diagnosis, prognosis and therapeu-
tics to the characteristics of individuals that go beyond those measured during 
routine clinical care. The goal is to deliver the right treatment at the right time to the 
right patient based on complex patient characteristics that may be obtained from a 
range of molecular, clinical, and environmental measurements.

Traditionally, predictive models in medicine have been developed from data 
such as clinical findings, laboratory test results, and findings from clinical imag-
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ing  studies. Recent advances in two areas are making available big biomedical 
data at an unprecedented scale for use in clinical medicine, public health, and 
research. Electronic health records (EHRs) are widespread and are capturing ever 
more clinical data. EHR data coupled with administrative claims data are increas-
ingly used for characterization of disease progression and outcomes, comparative 
effectiveness of treatments, and predictive and prognostic modeling. Such obser-
vational healthcare data sets contain data on millions to tens of millions of patients 
and hold the promise of enabling research into less frequent diseases and out-
comes. Another advance is the burgeoning use of low cost omics technologies, 
which is producing a rich base of high-throughput molecular data, such as genomic 
variant, gene expression, proteomic, and metabolomic data. Omics data in con-
junction with EHR data hold the promise of better prediction of diseases before 
their occurrence, increased accuracy of diagnosis of complex diseases, and more 
precisely targeted therapies.

 Examples of Applications

Predictive models have applications in the domains of clinical practice, in public 
health, and in biomedical research. Table  7.1 gives illustrative examples of the 
application of predictive models for risk assessment across all three domains.

In clinical medicine, both predictive models and clinical decision rules are useful 
in assisting clinicians with decision making. Predictive models generate probabili-
ties but do not recommend actions and the interpretation of the probabilities is left 
to the clinician. Clinical decision rules, in addition, suggest actions based on prob-
abilities generated by a predictive model. Risk assessment models are useful in 
evaluating risk for developing disease that informs the initiation of preventive mea-
sures. An example of a risk assessment model is the Framingham Risk Score that 
predicts the 10-year risk of developing coronary heart disease from age, total and 
HDL cholesterol, blood pressure, diabetes, and smoking status [2]. This score is 
used clinically to identify those at high risk and initiate life style changes and cho-
lesterol lowering pharmacotherapy.

Table 7.1 Illustrative examples of prediction that guide decision-making

Domain Prediction task Decision to make

Clinical 
medicine

Will an individual have a heart 
attack in the coming year?

Prescribe aspirin or not

Public health How many residents of a county 
will have a heart attack in a year?

Determine the number of paramedics to be 
trained to perform electrocardiograms in 
ambulances

Biomedical 
research

How many heart attacks are 
likely to occur in the control arm 
of a clinical trial?

Enroll fewer or more participants
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Predictive models are also useful for deciding whether or not to perform diagnos-
tic testing. When the probability of the presence of disease is relatively high, diag-
nostic testing is indicated to confirm or rule out disease, while if the probability is 
low, no immediate testing is indicated. For example, sepsis is a relatively rare but a 
life-threatening cause of infection, and the definitive diagnostic test is a blood cul-
ture to detect bacteremia (presence of viable bacteria in circulating blood). A clini-
cal decision rule has been described to selectively perform blood cultures in 
Emergency Department patients who are predicted to be at high risk of bacteremia. 
Features of the history, co-existing illnesses, physical examination, and laboratory 
testing were used to create a clinical decision rule that consists of major and minor 
criteria, and blood culture is indicated if at least one major criterion or two minor 
criteria are present [3, 4].

Furthermore, predictive models are useful for selecting treatment such that the 
anticipated benefit exceeds the risk of harm. For example, in patients with atrial 
fibrillation, antithrombotic agents are effective in reducing the risk of stroke while 
concurrently increasing the risk of serious bleeding. Predictive models that estimate 
a patient’s stroke risk and bleeding risk are useful in identifying the appropriate 
antithrombotic agent for which the reduction in the risk of stroke most strongly 
outweighs the increased risk of bleeding [5].

In public health, predictive models are useful in surveillance and forecasting of 
epidemics like influenza. Traditional surveillance that is provided, for example, by 
the Centers for Disease Control and Prevention (CDC) relies on clinical findings, 
virology laboratory results, hospital admissions, and mortality data. Newer digital 
surveillance employs sources such as over-the-counter retail sales of medications, 
social network activity, and internet search engine queries [6]. Such surveillance 
produces forecasts that assist health officials to inform public health actions and 
allocate resources.

In biomedical research, predictive models may be useful in selection and strati-
fication of participants in terms of baseline as well as predicted characteristics for a 
study such as a clinical trial. This allows enrollment of more refined subgroups and 
improves statistical analyses. For example, a trial in traumatic brain injury may 
exclude patients with high likelihood of a poor outcome. A prognostic model that 
predicts 6-month mortality in traumatic brain injury can be used to select patients 
who have a small probability of mortality [7].

 Prognostic Versus Predictive Factors

Some authors in the biomedical literature differentiate between prognostic and pre-
dictive factors or biomarkers. A prognostic factor is defined as a clinical or biologi-
cal characteristic that is associated with a clinical outcome such as development or 
progression of disease, irrespective of the treatment. A predictive factor is defined 
as a characteristic that is associated specifically with response or lack of response to 
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a particular therapy [8, 9]. For example, a prognostic factor for primary breast can-
cer is any measurement available at the time of diagnosis or surgery that is associ-
ated with disease-free or overall survival in the absence of systemic adjuvant 
therapy, while a predictive factor is one that is associated with response or lack of 
response to systemic adjuvant therapy [8]. In this framework, a prognostic factor is 
predictive of a clinical outcome and a predictive factor is predictive of differences 
in response to a therapy. However, in this chapter, the terms prognostic and predic-
tive are considered to be synonymous and denote the ability of a factor to predict 
outcomes.

 Workflow of Development and Validation of Predictive Models

The development of predictive models in medicine consists of two phases, namely, 
derivation (or training) and validation (or external validation) [10, 11]. The work-
flow in the two phases is shown in Fig. 7.1. The derivation phase consists of collec-
tion of training or derivation data, preprocessing of the data that includes handling 
missing values and feature selection, building a multivariable model, and perform-
ing internal validation to assess the model’s predictive performance for discrimina-
tion and calibration. Internal validation is performed by splitting the data into 
training and test, by cross-fold validation or by leave-one-out validation. To perform 
cross-fold validation, data is partitioned into several equal parts; all parts except one 
are combined and the model is derived from it and evaluated on the left out part; this 
process is performed once for each part.

Training or derivation
data set

Preprocessing
including feature

selection

Model building

Internal validation

Model

Validation data set

Adjustment

Updated model

Derivation ValidationFig. 7.1 Workflow of 
development of clinical 
predictive models. The two 
phases are derivation 
followed by validation. 
(Adapted from Fig. 1 in 
Ref. [10])
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In the external validation phase, the predictive performance of the model is eval-
uated on data that is obtained independently of the derivation data. External valida-
tion is needed to assess generalizability of the model, such as temporal generalizability 
across data from different time periods, geographical generalizability across data 
obtained from different physical locations, and spectrum generalizability across 
data that possess differing disease severity or varying prevalence of the outcome. 
When external validation suggests that model performance needs to be improved, 
the model may have to be rebuilt or updated using the validation data. If the model 
is updated, the new model should be assessed for external validity on data that is 
obtained independently of the derivation and validation data before it is considered 
for deployment.

 Emerging Informatics Methods

Challenges abound in the development of predictive models. This chapter focusses 
on four challenges and new approaches to surmount them. A critical challenge in 
the developing predictive models from big data is dimensionality reduction, which 
is the process of reducing the number of features in the data. Another challenge is 
the development of models that can not only adequately discriminate between indi-
viduals who will have an outcome and those who will not but also possess adequate 
calibration to predict accurately the actual risk of outcome [12]. For example, the 
European System for Cardiac Operative Risk Evaluation Score (EuroSCORE), a 
model to predict mortality from cardiac surgery, showed excellent discrimination 
but had poor calibration because it overestimated the risk of mortality in elderly 
patients (e.g., the model predicted mortality risk of 15% when the actual risk of 
dying after surgery was 8.8%) [13]. An updated version of the score called 
EuroSCORE II was developed to improve calibration [14]. A third challenge is 
developing models that perform well not only on the population as a whole but also 
perform well in the individual. Personalized modeling approaches can produce high 
performing and simpler models that are tailored to the individual. Finally, explana-
tions for predictions produced by predictive models are necessary for real- world 
deployment.

 Dimensionality Reduction

Two main approaches to dimensionality reduction are feature selection and fea-
ture extraction. Feature selection is the process of selecting a subset of the original 
set of features, to obtain a smaller subset, and feature extraction is the process of 
creating a new, smaller set of features from the original set of features. Thus, fea-
ture selection preserves a subset of the original features while feature extraction 
creates new ones.

7 Risk Stratification and Prognosis Using Predictive Modelling and Big Data…



92

In biomedical data sets where the number of features is in the tens of thousands 
or more, many of the potential predictor features are either redundant or irrelevant 
for predicting the target outcome. Predictive modeling techniques, including regres-
sion and classification methods, often perform poorly when all features are included, 
due to irrelevant features introducing noise. One approach is to preprocess the data 
set by selecting a reduced subset of features, and use that subset for predictive mod-
eling. In addition to improving the predictive model’s performance, feature selec-
tion reduces the computational cost and may provide better interpretability of the 
underlying processes that generated the data [15].

A good feature selection method identifies the smallest number of features that 
deliver maximal predictive performance. Feature selection methods can be broadly 
categorized into wrapper and filter methods. Wrapper methods evaluate feature sub-
sets using the predictive model and select the best performing subset. Filter methods 
do not use the predictive model but instead apply statistical criteria to select the 
features and then construct the model with the selected features.

A filter-type feature selection approach that has been investigated extensively is 
based on identifying the Markov blanket of the outcome or target [16]. The Markov 
blanket of a target is defined as a minimal set conditioned on which all other mea-
sured features become independent of the target. A variety of Markov blanket dis-
covery algorithms have been developed and evaluated on biomedical data [17].

 Markov Blanket Algorithms

A Bayesian network (BN) model is a graphical model that represents probabilistic 
relationships among a set of features X. A BN contains a graphical model structure 
that is a directed acyclic graph (DAG) that contains a node for every feature Xi and 
an arc between every pair of nodes if the corresponding features are directly proba-
bilistically dependent. Conversely, the absence of an arc between a pair of nodes 
denotes probabilistic independence (often conditional) between the corresponding 
features. In addition, a BN contains a set of parameters θ that encode the probability 
distributions. In a BN, the immediate predecessors of a node Xi are called the par-
ents of Xi, the immediate successors are called the children of Xi, and the remote 
successors are called the descendants of Xi. The joint probability distribution over 
X, represented by the parameters θ can be factored into a product of probability 
distributions defined on each node in the network.

The Markov blanket (MB) of a target Xi, is a set of features such that conditioned 
on the MB, Xi is conditionally independent of all other features. The MB consists of 
the parents, the children, and the parents of the children of Xi (see Fig. 7.2). The MB 
of a node Xi is noteworthy because it identifies a minimal set of features that are 
maximally predictive of Xi. A comprehensive review of the methods for the discov-
ery of MBs from data is provided in [17, 18].

One of the earliest algorithms that discover MBs from data is the Grow-Shrink 
(GS) algorithm that works in two stages [19]. In the growing phase, it identifies 
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features that are strongly associated with the target and in the shrinking phase, it 
reduces the estimated MB from the growing phase using conditional independence 
tests. The shrinking phase of the GS algorithm is not sound; this phase is improved 
in the Incremental Association Markov Blanket (IAMB) algorithm [20]. The grow-
ing phase of IAMB identifies all features that have a strong association with the 
target using a conditional mutual information test that conditions on the features in 
the MB so far. Falsely included features are removed in the shrinking phase that 
uses a conditional independence test between each feature in the MB and the target 
given the remaining features in the MB. The IAMB was shown to select MB fea-
tures that when used in predictive models out performed classification algorithms 
when applied directly to the data without filtering. Moreover, though the MB itself 
can be used directly as a predictive model, it was out performed by other classifica-
tion algorithms that used the features selected by IAMB [20]. Furthermore, IAMB 
and its variants were the first of the MB algorithms that were shown to scale to high-
dimensional data sets.

More efficient and scalable algorithms that were introduced after IAMB 
include HITON and Max-Min Markov Blanket (MMMB) [21, 22]. These algo-
rithms were shown to find MBs in a scalable and efficient manner. When HITON 
was evaluated in clinical, text, genomic, structural and proteomic data it was 
shown to have excellent performance in terms of parsimony and classification 
 performance. Progress in developing scalable MB algorithms continues includ-
ing the development of better conditional independence tests such as the kernel-
based tests [23].

 Biologically Motivated Feature Extraction

A commonly used technique of feature extraction is Principal Component Analysis 
that constructs a small set of discriminative features from the original features. 
Another technique is to use available knowledge to extract features. For example, 
features in gene expression data that contain measurements of individual genes are 

X1 X2 X3

X7X6

X4

X9X8

X10 X11

X5

Fig. 7.2 An example MB. The MB of 
the node X6 (shown stippled) consists of 
parents, X2 and X3, children, X8 and X9, 
and parents of the children, X5 and X7. 
Nodes X1, X4, X10 and X11 are not part of 
the MB of X6
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combined to create pathway features based on current knowledge of known genes 
that are members of signaling and metabolic pathways. The pathway features are 
used to develop predictive models such as outcomes in cancer. This approach can 
also be viewed as automated, biologically inspired dimensionality reduction where 
the features are extracted automatically inspired by the types of pathways that are 
likely driving outcomes.

 Model Averaging

When predictive models are estimated from data, multiple models often fit the data 
more or less equally well. It is usual, then, to select one of the models according to 
some criteria like model fit to the data or predictive performance of the model. The 
selection of one model over others that are almost as good can lead to overconfident 
predictions since it ignores the uncertainty in choosing one model to the exclusion 
of all others. Hence, it is desirable to model this source of uncertainty by appropri-
ate selection and combination of multiple models. One coherent approach to deal-
ing with the uncertainty in model selection is Bayesian model averaging (BMA) 
that is an extension of standard Bayesian inference. Typical Bayesian inference 
models parameter uncertainty through prior distributions, and BMA extends this 
approach to model uncertainty by estimating posterior distributions for both model 
parameters and the model structure [24].

BMA estimates the outcome as a weighted average of the outcome predictions 
of a set of models, with more probable models influencing the prediction more 
than less probable ones. In practical situations, the number of models to be con-
sidered may be enormous, and averaging the predictions over all of them by enu-
merating each model is infeasible. In selected model families, a closed form 
solution is available. The next section describes one such example where predic-
tion using the naïve Bayes model can be performed efficiently by averaging over 
all naïve Bayes models. In most situations, a closed form solution will not be 
available. A pragmatic approach, then, is to average over a few good models, 
termed selective Bayesian model averaging, which serves to approximate the pre-
diction obtained from averaging over all models.

Madigan and Raftery show that BMA is expected to have better predictive per-
formance than any single model [25]. Empirically, the superior performance of 
BMA is supported by a range of case studies. Yeung et al. applied BMA to select 
genes from DNA microarray data to predict prognosis in breast cancer and showed 
that BMA identified smaller numbers of relevant genes that had comparable predic-
tion accuracy to other methods that identified larger numbers of genes [26]. Wei 
et  al. applied BMA to high-dimensional single nucleotide polymorphism (SNP) 
data and showed that it has better predictive performance than model selection [27]. 
A good overview of BMA is provided in [24] and a comprehensive review of the 
applications of BMA is described in [28].

S. Visweswaran and G. F. Cooper



95

 Model Averaged Naïve Bayes

Bayesian model averaging of naïve Bayes (NB) models can improve predictions 
over a single NB model. The single NB model is widely used because of good 
discriminative performance and computational efficiency. However, on high- 
dimensional data sets, such as genome-wide single nucleotide polymorphisms 
(with features in the hundreds of thousands to millions), the predictions of NB 
tend to be poorly calibrated so that the predictions are too extreme with proba-
bilities that are too close to 0 and 1. The model-averaged naïve Bayes (MANB) 
algorithm produces predictions by performing BMA over all possible NB mod-
els produced by feature selection on a given set of available predictors [29]. 
MANB averages over the predictions of these models, weighted by the posterior 
probability of each model. Compared to NB, MANB addresses the challenges of 
feature selection and tends to have better calibration than NB.  MANB has 
almost the same computationally efficiency as NB.  When evaluated on a 
genome-wide association dataset to predict late-onset Alzheimer’s disease, 
MANB performed significantly better than NB, in terms of both discrimination 
and calibration [27].

 Personalized Modeling

Much of predictive modeling in biomedicine has been based on the expected out-
come of an average patient. Data from a population of patients with the same 
disease are pooled together for statistical analysis, and models derived from the 
analysis inform the management of future patients. In other words, the typical 
approach for modeling clinical outcomes is to derive a single predictive model 
from a dataset of individuals for whom the outcomes are known, and then to apply 
the model to predict outcomes for future individuals. Such a model is called a 
population- wide model since it is intended to be applied to an entire population of 
future individuals and is optimized to have good predictive performance on aver-
age on all members of that population. This approach has often been quite suc-
cessful; however, it ignores important individual differences during model 
construction, such as differences in treatment response. Precision medicine aims 
to tailor clinical therapy to individual patients, with the goal of delivering the right 
treatments at the right time to the right patient [30]. An approach for better captur-
ing individual differences during modeling is called patient-specific modeling, 
and it focuses on learning models that are tailored to the characteristics of the 
individual at hand for whom we wish to make a prediction. The basic notion is 
that patient-specific models that are optimized to perform well for a specific indi-
vidual are likely to have better predictive performance for that patient than a pop-
ulation-wide model that is optimized to have good predictive performance on 
average on all future individuals [31, 32].
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 Personalized Decision Trees

An example of a patient-specific modeling method is the personalized decision tree 
model that takes advantage of the particular features of an individual [33]. The 
authors introduce several methods that derive personalized decision trees (a deci-
sion path, in fact). When compared to the Classification And Regression Tree 
(CART) population-wide decision-tree model, the personalized methods performed 
better in both discrimination and calibration.

 Personalized Bayesian Model Averaging

Another example that combines personalized modeling with BMA is a patient- 
specific algorithm that uses MB models, carries out Bayesian averaging over a set 
of models to predict the outcome for an individual, and employs a patient- specific 
heuristic to locate a set of suitable models to average over [31, 34]. When compared 
to a range of population-wide models, the MB patient-specific models had better 
performance in both discrimination and calibration.

 Explanations

With the increasing complexity of predictive models, a critical bottleneck in their 
widespread use is the availability of explanations that describe the basis of individual 
predictions [35]. For example, the insight that an explanation provides about why a 
particular patient is predicted with high probability to develop a disease, may lead a 
clinician receiving it to gain trust in that prediction. Such explanations may assist 
clinicians in making clinical decisions. Explanations differ from model interpretabil-
ity that refers to understandability or intelligibility of the model in terms of structure 
and parameters. Some predictive models, such as logistic regression and decision 
trees, are easier to interpret. Most machine learning models are more opaque. 
Predictive explanation provides reasoning for the prediction that is made by a model 
for an individual. Good explanations are parsimonious so that they are readily and 
rapidly understood by the clinician user and use concepts that are understandable to 
the user, such as clinical features that are not modified or transformed [36]. Predictive 
explanations are potentially more useful than interpretable models in the context of 
clinical decision making, although they are complementary.

Predictive explanations may be based on the structure and parameters of the predic-
tive model that yielded the prediction or may be based on an independent method that is 
applied after the predictive model has produced its prediction. The latter types of meth-
ods can be used with any type of predictive model and have wider applicability. A 
recently developed method is the Local Interpretable Model- Agnostic Explanations 
(LIME) that provides an explanation for a prediction by learning an interpretable model 
locally around the patient for whom we wish to make a prediction [37]. Figure 7.3 pro-
vides an example of the application of LIME to explain a clinical outcome prediction.
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 Emerging Informatics Standards and Technologies

While many clinical predictive models are developed, few are validated externally, 
and even fewer are adopted in clinical practice. A key obstacle to the more wide-
spread use of predictive models is the paucity of reporting standards, computable 
standards, and technologies. Moreover, while the workflow for development and vali-
dation of predictive models from research study data is well developed (see section 
“Workflow of Development and Validation of Predictive Models”), similar workflow 
for development of models from observational healthcare data is not yet mature.

 Transparent Reporting of Predictive Models

One issue has been the poor quality and nonstandard reporting in published articles 
of descriptions of predictive models in medicine. The lack of a comprehensive, 
standard way of reporting the key details of studies that develop and validate models 
makes it difficult for the scientific and healthcare community to judge the validity 
and applicability of multivariable predictive models. To address this obstacle, a 
guideline for the Transparent Reporting of a multivariable predictive model for 
Individual Prognosis Or Diagnosis (TRIPOD) was introduced [38]. It provides a 
22-item checklist that focuses on reporting how a predictive model study was 
designed, conducted, analyzed, and interpreted. This checklist provides guidance on 
reporting of items such as title, abstract, descriptions of predictors, outcomes and 
blinding, descriptions of development and validation data, model specification, 
development, performance and updating for both model development and external 
validation (see Table 7.2). A recent study showed that more than half of the items on 
the checklist were either absent or inadequately reported. Critical information for 

ContradictoryDire outcome probability
yes
no

0.91 pO2 = 38 mmHg

Lungs status = congested

BP(systolic) = 107 mmHg

Headache = no

Hgb = 13.5 g/dL

Number of prior episodes of pneumonia = 0

–0.2 –0.1 0.0 0.1 0.2

0.09

Supportive

Fig. 7.3 An example explanation obtained from LIME for a patient with pneumonia who was 
predicted to have a very high probability of a dire outcome (i.e., death or severe complication). The 
plot at the top left shows the predicted probability distribution for dire outcome. The plot on the 
right shows the explanation for the prediction. The explanation is limited to six top ranked features 
by magnitude. The magnitude on the horizontal axis represents the weight of a feature. Green bars 
represent the magnitude of predictors that support the predicted outcome, while red bars represent 
the magnitude of contradictory features
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Table 7.2 TRIPOD checklist for predictive model development and validation

Section/topic Item Checklist item

Title and abstract

Title 1 D;V Identify the study as developing and/or validating a 
multivariable predictive model, the target population, and the 
outcome to be predicted.

Abstract 2 D;V Provide a summary of objectives, study design, setting, 
participants, sample size, predictors, outcome, statistical 
analysis, results, and conclusions.

Introduction

Background 
and objectives

3a D;V Explain the medical context (including whether diagnostic or 
prognostic) and rationale for developing or validating the 
multivariable predictive model, including references to existing 
models.

3b D;V Specify the objectives, including whether the study describes 
the development or validation of the model or both.

Methods

Source of data 4a D;V Describe the study design or source of data (e.g., randomized 
trial, cohort, or registry data), separately for the development 
and validation data sets, if applicable.

4b D;V Specify the key study dates, including start of accrual; end of 
accrual; and, if applicable, end of follow-up.

Participants 5a D;V Specify key elements of the study setting (e.g., primary care, 
secondary care, general population) including number and 
location of centers.

5b D;V Describe eligibility criteria for participants.
5c D;V Give details of treatments received, if relevant.

Outcome 6a D;V Clearly define the outcome that is predicted by the predictive 
model, including how and when assessed.

6b D;V Report any actions to blind assessment of the outcome to be 
predicted.

Predictors 7a D;V Clearly define all predictors used in developing or validating 
the multivariable predictive model, including how and when 
they were measured.

7b D;V Report any actions to blind assessment of predictors for the 
outcome and other predictors.

Sample size 8 D;V Explain how the study size was arrived at.
Missing data 9 D;V Describe how missing data were handled (e.g., complete- case 

analysis, single imputation, multiple imputation) with details 
of any imputation method.

Statistical 
analysis 
methods

10a D Describe how predictors were handled in the analyses.
10b D Specify type of model, all model-building procedures 

(including any predictor selection), and method for internal 
validation.

10c V For validation, describe how the predictions were calculated.
10d D;V Specify all measures used to assess model performance and, if 

relevant, to compare multiple models.
10e V Describe any model updating (e.g., recalibration) arising from 

the validation, if done.
Risk groups 11 D;V Provide details on how risk groups were created, if done.
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Table 7.2 (continued)

Section/topic Item Checklist item

Development 
vs. validation

12 V For validation, identify any differences from the development 
data in setting, eligibility criteria, outcome, and predictors.

Results

Participants 13a D;V Describe the flow of participants through the study, including 
the number of participants with and without the outcome and, 
if applicable, a summary of the follow-up time. A diagram may 
be helpful.

13b D;V Describe the characteristics of the participants (basic 
demographics, clinical features, available predictors), 
including the number of participants with missing data for 
predictors and outcome.

13c V For validation, show a comparison with the development data 
of the distribution of important features (demographics, 
predictors and outcome).

Model 
development

14a D Specify the number of participants and outcome events in each 
analysis.

14b D If done, report the unadjusted association between each 
candidate predictor and outcome.

Model 
specification

15a D Present the full prediction model to allow predictions for 
individuals (i.e., all regression coefficients, and model 
intercept or baseline survival at a given time point).

15b D Explain how to the use the predictive model.
Model 
performance

16 D;V Report performance measures (with CIs) for the predictive 
model.

Model-
updating

17 V If done, report the results from any model updating (i.e., model 
specification, model performance).

Discussion

Limitations 18 D;V Discuss any limitations of the study (such as nonrepresentative 
sample, few events per predictor, missing data).

Interpretation 19a V For validation, discuss the results with reference to 
performance in the development data, and any other validation 
data.

19b D;V Give an overall interpretation of the results, considering 
objectives, limitations, results from similar studies, and other 
relevant evidence.

Implications 20 D;V Discuss the potential clinical use of the model and implications 
for future research.

Other information

Supplementary 
information

21 D;V Provide information about the availability of supplementary 
resources, such as study protocol, web calculator, and data sets.

Funding 22 D;V Give the source of funding and the role of the funders for the 
present study.

Adapted from Table 1 in Ref. [38]
Items relevant only to the development of a predictive model are denoted by D, items relating solely 
to a validation of a predictive model are denoted by V, and items relating to both are denoted D;V
From Annals of Internal Medicine, Moons, Karel G.M.; Altman, Douglas G, Transparent Reporting 
of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation 
and Elaboration, 162(1), 1–73. Copyright © 2015 American College of Physicians. All Rights 
Reserved. Reprinted with the permission of American College of Physicians, Inc.
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using the model, including model specification and performance, was inadequately 
reported for more than 80% of the models [39]. Increased adherence and further 
refinement of the TRIPOD checklist will enhance more transparent reporting of 
clinical predictive models.

 Computable and Portable Predictive Models

Widespread use of predictive models in clinical medicine requires deployment of 
models in computable formats so that they can be applied to EHRs to automatically 
provide predictions and recommend actions in the context of a patient. Currently, 
well-described human-readable predictive models require manual translation to 
computable formats that is slow and resource -intensive. Rapid deployment of com-
putable models will require development of new standards and technologies. These 
include the creation of standards for a computable representation of predictive mod-
els, development of tools to enable standards-based authoring of models, construc-
tion of infrastructure for execution of models in a variety of EHR systems, and 
digital libraries for collecting, storing, and sharing models.

In the domain of data, the FAIR Data Principles are a set of guiding principles 
that have been put forth to make data findable, accessible, interoperable, and reus-
able [40]. These principles facilitate the ability of computers to automatically find 
and use data and enable its reuse. A similar set of principles are needed for making 
computable predictive models findable, accessible, interoperable, and reusable. As 
an example, a computable phenotype is defined as a set of clinical features that can 
be determined from the data in EHRs, and efforts are ongoing to develop a set of 
standards for developing a computable phenotype representation that is easily 
authored, portable and executable. The recently described Knowledge Object 
Reference Ontology provides a framework to help make computable biomedical 
knowledge that includes computable phenotypes and predictive models findable, 
accessible, interoperable, and reusable [41].

 Modeling Using Large Scale Observational Data

Observational healthcare data, that includes EHRs and administrative claims data, 
are increasingly available for secondary use and research through federated data 
networks. The PCORnet, funded by the PCORI, is a U.S.-wide federated network of 
EHR, claims, and patient reported outcome data on over 100 million patients [42].
The Accrual to Clinical Trials (ACT) network, funded by the NIH, is another U.S. 
federated network of EHR and claims data on over 40 million patients [43]. The 
Observational Health Data Sciences and Informatics (OHDSI) collaboration is a 
network of loosely collaborating sites with EHR and claims data on hundreds of 
millions of patients [44]. These networks have adopted similar data models that 
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specify standardized structure and content for observational data. In contrast to 
research study data that consist of specified measurements that are expressly mea-
sured for the study, observational healthcare data consists of clinical measurements 
across a range of domains (such as diagnoses, procedures, medications, and labora-
tory test values) that are captured during the process of care. Compared to study 
data, observational healthcare data are typically much larger with tens of thousands 
of measurements on tens of millions of individuals. For research use, healthcare 
data are standardized to common terminologies, such as ICD-9 and ICD-10 codes 
for diagnoses and procedures, RxNorm and National Drug Codes (NDC) for medi-
cations, and Logical Observation Identifiers Names and Codes (LOINC) for labora-
tory test results. Standardization of the data requires considerable time and resources 
to map the source data to standard terminologies and transform it in accordance to 
the data model specifications.

The use of healthcare data for predictive modeling is still in its infancy. It holds 
the promise of revolutionizing clinical predictive modeling on very large scales and 
across several different diagnoses, outcomes, and treatments simultaneously. The 
OHDSI community has introduced a framework for developing and validating pre-
dictive models using observational healthcare data. Moreover, open-source soft-
ware is available that implements this framework for data that has been transformed 
to the Observational Medical Outcomes Partnership (OMOP) data model. This 
framework was applied to develop predictive models using several machine learn-
ing methods for 21 different outcomes in a population of pharmaceutically-treated 
depression patients across four observational data sets that contained a total of over 
230 million patients. For some outcomes, high performing models were obtained 
while for other outcomes the models performed poorly, suggesting that observa-
tional data sets are likely to be useful for some outcomes but not for all, and that, 
healthcare data complement research study data [45].

 Policy, Ethical, and Legal Challenges

The increasing availability of big biomedical data and the growing application of 
new statistical and machine learning methods for developing complex models from 
big data provide an opportunity for widespread development of clinical predictive 
models. When such models are deployed to provide targeted care, to improve out-
comes, and to lower healthcare costs, several policy, ethical, and legal challenges 
arise. A comprehensive consideration of such issues is presented in a recent publica-
tion [46], and a few key issues are summarized in the next paragraph.

A primary consideration is that data used in model derivation and validation is 
representative of the whole population. Historically, members of certain racial and 
ethnic groups, people with disabilities, individuals in prison, and members of other 
vulnerable groups have been underrepresented in research studies. Such inequitable 
representation can lead to models that are not valid for parts of the population. In addi-
tion to extensive validation, models need to be evaluated in real-world settings before 
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deployment. A second consideration is that the models are developed both in human-
readable and machine-readable forms using standards that are transparent and repli-
cable. A third consideration is liability. Makers as well as users of predictive models 
may face liability if there are errors in the model or the model malfunctions. A fourth 
consideration is that population-wide models that are designed to improve outcomes 
in a population may produce a sub-optimal prediction for a specific patient. As a 
simple illustrative example, a population-wide model that predicts future morbidity 
may not include human immunodeficiency virus (HIV) status as a predictor because 
the proportion of HIV positive patients in the data is very small. Such a model will 
produce sub- optimal predictions for patients with positive HIV status, and a patient-
specific model that includes HIV status as a predictor will provide better predictions. 
Ethical obligations of clinicians to act in the best interests of a patient may lead to 
increased use of patient-specific models over population-wide ones.

 Conclusions

With increasing availability of big biomedical data, valid and high-performing pre-
dictive modeling methods are needed to leverage the data for clinical medicine, 
public health, and biomedical research. Several current trends indicate that biomedi-
cal data will become more readily available and that will accelerate the development 
of predictive models in medicine. For example, the National Institutes of Health’s 
strategic plan for data science provides a roadmap for storing, managing, standard-
izing and publishing the vast amounts of data produced by biomedical research [47]. 
The Director of the National Library of Medicine at the National Institutes of Health 
anticipates an important role for a library of models that will identify, collect and 
archive biomedical models [48]. In addition to the expertise in academia, companies 
with expertise in artificial intelligence like Microsoft, Google, Baidu, and Apple are 
developing predictive models for healthcare [49]. The General Data Protection 
Regulation (GDPR) that was recently adopted by the European Union includes a 
“right to explanation” with regard to predictive models that seeks to enforce the 
availability of explanations for predictions made by models [50]. Thus, the coming 
decade will likely see increasing development and validation of predictive models 
from big biomedical data and will include advances in feature selection, high perfor-
mance, personalization of models, and explanations of predictions.
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Chapter 8
Informatics Methods  
for Molecular Profiling

Constantin Aliferis, Sisi Ma, and Boris Winterhoff

 Introduction

A molecular profile is a computational model that accepts as inputs omics assay 
results, plus other contextual data such as clinical and demographic variables, and 
outputs a number of predictions.

The predictions can be one or more of the following: (1) an estimate of the 
patient’s expected outcomes of interest (typically: survival, recurrence, metastasis) 
if untreated; (2) an estimate of the patient’s outcomes of interest if given specific 
treatments. (3) Sometimes (but less often) a molecular profile is used for more accu-
rate diagnosis or early diagnosis of difficult to diagnose (or differentially diagnose) 
conditions.

The assay is typically a multivariate gene expression assay although other types 
of omics assays can and have been used such as proteomics, metabolomics, 
 microbiomics, miRNAs, copy number variation, methylation, etc. The assay can be 
executed on DNA or RNA extracts from targeted or circulating somatic or tumor or 
microbial tissue or cells (or combinations thereof).
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Molecular profiling using high dimensional omics data emerged in the late 
1990s with the first FDA-approved test (Mammaprint), approved in 2007. This 
form of PPM currently used across several diseases, allows for individualized 
prognosis, choice of optimal treatment for reducing toxicities or other adverse 
events and for enhancing effectiveness, as well as for reducing healthcare system 
costs. The majority of modern molecular profiling tests address various forms of 
cancer and use gene expression profiles, although the science and technology of 
molecular profiling can be used for virtually any disease and a large variety of 
clinico-molecular assays.

 General Workflow for Molecular Profile-Based PPM

The overall framework for developing, validating and deploying precision tests 
based on molecular profiling are depicted in Fig. 8.1. As can be seen, informatics 
plays a central role in the research design, modeling, model optimization and clini-
cal deployment phases.

A critical observation is that while informatics methods and implementation is 
an essential component of discovery and clinical deployment of molecular profiles, 
all informatics work exists within a complex context of socio-technical and health-
care considerations that includes the following dimensions: (a) defining clear and 
compelling clinical objectives, (b) ability to construct robust models that accurately 

Convert to
Delivery

(Compact +
Cost-

optimized)
Model

Mechanistic
Studies

Validate
Delivery

(Compact)
Assay

Clinical
Validation

Clinical
Deployment

Strategy

Optimized
Models:
-   Predictivity
-   Risk
-   Cost

-   TCGA
-   Custom collected
     data
-   Data from other
    studies

Mechanistic Studies

Feasibility
Studies/Models:

Research
Design

Assays

Discovery
Models

Additional
Assays &

Data

Mechanistic
Studies

Regulatory
Approval

Payer
Approval/
Adoption

Clinical
Deployment/

Workflow
Integration

Clinical Requirements

Health Economic Goals

Data
Collection

Biospecimen
Collection

Performance/
Safety

Monitoring &
CQI

Fig. 8.1 Process for development and clinical validation of clinico-molecular profiling precision 
medicine tests. Used with permission from Winterhoff, Boris, et al. “Developing a Clinico-
Molecular Test for Individualized Treatment of Ovarian Cancer: The interplay of Precision 
Medicine Informatics with Clinical and Health Economics Dimensions.” AMIA Annual 
Symposium Proceedings. Vol. 2018. American Medical Informatics Association, 2018, figure 1

C. Aliferis et al.



109

predict outcomes under a variety of conditions, (c) choosing assays to maximize 
value of information while satisfying economic and technical feasibility constraints, 
(d) economic affordability for the healthcare system (established via health eco-
nomics analysis), (e) development costs optimization (measured in time and finan-
cial costs), (f) deployment cost optimization, (g) seamless deployment at the point 
of care.

The present chapter provides an introduction to the above topics, starting from 
general principles for informatics data modeling essential for molecular profiling 
development and then in the context of a real-life case study of developing a preci-
sion test for bevacizumab for treating patients with ovarian cancer.

The two most important informatics dimensions in developing molecular profil-
ing based PPM tests are: (a) data analysis and modeling and (b) delivery at the point 
of care (Fig. 8.2).

The successful analysis of clinico-molecular data involves a first stage of 
“upstream” analysis and a second stage of “downstream” analysis. The upstream 
analysis involves operation of (typically “omic”) assay instruments and mapping of 
biochemical and physical signals to measurements of absolute or relative concentra-
tion or abundance (depending on what is measured). Typical upstream analysis is 
tied to instruments such as deep sequencers [1–3], microarray instruments [4, 5] 
spectrometry [6–9], or multiplexed PCR [10]. Such instruments are capable of mea-
suring gene copy number variation, gene expression levels, genetic mutations in 
germline (hereditary mutations) or somatic cells (acquired mutations), genetic poly-
morphisms, protein and peptide abundance, metabolites, sequences of microbiota 
and their genetic alterations, micro RNAs, epigenetic (e.g., methylation) markers, 
etc. [2, 5, 9, 11, 12]. The assays may be targeted (1 or a few dozen measured vari-
ables), or genome wide (from hundreds of thousands to, potentially, billions of 
variables).

Common themes include normalization of measurements against reference val-
ues [5], removal of so-called “batch effects” (when assays are conducted in batches 
across time/labs and with different operators or operating protocols [13–15]), 
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assembly of information (e.g., assembly of whole genomes from shorter genetic 
sequences [12]), contrasting measured variables against reference values (e.g., iden-
tification of patients’ mutations relative to a reference genome [1, 16]), mapping of 
measured variables to reference entities (e.g. mapping of microbial sequences to 
microbial species [17–19], or mapping of RNA sequences to genes [12, 17]).

The specific informatics methods and tools employed for upstream analysis are 
closely tied to the type and generation of the assay technology used and furthermore 
as new technologies enter and older ones are leaving the translational and clinical 
research realm, there is a constant cycle of innovation and introduction of new 
upstream informatics methods. For details about upstream analysis we will refer the 
interested reader to the references provided above since this informatics component 
is removed from the purview of the clinicians, and it is highly specialized (often 
conducted in the genome or proteomic assay facility before handed over to infor-
matics specialists tasked to downstream analysis). Chapter 9 of the present volume 
also provides an introduction to next generation sequencing upstream informatics.

Similarly ordering and delivery of send out lab tests from within the EHR is a 
commodity feature of modern EHRs, whereas delivery of clinical decision sup-
port related to MP does not differ from any other form of PPM DS (see for exam-
ple Chap. 16 on how to do so in a highly scalable manner within and across health 
systems).

By contrast, downstream data analysis involves a large array of important scien-
tific challenges and methodologies that we will discuss in more focused detail. 
Many of these methodologies and principles are very robust and thus interoperable 
across different molecular profiling projects.

After establishing the general principles, we will provide a description of a case 
study where these different components are brought together in a coherent design 
and applied in context. Chapters 7 and 8 discuss related issues such as informatics 
tools for biomarker discovery and cross-platform molecular profiling discovery.

 Main Principles of Downstream Bioinformatics Data Analysis 
for Molecular Profiling

 Model Seletction, Model Fitting, and Error Estimation

In general, downstream analysis for MP involves three interrelated and essential 
activities: (a) model selection, (b) model fitting, and (c) error estimation. Model 
selection is the process of systematic consideration of different classes of models 
and their instantiation to the data at hand. Model fitting is the process of fitting 
parameters of a model family in order to obtain an instantiated model to the data at 
hand. Error estimation is the process of estimating how well the fitted models will 
perform in future patient data samples from the same population and assayed with 
same protocols.

C. Aliferis et al.
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Perhaps the most prominent modern form of model selection for MP develop-
ment is the “grid design” combined with cross-validation [20–23] where a number 
of modeling method families are evaluated across a number of high-level (data inde-
pendent) parameters called “hyper-parameters” [21]. Each method family is instan-
tiated according to the hyper parameter values on a training portion of the data and 
then evaluated using cross validation in another independent validation portion (the 
coupling between a discovery—training- dataset and a validation one is the essen-
tial principle of cross validation for model fitting). Then the best models are fitted 
by applying the best method and best hyperparameters found previously on the 
union of training + validation data. The produced model is evaluated on a third and 
final independent error estimation portion of the data in order to estimate their error 
in the general population. Once the error estimation is obtained, a final model is fit-
ted on the union of training + validation + error estimation data again using the 
best model family and hyper parameter values found in the model selection stage.

The whole process is nested so that model selection error estimates do not con-
taminate the final error estimates, thus avoiding overfitting of the final model’s error 
estimates (see below). The data splits within each cross validation as well as the 
whole nested analysis is repeated in order to reduce the variance due to the random 
splitting. This yields the Repeated Nested N-Fold Cross Validation (RNNFCV) 
design [20, 21] depicted in simplified form in Fig. 8.3. As can be seen in the figure, 
model selection, model fitting, and error estimation are interwoven in the RNNFCV.

It is important to notice that each and every modeling decision has to be evalu-
ated using the inner (model selection) cross validation. Simon et al. [24] provide a 
very important illustrative demonstration of how much biased error estimates can be 
when gene selection is not conducted inside cross validation. What Simon et  al. 
teach, applies to all possible analysis steps however, including normalization, vari-
able re-coding, peak detection, etc.

The reader should also be aware of other forms of error estimation, for example 
Leave One Out (LOO), or Bootsrapping [21, 22]. However these error estimators 
have problems that render them suboptimal for general use in MP development. 
Specifically, LOO has higher variance than RNNFCV and is more difficult to com-
pute calibration [22]. Bootstrapping is a consistent error estimator but unfortunately 
a biased one (i.e., has a systematic error that does not vanish as sample size goes to 
infinity; this bias is generally unknown and needs to be identified for each analysis). 
Bootstrapping also creates samples with identical instances something that is highly 
unnatural in omics datasets, further compounding the Bootstrap error by inflating 
predictivity [21].

The error estimation procedures are estimating a number of error functions that 
are chosen to correspond to the intent of the MP test and the analytics employed. For 
example, Area under the ROC curve (AUC) is used for binary prediction models 
[25, 26], Nagelkerke’s R2 [27] is used for survival models (for general model fit), 
Brier scores [28] are used for general model calibration and for survival analysis, as 
is probability of concordance. Different metrics have different strengths including 
interpretability characteristics [29, 30].
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Finally an important recent development is protocols that utilize several different 
types of inputs simultaneously. These so-called “multi-modal” protocols are neces-
sary to effectively combine omic-clinical data types. The reader is referred to Ray 
et al. [31] for a summary and empirical comparison of cutting-edge multi-modal 
analysis protocols.

Whenever different data types are employed, Information content analyses can 
be carried out that compare the information content for each class of data input. For 
example, the analyst can evaluate the unique and shared components of predictivity 
attributable to gene expression data separately from clinical data and separately 
from genetic data [31].

 Overfitting and Underfitting

As with any multivariate modeling analysis a major danger is that of “overfitting”, 
meaning creating models that describe well the patients in the discovery datasets 
but fail to generalize equally well to other patients from the same population. The 
opposite problem is also possible, in the form of “underfitting” where the analyst is 
creating a model that is not as accurate as the generative function underlying the 
data [20, 21].

Both overfitting and underfitting are greatly facilitated in data with many vari-
ables (as is typical in data used to create MP). In addition, everything else being 
equal, the complexity of the models we are willing to learn is directly related to 
underfitting and overfitting: too simple a function yields underfitting and too com-
plex a function yields overfitting. Of course what constitutes “too simple”, or “too 
complex” is entirely an empirical question. Testing of overfitting of the overall pre-
dictor modeling is commonly done via label reshuffling which also provides 
p- values for testing the statistical significance of multivariate models [32, 33].

Recent advances in data science have created methods that prevent overfitting 
and underfitting by automatically tailoring the complexity of the learned models to 
the data at hand. The main methods for preventing overfitting are:

 (a) Feature Selection (FS), that is the systematic elimination of input variables that 
either do not contain information about the response variable we wish to pre-
dict, or that contain redundant information [34–37].

 (b) Dimensionality Reduction (DR), that is the systematic mapping of the original 
variables to a smaller set of constructed variables that retain the necessary infor-
mation about the response variables [21, 22, 37]. In MP, for reasons of cost and 
convenience, we wish to deploy clinically a test with an as small set of mea-
sured variables as possible (and without loss of predictivity for the response 
variable). Because DR does not eliminate the need to assay the full set of origi-
nal input variables, it cannot serve these objectives and is that useful only for 
preliminary analyses. FS has to be brought in at least at the end of the analysis 
process to obtain the most parsimonious and thus most economical and easiest 
to deploy MP test.

8 Informatics Methods for Molecular Profiling
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 (c) Regularization [22], that is penalizing models for complexity. Regularization 
has various forms. In Bayesian modeling it manifests as smaller prior probabili-
ties for complex models versus simple models. In “loss plus penalty” learning 
algorithms, models are evaluated by a combination of how well the describe the 
data (the “loss” component) and of how complex they are (the “penalty” com-
ponent) [22]. Other forms of regularization exist, for example in the Random 
Forest classifier, trees inside the forest model are not allowed to grow beyond a 
certain size (which is thus a regularization parameter). All successful forms of 
modern Machine Learning for high-dimensional data employ explicit or subtler 
forms of regularization.

 Common Classifiers and Regressors for MP

Multivariate Predictors for Binary Outcomes. Several large benchmarking studies 
have yielded important insights about the relative predictivity of modern Machine 
Learning and statistical methods used for MP in the binary and n-ary prediction 
case. The studies of Statnikov et al. [38, 39] in particular have demonstrated the 
advantages of using Support Vector Machines (SVMs). Random Forests (RFs) are 
also strong methods for MP creation, however they require some external simplifi-
cation of the production MP because a typical RF is too complex a model with too 
many variable inputs to be easily and economically deployed in clinical practice.

Multivariate predictors for survival. Survival analyses (i.e., when data is longi-
tudinally observed and observations may be censored) posits a different analytic 
challenge. Three types of state of the art models are worth referencing: (a) Cox 
analysis using all molecular, demographic, functional, and clinical lab testing 
covariates in the model by employing the regularized (elastic net) Cox proportional 
hazards method of Simon [40]. (b) Causal graph based high-dimensional Cox anal-
ysis using the Lagani [41] method which yields the (much more parsimonious but 
still informative) Markov Boundary around the response variable which will then be 
fitted with a standard Cox model. (c) Random Survival Forests [42].

 Feature Selection Methods Suitable for MP

The Markov Boundary set under broad assumptions is itself the theoretically small-
est feature set with maximum predictivity [36, 43]. Importantly for MP, Markov 
Boundary algorithms employ four distinct regularizers to reduce over-fitting (and in 
addition the classifiers using the selected features typically employ at least one addi-
tional layer of regularization). The combination of the above multi-stage regulariza-
tion has been empirically shown to provide maximum predictive signal, with 
maximum parsimony and no overfitting [43, 44]. It has also been shown that addi-
tional dimensionality reduction or feature selection can further enhance classification 
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for both Random Forests and regularized regression analyses [38, 43, 44] even 
though Random Forests [45] and regularized Cox [40] have embedded feature selec-
tion. Via nesting in the RNNFCV, the analyst can ensure not to overfit the model 
selection of hyper parameters [32, 46].

 Specialized Downstream Bioinformatics Methods

In some instances the Bioinformaticists in charge of downstream analysis of molec-
ular data for MP construction will have to consider specialized methods applicable 
to the data at hand. We will provide an example in the domain of miRNA analysis to 
illustrate the point. Pathway enrichment analysis of the mRNAs discovered is con-
ducted with specialized tools like DIANA-miRPath [47]. Gene targets of the sRNAs 
can be predicted using an array of methods (e.g., see Alexiou et al. [48]). sRNAs can 
be linked to environmental factors using miREnvironment [49], to genetics (SNPs) 
using MicroSNiPER [50], and to known diseases using OncomiRDB [51] and 
HMDD [52]. Also because sRNAs are known to often affect genes in a combinato-
rial coordinated manner [53, 54], it is often advisable to consider sRNAs combina-
torially. The Triplex RNA database (http://www.sbi.uni-rostock.de/triplexrna/help.
html) for example, describes combinatorial triplets (sRNA-sRNA-Gene expression) 
[54]. We note that other specialized “omics” (e.g., proteomic assays, metabolomics, 
RNAseq, microbiomics etc.) data usually have their own additional methods that 
need be considered. These details are outside the scope of a general survey chapter 
so we refer the reader to the assay specific references covered in the chapter.

 Ancillary Analyses for MP

Many additional analytical data science methods can be informative in the process 
of creating and MP tests. We mention in particular:

 (a) Complex “Systems” or “integrative biology” view models of the function and 
interactions of genes and pathways within cell types and across cell types. 
These include both data driven and knowledge-driven “systems” oriented meth-
ods. A particularly robust set of methods in that category is Causal Graph anal-
yses. Under the assumptions of faithful distributions (i.e., most theoretical 
distributions including all classical statistical ones belong to this category) as 
proven, for example, by the results of Pearl and of Spirtes et al. [55, 56], reliable 
algorithms exist for the discovery of causal relationships by examining obser-
vational or quasi experimental data. The FCI method of Spirtes et al. [56] for 
example, has the capacity to reveal causal relationships, causal direction and 
the presence of confounding (whenever directionality or confounding is impos-
sible to be deciphered without experiments, the algorithm flags the causal arc 
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accordingly). These models can give insights into the complex relationships 
among these variables. Algorithms like FCI can be made scalable to omics data 
by learning first a high quality region within which FCI can be effectively 
applied. Such regions can be obtained using the highly scalable LGL family of 
methods method [44], which has been shown to be a superior performer when 
high Positive Predictive Value is sought for local pathway reverse engineering 
and is applicable with thousands of variables and small samples in relatively 
sparse or small-world networks [57].

 (b) Knowledge-driven analysis. These include Gene (set) enrichment analysis 
(GEA, or GSEA) of the genes and other molecular species discovered as sig-
nificant. GEA is a form of a “goodness of fit test” where the fundamental 
hypothesis to be tested is that the biomarkers discovered distribute equally 
across functional pathways (normalizing for size of each pathway) [58].

 (c) In silico experimentation studies can be conducted using a Bayesian Network 
parameterization of the Causal Graph models developed (or far more practi-
cally, whenever a fixed set of many input- one output queries are of interest, 
using regression models with appropriately chosen covariates). These models 
can be queried to predict qualitative and quantitative effects of silencing or 
inducing expression of genes individually or in groups using standard Bayesian 
Network inference algorithms160 combined with Pearl’s “Do Calculous” [55]; 
the latter identifies an appropriate conditioning set that is given to the inference 
algorithm to block the influences of extraneous causal paths and ensures that 
estimation of intervention effects are accurate (we note that whenever such 
effects can be estimated from observational data, the Do Calculous has been 
proven to guarantee a correct answer) [59].

 (d) Equivalence class analyses. In omics data Phenotype-information equivalency 
(aka “target information equivalency” or “multiplicity”) of biomarkers is very 
common. This means that there are many—not just one—irreducible marker 
sets that yield optimal predictivity. Whenever the full equivalence class of opti-
mal biomarkers and MPs is of interest, the TIE algorithm [60] that is both theo-
retically provably sound and successfully tested in multiple datasets and its 
corresponding theory of information equivalency as described by Statnikov 
et al. [61, 62] extracts all optimal MP signatures and provides a robust way to 
address this problem.

 Best Practice Guidelines

We close this informatics methods survey section by referring the reader to the 
informative study by [46] where best practice guidelines as given for analysis of 
molecular data and to the work conducted by the gene expression quality consortia 
[15] and the clinical proteomics consortia [63] as containing valuable guidance 
about MP bioinformatics analysis and the factors that affect it.
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 Case Study: Informatics for Molecular Profiling  
for Use of Bevacizumab in Patients with Ovarian Cancer

We now provide an example of how the above principles are implemented in the 
context of developing a real-life MP PPM test.

