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This book series is dedicated to my wife Phullara, and our
children Sourav, and Devleena
Chittaranjan Kole



This book is dedicated to the memory of Harold P. Olmo.
He was the leading figure in grape genetics and breeding for 40
years and had a remarkable influence on viticulture across the
globe. His extensive travels (by car, train, foot, and horse)
through Afghanistan and Iran collecting grapes, Prunus and
other horticultural crops while avoiding disasters, gunshots,
angry tribal disputes, earned him the moniker “The Indiana
Jones of Viticulture”. He released wine grapes, table grapes,
raisin grapes and rootstocks, and was an excellent
ampelographer. May his inspirational viticultural spirit live on.

Harold Olmo (left) and Al Koyama (center), his grape breeding assistant of many years,
and Andy Walker (right) under the Winkler Vine in the UC Davis vineyards in 2003
(Picture by Daniel Ng)



Preface to the Series

Genome sequencing has emerged as the leading discipline in the plant sci-
ences coinciding with the start of the new century. For much of the twentieth
century, plant geneticists were only successful in delineating putative chro-
mosomal location, function, and changes in genes indirectly through the use
of a number of “markers” physically linked to them. These included visible
or morphological, cytological, protein, and molecular or DNA markers.
Among them, the first DNA marker, the RFLPs, introduced a revolutionary
change in plant genetics and breeding in the mid-1980s, mainly because
of their infinite number and thus potential to cover maximum chromosomal
regions, phenotypic neutrality, absence of epistasis, and codominant nature.
An array of other hybridization-based markers, PCR-based markers, and
markers based on both facilitated construction of genetic linkage maps,
mapping of genes controlling simply inherited traits, and even gene clusters
(QTLs) controlling polygenic traits in a large number of model and crop
plants. During this period, a number of new mapping populations beyond F2
were utilized, and a number of computer programs were developed for map
construction, mapping of genes, and for mapping of polygenic clusters or
QTLs. Molecular markers were also used in the studies of evolution and
phylogenetic relationship, genetic diversity, DNA fingerprinting, and
map-based cloning. Markers tightly linked to the genes were used in crop
improvement employing the so-called marker-assisted selection. These
strategies of molecular genetic mapping and molecular breeding made a
spectacular impact during the last one and a half decades of the twentieth
century. But still, they remained “indirect” approaches for elucidation and
utilization of plant genomes since much of the chromosomes remained
unknown and the complete chemical depiction of them was yet to be
unraveled.

Physical mapping of genomes was the obvious consequence that facili-
tated the development of the “genomic resources” including BAC and YAC
libraries to develop physical maps in some plant genomes. Subsequently,
integrated genetic–physical maps were also developed in many plants. This
led to the concept of structural genomics. Later on, the emphasis was laid on
EST and transcriptome analysis to decipher the function of the active gene
sequences leading to another concept defined as functional genomics. The
advent of techniques of bacteriophage gene and DNA sequencing in the
1970s was extended to facilitate sequencing of these genomic resources in
the last decade of the twentieth century.
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As expected, the sequencing of chromosomal regions would have led to too
much data to store, characterize, and utilize with the-then available computer
software could handle. But the development of information technology made
the life of biologists easier by leading to a swift and sweet marriage of biology
and informatics, and a new subject was born—bioinformatics.

Thus, the evolution of the concepts, strategies, and tools of sequencing
and bioinformatics reinforced the subject of genomics—structural and
functional. Today, genome sequencing has traveled much beyond biology
and involves biophysics, biochemistry, and bioinformatics!

Thanks to the efforts of both public and private agencies, genome
sequencing strategies are evolving very fast, leading to cheaper, quicker, and
automated techniques right from clone-by-clone and whole-genome shotgun
approaches to a succession of second-generation sequencing methods. The
development of software of different generations facilitated this genome
sequencing. At the same time, newer concepts and strategies were emerging
to handle sequencing of the complex genomes, particularly the polyploids.

It became a reality to chemically—and so directly—define plant genomes,
popularly called whole-genome sequencing or simply genome sequencing.

The history of plant genome sequencing will always cite the sequencing
of the genome of the model plant Arabidopsis thaliana in 2000 that was
followed by sequencing the genome of the crop and model plant rice in 2002.
Since then, the number of sequenced genomes of higher plants has been
increasing exponentially, mainly due to the development of cheaper and
quicker genomic techniques and, most importantly, the development of
collaborative platforms such as national and international consortia involving
partners from public and/or private agencies.

As I write this preface for the first volume of the new series “Compendium
of Plant Genomes,” a net search tells me that complete or nearly complete
whole-genome sequencing of 45 crop plants, eight crop and model plants,
eight model plants, 15 crop progenitors and relatives, and three basal plants is
accomplished, the majority of which are in the public domain. This means
that we nowadays know many of our model and crop plants chemically, i.e.,
directly, and we may depict them and utilize them precisely better than ever.
Genome sequencing has covered all groups of crop plants. Hence, infor-
mation on the precise depiction of plant genomes and the scope of their
utilization are growing rapidly every day. However, the information is
scattered in research articles and review papers in journals and dedicated
Web pages of the consortia and databases. There is no compilation of plant
genomes and the opportunity of using the information in sequence-assisted
breeding or further genomic studies. This is the underlying rationale for
starting this book series, with each volume dedicated to a particular plant.

Plant genome science has emerged as an important subject in academia,
and the present compendium of plant genomes will be highly useful both to
students and teaching faculties. Most importantly, research scientists
involved in genomics research will have access to systematic deliberations on
the plant genomes of their interest. Elucidation of plant genomes is of interest
not only for the geneticists and breeders, but also for practitioners of an array
of plant science disciplines, such as taxonomy, evolution, cytology,
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physiology, pathology, entomology, nematology, crop production, bio-
chemistry, and obviously bioinformatics. It must be mentioned that infor-
mation regarding each plant genome is ever-growing. The contents of the
volumes of this compendium are, therefore, focusing on the basic aspects
of the genomes and their utility. They include information on the academic
and/or economic importance of the plants, description of their genomes from
a molecular genetic and cytogenetic point of view, and the genomic resources
developed. Detailed deliberations focus on the background history of the
national and international genome initiatives, public and private partners
involved, strategies and genomic resources and tools utilized, enumeration on
the sequences and their assembly, repetitive sequences, gene annotation, and
genome duplication. In addition, synteny with other sequences, comparison
of gene families, and, most importantly, the potential of the genome sequence
information for gene pool characterization through genotyping by sequencing
(GBS) and genetic improvement of crop plants have been described. As
expected, there is a lot of variation of these topics in the volumes based on
the information available on the crop, model, or reference plants.

I must confess that as the series editor, it has been a daunting task for me to
work on such a huge and broad knowledge base that spans so many diverse
plant species. However, pioneering scientists with a lifetime experience and
expertise on the particular crops did excellent jobs editing the respective
volumes. I myself have been a small science worker on plant genomes since
the mid-1980s and that provided me the opportunity to personally know
several stalwarts of plant genomics from all over the globe. Most, if not all,
of the volume editors are my longtime friends and colleagues. It has been
highly comfortable and enriching for me to work with them on this book
series. To be honest, while working on this series I have been and will remain
a student first, a science worker second, and a series editor last. And I must
express my gratitude to the volume editors and the chapter authors for pro-
viding me the opportunity to work with them on this compendium.

I also wish to mention here my thanks and gratitude to Springer staff
particularly, Dr. Christina Eckey and Dr. Jutta Lindenborn, for the earlier set
of volumes and presently Ing. Zuzana Bernhart for all their timely help and
support.

I always had to set aside additional hours to edit books beside my pro-
fessional and personal commitments—hours I could and should have given to
my wife, Phullara, and our kids, Sourav, and Devleena. I must mention that
they not only allowed me the freedom to take away those hours from them but
also offered their support in the editing job itself. I am really not sure whether
my dedication of this compendium to them will suffice to do justice to their
sacrifices for the interest of science and the science community.

New Delhi, India Chittaranjan Kole
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Preface

Grapevines (Vitis vinifera) have been a source of food and wine since their
domestication nearly 8000 years ago. Grape is one of the most important
horticultural crops in the world, with over 7 million hectares planted
worldwide. In addition to its economic value, grapevine is a model organism
for the study of perennial fruit crops and non-climacteric fruit ripening. Its
economic and scientific importance made V. vinifera an obvious early can-
didate for genomic sequencing. The two draft genome references released in
2007 were the second publicly available genomes of a woody species and the
fourth of a flowering plant. The genome assembly of the experimental inbred
line released by “The French–Italian Public Consortium for Grapevine
Genome Characterization,” PN40024, has served as reference for thousands
of genetic and transcriptomic studies. Now over a decade since its release, the
PN40024 genome is still a valuable resource to the grapevine community
thanks to the continuous effort of the Consortium to improve its structure and
annotation.

However, it was understood that a single reference genome was inade-
quate for studying the function of non-reference cultivar genomes. Seminal
work in Tannat and other wine grape cultivars showed substantial unshared
gene content between grape cultivars. Recent advancements in sequencing
technologies and bioinformatics have made it feasible to generate genome
references for other cultivars of equivalent or greater quality than that of
PN40024. The genome assemblies of Cabernet Sauvignon, Chardonnay,
Carménère, and Zinfandel were released in the last two years. A V. riparia
genome assembly was released when this book was in the final stages of
production; we expect many more genome references for Vitis species to be
publicly available in the next few years, including those of North American
and Asian accessions that are being produced in our laboratories as part of
National Science Foundation (1741627) and USDA National Institute of
Food and Agriculture (2017-51181-26829) projects. Our research groups
have been contributing to the recent advancements in V. vinifera genomics.
This has been possible because of support from E. & J. Gallo Winery, J. Lohr
Vineyards and Wines, Dolce Winery, the Louis P. Martini Endowment in
Viticulture, Viña San Pedro, Concha y Toro, UC Davis Chile Life Sciences
Innovation Center, and the Chilean Economic Development Agency, and the
collaboration between our groups and the scientists at Pacific Biosciences,
specifically Paul Peluso, Jason Chin, David Rank, Kristin Mars, and Emily
Hatas.
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Today, grape cultivation, sustainability, and security rely heavily on North
American Vitis species as sources of resistance to abiotic and biotic stresses.
This reliance originated in the 1860s when the European wine industry was
saved by the use of North American species as rootstocks. Currently, more
than a dozen North American and Central Asian varieties are used in
breeding programs as sources of resistance to abiotic and biotic stresses,
either for rootstocks or hybridized with V. vinifera for the scion. We expect
that genetic diversity, breeding, and biotechnology will play a critical role for
sustaining viticulture when faced with a changing climate and other chal-
lenges as they arise.

The sixteen chapters of this volume provide a comprehensive review of
early and ongoing efforts to discern the genetics, genomics, and breeding
of the grapevine. We are grateful to all the authors for their contributions. We
would like to thank Prof. Chittaranajan Kole, Editor-in-Chief of the Genome
Compendium Series, for inviting us to contribute this volume as well as
Naresh Kumar Mani, Manopriya Saravana, and the staff at Springer for their
help. We would also like to thank Jadran Francisco Garcia Navarrete,
Mélanie Massonnet, Rosa Figueroa-Balderas, Amanda Vondras, and Sum-
maira Riaz for helping review and edit the chapters. Dario would also like to
thank his wife, Annegret, and daughters, Amanda and Adele, for their infinite
patience and support during the two-year journey that turned an idea into a
table of contents and finally into a book.

Davis, USA Dario Cantu
M. Andrew Walker
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1Grapes in the World Economy

Julian M. Alston and Olena Sambucci

Abstract
With a farm gate value in 2016 of US$68
billion, grapes are the world’s third most
valuable horticultural crop (after potatoes and
tomatoes). Cultivation of grapes for fruit and
wine began at least 7000 years ago in the Near
East, and over the millennia, thousands of
cultivars have been developed and selected for
particular purposes. Nowadays, grapes are
grown all around the world, but mainly in
places having a temperate, Mediterranean-
style climate, and they are used to produce
diverse consumer products including wine,
table grapes, raisins, grape juice concentrate
and distillate for various industrial uses as
well as making fortified wine and brandy. The
cultivars of grapes used to make these diverse
products are likewise diverse, but a relatively
small number account for the vast majority of
production in each major category. Predomi-
nantly, European V. vinifera scions are grown

on rootstock from phylloxera-resistant Native
American species. Particular cultivars are
valuable to farmers in particular applications
for their agronomic traits and fruit-quality
traits, which together determine the value of
the crop and the cost of producing it. These
values can be conditioned by consumer pref-
erences for attributes of the production pro-
cess and by government policies including
trade taxes, alcohol excise taxes, and regula-
tions over production practices or limiting
yields. Evolving demands for traits create
demands for work by viticulturists and other
scientists to understand the grape genome and
work with it.

1.1 Grapes in the World Economy

Archeological evidence suggests stone-age peo-
ple were making wine from grapes in Georgia
and Armenia 8000 years ago, and grapes have
been cultivated for winemaking for at least
7000 years (McGovern 2003)—well before the
time of the “Epic of Gilgamesh,” set in Meso-
potamia around 2100 BCE, which is the first
written account of grapes and wine. Over the
millennia, and especially during the past
500 years, Vitis vinifera grapevines originating
from the Near East have spread to all four cor-
ners of the world. Thousands of cultivars have
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been generated and selected for particular pur-
poses; and thousands more are known, including
many wild varieties.1

Grapes are grown for diverse end uses,
beyond wine production. V. vinifera grapes,
along with non-vinifera varieties or hybrids, are
eaten as fresh table grapes, dried to make rai-
sins, or crushed either to produce grape juice
concentrate, or to be fermented and distilled for
industrial use as well as for use in making
alcoholic beverages; and they are used as
ornamental plants. These diverse end uses call
for different varietal traits, and thus many
diverse varieties, but a relatively small number
account for the vast majority of production in
each major category. Predominantly, European
V. vinifera scions are grown on rootstock from
phylloxera-resistant American species such as
Vitis aestivalis, rupestris, and riparia. Although
the genus includes a total of 79 “accepted”
species (The Plant List: Vitis 2018), predomi-
nantly from North America and the Near East,
the vast majority of today’s cultivated grapes
are varieties of V. vinifera, and only a few
varieties from other species and some hybrids
are of commercial significance.

Grapes are significant in the global economy.
In 2016, the world produced 77.4 million tonnes
(MT) of grapes (worth some $68.3 billion at the
farm) from 7.1 million hectares (MH) of vine-
yard—a 50 percent increase over the 52.0 MT
produced from 9.5 MH in 1966. These grapes
are used to produce food and wine at retail
worth several times the farm value of the grapes
themselves. Over the 50 years, 1966–2016,
global average yields almost doubled, from 5.5
to 10.9 tonnes per hectare (T/Ha), and the farm
value of grape production grew from $29.6
billion to $44.3 billion in real (2004–2006
international dollar) terms, even though the total
vineyard area shrank by one-quarter.2 Changes

in grape cultivars contributed directly to the
growth in yield, production, and economic
value, and while many other aspects of grape
production also changed—including where in
the world grapes are grown, how, and for which
end uses—these aspects are all chosen jointly
with varieties.

Looking to the future, the demand for
genetic innovation in grape production will
depend in part on the patterns of growth in
demand for grape products. Growth in popula-
tion and per capita incomes would be expected
to cause an increase in demand for all grape
products, with a relative increase in the demand
for more income-elastic fresh versus dried
grapes and premium versus more basic wine.
Where that growth is to take place around the
world will matter, too. In the context of a
market driven by broad shifts in final consumer
demand, growers will continue to demand cul-
tivars of scions (and rootstocks) that produce
fruit with desired quality attributes and have
desired agronomic attributes: higher yielding,
resistant to pests and diseases, and tolerant of
environmental stresses.

This chapter provides an introductory over-
view of the economic geography (and, where
relevant, economic history) of the cultivation of
grapes around the world with an eye to how
these aspects relate to the grape genome, which
is the broader subject of the volume. We discuss
the patterns of production of grapes for each of
the main end uses, and how they have been
changing, and the roles of genetic traits of
cultivars as contributors to those patterns. We
consider the value of particular traits to pro-
ducers in specific settings and how these values
are influenced by evolving market demand for
product and process attributes of food and
beverage products, government policy as a
conditioning factor, and the changing natural
environment, including the ever-present and
evolving pests and diseases and, more recently,
climate. The chapter begins with an overview of
grape production around the world in terms of
where grapes are grown, and recent trends in
production and utilization.

1In the preface to their book describing 1368 varieties of
wine grapes, Robinson, Harding, and Vouillamoz (2012,
p. viii) suggest the “total number of different vine varieties
is about 10,000.”
2Statistics reported in this section are based primarily on
FAOSTAT (2018); Table 1.1 includes more detailed data
for 2016.
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1.1.1 Grape Production
and Utilization

Table 1.1 and Fig. 1.1 provide statistics on the
production of grapes around the world in terms
of area of vineyard, average yield, production,
total value of production, and average unit value,
drawing on data from FAOSTAT (2018).3

In 2016, the world had a total of 7.1 MH planted
to grapes. Five countries (Spain, China, France,
Italy, and Turkey) accounted for 3.6 MH, just
over half the total area, and just 15 countries
accounted for 5.5 MH, more than three-quarters.

Table 1.1 Area, volume, yield, and value of grape production in 2016, by regions and countries

Region and country Total area
(K Ha)

Volume
(KT)

Yield
(T/Ha)

Value
($ M)

Average unit
value ($/T)

Africa 349.6 4882.5 14.0 3463.7 709

Egypt 74.9 1716.8 22.9 567.9 331

South Africa 120.5 2008.8 16.7 1780.1 886

Americas 1001.4 13,659.4 13.6 12,747.5 933

Argentina 223.9 1758.4 7.9 358.7 204

Brazil 77.0 984.5 12.8 596.6 606

Chile 203.1 2473.6 12.2 4455.0 1801

Peru 27.9 690.0 24.7 490.9 711

North America 421.9 7188.6 17.0 5236.8 728

USA 409.9 7097.7 17.3 5130.3 723

Asia 2122.6 28,918.4 13.6 22,249.9 769

Uzbekistan 135.1 1642.3 12.2 489.4 298

China and HK 843.4 14,842.7 17.6 14,007.2 944

Afghanistan 82.5 874.5 10.6 392.7 449

India 122.0 2590.0 21.2 1837.1 709

Iran 207.3 2450.0 11.8 801.8 327

Turkey 435.2 4000.0 9.2 1967.3 492

Europe 3446.9 27,797.1 8.1 28,325.3 1019

Romania 175.1 736.9 4.2 523.9 711

Greece 112.3 990.3 8.8 771.3 779

Italy 668.1 8201.9 12.3 3311.9 404

Portugal 175.0 773.9 4.4 1463.6 1891

Spain 920.1 5934.2 6.4 4487.9 756

France 757.2 6247.0 8.2 14,496.1 2320

Germany 100.0 1225.6 12.3 1298.3 1059

Oceania 176.4 2181.4 12.4 1506.4 691

Australia 136.3 1772.9 13.0 991.1 559

World total 7096.7 77,438.9 10.9 68,292.9 882

Notes Value and average unit value for Afghanistan (in italics) calculated as weighted averages for the region
Sources Created by the authors using data from FAOSTAT (2018) and USDA/FAS (2018a)

3We draw on various sources for data, including the
International Organization of Vine and Wine (OIV), the

Food and Agricultural Organization of the United Nations
(FAO), the United States Department of Agriculture
Foreign Agriculture Service (USDA/FAS), Anderson and
Aryal (2013), and Anderson and Pinilla (2018). The
Appendix provides more detailed data tables and some
discussion of the different data sources.
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Total production, also, is concentrated among a
few countries, but the ranking is slightly different
reflecting differences in end uses and average
yields. The top five countries in terms of quantity
produced (now China, Italy, the USA, Spain, and
France) accounted for 42.2 MT, more than half
of the total of 77.4 MT, and just 15 countries
accounted for 63.8 MT, more than four-fifths of
the total. Country rankings change again when
we look at value of production, reflecting dif-
ferences in average unit values among countries,

especially for wine grapes. In terms of value of
production, the top five countries are France,
China, the USA, Spain, and Chile.

These country rankings reflect both the his-
torical origins of grape production in the Old
World and the development of grape production
in the New World, especially in recent decades.
Whether in the New World or the Old
World, grapes are grown in mid-latitude regions
where temperatures during the growing season
average 13–21 °C (Jones 2006), predominantly

Fig. 1.1 Global distribution of grape area in 2000 and 2016, and area, production volume and value in 2016—top 20
countries by area in 2016. Source Created by the authors using data from FAOSTAT (2018). a National shares of
global grape area, 2000 and 2016, %. b National shares of global grape area, production volume, and value, 2016, %
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in river valleys near the coast, often with a
Mediterranean-type climate. Since growing sea-
son duration and temperatures have a major
influence on grape ripening and fruit quality,
within this broad landscape particular cultivars
have been developed to be grown for particular
end uses and in specific regions and sub-regions
(see, e.g., Jones 2018).

The economic geography of grape production
has been shifting over time, reflecting changes in
both supply and demand for grape products
among diverse countries. On the supply side,

along with changes in technology of production
and in the availability of labor and other inputs,
changes in climate have begun to influence
where particular cultivars can profitably be
grown for particular end uses. On the demand
side, along with changes in other sociodemo-
graphic factors, changes in income have impli-
cations for the mixture of grape products
demanded given relatively high income elastici-
ties of demand for premium wine versus basic
wine, and for fresh versus dried grapes (see, e.g.,
Fuller and Alston 2012).

Table 1.2 Production from top 20 grape-producing countries and world, 2000 and 2016

Country 2000 2016 Growth in
production
2000–2016

Production Share of
world total

Production Share of
world total

Cumulative
share

KT % KT % % %

China 3281.7 5.2 14,763.0 19.1 19.1 349.9

Italy 8869.5 14.0 8201.9 10.6 29.7 −7.5

USA 6973.8 11.0 7097.7 9.2 38.8 1.8

France 7762.6 12.2 6247.0 8.1 46.9 −19.5

Spain 6539.8 10.3 5934.2 7.7 54.6 −9.3

Turkey 3600.0 5.7 4000.0 5.2 59.7 11.1

India 1130.0 1.8 2590.0 3.3 63.1 129.2

Chile 1899.9 3.0 2473.6 3.2 66.3 30.2

Iran 2097.2 3.3 2450.0 3.2 69.4 16.8

South Africa 1454.7 2.3 2008.8 2.6 72.0 38.1

Australia 1311.4 2.1 1772.9 2.3 74.3 35.2

Argentina 2459.9 3.9 1758.4 2.3 76.6 −28.5

Egypt 1075.1 1.7 1716.8 2.2 78.8 59.7

Uzbekistan 624.2 1.0 1642.3 2.1 80.9 163.1

Germany 1361.0 2.1 1225.6 1.6 82.5 −10.0

Greece 667.6 1.1 990.3 1.3 83.8 48.3

Brazil 1024.5 1.6 984.5 1.3 85.0 −3.9

Afghanistan 330.0 0.5 874.5 1.1 86.2 165.0

Portugal 913.6 1.4 773.9 1.0 87.2 −15.3

Romania 1295.3 2.0 736.9 1.0 88.1 −43.1

Other 8881.0 14.0 9196.4 11.9 100.0 3.6

World 63,552.7 100.0 77,438.9 100.0 21.8

Source Created by the authors using data from FAOSTAT (2018)
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Between 2000 and 2016, total production of
grapes worldwide grew by 22 percent, from 63.5
MT to 77.4 MT (Table 1.2).4 However, that
growth was not shared evenly among countries.
Among the world’s top producers, production by
the three predominant Old World producers
(Italy, Spain, and especially France) shrank,
while it grew among the New World countries,
and especially in Asia. China increased its pro-
duction more than threefold and rose from the
seventh-ranked to become the world’s largest
producer of grapes during this period. China now
accounts for one-fifth of the world’s total pro-
duction of grapes, almost twice as much as the
next-ranked country. Since the increase in China
was predominantly in quantities of table grapes,
whereas the declines in Europe were predomi-
nantly in quantities of wine grapes, the relative
importance of table grapes has grown in the
world. These changes in where grapes are pro-
duced and for what purposes have contributed to
the increases in global average yields and chan-
ges in other aspects of the global grape industry.

Detailed data are not available on a consistent
basis describing the patterns of grape production
by end use of grapes, partly because some grape
varieties can be used for diverse end uses,
including drying for raisins, packing as table
grapes for fresh consumption, and crushing for
making grape juice concentrate, distillate, or
wine. Some multipurpose grape varieties—such
as Thompson Seedless—have been grown and
used in significant quantities for any and all of
these end uses, but complete data typically are
not available on the utilization of these varieties.
In some places, data are available only on
production by varieties, classified according to
their predominant use, and some of the avail-
able estimates might be better described as
“guesstimates,” so we must exercise caution in

interpreting data on the allocation of grape
acreage and volume of production among end
uses. Nevertheless, the broad picture today is as
shown in Figs. 1.2 and 1.3.

China accounted for the lion’s share of growth
in table grape production over the past 20 years,
and now dominates global production of table
grapes, with its share approaching half of the
world total (“Appendix 1” Table 1.6). According
to USDA/FAS data, global production of table
grapes increased from 13.0 MT (3.7 MT from
China) in 2001/02 to 24.3 MT (11.2 MT from
China) in 2017/18. India ranks second (3.0 MT
in 2016) and also has experienced rapid recent
growth. The top five “countries” (here, counting
the European Union as one country) accounted
for almost 80% of the total volume of table grape
production in 2016, and the top ten accounted for
almost 94%. Data are available on raisin pro-
duction in tonnes dried weight from USDA/FAS,
which we converted to an estimate of fresh
weight equivalent using a factor of 4:1. In
2017/18, according to these data, global pro-
duction of raisins was 1.2 MT dried weight (4.9
MT fresh weight), up about 22% over the
quantity produced in 2001/02. Turkey has
replaced the USA as the world’s largest raisin
producer, China has risen from fifth to replace
Iran as the third largest, and Uzbekistan has risen
from last to fifth among the top twelve listed in
“Appendix 1” Tables 1.7 and 1.8). Some of these
patterns reflect a more general drift in demand
toward fresh fruit and away from dried (and
canned) fruit, associated with rising per capita
incomes. In the USA, at least, over the 50 years
1976–2016, per capita consumption of table
grapes trended up, along with fresh fruit in total,
while per capita consumption of raisins trended
down or stayed flat, along with dried fruit in
total.

Of the total grape production in 2016 (77.4
MT in Table 1.1), an estimated 24.3 MT (31.3%)
were table grapes (“Appendix 1” Table 1.6) and
4.9 MT (6.3%) were used to produce raisins
(“Appendix 1” Table 1.8), leaving 48.2 MT
(62% of the total) to be crushed—mainly for
making wine. The total grape crush can include
significant quantities used for grape juice

4In this part, we consider data since 2000 from FAOSTAT
(2018) for making detailed comparisons. While data are
available for earlier years, they are less complete in terms
of country coverage and less accurate for some countries,
and more so the farther back we go.
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Fig. 1.2 Schematic representation of the global vitiviniculture situation 2014. Source Provided courtesy of OIV (pers.
comm. Nicolas Goldschmidt, July 2018)

Fig. 1.3 Vine-growing areas and utilization of grape production in 2015. Source Provided courtesy of OIV (pers.
comm. Nicolas Goldschmidt, July 2018)
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concentrate or distillation—around 30% of the
total California grape crush in recent years.5 If
wine production globally took the same share
(70%) of the total crush volume as in California,
the quantity used for wine would be 33.7 MT,
43% of total production of grapes. This is in the
range of estimates from other sources, but
smaller. In its 2017 Statistical Report, OIV
(2017a, p. 8) reported shares of grapes utilized in
three categories—fresh, dried, and wine for the
top 16 grape-producing countries, and the world
as a whole in 2015 (Table 1.3). Of the global
total of 77.3 MT, almost half (47%, or 36.3 MT)
was for wine. Anderson and Pinilla (2018,
p. 179, Table 131) estimate 52% of global grape
production was used for wine over the period

2010–2016. The shares among end uses vary
considerably among countries, some of which are
heavily specialized in fresh grapes or wine
grapes, while others produce a mixture
(Table 1.3).

1.1.2 Many Diverse Varieties

Combining the variation in mixture of end uses
with other sources of variation, the total number
of varieties grown is large and the varietal mix
varies considerably from one country to another
—even when they are close neighbors. Recently,
the OIV (2017b) published provisional estimates
of total area planted to the main varieties of
grapes in 2015 (Table 1.4). They reported that
thirteen varieties accounted for more than
one-third of the world’s vineyard area, and
thirty-three varieties accounted for one-half of
the total. The top three varieties in this ranking

Table 1.3 Grape production: grapes intended for all uses, 2015

Country Production Utilization

Fresh grapes Dried grapes Wine grapes

MT %

China 13.7 83 6 12

Italy 8.2 15 0 85

USA 7.3 40 18 42

France 6.4 1 0 99

Spain 6.0 5 0 87

Turkey 4.0 48 50 2

India 2.6 32 10 58

Iran 2.2 89 10 1

Chile 2.2 32 10 52

South Africa 1.9 9 13 78

Australia 1.8 9 13 78

Argentina 1.8 2 55 77

Egypt 1.6 100 0 0

Uzbekistan 1.3 81 15 3

Germany 1.2 0 0 100

Brazil 1.1 67 0 33

World 77.3 36 8 47

Source OIV (2017a). http://www.oiv.int/public/medias/5479/oiv-en-bilan-2017.pdf

5For example, Alston et al. (2018b) deduced that, of the
total California crush volume, on average for the years
2000 to 2016, 14.5% was used for grape juice concen-
trate, 15.8% was fermented to make distillate, and 69.6%
was used to make wine.
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Table 1.4 Top 35 grape varieties, total area planted in 2015

Variety Planted area End use

K Ha

Kyoho 365 Table grapes

Cabernet Sauvignon 341 Red wine

Sultanina (Sultana, Thompson Seedless) 273 Table, drying, and wine

Merlot 266 Red wine

Tempranillo 231 Red wine

Arien 218 White wine, brandy

Chardonnay 210 White wine

Syrah (Shiraz) 190 Red wine

Red Globe 159 Table grapes

Grenache Noir (Garnacha Tinta) 163 Red wine

Sauvignon Blanc 123 White wine

Pinot Noir (Blauer Burgunder) 112 Red wine

Trebbiano Toscano (Ugni Blanc) 111 White wine, brandy

Rkatsiteli 75 White wine

Riesling 64 White wine

Bobal 63 Red wine

Sangiovese 60 Red wine

Mourvèdre 56 Red wine

Malbec (Cot) 55 Red wine

Pinot Gris 54 White wine

Cabernet Franc 53 Red wine

Carignan Noir 51 Red wine

Viura 48 White wine

Concord 37 Juice, table, and wine

Alicante Bouschet 35 Red wine

Zinfandel (Primitivo) 35 Red wine

Aligote 35 White wine

Muscat of Alexandria 34 Table, drying, and wine

Chenin Blanc 33 White wine

Colombard 32 White wine

Muscat Blanc à Petits Grains 32 White wine

Cereza 29 White wine

Montepulciano 28 Red wine

Gamay Noir 27 Red wine

Glera 27 White wine

Total 3740

Source OIV (2017b) http://www.oiv.int/en/oiv-life/the-distribution-of-the-worlds-grapevine-varieties-new-oiv-study-
available
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are Kyoho, a table grape variety grown in China,
Cabernet Sauvignon, a red wine grape variety,
and Sultanina (aka Sultana or Thompson Seed-
less) a truly multipurpose grape, predominant
among varieties used for dried grapes. Together
these three varieties accounted for almost 1
million hectares, about one-seventh of the total.
The next ten varieties are all wine grape varieties,
except for Red Globe, a table grape variety, and
Trebbiano Toscano (aka Ugni Blanc), used for
both wine and brandy. The OIV report also
indicates that the mix of varieties grown varies
considerably among countries. To illustrate (in
Table 1.5), we present data on the top ten vari-
eties for each of the top five grape producers in
2015, taken from OIV (2017a, b).

Anderson and Aryal (2013) complied a
“Database of Regional, National and Global
Winegrape Bearing Areas by Variety, 2000 and
2010,” which also includes details on bearing
areas for multipurpose grape varieties used pre-
dominantly for other purposes, and some spe-
cialist table grape varieties. The dataset covers
some 2000 varieties (of which almost 1300 are
“primes” and the rest are their synonyms) and
spans over 600 regions in 44 countries that
together account for 99 percent of global wine
production (Anderson 2014, p. 251). Along with
the data, Anderson and Aryal (2013) present
summaries—both variety-by-variety (showing
areas planted in 2000 and 2010 for the main
countries growing each variety) and country-by-
country (showing the varietal mix for 2000 and
2010 for each important variety).

Drawing on these data, Anderson (2014)
(see also Anderson 2010a, b, 2013) presents
some analysis of the evolving varietal mix
around the world. This analysis highlights the
great diversity among countries and sub-regions
within countries, in terms of the mix of grape
varieties grown, and the considerable persis-
tence of those differences in spite of the effects
of globalization in making it easier to move
plant materials around the world to better
match genetics to the production environment.
Particular varieties tend to be associated with
particular places, and places tend to be spe-
cialized in particular varieties to a greater

extent than can easily be justified by agronomic
considerations alone.6

Nevertheless, Anderson (2014) documents
several ways in which the distribution of wine
grape varieties has been shifting. First, the vari-
etal mix has become more concentrated (less
diverse) for the world as a whole and in both the
New World and the Old World. In particular,
between 1990 and 2010 the global wine grape
area devoted to varieties of French origin
increased from 26% to 36% (in the New World,
from 53% to 67%); varieties of Spanish and
Italian origin account for a further, largely
unchanged, 40%. Second, the rankings of indi-
vidual varieties changed markedly—for instance,
Cabernet Sauvignon and Merlot jumped to first
and second from eighth and seventh—such that
the list of the world’s top 35 varieties in 2010
shows a quite different mix and ranking com-
pared with 1990. Third, the global share of red
varieties grew from 49% to 56% between 2000
and 2010. Anderson (2010a, b, 2014) also pro-
vides some more detailed analysis of the roles of
particular varieties in the global picture, the roles
of particular countries and regions, and the extent
to which particular countries and regions are
becoming more or less specialized in specific
varieties, and more or less similar or dissimilar.7

In the case of wine grapes, although their
relative importance may be changing, the vari-
eties in use are predominantly traditional Euro-
pean varieties, typically hundreds of years old.
The picture with table grapes is very different,
partly because table grape producers are less
committed to traditional V. vinifera varieties and
more likely to adopt non-vinifera varieties and
hybrids, leaving much greater scope for innova-
tion. Here, varietal innovation is proceeding
apace, including private varieties developed and

6Among other things, this outcome reflects efforts by
producers to develop a reputation for the production of
high-quality wines, sometimes through the development
of collective “brands” associated with regions and vari-
eties, as discussed later in this chapter.
7More recently, Anderson (2016) provides a detailed
analysis of changes in Australia’s grape varietal mix
relative to the world as a whole, and Alston et al. (2015)
do likewise for the USA.
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owned by individual producers as well as public
varieties developed by grape breeders supported
by government or a mixture of government and
industry funding. Raisin grape varieties are
changing too, but much less quickly and the
varietal mix is much less diverse.

California illustrates the global phenomenon.
The California Grape Acreage Report
(USDA/NASS 2018a) lists area planted in Cali-
fornia in 2017 for each of more than seventy
table grape varieties, of which fourteen had at
least 1000 acres planted and together accounted
for the lion’s share (71%) of the total.8 As one
indicator of the rapid rate of varietal change, all
of the bearing and non-bearing acreage for many
varieties was planted at least ten years previ-
ously, while for many others, all of the current
acreage was planted within the past five years.
Varieties that had the largest share of bearing
acreage in 2016 (Flame Seedless, 18.5%; Crim-
son Seedless, 11.2%; Red Globe, 9.2%) had
much smaller shares of non-bearing acreage
(a combined total of 11.1%) compared with some
up-and-coming varieties (Scarlet Royal, 12.2%,
Autumn King, 10.4%; Allison, 9.2%). The Cal-
ifornia Grape Acreage Report (USDA/NASS
2018a) lists area planted in California in 2017
in total and individually for just six specific raisin
varieties—Thompson Seedless, Selma Pete,
Fiesta, DOVine, Sultana, and Black Corinth.
Three of these varieties together accounted for
98% of the total planted area: Thompson Seed-
less (86%), Fiesta (8%), and Selma Pete (4%).

1.1.3 The Value of Diverse Varieties

Genetics by Environment by Management (G x E
x M) interactions determine the value of partic-
ular wine grape varieties in particular locations,
as can be illustrated by detailed US data on wine
grapes. Within the USA, in 2014 five varieties
(Chardonnay, Cabernet Sauvignon, Merlot, Pinot

noir, and Zinfandel) accounted for 52.3% of the
total volume and 63.2% of the total value of wine
grape production from the four states (California,
Washington, Oregon, and New York) that dom-
inate national production. As discussed in detail
by Alston et al. (2015), these five varieties pre-
dominate in several of the main production
regions, but the emphasis varies among the pre-
mium price regions and some regions are quite
different. In particular, California’s hot Southern
San Joaquin Valley (dominated by French
Colombard and Rubired used to produce grape
juice concentrate as well as bulk wine) and New
York (dominated by non-vinifera American
varieties, Concord and Niagara) are quite unlike
the other regions climatically and in terms of
their grape varietal mix. In terms of total bearing
area, Chardonnay is the most important wine
grape variety nationally and is highly ranked
throughout the premium regions, but the North
Coast region is especially known for its Cabernet
Sauvignon, which is its most important variety
and increasingly so, and likewise in Washington.
The cooler coastal regions are relatively spe-
cialized in Chardonnay and Pinot Noir and other
cool climate varieties. Zinfandel is more signifi-
cant in terms of bearing area and value of pro-
duction in the Northern San Joaquin Valley and
other mid-price regions.

Prices vary systematically among regions—the
North Coast region has generally higher prices
than other regions for all varieties and the Southern
San Joaquin Valley has generally lower prices.9 In
addition, prices vary systematically among vari-
eties—among the higher-quality (higher-priced)
varieties grown in significant quantity—Cabernet
Sauvignon generally is ranked higher than
Chardonnay, and Zinfandel generally is ranked
lower. But the sizes of the premia, and even the
rankings of varieties, vary among regions. For

8The California Table Grape Commission (2018) refers to a
total of 85 varieties currently in production and provides
details on the top17. http://www.grapesfromcalifornia.com/
docs/2016-variety-chart-and-merchandising-guide.pdf.

9In 2016 in Napa County, the average yield was 7.9
tonnes/ha and the average crush price was $5155/tonne,
almost ten times the average crush price in the Southern
San Joaquin Valley where the average yield was 40.5
tonnes/ha. The other regions were distributed between
these extremes with higher yields being generally asso-
ciated with lower prices per tonne, as described by Alston
et al. (2018a, b).
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example, Pinot Noir ranks above Cabernet Sau-
vignon almost everywhere, but not in Oregon
where PinotNoir is by far the dominant variety, nor
in the Napa–Sonoma region; Chardonnay is
ranked above Cabernet Sauvignon in the Central
Coast region. These regional averages mask
important variation within regions; prices for the
same variety in the same crush district (of which
California has 17) can vary considerably, even
within a season. For example, in the California
Grape Crush Report (2017) (USDA/NASS
2018b) the statewide average price for wine
grapes purchased for crushing was $880/tonne in
2017, and the statewide average price for Cabernet
Sauvignon was $1553/tonne. In that same year for
crush district 4 (Napa), the average price was
$5748/tonne for all grapes purchased for crushing
and $8260 for Cabernet Sauvignon (a weighted
average across some 35,000 tonnes). But that
average price for Cabernet Sauvignon in district 4
reflected prices that ranged from less than
$2000/tonne, for 80 tonnes in four lots, up to more
than $40,000/tonne for 40 tonnes in five lots.

Prices of grapes fundamentally determine the
value of land used to grow them. In the prime
parts of the Napa Valley, in 2017, land suitable
for commercial vineyards was valued at
$500,000/ha and more, and, when planted with
vines, $750,000/ha and more (see, e.g., Califor-
nia Chapter of the American Association of Farm
Managers & Real Estate Appraisers 2017). Much
of this value is attributable to potential to grow
premium wine grapes; otherwise, similar farm-
land nearby sells for very much less. The same
kinds of price variation for grapes and land to
grow them can be seen among and within regions
around the world, especially the premium
wine-producing regions—such as in France,
which has the highest priced vineyards in the
world. In the Champagne region, for example,
vineyard prices average well more than one
million $/Ha (see, e.g., Gaeta and Corsinovi
2014); likewise, in premium locations in
Bordeaux or Burgundy vineyards can command
prices exceeding two million $/Ha, but within
each of these regions prices range enormously, in
multiples of up to 100 times the lower-end prices,
as discussed by Franson (2013).

1.1.4 The Demand for Varieties

Particular varieties are valuable to farmers in
particular applications for their agronomic traits
(such as timing of harvest, yield, disease resis-
tance, or cold tolerance) and fruit quality traits
(such as seedlessness for table grapes, flavor
profile for wine grapes, or sugar content for juice
grapes), which together determine the value of
the crop and the cost of producing it. These
values for the inherent attributes of the fruit and
products it is used to make can be conditioned by
consumer preferences for attributes of the pro-
duction process (e.g., organic or GMO-free;
particular varietal names; geographic location
of production) and government policies includ-
ing trade taxes, alcohol excise taxes, and regu-
lations over production practices or yields such
as those associated with European Protected
Designations of Origin for wine. These diverse
determinants of value are to some extent inter-
twined with one another, owing to events going
back 500 years, and more.

The “Columbian Exchange” was a mixed
blessing for the world of wine. Sailing in 1524 at
the behest of the King of France—some 32 years
after Columbus landed at Hispaniola in the Car-
ibbean—the Florentine navigator, Giovanni da
Verrazzano, was the first European to explore the
East Coast of what is now the USA. Da Ver-
razzano and the other early explorers of the
North American East Coast would have seen
grapes growing in profusion and must have
imagined great possibilities for producing wine
in the New World. They probably did not realize
that the Native American grapes were not
well-suited for producing high quality table
wine. Nor could they know that the American
grapes had co-evolved with numerous pests and
diseases—including phylloxera, Pierce’s disease
(and its vectors), powdery mildew, downy mil-
dew, and black rot, among others—which would
present great obstacles to the establishment of an
industry based on what would prove to be highly
susceptible European V. vinifera varieties.
Indeed, it would take several centuries, and many
failed attempts to establish a wine industry in
Colonial America, and subsequently the USA,

1 Grapes in the World Economy 13



before these barriers to the development of an
American wine industry based on V. vinifera
could be understood and overcome.10 On the
other side of this exchange was the movement of
American vine stock and American pests and
diseases to Europe and the rest of the world—
eventually with devastating effects as V. vinifera
grapevines became exposed to new pests and
diseases against which they had little natural
defense. Perhaps the best-known example is
phylloxera, the cause of the “great wine blight”
epidemic that devastated most of the world’s
vineyards in the late nineteenth and early twen-
tieth centuries, with lasting effects on viticulture
around the world.

Nowadays, phylloxera is managed at reason-
ably low cost by grafting scions of susceptible
cultivars onto resistant rootstocks, and by
employing preventive measures to avoid intro-
ducing it in places that have never had it (such as
Chile and South Australia). In contrast, the fun-
gal diseases, downy mildew and powdery mil-
dew, which are also American natives, continue
to impose massive costs on grape producers
around the world every year. Meanwhile, some
other American natives—like Pierce’s disease,
vectored by native and introduced sharpshooters
—impose costs and restrict the scope of pro-
duction in America, but have not yet spread to
the rest of the world.11 Other fungal diseases,
such as Botrytis or trunk diseases such as Esca
and Eutypa dieback, which are also important in
America and affect vineyards worldwide, might
have spread with V. vinifera grapes from the Old
World, and new invasive pest and disease species

are a perennial concern for grape growers
everywhere.

Pest- and disease- management problems are
economically significant in the grape industries
worldwide. For example, Sambucci et al. (2019)
estimated that, in California, the statewide cost of
powdery mildew management in 2015 was about
$239 million, including the costs of pesticide
materials and application. These “pecuniary”
costs represent about 5% of total revenue for
growers on average, but may be more like 20%
of revenue for growers of the most susceptible
varieties (e.g., Chardonnay) in the cooler loca-
tions where disease prevalence and pressure is
higher (e.g., California’s Central Coast). In
addition, Sambucci et al. (2019) reported that
powdery mildew management accounts for 89%
(by weight) of restricted material (pesticide,
mostly sulfur) applications by grape growers, and
eliminating powdery mildew would significantly
reduce the environmental burden from disease
management in grapes. These environmental
externalities and the other “nonpecuniary” costs
to growers from having to use chemical pesti-
cides are hard to quantify but are no doubt sig-
nificant. Similar patterns can be seen in the grape
industries in other countries: pests and diseases
are a major concern, as are the pesticides that
represent a significant share of costs of produc-
tion, and alternatives are being actively sought.

All of these problems invite genetic solutions.
Grape breeders in several places have recently
developed hybrid varieties that are resistant to
some of the currently most concerning diseases,
including powdery mildew and Pierce’s disease.
Further work is well underway to develop a
greater scientific understanding of the issues and
seeking to develop the means to extend the
number of resistant varieties and introduce
resistance genes to a wider range of grapes in
ways that will be commercially attractive to
growers (e.g., the VitisGen2 project: https://
www.vitisgen2.org/). Until that happens, and
even afterward, at least some growers will remain
heavily reliant on the use of pesticides as
damage-mitigation technologies. In particular,
some growers may be reluctant to adopt
disease-resistant varieties, or other novel

10Lapsley et al. (2018) review the American history
drawing heavily on Pinney (1989, 2005). Other chapters
in Anderson and Pinilla (2018) discuss the parallel history
in other countries.
11Tumber et al. (2014) estimated that the cost of Pierce’s
disease in California was approximately $104.4 million
per year, of which $56.1 million was the cost of lost
production and vine replacement borne by grape growers,
and $48.3 million was spent to fund Pierce’s disease
activities undertaken by various government agencies, the
nursery and citrus industries, and the University of
California system. Alston et al. (2013) found that the
cost to producers and consumers would be much higher in
the absence of the Pierce’s Disease Control Program.
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varieties, for fear of market resistance from
consumers or market intermediaries who value
traditional V. vinifera varietal names or object to
the methods used to create new varieties.12

Evidence from stated preference surveys,
market experiments, and consumer purchasing
behavior indicates that, everything else equal,
consumers prefer food and beverage products to
be produced without using pesticides that entail
risk to the environment, farmworkers, or food
safety and health (e.g., see Lusk and Briggeman
2009; Loureiro et al. 2005; Baker 1999).
Reflecting these concerns, governments around
the world are imposing regulations that restrict or
disallow the use of certain pesticides, and no
doubt the list of restricted chemicals will con-
tinue to grow. In addition, pesticides that have
been useful may become less useful as pests
develop resistance to them.

These forces reinforce the demand for alter-
native pest and disease control technologies to
supplement or replace the existing pesticides,
including resistant varieties. In addition to
demanding products made with varieties that
require less pesticide, consumers (and market
intermediaries) demand various fruit quality
traits (of which there are many that can be
changed through genetics), a lower product price
for a given quality of product (e.g., from
higher-yielding varieties that enable lower-cost
production), and extended seasonal availability
for fresh fruit. And growers demand varieties that
produce fruit with quality attributes that con-
sumers and intermediate buyers will value and
also have desirable agronomic attributes such as
high yield and low cost of production, tolerance
of abiotic stresses such as high and low temper-
atures and drought, and resistance to pests and
diseases.

However, a particular challenge with genetic
innovations in grape production (whether for
pest- and disease-resistance traits or for other
reasons) is that a new variety produced by con-
ventional cross-breeding cannot use a traditional
V. vinifera name. This can be a substantial dis-
advantage in wine production where varietal
names play a unique role in defining product
designations and can attract a large premium. In
many situations, growers will not find it prof-
itable to forego the premium for, say, Chardon-
nay and grow an otherwise identical grape
variety that cannot be called Chardonnay but has
some other desired trait such as powdery mildew
resistance. This problem arises in the wine
industry regardless of whether a new variety is a
hybrid or the result of crossing vinifera varieties,
but not to the same extent in other parts of the
grape industry. Indeed, many of the new and
popular table grape varieties are hybrids.

Methods of modern biotechnology such as
genetic engineering or gene editing might be
used to enable certain traits in existing varieties,
but it remains to be seen what these novel ver-
sions of existing varieties could be called, law-
fully, or how they would be received in the
marketplace.13 It would be reasonable to antici-
pate some political action by the NGOs that have
actively opposed other genetically engineered
products to discourage farmers from growing and
market intermediaries from selling genetically
engineered grapes and products made with them
if such varieties become available. Some
wine-producing jurisdictions (e.g., South Aus-
tralia, several counties in Northern California,
and much of Europe) have already regulated to
disallow production of genetically engineered
crops. These same jurisdictions tend also to be
ones where people appear to be actively

12While we have focused on pest- and disease- resistance
traits in this section, the same issues arise in the
development of new varieties that are more tolerant of
environmental stresses such as heat, cold, or drought. We
are also conscious of the fact that we have paid scant
attention to the distinctions between traits that can be
introduced through genetic innovations in rootstocks
versus scions.

13In the European Union, at least, the current indications
appear unfavorable. On July 25, 2018, the EU Court of
Justice ruled that plants created with new gene-editing
techniques should be regulated as genetically modified
plants. While the market worldwide has accepted the use
of non-vinifera rootstocks with V. vinifera scions, it
remains to be seen which parts of the market—if any—
will accept genetically modified rootstocks.
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concerned over the environmental and human
health consequences of pesticides, which leaves
producers in those regions (and consumers of
their products) facing a dilemma that may well
get worse if existing heavily used pesticides
become less effective or less acceptable in the
market or both.

1.1.5 Government Intervention

Governments intervene heavily in agriculture
worldwide, in a host of ways, but the production
of grapes for making wine attracts more regula-
tion than most of agriculture for two reasons.
First, the market for wine grapes is influenced
indirectly because they are used to produce
alcohol, the most heavily regulated and taxed
part of the food and beverage sector, whether as
sin taxes or as a source of revenue (see, e.g.,
Anderson 2010b). These indirect effects can be
quite substantial, since the taxes and regulations
entail significant impositions. Second, the wine
industry itself has sought specific rules and reg-
ulations governing the production and marketing
of wines and the varieties of grapes used to
produce them in particular places, and govern-
ments have legislated accordingly. Both kinds of
government intervention have had substantial
implications for the demand for varieties and for
varieties with particular traits at times.

In history, trade tariffs and excise taxes on
alcohol have been important as a source of
government revenue for financing government
and as a political issue. For example, prior to
1913 the USA did not have any permanent
income tax, and between about 1865 and 1915,
about 70% of internal revenue (and about 40% of
total government revenue) was raised as excise
taxes, mainly on alcohol (in particular, whiskey);
the rest was mainly from tariffs. In 1913, the 16th
Amendment to the Constitution was ratified,
permanently legalizing an income tax—a neces-
sary precursor for Prohibition (1920–1933),
which was to eliminate the main alternative
internal revenue source for the US government
(see, e.g., Okrent 2010). Both the excise taxes
and the Prohibition that made them irrelevant for

13 years have had implications for the produc-
tion and consumption of other forms of alcohol,
as well as wine and the grapes used to produce it.
As discussed by Alston et al. (2018a, b) and
Lapsley (1996), Prohibition banned the sale of
alcohol but not the sale of grapes to be used for
home winemaking, which encouraged an
increase in production in California of grapes that
would be suitable for transportation to the major
East Coast markets and use in home winemak-
ing. It took some time after Repeal to replace
these varieties with others, better suited to mak-
ing high quality table wine. The same authors
discuss various other US tax policies that have
had consequences for the structure of the US
wine-producing industry and implicitly for the
pattern of wine grape production and the demand
for grape varieties and varietal traits.

Other countries offer different examples of the
role of government policies in shaping the mar-
kets for wine and the grapes used to produce
them. Writing in the eighteenth and nineteenth
centuries, the Classical economists, Adam Smith
and David Ricardo, developed important eco-
nomic ideas in the context of British trade tariffs
—including the concept of comparative advan-
tage. As discussed by Nye (2007) during the
seventeenth and eighteenth centuries, the exten-
ded conflict with France caused Britain to turn
away from French wine toward wine from Spain
and Portugal, and away from wine to beer and
spirits (especially, gin). At least partly as a source
of war finance, Britain imposed tariffs on
imported wine. The fact that these were specific
(per unit) tariffs rather than percentage (or ad
valorem) tariffs meant that they represented a
higher percentage tax on cheaper French wine, to
the advantage of the British brewers and distillers
and reinforcing the establishment of Britain as a
beer- and gin-drinking nation, especially among
the working class, but with relatively little con-
sequence for the wealthy British consumers of
fine claret from Bordeaux. Britain’s entry to the
European Common Market in the 1970s elimi-
nated remaining trade barriers between Britain
and Europe, facilitating the more recent growth
in the UK wine market, a pattern that may be
disrupted by Brexit, possibly to the advantage of
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non-European suppliers; likewise, the recent
introduction of tariffs in China on wine from the
USA.

While per unit taxes distort consumption in
one way, ad valorem tariffs distort them in
another. In Australia, the “wine equalization tax”
(WET) is 29% of the wholesale value of wine
(Anderson 2010b), which amounts to a consid-
erable sum per bottle on fine wine compared with
the lowest priced wines. Economists have argued
that this tax is inefficient and distortionary if the
purpose is as a “sin tax” to discourage excessive
alcohol consumption (see, e.g., Freebairn 2010).
James and Alston (2002) compare the conse-
quences for the balance of production and con-
sumption—across market segments from
premium to bulk—between ad valorem and per
unit taxes in the context of the Australian wine
market. Another example of this phenomenon is
the encouragement to produce bulk wine created
by the US duty drawback policy (see, e.g.,
Sumner et al. 2012). Such policy-induced chan-
ges in the balance of types of wine produced
have indirect implications for the demand for
wine grape varieties and traits.

Producers and consumers of wine are not
numbered among the enthusiastic supporters of
wine taxes, let alone Prohibition. However, some
other forms of government intervention have
been introduced at the behest of producers, and
possibly to the benefit of consumers, and these
policies sometimes have direct connection to
grape varieties. Specifically, here, we are refer-
ring to Protected Designations of Origin (PDOs),
such as the French appellation d’origine con-
trôlée (AOC), which was the first European PDO
system.14 The AOC was conceived as a geo-
graphic indication certified by the government:

“Products covered by AOC labels are controlled
by the state to ensure both their territorial origin
and their conformity to precise rules for pro-
duction and processing that guarantee their
‘typicity,’ or distinctive character” (Barham
2003, p. 128). Currently under the AOC system
over 300 different PDOs exist for French wines,
including 57 in Bordeaux alone.

Livat et al. (2018) discuss various perspec-
tives on the economic rationale for PDOs for
wine, all related to the economics of imperfect
information. Wine is an “experience” good (since
quality is difficult for the consumer to assess
prior to purchase) with a wide range of product
quality, wine markets exhibit imperfect infor-
mation, and it can be costly to acquire informa-
tion about quality. In such a setting, it can be in
the interests of a group of producers to create a
collective “brand” and to provide some assurance
to consumers that the branded product will meet
certain quality standards; consumers, too, stand
to benefit. PDO systems like the AOC apply this
concept where the “brand” applies to products (in
this case, wine) from a particular defined geo-
graphic origin. This has a particular logic, in the
case of wine, given the association of quality
with terroir.15 Producers want to differentiate
their products from those of their competitors in
the eye of consumers and earn a premium from
doing so, but they also want to claim credit for
particular attributes and to enjoy the benefits
from collective reputation associated with their
region of production. Wine PDOs capture these
attributes that wine producers aim to use to dif-
ferentiate their products. In today’s wine market

14Laws passed in 1919, 1927, and 1935 allowed the
creation of the current system; the first French law on
viticultural designations of origin dates to 1905 (Chevet
et al. 2018, p. 69–73). Meloni and Swinnen (2013)
discuss the political and policy context in which quality
regulations were introduced, with their essential purpose
at the time being to create a barrier to entry and restrict
competition from surging imports, especially Algerian
wine. This situation arose in the aftermath of the “Great
French Wine Blight” from phylloxera, which led to the
development of the Algerian wine industry to replace the

great loss of production capacity in France during the
period of the 1850s–1870s.
15In his provocatively titled book, Terroir and Other
Myths of Winegrowing, Matthews (2015) challenges some
of the conventional wisdom in this context. Hedonic
studies by economists have produced a mixture of results
on the value of terroir (see, e.g., the extensive listing of
studies and discussion by Haeck et al. 2018). Neverthe-
less, there appears to be a clear general association of
quality and price with the place of production for wine,
and producers perceive returns to creating a collective
reputation associated with a PDO. See Frick and
Simmoins (2013) and studies they cite regarding the
economics of collective reputation for wine.
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as many as 1239 different wine PDOs exist, and
information about PDOs is included with other
information on wine labels (International Orga-
nization of Vine and Wine).16

In the case of wine, in addition to being pro-
duced in a defined geographic area, qualifying
for an AOC may also require wine to conform to
technological restrictions, such as the grape
varieties used to produce it, the maximum yields
per hectare, planting density of the vineyard, the
(minimal) alcohol percentage, or particular vini-
cultural practices used (see, e.g., Coates 2001).
Thus, for example, to qualify for the
Pomerol AOC (which is found within the
right-bank region of Bordeaux) the only permit-
ted grape varieties are Merlot, Cabernet Franc,
Cabernet Sauvignon, and Malbec—i.e., strictly
red wine varieties. Yields are restricted to a
maximum of 42 hectoliters/hectare, and the fin-
ished wine must contain at least 10.5% alcohol
by volume. Other regulations apply to the
planting density and the spacing between the
rows, and the wine may be subject to quality
tests.

The total planted area in the AOC is fixed, and
this, combined with the maximum yield for the
PDO, restricts the total supply from the PDO.
Even if the yield restriction and the limitation on
total quantity do not result in a price premium
compared with other wine, the quality assurance
should command a premium, if the AOC system
works as intended. The work by Livat et al.
(2018) finds that this does not appear to be so and
conclude that the 57 different PDOs for the
Bordeaux region may be too many for the system
to provide useful information to consumers.

Nevertheless, the system in France has been
emulated in the main wine-producing regions
throughout Europe, and, in the premium pro-
ducing regions in France, Spain, and Italy, to
qualify for the PDO growers must produce
according to the relevant rules and regulations; in
particular, this means producing the designated
varieties. That aspect of the PDO system imposes
severe strictures on the opportunities and

incentives for growers in those regions to stray
from the varietal mix that is typical for their
AOC, let alone adopt new varieties that would
not qualify, a potentially serious problem in years
to come as the world warms. Moreover, the
imposition of yield limitations is a disincentive to
develop and adopt higher-yielding varieties from
among those that would qualify for the PDO.

Other countries have adopted PDO systems
that do not impose the same kinds of techno-
logical restrictions, aiming to capitalize on the
economics of collective reputation. For example,
in the USA, in 1983 the Federal Government
responded to industry desire to place more pre-
cise vineyard locations on wine labels by creat-
ing “American Viticultural Areas” (AVAs—see
US Treasury/TTB 2013). AVAs are defined
geographic areas that may be quite large and
cross state or county lines, or may be quite small
and lie within a county or, in some cases, another
AVA. The Napa Valley AVA is, for instance, a
large AVA located within Napa County, and the
Oakville AVA is a much smaller AVA that is
located within the Napa Valley AVA. In 2018,
the USA had a total of 242 AVAs (TTB 2018).
Today, wineries may identify the grapes used in
a wine as coming from an AVA if 85 percent of
the grapes were grown in the AVA. There is no
restriction on the grape varieties that may be
used, nor on allowable yields for the resulting
wines to qualify for an AVA, but varieties tend to
be associated with AVAs (such as Cabernet
Sauvignon with the Napa Valley AVA and its
sub-appellations; or Pinot Noir with the Wil-
lamette Valley AVA and its sub-appellations),
and some wineries do market their wines as
having been produced from low-yielding vines.

The direct linkage, by regulation, of specific
grape varieties to particular geographic locations
through PDOs is an Old World phenomenon; the
PDO implicitly indicates which varieties (from a
relatively short list) could have been used to
make the wine and even some ideas about the
likely emphasis in the blend. In the New World,
where such regulations do not exist, many wine
labels specify the main grape varieties used to
produce the wine, directly connecting the grape
varieties used to the product in ways that convey

16See http://www.oiv.int/en/databases-and-statistics/
database.
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a sense of value associated with particular vari-
eties. Wine is marketed with varietal content
often used as a primary dimension for organizing
the retail display, and the value of particular
varieties may be associated with specific places
of origin (see, e.g., Kwon et al. 2008 for an
illustration using data on 8800 California wines).
If the label does not refer to a geographically
narrow PDO, the product may be seen as
implicitly lower-value, generic wine.

The marketing of varietal wines as such is a
comparatively recent phenomenon, largely hav-
ing developed over the past 50 years among the
New World producers, several of which have a
“signature” variety associated with them such as
Australia and Shiraz, South Africa and Pinotage,
Uruguay and Tannat, Argentina and Malbec, or
New Zealand and Sauvignon Blanc. Some Old
World producers also have begun to provide
information about grape varieties on the labels,
and perhaps, we would have seen more of this if
information about varieties were not conveyed
implicitly in information about the PDO already
on the label for much of the wine. In any event,
implicitly or explicitly, varieties per se have
value both in general (e.g., Anderson 2014
identifies “premium” varieties in terms of the
prices they command) and in conjunction with
particular places and sometimes particular pro-
ducers. This fact has implications for the poten-
tial for making varietal innovations for wine
grapes in those places where it is the existing
varieties with their indelible names that attract
the premia. The same is not true for other end
uses of grapes, however.

1.2 Conclusion

Growth in population and per capita income
leads to increases in demand for grapes and all
the products they are used to produce. The
evolving patterns of consumer demand also
reflect trends and cycles in which types of alco-
holic beverages and which types of wine within
that category are more or less popular, some of
which is driven by demographic change. We also
observe a rising demand for “process attributes”

of grapes and products made with them,
expressed in demand for products carrying
eco-labels such as “organic” or “biodynamic” or
“sustainable” or “fair trade” or “non-GMO.”

Evolving consumer demand is one set of
forces driving the demand for different types of
grapes with different bundles of traits, including
agronomic traits that will facilitate the use of
production processes that qualify for eco-labels.
Another set of forces is the public policy pro-
cesses that are applying increasingly stringent
restrictions on the use of pesticides and other
agricultural chemicals in vineyards, increasing
the demand for alternatives, including resistant
varieties. In addition, changes in supply of other
agricultural inputs such as irrigation water and
farm labor—in terms of reliability of availability
as well as normal availability and price—and
similarly, natural inputs such as rainfall and
solar energy, give rise to demand for new vari-
eties: varieties that are more tolerant of envi-
ronmental stresses and more suitable for
production in a mechanized system, or more
suitable than traditional varieties given changes
in climate. Finally, even if nothing changes,
growers are looking for varieties that are more
profitable to grow compared with their existing
varieties under existing conditions—varieties
that are higher yielding, more resistant to pests
and diseases, more resilient to environmental
stresses, with greater amounts of more-desired
fruit-quality attributes, and so on.