The Clinical Problem addressed by this MP is to predict response to platinum- 
based chemotherapy and anti-angiogenic treatment with bevacizumab using clinical 
and molecular tumor characteristics in patients with ovarian cancer. This predictive 
capability can lead to the creation of a clinico-molecular test to guide improved 
treatment strategies.

Epithelial ovarian cancer (OVCA) has the highest mortality rate of all gyneco-
logic cancers [64] with the majority of patients diagnosed with stage III or IV dis-
ease [65]. Additionally, 20–30% of patients will not respond to standard initial 
treatment consisting of cytoreductive surgery and platinum-based chemotherapy 
[66]. Patients are considered platinum-refractory if they progress while on treatment 
or platinum-resistant if their disease recurs less than 6 months from completion of 
the initial platinum-based chemotherapy. Even in patients who have a complete 
initial response to chemotherapy, 80% will recur and eventually develop resistance 
to multiple drugs and die from drug-resistant disease [67]. Efforts are ongoing to 
study novel, targeted agents, including bevacizumab, an anti-angiogenic monoclo-
nal antibody against vascular endothelial growth factor (VEGF). Two phase III 
frontline trials in ovarian cancer (ICON7 and GOG 218) showed statistically signifi-
cant improvements in median progression free survival (PFS) of 2.3 and 3.8 months, 
respectively, when bevacizumab was added to standard first-line chemotherapy [68, 
69]. Bevacizumab was approved by the FDA for unselected frontline use in ovarian 
cancer in the US in June of 2018. Unfortunately only a subgroup of patients benefits 
significantly whereas the majority benefit moderately or do not benefit. The prob-
lem is further compounded by the high cost of bevacizumab which is currently 
approx. $400,000 per progression free life saved in the USA, thus making treatment 
of all patients economically infeasible and the patients who can afford the drug are 
not necessarily the ones who will benefit from it. This underscores the pressing 
clinical need for more individualized treatment strategies.

Accordingly, informatics objectives were to discover and statistically validate a 
new clinico-molecular stratification model with sufficient accuracy to be clinically 
actionable.

The specific questions that drove this case study are:

• Which patients will benefit from bevacizumab?
• Which patients will benefit from conventional platinum based chemotherapy?
• What is the relative information value of clinical and of molecular information 

and how to optimally combine them?
• How to create viable clinical strategies that incorporate health economics con-

straints so that all patients who benefit from bevacizumab will receive it, and 
those who do not will not burden the system?

8 Informatics Methods for Molecular Profiling
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 Informatics and Data Science Methodology and Research 
Design Considerations

Early feasibility analysis work demonstrated that gene expression analysis of ovarian 
cancers performed in The Cancer Genome Atlas (TCGA) has led to a molecular clas-
sification of four subtypes [70, 71] with prognostic significance [68]. In addition, it was 
previously demonstrated that differential response to bevacizumab and platinum-based 
chemotherapy is observed within those four molecular subtypes using formalin-fixed 
paraffin-embedded (FFPE) tumor samples from the ICON7 clinical trial [72, 73].

To produce clinically actionable models the informatics team worked closely 
together with clinical scientists and developed predictive and causal models attrib-
uting treatment benefit, and predicting benefit from alternate treatment paths.

 Tying Modeling to Randomized Clinical Trials (RCTs) Greatly Facilitates 
Estimating Clinical Benefits of Alternative Treatments

Figure 8.4 shows the methodological benefits of tying the precision medicine tests 
to RCTs. In designs where treatments are not randomized (left of Fig.  8.4) the 
effects of the treatment post-surgery are confounded by observed and latent (unmea-
sured) clinical and genomic factors. Whereas a variety of design and analytic solu-
tions exist (including matching to known confounders, analytical control of known 
and suspected confounders, propensity scoring, and causal graph-based do- calculous 
[55, 59]), they leave open the possibility of residual confounding (matching, ana-
lytical controls), are subject to bias (propensity scoring), are subject to undetectable 
latent confounding (all methods), or are not currently practical to apply in genome- 
wide scale (do-calculous).

In contrast, development of the precision test based on a RCT design eliminates 
all confounding both from measured and latent variables. The causal effects of post- 
treatment factors regardless of observed or latent status are incorporated into the 
total estimated causal effect of the treatment variables. When factors co- determining 
the outcome are observed, they can be used as covariates in models that individual-
ize the predicted effect on outcome on the basis of these measured factors.

 Data, Specimens and Upstream Analysis

Specimens and clinical data for the case study came from the OVAR-11 (German 
part of the ICON-7 phase III RCT) [68, 69]. Clinical data used for analysis were: 
age, race, FIGO stage, histology, treatment, PFS, OS, debulking status, ECOG per-
formance status, independent path review diagnosis and visits. Specimens were ran-
domly allocated to RNA extraction and assay run order. In brief, upstream analysis 
was conducted as follows: 200 ng of RNA was analyzed using the Illumina Whole- 
Genome DASL array with the HumanRef-8 Bead Chip with 29 K gene transcripts 
or 21 K unique genes according to the manufacturer’s protocol [68]. Gene expres-
sion data quality was assessed via residual minus vs. average plots, box plots and 
jitter plots, to detect experimental artifacts such as batch effects. In addition 
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numerical measures such as stress and dfbeta, and measures of the magnitude of 
change due to normalization, were utilized [68, 72].

 Model Selection and Error Estimation Were Conducted with the RNNFCV 
Protocol [20, 21].

Whereas the importance of nested cross validation for avoiding overfitting error esti-
mates was highlighted in bioinformatics starting from the early 2000s, one aspect of 
this design that is not widely recognized, but important for our case study, is the abil-
ity to perform the analysis in stages as new data and methods become available with-
out overfitting the error estimates of the best models. This is because in each stage of 
analysis the new models or data compete with the older ones against multiple internal 
validation tests, without ever accessing the final test set. Only after a winning model 

Fig. 8.4 Computational modeling advantages of tying development of precision treatment tests to 
RCTs. Used with permission from Winterhoff, Boris, et al. “Developing a Clinico-Molecular Test 
for Individualized Treatment of Ovarian Cancer: The interplay of Precision Medicine Informatics 
with Clinical and Health Economics Dimensions.” AMIA Annual Symposium Proceedings. Vol. 
2018. American Medical Informatics Association, 2018, figure 2
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has been found, the error estimates are produced up to that round of analysis. This 
estimate does not affect the choice of best model(s) thus avoiding overfitting. In 
multi-center, multi-investigator, multi-modality, settings with data obtained in dis-
crete stages, with evolving analytical methods, and with expanding molecular assays, 
the ability for ongoing, sequential analyses is very important (Fig. 8.5).

 Classifiers and Causal Effect Modeling: Supervised Dichotomous 
Prediction Models for PFS

Whenever a molecular profile is used to predict time-to-event, for example survival in 
censored data, the data scientist can use time-to-event methods such as survival analy-
sis, and/or methods that discard censored data. Often the choice is an empirical one, 
especially in high dimensional omics data where survival analyses methods are not 
yet as fully mature and well-developed as binary outcome ones. In this case study both 
approaches were followed to create models that were then evaluated for accuracy.
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Fig. 8.4 (continued)
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First models were created that predict whether patients would relapse within 12, 
24, 36, 48, and 60 months from entering the trial and receiving treatment. This anal-
ysis excluded patients that dropped out before each prediction point and they were 
relapse negative. The classifiers of choice were Support Vector Machines (SVMs) 
[74, 75] with polynomial kernel of degree from 1 to 3, c parameter from 0.1, 1 and 
10 optimized with a nested tenfold cross-validation (NNFCV, i.e., inner fold per-
forming grid model selection and outer fold providing unbiased estimates of gener-
alization error measure via ROC AUC). Features entering the analysis included: 
clinical variables (n = 20), and gene expression microarray variables (n = 29,000).

 Feature Selectors for Binary Prediction Models

The feature selection methods employed in the case study for the dichotomous mod-
els were: all features, Markov Boundary induction (via HITON-PC [43, 44] with 
fixed k parameter to 1), and the 106 ovarian cancer genes from the CLOVAR signa-
ture obtained by TCGA analysis and reported in prior literature [73, 76].

 Multi-Modal Data Combination Strategies

Multi-modal data combination strategies for clinical+gene expression data included: 
clinical only, gene expression only and clinical+gene expression in a single input 
vector. Feature selection and multi-modal combinations evaluation were fully 
nested in the NNFCV to avoid over-fitting the genes selected to the data. In general, 
in order to avoid over fitting all data processing steps were always performed and 
tuned inside the nested cross validation protocol.
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Fig. 8.5 Sequential Nested N-Fold Cross-Validation model selection and error estimation design 
(NNFCV) used for overfitting-resistant multi-stage analysis as new methods, and data become 
available. Used with permission Winterhoff, Boris, et al. “Developing a Clinico-Molecular Test for 
Individualized Treatment of Ovarian Cancer: The interplay of Precision Medicine Informatics with 
Clinical and Health Economics Dimensions.” AMIA Annual Symposium Proceedings. Vol. 2018. 
American Medical Informatics Association, 2018, figure 3
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 Classifiers and Causal Effect Modeling

Classifiers and Causal effect modeling: Time-to-event models that predict risk of 
relapse under different treatments and identify the patients that will benefit from bev-
acizumab. In these analyses the informatics steam used Cox modeling [77] combined 
with Markov Boundary induction [43, 44] for feature selection to model the risk for 
relapse as a function of treatment and of other measured possible determinants of 
relapse. Cox modeling uses all available information whereas dichotomous predic-
tion at a fixed time point methods discard information due to censoring [78]. As 
explained, because the data comes from a randomized trial all possible confounders’ 
effects relating treatment and outcome are eliminating by randomization, thus the 
estimation of the treatment effect does not require an adjustment for confounders. The 
multivariate analysis separates the effect of treatment from the effect of other mea-
sured co-determinants of relapse, however. The analysis constructed the interaction 
terms between potential co-determinants of relapse and the treatment. A significant 
interaction effect indicates a differential treatment effect for different values/levels of 
a co-determinant, thus results in differential treatment response from patients.

Once a model is fit, one can use the model setting bevacizumab = yes as a prognos-
tic model for the group receiving bevacizumab to estimate the outcome in that group. 
Similar for bevacizumab = no. It is also straightforward to estimate the difference 
between the model risk predictions for individual patients setting bevacizumab = yes 
and then bevacizumab = no in order to estimate the benefit of receiving bevacizumab 
(i.e., patients for which the estimated risk difference is negative will benefit from 
bevacizumab). The analysis used 100-repeated 20-fold nested cross- validation. 
Treatment effects were then estimated for every subject in the testing set. Then differ-
ent threshold values were applied to the estimated treatment effect to group patients 
into three groups: (a) predicted to strongly benefit (b) predicted to achieve minor 
benefit (c) predict to not benefit. For patients in each of the three groups, a comparison 
is made of the actual observed benefit in terms of relapse between the treated and 
untreated patients. The relapse outcome was evaluated with Hazard Ratio (HR) and 
median survival difference between treatment and control [27].

 Knowledge-Driven and De Novo Feature Selection for Cox Modeling

Knowledge-Driven and De Novo Feature selection for Cox modeling: to enable the 
Cox analysis Markov Boundary induction (GLL-PC instantiated with a Cox regres-
sion model as the conditional independent test used by the algorithm [43, 44] was 
used as feature selector; we refer to this feature selector as GLL-PC-Cox) combined 
with a knowledge-driven gene selection strategy as follows: genes related to VEGF 
were selected from the literature and pathway databases strictly based on literature 
support without reference to the data in hand (to avoid overfitting). The following 
genes were selected: VEGFA VEGFR2 VEGFB VEGFC VEGFR1 VEGFR3 
CLDN6 TUBB2B FGF12 MFAP2 KIF1A.  In the current dataset, there are 16 
probes measuring 9 of the above genes. A candidate set comprising the 16 gene 
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probes + clinical data variables was formed and Markov Boundary induction was 
applied on that set using Cox as a conditional independence test when performing 
feature selection, and then the selected features are fitted with a Cox model. Once 
more, all steps were fully embedded inside the inner loop of the NNFCV design.

 Computational Models

 Prognostic Models (Binary Outcomes)

Models predicting Progression Free Survival (PFS) with predictivity and selected 
feature types/numbers are shown in Table 8.1. In bold are models with sufficient 
predictivity to be potentially clinically actionable (we operationally set a threshold 
of .75 AUC, representing the predictivity of current state of the art FDA-approved 
cancer outcome and other clinically used molecular profiles). As can be seen, the 
best models have sufficient predictivity to support for clinically actionable progno-
sis. The de novo feature selection clearly outperforms the predictivity of the 106 
genes (CLOVAR signature) previously reported in literature (CLOVAR AUC = 0.63). 
Also notably for this type of model, just three clinical variables achieve an AUC of 
.75 A slightly less predictive model can be obtained with gene expression. However 
the clinical variables are highly subjective e.g. residual disease after surgical cyto-
reduction is determined by the surgeon, which may not translate to other surgeons 
and they could also be manipulated or biased to favor decisions towards specific 
treatment options. This risk can be mitigated by using the objective and tampering- 
resistant gene expression models. Predictivity after 48 months drops because many 
patients have exited the trial at that time.

Table 8.1 Dichotomous prognostic models

Time point: 12 month 24 month 36 month 48 month 60 month

Models with 
clinical features 
only

AUC 0.71 ± 0.03 0.75 ± 0.03 0.73 ± 0.02 0.75 ± 0.02 0.71 ± 0.04
# of features 5 4 4 3 3

Models with 
gene expression 
only

AUC 0.56 ± 0.03 0.58 ± 0.03 0.68 ± 0.03 0.74 ± 0.03 0.42 ± 0.05
# of features 149 153 222 215 94

Models with 
clinical + gene 
expression

AUC 0.62 ± 0.02 0.65 ± 0.03 0.72 ± 0.03 0.77 ± 0.02 0.57 ± 0.03
# of features 4 + 149 3 + 142 3 + 202 3 + 176 3 + 79

Models with 106 
genes from prior 
work (CLOVAR 
signature)

AUC 0.62 ± 0.04 0.59 ± 0.03 0.62 ± 0.03 0.62 ± 0.02 0.47 ± 0.06
# of features 8 4 6 7 2

Used with permission from Winterhoff, Boris, et al. “Developing a Clinico-Molecular Test for 
Individualized Treatment of Ovarian Cancer: The interplay of Precision Medicine Informatics with 
Clinical and Health Economics Dimensions.” AMIA Annual Symposium Proceedings. Vol. 2018. 
American Medical Informatics Association, 2018, table 1
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 Time to Event Model

The final Cox Model (complete model) is shown in Table 8.2. Out of 16 genes + 
clinical variables and their interaction with the treatment, seven variables remained 
in the final model after feature selection with GLL-PC-Cox. VEGFA, MFAP2, and 
ECOG have a significant interaction effect with the treatment, indicating that the 
effects of these variables on progression free survival depends on if the treatment 
was administered. For example, MFAP2 show a significant main effect with coef-
ficient of 0.23, a significant interaction with treatment with coefficient of −0.15. In 
the treatment group, MFAP2 have an overall coefficient of 0.23 + (−0.15) × 1 = 0.08 
(HR  =  1.08). In the control group, MRAP2 have an overall coefficient of 
0.23 + (−0.15) × 0 = 0.23 (HR = 1.25).

Table 8.2 Time-to-event causal effect and prognostic models

Variables Coef exp(Coef)
se exp.
(Coef) z pval

figo_numeric: figo stage coded as integers, 10 
levels, 1 = IA, 2 = IB, …, 9 = IIIC, and 10 = IV

0.31 1.37 0.06 5.58 2.39E-08

surg_outcome: three levels, −1 = suboptimal; 
0 = optimal but remaining tissue smaller than 
1 cm; +1 = optimal or no macroscopic tissue 
remaining

−0.35 0.71 0.08 −4.61 3.98E-06

MFAP2: Gene expression level of MFAP2, 
microfibril associated protein 2, ranges from 6.7 
to 15.9 with mean of 13.1

0.23 1.26 0.06 3.70 0.000215

ECOG: ECOG performance status, three levels, 
0 = fully active, able to carry on all pre-disease 
performance without restriction; 1 = restricted in 
physically strenuous activity but ambulatory and 
able to carry out work of a light or sedentary 
nature, 2 = ambulatory and capable of all selfcare 
but unable to carry out any work activities; up 
and about more than 50% of waking hours.

0.48 1.61 0.14 3.34 0.000851

VEGFAxrndid
VEGFA: Gene expression level of MFAP2, 
vascular endothelial growth factor A, ranges from 
4.9 to 13.3 with mean of 10.5
Rndid:
1 = bevacizumab+carboplatin; 0 = carboplatin. 
VEGFAxrndid, MFAP2xrndid,ECOGxrndid 
indicate interaction effects.

0.19 1.20 0.07 2.76 0.005818

MFAP2xrndid −0.15 0.86 0.05 −2.83 0.004651
ECOGxrndid −0.44 0.64 0.19 −2.26 0.023707
Concordance = 0.693 (se = 0.019), Rsquare = 0.281 (max possible = 0.999), likelihood ratio 
test = 125.2 on 7 df, p = 0, Wald test = 97.88 on 7 df, p = 0, and score (logrank) test = 108.7 on 
7 df, p = 0.

Used with permission from Winterhoff, Boris, et al. “Developing a Clinico-Molecular Test for 
Individualized Treatment of Ovarian Cancer: The interplay of Precision Medicine Informatics with 
Clinical and Health Economics Dimensions.” AMIA Annual Symposium Proceedings. Vol. 2018. 
American Medical Informatics Association, 2018, table 2
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 Identifying Subpopulations Who Benefit from Bevacizumab

By exploring different thresholds on the PFS risk produced by the Cox models, indi-
vidual patients and subpopulations that will benefit the most, the least, and in between 
can be readily identified. Table 8.3 shows examples of subpopulation identification.

For example, the second row (grey background) depicts separation of a subgroup 
equal to 20% of the total patient population that will benefit approx. 10 months for 
survival, or on the other end a subgroup equal to 40% of the total population without 
benefit (nominal benefit of 1.3 months which is not statistically significant).

Figure 8.6 depicts Kaplan-Meier curves (top) and heatmaps (bottom) corre-
sponding to these subgroups and predictor variables in the reduced model, identify-
ing patients and subgroups that will benefit the most or the least from bevacizumab. 
Patients that benefit more from the addition of bevacizumab have lower expression 
level of VEGF-A, higher expression level of MFAP2 and worse EGOC performance 

Table 8.3 Examples of using the Cox models to identify patient subgroups that will benefit the 
most and the least from bevacizumab

Predict to not benefit Gray zone Predict to benefit
Median surv 
diff HR

Median 
surv diff HR

Median 
surv diff HR

Perc. Thre. Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd
40% 60% 1.28 1.45 0.95 0.07 7.99 4.60 0.82 0.13 7.74 0.86 0.62 0.05
40% 80% 1.28 1.45 0.95 0.07 5.79 2.12 0.77 0.06 9.95 1.53 0.49 0.07
60% 80% 3.34 0.77 0.90 0.04 5.63 2.49 0.73 0.12 9.95 1.53 0.49 0.07

Used with permission from Winterhoff, Boris, et al. “Developing a Clinico-Molecular Test for 
Individualized Treatment of Ovarian Cancer: The interplay of Precision Medicine Informatics with 
Clinical and Health Economics Dimensions.” AMIA Annual Symposium Proceedings. Vol. 2018. 
American Medical Informatics Association, 2018, table 3
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Fig. 8.6 Kaplan-Meier curves (top) and heatmaps (bottom) corresponding to subgroups and pre-
dictor variables in the reduced model identifying patients and subgroups that will benefit the most 
or the least from bevacizumab. Used with permission Winterhoff, Boris, et al. “Developing a 
Clinico-Molecular Test for Individualized Treatment of Ovarian Cancer: The interplay of Precision 
Medicine Informatics with Clinical and Health Economics Dimensions.” AMIA Annual 
Symposium Proceedings. Vol. 2018. American Medical Informatics Association, 2018, figure 4
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status. Each column indicates a patient. Yellow color indicates higher value, green 
intermediate value and blue indicates lower value. All variables are scaled between 
0 and 1 to assist visualization.

 Construction of Treatment Strategies

By using the above analytical models one can construct and evaluate clinical treat-
ment strategies. Two example strategies are depicted in Fig.  8.7. The top strategy 
identifies a “clear benefit” group that should receive bevacizumab, a “no benefit” 
group that should receive standard treatment if the dichotomous prognosis models 
predict good response to Carboplatin or should be routed to experimental therapeutics 
if predicted response is not good. An intermediate group with “minor/questionable 
benefit” from bevacizumab may receive standard care plus bevacizumab in case of 

Treat with Bevacizumab+Carboplatin

Bevacizumab TX OR
Standard-of-Care Tx followed by Bevacizumab IF Recurrecnce

Standard-of-Care Tx

Experimental Therapeutic Trials

Prognosis?

Benefit from
Bevacizumab?

good prognosis

poor prognosis

predicted not to
benefit (40%)

Predicted to
moderately

benefit (40%)

predicted to clearly
benefit (20%)

Treat with Bevacizumab+Carboplatin

Standard-of-Care Tx followed by
Bevacizumab IF Recurrence

Experimental Therapeutic Trials

Prognosis?

Benefit from
Bevacizumab?

good prognosis

poor prognosis

predicted not to
significantly benefit (80%)

predicted to significantly
benefit (20%)

Fig. 8.7 Example of clinical strategies utilizing precision treatment models/tests. Top: benefit- 
questionable benefit-no benefit subgroups. Bottom: benefit-no/questionable benefit subgroups. 
Used with permission Winterhoff, Boris, et al. “Developing a Clinico-Molecular Test for 
Individualized Treatment of Ovarian Cancer: The interplay of Precision Medicine Informatics with 
Clinical and Health Economics Dimensions.” AMIA Annual Symposium Proceedings. Vol. 2018. 
American Medical Informatics Association, 2018, figure 5
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recurrence. An alternative binary strategy is depicted in the lower bottom of Fig. 8.7 
where the “no benefit” and “minor/questionable benefit” groups have been merged.

 Health Economic Aspects

In a comprehensive study of the cost effectiveness of alternative strategies of using 
bevacizumab as primary treatment for ovarian cancer, Barnett et  al. showed via 
mathematical modeling that a postulated (i.e., not yet existent at the time of eco-
nomic analysis) predictive model for benefit from bevacizumab would provide a 
dominant bevacizumab treatment strategy [79]. The Molecular profile presented in 
the present case study introduces precisely such a model.

Table 8.4 summarizes the potential for health economic impact of a precision test 
based on the predictivity of the models discussed and of corresponding clinical 
strategies outlined in this chapter when treating all patients with bevacizumab com-

Table 8.4 Summary economic impact of precision tests, of data analytics and of coupling R&D 
to RCTs

Estimated health economic impact of deploying PPM test at full scale –treating all patients 
with bevacizumab compared to treating only the group predicted to strongly benefit

$96 billion savings over a 10 year horizon.
Assumptions:
 • 200,000 patients annually globally.
 •  All patients receive precision medicine test (approx. cost of $2000/test) but only 20% of 

patients (i.e., those identified to benefit) receive bevacizumab.
 • Cost of bevacizumab/patient is $60,000 (lower international cost range used).
 • Baseline comparison: all patients receive bevacizumab.
Incremental cost-effectiveness ratio (ICER)

• $40,000–$80,000 per QALY for predictive test—based treatment.
• $180,000–$360,000 per QALY for universal treatment.
Assumptions:
 •  Cost of bevacizumab/patient calculated as $5000 to $10,000/month × 12 month of treatment 

(depending on US or international costs)
 • Average QAL benefit over all patients is 4 months.
 • Predictive test accuracy as presented in present work.
Time acceleration and R&D economic impact of RCT tie for development of PPM test

• 5–10 years acceleration to precision test deployment.
•  $50million cost savings.
Assumptions:
 • Patients number in a RCT is 2000.
 • RCT cost per patient is $25,000 (global average).
Economic impact of feature selection to deployment costs of PPM test

• Maximum of $1.2 billion.
Assumptions:
 • Discovery assay cost/patient $3000.
 • Deployment assay/model cost/patient = $300.
 • 500,000 patients globally over 10 years.

Revised with permission from Winterhoff, Boris, et al. “Developing a Clinico-Molecular Test for 
Individualized Treatment of Ovarian Cancer: The interplay of Precision Medicine Informatics with 
Clinical and Health Economics Dimensions.” AMIA Annual Symposium Proceedings. Vol. 2018. 
American Medical Informatics Association, 2018, table 4
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pared to treating only the group predicted to benefit the most. Table 8.4 also sum-
marizes other cost savings/economic impact on the R&D side of things (specifically 
the economic impact of feature selection for reducing the discovery model to a 
deployment model and costs saved by tying the precision medicine test develop-
ment to pre-existing RCTs).

As can be seen in Table 8.4, use of the discovered model reported here can save 
the health system over a projected 10 year lifetime of bevacizumab, a maximum of 
$96B globally without significant loss of survival/QULY benefit for individual 
patients.

The Incremental Cost-Effectiveness Ratio (ICER) of unselected frontline treat-
ment with bevacizumab is currently >$360,000 per QALY gained, in the USA. The 
ICR of selective treatment by using the molecular profile in this case study is esti-
mated at $80,000 per QUALY gained, which by current health economic standards 
in the USA renders it viable. Moreover the selective treatment described renders it 
a dominant bevacizumab treatment strategy and may also be acceptable in a variety 
of other willingness-to-pay threshold settings. The test can thus justify  reimbursement 
for patients who do benefit for the drug and can induce payers to cover the medical 
expenses for those who will benefit. Finally the test can route the patients who will 
not benefit from either conventional or bevacizumab treatment to alternative experi-
mental treatments with additional life and economic benefits.

 Conclusions

The present chapter provided an introduction to key informatics workflows and meth-
ods used for molecular profile development. In addition we discussed a case study 
that showcases how the various principles are implemented together in practice. In 
combination with Chaps. 7 and 8 the present chapter should give to readers a thor-
ough overview of molecular profiling-based PPM, and how informatics enables it.

Informatics plays a critical role in the development of MPs PPM tests. The 
research design choice of connecting development of precision medicine tests to 
RCTs yields extraordinary cost, speed and scientific validity benefits.

The informatics work is most effective when guided by and supporting driving 
clinical and health economic requirements and objectives, as illustrated.
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Chapter 9
Constructing Software for Cancer 
Research in Support of Molecular PPM

Richard Simon and Yingdong Zhao

 Introduction

Collaboration between biostatisticians or bioinformaticists and clinical investiga-
tors has been effective and important for the improvements in cancer treatment 
achieved over the past two decades. This model, however, has not scaled success-
fully when utilizing whole genome data to understand biological mechanisms or 
discover new therapeutic targets. Collaborations between clinical investigators and 
biostatisticians typically address problems of hypothesis testing. These problems 
may be large and complex, but they are generally well defined.

For problems of exploratory biological discovery, we have tried to pair basic 
biomedical investigators with bioinformaticists. This provides the biomedical inves-
tigators with access to the data, but the collaboration is often not synergistic unless 
the bioinformaticist has detailed knowledge of the biological areas under investiga-
tion. This type of interaction can either be “inter-disciplinary” or “trans- disciplinary”. 
The former means that each collaborator knows his or her own field, but not much 
about the field of the other collaborator. Only with “trans-disciplinary” collabora-
tion, where each collaborator knows both his or her own field and a lot about the 
collaborator’s field, do we usually see the type of synergy that leads to discovery. 
Bioinformaticists with a strong background in biology but lacking sufficient quali-
fications in data analysis will often fail to make the collaboration truly synergistic. 
The bioinformaticist needs the expertise to inform the biological investigator about 
weaknesses in the proposed exploratory and hypothesis-free research that may 
render it sterile, lest he or she may be serving as a technician. The biomedical 
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 investigator must be sufficiently insightful to devise an approach that is scientifi-
cally sound and creative and not just a blind tabulation of results. Although this type 
of collaboration can work effectively, there is a dearth of bioinformaticists with 
expertise in both biology and data analysis.

In the Biometric Research Program at the National Cancer Institute we have tried 
the structuring of several types of collaborative teams. The Program consists of both 
a Biostatistics Branch and a Systems & Computational Biology Branch and we have 
trained a large number of post-doctoral fellows in bioinformatics and computational 
biology. We have found that for exploratory and hypothesis-free problems it can be 
effective to develop software that empowers the biomedical scientist to perform 
discovery analysis on his or her own. The software must have built-in easy access to 
data sources, biological annotations, statistical analyses and biologically sophisti-
cated types of analyses. We have generally found that this software must be focused 
on specific areas of discovery; general software lacks the biological sophistication 
needed for deep analysis. In this chapter we will describe one software system we 
have developed for this purpose.

 Data for NCI Transcriptional Pharmacodynamics Workbench

The National Cancer Institute has over many years screened compounds for anti- 
cancer activity against 60 human tumor cell lines [1, 2]. The cell lines are very well 
characterized with regard to exome sequencing, micro-array gene expression profil-
ing, copy number alterations, etc. The cell lines represent multiple tumor histologies 
[3]. What is most unique about these cell lines is the tens of thousands of com-
pounds that have been screened for growth modifying effects [4, 5].

There are other sets of human tumor cell lines that have also been characterized 
in various ways. The characterizations are almost always of the un-treated cell lines 
[6, 7]. There are not good examples of human tumor cell lines which are expression 
profiled after treatment with a cancer drug. Although the NIH Library of Integrated 
Network-based Cellular Signatures (LINCS) project and the Connectivity Map 
have collected the after-treatment gene expression data for thousands of compounds, 
the data are restricted to less than 10 cancer cell lines and the vast majority are using 
L1000 assay that only measures expression of around 1000 “landmark” genes 
[8–10]. The NCI set out to perform micro-array gene expression profiling to the 
NCI- 60 after treatment with one of 15 anti-cancer drugs [11]. The drugs were 
selected for a spectrum of mechanism of actions; both DNA damaging agents, 
kinase inhibitors and receptor antagonists: azacytidine, bortezomib, cisplatin, dasat-
inib, doxorubicin, erlotinib, geldanamycin, gemcitabine, lapatinib, paclitaxel, siro-
limus, sorafenib, sunitinib, topotecan, and vorinostat. Each drug was studied at low 
and high concentrations as well as a control of zero concentration. Expression pro-
filing was performed at 2, 6 and 24 h after drug administration.

This experiment involved 7652 micro-array assays with 12,704 transcripts repre-
sented per array. It is the type of experiment that no single laboratory can typically 
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afford. It provided a discovery data-set that would be unlikely to be funded by ordi-
nary grant mechanisms. In addition to the gene expression profiles, there were 1227 
genes with mutation data, and GI50 data on all cell lines and drugs. It was hoped 
that cancer biologists, pharmacologists and therapeutics developers could use the 
data to understand mechanisms that tumors use in response to drug insults, in order 
to understand the mechanisms of resistance and to discover therapeutic targets.

 NCI Transcriptional Pharmacodynamics Workbench Software

 Methods

Raw CEL files were background-subtracted and normalized using the Robust Multi- 
array Average (RMA) algorithm [12] for all cell lines treated by the same drug. 
There were 170,463,604 data points in 7652 Affymetrix array experiments. The data 
containing 22,227 probe sets was then summarized into 12,704 genes by taking the 
average of log base 2 measurements of probe sets for each gene (gene list obtained 
from Affymetrix U133A). The data matrix for NCI60 cell lines treated by each of 
the 15 drugs at different time points and different dose levels, including baseline 
experiments (zero concentration), were then stored in backend SQLite tables. Data 
analysis and graphic display were all performed under R 2.15.0 package.

There are 50 tables total in the backend SQLite database. These tables include: 15 
tables for gene expression profiles in cell lines treated by 15 different drugs, respec-
tively; 15 tables for the sample information in 15 gene expression profiles, respec-
tively; 15 tables for the phenotypes (logGI50, doubling time, and multidrug resistance) 
information, each of which is related to a specific drug; one table for 1227 gene 
mutation data in cell lines; one table for 154 protein expression data in cell lines; one 
table for 65 BioCarta pathways and the genes involved in these pathways, one table 
for 256 experimentally verified transcription factors and their targeted genes, and one 
table for 53 groups of receptors. Details of the data set used in this web application 
are summarized in Table 9.1. Table 9.2 shows the actual dosage for each of the 15 
drugs at high or low concentration used in gene expression experiments. Table 9.3 
lists 9 tissue types of cell lines and cell line names in each tissue type.

We needed the website to be able to provide on-the-fly detailed analyses of the 
data in ways directed by the user. Where possible, we performed analyses in 
advance and saved the results in order to expedite response times but in many cases 
this was not possible. The website was programmed using Perl, JavaScript, the R 
statistical programming language, and SQLite database. All analyses were menu 
driven by the user.

Figure 9.1a shows the architecture of the NCI TP Workbench. The six main mod-
ules are characterized as shown on the right panel of Fig. 9.1a: Query for a single 
gene; Correlation analysis; Time course graphs; Pathway analyses; Transcription 
factors and targets, and Receptor analysis. We will provide a summary of each of 
these modules.

9 Constructing Software for Cancer Research in Support of Molecular PPM
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 Query for Single Gene

Having a gene of interest in mind, the first thing a user may want to know is a gen-
eral picture of how the expressions of this gene change when treated by a specific 
drug. By entering a gene symbol (e.g., MYC) and selecting one of the 15 drugs from 
the drop-down menu (e.g., bortezomib), this query function will return a series of 
graphs that show the expression of the gene MYC in cell lines treated with bortezo-
mib relative to the untreated baseline cell lines. These increments are shown in bar 
graphs, one bar for each cell line and one graph for each drug concentration 
(Fig. 9.1b). In the bar plots, right bars indicate elevated gene expression and left 

Table 9.1 Summary table for NCI60 drug treated gene expression data set

Drugs Azacytidine, bortezomib, cisplatin, dasatinib, 
doxorubicin, erlotinib, geldanamycin, 
gemcitabine, lapatinib, paclitaxel, sirolimus, 
sorafenib, sunitinib, topotecan, vorinostat

Concentration Baseline, low dose, high dose
Time point 2 h, 6 h, 24 h
Number of data points in gene expression 
experiments

169,817,571

Number of arrays 7623
Number of probe sets per chip 22,277
Number of genes per chip 12,704
Number of GI50 measurements 866
Number of gene mutations 1227
Number of protein expression 154
Number of pathways 65
Number of transcription factors 256
Number of groups of receptors 53

Table 9.2 Dosage used at high and low concentrations for each drug

Drug High concentration (nM) Low concentration (nM)

Azacytidine 5000 1000
Bortezomib 100 10
Cisplatin 15,000 3000
Dasatinib 2000 100
Doxorubicin 1000 100
Erlotinib 10,000 1000
Geldanamycin 1000 100
Gemcitabine 2000 200
Lapatinib 10,000 1000
Paclitaxel 100 10
Sirolimus 100 10
Sorafenib 10,000 5000
Sunitinib 2000 200
Topotecan 1000 10
Vorinostat 5000 1000
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bars depressed expression. Each bar stands for a cell line. Cell lines are grouped and 
color coded by tissue type in these graphs. The analysis also provides two scatter 
plots that show the change in gene expression as related to the basal growth rate 
(log(GI50)) of the untreated cell lines (Fig. 9.1c). In the scatter plots, each point 
represents a cell line; vertical axis shows the relative (compared to no treatment) 
gene expression value and horizontal axis shows log(GI50) of the drug against cell 
lines. The points above line y = 0 denote elevated gene expression and the points 
below it denote depressed expression relative to cell lines untreated by drugs. 
Pearson correlation coefficients are calculated and shown in each of the above scat-
ter plots. In addition, the output page also displays scatter plots that show the rela-
tive expression of the gene versus doubling time or multidrug resistance protein 
expression in cell lines treated by high and low dose of drug, respectively. At the 
bottom of the page, there is a link to save the data by creating output graphs in a 
comma-separated values (CSV) format file, which can be opened by excel.

The Single gene query module also enables the user to see the effects of each of 
the 15 drugs on the selected gene. There are static and dynamic types of graph 
options. Figure 9.2 shows a static output of 15 time course line plots for BRAC1 
when treated by each of the 15 drugs at high concentration. In each line plot, each 
line stands for the log(2) fold change in gene expression for a specific cell line across 
three time points (i.e., 2, 6, and 24 h). Time profiles under high dose levels are shown 
by default. The user can also click the link at the bottom on the page to see the time 
profiles under low dose levels. The graphs can further be stratified by tissue types by 
checking “Also display the figures stratified by tissue type”. The user can then click 
on each graph in the output page to get the time profiles grouped by tissue type.

To boost the processing speed, the TP Workbench also provides a dynamic way to 
generate time course line plots. After the user enters a gene name, the system uses a 
powerful D3 library JavaScript function to load the data into the client side and dis-
plays the line plots dynamically. On the screenshot shown in Fig. 9.3a, 15 time course 
line plots for BRAF are shown, each one corresponding to cell lines treated by one 
of the 15 drugs. When moving the mouse cursor on each of the nine tissue types color 
coded on the top panel, only cell lines for the specified tissue type are highlighted. 
The highlighted lines can be fixed by clicking on one of the tissue types. On the top 

Table 9.3 NCI60 cell lines stratified in nine tissue types

Tissue type Cell line

Breast BT-549, HS-578T, MCF7, MDA-MB-231, MDA-MB-468, T-47D
CNS SF-268, SF-295, SF-539, SNB-19, SNB-75, U251
Colon COLO-205, HCC-2998, HCT-116, HCT-15, HT29, KM12, SW-620
Leukemia CCRF-CEM, HL-60, K-562, MOLT-4, RPMI-8226, SR
Lung A549, EKVX, HOP-62, HOP-92, NCI-H226, NCI-H23, NCI-H322M, 

NCI-H460, NCI-H522
Melanoma LOX, M14, MALME-3M, MDA-MB-435, SK-MEL-2, SK-MEL-28, 

SK-MEL-5, UACC-257, UACC-62
Ovarian IGR-OV1, NCI-ADR-RES, OVCAR-3, OVCAR-4, OVCAR-5, OVCAR-8, 

SK-OV-3
Prostate DU-145, PC-3
Renal 786-0, A498, ACHN, CAKI-1, RXF-393, SN12C, TK-10, UO-31
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Query Result for Expression of A Specific Gene in NCI-60 Cell Lines Treated with Drug

Note: all cell lines are categorized by colors which represent different tissue origins of them.

Note: Right bars indicate elevated gene expression and left bars depressed expression relative to cell lines untreated by drug.
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left side of the display, the dosage level is selected. When clicking on any of the 15 
drug time course line plots, the user sees a pop-up window which shows enlarged 
line plots for that drug. Figure 9.3b shows an example of time course line plots for 
cisplatin. Each line in the plot represents a cell line, which is color coded according 
to nine different tissue types (Table 9.3). When moving the mouse cursor on any of 
the lines, the cell line name, tissue type, log(GI50) and its quartile are shown on top 
of the page. When clicking on “melanoma” on the top color panel stands for tissue 
types, only melanoma cell lines in orange are highlighted as shown in Fig.  9.3b. 
There are four drug sensitivity buttons at the bottom panel of the pop-up window. 
NCI60 cell lines are sorted into quartiles by their drug sensitivity, i.e., log(GI50) 
value, from the most sensitive (first quartile) to the most resistant (fourth quartile). 
Hovering the mouse over the GI50 Quartile buttons highlights only cell lines with 

Expression of MYC vs. logGI50 in NCI-60 cell lines treated with high concentration of bortezomib (100nM)

Expression of MYC vs. logGI50 in NCI-60 cell lines treated with low concentration of bortezomib (10nM)
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drug sensitivity in the selected quartile. When clicking on top left bar “View Stratified 
Tissue Types”, a second pop-up window shows nine time-course line plots for this 
drug, each representing cell lines in one of the nine tumor tissue types (Fig. 9.3c). 
Similarly as in the previous pop-up window, hovering on each line shows the cell line 
name, tissue type, and log(GI50) value for the highlighted cell lines. Again, the GI50 
Quartile buttons are located at the bottom panel of the window, allowing the user to 
move the mouse to highlight or to click to isolate the cell lines by drug sensitivity.

 Correlation Analyses for a Group of Genes

This functional module provides a heat map for a group of genes whose gene expres-
sions are most correlated with a user-selected cell line characteristic: either logGI50, 
doubling time, multidrug resistance, gene mutation data, or protein expression data. 
The user selects the drug, the dose level, the time point, and the number of most 
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Fig. 9.2 Static time course line plots for BRCA1 treated with 15 drugs at high concentration. Each 
line plot represents gene expression fold changes of BRCA1 treated with one drug at high concen-
tration, while each line in the plot represents gene expression fold changes of BRCA1 in one cell 
line at 2, 6, and 24 h
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Fig. 9.3 (a) Dynamic time course line plots for BRAF treated with 15 drugs with breast cancer 
cell lines highlighted. (b) Pop-up window shows an enlarged time profile for BRAF treated with 
cisplatin. (c) Pop-up window shows tissue stratified time profile for BRAF treated with cisplatin. 
In the graph, the most sensitive cell lines (dark red) are highlighted

b
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significant genes (maximum 100 genes) (Fig. 9.4a). For the gene mutation “pheno-
type”, the n genes with the largest absolute t-statistics of gene expression in gene-
mutant versus wild-type cell lines are selected. The t-statistics are calculated based 
on Welch’s two sample t-test for unequal variances. For the other phenotypes, the n 
genes with the largest absolute correlation of gene expression and phenotype in cell 
lines are selected. The correlation is calculated based on the Pearson method. In the 
output page, as shown in Fig. 9.4b, a heat map is displayed with cell lines on the 
y-axis and genes on the x-axis. The top color key legend indicates the ranges for log 
ratio data, when compared to the base line data. The genes are clustered using the 
hierarchical clustering method implemented in the R function heat map, while the 
cell lines are ordered by log(GI50) from the most sensitive to the most resistant 
(from left to right). The color legend for log(GI50) is located at the bottom panel of 
the heat map. A JavaScript magnifier is provided to zoom in when moving the mouse 
cursor on the heat map, making it easy for user to see the graph detail (e.g., gene 
names). There are two data tables listed below the heat map. The top table lists genes 
that are positively correlated with GI50. Those genes are sorted by the mean log 
folder changes in resistant cell lines, with gene names hyperlinked to the corre-
sponding GENECARD website entry. Pearson correlation coefficients, mean log 
fold changes in sensitive cell lines, mean log fold changes in resistant cell lines, and 
the differences of the above two fold changes between sensitive and resistant cell 
lines are also listed in this table. The bottom table lists genes that are negatively 

Fig. 9.3 (continued)
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Fig. 9.4 (a) Web interface for correlation analysis. Five phenotypes are shown in the drop down 
menu: GI50, doubling time, multi-drug resistance, exome sequencing, and protein expression. (b) 
Heat map shows one hundred genes whose gene expression changes are most correlated with 
log(GI50) for NCI60 treated with dasatinib at 2000 nM at 6 h
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correlated with drug sensitivity using the same indexes as in table one. Resistant cell 
lines are defined as cell lines whose growth inhibition for this drug are in the top 25th 
percentile of NCI60 cell lines when ordered by log(GI50). Sensitive cell lines are 
defined as cell lines whose growth inhibition for this drug are in the bottom 25th 
percentile of NCI60 cell lines when ordered by log(GI50). By studying the two data 
tables, the user can easily identify genes that are over- or under-expressed in resis-
tant cell lines. At the bottom of the page, a link is provided for the user to download 
the raw data used to generate the heat map and the tables.

 Time Profiles

This analysis module enables the user to generate for a selected drug a series of time 
profiles of gene expression changes for the genes with the largest average fold 
changes across cell lines (Fig. 9.5). The second option is to generate expression 
changes for the genes that are most correlated with drug sensitivity (i.e., GI50). For 

Fig. 9.5 Left panel shows top 50 genes with largest average fold change across cell lines and time 
points when treated with cisplatin. Right panel top is the tissue stratified time course line plots for 
gene ATF, while right panel bottom display gene information of ATF on GENECARD website
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each gene, correlation coefficients between gene expression and GI50 for three time 
points are calculated. The genes are sorted by the maximum absolute value of the 
correlation coefficients among the three time points. The program outputs time pro-
files for the 50 genes with the largest correlations. Clicking on each individual time 
profile will display the tissue stratified figure for that gene while clicking on the 
gene name will direct the user to the gene annotation page in the GENECARD 
website. In order to boost the speed for the function, all gene lists and graphs are 
pre-generated and stored in the server.

 Pathway Analysis

This module contains two parts: a heat map display for genes in user specified path-
ways and a pathway analysis. The gene lists for 65 BioCarta pathways were obtained 
from the Cancer Genome Anatomy Project (CGAP) website. By default, six heat 
maps are displayed in the output html page for three time points and two concentra-
tions, respectively. The genes and cell lines are both clustered by default (Fig. 9.6). 
The user can click on “View larger image” to get an enlarged heat map in better 
quality. Users can also choose to sort the cell line by drug sensitivity (GI50) so that 
the orders of cell lines across all six heat maps are identical, making it easy to com-
pare the difference among different concentrations and time points.

Fig. 9.6 Heat map of dasatinib effects on expression of genes in HER2 Pathway. Both cell lines 
and genes are clustered
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 Transcription Factors and TF Targets

We obtained data for 256 transcription factors relevant to cancer research and their 
experimentally verified gene targets from the website developed and managed by 
Dr. Michael Zhang’s lab. There are three options to generate the heat maps.

Heat map for target genes of a specific transcription factor (Fig. 9.7). By defining 
the transcription factor and drug name, the user can generate six heat maps of drug 
effects on expression of target genes of the specified transcription factor at three time 
points and two concentrations, respectively. By default, the cell lines on the x-axis and 
the target genes on y-axis are all clustered. The user has the option to disable the cell 
line clustering and sort the cell lines on the x-axis by drug sensitivity (GI50).

Fig. 9.7 Heat map of erlotinib effect on target genes of transcription factor EGR1. Both cell lines 
and genes are clustered
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Heat map on drug effects on expression of all transcription factors. By selecting 
a drug name, the program will generate six heat maps for all 256 transcription fac-
tors in three time points and two concentrations, respectively. The transcription fac-
tor genes on the y-axis and cell lines on the x-axis are clustered by default.

Heat map of drug effects on gene expression of a specific transcription factor. By 
selecting one of the 256 transcription factors from the pull down menu, the system 
will generate a heat map with cell lines on y-axis and drugs on x-axis at three time 
points and two concentrations, respectively. By default, cell lines and drugs are all 
clustered at each axis.

 Receptors Analysis

Abnormal expression of receptors and their ligands can lead to tumorgenesis by 
disruption of cell cycle, apoptosis, and DNA repair. Over-expressed receptors may 
also serve as drug targets. Discovery and development of mechanism-based thera-
pies targeting cancer-related receptors have improved outcome for many cancer 
patients. Examining the expression pattern of genes in certain receptor groups 
treated with anti-cancer agents may provide better understanding of mechanisms of 
action and resistance to these drugs. We include 53 receptor groups from the 
IUPHAR Targets database. By selecting a receptor group and a drug name, the pro-
gram will generate six heat maps for all genes in the chosen receptor group in three 
time points and two concentrations, respectively. The cell lines on x-axis and genes 
on y-axis are clustered by default.

 User Defined Gene Sets

This option gives users flexibility to generate a heat map of expression modulation 
by treatment for any set of genes of interest. Users can simply copy the gene symbol 
list to the “Enter gene symbol” field. For the drug selected, six heat maps of gene 
expressions are generated for the three time points and two concentrations, respec-
tively. By default, the cell lines on the x-axis and the user-defined genes on the 
y-axis are all clustered. It is optional to disable the cell line cluster and sort the cell 
lines on the x-axis by drug sensitivity (GI50). All data used to generate these heat 
maps can be downloaded as a CSV format file by clicking “download data”.

 Discussion

Developments of high-throughput genome-wide assays have created important 
opportunities for biological and translational research. There are, however, signifi-
cant challenges in transforming “big data” to the biological and translational knowl-
edge that is essential for PPM. These challenges are based on the complexity of 
biological systems, the difference between hypothesis-driven and discovery 
research, and limitations of current models for inter-disciplinary research.
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Biological systems, particularly mammalian systems are complex, and finding a 
set of genes that are induced or repressed following an experimental intervention 
often does not go very far toward a biological understanding of the underlying 
mechanisms. Developing such understanding is often an iterative process involving 
the analysis of different types of data and the conducting of new experiments.

Discovery research is, in many ways, more complex than hypothesis-driven 
research. New assays may provide a first ever look at biological samples akin to 
looking through a new kind of microscope. Distinguishing important biological 
information from randomly generated patterns and technical artifacts depends heav-
ily on the expertise, experience, and creativity of the investigator doing the 
 examination. Hypothesis-driven research is often amenable to analysis using ana-
lytic statistical tools whereas exploratory biological discovery based on high- 
dimensional assays often benefits from data visualization tools.

In clinical therapeutics research, there has been a history of success with inter-
disciplinary collaborations between professional data analysts and biomedical sci-
entists. The data analysts (e.g., statisticians) take responsibility for data management, 
quality control, and analysis based on testing hypotheses specified by clinical pro-
tocols. Statisticians are often less comfortable where there are no pre-stated hypoth-
eses and sometimes dismiss such attempts at discovery as “data dredging”. For 
biological discovery using genome-wide assays in basic or translational research 
laboratories, such interdisciplinary research is often difficult because few data ana-
lysts have the training, experience, and detailed biological knowledge needed. At 
the same time, the biological investigators usually do not have the computational 
and statistical knowledge and tools needed for in-depth data analysis.

In this chapter, we described our experience in developing a web-based system of 
powerful visualization tools for use by biologists and pharmacologists for understand-
ing the transcriptional response of 60 genomically characterized human tumor cell 
lines to treatment by 15 different oncologic agents. For each of the 60 cell lines and 15 
drugs, whole genome transcriptomes were assayed at three time points following 
treatment with three concentrations of each drug, a total of more than 7000 genome-
wide transcriptomes of 10,000 plus genes. The database we built also included 
genomic mutation data based on whole exome sequencing of the 60 tumor cell lines 
and drug sensitivity data for the 15 drugs against each of the 60 tumor cell lines.

We found that this dataset was too complex to be used efficiently for biological 
discovery in the traditional ways by either statisticians, computational biologists, biol-
ogists, or pharmacologists. We thus tried to build a system that would empower biolo-
gists and pharmacologists to interrogate this data in deep ways to formulate hypotheses 
about mechanisms of resistance, pharmacodynamic and predictive biomarkers of 
response, and for discovery of molecular targets and candidate drug combinations.

Effective knowledge discovery systems must be tailored to the knowledge 
domain. Consequently, we have integrated gene annotations, pathway maps, and 
analyses based on pathways and transcription factor targets into the system. We have 
also provided analysis tools that focus on receptors. Because the system is domain-
focused, the power of its visualization tools surpasses many web-based systems that 
provide only simple queries or full data downloads. This system is focused on visual 
data analysis that facilitates integration of multiple data sources and a graphical 
interface that makes it easy for the user to use the tools in an adaptive manner.
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In this chapter, we described the data on which the system is based, the analysis 
tools, the software architecture and an example analysis. The NCI TP Workbench 
will be serving as a powerful web tool for researchers to interrogate such essential 
underpinnings of molecular PPM as the time-course data on genome-wide response 
to treatment with drugs and their relation to mechanisms of resistance, 
 pharmacodynamics and predictive biomarkers of response, and for discovery of 
molecular targets and candidate drug combinations.
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Chapter 10
Platform-Independent Gene-Expression 
Based Classification-System for Molecular 
Sub-typing of Cancer

Yingtao Bi and Ramana V. Davuluri

 Molecular Sub-classification of Cancers as a Prelude 
to Personalized Medicine

Traditionally, tumors have been categorized based solely on tumor histological fea-
tures. The large-scale genomics studies from The Cancer Genome Atlas (TCGA) 
project, initiated by NIH (http://cancergenome.nih.gov), have found that molecular 
signatures can be used to classify these tumors into sub-types that predict patient 
outcome more effectively. These promising studies are providing unprecedented 
understanding of the molecular basis of cancer, the key to developing effective diag-
nostic and therapeutic strategies, which eventually lead to personalized treatment. 
Molecular profiling of gene expression, using microarrays, and more recently using 
NextGen sequencing methods, has shown that heterogeneity in outcome and sur-
vival in cancer can be explained, in part, by genomic variation within the primary 
tumor. These technologies have helped identify changes in the genome (in DNA) 
and epigenome (changes other than in the underlying DNA sequence), which are 
involved in the initiation and progression of various cancers. Furthermore, novel 
drugs (e.g. Dasatinib [1], Nilotinib [2], Imatinib [3], Avastin (bevacizumab) [4]), 
have been developed to target some of the molecular pathways underlying the car-
cinogenic processes and maintenance of cancer phenotypes. In almost all cases, 
the intent is to inhibit or shut down a specific molecular pathway. Yet, these drugs 
provide limited survival benefits to only a small subset of cancer patients, and fur-
thermore, only a small number of practically useful biomarkers are presently avail-
able. Therefore, molecular classification of cancers is essential to identify highly 
sensitive and specific biomarkers and therapeutic targets that reflect the molecular 
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mechanisms that dictate tumor type-specific survival, drug resistance, tumor relapse 
and patient outcome [5, 6]. However, despite numerous gene-expression studies 
conducted on tumor subgrouping, few of the published gene signatures derived 
from high-throughput platforms (e.g., microarrays) were successfully transitioned 
to low-content clinically useful platforms (e.g., RT-qPCR). While the assessment of 
molecular subtyping accuracy based on data from a specific analytical platform has 
received much attention in cancer research, the extent of variability in classification 
accuracy based on gene-expression estimates of the same gene-set from different 
platforms (e.g., NGS and RT-qPCR) remains poorly understood. Moreover, most of 
the tumor subtyping studies have ignored the complexity of human transcriptome 
and focused the analyses mainly on gene-level expression profiles.

 Alternative Transcription and Alternative Splicing in Cancer

With each successive discovery in genetics, the true dynamic complexity of the 
genome has become increasingly apparent, requiring relatively consistent updates 
to the technical definition of the word “gene” [7]. It is now understood that the 
majority of human genes produce multiple functional products, or isoforms, pri-
marily through alternative transcription and alternative splicing [8–10]. Different 
isoforms within the same gene have been shown to participate in different func-
tional pathways [11, 12], and the altered expression of specific isoforms has been 
associated with numerous diseases [13–17]. For example, specific isoforms for 
numerous genes are linked with cancer and its prognosis, as cancer cells manipu-
late regulatory mechanisms to express specific isoforms that confer drug resistance 
and survival advantages [18]. Moreover, cancer-associated alterations in alternative 
exons and splicing machinery have been identified in cancer samples [19–21]. In a 
recent study, we discovered that the majority of genes associated with neurological 
diseases expressed multiple transcripts through alternative promoters by performing 
integrative ChIP-seq, RNA-seq and bioinformatics analysis in developing mouse 
cerebellum. We also observed aberrant use of alternative promoters in medulloblas-
toma, a cancer arising in the cerebellum [8]. Therefore, specific transcript-variants 
could be more effective as cancer diagnostic and prognostic markers than corre-
sponding genes.

 Isoform-Level Cancer Gene Signatures

Cancer-associated alternative splicing variants may be new tools for the diagno-
sis and classification of cancers and could be the targets for innovative therapeutic 
interventions based on highly selective splicing correction approaches or design 
of isoform-specific antibodies. With the availability of multiple genome sequence 
and high-throughput techniques, it is feasible to study alternative transcription and 
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splicing on a genomic scale. Genome-wide approaches have revealed that tumori-
genesis often involves large-scale alterations in transcription and splicing [22]. Such 
approaches have been valuable in providing insight into the regulation of splicing in 
cancer, and have even proven useful in the classification of tumors [23–25]. Indeed, 
we have demonstrated that cancer cell lines, regardless of their tissue of origin, can 
be effectively discriminated from non-cancer cell lines at the isoform- level, but not 
at the gene-level [26]. Furthermore, the isoform-level transcriptome changes could 
provide better patient stratification in terms of overall prognosis and classification 
accuracy for glioblastoma [27]. Therefore, computational methods and bioinfor-
matics tools for comprehensive genomic analyses of cancer must be designed to 
detect, estimate and model the gene isoform-level alterations stemming from the 
biological complexity and heterogeneity of human tumors and subtypes; otherwise, 
we risk ignoring important dynamics that are not discernible at lower resolutions of 
gene-level analyses.

 Platform-Independent Isoform-Level Gene-Expression Based 
Classification System (PIGExClass)

In this section, we describe a general purpose informatics workflow for deriving a 
tumor subtyping classifier (or gene-signature), using transcriptome data from a high-
dimensional platform and translating the derived signature to a clinically adaptable 
low-dimensional platform. PIGExClass was developed to derive numerically com-
parable measures of gene expression between different platforms and to translate the 
gene-panel (from the classifier) across platforms by combining a data- discretization 
[28] procedure with “variable selection”, a Random Forest-based variable selec-
tion algorithm [29]. The algorithm was first implemented for Glioblastoma mul-
tiforme (GBM) subtyping [27] and recently has been used for high-grade serous 
ovarian cystadenocarcinoma (HGSOC) [30]. The PIGExClass algorithm involves 
both model building and validation on independent patient cohorts and two differ-
ent platforms (Fig. 10.1). The key steps in the workflow are explained as follows.

Step 1: Data preparation: This step performs three main tasks:

• Calculate the gene-level or isoform-level expression estimates: For example, for 
Affymetrix exon-array data, the gene-level and isoform-level expression esti-
mates can be obtained using Multi-Mapping Bayesian Gene expression for 
Affymetrix whole-transcript arrays (MMBGX) [31] using the latest version of 
Ensembl database as the reference genome. The expression estimates are nor-
malized across the samples using a locally weighted scatter plot smoothing algo-
rithm (LOESS) [32]. Similarly, for RNA-seq data, estimate the gene/isoform-level 
expression by the best performing algorithm (e.g., RSEM [33], IsoformEx [34] 
or Kallisto [35]) based on our recent benchmarking study [36]. Transform the 
gene expression data to log-count per million and calculate associated precision 
weights by voom [37].
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• Calculate fold-change (FC) as a measure of a quantitative change of gene 
expression, defined by FC =  log2 (T/N), where T is the estimated expression 
values of a tumor sample and N is the median expression of normal (or matched 
control) samples.

• Retrieve clinical information relevant to survival (e.g., vital status, days to death, 
etc.). Samples with no such information will be removed.

Step 2: Data filtering: The purpose of this step is to eliminate highly correlated 
isoforms from selected isoforms of a gene. If two or more isoforms of a gene are 
highly correlated (r ≥ 0.8) in their expression patterns across the tumor samples, 
retain only the isoform with the highest mean absolute deviation (MAD), measuring 
variability across patients, and eliminate the other.

Step 3: Clustering analysis: Consensus clustering approaches along with meth-
ods for interpretation and validation of the robustness of the derived clusters are 
implemented in this step. It contains the following tasks:

• Perform consensus clustering [38]. In general, consensus clustering is an effec-
tive and robust technique in discovering unsupervised class membership of het-
erogeneous cancer data where intrinsic subgroups may exist sharing biological 
features. Consensus clustering assesses stability of the clustering results by mul-
tiple runs of the clustering algorithm (e.g., k-means, Non-negative Matrix factor-
ization (NMF) clustering) on resampled data, which we and others have 
successfully applied in previous studies [27].

• Evaluate the groupings by using the cophenetic correlation coefficient and sil-
houette width methods [39]. The larger silhouette width of a sample indicates 
higher similarity to its own group than any other group members. These methods 
are available in the R packages ‘ConsensusClusterPlus’ and ‘cluster.’

Transcriptome data from platform 1 (e.g., Exon-
array data of both cancer and normal controls)

Estimate gene-level isoform level expression
values from exon-array or RNA-seq data

Apply NMF Clustering on GBM
samples, using isoform-level
expression profile to discover

the groups

Isoform-level fold
changes

(GBM/Normal) and
data discretization

Build multi-class classification model, Select most
discriminating transcripts by RandomForest-based

methods & test the classifier

Translate the classifier to RNA-seq (or RT-qPCR)
based platform

Transcriptome data from
platform 2 (e.g., RNA-seq)

RNA-seq data (155 GBM & 2
normal brain samples).

Isoform-level fold change and
data discretization

Subtype prediction by classifier

Verify concordance with
true group labels (from NMF
clustering) and exon-array

data based class predictions

Tumor stratification & Classification Model Building Validation & Testing of the classifier

Fig. 10.1 PIGExClass workflow to perform transcriptome analysis and build a gene- or isoform-
level classifier
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Step 4: Classification analysis: Implement four functions in order to group the 
samples into different molecular subgroups and evaluate the survival differences 
between the derived patient groups.

• Data discretization: The goal of this module is to transform the continuous FC 
data matrix into a discretized data format. Our recent studies [27, 40] have shown 
that data discretization, in particular the equal frequency binning (Equal-F), 
increased the correlation of gene expression FC values across different plat-
forms, such as RNA-Seq, exon-array, and RT-qPCR. Moreover, the classifiers 
trained on discretized fold-change data provided platform-independent gene sig-
natures with a high degree of concordance and prediction accuracy. Therefore, 
the Equal-F data discretization is implemented in this step. However, other data- 
discretization methods could be explored and compared here.

• Feature Selection: The Random Forest (RF) based feature selection algorithm 
uses both backward elimination strategy and the importance spectrum to search 
a set of important variables [41]. Multiple random forests are iteratively con-
structed to search for a set of variables in each forest that yields the smallest 
out-of-bag (OOB) error rate. The main advantage of this method is that it returns 
a very small set of genes while retaining high accuracy.

• Classification: We implemented RF [42], an ensemble learning method that 
builds decision trees with binary splits, which we have successfully applied in 
our previous studies [4, 43–45]. Each tree is grown randomly in two steps. First, 
a subset of predictors is chosen at random from all the predictors. Second, a 
bootstrap sample of the data is randomly drawn with replacement from the origi-
nal sample. For each RF tree, observations not used for training are utilized to 
calculate the classification accuracy.

• Survival analysis: Kaplan–Meier survival curves are plotted to show the survival 
differences. Log-rank test is applied to determine p-values for the statistical sig-
nificance. The functions available in the R package ‘survival’ [46] are imple-
mented in this step.

 Application of PIGExClass GBM Subtyping

GBM or grade IV gliomas are molecularly heterogeneous and are the most lethal 
of the malignant adult brain tumors. The GBM disease prognosis remains dismal, 
even with aggressive combination therapies, with median survival of 15  months 
after diagnosis [47]. Molecular subtyping by TCGA consortium, based on gene-
level expression profiles, has led to the identification of four molecular subgroups 
(namely, neural-N, proneural-PN, mesenchymal-M, and classical-CL), but the 
derived subgroups did not show any significant survival and prognostic stratification 
unless lower histopathological grade glioma patients were included [48].

The clustering and classification modeling steps of the workflow were per-
formed by analyzing the unprocessed exon-array and clinical data for 419 GBM 
and 10 normal brain samples downloaded from TCGA data portal. Clustering of 
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the GBM samples, based on isoform-level gene-expression profiles, recaptured the 
four known molecular subgroups but switched the subtype for 19% of the samples, 
resulting in significant (p  =  0.0103) survival differences among the refined sub-
groups. A four-class classifier, which requires only 121 transcript variants, assigned 
GBM patients’ molecular subtype with 92% accuracy. In the validation phase, the 
transition of the classifier from exon-array to an independent platform was first 
successfully evaluated by applying on 155 RNA-seq TCGA samples. An RT-qPCR 
assay was designed to profile the gene expression patterns of the transcripts in the 
gene-signature and validated in an independent cohort of 206 GBM samples.

 Application of PIGExClass High-Grade Serous Ovarian 
Carcinoma (HGSOC) Subtyping

HGSOC accounts for 70–80% of ovarian cancer deaths, with little improvement in 
overall survival in recent years [49]. The majority of HGSOC patients respond to 
initial standard therapy, which includes maximal cytoreductive surgery followed 
by platinum and taxane chemotherapy. However, most tumors recur and become 
increasingly resistant to chemotherapy, with an overall five-year survival rate of 
approximately 30% [50]. As a heterogeneous disease, the molecular subtyping of 
HGSOC tumors may serve as a useful clinical tool to predict response to therapy 
and guide novel personalized medicine treatment plans.

Indeed, four molecular subtypes of ovarian cancer were first identified by the 
Australian Ovarian Cancer Study (AOCS) via microarray-based gene expression 
profiling of a cohort of 285 serous and endometrioid tumors of the ovary, peritoneum, 
and fallopian tube [51]. Using 489 HGSOC tumor samples, TCGA consortium sim-
ilarity identified four molecular subgroups—Mesenchymal (M), Immunoreactive 
(I), Differentiated (D) and Proliferative (P)—which largely overlap with the AOCS 
subtypes [52]. Similar to GBM gene-based subtyping, HGSOC molecular subtypes 
published by the TCGA consortium did not show statistically significant survival 
differences. Therefore, an important question is whether the unsupervised cluster-
ing of samples based on gene-level expression estimates, which largely ignores the 
isoform-level expression changes, is still the best approach to identify clinically 
relevant subtypes that associate with prognosis.

We, therefore, applied the PIGExClass algorithm to derive a novel platform- 
independent classification system for molecular subtyping with the goal of iden-
tifying subgroups of HGSOC with differential survival outcomes. The model 
development and validation phases were performed using the unprocessed 
Affymetrix exon-array (569 tumor and 9 normal) and RNA-seq (376 tumor) datas-
ets, respectively. TCGA HGSOC datasets along with the clinical annotations were 
downloaded from the GDC portal. Clustering of the HGSOC samples recaptured 
the four TCGA molecular subgroups (namely, Differentiated—D; Proliferative—P, 
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Mesenchymal—M, and Immunoreactive—I) but switched the subtype for 22% 
of the samples, resulting in significant (p = 0.006) survival differences among the 
refined subgroups. Both gene-level and isoform-level classifiers achieved more 
than 92% prediction accuracy when tested on independent samples profiled on the 
exon- array platform. When the platform translatability was tested by applying the 
isoform- level classifier on RNA-seq data, the subtyping calls were in agreement 
with the predictions made from exon-array data for 95% of the 279 samples that 
were profiled by both of the platforms.

In both examples, we found that the classification models, trained and tested 
on data from the same platform, yielded similar accuracies in predicting the can-
cer subgroups. However, when dealing with cross-platform data, from exon-array 
to RNA-seq, the classifiers yielded stable models with the highest classification 
accuracies only on data transformed by equal frequency binning data discretiza-
tion. Without the data-discretization step, the accuracies of the classifiers dropped 
to unsatisfactory levels. In machine learning, data discretization is mainly used as 
a data pre-processing step for various reasons. Examples include, (1) classification 
methods that can handle only discrete variables, (2) improving the human interpre-
tation, (3) faster computation process with a reduced level of data complexity, (4) 
handling non-linear relations in the data (e.g., very highly and very lowly expressed 
genes are more relevant to cancer subtype), and (5) harmonizing the heterogeneous 
data. In the PIGExClass workflow, we found that simple unsupervised discretization 
indeed improved the classification accuracy by harmonizing the data that come in 
different scale and magnitude from different gene expression platforms. The data-
discretization step is critical to derive numerically comparable measures of gene 
expression between different platforms and to translate the classification models 
(consisting of multiple transcript variables) across platforms.

These published results demonstrated the efficacy of PIGExClass in the design 
of clinically adaptable molecular subtyping assay, either using RT-qPCR or NGS 
based assay for GBM and HGSOC molecular sub-typing, see the publications [27, 
30] for further details. In summary, the gene- or isoform-level classifiers derived 
from PIGExClass workflow provide a quantitative and reproducible stratification 
of cancer patients with prognostic significance, with the potential to improve pre-
cision therapy and the selection of drugs with subtype-specific efficacy [53, 54]. 
The PIGExClass workflow described here can be applied to other cancer types for 
molecular classification and identification of subgroups with better prognostic and 
diagnostic value.

The workflow involves both development and validation phases of molecular 
subtyping assay design and translation of the derived classifier to a clinically appli-
cable diagnostic assay.
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Chapter 11
Tumor Sequencing: Enabling Personalized 
Targeted Treatments with Informatics

Jinhua Wang

 Introduction

Recent progress in next-generation sequencing (NGS) technologies and parallel 
innovations in informatics methods have enabled the analysis of whole genome 
sequencing (WGS), whole exome sequencing (WES), and RNA transcriptome 
sequencing (RNA-Seq), leading to the identification of a huge number and diver-
sity of genomic and genetic abnormalities in tumor samples [1]. Several large-scale 
investigations using the NGS sequencing platforms, such as The Cancer Genome 
Atlas (TCGA), have profiled tumor genomes in reasonably sized cohorts in 33 dif-
ferent tumor types including breast [2], central nervous system [3], endocrine [4], 
gastrointestinal [5], gynecologic [6], head neck [7], hematologic [8], skin [9], soft 
tissue [10], thoracic [11] and urologic system [12] cancer tissues. The TCGA data-
set encompassing 2.5 petabytes of data describing tumor tissue and matched normal 
tissues from more than 11,000 patients, is publically available and has been used 
widely by the research community [11, 13–16].

Initial analyses of these sequencing efforts have determined and archived cancer 
type-specific mutations, mutation allele frequencies, transcriptional or epigenetic 
signatures of cancer subtypes and mutational signatures of cancer genomes. Many 
clinically actionable gene mutations were identified and annotated in different tumor 
types [17]. Gene mutations or transcription signatures that might be predictive bio-
markers for targeted therapy and prognostic biomarkers have also been identified.

These targetable mutations, tumor specific transcription signatures and other 
genomics features acquired by NGS sequencing lay the foundation for targeted and 

J. Wang (*) 
Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA 

Cancer Bioinformatics, Masonic Cancer Center, University of Minnesota,  
Minneapolis, MN, USA
e-mail: wangjh@umn.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18626-5_11&domain=pdf
mailto:wangjh@umn.edu


162

personalized cancer treatments [18]. We will elaborate on tumor transcriptome pro-
filing, exome and gene panel sequencing below to discuss technologies and infor-
matics involved in groundbreaking targeted cancer treatments. We will also provide 
an introduction to the current tumor genomics data sharing networks.

 Cancer Transcriptome Profiling: From Transcriptomics 
to Precision Oncology

With the growing availability of NGS technologies, information resources on gene 
expression profiles of normal and tumor tissues have grown significantly. With the 
availability of large, annotated compendia of gene expression profiles across normal 
tissues from data sources such as GTEx [19, 20], tumor tissue transcription pro-
files from the efforts of TCGA and the International Cancer Genome Consortium 
(ICGC), and cell lines transcription data sets of ENCODE [21] cell lines and NCI- 
60 [22], scientists now have a much clearer and more comprehensive understanding 
of the structure of global gene function in normal tissues and tumor tissues.

Many products have been developed and commercialized based on transcrip-
tion profiles of tumor tissues. The clinical validations of these products are among 
the great achievements of precision oncology. For example, prognostic panels are 
now available and are clinically used for many major cancer types, including breast 
(MammaPrint [23], Oncotype DX [24] and Prosigna [25]), lung (GeneFx [26]), 
prostate (Oncotype Dx, Prolaris [27]) and colon (ColoPrint [28]). Similarly, the 
prediction analysis of microarray (PAM50 [29]) signatures has been developed to 
classify breast cancer into molecular subtypes. The four intrinsic subtypes of breast 
cancer (luminal A, luminal B, Her2 positive and basal-like) were shown to be inde-
pendently associated with clinical outcomes and harbor a different set of genetic 
aberrations. The PAM50 expression test is among the most widely known and clini-
cally successful cancer diagnostics. These panels measure gene expression levels 
and make fairly accurate diagnostic and prognostic predictions with high specificity 
and sensitivity.

With rapid NGS technology development and a significant decline in the costs 
of whole-transcriptome sequencing, embedding multiple panels within a single 
assay has become viable. Comprehensive whole transcriptome profiling will be 
particularly advantageous in areas where gene expression signatures are not yet 
established and for retrospective clinical trials. For example, RNA-seq profiling of 
Philadelphia chromosome-like acute lymphoblastic leukemia (ALL) identified its 
phenotypic similarity to IKZF1-deleted ALL and many actionable kinase fusions, 
provided potential gene signatures to identify subgroups of patients for potential 
tailored targeted therapy [30].

Core analytical informatics methods for transcriptome analysis include quality 
control and sequence reads alignment processing pipelines developed for RNA-seq 
transcriptome analysis, differential expression analysis and predictive modeling. 
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The actual analysis of transcriptome RNA-seq data starts with quality control, read 
alignment with and without a reference genome, summarize mapped read counts 
and deduce gene and transcript expression. The second step is to select optimal 
approaches for detecting differential gene expression. The differential expressed 
gene list will facilitate the following feature gene selection for predictive modelling.

Quality control for the raw sequence reads involves the analysis of sequence 
quality, GC content, the presence of adaptors, overrepresented k-mers and dupli-
cated reads in order to detect sequencing errors, PCR artifacts or contaminations. 
Acceptable duplication, k-mer or GC content levels are experiment- and organism- 
specific, but these values should be homogeneous for samples in the same experi-
ments. Fastqc [31] is a popular tool to perform these analyses on Illumina reads, 
whereas NGSQC [32] can be applied to a variety of platforms. As a general rule, 
read quality decreases towards the 3′ end of reads, and if it becomes too low, bases 
should be trimmed to improve mappability. Software tools such as the FASTX- 
Toolkit [33] and Trimmomatic [34] can be used to discard low-quality reads, trim 
adaptor sequences, and eliminate poor-quality bases.

Sequence reads passing quality control are typically aligned to either a genome or 
transcriptome gene sets. An important mapping quality parameter is the percentage 
of mapped reads, which reflects the overall sequencing accuracy and the potential 
presence of contaminating DNA. For example, the normal range of RNA-seq reads 
mapped onto the reference genome sequence fall between 70% and 90% depending 
on the read mapper used, with a significant fraction of reads mapping to a limited 
number of identical regions equally well (‘multi-mapping reads’). When reads are 
mapped against the transcribed gene sets, the mapping percentages will be slightly 
lower because reads coming from unannotated transcripts will not be mapped, and 
we will also see significantly more multi-mapping reads because of reads falling 
onto exons that are shared by different transcript isoforms of the same gene.

Other important parameters are the uniformity of read coverage on exons and the 
mapped strand. If reads primarily accumulate at the 3′ end of transcripts in poly(A)-
selected samples, this might indicate low RNA quality in the starting material. The 
GC content of mapped reads may reveal PCR biases. Tools for quality control in 
mapping include Picard [35], RSeQC [36] and Qualimap [37].

After transcript quantification values are calculated using the mapped reads 
count, normalization methods are applied to adjust for the biases caused by GC 
content, gene length, and sequence depth. The normalization procedure is essen-
tial for comparisons across samples. So far there is not clear consensus on how to 
choose the right normalization methods. Various bench marking studies conclude 
that the widely used methods, RPKM, and FPKM, (reads/fragments per kilobase 
per million mapped) normalize away the most important factor for comparing sam-
ples, which is sequencing depth, whether directly or by accounting for the num-
ber of transcripts, which can differ significantly between samples [38, 39]. These 
approaches rely on normalizing methods that are based on total or effective counts, 
and tend to perform poorly when samples have heterogeneous transcript distribu-
tions, that is, when highly and differentially expressed features can skew the count 
distribution. While the TPM (Transcripts per kilobase per million mapped) measure 
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seems to be more appropriate in dealing with this issue since the sums of normal-
ized reads of each sample are the same across all samples, making it more suit-
able to compare samples, another option is the TMM (trimmed mean of M values) 
normalization method, which shows better performance in simulation studies [40].

Many statistical methods have been developed and are used widely in detect-
ing differential gene or transcript expression from RNA-seq data, and the major 
practical challenge is how to choose the most suitable tool for a particular RNA-seq 
data analysis task. There are various benchmark results comparing the performance 
of different methods. Some methods, such as the popular edgeR [41], use raw 
sequence read counts and introduce possible bias sources into the statistical model 
to perform an integrated normalization as well as a differential expression analy-
sis. In other methods, the differential expression requires the data to be previously 
normalized using the method as just described. DESeq2 [42], like edgeR, uses the 
Negative Binomial as the reference distribution and provides its own normalization 
approach. BaySeq [43] and EBSeq [44] are Bayesian approaches, also based on the 
negative binomial model, that define a collection of models to describe the differ-
ences among experimental groups and to compute the posterior probability of each 
one of them for each gene. While some of the differential expression tools can only 
perform uni- variant comparison, others such as edgeR, limma-voom [45], DESeq, 
DESeq2, and maSigPro [46] can perform multiple variant comparisons, include dif-
ferent covariates or analyze time-series data.

In the applications of cancer transcriptome profiling, sequencing coverage and 
depth are key factors in determining analytical strategies. The depth that an RNA- 
seq library should be sequenced depends mostly on the goal of the application and 
is often limited by the sequencing platform. In general, if RNA-seq is used for the 
detection of genetic variants, such as mutations or fusion genes, higher sequencing 
depth above 40 million reads is warranted. On the other hand, if the use of RNA-
seq is only for transcriptional profiling, moderate amounts of sequencing from 10 
million to 15 million reads will generate good results. Including more replicates 
in the experimental design is a substantially better strategy than including more 
reads. However, much higher read depths (100 million paired-end reads or more) 
are required for the study of alternative splicing or allele-specific expression [47].

The clinical utility of RNA-seq transcriptome profiling for personalized immuno-
therapy has been demonstrated in a landmark longitudinal study that demonstrated 
signatures of adaptive immunity are predictive of response to immune checkpoint 
blockade treatment [48]. As both prognostic and predictive approaches require the 
expression levels of hundreds of genes, their clinical translation will depend on the 
routine use of whole-transcriptome RNA-seq profiling or custom- targeted panels. It 
has been shown that comprehensive immune-phenotypic data can be obtained from 
RNA-seq transcriptomes and that they provide unique insights into the immunologi-
cal heterogeneity of metastatic tumors across all major primary tissue types. RNA-
seq data are also particularly valuable for the development of personalized cancer 
vaccines, where they can be used to identify chimeric fusion proteins that contain 
putative mutant epitopes and help in the selection of potentially highly abundant 
neoantigens [49].
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Single cell RNA-seq has been proven to be an efficient strategy to dissect tumor 
heterogeneity in order to understand tumor micro-environment. Customized treat-
ment of tumor based on the single cell RNA-seq analysis of cancer tissues promises 
to provide more accurate treatment strategy to target tumor subclones and predict 
response to immunotherapies [50]. Single cell assays also hold great promise for 
improving the accuracy of conventional treatment selection.

 Cancer Exome/Panel Sequencing: From DNA Variants 
Detection to Targeted Cancer Treatment

Whole genome sequencing (WGS) and whole exome sequencing (WES) of tumors 
have identified numerous genetic variants, including DNA mutations, small insertion 
and deletions, and copy number variations. Many of those genetic abnormalities are 
potential targets for new targeted treatment. Targeted therapy against certain action-
able gene mutations shows a significantly higher response rate as well as longer sur-
vival compared to conventional chemotherapy, and has become a standard therapy 
for many cancer types. Based on sequencing results of certain mutations or mutation 
load, patients can get recommendations to undergo targeted therapy or immuno-
therapy. In cases where there are no available FDA approved drugs for the genetic 
mutations detected in the patients, patients can be routed to genetic variants- based 
clinical trials. For that purpose, a NGS-based sequencing panel that can simultane-
ously target multiple genes in a single investigation has been used in daily clinical 
practice. To date, a variety of sequencing panels focused on cancer related genes or 
specific tumors have been developed to investigate genetic aberrations with tumor 
somatic variants, high-level copy number alterations, and gene fusions through 
comprehensive bioinformatics analysis. Because sequencing panels are efficient and 
cost-effective, they are quickly being adopted outside the lab, in hospitals and clin-
ics, in order to identify personal targeted therapy for individual cancer patients [51].

The predesigned panel covers the most commonly mutated genes or candidate 
actionable genes in various cancers. A gene panel may contain anywhere from a 
single digit number of genes to a few thousand genes. Many gene panels also cover 
genetic regions with high copy number variations. On one hand, custom panels or 
tumor-specific predesigned panels are developed to investigate the genes that are 
specifically focused on or found in a tumor-specific mutation. While TP53 muta-
tions are broadly identified in various cancers, most actionable gene mutations are 
identified differently among cancer types. For colorectal cancer, genetic testing of 
KRAS, NRAS, and BRAF mutations are necessary, while on the other hand, for lung 
adenocarcinoma, testing of EGFR, KRAS, BRAF and HER2 mutations and ALK, 
RET, and ROS1 fusions are necessary. It has been reported that gene mutation pro-
files differ even in different histological cancer subtypes. Therefore, it is neces-
sary to select the appropriate sequencing panel for patients with different types of 
cancers, in order to determine actionable gene mutations to develop personalized 
targeted therapy.
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Several cancer centers all over the world have developed their own in-house 
sequence panels. Most notably, the Memorial Sloan Kettering (MSK) Cancer 
Center developed MSK-IMPACT (Integrated Mutation Profiling of Actionable 
Cancer Targets) [52], a hybridization capture-based NGS panel that can detect 
protein- coding mutations, copy number alterations, selected promoter mutations, 
and structural rearrangement in 468 cancer-associated genes. In 2017, the MSK-
IMPACT panel test was approved by the US Food and Drug Administration (FDA) 
for in vitro diagnostic tests for tumor profiling and was recommended CMS cov-
erage status [53]. To date, MSK-IMPACT has sequenced tumors from more than 
20,000 patients with advanced cancer. According to a recent study that sequenced 
tumors from more than 10,000 patients using MSK-IMPACT, nearly 37% of 
patients had at least one actionable gene mutation and 11% were able to participate 
in clinical trials of treatments that directly targeted their genetic alterations [54]. 
One impressive feature of MSK-IMPACT is that this panel can be used to analyze 
both tumor and matched normal tissue and blood, and it identifies both somatic and 
germline mutations. Therefore, MSK-IMPACT results in accurate somatic muta-
tion calls due to the elimination of germline variants. MSK-IMPACT also accu-
rately determines mutational signatures to reveal multiple mutational processes 
and tumor mutation burden which can identify patients who can receive the most 
benefit from immunotherapy. In addition, germline variants can provide therapeu-
tic opportunity as well as cancer susceptibility information. The FDA approved a 
PARP inhibitor for the germline BRCA1/2-mutant ovarian cancer. Furthermore, 
the PARP inhibitor is also approved for maintenance therapy in both germline and 
somatic BRCA-mutant ovarian cancer. The FDA has also approved the Oncomine 
Dx Target test [55], which targets gene mutations in non-small cell lung cancer 
(NSCLC). This test is used as a companion diagnosis to aid in the selection of spe-
cific drugs for individual NSCLC patients with EGFR mutations, BRAF mutations 
or ROS1 fusions.

The Foundation Medicine panel FoundationOne [56] and the Caris [57] panel 
are also among the FDA approved gene panels. There are many companies that 
offer similar products as will be described in the following section. With the panel 
sequencing result, a report with detailed bioinformatics analysis of the gene muta-
tions, the potential targeted therapies, clinical trials, and other mutation-related met-
rics are generated to facilitate clinical decision making.

 Cancer Genomics Data Sharing: Large Genomic Datasets 
Realize the Full Impact of Precision Oncology

Precision oncology involves the analysis of a person’s tumor genome and the use 
of this analysis to inform diagnosis, prognosis, disease management, and eventually 
personalized treatment, tailor-made to the individual’s germline or somatic genomic 
profile. To realize the full impact of genomic medicine, genomic and clinical data 
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must be interoperable across traditional geographic, jurisdictional, sectorial and 
domain boundaries. Extremely large and diverse data sets are needed to provide a 
context for the interpretation of genetic information and the annotation of genetic 
variants. No single research group, institute or company will be able to collect a 
sufficiently large genomic dataset; it is only through cooperation, together with 
super computing power that we can truly understand how genotypes and pheno-
types relate. Various cancer genomics data sharing networks have been formed and 
many of these are building large patient cohorts through the participation of partner 
institutes to harness the power of big sample size and population diversity. The fol-
lowing four major cancer genomics data sharing networks are important examples 
and will be summarized below along with a brief appraisal of strengths and weak-
nesses (as of the time of the writing of this book),

Additional details about these networks are provided in Table 11.1.

 1. Oncology Research Information Exchange Network (ORIEN) [58]
ORIEN is a research partnership started in May 2014 by Moffitt and The Ohio 
State University’s The James Comprehensive Cancer Centers. Fifteen current 
members are part of the network as of February 2017. Notable members include: 
Moffitt, Ohio State, City of Hope, Iowa, Colorado, and the University of South 
California. It is the oldest network and currently has the most active members. It 
is driven by a Total Cancer Care protocol that all members are required to imple-
ment, which standardizes the data collection process across member 
organizations.

• Strengths: Comprehensive, stringent and well thought out, detailed protocols, 
strong bioinformatics infrastructure for clinical trials.

• Weaknesses: Clinical reports still in development, implementation procedure 
may prove to be difficult and risky given the different biorepository standards 
in different institutes.

 2. Caris Centers of Excellence
A collective effort started 2 years ago, led by Caris Life Sciences and chaired by 
Dr. John Marshall at the Lombardi Georgetown Comprehensive Cancer Center 
(CCC). There are currently 15 members. Notable members include Georgetown 
CCC, USC CCC, and Fox Chase CCC. The network objective is to capture and 
track protein and genomic information with matched clinical data across mem-
ber sites to advance the delivery of molecular testing and establish standards of 
care for profiling tumors.

• Strengths: Well-supported and balances research and clinical applications. 
Well-developed clinical report for targeted therapy and genetic risk assess-
ment. Participating maintenance costs are minimal. Valuable tumor boards—
with emphasis on research.

• Weaknesses: The implementation of C.O.D.E. umbrella protocol could be 
challenging, but not uniquely. Tissue sample requirements are high (4–6 18 
gauge cores).
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 3. AACR’s Genomics Evidence Neoplasia Information Exchange (GENIE) [59]
This international data-sharing project seeks to create a real-world set of registry 
data that aggregates and links clinical-grade cancer genomic data with limited 
clinical data (tumor staging, treatment, outcome data not currently available) 
from cancer patients treated at multiple international institutions. Annually, they 
plan to publicly release de-identified data. There are currently 12 members. 
Notable members include: Sloan Kettering, Vanderbilt, Dana Farber, MD- 
Anderson, Sidney Kimmel.

• Strengths: Clear focus on research value. Data abstraction reimbursement of 
$100/case. 10% IDC could prove valuable. Easy access to shared datasets, 
excellent open source software environment.

• Weaknesses: Very limited clinical data. No current, ready-to-use clinical 
report forms. Would need to be accompanied by a membership with another 
network to support local clinical usage. Requires application submission 
process.

 4. Tempus [60]

• A company developed by Eric Lefkofsky to streamline the integration of 
genomic data with clinical decision-making. The group specializes in storing 
big data and they have enlisted institutions like Mayo Clinic, Michigan Cancer 
Center, and Lurie CC (Northwestern), to build the necessary infrastructure to 
be successful. Strengths: Resource-rich environment that can arguably adapt 
as needed; data management and visualization tools are very strong compared 
to similar offerings in other environments.

• Weaknesses: This is a relatively new initiative and time will tell the degree of 
adoption and success. Development of a clear and compelling business model 
will be a pre-requisite of success.
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Chapter 12
Largescale Distributed PPM Databases: 
Harmonizing and Standardizing PPM 
Cohorts and Clinical Genomics Data 
Sharing Consortia

Deanna Cross and Catherine A. McCarty

 Introduction

As the era of “omic” (genomics, proteomics, metabolomics, etc) medicine pro-
ceeds, there is a need for larger cohorts to be created in order to test hypotheses 
and generate and validate discoveries. This is a particularly acute need when the 
events and outcomes being collected and investigated are rare. In an effort to estab-
lish these large cohorts, both disease-specific and general population biobanks and 
associated databases have been combined to form super-cohorts to answer questions 
of interest. This combination of several different cohorts into one larger cohort for 
data analysis is most often performed with distributed data analysis methods where 
samples are held within local repositories and data elements are collected and har-
monized within a central analysis center.

This method of cohort combination presents a number of unique challenges. 
Initial decisions need to be made regarding how data elements will be collected and 
shared. In some cohorts, data elements are static and samples are shipped with a 
preset metadata file for a single sample extraction and analysis. In other cohorts, the 
samples are kept within the site and both phenotypic and biological biomarker data 
are sent to the central analysis center. In this chapter, we will discuss the strengths 
and challenges of these types of cohort creation.
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Whether samples are collected for analysis from different biobanks or individual 
level data from previous analyses are used, there are a number of universal steps that 
must occur prior to analysis. Before combination, all of the existing data elements 
need to be harmonized. Data harmonization is the process in which data variables 
measuring the same type of entity from different sources are transformed into a 
standardized data format across all samples and populations. Data harmonization 
efforts have a number of challenges that must be addressed in order to have a suc-
cessful outcome. All aspects of the data must be harmonized and standardized in 
order for an assessment to be valid. This includes quantitative laboratory tests, clini-
cal outcomes and social measures used for data analysis (Fig. 12.1).

In order to determine appropriate analysis and to harmonize biological sam-
ples, data elements from collection and analytic analysis need to be evaluated. 

Determine if
sample variables

of interest
already exist or
need analysis

If samples need analysis, collect
sample pre-analytical variables 

If sample data already exist,
collect quality measures and
transform data into a uniform

data structure

Determine if
phenotypic and
clinical variables

exist or need
creation

If phenotypic and clinical data
need to be created, develop and
utilize a distributed phenotyping

algorithm

If utilizing previously collected
phenotypic and clinical data,

transform data into  equivalent
definitions of disease states and

phenotypes

Determine if
psychosocial and
survey data exist

or need to be
collected

If survey or psychosocial data
need to be collected, standardize

responses across ethnic and
demographic groups

If psychosocial and survey data
are previously collected,

transform variables to common
domains across different surveys

Determine sample and
data availability and

identify ethical and legal
requirements for use.

Fig. 12.1 Schematic of workflow for creating cohort using distributed PPM databases
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Pre- analytical variables related to sample collection and storage and data elements 
that explain the methods and equipment used for previous testing need to be con-
sidered. As an example, prior to analysis for protein, RNA, DNA or methylation 
assays, there needs to be a clear understanding of the testing performed and any 
 uncertainties or biases within the test. Each sample needs to be associated with a 
set of metadata elements that include preclinical features such as sample storage 
and collection methods. For data elements such as genotyping, the data need to be 
converted to a single build number within the human genome, and genotyping, data 
cleaning and conversion need to be transparent.

Clinical data can be harmonized using a number of different methods, including 
providing a distributed phenotyping algorithm to sample sites or defining a clinical 
phenotype by combining or equilibrating previously collected elements. To harmo-
nize clinical data elements such as diagnosis through a distributed algorithm, there 
needs to be a defined algorithm that is tested for diagnosis fidelity across multiple 
cohorts in order to achieve accurate categorization. When using previously collected 
data, data must be standardized through either shared data elements or through the 
creation of equivalency tables. It is also important to recognize the limitations and 
strengths of any disease or condition definition.

When harmonizing social measures, it is important to define the social domains 
that are being measured in any survey and to determine whether values from dif-
ferent instruments can be cross-validated for data set combinations. This can be 
done either through providing all relevant survey instruments to a smaller cohort for 
validation or through statistical methodologies based on the construct being mea-
sured. Furthermore when collecting and analyzing social measures across different 
cultural and economic backgrounds, different correlation factors may need to be 
utilized to standardize the data.

Finally, it is important to understand the ethical and legal implications of com-
bining a diverse set of samples. Samples were likely collected with different IRB 
frameworks, and there must be a clear understanding of what research question or 
questions are allowable under each consent. In general, consent for the proposed 
research project can be provided either site-by- site or through a centralized clear-
inghouse. The nature of the consent will depend on both the proposed study as well 
as the biobank(s) being queried.

Different biobank consortia and distributed databases have approached each 
of these problems differently. In this chapter we will determine what types of 
clinical problems are best approached using a distributed PPM database and how 
different research groups have tackled the challenges presented in harmonizing 
disparate sources. We will discuss the workflows and data distribution challenges 
that need to be addressed prior to establishing a large cohort and the benefits 
and limitations of a distributed database. Furthermore, we will discuss the cur-
rent tools available for data harmonization and the standardized elements that 
are currently available for planning future amalgamation into large distributed 
networks.
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 Clinical Problems that May Be Addressed with Distributed 
PPM Databases

In general, rare events or outcomes need large sample sizes in order to have enough 
power for analysis. It is only through coordination of genotyping and phenotyping of 
many different individuals in multiple databases that rare variants that affect disease 
can be found. Examples of disease-specific consortia being used for rare variant detec-
tion include diabetic kidney disease [1], Alzheimer’s disease [2] and age-related macu-
lar degeneration [3]. It has been demonstrated that distributed PPM databases can be 
used to ascertain enough samples to create a cohort large enough to investigate a rare 
outcome, such as a rare disease. The eMERGE consortium developed and validated 
electronic algorithms to classify phenotypes across multiple biobanks in order to ensure 
that enough individuals were available to provide power for disease specific studies [4]. 
Currently the NIH All of Us study is enrolling over a million participants across the 
country with different disease states and electronic health records that will be used to 
create cohorts of individuals with similar disease states across the population [5].

Even for common diseases, there is often a need to use a large distributed cohort in 
order to achieve a sample size large enough for analysis of certain disease outcomes 
or disease subtypes. An example of this is the use of multiple distributed sample banks 
for diseases, such as EyeGENE, an NEI administered biorepository and database for 
subjects’ clinical eye exam data and family history [6] (https://eyegene.nih.gov/).

 Challenges and Tools for Identifying Distributed Cohorts 
Available for Analysis and Further Data Collection

Unfortunately, there is no central clearing house for previously collected cohorts, 
and each disease type and individual biobank may have different requirements for 
access and rules for sample and data utilization. There are a number of websites that 
list individual cohorts that could be used by investigators in future research endeav-
ors. Table 12.1 lists a few examples of broad cohort collections.

It is important to remember that each cohort may have different ethical and legal 
restrictions for use. Some of the websites with cohort information include details 
about the cohort, such as contact information, IRB consents, and sample availability, 
while other sites may list only the cohort and the contact information. In addition 
to listed biobanks, there may be disease-specific consortia available with samples 
stored either in a single site like the PLCO EEMS biobank (https://prevention.can-
cer.gov/major-programs/prostate-lung-colorectal/etiology-and-early-marker) [7] or 
at each individual clinical site.
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 Challenges and Tools for Samples that Have Not Been 
Genotyped or Do Not Have Analytical Data Already Attached

There are a number of sample sources that do not have analytical data attached 
prior to requesting access to the data. In these instances, pre-analytical vari-
ables may need to be collected from the PPM distributed databases to ensure 
that accurate sample analysis is achieved. As an example, the quality of results 
with expression analysis will vary based on the tissue of interest, the sample 
preparation and fixation methodology and the sample collection date in rela-
tion to the disease course. All these variables may be important to have a valid 
analysis. A list of necessary requirements needed to ensure accurate and repeat-
able analytic testing of samples has been created [8]. For immunohistochemistry 
experiments, the minimum standards are outlined in the MYFISHE specifica-
tions [9]. For RNA analysis, there are several different standards– a comprehen-
sive review is provided by Castel et al. [10]. Other tools can be found outlined 
on the NCI genome harmonization website [11]. Knowing these pre-analytical 
variables allows individual investigators to determine whether a sample is suit-
able for a planned analysis and makes results more likely to be repeatable. In 
some instances, the time between phenotypic data collection and sample collec-
tion may be important, particularly when using samples for RNA analysis and 
disease categorization.

Table 12.1 Websites that list different types of cohorts that could be used for research

http://www.birthcohorts.net Lists available birth cohorts
https://epi.grants.cancer.gov/Consortia/members Lists members in the NCI cohort consortium
https://biolincc.nhlbi.nih.gov/home NHLBI biospecimen and data coordinating 

center
https://repository.niddk.nih.gov/home NIDDK repository
https://www.nia.nih.gov/research/dab/
nia-virtual-repository

NIA list of repositories with available data 
and biospecimens

https://emerge.mc.vanderbilt.edu NHGRI biobank list of eMERGE 
collaborators and link to tools for 
harmonizing data

https://commonfund.nih.gov/gtex Genotype-tissue expression data and sample 
availability

https://neurobiobank.nih.gov Brain tissue and data inventory
http://specimencentral.com/biobank-
directory/#North%20American%20Biobanks

List of North American biobanks

https://www.ncbi.nlm.nih.gov/gap?db=gap dbGAP repository for genomic data and 
associated phenotype measures
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 Challenges and Tools for PPM Databases that Have 
Genotyped Data

Distributed databases may or may not have samples that have been genotyped pre-
viously; however, one of the advantages of using PPM databases is that combining 
biobanks that have genotypes readily available may reduce the costs of a study. 
Previously genotyped samples will need additional data cleaning and harmoniza-
tion prior to creating a combined dataset. Because there are a variety of genotyping 
platforms and genotyping chips within each platform, it is necessary to capture 
informative data elements prior to any analysis. Three important data elements that 
are necessary in order for any combined database to be utilized are the genotyping 
quality measures, the platform and chip used, and the build number of the human 
genome that the genotyping references. A discussion of the challenges and steps for 
data harmonization can be found in Turner et al.’s paper [12].

Quality measures include the quality of the sample, the platform and the geno-
type. This is often captured in information such as missingness, that is, the fre-
quency of missing values. In general, samples and genotypes with large missingness 
are excluded from final analysis. While the exact genotyping efficiency can vary 
from study to study, this threshold is generally set prior to analysis, with typical 
range for missingness between 1 and 2%. Another quality measure that may be 
available is the concordance rate, i.e., the rate at which duplicate samples have the 
same genotype. Generally concordance rates of less than 99% indicate poor quality 
genotyping either for the particular marker or the entire chip. Information on the 
platform used for genotyping as well as the standardized error curves are needed to 
ensure that batch-to-batch variability within the genotypes are not carried into the 
final database. There may also be batch effects as the genotypes being combined 
may have been done at different times and on different platforms. Therefore, it is 
advisable to determine whether the allele frequencies of the genotypes being used 
are different in different cohorts (accounting for the potential for population sub-
structure in any cohort).

Beyond quality control, it is important to know which platform and which 
particular chip were used and which build number of the human genome was 
used to build the chip. This information is necessary because different platforms 
code alleles differently; they can be in ACGT format, TOP format or AB format, 
which makes harmonization difficult and data analysis impossible until all data 
are in the same format. There are a number of tools that can be used to convert 
the genotypes to the same format. One good source for this is the converting tool 
available at the GenGen website [13] (gengen.openbioinformatics.org). Prior to 
analysis, the format and the human genome build need to be the same for all 
genotypes utilized.

All alleles need to be aligned with a single build number, because with each build 
number, the reference sequence and position could change. Polymorphisms have 
been combined, and even chromosome mapping of the polymorphism can change 
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with different build numbers; therefore, it is important to ensure that all genotypes 
are aligned with the same build number to ensure that comparisons are valid. It is 
possible to change genotypes to a common build number, using tools such as GACT 
[14] and Liftover [15]. Given that not every genotyping platform has the same geno-
types within every chip, there may be a need to use tools to obtain the genotypes 
of interest. In order to utilize different genotyping platforms, it may be necessary 
to impute genotypes for analysis. In general, two different methods of imputation 
can be used: local imputation, which uses the genetic information directly sur-
rounding the imputed genotype to make an inference, or global imputation, which 
is computationally intensive and uses all of the genetic information available for 
imputation. There are a number of bioinformatics tools that are available for impu-
tation. SHAPEIT [16] and Impute2 [17] are two programs that are widely used. It 
is important to remember that imputation is a probabilistic genotype, and it may 
be necessary to set thresholds for the call probability and to carry forward the call 
probability into the analysis.

For samples with next generation sequencing, the reference sequence used for 
sequence alignment is important information as different reference sequence ver-
sions will need harmonization prior to analysis. In addition, the depth of sequence 
coverage within both the entire batched sequence and any particular sequences of 
interest is important information, as next generation sequencing coverage may vary 
for different parts of the genome. Hart et al. [18] describe the technical challenges of 
harmonizing data from different sequencing platforms and times and, they outline 
the necessary steps to ensure accuracy for data analysis.

 Challenges and Tools for Phenotyping Samples from Diverse 
Datasets

Accurate phenotypic data are important for any analysis. When utilizing distrib-
uted databases there are a number of challenges that can occur when determining 
the phenotype. Some databases are static, with no ability to phenotype individuals 
beyond previously defined and collected variables. In this case, it is important to 
include the metadata that defines all of the phenotypic characteristics and to deter-
mine if the definitions are compatible. Fortunately, there are tools available for har-
monizing data sets that are not static. In some cases, this may mean scoring a small 
standard dataset across different cohort definitions as was done with the AMD 
consortium [3]. After the scoring is completed there will be a cross walk table for 
different variables. This type of data harmonization also will allow a researcher to 
determine if there are accuracy differences in the desired phenotype. The i2b2 data 
ontology was created so that different sample and patient banks could be queried 
with the same terminology, and so that sample banks that utilize the i2b2 ontology 
could be harmonized [19]. The PhenX toolkit is also a set of phenotypic tools that 
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have created consensus-guided phenotypes [20]. The BioShare project created a 
suite of tools for phenotypic harmonization with each data set residing in a local 
environment [21].

If, however, the phenotype of interest is not contained within a previously 
defined variable, there are methods for creating a phenotype. One validated 
method is through using a distributed algorithm [22]. This method has been exten-
sively utilized within large biobank consortia such as the eMERGE network [23]. 
Briefly, a single cohort is used to develop an algorithm using clinical data such as 
laboratory values, diagnoses, and medications. The positive and negative predic-
tive values (PPV and NPV) of the algorithm are calculated. In general a 70% or 
greater PPV is needed to test the algorithm on other cohorts. A test cohort from 
another biobank is then used to score the PPV and NPV. If the second cohort is 
also reliably classified accurately, then the algorithm can be used on all of the dis-
tributed biobanks. The eMERGE website [24] has a number of previously devel-
oped phenotyping algorithms and has been used as a model for development of 
distributed phenotyping, including both a PheKB [25] tool and the eleMAP tool 
(https://victr.vanderbilt.edu/eleMAP/) (see Chap. 15 for a more thorough discus-
sion of the eMERGE network).

 Challenges and Tools for Harmonizing Survey 
and Psychosocial Data in Diverse Datasets

On some occasions, the data elements of interest are not clinical data but rather 
patient-collected data. Surveys such as food frequency or dietary questionnaires, 
such as those used in the PLCO study [7], and environmental questionnaires, such 
as those used in the ECHO child health study [26], are often used to collect data 
within a cohort. Even when validated questionnaires are used, it may be difficult 
to harmonize data between cohorts because different questionnaires may not have 
exact equivalency measures. Fortunately there are a number of strategies that can 
be used to harmonize these data elements. One of the methods for creating equiva-
lency between previously collected survey data is to collect data on a small subset 
of all of the cohorts using multiple survey instruments. For example, the quality of 
life scores for the PROMIS 29 measures can be mapped to the EQ5-D responses 
to provide a quality of life equivalency score based on Revicki et al.’s work [27]. 
Another method of harmonizing data in surveys is to use item response theory. An 
example of this method can be found in Chan et al.’s harmonization of cognitive 
aging measures [28].

In conclusion, largescale distributed PPM databases will continue to be devel-
oped and enhanced as sequencing data and additional phenotypic data become 
available. Data harmonization is a major key to unlocking the research potential in 
these databases.

D. Cross and C. A. McCarty
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Chapter 13
Redefining Disease Using Informatics

Glenn N. Saxe

 Introduction

Two critical questions are at the center of efforts to pursue Personalized and 
Precision Medicine (PPM) for specific diseases [1–3]:

 1. How do we build a model of a disease that will use all relevant information avail-
able, to accurately predict disease-related events (e.g., disease onset, prognosis, 
emergencies, intervention response) for a specific patient?

 2. How do we use such a model for disease classification and diagnosis that will 
enable the accurate prediction of disease-related events?

An appropriate model of a given disease for PPM will be able to: (1) inte-
grate information from and about an individual patient to inform the prediction 
of disease- related events the patient will encounter by virtue of the patient’s clas-
sification within the disease category; and (2) inform decisions on interventions 
for the patient based on accurate prediction of the patient’s disease response, to an 
intervention that is considered.