In short, the demand for grapevines that have
particular combinations of attributes, including
various agronomic and fruit quality traits, is a
derived demand—derived from the final demand
for the final consumer products made with the
fruit, the costs of making those products with the
fruit, and the costs of growing the fruit with those
vines. In the case of table grapes and raisin
grapes, the post-farm value chain is relatively
short and simple, but for some wines it is a
complex and expensive process over many years.
The challenge for grape breeders is to find ways
to effectively introduce new desired traits without
foregoing too much in terms of existing traits that
producers also value, such that it is profitable for
producers to adopt the new varieties.
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In turn, the demand for varietal innovations—
and for investments in science to create those new
varieties—is also a derived demand. It depends
on the demands for attributes, the supply of
attributes from the existing stock of varieties, and
the costs of innovation. As discussed, one of the
important attributes of existing varieties used for
winemaking is the varietal name, each of which
comes with a bundle of attributes that cannot be
changed without changing the name at the same
time. This is an important constraint on varietal
innovation when the value of existing varieties,
entailed in their names, is large relative to the
value of other traits that might also be desired
such as higher yield, resistance to pests and dis-
eases, or fruit quality attributes. This constraining
effect of demand for existing names for wine
grapes can help account for the fact that varietal
innovation has been more rapid in the table grape

industry, which has been growing faster (and
partly because of those same varietal innova-
tions), compared with the wine grape industry.
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Appendix 1: Data Resources

Agricultural data are available from a variety of
public sources for individual countries and for
global aggregates. All these sources depend to
some extent on national data agencies, which are

Table 1.6 Production of table grapes by country, selected marketing years, 2001/02–2017/18

Country 2001/02 2004/05 2007/08 2010/11 2013/14 2016/17 2017/18

Thousand tonnes (KT)

China 3679 4025 4647 6200 8085 10,800 11,200

India 1184 1565 1735 1235 2585 2784 3000

Turkey 1568 1663 1920 2150 2200 2350 2120

Uzbekistan 516 642 900 1206 1579 1580 1580

European Union 1839 1706 1977 2090 1816 1666 1450

Brazil 1300 1233 1421 1495 1454 980 980

USA 784 801 835 865 1013 943 935

Chile 754 855 1185 1215 1055 916 900

Peru 136 170 223 297 500 605 638

Mexico 176 233 266 215 260 256 290

South Africa 224 238 259 245 252 334 280

Korea, South 422 381 334 269 269 269 269

Ukraine 200 230 300 320 320 260 260

Australia 100 100 99 93 72 179 200

Others 148 150 250 228 204 199 201

World Total 13,030 13,990 16,350 18,122 21,663 24,120 24,302

Notes TheUSAandMexico are on aMay–Aprilmarketingyear.All other northern hemisphere countries are on a June–May
marketing year. Southern hemisphere producer countries of Argentina, Chile, Peru, and South Africa are on an October–
Septembermarketing year, andAustralia andBrazil are on a calendar year indicated as the secondyear of the split year. Some
countries may include raisin-type and/or table-type grapes. Countries are ordered according to total production in 2017/18
Sources Created by the authors using online data from USDA/FAS (2018a), available at https://apps.fas.usda.gov/
psdonline/ and described by USDA/FAS (2018b) available at https://apps.fas.usda.gov/psdonline/circulars/fruit.pdf
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not all equally reliable. Grape production is for
the most part concentrated among higher-income
countries that have comparatively reliable data
resources, but even so, inconsistencies can arise
(e.g., Alston et al. 2018a, b find substantial dif-
ferences between alternative US sources of data
on grape production in California).

It is not always possible to resolve such
inconsistencies in terms of differences in defini-
tions of variables, or assumptions, or to decide
which source is more reliable. The fact that
grapevines are long-lived perennials means issues
arise about how to count non-bearing acreage and
knowing if it is included in the data accurately. The
fact that the product (e.g., wine) is often made
within vertically integrated businesses, so the farm
product is not traded on markets as such, adds to
data gathering issues, including the challenge of
determining whether grapes were used for fresh

consumption, dried, or crushed, and if crushed
whether destined for wine or other uses.

In this chapter, we make use of data from var-
ious sources, including (1) the International
Organization of Vine and Wine (OIV)
website: http://www.oiv.int/en/databases-and-
statistics, (2) the Food and Agricultural Organi-
zation of the United Nations, FAO), FAOSTAT
website: http://www.fao.org/faostat/en/#data,
(3) the United States Department of Agriculture
Foreign Agriculture Service (USDA/FAS) web-
site: https://www.fas.usda.gov/data, and (4) data
on global winemarkets compiled byAnderson and
Pinilla (2018), available at the website: https://
www.adelaide.edu.au/press/titles/global-wine-ma
rkets/. We are conscious of discrepancies among
these sources and do our best to make use of the
best source for each purpose in ways that make for
consistent comparisons within the chapter.

Table 1.7 Production of raisins by country, selected marketing years, 2001/02–2017/18

Country 2001/02 2004/05 2007/08 2010/11 2013/14 2016/17 2017/18

Thousand tonnes dried weight (KT)

Turkey 220.0 300.0 250.0 250.0 242.6 310.0 295.0

USA 378.4 251.6 326.6 358.2 368.4 297.7 275.0

China 85.0 95.0 150.0 135.0 165.0 185.0 190.0

Iran 115.0 154.0 166.0 147.0 160.0 170.0 160.0

Uzbekistan 12.0 28.0 37.0 26.0 18.0 73.0 75.0

Chile 45.0 55.9 67.4 72.5 69.2 59.0 60.0

South Africa 40.5 30.4 40.2 23.5 46.0 55.0 55.0

Argentina 21.0 27.0 28.0 34.0 20.5 31.0 40.0

Afghanistan 16.0 18.0 24.5 31.0 31.0 26.0 30.0

Australia 34.0 28.5 11.0 7.4 10.0 18.0 20.0

European Union 28.0 30.0 10.0 11.0 10.0 10.0 10.0

Mexico 13.1 7.5 8.5 8.3 10.0 9.0 10.0

World total 1008.0 1025.9 1119.1 1103.8 1150.7 1243.7 1220.0

Notes The marketing year begins in August of the first year for northern hemisphere countries and January of the
second year for southern hemisphere countries. Countries are ordered according to total production in 2017/18
Sources Created by the authors using online data from USDA/FAS (2018a), available at https://apps.fas.usda.gov/
psdonline/ and described by USDA/FAS (2018c) available at: https://downloads.usda.library.cornell.edu/usda-esmis/
files/8p58pc92q/cz30pt133/2j62s532b/raiswm-09-22-2017.pdf
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Abstract
This chapter provides a grape breeder’s per-
spective on the Vitis germplasm and taxonomic
relationships among the species. It reviews
current taxonomic perspectives and how the
species are organized. It also discusses the
evolution of the grape species and the most
widely cultivated V. vinifera, as it was moved
and selected by birds and people. The intro-
duction of V. vinifera into the New World had
an impact on the North American Vitis species
and encouraged breeding to combine the fruit
quality traits of V. vinifera with the disease and
pest resistance of the North American grape
species. The introduction of pests and diseases
from North America to Europe, and from there
around the world, had a very large influence on
grape breeding both for rootstock and scion
cultivars. The chapter focuses on the North
American Vitis and their past, present, and
future use in grape breeding.

2.1 Introduction

Grapes are one of the most widely cultivated and
highest value horticultural crops. They are grown
throughout the temperate regions of the planet
ranging from hot dry desert environments, to
tropical climates, to very cold areas where the
vines must be buried during dormancy. The fruit
is used for wine, table grape, and raisin produc-
tion. The vast majority of the cultivated grapes
are cultivars of Vitis vinifera L., which are con-
sidered to have the highest fruit quality.
Although these cultivars have desirable fruit, a
wide range of pests and diseases impacts their
cultivation. Fortunately, resistance to most of
these pests and diseases exists within the Vitis
species.

Vitis vinifera has thousands of cultivars, and
many are specifically adapted to the wide range
of climates these cultivars are grown in. When
humans migrated out of Africa into Central Asia
and Central and Western Europe, they encoun-
tered wild forms of V. vinifera. The European
forms of wild V. vinifera are within the sub-
species sylvestris and the Asiatic forms are
within the subspecies caucasia. These wild forms
of V. vinifera are now rare and were killed by
imported pests like grape phylloxera (Daktu-
losphaira vitifoliae) or diseases like powdery
(Erysiphe necator) and downy mildew (Plas-
mopara viticola), and severe grazing pressure
from goats and sheep. One of the key defining
characteristics of wild V. vinifera is that they, like
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all other Vitis species, are dioecious with male or
female flowered vines. Hermaphrodism was
likely one of the first traits selected for in
ssp. sylvestris and ssp. caucasia populations (see
Chap. 3). This is a rare trait that would have been
self-limiting given the highly heterozygous nat-
ure of grape and the exposure of deleterious
recessive alleles when the hermaphroditic seed
was germinated. However, the advantages of
hermaphrodism—excellent fruit set, larger clus-
ters and berries—and the fact that the preferred
vinifera selections were easily rooted and main-
tained clonally made hermaphrodism a desired
trait.

In wild populations of V. vinifera and the vast
majority of Vitis species, the individuals are
composed of heterozygous male (M) female
(F) or homozygous FF at the sex locus resulting
in populations of progeny that are half male and
half female. Pollination is by bees or wind. If you
sow seeds from a Vitis spp. cross in a greenhouse
or nursery row, the progeny will be 50/50 MF.
However, in the wild male (MF) individuals far
outnumber female (FF). This imbalance is most
likely due to the physiological sink created by the
developing fruit and seed in female vines, which
prevents adequate starch storage in the trunk and
roots, and preparation for untimely abiotic stress
such as drought or cold. This imbalance is further
encouraged by grazing animals attracted by the
fruit on female vines in summer and fall.

The dioecious nature of wild grape species
helps maintain heterozygosity and genetic
diversity. It also increases the chances of
hybridization and development of hybrid forms
where sympatric species exist. The grape berry is
also a mechanism for migration. The berries
ripen during the fall in time for the southbound
migration of birds. This migration favors the
small-berried species as they are the most
attractive to birds, which only peck at the
larger-berried Vitis spp. The seeds that these
birds carry and deposit are agents of migration
and can introduce unique individuals and their
alleles to populations they fly by or visit.

Vitis vinifera cultivars were introduced to
North America by the first Europeans who sailed
across the Atlantic. Few of these cultivars

survived introduction into their new environ-
ment. They were killed by grape phylloxera,
mildew diseases, and cold winter temperatures.
To the south, Pierce’s disease was an additional
and common killer of newly introduced V. vini-
fera cultivars. There are examples of chance
hybrids between female flowered wild vines and
V. vinifera pollen. “Concord” was such a chance
hybrid between V. labrusca and V. vinifera and
became an important commercial success. These
chance and intentional hybrids have been rec-
ognized with their own cultigen name V. x
labruscana. There were also apparently chance
hybrids between V. aestivalis and V. vinifera
such as “Norton” (“Cynthiana”) and “Jacquez”
(“Black Spanish” or “Lenoir”) in the southeast-
ern USA.

The first V. vinifera cultivar to survive in
North America for an extended time was “Mis-
sion” now known to be “Listan Prieto” (Milla
Tapia et al. 2007), a grape from the Canary
Islands where westward-bound explorers and
settlers stopped for water, food, and citrus before
heading to the New World. This cultivar was
imported into central Mexico, likely with Muscat
of Alexandria and from there it moved west and
south with missionaries from the Catholic
Church. “Mission” was the first V. vinifera cul-
tivar in California and is still grown to a limited
extent (408 acres in 2017). It is also grown in
Peru, Chile, and Argentina, where it is known as
“Criolla” or “Pais” and exists in several forms.
One of the most interesting is a hybrid of Criolla
x Muscat of Alexandria that is widely grown as
“Torrontes” or “Torrontes Riojano” (Agüero
et al. 2003).

Almost all European V. vinifera cultivars are
homozygous or heterozygous for hermaphrodism
(HH or HF). Olmo states that the Central Asian
cultivars have a higher percentage of female
(FF) individuals (Olmo 1995). In warm dry cli-
mates and close plantings to encourage
cross-pollination, these female cultivars are
effectively pollinated. However, female vines are
usually selected against due to poor set.

The V. vinifera cultivars were selected and
bred regionally. Negrul (1938) was the first to
sort them into three mostly geographic
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groupings. These groups also have morphologi-
cal (ampelographic) and genetic connections.
Negrul called them proles—occidentalis for
western European forms,—orientalis for the
Middle Eastern Central Asian forms, and—pon-
tica for the eastern European and intermediate
forms.

There have been many germplasm studies
examining the genetic relationships among the
V. vinifera cultivars. These studies confirm many
of the ecogeographic groupings previously based
on leaf and fruit morphology. One of the most
interesting aspects of these studies is proof that
many of what were considered to be ancient
cultivars that evolved in a given region are in fact
crosses between other often well-known cultivars
(e.g., Bowers et al. 1999). And the vast majority
are crosses of cultivars with self-fertile her-
maphroditic flowers. Thus, someone intention-
ally made these crosses and had to emasculate
the maternal parent otherwise the progeny would
have been selfings.

The Vitis species are thought to have three
centers of origin: the region between the Black
Sea and Caspian Sea—the “Fertile Crescent,”
North America, and Asia. There is one species in
the Fertile Crescent V. vinifera ssp. sylvestris and
ssp. caucasia and the many feral and introgres-
sive forms of these dioecious species in crosses
with the cultivated and feral hermaphroditic
forms. Olmo collected V. vinifera ssp. sylvestris
across Afghanistan, Iran, and Iraq in the 1950s
and many of these male accessions produce
straggly clusters with a few berries and viable
seeds. They are clearly not cultivars, but they
highlight the problem of defining specimens as
true forms of V. vinifera ssp. sylvestris as
opposed to feral forms of cultivated V. vinifera or
hybrids between these taxa. Vitis jacquemontii
(V. lanata) is also found on the western edge of
Middle East and along the southwestern foothills
of the Himalayan Mountains. There are acces-
sions of this species that also appear to be feral
forms of V. vinifera, and one (DVIT 1815) col-
lected by Olmo that appears to be correctly
identified.

This confusion between cultivated and wild
forms of V. vinifera also occurs in North America

where viticulture encroaches on the native Vitis
species. This is particularly true with V. califor-
nica in California, where there appear to be very
few pure wild forms and instead most wild
grapevines appear to be V. californica x
V. vinifera hybrids (Dangl et al. 2015). The
ornamental grapevine “Rogers Red” is a good
example (Dangl et al. 2010). This hybridity also
occurs in southern California where most of the
V. girdiana are hybrids with V. vinifera (Wada
2008). It also occurs in old mining camps across
the southwestern USA. These camps are often
associated with springs or permanent sources of
water. The southwestern US Vitis species found
in such areas as are often hybrids with V. vinifera
cultivars that were brought and grown there by
miners and settlers. These hybrids may be prone
to diseases that their progenitor wild species
resisted, and they also bring the hermaphroditic
allele into the wild dioecious forms. These her-
maphrodites produce more fruit and seeds and
over time reduce, or eliminate, the members of
pure native species populations.

The Journal of Systematics and Evolution
recently published a special issue on the sys-
tematics of Vitaceae. The family was organized
into 16 genera and about 950 species (Lu et al.
2018). The introductory paper of a recent con-
ference on Vitaceae ends with this statement
“Most genera of Vitaceae need to be taxonomi-
cally revised with new bioinformatic tools (Wen
et al. 2018) and further integrative systematic
studies are especially needed for Ampelocissus
Planch., Cayratia Juss., Cissus L., Cyphos-
temma, Tetrastigma, and Vitis” (Lu et al. 2018).

Vitis is often divided into two subgenera Vitis
and Muscadinia, but others prefer to keep the
two taxa as separate genera. Examinations of
genomic differences between Vitis and Musca-
dinia clearly separate the two taxa but not to the
extent to which other genera in Vitaceae diverge
(for example, Ampelopsis, Parthenocissus, or
Cyphostemma are genetically and morphologi-
cally distinct from Vitis or Muscadinia. Vitis and
Muscadinia species look similar, but Vitis
spp. have striate bark that shreds in strips, shoots
with discontinuous pith (diaphragms at the
nodes), branched tendrils, and 2n = 38
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chromosomes. Muscadinia species have stellate
(non-shredding) bark with lenticels, continuous
pith (lack diaphragms), simple unbranched ten-
drils, and 2n = 40 chromosomes. This last fea-
ture is of great importance. Crosses within Vitis
species are interfertile, as are crosses within
Muscadinia species. Crosses between the two
taxa are difficult and more successful with Vitis
as the maternal parent, as the pollen tubes of Vitis
grow poorly if at all in Muscadina styles (Lu and
Lamikanra 1996). However, these offspring are
almost all sterile with 39 chromosomes.

Overcoming this sterility has been a target of
breeder efforts for over 100 years as these
hybrids would have the potential to possess the
outstanding resistance that M. rotundifolia has to
pests and diseases (phylloxera, root-knot and
dagger nematodes, fanleaf virus, powdery and
downy mildew, and Pierce’s disease). Fortu-
nately, breeders in North Carolina (Dearing
1917; Detjen 1919), Olmo (1971, 1986) at the
University of California Davis, and Bouquet
(1980) kept at efforts to produce fertile Vinifera x
Rotundifolia (VR) hybrids. These fertile hybrids
have been used to introgress M. rotundifolia
genes for powdery and downy mildew resistance
into V. vinifera backgrounds, although they have
not been as successful in breeding Pierce’s dis-
ease (PD) resistance across multiple generations
of backcrosses.

Vitis has about 70 species in the Northern
Hemisphere with the two major centers of origin
in North America (about 30 species) and the
other eastern Asia. The East Asian species have
recently been detailed in the Flora of China
(Chen et al. 2007), which lists 37 species (30 as
endemic) and many varieties. These species are
also discussed in the special issue of the Journal
of Systematics and Evolution 56 (2018). The
review presented here will focus on the North
American Vitis because of their widespread use
in breeding for pest and disease resistance (at the
rootstock and scion level), and for abiotic stress
adaptation (primarily lime, drought, and salt
tolerance). They will continue to have great
importance in breeding.

The North American Vitis were divided into
nine series by Munson (1909) in which he

included 26 species. Bailey (1934) divided Vitis
into six series and included 30 species. He also
discusses the history of Vitis taxonomy, nomen-
clature, hybridity, and variation. He recognized
the latter issues as potential problems to defining
North American Vitis and stated “The North
American Vitis are difficult to confine in a key!”

Galet (1988) divided Vitis into 11 series and
included 32 North American species, and two
series of Chinese species (Flexuosae and Spino-
sae) in which he included 23 species and a telling
“etc.” after the listing within Flexuosae. More
recently, the Chinese Vitaceae have been
described in the Flora of China (Chen et al.
2007), which details 37 species and many vari-
eties. The Chinese Vitis species are beyond the
scope of this review, but a few will be dealt with
when appropriate for their specific disease
resistances. Moore and Wen in the Flora of North
America (http://www.efloras.org/florataxon.aspx?
flora_id=1&taxon_id=134649) recognized 19
species including V. rotundifolia and V. vinifera,
but they did not include Mexican species that
have been described by Comeaux (1987a, b,
1991), and Comeaux and Lu (2000).

Comeaux et al. (1987) arranged the North
American Vitis into series following Munson,
although Comeaux combined Labruscae and
Coriaceae. He listed 6 Series, added Muscadinia
as a sub-genus, and listed 25 species, 5 stable
hybrid forms, 7 species from Mexico and sub-
divided V. aestivalis into 5 varieties and V.
cinerea into 4 varieties. His grouping makes
good functional sense, accommodates the wide
variation seen in Vitis species, and recognizes the
Mexican species (although they need additional
attention).

Many of the Vitis species are sympatric with
one or more species and all are fully interfertile
with the exception of Muscadinia, which form
sterile hybrids with Vitis species. When collect-
ing grape in the wild, it can be difficult to identify
a specimen given natural variation and the high
potential for hybrids where the ranges of two or
more species overlap. One key habitat restriction
for US Vitis is water. It has to be readily available
through high levels of rainfall, rivers, streams
perennial creeks, springs, and catchment basins.
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Many of these watershed areas are under
human-related habitat destruction. The impact on
water and the resulting habitat restriction is even
more clear west of the 98th Meridian that runs
north south near Dallas TX. To the west of this
line, rainfall is less abundant and drought com-
mon. To the east, rainfall amounts are greater and
more consistent. Water in the western USA is
also critical for birds and they are the primary
dispersal agent for Vitis seed.

Grape habitat is also under attack by highway
departments all over the south and Midwest
where the abundant vegetation is mowed or
sprayed to convert the roadsides into grass
swards for easier maintenance via broadleaf
herbicides and mowers. Most grape species can
tolerate some mowing but broadleaf herbicides
are very damaging. Many of the grapes I have
collected from roadsides in the past 20 years
have had herbicide damage on them. Urbaniza-
tion of the southwest and south is also negatively
impacting grapevines. Cities have greatly
expanded and it is hard to find the grapevines
that Grapevine Texas was named for. Vitis
shuttleworthii was relatively common in central
Florida 25 years ago and now development in
and around Tampa and Orlando have greatly
reduced its habitat. Large ranches existed across
Texas and more and more are being subdivided,
fenced and sold as smaller ranchettes, and
occupied by people who remove grapes from
fences and trees.

The Vitis species are kept separate by differ-
ences in their habitat preferences, geographical
barriers, and phenological differences in flower-
ing dates. The desert regions of the southwestern
USA create the best geographical barriers, but
even in these desert environments, where per-
manent water sources exist wild grapevines will
usually be found. The southwestern deserts are
interspersed with tall, widely scattered moun-
tains. These mountains (called sky islands) act as
barriers for rain clouds and are far more mesic
environments than the surrounding deserts would
indicate. Vitis species are found on the north- and
east-facing slopes of sky islands or wherever
permanent springs or streams exist in the desert
regions.

2.2 North American Vitis

The next section of this chapter describes the
North American Vitis. They will be grouped into
six series following Comeaux (1984).

2.2.1 Series Labruscae

This group contains large-berried species with
thick leathery leaves and dense wooly tomentum.
Their berries are not swallowed by small birds so
the seeds have limited potential for long-distance
dispersal compared to that of smaller-berried
grape species.

Vitis labrusca L. (the fox grape, swamp
grape, and northern muscadine) grows across the
eastern USA in moist, sandy alluvial soils. It is
the only Vitis species with continuous tendrils (at
every node rather than the tendril tendril skip
seen in most species) it also has small prickles on
first year shoots. The fruit has a strong distinctive
smell of methyl anthranilate and can be very
astringent until well ripened. This species has a
very long history of use and many natural and
selected hybrids of V. labrusca x V. vinifera
occurred and gave rise to the eastern US grape
industry (Hedrick et al. 1908). Such hybrids
created or selected by human activity are called
cultigens and the cultigen created by V. labrusca
x V. vinifera crossings is designated as V. x
labruscana. There are many examples of these in
hybrids such as “Concord” and “Catawba”
(Huber et al. 2016). These chance hybrids would
have been relatively common as V. vinifera
pollen from vines dying of cold weather or dis-
eases, brought about by overly humid summers,
was blown or carried by bees to the pistillate
flowers of wild V. labrusca. Vitis x labruscana
cultivars are relatively easy to root from hard-
wood cuttings, likely due to their V. vinifera
parentage. Pure V. labrusca like most North
American Vitis can be difficult to root from
hardwood cuttings. Vitis labrusca can also be
found hybridized with V. riparia to create V. x
novae-angliae Fewrnald, which has less astrin-
gent fruit and is more easily rooted from dormant
cuttings than V. labrusca. This variety “Clinton”
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is an early variety of this cultigen used in
attempts to combat the phylloxera crisis in
France but it was soon replaced with better
quality hybrid direct producers.

Vitis candicans Engelm. is known as the
mustang grape in Texas and is a very common
vine. It is very strong liana and is one of the few
Vitis species able to outcompete the tree it grows
upon. It is abundant on fences and trees across
central to eastern Texas and is found from the
southern to the northern borders of the state. It is
not found in west Texas where it is likely too dry.
This species is hard to root from dormant cut-
tings, but makes a vigorous and long-lived vine
and can grow to heights of 100 feet. Vitis can-
dicans is also known for its huge crops of large
berries that are used for home/garage winemak-
ing. However, the berries are very astringent and
have calcium oxalate raphides in the juice which
can irritate the back of the throat until the berries
are fully ripe. The mustang grape is prone to
attack by leaf-folder moths (Desmia funeralis),
which can defoliate wild vines. Vitis candicans is
a source for strong nematode resistance as can be
seen in hybrids produced from it. However, its
excessive vigor and poor rooting ability have
limited its use in breeding.

Vitis shuttleworthii House (V. coriacea)
might be best considered as an eastern form of V.
candicans. This grape was once common across
Florida and was known as the Florida, leather-
leaf, or calloossa grape; the last common name
referring to the Native American tribe of south-
west Florida. This species is now rare, a victim of
urban development. The fruit is less astringent
than V. candicans. It has been used to breed PD
resistant wine (Mortenson) and table (Fennell)
grapes. The leaves are very distinctive with dark
green upper surface and wooly white tomentum
below, making it very easy to spot along the
backroads! Vitis candicans has very tough skins
and the berries remain bitter and under ripe until
late in the season. The berries often drop to the
ground in large numbers where they seem to
ripen and attract small animals. Munson (1909)
reports that V. shuttleworthii berries are less

astringent than V. candicans and that birds are
fond of the fruit “scarcely allowing it to ripen.”

Vitis x doaniana Munson (Doan’s grape) is a
hybrid of V. candicans x V. acerifolia. This grape
grows along the Red River border of Texas and
Oklahoma and is common south of Lawton OK
and north of Wichita Falls, TX. Vitis x doaniana
has leaves and stemswith the dense tomentumofV.
candicans and thick leathery leaves with distinct,
sharp teeth on the margins. The berries are small
and the teeth on the leaf margin are more like V.
acerifolia than V. candicans. Selections of this
species have excellent nematode resistance
(Meloidogyne spp. and Xiphinema index) and
excellent chloride tolerance. It is a very vigorous
vine and propagatesmore easily thanV. candicans.

Vitis candicans also produces natural hybrids
with V. rupestris creating V. x champinii. Vitis
x champinii Planch. (Champin’s grape) is the
parent species of the grape rootstock “Ramsey”
(incorrectly called “Salt Creek,” which is a cul-
tivar of V. doaniana (Loomis and Lider 1971)
and DogRidge, are both selections of Munson’s
(1909). Vitis x champinii is found across Texas
but is no longer common. I have collected it from
Del Rio, TX, north of San Antonio, west of
Austin and around Fort Hood east to Temple.
Many of the forms in the Hill Country of central
Texas appear to be V. candicans hybrids with V.
monticola or V. berlandieri. The increasing
scarcity of V. x champinii may be related to the
lack of V. rupestris, which is now very rare in
Texas and only common in southern Missouri.
Vitis rupestris is more of a small shrub than a
vine and is prone to severe grazing damage from
cattle. It appears that new accessions of V. x
champinii may not be forming because of the
greatly limited range of V. rupestris.

2.2.2 Series Aestivales

Vitis aestivalis Michx. (summer grape or pigeon
Grape) is a variable species that ranges across the
eastern USA from northern Texas east of the 98th

meridian to Florida and north to Michigan and
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east to New York. This species has relatively
large, fruity berries with a more pleasant flavor
than V. labrusca. The leaves have short rounded
teeth, are often 3 (occasionally 5) lobed, and
usually have glaucous abaxial surfaces, and the
stems are round in outline. There have been
many named varieties of V. aestivalis to account
for the morphological differences within this
species. Munson recognized V. lincecumii
Buckley, V. bicolor Leconte. (V. argentifolia), V.
aestivalis, and V. simpsonii Munson. The Flora
of North America merges all of these taxa under
V. aestivalis. Other important forms include V.
rufotomentosa Small, which is distinguished by
its high resistance to the dagger nematode,
Xiphinema index (Kunde et al. 1968).

Three varieties of V. aestivaliswere recognized
by Moore and Wen (2016): V. aestivalis var.
aestivalis, V. aestivalis var. lincecumii, which is
relatively common in northeast Texas north to
Oklahoma, and Arkansas, and east to Louisiana;
V. aestivalis var. bicolor, which is scattered across
the central and northern states; and var. aestivalis
which is found across the central and eastern
states. This species, particularly var. lincecumii
(the Post Oak Grape) has been extensively used in
table and wine grape breeding and was the foun-
dation ofMunson’s breeding efforts. It also gained
fame in its hybrid form with V. vinifera—V. x
bourquina Munson ex Viala (also known as V.
bourquiniana). “Lenoir” (aka “Jacquez,” “Black
Spanish”) is a cultivar of bourquina that has per-
formed well against Pierce’s disease in the
southern USA, although new selections from
hybrids of V. vinifera and V. arizonica have far
better quality and PD resistance and are nearing
release (Riaz et al. 2018). Jaeger crossed V. lince-
cumii with V. rupestris to create “Munson” (also
known as Jaeger 70), which can be found as the
source of disease resistance and dark color in
many of the hybrid direct producers produced in
France to combat Phylloxera in the late 1800 s
(Viala and Ravaz 1903).

Vitis aestivalis var. argentifolia Munson (also
known as var. bicolor) is found across the
northeastern USA in wetter areas. This grape has
smaller berries than the other taxa of this series
and has not been used as much in breeding. In

the southeastern USA, the tomentum on V. aes-
tivalis becomes more rufous and the vines seem
to intergrade with V. cinerea. These red-brown
forms of V. aestivalis include V. simpsonii,
V. smalliana, and V. rufotomentosa.

A new Mexican species V. nesbittiana
(Comeaux 1987a, b) was found in the cloud
forests near Xalapa, Veracruz, Mexico. It has
bicolor leaves with glaucous lower leaf surfaces.
This species seems to have a relatively restricted
range, but it may be more widely distributed.

The V. aestivalis forms are not common over
much of their range and are usually in soils that
drain well or in sunny areas on ridges. They are
not as common as the ubiquitous V. riparia,
V. vulpina, and V. cinerea.

2.2.3 Series Cinerascentes

Vitis cinerea var. cinerea Engelm ex Millardet
(the ashy-leaved grape) is a common species
across the southern USA. The leaves are usually
cordate, with short teeth and white/gray tomen-
tum on the abaxial leaf surfaces (hence the
common name the ashy-leaf grape) and felty
white young shoots. The berries are black and
relatively small, and the clusters are very loose
and long conical in shape. The vines are very
vigorous and climb high in trees. This species
group tends to be very difficult to root and the
fruit ripens very late and remains very acidic
until ripe. It is very common from eastern Texas
to Florida and on the banks and bottomlands of
the Missouri and Mississippi Rivers. It thrives in
moist soils.

There are three varieties within V. cinerea:
V. cinerea var. helleri (L.H. Bailey) M.O. Moore,
var. baileyana (Munson) Comeaux, and var.
floridiana Munson. They are spatially separated
from V. cinerea var. cinerea. Vitis cinerea var.
helleri or V. cinerea var. berlandieri (Planch.)
Comeaux is more commonly, but less correctly
known as V. berlandieri—one of the three Vitis
species that the French used to create the root-
stocks that solved the phylloxera crisis. This crisis
resulted from the importation of grape phylloxera
(Daktulosphaira vitifoliae) from the USA into
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France in the 1850 s. This grape root aphid rapidly
spread and killed the own-rooted V. vinifera cul-
tivars—all of which are very susceptible to the root
feeding of this insect. French scientists reasoned
that grafting vinifera cultivars on American Vitis
species that had evolved with this insect would
solve the problem. They had many American Vitis
species to work with, but only two root easily from
dormant cuttings: V. riparia and V. rupestris.
These two species were used as rootstocks onto
which the European V. vinifera cultivars were
grafted and the vineyards were replanted. How-
ever, in a few years, many vineyards began to
decline because the V. riparia and V. rupestris
rootstocks were unable to supply the iron needs of
the vinifera scions on the common limestone-
based soils. To solve this problem, the French
contacted Munson who suggested that V. ber-
landieri might help with lime tolerance. This
species is found on the limestone soils of central
Texas. Unfortunately, V. berlandieri roots poorly
from hardwood cuttings so French scientists and
nursery owners began hybridizing V. berlandieri
with V. riparia and with V. rupestris to create the
phylloxera resistant, lime-tolerant rootstocks that
are still used.

The current range of V. berlandieri is mostly
confined to the Edwards Plateau in central Texas.
The Brazos River serves as the delineation
between V. cinerea and V. berlandieri. It is also
reported to be found in northern Mexico,
although these populations are diminishing from
over-grazing, and rerouting of water sources and
rights along the Rio Grande. It can be found from
Fort Davis in west Texas to the west of the Brazos
River in eastern Texas, but is most abundant in the
Hill Country west of Austin. Vitis berlandieri in
Texas is being threatened by the expansion of
Austin and its suburbs and by the subdivision of
what were large ranches on 1000 s of acres to
small “ranchettes” of 1 to 5 acres. Overly zealous
roadside brush removal by owners of these
ranchettes, and by highway departments, is mak-
ing V. berlandieri much less common than it was
in the recent past. This species has great breeding
value. It is a source of drought, chloride, and lime
tolerance and has strong resistance to phylloxera
and Pierce’s disease.

Vitis cinerea var. baileyana (Munson)
Comeaux is an eastern form of V. cinerea. It
grows at moderate elevations along mountain
streams. Munson (1909) suggests that it is the
“connecting link between” V. vulpina and
V. cinerea and it does have a mixture of both
species’ appearances. This species roots poorly
and its fruit is very acidic until ripe. It has not
been used in breeding.

Vitis cinerea var. floridiana Munson is a
form of V. cinerea from the southeastern USA.
Several taxa have been included within this
variety, V. simpsonii, V. rufotomentosa, and
V. sola, their leaf shape and degree of tomentum
on the stems and leaves are variable. Accessions
of V. rufotomentosa have proven to be good
sources of dagger nematode resistance and have
been used in the UC Davis grape rootstock
breeding program.

The next set of V. cinerea taxa are from
Mexico. These species are not well known,
although there are ethnobotany studies on the
fruit (Franco-Mora and Cruz-Castillo 2012;
Tobar-Reyes et al. 2009). Vitis bourgaeana
Planch. is from the central east states of Mexico
and south into Central America. Its leaves are
deeply 5 to 7 lobed. It has not been used in
breeding. Vitis biformis Rose is scattered across
Mexico and its leaves are also lobed, and it was
been described as similar to V. berlandieri with
shorter teeth. Vitis biformis was originally col-
lected northwest of Mexico City in Guanajuato.
It is not recognized as a valid taxon in the
“Checklist of the native vascular plants of Mex-
ico” (Villaseñor 2016). Vitis tiliifolia Humb. &
Bonpl. ex Schult. (V. caribaea) is found from
central Mexico, south to northern South Amer-
ica, and throughout the Caribbean. It is the most
widespread of the Mexican Vitis according to
Villaseñor (2016) who lists it in 24 states. Some
of these incidences may have been the result of
similarities between other members of this series.
This species has been used in breeding for PD
resistance, but stronger forms of PD resistance
exist in other Mexican and US Vitis. Vitis
peninsularis Jones is found scattered across
Baja California Sur. Vitis blancoii Munson has
been re-evaluated by Comeaux and Lu (2000)
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and is found in southern Mexico along streams at
high elevation (3500 to 7000 feet). Forms of this
species in northern Mexico and the USA are now
considered to be V. cinerea var. tomentosa
(Planchon) Comeaux. This taxon also intergrades
with V. berlandieri (V. cinerea var. helleri)
producing intermediate forms.

2.2.4 Series Vulpinae

There are two species in the Vulpinae series: V.
vulpina (cordifolia) and V. palmata (rubra). Vitis
vulpina L. (the frost grape) has a very wide
distribution from Texas to Florida and north to
Pennsylvania and Missouri. This species appears
to be very similar to V. riparia and they have
been confused and misnamed since being origi-
nally described. The shoot tips of V. vulpina are
open while those of V. riparia are enclosed in the
young leaves. The stems of V. vulpina are
smooth and waxy while those of V. riparia often
have short bristles, the fruit of V. vulpina ripens
very late, and the vines of V. vulpina are much
larger climbing high into trees. In addition,
although their ranges overlap, V. vulpina is most
abundant in the south and V. riparia is more
northerly and widespread in the northern states
and Canada. Comeaux, Munson, and Bailey
grouped V. palmata Vahl (V. rubra) with V.
vulpina. Vitis palmata (the catbird grape) is
uncommon and grows along the Mississippi and
Missouri rivers in or near side streams and
swampy areas south to east Texas where I have
collected it near Canton City. It is a very attrac-
tive vine with red stems and new shoots and
could be regarded as an ornamental. It appears to
be a weak V. riparia with 3- to 5-lobed leaves
and long sharp teeth. It has not been used in
breeding; although it roots well from dormant
cuttings, it is a relatively weak vine.

2.2.5 Series Precoces

The Precoces Series houses V. riparia,
V. rupestris, and V. acerifolia. All of these spe-
cies root well from dormant cuttings, and

V. riparia and V. rupestris root almost as well as
V. vinifera. As mentioned above, V. riparia
Michx. (the riverside grape) is very widely
spread and is a major part of the flora of the
northern states. It can be found along the eastern
slope of the Rocky Mountains south to northern
New Mexico, where it hybridizes with V. ari-
zonica, and east to the Atlantic coast. It is very
common in the northeastern USA.

Vitis rupestris Scheele (the sand or rock
grape) was once common in rocky creek beds
and sand bars and was found from Pennsylvania
to the Rio Grande in Texas. It is now almost
entirely restricted to southern Missouri and
eastern Kansas and a few rare sites in Oklahoma
and Texas. This species usually grows as a shrub
or small vine. This growth habit led to its demise
from much of its range as cattle grazed it to
extinction while they moved west. It is now
found in isolated areas protected from cattle and
in only a small part of its original range. Vitis
rupestris is also unusual because of its deep,
penetrating root system. These roots allow V.
rupestris to survive in highly erosive streams
where intense stream flows wash away silts, sand
and plants leaving coarse gravel. Vitis rupestris’
shrubby habit and very deep roots prevent it from
being swept or eroded away. It roots very well
from dormant cuttings, but produces short canes
with short internodes, and frequent lateral shoots.
As a rootstock, it promotes vigorous growth and
is drought adapted due to its ability to extract
water more deeply in the soil profile. Vitis
rupestris also has strong foliar disease resistance
and very dark black-red juice, leading to its use
as a parent in the breeding of the hybrid direct
producers in France. It has also been used to
breed red-juiced teinturier grape varieties for
blending and concentrate production (e.g.,
“Rubired” and “Scarlet”). This important species
is at risk of extinction as its range continues to
shrink.

Vitis acerifolia Rafinesque (longii) is found
from west and north Texas, across Oklahoma to
Kansas and westward to southeast Colorado and
northeast New Mexico. This species’ range and
its appearance suggest that it is a hybrid form
between V. riparia and V. candicans with
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additional introgression from V. arizonica. As
mentioned above, V. x. doaniana is the result of
hybridization of V. acerifolia x V. candicans.
The common name of V. acerifolia is the canyon
grape and it often found in dry heavily eroded
sandy creek beds, where its deep plunging roots
mine water and hold it in place. This species
roots well from dormant cuttings and has good
resistance to calcareous soils, and we have found
it has good drought tolerance and excellent
chloride tolerance, but it has only moderate
resistance to phylloxera. This last trait has limited
its use as a grape rootstock, but with careful
selection, it will be possible to utilize its benefi-
cial traits. Vitis acerifolia is another species that
is threatened by state highway departments.
These departments are making conscious effort to
convert the roadsides and shoulders to grass
swards and away from their current mixture of
woody plants, herbs, and grasses, which often
contains grape species. On a recent collection trip
pursuing V. acerifolia from Amarillo to Kansas,
almost every plant we collected from had obvi-
ous broadleaf phenoxy herbicide damage.

2.2.6 Series Occidentales

The next series of grape species contains some of
the least well understood and studied North
American taxa. There are two California grape
species in this group: V. californica and V. gir-
diana. Vitis californica Benth. ranges from the
Tehachapi Mountains in the southern San Joa-
quin Valley to southern Oregon, and I have
found a large vine near a creek south of Eugene,
OR. Within California, this species grows from
about 1200 m elevation in the Sierra Nevada
mountain range to the Coastal Range. It is not
found within about 15 km of the ocean, pre-
sumably because it is too cold in the spring to set
seed. This species is almost extinct in California
due to the frequent hybridization with V. vinifera
and their hermaphroditic progeny’s ability to out
compete the native vines. The first generation of
these crosses occurs in the same way mentioned
above in regard to V. x. labruscana (V. labrusca
x V. vinifera) and V. x bourguina (V. aestivalis x

V. vinifera). These unintentional crosses would
often involve female flowered wild vines and
pollen from hermaphroditic cultivated grapes.
The hybrid progeny will be either 50 or 100%
hermaphroditic in the next generation and cap-
able of producing far more seed. This genetic
erosion has been studied with V. californica
collections made across its range—DNA analysis
revealed that the vast majority were hybrids with
V. vinifera (Dangl et al. 2010; Wada 2008).

The hybrid types have lobed leaves, less
tomentum on leaves and stems, perfect flowers,
large berries, and well-filled clusters. This extinc-
tion of V. californica likely first began with the
Spanish missionaries who came north from Mex-
ico, establishing 21 Missions and planting the
Mission (V. vinifera cv. Listan Prieto) grape. They
had already moved this grape across Mexico,
damaging the wild species there too. Munson
(1909) mentions the presence of these V. califor-
nica x V. vinifera hybrids. Interestingly, the lack of
phylloxera resistance of V. californica is often
emphasized, and however, when we tested acces-
sions that looked like pure V. californica they were
resistant, while the hybrids were susceptible
(Grzegorczyk andWalker 1998). Accessions of V.
californica may have resistance to diseases like
Armillaria root rot as they coevolved in wooded
areas. However, many of the now hybrid V. cali-
fornica will be compromised by the pest and dis-
ease susceptibility of V. vinifera.

The southern California wild grape, V. gir-
diana Munson ranges along the Pacific Coast
fromSanta Barbara (including theChannel Islands
to Baja California Sur and east through southern
Nevada and north to southwestern Utah. It was
named after H.H. Gird who sent Munson speci-
mens he collected from near Fallbrook, CA
(Munson 1909). There are still many V. girdiana
plants scattered across Fallbrook where Gird
Ranch still exists. Across the coastal portion of its
range, this species is threatened by habitat
destruction. Most recently, the renovation of
Hwy76 has brought more people and disrupted the
wild grape habitat along the San Luis Rey River.

Vitis girdiana has been considered a variant of
V. californica, but it is unique (Wada and Walker
2009). These two species are kept separate by the
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Tehachapi Mountain Range that separates the
northern and southern portion of the state,
although we found a population of V. girdiana x
V. californica hybrids in the southeastern Sierra
Nevada east of Isabella Lake (Wada 2008). The
leaves and stems of V. girdiana are more
tomentose, the berries less glaucous more black,
and the leaves are more three-lobed. Vitis cali-
fornica has less tomentose leaves and stems,
larger more glaucous berries, and the leaves are
more rounded. As is the case with V. californica,
hybrids with V. girdiana and V. vinifera are
common and occur across its range. There are
reports of very large grapevines planted on
overhead arbors at many of the Catholic missions
along the southern California coast. From the
descriptions, some of these vines are the Mission
grape variety mentioned above. However, some
of these famous Viña Madre vines had long loose
clusters of small black berries, were more
tomentose, and were likely V. girdiana x “Mis-
sion” hybrids. Contrary to Munson’s belief that
“Little or nothing, probably, of value, can be
gained in any way from this species,” we have
found that desert forms can have high levels of
chloride tolerance and strong resistance to Pier-
ce’s disease.

Vitis arizonica Engelm. is a quite variable
and appears to intergrade with V. girdiana in its
western range, with V. riparia in its northeastern
range, and V. acerifolia, V. candicans, and V.
cinerea in its eastern range. Pure forms of V.
arizonica have small tomentose gray-green cor-
date to partially 3-lobed leaves. Individuals and
populations with mostly glabrous leaves exist (V.
arizonica forma galvinii, V. arizonica var. gla-
bra, and V. treleasei) and can be hard to distin-
guish from each other. As a group, the vines are
usually brushy with short shoots. Although it
grows in the arid southwestern USA and northern
and northwestern Mexico, it is usually found in
relatively mesic areas on the eastern and northern
flanks of “sky island” mountains and near
springs, streams, and catchments. Although
Munson stated that “…nor does there seem much
of value in this species,” we have found it to be a
very valuable source of resistance to Pierce’s
disease (Riaz et al. 2006, 2007, 2018; Krivanek

et al. 2005), and the dagger nematode (Xiphi-
nema index) vector of fanleaf disease, and of
chloride tolerance. We are currently examining a
large collection (over 700 accessions) of south-
western Vitis I have collected for resistance to PD
and chloride tolerance. The genetic diversity of
this collection has been studied with SSR
markers (Heinitz 2016) and are now part of a
whole genome resequencing project to optimize
grape breeding and characterize these resistance
genes (NSF PGRP grant #1741627).

Vitis monticola Buckley (the sweet mountain
grape) was also put in the Cordifoliae (Vulpinae)
series by Galet (1988) Moore (1991) and Mun-
son (1909), but in the Occidentales series by
Comeaux (1984).

This species is found on Cretaceous limestone
hills in the counties west of Austin TX and east
of Killeen TX. It grows on rocky ridges without
much soil usually nearby V. candicans and V.
berlandieri, both of which are confined to deeper
soils. Vitis monticola can be found growing on
mesquite and juniper in very dry areas—no other
grape seems to be as drought tolerant as its
habitat suggests. However, it is very hard to
propagate from woody cuttings and it appears to
tolerate drought by limiting growth, a trait that
persists even when it is planted on deep fertile
soils here at UC Davis. This species is very
distinct and appears a bit like a small form of V.
riparia or a less acutely toothed V. palmata.
Hybrid forms with V. monticola and V. candi-
cans and V. berlandieri are relatively common in
the Texas Hill Country. Vitis monticola is not a
common species and is at risk due to the rapid
suburbanization of this region of Texas. Munson
(1909) noted “It truly is a remarkable and distinct
species. It is well worthy of cultivation as an
ornamental vine.” as is V. palmata.

Two new Mexican species are also included
in the Occidentales series by Comeaux (1991)—
V. bloodworthiana Comeaux and V. jaegeriana
Comeaux. The former was found at higher ele-
vations of the Sierra Madre Occidental (western
range) in Sinaloa and Durango, while the latter
was found at higher elevations of the Sierra
Madre Oriental (eastern range) in San Luis
Potosi. These species have been compared to

2 Grape Taxonomy and Germplasm 35



other members of this series and although they
appear quite different, they were grouped in this
series based on the lenticels found on their fruit.
The leaves of these new species are usually
narrow cordate, V. bloodworthiana leaves tend
toward 3 lobed, and V. jaegeriana are usually
entire. Vitis bloodworthiana has dark red pig-
mentation of the shoot tips, and young leaves and
stems, and would make a nice ornamental vine.
Vitis jaegeriana has a brown to red-brown pub-
escent shoot tips. No species has been used for
grape breeding in the USA, although based on
their habitat they should be tested for PD resis-
tance. Both the southwestern US Vitis species
and the Mexican Vitis are in need of thorough
taxonomic and genetic analysis.

2.3 Subgenus Muscadinia

Muscadinia has been considered to be a subgenus
of Vitis by all current taxonomists, although some
grape breeders felt that its genetic, anatomic, and
morphological differences, the strength and
breadth of its pest and disease resistance, and the
sterility of Vitis xMuscadinia hybrids supported a
generic rank for Munsoniana. Harold Olmo
(1995) feltMuscadinia deserved this status as did
Alain Bouquet (Mullins et al. 1992), two of grape
breeding’s most notable practitioners.

There are three taxa within Muscadinia: M.
rotundifolia, M. munsoniana, and M. popenoi.
Muscadinia rotundifolia Michx. (the Muscadine
grape, white bronze forms are called scupper-
nong) grows across the southeastern USA from
eastern Texas to northern Arkansas, east to Vir-
ginia and Florida, and has been reported in the
state of Veracruz (Comisión Nacional de Fruti-
cultura 1973). This grape species was cultivated
in the USA well before the arrival of European
settlers and is the foundation of a fruit industry in
the southeastern USA. Modern muscadine culti-
vars are large berried, fruit more uniformly and
are self-fertile (Olien 1990). The species is very
resistant to most pests and diseases that affect
V. vinifera cultivars, but because it has 2n = 40
chromosomes it makes sterile hybrids with all
Vitis species (2n = 38). There have been a few

fertile V. vinifera x V. rotundifolia hybrids pro-
duced (VR hybrids—produced by Olmo (1971,
1986), Bouquet (1980), and Bloodworth et al.
(1980), which have been used to introgress
resistance to powdery and downy mildew into
V. vinifera cultivars and breeding lines. A genetic
map was created within M. rotundifolia from a
cross of “Fry” x “Trayshed” (Riaz et al. 2012),
and several M. rotundifolia-based maps have
been created to develop resistance markers for
breeding powdery mildew-resistant winegrapes.

Muscadinia var. munsoniana S. ex M)
Comeaux is largely restricted to the southern
half of Florida. It was regarded as a valid species
by Munson, but Comeaux and the Flora North
America regard it as a variety of M. rotundifolia.
This form of rotundifolia has smaller leaves,
sharper teeth, and smaller berries. It is almost
ever-blooming in southern Florida. Munson
mentioned that V. munsoniana’s ever-blooming
character allowed it to make hybrids with Vitis
shuttleworthii and other species due to overlap-
ping blooming periods. He felt it would make an
excellent resistant parent in crosses with
V. vinifera. It may be that Munson did not
appreciate the sterility barrier, or perhaps
M. munsoniana should be examined closely for
its potential to form more and better Vitis x
Muscadinia hybrids.

Muscadinia popenoi Fennell is listed in the
state of Puebla (Comisión Nacional de Fruticul-
tura 1973) and noted by Galet (1988) in the state
of Oaxaca at the Isthmus of Tehuantepec. It is
regarded as a separate species and has longer
more cordate leaves with shorter teeth. It has not
been used in breeding and is poorly known.
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3Evolutionary Genomics
and the Domestication of Grapes

Yongfeng Zhou, Aline Muyle and Brandon S. Gaut

Abstract
We summarize aspects of the domestication of
grapevines (Vitis vinifera ssp. sativa) from its
wild ancestor (Vitis vinifera ssp. sylvestris) by
focusing on the first three stages of the
domestication process. The first stage is the
management of the wild plant by humans,
prior to purposeful cultivation. Both archeo-
logical and genetic evidence suggest that man
interacted with grapes prior to the onset of
agriculture. These interactions may have
extended to 20,000 year ago (ya) in the
Transcaucasus region, the primary center of
grapevine domestication. The second stage of
domestication is purposeful cultivation. For
most annual crops, this stage is defined by a
strong bottleneck that winnowed and limited
genetic diversity. There is, however, little
evidence for the history of a strong bottleneck
in grapevines and some other perennial crops.
Another feature of the second stage is a
positive selection for traits associated with

cultivation and harvesting. In theory, the
genes underlying these traits can be identified
using population genomic approaches.
Although these approaches have been applied
sparingly to grapevines thus far, they have
identified numerous genes as targets of selec-
tion that likely contribute to agronomic traits.
The third stage of domestication is the geo-
graphic dispersal of a nascent crop to new
locations, where the crop must adapt to new,
local environments. This local adaptation is
often facilitated by introgression between the
crop and locally adapted wild populations.
There is ample evidence to indicate that
introgression has been an important process
in the evolution of the grapevine germplasm.
Unfortunately, however, these introgression
events tend to complicate questions about the
number of origins of the crop; was there one
primary origin of the crop or many? Based on
the data available to date, we take the view
that there was a single domestication event,
but this and many other questions about
evolution, domestication, and genomics of
grapevine require further investigation.

3.1 Introduction

Among domesticated crops, few are as histori-
cally important as the grapevine (Vitis vinifera
spp. sativa; hereafter “sativa”). Grapes have been
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used as a source of food and wine for centuries,
and they have particular significance in rituals
and religion. The Old Testament, for example,
mentions grapes in its first book (Genesis 9:20),
detailing Noah’s planting of a vineyard after the
flood. Of course, the Greeks had a god, Diony-
sus, who was responsible for creating wine and
spreading the art of viticulture. Our reverence for
grapes has not waned over the intervening cen-
turies. Grapes are arguably the most important
horticultural crop in the world, with 7.1 million
hectares producing 77.4 million tons of fruit
globally in 2016 (OIV 2015; Migicovsky et al.
2017) (see Chap. 1). The products of grape cul-
tivation—which include table grapes, raisins,
juice, wine, and oil—have a value of $68.3B at
the farm gate and contribute an estimated $162B
annually to the American economy alone
(National Grape and Wine Initiative 2007).

We may take grapes for granted, but their
history nonetheless remains somewhat enig-
matic. Like all crops, there are myriad unan-
swered questions about their origin and
domestication. Some questions pertain to crop
history: Where were grapes domesticated? Was
the process of domestication rapid or protracted?
Did domestication occur only once, or twice or
perhaps independently on several occasions?
Other questions pertain to the genetic and phe-
notypic effects of domestication: What genetic
changes occurred and how do these changes
affect phenotype? A final series of questions
pertain to the domesticators: Who were they?
How and when did they disperse their new crop
to additional locations? How might the history of
the crop parallel their culture?

Of course, we cannot answer all of these
intriguing questions in a single chapter. We will
instead focus on the use of genetic and genomic
data to address some of these questions, and we
will occasionally rely on examples from other
crops while doing so. To lay a foundation, the
chapter will begin with a general overview of the
process of domestication, which we consider to
have occurred in four stages. From there, we will
focus on the specific stages to summarize what
is—and is not—known about grapevine

domestication and also about the evolutionary
dynamics that have shaped genetic diversity of
the crop.

3.2 Four Stages of Domestication

Thousands of plant species have been modified
morphologically for human use (Meyer et al.
2012)—i.e., they have been domesticated.
Domesticates are often diverged phenotypically
from their wild ancestors by a series of mor-
phological changes that are collectively known
as the “domestication syndrome.” This syndrome
includes phenotypes like enhanced robustness,
the production of fewer but larger fruits, changes
in photoperiod sensitivity, and altered seed dor-
mancy and dispersal (Hammer 1984; Gepts
2004; Miller and Gross 2011). For sativa, the
domestication syndrome includes higher sugar
content in the berry, increased berry and bunch
size, changes in seed morphology, and a shift
from a dioecious to the hermaphroditic mating
system (This et al. 2006).

The phenotypic changes associated with
domestication are the result of a protracted pro-
cess that modifies patterns of genetic diversity
relative to the wild ancestor. The process can be
considered to consist of four stages (Gaut et al.
2018) (Fig. 3.1). The first is “management,”
which reflects human stewardship and harvesting
of wild plant populations, presumably by
hunter-gatherers, prior to their purposeful culti-
vation. The recognition of this stage is relatively
nascent and somewhat speculative, but it con-
forms to a growing body of evidence that
humans greatly affected flora, as well as fauna,
prior to the onset of agriculture. Stage 2 is pur-
poseful cultivation, a process that undoubtedly
included selection for desirable traits, like fruit
size and taste, but also unintended selection for
traits associated with growth conditions and
responses to stresses. Because it is likely that
only a subset of wild populations was cultivated,
this stage often features a dramatic domestication
bottleneck that reduces and repatterns genetic
diversity relative to the wild ancestor. Stage 3 is
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geographic expansion, which occurs when the
incipient crop is dispersed to new locations.
These new locations present novel biotic and
abiotic stresses that further drive crop adaptation.
Interestingly, some of this adaption may be due
to hybridization with—and introgression from—
locally adapted wild plants. Finally, stage 4 is
modern, deliberate breeding, a process that has
occurred only over the last few hundred years for
most crops (Meyer and Purugganan 2013). We
will ignore the last stage within this chapter, but
it is of course fundamentally important for
understanding modern crop germplasm.

It is worth emphasizing that artificial selection
acts continually throughout the four stages of
domestication, and this selection can be either
conscious or unconscious. Conscious selection,
as defined by Darwin, refers to an attempt “…to
modify a breed according to some predetermined

standard” (Darwin 1868). In other words, it is
breeding to a type or a concept—for example,
larger and sweeter fruits. In contrast, unconscious
selection is a consequence of humans changing
the conditions under which a species is grown,
without emphasis on a particular trait or a pre-
determined goal (Ross-Ibarra et al. 2007). In
Darwin’s view—and that of other students of
domestication (Vavilov 1992; Zeven 1973)—
unconscious selection is analogous to natural
selection, even though it is caused by humans.
Indeed, authors have argued that some artificial
selection is no more potent than selection in the
wild (Purugganan and Fuller 2009). We included
this information to make the point that domesti-
cation affects both obvious phenotypes (e.g.,
sugar content and bunch architecture in grapes)
but also less obvious morphological traits
through unconscious selection.

3.2.1 Stage 1: Management Prior
to Cultivation

The shift from hunter-gatherer to agricultural
societies altered the course of human history.
This shift is typically considered to have begun
* 10,000 years ago (Purugganan and Fuller
2009) and occurred roughly contemporaneously
across diverse regions of the globe, such as the
Fertile Crescent and Mexico. The earliest
domesticated crops include some of the cereals—
such as maize, barley and the progenitors
of wheat—that continue to be staples in the
human diet. Curiously, perennial crops typically
were domesticated later than annual crops;
most perennial crops were domesticated
* 2000 years ago (ya) vs 4000–5000 ya for
annual crops (Meyer et al. 2012). Given this time
frame, grapes are likely to have been among the
first cultivated perennial crops because the ear-
liest evidence of wine production has been dated
to the 8000–7800 ya from sites in the Kvemo
province of modern-day Georgia (McGovern
et al. 2017). These new dates precede earlier
evidence for wine production in northwestern
Iran * 7400 ya (McGovern et al. 1996a, b),
where the volume of wine containers strongly

Fig. 3.1 Schematic of the domestication process, illus-
trating a hypothesized process of domestication that
includes the four stages. The grape cluster at the top
represents sylvestris
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suggest that grapevines had been domesticated
already (McGovern et al. 2017).

The question is whether this * 8000 ya date
represents the first interactions of man with
grapes or, instead, whether there had been a
lengthy human history with grapes prior to pur-
poseful cultivation. If so, how long was this
history? This is of course an interesting academic
question, but it also has practical implications for
understanding extant genetic diversity. If, for
example, humans had an extended history of
gathering wild grapes prior to purposeful culti-
vation, then they likely exerted unconscious
selection on wild populations, thereby affecting
genetic diversity in those wild populations prior
to purposeful cultivation.

This idea of a long association between
humans and a crop lineage—i.e., stage 1 of the
protracted domestication model (Fig. 3.1)—is
relatively new and quite speculative. The idea
originates, in part, from the analysis of fossil
data, particularly the fossilized remains of the
rachis of grain crops. The rachis is important
because it can indicate whether a plant had
non-shattering seeds, which is a key indication of
harvesting and therefore cultivation. The benefit
of fossil data is that a series of fossils can illus-
trate the progression of phenotypes over time.
For example, Allaby and co-authors have used
this approach to study a progression of the rice
rachis, some of which were dated to 10,000 ya.
Using this data, they have argued that selection
for a non-shattering rachis in rice began in the
Pleistocene (Allaby et al. 2017), which poten-
tially predates accepted dates for agricultural
settlement. The important point is that their data
suggest that humans may have been altering
plants within wild populations (stage 1, Fig. 3.1)
prior to Neolithic revolution (stage 2, Fig. 3.1).
This idea complements the ongoing recognition
that humans altered plant species and ecosystems
long before the onset of agriculture (Boivin et al.
2016; Allaby et al. 2017; Roberts et al. 2017).

Is it possible, then, that humans and grapes
have a commensal history that extends beyond
8000 years and that this prolonged history
impacted the extant crop? The answer is “yes,”
based on two pieces of evidence. The first piece

is prima facie: Wild grapes (V. vinifera
subsp. sylvestris; hereafter sylvestris) are dis-
tributed throughout the Mediterranean basin and
across Eurasia, from the Atlantic coast to the
western Himalayas. Their distribution includes a
foray into central Europe along the Rhine and
Danube waterways, and it also bridges Europe
and Asia via the Transcaucasus (present-day
Georgia, Armenia, and Azerbaijan) (Zohary and
Spiegel-Roy 1975; This et al. 2006). Assuming
that the current geographic distribution of syl-
vestris reflects earlier distributions, humans have
roamed these regions probably since the initial
replacement of the Neanderthals. For example,
some regions of the Southern Caucasus moun-
tains, near the sites of the earliest fossil evidence
for wine (McGovern et al. 2017), contain evi-
dence of human habitation for > 20,000 years
(Adler and Tushabramishvili 2004). It therefore
seems unlikely that hunter-gatherers did not take
advantage of this obvious source of nutrition.
Supporting this contention, carbonized grape
seeds (pips) have been found in prehistoric sites
throughout Europe, likely reflecting material
collected from the wild (Zohary and Spiegel-Roy
1975; Zohary 1996).

The second line of evidence is based on
population genetic analyses of whole-genome
resequencing data, using an approach called the
sequential Markovian coalescent (SMC). SMC
analyses employ genomic data to estimate the
history of a taxon’s effective population size (Ne)
through time, from the present until to far into the
past. Zhou et al. (2017) applied this approach
with population genomic data from a sample of
14 grape cultivars and nine putatively wild syl-
vestris accessions. The results were intriguing,
for at least three reasons. First, the wild and
cultivated accessions could be discriminated
based on genetic evidence, indicating that they
are indeed different, as expected. Second, the
two samples were estimated to have diverged
* 22,000 years ago. This lengthy time frame
probably reflects that the wild sample in the
study did not represent the exact sylvestris pop-
ulation(s) that were ultimately cultivated. Most
importantly, the inferred population histories of
the two samples differed markedly. The wild
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sample exhibited fluctuating population sizes
over time, and these fluctuations corresponded
roughly with histories of glacial maxima and
minima. In contrast, the sativa sample had an
apparent history of a long population decline that
started * 20,000 ya and led eventually to a mild
domestication bottleneck * 8000 ya. This pro-
tracted Ne decline of * 12,000 years is potential
evidence that humans gradually favored a subset
of sylvestris from the proto-sativa lineage, which
led to more narrow genetic base over time. This
inference comes with important caveats, both
because SMC methods have shortcomings that
can prove misleading [see (Gaut et al. 2018)] and
because a more recent study made conclusions at
odds with some but not all of these conclusions
(Liang et al. 2019). Nonetheless, population
genomic data tentatively support a long popula-
tion decline in the history of domesticated
grapevine that corresponds roughly with the time
of some habitation in the Transcaucasus (Adler
and Tushabramishvili 2004).

What does it matter if there has been a pro-
longed history of human management (stage 1;
Fig. 3.1) prior to purposeful cultivation (stage 2;
Fig. 3.1)? First, it informs human history because
it suggests the common-sense idea that interac-
tions between humans and plants extend in time
beyond the agricultural revolution of the Neo-
lithic and likely impacted the genetic diversity
available to those purposeful cultivators. Second,
a lengthier history provides an extended time
frame for unconscious selection on traits. This
challenges the current paradigm because typi-
cally the traits that differ between crops and their
wild relatives are assumed to have evolved
rapidly during the onset of agriculture (stage 2).

3.2.2 Stage 2: Purposeful Cultivation

No matter the duration of the history between
man and grapes, one thing is certain: Grapes
were eventually cultivated purposefully by
agricultural settlements. As mentioned above, a
reasonable hypothesis is that viticulture
began * 8000 years ago somewhere in the

Transcaucasus (McGovern et al. 2017), but many
questions about this transition remain. Did this
stage of domestication occur once, somewhere
near or in the Caucasus Mountains, or did it
occur multiple independent times in different
regions? Did this purposeful cultivation result in
a strong genetic bottleneck, as appears to be
common for many species? Finally, what traits
mark this transition and what are the underlying
genetic causes? In this section, we address these
questions, focusing again on insights gleaned
from, and the limitations of, genetic data.

Where and how many times were grapes
domesticated? One compelling hypothesis about
grape cultivation is that it occurred * 8000 ya
somewhere in the Transcaucasus (i.e., modern-
day Georgia and/or neighboring regions). This
area has been described as the “world center” of
the Eurasian grape, where sylvestris had its
greatest diversity (Vavilov 1992). Genetic data
support this view that sylvestris genetic diversity
is elevated in the Transcaucasus (Ekhvaia and
Akhalkatsi 2010; Imazio et al. 2013; Ekhvaia et al.
2014). Also, as noted by McGovern et al. (2017),
the hypothesized origin of vinifera in the Tran-
scaucasus is further supported by observations
that: i) SomeWestern European cultivars are more
closely related to sylvestris accessions from this
region than to sylvestris from Western Europe,
and ii) cultivars from Georgia also have a close
relationship to those from Western Europe
(Vouillamoz et al. 2006). Finally, a recent
exhaustive study of microsatellite (SSR) diversity
also strongly implicates samples of sylvestris from
Georgia in the major cultivation event (Riaz et al.
2018).