In this chapter, I will review the integral relationship between disease conceptualiza-
tion, modeling, and theory with disease classification and diagnosis, and the challenges 
and opportunities to these processes for PPM, entailed by the informational revolution 
that now affects all medical fields. This informational revolution concerns both the avail-
ability of vast amounts of new information relevant for PPM and the informatics and 
computational tools that enable the use of this information. The chapter will illustrate 
these ideas with particular reference to the field of psychiatry, with which this author is 
intimately familiar however the relevant principles apply across medical fields.
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The genomic revolution has unlocked a previously unfathomable treasure of 
personal information that can be used to predict disease-related events. The value 
of this information will increase many-fold when it is used with other domains 
of information (e.g., social, developmental, molecular, physiological, disease 
expression) to predict disease-related events based on the conditional dependen-
cies between variables. To use this information will require refinements in the way 
diseases are typically conceptualized and classified, in order to integrate the breadth 
and depth of the conditional dependencies that would determine the occurrence of 
disease-related events for individual patients. Medical fields are now in the process 
of re-conceptualizing and reclassifying diseases for these purposes.

 Disease Theory, Disease Classification, and the Prediction 
of Disease-Related Events

A theory of a disease (which when sufficiently mature can be made operational 
via a computational model encoding this theory) is an accepted understanding of 
the causal processes underlying the disease, shared by a community of clinicians 
and scientists with professional expertise in the disease. Disease classification 
concerns the way a medical field places patients into groups based on its theory/
model of disease, in order to facilitate the prediction of disease-related events. A 
theory/model of a disease is essentially based on understood conditional depen-
dencies between causal processes for disease-related events and therefore the 
greater the number of causal processes and interactions between them included 
in the model, the more categories and subcategories will be available to classify 
patients for accurate prediction. The informational revolution makes available for 
consideration, vastly increased numbers of possible causes and interactions for 
disease-related events, and this state-of-affairs has prompted many medical fields 
to pursue updates to their disease classification approaches. These refinements 
can therefore lead to vastly improved capacity for prediction concerning indi-
vidual patients.

Theory building is an exercise in causal inference and is also highly related to 
the process of classification [4]. This is true for how individual humans learn to 
understand and predict their world, and for how communities of humans (including 
scientists and clinicians) learn to understand and predict their worlds via commu-
nally accepted theory and classification [5–7]. The integral relationship between 
the way a medical field may arrive at a causal model or theory of the processes 
underlying disease expression and the way it creates disease classification is not 
often recognized. Accordingly, it is important to understand that the information 
available to clinicians and scientists concerning an underlying pathological state 
comes from the signs and symptoms expressed from patients that may be caused by 
underlying pathologic processes. The clinician or scientist makes sense of the infor-
mation received (in the form of signs and symptoms) by putting this information 
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into meaningful categories that presumably reflect the underlying causal processes 
that  generated this data. Thus, disease classification and diagnosis is a result of a 
causal inferential process [8–10].

Briefly, causal inference concerns the application of a reasoning process to iden-
tify causal factors that have produced the data that one seeks to understand. In a 
fundamental way this reasoning concerns the result of actions on the world (if my 
action on entity X serves to change the likelihood of event Y, then entity X is a cause 
of event Y). When applied in scientific research such a causal inference exercise 
often takes the form of an experiment. In most cases, however, when causal infer-
ence is needed, experimental actions cannot be conducted for a variety of reasons: 
ethical considerations, cost, long time horizons to observe effects, or simple inabil-
ity to affect certain entities with available experimental technology.

In such cases, the powerful process of counterfactual reasoning supports causal 
inference (given my model of the world: if I were to act to change entity X, it would 
change the likelihood of event Y in a way that differs from the likelihood of event Y, if 
I do not act. Therefore my action on X will cause a change in the likelihood of event 
Y). Powerful and well-validated methods that enable causal inference with observa-
tional data sets employ versions of such counterfactual reasoning processes [11–13].

Such causal inference as applied to medicine serves to establish a causal model 
of the patient’s disease that integrates the clinician’s or scientist’s understanding of 
the causal processes (and conditional dependencies between processes1) for gener-
ating the data (i.e., the signs and symptoms) that are observed. Once such a model 
is established, it is then used to predict disease-related events from data that has not 
been previously encountered. Such new data can come from the same patient(s) 
upon which the model of the disease was generated, or, if the model is believed to 
be a more generalized account of the conditional dependencies between the causal 
process, for a wider set of patients or in all patients with the underlying disease, 
the model is used to predict disease-related events with this wider set of patients. 
The quality (i.e. performance) of the model is determined by the resulting predic-
tive accuracy for disease-related events for the population the model is intended to 
describe, under a variety of interventions or passive data observations.

The process just described is known as causal reasoning, is based on generative 
models. A generative model is a model of the inferred causal processes that gener-
ated the data that comes to us from the world. When such data is in the form of 
the signs and symptoms of disease, as well as causes and mediators of disease, the 
application of causal reasoning is immediately relevant to clinical care and clinical 
science [8–10]. Causal reasoning has far more general application and likely under-
lies the fundamental processes by which humans understand their world (and pre-
dict relevant events in the world) [5, 6]. This process is always bidirectional. First, 

1 Editors’ comment: underlying the author’s emphasis on conditional independencies is that there 
is a close relationship between conditional dependencies and independencies in a data distribution 
and the causal process that generates the data. This close correspondence is exploited by causal 
discovery algorithms to infer causality from observational non-experimental data. For details, 
readers can read refs. [4, 11] of the present chapter.
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a backward-looking model is built to infer the causal processes that generated the 
data and then this model is used in a forward-looking way to predict events about 
contemplated actions or observed events. Ideally, the model is then refined based 
on information from prediction errors such that it is continually improved based on 
more accurate accounts of the causal processes that produce the data.

There is a growing literature to support the formal use of causal reasoning within 
medicine to improve predictive accuracy for disease-related events and to avoid 
biases in causal inference that can occur when causal reasoning is not employed 
[8–10]. Counter-intuitively, one of the most important barriers to progress in most 
medical fields is the near- exclusive reliance on the results from experimental stud-
ies for accepted causal knowledge. For many practical and ethical reasons experi-
ments cannot be conducted with human subjects to understand causal processes 
for many forms of disease. Even in medical fields where experiments are more 
practical, they can rarely be conducted in a way that can capture the conditional 
dependencies for disease related events, particularly the scale of data and possible 
interactions unlocked by the Big Data information revolution. This information is 
contained within observational data sets, and inferences on causation from corre-
lational observational data, when not conducted with appropriate discovery proce-
dures, are notoriously prone to error and bias, particularly in mistaking the direction 
of cause versus effect relations, mistaking confounded relationships for true causal 
ones, and estimating poorly the quantitative cause-effect relationship. As described 
previously, there are powerful informatics tools to support rigorous causal inference 
with observational data and robust such methods have been previously described 
[4, 11–13].

Next, I describe how these challenges and opportunities manifest in the field of 
psychiatry.

 Evolution of Conceptualization and Classification 
of Psychiatric Disorders and the Importance of Causal PPM

The field of psychiatry is illustrative because its causal knowledgebase for the eti-
ology of psychiatric disorders is particularly underdeveloped compared to other 
medical fields. There are several reasons for this underdevelopment including, (1) 
the difficulty of conducting human experiments related to psychiatric disorders, (2) 
the likely complex etiology of many of these disorders, and (3) uncertainty about 
psychiatric phenotypes given that traditional psychiatric disease classification is 
not explicitly based on causation. The resulting limitations on knowledge of cau-
sation translates to great difficulty with evaluating alternative theories of diseases 
and a poor track record in predicting disease-related events (e.g., outcomes and 
responses to treatments). These challenges have been magnified considerably by the 
amount of information now available related to genetic, molecular, and neurologic 
processes. Although the problem of causality may be more significant in psychiatry 
compared to other medical fields, these same problems manifest in varying degrees 
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in all medical fields. Thus the ideas presented through discussion of the challenges 
in the conceptualization and classification of psychiatric disorders for PPM are rel-
evant for many other non-psychiatric disorders, particularly those with complex 
etiologies.

The landscape in psychiatry is now shifting with increasing calls for greater inte-
gration of causal understanding within the conceptualization of psychiatric disor-
ders and the corresponding classification and diagnostic approaches. These changes 
most clearly manifest in controversies over the conventional diagnostic system used 
in psychiatry: the American Psychiatric Association’s Diagnostic and Statistical 
Manual of Mental Disorders (DSM) [14] versus the more recent approach endorsed 
by the National Institute of Mental Health’s Research Domain Criterion [15, 16].

In 1980, the field of psychiatry made a deliberate turn away from causation within 
its classification system when the DSM III was released [17]. One of the drivers of 
this change was that previous versions of DSM had tied diagnostic categories to 
presumed causal factors, with poor empirical evidence of causation. Such diagnos-
tic categories were not only poorly supported by evidence, they were also applied 
inconsistently because psychiatrists did not agree on underlying causal processes 
that determined previous classification approaches. With DSM III, the diagnostic 
process became entirely descriptive. This system was based on observable group-
ings of symptoms that had defined functional relevance and were agreed upon by 
psychiatric experts. This led to a considerable increase in consistency of diagnosis 
but an abandonment of the usual function of medical diagnosis to point to specific 
underlying pathological processes. This rationale was defended in an influential 
editorial written by Gerald Klerman, former director of the federal Alcohol, Drug 
Abuse and Mental Health Administration, shortly after DSM III’s release:

…these [DSM III] criteria are based on manifest descriptive psychopathology rather than 
on presumed etiology…This reliance on descriptive rather than etiologic criteria does not 
represent an abandonment of the ideal of modern scientific medicine that classification and 
diagnosis should be by causation. Rather, it represents a strategic mode of dealing with the 
frustrating reality that, for most of the disorders we currently treat, there is only limited 
evidence for their etiologies. There are competing hypotheses and theories that involve vari-
ous mixtures of biological, social, developmental, and intrapsychic causation, but for most 
disorders the evidence is insufficient and inconclusive [18].

An important implication of the field’s turn from causality in diagnosis and clas-
sification is that causal discovery in the field was impeded. A disease is usually 
understood to be the phenotypic expression of underlying causal processes. If such a 
phenotypic expression is widely accepted as normal clinical practice, unconstrained 
by plausible causal processes, then the scientific pursuit of the causes of its expres-
sion is de-incentivized and weakened. In 1994 and 2013, the DSM IV and DSM 5 
were launched, respectively, both with the same non-etiologic, non-causal approach 
contained in DSM III in part because the state of causal knowledge in the field had 
still not advanced sufficiently to help define psychiatric classification [14, 19].

Fortunately, crisis can reveal opportunity and the NIMH Research Domain 
Criterion (RDoC) initiative was launched to help establish an empirically-based 
diagnostic system that is integrally related to causal knowledge. Importantly, such 
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a system integrates the diversity of possible causal processes that can help define 
PPM within psychiatry and has recently been conceptualized to be highly consis-
tent with the causal inferential processes described previously. Although the RDoC 
initiative is only a decade old and its utility for the purposes described remains to 
be established, its central organizing ideas may have great utility for other medical 
fields seeking to leverage the information now available for PPM.

 The NIMH Research Domain Criterion and the Bayesian 
Integrative Framework for Computational Psychiatry

NIMH’s RDoC initiative was launched, in part, to address the problems described 
previously by locating causality within pathological brain circuits (and their 
upstream and downstream pathways). Recently, NIMH director Joshua Gordon 
has written about using RDoC for causal discovery-related Bayesian causal infer-
ence [20]. Briefly, RDoC represents a framework to categorize psychopatho-
logic categories within five ‘transdiagnostic’ domains corresponding to variables 
selected for analysis. In this way, the RDoC framework can be useful for theory 
building because the variables discovered within the resulting causal models 
would be defined (as relevant) within the five transdiagnostic RDoC domains of: 
Negative Valence Systems, Positive Valence Systems, Cognitive Systems, Social 
Processes, Arousal and Regulatory Systems, and within specific units of analy-
sis (genes, molecules, cells, circuits, physiology, behavior, self-report). These 
units of analysis are centered within brain circuits and corresponding upstream 
(e.g., genes, molecules, cells) and downstream (e.g., physiology, behavior, signs 
and symptoms) causal processes from these brain circuitry pathologies. At their 
downstream end, these are expressed in the signs and symptoms that are used 
for diagnoses and classification [15, 16]. Thus, the RDoC framework enables the 
inclusion of causal processes—and the dependencies between them—for creating 
models of psychiatric disorders that can be used to predict psychiatric disorder-
related events.

Within the past few years, RDoC has been seen as a way to enable the for-
mal integration of classification and causal inference within a causal reasoning 
approach, in order to support PPM within the field. This has been proposed as a 
Bayesian Integrative Framework at the influential Ernst Strüngmann Forum (ESF) 
on Computational Psychiatry. Details about this framework are available in the 
book documenting the ESF proceedings [21] by ESF organizers, Drs David Redish 
and Joshua Gordon, Director of the National Institute of Mental Health, and in a 
recently published article by Friston, Redish and Gordon entitled Computational 
Nosology and Precision Psychiatry [22]. In these articles, and others [23], this 
Framework has also been proposed as a promising means of applying Research 
Domain Criterion (RDoC) concepts to understanding underlying mechanisms of 
psychiatric disorders.
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This Bayesian Integrative Framework is appealing for PPM because it offers 
a formalized—and empirically testable—approach to research related to predic-
tion, causal inference, and prevention in psychiatry. This Framework starts with the 
notion that diagnostic categories in psychiatry are not the causes of psychopathol-
ogy; they are the observable and measurable consequences of pathophysiologic and 
psychopathologic processes. Friston, Redish and Gordon highlight the importance 
of this notion within the consensus reached at the ESF, as follows:

Although rather obvious in hindsight, this came as something of a revelation, largely 
because it exposed the missing link between the putative causes of psychiatric illness (e.g., 
genetic predisposition, environmental stressors, or iatrogenic outcomes) and the conse-
quences, as observed by clinicians (e.g., symptoms, signs, and crucially, diagnostic out-
come) (pg. 3) [22].

With such a perspective on psychiatric nosology, a formalized approach to pre-
diction and causal discovery becomes necessary.

A Bayesian Integrative Framework calls for the building of a generative causal 
model2 from psychiatric data. Such a generative model can estimate consequences 
from causes. For purposes of constructing the model the consequences are what 
are directly observed (e.g., symptoms, diagnoses, psychometric and biomarker 
measurement). The causes are identified from prior knowledge based on the litera-
ture (e.g., trauma exposure, losses, intervention exposure, genetic variation). These 
known causes, in turn, cause underlying (and latent) pathophysiologic states (e.g., a 
brain state, a neuroendocrine state), which then cause underlying psychopathologic 
states (e.g., cognitive, emotional, behavioral). These latent pathophysiologic and 
psychopathologic states then cause the measured symptoms, signs and diagnostic 
consequences available for observation. The causal discovery methods previously 
outlined can readily discover causal relationships between measured variables and 
indicate presence and properties of latent variables (states). Once such a model 
is built, it is then possible to conduct prognostication and estimate the effect of a 
potential intervention [11–13].

Next, I will describe application of this causal Framework to my own area of 
research: the prediction of deleterious outcomes (e.g., psychosocial dysfunction, 
Posttraumatic Stress Disorder (PTSD), aggression, self-destructive behavior) in chil-
dren who experience traumatic events and the development of preventative inter-
ventions for children at risk. We know that between 15% and 40% of traumatized 
children will acquire such deleterious outcomes as PTSD [24–26]. In this area, ongo-
ing research questions include what factors contribute to risk and what contributes 
to resilience? And which of these factors are remediable and will reduce a child’s 
risk should an intervention be applied to the identified risk factor or causal process? 
Cumulatively, the research literature has not been sufficiently informative for pre-
dicting risk, and so computational methods that enable answers to these questions 

2 Editors’ note: informally a generative model essentially captures the distributions of variables in 
some process of interest whereas a discriminant model aims to separate entities (for classification 
or prediction) without capturing the underlying process. A causal generative model furthermore 
represents causal relationships in the data generative process.
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are extremely important [27]. These answers clearly relate to PPM because they can 
potentially offer specific risk profiles for an individual traumatized child and the 
identification of specific preventative interventions according to the nature of the 
risk. This research is ongoing but I include a description of it in this chapter to pro-
vide an example of how such a framework can be used to guide research for PPM of 
complex disorders, such as psychiatric disorders.

Of note, among psychiatric disorders, PTSD is one of the only ones that include 
etiology (a traumatic event) in its definition. Notwithstanding this fact, the great 
diversity of individual responses to traumatic events indicate that PTSD has a far 
more complex etiology than simply exposure to trauma and that PTSD may not fully 
capture the phenotype of human pathologic responses to traumatic events. That is 
why my research has studied a broad range of pathologic responses to trauma in 
children.

 Applying a Causal Integrative Framework3 for PPM for Child 
PTSD

Our application of a causal Integrative Framework led to the creation of a hypoth-
esized model of causal processes and conditional dependencies for a traumatized 
child acquiring traumatic stress following trauma exposure, and is illustrated in 
Fig.  13.1. The framework integrates information from the Pre-traumatic, Peri- 
traumatic, and Post-traumatic Periods (the three columns in Fig. 13.1). Each of the 
columns indicates the Bayesian model building process described above and each 
of the models will be sequentially updated with new information from the next 
period (a Pre-trauma model is updated with information from the Peri-traumatic 
period, a combined Pre and Peri-traumatic model is updated with information from 
the Post- traumatic period). The Bayesian process shown in each column generates 
models by inferring latent Psychopathologic and Pathophysiologic causal states 
from measured evidence of signs, symptoms, diagnoses, and other outcomes. The 
gray arrows in Fig. 13.1 represent this causal inferential process. Once this gen-
erative model is built through such a causal inferential process, it is then used to 
predict signs, symptoms, diagnoses, and prognostic trajectories using new subject 
data pertinent to these causal processes defined within the generative model (the 
black arrows in Fig. 13.1). Data collected from later periods (e.g., Post-traumatic 
period) is used to refine models that made such prognostic predictions (e.g., Gray 
arrow from Post to Peri-trauma period). The process illustrated in Fig. 13.1 begins 
with defining putative causes. There is, however, a limitation in the field about the 
quality of available prior knowledge on causal factors for traumatic stress outcomes. 

3 The Integrative Framework applied emphasizes causality and prediction and can be instantiated 
either as a Bayesian model or as a Frequentist one depending on the suitability to the data and study 
or clinical goals at hand to a Bayesian or Frequentist framework. With this clarification in mind 
we will emphasize more the causal aspect in the remainder of the chapter.
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Nevertheless, we cautiously choose variables in this category of putative causes 
to represent environmental stressors and traumas—or closely associated environ-
mental variables—such as loss or parental neglect. We also include gene variations 
that have been associated with traumatic stress in several well-designed studies. In 
identifying plausible pathophysiologic and psychopathologic states associated with 
child PTSD outcomes, we are guided by recent influential theories on the patho-
physiology of PTSD and its clinical application proposed by Liberzon and Abelson 
[28], Liberzon [29], and by Shalev et al. [30], respectively.

These reports are important because they give a strong account of the various 
pathophysiologic systems underlying traumatic stress and how dysfunction of these 
systems can be expressed in psychopathologic states. These articles identify similar 
systems involving: (1) Fear Learning (FL), (2) Threat Detection (TD), (3) Executive 
Function & Emotional Regulation (ExF-ER), and (4) Contextual Processing (CxP). 
Dysfunction of each of these systems have a well described brain circuitry, are asso-
ciated with specific genomic, molecular, neuroendocrine, and physiologic relations, 
and are expressed in patterns of behavior, emotion, and cognition that would define 
specific psychopathologic states.

These specific patterns are summarized in Fig.  13.1 under the boxes on 
“Psychopathological States”. Dysfunction in FL, for example, would be observed 
through such behavioral and emotional expressions as avoidance and persistent anx-
iety. Dysfunction in TD would be observed through a child’s preferential attention 
to threatening stimuli, hypervigilance to the possibility of threat, and exaggerated 
responses when threat is introduced. Dysfunction in ExF-ER would be observed in 
problems with attention, working memory, planning, and impulsivity. Dysfunction 
in CxP would be observed in difficulties appraising the present demands of the 
environment, such that thoughts, emotions, behaviors would be expressed, that do 
not correspond to these present demands (e.g., mis-appraising safety and respond-
ing, instead, to threat).

There is a strong empirical literature supporting the importance of these systems 
for child PTSD, including the developmental manifestations of these systems and 
the influence on these systems from disordered developmental processes includ-
ing influences from the child’s social environment [31–36]. Indicators of patho-
physiological and psychopathological states representing dysfunction in these four 
systems—and their developmental and social environmental influences—are cap-
tured in data collected from children and families using psychometric instruments, 
neuropsychological testing, and biomarker measurement. Such measured variables 
can be categorized according to these defined domains and according to the time 
period in which they were measured (Pre-trauma, Peri-trauma, Post-trauma). Such 
categorization includes symptom and diagnostic profiles and prognostic trajectories 
across time.

We are currently in the process of studying the application of a causal 
Integrative Framework in this way, and so it is important to not over interpret 
these ideas. They do, however, provide a powerful approach to bringing PPM to 
the problem of child traumatic stress and to other psychiatric and non-psychiatric 
problems and disorders. Our previous work demonstrated that causal discovery 
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methods can successfully be applied to understand the etiology of PTSD and to 
build models that accurately predicted PTSD, supporting the promise of the ideas 
described in this chapter [37, 38].

 How RDoC/Integrative Framework Enables PPM 
for Traumatized Children

As described previously, the goal in establishing PPM for any disease concerns 
building a model of the disease that will use all relevant information available, to 
accurately predict disease-related events (e.g., disease onset, prognosis, critical inci-
dents, intervention response) for a specific patient. There are a number of disease- 
related events following childhood trauma that are known to be extremely important 
for a child’s health and development. These include PTSD, aggressive behavior, 
self-destructive behavior, school performance difficulties, and difficulties in social 
relationships. The empirical literature indicates poor predictive performance for 
these outcomes from existing models related to children’s response to traumatic 
events. Models developed from methods that are not able to provide knowledge on 
the causal process will both have limitations in predictive accuracy and in informing 
disease classification that would support prediction.

The advantage of using a causal Integrative Framework to support PPM is that, 
if successful, it would build accurate and reliable generative models from data on 
large numbers of traumatized children for a set of deleterious outcomes observed 
in the data. These models could point to meaningful ways to categorize trauma-
tized children for given outcomes based on the conditional dependencies between 
identified causal processes for predicting specific outcomes. These models can then 
be used to classify a traumatized child based on information available about the 
child, in the service of predicting disease-related events of concern (e.g., PTSD, 
aggressive behavior, self-destructive behavior, school performance difficulties, and 
difficulties in social relationships). In the example given in the previous section, we 
may find that symptoms and signs associated with Fear Learning, Threat Detection, 
Executive Function & Emotional Regulation, and Contextual Processing are cen-
trally important in a generative model of deleterious outcomes following trauma 
and, as hypothesized, signal different underlying pathophysiologic processes. It 
may also be found that these pathophysiological processes serve to influence dif-
ferent outcomes (e.g., processes related to fear learning produce anxiety related 
outcomes and processes related to Executive Function/Emotional Regulation pro-
duce more aggressive outcomes). Accordingly, the research that produced such a 
generative model would have strongly contributed to PPM for traumatized children 
by leading to the classification of a child, based on their personalized information 
that would accurately predict meaningful disease-related events.

This framework has been applied to other psychiatric disorders such as Psychosis 
and Obsessive-Compulsive Disorder [22]. To learn more about this framework and 
its applications in psychiatry, interested readers should consult the proceedings of 
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the Ernst Strüngmann Forum (ESF) on Computational Psychiatry that is found in 
the book Computational Psychiatry: New Perspectives on Mental Illness [21], as 
previously noted. In particular, the Bayesian Integrative Framework is proposed and 
detailed in the chapter in this book entitled, “A Novel Framework for Improving 
Psychiatric Diagnostic Nosology” by Flagel and colleagues [39].

 Application of a Causal Integrative Framework to Support 
PPM in Other Medical Fields

This chapter focused on redefining disease and the process of disease classification 
to support PPM, in an area of medicine—psychiatry—in which the current process 
of disease classification is problematic. As described, the focus on psychiatry is 
informative because its known problems have spawned a great amount of attention 
into how to address barriers to progress, that might enable PPM in psychiatry. The 
ideas that have been generated have application beyond the borders of psychiatry. 
Many medical disorders have complex etiologies and the respective medical field’s 
knowledge base on causation of these disorders is curtailed by the limitations of 
experimental research. These problems become manifest in limitations in predic-
tion of disease-related events as applied to individual patients. For such disorders, 
a causal Integrative Framework may be particularly helpful in the same way that it 
has been proposed for psychiatric disorders.

Using appropriate data sets containing well characterized patient symptoms and 
signs, and information on a diverse set of plausible causal processes for these symp-
toms and signs (based on theory in the field), causal discovery methods can be used 
to construct a generative model of disorder, including the optimal way of classifying 
patients to entail accurate prediction of disease-related events. This model can then 
be used to classify patients, based on available information about them, in such a 
way that the probability of relevant disease-related events can be used to guide their 
care. Such models can also be used to consider intervention alternatives based on 
the change in likelihood of disease-related events should a given intervention be 
applied. In most medical fields these ideas are still theoretical, but the main con-
cepts underlying this approach has been proven, the methods to support this work 
are available, and the potential of redefining specific diseases for a robust PPM is 
now on the horizon.
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Chapter 14
Pragmatic Trials and New Informatics 
Methods to Supplement or Replace Phase 
IV Trials

Eneida Mendonca and Umberto Tachinardi

 Introduction

A report developed by the U.S. Department of Health and Human Services in 2014 
[1], identified that one of the main challenges to the process of developing new 
drugs are complex and expensive clinical drug trials. Given the necessity of clini-
cal trials (CT) to approve a new drug, obstacles to trials result in fewer new drugs 
becoming available. The list of barriers is long and widespread and includes high 
costs (phase IV CT costs, in particular, are almost the same as the sum of the three 
preceding phases combined), lengthy processes, recruitment and retention issues; 
regulatory and administrative barriers, drug-sponsor imposed barriers, and the dis-
connect between clinical and academic worlds. The report suggests some solutions 
to the CT problems that include: the use of electronic health record (EHR) sys-
tems; simpler enrollment processes; and the wider use of mobile and electronic 
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technologies. Informatics tools are replacing traditional processes with significant 
potential to overcome most of the problems listed above. Automation and reuse of 
data can reduce costs and time; new technologies (e.g., EHR systems, social media, 
mobile systems) are helping to improve recruitment and retention rates; and the 
use of EHRs also helps bridge the research and the clinical sides towards improved 
clinical trials.

It is clear that CT as previously defined, need to be dramatically improved to 
respond to the urgent need for more and better drugs [2]. It is even more critical 
that we improve how we use those drugs [3] and that we identify when we should 
not use them. That is the role of Phase IV. This chapter discusses enhancements to 
Phase IV along with new alternatives (that completely change the original defini-
tions and may be seen as full replacements to Phase IVs).

A good example of the new “Phase IV” is the potential to improve drug repur-
posing. It is a fact that the drug development pipelines are not pumping out enough 
new drugs [4] to supply the growing need for more and better therapeutical options 
(This has been called “Eroom’s Law”, which is the literal and semantic reverse of 
Moore’s Law). Drug repurposing is one of many solutions that can be used to allevi-
ate this problem.

 What Are Phase IV Trials, and Why Are They Needed?

Phase IV studies are developed to test the efficacy and safety of drugs after they 
are approved to be marketed by a designated regulatory authority (FDA in the 
United States). Both characteristics are critically important to the patients that 
depend on drugs that are efficacious and safe in the short and long term hori-
zons. Randomized Clinical Trials (RCT), work well in efficacy determination, 
but drug safety assessment may require a different approach. The calculation of 
sample size is critical in establishing drug safety. Phase III studies usually enroll 
1000 to 3000 patients who use the new drug. The probability of identifying a 
rare adverse event in this small population is low [5]. In fact, defining the right 
sample size is so critical that the European Medicines Agency (EMA) adopted 
well-defined guidelines for it: the post-authorization safety studies (PASS) [6]. 
PASS is designed to identify, characterize or quantify a safety hazard; confirm 
the safety profile of a medicine; and measure the effectiveness of risk-manage-
ment measures [7] in healthcare.

While not specific to Phase IV drug safety testing, an interesting aspect of 
the EMA guidelines is the inclusion of non-interventional [8] alternatives. The 
Guideline on good pharmacovigilance practices (GVP) describes:

…non-interventional studies to include database research or review of records where all the 
events of interest have already happened (this may include case-control, cross-sectional, 
cohort or other study designs making secondary use of data). Non-interventional studies 
also include those involving primary data collection (e.g., prospective observational studies 
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and registries in which the data collected derive from routine clinical care), provided that 
the conditions set out above are met. In these studies, interviews, questionnaires, blood 
samples and patient follow-up may be performed as part of normal clinical practice.

 Pragmatic Clinical Trials

The term pragmatic clinical trial (PCT) was coined nearly 50 years ago to distin-
guish between clinical trials that were explanatory in orientation (i.e., understanding 
whether a difference exists between treatments that are specified by strict defini-
tions) and trials that were pragmatic in orientation (i.e., understanding whether a 
difference exists in treatment as applied in practice) [9]. PCT offers the potential to 
assess comparative effectiveness in broadly based patient populations receiving care 
in real-world clinical settings [10].

In August 2018, the website clinicaltrials.gov listed around 500 studies defined 
as “pragmatic clinical trials”, 63 of those were labeled as Phase IV studies. As 
expected, the majority of those studies were funded at academic centers (total 40), 
but 18 of them were sponsored by industry. While small, when compared to almost 
300,000 total studies in that database, those numbers seem to show a trend, since 60 
of those 500 studies were not yet open to enrollment at the time of the query.

Whereas clinical trials are widely-accepted designs to establish the presence or 
absence of Rx efficacy as well as toxicity, they are often too rigid and with too short 
horizons. As a result, the efficacy and toxicity of approved drugs is not entirely 
known. Pragmatic trials take advantage of secondary use of EHR and other types of 
data (e.g., tumor registries and claims) to determine longer-term effects and person-
alized responses to treatments. Recent initiatives like PCORnet [11] are designed to 
share and exchange data across institutional boundaries to enable pragmatic trials 
by augmenting the sample size for all populations of interest.

 The Role of EHR as a Phase IV Tool

Clinical Trials are designed to be highly controlled processes that define “how” 
and “what” data are collected and organized. Various mechanisms are usually 
in place to ensure data completeness and accuracy. Statistical methods are often 
used to analyze data, sometimes pre-analysis of data will require cleansing and or 
semantical harmonization (making sure all codes have one explicit and reproduc-
ible meaning).

Data in EHR systems are usually not at the same level of quality and standardiza-
tion. For instance, both structured and unstructured data may be used for the same 
information. Therefore, mining data in EHR systems is a complex task. Nonetheless, 
the value of repurposing the wealth of EHR data available is high. This secondary 
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use provides faster and cheaper ways to obtain data from patients. Different than 
“explanatory” trials that measure efficacy, “pragmatic clinical trials”, designed to 
test “effectiveness” [12], match the goals of CT Phase IV.

EHR systems were primarily designed to support financial, clinical and adminis-
trative functions, while collecting data to support those processes. However, along 
their evolution, EHR databases became a valuable resource for other uses, such as 
quality and clinical research. Now virtually all data used in Phase IV studies (labo-
ratory results, chief complaints, ER admissions, prescriptions) are being collected 
in modern EHR systems.

There are many strategies to assess drug safety, including active surveillance 
(pharmacovigilance), intensive monitoring schemes and registries. Active surveil-
lance are continuous processes used to identify adverse events by tracking pro-
spective findings for a group of patients that are using drugs of interest. Intensive 
monitoring is a system to collect data in specific areas of the healthcare system (e.g., 
ICUs, ERs). The selected sites may provide information, such as data from specific 
patient subgroups that would not be available in a passive spontaneous reporting 
system. Registries are systems that curate and organize data for specific popula-
tions, conditions or outcomes.

 Is There a Difference Between Phase IV Clinical Trials 
and Drug Re-purposing?

Phase IV seeks to define if the drug is effective for the approved uses and if new 
adverse events develop in the long term that were not identified in the previous clini-
cal phases (II and III). The combination of EHR data and PCT approaches can be 
used to either find new adverse effects; prove or disprove drug effectiveness for the 
approved uses; or identify new benefits of the drug that were not initially tested or 
approved, but are capable of yielding important benefits in areas where drugs do not 
exist or are still being tested [13].

Drug repurposing (or repositioning) is the process of expanding the use of cur-
rently available drugs to other indications than the approved ones. A well-known 
example is sildenafil (Viagra) which was initially developed to treat angina [14]. 
Many companies and academic centers are working in this area due to the reduced 
costs (when compared to brand new drugs) and the lack of new compounds past pre-
clinical phases. The same process that results in drug repurposing can also be used 
for the prediction of adverse events of known or novel drugs [15].

In reality, in both Phase IV and drug repurposing, the challenge is quite similar: 
to establish the association of a drug with an outcome (positive or negative) and find 
out if that relationship is causal or not. If PCT is the chosen method, the technical 
approach for both should include a precise, computable and reproducible definition 
of markers (phenotypes) based on data that is already being collected.
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 Identifying and Acting on Adverse Drug Events (ADE)

Identifying adverse events is a critical step for any system aimed to provide data 
for conventional or pragmatic clinical trials. An analogy can be made with trig-
ger tools designed to support Learning Health System models. Those are resources 
developed to help with a standardized identification of an adverse event (in this 
case any negative outcome determined by some healthcare action). The Institute for 
Healthcare Improvement Global Trigger Tool (GTT) has become one of the most 
widely used trigger tools for detecting harm in hospitalized patients [16].

A GTT “trigger” is a medical record-based “hint” (such as the use of the antidote 
naloxone) that “triggers” the search of the medical record to determine whether an 
adverse event (such as a clinical overdose of an opiate, as opposed to a therapeutic 
use in response to non-prescribed opiate use) might have occurred [17]. Similar 
triggers can be developed to track the use of individual or associate drugs, thus 
mimicking part of what Phase IVs are designed to do.

Once identified an ADE candidate needs to be processed to properly identify the 
cause of the problem (misuse, prescription error, drug adverse event), then appropri-
ate action should follow: suspension/change of therapy, internal and external report-
ing (e.g., FDA, EMA).

 Informatics Methods in Phase IV

The Food and Drug Administration (FDA) Adverse Event Reporting System 
(FAERS) is a database that contains adverse events reports, medication error 
reports, and product quality complaints resulting in adverse events that were 
submitted to the FDA [18]. FAERS adopts MedDRA (Medical Dictionary for 
Regulatory Activities), used in pharmacovigilance processes in the US, Europe 
and some eastern countries. MedDRA provides a single standardized international 
medical terminology which can be used for regulatory communication and evalu-
ation of data pertaining to medicinal products for human use [19]. The database 
is a good resource for post marketing drug information, but investigators have 
shown that the resource is not sufficient because of challenges related to under-
reporting [20, 21] and patterns of missing drug exposures [22, 23]. Data mining 
with effective analytical frameworks and large-scale medical data is a potentially 
powerful method to discover and monitor ADEs [24]. Pharmacovigilance studies 
have explored the examination of ADEs using a diverse number of data sources, 
including scientific literature, online publicly available databases, social media, 
and EHRs [20, 25].

Studies have also shown that just a small fraction of ADEs recorded in EHRs are 
reported to federal databases and authorities, making EHRs an important source of 
ADE information.
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Existing observational studies have mainly relied on structured EHR data to 
obtain ADE information; however, ADEs are often buried in the EHR narratives 
and not recorded in structured data. A number of studies using EHRs have focused 
on using structured/coded information and drug ontologies [26, 27], showing some-
what limited results [24, 28, 29]. Furthermore, information contained in clinical 
notes are not likely to be presented in structured form in other parts of the record 
(e.g., signs, symptoms, severity of findings, disease progress).

Most studies that attempt to discover ADE information from narratives use a 
combination of natural language processing (NLP) methods and machine learning. 
Most recently, approaches integrating multi-faceted, heterogeneous data sources 
have become more common [25]. Two recent reviews of the literature on the use of 
NLP methods for pharmaco-vigilance and medication safety show a growing num-
ber of algorithms for automated detection of associations between medications and 
adverse events [20, 25].

Luo and colleagues [25] categorized the findings based on the characteristics 
of the NLP components and their complexity. Methods evaluated included basic 
keyword and trigger phrase search, algorithms exploring the syntactic and seman-
tic patterns of drugs and adverse events, methods extending existing biomedical 
NLP systems and methods using existing or custom-built ontologies. The study also 
identified recent trends in EHR-based pharmacovigilance, such as the increased 
adoption of statistical analysis and machine learning, integration of temporal reso-
lution, and the use of multiple data sources. Wong and colleagues [20] illustrated the 
fundamentals of NLP and discussed the application of these methods on medication 
safety in different data sources (e.g., EHRs, scientific literature, Internet-based data, 
and reporting systems). Both reviews demonstrate that it is important to consider the 
different approaches, as some of them are context and task-dependent. Combined 
approaches (hybrid) involving computational (statistical and machine learning) and 
linguistic methods may yield better results.

Despite the growing number of NLP, machine learning, and statistical methods 
for adverse event detection in EHR systems, several challenges remain. One exam-
ple is the data fragmentation caused by movement of patients between multiple 
EHR systems. This is a big problem when longitudinality is required. Techniques 
designed to combine EHR data from multiple institutions while still protecting pri-
vacy are becoming increasingly available [30].

Data exchanges provide a powerful means to rapidily and significantly expand 
cohorts. Whether the data comes from research [31] or directly from EHR sys-
tems [32], the intent is to expand the cohorts faster than traditional methods. Larger 
cohorts increase the probability of identifying outliers (i.e. rare conditions), but also 
confirm key trends and patterns. Initiatives that make secondary use of data require 
additional measures to protect privacy and confidentiality. Several automated de- 
identification methods are available [33], helping promote safer data sharing.

Polypharmacy is the use of multiple medications [34], and one of the most 
understudied aspects of adverse event detection using EHR data. With the aging of 
the population and the increased number of chronic diseases, it is expected that a 
substantial percent of the population take more than one medication. In a national 

E. Mendonca and U. Tachinardi



205

population-based study, Qato and collaborators found that 36% of older US 
adults were regularly using 5 or more medications or supplements and 15% were 
 potentially at risk for a major drug-drug interaction [35]. Despite that, polyphar-
macy has not been the focus of the scientific community [25], with most studies 
assessing the adverse events based on a single drug. The “new Phase IV” paradigm 
presents a good opportunity to fix this problem, since EHR and pharmacy systems 
can more naturally identify associations of drugs, versus the specific targeted drugs 
monitored by traditional RCTs.

 Data Integration and Analytical Tools

Phase IV studies (traditional or pragmatic) depend on collaboration from multiple 
sites. With EHR systems being added to the research protocols, data harmonization 
and integration becomes central to the process. Different sites may adopt different 
EHR systems, and even when the same EHR systems are used, the data may be 
represented in different ways at different levels of granularity.

Several initiatives have focused in data harmonization processes (i.e. use of 
Common Data Models). Others have focused on efforts on shared resources and 
community-wide tools to promote analytical solutions to the use of electronic health 
records.

Common data models standardize the representation of healthcare data from 
diverse sources in a consistent way. The goal is to facilitate the mapping of clinical 
observation to standard vocabularies and, consequently, improve how these data can 
be reused for research purposes and shared across institutions. This chapter does 
not intend to give a comprehensive view of common data models, but it is worth 
mentioning some examples.

PCORNet [11], the National Patient-Centered Clinical Research Network, is 
an initiative of the Patient-Centered Outcomes Research Institute (PCORI). The 
goal of PCORNet is to facilitate clinical research by facilitating the sharing of elec-
tronic health records across institutions. The PCORNet CDM [36] is a platform 
that enables rapid responses to research-related questions. The CDM is based on 
the FDA Sentinel Initiative Common Data Model [37]. It leverages the use of stan-
dard terminologies and coding systems such as ICD, SNOMED, CPT, and LOINC 
among others. PCORNet also provide a platform that allows simple creation, 
operation, and governance of distributed health data networks, called PopMedNet. 
PopMedNet allows for distributed querying, customizable workflows, and audit-
ing and search capabilities, while enables the enforcement of varying governance 
policies.

The Observational Health Data Sciences and Informatics (OHDSI) [38, 39], an 
international collaborative initiative whose goal is to create and apply open-source 
data analytic solutions to a large network of health databases to improve human 
health and wellbeing. OHDSI was initially based on the Observational Medical 
Outcomes Partnership (OMOP) [40], which generated the OMOP CDM. In addition 
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to EHR data, the OMOP CDM supports administrative claims data. ODSHI also 
provides tools for tools for data quality and characterization (ACHILLES), database 
exploration, standardized vocabulary browsing, cohort definition, and population- 
level analysis (ATLAS).

Another example is the Accrual to Clinical Trials (ACT) network, a federation of 
academic research institutions. The goals of this network are somewhat similar to 
the ones described above. ACT aims to facilitate cohort discovery by determining 
recruitment feasibility and patient identification. ACT uses the i2b2 tool’s multi-site 
Shared Health Research Information Network (SHRINE), and the i2b2 CDM.

Despite these initiatives, data harmonization and data sharing are still major 
challenges in the design and implementation of Phase IV trials.

 Data Challenges in Pragmatic Clinical Trials

Conventional Phase IV studies adopt several mechanisms to ensure that the data is 
complete, accurate and standardized. When EHR systems are used as the source, 
as opposed to traditional data collection tools like Case Report Forms (CRF), data 
quality becomes an important issue. There are informatics techniques that can help 
improve the quality: data harmonization, use of standard coding systems, data link-
age and NLP are part of the informatics toolbox.

Data harmonization methods are used when the data comes from a variety of 
sources that originally used different definitions for the same concepts. The data 
harmonization process equalizes the granularity of the definition (e.g., reducing 
sex concepts to two genders M/F) at the coarsest common level of granularity. 
Standardized coding systems help data to be shared more easily. Examples of those 
coding standards include ICD, SNOMED, LOINC, RxNORM, and MedDRA. Data 
linkage is important when there are multiple sources containing part of the neces-
sary data, a common identifier (usually name, date of birth or identity document 
number) is used as the link anchor. When a patient, for instance, has his or her data 
in multiple EHR systems those methods need to be used. NLP can produce codes 
out of unstructured data (i.e., plain text). The ability to extract codes from text can 
overcome some deficiencies like missing structured data (e.g., a behavioral condi-
tion) or confirm the accuracy of certain structured codes (e.g., an ICD code entered 
for billing).

Most EHR systems have the data available in two different databases. The first 
is the database used primarily by the system to support transactions using the user- 
interface in real-time, called the transactional database. The transactional database 
is optimized for performance, referential integrity and multiple users simultane-
ously editing the same information. Transactional databases are not good for analyt-
ics like machine learning, where intense querying occurs at very high frequencies. 
Consequently, EHR systems usually have a secondary database for analytics work. 
The Clinical Data Warehouses (CDW) are databases designed to respond to com-
plex queries, and not to perform changes in the data (edits, insertions or deletions). 
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The CDW usually has a temporal lag with the transactional database, usually lag-
ging around 24 h behind.

Those differences are important in designing a solution like a continuous Phase 
IV, where some processing can use past data, but others need to be computed in 
real- time. EHR systems are consolidators of data of several sub-systems (i.e., labs). 
Interfaces allow data to be transferred from the ancillary systems to the EHR. A pop-
ular interfacing standard is HL7 (Health Level Seven), where data is streamed from 
the source system (i.e., lab system) and received by the target system (i.e., EHR). 
Some solutions to track adverse events actually tap directly in that data stream to 
get the results faster (closer to realtime). Based on HL7, FHIR (Fast Healthcare 
Interoperability Resources) can also help applications (like adverse event detectors) 
request data from EHR systems quickly, process it and return an action (i.e., deci-
sion support) if applicable.

 Linking Patient Data Across Multiple EHR Systems

There are two basic ways that EHR systems help with Phase IV trials: as a resource 
to the conventional Clinical Trials Management Systems (CTMS) or by replacing 
the CTMS with a pragmatic Phase IV solely using EHR systems data. The first 
model (Fig. 14.1—left box) assumes that a conventional Phase IV protocol will be 
in use, subjects will be enrolled given a defined criterion, subjects will consent and 
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Fig. 14.1 Traditional Phase IV studies (left) use Clinical Trials Management Systems (CTMS) to 
manage participants, protocols and study teams; to be a source of record for study data and docu-
ments; and to produce reports. Those systems can be interfaced with EHR systems (checkered 
rectangle in the middle) reducing the need for human transcripts. The right box shows a hypotheti-
cal scheme where EHR systems and other data sources combined form a “future platform” for 
Phase IV studies (pragmatic approach)
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data will be collected using Case Report Forms (CRF). The EHR system of record 
for a given participant will be interfaced with the CTMS system, and the data will 
be transferred electronically from the EHR (Fig. 14.2).

A possible replacement to Phase IV as traditionally defined (Fig. 14.1—right 
box), this new platform would also connect to other data sources (e.g., publications, 
social media and pharmacy databases). The envisioned new Phase IV databases 
would be used for heavy analytics (i.e. machine learning).

 Phase IV and Precision Medicine

The future of Phase IV CTs is one that relies heavily on data collected via the 
EHR. PCTs are one step forward, but the availability of both historical and real-
time data enables a continuous and individualized Phase IV. The use of machine 
learning and AI can help “learn” the patterns of normality for a given person (or 
population) and detect changes or anomalies in that pattern. The same technologies 
can help differentiate the “good changes” (drug efficacy) from the “bad changes” 
(adverse events). Learning is always a more intense computational effort, but once 
the patterns are established, the detection of those occurrences can be performed in 
real- time using clinical decision support (CDS) tools. The detected changes (trig-
gers) then become part of a registry of adverse events or positive outcomes, which in 
essence would be the basis of an endless Phase IV. The detected anomalies can also 
immediately become an actionable event (CDS) specific to one particular person 
(Fig. 14.3).
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Fig. 14.2 EHR data can be used to identify triggers (potential AEs) out of different data sources: 
pathology reports, lab results, ICD codes, ER visits (encounters), radiology reports and others. If a 
pragmatic Phase IV study for a certain drug is in place, the ocurence of a finding of interest will 
trigger the generation of an AE report. If the system is being used as a pharmacovigilance tool, the 
pair EFI-Drug will be analyzed as a potential unpredicted AE
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Solutions like this one would definitely provide early signals in cases like the 
Vioxx (rofecoxib), given the amount of evidence that was available but not con-
nected to make a compelling case towards a revision of the drug safety [41].

 Final Remarks

The pressing and growing need for new more effcective, safer and cheaper drugs is 
forcing the clinical trials industry toward radical innovation. Phase IV clinical tri-
als, for instance, are transitioning from their original design into an agile and more 
efficient platform to track drug efficacy and adverse events. Those innovations also 
support more precise and targeted use of available drugs (i.e., precision medicine 
and re-purposing), an active way to improve efficacy and safety.

The ubiquity of EHR systems is a key factor driving this transformation. Not 
only are EHR systems helping improve data collection for traditional Phase IVs, 

Continuous Pragmatic Phase IV

Registry

EHR
Learn

Machine Learning Decision Support

Healthy status Improved with meds

Personalized Medicine

Sickness Adverse event

Improved with meds change

PX

PX

Trigger Action

Fig. 14.3 The EHR system as a foundation to a continuous pragmatic Phase IV registry and a key 
tool in support of precision medicine. Using a person’s EHR (or a large number of people’s EHRs) 
as a training set, machine learning methods can define a “normal pattern” and identify when some-
thing does not fit the pattern. In this schematic example, the development of an adverse event after 
a new drug (to treat the sickness) was introduced. That trigger would define an action based on 
decision support logic implemented in the EHR system’s clinical decision support system module. 
The detection, trigger, decision support sequence is typical of a personalized medicine approach. 
The finding for that individual, on the other hand, provides insights that, if repeated for other simi-
lar cases, can be used to produce generalizations like showing that the drug is not safe when this 
particular set of findings is present
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but more importantly they are showing that a real-time, continuous, efficient solu-
tion can completely replace the old model. The current EHR systems still need 
to be improved in terms of data quality, use of standards, data sharing and data 
integration. Academic research institutions are developing solutions to overcome 
some of the current limitations of the EHR systems (e.g. developing standards for 
phenotyping, augmenting data with NLP and machine learning, integrating data 
with other sources and establishing data sharing networks). EHR vendors are add-
ing new features (most of which developed by research groups) to new releases of 
their systems. But the backlog is enormous, and at the current rate of progress, it 
will take a long time to have all necessary advancements implemented in practice. 
Some of those changes may even require a complete reengineering of the current 
systems, since they were not designed to acquire and process bigger volumes of 
multi- dimensional data (as required in this case).

Certainly the “new Phase IV” will take advantage of more variety (more patients, 
more conditions, more findings), more data elements, and larger sample sizes for 
longer periods of time. Those new characteristics impose the need for novel tools 
and methods. In the current era of big data there are plenty of options for new com-
puting (e.g., cloud computing) and analytics (e.g., deep learning) technologies to 
support those challenges.

Genomics data are slowly starting to be incorporated into EHR systems [42]. 
Since EHR systems were not designed to properly incorporate unstructured data 
like genomics, most institutions are adopting external solutions to provide that func-
tion. The addition of those new types of data can potentially transform how cohorts 
are defined for all clinical phases of clinical trials, including potentially the “N-of- 
1” model [43]. A “continuous EHR-based Phase IV” combined with a pharma-
cogenomics component can be truly transformational. The boundaries between the 
traditional CT phases would be less clear, and may even disappear.
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Chapter 15
Precision Trials Informatics

Eric Polley and Yingdong Zhao

 Precision Medicine Clinical Trial Designs

Precision medicine has been described as attempting to find the right drug, at the right 
dose, and the right time [1]. The precision medicine paradigm has also major implica-
tions for drug development and clinical trials. The advancement of precision medicine 
in oncology has motivated novel clinical trial study designs. The US Food and Drug 
Administration (FDA) provided a guidance letter on these study designs [2]. The vari-
ous trial designs can be distinguished in their method of integration of clinical and 
biomarker data to determine eligibility and trial arm assignment. Figure 15.1 provides 
a visual guide for the common precision medicine clinical trial designs.

The first design is the Basket study design. A basket study in oncology is designed 
so that the eligibility is based on the presence of a biomarker and then patients are 
grouped into “baskets” (i.e., groups) based on their subtype of disease. The subtypes 
are usually based on the location of the primary tumor (e.g. lung, brain, colon). The 
primary analysis is pooled across all the subtypes, but individual subtype effects 
may also be estimated with sufficient sample sizes.

The complement of the basket trial is the Umbrella trial design. In an umbrella 
trial, patients with a common subtype (e.g. lung cancer) are screened for multiple 
biomarkers and are then assigned to different independent sub-studies based on the 
biomarker results.
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A third study design is a Platform study, which combines the features of an 
Umbrella study with a Basket study. Patients from a variety of subtypes are tested 
for a panel of biomarkers. An example of a Platform study is the NCI-MATCH 
clinical trial.

The fourth study design is a Strategy study. A strategy study differs from the 
usual clinical trial in that by design it is not testing for the effect of a treatment or 
drug. A strategy clinical trial randomizes patients to a specific treatment selection 
strategy and compares the efficacy of the selection strategies. For example, one 
strategy could utilize genomic mutation assay results in the selection of a drug and 
be compared with a strategy that follows current standard of care for drug selection 
for patients with advanced cancer.

An in-depth review of the statistical designs and considerations for oncology 
precision medicine clinical trials can be found in Renfro and Sargent [3] and Simon 
and Polley [4].

 The NCI-MPACT Study

The NCI-MPACT study was one of the first precision medicine clinical trials in 
oncology [5]. It was designed by the National Cancer Institute (NCI) to test the 
hypothesis of whether selecting a treatment based on molecular alterations in the 
tumor versus not using the information improved response rates in patients with 
advanced cancer. Patients with advanced solid tumors who had exhausted standard 
treatments were enrolled and underwent a study-specific biopsy of their tumor. The 
tumor sample underwent DNA sequencing using a targeted panel of 20 genes to 
evaluate over 380 unique actionable variants. The results of the molecular charac-
terization of the tumors combined with clinical information formed the basis for 
a predefined treatment selection strategy utilizing the information. The study was 
designed as a strategy clinical trial with patients and clinicians blinded to the treat-
ment selection strategy. Figure 15.2 shows the NCI-MPACT study design.