But was there only one center of grapevine
domestication, or were there two or maybe even
several? There is some evidence to suggest that
grapevine was domesticated independently more
than once. The argument for multiple domesti-
cations came originally from the morphological
differentiation between cultivars from the Near
East and the Western Mediterranean (Negrul
1938). Further genetic support of the multiple
domestication hypotheses has come from genetic
studies. For example, Arroyo-García et al. (2006)
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genotyped 1201 wild and cultivated samples
with chloroplast microsatellite (SSR) markers
(Arroyo-García et al. 2006). All of their genetic
analyses grouped cultivars into two clusters; one
cluster grouped with sylvestris from the Western
Mediterranean and the other grouped with syl-
vestris from the Near East. Based on this evi-
dence, the authors concluded that their data
support genetic contributions of both eastern and
western sylvestris population to grapevine culti-
vars. However, they also reasonably noted that
they could not conclude whether these genetic
contributions constituted two distinct, indepen-
dent domestication events because their
observed genetic patterns could also be caused
by introgression between sativa and wild syl-
vestris in distinct locations (see stage 3; below).

Another recent study has genotyped * 1400
accessions with 20 nuclear SSR markers;
importantly this study included sylvestris sam-
ples from the Transcaucasus region (Riaz et al.
2018). Overall, patterns of genetic relatedness for
their study confirm a main domestication event in
the Transcaucasus, but there are also clear signals
that sylvestris from other regions have con-
tributed genetically to cultivars. Based on these
genetic contributions, Riaz et al. (2018) suggest
there were “…at least two separate domestication
events that gave raise to the cultivated grape; one
derived from the Transcaucasia wild grape, and
another from the wild grapes of Western Europe”
(Riaz et al. 2018). Multiple grapevine domesti-
cation events have also been suggested by pat-
terns of genetic diversity in the sex-determining
region of chromosome 2 (Picq et al. 2014).

In practice, however, it is remarkably difficult
to differentiate between independent domestica-
tion events (stages 1 and 2) from local intro-
gression events (stage 3; see below). Two other
crops—olives and Asian rice—illustrate this
difficulty. Olive (Olea europaea ssp. europaea)
is like grapevine in that it is a perennial crop, and
it too has been studied primarily with chloroplast
markers and SSRs. Based on thorough genetic
sampling of cultivars and wild accessions, the
data have been interpreted to indicate as many as
nine domestication events (Breton et al. 2009),
although the hypothesis has more recently been

modified to include a single primary domestica-
tion event (Besnard et al. 2013). However, some
data suggest the possibility of a second, minor
domestication event near the Grecian peninsula
or, alternatively, hybridization of the crop with
local wild populations that left a genetic footprint
in the cultivars of that region (Diez et al. 2015).
At this point, the “jury is still out” on a definitive
model of olive domestication (Besnard and
Rubio de Casas 2016; Díez and Gaut 2016);
despite extensive study, and it is not clear that
any definitive answers are forthcoming.

The domestication of Asian rice (Oryza sativa)
has probably been studied more thoroughly, with
more genomic data, than any other crop. Initial
studies were based on SSRs or SNPs in nuclear
genes, and they strongly suggested that Asian rice
was domesticated twice, in India and in China
(Londo et al. 2006; Caicedo et al. 2007). Later
analyses with more data pointed to a single
domestication event (Molina et al. 2011). Now,
however, the field is reaching a consensus on a
relatively complex domestication scenario that
involves a single, initial domestication event in
China. This scenario posits that the incipient crop
was dispersed from China to the Himalayas,
where it hybridized to distinct wild populations
and created Indica rice (Huang et al. 2012; Choi
et al. 2017). The important point is that the origin
of rice in India was not wholly independent from
the first domestication event in China because it
relied upon alleles that had originated in China
(Choi et al. 2017). These alleles encoded traits
crucial for cultivation.

These examples illustrate that it can be quite
difficult to infer the number of domestication
events, and this inference is often conflated with
introgression events that occurred after the geo-
graphic expansion of the crop. Based on the
available genetic data from the grapevine, it
seems reasonable to continue to hypothesize a
primary event in the Transcaucasus or a nearby
region, followed by the distribution of the
incipient crop throughout the Mediterranean,
where it hybridized with local sylvestris popula-
tions. There is strong support for local intro-
gression events between sativa and sylvestris,
based on the observations that some cultivars
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tend to group genetically with local wild acces-
sions (Myles et al. 2011; Riaz et al. 2018) and
that evolutionary models require substantial
levels of gene flow to explain extant patterns of
diversity (Riaz et al. 2018). However, given the
nuances and complexities of cases like Asian
rice, we stop short of concluding that there have
been multiple independent domestication events
in grapevine. In our opinion, the question merits
further study using approaches that utilize
whole-genome resequencing data.

Did cultivation lead to a domestication bot-
tleneck? One of the hallmarks of the second stage
of domestication is a strong genetic bottleneck.
This stems from the fact that early farmers
probably based the incipient crop on a limited
sample of wild individuals from a particular
region or population, and then, they only prop-
agated the best individuals for ensuing genera-
tions (Doebley et al. 2006). The resulting genetic
bottleneck reduced genetic diversity in a crop
compared to its wild relative, perhaps leaving
useful genetic variants behind. Domestication
bottlenecks have been studied in great depth
using population genetic approaches. For exam-
ple, the maize domestication bottleneck has been
studied for more than three decades, based first
on isozyme data (Doebley 1989), then single-
nucleotide polymorphism data (Eyre-Walker

et al. 1998; Wright et al. 2005) and eventually
whole-genome data (Hufford et al. 2012; Beis-
singer et al. 2016). Taken together, this work has
suggested that the bottleneck in maize was fairly
severe, such that less than 10% of the progenitor
population was retained during domestication
(Wright et al. 2005; Beissinger et al. 2016).

Annual crops like maize typically undergo
severe domestication bottlenecks, but they tend
to be less pronounced for perennial crops. On
average, annual crops retain 60% of the diversity
of their wild relatives (Miller and Gross 2011),
but perennial fruit crops retain * 95% of the
genetic diversity within their wild progenitor. In
this respect, sativa is similar to apples (Cornille
et al. 2012) and cherries (Mariette et al. 2010) in
exhibiting little to no loss of genetic diversity
compared to their wild progenitors. Based on
whole-genome sequences, for example, the total
amount of genetic diversity within vinifera is
* 94% that of sylvestris (Zhou et al. 2017)
(Fig. 3.2). Although the value of 94% is likely to
vary somewhat with the samples under compar-
ison, it strongly suggests that the domestication
bottleneck for grapes was mild (Myles et al.
2011; Zhou et al. 2017). Indeed, population
modeling suggests that 33–50% of the progenitor
population was retained during grape domesti-
cation, which is of sufficient size to sample most

Fig. 3.2 Plot of genetic diversity for samples of sativa
cultivars and sylvestris accessions from (Zhou et al.
2017). The y-axis represents genetic diversity in the wild
sample compared to the cultivated sample; the dashed line
at 1.06 represents the average across all 19 chromosomes.
The colored points represent diversity within 20 kb
sliding windows, and different colors represent different

chromosomes. The peaks represent putative regions of
selective sweeps, where the diversity in the sativa sample
is substantially lower than that of the sylvestris samples,
and we gave labeled a few genes with strong evidence for
a selective sweep (Please note that we have inverted the y-
axis relative to the discussion in the text to more easily
highlight selective sweep regions)
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of the extent genetic diversity from the progeni-
tor. We note, however, that all of these conclu-
sions depend critically on the wild sample that is
contrasted to the sample of domesticates.

Overall, the lack of dramatic bottleneck
effects may help explain why perennial fruit
crops like grape tend to exhibit fewer phenotypic
shifts during domestication than do annual crops
(Meyer et al. 2012). But why do perennials in
general, and grapes specifically, tend to have less
dramatic bottlenecks? There are at least five
reasons (Gaut et al. 2015). One is that perennials
tend to cross-pollinate and have high inbreeding
depression so that particularly strong bottlenecks
are untenable (McClure et al. 2014). That is, very
small populations promote inbreeding, and sev-
ere inbreeding depression could cause small
populations to crash. A second is that perennials
tend to have been domesticated more recently—
both in terms of years and in generations—pro-
viding less time for large losses of diversity to
accrue. A third is that perennials have overlap-
ping generations, a feature that is also likely to
reduce the severity of bottlenecks. Fourth,
hybridization between different species has
often played a central role in the origin and
diversification of perennials. While hybridization
between species may not have played a large role
in the early domestication of grapevine, repeated
introgression of the crop with wild populations
has reintroduced genetic diversity from sylvestris
(and other Vitis species) into sativa (see stage 3,
below). Finally, many perennials are like
grapevines in that they are propagated clonally.
Somatic mutations can accumulate during clonal
propagation, particularly when they are recessive
(Zhou et al. 2017; Gaut et al. 2018); they there-
fore contribute to genetic diversity within the
crop.

Genomic regions that contribute to morpho-
logical differences between sativa and sylvestris:
The study of bottlenecks is important because
they are one of the two major forces that shape
genetic diversity within an incipient crop. Since
grapes did not undergo a severe bottleneck, we
now turn to the second force, unconscious and
conscious selection. Selection helps the incipient
crop adapt to new growing conditions, and it also

drives morphological divergence between the
crop and its wild progenitor. In this section, we
consider what is known about the genes and
genomic regions that appear to have been under
selection in sativa. The identification of these
regions is the basis for a “bottom-up” approach
to identify the genetic variants that contribute to
morphological divergence (Ross-Ibarra et al.
2007).

The tools of evolutionary genomics can
identify some of the genomic regions that con-
tribute to this divergence. The basic approach
starts with a comparison of genetic diversity
between wild and cultivated populations,
preferably across the entire genome. From these
diversity comparisons, one can detect regions of
aberrantly low diversity in the cultivated crop
relative to the wild crop (Fig. 3.2). In theory,
these regions have been subjected to a “selective
sweep,” whereby either unconscious or con-
scious selection has removed (or swept away)
genetic diversity by favoring a particular bene-
ficial allele. In practice, the identification of these
swept regions—which is also called “selective
sweep mapping”—has a number of limitations
that must always be kept in mind. One is that
differences in genetic diversity between the crop
and the wild relative can be caused by other
mechanisms, such as genetic drift. Another is
that it is difficult to identify a swept region in the
domesticate if that same region has lower than
average diversity in the wild sample. Finally, the
results are always dependent on the samples
being used. One typically assumes that the
samples from the wild progenitor populations
and the crop represent the breadth of genetic
diversity of each taxon. That said, it is often
difficult—and perhaps impossible—to identify
wild samples that represent the exact progenitor
populations of the crop.

Genome-wide searches for selective sweeps
have been applied to numerous crops, but only a
handful of studies have taken this approach in
grapes. For example, Myles et al. (2011) geno-
typed 950 vinifera accessions and 59 sylvestris
samples with the Vitis9KSNP chip and then
scanned the genome for potential regions of
selective sweeps. They found at least one
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candidate sweep region, a 5 Mb region on
chromosome 17 that contains at least 20 genes.
Another study used the same data to contrast
wine and table grapes, hoping that they could
identify the loci that differentiate the two germ-
plasm sets. They found evidence for selective
sweeps near the flower sex locus, for berry skin
color, berry size, and muscat aroma (Migicovsky
et al. 2017). Similarly, Marrano et al. (2018)
sought to identify signals of selection between
sylvestris and sativa samples using genotypes
based on a 20 K SNP array. They found regions
of significant differentiation between their syl-
vestris and sativa samples that encompass as
many as * 2000 genes, a number that sounds
very high but is only slightly higher than the
number of genes estimated to have experienced
selection during maize domestication (Wright
et al. 2005; Hufford et al. 2012). Marrano et al.
(2018) investigated the function of a subset of
their set of 2000 candidate genes and found they
were enriched for functions in metabolism and
responses to environmental stimuli.

It is important to note that limited-
representation data—such as SNP array or GBS
data—are expected to be helpful for many
applications, such as genome-wide association
(Laucou et al. 2018) and phylogenetic (Klein
et al. 2018) analyses. However, as mentioned by
Myles et al. (2011), SNP array data are severely
underpowered for selective sweep mapping.
Moreover, SNP arrays usually contain ascer-
tainment biases that can mislead population
genetic analyses if the biases are not properly
corrected. Such biases may contribute to the
observation that sylvestris samples sometimes
have lower genetic diversity than sativa samples
(Marrano et al. 2018), which is typically not
expected for wild vs. crop contrasts.

Whole-genome resequencing data are superior
to both array and GBS data because of the high
marker density and the lack of ascertainment
bias. Several studies have reported resequencing
data from vinifera cultivars (e.g., (Di Genova
et al. 2014; Xu et al. 2016)), but to our knowl-
edge only two studies have focused on identify-
ing sweep regions (Fig. 3.1) (Zhou et al. 2017;
Liang et al. 2019). For example, Zhou et al

(2017) compared genomic data from sativa and
sylvestris and identified hundreds of candidate
genes that may have been targets of selection.
The candidates included genes implicated in
berry development and/or quality, including the
sugar transporter SWEET1 gene; a leucoantho-
cyanidin dioxygenase (LDOX) gene that may be
involved in proanthocyanidin accumulation;
genes potentially involved in berry softening and
flowering-time genes, including a Phytochrome
C homolog. Interestingly, separate identification
of selected genes in the sylvestris sample iden-
tified fewer selected genes, and they were
implicated in distinct functions from the selected
genes in the sativa sample (Zhou et al. 2017).

Overall, the search for the genomic regions
affected by selection in sativa is just beginning.
The approach nonetheless has the potential to
yield valuable insights into the types of genes
and biochemical networks that have been key
determinants of agronomic phenotypes.

The curious case of sex: One of the major
phenotypic shifts that occurred during grapevine
domestication was a transition in the mating
system. At some point during the domestication
process, grapes transitioned from dioecy (i.e.,
separate male and female individuals) in sylves-
tris to hermaphroditic individuals in sativa. This
shift is particularly dramatic given that all extant
wild Vitis species are dioecious. Hence, dioecy
has been maintained since the origin of the
genus, which is estimated to have occurred from
* 18Mya (Wan et al. 2013) to * 39Mya (Liu
et al. 2016).

A switch to hermaphroditism provides
immediate advantages for cultivation. In her-
maphrodites, all individuals can contribute to
fruiting and to pollination. In contrast, only half
of the population bears fruit in a dioecious spe-
cies. In agricultural settings, dioecy means that
most males must be removed from the fields as
soon as they can be identified. For that reason,
dioecy is particularly disadvantageous for agri-
cultural productivity in perennial crops (e.g., date
palms, persimmons, and kiwifruit), where first
flowering takes many years and sex can be
identified only after first flowering. To circum-
vent this problem, substantial efforts have been
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focused on identifying molecular markers that
allow for earlier gender identification for these
crops (Cherif et al. 2013; Akagi et al. 2014;
Zhang et al. 2015). Even so, males are still
needed to fertilize females; in kiwifruit, for
example, orchards are commonly planted with
13% males (McNeilage and Steinhagen 1998).

The timing of the switch to hermaphroditism
in grapes is unknown, but we assume it occurred
early and rapidly during stage 2 of domestication.
Our conjecture about rapidity has precedence in
strawberry (Liston et al. 2014). The modern
cultivated strawberry Fragaria � ananassa is a
self-compatible hermaphrodite octoploid species
that originated through the hybridization of two
American species, F. virginiana and F. chiloen-
sis (Liston et al. 2014). The two species are
dioecious and subdioecious (where individuals
can be either male, female, or hermaphrodite),
respectively. Early F. � ananassa cultivars had
separate sexes, but it has been documented that
unconscious selection rapidly selected for her-
maphroditism in the nineteenth century (Darrow
1966). [As a historical aside, the dioecious
strawberry species F. moschata had been previ-
ously cultivated in Europe, but gardeners would
remove males that lacked fruit because they
thought them “sterile.” These same gardeners
unwittingly caused female production to be
sporadic, due to the lack of pollen. In 1766,
Duchesne uncovered the existence of separate
sexes and thereby improved strawberry produc-
tivity (Duchesne 1766).]

In grapevine, Oberle (1938) proposed a model
by which sex is determined by two tightly linked
genes: one for female sterility and another for
male sterility (Oberle 1938). In this model, males
arise from a dominant female sterility So allele,
while females result from a recessive male
sterility mutation, the sp allele (Fig. 3.3). This
model is identical to the “two-gene model” of sex
chromosome evolution in plants proposed by
Charlesworth and Charlesworth (1978). In this
model, dioecious plants are formed from her-
maphroditic plants by a two-step process. The
first step is likely the evolution of a recessive
male sterility mutation (in Oberle’s nomencla-
ture, Sp- > sp; Fig. 3.3), which would lead to a
gynodioecious population consisting of females
and hermaphrodites. The second step is the for-
mation of a dominant female sterility mutation
(so- > So in Fig. 3.3). If the two male and female
loci are tightly linked, alleles at the two loci
represent proto-sex chromosomes, where males
are heterozygous for the M and F haplotypes and
females are homozygous for the F haplotype
(Fig. 3.3).

Interestingly, the two-locus model may not be
universal because a single gene can determine
the sex of individuals in persimmons and artifi-
cially dioecious cucurbits (Akagi et al. 2014;
Boualem et al. 2015; Renner 2016). In this
context, it is worth noting that Carbonneau
(1983) proposed another model for grapevine
sex determination (Carbonneau 1983). The
model involves a single locus with a M (male)

Fig. 3.3 Hypothesized three sex locus haplotypes in
grapes according to the two-locus model for sex determi-
nation. The female, hermaphroditic, and male haplotype
are denoted by F, H, and M, respectively. The recessive so
allele on the F and H haplotypes confers female fertility

when homozygous, but the dominant So allele suppresses
female function. The recessive sp allele on the F
haplotype causes male sterility when homozygous, but
the dominant Sp allele provides male fertility on both the
H and M haplotypes
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haplotype that is dominant over an H (her-
maphrodite) haplotype, which is in turn domi-
nant over an F (female) haplotype (i.e.,
M > H > F). However, this single-locus model
cannot explain some observations from crosses
—i.e., the rare appearance of males in crosses
between hermaphrodites or between hermaphro-
dites and females. Neither can it explain the
deficit of females in crosses between hermaph-
rodites or between hermaphrodites and females.
For this reason, Carbonneau (1983) hypothesized
that a second locus interacted epistatically with
the first H/M/F locus and also that the epistati-
cally acting locus linked (to within 0.3 centi-
morgans) of the sex locus. It is worth noting that
the Carbonneau (1983) model is compatible with
the two-gene model if its sex locus includes the
two hypothetical sex-determining genes without
any recombination between them. The model
does, however, predict that another locus inter-
acts epistatically with the H/M/F locus.

The classic two-locus model predicts that
recombination between the sp and so genes will
produce hermaphrodites and neutered individuals
that lack both male and female fertility. That is,
recombination between the two loci would lead
to males, females, hermaphrodites and neutered
plants that have So/sp haplotypes, as observed in
Fragaria (Spigler et al. 2008). Hermaphrodite
grapevines are rarely observed in wild popula-
tions, and those that have been observed are
likely escapees from domestication (Arnold et al.
1998). A few non-flowering vines have also been
observed in the wild, but it is difficult to ascertain
whether they are neuters or have grown in
flowering-limiting conditions. If the two-locus
model in Fig. 3.3 is correct, these observations
suggest that recombination between the two loci
is exceedingly rare and therefore that the three
M, H and F haplotypes are divergent enough to
prevent recombination.

Assuming a two-locus system of dioecy in
Vitis, domestication reverted a stable, dioecious
mating system that had existed for at least * 18
My to the ancestral hermaphroditic state. This
could occur, presumably, through the knockout
of the dominant female sterility (So) mutation of

the M haplotype, creating a hermaphroditic
(H) haplotype (Fig. 3.3). This is consistent with
the fact that the H haplotype has been found to be
closer to the M than to the F haplotype (Picq
et al. 2014). Under this three haplotype model
(Antcliff 1980), females are homozygous for the
F haplotype, hermaphrodites can be either HF or
HH, and males can be MM, MF or MH.

To date, two sex-determining genes have been
found in Asparagus (Harkess et al. 2017) and
Fragaria (Tennessen et al. 2018), but neither the
So knockout mutation nor the so and sp genes
have been identified in grapevine. However, it is
known that the sex-determining region maps to a
152 kb region of chromosome 2, between chro-
mosomal position 4.90 Mb and 5.04 Mb in the
Pinot Noir PN40024 12X (v. 2.1) reference
genome (Fechter et al. 2012). Unfortunately, the
reference is heterozygous for the F and H hap-
lotypes, causing the assembly of this locus into
two separate scaffolds. It has been assumed that
the F haplotype is represented on chromosome 2
of the reference and that the H haplotype is
located on unassigned scaffold_233 (Picq et al.
2014). However, the chromosome 2 assembly
lacks the well-studied candidate sex-determining
gene adenine phosphoribosyl transferase (APT3)
(Fechter et al. 2012), and the position of others
genes is still approximate (Picq et al. 2014).
Further work will be required to better assemble
the three Vitis sex haplotypes.

Once the M, H, and F haplotypes are assem-
bled, it will be useful to the estimate the time of
split among them. Given the age of dioecy in Vitis,
we expect the F and M haplotypes to be highly
diverged (reflecting the � 18Mya conservation
of dioecy in the genus), but we also expect the H
andM haplotypes to have diverged more recently,
i.e., approximating the * 8000 year time frame
of cultivation. There is interesting precedence for
this approach because the sequencing of the sex
chromosomes in papaya led to an estimated
divergence time of * 4000 years between the
male Y chromosome and the hermaphroditic Yh

chromosome. This time frame coincides with the
rise of the Mayan civilization and the origin of
papaya cultivation (VanBuren et al. 2015).
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Interestingly, population genomic analyses of
chromosome 2 have uncovered two peaks of
divergence between sativa and sylvestris acces-
sions (Zhou et al. 2017). The first peak corre-
sponds to the sex-determining region identified
by Picq et al. (2014) and contains * 13 genes
(Picq et al. 2014). The second peak is close to the
first, at positions 5.20 Mb to 5.33 Mb. It is not
clear why there are two peaks. Each could, for
example, contain one of the so and Sp
sex-determining loci. Alternatively, if the
sex-determining genes both lie within the first
peak, then the second peak could house the
epistatic locus hypothesized by (Carbonneau
1983) or perhaps even a group of genes with
antagonistic sex effects, as observed in the
pseudoautosomal region of Silene latifolia (Qiu
et al. 2013).

Altogether, the two peaks contain * 45
genes, some of which exhibit sex-biased
expression (Zhou et al. 2017) (Table 3.1). For
example, the first peak contains six genes over-
expressed in F flowers, including VviFSEX,
which may abort stamen development and thus
be the sp male sterility locus (Coito et al. 2017).

The second peak has four genes that exhibit
biased sex expression: one gene has a higher F
expression, two have higher H expression, and
one has higher M expression (Zhou et al. 2017).
All are reasonable candidates for sex determi-
nation, but the search continues.

3.2.3 Stage 3: Geographic Expansion
with Introgression
as a Means of Local
Adaptation

Our discussion about the complexities of differ-
entiating single vs. multiple domestication effects
is intricately tied to the third stage of domesti-
cation: the geographic expansion of the crop to
new locations. Geographic expansion requires
crops to adapt to new environments. In theory,
adaptation could occur either through selection
within the crop (i.e., on standing genetic varia-
tion or on new genetic mutations) or through
adaptive introgression with local, cross-fertile
wild plants. Adaptive introgression is the intro-
gression of genomic regions that have positive

Table 3.1 Gene expression analysis of genes within the sex determination region that have significantly different
expression between sexes (M = male, F = female, H = hermaphrodite)

Gene IDa Functional_annotationb Peakc M vs. F M vs H F vs. H

VIT_02s0154g00130 Exostosin (Xyloglucan galactosyltransferase
KATAMARI 1)

1 F – F

VIT_02s0154g00140 3-oxoacyl-[acyl-carrier-protein] synthase 3 A,
cpl precursor

1 F – F

VIT_02s0154g00160 FMO family protein 1 F – F

VIT_02s0154g00170 Flavin-containing monooxygenase 3 1 F – F

VIT_02s0154g00190 Flavin-containing monooxygenase 3 1 F H F

VIT_02s0154g00200 VviFSEX(Unknown protein) 1 F – F

VIT_02s0154g00380 Unknown 2 F – F

VIT_02s0154g00310 Protease inhibitor/seed storage/lipid transfer
protein (LTP)

2 – H H

VIT_02s0154g00480 Heat shock protein MTSHP 2 – H H

VIT_02s0154g00370 YbaK/prolyl-tRNA synthetase associated region 2 M M –

The sex with higher expression is indicated. The results are from (Zhou et al. 2017)
aGene IDs are taken from the V. vinifera genome annotation in Ensembl Plants
bFunctional annotation is based on VitisNet functional annotations (Grimplet et al. 2009)
cAs described in the text, peak number 1 spans from approximately the 4.90 Mb position on chromosome 2 to the
position 5.04 Mb. Peak number 1 is located nearby on the same chromosome, spanning 5.20 Mb to 5.33 Mb
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fitness consequences (Suarez-Gonzalez et al.
2018).

Most crops undergo geographic expansion
from their center of origin, but it is not clear how
often crops introgress adaptively with local
populations after expansion. An obvious
requirement is that the crop must be able to
hybridize with its wild progenitor (or a close wild
relative), and those wild relatives must be dis-
tributed in areas where the crop is dispersed.
These conditions certainly hold for grapevines,
both because sativa x sylvestris crosses are fertile
and because sylvestris was distributed throughout
the Mediterranean, where grapes may have been
initially dispersed. In fact, all Vitis taxa are
interfertile, which provides numerous opportu-
nities for introgression events.

When hybridization occurs between wild and
cultivated accessions, it introduces large genomic
regions from the wild into the cultivated back-
ground. In most cases, introgressed regions will
be purged rapidly from the cultivated germplasm
because they do not confer an adaptive benefit.
Alternatively, the introgressed region may bring
locally adapted alleles into the genetic back-
ground of the cultivar, thereby assisting crop
establishment in the local environments. Inter-
estingly, the introgressed region may not need to
have better adapted alleles per se because local
alleles could be beneficial to the crop by two
other mechanisms. First, it could drive syner-
gistic epistatic interactions within the cultivated
genetic background or, second, it could increase
fitness by reducing the genetic load. The latter is
true because wild populations often harbor
higher genetic diversity and maintain larger
effective population sizes (Ne) than crop popu-
lations (Gaut et al. 2015). Since mutation load is
expected to be correlated with Ne, regions
introgressed from the wild are expected to reduce
the mutation load (Moyers et al. 2018; Gaut et al.
2018). If an introgressed region remains in the
crop germplasm, it is expected to eventually
decrease in size (Janzen et al. 2018), due to the
recurrent backcrossing of the hybridized indi-
vidual with other cultivated germplasm. Inter-
estingly, the clonal propagation of grapevines
is likely to slow this process; hence, we

hypothesize that the size of introgressed regions
is larger in grapevine than in most other sexually
propagated crop species.

There are now several methods to infer
introgressed regions from genetic and genomic
diversity data. Some of these methods were
pioneered in the analysis of human data, where it
has become apparent that small (< 100 kb) ves-
tiges of ancestral hybridization events with
Neanderthals remain with modern human gen-
omes (Sankararaman et al. 2014). In principle,
introgression events can be detected using pop-
ulation genetic tools such as TreeMix (Pickrell
and Pritchard 2012) and the ABBA–BABA test
(Green et al. 2010), and then, they can be
localized using the genome-wide sliding win-
dows of the fd statistic (Martin et al. 2015) or a
tool for inferring local ancestry (Maples et al.
2013). To date, the most compelling crop
example comes from maize, where introgression
was detected from the wild relative Zea
mays ssp. mexicana to maize in the Mexican
highlands (Hufford et al. 2013). Subsequent work
found that at least one introgression is * 15 Mb
in length on chromosome 3 (Wang et al. 2017).
The case for adaptive introgression is particularly
compelling when an introgressed region overlaps
with obvious candidate genes for local adapta-
tion. In the maize chromosome 3 example,
the putatively introgressed region contains an
inversion that is closely associated with
flowering-time variation among maize landraces
(Romero Navarro et al. 2017).

As we have mentioned, there is compelling
genetic evidence for introgression from sylvestris
into sativa based on a number of studies and a
variety of molecular markers (Arroyo-García
et al. 2006; Myles et al. 2011; Riaz et al. 2018).
For example, Myles et al. (2011) have shown that
sativa cultivars from Western Europe tend to
cluster more closely to sylvestris accessions from
the same region, strongly suggesting some his-
tory of genetic exchange. Given the distribution
of sylvestris, it seems reasonable to assume that
most early introgression events with sativa
involved populations of sylvestris. However, as
sativa cultivars were distributed more widely, so
was the opportunity for introgression with other
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wild Vitis species. For example, the Koshu Cul-
tivar appears to owe * 70% of its genetic
identity to sativa and the remaining * 30% to
wild Chinese Vitis species. Similarly, the wild
Amur grape (Vitis amurensis Rupr.) from
Northeast Asia is the apparent source of downy
mildew resistance for some sativa cultivars
(Venuti et al. 2013). Based on these examples, it
is apparent that introgression from wild Vitis to
sativa has played a prominent role in shaping
sativa germplasm and has been a crucial aspect
of the sativa domestication process.

We conclude with two final points. The first is
that we have focused on introgression into sativa,
but it is also clear that genetic introgression can
go the opposite direction—i.e., from the crop
into wild populations and species. For example, a
low level of pollen-mediated gene flow has been
detected from sativa to sylvestris using chloro-
plast markers (Di Vecchi-Staraz et al. 2009). This
pollen-flow has the potential to contaminate syl-
vestris gene pools, thereby polluting an important
genetic resource for grapevine breeding. Another
study has detected introgression from Vitis spe-
cies used as rootstocks into sylvestris (Schröder
et al. 2015). The ongoing phenomenon of intro-
gression from cultivated germplasm into sylves-
tris needs to be considered in the context of the
conservation of wild European grape popula-
tions. Second, we believe that our understanding
of historical introgression among Vitis species—
from sylvestris and other wild Vitis into sativa,
from sativa into wild populations, and among
wild Vitis species—is in its infancy because the
existing studies have relied primarily on
non-genomic approaches. More widespread
application of genomic approaches will help
elucidate the dynamics of adaptive introgression
in grapevine and may yield clues into its agro-
nomic effects.
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4Grape Archaeology and Ancient DNA
Sequencing

Maria Rosa Guasch-Jané

Abstract
The cultivation and domestication of the grape
appear to have occurred between 7000 and
4000 BC. The archaeological and historical
evidences suggest that the domestication of
the grapevine took place in the Near East.
Nevertheless, whether a single origin or
secondary independent grapevine domestica-
tions occurred and where they happened
remains so far unanswered. Wine has had an
important role in religious rituals since antiq-
uity. In mythology and theology, wine was
symbolic of the power to revitalize and
rebirth. In ancient Egypt, wine was daily
served to the gods by the Pharaoh and the
priests in ritual ceremonies in the Egyptian
temples. In daily life, wine was an enjoyable
drink consumed by the elite in festivals,
banquets and funerals. Further, the grape
was one of the most important fruits in the
classical Mediterranean civilizations and
grapevines and the wine were widely spread
through trade sea routes. This chapter presents
an overview of the archaeological evidence
for wine culture in the ancient Near East,
Egypt and the Mediterranean region. It also

presents a discussion of the chemical and
morphological research methods and paleoge-
nomic analyses that have been applied to
ancient grape and plant material.

4.1 Grape Archaeology

The cultivation and domestication of the grapevine
appear to have occurred between 7000 and 4000
BC. The place and period of the original domesti-
cation and biogeographical history of Vitis vinifera
L. (domesticated grapevine) remain largely
unknown, and it is likely that secondary indepen-
dent domestications took place in a complex,
long-term and multi-locale process (Zohary 1996;
Grassi et al. 2003; This et al. 2006; Arroyo-García
et al. 2006; Terral et al. 2010; Bouby et al. 2013;
Pagnoux et al. 2015; see Chap. 3).

Despite the important corpus of bioarchaeo-
logical, morphological, historical and genetic
data available, the identity of former cultivars,
history biogeography and mechanisms of grape-
vine domestication remain obscure (Terral et al.
2010). The archaeological and historical evi-
dences suggest that primo-domestication of the
vine occurred in the Near East, before spreading
to adjacent regions such as Egypt and Lower
Mesopotamia (c.3500–3000 BC), and then fur-
ther dispersal around the Mediterranean
(This et al. 2006). However, there is evidence
for secondary domestications in Sicily
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(Grassi et al. 2003) and in the Western
Mediterranean (Arroyo-García et al. 2006).
Crucial unanswered questions regarding whether
the process was rapid or slow and the related
geographical area had single or multiple-origins
remain (Bouby et al. 2013; Zhou et al. 2017; see
Chap. 3).

Two forms of the grapevine coexist in Eurasia
and north of Africa: cultivated (Vitis vinifera
subssp. vinifera) and wild (Vitis vinifera sub-
ssp. silvestris) vines (Renfrew 1996; This et al.
2006; Arroyo-García et al. 2006). Critical was the
shift from sexual reproduction—in the wild—to
vegetative propagation—under domestication—
and the change from dioecious to a hermaphroditic
plant, able to pollinate itself (Zohary 1996; This
et al. 2006; Zohary et al. 2012; Zhou et al. 2017;
see Chap. 3).

The historical separation into subspecies was
based on morphological differences, and the wild
form is believed to be the ancestor of present
cultivars (Zohary 1996; Zohary et al. 2012).
Nevertheless, the ancestral cultivars and the pro-
cess by which they diversified through time are
not well known. Resolving this issue would be
important for understanding the origin of current
grape cultivars and the processes involved in the
domestication of woody plant species.

Wine was the earliest fermented beverage
since, contrary to beer production, grapes only
need to have their skins broken open to release
the juice (Singleton 1996). Although exactly
where wine was first made is still uncertain, early
evidence of wine production is suggested by
several research studies (McGovern et al. 2017;
Valamoti et al. 2007; Garnier and Valamoti
2016).

The archaeological evidences in regard to
winemaking mainly include iconography (paint-
ings, reliefs and mosaics), texts (ostraca and
papyrus), artefacts (wine jars, cups and strainers),
wine presses and cellars, as well as organic
material (grape pips or berries, vine wood and
wine remains). These materials had been recor-
ded from a diversity of archaeological contexts
such as houses, burials, winemaking installa-
tions, storage rooms and even ancient Mediter-
ranean shipwrecks. Wine jars in shipwrecks,

mostly dated to the end of the Late Bronze Age
and discovered through underwater archaeology,
have revealed ancient sea trade networks and the
transport of wine along the Mediterranean.
Indeed, amphorae studies are important for world
economic history.

Wine has also had an important role in reli-
gious rituals since antiquity, and grape was one
of the most important fruits in the classical
Mediterranean world. Wine was a drink of the
gods in ancient Egypt (Osiris), Greece (Diony-
sus) and Rome (Bacchus), and its flavour and
alcoholic content was highly appreciated. In
daily life, wine was an enjoyable drink which
was first consumed by the elite in festivals,
banquets and funerals and later widely extended
to the Mediterranean region mainly by Phoeni-
cians, Greeks and Romans.

4.1.1 Archaeological Evidences
of the Wine Culture
in the Near East
and Mediterranean
Region

The earliest evidence of winemaking has been
recently discovered (McGovern et al. 2017) in
two Neolithic villages of Georgia on pottery
fragments from Shulaveris Gora and Gadachrili
Gora (c. 6000 BC). The first evidence for wine
was reported from pottery jars found at Hajji
Firuz Tepe in the Zagros Mountains in northern
Iran (c. 5400 BC; McGovern et al. 1996). In a
house at the Greek Neolithic village site of Dikili
Tash (c. 4300 BC), a charred grapevine (Vitis
vinifera) and jars containing grape pips with
skins attached were found (Valamoti et al. 2007;
Garnier and Valamoti 2016). The oldest winery
was located in the Areni-1 cave in southern
Armenia (c. 4000 BC) containing wine jars,
grape pips and skins (Barnard et al. 2011). Pre-
historic grapes from the Palaeolithic/Mesolithic
(c. 11000 BC), early Neolithic (c. BC) and late
Neolithic (c. BC) onwards have been recovered
from Greece (Renfrew 1966, 1996).

These finds do not provide definitive evidence
for grapevine cultivation (Zohary and Hopf
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1993; Zohary 1996). However, an early
exploitation of wild grapes is suggested, as well
as the selection of different types for different
purposes, such as raisins, dessert grapes and
different types of wine and vinegar (Renfrew
1996). In ancient Greek shipwrecks, DNA evi-
dence from grape, oil and different herbs in
amphoras has been suggested (Hanson and Foley
2008; Foley et al. 2012). In Egypt, inscriptions
on wine amphoras—two-handled jars—included
relevant information about the harvest and wine
production (see 4.1.4 below). In Greco-Roman
stamped amphoras, the origin of a wine from
Rhodian, Thasian, Cypriot, Cnidian or Egyptian
sources has been documented (Panagou 2016).
The explanation would be that those wine
amphoras, for example, from the Thasos island,
were produced for foreign markets (Tzochev
2016). Sometimes only the name of a person
related to the amphora production, that could
possibly be the pottery maker, is indicated
(Tzochev 2016).

Phoenician and Greek trade networks dis-
tributed the wines and spread the cultivated
grapevine across the Mediterranean. Amphoras
discovered inside shipwrecks have allowed the
study of sea routes, ancient trade and gift
exchange, for instance, between the Aegean and
Cyprus (Pulak 2001; Demesticha 2011). Fur-
thermore, great economic activity is represented
by Greek and Roman coins depicting grapes and
god Dionysus (BMCollection 1 2019; BMCol-
lection 2 2019). Roman presses have been
reconstructed by experimental archaeologists to
understand the winemaking procedures.

The wine, bread and oil, the so-called Mediter-
ranean triad, were important agricultural crops for
the economy and food sustainability and become
the basic food of ancient Greece and the Roman
Empire. They continue to have a fundamental role
throughout the Mediterranean region today. The
extensive Bronze Age cultivation of olives and
grapes is documented by the appearance of
numerous presses and by the remains of storage
facilities for olive oil and wine (Zohary et al. 2012).

The role of wine in ancient Greece was
described by Plato and Xenophon of Athens in

the ‘symposia’: wine parties where wealthy men
enjoyed drinking wine in special seats while
discussing philosophy. Athenaeus of Naucratis—
a Greek city in the Nile Delta—who lived during
the second century–third century BC, described
in his book Deipnosophistae (Sophists at dinner)
that the wine from Thasos island in the Aegean
was the most expensive. In Greek and Roman
times, wine was usually diluted before con-
sumption. Varieties of special vessels were used
in Greece for mixing wine with water (krater), to
cool before consumption (psykter) and serving
wine (olpe).

Wine-drinking scenes were represented in
mosaics such as at the House of Dionysus, dated
to c. 200 BC, in Paphos, Cyprus. The Roman
writer Columella (c. 4–70 AC) in De Re Rustica
(On Rural Affairs) described how to plant and
prune the grapevine, and how to produce, give
flavour and preserve the wine (Columella 2012).
Roman naturalist Pliny the Elder (c. 23–79 AC)
in his book Historia naturalis (Natural history)
reported on viticulture, varieties of vines and on
the Italian and foreign wines. Early reports of
archaic Egyptian wines (McGovern et al. 2009)
note that they were flavoured with aromatic herbs
or spices. In ancient Greece and Rome, resins
could be added for preservation. The modern
Greek retsina wine with resin from Aleppo pine
is currently a protected designation of origin in
Europe (EU Reg 2010).

In antiquity, wine was used for the
re-establishment of good health and doctors
considered it as a remedy (Jouanna 2012). The
oldest references describing the medicinal role of
wine are Mesopotamian medical texts written on
Sumerian cuneiform tablets (c. 2000 BC) and
Egyptian medical papyri (c. 1800 BC); the latter
believed to have been copied from earlier texts
possibly dating back to c. 3000 BC. In addition,
the Greek physician Hippocrates of Kos (c. 460–
370 BC) recommended wine as part of a healthy
diet. Ancient Greek medicine knowledge could
have originated in the Greek Alexandrian medi-
cal school (established c. 300 BC) whose teach-
ings and writings were later spread across the
Mediterranean region.
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4.1.2 Wine Culture in Ancient Egypt

The ancient Egyptian wine culture is one of the
world’s most ancient and possesses the most
extensive records. In Egypt, wine was a luxury
drink that was mostly served by the royal family
and nobles, and it was enjoyed in banquets with
guests and music for entertainment. Meanwhile,
the common people had only access to wine in
annual religious celebrations. The symbolism of
wine and its relationship with the funerary world
was first documented in the Early Dynastic Per-
iod (c. 3000 BC) with large quantities of jars
found in royal tombs at Abydos and Saqqara
(Meyer Ch 1986; Murray 2000). These reports
provide evidence that wine production in Egypt
was highly sophisticated by the beginning of this
period. Wine was mainly produced in the delta
region from the beginning of the Early Dynastic,
and it was later expanded to the Nile Valley and
the Western oases. During the New Kingdom
Period (1539–1075 BC), the inscriptions on jars
indicate the wine came mainly from vineyards in
the eastern and western Nile delta.

In Egyptian mythology, wine symbolized the
blood of Osiris, the god of the underworld, the
dead and the resurrection. God Osiris—who died
in a violent death—was ‘foremost of the west-
erners’, the first to undergo resurrection (Griffiths
1982; Hornung 1996), and ‘Lord of Wine’ in the
late Old Kingdom (2575–2150 BC) Pyramid
Texts (Allen 2005). A relation was established
between Osiris and wine because of the timing of
grape harvest with the annual flood of the Nile
river, which turned to a wine red colour caused
by ferruginous sediments from the Ethiopian
highlands (Poo 1986). Grapes and wine were
considered a symbol of resurrection as repre-
sented in the Book of the Dead of the royal scribe
Nakht (Fig. 4.1a), and this idea persists in
Christian Coptic iconography today.

4.1.3 Grape and Wine Iconography
from Ancient Egypt

The Egyptian iconographic records include
vineyards, bunches of grapes, viticulture and

wine production scenes, divinities, wine-offering
rituals and funerary banquets. Among the repre-
sentations, wall paintings, reliefs and stone
reliefs or wooden panels are found. Offering
tables with food and wine for the deceased have
been found in Early Dynastic tombs, whether
carved in stone walls or wood reliefs. The earliest
is the wooden panel from Hesyre’s tomb
(Spencer 1993) dated to the Third Dynasty (c.
2650 BC) at Saqqara.

In the earliest funerary offering liturgies, the
Pyramid Texts—carved on the inner walls—at
the burial chamber of King Unis (c. 2325 BC) of
the Old Kingdom Period (2575–2150 BC) at
Saqqara, a list of five wines is recorded: Delta
wine, wine in abesh jar, Buto wine, Mariut wine
and Pelusium wine (Allen 2005). These wines
were presented to the deceased King during the
food-offering ritual to help him ascend to heaven
for rebirth and became standard features in the
decoration of royal tombs until the Roman Period
(c. 395 AD). In the Egyptian temples, a daily
offering of two bowls of wine to the Gods was
made by the Pharaoh and the priests in religious
rituals (Fig. 4.1b). Wine was also offered during
great occasions such as the foundation and
coronation ceremonies, and the Heb Sed—royal
jubilee—and Valley festivals (Poo 1995).
Moreover, in the walls of New Kingdom Theban
royal tombs, such as Horemheb’s tomb [KV57]
and Nefertari’s tomb [QV66], two bowls of wine
are offered to the Gods, once again documenting
the importance that wine had for the ancient
Egyptian civilization.

Viticulture and winemaking scenes were
depicted on the walls of the Egyptian private
tombs from the Old Kingdom period (2575–2150
BC) through the Greco-Roman Period (332 BC–
395 AD). The ‘Study of the viticulture and
oenology scenes in Egyptian tombs’, a 2011 to
2014 scientific project, has recorded and studied
these scenes, together with the texts associated
with the images, and a mission to Egypt was
permitted to photograph them (Guasch-Jané
2016; EGYWINE 2019). The main steps of the
harvest and wine production are represented, and
they are unique (Fig. 4.2a, b). The scenes-detail
database with 92 records of scenes in tombs
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(Guasch-Jané 2016) is included in a georefer-
enced archaeological map of Egypt (Fig. 4.3a, b)
that is presented in the project’s dedicated web-
site ‘Wine of Ancient Egypt’ (Fig. 4.3c, EGY-
WINE 2019). The viticulture scenes include the

steps represented in the tombs’ scenes are such as
taking care of the vine, grape harvest and
counting the baskets. In the winemaking scenes,
the steps represented are transporting grapes to
the press, pressing grapes, heating and filtering

Fig. 4.1 a Royal scribe Nakht and his wife in the garden,
in front of their house, adoring Osiris; the vine leads to the
nose of Osiris, the resurrection god, symbolizing rebirth.
Book of the Dead of Nakht, sheet 21 [EA 10471,21] at the
British Museum in London, UK. ©Maria Rosa

Guasch-Jané, with permission of the British Museum.
b King Tutmosis III (1479–1425 BC) is offering two
bowls of wine to the god Horus. Temple of Queen
Hatshepsut at Deir el-Bahari, Western Thebes, Egypt.
Dynasty 18. ©Maria Rosa Guasch-Jané
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(elaboration of shedeh), pressing the remains in a
sack-press, filling wine jars, fermentation, offer-
ings to the goddess Renenutet, grape and wine
tasting, sealing and labelling wine jars, counting
the jars, transporting wine jars to a cellar,
refrigeration during fermentation and storage of
jars in the cellar. The sack-press consisted of a
bag made of linen through the looped ends of
which two poles were placed; the poles were
twisted by two workers on each side the fifth
man in the middle trying to keep the two sticks
separated to allow squeezing of the grape berry

remains, skins, pips and stalks in the bag
(EGYWINE 2019). The sack-press might have
permitted wines of different quality to be distin-
guished. This type of press evolved to fix a pole
on one side so that fewer workers were needed—
e.g. for the tomb of Baqet II at Beni Hasan,
dynasty 12, Middle Kingdom Period (EGY-
WINE 2019).

In many cases, only the essential parts are
represented in the scenes to achieve the supposed
magical effect of making wine available for the
deceased in the afterlife. The scenes of viticulture

Fig. 4.2 a Viticulture and winemaking scene in two
registers. From left to right, first register: workers pick up
grapes, press them in a vat, sack-press to extract more juice,
and finally counting the baskets of grapes; second register:
countingwine jars,filling the jars, sealing and,finally, goats
cleaning the vine. Tomb of Amenemhat [BH2] at Beni
Hasan, Egypt. Dynasty 12. ©EGYWINE Project 2019.

b Viticulture and winemaking scene. To the right, workers
pick up dark grapes and put them in a basket. To the left,
workers are pressing the grapes with their feet; besides, the
redmust is coming out from the press to a deposit and sealed
wine jars are on top. Tomb of Nakht [TT52] at Sheikh Abd
El-Gurna,WesternThebes, Egypt.Dynasty 18. [Shedid and
Seidel (1996) The Tomb of Nakht, Mainz, p 57]
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Fig. 4.3 a Archaeological map of Egypt with the location
of the viticulture and winemaking scenes in the Egyptian
private tombs, as shown on the website ‘Wine of Ancient
Egypt’with the entry record for the tombofNebet at Saqqara
(UpperEgypt).©EGYWINEProject2019.bArchaeological

map of Egypt showing the entry record for the wine scene in
the tomb of Amenemhat at Beni Hasan (Middle Egypt).
©EGYWINE Project 2019. c The website ‘Wine of Ancient
Egypt’ dedicated to themultidisciplinary study of the ancient
Egyptian wine culture. ©EGYWINE Project 2019
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and winemaking from the Egyptian private
tombs are an extraordinary source of information
for investigations into the evolution of wine-
making in Egypt during three thousand years.
Their record and study become an important tool
for the future documentation and preservation of
the archaeological heritage of Egypt.

An exceptional scene in the tomb of Huya at
el-Amarna shows the Amarna royal family—
Pharaoh Akhenaten, Queen Nefertiti and Queen
Mother Tiye—being served wine at dinner
(Davies 1905). Moreover, scenes of wine drink-
ing by guests at parties with servants and musi-
cians were popular paintings in private Theban
funerary tombs of the Eighteenth Dynasty
(1539–1292 BC) as shown in Nebamun’s tomb
chapel (Parkinson 2008).

Grapes and grapevine leaves are represented
on ceilings and ornamental friezes of tombs from
the New Kingdom Period (1539–1075 BC) at the
Theban necropolis (Cherpion 1999). Sennefer
has a painted vine symbolizing the rebirth of the
deceased (Desroches-Noblecourt 1985). Wine
jars surrounded with grapes and vine leaves for
decoration and refreshment were also represented
(Parkinson 2008).

With respect to the divinities related to wine,
Osiris (Fig. 4.1a) and Renenutet are often found.
The snake goddess Renenutet (Thermuthis in
Greek) was a goddess of the harvest who was
honoured in shrines erected in harvest fields and
vineyards (Wilkinson 2003). The cult to Rene-
nutet ensured the supply of wine to the deceased,
allowing the enjoyment in the afterlife, and her
presence with offerings, libations and hymns to
guarantee good wine production. Renenutet was
a protective goddess in the viticulture and
winemaking scenes of the private tombs at
Western Thebes from the Eighteenth Dynasty. In
the tomb of Mentiwy [TT172] at El-Khokha,
Renenutet is controlling wine production.
Shezmu was the wine-press deity responsible for
the wine production (Poo 1995).

4.1.4 Wine Archaeology from Ancient
Egypt

The Egyptian archaeological artefacts and texts
relevant to wine include wine jars and wine
inscriptions, ostraca (inscribed pottery shards),
cups and strainers, statues of divinities and
papyrus, and grape and wine remains have been
found. Nevertheless, in an archaeological context
there is a lack of wine presses or wine deposits
for study.

The earliest grapes found in Egypt come from
the Predynastic Period (4000–3100 BC) from
archaeological sites in Tell Ibrahim Awad and
Tell el-Farain in the Nile Delta and from the
Tomb U-j at Umm el-Qa’ab at Abydos (Murray
2000). During the First and Second Dynasties (c.
2950–2650 BC), pottery wine jars were placed in
royal tombs at Abydos and Saqqara as funerary
offerings for the deceased. Some of the jars and
stoppers were inscribed with the name of the
vineyard where the wine was produced and the
king’s name (Petrie 1901; Emery 1958; Spencer
1993). These jars are large, about 1 m in high,
and have a mud sealing on top, for instance, the
jar (Fig. 4.4a) from the tomb of Hemaka at
Saqqara, which was dated to the reign of Den of
the First Dynasty (c. 2950–2775 BC).

During the New Kingdom Period (1539–1075
BC), two-handled wine jars’ amphoras (Fig. 4.4b,
c) were written in hieratic—cursive—script by
hand in black ink to indicate details about the
harvest and wine production: the year of reign—
vintage year—the name of the product—irep,
which is wine, or shedeh—the quality—good,
very good or excellent—and sweetness, the
provenance—delta, western oases, Menfis, etc.—
the property—royal, temple or private—and the
name and title of the winemaker—ex. chief vint-
ner Ramose—(Guasch 2010). The specific order
of writing this information might indicate that
well-established rules regarding presentation and
labelling of wine existed (Guasch 2010). The
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Fig. 4.4 a Wine jar with mud stopper [Journal d’Entrée
number 69772 of the Egyptian Museum in Cairo] from
Hemaka’s tomb at Saqqara, Egypt. Dynasty 1.©Maria Rosa
Guasch-Jané, with permission of the Egyptian Museum in
Cairo. b Wine amphora [JE 62303] with hieratic writing:
‘Year 4, wine from the Estate-of-Aten in theWestern River,
chief vintner Nen’ from Tutankhamen’s tomb [KV62] at

Western Thebes, Egypt. Dynasty 18. ©Maria Rosa
Guasch-Jané, with permission of the Egyptian Museum in
Cairo. c Wine inscription in Tutankhamun’s amphora [JE
62305] bearing the inscription: ‘Year 4, shedeh of very good
quality of the Estate-of-Aten of the Western River, chief
vintner Khacy’. Dynasty 18. ©Maria Rosa Guasch-Jané,
with permission of the Egyptian Museum in Cairo
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same information is found in a modern bottle of
wine, and the consumer will consider the same
parameters when choosing a bottle of wine
(Guasch 2010).

Furthermore, Egyptian wine jars were pro-
tected with a clay capsule—or lid—that covered
the mouth of the jar to prevent contamination of
the contents and a mud sealing—or stopper—on
top, which closed the jar completely, and
enclosed the whole of the neck of the amphora
(Guasch 2010). A seal in hieroglyphic script was
stamped on the mud stopper indicating the pro-
duct, the quality and the origin—or estate—on
the stopper, which was a summary of the data on
the hieratic inscription (Guasch 2010). This
information on the jar and/or the stopper recor-
ded the economic circuit of the wine: origin,
production and destination (Tallet 1998).

In the tomb of Tutankhamun (1332–1322
BC), discovered intact by Howard Carter in 1922
in the Valley of Kings [KV62] at Western
Thebes, 26 wine amphorae—two-handled jars—
and seven one-handled jars of attenuated form
were found (Holthoer 1993; Guasch 2010). All
of them were found in the annexe chamber
except for three amphorae that had been placed
inside the burial chamber lying on the ground,
between the outermost shrine and the walls,
surrounding the mummified body of the King to
the east, west and south, respectively
(Guasch-Jané 2011). Chemical analysis revealed
that those three amphoras contained three dif-
ferent types of wine: red (Guasch-Jané et al.
2004), white (Guasch-Jané et al. 2006b) and
shedeh, a red grape wine with a different prepa-
ration (Guasch-Jané et al. 2006a). A ritual use of
the three wines in the royal burial chamber to
rebirth was suggested, while the rest of wines
found in the annexe might had been offerings of
the usual kind for the sustenance of the King in
his afterlife (Guasch-Jané 2011).

No textual references to white wine—or to red
wine—from the Dynastic Period (3100–343 BC)
have yet been found. The first mention of the
presence of white wine in Egypt is from the
ancient Greek writer Athenaeus of Naucratis
(third century AD) in Deipnosophistae (Sophists
at dinner) described the Mareotis wine in the area

of Lake Mariout near Alexandria, north-west
coast of Egypt, as ‘excellent, white and enjoy-
able, aromatic, easy to assimilate, fine and does
not go to one’s head apart from also being
diuretic…’ (Athenaeus 1961). Earlier, the Latin
poet Virgil, who lived during the first century
BC, in his book Georgicon (Georgics) detailed a
list of vineyards and highlighted the vines from
Thasos and the white grapes from Mariut (Virgil
1586). Food including grapes and different kinds
of fruits, and wine jars and bronze strainers for
serving wine, were found at the tomb of Kha and
Merit [TT8] and dated c.1350 BC, discovered by
Ernesto Schiapparelli in 1906 at Deir el-Medina
(Vassilika 2010). A few thousands of wine
inscriptions have been found at the Theban
necropolis, mainly in the archaeological sites of
Deir el-Medina—the city of the tomb builders—
the Ramesseum temple of Ramses II (1279–1213
BC), and the royal palace of Malkata of Amen-
hotep III (1390–1353 BC). Moreover, Late
Roman stamped amphoras have been found, for
instance, in Naukratis (BM Collection3 2019c).
The Egyptian temples were associated with large
numbers of vineyards in the Nile Delta region.
For example, in the Papyrus Harris I a total of
433 vineyards were overseen by the Theban
temples during the reign of Ramesses III (1187–
1156 BC). In the medical papyri, such as the
Ebers papyrus (c. 1600 BC), grapes and
wine were included in the pharmaceutical
formulations.

The ‘Ancient Egypt’s wine rebirth’ research
project (EGYWINE 2016–2018) studies how
Egyptian wines were made to understand wine-
making history, and advance the conservation of
this heritage (EGYWINE DB 2019).
The EGYWINE project collects and documents
archaeological evidence, mainly pottery and
organic material, of the entire process of grape
cultivation and wine production in Egypt utiliz-
ing various scientific disciplines: archaeology,
paleogenomics, history, oenology and semantics
to reveal the Egyptian footprint on the history of
wine culture. Following the previous studies,
EGYWINE analyses the following five aspects:
(a) the viticulture and winemaking scenes
depicted on the walls of the private tombs from
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the Old Kingdom (2680–2160 BC) to the
Greco-Roman Period (332 BC–395 AD); (b) the
ancient Egyptian wine jars typology and material
to know how the jars were made; (c) the wine
inscriptions to reveal ancient winemaking pro-
cedures; (d) the ancient Egyptian bacteria and
yeasts involved in the fermentation process and
preservation of wine; and (e) the study of
amphora wines. Furthermore, EGYWINE is
recording and studying the main concentration of
wine jars and wine inscriptions from the Predy-
nastic Period to the New Kingdom Period (3800–
1069 BC), and a database for the wine jars and
wine inscriptions, which will be accessible
through a dedicated website (EGYWINE 2019).

4.2 Chemical and Morphometric
Analyses of Grapes and Wine
Samples

Methodological, technical and analytical advan-
ces have provided new insights into research on
archaeological grapes and wines. To study the
colour type of ancient Egyptian wines, a method
(Guasch-Jané et al. 2004) to detect archaeologi-
cal residues of wine was developed using liquid
chromatography and mass spectrometry in tan-
dem (LC/MS/MS). Two biomarkers were iden-
tified in archaeological wine samples: tartaric
acid, a distinctive grape marker, and syringic acid
derived from malvidin-3Glu, which is primarily
responsible for the red colour of grapes and
young wines (Guasch-Jané et al. 2004;
Guasch-Jané 2008). Malvidin-3-glucoside is the
predominant anthocyanin of Vitis vinifera (Eur-
asian) grapes, and whether polymerized or not, it
is partially converted upon alkaline fusion to
syringic acid (Singleton 1996).

The results of analysing samples from
Tutankhamun’s wine amphoras confirmed that in
Egypt, during the New Kingdom Period (1539–
1075 BC), three different grape-derived products
were made: red wine (Guasch-Jané et al. 2004),
white wine (Guasch-Jané et al. 2006b) and she-
deh, being a red grape wine with a different
preparation (Guasch-Jané et al. 2006a). The
study also revealed that both red and white wines

were given the name irp and added new infor-
mation to the inscriptions on these amphoras—
the type of wine stored (Guasch-Jané 2008). The
origin of the shedeh—an Egyptian word with no
translation—was a mystery over the last century,
with both pomegranates and grapes been pro-
posed as the raw material (Tallet 1995;
Guasch-Jané 2008). The elaboration of shedeh
wines is mentioned in the Papyrus Salt 825
[British Museum EA10051] of the Late Period
(715–332 BC). It was filtered and heated, but its
botanical source remained unknown due to
damaged papyrus (Guasch-Jané 2008). The
analysis (Guasch-Jané et al. 2006a) confirmed
that shedeh was a red grape wine and settled the
discussion about its botanical source that lasted
over a hundred years.

Geometric morphometric studies (Terral et al.
2010; Milanesi et al. 2011, 2014; Pagnoux et al.
2015) of archaeological grape seeds using elliptic
Fourier transform method combined with multi-
variate statistical methods have been developed in
recent years. Morphometric studies are
non-invasive and considered ideal for rare and
valuable archaeobotanical remains (Milanesi et al.
2011). Shape comparison between current forms
and archaeological material may elucidate the
timing of domestication events, origins of culti-
vars, exchange and cultural interactions (Terral
et al. 2010). However, according to Zohary et al.
(2012) pip morphology cannot be regarded as a
completely safe diagnostic trait for distinguishing
between wild and domesticated Vitis remains in
archaeological excavations. The external profile of
archaeological and modern grape seeds is a good
phenotypic descriptor to investigate the origin and
diffusion of Vitis vinifera L. (Milanesi et al. 2014).
Whereas size, shape and colour of berries are
phenotypic traits, which might have been tradi-
tionally selected by humans, seed shape was
probably not a target of selective pressures (Terral
et al. 2010). The characterization of the seed shape
and size of modern and archaeological material
has allowed investigation of grapevine diversity
(Pagnoux et al. 2015), established hypotheses of
relationships, discriminated among different
groups of grape varieties, and discriminated
between domesticated and wild subspecies of the
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grapevine (Terral et al. 2010; Bouby et al. 2013).
Seeds of wild and domesticated grapevine display
dissimilarities which allow the discrimination
between both subspecies: V. vinifera grapevines
have small and roundish seeds with short stalks,
while pips from cultivars are more elongated, with
longer stalks (Pagnoux et al. 2015).

Nevertheless, morphometric analysis is not
enough to establish the descent of modern
material from palaeobotanical specimens and
genetic analysis of ancient grape seeds would
enable new comparisons of ancient profiles and
contemporary cultivars (Milanesi et al. 2011,
2014). Phylogenetic comparison of palaeob-
otanic and modern materials will be sustained by
improved methods, larger databases and inter-
disciplinary studies (Milanesi et al. 2014).
However, degradation must be considered as
most of the pips recovered from Greece (Renfrew
1996) are preserved by carbonization, particu-
larly the wild samples that are very small, while
the cultivated ones are both carbonized and
mineralized. However, not all ancient pips are
carbonized (Renfrew 1996). Shape characteriza-
tion combined with genetic data should allow a
better understanding of the changes that have
occurred during domestication (Terral et al.
2010). Additionally, new application of 3D
scanning technology to pottery, wine jars for
instance, is an invaluable tool for archaeologists
to investigate typologies and differences among
production technologies (Karasik et al. 2018).
The interdisciplinary project Viniculture (2017–
2020) investigates grapes and wines from the
Neolithic to the Middle Ages in France using
methodological advances in morphogeometry
and genomics to describe the grapevine’s diver-
sity and analyse their spatial and chronological
dynamics. Plant remains and archaeological
containers (pottery and wood jars) collected
according to strict sampling procedures are
analysed, and this interdisciplinary approach
combines archaeobotany, geometric morpho-
metrics, archaeogenetics, biochemistry and
experimental archaeology (Bouby 2017).

4.3 Ancient DNA Sequencing

The invention of polymerase chain reaction, or
PCR, technology allows to obtain millions of
copies of the few remaining ancient DNA
[aDNA] molecules, and greatly increased exper-
iments using aDNA. The invention of PCR and
subsequent modifications to next-generation or
high-throughput sequencing (NGS or HTS)
technologies, as for whole-genome sequencing,
have accomplished the identification of mito-
chondrial genomes from human (Green et al.
2010; Krause et al. 2010) and animal (Palk-
opoulou et al. 2015) fossils. aDNA research is
rapidly developing particularly within verte-
brates, especially humans. Recent advances in
sequencing technologies have permitted plant
aDNA analyses from fossil samples that enable
the molecular reconstruction of palaeofloras
(Parducci et al. 2017). Nevertheless, difficulties
must be considered, and some wrong results
resulting from sample contamination or false
positives have appeared, especially with regard
to the study of aDNA from human remains
(Gilbert et al. 2005), probably because such
aDNA is the most investigated. NGS/HTS tech-
nologies and sequence data analysis have
increased the single-gene and whole-genome
sequences of plant genomes, although they are
difficult to assemble because of their large size
and complex, high ploidy, high heterozygosity
and the presence of a large number of repeat
sequences (Basantani et al. 2017).

The most relevant aspects to be considered
when undertaking aDNA studies are selection
and sampling of archaeological material,
authentication of ancient origin, contamination
and false positives, DNA preservation, new
technological approaches and improved methods
for aDNA extraction and analysis, as well as the
existence of large databases for phylogenetic
comparisons and advanced statistical methods for
data analysis.

A major concern is contamination of laborato-
ries and equipment. An aDNA laboratory work
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needs extensive multi-strategy measures to mini-
mize sample contamination: an isolated and
exclusively dedicated ancient DNA facility, rigor-
ously separated from work involving modern
DNA; a protocol to maintain a sterile environment
including all personnel wearing protective
full-body suits, hood, gloves, mask and shoe covers
at all times; treatment of the laboratory equipment
and materials with bleach; decontamination with
nightlyUV irradiation and isolation frompost-PCR
laboratories (Hofreiter et al. 2001; Champlot et al.
2010; Fulton 2012; Bennett et al. 2014).

How easy is to generate erroneous data
through contamination? When categorizing risk
in aDNA studies, it is widely accepted that
human aDNA data have the most problems and
are categorized as high risk, while plant aDNA is
medium risk (Gilbert et al. 2005). The authen-
ticity of samples in aDNA studies can be proved
by patterns of damage identification: the major
factor is cytosine deamination, C-to-T transi-
tions, causing nucleotide misincorporations in
ancient DNA, and being of shorter sequence
length (Briggs et al. 2007; Sawyer et al. 2012).
A significant list of criteria of authenticity to
avoid or prevent contamination from exogenous
DNA has been established (Pääbo et al. 2004;
Gilbert et al. 2005).

4.3.1 DNA Preservation
of Archaeological
Material

Sampling and selection of archaeological mate-
rial are crucial steps for achieving useful results.
Before proceeding to the selection of archaeo-
logical material for study, some questions should
be considered: What type of substrates exist for a
botanical species to study? Are the samples in
good preservation? To whom do the samples
belong? Are museums’ authorizations for sam-
pling possible? Sources of damage or even
degradation causing high DNA fragmentation of
plant material from museums have been identi-
fied, and an exponential relation between length
of the fragment and year of the collection has
been confirmed (Weiss et al. 2016). According to

Milanesi et al. (2014), the use of seeds from
archaeological museums is difficult because
DNA studies are destructive of specimens. To
avoid problems of sampling permissions, a
non-destructive method was proposed for teeth,
bones and skin samples up to 146 years old;
although no damage to the specimens was
detected, the amount of extractable DNA
decreases with increasing numbers of successive
extractions (Rohland et al. 2004; Rohland and
Hofreiter 2007). Highly degraded DNA can be
due to conditions of the substrate provenance,
storage or preservation, and degradation may
influence analytical success (Lindahl 1993).
Ancient DNA might have different types of
damage, such as strand breaks, DNA crosslinks
and oxidative or hydrolytic lesions, and the
knowledge of the effects on DNA is still limited;
however, aDNA is invariably of shorter length
(Pääbo et al. 2004).

DNA preservation in human, animal and plant
remains depends on the types of substrates. For
instance, bones and teeth preserve DNA quite
well and are abundant in the fossil record, much
better than soft tissue. In the recent years, the
sources of aDNA have been extended to include
archaeological artefacts and archaeobotanical
remains (Green and Speller 2017), dental calcu-
lus (Weyrich et al. 2017), palaeofeces and
coprolites (Wood et al. 2012; Bennett et al.
2016), hair (Rasmussen et al. 2011) or even
ostrich eggshells (Demarchi et al. 2016).
Recently, good preservation of high endogenous
DNA is revealed on the petrous bone, cochlea
(Pinhasi et al. 2015; Margaryan et al. 2018).
Studies on coprolites, often found in caves in dry
areas, are useful for the diet and ecology of
extinct animals (Wood et al. 2012).

Plant material can vary from small seeds—as
in case of grape pips—to large stone fruits or
complete cereals. Furthermore, the reproducibil-
ity within the same individual is impossible to
fulfil in the case of small seeds (Schlumbaum
et al. 2008). The DNA from seeds tends to be
preserved in archaeological sites only when they
are charred, desiccated, frozen or deposited in
anoxic conditions (Green and Speller 2017) and
are among the most highly prized aDNA sources
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(Di Donato et al. 2018). DNA preservation in
plant archaeology depends foremost on the
provenance and storage through time. Cold, dry
and/or low oxygen environments are beneficial
for DNA survival (Schlumbaum et al. 2008).
Exposure to high temperatures, such as in the
case of charring, can heavily fragment the DNA,
while higher temperatures and longer exposure
cause a greater destruction apart from sponta-
neous DNA decay (Lindahl 1993). Nevertheless,
DNA was identified in charred archaeological
wheat seeds (Allaby et al. 1997).

4.3.2 Ancient DNA Studies in Plant
Archaeology

In the recent years, ancient DNA analyses of
wheat (Bilgic et al. 2016), barley (Mascher et al.
2016), grapevines (Wales et al. 2016), pollen and
other plant fossils from lake sediments (Parducci
et al. 2017) and from historic plant collections
from herbarium archives such as the olive family
(Zedane et al. 2016) have been reported. The
analysis performed on aDNA can shed light on
phylogenetic questions concerning evolution,
domestication and improvement of plant species
as well as to help resolve problems related to the
origin of the material and external contamination
(Di Donato et al. 2018).

Ancient genomes from desiccated archaeob-
otanical remains provide information regarding
the origin, early domestication and subsequent
migration of crop species (Mascher et al. 2016).
For instance, ancient charred wheat is reported to
be similar to contemporary hexaploid wheat
species, suggesting an early transitory state of
hexaploid wheat agriculture from the Fertile
Crescent towards Europe crossing present-day
Turkey (Bilgic et al. 2016). The study of
domestication and early crop evolution has lar-
gely been limited to the identification of key
phenotypic, morphological and genetic changes
between extant crops and their wild relatives (Da
Fonseca et al. 2015). Documenting ancient dif-
fusion routes of domesticated crops and how
they were modified when introduced into new
regions has long been a challenge (Da Fonseca

et al. 2015). The use of nuclear DNA population
genetic analysis of maize enabled the differenti-
ation of selective forces during domestication
and its adaptation to the climatic and cultural
environment of the southwest USA (Da Fonseca
et al. 2015).

Ancient DNA analyses can add new per-
spectives for the study of ancient plant popula-
tions and will provide higher taxonomic
resolution and more precise estimation of abun-
dance and relationships; however, key questions
and challenges remain for plant aDNA studies
(Parducci et al. 2017). One key question is the
suitability of the chloroplast genome (plastome)
to address archaeological and evolutionary
investigations (Wales et al. 2016). In plant aDNA
research, ribosomal DNA [rDNA] genes are of
interest for ancient DNA research (Zedane et al.
2016), whereas plant mitochondrial [mtDNA]
studies are rarer (Di Donato et al. 2018).
Advanced molecular technologies for investi-
gating ancient nuclear DNA [nuDNA] have been
able to reveal a much greater potential since
nuDNA carries several important loci (Wales
et al. 2016; Di Donato et al. 2018). However,
nuDNA is more susceptible to degradation and
some polynucleotides are more damaged than
others (Weiss et al. 2016).

4.4 Future Perspectives

Advances in DNA extraction methodology and
sequencing technology have allowed for the study
of archaeological plant remains. Ancient genome
studies of grapevine might shed light on signifi-
cant questions concerning the origin, evolution
and domestication of grape, on the history of
viticulture and how aDNA degrades or persists.

The type of substrate used for aDNA extrac-
tion is essential and crucial for the success of
these projects. In the case of grapevine, the
substrates would mainly be wood, seeds and
wine samples from pottery jars. The majority of
models predicting DNA degradation and frag-
mentation have been based on ancient bone, and
understanding the methods by which DNA may
bind to non-organic substrates like pottery is of
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particular importance (Green and Speller 2017).
According to Nistelberger et al. (2016), although
HTS of charred archaeobotanical specimens
remains relatively unexplored, charred plant
material appears to be largely incompatible with
these technologies and false positives might
occur. An open question about the analysis is
whether researchers should extract seeds indi-
vidually or in bulk due to the limited sizes of
most archaeobotanical remains; however, no
consistent differences in the quality of data
resulted from archaeological seeds (Wales et al.
2016). Although the extraction of a single seed is
preferable because only one genetic signature is
present, in practice, if DNA yields are very low,
then insufficient endogenous DNA may be
available for library preparation or genetic char-
acterization; these multi-seed samples may con-
sequently have a mixed signal from multiple
individuals (Wales et al. 2016). Without doubt,
sample preservation is critical.

The application of new paleogenomic
approaches to well-documented temporal
sequences of archaeological assemblages opens a
new chapter in the study of domestication. It is
now possible to move beyond a simple distinc-
tion of ‘wild’ versus ‘domesticated’ and track
sequence changes in a wide range of genes over
the course of thousands of years (Da Fonseca
et al. 2015).

Library construction through a
double-stranded method (Bennett et al. 2014)
generated high-resolution genomes from ancient
DNA samples and appears to recover a greater
fraction of endogenous ancient material. How-
ever, a direct comparison of results from different
library construction methods on a diversity of
ancient DNA samples was lacking (Bennett et al.
2014) and whether they are more suitable for
ancient plant material is still under discussion.
Recently, a more detailed and comprehensive
comparison of library preparation methods for
highly degraded DNA has been developed
(Gansauge et al. 2017). An in-depth exploration
of the suitability of splinted DNA ligation for
single-stranded DNA library preparation (Gan-
sauge et al. 2017) shows that it can be utilized for
more robust and less costly single-stranded

library preparation while increasing the propor-
tion of mapped sequences in ancient DNA
libraries. Mitochondrial genomes have played a
key role in many ancient DNA research projects
focused on extinct hominids (Hofreiter et al.
2001; Rogaev et al. 2006) and prehistoric
humans (Green et al. 2009; Krause et al. 2010).
However, it is unclear how useful plastomes may
be at elucidating questions related to plant evo-
lution, crop domestication and the prehistoric
movement of botanical products through trade
and migration (Wales et al. 2016).

The grape plastome provides limited
intraspecific phylogenetic resolution for aDNA
research (Wales et al. 2016). The plastome network
generated from modern samples has a relatively
limited amount of genetic diversity, suggesting
phenotypically and genotypically divergent lin-
eages of grapes are not differentiated at the plastome
level, ultimately diminishing the value of the grape
plastome as a suitable locus for intraspecific phy-
logenetic analyses (Wales et al. 2016).

In contrast, the grape nuclear genome shows
great promise for archaeological samples and
preliminary analyses demonstrate that individual
grape specimens can be compared to modern
varieties, showing their genetic affiliations
(Wales et al. 2016). The recovery of five
microsatellite loci from ancient grape seed sam-
ples demonstrated good nuclear DNA preserva-
tion (Cappellini et al. 2010). Hydrolytic damage
is reported in the seed storage proteins as well as
the basis for the development of a protein
approach for species or sub-species attribution of
archaeological seeds to integrate DNA-based
methods (Cappellini et al. 2010). According to
Wales et al. (2016), analysis of nuclear genomic
DNA recovered from archaeological samples
reveals a much greater potential for understand-
ing ancient viticulture, including domestication
events, genetic introgressions from local wild
populations and the origins and histories of
cultivars.

Increasing evidence for epigenetic variation
within and among natural plant populations has
led to much speculation about its role in the
evolution of plant phenotypes; however, we still
have a very limited understanding of the
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evolutionary potential of epigenetic variation, in
particular in comparison to DNA sequence-based
variation (Henderson and Jacobsen 2007; Zhang
et al. 2018). Epigenetic changes in plants and
animals might have accompanied their extinction
or their domestication (Orlando and Willersleb
2014). Epigenetic inheritance can be important
for adaptation to new environments, especially in
cases where available genetic variation is limited
(Lind and Spagopoulou 2018). Epigenetic vari-
ation has the potential to create phenotypic
variation that is stable and substantial and thus of
evolutionary significance (Zhang et al. 2018).

As bioinformatic methods improve, more
genomic and metagenomic information from
unconventional substrates will be recovered
(Green and Speller 2017). The applicability of
combined use of morphogeometric and archae-
ological DNA analyses and comparing different
molecular markers to reveal DNA variation,
namely simple sequence repeats (SSRs) and
single nucleotide polymophisms (SNPs), is
promising for deciphering the intricate history of
grapevine domestication (Bacilieri et al. 2017).
Targeted enrichment and shotgun sequencing of
10,000 SNP loci have been performed by
Ramos-Madrigal et al. (2019) to genotype 28
archaeological grape seeds dating to the Iron
Age, Roman era and medieval period. Multidi-
mensional scaling (MDS) was used to investigate
whether archaeological samples were more clo-
sely related to wild accessions or domesticated
varieties. The results show that most archaeo-
logical seeds were related to wine grapes from
Western Europe, and wild ancestries are pri-
marily associated with central and Western
European vines (Ramos-Madrigal et al. 2019).

Furthermore, an innovative method (Karasik
et al. 2018) for the morphological discrimination
between grape varieties using high-resolution 3D
scanning has been developed and verified using
genetic methods. The 3D seed morphological
tool enables separation, with high statistical cer-
tainty, between different Vitis vinifera varieties.
It can detect morphological differences between
previously considered ‘synonym’ couples, thus

allowing investigation of new questions that
were not accessible before (Karasik et al. 2018).
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5Strategies for Sequencing
and Assembling Grapevine Genomes

Rosa Figueroa-Balderas, Andrea Minio,
Abraham Morales-Cruz, Amanda M. Vondras
and Dario Cantu

Abstract
Though grape transcriptomics has expanded
dramatically over the last ten years, few
additional novel genomic resources were
developed since the release of the PN40024
reference genome in 2007. This is partly
because of the difficulty associated with
assembling grape genomes. Despite a rela-
tively small genome size of *500 Mb and
modest repeat content, high sequence and
structural heterozygosity makes assembling
grape genomes particularly challenging. With-
out assemblies representative of the genetic
diversity within the cultivated germplasm,
identifying cultivar-specific functions not rep-
resented in the PN40024 genome has remained
elusive. Now, third-generation sequencing
technologies and long-range scaffolding meth-

ods have made it possible to relatively inex-
pensively and rapidly generate highly
contiguous and complete grape genomes. This
chapter will describe the challenges associated
with the isolation of high-quality nucleic acids
suitable for long-read sequencing and provide
an overview of the sequencing and assembling
approaches that can be used to successfully
reconstruct grape genomes.

5.1 Introduction

The French–Italian Public Consortium for
Grapevine Genome Characterization released the
first grapevine genome assembly in 2007 (Jaillon
et al. 2007). This was the second genome
assembly of a woody species (Tuskan et al.
2006) and the fourth assembly of a flowering
plant genome (The Arabidopsis Genome Initia-
tive 2000; Goff et al. 2002; Tuskan et al. 2006).
Despite its limitations, this first attempt to
reconstruct the grape genome remains a valuable
resource to the grapevine community and was the
basis of investigating molecular markers, study-
ing species, cultivar and clonal diversity,
researching evolution and domestication events
(see Chap. 3) and was a reference for hundreds of
transcriptomic studies (see Chap. 13).

The advent of the next-generation sequencing
(NGS) dramatically improved the efficiency of
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sequencing and reduced the costs of the
sequencing process, driving forward genomic
and transcriptomic studies of grapevine. Though
454 pyrosequencing data were the first produced
with a high-throughput technology,
Solexa/Illumina technology was used more
extensively for genome assembly (Di Genova
et al. 2014), genotyping by sequencing (Myles
et al. 2010; Hyma et al. 2015; Yang et al. 2016;
Cardone et al. 2016; Zhou et al. 2017), tran-
scriptome reconstruction (Da Silva et al. 2013;
Venturini et al. 2013; Jiao et al. 2015; Gambino
et al. 2017), and expression profiling (see
Chap. 13). With the exception of its transcrip-
tomic applications, however, short reads are
inadequate for grape genome reconstruction
because of their inability to resolve repetitive
regions. This was the case for the Thompson
Seedless cultivar: Despite high sequencing cov-
erage, short reads could not resolve repetitive
regions of the genome, leading to a highly frag-
mented assembly (Di Genova et al. 2014). In
addition, resequencing fails to resolve complex
structural variants (Da Silva et al. 2013; Gam-
bino et al. 2017), hindering the characterization
of cultivar-specific gene space and genome
structures.

Newer (third-generation) long-read sequenc-
ing technologies make it possible to generate
phased de novo genome assemblies with greater
contiguity and completeness than before. This
technology was applied to sequence the Cabernet
Sauvignon, Chardonnay, and Carmenere gen-
omes that resulted in phasing *74% of the
diploid structure of the genome and produced
reference assemblies that were *30 times less
fragmented in comparison with the PN40024
assembly (Chin et al. 2016; Roach et al. 2018;
Minio et al. 2019b; Zhou et al. 2018). The
transcriptome of Cabernet Sauvignon was also
sequenced with long-read methods (Minio et al.
2019a). The combination of expressed gene iso-
form data generated in long reads and short
Illumina reads allowed to generate a
tissue-specific reference transcriptome without a
reference genome (Minio et al. 2019a).

These advances in technology at decreased
cost are responsible for a greater abundance and

quality of genomic resources available for
grapevine. They also helped to overcome the
grape-specific impediments to genome sequenc-
ing and assembly. Although the haploid genome
size of the grapevine is relatively small (about
500 Mb, Jaillon et al. 2007), its highly
heterozygous nature of cultivated V. vinifera
genotypes make them challenge for genome
assemblies (Aradhya et al. 2003; Laucou et al.
2011). Vegetative propagation of grapevines in
part contributes to maintain the heterozygosity
over generations. Moreover, it is also associated
with the accumulation of recessive deleterious
mutations and structural variants that encompass
*15% of genes (Zhou et al. 2017, 2018).
Assemblies of highly heterozygous genomes are
often more fragmented than other genomes of
comparable similar size and complexity (Yu
et al. 2005; Argout et al. 2011). Prior to
sequencing and assembly, there are
grape-specific challenges associated with nucleic
acid isolation. Grapes accumulate high levels of
complex secondary metabolites, especially in
older tissues (Murray and Thompson 1980;
Couch and Fritz 1990; Fang et al. 1992). Per-
sistent polysaccharides and polyphenols in
nucleic acid extracts can severely compromise
downstream applications, reduce PCR and
enzymatic reaction efficiency, and impair
sequencing library preparation (Ausubel et al.
1994; Healy et al. 2014). High-quality nucleic
acid extracts are essential starting materials for
long read and isoform sequencing, optical maps,
and chromatin interaction studies. This chapter
will discuss challenges associated with isolating
high-quality nucleic acids from grapevines,
sequencing and assembling grapevine genomes,
and strategies to overcome these issues in part or
entirely.

5.2 Major Factors Influencing
Nucleic Acids Isolation
from Grapevine

Next-generation sequencing (NGS) technologies
require high-quality nucleic acids as starting
material (Endrullat et al. 2016), which help

78 R. Figueroa-Balderas et al.

http://dx.doi.org/10.1007/978-3-030-18601-2_13


ensure even coverage with minimal sequencing
bias (Healy et al. 2014). Nucleic acid quality
(yield, purity, and integrity) is measured quanti-
tatively and qualitatively. NGS protocols typi-
cally require at least 50 ng to begin with; using
less than the amount recommended risks reduc-
ing final library yield and sequencing perfor-
mance (Aigrain et al. 2016). Metabolites
co-extracted during isolation, like polysaccha-
rides and polyphenols, can detrimentally affect or
inhibit downstream enzymatic reactions, inter-
fering with library preparation and sequencing
(Ausubel et al. 1994; Healy et al. 2014). Simi-
larly, oxidative contaminants in nucleic acid
extracts increase the risk of degradation during
shearing steps (Costello et al. 2013). Success-
ful NGS requires high-integrity nucleic acids,
else degradation products will interfere with
polymerase activity during sequencing, espe-
cially when sequencing long inserts, and affect
sequencing coverage (Mayjonade et al. 2016).

We developed an optimized protocol for the
extraction of high-molecular-weight (HMW) ge-
nomic DNA (gDNA) from grape leaves (Chin
et al. 2016). The protocol is based on methods
originally reported by Japelaghi et al. (2011) and
Healy et al. (2014). It was modified to increase
yield and improve the removal of interfering
metabolites while preserving DNA integrity.
Overviews of these DNA/RNA isolation proce-
dures are shown in Figs. 5.1 and 5.2. This sec-
tion will discuss methods to prepare high-quality
nucleic acid extracts from grapevine for NGS.

5.2.1 Tissue Collection

Choosing the right starting plant material is
critical for efficient nucleic acid isolation. Young
leaf tissue is the best source of gDNA because it
has more cells per unit area and typically con-
tains lower concentrations of secondary
metabolites and phenolic compounds (Murray
and Thompson 1980; Doyle and Doyle 1987;
Peterson et al. 1997; Iandolino et al. 2004). For
high-molecular-weight genomic DNA, young
leaves no more than one and a half-inch long are
recommended to minimize secondary

metabolites, waxy leaf coating and to maximize
yield (Doyle and Doyle 1987; Lutz et al. 2011).
Proper tissue storage is also important. Freshly
collected tissue, if not immediately used for
nucleic acids isolation, should be immediately
frozen in liquid nitrogen and stored at − 80 °C to
avoid degradation by endonucleases (Ribeiro and
Lovato 2007; Varma et al. 2007; Knebelsberger
and Stöger 2012).

5.2.2 Tissue Disruption

Initially, leaf tissue is ground to a fine powder
using a pre-chilled mortar and pestle and liquid
nitrogen, which minimizes gDNA degradation
(Murray and Thompson 1980). Hard woody tis-
sues and berries are challenging to grind with a
mortar and pestle, so using a mechanical mill to
crush frozen tissues is recommended instead
(Lodhi et al. 1994; Bhattacharjee et al. 2004).
This is particularly important for RNA extrac-
tions, for which finely ground tissue help to
maximize yield (Yockteng et al. 2013). Because
gDNA has a tendency to get easily sheared,
delicacy is required in its preparation for down-
stream applications. Genomic DNA is sensitive
to repetitive pipetting (Murray and Thompson
1980; Doyle and Doyle 1987), vortexing, and
violent shaking. Using wide-bore pipet tips can
help minimize mechanical damage to DNA
(Fig. 5.1; Sahu et al. 2012; Healy et al. 2014). In
contrast, vortexing or violent shaking does not
reduce RNA integrity (Fig. 5.2; Iandolino et al.
2004; Xiao et al. 2015).

5.2.3 Removal of Contaminants

Polysaccharides and polyphenols are the most
problematic metabolites that persist in nucleic
acid extracts from grapevine leaves (Lodhi et al.
1994; Hanania et al. 2004; Marsal et al. 2013).
These reduce yield and can impair the activities
of ligases, endonucleases, and polymerases
(Fang et al. 1992; Kim et al. 1997; Sharma et al.
2002; Iandolino et al. 2004). During cell lysis,
polyphenols are readily oxidized and can form
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Fig. 5.1 Workflow of DNA isolation from grapevine
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complexes that can co-precipitate with nucleic
acids and causes preparations to brown (New-
bury and Possingham 1977; Kim et al. 1997;
Peterson et al. 1997; Varma et al. 2007).
Polysaccharides can also co-precipitate with
nucleic acids and impart a sticky and highly
viscous consistency that is challenging to remove

(Newbury and Possingham 1977; Maliyakal
1992; Lodhi et al. 1994; Iandolino et al. 2004;
Varma et al. 2007; Sahu et al. 2012). The
abundance of these metabolites varies with
developmental stage and exposure to
biotic/abiotic stresses (Braidot et al. 2008). Other
than polysaccharides and polyphenols, proteins

Total RNA

2% CTAB 
2% PVP 
2M NaCl 
100 mM Tris-HCl 
25 mM EDTA 
2% 2-mercaptoethanol 
Spermidine (0.8g/L) 

Tissue Collection

Grinding

Homogenization
and Cell Lysis

Pulverize tissue to a fine powder
using a mechanical mill

Add pre-warmed buffer and
vortex vigorously. 10 ' incubation
at 65oC.

Solvent Extraction
24:1 Chloroform:Isoamylic alcohol

Precipitation

Tissue debris and degraded
proteins are removed. 1-2X
solvent extraction at 4oC

RNA precipitation with
2.5 M LiCl. Cold
incubation 10'-ON at
-20oC. 2X, 70 % ethanol
washes

Total RNA with small
RNAs enrichment

RNA precipitation with 1-2
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incubation ON at -20oC. 2X,
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Elution

Column-based RNA
cleanup

Elute with warm nuclease-free
water 

Efficient removal gDNA and
residual contaminants 

Lysis Buffer: 

Fig. 5.2 Workflow of RNA isolation from grapevine
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can also co-precipitate with nucleic acids during
isolation that may inhibit restriction endonucle-
ases and contribute to DNA shearing and
degradation (Hanania et al. 2004; Varma et al.
2007). In addition to high levels of polysaccha-
rides and polyphenols and degradative nucleases,
berries are highly acidic and, when ripe, have a
relatively lower number of expressed genes
(Iandolino et al. 2004; Reid et al. 2006; Mas-
sonnet et al. 2017; Minio et al. 2019a). Together,
these variables can reduce DNA/RNA integrity,
purity, and yield if left unaddressed (Iandolino
et al. 2004; Reid et al. 2006; Romieu 2010; Yang
et al. 2011).

These problems can be circumventedwith good
technique and optimized extraction solutions.
Warm extraction buffers containing high concen-
trations (at least 2%) of cetyltrimethylammonium
bromide (CTAB) and polyvinylpyrrolidone
(PVP) will minimize the carryover of phenolic and
polysaccharides, prevent polyphenol oxidation,
and help precipitate nucleic acids (Figs. 5.1 and
5.2; Iandolino et al. 2004; Varma et al. 2007;
Japelaghi et al. 2011). High-salt concentrations
(1.5–2 M NaCl) in combination with CTAB are
often used to increase the solubilization of
polysaccharides in ethanol for their subsequent
removal (Fang et al. 1992; Peterson et al. 1997;
Varma et al. 2007; Japelaghi et al. 2011; Healy
et al. 2014). Adding Proteinase K (0.4 mg/g tis-
sue), NaCl (2–2.5 M), and 2-mercaptoethanol
(2%) to the extraction buffer will help remove
proteins and inactivate nucleases released during
tissue disruption and homogenization (Iandolino
et al. 2004; Varma et al. 2007). Furthermore, an
additional high-salt/phenol/chloroform wash can
remove persistent polysaccharides, though can
cause up to 50% loss of the sample (Mayjonade
et al. 2016; VanBuren et al. 2015).

Complete removal of residual contaminant
RNA/DNA from nucleic acids preparations is
crucial for NGS technologies. The contaminant
RNA could be eliminated efficiently by addition
of ribonuclease A (RNase A). Up to 20 mg of
RNase A per gram of tissue between chloroform:
isoamyl alcohol extractions efficiently removes
residual RNA and minimize extra manipulations
that could contribute to degradation and loss

(Fig. 5.1; Chin et al. 2016). Similarly, and extra
cleaning step with deoxyribonuclease (DNase) is
recommended that removes lingering gDNA
from RNA extracts (Fig. 5.2; Iandolino et al.
2004; Blanco-Ulate et al. 2017).

5.2.4 Nucleic Acid Precipitation

The selective precipitation of nucleic acids differs
for DNA and RNA and requires further consid-
eration (Marsal et al. 2013; Rezadoost et al.
2016; Xiao et al. 2015). For gDNA, 0.3 M of
sodium acetate (NaOAC) is added to neutralize
the negative charges on DNA, making them
more stable and less water-soluble (Fig. 5.1; Tan
and Chen 2005). Adding one volume of alcohol,
such as ethanol or isopropanol, will cause DNA
to precipitate because it is not soluble in alcohol
(Fig. 5.1; Green and Sambrook 2016, 2017).
Cold incubation at − 20 °C or − 80 °C will
increase DNA recovery. This step should last no
longer than one hour; longer incubations will
also increase the precipitate of CTAB and NaCl
from the solution (Healy et al. 2014).
High-molecular-weight RNA will precipitate in
cold lithium chloride (LiCl, up to 2.5 M), a step
which also helps remove polysaccharides. If
small RNAs are sought after, an isopropanol
precipitation step should be used instead
(Fig. 5.2; Iandolino et al. 2004).

5.2.5 Nucleic Acids Quantity
and Quality Evaluation

The quantity, quality, and integrity of nucleic
acids should be assessed prior to NGS. Quantity
is typically assessed by measuring the fluores-
cence of a dye that binds specifically to
double-stranded DNA or RNA (Nakayama et al.
2016). UV absorbance can be used as a prelim-
inary estimation of nucleic acids quantity and
quality, but it is not recommended to evaluate
quantity because of its relatively poor specificity
and general overestimation of sample concen-
tration (Varma et al. 2007). UV absorbance ratios
(A260/280 and A260/230 ratios) provide information
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about the purity of the sample. Optimal A260/280

will differ slightly for DNA (>1.8) and RNA
(>2.0), and optimal A260/230 is greater than 2.0
(Cheng et al. 2000; Heptinstall and Rapley
2000). Nucleic acid integrity can be verified by
electrophoresis. Conventional electrophoresis
does not adequately resolve high-molecular-
weight fragments. Pulse field gel electrophore-
sis (PFGE) is preferred to evaluate DNA integrity
prior to long-insert sequencing (Fig. 5.3; Guz-
mán and Ecker 1988). RNA integrity can be
estimated with a non-denaturing bleached gel
made with between 1% and 2% agarose (Aranda
et al. 2012). When high-quality RNA is needed
for sequencing libraries, microcapillary-based
electrophoresis instruments that generate an

RNA integrity number (RIN) are appropriate to
assess RNA quality. RIN values greater than 8.0
are usually indicative of high-quality RNA ade-
quate for isoforms sequencing (An et al. 2018).

5.3 Sequencing and Assembly
of Grape Genomes

The sequencing and comparative analyses of
crop genomes provide critical information about
their origins, domestication events, and the basis
of valuable traits (Edwards and Batley 2010;
Feuillet et al. 2011; Morrell et al. 2012; Michael
and Jackson 2013; Thottathil et al. 2016).
Diverse technologies were developed to read the
succession of nucleotides that form the polymeric
DNA molecule. The advent of newer sequencing
platforms was associated with increased read
length, quality, and an exponential decline in
sequencing cost per base pair (https://www.
genome.gov/sequencingcostsdata/). However,
all of the technologies available to date share the
same limitation: They cannot sequence complete
chromosomes. Given this limitation, a recon-
struction of the sequenced fragments is required
to create a genome assembly. High-quality
assemblies have relatively little fragmentation,
with reads assembled into few long sequences.
Measurements like N50 and NG50 values are
widely used to evaluate assembly quality and
indicate an assembly’s contiguity (Earl et al.
2011; Bradnam et al. 2013; Ekblom and Wolf
2014). Another important criterion that describes
assembly quality is gene space completeness,
estimated as the number of highly conserved,
single-copy orthologous genes detected in the
assembly (e.g., BUSCO, Simão et al. 2015).

Plant genome assemblies are challenging to
construct because of their large size and high
repetitive content (Morrell et al. 2012). In addi-
tion, the grape genome is high heterozygous with
significant differences in sequence between par-
ental genotypes that make the assembly of the
genome challenging (Aradhya et al. 2003; Jaillon
et al. 2007; Velasco et al. 2007; Minio et al.
2017; Zhou et al. 2017). The divergence of
haplotype sequences causes ambiguity during the

Fig. 5.3 Evaluation of HMW gDNA quality and
SMRTbell template libraries using pulse field gel elec-
trophoresis (PFGE). Lane 1, 10: High Range DNA ladder
(Thermo Scientific); Lane 2, 9: 2.5 Kb Ladder (BioRad);
Lane 3, 8: 5 Kb Ladder (BioRad); Lane 4: HMW gDNA
suitable for SMRTbell template libraries; Lane 5: HMW
gDNA sheared with a 26 gauge needles (10� shears);
Lane 6: SMRTbell template final library (>20 Kb
SMRTbell template library); and Lane 7: Example of
fragmented or degraded gDNA, not appropriate for large
insert SMRTbell template libraries (small fragments at
10 Kb)
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assembly procedure and increases assembly
fragmentation as a consequence. This section
will discuss methods that mitigate the challenges
associated with sequencing and assembling grape
genomes.

5.3.1 Sequencing Methods Used
in Grape Genomics

Reads from the Sanger sequencer and the 454
pyrosequencer were used to create the first grape
genome assemblies (Jaillon et al. 2007; Velasco
et al. 2007). The birth of second-generation
sequencing technologies and their short reads
was accompanied by decreased costs and
increasing throughput and sequencing quality.
However, short reads are not suitable for assem-
bling the highly repetitive genome of grape.
Moreover, short reads deliver highly fragmented
assemblies that underrepresent repetitive content
(Di Genova et al. 2014). High heterozygosity
further makes assemblies fragmented because
assemblers have difficulty in generating consensus
at heterozygous loci (Claros et al. 2012; Kajitani
et al. 2014; Safonova et al. 2015; Pryszcz and
Gabaldón 2016). The advent of long-read
sequencing technologies like Pacific Bioscience
single-molecule real-time sequencing (PacBio
SMRT) and Oxford Nanopore technologies
greatly improved grape genome assemblies.
Though error rates are higher than the short-read
technologies, the longer reads resolve the ambi-
guity of repetitive regions, delivering more con-
tiguous assemblies. By applying diploid-aware
assemblers like FALCON-Unzip, genome
heterozygosity can also be represented in the
assembly (Chin et al. 2016). So far, PacBio SMRT
has been successfully used to reconstruct three
grape cultivars: Cabernet Sauvignon (Chin et al.
2016), Chardonnay (Roach et al. 2018; Zhou et al.
2018), and Carmenere (Minio et al. 2019b).

5.3.2 Assembly Methods Used
in Grape Genomics

The challenges of sequencing and assembling
grape genomes have resulted in very few genome
projects and publicly available assemblies (Jaillon
et al. 2007; Velasco et al. 2007; Di Genova et al.
2014; Chin et al. 2016; Roach et al. 2018; Zhou
et al. 2018). Greater than 12% of the cultivated
grape genome sequence is heterozygous (Jaillon
et al. 2007; Velasco et al. 2007). Jaillon et al.
(2007) reduced genome heterozygosity to *7 %
by inbreeding V. vinifera cv. Pinot noir to create
PN40024. The PN40024 genome has been revised
several times since its initial release. Genetic
linkage information was used to anchor some of
the sequences to chromosomes. Some sequences
were connected to a chromosome but not a specific
location and others not associated with any chro-
mosome were relegated to an “undetermined
chromosome” (Jaillon et al. 2007). The quality of
the anchoring process was greatly influenced by
the limited contig length and the ambiguity of
assembly. The high fragmentation observed in
PN40024 was caused in part by short-read
sequences unable to distinguish identical regions
in the genome longer than the length of the reads.
A consequence of the high fragmentation, the
assembly has gaps in sequence (16 Mb, over 3%)
that intersect protein-coding genes (Venturini et al.
2013; Da Silva et al. 2013). Despite its limitations,
this reference was and continues to be a valuable
resource for grapevine studies.

Almost a decade after the publication of the
PN40024 genome, genome assemblies of
Cabernet Sauvignon (Chin et al. 2016),
Chardonnay (Roach et al. 2018; Zhou et al.
2018), and Carmenere (Minio et al. 2019a, b)
were released taking full advantage of
single-molecule real-time (SMRT) technology.
The availability of long-read sequencing methods
allows to assemble genomes with high
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contiguity, thanks to the development of dedicate
methods, like HGAP (Chin et al. 2013), Canu
(Walenz et al. 2017), and wtdbg2 (Ruan and Li
2019) among the others that are able to handle
such an information regardless of the high
sequencing noise. Furthermore, thanks to the
employment of diploid-aware software for the
genome reconstruction, the Cabernet Sauvignon,
Chardonnay, and Carmenere assemblies are able
to represent their haplotype diversity. The
FALCON-Unzip diploid-aware software first
creates a highly continuous “primary” haploid
assembly and alternative paths (associated con-
tigs). Next, reads are mapped on the primary
assembly, structural variants distinguishing the
two haplotypes are phased, and divergent “hap-
lotigs” are generated by the software relative to
the primary assembly. This strategy produced
genome assemblies that are more contiguous and
complete than PN40024 and include
haplotype-specific gene sequences that are
endemic to the highly heterozygous species. For
example, with an N50 of 2.1 Mb, the Cabernet
Sauvignon contigs are 20 times less fragmented
than the original PN40024 assembly, despite
PN40024 being significantly less heterozygous.
The 368 Mb of haplotigs phased the diploid
structure of *74% of the whole Cabernet Sau-
vignon genome. Although FALCON-Unzip
produces primary assemblies with outstanding
contiguity, the phasing process does have limi-
tations. Over a given region, extremely divergent
haplotypes can be difficult to correctly identify as
such; both of these sequences can be incorrectly
assigned to the primary assembly. This inflates
the estimated haploid genome size (123% of the
expected genome size for Cabernet Sauvignon
primary contigs, 121% for Chardonnay).

5.4 Conclusions

Staggering improvements in the genome assem-
bly quality of grape have been achieved. These
advances are the result of the combined
improvement in nucleic acid isolation methods,
library preparation tools, sequencing

technologies, and available assembling algo-
rithms. Technical challenges remain, including
accurately representing both complete haplotypes
that compose the diploid and highly heterozy-
gous grape genome. Integrating combinations of
sequencing technologies could be a key to further
improving genome assemblies. Proximity liga-
tion sequencing data obtained through the cap-
ture of genome-wide chromosome conformation
(Hi–C) can be used to assist the scaffolding of the
genome assembly, like in the case of a hybrid
approach adopted for Chardonnay in Zhou et al.
2018. Non-sequencing-based technologies, like
optical and next-generation mapping, can also
serve to increase contiguity and better evaluate
the structural differences between haplotypes
(Pendleton et al. 2015). These valuable tools
provide unprecedented opportunities to under-
stand and improve grapevine.
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Abstract
The release of the grapevine genome sequence
has allowed the generation of invaluable data
on gene function, providing tools for a better
understanding of the plant biology. To capi-
talize on this information, the annotation of
the genome has been an ongoing effort
performed by the research community on that
species. Annotation initiatives can take the
form of automatic annotation with gene pre-
diction performed in silico based on the
knowledge of other species and transcriptomic
data as well as manual curation and integra-
tion of results from the literature. The Inter-
national Grape Genome Program created
recently a committee to harmonize the anno-
tation process. The primary aims of the
committee are to provide a unified high
quality and highly accessible annotation of
grapevine genes. To reach that objective,
standard nomenclature for locus identifiers
and conventions for a gene naming system

were set up. Genome annotation is a work in
progress because of new improved annotation
technologies and new discoveries of structural
components and functions within the genome.
As technology and knowledge on genome
functioning improves, it is expected that new
challenges and perspectives will arise in the
field of genome annotation such as the
integration of the role of non-coding areas of
the genome or the integration of polymorphic
diversity within cultivars.

6.1 Introduction

Knowledge of the structure and sequence of the
genome has become an invaluable tool in grape-
vine biological studies. Recent progress in geno-
mic techniques has enabled whole-genome
sequencing for many species, producing great
quantities of data to mine for significant discov-
eries (see Chap. 5). However, complete and
accurate annotation of both the structure and the
function of genome features are necessary to
reduce false-negative (from missing annotation)
and false-positive (from incorrect annotation)
errors in genetic and genomic studies (Steward
et al. 2017). An annotated set of genes (or a gene
sequence that is part of a set) is a tool used on a
daily basis by all researchers in molecular biology,
who are not necessarily fully aware of the level
of accuracy (structural and functional) and
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exhaustiveness of the annotation. To date, the total
number of genes in thewhole grapevine genome is
far from being fully known, an annotation for
many of them is computer-predicted automati-
cally, which presents serious limitations. There-
fore, the actual level of quality of the annotation of
the grapevine genome should be put in perspective
with the most manually curated genomes such as
the human genome. Initially, the first publication
reported that there were approximately 30,000 to
40,000 protein-coding genes (Lander et al. 2001;
Venter et al. 2001). Through additional curation
performed by the GENCODE consortium and the
development of knowledge of genome function-
ing, this initial assertion was reassessed. The
number of protein-coding genes dropped to 19,901
in version 28 of the human genome giving a total
of 58,381 genes including long and short non-
coding genes and pseudogenes (https://www.
gencodegenes.org/stats/archive.html). Even so,
the humangenome is still not considered to be fully
annotated (Southan 2017). The workforce in
grapevine is much smaller than that for the human
genome or for other model plants, such as Ara-
bidopsis or rice; nevertheless, we can benefit from
previous experience and knowledge for these
species to provide a better genome curation.

6.2 Automatic Annotation
in Grapevine

The development of the grapevine genome
annotation is strongly linked to genome sequenc-
ing and the curation of the genome structure of the

reference genome, PN40024 (Table 6.1). The
reference genome has been a central tool for the
research performed on grapevine for more than a
decade (Jaillon et al. 2007). The sequence of the
PN40024 genome is a near homozygous line
related to the Pinot Noir cultivar.

The grape gene annotation is continuously
evolving both for structural and functional
annotations as additional analyses are performed.
There have been two major updates, one in 2010
upgrading the structural sequence from an
8X with a 12X coverage (genome 12Xv0,
Adam-Blondon et al. 2011) and one in 2017 with
reassembly of the 12X sequence [genome 12Xv2
(Canaguier et al. 2017)]. Paralleling the release
of these updates, sequence annotations and gene
predictions were developed, each utilizing
different algorithms for prediction leading to
significantly different sets of genes. The gene
prediction released with the original 8X sequence
was performed in the frame of the same initiative
using the GAZE software (Howe et al. 2002) for
gene prediction; the initial set contained 30,434
genes. For the 12Xv0, several sets of predicted
genes have been developed and used. The V0
gene prediction was developed following the
same modality as the 8X prediction and was
immediately merged into the V1 annotation with
a prediction performed with the JIGSAW soft-
ware (Allen and Salzberg 2005) by CRIBI
(http://genomes.cribi.unipd.it/grape/). This anno-
tation (CRIBIv1, 29,971 genes) was the basis for
designing the first (and sole) microarray platform
that included potentially the whole set of genes
encountered in the genome. It was, for example,

Table 6.1 History of the grapevine reference genome assembly and annotation

Reference genome version Annotation version Responsible institution

8x Genoscope 8x Genoscope, France

12Xv1 Genoscope 12X Genoscope

CRIBI v1 CRIBI, Italy

CRIBI v2 CRIBI

RefSeq annotation NCBI, USA

12Xv2 VCost VIB, Belgium, COST action FA1106, EU

VCost v3 IGGP, International
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used for the grapevine gene expression atlas
(Fasoli et al. 2012) and numerous other studies
(Ghan et al. 2015; Nicolas et al. 2014). Gene
expression studies in following years have
evolved with the RNAseq method, which has
allowed the use of any set of genes, because
transcriptomes can be easily built de novo for
expression data analysis by the RNAseq method.
Several versions were used in the different pub-
lications using RNAseq (e.g., Venturini et al.
2013; Jiao et al. 2015; Gambino et al. 2017; see
Chap. 13).

The CRIBI team, focusing on the identifica-
tion of alternative variants, updated the v1 ver-
sion into a v2 (Vitulo et al. 2014) adding 2258
coding genes and 3336 putative long non-coding
RNAs. This CRIBI v2 gene prediction version is
not to be confused with the genome 12Xv2
sequence version; the CRIBI v2 gene prediction
was performed on the genome 12Xv1, which has
now been reassembled to the 12Xv2. The RefSeq
prediction produced by the Gnomon–NCBI
eukaryotic gene prediction tool (Souvorov et al.
2010) at NCBI identified 27,043 putative genes.
The 12Xv2 genome prediction was performed by
the VIB in the frame of a European COST pro-
gram using the Eugene software (Foissac et al.
2008) was accessible through the ORCAE
annotation platform (Sterck et al. 2012). It is
common to see recent grape publications using
outdated versions of the annotation such as the
V0 because of the lack of visibility or accessi-
bility of newer annotations. A central Web site
with the latest annotations is needed to reduce
confusion and facilitate comparisons.

Each of these versions was built indepen-
dently of each other, each capable of identifying
different genes. In an effort to standardize the
annotation and provide interoperability between
different versions, it was later chosen to merge all
of the previous annotations into a unified version
(COSTv3), which was released with the publi-
cation of the 12Xv2 genome update (Canaguier
et al. 2017). This version at the time of the
publication included 42,414 gene models. How-
ever, this version is regularly updated with

manually curated data. The latest iteration is
available at the URGI Web site (https://urgi.
versailles.inra.fr/Species/Vitis/Annotations). This
latest version of the reference genome annotation
was performed under the auspices of the
Super-Nomenclature Committee for Grape Gene
Annotation (sNCGGa) (Grimplet et al. 2014), an
emanation of the International Grape Genome
Program. The committee regulates the incorpo-
ration of curated data by the community of
researchers. Allowing the use of a dynamic ver-
sion of the annotation should be favored over a
static version because genome annotation needs
to be constantly improved. In addition, in tran-
scriptomic studies, RNAseq allows greater flex-
ibility in the set of studied genes since it is not
constrained to a predefined design of probes as
for a microarray. The GFF files used for read
counts can be constantly and flexibly updated.
Old data can be reanalyzed in light of newer gene
predictions. The latest version of the annotation
also includes in the GFF file all the previous IDs
used for a given gene in older annotations, which
was done in order to facilitate cross-platform data
comparison. The nomenclature scheme was also
designed to facilitate the easy incorporation of
new genes, as discussed later. Table 6.2 shows
the example of the MYBA1 gene, involved in
berry color. It is a well-described gene in
grapevine since the earliest eras of sequencing.
Since its discovery in 2002, 10 different IDs have
been used to identify this gene.

The merging of the datasets was performed by
comparing the sequences produced with the dif-
ferent algorithms and highlighted the discrepan-
cies between results that were generated. The
decision-making process for choosing the best
sequence within the three annotations used indi-
cators of quality related to the frequency of nearly
perfect overlapping sequences in public reposi-
tories. For example, MYBA1 coding sequence
was correctly annotated in three annotations
(Fig. 6.1). The RefSeq sequence was kept in the
final set because it included the longest UTRs.

Many predicted genes (16,444 genes)were only
detected in only one of the three algorithms
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(JIGSAW/GAZE, GNOMON or Eugene), and
many genes (15,288) were detected in all the three
annotations (Fig. 6.2). The differences were related
to many different parameters. Some algorithms
seem to perform better to detect small exons; some
are more adapted for loci that contain long introns.
The variation is also related to the set of transcript
sequences used to correct the genemodels; this type
of analysis might include bias toward genes
expressed in tissues used to produce the data. In
addition, many structural discrepancies were also
encountered for genes identified in several annota-
tions,whichhas implicated thatmanualvalidation is
necessary for many of them. For example, based on

the gene positions in each annotation, 5761 loci
containedmore thanone gene in one annotation and
only one gene in another annotation.

6.3 New Gene Discovery Through
Manual Curation

Automatic annotation is an essential tool for gene
prediction but cannot guarantee exhaustive and
completely accurate prediction for all the genes
models; in fact, the automatic annotation has
many inaccuracies and only should be considered
a crude estimate until the gene prediction has

Table 6.2 Nomenclature history of gene MYBA1

ID for MYBA1 Genome
release name

Annotation
name/source

Position for MYBA1 on
chr02

Date

Before whole-genome sequencing

AB073013 GenBank ID Initial publication (Kobayashi) 2002

1620959_s_at 1615798_at GeneChip
probeset

EST from various cultivars. DFCI gene index
version 4

2003

VVTU17547_at Grapegen
probeset

EST from various cultivars. DFCI gene index
v5 + GrapeGen project EST

2007

Whole-genome sequencing

GSVIVP00038762001 and
GSVIVP00038763001

8X Genoscope 8X 12448352–12449010
12449064–12449458

2007

GSVIVT01022659001 12Xv1 Genoscope 12X 14239792–14240808 2010

VIT_02s0033g00410 12Xv1 CRIBI 12Xv1 14239792–14240808 2010

Vitvi02g01019 12Xv2 ORCAE
annotation

14351795–14352913 2013

VIT_202s0033g00410 12Xv1 CRIBI 12Xv2 14239584–14240983 2014

LOC100233098 12Xv1 RefSeq 14239789–14240887 2014

Vitvi02g01019 12Xv2 12Xv3 14351795–14352913 2017

Fig. 6.1 Alignment between
the gene models from the
three annotations for MYBA1
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been manually inspected with other data such as
full-length transcripts or ESTs. Several studies
based on manual curation were incorporated into
the current set of predicted genes, highlighting
the benefit of manual annotation.

In a previous study (Grimplet et al. 2016b), a
methodology based heavily on manual curation
for the annotation of MADS-box transcription
factor family was used; however, it is nearly
impossible to streamline this approach at high
throughput. Nevertheless, the manual inspection
must be done, bit by bit. This type of approach
also allows the discovery of new genes for
specific conditions. The strategy was to target all
the MADS-box motifs along the whole-genome
sequence to identify all loci of this family of
transcription factors. The surrounding genome
region was examined and compared to other

species to determine if they would correspond to
the putative genes. This strategy proved fruitful
for a subfamily of Type-1 MADS-box genes
poorly described in any plant species; these
grapevine gene sequences were fairly distant
from genes from other species, besides the
MADS-box motif itself. It may be only present in
few embryo cells as in Arabidopsis (Bemer et al.
2010) for which no tissue-specific expression or
RNAseq data have been incorporated in any
grapevine prediction models. Furthermore,
single-cell RNA sequencing has never been
published in grapevine, explaining why their
expression was never detected. As a conse-
quence, automatic annotation software failed to
detect genes of this subfamily because they share
little homology to other species and there was not
enough expression data to validate the models. In

Fig. 6.2 Coverage over the genome 12xv2 of the different annotations. The outer circle represents the gene position on
the unified v3. Inner circles: Red, V1. Green, VCost. Black, RefSeq
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contrast, the same strategy was used on the
GRAS family transcription factor (Grimplet et al.
2016a), but this approach did not show any
benefits in improving the annotation of the
family, all the genes were correctly detected by at
least one algorithm.

Other additions to the latest annotation
include the curated stilbene synthase and terpene
synthase families, which were curated in a pre-
vious publication (Parage et al. 2012) and the
MYB family (Wong et al. 2016). Structural
curation and annotation were also performed (G.
R. Cramer, unpublished results) for the AP2/ERF
transcription factor family using the bioinfor-
matics tools at ORCAE (Sterck et al. 2012).
There were 130 genes previously identified in the
v1 annotation, and this was increased to 152
genes in the current v3 annotation. In addition,
many of the structural annotations were discov-
ered to be incorrect. By comparing sequences to
existing ESTs, the structures could be corrected.
Full-length transcript sequences would greatly
facilitate improvements in gene model predic-
tions in the future, although this may get more
complicated with alternative splicing data.

6.4 Gene Nomenclature
for Improving Data Description
and Interoperability

In order to normalize the nomenclature of the
annotation of grapevine genes so that everyone
could be working on the same page, the IGGP
commissioned the sNCGGa (Grimplet et al.
2014) to define a set of rules for the naming and
annotation of the genes. The guidelines focused
on the definitions on the one hand of the
nomenclature of unique alphanumeric loci iden-
tifiers, and on the other hand, the nomenclature
of genes names with a short identifier and a
longer identifier that should describe the
function.

For the unique alphanumeric identifier, the
rules were defined in the context of previous
attempts of nomenclature in other species and in

grapevine to construct a future-proof model tak-
ing into account probable new gene discoveries
in the reference genome and production of data
in other Vitis species and cultivars. Each element
that composes the ID should contain relevant
information. The ID for the 8X version of the
annotation and the RefSeq annotation was gen-
erated with no species-specific information, thus
providing codes with the only requirement that
they are not redundant in any species. The CRIBI
v1 and v2 incorporated a reference to the taxo-
nomic family and the chromosome number in the
locus ID in addition to the other information
from the original scaffold name and a number
sequentially assigned relative to its chromosome
position. These grapevine models for identifiers
were largely based on models used for Ara-
bidopsis and the Solanaceae for its general
structure. With the vision of providing an anno-
tation system that could be applied to all the
species of the Vitis genus, interoperable and
nonredundant, the sNCGGa recommends the use
of a unique prefix for each species of the family
corresponding to the five-letter prefixes pub-
lished in the UniProt database controlled vocab-
ulary of species (https://www.uniprot.org/docs/
speclist). For the reference genome, belonging to
the Vitis vinifera species, that identifier is
“Vitvi.” For Vitis riparia, it is Vitri or Vitis
labrusca is Vitla. The prefix should be followed
by the chromosome number and a single letter
for the molecule (gene: g; transcript: t; protein:
p). Finally, a five-letter code uniquely attributed
within each chromosome, with no reference to
the position, in order to easily incorporate new
genes on the not-yet allocated numbers. For
Solanaceae and Arabidopsis, genes were allo-
cated to every decimal position on the genome
(at1g00010, at1g00020, etc.) to allow incorpo-
ration of newly discovered genes in between. As
the number of potentially new genes between
two genes is not known it was decided by the
sNCGGa to not use gaps between numbers.
Furthermore, structural rearrangements in future
structural annotations would also mess up a
logically ordered numbering system. It was
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decided that newly discovered genes should
simply be allocated to the next available number
for a chromosome. It also has the advantage to
simplify the nomenclature during the annotation
curation process after the merging of loci com-
pared to sequential numbering, the two loci can
be replaced and classified as “synonyms” of the
new locus.

The main recommendations for the rules for
the functional identifiers (short and long ver-
sions) were primarily to simplify gene names and
not have multiple names with other genes
described in the literature. It is therefore less
important that authors or curators are fully aware
of previous works and nomenclature of the genes
related to their studied models. Other elements of
the guidelines favored the use of nomenclature in
previous studies whenever possible. However,
using new names is acceptable as long as it is not
redundant. This may occur for several reasons. If
a single gene was detected as having been pub-
lished under different names including redundant
names with another gene it would be preferable
to provide an unequivocal new name. It may
specifically happen in an article annotating entire
genes families disregarding the previous anno-
tation. This issue could also typically occur in
whole gene family annotation using a common
prefix describing the family followed by the
chromosome and chromosome position to attri-
bute sequential number for each gene. Such an
approach is not recommended because it is not
sustainable when new genes are discovered. It
also does not provide any potentially useful
information on orthology in other species or
subfamilies. A certain degree of liberty should be
left to the authors for the gene nomenclature,
which also depends on the studied genes fami-
lies; universal rules cannot be defined for all
circumstances.

One proposition is to use the names echoing
Arabidopsis orthologs. This approach has the
advantage to narrow down potential functional
roles for the grapevine genes, but in practice
encountering clear orthologs using phylogenetics
tools is not always possible, specifically in the
large gene family. In these families, some genes

have orthologs, some do not, which force the
curator to use a hybrid system, with genes named
after their orthologs, and others newly named.
For large gene families, many include a sub-
family hierarchy in previously annotated species,
which could be used for naming. This approach
was used to annotate the MADS, GRAS, and
LOB subfamilies.

The major intrinsic protein (MIP) family was
annotated in three studies from different genome
versions. An example of good practice in the
context of the previously annotated family,
Wong et al. recently annotated the major intrinsic
protein (MIP) gene family in grapevine (Wong
et al. 2018) following the guidelines of the
sNCGGa. The grapevine MIPs were previously
annotated (Shelden et al. 2009; Fouquet et al.
2008), and both previous nomenclatures were
considered for the reannotation. Shelden et al.
also took into consideration the previous
nomenclature, for the already described genes,
they either used previous nomenclature (Fouquet
et al. 2008) or corrected genes they considered
mis-annotated; thus, the affiliation between
names is clear. All three studies followed the
classical model for this family to categorize the
members according to subfamilies describes by
their localization, e.g., P(lasma membrane)IP, T
(onoplastic)IP. Wong et al. identified new genes
in the v3 annotation as compared to the previous
study. These genes did not have clear orthologs
within Arabidopsis; in these cases, they assigned
these gene names with new numbers within the
subfamilies. One of the subfamilies (XIP) do not
exist in Arabidopsis. The authors performed
some changes in the nomenclature for the name
uniformity and reflection of phylogenetic simi-
larities (Table 6.3). For example, PIP1 (Vit-
vi12g01740), PIP1-5 (Vitvi15g01109), and a
new gene were renamed (Vitvi18g02210),
respectively, PIP1-2c, PIP1-2a, and PIP1-2b.
Others were renamed to reflect orthology with
Arabidopsis.

There is, however, an occurrence highlighting
the risks of renaming a gene to fit the orthology
of Arabidopsis (Italic in Table 6.3). Vit-
vi13g00255 was originally annotated as TIP1-1
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(Shelden et al. 2009). Wong et al. renamed it as
vviTIP1-3 since it is an ortholog to Arabidopsis
TIP1-3. The name TIP1-3 name was previously
assigned to Vitvi06g01346. This created redun-
dancy since TIP1-3 corresponds to two different
genes in the function of the publication and can
cause confusion. Vitvi11g01601 is another con-
fusing gene (Bold in Table 6.3); it was also not
detected as a MIP in Wong et al., but it was
described with two different names in the two
older studies (NIP4-1 and NIP8-1) that were
assigned to two other genes in Wong et al. Thus,
it would be useful to have a committee that could
review such reannotations and sort through pos-
sible or unforeseen confusion by the changes.
Ideally, the authors of all of the publications
concerned would be involved in sorting things
out so that the community can know that agree-
ment has been reached and use correct annota-
tions in the future.

6.5 Proteogenomics-Based
Annotation

Annotation of the grapevine genome using pro-
teogenomics was performed by (Chapman and
Bellgard 2017). This study resulted in the

identification of 54 proteins different from the
12Xv2 annotation, incorporating 106 novel
peptides when compared to this version. We
compared these 54 proteins to the latest release
of the grapevine genome annotation, 15 were
identical to the putative proteins from this ver-
sion, the annotation of 23 of them was not
improved, and it improved the annotation for 14
of them. The relatively high number of genes not
improved was not related to the efficiency of the
proteogenomics technique by itself. The authors
used a different gene prediction algorithm,
Augustus (Stanke et al. 2006) than the ones
already included in the reference annotation
(JIGSAW-GAZE, Eugene and Gnomon).
Augustus is a tool particularly well adapted for
the inclusion of constraint (such as a known
peptide), which is suitable for the proteogenomic
analysis. For some loci, Augustus was the
algorithm providing the best prediction but not
for other loci. Augustus also tends to deliver
shorter and a greater number of predicted pro-
teins than the other algorithms. It predicted
84,948 genes (Chapman and Bellgard 2017),
twice as many as the current v3 annotation.
Proteogenomics is a valuable tool for genome
annotation with an important potential in the
future.

Table 6.3 Genes labeled
differently within the three
annotations of the MIP
family

Wong et al.
(2018)

Shelden et al.
(2009)

Fouquet et al.
(2008)

Locus ID

VviNIP1-2 VvNIP1;1 Vitvi10g00639

VviNIP4-1 VvNIP3;1 Vitvi14g00966

VviNIP8-1 VvNIP2;1 VvNIP4;1 Vitvi14g01952

Not identified VvNIP4;1 VvNIP8;1 Vitvi11g01601

VviPIP1-2a VvPIP1;5 Vitvi15g01109

VviPIP1-2b Not identified Vitvi18g02210

VviPIP1-2c VvPIP1 Vitvi12g01740

VviPIP1-4 VvPIP1;4 VvPIP1;2 Vitvi15g01110

VviPIP2-7 VvPIP2;2 Vitvi03g00155

VviTIP1-1 VvTIP1;3 Vitvi06g01346

VviTIP1-3 VvTIP1;1 Vitvi13g00255

Bold-labeled genes indicates conflicting names between annotation versions
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6.6 Annotation of Non-coding
Transcriptome

So far, little work has been performed on the
annotation of grapevine non-coding RNA
(ncRNA); some non-coding data from the RefSeq
annotation were integrated into the latest anno-
tation (around 2000). According to what has been
observed in other species a much higher number
of ncRNA is expected in grapevine. There are
currently 28,468 ncRNA in GENCODE v28 for
human and 17,855 for mouse (https://www.
gencodegenes.org/stats/current.html). The role
of ncRNA has be highlighted in plant responses
to biotic and abiotic stresses (Wang et al. 2017;
Nejat and Mantri 2018), but plant ncRNA are
poorly identified; Arabidopsis is the only plant
species present in the NONCODE database
with 3763 transcripts (http://www.noncode.org/
analysis.php). New tools have been developed in
recent years for annotating ncRNA such as
FEELnc (Wucher et al. 2017) or CPAT (Wang
et al. 2013) and significant improvements in the
knowledge of the grapevine non-coding tran-
scriptome is expected.

6.7 Future Perspective
for Improving the Annotation

The proposed set of rules for the gene denomi-
nation were recommended with the unique
requirement of not providing a redundant name.
The most recommended method in the guideline
is the construction of a phylogenetic tree with
grapevine and Arabidopsis genes for a family.
However, in many cases, high levels of dupli-
cation of genes were observed in grapevine after
the divergence with Arabidopsis resulting in little
value of reporting the Arabidopsis annotation of
a single gene in a whole subfamily. Moreover, in
transcription factors families such as the LOB or
GRAS, subfamilies with specific roles, or a
conserved motif were well documented in other

species. Performing phylogenetic analysis on a
multi-species level and attributing genes names
related to the subfamilies provides a very infor-
mative way of annotation.

More and more publications involving
grapevine annotation comply with the nomen-
clature rules. However, there are still many issues
regarding the integration of these data into the
reference genome annotation. Several factors are
slowing the integration process:

1. many recent annotation analyses are still
performed on an outdated version of the gene,
even when following the nomenclature,

2. there are tools available for transposition of
the annotation from older to the latest version
of the genome, but it is adding an extra step in
the integration process, and

3. relatively, few people actually take the time to
input their annotation data into the annotation
platform. An option to simplify the procedure
for the authors would be to send the infor-
mation relative to a gene annotation as gff
format to the committee. Regularly, the
committee would validate the data and inte-
grate them into the updated reference genome
annotation.

Many genome cultivars have been sequenced
in recent years, and many more are expected to
come (Chin et al. 2016; Roach et al. 2018; Minio
et al. 2019a, b; see Chap. 5). The rules drafted by
the sNCGGa were designed to consider this and
provide guidelines to annotate several alleles for
a single gene but so far, the annotation platform
is only dedicated to the reference genome.

6.8 Conclusions

Genome sequencing and annotations are works
in progress. There are constant improvements in
technologies and a need for uniformity of the
nomenclature. Therefore, annotations must be
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flexible and researchers need to have access to
the latest versions. We propose that the current
International Grape Genome Program (vitaceae.
org) host a Web site that gives researchers access
(or links) to the latest annotations. We also pro-
pose that there is a grape community responsi-
bility to voluntarily help in the correction and
updates of this information. Such improvements
can be performed at the Vitis site in ORCAE
(http://bioinformatics.psb.ugent.be/orcae/). This
has to be an ongoing effort as it is expected to
continue for many years to come due to the
massive efforts for manual curation and the
expected sequencing of many more grape
genomes.
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7Molecular Mapping of Grapevine
Genes

Silvia Vezzulli, Agnès Doligez and Diana Bellin

Abstract
In this chapter, we review the history of
grapevine genetics and gene mapping. Genetic
markers are introduced considering both
sequence-based and sequence-independent
approaches used for variant discovery. We
provide a survey of genotyping tools, from
low- to high-throughput platforms.We describe
general principles of map building and imple-
mentation, highlighting specificities for outbred
species such as the grapevine. Then, we review
the different approaches applied for QTL iden-
tification according to the geneticmaterial, from
bi-parental progenies, pedigree-supported seg-
regating populations, to germplasm collection.
In particular, our emphasis is on the relevance of

such studies for the dissection of a complex trait.
We describe the difficult process of identifying
genes responsible for QTLs and the few cases of
QTL cloning. Many years have passed from the
first grapevine marker isolation, the develop-
ment of genetic and physical maps, until the
deciphering of the genome sequence.With such
a wealth of detailed information on wild and
cultivated grapevines, we discuss how data
sharing and multidisciplinary data integration
are the current challenges that the scientific
community faces to effectively translate knowl-
edge into practice.