Trt A

Trt B

Trt C

Trt D

Trt E

Biomarker A +

Screen all
patients for

panel of
biomarkers

UmbrellaBasket

Strategy

All
Patients

All
Patients

Test
biomarkers

Randomize

Select treatment
using strategy 1

Select treatment
using strategy 2

Biomarker
Positive

Biomarker
Negative not

enrolled

Biomarker B +

Biomarker C +

Biomarker D +

Biomarker E +

Trt A

Trt A

Trt A

Trt A

Trt A

subtype 1

subtype 2

subtype 3

subtype 4

subtype 5

Fig. 15.1 Common precision medicine clinical trial designs
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 GeneMed Precision Clinical Trial Management System 
(CTMS)

The GeneMed [6] informatics system was developed to facilitate the implementa-
tion of the NCI-MPACT clinical trial. Precision Clinical trials are logistically and 
operationally complex, requiring a new tumor biopsy that is rapidly shipped to a 
Clinical Laboratory Improvement Amendments (CLIA)-accredited molecular char-
acterization laboratory for application of an analytically validated sequencing assay, 
development of a computational pipeline for detecting genomic variants, annotation 
of the variants to determine the actionable mutations, real time evaluation of the 
clinical and laboratory results for determination of eligibility, complex informed 
consent and randomization procedures, and reporting of the sequencing results in 
the medical record.

An informatics system is required for such clinical trials to enable the transla-
tion of clinical grade sequencing data into clinically meaningful information in 
a short timeframe. The informatics system also serves as a communication hub 
linking the sequencing lab, the study oversight team, and the clinic team. In addi-
tion to the upstream bioinformatics pipeline for raw data processing and sequence 
alignment, the system must have the ability to quickly annotate the sequencing 
data, predict the functional impact of somatic mutations, and match the detected 
mutations to the pre-specific genomic changes in tumors found in previous studies 
(i.e., the actionable mutations of interest). The informatics hub should translate the 
mutation data from a sequencing result into a concise and easy-to-read actionable 
report for the study oversight team in a timely manner. Potential clinical trial par-
ticipants are often waiting for the sequencing results to determine their eligibility 
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Fig. 15.2 NCI-MPACT study design
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on the clinical trial; therefore, the system needs to be as efficient as possible to 
avoid delays in patient treatment. The biopsy and evaluation of the somatic muta-
tions in the DNA can take a few days for the assay results and must occur before 
the team submits the mutation summary to the informatics system, which then 
assigns patients to different arms based on their detected mutations. The informat-
ics system also collects and stores patient data, including response data for prior 
therapies, which are required to evaluate eligibility of each treatment in the study 
and assist the treatment selection team and the clinic team in the development of 
a treatment plan. Finally, the system is required to make both sequencing data and 
clinical response data available to biostatisticians who are able to evaluate whether 
there is any improvement in the clinical outcomes of the study.

 GeneMed System Design

Informatics systems for clinical trials are designed around study teams with unique 
roles and responsibilities on the study. The study teams often require specific access 
and control within the clinical trial system. For a precision medicine trial, we define, 
in addition to the CTMS and Bioinformatics, the following four study teams:

• Clinical Team: Includes physicians, research nurses, and study coordinators
• Lab Team: Includes members of the clinical laboratory involved in the molecular 

characterization of biospecimens
• Treatment Review Team: Often referred to as a Tumor Board in oncology
• Biostatistics Team: Includes statisticians and data managers

Each team had specific roles defined in the study protocol or study operational 
manuals and components which can be programmed into the informatics system. 
For the NCI-MPACT study, we defined workflows for how the teams interacted 
within GeneMed. A design goal for GeneMed was to reduce delays in communica-
tion between the study teams. This is necessary because potential study participants 
are waiting for test results to determine if they are eligible for the clinical trial.

 GeneMed Workflow

A schema summarizing the roles and workflows is shown in Fig. 15.3.

 1. From a study participant perspective, the workflow starts when they are 
recruited to the study and provide informed consent.

 2. A study coordinator from the clinical team will register the participant in the 
GeneMed system and collect baseline clinical data.

 3. When a participant is registered in the system, a unique study ID is generated 
and assigned.
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 4. The baseline clinical data is used to evaluate study eligibility and will be com-
bined with the molecular characterization data to guide the treatment review 
team.

 5. The participant will be scheduled for a tumor biopsy or other biospecimen col-
lection appointment as required for the molecular characterization assay.

 6. The biospecimen will be shipped to the lab team for analysis. GeneMed incor-
porates basic sample tracking capabilities, but doesn’t replace a laboratory 
LIMS system.

 7. When the initial results from the molecular characterization assay are gen-
erated, they are uploaded to GeneMed and associated with the study ID 
generated at the registration phase. These initial results are automatically 
reviewed for basic quality controls and annotated for study protocol specific 
rules.

 8. A report is generated within GeneMed that allows the lab team to review the 
initial assay results with the additional quality and study specific annotations. 
The review is done entirely within GeneMed and allows the approved results to 
be exported and incorporated into the final lab results report.

 9. When the assay results are approved and signed out, the study protocol specific 
rules are applied to the results combined with the clinical data collected at 
registration.

 10. If the participant does not meet the study protocol eligibility, a notification is 
sent to the clinical team and physician with this information.

Lab Team

Biostatistics Team

Clinical Team

Treatment Review Team

Patient registration

Baseline clinical data
entry

Upload initial assay data

Lab review and sign-out

Variant report generated

Treatment review

Patient clinical trial
reports

Patient data de-
identification

Fig. 15.3 NCI-MPACT workflow implemented in GeneMed system
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 11. If the participant appears to be eligible for the clinical trial, a notification is sent 
to the treatment review team informing them to log into GeneMed for this 
participant.

 12. The treatment review team will evaluate if the study protocol eligibility rules 
have been correctly applied and the precision medicine guided treatments have 
been assigned appropriately. The review team can either override the eligibility 
or treatment assignments or approve the report.

 13. When a report is accepted, the system will run the adaptive randomization to 
assign the participant to either the arm A where treatment is based on the muta-
tions identified in the tumor or arm B where a treatment is selected based on the 
complementary set of treatments not matched to the mutation identified in the 
tumor.

 14. Following the randomization, a notification with the treatment assignment is 
sent to the clinical team, but blinded to whether the assignment came from arm 
A or arm B.

 15. Participants know which treatment they are receiving on the clinical trial, but 
do not know if they are receiving the treatment as a variant guided or control 
arm assignment. The lab assay report is only accessible to the lab team on 
GeneMed while the participant is still active in the study to maintain the ran-
domization blinding, but will be available to the participant when their partici-
pation is completed.

 16. As participants are enrolled on the study and assigned to treatment arms, an 
accrual report is updated within GeneMed. The biostatistics team are able to 
access GeneMed with an accrual dashboard containing real time data on the 
number of participants registered and undergoing biopsies, the number of par-
ticipants eligible and randomized along with the frequency of identified vari-
ants and treatment assignments. Since many variants may be rare, it is important 
to monitor the rates to maintain the feasibility of identifying enough individuals 
with specific treatment matched variants to complete accrual within the study 
period.

 17. While the participant is active on the clinical trial treatment, outcome data on 
the response to treatment is collected by the clinical team and recorded in 
GeneMed. The outcome data in GeneMed is used by the biostatistics team for 
interim monitoring reports and designed per-protocol evaluations of treatment 
response rates. The final clinical trial analysis can also be done in GeneMed 
mapping the randomization assignments with the treatment responses.

 18. A workflow was developed to de-identify the clinical information and subse-
quent additional genomic assays conducted using the tumor biospecimens 
when a participant goes off-study.

 19. All data and lab material are moved to a research component and relabeled with 
new study IDs delinked for the participant’s clinical records from the study. The 
de-identified data are used for additional studies of novel biomarkers and drug 
development.
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 Bioinformatics

A common component for all precision medicine clinical trials is molecular 
characterization of a biospecimen. In oncology, a sample of the tumor is col-
lected for analysis. Tumor deoxyribonucleic acid (DNA) or ribonucleic acid 
(RNA) is extracted from the sample and the nucleic acids undergo high through-
put sequencing to identify somatic alterations in the patient’s tumor. Advances 
in sequencing technology allow for the sequencing of millions of short nucleic 
acid fragments within a timeframe necessary for a screening assay, with an ideal 
turnaround time from collection of the sample to return of results of less than 
a week.

 Extensions: OpenGeneMed

The GeneMed system was designed for the NCI-MPACT clinical trial, but was sub-
sequently generalized as a standalone application with additional flexibility as the 
OpenGeneMed system [7]. The OpenGeneMed system allows the user to develop 
an informatics system for a precision medicine clinical trial that adapts to their 
protocol specific rules. The user roles and workflows build upon the GeneMed con-
cepts, with the addition of an IT team to manage the system design and modification 
to align with a new study protocol. The system is provided as a customizable virtual 
machine and user access the system via a web browser similar to the GeneMed 
system.
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Chapter 16
Informatics for a Precision Learning 
Healthcare System

Marc S. Williams

 Introduction

If the nineteenth century was the Industrial Age and the twentieth century was the 
Atomic Age, it is possible that the twenty-first century will be remembered as the Age 
of Precision Medicine. While this may seem presumptuous given that we have yet to 
experience a fifth of the century, the dramatic breakthroughs in genomics, informatics, 
and other enabling technologies culminating in the announcement by President Obama 
at the 2015 State of the Union address that called for investment in a large-scale preci-
sion medicine initiative, All of Us [1, 2], would seem to make this assertion plausible.

Medicine as currently practiced is empiric and dependent on how much knowl-
edge and experience the individual provider has, leading to care that has high 
variability and sub-optimal outcomes. Christensen et al. refer to this as ‘intuitive 
medicine’ defined as “care for conditions that can be diagnosed only by their symp-
toms and only treated with therapies whose efficacy is uncertain [3].” The same 
authors define precision medicine as “The provision of care for diseases that can 
be precisely diagnosed, whose causes are understood, and which consequently can 
be treated with rules-based therapies that are predictably effective.” While some 
conflate genomic medicine with precision medicine, genomics is a subset of infor-
mation used to inform precision care in conjunction with other information. The 
concept that best captures what is needed to attain precision medicine at the level of 
the individual was first stated in 1987 by Pauker and Kassirer [4].

Personalized medicine is the practice of clinical decision-making such that the decisions 
made maximize the outcomes that the patient most cares about and minimizes those 
that the patient fears the most, on the basis of as much knowledge about the individu-
al’s state as is available.
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There are three key points captured by this definition. First is the focus on the 
outcomes of care. Second is the central role of the patient in defining what outcomes, 
positive or negative, are most important. Third, the words “genetic” or “genomic” 
do not appear only “…as much knowledge about the individual’s state as is avail-
able.” There are no assumptions that genetic or genomic information is superior to 
other information. The discussion of precision medicine has been dominated by 
new technologies, with less attention paid to the critical role of the patient to define 
the desired outcomes of care from their perspective. Precision health encompasses 
precision medicine but extends it beyond the identification and treatment of disease, 
to emphasize the role of genomics and other technologies in prevention and health 
maintenance.

The healthcare system as currently realized is ill-equipped to deliver precision 
health at the individual level. In 2007, the National Academy of Medicine (for-
merly the Institute of Medicine) published the first workshop summary defining the 
Learning Healthcare System [5], as “science, informatics, incentives, and culture 
are aligned for continuous improvement and innovation, with best practices seam-
lessly embedded in the delivery process and new knowledge captured as an inte-
gral by-product of the delivery experience.” This approach contains the components 
needed to synthesize complex and disparate information and present this informa-
tion to the clinician and patient at the time of clinical decision-making in a reliable 
and reproducible fashion.

Precision medicine and health are emerging in clinical practice, mostly in the 
setting of clinical research. Anticipating the emergence of genomics into practice 
and in recognition of the challenges identified by prior efforts, in 2015 the National 
Academy of Medicine published a workshop summary describing Genomics- 
Enabled Learning Health Care Systems [6]. While much of the focus was on the 
electronic health record (EHR) and data management, on page 19 Friedman notes, 
“A health care system in which an infrastructure supports complete learning cycles 
that encompass both the analysis of data to produce results and the use of those 
results to develop changes in clinical practices is a system that will allow for opti-
mal learning.”

This chapter describes the implementation of a large-scale population precision 
health initiative in a rural, integrated healthcare delivery system using the princi-
ples of a learning healthcare system. The primary focus will be on the informat-
ics challenges and opportunities related to the implementation, within the larger 
context of the precision health project. The chapter begins with a description of the 
implementation setting. This is followed by a detailed description of the precision 
health research program which is divided into four discrete sections (Fig.  16.1): 
Consenting and sample collection; Sequence interpretation, confirmation, and 
reporting; Reporting results to participants and family; Measuring outcomes attrib-
utable to reporting. Each section will present clinical problems and research issues, 
a depiction and description of the processes involved in that section, relevant stan-
dards and technologies supporting the process, and other contextual factors that can 
impact the process. To conclude the chapter, a description of the migration of the 
precision health research program into a clinical program will be provided.
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 Setting

Geisinger is a rural, integrated healthcare delivery system in central Pennsylvania 
and southern New Jersey serving approximately 4.2 million residents. About one- 
third of Geisinger’s patients are insured by the provider-owned Geisinger Health 
Plan (GHP). This creates a “sweet spot” which allows Geisinger to test innovations 
in care delivery first with those patients with GHP health insurance, before rolling 
out the innovations to the entire Geisinger patient community. Research has been a 
key element of Geisinger’s mission since its beginnings. The theme of the Research 
Strategic Plan is Personalized Healthcare Research with an emphasis on developing 
and testing innovative approaches that will enable us to identify the unique dif-
ferences between patients—genetic, environmental, or social—so that each patient 
receives the ‘right care at the right time in the right way’ to increase quality and 
improve outcomes.

 Enabling Factors

The Genomic Medicine Institute (GMI) was launched in 2007 as a focal point for 
genomics research. In January 2012, the Institute’s mission was expanded to include 
translational and clinical genomics. To fulfill the mission, the GMI is actively 
engaged with clinical care departments, clinical innovation, informatics and the 
broader research enterprise. The GMI has the primary responsibility for leading the 
implementation of the MyCode® Community Health Initiative.

Consenting and sample collection

Sequence interpretation,
confirmation and laboratory

reporting

Reporting results to participants
and family members

Measure outcomes attributable
to reporting

Fig. 16.1 Overview of the four essential 
components of a precision health program. While 
the depiction is linear, the Learning Healthcare 
model means that information from all 
components feeds back to program leadership 
and is used to continuously improve the program
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The MyCode® Community Health Initiative (MyCode) began in 2007 [7]. This 
initiative is a precision health project enrolling Geisinger patients of all ages from 
across the system. It includes a system-wide biobank designed to store blood 
and other samples for research use by Geisinger and Geisinger collaborators. 
MyCode participants have a median of 12 years of EHR data coupled with data 
from whole exome sequences, high density genotyping chips, and HLA typing. 
This is made possible through a collaboration with Regeneron Pharmaceuticals 
and the Regeneron Genomic Center, which generates the research sequences for 
the participants. While the primary purpose of the genomic data is to support dis-
covery research, Geisinger has full and unrestricted use of the data for clinical 
care. MyCode participants are enrolled under a broad, opt-in research consent that 
supports research, but also allows recontact of participants, and return of results 
that are deemed medically actionable including placing results in the EHR. This 
provides the opportunity to benefit participants, something that was valued by 
Geisinger patients in the extensive community consultation used to design and 
continuously improve the program. The initiative is governed by the Geisinger 
Institutional Review Board and the MyCode Governing Board, with input from 
several advisory boards, including participant, youth, and clinician advisory 
boards; a genomic council consisting of all genetic providers in the system, and 
an external ethics advisory board. This ongoing commitment to seek input from 
the Geisinger community is key to maintaining trust and provides opportunities 
to adapt the initiative to the changing needs of the community. As of April 2019, 
over 230,000 Geisinger patients have been consented for participation and nearly 
93,000 have completed exome sequencing. Results have been reported to more 
than 1000 patients across a variety of genes and conditions [8, 9].

At the outset of the program, the Clinical Genomic team identified 76 action-
able genes associated with 27 different conditions eligible for return [10], including 
the 56 genes identified as reportable by the American College of Medical Genetics 
and Genomics (ACMG) [11]. This was recently updated to 80 genes associated 
with 29 conditions, inclusive of the ACMG secondary findings policy revision [12]. 
Approximately 3.5% of participants have a variant eligible for return [13]. The 
Geisinger gene list is revised annually at a minimum. Changes to the list necessitate 
reanalysis of all the previous sequences which has been added to the pre-return of 
result process. The reanalysis also allows incorporation of new knowledge about 
variant pathogenicity.

Clinical care re-engineering and quality improvement: Geisinger has over 
10  years of experience creating evidence-based care pathways to reduce unex-
plained clinical variation resulting in high quality care at a lower cost, optimizing 
value to the patient, health system, and payer [14]. The pathways are implemented 
with the full support of the EHR system and associated data sources coupled with 
dashboards and other metrics to track outcomes and identify process failures. 
Patient engagement is essential to the success of this approach and supports the 
need for patient context if precision health is to be successful. This approach dem-
onstrates that linking several improvement concepts (evidence-based guidelines, 
data feedback, reliability science, patient-centered care) in a single design model 
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can  effectively reduce unwarranted variation in care delivery to reduce cost and 
optimize outcomes from the perspective of the patient.

Creation of a learning healthcare system: Geisinger has committed to trans-
form to a learning healthcare system. To this end, working groups consisting of 
leaders from the delivery system, research, and the health plan are meeting to iden-
tify current assets and gaps that need to be filled to attain this system goal. A 1-year 
timeline has been set to accomplish four phases needed to support development of 
an LHS.

• Phase 1: (a) Survey Geisinger to identify ‘pockets of goodness’ and local learn-
ing health care initiatives to develop evaluation criteria, and (b) Develop a knowl-
edge management system to represent these existing efforts.

• Phase 2: Create linkages between these existing efforts to enhance collaboration 
and replication.

• Phase 3: Develop an enabling core of providers to lead development of the 
Geisinger learning healthcare system by developing additional local learning 
healthcare initiatives that will enhance knowledge and dissemination of best 
practices.

• Phase 4: Use the information from phases 1–3 to develop conceptual and busi-
ness models for a LHS core that will lead system-wide efforts to implement a 
system-wide learning healthcare system culture.

It is the goal of the GMI to implement genomic medicine as a local learning 
healthcare initiative.

 Realizing the Precision Health Learning Healthcare System

Implementing the Precision Health learning healthcare system is complex and 
requires multi-disciplinary expertise coupled with a communication strategy that 
crosses traditional institutional boundaries. At its foundation is a robust information 
system that utilizes data derived from the EHR but extends data collection beyond 
the EHR to capture critical data that are not part of the EHR ecosystem. This 
includes collecting data from outside Geisinger, as the variants identified by the 
research sequencing must be confirmed in a clinical laboratory before being used 
for patient care. As noted in the NAM report on the Genomic Learning Healthcare 
System workshop, communication of genomic data between different systems is 
not standardized, necessitating creation of customized workflows to ensure data 
are available for care and tracking. It is important for the reader to understand that 
the processes discussed below are dependent on a robust informatics infrastruc-
ture. The overall workflow of the Precision Health learning healthcare system can 
be divided into Consenting and sample collection; Sequence interpretation, con-
firmation, and laboratory reporting; Reporting results to participants and family; 
and Measuring outcomes attributable to reporting (Fig. 16.1), each of which are 
discussed in detail.
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 Implementing Precision Health

 Consenting and Sample Collection

The workflow for these activities is outlined in Fig. 16.2.

Research Database (Consented Patients,
Patients declining consent, or withdrawn

from project).
Specimen status for consented patients.

Scheduling system queries research database  
regarding patient eligibility status 

Eligible patients
Patient initiates consent
through patient portal,

telephone, or smart device

In person approach for consent in clinic

Patient declines consent Patient consents
Order placed
for specimen

collection

Specimen collected and
placed in biorepository.
(CAP/CLIA certified)

Sample sequenced (research lab)
and sequence data returned for

storage and analysis

Database updated

Fig. 16.2 Workflow for Consenting and Sample Collection. This figure represents the necessary 
communication between research and clinical systems needed to optimize recruitment and sample 
collection while minimizing burden on the patient. Most of the interfaces to support this workflow 
have been purpose-built for this process
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MyCode is a clinical research program. In consultation with patients and other 
stakeholders, the decision was made to use an opt-in consenting process. Given the 
desire to develop a large cohort very quickly, a multi-pronged approach to consent 
was developed. In addition to traditional in person consenting, IRB approval was 
obtained to consent for participation through the tethered patient portal associated 
with the Geisinger EHR (MyGeisinger), by telephone, and using smart devices. In 
response to patient feedback, the consent form itself is 2 pages. An accompanying 
educational brochure provides additional information about the program, including 
links to online resources and contact numbers. This approach has allowed consent-
ing of 800–1200 patients per week from virtually any location within the Geisinger 
service area (Central Pennsylvania and Southern New Jersey). Most consents are 
obtained by MyCode consenters located in clinics across the system. The strongest 
predictor of participation in MyCode is the number of clinic visits a patient has, 
which explains in part why the MyCode cohort is older and more female than the 
Geisinger population as a whole.

To minimize the burden on participants, the decision was made to align sample 
collection with routine laboratory blood draws, rather than requiring a separate 
research blood draw. Once consented, a standing laboratory order is entered for 
the participant such that whenever the participant presents for a blood draw, they 
are reminded that they are in MyCode and are asked if they are willing to provide a 
specimen. This approach has several advantages including reminders to the partici-
pant that they are in the program, opportunities to decide if they wish to provide a 
specimen or continue in the program, and replenishment of sample in the bioreposi-
tory reducing the challenge of sample depletion faced by many biorepositories. One 
drawback is that some participants do not have routine laboratory work, meaning 
that while they are consented to participate in the program, there is no specimen 
available for sequencing, such as pediatric patients. To address this issue, saliva kits 
are now being mailed to interested consented participants who have no scheduled 
laboratory work, and likewise saliva is being collected from pediatric patients.

A clear message that emerged from the community engagement efforts was that 
patients did not want to be repeatedly approached about consent for the MyCode 
project. If they had consented to participate, they wanted the consenters to know 
that, so they wouldn’t be approached to consent again. If they opted not to partici-
pate, they wanted that decision to be respected so that they wouldn’t be disturbed 
going forward when they presented for medical care. There are also implications for 
where to place consenters in clinics to maximize the number of patients approached 
for consent. After a period of time, clinics with consenters achieve saturation, mean-
ing that the number of patients in the clinic that have consented to (or declined) 
participation begins to plateau. All of these issues informed an informatics strategy.

Traditionally, a list of research participants is maintained by the research 
team. This is the case with MyCode. However, it was recognized that if this 
list could be dynamically linked to the scheduling system, this could be used 
to address the  challenges outlined above. Geisinger informaticists developed 
an interface between the MyCode participant database and the scheduling 
system such that any patient scheduled to come in for an outpatient visit is 
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identified as being consented as a participant, a patient who had declined par-
ticipation, previously approached for consent, but still considering, or not pre-
viously approached. The consenter located in the clinic can review the clinic 
schedule and identify those patients who have not been previously approached 
for participation allowing them to approach those patients before or after their 
appointment. In some clinics with strong provider advocacy, this information 
is shared with the provider who can choose to discuss MyCode as part of the 
encounter. Clinics that use this proactive approach involving providers have 
the highest consent rates for the program. The second use of this interface is 
to track the number of patients eligible for participation in MyCode that are 
not yet consented. As the number of eligible patients in a given clinic pla-
teaus, consenters can be moved to other clinics with more eligible patients. 
This improves the efficiency of the consenter. Using this approach, consenters 
average 10–20 consents per day, supporting the rapid accrual needed to sup-
port the goals of the program.

A second issue involving consent is versioning. The MyCode program has 
evolved over its 11 years of existence from a traditional biorepository operating 
under more traditional research principles where return of research results is not 
expected, to the current community health initiative where medically significant 
results are actively sought and reported to participants and their providers. As such, 
depending on when the participant enrolled in the program, they may be on a differ-
ent consent. An additional complication has been the assimilation of biospecimens 
into MyCode that are derived from studies that operated under project-specific con-
sents. While these are no longer in use for future Geisinger research, the specifics of 
the consent for a participant in one of these projects that has not enrolled in MyCode 
must be understood. Analysis of the consent forms has allowed development of a 
database where each participant’s consent is represented, allowing segregation of 
certain consented participants from participation in projects for which their version 
of consent is not appropriate.

Once consent is obtained, collection of a blood specimen for DNA extraction 
and storage is critical for the project. For this step, the standard order function in 
the EHR is used. A standard order was created for MyCode that details the amount 
of blood and the type of tubes used for collection. The order is associated with a 
project physician and a research billing code so that the participant is not charged 
for contributing samples for the project. The order is represented in the vendor EHR 
as a standing order, such that additional specimens can be collected as the partici-
pant receives care in the system. No customization to the vendor ordering system is 
needed to support specimen collection. This has been implemented in two different 
EHR systems within Geisinger.

Specimen handling also leverages existing procedures. All specimen collections 
are performed in clinical phlebotomy sites that are under the laboratory’s College of 
American Pathology/Clinical Laboratory Improvement Amendment (CAP/CLIA) 
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certification. To avoid having to create a separate specimen tracking system, the 
decision was made to bring the biorepository under the laboratory’s CAP/CLIA cer-
tification. This not only takes advantage of pre-existing technology and workflow 
but has benefits for the clinical confirmation step that will be described later. The 
biorepository also uses vendor provided specimen annotation software that supports 
characterization of the specimen with project-defined attributes and associates the 
relevant consent with the specimen.

 Implementation Challenges

While the specimen collection process was able to use existing information sys-
tems, the consenting process required development of several custom systems to 
support the workflow in order to create interfaces to share data between the research 
database and the software used for scheduling patients in near real-time to support 
the consenting workflow.

Despite extensive effort in the development and implementation of the consent-
ing and specimen collection process, problems were encountered that necessitated 
modification of the program to achieve optimal performance. The structure of a 
learning healthcare system that includes robust process monitoring and response 
to process failures supports rapid iterative project improvement. As an example, 
the consent versioning issue was identified when participants contacted to receive 
a result contacted the program stating that they had not consented for such a return. 
Result return was immediately suspended until all consents had been reviewed and 
a system put in place to ensure results are only returned to those who are appro-
priately consented. A second issue is identifying individuals who have died since 
enrolling in the project. Since death can occur at any point in the process, the par-
ticipant’s status must be checked at multiple times during this process and as part 
of results reporting.

Monitoring also identified a process failure in the specimen collection process. 
It is well known that upgrading a system in a complex network of systems can 
have unintended consequences. After an upgrade to the laboratory information sys-
tem, it was noticed that there was a decline in specimen collection for the project. 
Investigation revealed that the upgrade had affected the standing order process. 
Once identified, a new order set was implemented and specimen collection resumed. 
Real-time monitoring of processes is essential to identify and fix the process failures 
that will inevitably arise.

A challenge that was not encountered in this aspect of the project involved clini-
cian workflow. Consultation with providers and clinic staff allowed the consenting 
and specimen collection process to proceed independent of the clinical workflow. 
The support of providers and staff for the project itself, and for a process that did not 
disrupt the clinic workflow allowed rapid and effective implementation.
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 Sequence Interpretation and Confirmation

 Bioinformatics Analysis and Variant Annotation

The high-level process of taking the research sequence and transforming it for use in 
clinical care is depicted in Fig. 16.3a. The key aspect of this process is the bioinfor-
matics analysis of the sequence data to identify high confidence expected pathogenic 
variants that can be returned to participants. It is important to remember that the 
MyCode participants are not selected for the presence of any disease or condition. 
Therefore, the interpretation must consider the low prior probability of an individual 
having any one of the conditions of interest for the project. This necessitates conser-
vative variant calling protocols to minimize the return of false positive results. This is 
a challenging paradigm for clinical labs for which most testing is based on a clinical 

Fig. 16.3 (a) Sequencing, Data Analysis and Confirmation Workflow (idealized). This flow dia-
gram represents the ideal process for sequence analysis, confirmatory sequencing, and laboratory 
reporting. (b) Sequencing, Data Analysis and Confirmation Workflow (mapped). This flow dia-
gram represents the actual process with one laboratory to achieve the objectives of sequence analy-
sis, confirmatory sequencing, and laboratory reporting. Information systems must be assessed for 
their ability to support the various processes. This includes assessment of the interactions between 
systems such as the EHR and laboratory information systems, both local and at the referral labora-
tory. The box identifies a process that was used initially, but has now been transitioned to the 
internal workflow, reflecting the dynamic nature of the process. This workflow is specific to one 
referral laboratory. The analysis must be performed for each laboratory contracted to perform 
confirmatory sequencing (currently a total of four—the Geisinger molecular laboratory and three 
external referral labs). Lack of standard interfaces and standards for genomic data representation 
limit the ability to develop standard interfaces that are reusable

Eligible MyCode® samples
sent for exome sequencing

Exome sequences undergo
bioinformatics analysis of

Geisinger genes

Report issued to Geisinger

Yes No
Reportable
Results?

Variant Confirmation in CAP/
CLIA certified clinical laboratory

Save exome sequences for
future bioinformatics analysis

a
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indication, implying a higher prior probability to inform interpretation. Recognizing 
this challenge, Geisinger has invested in developing a robust variant annotation infra-
structure combining conservative variant calling algorithms with an additional layer 
of manual interpretation involving biomedical informaticists, variant scientists and 
clinicians. Variants that are annotated as pathogenic or likely pathogenic by this pro-
cess are further evaluated through the process of clinical confirmation.

When the relatively straight forward high-level process is mapped to a real-world 
implementation it becomes much more complex, as shown in Fig. 16.3b. This figure 
details the process as it was initially developed with the first clinical laboratory at 
the initiation of the process. It included an independent review of all the variant call 
files (VCF) generated by the research laboratory (indicated by the box). This was 
necessary at the outset of the project, as the internal variant calling pipeline was 
just being developed and there was concern that the internal pipeline might over- or 
under-call variant pathogenicity.

A second review by an experienced clinical laboratory using an established clini-
cal pipeline increased confidence in the selection of the variants to send for clini-
cal confirmation. As the internal pipeline was enhanced and additional experienced 
 personnel were added to the annotation team, a comparison of concordance of the 
internal pipeline with the laboratory pipeline was undertaken. This analysis identified 
a very low rate of discordance. A further review of the discordant variants determined 
that these were not of high clinical significance. As a result, the external review of 
VCF files was discontinued, reducing the cost and complexity of variant annotation.

 Clinical Confirmation and Laboratory Reporting

The nature of the research collaboration with our pharmaceutical partner means that 
the exome sequencing is not performed in a CAP/CLIA certified laboratory, so they 
must be confirmed in a CAP/CLIA certified laboratory before they can be returned 
to a participant. As noted above, the biospecimens are collected and maintained in a 
CAP/CLIA compliant environment, obviating the need to collect another specimen 
from the participant, which removes a barrier and reduces burden on the participant. 
In addition to testing the specimen to see if the variant confirms using an orthogonal 
sequencing approach, the laboratory performs an annotation of the variant to inde-
pendently validate the Geisinger annotation.

Only those variants that are confirmed by clinical sequencing and categorized 
as pathogenic or likely pathogenic by both the internal and external processes are 
eligible for return to the participant.

The clinical confirmation process leverages existing clinical genetic testing pro-
cesses. An order for variant specific testing is entered in the EHR order system 
with a research physician of record, so as not to add work to clinical staff. With 
one exception, the clinical confirmation is done by external referral laboratories. 
Project staff worked with the Geisinger referral laboratory to develop a standard 
process for sending out the specimens with the test order to the referral laboratory. 
This included using billing codes that routed charges for the order and testing to the 
MyCode project for reimbursement under a research code. Beyond adding some 
new codes, no modifications to existing information systems were required.
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If the variant is confirmed by the clinical laboratory, a report is issued to 
Geisinger. This uses the standard reporting process. Unfortunately, the ‘state of the 
art’ for genetic test reporting in EHRs at this time is transmission of the report as 
a text, or portable document format file, which is placed in the EHR as a scanned 
image [15]. This means that the information contained in the report is not repre-
sented as structured data, thus cannot be used to support clinical decision support 
to aid patient and provider decision-making. Reports must be compliant with CLIA 
reporting requirements (42 CFR §493.1291) and there are recommendations from 
professional societies about the organization of the report [16, 17], however, at pres-
ent, there are no recommendations or requirements that the genetic information 
contained in such a report be represented as structured data. A full discussion of the 
issues is beyond the scope of this chapter, but interested readers are referred to this 
paper for more information, and emerging approaches [18]. As genetics and genom-
ics is increasingly utilized in clinical practice it is anticipated that vendor-provided 
EHRs and laboratory information systems will add the capability to represent these 
results as structured data. In addition, to issue the laboratory report, as part of the 
laboratory’s contract with Geisinger, the variant with annotation is deposited into 
the Clinical Variant Resource (ClinVar) [19] to promote data sharing and enhance 
information availability for clinical variant annotation efforts.

 Implementation Challenges

Most of the challenges in this step are ones experienced by most groups looking to 
use genomic sequence in a clinical or clinical research setting. Variant annotation 
pipelines are being continuously improved but still require significant manual cura-
tion effort. One unique aspect of our program that impacts the annotation pipeline 
is the screening paradigm. Most variant calling pipelines have been designed for 
interpretation in the context of clinical signs and symptoms that suggest a genetic 
disease. In this setting, the pipeline needs to emphasize sensitivity such that vari-
ants that are potentially disease causing are not automatically filtered, including so- 
called variants of uncertain significance. In some settings, such as rare undiagnosed 
complex disease (e.g., the Undiagnosed Diseases Network) [20, 21], there may be 
a discovery component that expands annotation to variants in genes that do not 
currently have an established gene-disease association. However, for MyCode, the 
emphasis of the variant annotation pipeline is on specificity, that is on only reporting 
variants for which there is strong evidence of causality. This first requires a defini-
tive gene-disease association followed by an understanding of the variants that are 
damaging and associated with the disease.

Several sources are used to establish the pathogenicity of variants. ClinVar, 
which has been mentioned previously, is a very important resource, as it not only 
has one of the largest collections of variants with assertions of pathogenicity, but it 
also includes a rating system for the evidence associated with the variant. If a vari-
ant is identified in a MyCode participant that is represented in ClinVar with a three 
star assertion of pathogenicity, there is high confidence that it is associated with 
the condition of interest, while if it has zero or one star, the interpretation must be 
more circumspect and more clinical contextual factors including personal or family 

16 Informatics for a Precision Learning Healthcare System



236

history of disease must be included in the review. The information associated with 
genes and variants is constantly changing and updating these sources for the project 
is critical. A recent example was the publication by Hosseini et al. [22] that compre-
hensively reviewed gene-disease assertions for Brugada syndrome. After a critical 
review, only one of the 21 genes asserted to cause Brugada syndrome actually had 
definitive evidence supporting gene-disease causality. Several of the other genes 
had been included on the Geisinger list for reporting and are now being assessed 
for potential removal. The same issue exists at the variant level even for some rela-
tively well-characterized variants. Manrai et  al. [23] demonstrated the impact of 
lack of race and ethnic diversity in variant databases in the context of hypertrophic 
cardiomyopathy. At present the updating is heavily dependent on manual processes, 
a problem compounded by the proliferation of relevant databases [24]. A number 
of approaches to automate this process are emerging, particularly in commercially 
available products and services. While these lower the time required to identify rel-
evant resources, they are not robust enough to be used autonomously.

Another problem is the high rate of novel variants in disease-associated genes 
found when sequencing a population. While the vast majority of these likely rep-
resent benign variation, identifying the suspected pathogenic variants from the rest 
is important. For genes where the mechanism of disease is loss of function, this is 
somewhat more straightforward. In-silico variant predictors perform well to iden-
tify loss of function variants. If these occur early in the sequence, then it is likely the 
gene product would be subject to nonsense mediated decay leading to haploinsuf-
ficiency, and probably disease. Diseases where the mechanism is a gain of function, 
or a dominant negative interaction are more difficult to parse when a novel mis-
sense variant is encountered. In-silico prediction of the pathogenicity of missense 
variants relies on assessments of the likelihood that a given variant would damage 
the resulting protein combined with the conservation of the variant evolutionarily, 
the assumption being that the more conserved the reference nucleotide is, the more 
likely a variant is deleterious. Another issue is the nature of the gene itself. Genes 
code for a variety of different protein products, so a predictor that works well for a 
gene that codes for a structural protein such as collagen, may perform very poorly 
when applied to a gene that codes for an ion channel [25]. Many predictors have 
been used alone and in combination to assist in variant annotation. While there 
is some value to using this information as part of the variant interpretation pro-
cess, over reliance on in-silico predictors is problematic as reflected in professional 
guidelines for variant interpretation [26].

An additional benefit of a large-scale sequencing project associated with longitudi-
nal health records is the opportunity to incorporate clinical information from partici-
pants to aid in the annotation of novel variants. In addition, the stable population in 
MyCode means that many families have relatives also participating in the project. This 
allows the construction of virtual pedigrees based on the genomic degree of relatedness 
coupled with inferences about the nature of the relationship based on demographic 
information. In at least two instances, a novel presumed pathogenic variant was identi-
fied in multiple family members participating in MyCode, allowing a disease segrega-
tion analysis which provided additional evidence for the pathogenicity of the variant.
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Informatics challenges associated with the lack of structured data for genes and 
variants in laboratory reports was discussed above and will be discussed more in the 
following section.

 Reporting Results to Participants and Family

The process for the reporting of results to participants is shown in Fig. 16.4.

Primary care
provider (PCP)
management

Genomic
Screening and
Counseling
Program (GSCP)

Result sent to PCP

GSCP sends EHR message/letters to patient

PCP encounter scheduled
5 days*

5-10 days*

GSCP calls patient

1. Letters & result to patient
2. No-contact documented in EHR1. Disclusure phone script

2. Family hx ID assigned

Contact

If patient responds

No contact x 3

Result & support materials
mailed to patient

Patient may follow upa

with PCP, GSCP or both

Targeted follow-up w/PCP & condition-
specific specialists

*Business; aFollow-up includes genetic counseling & medical evaluation

GSCP assists w/referral from PCP

Patient follows up with GSCP

Patient follows up with PCP

Fig. 16.4 Reporting results to patients. This figure depicts the results reporting workflow which 
involves coordination between the Genetic Screening and Counseling Program (GSCP) and the 
clinical system as represented by the participant’s primary care physician (PCP). GSCP uses com-
munication channels in the Geisinger healthcare informatics ecosystem to coordinate care with 
Geisinger PCPs and specialists. A physician advisory council provides input on the preferred com-
munication strategies which are implemented. Approximately 40% of PCPs are not employed by 
Geisinger and have less integration of information systems. The GSCP uses existing communica-
tion strategies the institution has developed to coordinate care with external PCPs, so no new 
infrastructure was required to support care for participants. A multimodal approach to participant 
contact reflects the rural nature of the system where internet connectivity is variable, leading to 
more reliance on telephone and mail contact. Smart devices are supported, so as penetration of 
these devices increases, strategies that utilize device capability will be expanded. The use of a 
certified letter for participants that cannot be contacted directly allows the GSCP to close the loop 
for reporting results
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The process was informed by extensive consultation with participants and provid-
ers. One key feature is notification of the providers prior to patients in order to allow 
the provider time to access materials relevant to conditions with which they may not 
be familiar. This includes mini-CME courses for each condition available online 
through the system’s goals site which is used for mandatory compliance training. 
The Genetic Screening and Counseling Program (GSCP) consisting of geneticists, 
genetic counselors, and support staff is on call for consultation at the request of 
clinicians. After 5 days, results are released to the EHR where they are available for 
participants through the patient portal tethered to the EHR. It is essential to close the 
loop with the participant who receives a result. This is done through a combination 
of letters and phone calls by the GSCP. Participants that cannot be reached are sent 
a certified letter with the result, information to help them  understand the implica-
tions for their healthcare, information for family members and contact information 
for the GSCP. About half the participants have a primary care physician outside 
the Geisinger system. The team uses existing communication channels developed 
by the system for non-Geisinger providers to return results for these participants. 
Consultation is available for Geisinger and non-Geisinger providers.

Participants are given the choice to follow-up with their primary care provider, or 
to have a visit with a member of the GSCP. Since this result is being returned as part 
of a research program, the initial return of results visit is provided without charge to 
the participant. Subsequent follow-up transitions into usual clinical care. Specialty 
referral is also offered. A network of specialists with expertise in the conditions 
relevant to the genomic result has been identified and works closely with the GSCP 
to ensure guideline-based care is offered to the participant.

The existing EHR with its tethered patient portal is used to support the results 
reporting. No additional functionality was necessary to support the process. The 
implementation of the International Classification of Disease, Tenth Revision, 
Clinical Modification (ICD10) has greatly enhanced the ability to precisely code 
diseases and related processes. This is of importance to the project, as the identifi-
cation of a pathogenic variant is not equivalent to having a diagnosis of a disease 
[27]. Prior versions of ICD did not provide the ability to represent the presence of a 
variant that confers risk for disease. However, ICD10 includes a range of codes for 
genetic carrier and genetic susceptibility to disease (Z14–Z15). When a pathogenic 
variant is returned to a participant, in addition to the scanned laboratory report in 
the EHR, an appropriate Z code that describes the patient’s genetic variant status 
is added to the problem list with explanatory text entered as a comment associated 
with the problem. This is a structured data element that supports searching by gene, 
a function to support outcomes research that will be described in the subsequent 
section. This also supports knowledge representation which will be discussed in the 
Implementation Challenges in this section.

Communication of genomic results to at risk relatives to support cascade testing 
enhances the value of the program. This is supported by collecting family history 
information from the participant and providing copies of information for all at risk 
relatives to the participant for distribution. The GSCP is available to support rela-
tives that want to consider testing. This process is manual and is supported by a 
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purpose-built database that is separate from the EHR. The current functionality for 
family history in the system’s EHR is insufficient to represent family history at 
the detail needed to support the cascade testing program. Geisinger has invested in 
standalone family history tools that have the necessary functionality and developed 
interfaces to allow these tools to be used within the EHR environment. This has 
been quite successful but represents a local solution that is not generalizable without 
extensive expertise and customization.

 Implementation Challenges

Given the limitations of the laboratory-issued genomic test report, an additional 
innovation to support the return of results was to design and implement paired 
patient and provider genome test reports and make these available through an appli-
cation that interfaces with the EHR [28, 29]. In a prospective study, the reports were 
found to improve communication between patients and providers and increased 
patient empowerment and satisfaction [30]. These reports were designed based on 
input from patients and providers and contain information deemed important for 
interpreting genomic results from each of the stakeholder groups. The format is 
standardized and the content for each of the patient-facing reports is assessed for 
readability and comprehension. Links to additional resources are embedded in the 
report and allow navigation from the EHR. Paper versions of the report can be sent 
for participants without access to reliable internet—a significant issue in our service 
area. The reports were implemented using an existing local application, COMPASS, 
that interacts with the EHR through a standard application programming interface 
(API). This API is also compatible with emerging standards such as Fast Healthcare 
Interoperable Resources (FHIR) including more advanced initiatives including 
SMART on FHIR and SMART genomics. The use of standard APIs facilitates the 
generalizability of this approach, particularly as EHR standards are requiring the 
availability of APIs as part of EHR certification. Details of the informatics strategy 
to create and deploy Genome COMPASS are published [31].

As noted above, the nature of the Geisinger patient population is such that mul-
tiple generations of family are cared for by the system. This makes Geisinger an 
ideal place to study how information systems can be used to support cascade testing 
of family members following identification of a genetic variant in a family mem-
ber. Unfortunately, family history collection and representation in the EHR is not 
adequate at the present time [32]. An additional function that would support cascade 
testing would be the association of individual health records under an overarch-
ing family record. This was relatively straightforward with paper records, but has 
proven challenging with EHR systems, even for a seemingly simple use case of 
associating a child with its parents. There are some early efforts, mostly to support 
payer and public health programs [33], but these have yet to be implemented in ven-
dor provided systems. While newer versions of these systems will provide enhanced 
capabilities to represent family history to support risk assessment for an individual 
patient, more advanced functionality remains aspirational.
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Studies have consistently shown that health care providers are not adequately 
trained to deal with genomic information, and self-report low confidence in their 
ability to use this information to care for patients [34]. Providing information and 
support at the point of care to assist providers in the care of their patients is essential 
if the anticipated benefits of precision health are to be realized. Clinical decision 
support (CDS) in the form of ready access to knowledge resources in the clinical 
workflow (Passive) and computerized algorithms triggered by clinical information 
coupled with genomic information that guide care through alerts, reminders, and 
care pathways (Active) is an essential component of the precision health informat-
ics ecosystem. There is an extensive literature on both passive and active CDS, a 
review of which is beyond the scope of this chapter but is covered extensively in 
the Institute of Medicine workshop summary, Genomics-Enabled Learning Health 
Care Systems: Gathering and Using Genomic Information to Improve Patient Care 
and Research [6].

At Geisinger, we are exploring native functionality in our EHR to support 
CDS.  Active CDS in the form of best practice advisories (BPAs) are available 
to guide care in several places in the EHR. We have implemented BPAs in a set 
of use cases related to pharmacogenomic-guided therapy. As more pharmacoge-
nomic information on our participants becomes available, this will be expanded. 
These are informed by evidence-based guidelines available from the Clinical 
Pharmacogenetics Implementation Consortium (CPIC) [35]. To promote generaliz-
ability and facilitate implementation, the CPIC guidelines are unusual, and possibly 
unique, in that the guidelines are designed with computability in mind. Input from 
the CPIC informatics working group ensures that the guidelines are adequately 
explicit. Narrative descriptions of the guideline (an L1 CDS artifact) and a decision 
tree (an L2 CDS artifact) are created and published with the guidelines. As more 
pharmacogenomic information on our participants becomes available, this will be 
expanded. We deposit L1 and L2 artifacts in a publicly available database of clinical 
decision support algorithms, CDSKB [36], which was created and is supported with 
funding from the National Human Genome Research Institute through the elec-
tronic Medical Records and Genomics (eMERGE) and Implementing Genomics in 
Practice (IGNITE) networks. One barrier at present is that the pharmacogenomic 
variants are not able to be stored as structured data in the EHR, meaning that they 
must be manually converted into structured data elements that can be placed in the 
EHR such that they can appropriate trigger the relevant BPA. It is anticipated that 
EHR upgrades will support storing genomic variants as structured data to support 
passive and active CDS.

The genomic test reports described above are one modality being used to pro-
vide knowledge at the point of care. As more clinically relevant knowledge about 
genomics becomes available, it is imperative that these knowledge repositories can 
be accessed by clinicians through the EHR. The challenge is how to facilitate pro-
vider access to the information within the clinical workflow in a time frame com-
patible with the limited visit length. Extensive research on this problem has been 
conducted. A promising approach is to use a tool such as an infobutton. Infobuttons 
are context-sensitive links embedded within an EHR or other information system, 

M. S. Williams



241

which allow easy retrieval of relevant information. The author in concert with 
investigators within eMERGE and the NIH-funded Clinical Genome Resource 
(ClinGen) [37] have investigated how online genomic knowledge repositories can 
be configured to support infobutton queries. The ClinGen repository represents an 
active test bed for this technology given its stated mission is “…dedicated to build-
ing an authoritative central resource that defines the clinical relevance of genes and 
variants for use in precision medicine and research.” A summary of this work has 
been published [38–40]. A technical problem encountered locally was that while 
the EHR system has infobutton functionality, it was not active within the production 
EHR environment, so could not be used to provide information to clinicians at the 
point of care. Infobuttons will be activated with the next system upgrade (fall 2018). 
This upgrade will also add the functionality to represent genomic information as 
structured data, which will support context-specific information retrieval, once the 
native infobuttons are configured. This will also support deployment of active CDS 
to support care for the prioritized conditions in our precision health initiative.

 Measuring Outcomes Attributable to Reporting

Precision health is an exciting idea that conceptually promises to transform the 
way medicine is practiced. To achieve the goal of precision health in the context 
of a learning healthcare system, it is necessary to ‘close the loop’ to determine the 
impact of the return of results to the participant and to the system. The healthcare 
system can no longer afford to add new interventions that don’t provide value to 
the patient or system. This means that an essential component of a precision health 
program is to define and measure the outcomes attributable to the interventions. 
Outcomes of relevance to healthcare stakeholders are diverse (Table 16.1).

Capturing the outcomes requires a variety of approaches. For participants that 
receive their care from Geisinger, the process, intermediate and health outcomes 
can be captured from the EHR. Health outcomes may take years to measure, even 
decades when considering the impact of screening for familial hypercholesterol-
emia in the pediatric population. The stability of the Geisinger population with little 
in and out migration provides an ideal opportunity to measure the long-term impact 
of a genomic medicine-informed precision health program. Capturing outcomes 
data for participants not cared for at Geisinger is more difficult but can be addressed 
in three ways. Some of these participants are covered by Geisinger Health Plan, 
meaning that claims data can be used to measure some of the outcomes (mostly pro-
cess). Secondly, Geisinger leads the Keystone Health Information Exchange which 
allows information from participating healthcare organizations to be collected for 
care coordination and, more recently research. Finally, participants are contacted by 
the GSCP on a periodic basis after the return of results. This provides an additional 
opportunity to collect information on process outcomes, and potentially interme-
diate and health outcomes if the participants provide access to medical records. 
Contact is also critical to obtain information about whether the measured outcome 
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can be confidently attributed to the return of result. As an example, if a participant 
has a mammogram after the return of a pathogenic variant in the BRCA1 gene it 
could be due to the result being returned, or because it was performed as part of 
routine preventive care. Accurate attribution is essential to determine the true value 
of the precision health program. Cost outcomes can be determined by applying 
standard costing to the clinical data obtained above.

Follow-up phone calls to the participants also supports the collection of patient- 
reported outcomes. This can be done using standard tools but also requires the 
development of validated patient-reported outcomes relevant to precision health, as 
these currently do not exist. Geisinger has active research in this area alone, and in 
collaboration with networks like eMERGE.

These outcomes can be used to populate economic models to examine the cost- 
effectiveness of the intervention and identify which data elements have the most 

Table 16.1 Outcomes for precision health implementation

Outcome 
type Description Precision health example

Process These measures are the specific steps in 
a process that lead—either positively or 
negatively—to a particular health 
outcome

Lipid profile performed after return of a 
pathogenic variant in LDLR a gene 
associated with familial 
hypercholesterolemia

Intermediate A biomarker associated—either 
positively or negatively—to a particular 
health outcome

An LDL cholesterol level at or below 
the target level of 100 mg/dl in response 
to interventions recommended based on 
presences of a pathogenic variant in 
LDLR

Health Change in the health of an individual, 
group of people, or population which is 
attributable to an intervention or series 
of interventions

Decrease in myocardial infarction, or 
cardiac revascularization procedures in 
response to interventions recommended 
based on presences of a pathogenic 
variant in LDLR

Cost Standard costs associated with the 
interventions and health states 
experienced by the patient. Can also 
include costs associated with patient 
reported outcomes from self-reported 
health state and life disruption

Cost of sequencing
Cost of return of result infrastructure
Direct costs of care related to return of 
results
Utilization

Patient- 
reported

Report of the status of a patient’s health 
condition, knowledge, or service 
outcomes that comes directly from the 
patient, without interpretation of the 
patient’s response

Satisfaction with service
Engagement with self-care
Knowledge about gene and disease
Access to recommended care
Self-assessed well being

System- 
defined

Outcomes that are of relevance to the 
system as whole. In addition to those 
listed above, other outcomes could 
include, patient experience, employee 
benefits, resource utilization, visibility, 
and market differentiation

Visibility related to precision health 
program
Sequencing program as a service 
differentiator to health care purchasers 
(payer, employer)
Sequencing offered to employees as a 
benefit
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impact on cost-effectiveness. This can prioritize the collection of the most critical 
data elements, while saving resources by not collecting outcomes that have little 
impact. Geisinger is currently funded with two other institutions to develop eco-
nomic models to study the cost-effectiveness of population sequencing.