7.1 Introduction

Several milestones have been achieved in the
molecular mapping of genes and quantitative trait
loci (QTLs) in grapevine (Vitis spp.). At the
beginning of the 1990s, Thomas and Scott (1993)
isolated the first microsatellite marker, and Lodhi
et al. (1995) built the first genetic map of
grapevines. Linkage mapping allowed to detect
the first QTLs for berry-related traits (Doligez
et al. 2002). The first physical map came more
than 10 years later (Moroldo et al. 2008),
immediately followed by the release of the first
grapevine genome assemblies based on Sanger
sequencing (Jaillon et al. 2007) and a combina-
tion of Sanger sequencing and pyrosequencing
(Velasco et al. 2007). The implementation of

S. Vezzulli (&)
Research and Innovation Centre, Fondazione
Edmund Mach, Via E. Mach 1, 38010 San Michele
all’Adige, Italy
e-mail: silvia.vezzulli@fmach.it

A. Doligez
UMR AGAP, University of
Montpellier-CIRAD-INRA-Montpellier SupAgro,
Montpellier, France
e-mail: agnes.doligez@inra.fr

A. Doligez
UMT Geno-Vigne®, IFV-INRA-Montpellier
SupAgro, Montpellier, France

D. Bellin
Dipartimento di Biotecnologie, Università di Verona,
Strada Le Grazie 15, 37134 Verona, Italy
e-mail: diana.bellin@univr.it

© Springer Nature Switzerland AG 2019
D. Cantu and M. A. Walker (eds.), The Grape Genome,
Compendium of Plant Genomes, https://doi.org/10.1007/978-3-030-18601-2_7

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18601-2_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18601-2_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18601-2_7&amp;domain=pdf
mailto:silvia.vezzulli@fmach.it
mailto:agnes.doligez@inra.fr
mailto:diana.bellin@univr.it
https://doi.org/10.1007/978-3-030-18601-2_7


single-molecule real-time sequencing has more
recently allowed to assemble the diploid gen-
omes of “Cabernet Sauvignon” (Chin et al. 2016;
Minio et al. 2017), “Chardonnay” (Roach et al.
2018), and “Carménère” (Minio et al. 2019).

Many grape harvests have passed, and a page
of the molecular history of the grapevine has
been written. We now need to face the challenge
of dissection of complex traits, such as resistance
to biotic and abiotic stress, or oenological char-
acteristics. To help translate genetic knowledge
into grapevine improvement, we argue that
funding should now focus on multidisciplinary
approaches that bridge genetics, physiology,
biochemistry, phytopathology, and agronomy, as
well as the private and public sectors. For
instance, to dissect complex traits, it is crucial to
begin combining high-throughput genotyping
approaches with high-resolution trait phenotyp-
ing methods (see Chap. 10).

7.2 The Variety of Genetic Markers:
Development and Screening

Genetic markers are biological features that are
determined by allelic forms and are used to tag
and track genetic variation. Genetic polymor-
phisms among individuals linked to phenotypic
traits can be used to expedite studies of inheri-
tance and diversity as well as breeding activities
(Xu 2010). The oldest genetic markers are the
morphological (or classical) markers, which
themselves are phenotypic traits. Unlike in
herbaceous and staple crops, in grapevine very
few morphological markers have been described.
These are mainly related to flower sex (Dalbó
et al. 2000; Costantini et al. 2008; Salmaso et al.
2008; Marguerit et al. 2009), pigmentation dif-
ferences (e.g. berry colour, Fischer et al. 2004),
seedlessness (Mejía et al. 2007; Costantini et al.
2008), and presence/absence of specific tissues or
organs (e.g. berry flesh, Fernandez et al. 2006).
Biochemical markers are a different type of
markers and include allelic variants of enzymes,
which are called isozymes. Differences in
enzymes detected by electrophoresis and staining
were exploited mainly to characterize grapevine

germplasm (e.g. Subden et al. 1987; Ortiz et al.
2004), including somatic mutants (de Oliveira
Collet et al. 2005). The major disadvantages of
morphological and biochemical markers are that
they may be limited in number and that are
influenced by environmental factors or develop-
mental stage of the plant (Winter and Kahl 1995).
Nowadays, most grapevine genetic markers are
DNA (or molecular) markers. Unlike phenotypic
and biochemical markers, molecular markers are
more abundant, stable, and independent from
environmental factors and conserved throughout
all cells of an organism (Xu 2010). Table 7.1
lists the main DNA marker types that are cur-
rently available for Vitis spp. and their features.

7.2.1 Genetic Variant Discovery

The literature provides different classifications of
DNA markers. Here, we describe the four types
of markers, which have been most widely
employed in grapevine genetics. We also provide
information on how markers were developed and
whether they were designed based on prior
sequence information or not. The development
and adoption of sequence-based markers started
in the pre-genomic era thanks to Sanger
sequencing of ad hoc regions but was boosted by
the release of the first grapevine genomes (Jaillon
et al. 2007; Velasco et al. 2007).

Random Amplified Polymorphic DNA
(RAPD; Williams et al. 1990) refers to the uti-
lization of a single and random-sequence
oligonucleotide primer for the simultaneous
low-stringency amplification of several discrete
DNA fragments. This type of dominant marker,
i.e. that does not allow the discrimination
between the homozygous and heterozygous
forms, does not depend on the sequence infor-
mation of the target. In grapevine, RAPD mark-
ers were initially applied to DNA fingerprinting
(e.g. Xu et al. 1995) and genetic diversity studies
(e.g. Qu et al. 1996) but were later abandoned
because of low reproducibility (Jones et al.
1997). To overcome such limitation, there was a
remarkable effort to convert RAPD to the more
useful sequence characterized amplified region
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(SCAR) markers (This et al. 1997). Besides a
limited application to genetic mapping (Lodhi
et al. 1995; Dalbó et al. 2000; Fischer et al.
2004), RAPD markers were used in phylogenetic
analyses (e.g. Vidal et al. 1998; Benjak et al.
2005) and were combined with co-dominant
markers to characterize genetic backgrounds (e.g.
Pollefeys and Bousquet 2003).

Amplified fragment length polymorphism
(AFLP; Zabeau and Vos 1993; Vos et al. 1995)
markers are based on the selective PCR ampli-
fication of restriction fragments from a total
double-digest of DNA. In grapevine, most AFLP
analyses are applied on gDNA, few studies used
cDNAs (Polesani et al. 2008); both gDNA and
cDNA types do not rely on prior sequence
information. AFLP markers were initially
developed and employed as dominantly inherited
(e.g. Sensi et al. 1996), subsequently scored as
co-dominant markers thanks to a high-resolution

33P detection (Troggio et al. 2007). An
AFLP-derived method based on the selective
amplification of transposable elements was
developed based on transposable element
sequence information (S-SAP, sequence-specific
amplification polymorphism; e.g. Labra et al.
2004). For grapevine, AFLP markers were
developed to increase the saturation of genetic
maps both along the whole genome (e.g. Doligez
et al. 2002) or locally (e.g. Pauquet et al. 2001)
before whole genome assemblies were available.
In addition, somaclonal variation was analysed
with these molecular markers, independently
(Baránek et al. 2009) or in combination with a
methylation-sensitive amplification polymor-
phism (MSAP) approach (Schellenbaum et al.
2008). AFLP markers were widely used for fin-
gerprinting of genetic resources (e.g. Cervera
et al. 1998) and intra-varietal characterization
(e.g. Blaich et al. 2007; Anhalt et al. 2011), also

Table 7.1 Features of the most employed DNA markers in grapevine

RAPD AFLP SSR SNP

Template gDNA gDNA/cDNA gDNA gDNA

Amount of DNA
required

1–100 ng 1–100 ng 1–50 ng 10–50 ng

Quality of DNA
required

Low High Medium–High High

Type of
polymorphism

Single base
changes/indels

Single base
changes/indels

Changes in the length
of repeats

Single base
changes/indels

Type of
probes/primers

10 bp random
nucleotides

Specific sequences Specific sequences Allele-specific PCR
primers or probes

Prior sequence
information

No No Yes No/Yes

Polymorphic
information content

High High High Medium

Loci multiplex
power

Medium High Medium–High Medium–High

Inheritance Dominant Dominant/Co-dominant Co-dominant Co-dominant

Detection system Gel staining Radioactive/Fluorescence Gel
staining/Fluorescence

Gel
staining/Fluorescence

Automation Medium High High High

Assay throughput Low–Medium Medium Medium–High High

Reproducibility Low Medium High High

Suitability Diversity Diversity and mapping All purposes
(including MAS)

All purposes
(including MAS)
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together with microsatellite markers (e.g. Fossati
et al. 2001; Cretazzo et al. 2010).

Microsatellites, also known as simple
sequence repeats (SSRs, Tautz and Renz 1984),
are tandemly repeated units of short (1–6 bp
long) nucleotide motifs. Di-, tri-, and
tetra-nucleotide repeats are widely distributed
through the genome of plants. In addition to being
co-dominant, an important feature of SSR mark-
ers is their high level of allelic variation, making
them highly informative as genetic markers.
Microsatellites were first discovered in grapevine
by constructing and screening enriched
small-insert clone libraries (e.g. Thomas and
Scott 1993; Bowers et al. 1996, 1999; Di Gaspero
et al. 2005). With the advent of the genome
sequencing projects, numerous SSRs have been
directly identified on contig sequences (e.g.
Cipriani et al. 2008). Over 400 grapevine SSRs
are currently publicly available. SSR markers are
widely established markers for the identification
of grapevine cultivars. Through an international
effort, the grapevine research community defined
a reference set of microsatellite markers and
analysis protocols for cultivar identification (This
et al. 2004; Maul et al. 2012). Many SSR-based
germplasm characterizations and diversity studies
are reported at all taxon levels, from Vitis species
(e.g. Fernández et al. 2008) to V. vinifera (e.g.
Cipriani et al. 2010), including the discrimination
of somatic mutations (Migliaro et al. 2017). SSR
markers also enable a wide range of applications,
comprising the analysis of ancient DNA (e.g.
Gismondi et al. 2016), domestication (e.g. Imazio
et al. 2013), and population structure (e.g. Baci-
lieri et al. 2013). Studies on genetic relatedness
and pedigree reconstruction were performed
using nuclear SSR markers both at large scale
(e.g. Lacombe et al. 2013) and at key cultivar
level (e.g. Bowers and Meredith 1997). Chloro-
plast microsatellite polymorphisms were also
developed and used to demonstrate the maternal
inheritance of chloroplast (e.g. Arroyo-García
et al. 2002, 2006). Finally, because of their mul-
tiallelic nature, reproducibility and transferability
(due to highly conserved flanking sequences)

across diverse genetic backgrounds, SSRs have
been extensively used in mapping studies.

Single nucleotide polymorphisms (SNPs) are
differences in individual nucleotide bases
between DNA sequences (Ganal et al. 2009).
Single base insertions or deletions (indels) in the
genome are also considered as SNPs.
Co-dominantly inherited as microsatellites, SNPs
differentiate from SSR markers for their greater
“informativeness”. Marker informativeness can
be evaluated by using two main criteria: (1) the
number of alleles (i.e. markers with a larger
number of alleles are more likely to be poly-
morphic within any given germplasm set); (2) the
minor allele frequency, a measure used to assess
informativeness of SNP loci and related to
expected heterozygosity when the number of
alleles is two (biallelic marker), as it is usually
the case for SNPs (Jones et al. 2007).

A variety of approaches have been adopted for
discovering SNPs in grapevine, falling into three
categories: (1) in vitro, when new sequence data
are generated; (2) in silico, when relying on the
analysis of available sequence data; (3) indirect,
when the base sequence of the polymorphism
remains unknown (Edwards et al. 2007). In the last
decade, computational approaches have domi-
nated SNP discovery methods due to the advent of
next-generation sequencing (NGS, Varshney et al.
2009) and consequent ever-increasing grapevine
sequence information in public databases. In vitro
approaches include, for example, the first SNP
identification based on Sanger sequencing of
expressed and BAC-end regions (e.g. Salmaso
et al. 2008; Vezzulli et al. 2008b) and the more
recent restriction site associated DNA (RAD) se-
quencing (Marrano et al. 2017). Web-based tools,
such as SNiPlay (Dereeper et al. 2011), have been
developed for in silico SNP identification and
analysis. Indirect SNP discovery strategies that do
not depend on prior sequence knowledge have
been also used. These methods rely on the detec-
tion of base change through differences in the
pattern under denaturing conditions (e.g. SSCP,
Troggio et al. 2008) and in melting temperature
(e.g. HRM, Emanuelli et al. 2014).
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Following the first report (Owens 2003),
SNPs have been widely deployed in grapevine
research. Besides few cases reporting the use of
SNPs as diagnostic markers for cultivar identity
analysis (e.g. Nicolè et al. 2013), this type of
markers has proved useful to define haplotype
diversity (Riahi et al. 2013) and to perform
linkage disequilibrium (LD) and parentage anal-
ysis (e.g. This et al. 2007; Ghaffari et al. 2014).
Coupled with SSRs, SNP markers have been
used for assessing population genetic structure
(Myles et al. 2011; Emanuelli et al. 2013; Laucou
et al. 2018) and for high-resolution mapping (e.g.
Troggio et al. 2007; Teh et al. 2017). Unlike
SSRs, contradictory results have been reported
about SNP transferability between cultivated and
wild grapevines. The transferability of SNPs
discovered in “Pinot noir” to 37 non-vinifera
Vitis accessions was only 2.3% (Vezzulli et al.
2008a). Conversely, SNPs identified by com-
parison of ten V. vinifera cultivars, six wild Vitis
accessions, and the near-homozygous line
PN40024 were shared by 24.3% (Myles et al.
2010). The reported discrepancy in SNP occur-
rence among studies could be due to different
experimental designs and genome distributions
of the studied SNPs; indeed, it is known that SNP
frequency varies along the genome and is higher
along intergenic than intragenic regions (Salmaso
et al. 2004).

7.2.2 Molecular Marker Localization

All DNA markers occupy specific genomic
positions within chromosomes called “loci”
(singular form “locus”). According to their
localization, which is crucial for further appli-
cations, they can be classified into random,
gene-targeted, or functional markers (Andersen
and Lübberstedt 2003). Among all described
grapevine molecular markers, there are examples
for all the categories. Most markers are “random
markers” (namely anonymous or neutral) with no
effect on the expression of the target trait. This is
the case of classical AFLP markers and SSR
markers, which are more abundant in intergenic
regions, also belong to this category.

“Gene-targeted” SSR and SNP markers were also
reported. These include markers developed from
information on gene sequence (e.g. Mejía et al.
2011) or expressed sequence tag (EST) (e.g.
Decroocq et al. 2003; Kayesh et al. 2013). In
addition to markers identified within gene
regions, gene tags located in close proximity to
genes were also identified. For example, the sex
of grapevine flowers is currently targeted through
a marker tightly linked to the sex locus (Battilana
et al. 2013).

The discovery of “functional markers” that are
causal of phenotype variation has been reported
only for few cases. Emanuelli et al. (2014) have
identified functional markers for the VvDXS
gene, which is responsible for the muscat flavour.
Kobayashi et al. (2004) detected the insertion of
the Gret1 retrotransposon into the VvMybA1
promoter and associated it with the loss of
anthocyanin synthesis function in white-berried
varieties. To date, the presence/absence of Gret1,
along with its homozygous/heterozygous state, is
universally adopted as a functional marker for the
characterization, discrimination, and prediction
of berry skin colour (e.g. Walker et al. 2006;
Migliaro et al. 2014).

7.2.3 Genotyping Tools

Molecular markers can be grouped based on the
genotyping tools used to detect them. The first
group includes markers that require a PCR-based
genotyping (RAPD, AFLP, SSR), while the sec-
ond group includes markers based on hybridiza-
tion (e.g. array) or sequencing (e.g.
minisequencing, genotyping by sequencing). The
latter group comprises mostly SNPs. Genotyping
based on SNP markers evolved quickly from
low-throughput (minisequencing or SNaPshot™,
e.g. Troggio et al. 2008; Battilana et al. 2013) to
mid-throughput (SNPlex™, e.g. Pindo et al.
2008; Cabezas et al. 2011) methods. In the last
decade, NGS enabled the generation of
high-throughput genotyping systems. Important
progress has been achieved thanks to the intro-
duction of array-based technologies, allowing the
screening of several thousands of SNPs per assay.
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Myles et al. (2010) designed the first SNP array
(Illumina Vitis9KSNP chip) by using a panel of
17 genomic DNA samples from V. vinifera cul-
tivars and wild Vitis species. Myles et al. (2015)
validated the use of this array-based genotyping
approach to identify large-effect QTLs. Miller
et al. (2013) analysed SNP genotype and
hybridization data to measure the effects of
ascertainment bias and to reconstruct evolution-
ary relationships among Vitis species. The second
high-throughput SNP array (Illumina
Vitis18KSNP chip) was produced as part of the
GrapeReSeq Consortium (Le Paslier et al. 2013)
and then deployed to deeply characterize genetic
resources (De Lorenzis et al. 2015; Sunseri et al.
2018), to assess genetic variability among culti-
vars and biotypes of the same cultivar (Mercati
et al. 2016), and to perform and refine parentage
analyses (Laucou et al. 2018). Overall, from these
studies, it was clear that the application of
array-based technologies to population genetics
may underestimate the real genetic diversity of
the investigated populations, especially when the
discovery panel is evolutionarily divergent from
the studied accessions. Genotyping by sequenc-
ing (GBS) was also applied to grapevine genetics;
GBS was first used to discover SNPs in an F1
population; SNPs were located along the refer-
ence genome and successfully tested for trait
association (Barba et al. 2014). GBS provided
opportunities to generate high-resolution genetic
maps at a low cost; however, for a highly
heterozygous species like grapevine, missing data
and heterozygote under-calling complicated the
creation of linkage maps. To overcome these
limitations of GBS-based genotyping, Hyma et al.
(2015) developed HetMappS, which corrects for
genotyping errors associated with heterozygosity,
independently of parental genotypes. SNP mark-
ers generated with a GBS approach and linked to
a resistance locus have been validated by
Sequenom MassARRAY (Smith et al. 2018a).

The evolution of genotyping tools has prac-
tical implication, impacting breeding activities.
Marker-assisted selection (MAS) is often
employed in breeding programs for wine grapes,
table grapes, and rootstocks, to accelerate and
enhance cultivar development, via parental

selection prior to crossing and progeny selection
during the juvenile phase (Töpfer et al. 2011).
SSRs currently represent the marker system of
choice; whereas, SNP markers, being amenable
to high-throughput detection formats and plat-
forms, hold the potential to become the preferred
marker system in the future (Mammadov et al.
2012). To bridge the gap between marker
development and MAS implementation, a novel
practical strategy with a semi-automated pipeline
that incorporates trait-associated SNP discovery,
low-cost genotyping through amplicon sequenc-
ing (AmpSeq) and decision-making, has been
recently developed (Yang et al. 2016b).

7.3 Parental, Consensus
and Integrated Genetic Maps

Besides diversity and pedigree studies, the most
extensive use of DNA markers is for building
genetic (or linkage) maps. In grapevine, numer-
ous parental and consensus genetic maps have
been developed, mainly with the aim of QTL
detection. Genetic maps served as reference for
marker and gene localization, before the first
release of whole genome sequences (Doligez
et al. 2006a; Vezzulli et al. 2008b), and helped
improve physical anchoring (Troggio et al. 2007)
and measure recombination rates across Vitis
species (Lowe et al. 2009; Delame et al. 2018).

7.3.1 General Map Building
Principles
and Implementation

Two main steps are required to build a genetic
map based on the segregation of DNA markers in
a single bi-parental population. First, markers
have to be grouped into linkage groups based on
two-point recombination rates. Then, within each
linkage group, markers have to be ordered and
distances estimated, based on multipoint recom-
bination rates. Since it is computationally
intractable to compare all possible orders of
markers within a group, several different algo-
rithms are used to efficiently explore the space of
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all possible orders. For grapevine, the most
common methods are (1) the regression mapping
procedure implemented in the software JoinMap
(Stam 1993), which adds loci one by one, finding
the best position with a goodness of fit measure
based on the minimum sum of square errors
(SSE); (2) the multipoint maximum likelihood
(ML)-based algorithms implemented in Map-
Maker (Lander et al. 1987), JoinMap (Jansen
et al. 2001), and Carthagene (de Givry et al.
2005); (3) the modified maximum likelihood
(MML)-based algorithm implemented in TMAP
(Cartwright et al. 2007), which incorporates
possible genotype errors; (4) the algorithm
computing the minimum spanning tree of the
graph associated with the genotype data imple-
mented in MSTMap (Wu et al. 2008).

Once markers have been ordered with one of
these algorithms, the map can be locally refined
by several methods (e.g. ripple to test all possible
permutations in a sliding window, implemented
in most software). Finally, when the best marker
order has been selected, a mapping function is
applied to convert recombination rates into
genetic distances, the most widely used being the
Kosambi function (Kosambi 1944). It is also
possible to build an integrated map from multiple
populations. Two different strategies can be used.
Genotypic data sets from all populations can be
analysed jointly using mapping algorithms anal-
ogous to those for single populations imple-
mented in JoinMap (Van Ooijen 2006),
Carthagene (de Givry et al. 2005), or MultiPoint
(Ronin et al. 2012). Alternatively, individual
genetic maps can be merged using graph theory
or a more recent algorithm based on linear pro-
gramming and implemented in LPmerge
(Endelman and Plomion 2014), with large gains
in computational efficiency and no loss in map
accuracy.

7.3.2 Specificities for Outbred
Species

In grapevine, as in other heterozygous species,
populations used for genetic mapping mainly
result from a cross between two different parents.

Recombinations thus occur independently in
each parent, and these populations are called
pseudo-F1 populations. It is then possible to
build each parental map separately, by using the
marker segregation information for each parent
while ignoring segregation in the other parent.
This is the pseudo-testcross strategy, first pro-
posed by Grattapaglia and Sederoff (1994).
According to this, markers segregating only in
one parent can be used together with the markers
segregating in both parents, which are re-coded
to keep the segregation information for each
parent. The genotypic classes for which parental
origin cannot be determined are set to missing
data. Since linkage phases in parents are
unknown, all genotypic data have to be re-coded
as “mirror” before linkage analysis, by
exchanging alleles (i.e. genotypes “A” re-coded
“H” and vice versa). This re-coded data set is
then analysed together with the original one, as
for a classical backcross, to determine linkage
groups. Twice the expected number of linkage
groups is obtained, with homologous groups
containing the same markers but in the opposite
phase. In a pseudo-F1 population, it is also
possible to build a consensus map by estimating
recombinations between all markers whatever
their segregation type (Ritter et al. 1990), which
yields more precise recombination estimates
(Ritter and Salamini 1996). Among above-cited
software, only JoinMap, Carthagene, and TMAP
can build such consensus maps. Being essentially
biallelic, SNPs are not informative enough for
consensus mapping. It is therefore recommended
to derive multiallelic markers from haplo-blocks
of individual SNPs whenever possible.

7.3.3 An Overview of Published Vitis
Genetic Maps

More than 160 maps (including parental and
consensus ones) have been published since the
first one presented by Lodhi et al. (1995). The
number of markers per map has drastically
increased with the advent of NGS-derived
markers (Fig. 7.1). Map density has been con-
tinuously increasing over the years, reaching

7 Molecular Mapping of Grapevine Genes 109



values of mean distance between markers as low
as 0.1 cM (Fig. 7.2). Most maps have a total
length between 1000 and 1500 cM (Fig. 7.3),
which could therefore be considered as the
“reference” range for Vitis map length, even
though several factors of genetic or environ-
mental origin can affect it. Very short maps
probably correspond to unsaturated maps;
whereas, most very long ones (over 1800 cM),
which show very high marker densities (less than
2 cM), probably result from genotyping errors
and/or difficulty in ordering high numbers of
markers in small populations with low recombi-
nation information. Indeed, most of these long
maps were obtained from populations including
less than 190 offspring individuals.

7.4 Quantitative Trait Loci (QTLs)
Mapping Studies

Genetic maps have been widely used in grape-
vine to assist the detection of QTLs associated to
traits of agronomic interest. Indeed, as in many
other important crops, phenotypic traits mainly
show complex quantitative inheritance in grape-
vine, being under polygenic control, with small
additive or dominant effects of each individual
gene on the variation of the trait. By applying
QTL analysis, taking advantage of available
populations and genetic maps, segments of the
genome most probably carrying polymorphisms
involved in the traits of interest, and thus with
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potential for breeding applications, can be iden-
tified. This approach provides valuable informa-
tion about the specific architecture of the genetic
control of each studied phenotypic trait. Even
though numerous QTL studies are reported in the
grapevine literature, only in few cases have such
analyses led to the identification of the causative
polymorphisms. Most successful QTL cloning
strategies seem to rely on combined approaches
including association studies in germplasm col-
lections, in addition to local marker saturation
and fine mapping in larger populations.

7.4.1 QTL Detection Approaches

Bi-parental segregating populations. Seventy-six
literature records presenting grapevine QTL

studies in bi-parental segregating populations
have been published so far (Table 7.2). These
references include 90 QTL studies, relying on 50
cross populations constituted on average by 166
offspring individuals (ranging from 40 to 424 in
the different populations). Mainly F1 cross pop-
ulations are used in these studies, with a few
exceptions. Four populations obtained by selfing
were used for mapping QTLs associated to
pathogen resistance, berry terpenol content,
vegetative, and oenological traits (Duchêne et al.
2009; Garris et al. 2009; Blasi et al. 2011; Blanc
et al. 2012; Yang et al. 2016a). A cross popula-
tion derived from microvine was also character-
ized in the frame of a QTL study (Houel et al.
2015). Interestingly, more than half of the seg-
regating populations used for QTL mapping were
obtained crossing parents coming from different
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Vitis species, since genetic resistance to patho-
gens, a largely studied trait, is mainly intro-
gressed from non-vinifera species (Eibach et al.
2007).

Both genotypic and phenotypic data are
required for QTL detection. Recent progress on
genotyping tools has already been described, as
well as the use of these data for linkage map
building. Lately, efforts to develop
high-throughput semi-automated or fully auto-
mated strategies for phenotyping grapevines have
started (Bigard et al. 2018; Tello et al. 2018;
Kicherer et al. 2015, 2017a, b; Oerke et al. 2016;
Rose et al. 2016; Coupel-Ledru et al. 2016). The
most widely used software for QTL mapping in
grapevine has been MapQTL, which can perform
QTL detection in bi-parental populations of

heterozygous diploid species (Van Ooijen 2006).
MapQTL remains popular even though a more
recent software running under R environment,
the qtl package, is being introduced for QTL
analysis in grapevine too (Arends et al. 2010),
allowing to detect also QTL�QTL interactions.
MapQTL requires as input files the genotypic
and phenotypic data for all offspring individuals,
as well as the genetic linkage maps. Interval
mapping, composite interval mapping, as well as
nonparametric methods can be selected for
computation. Several QTLs were found with
consensus maps only and not with parental maps,
emphasizing the need to perform detection using
both parental and consensus maps. Most of these
indeed showed dominant allelic effects on the
consensus map. However, the study of parental
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Table 7.2 Main results of QTL detection studies in grapevine

Authors Year Trait
category

Cross Pop
size

Nb
years

Meth Soft Main QTLs per trait: trait
LGs (max % var expl)

Doligez 2002 BMo, S Vv MTP2223-27 � Vv
MTP2121-30

139 3 C Q BW 18 (38%); SN 8, 18
(51%); SW 18 (49%);
SDM 18 (40%)

Fisher 2004 R, P,
BMo, V

Regent � Vv Lemberger 153 3–4 I M PM 15 (65%); DM 5, 18
(70%); V 7, 8, 16; BW 5,
13; AxS 13

Fanizza 2005 C, BMo Vv Italia � Vv Big Perlon 184 3 C M CN 8 (10%), 19; CW 5
(7%), 12, 16, 17; BN 2, 5,
7 (9%), 8, 12, 17; BW 4, 5
(19%), 13, 16, 20

Cabezas 2006 BMo, S Vv Dominga � Vv Autumn
Seedless

118 3 C M BW 1, 9, 15, 18 (44%);
SW 1, 10, 18 (63%); SN 11
(67%)

Doligez 2006 BMe Vv MTP2687-85 � Vv Muscat of
Hamburg

174 3 C M,
Q

Terp 2, 5 (55%), 13, 16

Krivanek 2006 R D8909-15 � F8909-17 137 1? C M P 14 (72%)

Mandl 2006 V Vv Welschriesling � Sirius 92 2 C P LMag 11 (56%)

Mejia 2007 P, BMo,
S

Vv Ruby Seedless � Vv Sultanina 144 2 I M Rip 18 (32%); BW 18
(67%); BD 18 (58%); SW
18 (85%); SN 4 (96%), 16,
18; SDM 18 (64%)

Welter 2007 R, V Regent � Vv Lemberger 144 1–5 C M DM 4, 18 (18%); PM 15
(65%); Lmorph 1 (71%), 2,
5, 6, 7, 8, 10, 11, 12, 13,
15, 16

Costantini 2008 P, BMo,
S

Vv Italia � Vv Big Perlon 163 3 C M F 1, 2, 6 (21%); V 2, 6, 16
(45%); Rip 6 (17%); F-V 2,
6, 16 (37%); F-R 6 (15%);
V-R 2 (22%), 12; BW 1,
12, 18 (43%); SN 2 (23%);
SDM 18 (91%); SW 2, 6,
10, 13, 15, 18 (75%)

Xu 2008 R D8909-15 � F8909-17 188 1 C M Xi 17, 19 (60%)

Battilana 2009 BMe Vv Italia � Vv Big Perlon 163 3 C M Terp 5 (84%), 10

Battilana 2009 BMe Vv Moscato Bianco � Vri Wr 63 174 2 C M Terp 2, 5 (92%)

Bellin 2009 R Vv Chardonnay � Bianca 116 2 C M DM 5, 7, 18 (81%)

Duchêne 2009 BMe Vv Muscat Ottonel � Vv Muscat
Ottonel

121 2 C Q Terp 1, 5 (87%), 10, 13, 15

Fournier-Level 2009 BMe Vv Syrah � Vv Grenache (and
reverse)

191 2 C M,
Q

Ant 2 (62%)

Garris 2009 V Vri PI588289 � Seyval 119 2–3 C Q GC 1, 2, 11, 12, 13 (97%),
15, 17

Marguerit 2009 R, P, C,
F

Vv CS � Vri RGM1995-1 138 1 C M DM 9 (34%), 12; Infl
Morph 1, 2 (38%), 3, 7, 10,
13, 14, 17, 18; Flow Morph
2 (64%), 6, 7, 12, 19; Fert 2
(15%); F 2 (29%), 7, 14

Zhang 2009 R Vv V3125 � Börner 188 2 C M Phyl 13 (67%)

Doligez 2010 C Vv MTP2223-27 � Vv
MTP2121-30

139 2 C M,
Q

Fert 5 (19%)

(continued)
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Table 7.2 (continued)

Authors Year Trait
category

Cross Pop
size

Nb
years

Meth Soft Main QTLs per trait: trait
LGs (max % var expl)

Doligez 2010 C Vv MTP2687-85 � Vv Muscat of
Hamburg

174 2 C M,
Q

Fert 5 (13%), 14

Blasi 2011 R Va Ruprecht � Va Ruprecht 232 3 I M DM 14 (86%)

Fournier-Level 2011 BMe Vv Syrah � Vv Grenache (and
reverse)

191 1 C M,
Q

AntM 1, 2 (27%)

Moreira 2011 R Vv Moscato Bianco � Vri Wr 63 174 3 I M DM 12 (21%)

Moreira 2011 R VRH3082 1-42 � SK77 5/3 94 2 I M DM 1 (77%)

Blanc 2012 R Mr Regale � Mr Regale 191 2 C M DM 18 (25%); PM 5, 14
(24%)

Duchêne 2012 P Vv Riesling � Vv Gewürtztraminer 188 4 M Rq BB 4, 6, 7, 10, 14, 19
(19%); BB-F 2, 6, 7, 14
(39%), 15, 16; F-V 7, 14,
16 (21%), 18

Huang 2012 BMe Vv Syrah � Vv Grenache (and
reverse)

191 2 M Rq SkPA 1, 2, 3, 5, 6, 8, 10,
13, 14, 17 (56%), 18; SePA
1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17
(39%), 18, 19

Marguerit 2012 V, A Vv Cabernet Sauvignon � Vri
Gloire

138 3 M Mu Tr 1, 6 (11%), 11, 17;
TTSW 3 (21%), 5, 11

Schwander 2012 R Gf.GA-47-42 � Solaris 265 4* C M DM 5, 9 (50%), 18

Bert 2013 V, A Vv Cabernet Sauvignon � Vri
Gloire

138 2–4 C M,
Q

Chl 1, 2, 4, 5, 6, 8, 9, 10,
11, 12, 13 (45%), 14, 17,
18, 19; SG 1, 2, 4, 5, 6, 7,
9, 10, 11, 12, 13 (45%), 15,
18, 19

Doligez 2013 BMo, S Vv Syrah � Vv Grenache (and
reverse)

191 3 C M,
Q

BW 1, 4, 7, 8, 12, 13, 17
(31%), 18; SN 2 (48%), 4,
13; SW 1, 2 (45%), 4, 13,
19

Doligez 2013 BMo, S Vv MTP2223-27 � Vv
MTP2121-30

139 5 C M,
Q

BW 1, 4, 11, 14, 17, 18
(61%); SN 5, 18 (59%);
SW 8, 12, 14, 18 (87%);
SDM 17, 18 (84%)

Doligez 2013 BMo, S Vv MTP2687-85 � Vv Muscat of
Hamburg

174 3 C M,
Q

BW 5, 7, 11, 19 (25%); SN
8, 14 (28%); SW 8, 11, 14,
16 (41%); SDM 14 (51%)

Grzeskowiak 2013 P, C Vv Syrah � Vv Pinot N 170 3–5 C M V 2 (44%), 15, 17; Fert 3
(20%)

Guillaumie 2013 V Vv Cabernet Sauvignon � Vri
Gloire

138 2 C M IBMP 3, 5, 12 (11%)

Huang 2013 BMe Vv Syrah � Vv Grenache (and
reverse)

191 1 M Rq VvUFGT 2 (* 35%), 16

Venuti 2013 R 99-1-48 � Vv Pinot N ? 2 I M DM 14 (79%)

Venuti 2013 R Vv Cabernet Sauvignon � 20/3 ? 2 I M DM 14 (75%), 18

Viana 2013 V, C,
BMo, S,
BMe, P

D8909-15 � Vv 90-116 111 1 I Rq? SS 3 (9%); BW 11 (8%);
Ant 2 (12%)

Ban 2014 BMe 626-84 � Iku82 98 4 I M Ant 2 (40%), 14

Barba 2014 R Vru B38 � Vv Chardonnay 71 3 I Rq PM 9
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Table 7.2 (continued)

Authors Year Trait
category

Cross Pop
size

Nb
years

Meth Soft Main QTLs per trait: trait
LGs (max % var expl)

Correa 2014 C Vv Ruby Seedless � Vv Sultanina 137 3 C M CA 5, 8, 9 (24%), 14, 17,
18

Coupel-Ledru 2014 V, A Vv Syrah � Vv Grenache (and
reverse)

191 2 C M Tr 1, 2, 4, 10, 17 (13%),
18; K 1, 2 (12%), 7, 11, 13,
17, 18; Psi 1 (16%), 10, 18;
LA 3, 7, 17, 18 (20%)

Fechter 2014 P Vv V3125 � Börner 202 2–3 C M F 1, 11, 16 (29%); V 1
(20%), 11

Fechter 2014 P GF.GA-47-42 � Villard blanc 151 5 C M F 1, 4, 8 (31%), 14

Huang 2014 BMe Vv Syrah � Vv Grenache (and
reverse)

191 2 M Rq DFR 1, 3, 6, 8, 9, 13, 18
(32%), 19; LDOX 1, 9, 18
(12%); LAR1 1 (56%), 16,
17; LAR2 3, 16, 17 (70%);
ANR 6, 8, 10 (14%), 18

Rex 2014 R Vv V3125 � Börner 202 6* C M BR 3, 4, 10, 14 (22%), 16

van Heerden 2014 R Regent � Vv RedGlobe 206 2-3 C M DM 18 (62%); PM 15
(44%)

Azuma 2015 BMe 626-84 � Iku82 98 1 C M Ant 1 (89%), 2, 6, 7, 13,
14, 18

Carreño 2015 BMo Vv Ruby Seedless � Vv Moscatuel 78 4 C M BF 5, 13 (17%)

Carreño 2015 BMo Vv Muscat Hamburg � Vv
Sugraone

153 2 C M BF 1, 4, 9, 10, 18 (20%)

Chen 2015 P, BMe Beihong � E.S.7-11-49 249 3 C Q Fru 4, 11 (10%), 14, 17;
Glu 14 (8%); SS 1, 14
(11%), 18; Glu/Fru 2, 3, 7
(11%), 9, 17; Ma 6 (17%),
18; TA 6 (17%), 13, 18;
Tar/Ma 18 (16%)

Correa 2015 BMo, S Vv Ruby Seedless � Vv Sultanina 137 3 C M BD 2, 18 (37%); BW 2, 18
(40%); BV 2, 18 (45%);
SDM 18 (70%)

Costantini 2015 BMe Vv Syrah � Vv Pinot N 170 4 C M Ant 1, 2 (89%), 4, 6, 7, 8,
9, 10, 12, 17, 18, 19

Guo 2015 BMe 87-1 � 9-22 149 2 I M BSA 1, 2, 3, 4, 7, 9, 10
(64%), 12, 13, 14, 16, 19

Herzog 2015 R GF.GA-47-42 � Villard blanc 151 1? C M BCI 17? (20%)

Houel 2015 P, V, S,
BMo,
BMe, C

Vv 00C001V0008 � Ugni Blanc flb 129 2–8 M Rq IL 5 (18%), 10; PHY 1, 3,
4, 5, 6, 7, 8, 10 (89%), 13,
16, 18, 19; LA 3, 4 (17%),
10, 17, 19; F-V 16 (14%);
IF 1 (12%); BW 1, 7
(44%), 8, 10; BN 1,3, 4, 7,
8, 12, 14, 16, 19 (43%); SN
7 (76%); CN 2, 7 (25%);
acids 2, 4, 5, 6, 7, 8, 9, 12,
13 (70%), 14, 17, 19;
sugars 2, 7, 8, 16 (18%),
17, 19; K 1, 7, 8, 14 (40%);
osmotica 10, 19 (14%)

Malacarne 2015 BMe Vv Syrah � Vv Pinot N 170 4 C M Fl 1, 2 (73%), 5, 6, 7, 11,
14, 16, 17, 18

Zhao 2015 BMo, P 87-1 � 9-22 149 1? I? M BW 5 (13%), 6; SS 3
(56%)

(continued)
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Table 7.2 (continued)

Authors Year Trait
category

Cross Pop
size

Nb
years

Meth Soft Main QTLs per trait: trait
LGs (max % var expl)

Ban 2016 BMo, P,
S

626-84 � Iku82 98 3–4 C M BW 11 (40%); BC 11, 13
(21%); BF 3, 10 (31%);
SM 11 (21%); SS 2 (24%);
TA 13 (29%)

Cadle-Davidson 2016 R C81-227 � Y315-43-04 205 2–3? C Rq PM 13 (74%)

Cadle-Davidson 2016 R Horizon � Vc B9 156 2–4? C Rq PM 2, 3 (24%), 4, 14

Correa 2016 BMo Vv Ruby Seedless � Vv Sultanina 137 3 C M BF 8 (20%), 18

Coupel-Ledru 2016 V, A Vv Syrah � Vv Grenache (and
reverse)

191 2 C M NT 1, 4, 8, 13, 17 (24%);
DT 1, 2 (13%), 10, 17; Psi
13, 15, 17 (14%); TE 4
(19%), 8, 10, 13, 17, 18;
LA 3, 7, 17, 18 (20%); GR
4 (16%), 10, 15, 17, 18

Ochssner 2016 R Vv V3125 � Börner 202 2–4 C M DM 1, 5 (17%), 7

Pap 2016 R Vv F2-35 � Vp DVIT202 277 2? C M PM 9 (62%), 19

Yang 2016 BMe, P Vri PI588259 � Seyval 424 1 C, m Rq,
G

SS 1, 6 (19%), Ma 1, 6
(26%), YAN 7 (23%)

Zhao 2016 P 87-1 � 9-22 149 1? I? M SSM 5, 6 (78%), 11, 14,
16, 18

Zyprian 2016 R, P GF.GA-47-42 � Villard blanc 151 1–6 C M DM 1, 9, 11, 12, 14, 15,
17, 18 (58%); PM 8, 9, 14,
15 (19%), 16, 18; V 1, 5,
14, 16 (57%); F-V 5, 9, 16
(64%)

Teh 2017 R MN1264 � MN1214 147 2 C Rq PM 2, 15 (16%)

Teh 2017 R MN1264 � MN1246 125 2 C Rq PM 15 (29%)

Barba 2018 R Horizon � Illinois 547-1 366 3 I Rq PCa 1, 2, 7, 15 (46%)

Barba 2018 R Horizon � Vc B9 162 2–3 I Rq PCa 7, 15 (56%); PCl
(23%)

Barba 2018 R Vv Chardonnay � Vc B9 148 2–3 I Rq PCa 15 (80%); PCl 15
(73%)

Clark 2018 R MN1264 � MN1246 125 1–5? ? Rq Phyl 5, 14 (61%)

Divilov 2018 R Vru B38 � Horizon 215 2 M,
m

Rq,
Rb

DM 8, 11 (17%), 14, 16,
18

Divilov 2018 R, V Horizon � Vc B9 162 2 M,
m

Rq,
Rb

DM 5 (15%), 6, 7, 8; LT 7,
8, 15

Henderson 2018 V K51-40 � 140 Ruggeri 40 1? C M NaExcl 11 (72%)

Kono 2018 R, V Vv Muscat of
Alexandria � Campbell Early

94 3–1? I M DM 5 (76%), 7, 18; LHD 5
(79%), 7

Kono 2018 R, V 626-84 � Iku82 95 1? I M DM 5 (54%); LHD 5
(88%)

Richter 2018 Bmo, C GF.GA-47-42
(“Bacchus” � “Seyval”) � “Villard
blanc”

151 2–4 I M PL 1 (28%), 14; BN 10
(17%), 17, 18; BW 10
(17%); CW 2 (17%), 10,
18; BV 12, 17 (20%); PED
1, 11 (24%), 18; RL 2
(12%), 3; RW 18 (14%);
SL 3 (11%); TBV 10
(14%); Wing 14 (13%);
OIV204 1, 2 (19%), 15, 17
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maps proved to remain necessary by revealing
QTLs otherwise undetected or unstable on the
consensus map. This could result from a higher
power of additive QTL detection in parental
maps, where the sample size of each genotypic
class is twice as large as in the consensus map
(Doligez et al. 2013). The introduction of
high-density genotyping was a breakthrough in

the history of QTL mapping. Although increas-
ing map density does not improve the detection
power, high-density genotyping can provide
more precise localization of QTLs (Stange et al.
2013). In grapevine, numerous examples of
dense mapping to saturate specific intervals have
been reported (e.g. Mejía et al. 2011; Rex et al.
2014). High-density genotyping coupled with the

Table 7.2 (continued)

Authors Year Trait
category

Cross Pop
size

Nb
years

Meth Soft Main QTLs per trait: trait
LGs (max % var expl)

Royo 2018 S Vv Red Globe � Vv Crimson
Seedless

292 3 C M SW 2, 5, 14, 18 (83%)

Smith 2018a R Vc C2-50 � Vv Riesling 90 1? I Rq RKN 18

Smith 2018b R Vc C2-50 � Vv Riesling 90 1? I Rq Phyl 14 (?)

Tandonnet 2018 V Vv CS � Vri RGM1995-1 138 1 C M AB 3 (12%); RB 1 (10%),
2, 5; RS 1, 5 (19%); RN-T
9 (21%); RN-S 9 (18%);
RN-M 2 (12%); RN-L 1, 5
(20%); A/R 6, 9, 18 (15%)

Bayo-Canha 2019 Bme Vv monastrell � Vv Syrah 229 6 M M TA 1, 2 (18%); SS/TA 1, 2
(20%), 4; Tar 18, 19
(16%); Ma 4, 5, 8, 9, 15
(29%), 17, 18; Tar/Ma 5, 8
(21%), 11

Lin 2019 R Vv Red Globe � Va Shuangyou 149 5 I M DM 15 (64%)

Saptoka 2019 R Norton � Vv Cabernet Sauvignon 182 2 M M DM 18 (34%)

Vezzulli 2019 R, V Merzling � Vv Teroldego 126 1 I M DM 18 (23%); Poly 15
(15%), 17

Authors: only first author is given. Year: year published. Trait category: A: abiotic stress response; Bme berry metabolites, Bmo berry
morphology, C cluster-related traits, F flower morphology, P phenology, R pathogen resistance, S seeds-related traits, V vegetative traits. Cross:
Vv Vitis vinifera, Vc Vitis cinerea, Vri Vitis riparia, Vru Vitis rupestris, Mr Muscadinia rotundifolia, Va Vitis amurensis, Gloire Gloire de
Montpellier, 00C001V0008: Picovine 00C001V0008. Pop size: number of offsprings in genetic maps. Nb years number of years of phenotyping,
*: number of experiments, with several experiments in the same year. Meth: QTL detection method, I: simple interval mapping, C: composite
interval mapping, M: multiple interval mapping, m: multitrait. Soft: QTL detection software, M: Mapqtl, Q: QTLCartographer, Rq: R/qtl, P:
Plabqtl, Mu: MultiQTL, G: Genstat, Rb: R/bnlearn. Main QTLs per trait: trait LGs (max % var expl): all QTLs passing the 5% genome-wide
LOD threshold (if not given, we considered a classical LOD threshold of 4 for consensus maps and 2.5 for parental maps), max % var expl: for
each trait, the maximum variance observed over years, maps, and LGs is given in parentheses after the corresponding LG, AB aerial biomass, Ant
anthocyanins, AntM anthocyanin methylation, A/R aerial/root ratio, AxS axillary shoot, BB budburst, BB-F budburst-flowering, BC berry
cracking, BCI berry cuticle impedance, BD berry diameter, BF berry firmness, BN berry number, BR black rot, BSA berry skin anthocyanidin, BV
berry volume, BW berry weight, CA cluster architecture, Chl chlorosis, CL cluster length, CN cluster number, CW cluster weight, DM downy
mildew, Fl flavonols, F flowering, Fert fertility, F-R flowering-ripening, F-V flowering-veraison, Flow Morph flower morphology, Fru fructose,
GA gibberellic acid, GC growth cessation, Glu glucose, GR growth rate, Glu/Fru glucose to fructose ratio, IF inflorescence appearance-flowering,
IL internode length, Infl Morph inflorescence morphology, K hydraulic conductance, LA leaf area, LHD leaf hair density, Lmag leaf magnesium,
LMorph leaf morphology, LT leaf trichomes, Ma malic acid, NaExcl Na exclusion, NT night transpiration, OIV204 compactness, P Pierce, PA
proanthocyanidin, PCa phomopsis on canes, PCl phomopsis on clusters, PED pedicel length, PHY phyllochron, Phyl phylloxera, PL peduncle
length, PM powdery mildew, Poly polyphenol leaf content, Psi water potential, RB root biomass, Rip ripening, RL rachis length, RN-L large root
number, RN-M medium root number, RN-S small root number, RN-T total root number, RKN root knot nematode, RS root section, RW rachis
weight, SDM seed dry matter, SG shoot growth, Sless seedlessness, SM sensory maturity, SN seed number, SePA seed per berry, SkPA skin per
berry, SL shoulder length, SPC seed phenolic content, SS soluble solids, SSM seeds maturity, SS/TA ratio total soluble solids to total acidity, Su
sugar content, SW seed weight, TA titratable acidity, Tar tartaric acid, Tar/Ma ratio tartaric acid to malic acid, TBV total berry volume, Terp
terpenols, Tr transpiration, Tar/Ma tartaric to malic acid ratio, TTSW total transpirable soil water, V veraison, V-R veraison-ripening, Wing
shoulder presence, WP predawn leaf water potential, Xi Xiphinema index, YAN yeast assimilable nitrogen
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increase of the progeny size is used for fine
mapping; this approach led to the characteriza-
tion of the powdery mildew resistance locus
Run1 (Pauquet et al. 2001; Barker et al. 2005).

A possible shortcut for QTL detection, and
consequent gene tagging, is bulked segregant
analysis (BSA), which can be used to identify
markers linked to major QTLs for a given trait of
interest. Briefly, two pools or “bulks” of DNA
samples are combined from 10 to 20 individual
plants each, with the most contrasted values for
the target trait, from a segregating population;
markers found polymorphic between these bulks
are likely linked to a major QTL (Michelmore
et al. 1991). BSA was applied to study the
powdery mildew resistance locus Ren1 (Hoff-
mann et al. 2008) and the fleshless berry muta-
tion (Fernandez et al. 2006). A further alternative
to expedite QTL detection is the “limited map-
ping” strategy which relies on (1) generating
local genetic maps for new populations, with
molecular markers from genomic regions that are
already reported to be associated with the trait of
interest in previous studies and (2) associating
these genomic regions with phenotypic data from
these new populations (e.g. Duchêne et al. 2009;
Doligez et al. 2010, 2013; Riaz et al. 2011,
2018).

Pedigree-supported segregating populations.
Some QTL detections assisted by pedigree
information have been performed to validate, by
tracing back, resistant haplotypes against grape-
vine downy mildew (Rpv10, Schwander et al.
2012; Rpv12, Venuti et al. 2013). Recently,
borrowed from animal genetics, an actual
pedigree-based analysis (PBA) has been adopted
for the dissection of resistance traits with oli-
gogenic basis (Peressotti et al. 2015). PBA is a
statistical framework implemented in
FlexQTLTM (Bink 2005), which was designed to
identify, validate, and use QTL information from
pedigree-linked individuals to inform breeding
decision-making. With prior pedigree validation
and identity by descent analysis, the PBA-based
QTL analysis was performed on the basis of the
genotypic data of several segregating popula-
tions, their pedigree-supported parental geno-
types and their validated ancestors, along with

the phenotypic data (downy mildew resistance
parameters) recorded for the progenies and their
parents (the ancestral phenotypes were not nec-
essary). This analysis resulted in the identifica-
tion of three major QTLs on the overall downy
mildew resistance sources, with associated
markers. These markers were most often identi-
fied in one single cross. Consequently, only one
or two favourable alleles of the related QTL were
identified and are exploitable for marker-assisted
breeding, whereas, a breeding program should
include several alleles. Selection for these alleles
only means that many favourable genotypes may
be ignored, which decreases efficiency and leads
to genetic erosion.

Germplasm collections. Association mapping
(AM) has also been used for locating QTLs. AM
overcomes some limits of bi-parental populations
that exploit only the variability present in the
parental genotypes and show large LD extent.
In AM studies, a set of diverse genotypes derived
from germplasm collections and/or breeding
programs is used to constitute an association
panel for mapping QTLs for target traits.
Therefore, multiple alleles are available at each
locus, in contrast to at most four alleles of
bi-parental populations. However, spurious
marker-trait association is often detected because
genome-wide LD between unlinked loci may be
due to population stratification and multiple
levels of relatedness among individuals rather
than to tight linkage of markers with QTLs of
interest. Diversity panels used in association
mapping often have substantial sub-population
genetic structure, since they are mixtures of
geographically distinct genotypes with varying
levels of pedigree relationships (Myles et al.
2009). As a result, subgroups within the diversity
panel can differ for mean trait values and also for
allele frequencies at many loci. This population
substructure can lead to the identification of
false-positive marker-trait associations. Although
advancement in statistical methods helps to
remove the confounding effects of population
structure on association tests and to increase QTL
detection power in most cases (Yu et al. 2006;
Zhang et al. 2010; Korte et al. 2012; Segura et al.
2012; Li et al. 2014), population structure still
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strongly reduces the power of marker-trait asso-
ciation tests (Camus-Kulandaivelu et al. 2005;
Holland 2015).

Genome-wide association scans/studies
(GWAS) or association studies at candidate
genes (CGs) are both based on germplasm col-
lections and are used for genetic dissection of
complex traits. In addition to the higher diversity,
they also take advantage of the long history of
recombination events in natural populations or
during breeding history to identify small haplo-
type blocks associated with phenotypes of
interest across species-scale diversity. Accumu-
lation of recombination events across generations
reduces the extent of LD and thus ensures a finer
exploration of the genome, provided that marker
density is sufficient. As a consequence, the res-
olution of the QTLs found through a GWAS can
directly highlight a few CGs. Because
intra-specific and inter-specific LD can vary
dramatically, LD assessment in the association
panel used is a necessary preliminary step before
GWAS itself. The resolution of AM can vary
dramatically, from the level of individual genes
to several hundred kilobases, depending on the
LD in the association panel and other parameters
(including population structure). GWAS perfor-
mance depends on the rate of LD decay; in
grapevine, LD has been shown to decay fast
while was more extended in the wild V. vinifera
sub-species (Lijavetzky et al. 2007; Nicolas et al.
2016; Barnaud et al. 2006, 2010; Myles et al.
2011; Marrano et al. 2017, 2018). Only few
GWASs have been reported so far, namely about
leaf shape and venation patterning (Chitwood
et al. 2014), seedlessness (Zhang et al. 2017),
acidity (Laucou et al. 2018), berry-related traits
(Marrano et al. 2018; Razi et al. 2019; Guo et al.
2019) or domestication traits (Myles et al. 2011;
Migicovsky et al. 2017; Marrano et al. 2018). CG
approach is used when genes controlling a trait
under study are known in related or model crop
species. It can be used separately and also in
parallel with GW approach. In grapevine, an
example of CG prioritization approach is repor-
ted about proanthocyanidin synthesis (Carrier
et al. 2013). Other CG-based association studies
were performed to dissect anthocyanin

composition, aroma, and cluster characteristics
(e.g. Fournier-Level et al. 2009; Emanuelli et al.
2010; Fernandez et al. 2014; Tello et al.
2015a, b).

7.4.2 Trait Architecture

QTL studies also allow to define the genetic
control of phenotypic traits, through dissecting
the phenotypic variation and determining the
contribution of each QTL. QTLs explaining less
than 20% of the total phenotypic variation are
considered minor QTLs, while QTLs explaining
more than 20% are major QTLs (Davey et al.
2006). QTL studies in grapevine have addressed
several phenotypic traits, which can be arbitrarily
grouped into nine main categories (Table 7.2,
Fig. 7.4).

Disease resistances. The largest number of
grape QTL studies aimed to dissect the genetic
basis of resistance to pathogens, with downy and
powdery mildew resistance being the most stud-
ied. These studies revealed mainly oligogenic
architecture for resistance to downy mildew.
Among 21 QTL studies performed so far, twelve
and five studies consistently revealed major
contributions from genomic regions located in
chromosomes 18 and 14, respectively, explaining
from 25% to 86% of the total phenotypic variance
(Fischer et al. 2004; Welter et al. 2007; Bellin
et al. 2009; Blasi et al. 2011; Blanc et al. 2012;
Schwander et al. 2012; Venuti et al. 2013; van
Heerden et al. 2014; Zyprian et al. 2016; Divilov
et al. 2018; Kono et al. 2018; Sapkota et al. 2019;
Vezzulli et al. 2019). Besides these major con-
tributions, several minor loci were also detected
in different studies, which, however, were less
reproducible across studies (Ochssner et al. 2016;
Moreira et al. 2011; Marguerit et al. 2009; Lin
et al. 2019). These findings fit with the expected
biological basis of plant resistance. Major QTLs
are often found to co-locate with genomic regions
enriched in resistance genes analogous (RGAs;
Donald et al. 2002; Di Gaspero et al. 2007),
which are known to mediate gene-for-gene
pathogen recognition that leads to effector trig-
gered immunity (ETI). The persistence of few
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Rpv3 haplotypes on chromosome 18 across many
resistant varieties generated by breeding for
downy mildew resistance has already been
described by Di Gaspero et al. (2012). Besides the
resistance-associated Rpv3-1 haplotype coming
from the “Seibel 4614” lineage (Welter et al.
2007; Bellin et al. 2009; van Heerden et al. 2014),
other two Rpv3 haplotypes have recently been
validated in segregating populations, namely
Rpv3-2 derived from “Munson” (Zyprian et al.
2016) and Rpv3-3 tracing back to “Noah” (Vez-
zulli et al. 2019). Lately, Foria et al. (2018)
demonstrated that the genetic background influ-
ences the intensity of genetic resistance in the
presence of the same resistance haplotype.

Selection of proper combinations of major
QTLs with the appropriate genetic background
(best-suited minor QTLs modulating major QTL
effects) is critical to obtain high levels of durable
field resistance. This is in agreement with recent
findings in model species hinting to a quantita-
tive inheritance also for ETI (Iakovidis et al.

2016). A similar scenario compatible with oli-
gogenic trait architecture was also found for
other resistance traits. Few major loci for resis-
tance to powdery mildew, Pierce’s disease,
Xiphinema index, phylloxera, and phomopsis
cane and leaf spot were detected, some of which
emerging consistently from different studies (e.g.
chromosome 15 for powdery mildew or pho-
mopsis), together with minor QTLs (Fischer et al.
2004; Krivanek et al. 2006; Welter et al. 2007;
Xu et al. 2008; Zhang et al. 2009; Blanc et al.
2012; Barba et al. 2014; Rex et al. 2014; van
Heerden et al. 2014; Herzog et al. 2015;
Cadle-Davidson et al. 2016; Pap et al. 2016;
Zyprian et al. 2016; Teh et al. 2017; Barba et al.
2018; Clark et al. 2018; Smith et al. 2018a, b).
Alternative approaches to traditional QTL anal-
ysis like BSA or limited mapping strategy have
allowed to confirm such loci as well as to identify
further sources of resistance at these loci (e.g.
Merdinoglu et al. 2003; Hoffmann et al. 2008;
Riaz et al. 2011).
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Fig. 7.4 Number of QTL studies available for each
grape phenotypic trait. Phenotypic traits have been
grouped according to nine different categories. Avail-
able QTL studies addressing each of the traits have been

counted and are shown separately for each category.
Studies addressing more than one trait have been
considered for each trait, to provide an overview of most
studied grape traits
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Other relevant traits. Many QTL studies
focused on other traits of
agronomical/economical relevance, mainly rela-
ted to berry quality and plant phenology. For
table grape, reduction of fruit seed content
without altering fruit size is an appreciated berry
quality trait and therefore a desired breeding
goal, as for many other fruit crops (Varoquaux
et al. 2000). Several breeding programs have
focused on the generation of table grape culti-
vars, combining seedlessness with other berry
quality traits such as large size, muscat flavours,
and crispness. The Thompson seedless (TS) cul-
tivar is the main donor of the stenospermocarpic
grape seedlessness and most of the commercial
table grape varieties descend from this cultivar
(Di Genova et al. 2014). QTL analyses have
dissected the genetic basis of TS-derived
stenopermocarpic seedlessness (Bouquet and
Danglot 1996; Doligez et al. 2002; Cabezas et al.
2006; Mejía et al. 2007, 2011; Costantini et al.
2008; Doligez et al. 2013; Correa et al. 2015;
Royo et al. 2018). QTL studies consistently
revealed the contribution of a major QTL in
crosses from seedless varieties, also located on
chromosome 18, providing evidence of oli-
gogenic trait architecture. Interestingly, the
characterization of the same seed-related traits in
seeded varieties revealed the contribution of
other major and minor QTLs, which could also
potentially be exploited for breeding (Viana et al.
2013; Doligez et al. 2013; Houel et al. 2015; Ban
et al. 2016).

Among berry-related traits, berry morphology
traits like size and weight are major yield com-
ponents. Large berries are desirable for table
grape. For winemaking, smaller berries are pre-
ferred to increase skin-to-flesh ratio and improve
the final concentrations of anthocyanins, tannins,
and aroma. A positive correlation between berry
final weight/size and seed traits has been
observed frequently within populations segre-
gating for seedlessness. QTL studies in such
populations clearly revealed the same major QTL
on chromosome 18, co-localized with those for
seed content previously described (Doligez et al.
2002; Fanizza et al. 2005; Cabezas et al. 2006;
Mejía et al. 2007; Costantini et al. 2008; Doligez

et al. 2013; Carreño et al. 2015; Correa et al.
2015, 2016). A pleiotropic effect on berry size is
likely in these cases (Mejía et al. 2011).

The analyses in seeded cross populations and
with a specific statistical strategy designed to
map residual berry size/weight contributions
detected additional QTLs for berry size that were
not co-located with QTLs for seeds; a promising
discovery that could allow to uncouple seed-
lessness and berry size (Doligez et al. 2013).
Recently, Royo et al. (2018) reported that the
origin of seedless grapes was associated with a
missense mutation in the MADS-box gene
VviAGL11 (Royo et al. 2018).

The accumulation in grape berries of
metabolites like anthocyanins (Fournier-Level
et al. 2009, 2011; Viana et al. 2013; Huang
et al. 2013, 2014; Ban et al. 2014; Azuma et al.
2015; Guo et al. 2015; Costantini et al. 2015),
terpenols (Doligez et al. 2006b; Battilana et al.
2009; Duchêne et al. 2009), tannins (Huang et al.
2012), flavonols (Malacarne et al. 2015), sugars,
and acids (Chen et al. 2015; Houel et al. 2015;
Yang et al. 2016a; Bayo-Canha et al. 2019) have
also been analysed in segregating populations,
often by coupling genetics with metabolomics.
These quality traits are mainly controlled by
minor QTLs with few exceptions. Major QTLs
were found for anthocyanin and terpenols: the
major QTL for anthocyanin content co-located
with the berry colour locus on chromosome 2;
the QTL for terpenol content was mapped to
chromosome 5. Both QTLs were also analysed
by applying approaches exploiting the variation
at these loci or at CGs therein in germplasm
collections, which led to the identification of
phenotype-associated SNP/variants (some of
which already demonstrated to be causative for
the berry colour by Kobayashi et al. 2004 and
Walker et al. 2007) and cloning of the respon-
sible gene (Fournier-Level et al. 2009; Emanuelli
et al. 2010).

A number of QTL studies have also addressed
plant phenology. Understanding the genetic con-
trol of phenological developmental stages (i.e.
flowering, veraison, ripening, etc.) is critical for
creating cultivars adapted to local climate. In
particular, the delay of veraison and ripening is a
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desirable breeding target, since ripening occurring
under very hot summers negatively affects and
uncouples berry quality traits. According to these
QTL studies, a complex inheritance seems to
control these phenology traits, with low contri-
butions scarcely reproducible among studies, even
though a few reproducible contributions were
found (Table 7.2) (Fischer et al. 2004; Mejía et al.
2007; Costantini et al. 2008;Marguerit et al. 2009;
Duchêne et al. 2012; Grzeskowiak et al. 2013;
Viana et al. 2013; Fechter et al. 2014; Chen et al.
2015; Houel et al. 2015; Zhao et al. 2015, 2016;
Ban et al. 2016; Zhang et al. 2016; Zyprian et al.
2016). We cannot exclude that studies in other
genetic backgrounds can reveal also major con-
tributions, since only few studies have been per-
formed for each individual trait. Moreover, it is
possible that individual developmental stages are
collectively controlled by pleiotropic genes.
Therefore, co-location of QTLs for different phe-
nological stages could eventually also be consid-
ered in searching for consistent QTLs.

QTL studies also addressed vegetative traits
and abiotic stress response (Table 7.2). Even
though in rare cases, major genetic controls have
emerged, too few studies were performed so far
to allow a comprehensive view on the genetic
architecture of these traits. Interestingly, a com-
prehensive QTL study has recently addressed the
genetic determinism of cluster architecture,
revealing eight genomic regions which collec-
tively can explain 87% of the genetic variance
for this trait (Richter et al. 2019).

7.5 Genetic Maps and QTLs:
Information Sharing

Recent advance in markers technology has given
a strong impulse to plant genotyping and linkage
mapping. Consequently, the number of plant
studies reporting QTLs has been growing at an
impressive pace. In grapevine, the first QTL
study relying on high-throughput SNP genotyp-
ing, in particular on the NGS-based GBS tech-
nology, appeared in 2014; since then more than
half of all grapevine available QTL studies have
been performed.

7.5.1 Data Integration

Cataloguing, summarizing, and making the ple-
thora of increasing QTL information readily
accessible are the next challenge. The large
amount of detected QTLs calls for the need to
deposit in public databases the raw data (geno-
types, phenotypes, and environmental informa-
tion) of published experiments to avoid losing
precious information and guarantee its effective
exploitation (Zamir 2013). Assembling and
integrating diverse QTL data with other infor-
mation in a “QTL browser” would (1) enhance
our understanding of the genetic regulation of
different phenotypes, (2) assist the QTL cloning
process and facilitate the application of
QTL-derived information in biological research,
and (3) reveal QTLs consistent across studies,
which are particularly valuable for breeding.

Collection of results from different QTL
studies has been implemented both in model
plants (Nijveen et al. 2017; Zeng et al. 2007) and
in crops. The Gramene database (http://archive.
gramene.org/, Ware et al. 2002) was originally
developed as a comparative genome mapping
and functional genomics database for grasses and
rice (Oryza sativa). This database has later been
extended to other species, now including four-
teen ones (Tello-Ruiz et al. 2016). The devel-
opment of a specific QTL tool was also
implemented, which contains the largest online
collection of rice QTL-related data in the world.
QTLs are aligned to the genomic sequence and
can thus be searched as standard genomic fea-
tures to facilitate comparison of QTL genomic
localization and the mining of positional candi-
date genes according to ontology terms. This tool
also integrates information derived either from
functional characterizations or studies on asso-
ciation mapping panels, thus assisting and
boosting the QTL fine mapping process and
validation of genotype–phenotype associations
(Ni et al. 2009).

The Plant Genome DataBase Japan (PGDBj,
http://pgdbj.jp/index.html?ln=en) is another por-
tal website aiming to integrate plant
genome-related information from databases and
the literature. PGDBj includes three component
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DBs. Among these, the DNA marker DB pro-
vides manually and automatically curated infor-
mation on QTLs and related linkage maps and
includes a QTL list for grapevine with chromo-
somal positions and LOD scores. Unfortunately,
the listed genomic regions are not currently
up-to-date (Asamizu et al. 2014). Taxa-specific
databases have also been produced to collect and
manage the growing amount of data and sequence
information in rice, wheat, cotton, and in Sola-
naceae (Ni et al. 2009; Kim et al. 2014; Said et al.
2015a; Tecle et al. 2010). Moreover, specific
tools to manage and mine QTL data have also
been implemented in these databases (Thongjuea
et al. 2009; Smita et al. 2011).

Concerning grapevine, the International Grape
Genome Program (IGGP) has promoted and
coordinated efforts for the release of genomic
resources for the Vitis genus, starting from the
establishing of a French-Italian public consortium
for the reference grapevine genome sequencing
(Jaillon et al. 2007; Adam-Blondon et al. 2016).
A database hosted by the French National
Repository for Plant Genomic Data (URGI,
https://urgi.versailles.inra.fr/Species/Vitis) pro-
vides access to the whole genome sequencing
results from this consortium and to the different
versions of genome assembly as well as annota-
tions, including tools for genome browsing. In
this grapevine dedicated database, some geno-
typing data can be also retrieved. Relevant
information about SSR markers, like links to
external repositories or genomic location through
genome browsing, can be easily accessed. A data
set of 10,207 SNPs derived by resequencing 783
cultivars, with refined genomic locations, which
has been the basis for implementing the devel-
opment of the 18KSNP array for high-throughput
genotyping, has recently been made available
through this Internet site (Laucou et al. 2018).
Finally, this database also hosts information about
public genetic maps, which can be accessed
through the suite GnpMap. However, QTL
information is still lacking. First efforts aiming to
collect and mine literature about grapevine phe-
notypic, “omics” or QTL data are just starting.
New initiatives aiming to coordinate Vitis

genomic data integrations are being funded (see
COST CA17111 INTEGRAPE: Data integration
to maximize the power of omics for grapevine
improvement, http://www.cost.eu/COST_Actions/
ca/CA17111 as an example).

In this context, an additional relevant aspect is
the coordination of ongoing phenotyping
approaches. Grapevine phenotyping is rapidly
improving thanks to advancement in technology
(see Chap. 10), which includes the implementa-
tion of high-throughput semi-automated and
automated methods, besides new statistical and
interpretative models, also adapted from other
plant species (Kicherer et al. 2015, 2017a, b;
Oerke et al. 2016; Rose et al. 2016;
Coupel-Ledru et al. 2016; Bigard et al. 2018;
Tello et al. 2018). This is expected to largely
promote our ability to measure agronomically
relevant phenotypes in many individuals at
unprecedented accuracy, speed, and costs, both
in controlled and field conditions (Houle et al.
2010; Granier and Vile 2014). Some effort to
standardize phenotyping protocols across studies
and facilitate data/QTLs integration is required;
standard phenotyping rules for grapevine have
been defined under the direction of international
plant phenotyping networks for phenomics
(EMPHASIS, ESFRI infrastructure for the syn-
ergistic development and long-term operation of
phenotyping infrastructure in Europe, https://
emphasis.plant-phenotyping.eu/).

An interesting instrument to rationalize and
interpret the plethora of QTL information, espe-
cially with the goal of providing relevant trait
candidates, is QTL meta-analysis (Goffinet and
Gerber 2000; Veyrieras et al. 2007). QTL
meta-analysis is a statistical framework to project
QTLs on a consensus map which allows to
identify and mine co-localizing QTLs among
independent experiments. Indeed, QTLs detected
independently and located in a given region of a
chromosome could possibly represent several
estimations of the position of one single QTL.
This hypothesis can be tested by appropriate
statistical tools, which indicate the most likely
number of “real” QTLs underlying a pool of
QTLs from independent experiments, providing
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alongside consensus positions for these, nar-
rowing down the QTL confidence intervals. The
resulting meta-QTLs are expected to better define
the boundaries of the causative genomic intervals
by integrating information from different studies.
QTL meta-analyses have become popular and
they are used both to summarize QTL informa-
tion about one trait as well as to locally verify the
co-location of QTLs between different popula-
tions as the first step towards QTL validation
and/or prioritization of candidates. Chardon et al.
(2004) first applied this approach to study flow-
ering time in maize by synthesizing several
QTLs from different mapping populations into
meta-QTLs. Subsequent positional cloning and
association mapping analysis found in meta-QTL
intervals two genes effectively involved in
modulating flowering time (Salvi et al. 2007,
2011; Hung et al. 2012). These successful
examples confirmed that meta-analysis is a useful
method for predicting candidate genes and for
developing molecular markers for breeding.
Meta-analysis has been successfully used in
studying QTLs in other crop species like rice
(Khowaja et al. 2009), cotton (Said et al. 2015b),
and potato (Danan et al. 2011). In grapevine, this
approach has been only recently applied to
identify candidate genes for genetic regulation of
plant veraison time (Delfino et al. 2018).

Whole repertoire information describing all
experimentally supported QTLs for a trait in one
species has recently been also condensed into the
“trait QTLome” definition (Salvi and Tuberosa
2015; Martinez et al. 2016). A trait QTLome
reports the map position, allele identity, and
genetic effect in terms of magnitude and type
(additive vs. dominant) incorporating all detected
QTLs relevant for a specific trait. This informa-
tion is of pivotal importance for breeders; in fact,
it provides essential knowledge driving the
selection of the best markers and alleles to be
selected. Martinez et al. (2016) assembled a yield
QTLome database for maize based on published
studies, which summarizes results from several
independent mapping experiments, thereby pro-
viding information on the high genetic com-
plexity for the inheritance of yield. The QTLome
concept has recently been extended to grapevine

to describe the overall knowledge on the genetic
basis of downy mildew resistance (Buonassisi
et al. 2017). QTLome information integrated
with high-density chromosome resolution is
expected to enable the identification of the most
valuable and effective SNP-based haplotypes to
guide the selection of the best parental genotypes
in breeding programs and the recurrent selection
of the best performing individuals.

7.5.2 From Research to Breeding

Although there have been numerous QTL map-
ping studies for a wide range of traits, relatively
few markers have actually been implemented in
grapevine breeding programs and routinely
employed for MAS. The main reason for this
lack of adoption is that genetic markers have not
been always reliable in predicting the desired
phenotype. Many factors influence the detection
of QTLs segregating in a population, namely
QTL properties, environmental effects, popula-
tion size, and experimental error. Generally, the
steps required for the development of markers for
use in MAS include fine mapping, validation of
markers, and, possibly, marker conversion (Col-
lard et al. 2005).

First, more tightly linked markers can be
identified with larger population sizes and a
greater number of markers. High-resolution (or
fine) mapping of QTLs may be used to develop
reliable markers for MAS (at least < 5 cM but
ideally < 1 cM away from the gene) (Michel-
more 1995). Markers should be then validated in
independent populations constructed from the
same parental genotypes or closely related
genotypes to those used in the primary QTL
mapping study. Some studies have warned of the
danger of assuming that marker-QTL linkages
will remain in different genetic backgrounds or in
different testing environments (Reyna and Snel-
ler 2001). Remarkably, Pap et al. (2016) vali-
dated the SSR markers linked to two novel loci
associated to grapevine powdery mildew resis-
tance in hundreds of F1 additional individuals
compared to the primary segregating population
and almost 1000 seedlings from four
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pseudo-backcross populations. Under this per-
spective of QTL stability, it has recently been
recovered the concept of advanced
backcross-QTL (AB-QTL), which combines
QTL analysis and cultivar development by
designing a mapping/breeding scheme for the
simultaneous identification and introgression of
wild haplotypes. AB-QTL relies on segregating
populations in which most of the wild parent
genome that donates the trait of interest has been
purged in early segregating generations by phe-
notypic selection (Tanksley and Nelson 1996).
This is relevant to guarantee QTL stability once
the associated markers are screened in derived
breeding materials. In fact, favourable QTL
alleles identified in early generations often dis-
appear in later backcross generations, once the
donor genes that have epistatic interactions with
the beneficial QTL alleles are removed from
highly V. vinifera genetic backgrounds (Di Gas-
pero and Foria 2015; Foria et al. 2018). Finally,
in order to be implemented in breeding programs,
markers should be reliable, efficient, and
cost-effective. Stable and co-dominant markers
are required for MAS. Among these, SNP
markers are favoured over SSRs, because they
are amenable to high-throughput genotyping
platform (see Sect. 7.2). However, to date, there
are only few cases of SNP implementation in
marker-assisted selection programs of grapevines
(Barba et al. 2014; Zyprian et al. 2015).

Unfortunately, only few results from QTL
mapping studies were converted into practical
genetic improvement in grapevine breeding pro-
grams. In this regard, it is relevant to consider
differences about trait characteristics and genetic
basis. While oligogenic traits, such as disease
resistance, are suitable for MAS, QTL stability
should be evaluated for fruit quality and phe-
nology before the linked markers are proposed to
breeders. Since these complex traits are con-
trolled by several QTLs, it is not always
straightforward to determine which QTLs should
be selected during breeding. When minor QTLs
are chosen for MAS, they should be validated for
stability across environments.

For polygenic traits, innovative selection
approaches, such as genomic selection (GS), are
needed. GS simultaneously estimates the effect
of each marker across the entire genome to pre-
dict the breeding value of individuals, theoreti-
cally capturing more genetic variation for small
effects underneath complex traits. Contrary to
MAS, the contribution of all genome-wide DNA
polymorphisms to the breeding value is accoun-
ted for in the diagnostic model during calibration
(Jonas and De Koning 2013). In grapevine, GS
approach can be advantageous to quickly test in
the field candidates for complex traits such as
bud break and berry weight. This approach has
recently been tested for grapevine in the specific
case of bi-parental populations, in order to speed
up the selection of genotypes (Flutre et al. 2018).
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8Status and Prospects of Systems
Biology in Grapevine Research

José Tomás Matus, Valentino Ruggieri,
Francisco José Romero, Marco Moretto
and Darren C. J. Wong

Abstract
The cultivated grapevine, Vitis vinifera L., has
gathered a vast amount of omics data through-
out the last two decades, driving the imperative
use of computational resources for its analysis
and integration. Molecular systems biology
arises from this need allowing to model and
predict the emergence of phenotypes or
responses in biological systems. Beyond single
omics networks, integrative approaches asso-
ciate the molecular components of an organism
and combine them into higher order networks
to model dynamic behaviors. Application of
network-based methods in multi-omics data is

providing additional resources to address
important questions regarding grapevine fruit
quality and composition. Here, we review the
recent history of systems biology in this
species. We highlight the most relevant aspects
of the discipline and describe important inte-
grative studies that have helped in the global
understanding of how this species responds to
the environment and how it triggers the fruit
ripening developmental program. We also
highlight the latest resources that are available
for the grapevine community to exploit and
take advantage of all the omics data that is
being generated.
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8.1 Introduction

Genes and their products perform complex cel-
lular tasks that are essential for all living organ-
isms. At the molecular level, they are organized
as modules forming part of large networks.
Within these high-order associations, genes/
proteins that are functionally related interact,
regulate each other, or form part of a metabolic
pathway. The functional characterization of these
molecules through forward and reverse genetic
analyses has allowed the dissection of their net-
works and their involvement in diverse cellular
processes. In the last decade, however, a mas-
sively promoted approach to asset the whole
comprehension of a network from a global per-
spective has been the integration of several types
of omics data.

The rise of next-generation sequencing
(NGS) technologies has led to an expansion in
the amount of genomic/transcriptomic data
required to be stored and processed. In addition,
technologies covering proteomics and other
types of omics are rapidly increasing the amount
of data being produced. Scientists are now racing
to develop efficient data analysis algorithms,
user-friendly tools, and software applications,
and establishing extensive hardware infrastruc-
ture for answering different questions of modern
life science. It is hypothesized that the larger the
amount of omics data being generated for a
species the easier for its integration, engendering
more robust and reliable analyses.

The grapevine (Vitis vinifera L.) has become a
“model” system for studying non-climacteric
fleshy fruits. The increasing amount of geno-
mics data being continuously generated within
the grapevine community, after the first grape
genome of the inbred line PN40024 was
sequenced and released in 2007, has certainly
helped in this nomination. The PN40024 gen-
ome, currently on its second assembly (12X.v2)
and its third annotation (VCost.v3) comprises to
date 33,568 genes (Canaguier et al. 2017). With
the purpose of providing biological meaning to
this remarkable amount of data, several initia-
tives have been introduced for describing genes
within their biological context (Grimplet et al.

2009a), including not only in vivo functional
characterizations but also in silico analyses such
as co-expression networks and other integrative
approaches (reviewed by Wong and Matus
2017).

With the commitment of consenting the effi-
cient exploitation of Vitis biological resources
and understanding the genetic and molecular
basis of all processes in this species, the Inter-
national Grapevine Genome Program (IGGP;
www.vitaceae.org) is currently developing the
GrapeIS system. This is an integrated set of
interfaces supporting advanced data modeling,
rich semantic integration and the next generation
of data mining tools linking genotypes to phe-
notypes (Adam-Blondon et al. 2016). Within the
same framework, the recently launched INTE-
GRAPE consortium (COST Action-mediated)
aims to integrate data at different levels to max-
imize the power of omics and establish a man-
ageable and open data platform. The initiatives
mentioned here share the use of FAIR principles
that ensure data are Findable, Accessible, Inter-
operable, and Reusable (Wilkinson et al. 2016).
The establishment of solid integrative data plat-
forms is compulsory to make available interop-
erable grapevine datasets and tools. The
application of systems biology methods has
arisen to fulfil this purpose. Here, we provide a
brief review of the fundamentals of systems
biology and the history of applying integrative
omics methods in grapevine research. The
best-known programming scripts/packages and
web-based resources for the analysis and inter-
pretation of omics-generated data will also be
described. Before examining the state of the art, a
list of terms commonly used in the field of
Systems Biology is presented in Box 8.1.

Box 8.1 Glossary of terms
ATAC-seq: The technology that applies
high-throughput sequencing to assay for
transposase-accessible regions in the gen-
ome effectively analyzing chromatin
accessibility.

Big Data/Data Science: An emerging
discipline that combines computer science
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and statistics to analyze massive amounts
of data with the goal of answering specific
and practical questions of a phenomenon
under study.

ChIP-seq: The technology that couples
chromatin immunoprecipitation (ChIP)
with high-throughput sequencing to ana-
lyze protein-DNA interactions.

Cistromics: The omics technology that
analyses the cistrome or the complete set of
binding sites of a given transcription factor
to the DNA under specific conditions.

Community network: Network built
from as few as three input networks,
diminishing the limitations of each indi-
vidual method. Edges supported by a higher
number of methods are more reliable.

DAP-seq: The technology that couples
in vitro expression of affinity-purified
transcription factors with high-throughput
sequencing of a genomic DNA library in
order to analyze protein-DNA interactions.

Epicistromics: The omics technology
that studies the epicistrome or the complete
set of genomic locations occupied by
nucleosomes carrying histones with dis-
tinct posttranslational modifications under
specific conditions.

Gene co-expression network (GCN):
A undirected network typically built from
transcriptomic data such as RNA-seq or
microarray data where nodes represent
genes and edges are drawn between two
nodes when the corresponding genes are
significantly co-expressed under the ana-
lyzed conditions.

High-performance computing: The
use of supercomputers and parallel com-
putational architectures to massively pro-
cess information in order to solve complex
problems.

High-throughput sequencing (HTS):
Techniques that sequence massive amounts
of DNA in an automatic and parallel
manner. High-throughput in omics is ref-
erenced to the use of automation equip-
ment to address biological questions that

are otherwise unattainable using conven-
tional methods.

MNase-seq: The technique that applies
high-throughput sequencing to the DNA
protected by nucleosomes during micro-
coccal nuclease digestion to effectively
identify nucleosome positioning.

Molecular systems biology: An
emerging discipline at the intersection
between molecular biology, mathematics/
statistics and computer science that inte-
grates massive amounts of omics data with
the final goal of generating predictive
models of biological systems focusing on
biomolecular interactions rather than on
isolated molecular components.

Network: A model of a system where
nodes represent the system components
and edges between nodes indicate an
interaction between the corresponding
components. Networks can be directed or
undirected depending on whether or not
there exists a directionality in the interac-
tions between the system components.
Networks can be weighted when numerical
values are associated with edges in order to
capture specific features of the corre-
sponding interactions.

Next-Generation Sequencing (NGS):
A term to describe a collection of genetic
sequencing techniques that improve upon
the original Sanger sequencing process.
This technique utilizes DNA sequencing
technologies that are capable of processing
multiple sequences in parallel. Also known
as massively parallel sequencing, deep
sequencing or high-throughput sequencing
(HTS).

Omics technologies: Techniques that
detect and quantify massive amounts of
molecules of a specific type from a sample.

Regulon: Group of non-contiguous
genes that are regulated as a unit, gener-
ally controlled by the same regulatory gene
that expresses a protein acting as a
repressor or activator.
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RNA-seq: The application of high-
throughput sequencing to the cDNA cor-
responding to the entire set of transcripts in
a sample. This technology allows
researchers to detect and estimate the
abundance of transcripts (coding and
non-coding) in a sample, also including
alternative splicing variants.

Transcriptional network: A directed
network typically built from cistromic data
corresponding to multiple transcription
factors where nodes represent genes and an
edge is drawn from gene_i to gene_j when
gene_i codifies for a transcription factor
that directly binds to the promoter of
gene_j. Weights can be associated with
edges to represent if the binding of the
transcription factor has an activating,
repressing or neutral effect over the tran-
scription of a target gene.

Transcriptomics: The omics technol-
ogy that focuses on the analysis of the
transcriptome or the complete set of tran-
scripts expressed from the genome under
specific conditions.

8.2 From Elements to Relations:
Overview of Plant Systems
Biology

Systems biology is a computational, mathemati-
cal, and biology-based interdisciplinary field that
focuses on complex interactions within biologi-
cal systems. Its foundation outcomes from
amending the general (Von Bertalanffy 1968)
and living (Miller 1978) system theories and
aims to elucidate biological phenomena applying
a systemic view of interactions between molec-
ular entities instead of describing their individual
composition or function (Mesarovic 1968). By
addressing the cell as a network of genes, their
products, and their interactions, the latter defined
as network motifs or patterns, it is feasible to
study the structural design principles of living
organisms. Distant networks that perform similar

tasks all share similar types of recurring patterns
of interconnections, thus motifs define universal
classes of networks (Milo et al. 2002). From this
and other studies, it was suggested that structures
of different networks were governed by the same
principles. This new paradigm is embodied
within the Oltvai and Barabási life’s complexity
pyramid, here updated and revisited to include
systems biology advancements (Fig. 8.1). In the
model, cell components arrange themselves in
persistent patterns and these in turn form mod-
ules with discrete cellular functions. Finally,
these modules are hierarchically organized,
defining the cell’s large-scale functional
organization.

Historically, reductionist studies in plants
have been aimed for identifying the individual
components associated with the occurrence of
certain phenotypes. Although this approach has
been massively adopted in the last 50 years,
successfully producing extensive repertoires of
plant molecular components, it begun to lose its
effectiveness at the beginning of the current
century when it became apparent that the
majority of phenotypes were produced by com-
plex orchestrations involving myriads of molec-
ular components, many of which were redundant
among them. This scenario became more appar-
ent with the development of the so-called omics
technologies that provide an accurate molecular
snapshot of the biological processes under study
by detecting and quantifying the repertoire of
molecules that are present (Yuan et al. 2008).
Hence, research in molecular biology is gradu-
ally shifting towards a holistic perspective, inte-
grating the individual “omics” datasets, to gain
biologically meaningful aspects of plant systems
(Sheth and Thaker 2014).

The recent development of high-throughput
DNA sequencing, genomics and transcriptomics
have pushed these methodologies to become so
far, the best-established mature and reliable
techniques to characterize molecular systems
(Bolger et al. 2018). Specifically, RNA-seq, the
high-throughput sequencing of the cDNA corre-
sponding to the entire set of transcripts in a
sample, is applied to identify and estimate tran-
script abundance including different isoforms
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produced by alternative splicing as well as to
analyze differential gene expression between
specific conditions (Martin et al. 2013; see
Chap. 13). The main molecular mechanisms
controlling gene expression, namely the interac-
tions between transcription factors and DNA
(recently named “the cistrome”), and the different
posttranslational modifications of histones asso-
ciated with the DNA (epicistrome) are routinely
characterized using techniques such as ChIP-seq;
the combination of chromatin immunoprecipita-
tion with the high-throughput sequencing of the
purified DNA (Chen et al. 2017). DAP-seq is a

technique based on high-throughput sequencing
that studies the cistrome based on the in vitro
expression of affinity-purified transcription fac-
tors (Bartlett et al. 2017). Finally, MNase-seq,
DNase-seq, and ATAC-seq are techniques used
to study nucleosome positioning and chromatin
accessibility that have been shown to highly
influence gene expression (Pajoro et al. 2014;
Sullivan et al. 2015; Pass et al. 2017; Bajic et al.
2018).

Despite the clear methodological and analyt-
ical advantages of performing genomics studies
compared to other omics, it has been

Fig. 8.1 The Oltvai and Barabási’s pyramid of life
reviewed by systems biology approaches. The complexity
of a biological system can be represented by several layers
of functional organization. Starting from the cell’s
building blocks; the life biomolecules, these are respon-
sible for the genetic information to be stored, processed
and finally executed in several developmental programs or
in response to the environment. Genes and their epige-
netic marks, transcripts, proteins and their modifications,
metabolites and their fluxes and even ions can be
collectively characterized and quantified through omics.
The huge amount of data acquired from these technolo-
gies can only be handled with intensive bioinformatics. At
the second level, biomolecules form gene regulatory and
protein-interacting motifs and subcellular signaling/
metabolic pathways, all of them with the inherent capacity
of impacting each other. As these biological processes are
tightly connected (e.g., a set of genes, proteins and

metabolites being activated in response to a pathogen)
they are organized in functional modules. Complex
biological processes can be studied from a
“multi-omics” perspective thanks to the recent improve-
ments in genome-wide techniques and systems biology
methods. Modules can be studied by integrative systems
biology tools but can be further organized in higher
hierarchical multidimensional structures. Larger-scale
modules are also dynamic in time and translate into
phenotypes. In recent efforts, modeling algorithms have
been applied to largely annotate phenotypes (i.e., “phe-
nomics”). Computational biology has supported an ade-
quate data management, efficient data analysis, and
user-friendly software applications to study biological
systems at each of these levels. Although the individual
components are unique to a given organism, the topologic
properties of networks are surprisingly similar (Adapted
from Oltvai and Barabási 2002)
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demonstrated that the sole use of genomics and
transcriptomics is not sufficient to predict phe-
notypes from the molecular state of biological
processes (Papatheodorou et al. 2015). In this
respect, proteomics (the analysis of the proteome
or the entire set of proteins), and metabolomics
(the study of the metabolome or the complete set
of metabolites) are currently under development
aiming at providing a more exhaustive molecular
description of biological systems (Ramalingam
et al. 2015).

At this point, the massive amounts of data
generated by omics technologies is being stored
in public databases considerably exceeding the
analytical capacities of humans, making impera-
tive the use of computational resources to extract
relevant information. Currently, this scenario is
not exclusive to molecular biology as it pervades
science in a more general context by inducing the
emergence of the so call Big Data or Data Sci-
ence. This is a discipline that combines
high-performance computing, such as the use of
computational clusters, with sophisticated statis-
tical methods, in order to answer specific ques-
tions of phenomena under analysis (Carmichael
and Marron 2018). In molecular biology, this has
promoted the development of “Molecular Sys-
tems Biology”. This emerging discipline lays at
the intersection between molecular biology,
computer science, and mathematics/statistics
(Fig. 8.2). The main methodology in molecular
systems biology pertains to the generation of
omics data and their integration with already
existing data freely available in public databases.
This massive amount of data is integrated and
analyzed typically using multivariate statistical
methods implemented with high-performance
computing. Specifically, molecular systems
biology pursuits the development of
computational/mathematical models of the
interactions among the molecular components of
the systems responsible for an observed pheno-
type rather than focusing on the functioning of
the isolated individual components. Here, the
ultimate goal relates to the generation of tools
that allow to model and predict the emergence of
specific phenotypes or responses in biological
systems (Sheth and Thaker 2014). Commonly,

systems of differential equations are used as the
modeling structure to achieve this goal.
Nonetheless, network science is emerging as a
central paradigm in molecular systems biology as
an effective modeling framework (Li et al. 2015).

In the context of network science, a network is
a graph whose nodes represent the molecular
entities of the system and a directed or undirected
edge is drawn between two nodes to specify the
interaction between the corresponding molecular
components. A numerical value termed weight
can be incorporated in the edges to capture the
strength of the represented interaction. Topo-
logical studies of a network, such as the analysis
of free-scale properties, can identify relevant
nodes called hubs that are highly connected in
the network and play key roles in network
robustness and dynamics. Other topological
parameters such as “node transitivity”, “be-
tweenness” and “eccentricity” are especially
suitable to identify relevant molecular compo-
nents of the biological system under analysis.
Clustering techniques and community analysis
are used to unravel the underlying structure of
networks and are applicable in molecular systems
biology to identify molecular modules that
function with a certain level of separation from
the rest of the system (Aoki et al. 2007). Finally,

Fig. 8.2 Schematic representation of Molecular Systems
Biology as a discipline resulting from the overlapping of
computational, mathematical, and biological explorations
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network motif analysis or the identification of
non-random subgraphs can shed light on the
building blocks that occur recurrently in biolog-
ical systems (Defoort et al. 2018).

Two types of gene networks are intensively
used in molecular systems biology; gene
co-expression networks and transcriptional net-
works. Gene co-expression networks are nor-
mally constructed based on a compendium of
microarray and only recently, RNA-seq data sets.
These are undirected networks where nodes
represent genes and undirected edges are drawn
between nodes to represent co-expression rela-
tionships between the corresponding genes.
Transcriptional networks are constructed from
ChIP-seq data corresponding to sets of different
transcription factors binding to the genome.
These are directed networks where nodes repre-
sent genes and a directed edge is drawn from
gene_i to gene_j, where gene_i codifies for a
transcription factor that binds to the promoter of
gene_j. Transcriptional networks can be further
refined by adding RNA-seq data corresponding
to mutants or overexpressors of the transcription
factors previously analyzed using ChIP-seq.
According to this, weights can be associated with
edges to represent an activating, repressing or
neutral effect of the binding of the transcription
factor to the promoter of the target gene.

8.3 A Decade Conducting
Grapevine Omics. What’s
Yet to Come

Genomics resources for Vitis species have
increased promptly within the last fifteen years,
beginning with the sequencing of expressed
sequence tags (ESTs) (Da Silva et al. 2005;
Moser et al. 2005). These resources have per-
mitted to quantitatively assess the grape tran-
scriptome by aiding the development of cDNA
and oligonucleotide microarrays (Terrier et al.
2005; Waters et al. 2005). Quantitative data
acquisition through microarray analysis permitted
large-scale mRNA profiling studies of gene
expression to unravel the most important events
of berry development and ripening. However, it

was not but after the concomitant release of the
V. vinifera PN40024 genome sequence (Jaillon
et al. 2007; Velasco et al. 2007) that a burst of
new transcriptomic technologies emerged for this
species. In the Affymetrix Grape GeneChip
Genome Array, approximately one-third of the
expected genes are represented. This platform
was largely used for tissue-specific mRNA
expression profiling in grape berry tissues
(Grimplet et al. 2007; Deluc et al. 2007) and
responses to abiotic stresses (Tattersall et al.
2007; Cramer et al. 2007) and compatible viral
diseases (Vega et al. 2011), where all the pro-
duced data were collected and unified in the
PLEX database (PLEXdb, http://www.plexdb.org;
Wise et al. 2007). The microarray Nimblegen
platform was developed soon after (Fasoli
et al. 2012; http://ddlab.sci.univr.it/Functional
Genomics/), with an array representing more
than 98% of the genes predicted in the 12xV1
grapevine genome annotation (090918 Vitus
vinifera exp HX12 chip, with approximately
29,549 denoted genes). To date, this platform has
generated the largest amount of transcriptomic
data for this species (1605 experiments until July
2018). All developed arrays in Vitis can be found
in ArrayExpress EMBL-EBI; https://www.ebi.ac.
uk/arrayexpress/).

Although in situ oligonucleotide arrays are
still widely used for gene expression profiling in
grapevine, a rapid development of new nucleic
acid technologies have been largely adopted for
genomic, transcriptomic and metagenomic stud-
ies in grapevine in the last years (Fig. 8.3a).
A variety of NGS technologies, including the
454 (Roche) (Margulies et al. 2005), the Genome
Analyzer/Hiseq (Illumina Solexa) (Bennett et al.
2005) and the SOLiD (Life Technologies), as
well as newer platforms such as Helioscope
(Helicos) (Milos 2008), PacBio RS and Sequel
(Pacific Bioscience) (Eid et al. 2009), Oxford
Nanopore Technologies for single molecular
sequencing and Ion Torrent (Life Technologies),
based on a semiconductor chip (Rothberg et al.
2011), are available. Thanks to high-throughput
and cost-efficient capabilities of these technolo-
gies, an unprecedented amount of data has been
generated and a huge amount of genomic and
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transcriptomic data has accumulated exponen-
tially in Vitis species (Fig. 8.3b, c).

The combination of high-throughput
sequencing technologies and the grapevine
PN40024 genome (Jaillon et al. 2007) has facil-
itated comprehensive sequence analysis in
diverse grapevine germplasms (Table 8.1). Cul-
tivars with different agronomic and oenological
characteristics have been re-sequenced to iden-
tify genetic differences underlying the distinct
phenotypes (Da Silva et al. 2014; Di Genova
et al. 2014; Cardone et al. 2016; Chin et al. 2016,
Minio et al. 2017, 2019; Roach et al. 2018; see
Chap. 05) and comprehensive inventories of
sequence variations were generated (Mercenaro
et al. 2017; Zhou et al. 2017; Liang et al. 2019).
On the other hand, transcriptome sequencing
using NGS technologies has been widely used to
detect gene expression in grapevines (see
Chap. 13), including fruit (e.g. Zenoni et al.
2010), leaves (e.g. Liu et al. 2012), flowers (e.g.
Domingos et al. 2016), in response to different
biotic and abiotic stresses (e.g. Cheng et al. 2015;
Blanco-Ulate et al. 2015; Amrine et al. 2015;
Tillett et al. 2011) or to describe the expression
of specific transcription factors (e.g. Sweetman
et al. 2012). Other grape researchers have used
high-throughput expression to examine the phe-
notypic plasticity of cv. “Corvina” berries at
various developmental stages (Dal Santo et al.
2013). Despite its primary objective is to char-
acterize expression profile, RNAseq technologies
have been also used to identify differential
splicing activity and single nucleotide polymor-
phisms (Zenoni et al. 2010; Vitulo et al. 2014) as
well as identifying and profiling long non-coding
RNAs (Vitulo et al. 2014; Harris et al. 2017).

Since grapevine naturally hosts a reservoir of
microorganisms that interact with the plant and
affect both the qualitative and quantitative scale
of wine production (Martins et al. 2013; Zar-
raonaindia et al. 2015), grape metagenomics
studies also are assuming an increasing reso-
nance in the grape scientific community.
Recently, high-throughput technologies have
been used to characterize bacterial communities
of different grapevine plant portions, such as
leaves and berries (Leveau and Tech 2010), to
assess the microbial communities of soils
(Zarraonaindia et al. 2015; Burns et al. 2015,
2016) and to survey the associations involving
grapevine microbiota, fermentation and wine
chemical composition (Bokulich et al. 2014,
2016).

Despite the study of epigenetic marks (e.g.,
histone posttranslational modifications and DNA
methylation) are known to influence gene
expression and largely affect the phenotype of
plants, there are still scarce epigenomic data and
related resources available for grapevine.
Nonetheless, Fortes and Gallusci (2017) recently
proposed this species as an essential perennial
woody plant model for such studies due to the
impact of epigenetic modifications on agricul-
tural traits, and also because epigenetic marks
may serve as an interface between the environ-
ment and the genome (reviewed by Fabres et al.
2017; see Chap. 9). Very recently, Xie et al.
(2017) used methylation-sensitive amplified
polymorphisms (MSAPs) to find global patterns
of DNA methylation and explored the genetic
and epigenetic diversity of a single cultivar
across 22 vineyards located in six different wine
sub-regions.

b Fig. 8.3 Next-generation sequencing and array data
available for grapevine. Next-generation sequencing and
oligonucleotide array have represented two relevant
genome-scale methodologies for grapevine studies. The
data presented were retrieved from the Sequence Read
Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra) and
Gene Expression Omnibus (GEO) NCBI repositories
(https://www.ncbi.nlm.nih.gov/gds/) as of December
2018, by using a keyword search “Vitis” or “Grapevine”.
a Timeline of grapevine experiments performed since
2005 according to the methodology used (in situ oligonu-
cleotide array or NGS). b Number and distribution of

grapevine experiments from high-throughput sequencing
technologies. The inner-circle represents the distribution
according to the library layer (Genomics, Transcrip-
tomics, Metagenomics) while the outer circle is according
to the library strategy used (e.g., RNA-seq, Chip-seq,
etc.). For each outer section, the number of experiments
(SRA) and the Giga base pair of data (Gbp) were also
reported. c Distribution of the NGS platforms used,
including Roche 454 GS System, Illumina Genome
Analyzer, Applied Biosystems SOLiD System, Helicos
Heliscope, Pacific Biosciences SMRT
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Proteomics resources have also arisen in the
last decade, despite at a much lower rate. While
at the beginning most of these studies used
two-dimensional gel analysis and focused on
berry metabolism coupled to abiotic stress
responses (Vincent et al. 2007; Jellouli et al.
2008; Grimplet et al. 2009b), high-resolution
techniques have also been applied to grape such

as iTRAQ (Lucker et al. 2009), or much more
recently, 2DE gels coupled to liquid chro-
matography with electrospray ionization
(LC-ESI-MS/MS; Negri et al. 2015), or nanoLC
ESI LTQ-Orbitrap tandem mass spectrometry
(Wang et al. 2017; Kambiranda et al. 2018).

Targeted and untargeted metabolome studies
have unquestionably increased within grapevine

Table 8.1 Number of
SRA experiments (No. of
SRA) and Gbp of data
produced (Gbp of data) for
grapevine cultivars
according to the type of the
library source (genomic or
transcriptomic)

Cultivar Genomic Transcriptomic

No of SRA Gbp of data No of SRA Gbp of data

Cabernet Sauvignon 6 166.59 393 805.27

Barossa Shiraz 197 68.22

Pinot noir 15 44.16 115 341.59

Chardonnay 95 2544.81 34 48.67

Merlot 2 0.00 74 277.67

Carmenere 63 147.27

Muscat table 54 508.32

Pinot Meunier 4 31.89 48 137.02

Thompson Seedless 3 10.63 49 174.05

Sangiovese 3 0.01 47 61.49

Sauvignon blanc 2 0.01 35 199.50

Tempranillo 36 143.73

Riesling 2 34.24 31 51.64

Cabernet Franc 2 0.01 28 85.89

Tocai friulano 30 35.50

Barbera 1 0.01 19 47.36

Kyoho 20 176.67

Semillon 3 8.61 16 40.41

Vermentino 4 12.84 12 39.80

Gaglioppo 15 50.45

Garganega 2 0.01 12 38.85

Primitivo di Manduria 2 18.16 12 42.64

Tannat 2 65.20 11 79.96

Carignan 12 39.14

Glera 12 42.68

Koshu 12 31.01

Moscatel Galego 12 50.10

Moscato bianco 12 43.17

Muscat Hamburg 3 0.96 9 13.42

All other cultivars 1224 4557.52 1344 4340.34

ND 958 3905.94 1269 3983.17

ND information not available in SRA archive
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research, benefiting from a variety of tools such as
massive high-performance liquid chromatogra-
phy (HPLC) and gas chromatography (GC) being
applied for sample separation while tandem mass
spectrometry (MS) and nuclear magnetic reso-
nance (NMR) being developed for the identifi-
cation and quantification of metabolites.
Solid-phase and micro solid-phase extractions
(SPE and SPME), followed by GC-MS methods
have been used for volatile composition studies
(Savoi et al. 2016; Duchêne et al. 2017).
Ultra-High-Performance Liquid Chromatography
(UHPLC) coupled to triple quadrupole (QqQ)
TQD mass spectrometry analysis was recently
used for determining polyphenomic composition
(phenylpropanoid-specific omics) and its cultivar-
dependent changes in response to drought
(Pinasseau et al. 2017). Also, Vondras et al.
(2017) recently performed untargeted HPLC-MS
to quantify amino acids, sugars, organic acids,
and phenylpropanoids to compare the different
ripening progressions of berries in a single clus-
ter, while Blanco-Ulate et al. (2015) and Negri
et al. (2017) studied the effect of Botrytis cinerea
noble rot infection in the metabolome of ripening
berries and postharvest withered berries, respec-
tively, by using reversed-phase HPLC coupled to
ESI mass spectrometer.

Despite metabolomics analyses are rapidly
increasing in Vitis, metabolism must be under-
stood as a dynamic process. Fluxomics recog-
nizes this complexity in metabolic systems and
seeks to determine the rates of metabolic reac-
tions (Winter and Krömer 2013). With the pur-
pose of describing how metabolic fluxes
determine cellular phenotypes, Soubeyrand et al.
(2018) performed targeted metabolomics and
enzyme activity measurements in grape cell
cultures at different time-points of nitrogen lim-
itation in order to construct a constraint-based
model (by comparing maps of metabolic fluxes
in the two contrasted situations) to identify the
metabolic drivers of anthocyanin accumulation
under high carbon-to-nitrogen ratios.

Within the cell’s functions, the transport of
essential and beneficial nutrients allows all basic
processes to be performed efficiently. In
grapevines, ion content profiles can reflect the

mineral composition of soils and therefore they
can describe certain components of a terroir. Pii
et al. (2017) studied the ionomics profile of
berries grown in different areas to try to dis-
criminate their geographical origin. By applying
multi-elemental inductively-coupled plasma-
mass spectrometry (ICP-MS), the authors found
that rare earth elements were the best chemical
descriptors.

Recent attempts for identifying transcription
factor binding landscapes have been initiated and
deposited in public repositories, despite no pub-
lications have yet been produced. Additional
efforts are still needed to map protein-DNA and
protein-protein interactions at a large scale. Also,
DNAse I hypersensitivity mapping could be
useful to identify pioneering transcription factors
controlling grape and wine quality traits.

8.4 From Single Omics
to Integrative Data Analysis

Within single omics studies, the interactions
between molecules can be represented in net-
works, where nodes (genes, proteins, metabo-
lites, etc.) are connected by edges that convey
any type of association (e.g., relying in abun-
dance or expression levels). In the case of gene
co-expression networks (GCNs), edges represent
similar gene expression behaviors, while in
genome-wide transcription factor binding studies
(e.g., ChIP-seq) edges represent direct
target-regulator relationships. In protein-protein
interaction networks, edges describe physically
interacting protein pairs identified from tech-
niques such as high-throughput yeast two-hybrid
screens.

Beyond single omics networks, integrative
approaches associate the molecular components
of an organism and combine them into higher
order networks to model dynamic behaviors. The
principle is based on the fact that despite indi-
vidual functions of a single network may be
undetermined, its biological role can sometimes
be inferred through association with other net-
works. Integrated/combined networks provide a
more complete information of a certain
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biological processes as they include two or more
omics’ layers. In the case of combining several
networks of the same type into a community
network, this can also be beneficial to effectively
reveal discrepancies between individual net-
works while stressing common associations
across individual networks (Proost and Mutwil
2016). Networks of experimental evidence can
be integrated by superimposing the nodes from
individual networks. However, an appropriate
integrative method requires biological data to be
normalized, standardized, modeled and visual-
ized in order to build an integrated model
(Fig. 8.4). Data modeling requires special atten-
tion as this analysis involves generalization and
simplification steps with several assumptions
(Yuan et al. 2008).

The first task to perform during the integration
of different multidimensional omics data consists

inmatching the features within each omics, as they
measure diverse types of molecules and the cor-
respondence between them is not always straight
forward. For instance, a single gene can produce
several transcripts with different alternative splic-
ing. Similarly, a single transcript can give rise to
multiple proteins through different posttransla-
tional processes, making it difficult to associate
genes, transcripts, and proteins when measured by
genomics, transcriptomics and proteomics tech-
niques. Moreover, cistromics and epicistromics
measure transcription factor binding and occu-
pancy of nucleosomes carrying distinct histone
modifications in specific genomics regions. The
association of these regions to target or regulated
genes is not trivial. This problem can be tackled
using different software packages such as
RGmatch (Furió-Tarí et al. 2016), PeakAnalyzer
or PeakAnnotator (Salmon-Divon et al. 2010).

Fig. 8.4 Methods for building integrative network mod-
els. Different omics technologies generate data with
diverging formats (e.g., numerical scales) and therefore
are considered as multidimensional. A hypothetical reg-
ulatory network for the berry color locus was used to
illustrate how gene co-expression, transcription factor
binding, and metabolic data can be integrated to generate
a composite network. These can be generated by applying
scaling and normalization algorithms to all omics datasets
(at the left) or by superposing independently-produced

networks (on the right). The main anthocyanin regulator
MYBA1 is centered in the network. Its co-expressed
genes were taken from previous gene GCN analyses
(Wong et al. 2016). Direct regulation examples are taken
from experimental evidence (e.g., Matus et al. 2017).
Cyanidin or malvidin-related derivatives (di or
tri-hydroxylated anthocyanins) are represented by
“Cy-3G” and “Mv-3G”, respectively. Resvt: the stilbene
resveratrol
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Additional challenges faced during
multi-omics data integration are represented by
the heterogeneity of the different data sets. Data
from each omics is measured using different units
whose typical ranges vary in several orders of
magnitude. This can potentially affect data anal-
ysis and is typically solved using scaling and
normalization techniques. Given the wide spec-
trum of possible normalization techniques, it is
necessary to apply as many as possible and asses
their performance in order to choose the most
appropriate technique for the data sets under
study. The R package Normalyzer can be applied
in this pre-processing of the data (Chawade et al.
2014).

Once data pre-processing is completed and
prior to the actual multi-omics integration, some
exploratory analyses need to be conducted over
the individual data sets. Due to the high dimen-
sionality of omics data typically these analyses
consist in techniques able to reduce complexity
in order to extract relevant information. Principal
Component Analysis (PCA) constitutes the most
widely used projection method in this step. PCA
is a multivariate analysis technique whose final
goal is to reduce the dimensionality of a large
multivariate data set. Here a set of new uncor-
related or orthogonal variables are computed as
linear combinations or rotations of the original
ones. These new variables are called principal
components and they are defined in such a way
that they are sorted according to the percentage
of explained variability from the original data
under the constrain of being orthogonal or
uncorrelated. In this way, typically, the first two
or three principal components are sufficient to
capture most of the variability of the original data
and therefore, a projection comprising only these
principal components are further considered in
the analysis. Graphical representations of the
selected principal components are then used to
assess the quality of data replicates, uncover
problems raised during sample collection (e.g.,
batch effects) or to unveil underlying structure in
the data by applying clustering techniques. Sev-
eral R packages are available to perform this step
such as factorMineR (Lê et al. 2008) and made4
(Culhane et al. 2005), among other methods. For

instance, a clear example of data integration in
grapevine was conducted by Blanco-Ulate et al.
(2015) by using Multiple Factor Analysis
(MFA), where four types of quantitative vari-
ables were considered: metabolome data, RNA-
Seq data from grape and the fungi Botrytis
cinerea, and B. cinerea biomass measurements.

Finally, multi-omics data integration is carried
out. Normally, two different goals exist when
integrating different omics. On one hand,
researchers may be interested on exploratory
analysis to identify the underlying relationship
between two omics data sets. On the other hand,
researchers may treat one of the omics data set as
response variables that need to be predicted from
another explanatory omics data set (considered as
predictors). Here we discuss two statistical
methods that exemplify these two goals. In both
cases the input consists of two numerical matri-
ces, Xn�p and Yn�q, that can be generated using
two different omics technologies that detect and
quantify p and q as different molecules from the
same set of n samples.

Canonical Correlation Analysis (CCA) This is
an example of exploratory analysis that generates
rotations or linear combinations, U and V, of the
original data, X and Y, under the constrains of
maximizing the correlation cor(Ui, Vi) with i = 1,
…, min(p, q) and being uncorrelated or orthog-
onal. These are called canonical variates. Finally,
like in any projection technique, only the two or
three first canonical variates are considered to
capture most of the correlation between the initial
data X and Y. Several R packages are available to
carry out this methodology such as CCA (Gon-
zález et al. 2008) and mixOmics (Rohart et al.
2017).

(Sparse) Partial Least Square regression(s)
PLS is an example of a multi-omics integration
technique in which researchers aim at predicting
one omics data set (or physiological data) from
another one. In a similar fashion to CCA, rota-
tions U and V of the original data are performed
by maximizing the covariance. Projections
retaining only two or three components are then
considered to perform linear regression. To
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assess the predictive power of the developed
model, cross-validation is commonly applied. In
classical PLS regression, all the original variables
from X and Y are included in the rotation or linear
combination making intractable the extraction of
relevant information from the developed model.
In order to tackle this, the sparse variant of PLS
regression (sPLS; González et al. 2012) was
introduced by using penalization terms based on
the marginal contribution of each variable to the
predictive power of the model in such way that
some coefficient shrinks to zero removing the
corresponding variable. This efficiently imple-
ments a feature selection technique. Graphical
representations such as correlation circle plots,
relevance networks and clustered image maps
can be generated to facilitate the understanding
and interpretation of the constructed model.
The R packages pls (Mevik and Wehrens 2007)
and mixOmics (Rohart et al. 2017) implement the
necessary functions to apply this methodology.

8.5 Recent Experiences
in Grapevine Systems Biology

Throughout the last years, several attempts for
representing large biological data in networks
have been conducted for elucidating the multi-
layered organization of biological processes in
grapevine. In this species, integrated network
analyses have been mostly adopted to predict
gene functions or to contribute in the study of the
regulatory mechanisms that control berry com-
position and development, trigger defense
responses to biotic and abiotic stresses or that are
influenced by the terroir (reviewed by Wong and
Matus 2017; Fabres et al. 2017). Some research
efforts have defined composite networks of genes
and secondary metabolites for characterizing fruit
ripening processes in red and white-skinned
cultivars (Massonnet et al. 2017; Palumbo et al.
2014; Zamboni et al. 2010), whereas others have
constructed gene co-expression networks to
describe late stages of ripening (Ghan et al. 2017)
or characterize transcriptional regulators related
to development, metabolism or stress responses
(Loyola et al. 2016; Wong et al. 2016; Sun et al.

2018). Processes involving the rewiring of berry
metabolite-transcriptional networks under envi-
ronmental perturbations such as drought (Savoi
et al. 2016, 2017) and elevated light exposure (du
Plessis et al. 2017) have also been described.
Proteomic/metabolomic composite networks
(Wang et al. 2017) and those integrating
genome-wide analyses of promoter regulatory
elements (Wong et al. 2017) have also been
generated. The integration of all these data in
multilayered networks has allowed building
complex maps of molecular regulation and
interaction. Some relevant cases will be covered
in this section.

8.5.1 Identifying Molecular Hubs
Controlling Light
and Cold Response
Pathways

The advent and continued adoption of
high-throughput transcriptome profiling plat-
forms in grapevine research has led to the vast
expansion of transcriptome datasets representing
a wide range of experimental conditions (e.g.,
specific tissue/organ and its associated develop-
mental series, stress—abiotic and biotic, vine-
yard management strategies, etc.). Although each
dataset has been generated to address specific
goals of its overarching study, together, indi-
vidual datasets can be compiled into large
expression databases to mine for novel biological
insights including, but not limited to, compara-
tive transcriptomics between grapevine and other
plants, gene co-expression network analysis and
functional assignment of genes, and the discov-
ery of condition-specific cis-regulatory motifs
(reviewed in Serin et al. 2016).

Genes involved in the same processes might
share similar gene expression dynamics across an
extensive collection of experiments. This rela-
tion, explained by the “guilt by association”
principle (Wolfe et al. 2005), is fundamental to
infer the roles of uncharacterized genes in
co-expression networks. Transcription factors
(TFs) comprise a suitable case of study for
addressing the behavior of modules in GCNs as
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they exhibit plethora of protein-protein and
protein-DNA interactions, shaping complex reg-
ulatory networks responsible for most develop-
mental process. Such is the case of
ELONGATED HYPOCOTYL 5 (HY5) and
HY5 HOMOLOGUE (HYH), two bZIP master
photomorphogenic orchestrators involved in
developmental processes responsive to light
environmental conditions. Loyola et al. (2016)
combined microarray and RNA-Seq
co-expression data with a genome-wide binding
site promoter inspection to identify HY5 and
HYH community gene co-expression and cis-
regulatory sub-networks in grapevine. Search of
potential gene targets identified a preferential
regulation of photosynthetic-related processes,
heat-shock and DNA/protein repair processes,
and regulation of the flavonol biosynthetic
pathway. This study was crucial for describing
the molecular mechanisms explaining the high
radiation adaptive mechanisms that grapevines
possess (reviewed by Matus 2016).

Gene co-expression networks have also been
integrated with transcription factor binding data
to address grape responses to low temperature, in
relation to the role of a MYB-like regulator ter-
med AcQUIred tolerance to LOw temperatures
(AQUILO; Sun et al. 2018). Here, the authors
performed a multi-species GCN, incorporating
gene co-expression analysis and in silico TFBS
data from grape, with co-expression (associated
to the heterologous overexpression of AQUILO)
and DAP-seq data in Arabidopsis. The relevance
of this study came from the finding that AQUILO
was tightly associated with the raffinose family of
oligosaccharides (RFOs), a connection that was
later validated by quantifying these osmoprotec-
tant molecules in cold-treated grape AQUILO-
overexpressing calli.

8.5.2 Regulation of Phenylpropanoid
Metabolism

Presently, the most widely adopted methodology
to identify candidate transcriptional factors
(TFs) involved in secondary metabolism path-
ways in grapevine involves the inference of

function via sequence homology with function-
ally characterized proteins from model plants (for
example, see Hichri et al. 2010; Cavallini et al.
2015; Matus et al. 2017). However, in the recent
years, many of these regulators have been pri-
oritized by using gene co-expression network
analyses. For example, the putative functions of
134 grapevine R2R3-MYB genes were inferred
based on their top 100 co-expressed genes
(Wong et al. 2016). This study revealed that
GCNs of many R2R3-MYB TFs (46 genes) were
enriched with secondary metabolism-related
functions. Demonstrating the power of such
method is the ability to recover expected rela-
tionships between structural pathway genes and
their known transcriptional regulators. For
example, this was demonstrated with the frequent
co-expression of large suites of STILBENE
SYNTHASE genes (STSs) with VviMYB14 and
VviMYB15, two R2R3-MYB TFs involved in
the regulation of STS (Höll et al. 2013). Similar
inferences were accounted for VviMYB13, a
close homolog of VviMYB14 and VviMYB15,
therefore, suggested as involved in the regulation
of tissue- and stress-specific STS expression
(Wong et al. 2016). Two recent studies have also
used STS genes as “guides” to identify
co-expressed TFs in both condition-specific
(Wong and Matus 2017) and -independent con-
texts (Vannozzi et al. 2018). A berry-specific
GCN encompassing five red cultivars across four
key berry developmental stages revealed novel
roles for AP2/ERF and WRKY TFs in the reg-
ulation of STSs. TFs of the latter two families
were not only frequently co-expressed with STSs
but were also enriched for their respective TF
binding sites (TFBS) in the promoters of many
STSs. Recent studies have now demonstrated that
VviWRKY24 and VviWRKY03 are additional
players in the regulation of STSs at various
hierarchies—acting as singular effector or in
synergy with VviMYB14 to activate STSs
(Vannozzi et al. 2018).

The integration of non-coding RNA network
analysis to existing condition-specific GCNs has
also been presented to unravel the regulation of
phenylpropanoid and flavonoid biosynthesis
during berry development and ripening (Wong
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and Matus 2017). One of the key findings from
this initiative was the discovery of long
non-coding RNAs (lncRNAs) that were not only
strongly correlated with key structural pathway
genes but were also located in close proximity to
their co-expressed gene). The lncRNA
VIT_210s0042n00100, present in close proxim-
ity with all nine VviSTSs of chromosome 10
presented consistent co-expression with all of
them. Another case represents one predicted
lncRNA (VIT_203s0180n00020) that is linked to
VviGT2 through strong co-expression and
co-location. This gene encodes an enzyme puta-
tively involved in hydroxycinnamic ester
biosynthesis and proanthocyanidin galloylation
(Khater et al. 2012).

GCN approaches may reveal additional layers
and deconvolute the complexities of secondary
metabolic pathway regulation in grapevine.
Indeed, in a first study of its kind, Zhang et al.
(2018) demonstrated that multiple lncRNAs,
named LNC1 and LNC2, were involved in the
regulation of anthocyanin biosynthesis in fruits
of sea buckthorns (Hippophae sp.) by serving as
endogenous target mimics (eTM) of miR156a
and miR828, respectively. Functional studies
confirmed that silencing of LNC1 and LNC2, led
to the induction and repression of anthocyanin
biosynthetic pathway gene expression and
anthocyanin levels in fruits, respectively, vali-
dating the integrated lncRNA-miRNA-mRNA
network prediction.

8.5.3 The Fight Club Goes Dry:
Networks Related
to Grape Berry Ripening
in Response to Drought

To understand the molecular mechanisms
underpinning berry development and ripening at
greater detail, recent efforts have focused on
understanding the transcriptome dynamics in
multiple cultivars across the entire process of
berry development and ripening. A study by
Massonnet et al. (2017) represented the first

monumental study to catalogue the genome-wide
transcriptional profile of ten Italian grapevine
varieties at four critical stages of berry develop-
ment, all being cultivated in a single vineyard. In
less than a handful of studies, network-based
approaches have been applied to identify genes
potentially involved in critical developmental
stage transitions. Such cases often complement
the findings from the widely adopted differential
expression analysis but are also pivotal in
revealing novel genes and relationships that were
otherwise unattainable from traditional differen-
tial expression methods. For example,
berry-specific gene co-expression network anal-
ysis encompassing immature-to-mature transi-
tions has been particularly insightful in revealing
groups of genes with distinct topological prop-
erties that can be classified into “party”, “date”
(see Han et al. 2004 for details), or “fight-club”
hubs (Palumbo et al. 2014). Genes that belong to
the “fight-club” hubs, in particular, were often
negatively correlated with their interacting part-
ners in gene co-expression networks, and those
who do, were inferred as biologically relevant
“switches” fulfilling negative regulatory roles in
the transition of major developmental phases
such as ripening. Although the identity of these
major switches was first documented in red
grapevine varieties, recent research has now
ascertained several common but also reveal
variety (red and white-skinned)-specific switch
genes (Massonnet et al. 2017). From a total of
271 berry-specific switch genes identified to date,
131 genes were in common in both varieties
while 81 and 50 genes were specific to all white
and red varieties, respectively. A large proportion
of these “switches” encode for transcription
factors (31 genes), followed by genes involved in
stress responses (31 genes), carbohydrate meta-
bolism (22 genes), signaling (20 genes), sec-
ondary metabolism (20 genes), and cell wall
metabolism (18 genes), among others (Masson-
net et al. 2017).

Recent works have provided evidence for
the involvement of multiple stress regulons—
both ABA-dependent and ABA-independent
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(reviewed in Nakashima et al. 2014)—in the
berry ripening program (Savoi et al. 2017).
Certain TF families (e.g., NAC, bZIP, AP2/ERF)
that share co-expression with downstream water
deficit stress-responsive genes may be required to
orchestrate the balance between the progression
of berry development and stress-associated tran-
scriptional regulation. Further analysis of gene
co-expression and gene-metabolite co-response
networks of the berry subjected to water deficit
stress across critical berry development and
ripening phases revealed several distinct modules
that were congruently induced by ripening and
water deficit stress (Savoi et al. 2016, 2017).
Here, metabolome and transcriptome integrated
network-based analysis revealed close associa-
tions between the expression behaviors of mod-
ule members (especially the activation of
multiple signal transduction pathways) and the
dynamics of key central and specialized
metabolites involved in the drought response
(e.g., proline, branched-chain amino acids,
phenylpropanoids, anthocyanins, and free vola-
tile organic compounds). For example, the
grapevine homologue of Arabidopsis ERF1, a
key regulatory component of the jasmonate and
ethylene signaling network (Cheng et al. 2013),
whose expression was congruently induced by
ripening and water deficit stress, was also iden-
tified to be a common berry “switch” gene.
While its precise regulatory role remains to be
elucidated, integrated network analysis posi-
tioned ERF1 as a putative regulator of proline
and anthocyanin accumulation in the berry
(Savoi et al. 2017). VviERF1 was significantly
co-expressed with pyrroline-5-carboxylate syn-
thase (P5CS) and VviMYBA2, the key structural
gene of proline biosynthesis and a key regulatory
gene of anthocyanin biosynthesis in the berry,
respectively, and shared significant correlation
with various anthocyanin compounds. The pres-
ence of potential AP2/ERF TFBS (i.e., DRE and
GCC-box) situated within the promoter region of
P5CS and MYBA2 further reinforce its
involvement as a regulator of berry composition
during ripening and water deficit stress.

8.5.4 Non-coding RNA Networks
Within Grape-Fungi
Pathosystems

Grapevine diseases caused by biotic agents can
be devastating for the wine and table grape
industries. Among fungal-related disorders,
grape trunk diseases together with downey and
powdery mildew are among the most important
pathologies, causing significant economic losses
in vineyards practically all over the world. The
symptoms of downey mildew, caused by Plas-
mopara viticola, are quite detrimental, as for
instance, as soon as fruits become infected, ber-
ries completely dry out. The Vitis spp.—P. viti-
cola association is of great interest as this
oomycete is an obligate biotroph and relies
entirely on the host to complete its life cycle (i.e.,
needs to keep its host cells alive before sporu-
lation; Grenville-Briggs and van West 2005), and
also because North American Vitis species are
naturally resistant (Polesani et al. 2010). In order
to model this complex pathosystem, Brilli et al.
(2018) performed a multi-omics and
multi-species functional genomic study. The
authors sequenced and assembled the draft gen-
ome of P. viticola, identifying the lost metabolic
features responsible for its total dependence on
the grape host, and further studied the fungus
transcriptome changes occurring during the
infection process, identifying a protein triggering
immunity in the resistant V. riparia. The most
striking results from this study arise from the
small RNA sequencing (sRNA-Seq) analysis in
control and infected plants at different times after
the infection, combined with genome-wide
degradome (or parallel analysis of RNA ends)
analyses in both the plant and the oomycete. As a
result, a large number of sRNA-mediated cleav-
ages exclusively occurred in infected tissues,
where sRNAs produced by P. viticola triggered
cleavage of grapevine genes while sRNAs pro-
cessed from grapevine transcripts targeted the
fungus mRNAs, unveiling a bi-directional RNA
silencing network mediated by non-coding
RNAs shuffling between the pathogen and its
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host (Brilli et al. 2018). As more pathogen gen-
omes become available, a broader understanding
of pathosystems and their dynamics will be
achieved, especially regarding the roles of
secreted effectors in interfering plant immune
recognition (reviewed by Dalio et al. 2018).

Grape pathogen responses have been recently
studied by addressing potential interactions of
transcription factors and cis-regulatory element
(CRE), and also by constructing gene
co-expression networks (GCNs) of plant gene
families related with defense. Wong et al. (2017)
performed a genome-wide analysis of known
plant CREs in all grape predicted protein-coding
gene promoters, constructing an integrated
CRE-driven network. Numerous CRE-driven
modules inferred from using
condition-dependent GCNs suggested important
roles in pathogen stress responses. For example,
GCC-core sub-modules were contained in many
genes that were highly induced in berries and
leaves infected with fungi such as Botrytis
cinerea and Erysiphe necator. Finally, gene
co-expression networks of the ATL protein
family showed that many of these E3 ubiquitin
ligases were induced in grapevine–pathogen
interactions including P. viticola and necro-
trophic fungi (Wong et al. 2018).

8.6 Resources

Next-generation sequencing as well as traditional
Sanger sequencing methods are of great signifi-
cance in unraveling the complexity of plant
genomes. These are constantly generating a
copious volume of sequence data to be analyzed,
annotated and stored, thus creating a revolu-
tionary demand for resources and tools to man-
age and handle these necessities (Basantani et al.
2017). Here we present a brief compilation of
web resources that are either specific for grape or
encompass a variety of plant species including
Vitis species (Table 8.2).

At least two grape-specific platforms have
been effectively used to study the extent of gene
regulatory networks: the ViTis Co-expression
DataBase (VTCdb; Wong et al. 2013) and

VESPUCCI (Moretto et al. 2016a). These
resources have played an important role in
determining the roles of genes related to photo-
mophogenic responses and secondary metabo-
lism in targeted functional studies (Loyola et al.
2016; Malacarne et al. 2016). Integration of
multi-omics datasets (i.e., gene expression,
metabolite, and protein profiles), mapping of data
onto relevant molecular networks, and the visu-
alization of the dynamic interactions between the
various molecular classes are also the first few
steps when performing any systems biology
experiments. Tools such as Cytoscape (Shannon
et al. 2003) have been specially designed for this
task and have been largely adopted by the grape
research community to visualize and analyze
complex networks. In addition, one ongoing
Initiative in grapevine, VitisNet (Grimplet et al.
2009a), serves as a resource for manually curated
functional gene annotation and provides a wide
range of manually curated pathway-level
molecular networks (over 240 categories) as
templates for grapevine systems biology
experiments.

The increasing release of plant genomes pro-
vided unseen opportunities and challenges for
comparative genomics resources. Indeed, differ-
ent genomics multi-species platforms also exist
constituting relevant hubs to exploit omics data
in grape. For instance, recent examples include
the fruitENCODE platform (http://www.
epigenome.cuhk.edu.hk/encode.html) that pro-
vides a comprehensive repository oriented to
shed light on the genetic and epigenetic basis of
fruit ripening in climacteric and non-climacteric
species. Multi-species GCNs allowing compara-
tive co-expression analysis are also now avail-
able for many plants including grapes
(Table 8.2). Resources such as ATTED-II (http://
atted.jp/) are among the most popular, providing
the opportunity to query microarray and
RNA-seq GCNs using the “guide” gene
approach. ATTED-II also allows assessments of
co-expression conservation of co-expressed
genes across different plant lineages (Obayashi
et al. 2018). The Plant Omics Data Center
(PODC; http://plantomics.mind.meiji.ac.jp/podc/)
is a NGS-derived gene expression network
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repository aimed at integrating large-scale omics
resources for a broad range of species (Ohyanagi
et al. 2015). Such resources may be used in
conjunction with existing grapevine-specific
co-expression platforms to build community
GCNs or to gain additional insights into the
evolutionary context of conserved and/or
species-specific co-expressed genes relationship.