 Informatics Challenges

For the health-related outcomes, while the information is frequently available in 
the transactional data derived from the EHR, laboratory and radiology information 
systems, and claims data from the provider-owned health plan, the retrieval of this 
information requires significant effort. This requires an inventory of what outcomes 
data is generated routinely from clinical care, assessment of whether these data are 
in a structured format that can be retrieved, mapping the relevant data elements 
to facilitate retrieval, and a critical evaluation of the data to determine its quality 
and completeness. As is frequently the case in healthcare, some of the outcomes 
information is not structured but resides in unformatted text blobs. Utilization of 
text- mining and natural language processing may be necessary to provide a more 
complete representation of outcomes. For any given participant, there will be vari-
ability of the available data and the location of that data, depending on their health-
care utilization patterns. Retrieval strategies must account for this variability and be 
able to flag missing data that may need to be acquired using manual methods.

Michael Porter, in his landmark article “What is Value in Healthcare?” [41] intro-
duced the outcome measures hierarchy. In discussing the hierarchy, he notes that 
health outcomes must be evaluated from the perspective of the patient. In the last 
10 years, patient-reported outcomes have been increasingly prominent in health-
care. To support collection of these measures, the United States Department of 
Health and Human Services through the National Institutes of Health funded the 
development of the Patient-Reported Outcomes Measurement Information System 
(PROMIS®) [42]. PROMIS® is a publicly available set of person-centered measures 
that evaluates and monitors physical, mental, and social health in adults and chil-
dren. Over 300 measures are currently available. A review of the measures identi-
fies some that would be of use in the context of precision medicine, but none that 
account for unique issues associated with genetics and genomics. Also, these mea-
sures have been primarily developed to support research, so, while they are appli-
cable to clinical care, the ability of current health information systems to collect and 
store these measures is limited.

Outcomes specific to business require data from systems that are outside of the 
EHR and other health information systems. Claims data generated by payers is seg-
regated by law from other health related data and can only be merged under speci-
fied conditions to support business operations or research. Health systems that do 
not have a payer associated with the system (which is the case for most systems 
in the United States) will have very limited access to claims data at the individual 
patient level. An additional issue is that many provider systems are limited to inpa-
tient or outpatient services, such that data on utilization is difficult to aggregate. 
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Outcomes at the system level requires a business intelligence approach that aggre-
gates and synthesizes data from a variety of disparate sources. While health infor-
mation systems contribute some data (primarily related to cost and utilization), they 
are insufficient, in and of themselves, to generate system outcomes.

 The Future: Precision Health in the Clinic

Almost all the projects that would be considered under the general heading of preci-
sion health have been launched either as pilots or in the context of clinical research. 
As such, there has not been a strong need for clinically deployed health information 
systems to accommodate the components needed to support precision health. This 
has not prevented experts in the field from assessing the weaknesses of current sys-
tems and identifying desirable features that will be needed to support genomic med-
icine—a key component of precision health. Masys et al. [43] and Welch et al. [44] 
reported on desiderata for integrating genomic information into the EHR and CDS 
respectively. In 2014, the National Human Genome Research Institute convened 
Genomic Medicine Workshop VII (GM7), Genomic Clinical Decision Support: 
Developing Solutions for Clinical and Research Implementation co-chaired by 
the author and Blackford Middleton [45]. The objectives for GM7 were to convene 
key thought leaders in genomic implementation and application of clinical decision 
support to compare current state with ideal state of genomic clinical decision sup-
port (GCDS) to define gaps and strategies to close the gaps; identify and engage US 
and international health IT initiatives that would support recommended strategies; 
and, define a prioritized research agenda for GCDS. The meeting was organized 
around five key questions:

 1. Is clinical decision support an essential element in the successful implementa-
tion of genomic medicine?

 (a) Does GCDS differ significantly from decision support used for other pur-
poses? If yes, what are the key differences?

 (b) What is the ideal state of GCDS?
 (c) How can the impact of GCDS be defined and measured?

 2. What are data issues that impact GCDS?
 3. How do we manage knowledge for GCDS?
 4. What are implementation issues surrounding GCDS?
 5. What are areas that should be prioritized for the research agenda for GCDS?

While the focus of the meeting was CDS, many of the key questions involve 
broader aspects related to informatics support of precision health. A major product 
of the meeting was a survey of the attendees.

A pre-meeting survey asked attendees to rank the 14 desiderata against two met-
rics: the importance of the element to achieve the ideal state of GCDS and the 
ability current information systems had to support the element. These results are 
summarized in Table 16.2.
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Table 16.2 Desiderata for Genomic Medicine and Genomic Clinical Decision Support

Desiderata (1–7 Masys [44]; 8–14 Welch [45])

Importance of the 
element to achieve the 
ideal state of GCDS 
(mean score)

Technical ability of 
current information 
systems to support 
(mean score)

1.  Maintain separation of primary molecular 
observations from the clinical interpretations 
of those data

2 3.6

2.  Support lossless data compression from 
primary molecular observations to clinically 
manageable subsets

2.4 4.4

3.  Maintain linkage of molecular observations 
to the laboratory methods used to generate 
them

1.6 2.9

4.  Support compact representation of clinically 
actionable subsets for optimal performance

1.6 3.2

5.  Simultaneously support human-viewable 
formats and machine-readable formats in 
order to facilitate implementation of 
decision support rules

1.4 3.8

6.  Anticipate fundamental changes in the 
understanding of human molecular variation

1.9 4.2

7.  Support both individual clinical care and 
discovery science

1.4 3.5

8.  CDS knowledge must have the potential to 
incorporate multiple genes and clinical 
information

1.2 3.5

9.  Keep CDS knowledge separate from variant 
classification

3.0 4.1

10.  CDS knowledge must have the capacity to 
support multiple EHR platforms with 
various data representations with minimal 
modification

1.6 4.4

11.  Support a large number of gene variants 
while simplifying the CDS knowledge to the 
extent possible

1.8 3.7

12.  Leverage current and developing CDS and 
genomics standards

1.7 4.1

13.  Support a CDS knowledge base deployed at 
and developed by multiple independent 
organizations

1.6 4.1

14.  Access and transmit only the genomic 
information necessary for CDS

3.0 3.9

This table lists the 14 desiderata of Masys and Welch. These were presented to the attendees of the 
NHGRI-sponsored Genomic Medicine VII meeting, Genomic Clinical Decision Support: 
Developing Solutions for Clinical and Research Implementation. The survey asked two questions 
for each of the desiderata, Respondents answered on a 5-point Likert scale: (1) Strongly Agree, 
(2) Agree, (3) Neither Agree nor Disagree, (4) Disagree, (5) Strongly disagree. The survey was 
sent to 33 meeting attendees and 25 completed the survey for a response rate of 75%
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Attendees overwhelmingly agreed that 12 of the 14 desiderata were important to 
achieve the ideal state. In contrast, most disagreed that current systems are technically 
capable of supporting the ideal state. A synthesis of the meeting identified 13 compo-
nents needed to achieve the ideal state of GCDS. A post-meeting survey was distrib-
uted to attendees that asked which of these components are essential as opposed to 
desirable, with an option for no opinion. Results are presented in Table 16.3.

Even though the meeting took place in 2014, the state of information systems has 
not appreciably changed based on the response of attendees of the 2018 American 
College of Medical Informatics Meeting (data not shown). Nonetheless, this repre-
sents a valuable road map to support the implementation of precision health in the 
clinic.

In 2018, Geisinger announced it was launching a program to provide exome 
sequencing as part of clinical care [46]. Moving this from the research to the 

Table 16.3 Importance of components to support Genomic Clinical Decision Support

Question Essential Desirable No opinion

Always updateable 25 2 1
Provides guidance for all target users 17 10 1
Explains all of its actions and recommendations 15 12 1
Monitors process or outcome measures and tracks uptake 
of decision support advice by clinicians

14 13 1

Tracks decision support events and provides basis for 
correlating subsequent clinical course with guidance 
provided

14 12 2

Has recognition logic for conditions of interest as 
represented in EHR systems (both genotype and 
phenotype)

16 8 4

Sensitive to different users’ health and genomics literacy 
and numeracy

12 14 2

Builds a shareable knowledge repository for GCDS 
artifacts (rule/alerts, algorithms, etc.)

12 14 2

Stores content that can be (re)purposed for different types 
of users

9 16 3

Contributes to local continuous process improvement to a 
shared national learning healthcare system

7 17 4

Generates de-identified outcomes data to be transferred and 
stored in a public library to inform a national learning 
healthcare system

5 19 4

Adaptively learns what each user knows with use over time 3 18 7
Improves quality and consistency by autonomous 
individual entities

7 9 12

This table presents the results of a post-meeting survey. Thirteen items were identified from the 
meeting discussion as being relevant components for genomic clinical decision support. 
Respondents were asked to select a response from three choices for each of the components: 
(1)  Essential, (2) Desirable, but not essential, (3) No opinion. Twenty-eight meeting attendees 
returned surveys for a response rate of over 50%. The table is ordered from most essential to least 
essential
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clinical setting accelerates the strategy to create a health information ecosystem 
that can support precision health. Anticipated upgrades to the vendor EHR will 
provide additional capabilities to support genomic information as structured data 
lowering barriers to the presentation of relevant information to patients and pro-
viders at the point of care. Active clinical decision support best practice advisories 
have already been created and tested to support the return of pharmacogenomic 
information which will occur shortly after the system upgrade. Geisinger investi-
gators, in conjunction with other investigators in the eMERGE network are devel-
oping clinical decision support artifacts that instantiate care guidelines developed 
by professional organizations, such as the American College of Medical Genetics 
and Genomics, in a computable format that can be deployed in the EHR to pro-
mote evidence-based care. Storage of the exome sequence in an ancillary system 
[47] that interfaces with the EHR is under development. This will support the use 
of the sequence as needed over the course of clinical care for the individual. Prior 
work has identified the ‘known unknowns’ that need to be addressed through col-
laboration between research and clinical informaticists. Undoubtedly, ‘unknown 
unknowns’ will arise as the program is implemented; however, the framework of 
the learning healthcare system powered by the tools of implementation science 
allows for rapid identification of these unknowns to allow iterative modifications 
and improvements to achieve a robust genomically-informed precision health 
program.

 Conclusion

Chambers et  al., recognize the convergence of implementation science, preci-
sion medicine, and the learning healthcare system [48]. They note two major 
themes of this convergence: (1) clinical research is not complete prior to imple-
mentation and (2) research and practice can coexist. The authors go on to state, 
“Although precision medicine remains a story to be written, implementation 
science can substantially add value to learning health care systems, and in turn, 
the evolutionary nature of precision medicine can reshape current thinking 
about and approaches to research-practice translation.” To this one must surely 
append the critical need for data and intelligent systems to transform the data 
into clinical intelligence, for which informatics plays a key role. This is cen-
tral to Geisinger’s vision to realize the value of implementing precision health 
as reflected in a quotation by JoAnne Wade, then Executive Vice President in 
charge of Strategic Program Development for Geisinger, in an article describ-
ing the value proposition for Geisinger’s investment in genomic medicine [49], 
“In the midst of such change, opportunity to innovate new systems of care and 
payment models to improve the value of healthcare for patients, providers, pay-
ers, and employers requires reframing traditional means of integrating research 
within a clinical setting to add to the value proposition of improving patient 
outcomes and reducing the total cost of care.”
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Chapter 17
The Genomic Medical Record and Omic 
Ancillary Systems

Luke V. Rasmussen, Timothy M. Herr, Casey Overby Taylor, 
Abdulrahman M. Jahhaf, Therese A. Nelson, and Justin B. Starren

 Background

With growth in the number of genetic tests that are available to providers and 
patients [1], an increasing amount of data is becoming available for integration into 
the clinical workflow. Germline tests can aid in diagnosing rare diseases, assessing 
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disease risk, or targeting appropriate medications and doses. In addition, somatic 
variants can be used to guide cancer treatment. As proteomics and metabolomics 
see increased use, and as even more types of “omics” are translated from research 
settings into clinical care, providers and patients have access to rich new sources of 
data to guide care pathways.

Medical centers and providers ordering omic tests can find multiple avenues by which 
to acquire results. Some institutions have the ability to perform omic testing in-house. In 
this case, the laboratory workflow is often tightly integrated with the clinical workflow, 
and health information technology (HIT) systems are more likely to share information. 
External, commercial laboratories also provide a large number of genetic and genomic 
tests. Depending on the capabilities of the laboratory, the results may be sent back as a 
scanned fax or a PDF that is imported into the electronic health record (EHR), running 
the risk of the results getting lost in the “Miscellaneous” section of the EHR.

As our understanding of omics increases, questions arise as to how omic results 
should be interpreted, and how that interpretation may change with new evidence. 
Evidence may also come with a level of disagreement. For example, the ClinVar 
database [2], which provides variant interpretations reported by laboratories, has 
conflicting reports of pathogenicity for the same variants [3]. Likewise, healthcare 
systems, and even individual providers, may differ in how they choose to interpret 
or act on recommendations, which can make the integration and use of omic data 
specific to an institution.

The heterogeneity of omic data (see Table  17.1) makes data management an 
interesting informatics challenge. It is especially important to better acquire, 
manage and integrate omic data within the clinical and EHR workflow. Otherwise, 
already burdened clinicians can be faced with a deluge of additional data to wade 
through when trying to make clinical decisions.

 Omic Data as Clinical Data

EHRs today are primarily centered around encounters with patients, and record a 
history of what healthcare providers observe and assess (e.g., vitals and diagnoses), 
as well as what they provide for the patient (e.g., medication or laboratory orders, 

Table 17.1 Facets of omic data

Facet Description Examples

Omic type The type of omic data to be used and 
integrated

Genomic, proteomic, metabolomic, 
epigenomic, expression profile

Cell source The source of the cells from which 
the omic data is derived

Germline vs. somatic

Biological cell 
type

The specific type of cell (if isolated) 
for analysis

E.g., macrophage, neurons

Result source Where the omic data is coming from 
(where it was interpreted)

Internal laboratory, external laboratory

Clinical 
significance

The degree of potential impact on 
clinical care (depending on levels of 
evidence)

Pathogenic, likely pathogenic, variant of 
uncertain significance, likely benign, 
benign
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procedures performed). This information is confirmed and documented each time 
the provider sees the patient, in order to track changes over time. Relatively speaking, 
the amount of storage needed for most types of clinical data is small, although 
total storage grows as more patients have more observations recorded over a long 
period of time. We contrast this with genomic data, which can require large amounts 
(several hundred gigabytes) of storage for a single whole exome sequencing result, 
but is usually a one-time assessment for germline results.

Another difference between omic data and conventional clinical data is that 
providers do not collect conventional data that they do not need or intend to use. 
However, our understanding of omic data is constantly evolving. At present we are 
able to sequence an entire genome, but do not yet fully understand how to interpret 
it. Because of this, omic data management needs to consider data that is currently 
actionable for a provider, while retaining the remaining data for when additional 
knowledge can turn it into action.

EHRs try to encourage the storage and presentation of data in a structured 
format, so that clinical data normally has a set “home” within an EHR, with 
separate places for medications, diagnoses, problem lists and laboratory lists. 
A survey of several academic medical centers revealed that the location of 
documentation about genetic information in the EHR can depend on which 
laboratory is performing the testing, how the laboratory interfaces with the EHR, 
the ordering clinician’s department, and the source tissue [4]. Furthermore, 
genetic results were found to be stored in multiple locations of the EHR, and 
often in multiple modalities (e.g., a discrete result, mentioned in a clinical note, 
or stored as a document image). This complicates healthcare providers’ ability to 
access available genetic results.

 Interpretation of Results

One challenging aspect of omic data is that our understanding of it is changing 
more rapidly than other types of clinical data. For example, guidelines for the 
management of high blood pressure were recently updated for the first time in 
14 years [5]. In contrast, the American College of Medical Genetics and Genomics 
revised actionability guidelines for genes after just 4 years of additional research [6, 
7]. As genomics is an active area of study, it is perhaps not surprising that its rate 
of change is different. However, this rapid rate of change is challenging for HIT 
systems that are built around omic data.

 Rethinking Omic Data in the EHR

Given these issues, we must determine the optimal strategy for storing, analyzing 
and using omic data in clinical workflows. One model proposed is to treat 
omic data the same way we treat radiology images [8]. Both data types have 
higher storage requirements than typical clinical data, both require specialized 
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processing and interpretation (with tools to support this process), and both most 
commonly provide a synthesized result of the original data to the EHR (linking 
back to the original data). For radiology, a picture archiving and communication 
system (PACS) addresses these needs, coupled with specialized viewers provided 
by imaging device manufacturers to aid in review for diagnostic purposes. 
Similarly, an omic ancillary system (OAS) may serve these purposes for omic 
data [8]. An OAS allows storage for large files containing results, as well as 
specialized tools and processing pipelines to aid in their interpretation. This 
is also similar to laboratory systems that reference laboratories use to manage 
interpreting results and releasing reports, with the notable exception that such 
a system allows a healthcare organization to receive and manage the omic data 
itself—not just an interpretation report.

Masys et al. [9] presented a list of seven desiderata for integrating omic data into 
the EHR, which may be addressed by OASs and eventually omic enabled EHRs 
(OE-EHRs) [10]. Table 17.2 shows these relationships, which are described in more 
detail in the following sections.

Table 17.2 Desiderata for integrating omic data into the EHR [9], and how the proposed omic 
ancillary system (OAS) meets the desiderata

EHR integration desideratum How met by omic ancillary system (OAS)

1.  Maintain separation of primary 
molecular observations from the clinical 
interpretations of those data

Molecular data are preserved within the OAS and 
are converted to an actionable clinical 
interpretation that is transmitted to the EHR.

2.  Support lossless data compression from 
primary molecular observations to 
clinically manageable subsets

As a storage location for molecular observations, 
the OAS ensures these data are not discarded.

3.  Maintain linkage of molecular 
observations to the laboratory methods 
used to generate them

Methodology from laboratories providing omic 
data should be provided, which is then retained as 
a link to the underlying data.

4.  Support compact representation of 
clinically actionable subsets for optimal 
performance

Specialized processing may be done within an 
OAS to convert the molecular observations to an 
actionable interpretation that is then made 
available within the OE-EHR.

5.  Simultaneously support human- 
viewable formats and machine-readable 
formats in order to facilitate 
implementation of decision support 
rules

The OAS provides a user-friendly viewer of data, 
in addition to supporting and providing 
computable representations of the data that can be 
used for interpretation and decision support.

6.  Anticipate fundamental changes in the 
understanding of human molecular 
variation

Translating the molecular observations into an 
actionable interpretation, as opposed to just 
having an interpretation, allows a health system 
to react to changes in the understanding of omic 
data.

7.  Support both individual clinical care 
and discovery science

By providing a home for the molecular 
observations, the OAS makes these data 
accessible for discovery science as well as 
clinical care.
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 Informatics Challenges

As we will describe in the following sections, much work has been done to propose and 
implement both the OAS and OE-EHR [8–12]. However, the optimal solution is not yet 
known. Many opportunities exist to expand our understanding in the following areas:

• Data and Knowledge Management—the section “Translating Omic Data into 
Clinical Action” describes how omic data management and knowledge manage-
ment may be done with an OAS, as well as how omic data can be optimized for 
action in the healthcare setting.

• Display of Information—it is necessary to determine the optimal location 
within the EHR to show the results of genetic tests and their interpretation. For 
example, if a patient has a variant that predisposes them to be a poor metabolizer 
of a certain drug, where should that be shown so that it is intuitive (a provider 
readily knows where to look for genetic results), appropriately linked to decision 
support, and does not get lost in (or cause) additional noise? This is explored 
further in the section “Integrating Omic Data into User Workflows.”

• Implementation—much of the work reported to date has been within large academic 
medical centers and healthcare systems, which have led research and disseminated 
the understanding of OASs and OE-EHR development. As the field matures, a deeper 
understanding is needed of how to commoditize OASs and OE-EHRs, and how they 
may be more routinely integrated into workflows at practices of all sizes. This is also 
covered within the section “Integrating Omic Data into User Workflows.”

• Standards—the section “Data Standards and Technologies” describes the past 
and current state of standards for storing and transmitting omic data, as well as 
terminologies for representing the concepts. However, these standards have not 
been exhaustively evaluated to date.

• Ethical Concerns—because knowledge of genomic results can impact a person 
for life, and may also have bearing on family members, genetic information for 
precision medicine must be treated with care. In the section “Ethical, Legal & 
Social Issues”, we look at how ethical considerations for this data should be 
factored into the design and use of an OAS and OE-EHR.

• Health Economics—to integrate omic data effectively into the clinical workflow, 
additional investment is needed in technology and personnel. In the section “Cost 
Considerations”, we explore considerations for organizations to weigh costs 
against potential benefits.

 Translating Omic Data into Clinical Action

 The Challenges of Omic Data

Though our understanding of genomics and other omic data is constantly improving, 
these are still relatively novel data types that few clinicians [13], and few HIT 
systems [14], are adequately prepared to handle. A complete human genome has 
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approximately 3 billion base pairs—an overwhelming amount of data for even the 
most astute of healthcare providers to process. Even just the 1% of the genome that 
encodes for proteins (the whole exome), is a cumbersome 30 million base pairs. 
Add in additional omic data types, such as proteomic, metabolomic, and tumor 
sequencing, and it becomes clear that omic data presents unique challenges when 
compared to traditional clinical lab testing.

Moreover, the problem is not merely one of data management—it is also a 
knowledge problem. Distilling useful knowledge out of 3 billion base pairs is difficult 
enough, but because of the young nature of the clinical genomics field, our knowledge 
of the clinical impact of omic data is constantly evolving. When new interpretations of 
genetic variants are being published on a seemingly daily basis, it is unreasonable to 
expect busy clinicians to fully understand the clinical effects of all of the latest research.

If we are to unlock the full potential of omic-based PPM medicine and provide 
improved care, we must have a method for managing vast amounts of omic data and 
extracting useful knowledge. Here, we present a conceptual model and roadmap for 
this process [15].

 A Conceptual Model

The core process for integrating omic data into the clinical setting is to filter clinical 
action from raw data. Consider a funnel shape, as in Fig. 17.1 [15]. Vast amounts of 
raw omic data start at the top, where the funnel is wide. As the data filter down the 
layers of the funnel, they are successively distilled and simplified into something 
that can be acted upon.

Fig. 17.1 Omic Funnel (based on Herr et al., J Path Info 2015 [15])
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The four major steps of this model—Omic Data, Biological Information, Clinical 
Knowledge, and Action—run parallel to translational medicine’s popular “bench to 
bedside” paradigm. Applying a filter to each level of the funnel leads to a narrower, 
but more actionable, state.

 Omic Data to Biological Information

Raw omic data (genomic, proteomic, metabolomic, etc.) sit at the top of the funnel. 
For the purposes of this explanation, we will focus on genomic data. Genomic data 
might be unprocessed alignment data from next-generation sequencing (NGS) 
platforms, containing DNA segments represented as a sequence of A, C, G, and 
T, along with read-quality metadata. Common file formats at this level include 
Sequence Alignment Map (SAM) [16] and BAM (the binary equivalent of a SAM 
text file), though other formats, such as FASTA and FASTQ are also possible.

At the Omic Data stage, we have a complete picture of a patient’s genome, but we 
have little to no understanding of its meaning. Here, our biological understanding of 
the structure of the human genome can provide context and give us a better picture 
of what is unique about the patient. By applying this scientific understanding (for 
instance, by comparing the patient’s sequence to the human reference genome), we 
can take the step from Omic Data into Biological Information.

The biological understanding needed to make the translation from Omic Data 
into Biological Information is the domain of bioinformaticians and geneticists. 
These scientists perform their research and publish in the scientific literature, then 
their findings are integrated into standard genome interpretation pipelines.

 Biological Information to Clinical Knowledge

Biological Information constitutes the second layer of the “Omic Funnel” and 
consists of refined, but still relatively raw, omic data. In our genomics example, 
this layer contains information about the unique biological structure of the patient, 
as compared to the human reference genome. This includes information about 
what specific genetic variations are present and where, such as single nucleotide 
polymorphisms (SNP), copy-number variations, rearrangements, insertions, and 
deletions. Common file formats at this level include Variant Call Format (VCF) 
[17] and BCF (the binary equivalent of a VCF text file). SNPs may be encoded as a 
Reference SNP Cluster ID (or “rs#”) [18] and gene variants may be encoded in star 
allele nomenclature.

At the Biological Information stage, we understand what genetic variations a 
patient has, and where those variations exist in his or her genome, but we have little 
understanding of how those variations are relevant to the patient’s health. Here, our 
understanding of the clinical implications of certain genetic variants can provide 
context and help us diagnose, treat, and prevent disease. By applying this clinical 
context, we can take the step from Biological Information into Clinical Knowledge.
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The clinical understanding needed to make the translation from Biological 
Information to Clinical Knowledge is the domain of medical informaticists and 
clinical researchers, and requires significant coordination in the research and 
clinical communities. Scientific studies, such as Genome Wide Association Studies 
(GWAS), can identify genes of clinical interest. Bench and clinical studies can then 
confirm those associations and help determine how specific genes and gene variants 
affect health outcomes. Significant informatics effort is also required to centralize 
and standardize that knowledge for consumption by HIT applications. Efforts such 
as the ClinVar [2] database and the Clinical Pharmacogenetics Implementation 
Consortium (CPIC) [19] are examples of the sort of databases and curation that are 
required at this level.

 Clinical Knowledge to Action

Clinical Knowledge is the third level of the Omic Funnel, and is generally the 
first point at which most clinicians will be able to interpret and assimilate omic-
related data. This layer contains not only information about how a patient’s 
genotype varies, but also knowledge about how those variations may affect his or 
her health. This may also include recommendations for how to best treat a patient 
with those specific variations. There are currently no true standards for encoding 
knowledge at this level, though CPIC has proposed a limited set of consensus 
pharmacogenetic terms. Clinical genetic knowledge and recommendations may 
exist in journal articles, on public websites such as PharmGKB, or as logic coded 
into HIT systems.

At the Clinical Knowledge stage, we have a useful understanding of the patient’s 
genetics, as well as how to interpret and apply that knowledge to clinical care, 
but we have limited ability to actually effect change in physician behavior. Most 
clinicians are still not well educated on genomics and are generally unaware of the 
omic resources that are available to help them in their decision-making process. 
Here, we must have tools that easily integrate clinically relevant omic knowledge 
with patient- specific omic, clinical, and environmental data in the user’s existing 
workflow (i.e., in the EHR). By seamlessly combining knowledge and data, we 
can provide  clinicians with recommendations that are relevant, timely, and easily 
digested. With well-presented recommendations, clinicians can make more 
informed actions and provide truly personalized, precise medical care.

The tools required to make the transition from Clinical Knowledge to Action are 
largely the domain of health and biomedical informaticists and the makers of HIT 
systems. Health and biomedical informaticists must study knowledge presentation 
and workflow integration and create effective tools for disseminating omic-
based recommendations. Ideal presentation models will require socio-technical 
research and the application of implementation science. When effective models 
are discovered, makers of HIT systems, such as EHR vendors, must provide the 
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technical framework for displaying and streamlining clinical recommendations. 
This will allow the healthcare system to truly realize the benefits of an omic-
enabled EHR.

 Action

The final layer, Action, is the point at which the clinician provides precision (or 
personalized) care, tailored to the specific needs of the individual patient. This 
is not to say that current clinical practices are not personalized, but rather, that 
incorporation of omic data can even further refine and individualize care to make 
it more effective and further improve outcomes. Tools such as clinical decision 
support (e.g., pharmacogenetic alerts at the time of medication order entry) or 
distilled, individualized reference materials (e.g., infobuttons [20] on a patient’s 
EHR chart) can aid in the delivery of precision care.

Though Action is the final layer of the “Omic Funnel”, it is not a final destination. 
Instead, it can be considered part of a feedback loop that enables further research 
to expand our Clinical Knowledge and refine Action-inducing omic-based tools. By 
recording and observing the actions users take in response to these tools, we can 
improve upon them and discover better and better ways to care for patients.

 Practical Applications of Omic Data

Though we provided some practical examples in the above description of our 
conceptual model, it is worth a closer look at how to achieve real-world applications 
of omic data. We start by asking what, exactly, we want to do with omic data (again, 
with a focus on genetics and genomics).

To answer that question, keep in mind that physicians are not the only people 
that may have a need for this data. Genetic counselors, nurses, pharmacists, 
researchers, and patients are all potential consumers of genetic and genomic data, 
and each will have their own needs. Potential applications of genomic data include 
clinical decision support (CDS), problem list integration, searchable genetic results, 
automated reinterpretation of results, patient communication, and genetic research.

These are all uses that will be driven by health IT applications, especially EHRs. 
In order to support such uses of genetic data, EHRs must be able to store and present 
the relevant data. As we established earlier, most health IT applications are not 
designed to handle the unique challenges of omic data, due to its size and rapidly 
evolving nature. This is where OASs play a critical role. As Fig. 17.2 depicts, an 
OAS can provide many of the necessary intermediate steps described in the Omic 
Funnel and translate raw omic data into clinically relevant knowledge, which can 
then be presented to end-users and acted upon [8].
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In real-world implementations, this generally means that an OAS will work in 
concert with a commercial EHR and a laboratory information system (either in- 
house or third-party). Laboratories complete their testing and return omic results 
to the ordering organization, with a format and interpretation that is generally 
specific to that lab. The OAS stores those results, translates them into one or 
more standardized “computed observations” that represent clinically relevant 
knowledge suitable for patient care, and then sends those observations to the EHR 
via an electronic interface (e.g., HL7). The EHR can then employ that information 
in any useful way—for example, by driving CDS or updating problem lists. The 
benefit of the “computed observation” is that it allows complex, rich omic data to 
be synthesized as a single actionable concept, while retaining links to the original 
data. This allows users of the computed observation to be able to dive down to the 
molecular measurements (if present in the OAS) to aid in interpretation, if needed.

To illustrate this chain of events, consider an example where a patient has a 
genetic test performed and the laboratory reports that he has the CYP2C19 ∗2/∗3 
genotype. At first glance, without additional context, this is not a particularly 
meaningful statement. With the aid of an OAS, this result could be translated to a more 
actionable computed observation “Clopidogrel Poor Metabolizer.” This value could 
be stored in the patient’s record as a discrete laboratory result, genetic test result, or 
problem list entry. If a physician tries to prescribe clopidogrel to the patient, CDS 
could then use that knowledge to drive alerts and display a recommended alternate 
medication to the clinician. This is in contrast to workflows that are common today, 
where genetic test results are commonly returned as textual reports, PDFs, or even 
non-computable document scans that require extensive human interpretation.

Figure 17.3 provides a model for how an OAS may fit into an existing HIT 
ecosystem, with multiple options for data flow. As an ancillary system, it lives 
alongside applications such as EHRs [8]. Ultimately, existing HIT applications 
will provide the framework necessary for displaying clinically relevant knowledge, 
while the OAS is responsible for supplying, maintaining, and updating omic 
knowledge. For example, commercially available EHRs may include a framework 

Fig. 17.2 Translating omic data into action
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for displaying pop-up alerts during order entry, but the OAS would supply the data 
that drives the underlying logic of those alerts. In the future, EHR vendors may even 
supply pre-built alerts that expect knowledge in a standardized format that can be 
provided by an OAS.

 Integrating Omic Data into User Workflows

Though omic ancillary systems can serve many functions, perhaps their most 
important role is in facilitating the presentation of clinically relevant omic 
knowledge to healthcare providers. Although presentations will vary, there are 
general principles that will be true for most implementations. Specifically, this 
knowledge should be presented to the user in a way that seamlessly integrates with 
their existing workflow, provides timely and relevant advice, and is properly tailored 
to context and to the specific details of the patient in question. Here, we detail two 
CDS strategies that can help accomplish these goals: active and passive CDS.

Fig. 17.3 Information flows for an omic ancillary system (based on Starren et al., JAMA 2013 [8])
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 Active Clinical Decision Support

Active CDS can take on many forms, though the classic example is of a pop-up alert 
advising a clinician of a recommended course of action. Existing applications warn 
physicians of potential adverse effects of medications (either due to interactions 
with other medications or to a recorded allergy), or remind physicians to conduct 
recommended best practice care such as vaccinations or routine mammograms.

Critics of this form of CDS often point out problems with alert fatigue [21], 
but well-designed alerts have the potential to be an important vector for the 
dissemination of clinical omic knowledge. As previously discussed, omic knowledge 
is constantly evolving and most clinicians are not well trained in fields like genetics 
and genomics. Active CDS can serve to fill this gap and provide users with timely 
and informative guidance on how to correctly apply omic knowledge to patient 
care. In fact, a number of healthcare organizations have begun to integrate omic 
knowledge into their workflows through the use of CDS [22–25]. Such efforts are 
largely in their nascent stages but hold significant promise. Organizations such as the 
Clinical Pharmacogenetics Implementation Consortium (CPIC) provide genetically 
guided dosing recommendations based on current scientific knowledge, and these 
recommendations are written so as to facilitate encoding into the programming 
logic of active CDS.

Omically-driven CDS must be designed with both technical and socio-technical 
considerations in mind, and while some basic standards are starting to emerge in 
the literature, best practices are still an open question. Figure 17.3 (see previous 
section) depicts one area where a consensus still does not exist around a technical 
aspect. That figure shows two possible locations for CDS logic. In one option, it can 
live in the EHR and be informed by data already stored in the EHR. Alternatively, 
the CDS logic can live in the OAS and be queried in real time by the EHR in order 
to calculate the proper recommendation. Real-world implementations have leaned 
towards the former option, though exploration into the latter still exists.

 Passive Clinical Decision Support

The use of passive decision support can also provide a way to meet the information 
needs of providers. Specifically, infobuttons—context-sensitive links embedded 
in an EHR or patient portal [20]—can encode information about the patient and 
the current step of the clinical workflow to provide more targeted guidance. For 
example, an infobutton may contain not only the specific variant interpretation 
(e.g., VKORC1 results in relation to prescribing warfarin), but may also provide 
age, gender, race and ethnicity. These additional pieces of context about the patient 
may allow an information resource to provide more targeted, relevant information. 
Fortunately, several information resources exist specific to genomics and genetics 
that offer levels of support for infobuttons [26]. Given this, embedding infobuttons 
within an OAS or EHR may offer the support providers need to more widely adopt 
and apply omic data.
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There are numerous socio-technical questions yet to be answered about the proper 
design of any omically-driven CDS, such as the best time in the user’s workflow 
to display recommendations, whether active/interruptive alerts are more effective 
compared to passive alerts that clinicians would check at their own discretion, and 
precisely how to phrase recommendations and how much information to provide 
the user in an alert. All of these questions must balance the need to educate users on 
proper omic-driven care with the danger of overwhelming them with information. 
In short, recommendations must be timely, useful, and relevant, without being an 
additional burden on valuable clinician time and cognitive resources. These can best 
be answered through the use of implementation science and socio- technical design 
concepts.

 Implementation Science Considerations

Omic knowledge is still quite new to most clinicians, so the design and implementation 
of software depending on it requires particular care. The implementation science 
field has a number of models that represent the processes involved in software 
implementation, evaluation, and acceptance. Examples of IT-adoption models 
include Technology Acceptance Model (TAM) [27], Task, Technology, Fit Model 
(TTF) [28], and the Fit between Individuals, Task, and Technology (FITT) 
Framework [29]. At the core of each of these models is the concept that users and 
technology must work together to achieve a goal. Technology must be both useful 
and usable in order for individuals to accept it [30].

However, it is often difficult to build software that is simultaneously useful 
and usable. Socio-technical design attempts to address this issue by incorporating 
human factors into software design [31, 32]. There is no single, canonical “socio- 
technical design cycle,” but Koberg and Bagnall present a useful starting model [33]. 
Though their seven-step general design and problem-solving model is not  specific 
to technology, it is clearly applicable to software design. It is defined as follows:

 1. Accept: Stating initial intentions; accepting the problem as a challenge; allowing 
the problem to become the generator of process; self-motivation

 2. Analyze: Becoming familiar with the insides and outsides of the problem; 
discovering what the “world of the problem” contains

 3. Define: Determining the main issues of the problem; conceptualizing and 
clarifying aims, ends, and goals of problem resolution

 4. Ideate: Identifying all possible ways of realizing the goals
 5. Select: Comparing the destination with the possible ways of getting there; 

determining the best match or matches
 6. Implement: Giving form to the selected “best ways;” “realizing” intentions
 7. Evaluate: Reviewing the journey to determine the degree of success and its 

overall value

Most omic-based software tools currently in place can be considered first- 
generation tools, as many are custom-built for research purposes. Though efforts 
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to evaluate and refine such tools are underway, there are few commercial options 
for such products, and few comprehensive studies in the literature evaluating the 
current solutions.

 Standards and Technologies

Many standards exist for omic data; however, in this section we will concentrate 
on those that are more relevant to OASs and OE-EHRs. We will consider three 
general categories: (1) standards related to the structure of the data (storage and 
transmission), (2) standards and guidelines related to the vocabularies, terminologies 
and nomenclatures that represent concepts within those structures, and (3) standards 
that allow expanded user interfaces for omic results.

 Structural and Transmission Standards

One may consider omic data at any point, from molecular measurements to a 
final interpretation applied in a clinical setting. Although it is possible to store 
sequence and read alignment data within an OAS, we will first consider Variant 
Call Format (VCF) files (and its binary counterpart, BCF) [17, 34]. VCF files are 
structured to represent multiple types of genomic variations—SNPs, insertions, 
deletions, structural variants—in conjunction with annotations. Although VCF 
files can be several gigabytes in size for whole genome results, the use of 
compression along with indexing tools such as tabix [35] helps improve access 
and processing times of results when they are needed. OASs do not need to 
be built using relational databases, and this makes the VCF file an option for 
supplemental data storage. A number of freely available tools exist to aid with 
processing and subsetting VCFs [17], which can be incorporated into an OAS 
processing pipeline.

Standards are also required for transmission of data between laboratories 
and an OAS or OE-EHR.  Several standards for system interoperability have 
been produced by Health Level Seven International (HL7). The HL7 v2.x series 
of standards is based on plain-text files with pre-defined field positions and 
delimiters. It has remained ubiquitous within the U.S. healthcare system, despite 
the introduction of newer standards. As omic data is typically transmitted from a 
laboratory, the HL7 observation result (ORU) message format is a good fit. This 
message includes two primary parts: the observation request (OBR) segment, 
which contains information regarding the requisition of the test, including the 
type of testing performed, and the observation (OBX) segment, which contains 
the actual observations (results) of the test. Recognizing that HL7 v2.x is still 
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widely used, recent drafted guidance exists around the use of v2.x messages for 
returning clinical genomic results [36, 37]. These genomic implementation guides 
recommend conventions for coordinate systems (using one-based coordinates), 
and strand orientation (positive strand), as opposed to explicitly specifying these 
attributes within the message.

Following upon HL7 v2.x, HL7 produced an XML-based v3 set of standards, 
which utilizes XML to represent results. This format offers greater verbosity in the 
attributes that can be represented (improving semantic interoperability), but comes 
with increased complexity. Recognizing the challenges of incorporating genomic 
results into this new format, HL7 created an implementation guide for representing 
genetic test results as a Clinical Document Architecture (CDA) document [38]. 
The implementation guide provides specific templates (prescriptive structures with 
a unique object identifier [OID]) for multiple types of genetic and genomic test 
results, and has sections for different results, like genetic variation, cytogenetics 
and gene expression.

In the commercial space, the GeneInsight platform [39] also uses an XML format 
for representing and transmitting reports. As demonstrated within the electronic 
Medical Records and Genomics (eMERGE) network, this format (which has been 
made publicly available) allowed two different sequencing centers to transmit results 
to ten different institutions for use in a clinical setting [40]. The importance of this 
work is not just as a competing standard, but also in its role as a real-world format 
for representing sequencing results. These experiences have been used in turn to 
inform development of other standards. The developers of the GeneInsight XML 
format have been active contributors to standards development in HL7, and the 
additional experience gained from the formats used within the eMERGE network 
will allow additional contributions to another more recent standard—HL7’s Fast 
Healthcare Interoperability Resources (FHIR) [41].

The FHIR standard provides a robust set of resource definitions for many 
types of healthcare data (clinical and operational). Recognizing the work 
that the Global Alliance for Genomics and Health (GA4GH) [42] has done 
in defining standards and application programming interfaces (APIs) for the 
transmission of genomic data for research purposes, FHIR focuses primarily on 
the clinical space (although, adoption does not need to be limited to research 
or clinical domains for any of these standards). As its name indicates, FHIR is 
built around the concept of “resources,” which represent a specific entity (e.g., 
AllergyIntolerance, Condition, Procedure). FHIR also allows for the definition 
of profiles and extensions, which allow implementers to build upon existing 
resources as opposed to creating new ones. Within the omic space, FHIR Draft 
Standard for Trial Use 2 (DSTU2) defined genetic data within the context of 
Observation resources, further defined by a genetics profile [43]. More recent 
work within FHIR DSTU3 has introduced a new Sequence resource specifically 
to capture sequencing data, while expanding upon profiles on the Observation, 
DiagnosticReport and ProcedureRequest resources for additional omic use 
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cases. Currently, the FHIR Sequence resource supports amino acid, DNA and 
RNA sequences. It supports the inclusion of reference sequence data along 
with the observed sequence, making an observed resource self-contained when 
the information is included. Unlike the HL7 v2.x messages, which build upon 
assumed conventions, the Sequence resource allows the explicit representation of 
coordinate system and strand orientation. As FHIR also specifies how to structure 
requests for specific data over APIs as they are needed (as opposed to fully self-
contained documents), it represents an attractive standard for integrating OASs 
and OE-EHRs for real-time data exchange.

 Vocabularies, Terminologies and Nomenclatures

In many of the omic data representations previously described, Logical Observation 
Identifiers Names and Codes (LOINC®) are heavily used to represent results [44]. 
As a code system that represents both laboratory tests and the resulting clinical 
observations, LOINC® acts as a rich source for helping to standardize omic data. 
LOINC® includes test and result codes for variations at the chromosome, gene, 
and individual SNP level, and has adopted the Human Genome Organization Gene 
Nomenclature Committee’s (HGNC) terminology for naming genes [45], as well as 
the Human Genome Variation Society’s (HGVS) nomenclature for variations [46, 
47], and the International System for Human Cytogenetic Nomenclature (ISCN) for 
cytogenetic tests [48].

Since the 1990s, star alleles for representing pharmacogenetic (PGx) reports 
have provided a convenient representation of findings [49]. For example, the 
CYP2C19 gene can provide predictive ability regarding metabolism of the drug 
clopidogrel. The wild-type (meaning, no variation was found) for this gene is 
represented as ∗1, with a homozygous finding represented as ∗1/∗1. Variants are 
then assigned other numbers—a poor metabolizer with a homozygous variant 
could be ∗2/∗2. Heterozygous findings are typically represented in ascending 
numerical order (e.g., ∗1/∗3, ∗2/∗3). These findings are then translated into a 
clinical interpretation—normal, poor, intermediate or ultra-rapid metabolizer. 
A limitation with the star allele nomenclature is that it is dependent upon the 
actual variants checked by a test. In the example of CYP2C19, if the variant 
associated with the ∗4 allele is not tested, the interpretation given for a patient 
may be incorrect. Realizing this, more recent recommendations have been made 
for PGx result nomenclature [50]. This includes the use of HGNC and HGVS 
nomenclature, reference sequences, and the identification of variants that can 
be detected by a laboratory test. To aid in interpretations both under the new 
nomenclature and under the legacy star allele representation, both representations 
might be provided simultaneously. It is important for an OAS, then, to consider 
the need to store multiple representations of the same findings as aliases, as 
laboratories adopt these new guidelines.
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 Standards for EHR User Interface Integration

Integration between an OAS and an EHR need not be limited to transmission of 
messages across interfaces. As OASs gain more traction, the question remains how 
best to integrate with current day EHRs to allow omic data to be readily accessible 
and interpretable by healthcare providers. One such standard that we will describe 
was developed for general clinical use, but has seen increasing adoption in the 
omic world. The Substitutable Medical Applications and Reusable Technologies 
(SMART) framework, built using the FHIR data model (referred to as SMART-on- 
FHIR) [51], allows third party developers to create novel and optimized displays for 
certain types of clinical data—including omic. The ability to extend existing EHRs 
with novel displays optimized for omic data has allowed developers and health 
systems to realize the promise of OE-EHRs [52, 53].

 Ethical, Legal and Social Issues

As national programs such as the All of Us Research Program in the United States are 
collecting data, building infrastructure and establishing mechanisms to share data, 
several important ethical, legal and social challenges have come to light specifically 
around the broader collection, storage, and use of omic data. Two key considerations 
for the use of an omic-enabled EHR are the potential for genetic discrimination and 
the management of genomic results with uncertain clinical significance.

One important consideration is who should receive and use personal genomic 
information, with insurance companies and relatives being of particular relevance. In 
the United States, the Genetic Information Nondiscrimination Act (GINA) prohibits 
insurers from using genetic information in health insurance decisions, but there is 
no prevention against this practice in life insurance or long-term care insurance. 
As an example of family considerations, it is only recently that Meaningful Use 
Stage 2 required EHRs to capture family history as structured data for at least one 
first-degree relative [54]. It is not commonplace for a health system to have a direct 
link between a patient’s record and a family member’s record (making sharing of 
familial information, like genomics, possible).

In traditional research settings, the establishment of an omic-enabled EHR has the 
potential to bring new challenges as information with uncertain clinical significance 
could be presented to the healthcare provider based upon patient preferences or 
institutional policies for returning results. To date, programs such as the electronic 
Medical Records and Genomics (eMERGE) Network in the United States have 
simplified the challenge of returning uncertain information by differentiating return 
of results from patient care. While project findings are often fed back to participants 
at affiliated healthcare practices by their healthcare providers, it is made clear that 
the results are as part of a research study to which they consented and are not part of 
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their patient care. Many questions and concerns raised by the Institutional Review 
Boards (IRBs) of eMERGE institutions were related to the consent process (e.g., 
balancing detail and readability), and communicating results (e.g., counseling, 
and mechanisms to answer questions) [55]. Challenges with implications for an 
omic-enabled EHR included differentiating actionable genes in adult and pediatric 
populations and providing options for participants to receive limited results or to 
withdraw from the study at a later stage. Within the EHR this requires capturing 
life-stage (adult vs. pediatric) and participant preferences.

 Cost Considerations

Having discussed the benefits of an OAS, a consideration is if there are compelling 
reasons for a healthcare institution to take on the cost of storing additional omic data 
versus requesting new tests and just storing a laboratory report. We do not attempt to 
assess the entire economic impact of a precision medicine program, but specifically 
look at the storage and reuse of omic data.

To help quantify this, we will use the Renaissance Computing Institute’s 
(RENCI’s) proposed archival value criterion (AVC) [56]. The AVC is defined as:

 
AVC reuse�

� �P S

S  
(17.1)

where:

Preuse = the estimated probability that the stored data will be reused
S′ = the cost to re-generate the data
S = the total cost to curate and store the data

A higher AVC indicates that there is likely more value to archiving the data, and a 
lower AVC indicates that there may be more value in regenerating the data. Many 
considerations go into these factors, including the availability of the storage (fast 
or archival) and adjustments over time as sequencing costs and storage costs both 
change. We note that there are two considerations not explicitly accounted for in the 
AVC calculation, but that can be incorporated in the analysis. The first is the depre-
ciation of the data. As improvements to sequencing technologies are made, we need 
to consider if we still want to use 5- or 10-year-old sequencing results or if we may 
have more reliable data from resequencing. The second consideration is the number 
of times the data is accessed, both for clinical and research purposes. If omic data 
is obtained once, and can be used clinically as well as for multiple research studies, 
the overall value of the data increases.

For considering costs, a 2016 study at Partners HealthCare estimated (after initial 
sequencing costs) their total internal cost to process and store a single genome is 
around $245 per year [57]. This includes an estimate of approximately $40–$55 for 
storage only, depending on if the genome is placed on secondary (archival) storage, 
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or primary (fast) storage, respectively. Given that they are performing the whole 
analysis pipeline (including the storage of FASTA, BAM and VCF files at ~300 GB 
total per genome), these costs do not entirely reflect what an OAS would incur. 
A 2014 study estimated the total upstream costs to generate WGS data clinically 
were closer to $10,000 [58], although costs for WGS have decreased since then. 
Most recent estimates from NHGRI put the cost of a sequence at around $1500 
for a research setting. We will then consider four price points for the cost of re- 
generating a sequence: $10,000 [58], $1500 [59], $250 and $100 (the latter two 
being ideal future cost). For storage, we will use four price points as well: $55, $40, 
$25 and $10. The first two are fast and archival storage from [57], respectively. The 
$25 and $10 play two roles in estimation—they can be seen as ideal future states 
as storage costs decrease, and also a reduced cost for less storage per sequence as 
higher estimates [57] reflect storage costs for FASTA, BAM and VCF files. For the 
OAS, we may just receive (or just choose to store) the VCF.

To simplify the discussion, we are assuming that the probability of reusing the 
data is guaranteed. Given the amount of omic research, it is highly likely that the 
data would be used at least for a research study. We show estimated AVC values for 
these different cost points in Fig. 17.4, where the size of the circle correlates to the 
AVC value.

The RENCI report recommends that with an AVC of 100 or higher, archival 
is an effective solution. Using this threshold, we can see points where it may be 
preferential to regenerate a sequence (especially as cost goes down) as opposed to 
storing it in an OAS. However, the AVC should be used purely as a guideline, as there 
are some considerations mentioned above not directly reflected in these calculations.

Fig. 17.4 Estimated Archival Value Criterion (AVC) calculations for several estimated costs to 
sequence and store omics data. The size of the circle represents the AVC, with a larger circle better 
justifying archiving the data
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 Conclusion

As we have described, the multiple facets of omics data make their integration 
into the EHR a different challenge than that of routinely collected clinical data. 
We present the concept of the omic ancillary system as a mechanism by which we 
can embrace the complexities of omic data in a special environment, similar to how 
radiological images are handled by PACS. As data moves through the four stages 
of the “Omic Funnel”—Omic Data, Biological Information, Clinical Knowledge, 
and Action—the OAS may be introduced at any stage, depending on the needs 
of the implementing institution. Ultimately, the goal of the omic-enabled EHR is 
to facilitate the Action stage within clinical workflows, including the use of both 
active and passive clinical decision support. These critical supports allow healthcare 
providers and patients to make better use of the increased volume of data that comes 
with precision medicine. While we note that much work that has been done in this 
area, we have also highlighted opportunities for ongoing and future research for 
health and biomedical informatics practitioners. This includes implementing and 
evaluating the systems and standards that support interoperability, weighing the cost 
and benefit tradeoffs inherent in managing omic data, and considering the ethical, 
legal, and social issues that come with genetic and genomic results.
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 Introduction

As we have seen in this book, Personalized and Precision Medicine (PPM) has huge 
variability in its formats and workflows. One of the invariants across all PPM for-
mats however, is the need to deliver personalized decision support at the point of 
care. Related to this goal are the requirements for storing potentially massive 
amounts of patient genetics and other “omics” data that go beyond traditional clini-
cal data types, the need for protecting sensitive genetic information from abuse, the 
need to ensure that decision support is based on solid and up-to-date scientific evi-
dence, the need to translate treatment guidelines to decision rules correctly, and the 
need to integrate clinical care with discovery.

In addition, PPM results and data need to be interoperable and be delivered to 
patients and populations across diverse health systems, electronic health records 
(EHR), and state boundaries. Furthermore, PPM delivery systems exist in an ethi-
cal, legal, and social issues (ELSI) context, including the complex and fragmented 
form of the US healthcare system.

This chapter describes a general-purpose informatics architecture to enable 
scalable PPM decision support, and then uses two specific customizations (phar-
macogenomics for a single institution and pharmacogenomics implemented in a 
state-wide network) in order to illustrate important infrastructure details. Because 
the chapter is focused on general methods and not specific institutional imple-
mentations, we present methods that are institution-independent and thus have 
the broadest applicability possible. We not only describe the components needed 
to implement successful decision support, but also the architectures that enable 
large scale PPM decision support to be deployed on a state-wide or even national 
scale.
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 Components of a Scalable PPM Informatics Architecture

There has been significant progress over the past decade in incorporating genomic 
data into the process of healthcare. Results from the eMERGE Network, for exam-
ple, provide important data points about what is possible and what is required to 
make clinical and research use of genetic information successful [1–3]. In another 
example, the PREDICT Project has provided a model for how to implement pro-
spective pharmacogenomics decision support at the point of care [4].

Figure 18.1 shows high-level architectural components needed to implement 
scalable informatics for PPM in an application-agnostic manner [5].

The architecture consists of a Clinical Decision Support (CDS) system that com-
putes patient-specific recommendations and enables actionable workflows, a PPM 
database (PPM DB) to hold individualized data about patients, a clinical knowledge 
repository (CKR) that describes scientific evidence connecting PPM data and rec-
ommended care actions, an EHR that creates and maintains a transactional record of 
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patients’ clinical care data, and a research database used to conduct research to 
evaluate the effectiveness of the CDS and discover new knowledge related to 
improved patient care (also supporting Learning Health System functions). The 
challenge of PPM informatics is to ensure that the data and knowledge sources and 
the data streams that connect them, as well as the constantly changing clinical 
knowledge, are brought together and interpreted so that appropriate decision sup-
port can be delivered to a clinician when it is needed to have impact in the clinical 
workflow. Because the information is required for patient care, it must be delivered 
reliably, quickly, and securely.

 Service Oriented Architecture (SOA)

A scalable informatics architecture must accommodate new types of data, new PPM 
methods, and the exponential growth of both omic data and clinical knowledge. A 
SOA [6] is one of the most effective ways to connect PPM components while giving 
flexibility for each component to evolve without interdependence on the others. A 
SOA is a distributed computing system that enables multiple independent compo-
nents/applications (called nodes) to interact with each other using a communication 
protocol. The architecture allows any of the nodes to invoke services of any of the 
other nodes, subject to appropriate authentication and authorization credentials. The 
benefit of the architecture is that it allows additional nodes to be added and failed 
nodes to be removed at any time. The nodes are loosely coupled to minimize inter-
dependency. In addition, the service-oriented architecture can facilitate horizontal 
scaling, meaning that additional nodes that perform the same function can be added 
in order to distribute a workload across more worker nodes.

Figure 18.2 shows a typical SOA. The architecture is split into a set of layers that 
are connected by a Service Bus. Client applications make requests for services. The 
requests can use standard protocols, such as Representational State Transfer (REST), 
or proprietary protocols. In either case, request messages are initially received by 
Load Balancers. The Load Balancers are the only systems that need to be exposed 
externally and connected to the internet. They reside in a so-called DMZ (demilita-
rized zone) to indicate that these are the only systems that hackers or malicious 
actors may access, while the actual servers can be more deeply protected. The Load 
Balancers send each incoming request message to the least busy server in the Web 
Layer. The Web Layer’s job is to identify what type of service (API) is being 
requested and route the message over the service bus to the appropriate application 
server residing inside the Application Layer. This layer is composed of a number of 
application servers that communicate only via the service bus. There are different 
services available across the application servers. The incoming message from the 
client serves as a trigger to invoke a service that will then trigger additional requests 
on the service bus to other application servers/services. The service bus uses a pub-
lish/subscribe design where application servers that know how to execute a specific 
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type of request will subscribe to those types of events. When a message of that type 
comes in, the web layer will publish the event to the service bus and the next avail-
able application server will take that message and process it. The publish/subscribe 
paradigm also supports event-driven programming which makes it much easier and 
safer to keep different parts of the system loosely coupled so that changes or updates 
to one part of the system do not interfere with other system components [7].

The publish/subscribe architecture also allows future services to be added that 
respond to specific types of requests that can do additional work. For example, an 
incoming request to perform a CDS recommendation could be executed by a CDS 
application server. But that same message can also be subscribed to by a service that 
archives all incoming CDS requests into a research database that can be analyzed to 
understand the types of CDS that are being requested. Neither service needs to be 
aware of the other to do its job. The Web Layer may also transform and standardize 
the message for use by application servers. It will also hold session state and route 
the response message back to the client.

 SOA Scalability

The advantage to the service bus approach is better application control and horizon-
tal scaling, that is, ability to scale up the infrastructure by adding more servers per-
forming the same tasks. Each application or service has a persistent queue where 
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incoming requests are stored. As worker processes for that service become avail-
able, they pull the next piece of work from the queue and process it. If a queue has 
too much work in it, another application server/worker can be added so that work 
can be processed faster. This is how horizontal scaling is supported. Monitoring 
software can periodically check all of the queues to obtain statistics for how quickly 
work is being processed, types of errors and performance issues. This data can be 
used to dynamically add more application servers of different types to keep the 
overall system performant. The system is also more resilient to interruption because 
it can detect non-responding application servers or have some type of error condi-
tion and remove them from the service bus and add a replacement application server.

Another advantage of using the service bus architecture is improved safety when 
updating services. Because the services are loosely coupled, a single type of service 
can usually be upgraded without having to upgrade other services at the same time. 
This allows for safer deployments since smaller parts of the system can be changed 
and, if there is a problem, the change can be rolled-back to its prior version. In fact, 
many organizations are able to achieve continuous deployment; changes to services 
can be deployed into production as soon as they have been sufficiently tested. This 
allows the overall system to have stability, yet evolve quickly.

 Security, Authentication and Encryption

Security and authentication are critical aspects of the scalable informatics architec-
ture. In the architecture depicted in Fig. 18.3, an Identity Manager sits outside the 
system, but is callable from the system. The Identity Manager provides a service 
that returns a token that is unique for each individual or machine that is allowed to 
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use the system. The Identity Manager can use a simple username/password authen-
tication, or it can be more sophisticated and rely on stricter two-factor authentica-
tion or public key certificates. OAuth is a standard protocol that is used by many 
systems to facilitate an identity verification transaction [8].

After a user or machine’s identity is verified, then the system can ask the Identity 
Manager what specific rights the user has for different services within the system. 
This information is securely available using a protocol called SAML [9]. SAML 
and OAuth work together to ensure incoming requests are executed only if they are 
appropriate. The Identity Manager can be provided as a service for just the specific 
application or shared by many applications across an organization (e.g., a hospital’s 
Microsoft Active Directory).

 Clinical Decision Support (CDS)

A CDS system is any software that assists in making clinical decisions [10]. Clinical 
decision support within an EHR evaluates data in the medical record (using CDS 
rules) to make recommendations. A typical CDS action is an alert that displays (1) 
a message explaining why the alert was triggered, (2) a substantive actionable rec-
ommendation, and (3) the evidence for the recommendation. The alert can display 
recommended interventions as text or simplify recommended order entries with 
specific attributes (such as medication doses). CDS technology can allow healthcare 
organizations to encode clinical best practices into rules and recommendations to 
inform and support clinical decisions and actions. CDS is therefore a critical mecha-
nism for grounding PPM recommendations in a clinical knowledge repository to 
make information seamlessly available to the physician in the EHR within their 
clinical workflow [11].

 Clinical Decision Support Architecture

A clinical decision support system consists of three primary components: triggers, 
CDS rules, and intervention recommendations [12]. Triggers are events that kick- 
off the CDS workflow. A trigger is typically an event that occurs during a clinical 
encounter. For example, triggers include events such as an order initiation, a patient 
admission, discharge or transfer, or a lab result becoming available in the EHR. PPM 
may require simple (e.g., medication order) or complicated (e.g., complex pheno-
type detection) triggers. Typically, complex trigger processing happens at a CDS 
external to the EHR.

When a trigger event is detected, the CDS process connected to it is launched. 
When the CDS process is initiated, the first thing that occurs is data that the CDS 
needs is retrieved from the EHR in order to compute a recommendation. The 
knowledge of clinical best practices is embodied within the CDS as rules stored 
in a Clinical Knowledge Repository (CKR). The CDS rules implement clinical 
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guidelines and best practices to determine a recommendation. The CDS retrieves 
a set of rules from the CKR that ultimately produces advice and recommendations 
to send back to the clinician. The CDS rules need EHR-derived patient data and 
they may also need additional data external to the EHR such as genomic data. 
Once all the data are available, the CDS rules are executed one-by-one. The result 
of one rule can trigger another rule in a forward rule chaining cascade. At the end 
of the process, the CDS rules produce a set of recommendations as a response. 
Filtering and prioritization of CDS rules may also be applied to reduce “alert 
fatigue” experienced when too many rules of marginal value (for a clinician-con-
text combination) are generated.

The recommendations can be simple messages that are displayed to the clinician 
or they can be complex actions that the CDS helps improve clinical performance. 
Some recommendations may also include assessments about the benefits and risks 
associated with the advice. The ultimate decision on how to use a recommendation 
typically rests with the clinician, but once they make that decision, the CDS can 
help execute it as well. For example, if the recommendation is to prescribe or admin-
ister a specific medication, the CDS may compute the appropriate dose, display the 
correct order for that medication, and enter it into the EHR. The clinician then has 
the option to agree with the recommendation to complete the order, or bypass the 
recommendation if in her judgment it does not apply.

Clinical decision support is implemented in two ways: within an EHR or as a 
separate, external system that performs the CDS functions and interfaces with the 
EHR.

 CDS Within a Single EHR

If a healthcare system uses a single EHR throughout its entire organization, then 
CDS can be implemented completely within that EHR. In part due to Meaningful 
Use, most modern EHRs have some ability to implement CDS [13]. In such setups, 
the trigger events, rules and interventions are all part of the EHR. The benefit of a 
CDS implementation within an EHR is that the EHR vendor has ensured that the 
CDS works well within the defined clinical workflows and can access the necessary 
EHR data. But the main downside is that every EHR vendor implements CDS in 
different ways. Differences across different EHRs include the list of which events 
cause triggers, the way to specify triggers, the syntax and capabilities of the rules, 
and the list of possible recommendations/actions/interventions. In addition, some 
EHRs support powerful features such as recommendations that create orders to be 
signed by the clinician, while others only display informational messages. Also, 
some EHRs support meta-data about each alert which is saved to analyze how use-
ful the CDS is and whether alert fatigue is a problem.

EHR vendors have in some cases created CDS content that providers can use “out 
of the box,” such as sepsis surveillance and anti-microbial screening. However, most 
CDS must be implemented by each provider organization, and vendor–provided 
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ones need to be evaluated for appropriateness for the specific population served by 
that provider. Currently there is no easy way to share CDS and best practices across 
organizations [14]. CDS Hooks is an initiative to standardize CDS across all EHRs. 
Its goal is to make it easier to create CDS that specifies all aspects of the triggers, 
rules and interventions that can be implemented in any EHR [15, 16]. CDS Hooks 
will also provide a standard way for external programs (especially SMART apps 
[17]) to interact with the clinician during the delivery of the CDS.

An integral dimension of a successful CDS is its evaluation. Measures of success 
can include improved patient outcomes, reduced complications, adverse events 
avoided, and reduced healthcare costs. The meta-data about how well the CDS 
alerts perform is held within the EHR, but it may be hard to discern from the raw 
EHR data what the patient outcome actually was. Organizations often have to 
implement various manual or automated approaches to determining patient out-
comes of interest in order to analyze the effectiveness of the CDS alerts.

 CDS Across Multiple EHRs

Complications occur when CDS is implemented across an organization with mul-
tiple EHRs or across multiple organizations. There are two approaches when mul-
tiple EHRs are used by an organization. The first is to implement all aspects of a 
CDS initiative in each EHR using that EHR’s proprietary approach to CDS. When 
there are many organizations with many different types of EHRs, this could result 
in each EHR having different rule sets and different trigger events.

An attractive alternative is to implement the CDS in a centralized system out-
side of any of the EHRs [18]. This has the advantage of creating a single set of 
CDS rules, a common point for triggering the CDS, and a consistent recommenda-
tion produced by the CDS. In this approach, the CDS components of an EHR are 
still used to initiate a CDS process on the central CDS service. In an EHR, a trigger 
event will create a message to be sent to the central CDS server instead of launch-
ing the CDS process within the EHR. This message initiates a CDS service on the 
central server using a set of CDS rules to compute the recommendation. The cen-
tral CDS still needs to see the relevant patient clinical data, which now must be 
sent by the EHR as part of the service request. Usually, the CDS pulls the relevant 
data from the EHR as a separate transaction through a protocol such as Fast 
Healthcare Interoperability Resources (FHIR) [19]. FHIR provides a standard way 
to retrieve patient data from the EHR. The central CDS computes the recommen-
dation and then sends the result back in a response message. The EHR CDS must 
be able to take that message and process it into the appropriate recommendations. 
Most EHRs can only perform simple actions today such as displaying a message. 
Some can create an order to be approved by the clinician. As mentioned previ-
ously, it is the goal of CDS Hooks to make the request and response standard avail-
able on all EHR systems. The response should allow complex actions to be initiated 
in the EHR.
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In the case of CDS across systems, it is also more efficient to have a single cen-
tral repository for shared patient outcomes data to support comparative outcomes 
research. Data from each EHR related to the alerts and patient outcomes should be 
sent to the central repository on a periodic basis for reporting and analytics.

One of the major advantages of a centralized CDS is that the clinical knowledge 
for best practices and clinical guidelines are embodied in the rules and are in one 
place. If guidance needs to be updated or clinical knowledge changed, rules need to 
be updated only in a central repository. The rules are not scattered across multiple 
EHRs using different syntax and tools for maintenance. Since the same rules and 
data expectations are used, outcomes analysis is easier than trying to standardize 
across multiple systems.

The disadvantages of this approach are that since the CDS is outside the EHR, a 
network connection to the central CDS must always be available. In fact, the CDS 
should be architected with high-availability and performance in mind. The service 
bus architecture described earlier can be adapted to support a highly scalable, cen-
tralized CDS system (see Fig. 18.4). The design is similar to architectures already 
in successful use by commercial CDS vendors (such as Wolters Kluwer, Premier, 
and Vigilanz) that reliably support millions of incoming transactions per day, across 
hundreds of diverse provider systems, with 99.9% availability, serving tens of thou-
sands of simultaneous users and hosted in HIPAA-compliant and secure environ-
ments [20, 21]. These results provide strong evidence in support of the premise that 
the presented architecture is scalable, interoperable, and overall performant.

In this architecture, the EHR must still handle the event triggers and intervention 
recommendations. The events of interest are set up as triggers within the EHR. When 
a trigger occurs, the EHR sends a request to the central CDS using the EHR’s pro-
prietary mechanisms and protocols. For example, we can use the EHR’s ability to 
send an https request to the central CDS webservice. The EHR will send the request 
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with information such as the patient and encounter ID. Then the central CDS ser-
vice can request the additional data it needs in a separate transaction using standards 
such as FHIR. The central CDS service initiates the request and waits for the data 
response. Once the data are received, the central CDS service can execute the CDS 
rules to generate a recommended intervention. The recommendation is sent back 
using the proprietary mechanisms supported by the EHR. For example, some EHRs 
support a synchronous transaction model by having the initial request wait for a 
response. Other EHRs work asynchronously and require that a separate response be 
sent to a queue service of the EHR.  In this case, the response must contain the 
request transaction id so that the EHR can match-up the transactions. After the EHR 
receives the response, then it can display the recommended intervention. Some 
EHRs support returning recommended orders in the response.

 PPM Database (PPM DB)

Personalized medicine data have all of the characteristics of the three “Vs” of big 
data: volume, velocity, and variety. The volume of PPM information can range from 
gigabytes to terabytes for a single patient. New genetic and genomic sequencing 
techniques make it possible to quickly and inexpensively sequence entire exomes, 
genomes, and microbiomes for a single individual. And this may be done more than 
once at different points of time, which may generate a terabyte or more of informa-
tion for a single patient. New EHR technologies are needed to deal with this volume 
of healthcare information, which might amount to petabytes of information for an 
organization’s patient population. EHRs are not currently equipped to handle this 
type and volume of information [22]. Just securely and efficiently storing this infor-
mation for a typical hospital is a significant undertaking. Germline, tumor, etc., 
genetic and genomic PPM data are voluminous, and both assay technologies and 
their interpretation may evolve over time. Other types of PPM data have large data 
volume and change dynamically over time, including transcriptomic data, gene 
copy number, indels, gene fusions, germline and somatic acquired mutations, com-
puted transcriptional assays, microbiome, data generated by patient devices, fitness 
and activity trackers, glucometers, and other sensors. These data need to be stored 
efficiently and there is not yet a standard way to represent them within the EHR. The 
incoming data feeds may also require monitoring and summarization layers (e.g., so 
that trends can be visualized and analyzed).

The variety of PPM data is quickly expanding to include whole exome and 
genome sequences, or restricted panel or marker genome data from retail operations 
(such as OneOme, Color Genetics, and 23andMe), microbiome data, and self- 
assessment data [23]. PPM data may also undergo computations and transforma-
tions as part of analytics, and those intermediate results may need to be stored for 
future use (justification of results, re-analysis or other uses).

At least as important as the big data storage considerations are privacy and secu-
rity issues that must be adequately addressed [24]. PPM is by definition very specific 

18 Generalizable Architectures and Principles of Informatics for Scalable…



288

to an individual and many of its data permanent, and contrary to a traditional data 
security, breach of the data cannot be rectified by a change of password. A variety of 
barriers against data abuse can be deployed to protect this type of information:

 1. Restricting technical access to the data only to individuals whose access the 
patient has approved through consent. The data should be stored using strong 
encryption, such as AES-256, with keys under the control of the patient or a 
trusted third party authorized to act on behalf of the patient. Robust authentica-
tion and vetting of patient identities must be implemented so that linkages 
between the PPM data and other clinical data are correct and the risk of fraudu-
lent access to the data is eliminated.

 2. Decoupling the genomic data not used for clinical care from the EHR. While the 
part of PPM that is used for CDS will end up in the EHR as part of justification 
of recommendation alerts, other components (e.g., used for research or for 
ancestry or paternity analyses, for forensic purposes, or for pre-emptive genotyp-
ing) will remain inaccessible to entities that may have legal access to the EHR 
(e.g., life insurance companies authorized by the patient to access the informa-
tion). The federal Genetic Information Nondiscrimination Act (GINA) protects 
an individual against some types of genetic discrimination by employers and 
health insurers, but it does not protect them against every possible type of dis-
crimination in the event their genetic information is exposed [25].

 3. Legal protections to accompany use of a PPM database. Informatics infrastruc-
tures for PPM should allow patients to control their PPM data that is not directly 
used for care, including removing (and/or destroying) the information (or por-
tions of their information) from the PPM database at any time (except for con-
sented research uses). The clinical recommendations and interpretations of the 
PPM data that are used by clinicians in care delivery should be stored in the EHR 
and treated the same as other parts of the medical record. PPM infrastructures 
must create audit logs detailing which parties (hospitals, clinicians, laboratories, 
etc.) accessed the data and for what reason. The PPM DB operators and data 
custodians should be contractually obligated to safeguard the data when it is in 
their possession and to abide by policies for securely destroying it after autho-
rized use has been accomplished. As the legal frameworks designed to protect 
patients are evolving, there is a strong argument to be made for extending the 
provisions of HIPAA and GINA to define and forbid PPM data abuse.

The science and techniques for using PPM data are quickly evolving. When PPM 
data is used during healthcare delivery, raw genetic data should be kept separate 
from the genetic interpretation of that data [26]. Clinicians are most interested in 
using PPM data to diagnose, treat, and predict risk for a patient. Clinical interpreta-
tion can change over time as new clinical knowledge becomes available. The PPM 
DB must be closely coupled to the Clinical Knowledge base so that new knowledge 
applied to data in the PPM DB can generate new clinical interpretations. Only these 
interpretations should be stored in the EHR to be used by the care team for clinical 
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decisions. But the raw and uninterpreted information of the PPM DB (for example, 
entire exomes) and the Clinical Knowledge base should remain separate [27]. There 
are also pragmatic technical reasons to maintain a separate PPM database. Genetic 
PPM data is very large and is not handled well in EHRs currently and in the foresee-
able future [28]. Raw genomic data is considered sensitive information and best 
practices for which aspects of genomic data should be part of the legal medical 
record are still evolving [29]. Taking into account all of the above factors, keeping 
the PPM data outside of the EHR is an architectural model that confers a number of 
advantages.

 Electronic Health Record (EHR)

The EHR captures and stores data related to a patient’s care. Whenever the PPM DB 
is external to the EHR, there need to be methods to combine the important clinical 
data from the EHR with the PPM data. Historically, integration of external systems 
with the EHR has been difficult and time consuming. Most integration was accom-
plished using proprietary EHR protocols or with HL7 version 2.x messaging. These 
methods were adequate for sending and receiving routine health information to the 
EHR (i.e., demographics, vitals, labs, medications, etc.), but they were not designed 
to handle PPM data. Recently there has been significant work on the Fast Healthcare 
Interoperability Resources (FHIR) [19] protocol, which aims to solve this problem. 
FHIR holds the promise of being a single protocol that will work with all EHRs in 
the near future. FHIR is extensible to allow PPM data to be exchanged in a standard 
manner by defining a flexible record format for different types of PPM data. FHIR 
calls these definitions of standards “bundles”. Work is currently underway to define 
FHIR bundles for important types of PPM data including pharmacogenomic data 
and patient-reported outcomes [30].

A critical issue is ensuring that a patient’s EHR records are linked with the cor-
rect data in the PPM DB. The issue is getting attention from the U.S. Department of 
Health and Human Services’ Office of the National Coordinator for Health 
Information Technology (ONC) [31]. It has always been important to ensure that 
patients are connected to the correct medical record and it is just as critical when 
using a patient’s PPM data for care. If a patient is linked to incorrect PPM data, then 
CDS and predictive models may yield incorrect and possibly harmful recommenda-
tions. When the PPM DB and EHR are both contained within a single healthcare 
system, then a healthcare specific patient identifier assigned by the EHR (i.e., medi-
cal record number) can be used to link the data. However, if the PPM DB is external, 
then patient matching and linkage becomes more difficult. In the United States, 
patients do not have a universally unique identifier that healthcare systems can use. 
Instead, each healthcare system gives the patient a patient identifier that is unique 
only within that system. There is ongoing work to solve this issue, but until there is 
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a solution, multiple “unique” numbers will need to be stored for each patient. Entity 
resolution methods may provide a solution in some cases, however a safer solution 
before a universal patient identifier system exists is that the EHR should store the 
patient’s identifier from the PPM DB (and there may be multiple PPM DBs). The 
PPM DB, similarly, must store the patient identifier from each health system’s EHR.

 Clinical Knowledge Repository (CKR)

Clinical knowledge in general, and in PPM even more so, is advancing quickly. As 
new knowledge, evidence and clinical interpretations become available, there need 
to be scientifically robust policies for how and when the new information will be 
used in practice. Traditionally, expert panels convened by and under the auspices 
of clinical specialty societies or government evaluate the new information, weigh 
the evidence and decide when and how to turn it into practice. The recommenda-
tions are ultimately codified as practice guidelines. This review and synthesis pro-
cess is often difficult and time-consuming. Most healthcare organizations currently 
have additional institutional review processes in place for overseeing the process 
of updating recommendations for medication management and order set 
maintenance.

The CKR contains information about the clinical interpretation of the PPM data 
for patient care. For example, in the case of pharmacogenomics (PGx), this knowl-
edge is in the form of gene-drug interactions. The CKR information is comprised of 
text documents and guidelines that a clinician can read to understand the evidence 
for the clinical interpretation. The CKR should detail what is known about the inter-
action and the recommended action to take. There should also be information avail-
able in the CKR to help educate a patient about the clinical interpretation. In 
addition, the clinical knowledge must also be represented in a form that a computer 
can use. While there is considerable scholarly work supporting computable PGx 
guidelines, no universal standards are available for computationally representing 
clinical knowledge [32].

PPM Research Database. The research community is looking for better meth-
ods to rely on real-world evidence (RWE) in order to assess the effectiveness of 
treatments, medications, and interventions. The process of using PPM CDS gener-
ates data that can be potential evidence to measure effectiveness and improve out-
comes [33]. A PPM research database contains data that allows researchers to study 
the effectiveness, safety, cost-effectiveness, and other aspects of PPM practices. It 
stores information about CDS use that has occurred and information about a 
patient’s eventual clinical outcome. This database should be used to evaluate the 
effectiveness of the CDS and also to discover new associations in the PPM data that 
may lead to additional recommendations. It is outside the scope of this chapter (but 
covered in many other chapters of the present volume) to discuss how this data can 
be analyzed.
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 Illustrative Example: Pharmacogenomics

In order to illustrate the principles of the scalable informatics infrastructure of the 
section “Components of a Scalable PPM Informatics Architecture” better, we will 
describe general PPM infrastructure required to support PGx. PGx is a type of pre-
cision medicine with demonstrable clinical benefits, and is ready to be implemented 
in practice. PGx is the study of how a person’s inherited genetics (i.e., germline 
genotype) affect their response to different drugs. There has been considerable 
progress in identifying gene variations associated with drug metabolism (i.e., slow 
metabolizers, ultrafast metabolizers), and related to those, efficacy and toxicity. 
Knowing whether a drug will be effective for a particular patient with a specific 
genetic profile guides clinicians in medication decisions. More pharmacogenes con-
tinue to be discovered and their interaction with different medications assessed. 
Evidence is now sufficiently strong to allow implementation of PGx in clinical set-
tings. For example, patients who have had a heart attack are often prescribed clopi-
dogrel (Plavix). Individuals with certain variants in the CYP2C19 gene are poor 
metabolizers of the drug, increasing the risk of ineffective therapy and risk of a 
second heart attack or death. It is estimated that 40–50% of East Asians have one or 
more of these variants [34]. This suggests that most patients (and every East Asian 
patient) should have genetic testing for that variation before being prescribed clopi-
dogrel. Individuals carrying these variants should be prescribed an alternative drug.

We will illustrate how to scale PPM through two use cases:

 1. Implementation of PGx within a single institution.
 2. A statewide implementation of PGx across a number of diverse healthcare 

organizations.

The architectures discussed here represent an amalgamation of architectures 
tested in various institutions, as well as work in progress in our institution and home 
state of Minnesota.

 PGx Within a Single Institution

The PGx architecture for a single institution (Fig. 18.5) is very similar to the generic 
PPM architecture shown in Fig. 18.1.

In the case of PGx, the PPM DB holds genomic data, thus it is a Genetic Data 
Repository (GDR). For PGx, the CKR is a Pharmacogenomic Clinical Guideline 
Repository (PCGR). The PCGR holds validated PGx clinical guidelines. A number 
of institutions have implemented some form of PGx [4, 35]. Most of these early 
implementations chose a small number of gene-drug pairs as pilots to demonstrate 
feasibility and allow for the necessary PGx architecture development. Selection of 
initial drug-gene pairs for implementation varies and is highly dependent on the 
patient populations within the health system (e.g., pediatrics,  cancer, psychiatry). 
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The providers also need to ensure access to a CLIA-approved lab (internal or exter-
nal) to perform clinical-grade genetic testing for the gene variations needed for 
clinical implementation, and a plan for how the organization will get reimbursed for 
the testing [36].

 Pharmacogenomic Clinical Guideline Repository (PCGR)

In the case of a single institution, there is (usually) only one EHR, which simplifies 
the integration issues between the GDR and EHR. The PCGR should contain the 
actual guideline documents and allow physicians and pharmacists to easily access 
all of the data and evidence for their gene-drug pairs. Patient education materials, 
written to be understandable from a patient’s viewpoint, should also be available to 
be printed or sent to a patient. The guidelines must be in computable form (i.e., a 
form that is directly useable by a computer), not just written as text that only a clini-
cian can interpret. In the case of a single institution, the format should be written in 
the language that the CDS in their EHR requires. In most cases, institutions will not 
actually put the rules in the PCGR, but instead will just program them directly into 
the EHR’s CDS.

 Genetic Data Repository (GDR)

With PGx, there are two fundamental approaches to the timing of obtaining the 
genomic data needed. Patients can preemptively have their genome sequenced, or 
they can be tested for specific genes only when a clinician is deciding which medi-
cation to prescribe. Preemptive genotyping sequences an entire genome, a set of 
markers across the genome, or a panel of genes and saves that genetic information 
to be used over and over as drugs are prescribed in the future. This leads to faster 
PGx guidance at the point of care, and is more efficient over the lifetime of the 
patient since testing need only be done once for each gene of interest. Reactive 
genotyping typically tests for only one or two genes relevant to a specific medica-
tion under consideration for use or when drug therapy problems have been encoun-
tered for that medication. This may be less expensive for some patients in the short 
term, but adds a delay in the drug administration process that may not be acceptable 
in urgent situations. The PGx architecture must support both scenarios. In the case 
of a single institution, the results of the genetic testing can be stored in a hospital- 
hosted and -maintained GDR outside of the EHR. As discussed, if genotyping is 
performed that is not used for clinical care (especially genome-scale assays) then an 
alternative approach is to store the raw gene data in this separate GDR and only 
store the actionable variants, clinical interpretations and recommendations in the 
EHR.

Even in the case of a single site, the GDR must be able to accept genetic test 
results from both an in-house lab and external labs. Labs often send the results as 
text reports instead of as structured data. In that case, natural language processing 
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(NLP) or a direct feed to the lab’s backend database may be used to extract the gene 
variant information from the report and put it into structured fields in the GDR in 
order for the CDS to use it most effectively.

 PGx Clinical Decision Support

For a single institution, the CDS can exist within the organization’s EHR. Most 
EHRs today have sufficient capability to support PGx CDS. As is typical with most 
clinical IT and DS systems, the organization can use a physician or pharmacist to 
act as champion to roll out the PGx CDS. They can be a resource to help educate the 
rest of the medical staff and explain why PGx is important. The medical staff needs 
to be trained to know when (and why) the CDS is triggered, where to look for the 
alerts or notes within the EHR, how to order genetic tests, how to order a PGx con-
sult and how to read the alerts. Figure 18.6 shows an example CDS alert. It demon-
strates that alerts should have a number of parts [37]:

 1. The alert should explain why the CDS was triggered. It should state what patient 
condition or what medication order caused the CDS and the alert to be 
displayed.

 2. The alert should have a short narrative explaining the strength of evidence 
for the gene-drug pair interaction and the potential adverse clinical conse-
quence of a non-personalized administration of the drug for a patient with 
that gene.

PGx Alert: Potential CYP2C19 gene and Clopidogrel Interaction
Description:

Patient genetic testing indicates patient’s CYP2C19 is a Poor Metabolizer.
Effectiveness of Clopidogrel is significantly reduced. Consider alternative
therapies such as: Prasugrel

Affected patient population:

Patients with acute coronary syndrome (ACS) who are undergoing percutaneous
coronary intervention (PCI)
Patients of East Asian descent are 40%-50% more likely to have this variant.

Additional Information:
https://clinical-guidelines.myhospital.com/cyp2c19-clopidogrel

Action:
   Cancel Clopidogrel order
   Order Prasugrel instead
   Order Ticagrelor instead
   Proceed with Clopidogrel order
       Reason for overriding recommendation:

1

2

3

4

5

Fig. 18.6 Example PGx CDS alert
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 3. There should be links to additional, more in-depth information and evidence. 
Usually, these will link to literature and guidelines within the PCGR.

 4. The alert should display specific recommendations for action by the clinician. 
This could be dosing adjustment, a recommendation to cancel the medication 
order or a recommendation for an alternative medication.

 5. Finally, the CDS alert should encourage the clinician to exercise their clinical 
judgement to pick a recommended action or specify a reason why they are taking 
a different action. This information will be valuable later in determining the 
effectiveness of CDS.

 6. The EHR build team will also have to create an EHR display screen that 
shows the genomic information that the CDS used to reach its recommenda-
tion. This could include a list of the patient’s gene variants related to the drug 
in question and the potential clinical importance of considering the drug-
gene pair.

 Research Database (DB)

This database stores the content of the alerts and recommendation of the CDS 
for secondary research use. In addition, data related to the patient’s outcomes 
should be stored. This information may include length of stay, 30/60-day read-
mission, number and type of adverse drug events (ADE), and whether or not an 
alternative drug was used. For a single institution, these data are likely to be 
available in the EHR, but there are important benefits to maintaining a separate 
Research DB with this information. The Research DB will typically be used for 
assessing the PGx CDS effectiveness and for discovery of new gene-drug pair 
interactions.

 PGx on a Statewide or National Scale

What would it take to enable deployment of PGx at the scale of a state or the nation? 
Previous PGx implementation pilots have typically explored deployment at single 
sites, typically large and cutting-edge academic medical centers. Also important 
initiatives (e.g., within the eMERGE, the Pharmacogenomics Research Network 
(PGRN) [38], and at the University of Chicago [39]) have explored the feasibility of 
standardizing and sharing gene variant and phenotype information to enable discov-
ery of novel actionable gene variants in large shared databases. When considering 
PGx deployment at state scale and above, it is also important to consider midsize 
and small rural health systems that may not have the necessary expertise and techni-
cal infrastructure to implement PGx in the way that large academic medical centers 
can. Such entities may not have the ability to evaluate PGx clinical guidelines, 
implement the PGx CDS, or deal with the issues of storing and maintaining genetic 
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data. The architecture required for PGx on a statewide or national scale needs to be 
highly scalable, performant, and containing securely shareable resources within the 
PGx Network (Fig. 18.7).

 Clinical Decision Support

In a state-scale deployment, the CDS is a centralized service that all of the PGx 
Network participants can use. The inputs to the PGx CDS are patient demographics, 
patient clinical data, and the PGx Computable Guidelines. There are two ways for 
the CDS to be accessed:

 1. Integrated into an EHR. Most health systems can use the CDS in this way since 
it will be automatic, seamless, and easy to use. The CDS process is triggered by 
a medication order with an actionable gene. The EHR will call the PGx CDS 
service and receive specific recommended actions as well as narrative explaining 
the recommendation. This information can be used in discussions of treatment 
choices with the patient. The EHR can send genetic data as part of the request (if 
local genetic data exists), or it can rely on the CDS service to request the patient’s 
genetic data from the Genetic Data Repository (GDR).

Fig. 18.7 PGx architecture on a statewide scale
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 2. Providers that don’t have an integrated EHR (including retail pharmacies as 
part of filling a prescription) can access the CDS via a bespoke web application. 
In this case, the provider will manually enter the patient’s identity and medica-
tion information (and possibly genetic data, if it is not already in the GDR). The 
identity information should include the patient’s name, the number that identi-
fies them in the GDR and information such as their data of birth as a check to 
protect against data entry errors. The provider will receive the same CDS rec-
ommendations as in the case of EHR integration. This mechanism is obviously 
more error prone and data error detection and cross-referencing mechanisms 
may be needed.

The PGx CDS Webservice is a horizontally scalable, transactional web applica-
tion that should be hosted in the secure, HIPAA-compliant data center. Since many 
institutions will be depending on it for real-time CDS, it needs to be highly available 
(at least 99.99% availability) and high performance. Healthcare organizations that 
participate in such a PGx Network can connect their EHRs to the PGx CDS 
Webservice using secure site-to-site VPNs. Requests can be sent using the FHIR or 
HL7 v2.5 standards. Current work in the CDS Hooks project is one path toward the 
necessary standardized methods and message formats for performing CDS in an 
EHR [16]. In the meantime, the leading EHR vendors offer their own, proprietary, 
approaches to CDS integration. An abstraction layer can be built as the web layer of 
the webservice to translate between the appropriate EHR vendor formats and invo-
cation methods until CDS Hooks (or similar technology) is more widely adopted. 
The CDS will generate the same alerts as described in the single institution sce-
nario. But until CDS Hooks (or similar standard) is widely adopted, each organiza-
tion in the PGx Network may have to do an EHR configuration to display the CDS 
alert messages in their EHR.

 Patient Genetic Data Repository (GDR)

Health services consumers today have easy access to a number of vendors that 
will sequence portions of their genomes for a number of different purposes 
including healthcare diagnostics and ancestry. Many of these services are also 
moving toward clinical-grade assays. Moreover such assays are already useful 
to the pharmaceutical industry for conducting preliminary discovery for disease 
targets. It is thus reasonable to expect that the GDR will contain clinical-grade 
targeted panels, genome sequencing, research-grade genome-scale data, and 
perhaps even “recreational”/“informational” genotyping data. Patients (or their 
authorized healthcare or lab test providers) can choose to deposit the results of 
these genomic tests into the GDR. While non-CLIA compliant genetic results 
cannot legally and medically drive clinical decisions, they may serve as indica-
tions to the clinician that CLIA-compliant testing is warranted and needs to be 
ordered. Results from these genetic tests can be stored at the provider’s organi-
zation or alternatively could be directed by the patient to also be deposited into 
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the GDR. Triggering events and clinical variant related data (for CDS) and phe-
notypes and other genetic data (for research) will need to be harmonized for 
effective inter- provider use. Considerable research efforts have been devoted to 
such harmonization. Genome-scale assays that are executed for research or pre-
emptive PGx purposes, may be deposited outside the EHR in order to overcome 
current technical limitations of EHR systems related to genomic data (and also 
conceivably protect against data privacy abuses).

 Computable Guidelines

The Clinical Pharmacogenomics Implementation Consortium (CPIC) and the 
Dutch Pharmacogenetics Working Group (DPWG) have published clinical guide-
lines that are a solid starting point for the PCGR [40]. These guidelines are cur-
rently delivered only as text and require a health provider to read and interpret the 
evidence and recommendations. Some individual organizations have translated 
these guidelines into rules that can be used by the CDS within their EHR [4]. And 
there is work being done to develop shareable CDS rules [41], but guidelines are 
not currently published in a manner that can be directly put into any computer 
system. In general, an informatics team will need to convert these guidelines into 
a format that can be easily used by computers. After careful validation, the com-
putable guidelines should be represented as versioned artifacts in the Computable 
Guideline Repository (CGR). The CGR should be a resource that any PGx 
Network participant system can use independent of whether they use the PGx 
CDS service. As guidelines are added or updated in the repository, subscribers to 
the CGR can be notified of the changes. They can then translate the changes into 
appropriate updates to their rules and recommendations in their internal CDS 
systems.

PGx Network participants that use the PGx CDS Webservice will benefit from 
immediately being able to use the updated guidelines, since the webservice will 
always use the most up-to-date version. The Computable Guideline content will 
typically consist of rules and decision trees. An example of the clinical decision 
process for the CPIC warfarin guideline is shown in Fig. 18.8 [42].

This text description of the decision process is translated into a representation 
that a computer can use. A good choice for software to execute CDS rules is the 
open source Drools Rules Engine. It is proven, performant software that can execute 
the Computable Guidelines. An example of a part of a Drools ruleset is shown in 
Fig. 18.9.

The result of executing a set of rules is a CDS action that is returned to the invok-
ing system. The alerts and recommendations that are returned also include hyper-
links to the graded evidence for the recommendation within the context of the larger 
guideline paper. The recommendations should also include narratives, which are 
short summaries of the evidence, so that clinicians can view the evidence narrative 
as part of the recommendation message and don’t have to click to link to the full 
guideline.
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Fig. 18.8 Example decision tree for CPIC warfarin guideline (adapted from [42])

package CPIC_warfarin_v20180919

rule "Ancestry Dose Check - Non-African ancestry"
when

$patient : Patient(

then
new Action( “Alert”, “Calculate dose based on published algorithms”, evidence=”strong” );  #A1
new Action( “Info”, “Carriers of CYP2C9*5, *6, *8 or *11 variant alleles (e.g. *1/*8, \    #A2
            *1/*11, *8/*11): Decrease calculated dose by 15-30%”, evidence=”optional” );
new Action( “Info”, “Carriers of CYP4F2 rs2108622 T allele: Increase dose by 5%-10%”,\     #A3
             evidence=”optional” );
new Action( “Info”, “For loading dose, a pharmacogentics-based warfarin initiation dose\   #A4
                      algorithm could be considered”, evidence=”optional” );

end

$patient.genes.contain(“VKORC1-1639G>A”) && # D1
$patient.genes.contain(“CYP2C9*2”) &&       # D1
$patient.genes.contain(“CYP2C9*3”) )        # D1
$patient.ancestry != “African” &&           # D2

Fig. 18.9 Example of a Drools Rule for a part of the CPIC warfarin guideline (the portion outlined 
in red in Fig. 18.8)
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 Computable Guideline Governance Process

In a state-wide network, there are many parties relying upon the recommendations 
of the clinical guidelines. There should be a centralized state-wide or nation- wide 
PGx Computable Guideline Advisory Board (CGAB) to oversee a robust process 
for examining and deploying new guidelines as new clinical and PGx evidence 
becomes available. Although maximum consistency across all sites/states is the 
ideal goal, in practice more local adaptation (to populations or more complete phar-
macogene sets than national guidelines) may be occasionally warranted. In either 
case when new evidence is discovered, a CGAB review process can be initiated. 
Such a process will typically involve the following steps: First, evidence should be 
graded by a panel of PGx and clinical experts. Next, those experts must manually 
read the paper/guideline to determine if any of the rules of the associated comput-
able guideline are impacted. If there is an impact, a new version of the guideline 
should be created, and the rules will be appropriately changed. The guideline must 
then be tested using test scenarios and simulations using previous cases. If all tests 
pass, the CGAB can make a decision for when to release the new guideline to the 
CGR. All of the subscribers to the repository should be notified of the new version 
accompanied by notes describing the changes and potential impacts.

Smaller institutions that may not have the expertise or larger institutions that may 
not have the bandwidth can rely on evidence from the CGAB. Even so, they will 
still need to have process governance and oversight locally.

 PGx Research Database

The PGx Research Database is a repository that contains a research grade copy of 
all of the PGx CDS transactions. The Research DB can be used by the CGAB to 
assess how well the CDS is impacting outcomes. Participating healthcare organiza-
tions must also contribute patient demographics, medication, and outcome data to 
the Research DB. The outcome data may include key quality information such as 
adverse events, length of stay, readmission, and patient satisfaction. This database 
will also be used by researchers to discover new gene/medication interactions that 
may lead to new guidelines.

 Conclusions

As precision medicine develops and matures, health systems will need to deliver 
personalized decision support to hundreds of millions and ultimately billions of 
patients through interoperable, reliable and performant informatics systems. This 
chapter introduced general concepts and methods for creating such decision support 
systems at large (state and national level) scales. The scalable architectures dis-
cussed in the chapter here have been proven in nation-wide deployments of CDS 
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covering hundreds of healthcare systems, millions of patients, and thousands of 
providers concurrently. We discussed detailed extensions to conventional decision 
support requirements that are especially relevant to current and emerging forms of 
precision medicine. Several new informatics methods need to fully mature and be 
tested before end-to-end support of precision medicine is feasible.
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Chapter 19
Building Comprehensive Enterprise-Scale 
PPM Clinical Informatics Capability 
and Capacity

Bruce Levy

 Introduction

The terms Precision Medicine and Personalized Medicine (PPM) have significant 
overlap and have frequently been used interchangeably. While many equate 
these terms with genomics and molecular testing, they more broadly relate to the 
intentional design of efficient medical care focused on therapeutic benefits for 
patients. Precision and personalized medicine focuses on the individual patient, 
analyzing ever larger sets of data points from each individual to provide a specific 
solution tailored to that patient at a specific moment in time [1, 2].

Evidence-based medicine utilizes evidence from well-designed and well- 
conducted research to help optimize decision making in medicine [3]. In contrast 
to PPM, early evidence-based medicine efforts harkened back to the “one size 
fits all” approach to medical care where a patient receives diagnostic or treatment 
measures based on studies of average effects of treatments of populations of 
patients with a given disease or condition. Given the innumerable differences 
between individual patients and the growing quantity of health data from every 
patient, it is highly unlikely there is any such evidence in the literature that is 
specific for a given patient at a given point in time. Thus, early evidence-based 
medicine was population based.

However, as shall be shown, in attempting to move patient-centered activities 
from small pilots to institutional, enterprise-wide or multi-enterprise/state levels, 
principles of both evidence-based medicine and PPM need to both be applied 
together in combination, and evidence based medicine and PPM need be reconciled 
and re-inforce one another. Geisinger, in its multi-year efforts in developing an 
enterprise level portfolio of initiatives commonly referred to as ProvenCare®, has 
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utilized both concepts of evidence-based medicine and PPM to provide better 
care at a lower cost. The key lessons learned through these experiences will be 
presented and described.

 Clinical Microsystems: The Concept Underlying ProvenCare®

“Clinical Microsystems is shorthand for a comprehensive approach to providing 
value for individuals and families by analyzing, managing, improving and innovating 
in health care systems” [4]. Traditionally, patients receive their care in a variety of 
settings involving different healthcare providers. Examples of these settings include 
the patient’s primary care provider’s office, a specialists’ office, an urgent care 
center, a hospital, or an outpatient surgical center. Each of these locations represent 
a clinical microsystem. The patient enters each clinical microsystem with a given 
health status at a specific time and exits after a series of activities (registration, 
assessment, treatment) with some change to their health status [5].

Traditionally, most health systems have had limited coordination and 
collaboration between and across different clinical microsystems, whether within 
the same health system or across multiple health systems. It has been shown that 
the performance of a clinical microsystem is linked to the microsystem’s intelligent 
use of data, detailed knowledge of its individual patients and populations of 
patients, quality of its connections to related microsystems, and the engagement 
of its employees in both performing their work and striving to improve their work. 
Excellent clinical microsystems are a prerequisite for high performing health care 
organizations [4].

Many health systems may already have high performing clinical microsystems 
that take excellent care of patients while within their microsystem. Yet the quality 
of care delivered by a single microsystem within a health system may vary greatly 
from patient to patient or even between different encounters for the same patient. 
The microsystem might not even know of this variation in care if no quality data is 
being shared with them. One common challenge for these microsystems lies in their 
ability to effectively and efficiently handoff patients to another clinical microsystem, 
which is all too often ineffective. Also, individual employees within microsystems 
are typically not empowered by leadership to innovate and improve their operations.

Advancing clinical microsystems to the next level requires that the health system 
develop a patient-centric perspective to its operations. This reorientation leads to 
the linking of each patient’s microsystems into a larger mesosystem that is designed 
specifically to that patient and their health needs. For example, the microsystems 
for a patient with advanced coronary artery disease (CAD) might include their 
PCP, a cardiologist, an interventional cardiologist, a cardiac surgeon, and a 
nutritionist. The patient may also interact with other clinical microsystems, such 
as a  gastroenterologist for a routine colonoscopy screening. Patients with similar 
conditions, such as CAD, will tend to require similar medical services and visit 
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the same microsystems for care [4]. These disease-based mesosystems represent 
common pathways that patients with similar conditions may follow [6].

Ultimately, the quality of care and its value will be determined not just by how 
well care is delivered within each microsystem, but by how well the different 
microsystems can coordinate care, communicate efficiently during handoffs and 
exchanges, and innovate. A health system is comprised of various mesosystems and 
microsystems all working together with the patient at its center. The macrosystem 
provides the leadership, resources and accountability to enable the clinical 
microsystems and mesosystems to operate, and it provides patients with high 
quality, efficient and satisfying health care [7, 8].

One key feature for the success of clinical microsystems, mesosystems and 
macrosystems is the effective use of data and information technology. The 
systems need to be supported by a rich source of data and analytics that are 
focused on the needs of each microsystem to deliver care. This is not limited to 
just direct patient care, but also includes feedback and measures of performance 
for each microsystem. The data and analytics needs to be relevant and 
provide real-time meaningful intelligence. Having providers within a clinical 
microsystem sufficiently expert at informatics can help facilitate the value of 
the data environment [4–8].

 ProvenCare®: More Than a Decade of Experience Building 
PPM to an Enterprise Level

In the early 2000s, Geisinger, a rural health system in central Pennsylvania, began 
to re-examine how it was providing medical services to its patients. There was 
growing recognition that there was significant waste in the delivery of healthcare in 
the United States and that there was an inverse relationship between cost and quality. 
Geisinger’s leadership realized that if they could identify and reduce suboptimal 
care, they could both improve the quality of the healthcare delivered and lower the 
total cost of providing that care.

This transformation did not happen overnight. The first step was to create a 
compelling shared vision for the entire enterprise, from the lowest paid worker 
to the chairman of the board, with the benefit of the patient being the key goal. 
Shared governance was employed with the formation of leadership dyads and 
triads for each implementation [9]. There was recognition that the front-line 
employees needed to be empowered to make their own contributions to the vision, 
and that this was as much a bottom up as a top down effort. All employees would 
share in the successes of the program and learn from the failures along the route. 
Rapid innovative cycles would be required to quickly identify effective solutions 
and stop work on ideas that were not bearing fruit [10]. Finally, the need for large 
quantities of data and advanced analytics around meaningful metrics that were 
focused on patient outcomes was identified as critical to evaluate this process 
[11].
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 ProvenCare CABG®

The first area that Geisinger focused on was coronary artery bypass graft (CABG) 
surgery. While the cardiac surgery program already showed excellent outcomes and 
the surgeons were a cohesive and collegial group, there were several identified issues. 
Each surgeon individually decided whether to include evidence-based medicine 
(EBM) into their own practice, leading to multiple different care pathways for 
patients. While the various microsystems around CABG patients had implemented 
improvements, there was no meaningful communication or coordination between 
the microsystems [11–13].

The phases that were developed as part of the ProvenCare® process included [6, 11]:

 1. Identification of best practice evidence.
 2. Process redesign.
 3. Data analytics.
 4. Implementation.

 Phase 1: Evidence

The relevant literature was reviewed, including the American College of Cardiology 
(ACC)/American Heart Association (AHA) guidelines for CABG. The focus was on 
the Class I and Class IIa ACC/AHA recommendations. The cardiac surgeons from 
all Geisinger facilities discussed the evidence, agreed by consensus which of the 
guidelines to follow, and identified the steps needed to meet the guidelines. Gaining 
100% consensus among the clinicians is critical to mitigate criticism of “cookbook 
medicine,” and to achieve acceptance of the process. This effort resulted in 19 
clinically applicable recommendations that had 40 measurable process elements.

 Phase 2: Process Redesign

Multidisciplinary teams consisting of a physician, surgery physician assistant, 
critical care registered nurse, operating theatre registered nurse, cardiac rehabilitation 
technician, electronic health record programmer and clinical process improvement 
specialists were formed at each facility and met weekly by videoconferencing. 
Each surgeon’s process flows were observed and documented. The surgeons were 
surprised by the variations identified in their practices. Patients were also engaged 
to provide input into the process redesign. Non-value-added work was eliminated, 
and the system was “idealized” to incorporate the process elements identified in 
Phase 1. New workflows were designed that emphasized the use of technology 
solutions and delegating specific elements to the appropriate members of the care 
team. Clinical decision support, care flow maps and specially-designed history and 
physical templates were built. The new process and all the developed tools were 
extensively tested.
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 Phase 3: Data Analytics

Data regarding the metrics needed to be collected and analyzed to provide feedback 
to the care team regarding adherence to the implemented best practice guidelines. 
The metrics not only monitored compliance with the guidelines themselves, but 
also collected financial data that allowed comparison of costs before and after 
implementation. It was initially decided that compliance with the measures would 
be all or none, and that the feedback be provided as close as possible to real time. 
Providers were allowed to deviate from the default best practices; however, the 
reason(s) for the deviation had to be documented in the EHR and justified to the 
provider’s colleagues. These deviations were tracked and evaluated.

 Phase 4: Implementation and Results

ProvenCare CABG® went live approximately 18  months after initiation of the 
process. Due to the extensive involvement of the entire care team throughout the 
development process everyone knew the goals, process elements and compliance 
monitoring that were being deployed. In the first month following go-live, 59% of 
the CABG patients had all the ProvenCare® elements met, which increased to 100% 
by the fourth month [13].

Studying the data comparing the elective CABG patients in 2005 (prior to 
implementation) and 2006 (post-implementation) showed a 78% reduction in deep 
sternal wound infection, 67% decrease in in-hospital mortality, 50% reduction in 
intra-op blood products, and a 37% reduction in reoperation due to bleeding. While 
postoperative mean length of stay did not significantly decrease, a significantly 
higher number of patients were discharged to home [11, 13].

 Expansion of ProvenCare®

In the decade since the initial CABG process improvement, Geisinger has 
deployed numerous additional ProvenCare® products throughout its health system. 
ProvenCare® now covers not only multiple additional surgical procedures, but also 
processes for treating a variety of acute and chronic diseases.

One example, ProvenCare Diabetes®, includes [11]:

• All-or-none set of 14 evidence-based guidelines for managing diabetes patients.
• Clinical process redesign to eliminate, automate, delegate, incorporate and 

activate.
• Clinical decision support in the form of evidence-based alerts and health 

management reminders for providers and clinic nurses.