Additional multi-species platforms gathering
grape’s omics and mainly aimed at comparative
studies include Ensembl Plants (http://plants.
ensembl.org) (Bolser et al. 2016), Phytozome
(https://phytozome.jgi.doe.gov/pz/portal.html)
(Goodstein et al. 2012), PlantGDB (http://www.
plantgdb.org/) (Duvick et al. 2008), and AraNet
v2 (http://www.inetbio.org/aranet) (Lee et al.
2015). These integrative resources encompassing
genome-scale information (genome sequence,
gene models, functional annotation, polymorphic
loci, expression) offer a variety of sequence
analysis tools and web services. Example of
integrative platforms also come from other spe-
cies including both model (Araport, Solge-
nomics) and non-model (Melonomics, Ginseng
Genome Database) plants. A common feature
underlying these resources rely on the use of
customized instances of JBrowse (Buels et al.
2016), a fast and full-featured genome browser
built with JavaScript and HTML5. Thanks to its
speed, scalability, and versatility this platform
supports complex interactive queries on large
track sets representing a suitable and solid mean
to handle omics data in a genomic context. In
addition, a variety of analysis functions can
readily be added using the plugin framework
(e.g., visualization of whole-genome bisulfite
sequencing data, glyphs for variants and GWAS
data, small RNA visualization, etc.). Very
recently, a JBrowse (v. 1.11.5) was set up to
visualize and give access to some omics data in
the Vitis vinifera 12X.v2 PN40024 assembly
(https://urgi.versailles.inra.fr/jbrowse/gmod_jbro
wse/?data=myData/Vitis/data_gff) (Canaguier
et al. 2017). The platform hosts 11 annotations
tracks, including the different releases of the
grapevine genome annotations (CRIBI v1,
CRIBI v2, Genoscope, Cost v3, etc.), automated
and manual curated transposable elements

annotations and manual curated gene family sets.
In addition, 12 tracks highlighting the variants
coming from re-sequencing experiments are also
present in the platform, which could help in the
identification of useful markers for applied
research purposes.

8.6.1 VESPUCCI and NES2RA
as Grape-Oriented
Resources

Exploring shifts in gene expression as response
to different experimental conditions has become
commonplace while transcriptomic experiments
are being performed on a daily basis. Public
available gene expression datasets, however,
conceal most of their true potential since they are
meant to answer to a specific biological question
and aren’t considered in the light of a wider
context. Within transcriptomics, we have wit-
nessed a major shift in data production with the
advent of high-throughput sequencing technolo-
gies. Despite nowadays Illumina sequencing is
the de facto standard for RNA-seq experiments,
microarrays are still extensively used and, more
importantly, constitute a wealth of public infor-
mation available to be explored.

With the advent of systems biology approa-
ches in grapevine research, data integration arises
as a leading aspect to take advantage of such rich
sources of information (Gligorijevic and Nataša
2015). Different methods have been proposed to
carry out the task of effectively integrating gene
expression data and can be usually divided in
two categories: (1) direct integration and
(2) meta-analysis. Direct integration (Rung and
Brazma 2013) considers the sample-level mea-
surements within each study and merges them
into a single data set. The latter approach
(Garrett-Mayer et al. 2008), instead, integrates
gene expression analysis combining information
from several data sources defining confidence
levels for each study individually (without a
general scheme) and is commonly used to inte-
grate conclusions coming from different studies.

One of the platforms used for data integration
in transcriptomics is COLOMBOS (Moretto
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et al. 2016a), originally named as a COLlection
Of Microarrays for Bacterial OrganismS, which
was developed for three bacterial species
(Escherichia coli, Bacillus subtilis, and Sal-
monella enterica serovar Typhimurium) and later
updated with others prokaryotic species and also
including RNA-seq technology. The implemen-
tation of the COLOMBOS framework to the Vitis
species led to the development of VESPUCCI
(Moretto et al. 2016b) (Vitis Expression Studies
Platform Using COLOMBOS Compendia
Instances), an integrated gene expression data-
base for grapevine that originally included 1500
samples at the time of its first release and now
has doubled in size including most of publicly
available transcriptomic data.

Both VESPUCCI and COLOMBOS fall
under the direct integration methodology. Their
approach to data integration is unique in the
sense of directly combining gene expression
information from different technological plat-
forms and experiments, without the need for
batch-normalization since it calculates log-ratios
for contrasts, i.e., samples being compared that
come from the same experiment and platform
combination (a “batch”). This results in crossing
out a high proportion of batch-related variation
(Luo et al. 2010). While gathering a large amount
of data is made easy for model organisms like
E. coli (due to the abundant number of experi-
ments available), for non-model species the sit-
uation is different as only fewer experiments are
usually performed. In this case, the importance of
transcriptomics data integration is even more
significant as an adequate magnitude of data is
needed to be able to draw valid and general
conclusions. In this sense, working with plant
species highlighted the need for the authors to
significantly rethink some aspects of the data
acquisition and annotation process. The creation
of a gene expression compendium using
COLOMBOS technology is facilitated by the use
of COMMAND (Moretto et al. 2019), a
web-based application used to download, collect
and manage gene expression data from public
databases, but it is still mainly a manual effort.
The peculiarity and complexity of plant tran-
scriptomes and experimental designs in plant

biology require the ability to manage how probes
(for microarray) and short read sequences (for
RNA-seq) are mapped and thus assigned to
genes. The concept of “measurable transcript”
was also used to account for some technical
limitations that prevent the possibility to pre-
cisely distinguish among genes with high
sequence similarity.

In VESPUCCI, data and experiment-related
information (meta-data) are collected and curated
starting from raw intensities (for microarrays) and
raw sequence reads (for RNA-Seq). A robust
normalization method and a quality control pro-
cedure are performed to allow the direct compar-
ison of gene expression values across different
experimental conditions (Engelen et al. 2011).
This results in a single coherent gene expression
matrix in which each row represents a gene and
each column represents a “sample contrast”.
Sample contrasts measure the difference (in log
scale) between a test and a reference condition,
both which are designed a priori by curators dur-
ing the compendium creation process. The
expression data itself is amatrix of log-ratios (base
2), so that positive values represent up-regulation,
and negative values represent down-regulation of
a gene in the test sample compared to the reference
sample. VESPUCCI’s main goal is to gather
together as many expression data as possible to
explore patterns of co-expression across several
experimental conditions and to provide a
high-quality gene expression database to be used
for downstream analysis. The creation of a
co-expressed genes cluster (known as module) is
performed similarly to a BLAST (Camacho et al.
2009) search in which the users can look for
expression values for a given set of conditions but
using expression correlation instead of sequence
similarity to score the best matches. Modules can
be modified in several ways in order to highlight
the behavior of the genes of interest and to analyze
(anti)co-expression patterns.

Considering that gene expressions are repre-
sented as relative values, it is fundamental to
extensively annotate samples with various sorts
of meta-data to ensure that valid biological con-
clusions can be drawn from the exploration of the
compendium. One of VESPUCCI’s biggest effort
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and most notable feature is the manual curation
and quality check of samples. Each sample has
been annotated by curators using controlled
vocabularies to ensure both human readability
and computational tractability. To completely
fulfill the properties of the FAIR (Findable
Accessible Interoperable Reusable) principles
(Wilkinson et al. 2016), VESPUCCI is under-
going a constant renovation to exploit standards
and bio-ontologies for data annotation. Finally,
the interface is the other pivotal point towards
seamless integration with other services and tools
and has been designed to adapt to users’ needs,
as well as to simplify the implementation of other
tools on top of it. One example of such means is
the NES2RA algorithm (Asnicar et al. 2018), a
mining tool for transcriptomic data used to
expand a known local gene network (LGN) by
finding new related genes. This method has been
applied to the grapevine transcriptomic dataset
using VESPUCCI as data source to expand
LGNs related to the secondary metabolic path-
ways for anthocyanin and stilbenoid synthesis
and signaling networks related to the hormones
abscisic acid and ethylene (Malacarne et al.
2018). Compared to Pearson correlation,
NES2RA LGNs show less edges as it removes
less significant interactions, due to noisy or
redundant information. This allows to reduce the
complexity of the network and focus on the
network topology and the most likely gene
interactions. NES2RA is computationally
demanding and relies on the BOINC platform
that distributes supercomputation tasks among
computers made available by the volunteers
participating in the gene@home project.

Besides the importance of having a single
point of access to easily check what is already
available in terms of transcriptomic experiments
in grapevine and, of course, the possibility to
empower data analysis with thousands of inte-
grated samples, the development of VESPUCCI
has led to few considerations about the impor-
tance of correctly annotating experiments,
extrapolable to all types of resources. Building
the compendium itself was the most

time-consuming step, as curators devoted their
time and ongoing effort to describe sample con-
ditions and their key descriptors, after carefully
reading the experiment descriptions as well as
scientific papers. The importance of early anno-
tation of experiments as soon as (or even before)
data are available is also underrated. It is often
considered as an annoying request to fulfill
before the publication, while it should be treated
as an integral part of the experimental design
with the same importance as notes and protocols
written in lab notebooks have.

8.7 Final Remarks

The accuracy of molecular systems biology relies
on efficient methods that handle, analyze and
visualize large omics data sets. However, it has
become evident that the use of a single omics
technology is not sufficient to develop predictive
models, which in turn is the ultimate goal of this
new discipline. Accordingly, the multiple use of
technologies such as transcriptomics, cistromics,
epicistromics, proteomics, and metabolomics,
over the same samples or biological conditions
has started to be a central methodology in plant
molecular systems biology. Multi-omics network
modeling has proven to be a successful advance
for unraveling the structure of biological pro-
cesses in plants, as it allows identifying the key
components and interactions for system regula-
tion. Conversely, networks frequently require
assumptions for data modeling, and since their
methods may rely on the existing knowledge
regarding the components and interactions of a
system, they can evolve to more exactly represent
a biological system. Thus, data should be inter-
preted carefully while these approaches can be
complemented by reductionist methods. Notwith-
standing these limitations, the use of these
methodologies in grapevine research has pro-
vided novel perspectives for interpreting omics
data and has already challenged the analysis of
the large amount of data that are being generated
for this species.
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9Epigenetic Regulation in Fleshy Fruit:
Perspective for Grape Berry
Development and Ripening

Junhua Kong, Margot Berger, Amélie Colling,
Linda Stammitti, Emeline Teyssier and Philippe Gallusci

Abstract
Epigenetic regulation mainly refers to histone
post-translational modifications and DNA
methylation, which are critical to plant gene
regulation and contribute to the development
of plants and to their response to the environ-
ment. Recent molecular and epigenomic stud-
ies have shown that epigenetic regulations
play critical roles in tomato fruit development
and ripening, the current model for climacteric
fruit. This led to a new model of ripening
control where active DNA demethylation

plays a central role being necessary to the
induction of several genes that control fruit
ripening. Whether this is a general model
applying to all type of fruit, including
non-climacteric fruit for which grape berry
stands as a general model, is an open question
that requires investigating the genome-wide
variations of epigenetic marks during fruit
development and ripening in many different
species. Finally, the potential roles of epige-
netic regulations in grapevine, a perennial,
grafted, and clonally propagated plant, are
discussed.

9.1 Introduction: Relevance
of Epigenetic Regulations
in Plants

In eukaryotes, DNA is tightly associated with
histones to form the chromatin, a highly dynamic
structure that plays critical roles in genome
functioning. Chromatin is made of elementary
units called nucleosomes that are composed of
octamers of the core histones (H2A, H2B, H3,
and H4) around which 147 bp of DNA is rolled
up. Nucleosomes are separated by a 50-bp-long
linker DNA that interacts with histone H1. Tra-
ditionally, two distinct chromatin states have been
described: the highly condensed heterochromatin,
which is considered as inactive, and euchromatin
which corresponds to a less condensed and
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transcriptionally active chromatin state. Indeed,
dynamic changes on chromatin play critical roles
in gene regulation and have therefore been the
subject of intensive studies over the last decades
both in animals and in plants (Exner and Hennig
2008; Zheng and Liu 2019).

Epigenetics was initially defined as “the
branch of biology which studies the causal
interactions between genes and their products
which bring the phenotype into being”
(Waddington 1942). Epigenetics now refers to
“the study of changes in gene function that are
mitotically and/or meiotically heritable and that
do not entail change in DNA sequence” (Wu and
Morris 2001). Epigenetic regulations are medi-
ated by the so-called epigenetic marks that
include the methylation of the cytosines on the
5th carbon (5-methylCytosine, 5mC) as well as
several histone post-translational modifications
(HPTMs), but also involve small RNAs and
histone variants (Law and Jacobsen 2010; Maeji
and Nishimura 2018; Rothbart and Strahl 2014).
Both types of marks contribute to defining
specific chromatin states and consequent gene
expression patterns that can be maintained after
cell division during tissue and organ develop-
ment (Birnbaum and Roudier 2017; Eichten et al.
2014; Pikaard and Scheid 2014).

Epigenetic modifications are now emerging as
crucial players controlling various aspects of
plant development, such as for example transi-
tions between developmental phases (Trindade
et al. 2017), plant reproduction (Wang and
Köhler 2017), root (Kawakatsu et al. 2016), seed
(Kawakatsu et al. 2017), and fruit development
(Gallusci et al. 2016; Giovannoni et al. 2017). It
also participates in the response of plants to
environmental stresses (Chinnusamy and Zhu
2009; Crisp et al. 2016).

In this chapter, we will mainly focus on the
role of epigenetic regulations in fleshy fruit, an
organ of primary importance for plants as it
insures seed dispersal and for humankind,
because fleshy fruits are an important source of
nutrients in human nutrition (Klee and Giovan-
noni 2011) and provide raw material for products
of high economical value such as wine. Studies
in tomato, grape, strawberry, and others have

now shown that the development and ripening of
fleshy fruit rely on the establishment and main-
tenance of differential gene expression patterns
(Alba 2005; Osorio et al. 2011) and complex
regulatory pathways that involve both genetic
and hormonal controls critical at these develop-
mental phases (Osorio et al. 2013). However,
several studies have now shown that both DNA
methylation and histone PTMs also regulate fruit
development and ripening (Bucher et al. 2018;
Gallusci et al. 2016; Giovannoni et al. 2017)
indicating that epigenetic regulations require to
be considered as well. Most of these studies have
been performed on tomato, the model plant for
climacteric fruit. However, tomato fruit presents
specific developmental and physiological fea-
tures including high endoreduplication levels and
a monophasic growth curve. Therefore, it
remains unclear whether similar mechanisms are
operating in other fruits with different charac-
teristics, such as grape, the model for
non-climacteric fruit.

Here, we summarize the current knowledge of
epigenetic mechanisms in plants and present the
most recent studies highlighting the role of epige-
netic regulations in fruit development and ripen-
ing. As a conclusion, we discuss the specificity of
grape as a grafted perennial plant that is clonally
propagated and develops non-climacteric fruit.

9.2 Fleshy Fruit Development
and Ripening: Specificities
of Grape Berries

Fruit is an organ specific to angiosperms
designed for seed protection and dispersal that
has long been considered essential in the human
diet because it contains fibers, vitamins, carbo-
hydrates, and antioxidants that are essential to
humans (Klee and Giovannoni 2011; Seymour
et al. 2013). Most fruits develop from ovaries,
although accessory tissues, for example the
receptacle in strawberry, may be used as well
(Seymour et al. 2013). The development of fleshy
fruit is in most cases initiated by fertilization and
is characterized by two main steps that precede
fruit ripening: (1) a cell division phase which is
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initiated shortly after pollination and followed by
(2) a cell expansion phase that is responsible for
the increase in fruit size (Gillaspy et al. 1993). In
contrast to dry fruits that undergo lignification,
fleshy fruit enters a complex ripening process
characterized by extensive metabolic modifica-
tions such as soluble sugar accumulation, cell
wall degradation, and synthesis of a wide range
of secondary compounds of high nutritional
value such as carotenoids or anthocyanins, and
several vitamins. In most cases, fruit ripening
results in significant changes in fruit appearance,
including fruit color modifications and fruit
softening (Lee et al. 2012; Seymour et al. 2013).

Among fleshy fruit, grape berry presents
specific developmental features. In contrast to
most fruits that present a typical simple sigmoid
growth curve, grape berry growth follows a
double sigmoid curve as fruit size increases both
before and after the induction of ripening (Conde
et al. 2007; Serrano et al. 2017). The first increase
in berry size starts shortly after fruit set and is due
to cell division and subsequent cell expansion. It
is characterized by organic acid accumulation in
vacuoles and the synthesis of tannins and
hydroxycinnamates. The berry size stops to
increase during the so-called lag phase that pre-
cedes the “véraison stage,” which is characterized
by berry softening, ABA synthesis, and initiation
of sugar and anthocyanin accumulation (Castel-
larin et al. 2015). Following, grape berry size
increases again due to additional cell expansion
events in the mesocarp. This second growth
phase, which occurs during ripening, is charac-
terized by important metabolic changes that
include the accumulation of glucose and fructose
along with a decrease in organic acid levels, berry
softening, and the synthesis of precursors of
various aromatic compounds including terpenes,
isoprenoids, esters, and thiols.

Fleshy fruits have been classified based on the
physiological mechanisms that control the
induction of ripening. Climacteric fruits for which
tomato stands as a model (Giovannoni et al. 2017)
are characterized by an intense respiratory burst
associated with ethylene synthesis that precedes
fruit ripening induction. This contrasts with
non-climacteric fruits such as grape and

strawberry, for which no specific physiological
parameter that marks the initiation of ripening has
been identified (Bapat et al. 2010), even if hor-
mones, including ethylene and ABA, are now
known to have important roles in the ripening of
this type of fruit (Fortes et al. 2015). Genetic
control of ripening has also been demonstrated
for climacteric fruit, mainly in the tomato model,
and several mutations affecting essential regula-
tors of ripening have been described in this plant
(Gapper et al. 2014; Bucher et al. 2018; Gallusci
et al. 2016). The recent discovery that epigenetic
regulators are major players in the control of fruit
development, ripening, and senescence has dee-
ply changed the proposed models describing the
regulation of fruit development and raises the
question of the general function of such mecha-
nisms in all types of fruit. So far, most studies
indicate that epigenetic regulations may be
important in other types of fruit.

9.3 Epigenetic Mechanisms

Epigenetic regulations are based on two main
mechanisms, histone post-translational modifi-
cations (HPTMs) and DNA methylation, and
also include additional processes such as short
interfering RNAs (siRNAs) synthesis and speci-
fic histone isoforms, called histone variants.
These mechanisms have been the subject of
many recent reviews (see, e.g., Maeji and Nish-
imura 2018) and will be only summarized here
with a focus on the most recent findings.

9.3.1 Histone Post-translational
Modifications

The mechanisms responsible for histone
post-translational modifications (HPTMs) are
conserved in plants and animals (Feng and
Jacobsen 2011; Fuchs et al. 2006). The following
part presents these conserved mechanisms using
examples taken from plant models (except when
data were obtained from animal models only)
and discusses a few differences discriminating
plants from animals.
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9.3.1.1 Numerous Histone
Post-translational
Modifications
and Histone Variants
Contribute
to the Epigenetic
Information

All histones are subjected to a wide variety of
post-translational modifications that include
methylation, acetylation, phosphorylation, ubiq-
uitylation, sumoylation, and ADP ribosylation
(Bannister and Kouzarides 2011; Berger 2007;
Feng and Jacobsen 2011; Jenuwein and Allis
2001). These modifications affect various amino
acids at different positions. The nucleosomal
histones are mostly modified at their NH2 ter-
minus which protrudes out of the nucleosome. In
addition, histone H2A, histone H3, and histone
H1 are encoded by small gene families, allowing
the production of different isoforms usually
referred to as histone variants that bear specific
roles and may be subjected to differential post-
translational modifications (Jiang and Berger
2017; Talbert and Henikoff 2017). Importantly,
most histone marks are found both in plants and
in animals, but the same histone mark can have a
different distribution and physiological function
in different organisms. A striking example is the
mark H3K9me3 which is mostly associated with
heterochromatin in organisms ranging from fis-
sion yeast to humans (Becker et al. 2016), but it
is typically found in euchromatin in Arabidopsis
(Roudier et al. 2011).

Histone modifications and histone variants
control several processes linked to genome
function, such as DNA replication, DNA repair,
DNA recombination, and transcriptional
activation/inactivation (Vergara and Gutierrez
2017). Most studies have focused on their func-
tion in gene expression, which relies on two main
mechanisms (Bannister and Kouzarides 2011;
Berger 2007; Engelhorn et al. 2014). First
HPTMs, like histone acetylation, neutralize the
positive charge of histones and weaken the
interaction between histones and the negatively
charged DNA molecule leading to an increased
DNA accessibility to the transcriptional
machinery. Recent data based on a multiscale

computational study have shown that histone
lysine acetylation also unfolds chromatin by
decreasing tail availability for inter-nucleosome
interactions, which are important for the chro-
matin fiber compaction (Collepardo-Guevara
et al. 2015). In addition, HPTMs are recognized
by a diverse set of effector proteins, also called
histone readers, which participate in the control
of gene expression, for example chromatin
remodeling proteins or transcriptional regulators.
Hence, a large array of protein domains has been
characterized, which recognize and bind to
specific histone modifications. Some of the
HPTM readers are directly responsible for a
specific functional outcome such as the DNA
methyltransferase CMT3 which recognizes
H3K9me2 (Du et al. 2012; Lindroth et al. 2004)
and is responsible for CHG methylation (Lin-
droth et al. 2001). Alternatively, HPTM readers
can act through their interaction with effector
proteins. For example, the Arabidopsis
MORF-related gene (MRG) group proteins,
MRG1 and MRG2, recognize the H3K4me3/
H3K36me3 marks on the FLOWERING LOCUS
T (FT) promoter; this interaction favors the
activation of FT transcription through a physical
interaction between MRG1/MRG2 and the tran-
scription factor CONSTANS (Bu et al. 2014).
Because they rely on a number of different pro-
tein partners, such mechanisms can be precisely
controlled. Finally, recent data suggest that
HPTMs play a role in the 3D organization of
genomic DNA, contributing to the formation of
specific nuclear territories, characterized by pre-
cise expression output (Liu et al. 2016;
Rodriguez-Granados et al. 2016; Veluchamy
et al. 2016).

9.3.1.2 The Genome-Wide Distribution
of HPTMs Shapes
the Epigenetic Landscape

The recent development of genome-wide analy-
sis of epigenetic mark distribution has shown that
histone PTMs together with DNA methylation
(see below) can form specific combinations that
define genome territories with either active or
repressive chromatin states in multiple organisms
from metazoa (Baker 2011) to plants, including
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rice (Li et al. 2008), Arabidopsis (Luo et al.
2013; Roudier et al. 2011; Sequeira-Mendes
et al. 2014; Wang et al. 2015), and barley (Baker
et al. 2015). These studies allowed the identifi-
cation of a finite number of chromatin states
along chromosomes, characterized by distinct
sets of epigenetic marks. Interestingly, genomic
elements are often distinguished by specific
chromatin states. For example, in Arabidopsis,
silent heterochromatin is associated with H3.1,
H3K9me2, H3K27me1, and 5mC, and the tran-
scriptional start site (TSS) of many actively
transcribed genes with a combination of H2Bub,
H3K36me3, and H3K4me3. Alternatively,
repressed genes present in euchromatic regions
are associated with H3K27me3 within a nucle-
osome context enriched in H3.1 (Roudier et al.
2011; Sequeira-Mendes et al. 2014).

Interestingly, some genes are associated with
both active and repressive marks, as illustrated by
the chromatin state 2 defined by Sequeira-Mendes
et al. (2014), where H3K4me2 and H3K27me2
coexist. Such bivalent chromatin states have been
described at genes coding for important develop-
mental regulators such asAGAMOUS (Saleh et al.
2007) or floral integrators (Qian et al. 2018) and
could be necessary for fine-tuning gene
expression.

9.3.1.3 HPTMs Dynamic Is Controlled
by Specific Enzymes

Active and repressive histone marks are estab-
lished and removed by specific enzymes referred
to as HPTM writers and erasers, respectively.
The level of each HPTM is therefore determined
in a dynamic fashion, by the relative
abundance/activity of its specific writer(s) and
eraser(s) (Fig. 9.1). Although HPTMs are rever-
sible marks, their stability is variable. For
example, histone acetylation is a very dynamic
epigenetic mark. The estimation of H3 and H4
acetylation turnover rates in human cells revealed
very short half-lives (Zheng et al. 2013), with 12
histone sites displaying half-life below one hour
(Weinert et al. 2018). As a consequence, modi-
fication of histone acetylation status could be
essential when rapid changes in gene expression
are required, for example in response to

environmental stimuli (Barth and Imhof 2010).
On the contrary, H3K27me3 was initially con-
sidered a very stable epigenetic mark that was
conserved through cell division perpetuating the
stable repressive state of the chromatin at specific
loci. Consequently, H3K27me3 is considered a
major determinant of cell identity, although it is
now clearly established that this mark can be
actively removed by the Jumonji-type of histone
demethylases (Chen et al. 2011; Liu et al. 2010;
Xiao et al. 2016).

Many genes coding for HPTM writers and
erasers have been identified and functionally
characterized in Arabidopsis (Fig. 9.1). Most
studies have focused on histone methylation and
acetylation, so that other HPTMs, such as histone
phosphorylation or sumoylation, have been over-
looked. Over the past decade, functional analyses
of writers and erasers have also been conducted in
a few other models and crop species, like tomato
(Boureau et al. 2016; How Kit et al. 2010), rice
(Jiang et al. 2018a, b; Li et al. 2014; Liu et al. 2017;
Zheng et al. 2015), Brassica napus (Jiang et al.
2018c), poplar (Fan et al. 2018), wheat (Liu et al.
2018), and maize (Forestan et al. 2018; Rossi et al.
2007). These studies are mainly based on the
characterization of genes presenting homologies
with those originally identified in Arabidopsis. As
shown in Fig. 9.1, each histone mark is set up by a
specific set of enzymes, which are frequently
specialized in the addition of a precise number of
modifications. For example, whereas
ARABIDOPSIS TRITHORAX-RELATED
PROTEIN 5 (ATRX5) and ATRX6 of the tritho-
rax group are responsible for the addition of one
methyl group at histone 3 lysine 27 (H3K27me1)
(Jacob et al. 2009). Enhancer of Zeste proteins
from the Polycomb group family are part of the
Polycomb Repressive Complex 2 (PRC2) and are
in charge of the addition of 2 and 3 methyl groups
at the same residue (H3K27me3) (Liu et al. 2010;
Fig. 9.1).

In addition, most writers and erasers function
as multiprotein complexes. As mentioned above,
the Enhancer of Zeste (E(z)) proteins which
catalyze the H3K27 trimethylation is part of the
PRC2 complex. PRC2s contain three additional
core proteins, a protein of the Suppressor of
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Zeste 12 (Su (z)12) family, a protein of the Extra
Sex Comb (ESC) family, and a Multicopy Sup-
pressor of IRA 1 (MSI) protein. The four PRC2

core proteins are necessary for PRC2 to function
in vivo (Schubert et al. 2005), but only the E(z)
protein harbors the methyltransferase catalytic

Fig. 9.1 Histone H3 major post-translational modifica-
tions and corresponding enzymes. a Proteins responsible
for histone H3 methylation/demethylation. Depending on
the modified lysine residue (lysine K4, K9, K27, or K36),
different protein families are involved. Moreover, differ-
ent proteins may be required depending on the number of
methyl residues added/eliminated, as reviewed in Liu
et al. (2010); Chen et al. (2011); and (Xiao et al. 2016).
b Proteins responsible for histone acetylation and

deacetylation. For each type of regulators, the number
of genes found in the Arabidopsis genome is specified. In
a few cases, the name of these genes is indicated. Of note,
for gene families which include a large number of genes,
such as the trithorax group proteins, only a few genes
have been functionally characterized. The transcriptional
state (active or inactive) mainly associated with each
HPTM is indicated using the following color code: active
in green/inactive in red
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domain (the so-called SET domain). Many his-
tone deacetylases (HDACs) have also been
shown to associate with other proteins to form
multi-subunit complexes, suggesting that they
function cooperatively with other epigenetic
regulators and in association with transcription
factors (for recent results, see Hung et al. 2018;
Kim et al. 2016; and Yu et al. 2017).

Another important common trait of writers and
erasers in plants is that they are both encoded by
multigene families leading to the production of
multiple isoforms that controls each histone PTM.
In Arabidopsis, for example, the E(z) proteins are
encoded by three genes, respectively, CURLY
LEAF (CLF), SWINGER (SWN), and MEDEA
(MEA). Hence, a variety of PRC2 complexes are
produced, which act in a redundant manner
and/or at distinct developmental transitions dur-
ing the life cycle (Chanvivattana et al. 2004;
Derkacheva and Hennig 2013; Kinoshita et al.
2001; Mozgova and Hennig 2015).

9.3.1.4 A Diversity of Mechanisms Is
Involved in the Targeting
of Histone
Writers/Erasers

The molecular mechanisms responsible for the
recruitment of the epigenetic writers and erasers
to their specific target loci have been a
long-standing question. Recent data suggest that
different mechanisms may be involved (Deng
et al. 2018). Although this does not appear as a
general feature, some enzymes responsible for
histone mark editing contain DNA-binding
domains, which participate in their recruitment
at specific DNA consensus sequences. As an
example, relative of early flowering, also known
as Jumonji domain-containing protein 12
(JMJ12), which specifically demethylates
H3K27me3 (Lu et al. 2011), recognizes a
CTCTGYTY motif through its four Cys2His2
zinc fingers (Cui et al. 2016; Li et al. 2016).
A second and more general mechanism involves
transcription factors and corepressors, which can
recruit epigenetic regulators either through direct
protein–protein interactions or because they are
partners in the same multi-subunit complexes
(Vachon et al. 2018). This has been demonstrated

for a number of different epigenetic regulators
including PcG proteins (Questa et al. 2016; Roy
et al. 2018; Xiao et al. 2017; Yuan et al. 2016;
Zhou et al. 2018), Jumonji domain-containing
histone demethylases (Cheng et al. 2018b; Hou
et al. 2014; Ning et al. 2015; Zhang et al. 2015),
and HDACs (Cheng et al. 2018c; Tang et al.
2016a, 2017). In addition, transcription factor
binding at specific gene regulatory regions can
induce the displacement of writers/erasers from
their target loci, as demonstrates at least in two
plant studies (Luo et al. 2018; Sun et al. 2014).
Non-coding RNAs are also involved in the tar-
geting of HPTM regulators. Two long
non-coding RNAs play a role in the repression of
FLOWERING LOCUS C (FLC) expression by
PcG proteins (Heo and Sung 2011; Kim et al.
2017; Kim and Sung 2017), participating in their
recruitment through an uncharacterized mecha-
nism (Kim et al. 2017). Also, an intronic
non-coding RNA was shown to be necessary
for the CLF-dependent repression of AGA-
MOUS (Wu et al. 2018). Whether this mecha-
nism is more general remains to be demonstrated.
Finally, a few epigenetic regulators are recruited
through their interaction with other epigenetic
marks, or of histone variants, thereby generating
specific epigenetic mark combinations. For
example, according to the canonical model,
PRC1 complexes are recruited to PcG target
genes through the recognition of H3K27me3,
leading to the addition of the H2Ub marks at the
same loci and to the stable repression of the
corresponding genes (Del Prete et al. 2015).

Altogether, these mechanisms ensure that
writers and erasers are recruited only at specific
loci at specific times. In addition, HPTM editing
can be controlled through the regulation of the
production of the writers/erasers and of their
enzymatic activity.

9.3.1.5 Regulation of HPTM
Remodeling

A few epigenetic regulators are expressed at
specific developmental stages or in response to
precise environmental changes. For example,
MEDEA, an E(z) coding for an H3K27me3
methyltransferase, is specifically expressed in the
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female gametophyte, in the endosperm or in
response to an infection by a pathogen (Chaud-
hury et al. 1997; Roy et al. 2018; Spillane et al.
2000; Yadegari et al. 2000). Another example is
the histone demethylase JMJ30, whose expres-
sion oscillates with a circadian rhythm and plays
a role in the regulation of the period length
(Jones et al. 2010; Lu et al. 2011). Hence, as a
first regulation level, cells can control the timing
of epigenetic changes by a tight regulation of the
synthesis of the epigenetic writers/erasers, at
least in some specific cases. In addition, epige-
netic regulators can be post-translationally regu-
lated through direct protein–protein interactions.
For example, the activity of the histone
deacetylase HDA6 has been shown to be regu-
lated by phosphorylation (Yu et al. 2017), the
activity of histone methyltransferase ATX1 by
O-GlcNacylation (Xing et al. 2018), and the
activity of the histone methyltransferase CLF by
an F-box protein responsible for protein ubiqui-
tylation before their degradation through the
ubiquitin–26S proteasome (Woong et al. 2011).
Moreover, as described above (Sect. 9.3.1.4),
histone modifiers can also be controlled by
transcription factors through a regulation of their
recruitment and/or eviction to/from their target
sites. On top of that, an increasing number of
data suggest that HPTM is under metabolic
control (for a review, see: Shen et al. 2016).
Indeed, several regulators use metabolites as
substrate or cofactor: for example, histone
acetyltransferases, which necessitate acetyl-coA,
and histone methyltransferases, which depend on
S-adenosyl methionine availability.

As described in the above paragraph, our
knowledge about the mechanisms underlying
gene expression regulation through HPTM is
rapidly growing, revealing a tight cross talk
between histone modifiers, chromatin remodel-
ing complexes, and the transcription machinery
(Ojolo et al. 2018). In addition, multiple
histone-related epigenetic regulators may be
required in a highly coordinated manner for the
proper control of gene expression, as it has been
demonstrated for FLOWERING LOCUS C (FLC)
coding for a central floral repressor in Ara-
bidopsis (Berry and Dean 2015; Fletcher 2017;

Hepworth and Dean 2015; Whittaker and Dean
2017). In addition, HPTMs do not act alone, but
in combination with DNA methylation. Several
data suggest a functional coupling between his-
tone and DNA methylation, including the afore-
mentioned interaction between H3K9me2 and
the DNA methyltransferase CMT3 (for reviews:
Du et al. 2015; Torres and Fujimori 2015).

9.3.2 DNA Methylation

DNA methylation is an important and a highly
conserved epigenetic mark that has been studied
in detail in fungi, animals, and plants and plays
fundamental roles in genome functioning and
protection. It refers to the transfer of a methyl
group to the fifth position of the cytosine ring of
nuclear genomic DNA to form 5 methylcytosine.
In contrast to mammalian where DNA methyla-
tion mainly occurs at CG sites, in plants genomic
DNA can be methylated in all cytosine sequence
contexts, including the symmetrical CG, CHG
motives, and the non-symmetrical CHH motif
(which H represents A, T, or C) (He et al. 2011;
Law and Jacobsen 2010). Each sequence context
requires different mechanisms for establishment
and maintenance of DNA methylation (Fig. 9.2).

9.3.2.1 Mechanisms of DNA
Methylation in Plants

The mechanisms that control both initiation and
maintenance of DNA methylation have received
much attention in Arabidopsis (Matzke et al.
2015; Matzke and Mosher 2014; Law and
Jacobsen 2010), although studies have also been
performed in crop plants including corn, rice, and
tomato (Chodavarapu et al. 2012; Corem et al.
2018; Eichten et al. 2013; Fu et al. 2018a; Hu
et al. 2014; Li et al. 2012). DNA replication is a
semiconservative process that leads to the for-
mation of hemi-methylated DNA molecules.
During replication, only non-methylated cytosi-
nes are incorporated in the newly synthesized
DNA strand. Cells have therefore developed
specific mechanisms to fully re-establish DNA
methylation patterns. In mammalian, this is
insured by the enzyme, Dnmt1, that recognizes
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hemi-methylated DNA template at CG motives
(Law and Jacobsen 2010). In plants, different
mechanisms that are specific to each of the
sequence contexts for DNA methylation have
been identified that fulfill these tasks (Fig. 9.2).
The DNA methyltransferase 1 (MET1), which is

orthologous to the mammalian Dnmt1 (Achour
et al. 2008; Sharif et al. 2007), is recruited to
hemi-methylated DNA by VIM1 and 2 (variant
in methylation 1 and 2) and insures the mainte-
nance of methylation at CG sites (Vongs et al.
1993). Both VIM1 and 2 proteins contain an

Fig. 9.2 Mechanisms of de novo and maintenance of
DNA methylation in plants. DNA methyltransferases and
demethylases are involved in 5mC de novo methylation,
maintenance of methylation, and demethylation in higher
plants. Names of enzymes are those identified in the
Arabidopsis model. De novo DNA methylation is set up
by the RNA-directed DNA methylation (RdDM) pathway
involving the DRM1/2 methyltransferases, DRD1, and
24nt-long small RNAs, and by the chromomethylase
CMT2 with DDM1 in the CHH sequence context at
heterochromatic regions (Zemach et al. 2013). After
replication, newly produced DNA is hemi-methylated at
CG and CHG symmetrical sites, but at the
non-symmetrical CHH sites only one of the two newly
synthesized DNA molecules is not methylated. Mainte-
nance of methylation in the CG context depends on
MET1 and VIM1, 2, and 3, and maintenance in the CHG
context is catalyzed by CMT3. CHH maintenance of

methylation depends both on the RdDM pathway and on
CMT2 activity. Both CMTs are dependent on histone
methylation mediated by KYP and SUVH5 and 6. DNA
demethylation can occur passively in a replication-
dependent way, when the methylation machinery is not
or poorly active. 5mC cytosine can be actively removed
by DNA glycosylase/lyase, also called DNA demethylase,
independently from DNA replication. Newly synthesized
DNA strands are colored in deep blue. Shaded figures
represent enzymes showing reduced activity. Enzyme
names are from Arabidopsis. DRM1/2, CMT2/3
(chromomethylase2/3), MET1 (cytosine DNA methyl-
transferase 1), VIM1-3 (variant in methylation1-3),
KYP/SUVH4 [KYP/Su-(var)3-9 homolog 4], SUVH5/6
[Su-(var)3-9 homolog 5/6], DRD1 (defective in
rna-directed DNA methylation), DDM1 (decrease in
DNA methylation), and 24nt siRNA (24 nucleotide small
interfering RNAs)
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SRA (SET- and RING-associated) domain that
mediates their binding to hemi-methylated DNA
(Kim et al. 2014; Woo et al. 2008). The CHG
methylation is maintained by plant-specific DNA
methyltransferases, namely the chromomethy-
lases (CMTs), that include CMT3 in Arabidopsis
(Bartee et al. 2001; Bewick et al. 2017; Jackson
et al. 2002) and its maize homolog ZMET2 (Du
et al. 2012; Papa et al. 2001). CMTs contain a
BAH domain (bromo-adjacent homology) and a
chromodomain (chromatin organization modi-
fier) that is required to their binding to histone
H3 when dimethylated on lysine K9 (H3K9me2).
Genome-wide analysis of CMT3 distribution has
shown that it co-localizes with H3K9me2, an
interaction that seems necessary for CMT3
activity in vivo (Bernatavichute et al. 2008; Du
et al. 2012). Based on the current model, CMT3
and ZMET2 are recruited to their targets fol-
lowing binding to H3K9me2, which is set up by
suppressor of variegation homolog 4 (SUVH4)/
KRYPTONITE (KYP), SUVH5, and SUVH6
(Bartee et al. 2001; Du et al. 2014; Gouil and
Baulcombe 2016; Jackson et al. 2002). Consis-
tent with this view, mutations impairing
SUVH4/KRYP present a dramatic reduction in
both H3K9me2 and CHG methylation levels
(Jackson et al. 2002; Malagnac et al. 2002). As
SUVH4/KRYP contains an SRA domain that
allows its recruitment to methylated DNA, it is
thought that CMTs and KRYP are working in a
regulatory loop to maintain CHG methylation
(Du et al. 2014). Finally, CHG methylation and
H3K9me2 interactions are further highlighted by
the study of the ibm1 mutant (increase in bonsai
methylation) that shows an increased level of
both H3K9me and CHG methylation at active
genes (Miura et al. 2009). The IBM1 gene
encodes a Jumonji type of histone demethylase
necessary to eliminate H3K9me2 at genes,
thereby preventing CHG methylation and insur-
ing an active chromatin state (Inagaki et al. 2010;
Saze et al. 2008). Recently in Arabidopsis,
CMT2 was shown to maintain CHH and CHG
methylation in large heterochromatin
peri-centromeric regions enriched in large trans-
posons (TEs) (Zemach et al. 2013), most likely

via its interaction with the H3K9me2 histone
PTMs (Stroud et al. 2014).

Maintenance of methylation at CHH sites and
initiation of DNA methylation at non-methylated
sites irrespective to the sequence context are both
catalyzed by a third class of DNA methyltrans-
ferases, the domain rearranged methyltransferases
(DRMs; reviewed in Law and Jacobsen 2010).
These enzymes are directed to their target loci by
24 nt small interfering RNA (siRNA) in a process
named RNA-directed DNA methylation (RdDM;
Matzke et al. 2015). The synthesis of these small
RNAs has been studied in great details in Ara-
bidopsis over the last decades and will not be
discussed here as several recent reviews are
available (Matzke et al. 2015; Matzke and
Mosher 2014; Wendte and Pikaard 2017).

9.3.2.2 DNA Demethylation
Although DNA methylation is considered as a
stable epigenetic mark, reprogramming of DNA
methylation patterns has been observed in various
plant tissues and at specific developmental stages
(Li et al. 2018). DNA methylation can be either
actively removed or passively lost (Fig. 9.2; Law
and Jacobsen 2010). Passive demethylation
occurs after DNA replication when
non-methylated cytosines incorporated in the
newly synthesized DNA strand cannot be
methylated because the DNA methylation
machinery is not operating. This results in a rapid
and non-specific dilution of methylation as
observed in met1 and other mutants affected in
methylation control that presented a general
decrease in DNA methylation levels (Cokus et al.
2008; Stroud et al. 2013). In contrast, active
demethylation can specifically eliminate methy-
lated cytosines at specific loci. Active demethy-
lation has been observed during endosperm
development and imprinting (Bauer and Fischer
2011; Choi et al. 2002; Hsieh et al. 2009; Schoft
et al. 2011), gametophyte and gamete develop-
ment (Park et al. 2016), tomato fruit ripening (Liu
et al. 2015), and for the establishment of a suc-
cessful symbiosis with Bradyrhizobium in Med-
icago (Satgé et al. 2016). Plant active DNA
demethylation is catalyzed by bifunctional
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enzymes, the DNA glycosylase/lyases (DNA
GLs) initially identified in Arabidopsis. The
Arabidopsis genome contains four genes encod-
ing DNA GLs: REPRESSOR OF SILENCING 1
(ROS1), DEMETER (DME), and two
DEMETER-like (DML) genes, DML2 and DML3;
(Choi et al. 2002; Gong et al. 2002;
Ortega-Galisteo et al. 2008; Penterman et al.
2007). ROS1 and DME display in vitro nicking
activity on methylated DNA consistent with their
DNA GL activity; DNA demethylation requires
cytosine removal, a process that involves the
cleavage of the DNA backbone at the site of
cytosine removal mediated by the AP lyase
activity of ROS1 and subsequent reparation by an
unknown mechanism which likely involves a
putative polynucleotide kinase, a DNA poly-
merase, and a DNA ligase (Li et al. 2018). This
results in the removal and replacement of
methylated cytosines via a pathway related to
base excision repair (BER; Agius et al. 2006).

Studies in Arabidopsis have suggested that
multiple factors may lead the DNA demethylases
to their targets (Li et al. 2018). These include
ROS3 (Zheng et al. 2008), ROS4, a histone
acetyltransferase, also known as IDM1 (increase
in DNA methylation 1) (Qian et al. 2012), the
methyl-CpG-binding protein 7 (MBD7; Lang
et al. 2015), the Harbinger transposon-derived
protein 1 and 2 (HDP1 and 2; Duan et al. 2017),
and other partners (Li et al. 2018) that cooperate
to address ROS1 to its target loci. In addition,
expression of DML genes seems to be tightly
controlled in plants. Indeed, ROS1, DML2, and
DML3 gene expressions are rather ubiquitous in
Arabidopsis (Ortega-Galisteo et al. 2008; Pen-
terman et al. 2007) as is the expression of the
tomato ROS1 orthologous genes, SlDML1 and
SlDML2 (Liu et al. 2015). However, some of the
DML genes display distinct patterns of expres-
sion and have been recruited for specific devel-
opmental functions. This is the case for
DEMETER (DME) gene in Arabidopsis and
related species. DME is specifically expressed in
the central cell of the megagametophyte, which
restricts DME activity to this cell type. Another
example is the SlDML2 gene that in addition of
its general expression in young plant tissues

together with SlDML1 is the only tomato DML
gene strongly overexpressed at the onset of fruit
ripening, which correlates with its role in the
induction of fruit ripening (Liu et al. 2015).
Recent evidence also indicates that DNA
methylation levels may also participate in con-
trolling DML gene expression. This was sug-
gested following the observation that expression
of the ROS1 gene is repressed in the Arabidopsis
met1 or RdDM mutants, which are characterized
by a hypomethylated genome (Mathieu et al.
2007). More recently, the ROS1 promoter was
shown to contain a 39 bp DNA methylation
monitoring sequence (MEMS) that acts like a
“methylstat” able to sense DNA methylation
level and control ROS1 expression, thereby
maintaining a dynamic balance between DNA
methylation and active DNA demethylation (Lei
et al. 2015; Williams et al. 2015).

9.3.2.3 DNA Methylation Distribution
in Plants

The development of genome-wide strategies to
analyze DNA methylation such as methylated
DNA immunoprecipitation sequencing (MeDIP-
seq) or whole-genome bisulfite sequencing
(WGBS; Beck and Rakyan 2008; Kim et al.
2014; Yong et al. 2016) has allowed determining
the distribution of DNA methylation in several
eukaryotes. Among these two methods, WGBS
is considered the golden standard method as it
allows unraveling the position of methylated
cytosines at one base resolution and therefore
provides the most precise view of the distribution
of 5mC in eukaryote genomes (Yong et al.
2016). In plants, the description of the
genome-wide distribution of methylated cytosi-
nes was first reported in Arabidopsis (Cokus
et al. 2008; Zhang et al. 2006; Zilberman et al.
2007). An increasing number of plant methy-
lomes has now been investigated (Niederhuth
et al. 2016), including crops such as rice (Li et al.
2012), maize (Eichten et al. 2013), and tomato
(Zhong et al. 2013). Results indicate that DNA
methylation levels vary significantly between
species irrespective of the sequence contexts
although in most cases similar rules seem to
apply (Niederhuth et al. 2016). In plants, CG
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methylation is the highest in all species tested
and can vary up to threefold between species:
The lowest mCG content was found in Ara-
bidopsis (circa 30%; Niederhuth et al. 2016) and
the highest in Beta vulgaris (circa 90%; Nieder-
huth et al. 2016). In the plant species analyzed,
mCHG and mCHH contents were found at lower
levels than CG methylation and ranged between
9.3 and 81.2% and between 1.4 and 18.8%,
respectively, and the highest levels being found
in Beta vulgaris in each case. The range of
methylation variations in these two contexts is
therefore much higher than the one observed for
the CG context. When considering the distribu-
tion of mC within genomes, various studies have
shown that the centromeric and peri-centromeric
regions of chromosomes that are enriched in
transposable elements (TEs) and tandem repeats
are the most heavily methylated (Cokus et al.
2008; Lister et al. 2008; Seymour et al. 2014),
although some variations between plant species
were observed (Niederhuth et al. 2016). High
methylation levels at TEs are consistent with
5mC being of primary importance in the control
of their activity and are thought to inhibit their
transcription (Cui and Cao 2014).

The distribution of DNA methylation differs
in genes and TEs, and presents common features
between plant species. First, early work on Ara-
bidopsis showed that only 5% of the genes were
methylated within their promoter region (Zhang
et al. 2006). However, these studies were per-
formed using mixture of tissues, which makes
difficult to determine the precise number of genes
with methylated promoters and the relation with
gene expression. Since that time, other studies
have analyzed organ-specific DNA methylation
patterns in relation to gene expression profiles
demonstrating an inverse correlation between
DNA methylation in promoters and gene
expression. For example, analysis of DNA
methylation during soybean seed development
and maturation has allowed identifying 40, 66,
and 2136 genes with changes in DNA methyla-
tion levels in the CG, CHG, and CHH contexts,
respectively. Most of the genes with differentially
methylated regions in the CHH context showed a

negative correlation between methylation and
expression levels (An et al. 2017). Similarly in
tomato fruit, low methylation levels at promoters
of a subset of ripening-induced genes have been
correlated with gene expression (Lang et al.
2017; Liu et al. 2015; Zhong et al. 2013). Thus,
promoter methylation is likely associated with
the repression of gene expression although recent
evidence suggests that the opposite is also pos-
sible (Lang et al. 2017).

The body of genes was also shown to be
methylated, but only in the CG context, a process
called gene body methylation (GbM). GbM
seems conserved in plants and affects ortholo-
gous genes between species (Takuno and Gaut
2011); depletion of CHG and CHH methylation
in gene bodies suggests that these two types of
methylation are antagonist to transcription elon-
gation whereas CG methylation is not
(Coleman-Derr and Zilberman 2012; Feng et al.
2010; Takuno and Gaut 2011; Zemach et al.
2010; Zilberman et al. 2007). For now, the
function of GbM is not understood. In Ara-
bidopsis, more than 20% of the genes harbor
GbM, corresponding in general to genes that are
moderately expressed and constitutively active
(Zhang et al. 2006; Zilberman et al. 2007).
However, some plants have lost GbM methyla-
tion, suggesting it either is not required for plant
viability or can be compensated by other mech-
anisms (Bewick and Schmitz 2017). Such situa-
tions remain rare, which suggests that GbM plays
an important function in plants, still to be dis-
covered. Interestingly, in Arabidopsis GbM
seems to partially depend on latitude, which may
reflect an adaptive function to the environment
(Dubin et al. 2015). In addition to GbM, CHG
and CHH methylations can also be found in the
body of genes. CHG genes are usually expressed
at low levels, below all genes, and those with
CHH methylation, also called RdDM genes,
are not expressed (Niederhuth et al. 2016;
Bewick and Schmitz 2017).

The recent literature we have summarized
here clearly shows that the function of DNA
methylation in plants is complex and depends on
both the sequence context and the localization.
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9.4 Epigenetic Regulations
in Fleshy Fruit

9.4.1 Evidence that HPTMs Are
Essential to Fleshy Fruit
Development

As mentioned above, HPTMs are critical to many
plant development processes, and recent evi-
dence indicates that these epigenetic marks are
essential during fruit development and ripening
(Bucher et al. 2018; Gallusci et al. 2016). Genes
encoding histone deacetylases (HDACs), histone
acetyltransferases (HATs), histone methyl trans-
ferases (HMTs), and histone demethylases
(HDMs) have been identified in several fleshy
fruit species such as apple (Janssen et al. 2008),
banana (Fu et al. 2018a, b), sweet orange (Xu
et al. 2015), strawberry (Gu et al. 2016), and
tomato (Cigliano et al. 2013; Zhao et al. 2015).
Studies have shown that some of the genes
encoding histone modifiers are preferentially
expressed in fruit, with stage-specific expression
patterns that depend on both fruit species and
HPTM modifiers. In grapevine, genome-wide
analysis has revealed 33 gene-encoding proteins
containing a SET domain, 10 PRC2 genes, and 7
and 13 genes coding for putative HATs and
HDAC, respectively. Some of these genes show
expression patterns consistent with a possible
involvement in grape berry development and
ripening (Almada et al. 2011; Aquea et al. 2010;
Aquea et al. 2011). Overall, these observations
suggest that the corresponding proteins are
recruited for the control of fruit development,
ripening, and abscission in fleshy fruit species.
Although not in grapevine, evidence of their role
in fruit development was provided by loss and
gain of function in tomato (for recent reviews:
Bucher et al. 2018; Gallusci et al. 2016; Gio-
vannoni et al. 2017).

Early studies have analyzed the tomato’s high
pigment mutants (hp1, hp2) which present
increased carotenoid content in fruits. The cor-
responding tomato genes encode two subunits of
an ubiquitin ligase complex, DDB1 and DET1,
respectively (Tang et al. 2016b). In human, this
complex is known to target histone proteins for

ubiquitination in response to DNA damages (Hu
et al. 2004; Wang et al. 2006). In tomato, by
impeding light signal transduction by preventing
the ubiquitination of H2B histones (Benvenuto
et al. 2002; Lieberman et al. 2004), these muta-
tions may affect the transcriptional repression of
genes involved in the production of carotenoids
and other compound/s, therefore generating the
enhanced pigmented fruit phenotype. More
recently, silencing studies were conducted in
tomato on different components of the histone
modifier complex PRC2 (Polycomb repressive
complex 2). They targeted genes encoding the
enhancer of zeste EZ1 and EZ2 proteins (Bour-
eau et al. 2016; How Kit et al. 2010) and the FIE
protein (Fertilization-Independent Endosperm
Development; Liu et al. 2012). These studies
revealed the roles of these genes during flower
formation and early fruit development (reviewed
in: Bucher et al. 2018; Gallusci et al. 2016). In a
more recent work, impairment of MSI1
(multi-suppressor of IRA 1), a putative compo-
nent of the tomato PRC2s, was shown to affect
fruit ripening (Liu et al. 2016). However, MSI1 is
also a member of the CAF-1 complex involved in
chromatin assembly (Henning et al. 2005). As
none of the other PRC2 components affect fruit
ripening when repressed, it is possible that the
effect on ripening is due to impairment of the
CAF-1 complex activity rather than to the inhi-
bition of PRC2 activity. Indeed, chromatin
assembly activity might be of primary impor-
tance in tomato fruit due to the high endoredu-
plication level (Teyssier et al. 2008). Finally,
other studies have shown that the control of
histone acetylation is also important to fine-tune
induction of ripening. For example, plants with
reduced activity of various HDACs present
delayed carotenoid accumulation and ripening
(Guo et al. 2017a, b) or an opposite effect on
both processes (Guo et al. 2018).

Evidence of the role of HPTMs in fruit was
also provided in the frame of the fruit ENCODE
project that aimed at analyzing the evolution of
fleshy fruit ripening control in angiosperms.
Combined genetic and epigenetic approaches
were implemented on 13 different fruit species
including (1) climacteric fruit species (tomato,
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apple, pear, banana, melon, papaya, and peach),
(2) non-climacteric fruit species (grape, straw-
berry, cucumber, and watermelon), and (3) dry
fruit species (Arabidopsis and rice; Lü et al.
2018). The project generated multidimensional
dataset based on transcriptomic DNA methyla-
tion and histone PTMs with a focus on
H3K27me3 and H3K4me3 profiles to decipher
genetic and epigenetic events controlling fruit
ripening (Lü et al. 2018). In this context,
researchers focused on key molecular players
involved in ethylene-dependent ripening circuits
in climacteric fruit and their orthologues in
non-climacteric and dry fruit. Although global-
and locus-specific DNA methylation changes
were observed in all fruit species during ripening
induction, DNA demethylation was suggested to
be only required for tomato ripening. However,
these conclusions were based on correlative
studies without functional foundation and are not
consistent with the recent demonstration that in
addition to tomato fruit ripening (see below;
Lang et al. 2017; Liu et al. 2015), strawberry
fruit ripening and sweet orange fruit ripening are
also under DNA methylation control although
different mechanisms are operating (Cheng et al.
2018a; Huang et al. 2019). In contrast, Lü et al.
(2018) suggested that, instead of DNA methyla-
tion, the repressive mark H3K27me3 may play a
conserved—and maybe central—role in regulat-
ing fruit ripening, although its precise function
and importance may vary between fruit species.
Indeed, for a few ripening-related genes, a cor-
relation was found between their induction dur-
ing ripening and the removal of H3K27m3 in
several fruit species, therefore suggesting an
ancestral inherited role for this mark in angios-
perm fruit ripening (Lü et al. 2018). Interestingly,
a recent study indicates that H3K27me3 may be
involved in the control of methoxypyrazines
(MPs) accumulation in grape berries, a com-
pound known to contribute to the herbaceous
characters in wine (Battilana et al. 2017). MPs
biosynthesis depends on the expression of the
VvOMT3 gene which encodes a protein control-
ling the final and key step of this biosynthetic
pathway in grape. However, MP accumulation is
variety dependent. For example, berries from

Cabernet Sauvignon accumulate MPs, but those
of the Pinot Meunier-derived dwarf do not.
A recent study has shown the mark H3K27me3
is abundant at the VvOMT3 locus in Pinot
Meunier dwarf but not in Cabernet Sauvignon
berries (Battilana et al. 2017), suggesting that
H3K27me3 inhibits VvOMT3 gene expression
resulting in the inhibition of MP biosynthesis.
Although these results are consistent with an
important role of H3K27me3 in fruit ripening
control, this mark does not seem to be critical for
ripening in all fleshy fruit species shown in
tomato (Boureau et al. 2016; How Kit et al.
2010; Liu et al. 2012).

The characterization of PRC2 mutants or of
mutants affected in the removal of the H3K27me3
mark will now be necessary to better assess the
importance of this epigenetic mark in modulating
the epigenetic landscape and its consequences on
gene expression and fruit phenotypes

9.4.2 DNA Methylation Role in Fruit
Development and Shape

So far, very few studies have investigated the
possible role of epigenetic mechanisms in the
control of organogenesis and early development
of fruit. However, a few examples show that
DNA methylation is likely part of the regulatory
networks that control fruit shape and size. One
recent example is provided by the analysis of the
mantled phenotype in oil palm (Elaeis guineen-
sis) that was identified in plants generated by
somatic embryogenesis (Rival et al. 1998). Oil
palm plants with the mantled phenotype are
characterized by the development of flowers with
carpeloid structures in place of male organs
leading to the formation of a fruit with various
phenotypes ranging from normal-looking fruits
to very small fruits (Dussert et al. 2000). This
phenotype was recently shown to be caused by
the hypo-methylation of a Karma-like LINE
retrotransposon located within an intron of the
DEFICIENS (DEF) gene. Normal fruits develop
when the Karma retrotransposon is methylated,
whereas its hypo-methylation leads to the man-
tled phenotype due to the inhibition of DEF
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splicing (Ong-Abdullah et al. 2015). For tomato,
impairing DNA demethylases does not only
inhibit ripening (see Sect. 9.4.2.1), but also alter
flower and fruit shape. In particular, fruit pre-
sented a significant increase in the number of
locules that resulted from an increased number of
carpels formed during flower development (Liu
et al. 2015). However, it is still unclear whether
this effect is a direct or indirect consequence of a
deficient demethylation process.

A final example comes from the analysis of
apple fruit development using two double hap-
loid apple varieties with fruit, whose size corre-
lates with the number of cells in the fruit
(Daccord et al. 2017). While these two varieties
have genomes that only differ by a limited
number of single-nucleotide polymorphisms
(SNPs), 294 differentially methylated regions
(DMRs) were identified in proximity to genes
that could be involved in fruit growth and
development. The causal relationship between
these DMRs and difference in fruit size is still
elusive (Daccord et al. 2017).

9.4.2.1 Evidence that DNA Methylation
Is Critical to Fruit
Ripening

DNA methylation changes were first documented
in tomato decades ago by Hadfield et al. (1993),
who showed that genes induced at the onset of fruit
ripening had changes in their methylation state.
Since that time, the description of the Colorless
Non-Ripening (Cnr) epimutation provided com-
pelling evidence that DNA methylation control is
essential to fruit ripening (Manning et al. 2006).
Fruits of the Cnr epimutant are characterized by a
severe reduction in ethylene production, an inhi-
bition of fruit softening, and a lack of carotenoid
synthesis and accumulation (Thompson et al.
1999). The Cnr epimutant phenotype is very
stable, and reverting sectors were only observed
on 3 individual fruits on independent plants from
more than 3000 plants. This allowed the positional
cloning of the CNR locus that was shown to con-
tain only one gene differentially regulated between
Cnr and WT fruits, yet without any sequence dif-
ferences between both genetic backgrounds
(Manning et al. 2006). This gene, which encodes a

SQUAMOSA promoter-binding protein-like
(SBP-box/SPL) transcription factor, presented a
286-bp-long hyper-methylated region located
2.3 kb upstream of the TSS. Hyper-methylation
was only found in the Cnr background and resul-
ted in CNR gene repression and blocking of fruit
ripening (Manning et al. 2006). Additional evi-
dence that methylation upstream of the promoter
was responsible for the repression of theCNR gene
was provided using virus-induced gene silencing
(VIGS) to repress the expression of the tomato
CMT3 gene in the Cnr background that allowed
reversing the Cnr phenotype to WT, whereas the
same approach usingMET1 or theDRM genes had
much weaker effects (Chen et al. 2015). This
approach was sufficient to reduce methylation at
the CHG sites located in the hyper-methylated
286-bp region of the CNR promoter and to
increase the expression of CNR indicating that the
methylation of CNR gene in the Cnr background
requires the functional maintenance of methyla-
tion machinery. Hence, maintenance of methyla-
tion at the Cnr locus is necessary for the somatic
stability of the epimutation (Chen et al. 2015).
Since the description ofCnr, other studies have led
to the identification of epialleles in tomato. They
include the demonstration that variations in vita-
min E content of tomato fruit are determined in
part by the methylation level of the promoter
region of VTE3, a gene which encodes a
2-methyl-6-phytylquinol methyltransferase,
responsible for an essential step in tocopherol
biosynthesis (Quadrana et al. 2014). Methylation
variations were observed between tomato acces-
sions that were correlated with changes in VTE3
gene expression and fruit vitamin E content.
Additional epialleles were also identified in the
progeny of crossings between M82, a commercial
tomato accession, and Solanum penellii, a wild
tomato relative (Gouil and Baulcombe 2018).
However, the stability of the newly generated
epialleles was not established in this case. Epial-
leles that determine the color of the skin were also
found in apple and pear (El-Sharkawy et al. 2015;
Telias et al. 2011;Wang et al. 2013). In both cases,
hyper-methylation of the promoter region of
MYB10was associated with repression of the gene
and of anthocyanin biosynthesis in the skin.
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9.4.2.2 DNA Methylation
Reprogramming in Fleshy
Fruit

Analysis of the global DNA methylation level at
different stages of tomato fruit development
indicated that the total content in 5mC decreased
in the pericarp of tomato fruit from 29.9% at the
breaker stage to 20.1% at the red ripe stage
(Teyssier et al. 2008). This decrease in DNA
methylation level was confirmed by WGBS of
the tomato fruit genomic DNA at four develop-
mental stages, namely immature green, breaker,
turning, and fully ripe fruit of WT plants and also
at two stages in the Cnr and ripening inhibitor
(rin) mutant genetic backgrounds, both impaired
in the ripening process (Zhong et al. 2013).
Results indicated that in addition to a decrease in
methylation level at CG sites observed in
TEs-rich regions, DNA methylation was also
reduced at the promoters of genes that are
induced during fruit ripening, including
gene-encoding proteins with important role in
this process, such as the CNR, the RIN, or the
NOR genes (Reviewed in: Bucher et al. 2018;
Gallusci et al. 2016; Giovannoni et al. 2017).
Noteworthy, CHH methylation is high in tomato
(11% in ripe fruit, 13% in non-ripe fruit, and
8.3% in leaves; Zhong et al. 2013) as compared
to previously described CHH methylation levels
in Arabidopsis (1.5%; Cokus et al. 2008) and in
other plants (Niederhuth et al. 2016), and was
found higher in fruit (Zhong et al. 2013).