After a few years, data that demonstrated a real impact on patient outcomes 
began to be generated. In the first 3 years of ProvenCare Diabetes® the process 
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improvement measures resulted in 306 prevented heart attacks, 141 prevented 
strokes, and 166 prevented cases of retinopathy compared to what would have been 
expected from that population prior to implementation [11]. This is in addition to 
the thousands of patients that now had documented 100% compliance with all the 
evidence-based processes defined for their condition(s).

ProvenCare® also enabled Geisinger to offer competitive bundled pricing 
for their ProvenCare® portfolio, resulting in both improved quality and lower 
costs. ProvenCare has expanded to many additional offerings, each of which has 
contributed to higher healthcare quality and safety, greater consistency and efficiency 
in delivering care, lower costs to provide that care, and increased patient satisfaction 
[14–19]. Geisinger has also demonstrated that their ProvenCare® products can be 
implemented at other health care institutions utilizing different vendor’s electronic 
health records [11, 15]. Finally, while documenting that patients consistently receive 
the best evidence-based care processes is an important first step, it is necessary to 
recognize that the ultimate goal is to have a positive impact on patient outcomes, 
and that requires metrics that focus on outcomes in addition to the process steps.

 Data and Analytics Foundation for PPM at Enterprise Level

One significant challenge at the current time that inhibits the evolution of PPM to 
the enterprise level in many health care institutions is the relative lack of appropriate 
data warehouse and analytics capabilities within many health systems. The engine on 
which process care improvement depends is the capability to measure performance 
and results visually and in as close to real-time as is practical. For example, Yale-
New Haven Hospital was able to improve its 11:00 AM discharge rate from 10.4% 
to 21.2% in 4 years through the application of a simple visual (red-yellow- green) 
tool to identify patients likely to be discharged the next day [20].

One of the key requirements of a successful PPM initiative is access to data in as 
close to real time as possible. For example, once a clinician enters a new diagnosis 
on a patient the decision support system immediately looks to identify the next best 
practice steps, evaluate which of those steps may have already been performed, 
and recommends what should occur next, all while the patient is still in the office. 
Unfortunately, many data warehouse systems currently rely on relatively infrequent 
data imports that occur on a daily or other periodic basis. This impairs the ability of 
the care team to react in a timely manner.

Even if the data is made quickly available, the analytics that need to be performed 
typically requires data from multiple sources. As part of ProvenCare® Geisinger not 
only looked at patient data in the EHR, but also focused on other sources of data 
such as data in other clinical systems and claims data present within Geisinger’s 
health insurance electronic system. It is not difficult to envision a time when 
additional outside sources of data, such as social determinants of health, may be 
important to incorporate into the data warehouse for integration with clinical data 
and analysis. With these combined sources of data, health systems can begin to ask 
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questions such as: Do patients miss necessary appointments because of difficulties 
in travel? Do patients not fill all their prescriptions due to financial issues? and 
Do these issues have an impact on patient outcomes? Most data warehouses are 
proprietary and when common data models or other interoperability measures have 
not been implemented, they make it difficult to import data from sources beyond the 
EHR. A robust data warehouse that enables importing and integration of data from 
multiple disparate sources is necessary.

Finally, the analytics that are required can be quite complex, especially when 
multiple sources of data need to be analyzed in combination. This typically requires 
significant on-site expertise. However, the development of PPM tools and analytics 
that are EHR vendor neutral and can be easily implemented by multiple health 
systems, such as ProvenCare®, will help to reduce this dependence. The developed 
intelligence needs to be easily visualized so that individuals can understand the 
data at a high level with a single glance (e.g., the percentage of patients where the 
metrics were met along with a color code to easily identify problems). At the same 
time, the visualized data need to have drill down capabilities, so that individuals 
more deeply studying the data can easily review it without having to go to another 
source. Finally, it is critical to have data transparency where all involved parties can 
have access to and review the data and analytics.

 Developing the Informatics Capacity to Achieve PPM at 
Enterprise Level

The data and analytics requirements of an enterprise level PPM necessitates 
an informatics trained and experienced workforce. This cannot be limited to the 
technical side of Health Information Technology (HIT), but must include healthcare 
providers, operations managers and support staff at multiple levels. Currently, most 
health systems are challenged to identify, employ and organize a sufficient number 
of professionals that have adequate training in informatics.

 Physicians

Currently, most medical schools provide little or no education in clinical informatics 
[21, 22]. In many cases, the “informatics” education provided to medical students 
does not go beyond some combination of education in evidence-based medicine or 
the standard vendor-specific EHR training that all providers receive. Similarly, there 
is little informatics education being provided to residents. One notable exception 
is within the pathology residency community, who have included informatics into 
the ACGME Program Requirements for Pathology, Pathology Milestones, as well 
as the American Board of Pathology certification examination, and have created 
a pathology informatics curriculum called Pathology Informatics Essentials for 
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Residents [23–25]. The recent approval of a new medical subspecialty in Clinical 
Informatics and the creation of ACGME-accredited Clinical Informatics Fellowships 
represents a significant step forward in physician informatics education necessary 
for PPM [26, 27].

As it becomes more broadly recognized that clinical informatics is an 
integral part of the daily practice of medicine, educational opportunities in the 
field of clinical informatics will continue to expand. Some medical schools and 
residency programs have begun to incorporate informatics education into their 
curricula, and institutions are starting to utilize an educational version of the 
electronic health record as an important educational tool for medical students 
and residents [28–30]. The Medical University of South Carolina modified its 
curriculum to engage second year medical students in the development of a 
clinical decision support (CDS) tool [31]. This not only provides the student 
with a practical exercise involving evidence- based medicine and CDS tool 
development, but also prepares them for a future utilizing informatics to support 
their practice of medicine.

 Nurses, Physician Extenders, Pharmacists and Health Care 
Technicians

Nurses, physician extenders, pharmacists and many other health care workers 
have also started to incorporate informatics into their practice of medicine [32, 
33]. Informatics education has been variably incorporated into the primary degree 
programs for many health professionals [34–36]. Additional opportunities are 
typically available for more advanced degree programs for these health professionals 
[37]. In addition, many health professionals, including physicians, will participate 
in graduate certificate or master’s degree programs in clinical informatics offered 
both live and online through a variety of institutions of higher learning. However, 
like medical education for physicians, informatics needs to be better incorporated 
into the educational program for these health professionals.

 Health Informatics Technology (HIT) and Computer Science 
Professionals

It is incorrect to assume that individuals educated in computer science or HIT will 
necessarily have expertise in clinical informatics. There is a distinct difference 
between the areas of HIT and informatics. HIT’s primary focus is the technology 
that enables the acquisition, entry, editing, retrieving and simple analysis of 
health data. The exact nature and content of the data and its use is secondary to the 
systems that HIT needs to maintain. In contrast, informatics’ primary focus is on 
the data and how it can be used to generate intelligence that supports patient care 
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and the efficient operation of the health system. From an informatics perspective, 
information technology is a tool that is used to accomplish the primary goals of 
informatics.

As a result, most computer scientists and IT professionals, while experts 
regarding the hardware and IT software used in healthcare, may have little 
knowledge regarding clinical workflows and informatics needs of a health system. 
These professionals typically require additional informatics training to become 
maximally effective in these positions.

Given the multidisciplinary nature of PPM initiatives and the informatics 
educational requirements of the various members of the team, the concept of 
multidisciplinary education in informatics is attractive. Having health and technical 
professionals learn and train in informatics together can provide not only a broader 
informatics educational base but also encourage multidisciplinary team activities 
starting during education [38–40].

 Informatics Teams

The presence of appropriately trained individuals, while required, is only the first 
step in developing the needed informatics expertise to support PPM.  It is also 
necessary to form multidisciplinary teams of informaticists to work together and 
with their non-informatics healthcare colleagues to fully develop the informatics 
capabilities that support PPM at the enterprise or state level. The formation and 
organization of these teams is critical to the success of these efforts. One such model 
of organization is presented below.

A team of physician informaticists (PI) should be organized under a Chief Medical 
Informatics Officer (CMIO). The CMIO should be a physician board certified in 
clinical informatics and be provided with the resources and administrative support 
to organize and lead the PI team. While it is acceptable to start small and build the PI 
team, the eventual goal is for the team to represent a broad spectrum of the clinical 
specialties. These physicians should be spending a significant amount of their time 
practicing medicine in their clinical specialty. This provides the team direct insight 
into the clinical workflows and provides the clinical departments a known and 
hopefully respected colleague representing the specialty’s interests. For systems 
that have multiple physical locations, it is also important to consider representation 
from each of the platforms in the system. The majority of physician informaticists 
should aspire towards board certification in clinical informatics. Some institutions, 
such as Geisinger, have expanded physician informaticists to include physician 
extenders, creating teams of provider informaticists.

Similarly, a team of nurse informaticists should be organized under a Chief 
Nursing Informatics Officer (CNIO). Typically nurse informaticists are more 
intimately involved in the analyst role and may spend significant time building 
within the EHR, in contrast to their physician colleagues. As nurses they have 
insight into and access to different aspects of the health system. As greater numbers 
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of other health professionals become more directly involved with informatics, 
teams representing other groups such as pharmacists may form independently. In 
the interim, inclusion of these informatics colleagues into the provider or nurse 
informaticist teams is acceptable.

While having these independent teams of informaticist is a necessary first step, 
the collaboration and ultimate integration of these teams is the required next step. 
One of the reasons behind the success of ProvenCare® has been ascribed to the 
creation of multidisciplinary informatics teams. Triad informatics teams consisting 
of a nurse informaticist, a provider informaticist and an EHR analyst that are 
responsible for a certain aspect of informatics or a clinical service has been shown to 
be extremely effective. Expanding that team to include key clinical and operational 
leaders in a given service area for the development of PPM in a shared governance 
structure is a key aspect to help maximize success [9].

 Conclusions

While the creation of large scale Personalized Precision Medicine (PPM) capabilities 
may appear to be a daunting task, in reality most health systems already have the 
necessary components to initiate and sustain their own journeys to enterprise level 
PPM. The success of ProvenCare® is actually based on the application of relatively 
simple, yet currently disconnected processes.

 1. Create the appropriate vision and leadership structures: While it may be 
tempting to focus the vision on cost savings, experience has shown that clini-
cians respond best to visions that surround the patient rather than the financial 
picture of the institution. This effort needs to empower front-line staff as well as 
leadership to create real and sustained change.

 2. Identify the existing evidence-based best practice: There are numerous 
examples of good medical and scientific evidence to support best practice 
available in the literature or through professional societies. What is currently 
lacking is the blueprint that takes you from a guideline to specific action steps 
and their  implementation. The challenge is to get your clinicians together to 
review and achieve consensus on best practices.

 3. Hardwire the identified best practices: Once the best practices are identified, 
the processes need to be hard wired into both the clinical workflows and the 
electronic health record. Involvement of information technology in the entire 
process helps ensure that appropriate electronic tools are built and tested.

 4. Develop appropriate metrics: While it is important to monitor and report on 
metrics involving the individual process steps, don’t forget the ultimate goal of 
improving patient outcomes. This is one area where health systems may need to 
develop or acquire resources to collect and report on appropriate metrics in real 
time.

B. Levy



315

 5. Innovate, innovate, innovate: Rapid cycle innovation enables a health system 
to quickly identify useful projects, allows the system to quickly abandon projects 
that are not providing value, and permits continual improvement of the measures 
and metrics as knowledge is gained.

 6. Maintain and update: The work is not completed once go-live is over. Medical 
evidence is continually changing, so it is necessary to establish a schedule to 
review and update best practice and the tools necessary to achieve improved 
patient outcomes.
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Chapter 20
Personalized and Precision Medicine 
Informatics Education

Terrence Adam

 Introduction

Education in PPM informatics is a novel informatics training area aiming to develop 
a broad knowledge base in precision medicine as well as to provide sufficient depth 
of training in several core informatics areas in order to produce successful PPM 
informatics practitioners. Because of the aimed breadth and depth of knowledge and 
skills, PPM informatics training is generally best delivered via graduate-level edu-
cation and it benefits from a substantial amount of hands on work.

Other education modalities are also important as the field of PPM and the infor-
matics that supports it continue to expand and diffuse into clinical practice. The 
availability of high quality online, mixed online and traditional classroom learning 
approaches can address students’ needs, as  they seek educational opportunities 
while being part of the workforce or, in some cases, while being geographically 
separated from educational settings. In addition, PPM informatics education 
addresses important workforce needs and helps address the known gaps in PPM 
knowledge among practitioners [1–3].

In addition to the setting, there are other content management issues to 
address. Several unique challenges complicate precision medicine informatics 
education, including problems surrounding data access, data privacy manage-
ment and other issues that impose restrictions on work in the PPM space. As this 
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area is rapidly expanding, it is expected that there will be ongoing innovations in 
data sharing and management to help facilitate data and application access for 
students.

 Background

Standard core content areas for PPM informatics education have not yet been fully 
developed to date, but prior reviews have identified several focus areas. One such 
review defined seven areas of importance for the support and delivery of precision 
medicine [4]. This work reflected stakeholder input including researchers, provid-
ers, payers and patients. The key areas of importance included (1) electronic con-
sent and specimen for tracking of biospecimens for research, (2) data standards for 
data privacy, security and integrity for data integration and exchange, (3) advanced 
methods for biomarker discovery and translation, (4) implementation and enforce-
ment of protocols and provenance, (5) precision medicine knowledge base con-
struction, (6) enhancement of electronic health records to promote precision 
medicine and (7) consumer engagement [4]. Other recommendations of what should 
be included in precision medicine informatics training curricula have been offered 
by Frey et al. [5]. Four roles were defined for informatics including “(1) managing 
big data, (2) creating learning systems for knowledge generation, (3) providing 
access for individual involvement, and (4) ultimately supporting optimal delivery of 
precision treatments derived from translational research” [5]. Each of these roles 
requires knowledge not only of the informatics methods and technology but also of 
the context in which such methods and technology are developed, implemented and 
maintained.

It is also reasonable to see big data as a common requirement across most 
approaches to PPM informatics education given its role in helping to define dis-
ease as well as tailor treatments for patients. Definitions of big data have changed 
over the years based on the evolving capacity of information systems to both 
acquire and use data, but the scale of potential data currently available even at the 
individual level would certainly fit most definitions of big data. Volume of data 
along with the variability/complexity of the data, the ability to verify and standard-
ize the data as well to analyze it, are important determinants of the use of data 
and the ability to extract scientific and health care value from it. Big data skills are 
important for PPM informatics learners to acquire and develop throughout their 
careers.

Other published reviews of informatics education have identified a number of 
additional focus areas supporting an interdisciplinary approach to education. These 
include the need to address the changes in electronic medical records systems, inte-
gration of medical devices and consumer devices and changes in the reimbursement 
models for health care [6]. Each of these elements of the health system require data 
in order for the innovations to be measured and have impacts on care delivery. 
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Having available data that is of high quality and is well integrated can help drive 
innovation in clinical decision making and the underlying clinical and basic sci-
ences to facilitate novel approaches to health care.

 Prerequisites to PMI Education

Core field prerequisites establish the minimal background requirements that PMI 
students will need to have previously acquired in order to successfully complete the 
PMI learning objectives. The prerequisites include (a) a mix of biological and clini-
cal context knowledge, and (b) foundational computational and quantitative 
training.

Biological training prerequisites ensure that students have an understanding of 
the fundamentals of the biological and health sciences with needed coverage of 
several common context areas. Ideally, they will have a working knowledge of 
genetics, both to understand the context for the work, but also to appreciate the 
historical evolution of genetics and the ways in which new methods can be applied 
to understand clinical disorders with a genetic basis. The understanding that much 
of genetics has been historically driven by the identification of clinical patterns is 
useful to put current work into perspective.

Quantitative and computational skills are essential to support data analytic and 
computational work in the field. There are a number of approaches which may allow 
students to acquire this knowledge, including mathematical prerequisites such as 
linear algebra, probability, calculus, discrete math as well as statistical training 
(including common statistical methods and research designs). In addition, PPM 
informatics students will need a foundation of computer programming skills and an 
introduction to data structures and algorithms in order to effectively engage in grad-
uate level computational courses and PPM methodological research.

Clinical knowledge (including pharmacology) provides PPM informatics stu-
dents with a level of understanding of the potential implications of research find-
ings on patients and on  health systems in the precision medicine space. This 
includes skills for acquiring, developing or converting data; creating data interpre-
tations; identification of actionable results; and management of  corresponding 
actions.  As scientific knowledge advances, the clinical signature of PPM tests 
evolves, and students should be able to first understand and then manage this evo-
lution. The need to re- evaluate prior work on a regular basis is not typically part of 
clinical training which tends to focus on immediate and binary decision-making, 
but the nuance in the setting of PPM is important. Other clinical fields such as 
genetic counseling have incorporated result reinterpretation into their workflows 
to address variants of uncertain significance providing an approach to study for use 
in PPM.

Overall, the number of prerequisites will vary by the educational program, but 
with graduate training at the master’s degree level, it is expected that most identified 

20 Personalized and Precision Medicine Informatics Education



322

prerequisites would be completed prior to starting the degree training and any defi-
ciencies can be addressed by a small number of remedial courses and/or directed 
study.

 Core Educational Competencies

Biological Sciences, including Genetics and Molecular Biology training will 
typically be part of PPM informatics training to provide a contextual background. 
An understanding of genetics will also be needed to help students appreciate the 
basis for heritability and its historical development (Table 20.1).

Genetic and Genomic Data Analysis training courses can take a number of 
forms but will invariably teach at least basic sequence alignment and genome 
assembly working with a variety of data sources. Students should work with a num-
ber of different platforms and gain knowledge of how to work with DNA and RNA 
sequences and other molecular data. They should also gain an understanding of how 
to analyze genomic data sets to link inheritable genetic and somatic variation with 
clinical phenotypes. These topics can be part of a  graduate-level bioinformatics 
course.

Principles of Clinical Practice and Healthcare Systems can be taught via spe-
cialized courses tailored to the needs of non-clinicians. Alternatively, advanced 
undergraduate or graduate courses in physiology, pharmacology and nosology can 
provide the necessary knowledge.

Foundational Concepts and Methods in Clinical Informatics and 
Bioinformatics are standard survey courses that introduce fundamental informatics 
concepts, methods, systems, tools, and standards required to immerse PPM students 
in the field of informatics.

Knowledge Representation and Data Standards address basic competencies 
related to the fundamentals of knowledge representation and the coding of knowl-
edge elements into data standards [7]. For PPM informatics, this covers typical 
clinical knowledge representation including core terminologies and ontologies used 

Table 20.1 Precision medicine informatics core competencies

• Biological Sciences (including Genetics and Molecular Biology)
• Genetic and Genomic Data Analysis
• Principles of Clinical Practice and Healthcare Systems
• Foundational Concepts and Methods in Clinical Informatics and Bioinformatics
• Knowledge Representation and Data Standards
• Data Governance, Quality, Security, and Integration
• Principles of Software Engineering of Clinical Information Systems and Clinical Decision 
Support Systems
• Machine Learning and Statistical Methods
• Legal and Ethical Topics
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to describe and manage the basic components of clinical care for disease diagnos-
tics and treatment. Most of these components would typically overlap with the foun-
dational concepts and methods in clinical informatics and bioinformatics offerings. 
However, for PPM informatics training, it is important to add the capability to link 
to other knowledge representation resources such as Gene Ontology or Online 
Mendelian Inheritance in Man to facilitate better disease subtyping and data 
 integration work [8, 9]. Ontological analysis and data integration methods [10] as 
well as basic familiarity with NLP methods are also important components of PPM 
informatics training.

Data Governance, Quality, Security, and Integration. Data Governance 
principles are needed for PPM informatics students to understand, implement and 
create data governance agreements related to data which is generated and/or shared. 
This is needed to ensure compliance but also to help with resource management. In 
addition, PPM informatics professionals will also need to work with other profes-
sionals such as legal and regulatory experts for data governance. Data Quality 
assessment methods cover methods and practices needed to identify and manage 
missing data elements, difficult to reconcile data, data standard and terminology 
deficiencies, conversion problems and other common issues in complex information 
systems. This part of the training program teaches mapping, tracking, and general 
data quality benchmarking principles. This type of training aims to ensure that insti-
tutional data will be a viable and valuable resource for both operational and research 
work.

Data Integration can be taught as part of a clinical informatics survey course or 
program project work, but the program may also incorporate more advanced data 
integration in order to teach how to track and cross-reference patients across sys-
tems including electronic health records, biobanks, OMICs servers, research data-
bases, consumer applications and other resources and how to create multi-modal 
datasets for analysis or decision support. Data integration topics may also include 
methods to support the capacity to re-interpret prior results in the context of new 
scientific understanding, and to determine which raw and processed data elements 
need to be made available for diagnostics and result reinterpretation. Students will 
also be trained in OMICs data management that resides outside the (clinical) elec-
tronic health record.

Principles of Software Engineering of Clinical Information Systems and 
Clinical Decision Support Systems cover the architectures, data structures, func-
tionalities and methods used in the creation, deployment and evaluation of Clinical 
Information Systems such as EHRs, Provider Order Entry, and Clinical Decision 
Support Systems. Human Computer Interaction topics are also included for their 
role in the creation of highly functional and widely adopted systems for profession-
als but also for consumer applications to facilitate information acquisition and pro-
vision to consumers.

Machine Learning and Statistical Methods. This part of the program 
requires students to have a minimum quantitative background. Coverage of spe-
cific learning algorithms in both the predictive and causal modeling realms, fea-
ture selection, clustering/subtyping, model selection methods, loss functions, 
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error estimators, theory of generalization and overfitting, with application to 
genome annotations and comparisons are key educational focus areas. The meth-
ods can also be applied to structural prediction, gene expression analysis and 
integrated functional genomics work. Statistical Methods and research designs 
are another core methods area for PPM informatics students to support work in 
designing studies, hypothesis testing and evaluation of pertinent outcomes. 
Statistical methods which work well with PPM informatics data may differ in 
emphasis from a traditional statistical training sequence and specialized electives 
may be needed.

Legal and Ethical Issues are another core training component which needs to be 
addressed in a PPM informatics training curriculum to ensure that students have 
awareness, sensitivity and training covering the management of data security as 
well as other clinical and research risks to patients and family members, and enforc-
ing institutional compliance [11].

 Graduate Training

Current offerings for graduate education specializing in PPM informatics are very 
limited. The lack of availability is mainly due to the recent development of PPM 
informatics as an identifiable area of professional activity. At present, most students 
can pursue training with a more general informatics degree and then add targeted, 
elective PPM-specific training in areas which address students’ career goals. 
Limited electives in graduate training programs may make it difficult for students to 
acquire PPM informatics training via formal didactics due to limited support for 
their studies, timing related issues or the cost burden of adding courses to a tradi-
tional core informatics program.

Case Study: University of Minnesota Precision and Personalized Medicine 
Informatics PhD Specialty Track. The recognition of market and student needs 
for tailored training opportunities in PPM informatics, combined with a strategic 
focus in PPM informatics research starting in 2015, led the University of Minnesota 
to develop a specialized PPM informatics educational offering. The initial effort led 
to the creation of a doctoral degree specialty track with eventual plans to add termi-
nal PPM informatics master’s degree-level training for students in future 
offerings.

The University of Minnesota is in a large metropolitan community of over two 
million people and is home to one of the largest core hubs of biomedical device and 
healthcare companies including a large local presence from companies  such as 
Medtronic, Boston Scientific, United Health Group and others. It is also a location 
for a number of startup companies which have emerged due to the large concentra-
tion of biomedical talent and large pools of early-stage investment capital. These 
companies have employed graduates of the long standing University of Minnesota 
Health Informatics program, but they have also become a source of students in the 
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program as employees decide to acquire additional informatics skills to supplement 
their prior technical and healthcare backgrounds.

Our experience in working with these adult students is that they have had a vari-
ety of reasons to pursue graduate training in PPM informatics. Some were seeking 
additional educational credentials either to open up new job opportunities in growth 
areas in their companies or they were looking to make a transition to different work 
roles and viewed informatics training as a means to facilitate their personal career 
development. Many of them had strong technical backgrounds and were seeking 
additional health science knowledge to complement their technical capabilities. 
Traditional health informatics offerings provided useful educational content to this 
group of both trainees and traditional graduate students, but did not address a grow-
ing community and institutional training need for PPM informatics education. In an 
effort to better position the program for future workforce needs, the Health 
Informatics graduate program underwent a substantial review of its educational 
capacity and designed a number of new curricular components based on the skills 
of available faculty as well as the expected needs of the community.

After a review of work force needs, institutional needs, faculty capacity and 
related course offerings, the Precision and Personalized Medicine Informatics track 
evolved and was approved by faculty and the University as a specialty track for the 
PhD program and provides a formal degree mechanism for PPM informatics 
training.

The Precision and Personalized Medicine Informatics track provides a didactic 
program for students to develop specialized knowledge in PPM informatics methods 
applied to personal and population health-focused problems. They develop skills in 
quantitative methods and biomedical sciences for their application to precision 
medicine. In addition, they gain an understanding of the medical and biological sci-
ences to provide needed context on which to apply informatics methods.

Students pursuing a PhD in the Precision and Personalized Medicine track are 
expected to earn a Health Informatics MS degree as part of their PhD training. In 
this training pathway, they consult with their program advisor to identify pertinent 
didactic and experiential work for their personalized training program which is tai-
lored to their background. Since students may come from clinical, basic science, 
technology or other backgrounds, it is important that they can address any areas of 
limited proficiency to allow them to fill those needs with elective courses to obtain 
sufficient training to meet program expectations as well as their career goals.

The training in the program follows a similar path as in other specialty training 
tracks at the informatics doctoral level reflecting both common core informatics 
methods offerings and similar training requirements as the University of Minnesota 
Master of Science and Master of Health Informatics degrees. The common core 
methods training include general foundational courses in Health Informatics, 
Applied Health Care Databases, and Informatics Methods for Health Care Quality 
Outcomes and Patient Safety. The program adds some distinctive elements includ-
ing a Foundations of Translational Bioinformatics and Foundations of Precision 
Medicine Informatics with supplemental hands-on labs. Other core training includes 
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pharmacogenomics, health data analytics and clinical data mining courses. Finally, 
students are expected to complete an advanced statistical sequence, electives and 
thesis credits to complete their training as well as a seminar series.

Additional suggested electives which are recommended include advanced statis-
tical offerings, correlated data analysis, mathematical analysis for biological net-
works, Bayesian decision theory, advanced machine learning topics (causal 
modeling, latent variable modeling, etc.) and advanced statistical genetics and 
genomics. The didactic work is supplemented with an internship to allow students 
to get supplemental hands-on experience to build on their work in formal 
didactics.

The University of Minnesota program  conducts regular curricular reviews to 
ensure that PPM informatics-related content is meeting the needs of students and 
potential employers in the community. Engagement with a professional external 
advisory committee and formal and informal alumni networks provide important 
quality improvement guidance to make sure that the program is meeting student 
needs.

 Mentored Research Training

For advanced graduate training at the doctoral and post-doctoral levels,  students 
gravitate to centers of excellence and well-regarded labs to maximize their training 
opportunities with mentors at PPM informatics sites who support their work of 
interest. Support for such efforts in the form of sustained pre-doctoral and post- 
doctoral funding streams will generally support those working at the most advanced 
levels of PPM informatics. For those working in more operational capacities such as 
building enterprise scale systems, it is less clear how to support such training in 
clinical and research settings.

 Practical Training Requirements

Hands-on training enables  students to translate abstract knowledge into practical 
solutions across the spectrum of PPM informatics. Most will begin this process in 
laboratory work and structured course projects and assignments followed by prac-
tice opportunities provided via partnerships with other organizations or health sys-
tems to provide real world exposure through internships. Such work provides 
invaluable exposures to clinical and bio-molecular data along with payer data to 
provide a full view of patient data and health systems [12].

In educational program development for all types of PPM informatics offerings, 
it is useful to identify and make available de-identified data sources which can be 
used in a protected environment or made available as de-identified synthetic data 
sets. Fortunately, there are a growing number of available public use data files for 
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use in educational settings and these resources provide a means for students to work 
directly with data and understand good data documentation practices.

Students spend time doing their own data exploration after getting an initial 
introduction to the data. This can either be done as individual-focused tasks or alter-
natively can be done in a group setting where they work with others from different 
backgrounds if the setting allows for it. Having the ability to partner  the more 
clinically- oriented with the more technically-oriented allows both parties to learn 
from each other. Formal informatics training programs often have such diverse stu-
dents; however, in more targeted settings, such as a research or skill-based training 
conference,  participants may be more homogenous and this may not allow as 
much cross-discipline learning within groups. Even in these cases, where student 
backgrounds are similar, variations in their clinical, technical and scientific knowl-
edge may be addressed with pre-conference survey work to maximize group 
learning.

 Professional Continuing Education

Continuing Education provides learning for practitioners who are looking to acquire 
targeted skills pertinent to their professional practices and needs. Such education in 
PPM may focus on targeted methods such as the interpretation of a specific test, or 
may be more broad-based such as a focus on the type of testing which a practitioner 
may consider in their daily work. It may also entail a very broad-based or in-depth 
review of method(s) which may be part of an extended conference or training series. 
In developing such content, it is important to have an understanding of the skills and 
background knowledge of the audience in order to tailor the content appropriately. 
Such content can be delivered through a variety of delivery mechanisms; however, 
it will generally require a review process for formal continuing education credits 
based on the professional organization for which the professional educational con-
tent is delivered. For content delivery, there may be opportunities to develop and 
re-use content across a variety of professions where backgrounds may be similar, 
but will require multiple content accreditation reviews. For instance, in a study of 10 
pharmacogenomics continuing education programs within the eMERGE network, 
sites employed  face-to-face content delivery, point-of-care education using alerts 
and messaging, and online education resources as part of their training [13].

Continuing education also provides an opportunity to pursue a more prolonged 
educational effort. Using a multi-modal approach addresses educational needs in a 
coordinated manner and translates evidence into practice [14]; however, the ability 
to affect change in clinical practice and improve practice guideline adherence has 
been variable [15, 16]. For example, some continuing education offerings include 
the use of self-directed, planned, pre-course offerings to ensure that participants 
will have a base level of knowledge prior to undertaking more advanced educational 
offerings. These continuing education programs may include content which takes 
place over a longer period of time, and trainees typically will need to meet objectives 
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at each phase before moving on in order to ensure that they are able to manage more 
advanced education. Another continuing education approach is to use massively 
open online course (MOOC) offerings. Prior MOOC offerings demonstrated the 
importance of having actual clinical scenarios which were tailored to the health- 
care provider point of view when providing PPM educational content [17]. Such 
offerings could be a means to provide students with a base of knowledge on which 
to build toward more advanced work.

The development and management of a prolonged educational series can also 
take the form of a live course offering which may be used as part of a formal semi-
nar series to facilitate active learning. Such offerings have the advantage of an 
 interactive experience which allow trainees to direct targeted questions to experts 
and facilitate greater format flexibility. Such seminar series are frequently used in 
other areas of clinical practice, especially for medicine, nursing, and pharmacy, 
which have specific clinical continuing education requirements. These offerings are 
typically only available in large academically-oriented centers for specialized con-
tent offerings such as PPM informatics. The seminar series approach also has the 
advantage of reaching a large audience in a manner that provides flexibility for both 
presenters and participants and can allow the hosting site to make data and software 
available, which may otherwise be impossible to replicate in a remote setting.

Advanced educational offerings for health professionals with board certification 
may become another option for training in the field. The development of accredited 
clinical informatics fellowships for physicians have provided a pathway to infor-
matics training, but have generally not been heavily focused on PPM. The early 
experiences with these fellowships has been previously described, including a num-
ber of issues regarding program funding, didactic training, experiential rotations, 
scholarship, and health system alignment [18], which may also prove to be obsta-
cles in having such physician training for PPM informatics.

PPM Certificates provide another training opportunity. Certificates are gener-
ally more flexible than traditional degree offerings and can be developed and imple-
mented faster than a traditional degree offering. Given the advanced knowledge 
bases required for many areas of PPM informatics and rapid scientific evolution, 
educational content focused on emerging PPM informatics specialties are good fits 
for certificate training. Certificate programs do have downsides such as variable 
workplace value;  however, these concerns can be mitigated with careful content 
development work and rigorous program design. Strong prerequisite requirements 
can also help ensure program quality and facilitate continuity between certificate 
programs and formal degree programs for PPM informatics training.

 Conclusion

PPM informatics education is a new and evolving area of informatics which incor-
porates new types of information into the clinical and research space to translate 
data into PPM knowledge and PPM knowledge and information into clinical action. 
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Though many of the same methods which have served informatics trainees are still 
as relevant and needed now as in the past, the growth in the types of information and 
quantities of information will require the involvement of specialist informaticists to 
identify and manage these data resources to ensure that these investments create 
value to patients, researchers, and health systems. PPM informatics education will 
continue evolving to meet these challenges well into the future.
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Chapter 21
The Landscape of PPM Informatics 
and the Future of Medicine

Constantin Aliferis and Terrence Adam

 The Current State of PPM and the Role of Informatics

The previous 20 chapters of the present volume describe a rich tapestry of diverse 
PPM formats across the spectrum of health sciences and healthcare. The different 
forms of PPM exhibit varying degrees of maturity and proximity to clinical 
deployment at health system scale. Informatics methodologies for knowledge dis-
covery, support of care delivery, and patient engagement are critical for the even-
tual success of the PPM paradigm. The concept of a learning health system is 
intrinsically linked with PPM and as such it is also dependent on and facilitated 
by informatics.

Classic and Emerging PPM workflows have been and are widely used in the 
forms of genetic counseling, clinical risk assessment, outcome risk stratifica-
tion and (on a limited basis) pharmacogenomics. Well established mecha-
nisms, including informatics systems and methods, are already in place for the 
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support of clinical care delivery. PPM informatics methods and existing systems 
support these areas at the present scales and timelines of development and 
deployment.

In the realm of genomic PPM oncology, major strides have been accomplished 
in tumor sequencing, molecular tumor subtyping and molecular profiling and 
biomarker discovery, as well as highly targeted treatments that work only for 
parts of the population. Moreover a new paradigm of genomic clinical trials is 
being explored in oncology, and massive discovery datasets incorporating 
clinical and genomic information are being assembled and mined. PPM 
informatics is an essential backbone of the discovery process (e.g., by providing 
support for precision and pragmatic trials and the analysis and modeling of 
genomic data), is helping to provide access to growing pools of standardized 
data resources, and is moving toward genomic medical records built on general-
ized architectures.

As the capture and storage of practice data and genomic information has grown, 
the ability to create a precision learning health system increasingly becomes a 
reality both at the individual level and to the practice, facility, regional and national 
health system levels.

 Emerging PPM Areas Mature Enough for Broad Adoption: 
The Challenges of Implementation at Scale

PGx is accepted scientifically for a small number of actionable genetic variants, and 
has been adopted by a small number of providers for a small fraction of patients. 
Broad adoption of PGx across all patients and providers is far from being a reality, 
however. Similarly, whereas clinical risk modeling has a long history of success 
and adoption, the vast majority of risk models are yet to be discovered and imple-
mented in practice. Along the same lines, genomic and adaptive trials represent a 
very small percentage of all clinical trials.

In addition, molecular profile tests in clinical practice represent a small fraction 
of all disease-drug combinations. Finally, clinico-genomic cohorts and datasets 
are only now emerging and much work needs be done until large, representative 
datasets exist for PPM clinico-genomic exploration are ready and available.

The above observations are not surprising and are a reflection of two fundamental 
factors determining successful implementation of new medical technologies and 
discoveries: (1) the fundamental operational adaptations to how medicine is con-
ducted that needs to occur for disruptive science and technology to be adopted. (2) 
Issues of scaling, e.g., developing and validating a single molecular profile, PGx 
variant decision rule, or clinical risk model is distinctly easier and faster than 
establishing scalable “assembly line” processes for the rapid development, valida-
tion, and deployment of such modalities.
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The phenomenon is neither new nor is it PPM-specific. Prior studies have shown 
that the translation of health research takes on average 17 years [1]. There is strong 
evidence to support, but it remains to be seen whether newer informatics method-
ologies such as the new capability to analyze comprehensive datasets automatically 
or semi-automatically, can expedite the R&D cycles while concurrently increasing 
the number of PPM modalities delivered in practice.

Among the barriers to broad implementation of mature PPM forms we emphasize 
three main areas: economics of PPM; knowledges barriers; and ethical, legal, and 
social implications.

The Economics of PPM. A recent health economics review of precision 
medicine, argues that three areas are likely to have the most impact in the next 
decade including complex algorithms, health apps and omics based biomarkers 
[2]. There are a number of difficulties with completing economic and outcome 
evaluations for these and other areas of PPM including problems with multiple 
results, different utility measures, secondary findings, downstream impacts and 
interactive effects [3]. These difficulties affect the ability to make policy decisions 
about insurance coverage, economic value and other preference assessments such 
as care guidelines that determine which technology is to be adopted and supported. 
A highly instructive example is in the pre-emptive application of PGx which 
exhibits small costs over the lifetime of an individual; however, because of provider 
fragmentation, population movement, and limited decision time-frames by payors 
does not always a have a favorable cost-effectiveness profile in the short term. PGx 
cost and reimbursement were cited as reasons for failure for pre-emptive adoption 
[4]. Another instructive example of a positive flavor is provided in Chap. 8 where 
it is shown that adoption of a molecular profile can reduce health system costs 
without adversely affecting outcomes. Even in this case though, the fragmentation 
of the market share of the corresponding drug and the highly variant pricing 
policies by pharmaceutical companies may work against widespread adoption of 
such useful forms of PPM.

Knowledge Barriers. Clinicians in practice typically lack the necessary 
background in PPM directly preventing their support of implementation [2–22]. 
The same is true for a variety of clinical support staff, informaticists supporting 
current electronic health record systems, omics data managers, researchers, and 
others. Ultimately, PPM informatics will need to come as close to seamless as 
possible and just be another component of day-to-day health care delivery. From a 
workforce standpoint, those in direct clinical care delivery will need to be able to 
efficiently access needed information for clinical decision making and have a trust 
in the data they access to make good decisions. The work will also need to be 
readily completed by generalist clinicians in care delivery and by generalist 
information technology support personnel since it is not feasible to have all such 
work done by genetic specialists and creative approaches may be needed to address 
knowledge gaps in the current workforce [5].
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Ethical Legal Social Implications (ELSI) related factors. A third major 
barrier to broad adoption and implementation of mature PPM forms and workflows 
is ELSI factors. For example, concerns about patient data privacy, especially as it 
relates to misuse by third parties (life insurers, employers, law enforcement, etc.) 
are considered important impediments to genetic data collection and sharing for 
care and scientific discovery [23]. Similar adverse effects may occur, for example, 
by linking known genetic factors determining clinically relevant medication 
responses to other phenotypes in the EHR such as propensity to addiction, 
 dangerous behaviors, etc. A case of a family with an early death in a family mem-
ber and subsequent testing of family members and a diagnosis of long QT syn-
drome focused on the genotypic results without strong phenotypic correlations 
provides an important reminder of the potential unintended consequences of 
genetic testing [6].

 PPM Areas of Significant Scientific Research Opportunity

Contrary to the mature PPM areas discussed previously where adoption and 
implementation are the main concerns, several forms of PPM are not yet fully 
mature to the point where they can be deployed. Significant work needs be completed 
before clinical adoption is warranted. These areas represent the biggest opportunities 
for research exploration.

Based on the discussion in the section “Emerging PPM Areas Mature Enough for 
Broad Adoption: The Challenges of Implementation at Scale” the research potential 
in the following areas is readily apparent (details omitted since they have been cov-
ered previously):

• Development of molecular profiling to cover the full spectrum of disease-drug 
combinations.

• Exploration of new assaying technologies and related informatics methods that 
can increase the accuracy of PPM tests. Currently developing assays which may 
enhance testing capacity include: single cell assays, extracellular vesicles (EVs) 
assays, and micro RNAs [24, 25].

• Development of enhanced ELSI frameworks, including policy for data privacy 
and consenting, for preventing the misuse of PPM data in both research and 
clinical settings.

• Developing methods and supporting data management and analytics for adaptive 
and genomic precision trials.

• Studying and establishing the health economic cost-effectiveness of various 
PPM forms and workflows as a necessary step toward adoption.

• Creating highly functional and interoperable genomic and PPM EHRs.
• Creating scalable and interoperable PPM decision support methodologies and 

systems.
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• Educating the clinical as well as informatics workforce, using PPM-rich curricula 
and learning-on-demand.

In addition to the above the following PPM areas have great potential:
Learning Health System Research (LHSR) Extensions to “Personome” and 

Exosome”. As evidenced throughout this volume, the goals of PPM are in complete 
alignment with the objectives of LHSR for facilitating the collection of rich standard-
ized care data which are amenable to analysis, re-use and sharing and can provide the 
foundation on which a learning health system can operate. Disease outcome risk mod-
eling as covered in this volume is one of the many types of determinations that can lead 
to better decisions on an individual basis, thus enabling the whole system to achieve 
better outcomes and reduced costs [7–10, 15]. A PPM lens can provide tangible 
improvements to traditional methods used by the science of health services improve-
ment. For example, PPM makes possible the critical distinction between unwanted/
negative versus desirable/positive variation (the former to large extent has driven early 
literature on cost and outcome improvements). The care data can furthermore be 
enhanced with personal characteristics, life circumstances, behaviors, personality, 
support networks, social networks, environmental factors, and resilience to improve 
overall health, however. This data can exist in “personal data clouds” [11] as part of the 
currently unmeasured “personome” [12] as well as shared “global environment” mea-
surements with health significance, the mining of which can confer individualized and 
system-level preventative and long-term care advantages that go beyond simply 
improving the care system by narrowly focusing on medical encounter data. 

Participatory Medicine.  Outside of medicine, widespread availability of 
computing, internet access and mobile phones has made it possible for individuals 
to participate in large-scale scientific endeavors [26]. Because of the complexity of 
the health data and its analysis, it is reasonable to expect that in the foreseeable 
future, the main contribution of citizen scientists for PPM will be in advocating for 
capturing and sharing data with the professional scientific community, however. 
Large- scale programs such as All of Us are expected to create large research 
databases to identify genotype/phenotype relationships for use in clinical care and 
as part of a learning health system. It is hard to overstate the potential of this type of 
project for advancing PPM and overall health. 

Health Care Delivery Evolution: Personalized e-visits. E-visits allow patients 
to engage in a more flexible manner with providers and may also yield additional 
information on the patient environment, especially if real-time audio-video is used. 
Technical limitations (e.g., bandwidth) currently create some barriers to synchro-
nous communication, but other alternatives such as patient portals or asynchronous 
messaging and mobile apps [16, 19] can also be used in supporting the approach. 
The use of online telemedicine counseling may also be a viable alternative or com-
plement to training genetic counseling, and return of results [13, 14]. 

Table 21.1 summarizes the successes and opportunities of PPM research across 
all major forms of PPM.

21 The Landscape of PPM Informatics and the Future of Medicine



338

Table 21.1 Summary of successes and opportunities of PPM informatics across all major forms 
of PPM

PPM informatics successes
Main forms of PPM/
components of PPM 
workflows

Successes to date and 
significant Informatics 
contributions to 
implementation

Successes to date and 
significant Informatics 
contributions to 
scientific discovery

Classic PPM:
• Genetic counseling
• Clinical risk assessment
• Outcome risk stratification
• Pharmacogenomics

• Databases with literature 
and genetic variants role in 
disease predisposition and 
response to Rx
• Delivery of guidelines and 
computerized decision 
support for risk assessment

Emerging PPM:
• Genomic PPM oncology
• Tumor sequencing
• Molecular tumor subtyping, 
molecular profiling and 
biomarker discovery
• Targeted molecular 
treatments
• Genomic clinical trials
• Massive discovery datasets 
incorporating clinical and 
genomic information
• Health system-wide PGx
• Precision learning health 
system

• Limited support for 
genomic EHR via 
Omic Ancillary Systems
• PGx guideline repositories
• Small-scale EHR-enabled 
Delivery of PGx clinical 
decision alerting and support
• Data standardization

• Data standardization
• Methods for data privacy and 
security
• Informatics for biospecimen 
management
• (Limited) Clinico-genomic 
cohorts and datasets
• Bioinformatics databases
• Bioinformatics discovery 
methods and tools
• Bioinformatics in support of 
high-throughput omics assay 
technologies

PPM informatics opportunities
Main forms of PPM/
components of PPM 
workflows

Future opportunity for 
significant Informatics 
contributions to 
implementation

Future opportunity for 
significant informatics 
contributions to 
scientific discovery 

• Development of molecular 
profiling to cover the full 
spectrum of disease-drug 
combinations
• Using PPM to enhance drug 
research and development

• “Closed loop” seamlessly 
integrated delivery of 
molecular profiling tests at the 
bedside

• Analysis and modeling of 
omic and multi-modal data to 
discover, validate and de-risk 
biomarkers and clinical-grade 
signatures
• Exploration of new assaying 
technologies and related 
informatics methods that can 
increase the accuracy of PPM 
tests. E.g.: single cell assays, 
extracellular vesicles (EVs) 
assays, and micro RNAs

(continued)
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Table 21.1 (continued)

• Development of enhanced 
ELSI frameworks, including 
data privacy and consenting, 
for preventing the misuse of 
PPM data in both research and 
clinical settings

• Enhanced reporting systems 
to identify ELSI concerns

• Enhanced methods for data 
privacy and security that 
protect individuals/patients 
while allowing for effective 
research

• Developing methods and 
supporting data management 
and analytics for adaptive and 
genomic precision trials
• Pragmatic trials and practice 
based evidence

• Next-generation CTMSs that 
natively support adaptive and 
genomic trials
• Data capture and analysis of 
practice data and practice- 
based- evidence discovery

• Studying and establishing 
the health economic cost- 
effectiveness of various PPM 
forms and workflows as a 
necessary step toward 
adoption

• Development and validation 
of widely and computable 
accepted standards for PPM 
valuation of cost and benefits

• Simulation and other 
methods for estimating health 
economic costs and value
• Methods to incorporate 
patient preferences into PPM 
policy and clinical decisions

• Creating effective and 
widely accessible genomic 
and PPM-capable EHRs
• Data Integration for 
Diagnosis and Treatment

• Omic Ancillary Systems 
and other genomic EHR 
extension technologies
• Enhanced patient data 
linkage and universal 
identifiers
• Scalable and interoperable 
PPM decision support 
methodologies and systems

Overcoming knowledge 
barriers:
• Educating the workforce: 
clinical as well as informatics
• Educating citizens and 
patients
• Educating administrators 
and policy makers

• Targeted and learning-on- 
demand educational tools for 
broader societal adoption of 
PPM

• New PPM-rich curricula for 
clinicians, informaticists and 
administrators and just-in-time
• Personalized learning 
approaches to both students 
and established clinical 
practitioners

• Improving Cost 
(Inefficiencies) and Outcomes/
Quality in the Health system. 
Learning Health System 
research (LHSR).

• Rapid, closed loop data 
measurement/capture analysis 
and delivery systems

• New automated predictive, 
causal, trajectory, sub- 
population and outlier analytics 
with forecasting, explanatory, 
and intervention outcome 
estimation capabilities with low 
risk and high transparency

• High-granularity 
Individualization of Health 
Care

• Personome informatics

• Health Care Delivery 
Evolution

• Systems to facilitate high 
quality integrated, continuous 
e-health care delivery
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 Known and Unknown Determinants of PPM Success; 
Intended and Unintended Consequences

Efforts to predict the direction of whole fields, industries and complex systems are 
routinely hampered by the inherent unpredictability of such systems. We therefore 
acknowledge that at least some of our projections to the future of PPM may fail to 
materialize either in forms or timeframes that current evidence suggests. In this sec-
tion we discuss, briefly, several factors and “known unknowns” that may accelerate 
or decelerate the rate and degree of success of the “PPM programme”. We also pres-
ent plausible developments that may tip the scales of PPM in various directions. In 
order to emphasize that this section is the single most speculative part of the present 
volume it is presented as a set of numbered conjectures and predictions which can 
also be viewed as testable hypotheses (Table 21.2).

Table 21.2 Conjectures (and testable hypotheses) about the future of PPM and the role of 
informatics

• Hypothesis 1: Certain forms of health system (e.g. single payer versus market-driven, vs. 
hybrids) are more amenable to large-scale PPM development, validation and adoption. The rate 
and extent of development and adoption of PPM will be greatly affected by the evolution of the 
health system’s structure and policies
• Hypothesis 2 (corollary to 1): If hypothesis 1 is true, then because different countries have 
different forms of health systems, global leadership in PPM science will be closely linked to 
countries with health systems highly enabling PPM
• Hypothesis 3: PPM-enabled fragmentation of drug markets may be catalyzed by national 
health policy requiring or enabling such fragmentation when medically and societally beneficial
• Hypothesis 4: The genomic EHR of the future will shift data access control to patients and 
thus with it also shift effective ownership of medical data
• Hypothesis 5: High profile cases of PPM data misuse may decelerate the progression toward 
PPM (or force expansion of current legal protections)
• Hypothesis 6: The principle of variation reduction as a means for improving costs and 
outcomes will become less relevant in light of the benefits of personalization by 
PPM. Alternatively the concept of variation will be redefined to focus on departures from the 
PPM-optimal care
• Hypothesis 7: Diminishing returns will start being observed in PPM disease subtyping and 
other PPM studies beyond which further personalization will be ineffective or inefficient. 
Finding the point of diminishing returns will become an important principle in future PPM 
research
• Hypothesis 8: The clinician of tomorrow will be deeply versed in the principles of PPM, 
irrespective of specialty or profession. Alternatively, certain existing specialties may become the 
“heavy lifters” of PPM. Alternatively, a sub-specialty in PPM will be made available for every 
specialty
• Hypothesis 9 (corollary to 8): Every clinician will be versed in the informatics methods, and 
tools needed to support PPM. Every informaticist will be deeply versed in PPM informatics
• Hypothesis 10: In order to achieve broad societal support of PPM, every citizen and especially 
decision makers (legislators, judges, managers) as well as educators, journalists and other 
opinion makers and “influencers” will be well-versed in the main tenets of PPM

(continued)
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 Conclusion: The Future of PPM

We posit that this volume, and the underlying body of literature that supports it, 
make it clear that PPM is an inevitable part of the future of medicine, one that prom-
ises to radically improve the length and quality of human life by preventing and 
optimally treating disease and by enhancing well-being and longevity. PPM comes 
in many forms, variants and workflows that this book catalogues and describes in 
considerable detail. Critical to the nature and importance of PPM are its close rela-
tionships with efficient healthcare delivery, clinical genomics, learning healthcare 
systems, and legal/ethical/societal frameworks and factors. PPM is therefore a true 
“systems” and collaborative interdisciplinary endeavor in one of the largest scale 
imaginable in the health sciences.

Because PPM relies on deep measurement and analysis of numerous interacting 
factors (e.g., clinical, omic, social, legal, environmental), and because it requires 
discovery and delivery mechanisms that are highly data and information-processing 
oriented, informatics is an indispensable and intrinsically linked foundation of 
PPM. PPM informatics spans the spectrum from PPM discovery to PPM delivery 
adding fundamental value all along.

The future of PPM has great promise, but also many challenges that need to be 
overcome. One set of challenges discussed in the present chapter relates to imple-
mentation and another to scientific development and evolution of the health system 
to enable and accommodate PPM.

The informatics research opportunities are many, diverse and identifiable, yet 
they still can unfold in unpredictable trajectories. Regardless of many remaining 
unknowns, PPM informatics research is certain to produce major improvements to 
health sciences and healthcare, making this a most worthy and exciting area of sci-
entific exploration.

• Hypothesis 11: The PPM scientific body of knowledge may develop so quickly and may be so 
compelling that traditional provider systems cannot adapt quickly enough. This may spur 
alternative or supplementary PPM health care systems that will co-exist in parallel with 
traditional ones
• Hypothesis 12: The Pharma industry of tomorrow may become entirely PPM in nature
• Hypothesis 13: Traditional EHRs may be entirely replaced by genomic and PPM ones, or 
alternatively, traditional EHRs will be permanently supplemented by omic ancillary systems 
(OAS)
• Hypothesis 14: The use of postmortem testing with molecular autopsies can provide important 
data on the causes of sudden death in the young and contribute to our understanding of the 
correlations between genotypes and phenotypes [17, 18]. Continued reduction in testing cost 
may expand testing to older populations
• Hypothesis 15: Gene therapy methods by in vivo modification of the genome will be coupled 
with PPM diagnostics to create a new class of PPM with unprecedented power
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