With the aim to investigate the mechanisms
underlying the loss of genomic DNA methylation
occurring at the onset of fruit ripening, Liu et al.
(2015) have identified four tomato genes
encoding putative DNA demethylase. One of
them, SlDML2, was strongly upregulated at the
onset of ripening, simultaneously to the decrease
in DNA methylation. Inhibition of SlDML2 gene
expression using RNAi and VIGS strategies (Liu
et al. 2015) or by CRISPR-Cas9-mediated
mutagenesis (Lang et al. 2017) indicated that
SlDML2 is an absolute requirement for tomato
fruit ripening to occur. Ripening inhibition was
associated with the repression of genes encoding
the RIN, NOR, and CNR transcription factors that
play a major role in the induction of tomato fruit

ripening (Lang et al. 2017; Liu et al. 2015). Of
note, the promoter region of these transcription
factors is normally demethylated during fruit
ripening, whereas loss of SlDML2 function was
associated with the absence of demethylation and
gene repression. A similar situation was observed
at 600 ripening-induced genes that failed to be
expressed and remained hyper-methylated in
their promoter region. Interestingly, 598 other
hyper-methylated genes normally repressed dur-
ing the ripening of wild-type tomato fruit main-
tained their expression level in the mutant
background (Lang et al. 2017), suggesting that
DNA methylation is also associated with gene
expression in tomato fruit.

It was recently suggested in the frame of a
fruit ENCODE project that DNA demethylation
might not be a general process controlling fleshy
fruit ripening and dry fruit maturation, in contrast
to H3K27me3 (Lü et al. 2018). However, recent
works indicate that DNA methylation control is
likely important in other fruits as well. The
description of the strawberry fruit methylome
indicates that fruit genomic DNA becomes
massively demethylated during the ripening
process (Cheng et al. 2018b), as observed in
tomato (Teyssier et al. 2008; Zhong et al. 2013).
Demethylated regions were enriched at a large
subset of genes induced during ripening sug-
gesting a direct link with the expression of
ripening-induced genes, consistent with the
demonstration that the treatment of strawberry
fruit with a demethylating agent accelerates fruit
ripening (Cheng et al. 2018b). Interestingly, in
strawberry, no demethylase-encoding gene could
be identified that was involved in the loss of
methylation. Decrease in methylation was rather
associated with repression of the RdDM pathway
that could in turn lead to demethylation at
specific loci (Cheng et al. 2018b). In a more
recent study, Huang et al. (2019) analyzed the
changes in genomic DNA methylation in the skin
of orange fruit and demonstrated a general
increase in DNA methylation along with fruit
development and ripening. Inhibition of methy-
lation by means of azacytidine, a demethylating
agent, resulted in delayed ripening indicating that
increase in DNA methylation is necessary for
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orange fruit ripening to occur (Huang et al.
2019). Taken together, these results highlight the
general importance of DNA methylation control
in fleshy fruit, even though it becomes clear that
a diversity of mechanisms is operating depending
on the plant species under study (Fig. 9.3).

9.5 Interaction Between Hormones
and Epigenetic Regulations
in Fleshy Fruit Development
and Ripening

Other important regulatory pathways, including
hormones and transcription factors, control fruit
ripening. Their complex interactions with
chromatin-based regulations need to be investi-
gated. Several recent works have illustrated that
hormone signaling may involve an epigenetic
component (Yamamuro et al. 2016), but very few
studies have addressed this question in fruit so
far (Lü et al. 2018; Zuo et al. 2018).

Fruit set is known to be under hormonal
control, and a diversity of hormones plays a
critical role in this process (see Chap. 12). They
include auxins, gibberellic acids, or cytokinins
that can promote parthenocarpic fruit develop-
ment when applied alone, although their com-
bined action appears much more efficient in both
dry and fleshy fruits (for recent reviews: Jolder-
sma and Liu 2018; Kumar et al. 2014). The
involvement of epigenetic regulation during this
developmental phase is still poorly studied. At
present, evidence is mounting that PRC2 com-
plexes might be involved in this process as
illustrated by the elongation of fruit in the
absence of fertilization in Arabidopsis PRC2
mutants (Goodrich et al. 1997) and partheno-
carpy in tomato (Liu et al. 2012). However, it is
not clear whether PRC2s control fruit elongation
directly or through auxin signaling. Consistent
with the latter, it has been shown that genes
involved in auxin biosynthesis or signaling are
enriched in the H3K27me3 repressive mark,
which is established by PRC2s (Lafos et al.
2011). In addition, met1 mutants show an elon-
gation of fruit without pollination, suggesting
that maintenance of DNA methylation is

necessary to prevent fruit development in the
absence of fertilization (FitzGerald et al. 2008).
In this case, interaction with hormonal regula-
tions has not been yet investigated, even though
interplay between PRC2 and DNA methylations
has been suggested in the megagametophyte of
Arabidopsis developing flowers. Therefore,
auxins, DNA methylation, and histone marks
could control the induction of seed and fruit
development in a coordinate manner.

The role of hormones varies between fruit
types, with ethylene being the major player in
climacteric fruit, whereas ABA appears to have a
more prominent role in non-climacteric fruit
(McAtee et al. 2013) including grapevine (Fortes
et al. 2015). Yet, the relationship between hor-
monal and epigenetic regulations in fruit ripening
control is still poorly understood. As far as his-
tone PTMs are concerned, a recent study per-
formed in banana has shown that the ethylene
response factor11 (MaERF11), a negative regu-
lator of banana fruit ripening, may recruit the
MaHDA1 HDAC at the promoters of the
MaEXP2, MaEXP7, MaEXP8, and MaACO1
genes in immature green fruit (Han et al. 2016).
This would result in deacetylation and repression
of these genes, before ripening induction, an
effect that would be relieved by the massive
synthesis of ethylene occurring at the onset of
ripening (Han et al. 2016). HDACs were also
suggested to interact with ethylene to regulate
gene expression involved in longan fruit senes-
cence (Kuang et al. 2011). There is, however,
stronger evidence that ethylene and DNA
methylation interact to control fruit ripening, at
least in the tomato (Liu et al. 2015), where genes
involved in ethylene biosynthesis are misregu-
lated in Sldml2 mutants (Lang et al. 2017).
Inversely, tomato plants affected in ethylene
signal transduction were shown to have deeply
modified fruit methylation patterns, consistent
with a loop regulation between DNA
methylation/demethylation and ethylene biosyn-
thesis in tomato fruit (Zuo et al. 2018).

ABA is thought to play a much more promi-
nent role in the control of ripening of
non-climacteric fruit (McAtee et al. 2013). In
strawberry, some of the ABA biosynthetic genes
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Fig. 9.3 Putative roles of genomic DNA methylation in
fleshy fruit. a Function of DNA methylation in sweet
orange fruit: Genomic DNA methylation increases from
13% of total cytosine in 90 dpa old sweet orange fruit to
14.5% in 210 DPA old fruit. Increase in DNA methylation
is correlated with the gradual decrease in the expression of
DNA demethylase (DML) genes and of genes involved in
the RNA-directed DNA methylation pathway (NRPE1,
AGO4). Ripening-associated hyper-methylated regions
were associated with hundreds of genes normally
expressed at early stages of fruit development, as those
involved in photosynthesis, but also with the induction of
several genes involved in orange fruit ripening. Results
suggest that DNA methylation is critical to ripening of
sweet orange fruit, as confirmed by the ripening inhibitory
effect of azacytidine, an inhibitor of genomic DNA
methylation. Up- and down-regulated processes shown
in the figure are, respectively, associated with DEGs
correlated with hyper-DMR (gain of methylation during

ripening). b Function of DNA demethylation in straw-
berry fruit and in tomato fruit: genomic DNA methylation
in young strawberry immature fruit is 7.5% and decreases
during fruit ripening. Loss of methylation occurs at genes
involved in the ripening process (anthocyanin accumula-
tion, secondary compound synthesis, etc.), suggesting that
demethylation is necessary for ripening induction. Con-
sistent with this view, fruit treatment with azacytidine
results in early ripening. Reduction of methylation was
correlated with the reduction of the expression of genes
involved in the RdDM pathway and with reduced
accumulation of short interfering RNAs of 24 nt. In
contrast, DNA demethylase-encoding genes are not
induced. Genomic DNA methylation decreases from
30% of total cytosine in young immature fruit to 20% in
red ripe fruit (Teyssier et al. 2008). Decrease in DNA
methylation correlates with up-regulation of SlDML2, one
of the tomato DNA demethylases. Genes encoding RIN,
NOR, CNR transcription factors that control fruit ripening

184 J. Kong et al.



are hypomethylated in their promoter region and
present an enhanced expression during ripening
(Cheng et al. 2018b). However, there is no evi-
dence of a causal interaction between ABA
synthesis and transduction signal and variations
in DNA methylation at these genes.

9.6 Conclusions: Specific Aspect
of Epigenetic Regulations
in Grapevine

The importance of epigenetic regulations has been
demonstrated in Arabidopsis, for which a plethora
of mutants have been generated that affect the
regulation of DNAmethylation and histone PTMs
and were used to illustrate the prominent roles of
epigenetic regulations in plant development and
adaptation to stresses. However, it is becoming
clear that although epigenetic mechanisms have
been conserved within the plant kingdom, they
have been recruited for a diversity of develop-
mental processes that may vary between species.
In addition, different epigenetic mechanisms may
fulfill similar physiological functions in different
plants. An example is provided by the function of
the DNA demethylase SlDML2 that mediates the
active demethylation of tomato fruit genomic
DNA, a process necessary to tomato fruit ripening
(Liu et al. 2015), whereas in strawberry ripening
specific DNA demethylation is controlled by
inhibition of de novo methylation through the
RdDM pathway (Cheng et al. 2018b), and in some
other cases such as sweet orange there is no

massive demethylation during fruit ripening
(Huang et al. 2019).

Noteworthy, recent works also indicate that
epigenetic regulations may have much stronger
impacts on plant phenotypes and gene expression
in crops than in the model plant Arabidopsis
(Gallusci et al. 2016; Mirouze and Vitte 2014).
A diversity of reasons may contribute to this
observation including the lower methylation
level and transposon content of Arabidopsis as
compared to most crops (Lee and Kim 2014),
and differences in genome organization, for
example the distance between genes and trans-
posons (Niederhuth et al. 2016). Genome anal-
ysis has shown that the grapevine contains more
transposons than Arabidopsis (Jaillon et al.
2007). The most striking difference between the
two species is the alternation in grapevines of
regions with high and low gene density along
chromosomes, together with the high density of
transposons nearby genes and within introns. In
addition to possible impact on gene expression,
higher transposon density increases the proba-
bility that their mobility will generate variants
due to loss of gene function. Indeed, genetic
variations due to transposons that are inserted
within or in the vicinity of genes have been
described in grape and other plants (Hirsch and
Springer 2017; Lijavetzky et al. 2006; This et al.
2007; Verriès et al. 2000). The most striking
example is the white color of grape berries that
has been shown due to the insertion of the
GRET1 transposon in the promoter region of
MybA1 in berry skin cells (Kobayashi et al. 2004;

and other genes encoding enzymes necessary to ripening
(phytoene synthase 1, polygalacturonase, etc.) have
hyper-methylated promoters and are repressed in immature
green tomato fruit (Lang et al. 2017; Liu et al. 2015). Some
of the genes involved in photosynthesis are expressed in
young fruit even though their promoter is methylated at
this stage (Lang et al. 2017). Reduction of DNA methy-
lation that occurs at the onset of fruit ripening necessitates
the expression of the SlDML2 gene (Liu et al. 2015) and
correlates with the reduced expression of genes involved
maintenance of DNA methylation (Teyssier et al. 2008).
Demethylation occurs in the promoter region of many of
the genes encoding the CNR, RIN, and NOR transcription
factors, as well as of genes involved in carotenoid
(phytoene synthase 1), ethylene synthesis (ACC synthase

2), and cell wall metabolism (polygalacturonase, etc.),
among others, and is associated with their expression and
fruit ripening (Lang et al. 2017; Liu et al. 2015). For some
genes (CAP10, RBCS, etc.) demethylation was correlated
with gene repression (Lang et al. 2017). SlMET1 (cytosine
DNA methyltransferase 1), CMT (chromomethylase),
DRM (domain, rearranged methyltransferase), DML
(DEMETER-like demethylase), PSY1 (phytoene synthase
1), ACS2 (ACC synthase 2), RIN (ripening inhibitor),
NOR (non-ripening), CNR (colorless non-ripening).
Genes in boxes with intense colors (orange, blue, or gray)
are strongly expressed. Those in boxes with pale colors are
weakly expressed. Green arrows indicate activation, and
red bars repression. Repressed processes and genes are
indicated in red, and those activated in green
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Lijavetzky et al. 2006). Hence, the control of
transposon mobility is likely to be an important
issue in grapevine even more because it is a
perennial plant that is clonally propagated, which
allows maintaining somatic variations in a
population.

As far as fruit is concerned, several studies
have already highlighted the relevance of epige-
netic regulations in fruit crops. Whereas DNA
methylation was shown to play important roles in
tomato, strawberry, and orange fruit during
ripening (Cheng et al. 2018b; Huang et al. 2019;
Liu et al. 2015), histone PTMs are also likely
important at various phases of fleshy fruit
development (Gallusci et al. 2016; Lü et al.
2018). So far, evidence of the role of both types
of epigenetic marks in grape berries, and in many
other fruit crops, awaits demonstration. The
combination of high-throughput sequencing
associated with chromatin immunoprecipitation
or with bisulfite treatment of DNA will
undoubtedly shed light on the dynamics of epi-
genetic marks in fruit, as illustrated in the fruit
ENCODE project (Lü et al. 2018), but such
approaches remain correlative in nature and will
require to be completed by functional analysis of
the corresponding genes. In grapevine, genera-
tion of loss of function variants is hampered by
the difficulty to generate RNAi lines and
CRISPR-Cas9 mutations due to the limited effi-
ciency of plant transformation/regeneration pro-
cesses (see Chap. 16). So far, in silico analyses,
conducted on grapevine, have identified candi-
date genes involved in the control of epigenetic
marks (see Sect. 9.4.1). Many of these genes are
differentially expressed in grape berries (Almada
et al. 2011; Aquea et al. 2010, 2011), suggesting
that histone PTMs—and more globally, chro-
matin remodeling—could play a key role in
grapefruit development and ripening. However,
ChIP analysis would be necessary to determine
the variations of histone mark distribution. Sim-
ilarly, expression analysis of genes involved in
the control of DNA methylation associated with
the genome-wide description of DNA methyla-
tion changes would be necessary to assess the
potential role of DNA methylation in fruit.
Noteworthy, given the clear metabolic

differences observed between the skin and the
pulp, such studies should be performed in each
tissue separately. The final demonstration of the
role of epigenetic marks in grape berries will
require studying the effects of mutations affecting
genes that encode histone writers and erasers, as
well as enzymes involved in DNA methylation
control. Pharmacological approaches using
specific drugs interfering with these epigenetic
processes could also provide alternative strate-
gies to study the function of epigenetic marks in
grape berries (Baubec et al. 2009; Finnegan et al.
2018; Griffin et al. 2016).

In addition to the specificity of grape berry
development and ripening, grapevine develop-
ment and propagation strategies present features
that may emphasize the impact of epigenetic
regulations on plant phenotypes. First, grapevine
is a clonally propagated plant, which contributes
to limit its genetic diversity and subsequent
phenotypic variations, although both human
selection and naturally occurring mutations con-
tribute to the phenotypic diversity (Ferreira et al.
2018). As far as natural clonal propagation is
concerned, epigenetic processes are likely con-
tributing to the adaptation of plants to their local
environment and may provide selective advan-
tage (Verhoeven and Preite 2014). In line with
this idea, a recent study has shown that plants
of the mangrove species Laguncularia race-
mosa, have little genetic differences, but pos-
sess important DNA methylation differences,
suggesting that epigenetic variation in natural
plant populations may have an important role in
the adaptation to different environments
(Lira-Medeiros et al. 2010). Additional evidence
of the role of epigenetic processes in clonally
propagated plants is provided by the analysis of
the transgenerational memory of stresses in white
clover (González et al. 2016, 2018). Results
indicate that among the various stresses applied
to the parental plants, drought-generated trans-
generational effects in clonally propagated off-
spring were transmitted concomitantly to DNA
methylation changes and maintained during
several clonal offspring generations. So far, there
was no causal relationship demonstrated between
DNA methylation changes and transgenerational
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effects in these studies, but results suggest a
possible link between both types of event. As far
as grape is concerned, such studies have not been
performed and it is unknown whether genetically
identical clones may be epigenetically different.

In addition, clones of the same origin may
become with time epigenetically different.
Indeed, environmental conditions do impact the
epigenetic status of plants as epigenetic mecha-
nisms are essential to plant responses to both
non-biotic and biotic stresses (Gutzat and Scheid
2012; Kinoshita and Seki 2014; Lämke and
Bäurle 2017). However, the stability and main-
tenance of stress-induced epigenetic modifica-
tions have been a matter for debate in annual
plants (Crisp et al. 2016). As far as perennial
plants are concerned, new epigenetic imprints
generated by environmental conditions could
accumulate over the years and be maintained in
the meristem, thereby generating specific epige-
netic status for the plants depending on their
location and environment (Lafon-Placette et al.
2018; Raj et al. 2011). Hence, genetically iden-
tical clones could become epigenetically distinct
based on their growing location. The recent
demonstration of important changes in methyla-
tion patterns that seem to depend on the grape-
vine growing region is consistent with this idea,
although clones of the same origin were not used
in this study (Xie et al. 2017).

In addition to stresses (Fortes and Gallusci
2017), climate changes have important conse-
quences on grapevine phenology: it has been
shown that timing of budburst and flowering as
well as fruit quality are impacted by global
warming (Van Leeuwen and Darriet 2016). The
relevance of epigenetic-based processes involved
in the adaptation of grape plants to these envi-
ronmental constraints is so far unclear. However,
budburst was shown to be under methylation
control in poplar, active demethylation being
involved in the induction of bud opening after
winter (Conde et al. 2017). Whether epigenetic
mechanisms exist in grapevines that control
budburst is still unknown, recent studies have
suggested that PcG proteins might be involved in
the control of bud break and flowering (Almada
et al. 2011), a function that would be reminiscent

to the epigenetic control of vernalization in
Arabidopsis. Indeed, a better understanding of
the role of chromatin-based regulations in the
control of developmental stages during the
annual life cycle of grape may provide new
strategies to modify grapevine phenology and
improve adaptation of this important fruit crop to
climate changes.

A very important additional specific feature
that differentiates grapevines from other plants is
that since the second half of the nineteenth century,
grapevines are mostly grown grafted on root-
stocks, to protect the plant from Phylloxera and
other soilborne pests and diseases (Ollat et al.
2017; see Chap. 14). Grafting does not correspond
to the simple juxtaposition of two organisms: the
two associated graft partners, rootstock and scion,
actively interact with each other. Hence, grafting is
known to induce phenotypic changes in the scion
and in the rootstock and to improve scion growth
potential and fruit yield and quality (Albacete et al.
2015; Kyriacou et al. 2017; Warschefsky et al.
2016). Hetero-grafting (association of a scion and
a rootstockwith different genotypes) was shown in
some cases to generate inheritable sporadic phe-
notypic changes in the scion, affecting diverse
developmental processes including fruit growth
and ripening (Hirata 1980; Taller et al. 1998;
Yagishita 1961). Although themolecular bases for
graft-dependent phenotypic variations are obvi-
ously multiple including hormonal, proteins, and
mRNA exchange (Albacete et al. 2015; Gregory
et al. 2013; Ollat et al. 2017), recent data suggest
that epigenetic mechanisms could be among them
(Berger et al. 2018). Indeed, several reports indi-
cate that hetero-grafting induces changes in DNA
methylation patterns in the scion in different spe-
cies including Arabidopsis (Lewsey et al. 2016),
Hevea (Uthup et al. 2018), solanaceous (Wu et al.
2013), and cucurbitaceous (Avramidou et al.
2015; Xanthopoulou et al. 2019) crops. Moreover,
part of these modifications was shown to be
inheritable (Wu et al. 2013). These epigenetic
changes could induce phenotypic variations,
although no example of such functional relation-
ship has been demonstrated yet. Interestingly,
mechanistic studies performed in Arabidopsis and
in different Solanaceae species have revealed a
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molecular mechanism which is responsible for the
production of epi-variants in grafted plants: small
RNAs produced in the scion can induce de novo
methylation in the rootstock (Bai et al. 2011; Kasai
et al. 2016;Melnyk et al. 2011) and vice versa (Bai
et al. 2011). Such epigenetic modifications were
shown to occur at loci with homologous sequences
to the exchanged small RNAs. When these loci
correspond to gene regulatory regions, they can
impact gene expression, hence plant phenotype.
Whether such graft-dependent mechanisms also
exist in grapevine and could generate stable phe-
notypic diversity remains to be determined. As a
conclusion, whereas genetics is a driving force in
shaping the phenotypic diversity of grape plants,
epigenetics is likely providing an additional layer
of variability that could impact grape develop-
ment and adaptation to environment, and gener-
ate stable phenotypical variants.
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10From Phenotyping to Phenomics:
Present and Future Approaches
in Grape Trait Analysis to Inform
Grape Gene Function
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Surya Sapkota and Ben Gutierrez

Abstract
Phenotyping in grapevines is the assessment of
qualitative and quantitative traits including
growth, development, tolerance, resistance,
architecture, physiology, chemistry, ecology,
and yield. Traditionally, phenotyping tech-
niques relied on measurement of visual, chem-
ical, physiological, or other characteristics by
experts, often at low-throughput. The use of
standardized OIV or phenological descriptors
and scales to phenotype grapevine traits has
provided a good foundation for international
adoption of phenotyping standards and

cross-comparison of results. However, many
of these descriptors are subjective, fail to
capture complete trait variation, or may not be
relevant to some studies. Phenomics, the future
of phenotyping, brings opportunities and chal-
lenges in increased throughput, objectivity,
precision, dynamic measures, and integration
that demand new approaches for standardiza-
tion, datamanagement, and analysis.Here,with
a focus on large-scale genetic studies, such as
QTL mapping, we describe current phenotyp-
ing approaches and their limitations and intro-
duce some future opportunities in phenomics,
including the promotion of FAIR data princi-
ples of Findability, Accessibility, Interoper-
ability, and Reusability.

10.1 Introduction

Until relatively recently, the past decade or so,
the scientific bottleneck for advancing knowl-
edge in grapevine lay primarily in the high cost
of genetic analysis. Specifically, the complex,
heterozygous, and high diversity nature of the
grapevine genome reduced researchers’ ability to
make rapid associations between genes and
phenotypes. While it was common to perform
QTL analysis using classical molecular markers
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such as SSR loci, the traits that could be analyzed
tended to be those with strong effects (Dalbó
et al. 2000; Doligez et al. 2002, 2006; Fischer
et al. 2004; Blasi et al. 2011). Fine mapping of
these traits was seldom attempted as the marker
association itself was sufficient for breeding
applications. However, with the successful
sequencing of the grape genome (Jaillon et al.
2007; Velasco et al. 2007) and the rapid
decreases in costs associated with development
of new molecular markers and genome tools, a
flip of the bottleneck has occurred. The pheno-
typing bottleneck now limits rapid progress in
advancing grapevine research.

One common thread that has become apparent
in grapevine phenotyping is the challenge asso-
ciated with consistent data collection and analy-
sis as it relates to each particular phenotype. As
studies are conducted in parallel by different
laboratories or data are compared between field
and greenhouse conditions, it is essential that
phenotyping be consistent and reflects biology.
Simply understanding what and how to pheno-
type are the predominant obstacles for develop-
ing a high-throughput (HT) method. When you
try to reduce something complex into something
that is simple and fast, how do you avoid mea-
suring in error and keep it relevant to commercial
grape production? Some traits are more amenable
to HT methods by leveraging associations
between whole vine and sampled vine aspects,
such as disease resistance (as highlighted below).
Other traits are simply easier to collect HT data
based on their long history of correlation in
grapevine, such as pruning weights and vine
vigor (Kicherer et al. 2017b). Rapid develop-
ments for these types of traits may provide the
initial push needed to conceptualize more com-
plex methods.

Several phenotypes currently cannot be con-
ducted in a HT manner. For example, physio-
logical studies require expensive equipment with
long calibration times in order to collect mean-
ingful data (e.g., water use efficiency, WUE).
Despite substantial literature detailing the com-
plex interactions of the vine with water avail-
ability, rapid methods of assessing vine status in
a way that informs viticulture remain elusive. For

physiological traits that remain too complex or
are so influenced by environment that they pose a
challenge to emulate vineyard conditions, efforts
need to be spent defining the critical aspects of
the trait.

In this chapter, we focus primarily on HT
phenotyping, identifying methods, and strategies
that have been successfully applied in genetic
experiments involving larger germplasm sets
(species collections, breeding/mapping popula-
tions, and mutagenesis) rather than focused sets
(transgenes and gene editing) and envisioning
technologies that may be applied in these same
scenarios. The goals of such HT phenotyping
studies typically include germplasm characteri-
zation or selection, QTL analysis, and/or gene
discovery. In some cases, like table grape fruit
quality and viticultural treatments (e.g., gib-
berellic acid applications) are embedded in the
experimental design and may enable scientists to
study viticultural treatment effects. And there are
many opportunities for the phenotypic analyses
themselves to become assays used in viticultural
management as we currently see for fruit chem-
istry traits.

In spite of all the successes referenced in this
chapter, a major challenge for the grapevine
community exists regarding the study of genotype
by environment interactions (GxE). Addressing
the challenges of GxE requires, among other
things, standardization and careful documentation
of phenotyping protocols, an effort that is gaining
international traction. Several collaborative,
international projects and networks on pheno-
typing (transplant, regional and international
plant phenotyping networks, and ELIXIR-
EXCELERATE) have developed resources for
standardized phenotyping. One noteworthy effort
is Minimum Information About a Plant Pheno-
typing Experiment (www.miappe.org), which
outlines suggested and required attributes for
metadata description of experiments. Standard-
ization and careful documentation promote
improved data stewardship and makes data
re-usable for purposes beyond those initially
envisioned or beyond current resources. To this
end, a set of FAIR principles (Findability,
Accessibility, Interoperability, and Reusability)
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have been developed (Wilkinson et al. 2016). The
vision for FAIR as it relates to the grape com-
munity has begun to be organized through a
global grape information system (GrapeIS)
organized by the International Grapevine Gen-
ome Program (IGGP; www.vitaceae.org), and its
success will depend upon the active participation
of those in the grape community generating,
analyzing, and publishing data.

In the following sections, rather than organize
traits into silos, we organize the phenotypes by
how they are collected (visual, physiological,
chemical, and molecular), and provide exemplary
traits for each, focusing on phenotyping chal-
lenges and future opportunities.

10.2 Visual Ratings

Sensorial traits characterize the oldest and the
most intuitive phenotypes. Imagine hunters and
gatherers accustomed to seeing and collecting
small clusters of wild female grapes and one day
by chance they find large and perfect-flowered
clusters. Visually observing this key domestica-
tion trait, they took a note to return and care for
these. This visual cue of selection for large
clusters has been repeatedly followed by selec-
tion for other visual traits such as berry color,
size, and shape, as well as other sensorial traits
like seed trace, texture, flavor, and aroma. In this
section, we focus on phenotypes that are visually
rated as a starting point using a comprehensive
set of traits described by the OIV phenotypic
scales (OIV 2018), which were developed pri-
marily for the standardized description of
grapevine varieties and species.

10.2.1 Challenges with Standardizing
Visual Phenotyping
Methods and Scales

The OIV phenotypic scales represent well over
100 traits that are measured by visual assessment,
including diverse traits such as ampelographic
measures, abiotic and biotic susceptibility, berry

and cluster measures, and phenology. The pri-
mary approach has been to categorize and pro-
vide examples in order to standardize data
collection around the world. While an excellent
tool for its intended purpose, there are some
widely acknowledged weaknesses to this system
when applied to phenotyping for genetic analy-
ses. Many of the described phenotypes are con-
tinuously variable traits that lose information
upon categorization. Further, many of the 9-point
OIV scales only have five defined categories, so
for most users they functionally become 5-point
scales and the limited resolution of the scale
determines limited resolution of knowledge
gained. The expression or biology of traits may
differ greatly among grape germplasm, necessi-
tating a different phenotyping method to capture
the trait biology within the germplasm studied.
Finally, during the preparation of this chapter, a
second edition of OIV descriptors was published
in 2018 (OIV 2018) and we as authors were not
using the same editions. It quickly became
apparent that for the goal of standardizing, it will
be important for the international community to
use and reference this enhanced second edition.

10.2.1.1 Visual Phenotyping
of Powdery Mildew

The degree of care in designing, executing, and
describing powdery mildew foliar resistance
phenotyping experiments are highly variable but
recent studies have improved attention to detail.
Table 10.1 shows some phenotyping studies in
which sufficient detail was provided to interpret
the experimental design. Most studies (12 of 23)
rated disease on a categorical scale following
natural infection, often attempting to relate their
ratings to the scale OIV455. Several of these
studies rated disease progression over time and
found that the significance of QTL changed over
time (Pap et al. 2016; Zendler et al. 2017), with
some QTL being undetectable if the wrong time
point was selected (Barba et al. 2014;
Cadle-Davidson et al. 2016). Time series ratings
provide the added opportunity for area under the
disease progress curve (AUDPC) analysis (Teh
et al. 2017). Studies in other pathosystems have
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emphasized the subjectivity and imprecision of
visual ratings (Sherwood et al. 1983) as well as
the importance of rater subjectivity (Poland and
Nelson 2011). Fortunately, QTL were consistent
across raters, even if inconsistency in ratings
affected the magnitude of those QTL effects
(Poland and Nelson 2011). Recently, efforts to
develop and standardize controlled inoculation
in vitro have shown promise for detection of
moderate or minor QTL like REN2 and REN9
that may not be detected in vineyard evaluations
(Cadle-Davidson et al. 2016; Zendler et al.
2017).

For loci that have been genetically mapped
using multiple phenotypes, the degree of QTL
significance can provide some insights into
which phenotyping methods best explain the
genetics of resistance. For REN1, single isolate
in vitro inoculations reproducibly generated
higher LOD scores than vineyard and greenhouse
ratings (Hoffmann et al. 2008; Cadle-Davidson
et al. 2016). For REN3/REN9, which was only
mapped using vineyard data, better results were
obtained when replicated progeny vines were
analyzed (Zendler et al. 2017). Finally, for REN6
and REN7, careful phenotyping using several
methods indicated that visual ratings after con-
trolled inoculation in a greenhouse or on
detached leaves reflected the genetics better than
vineyard evaluations or qPCR-based quantitation
of fungal growth (Pap et al. 2016). Based on the
studies, presented in Table 10.1, for vineyard
evaluations we recommend repeated measures
over the course of the growing season on repli-
cated vines. Further, if resources are available,
single isolate inoculation of detached leaves or
disks appears to be the current best method for
detecting minor or moderate QTL and may be the
most relevant for fine mapping and characteri-
zation of candidate genes.

10.2.1.2 Visual Phenotyping of Fruit
Clusters

Big berries, long berries, many berries, open
cluster architecture—in the world of genetic
improvement for fruit clusters, there are dozens
of breeding goals, each with different challenges

in visual phenotyping and often with trade-offs.
Further, many visual fruit traits are of specific
importance to table grapes, for which gibberellic
acid or other treatments may interact with genetic
effects. The OIV system has categorical
descriptors for several visual phenotypes related
to fruit (cluster dimensions and density, berry
size, shape, and color), but most genetic and
genomic studies choose to quantify phenotypes
with greater precision and objectivity.

Components of cluster architecture have been
carefully defined in several studies (Shavrukov
et al. 2004; Correa et al. 2014) and recently
reviewed in detail (Tello and Ibáñez 2018). These
use standard tools to measure lengths (caliper),
angles (protractor), volumes (beaker), weights
(balance), and counts (fingers and toes?). Within
the context of QTL analysis, careful measurement
of 23 such parameters identified QTL of moderate
effect, explaining 13–24% of the phenotypic vari-
ance (Correa et al. 2014). Simply weighing berries
has indicated QTL in multiple studies (Zhao et al.
2015; Ban et al. 2016). Similarly, in a candidate
gene analysis of a diversity panel, simple weighing
and measuring showed that berry length, width,
volume, andweightwere significantly predicted by
alleles of VvNAC26 (Tello et al. 2015).

Given the success of simple phenotyping
methods applied in these genetic studies, the
question arises, what are the limitations of these
methods, and what changes are needed? Without
a doubt the biggest limitation of manual mea-
surements is labor. Using calipers to measure
each rachis internode or weighing or measuring a
30-berry subsample represents a labor-intensive
process that requires removing berries from the
stem and significant time when applied to hun-
dreds of genotypes with any level of replication.
Thus, several research programs are pursuing the
tasks of imaging for computer vision either in
controlled environments or in the vineyard (dis-
cussed below in Sects. 10.2.2 and 10.6).

10.2.1.3 Visual Phenotyping
of Phenology

Grape phenology is the study of cyclic devel-
opmental processes, especially in relation to the
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growing season and climate. Grape phenology
growth stages are commonly defined by the
BBCH scale or by the modified Eichorn-Lorenz
scale (Coombe 1995), which describes 47 stages
such as winter bud, budburst, flowering, berries
harvest-ripe, and end of leaf fall. Most geneticists
and breeders are interested in the relative timing
of these stages, which are determined by visually
monitoring vines over time.

One challenge is phenological heterogeneity
across environments, within a vine, and even
within organs of a vine. For example, bloom is
asynchronous at sites with warmer winters, such
as South Australia, with basal clusters on distal
shoots (away from the trunk) being 4–6 days
delayed within the same vine (Gadoury 2015).
While phenological heterogeneity at warm-winter
sites is easily observed at bloom, the effects can

Table 10.1 Varied methods and response variables reported for powdery mildew resistance phenotyping

Environment Inoculum Locus Response variablea Observations (years)b

Vineyard Natural REN3 OIV455 1 (5)

Vineyard Natural REN8 OIV455 1 (6)

Vineyard Natural SEN1 OIV455 5 and 2 (2)

Vineyard Natural REN3 OIV455 and 7-point 8 and 10 (2)

Vineyard Natural REN10 OIV455 and 7-point 8 and 10 (2)

Vineyard Natural REN3/9 OIV455, but 5-point 2 (2), 2 replicate vines

Vineyard Natural REN4 6-point version of OIV455 1 (1)

Vineyard Natural RUN2.1 6-point version of OIV455 1 (1)

Vineyard Natural RUN2.2 6-point version of OIV455 1 (1)

Vineyard Natural REN1 4-point rating 1–2 (2)

Vineyard Natural REN4 4-point rating 1 (3)

Vineyard Natural SEN1 4-point rating 1 (1)

Vineyard Natural and
Mixed isolate

REN6/7 4-point rating 3–4 (2)

Greenhouse Natural REN1 OIV455 3 (2)

Greenhouse Natural REN4 Foliar incidence and severity 1 (1), 2 locations

Greenhouse Natural RUN2.1 Foliar incidence and severity 2 (1), 2 locations

Greenhouse Single isolate REN6/7 5-point scale 1 (1), 2 raters, 3–4
replicate vines

Petri dish Mixed isolate REN9 Necrosis, 7-9 dpi microscopy 1 (1)

Petri dish Single isolate REN6/7 5-point modified OIV455, 14–15
dpi

1 (1), 2 raters

Petri dish Single isolate REN6/7 qPCR, 14–15 dpi 1 (1)

Petri dish Single isolate REN5 6-point ratings, coverage, and
sporulation, 7 dpi

1 (2)

Agar tray Single isolate REN1 Hyphal transects, 8–9 dpi 1–2 (3)

Agar tray Single isolate REN2 Hyphal transects, sporulation, 8
dpi

1–2 (2)

aThe IPGRI rating scale OIV455 describes odd number foliar ratings on a 1–9 scale. For in vitro inoculations, the days
post inoculation (dpi) of data collection is provided
bThe number of observations in each year is shown, along with the number of years in which observations were made in
parentheses, followed by additional efforts in replicated plants and/or raters
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be detected at most stages of development. This
and other environmental effects on phenology are
likely reflected in QTL studies of phenological
processes. For example, QTL were significant in
only one environment for the periods from
inflorescence appearance to 50% flowering and
from flowering to véraison in a Picovine � Ugni
Blanc flb family (Houel et al. 2015). Fechter et al.
(2014) combined two approaches to effectively
address the uncertainty generated by phenology
GxE: (1) they categorized relative flower date
with the 5-point OIV-302 scale to account for
year-to-year shifts in bloom date and used median
values of the phenotypic categories across years
and (2) they used independent mapping families
within the same experimental design for valida-
tion of the key QTL involved in the traits studied.
Interestingly, for growth cessation response to
photoperiod from V. riparia, in the absence of
inducing temperatures a QTL on LG13 explained
more than 80% of phenotypic variation, but in the
presence of inducing temperatures a QTL on
LG11 also explained nearly all the phenotypic
variation (Garris et al. 2009). But not all pheno-
logical studies are so environmentally fickle. In
another study, the date of véraison and duration
between bloom and véraison both indicated a
major QTL named Ver1 on Chr16, which
explained up to 70% of the phenotypic variance
observed with early onset of véraison from GF.
GA-47-42 (Zyprian et al. 2016).

To overcome the effects of environment on
physiological processes, Vivin et al. (2017)
suggested that models integrating physiological
processes with their genetic control may aid in
the genetic characterization of complex traits
with genotype � environment interactions. Cli-
mate change significantly affects phenotyping of
phenology, both as a challenge for long-term
applicability of current or past results and as a
justification for the importance of studying phe-
nology in preparation for expected climate
change. Over the past 50 years, several pheno-
logical stages (budbreak, flowering, and vér-
aison) have shifted significantly earlier in France
and are forecast to push even earlier in future
decades (García de Cortázar-Atauri et al. 2017).
In Italy, over the past four decades harvest has

shifted 25–40 days earlier for four widely plan-
ted grape cultivars (Koch and Oehl 2018).

10.2.2 Opportunities from Computer
Vision for Phenotyping

Phenotyping methodologies in plant science are
usually based on detecting, extracting, and
quantifying observable features from biological
samples. Those physical features can be detected
visually by human sight or by optical instruments
and electronic sensors. As described above, most
of this phenotyping work has been done by
human experts. However, this becomes infeasible
in experiments with a large number of samples
requiring a huge amount of time and human
resources. Furthermore, the differences in the
subjective reasoning among human experts can
add error to the statistical analysis of the results.

The automation of phenotyping methodolo-
gies by using latest approaches from information
technologies (IT) has been gaining interest
among researchers. The main goal is to achieve a
more robust, objective, and faster method than
human perception and decision making by
applying computer-based procedures such as
computer vision to emulate human sight. The
effectiveness from first approaches of such
methods has motivated researchers to search for
ambitious implementations capable of handling
large numbers of samples per experiment that
provide more solid and reliable results. This
concept is popularly known as high-throughput
(HT) phenotyping.

Of the numerous approaches developed
to-date, here, we provide a few examples relevant
to the above visual ratings. Automated pheno-
typing has been used for the characterization of
plant diseases, and one of the first automated HT
phenotyping microscopy systems focused on
characterizing susceptibility to the barley pow-
dery mildew, Blumeria graminis f. sp. hordeii
(Bgh) (Ihlow et al. 2008). More recently,
hyperspectral cameras have been used for the
detection of Bgh (Kuska et al. 2015). Unfortu-
nately, enough dissimilarities exist in the mor-
phology of Bgh and E. necator, as well as in host
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morphology, that computer vision tools devel-
oped for Bgh may not be directly transferable to
E. necator.

The laborious task of fruit phenotyping
inspired numerous groups to pursue computer
vision approaches. In controlled environments,
imaging systems can capture 2D and 3D repre-
sentations of grape clusters for accurate computer
vision analysis of cluster length, width, elonga-
tion, and volume (Tello et al. 2016). A smart-
phone phenotyping application was developed
capable of performing fast estimation of the
number of grapes detected from smartphone-
captured images of clusters (Aquino et al. 2018).
In the vineyard, robot systems can be used for
phenotyping, which enables upgraded automa-
tion capabilities such as unsupervised operation.
A field-phenotyping enabled mobile robot was
developed capable of performing multiple field
tasks based on image acquisition such as berry
size and color measurement (Kicherer et al.
2015). Furthermore, they continued working on
this concept and developed a new phenotyping
platform called Phenoliner, which extends the
capabilities of the previous platform with an
improved vehicle carrier based on a grapevine
harvester, extra sensors, and a 3D reconstruction
procedure for grape vine modeling (Kicherer
et al. 2017a). Such a phenotyping platform could
be envisioned to house additional phenotyping
tools and strategies from other efforts, such as
dynamic imaging of plant growth responses to
soil water deficit (Granier et al. 2006) or statis-
tical analysis of leaf features (Failmezger et al.
2018).

The above computer vision approaches gener-
ate big data for which some technologies have
recently been applied to improve and extend the
decision-making procedures on many AI-based
applications including newer HT phenotyping
approaches (Coppens et al. 2017). The identifica-
tion of patterns, features, and/or noise exclusion in
images or other data types from huge amounts of
data collections (and its management) are the
challenging fronts on these newer automated
phenotyping implementations. Singh et al. (2016)
proposed to use machine learning tools in a big

data scheme for plant stress phenotyping in order
to be able to process large amount of different
gathered sensor data in different timepoints. The
conclusions from this work highlight the feasibil-
ity of such methods and encourage researchers to
apply these popular artificial intelligence approa-
ches in order to speedup data processing as well as
to increase result accuracy rates.

Information technologies are a focus of the
new advances in phenotyping methodologies,
which are mainly based on computationally
capturing and processing data. The main goal in
this field is to maximize phenotyping throughput
and accuracy in order to generate consistent
results for better genetic prediction. Such goals
can only be achieved by applying HT automated
phenotyping methodologies based on IT in many
experimental designs, due to large sample sizes
and genetic variability in input samples that are
infeasible to address with manual procedures.

10.3 Physiological Measurements

Accurate HT phenotyping of physiological pro-
cesses is necessary for the future sustainability
and productivity of grapevine production.
Numerous studies have modeled the projected
effects of changing climate parameters on current
and future viticultural regions (Jones et al. 2005;
Luedeling 2012; Mozell and Thach 2014;
Duchene 2016; Wolkovich et al. 2017). While
predictions vary, there is little doubt that a
number of climate-related factors will make
cultivating grapevines more challenging in the
future. Elevated average temperatures threaten to
advance ripening stages of grapes to the hottest
points of the summer season, degrading color
attributes, reducing photosynthetic capacity, and
ultimately reducing harvest quality (Webb et al.
2007; Mira de Orduña 2010; Salazar Parra et al.
2010; Sweetman et al. 2014). Increased variation
in water availability through alternating drought
and deluge conditions threaten to impact aspects
of yield and berry integrity (Schultz 2000; Webb
et al. 2008). Warming spring temperatures have
already resulted in phenological shifts in
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grapevine (Tomasi et al. 2011) and predictions of
shifting of earlier budburst may expose vines to
greater frost risk (Zapata et al. 2017; Leolini et al.
2018). To address this, new viticultural areas
could be developed at higher latitudes; however,
despite extended growing seasons, higher lati-
tudes will continue to be faced with freezing
winter temperatures (Caffarra and Eccel 2011;
Luedeling 2012; Mosedale et al. 2015).

10.3.1 Challenges with Standardizing
Physiological
Phenotyping Methods
and Scales

Due to complexity of physiology and the strong
interaction of environment on physiological
traits, the present state of phenotyping physio-
logical traits and adaptation to environment is
one of low-throughput. One of the key issues
with development of HT methods for assessing
grape physiology is the interaction between plant
plasticity and changing environment as it affects
the relevance of a given phenotype. Most phys-
iological traits (e.g., WUE, salt tolerance, cold
tolerance, and photosynthetic capacity) are not
understood with enough depth, or require too
much time for measurements, for rigorous phe-
notypes to be measured in a HT method. The
primary way researchers have negotiated this
challenge is to isolate the plants under controlled
conditions to somehow standardize the pheno-
type (e.g., potted greenhouse plant assays). This
approach can be used to phenotype some com-
ponents of physiology, for example, under-
standing how stomatal conductance or leaf water
status differs under drought simulation (Toumi
et al. 2008; Salazar-Parra et al. 2015). These
studies may also be large enough to assess many
different cultivars or rootstocks at once, or more
than one stresser (Serra et al. 2014). However,
the results are seldom tested or replicated under
field conditions. Ultimately the phenotype we
measure has to have a real-world impact for it to
be of use in grapevine production or in the
breeding of new cultivars. The full list of studies
examining aspects of physiological responses of

grapevine are too long to review in this chapter,
but we have attempted to capture the breadth of
studies below.

Phenotypic variation among cultivars and
among species have been observed for water use
efficiency (WUE, as reviewed in Flexas et al.
2010; Tomás et al. 2014), regulation of stomatal
conductance (Costa et al. 2012; Pou et al. 2012;
Coupel-Ledru et al. 2014; Duursma et al. 2018),
cavitation resistance and embolism repair
(Lovisolo and Tramontini 2010), root suberiza-
tion (Barrios-Masias et al. 2015), stomatal den-
sity (Boso et al. 2016), ABA sensitivity
(Rossdeutsch et al. 2016), isohydric versus
anisohydric behavior (Lavoie-Lamoureux et al.
2017), chloride/sodium exclusion (Henderson
et al. 2014, 2017), photosynthetic capacity and
control of respiration (Pellegrini et al. 2015;
Coupel-Ledru et al. 2016), and low temperature
and lethal temperatures (Ferguson et al. 2014;
Londo and Kovaleski 2017). What is abundantly
clear in reviewing these studies is that physio-
logical traits are almost never amenable to HT
methods. Which of these traits can be measured
quickly enough for use in large populations?
Additionally, each of the phenotypes represents
just a small aspect of the overall trait; are those
small aspects relevant to whole vine or field
responses? It is essential to develop highly robust
phenotypes that are vineyard relevant in order to
most efficiently move toward functional and
genetic elucidation of physiological traits. Listed
below are a few nice studies where some aspects
of HT phenotyping were conducted. All are
forced to reduce the complexity of physiology to
a few factors in order to conduct the assessments.
This is not specifically a critique of those studies
or their methods, but instead an open acknowl-
edgement to the long and complicated road ahead
for the development of HT physiological
phenotyping.

10.3.1.1 Drought and Water Relations
Enhancing grapevine drought tolerance is a
major goal for grapevine researchers. Climate
change predictions indicate that future precipi-
tation patterns will become more erratic. Despite
being moderately drought adapted, grapevine
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still requires irrigation over much of its current
production area to maintain yield and quality.
Competition with other crops and other societal
demands may also increase the challenges in the
future for securing sufficient water for irrigated
production. One example of a potential HT
phenotype for drought/water relations leveraged
leaf dehydration rate as a proxy for grapevine’s
relative drought resistance (Hopper et al. 2014).
The study used water loss from detached grape-
vine leaves as well as leaf responses to ABA
applications to assess relative stomatal control
and compared results with reports of the different
genotypes’ drought tolerance. The study
demonstrated clear differences in water loss
resistance among the genotypes and also
demonstrated a major effect of the developmental
stage of the leaves tested. How do the results of
this study then translate to large field studies? Is
water loss from detached leaves a good proxy for
field-based drought resistance? Comparing
well-established measures of WUE in the field
between leaf level measures and whole canopy
measures typically demonstrates that there is a
general lack of correlation between these two
scales in grapevine (Medrano et al. 2015). The
next step is to investigate if this HT concept can
translate to differences in drought response in
mapping families or field grown vines.

As another example, QTL mapping of hydric
behavior (isohydric vs anisohydric) in a cross
between the cultivars Syrah (anisohydric) and
Grenache (isohydric) were able to identify QTL
for leaf water potential in potted plants
(Coupel-Ledru et al. 2014). The study made use
of potted vines with high-tech control of irriga-
tion level, controlled lighting, humidity, and
temperature and is one of the few examples
where a physiological trait has been examined in
a mapping population. Data was reproducible
between years but correlations between traits
were low, suggesting additional knowledge is
needed about the master control differences
between hydric behaviors. In further studies of
this population, the potential to breed for
increased transpiration efficiency was demon-
strated through reducing night-time water loss
from respiration (Coupel-Ledru et al. 2016). QTL

were identified for both night-time and day-time
loss of water from plants, but higher variation
was noted during day-time sampling. Genotypes
with reduced loss of water at night maintained
higher growth rates under water withholding
conditions. This trait appears to localize to dif-
ferent QTL from those associated with day-time
stomatal response. While these phenotypes were
not conducted in the field, the results raise the
possibility that breeders could select on different
aspects of water control to increase overall WUE.

10.3.1.2 Temperature Response
Understanding the complexity of the grapevine
response to high or low temperatures is compli-
cated by the thermal variation that occurs sea-
sonally and annually. Selecting phenotypes that
may be adaptive for a future of temperature
extremes are essential to maintaining crop har-
vests and post-harvest product quality. Heat
stress interacts with drought stress, but also
directly impacts photosynthetic capacity and
impacts berry color and flavor development,
resulting in poor quality (Chuine et al. 2004;
Greer and Weedon 2013). To examine genetic
variation in heat tolerance, detached leaves of 47
grapevine genotypes were exposed to high tem-
peratures (47 °C) and assayed for oxygen evo-
lution rate, chlorophyll ɑ fluorescence and ion
leakage as a proxy for cell membrane damage
(Xu et al. 2014a). The authors note that most
wild grapevine species were more resistant to
damage than V. vinifera and that these assays
may be an indirect measure of field-based heat
tolerance. Further, measuring the changes in
chlorophyll ɑ fluorescence was more sensitive
and convenient for evaluating these traits, but the
question remains if these traits capture vine level
heat resistance. Use of the dwarf grapevine
breeding tool “microvine” (Chaïb et al. 2010)
offers some potential for accelerating phenotyp-
ing of physiological stress responses. The effects
of elevated heat treatments on berry development
and photosynthesis revealed the important role of
carbon balance in heat tolerance and berry
quality (Torregrosa et al. 2017). Phenotyping
was conducted on the microvine samples to
identify traits that varied by temperature
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treatment (dry matter and biomass, gene expres-
sion, and berry ripening parameters), and QTL
analysis in a microvine � “Ugni Blanc” popu-
lation uncovered genetic regions tied to these
phenotypes. Like all studies, it remains to be seen
if these phenotypes capture the complexity of
high heat impacts under vineyard conditions.

At the other end of the thermal spectrum is
low-temperature stress and damage. Freeze
damage typically occurs either as frost damage
on exposed leaves and inflorescence tissues or as
reduced ability of dormant tissues to survive
winter. Only two studies examining frost resis-
tance of green tissue by visual assessment of
damage have been described and each simulated
frost (Fuller and Telli 1999; Londo et al. 2018).
Very little variation in this trait was observed but
screening must be expanded to determine if trait
variation exists. Winter survival is a complex
mix of traits with various organ specific pro-
cesses including dormancy induction (Garris
et al. 2009), changes in bud supercooling ability
(Mills et al. 2006; Londo and Kovaleski 2017;
Shellie et al. 2018), and chilling requirement
(Dokoozlian 1999; Londo and Johnson 2014).
Variation in dormancy levels is frequently
assessed in grapevine via forcing assays to
determine chilling requirement; dormant cane
material is placed in warm conditions and the
time needed to observe budburst is recorded (Fila
et al. 2012; Londo and Johnson 2014). Typically,
these forcing assay studies take weeks to see the
phenological indicator of budburst. While it is
possible that forcing assays could be done at a
mapping population level, the long duration
needed for the phenotype to manifest makes it
decidedly low-throughput. The most common
phenotypes for freeze resistance for green
growing and woody tissues are ion leakage, a
proxy for cell membrane integrity. Tissue sam-
ples are placed into glycol baths at various
freezing temperatures, frozen, and evaluated for
increases in ions within a wash solution (Ershadi
et al. 2015; Gale and Moyer 2017). For leaf ion
leakage assays, no studies could be found
examining genetic or phenotypic variation within
grapevine, though this method is used in many
other horticultural species (Lindén et al. 2000;

Morin et al. 2007; Pagter and Williams 2011;
Väinölä et al. 1997). The most common pheno-
type for dormant bud tissues is evaluation of the
low-temperature exotherm using differential
thermal analysis (Mills et al. 2006; Ferguson
et al. 2011, 2014; Londo and Kovaleski 2017),
whereby lethal temperatures are evaluated by the
failure of the supercooling mechanism of sup-
pressing freezing. Assessments of phenotypic
variation for low-temperature exotherms have
described various levels of cold hardiness
between cultivars and wild species. These studies
have demonstrated the large impact of winter
temperature variation on expression of the phe-
notype (Ferguson et al. 2014; Dami et al. 2016;
Londo and Kovaleski 2017). As a result, no QTL
studies to date have been conducted to examine
LTE variation, despite several breeding programs
using this method for plant selection.

10.3.1.3 Root Behavior
While not explicitly “physiology”, rooting
behavior is another phenotyping area where
many different methods are in development. Root
phenotyping also contributes to our understand-
ing of other soil-based physiological stresses like
nutrient deficiency, salt tolerance, and of course,
drought response (Yıldırım et al. 2018). A num-
ber of root traits have been suggested as targets
for phenotyping including root system size and
the ratio of root to shoot mass, total root length
and surface area, fine root attributes, and root
regrowth aspects (as reviewed in Comas et al.
2013). Traditional phenotyping in grapevine
involves using trenches to examine rooting pat-
terns in the soil, or mini-rhizotron systems to
examine branching patterns in semi-natural con-
ditions. Studies have focused on root angle
aspects to describe differences in predicted
drought resistance, namely that deeper-rooted
genotypes will be more resistant. Root trait dif-
ferences between rootstocks often correlate with
demonstrated differences as it relates to drought
response (Yıldırım et al. 2018; Sucu et al. 2018),
though drought response is usually tested under
greenhouse conditions. Differences in root sys-
tem architecture correlated with differences in
drought resistance and suggested that phenotypes
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like root length (primary and lateral) as well as
root area and number have potential for HT
phenotyping. However, root pattern data suggest
that soil compactness and type in the field are
major contributors to the actual rooting pattern
under vineyard conditions (Smart et al. 2006).
Root growth patterns clearly have an exploitable
genetic component as different wild grapevines
inhabit very different soil types (Callen et al.
2016), an aspect leveraged by rootstock breeding
programs. Though HT root phenotyping has a
long way to go, methods to visualize root growth
in field soil with ground penetrating radar or in
soil analogs with CT scanning (Atkinson et al.
2018) may be one way to scale up phenotyping
efforts designed to understand what root traits
contribute to vine success.

10.3.2 Opportunities with Future
Technologies Applied
to Physiological
Measures

What is the future of phenotyping as it relates to
physiological traits? The key is: (1) defining
keystone traits that translate from HT methods to
field relevant performance, (2) leverage the
power of clonal reproduction to replicate exper-
imental vineyards across varied environments, or
(3) combine these strategies. To begin with,
classical mapping family approaches could be
used to identify QTL, much like the studies
mentioned above. These populations could be
replicated across environments and in particular,
across stresses. Including and acknowledging
environmental variation in the design of the
study (E. Duchene, pers. comm) by interspersing
control cultivars could also offer the possibility
for finer detection of QTL. Smart vineyards
could then build on this concept of capturing
environmental variation and determining the
GxE component of physiological traits (Kustas
et al. 2018). Sensors could be placed in the soil
(Adamchuk et al. 2004), in and near the canopy
(Taylor et al. 2017), interfacing data from

stationary sensors with aerial drones (Bellvert
et al. 2014; Anastasiou et al. 2018) and if at all
possible, in the vines themselves (Pagay et al.
2014). Coordination between research groups,
domestic and international, to replicate studies
could truly leverage the range of environmental
variation to better our understanding of grape
physiology. The implementation of drones and
analysis from aerial images has already demon-
strated the potential for precision viticulture
(Bates et al. 2018). What is missing is the
application of these technologies in a discovery
stage of research, rather than solely in established
production fields. Despite many challenges
associated with phenotyping physiological traits,
the sheer number of researchers committed to
increasing our collective knowledge of how
physiology works, and what phenotypes are most
relevant, bodes well for the development of true
HT phenotyping in grape.

10.4 Chemical Analysis

From the quality of wine to the consumer appeal of
table grapes, and to biotic and abiotic stress
responses, fruitmetabolites play an intricate role in
viticulture and in the economic value of the grape
industries. Understanding the primary and sec-
ondary metabolites, particularly their impact on
fruit quality, will serve to meet industry standards
and can facilitate development of newcultivars.As
a trait, metabolite composition, or metabotype, is
highly informative; fruit and vine metabolites can
differentiate wild species and hybrids from Vitis
vinifera (De Rosso et al. 2014) and distinguish
between cultivars and wines (Versari et al. 2014;
Crupi et al. 2015; Billet et al. 2018). Studies in
grapes range from analysis of targeted metabolites
to the metabolome, analysis of all metabolites and
their fluctuations in a given tissue (as reviewed by
(Jorge et al. 2016). Standard techniques vary from
low-input, low-resolution methods, such as
refractometry (°Brix) and spectrophotometry
(pigmentation), to high-resolution chromatogra-
phy–mass spectrometry.
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10.4.1 Challenges with Standardizing
Chemical Phenotyping
Methods and Scales

Though largely determined by genetics,
metabolites are influenced by environmental and
developmental factors. Sampling time is one of
the most important considerations, as broad
changes in primary and secondary metabolites
occur from early development to maturity and
post-harvest (Zamboni et al. 2010). This can be
difficult to standardize between cultivars (geno-
types) due to phenological variation (Wolkovich
et al. 2017). Disease status can negatively impact
fruit metabolites, viruses can delay fruit ripening
and decrease sugars and pigmentation (Vega
et al. 2011), and pests and pathogens can alter
flavor (Hall et al. 2018; Schueuermann et al.
2019). However, certain infections, such as noble
rot, can improve the flavor and composition of
grape berries (Blanco-Ulate et al. 2015). Abiotic
factors, including drought stress and light (Sun
et al. 2017; Pinasseau et al. 2017) and horticul-
tural practices (Wang et al. 2018) also contribute
to changes in fruit metabolites. Additionally,
sample type, including juice, wine, berries, seeds,
and vegetative tissues, may require special
treatments prior to analysis, making cross appli-
cation of methods challenging. Within sample
types, additional variation exists, such as differ-
ences between peel and flesh of berries, and the
metabolic changes associated with fermentation
in wine. Sample preparation varies for targeted
(hypothesis-driven) and untargeted (discovery-
based) approaches. Certain techniques required
additional sample preparation, such as derivati-
zation of non-volatile metabolites for gas chro-
matography (Cevallos-Cevallos et al. 2009).

10.4.1.1 Anthocyanins and Tannins
Anthocyanins and tannins are phenolic com-
pounds that contribute to the quality of grapes
and wine. Anthocyanins are the red and blue
pigments found in grapes, and tannins are bitter,
astringent metabolites providing mouth feel for
wine and stabilize wine color (Bautista-Ortín
et al. 2016). Both contribute to the nutritional
value of grapes and wine. In grapes,

anthocyanins exist as aglycone or glycosylated
forms. Tannins are polymers of the procyanidins
epicatechin, catechin, and epicatechin-3-O-gal-
late, and are characterized by the mean degree of
polymerization (mDP). Extraction protocols for
these compounds, whether for industry purposes
(e.g., wine making) or research, impact quality
and reproducibility, giving rise to the tongue-in-
cheek term “extractomics.” There are many
methods to extract these compounds from berries
(Liang et al. 2012; Koyama et al. 2017), and
wine and juice (Tang et al. 2018; Sommer and
Cohen 2018), with no standard protocols.
Developmental stage is critical for sampling.
Extractable tannins decrease during ripening
berries caused by increased tannin binding to the
cell wall (Bindon et al. 2014; Bautista-Ortín et al.
2016). Pulsed electric field treatments may
facilitate extraction of bound tannins (Delsart
et al. 2012). Genetic diversity in wild grapes and
hybrids may also impact extraction and quan-
tification. Wild Vitis and hybrids have distinct
tannin and anthocyanin profiles from V. vinifera.
Co-elution of tannins and anthocyanins in wild
grapes can result in an incomplete measurement
of tannin content (Koyama et al. 2017). In hybrid
grapes, increased quantities of pathogenesis-
related proteins bind to tannins and impact
berry tannin extraction and exogenous tannin
retention in wine (Springer and Sacks 2014;
Springer et al. 2016).

10.4.2 Opportunities with Future
Technologies

Phenotyping platforms for chemical analysis
continue to improve, through technical improve-
ments (GS/MS, NMR) and accessibility and ease
of use (Parpinello et al. 2013; Pinelli et al. 2018).
New techniques can reduce sample preparation
time and complexity and are amenable to HT
phenotyping. For example, direct analysis in real
time mass spectrometry (DART-MS) can be used
to rapidly measure compounds in their native
state or in combination with separation methods.
Jastrzembski et al. (2017) combined solid-phase
microextraction with DART-MS to measure trace
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volatiles in grapes in *30 s/sample, compared to
*30 min/sample for GC-MS.

Most promising is the integration of metabolic
data with other –omics data. More extensive
metabolite profiling can be paired with genomic,
proteomic, and transcriptomic data to give pow-
erful view of grape physiology. Additionally,
multivariate analysis can better integrate dis-
parate datasets collect from various phenotyping
approaches. Utilization of this approach can lead
to new understanding of developmental pro-
cesses, including chemical changes associated
with disease, fruit development, post-harvest
treatments, and vinification.

10.5 Molecular Tools

During the last 20 years, there has been signifi-
cant improvement in classical sequencing and
molecular profiling of plant genomes. These
techniques have provided valuable tools to select
desirable alleles at many loci through marker
assisted selection and more recently genomic
selection (Furbank 2009; Tester and Langridge
2010; Furbank and Tester 2011). Phenotypic
prediction is challenging due to the large number
of genes and gene products that contribute
simultaneously to phenotypes under influence
from complex and changeable environments.
Therefore, a robust and reliable phenotyping
system is necessary to overcome these short-
comings (Rahaman et al. 2015). “Phenomics,” a
new branch of biological sciences, could respond
to the functional analysis, merging the gap
between two (Houle et al. 2010). While many
phenotypes of interest represent the endpoints of
gene expression, the molecular and genetic sig-
nals themselves could be considered valuable
phenotypes to be measured and mapped.

10.5.1 Challenges with Standardizing
Molecular Phenotyping
Methods and Scales

Challenges remain in understanding the majority
of transcripts, proteins, and protein families

involved in stress response, despite generating a
tremendous amount of data from the study of
traits such as fruit biochemical pathways and
defense pathways in response to both abiotic and
biotic stresses in grape cultivars. The limited
availability of genome sequences of different
cultivars limits the characterization of species- or
cultivar-specific transcript and protein sequences
(see Chap. 5). Similarly, a major challenge
remains in inferring biological meaning from
these data with a majority of sequences lacking
annotated function (Delaunois et al. 2013;
George et al. 2015).

10.5.1.1 Detection, Diagnosis,
and Quantification
of Plant Pathogens

In recent years, molecular techniques for phe-
notyping diseases have been well established in
grapevines (Table 10.2). Unlike conventional
methods that rely on visual symptoms, isolation,
and/or culturing, pathogens can be detected using
molecular techniques, such as enzyme-linked
immunosorbent assays (ELISA), DNA/RNA
probes, or polymerase chain amplification of
nucleic acids including via quantitative PCR or
reverse-transcription PCR (McCartney et al.
2003; Donoso and Valenzuela 2018). The
availability of extensive DNA and RNA
sequence information greatly benefits most
techniques for molecular detection and diagnos-
tics of plant pathogens. ELISA-based assays,
which upon fluorescence or other visible chem-
ical reaction confirms the presence of disease,
have been standard techniques in detecting
viruses, fungi, and other microbes (Sankaran
et al. 2010; Boonham et al. 2014), and are quick,
cheap, and available for on-site testing without
need of specially-trained personnel. However,
immunological procedures rely on
antibody-based recognition of antigens produced
by the pathogen, which may not be available for
all pathogens of interest.

PCR-based assays target sequences from the
pathogen for amplification and detection (Ward
et al. 2004), and species-specific primers have
provided a powerful tool for pathogen identifi-
cation. These primers usually target regions of
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ribosomal RNA genes exhibiting sufficient
diversity among taxa, such as the internal tran-
scribed spacer regions, ITS1 and/or ITS2, in
fungi. In addition, using nested PCR and multi-
ple primer pairs (multiplexing) can increase the

specificity of differentiating related pathogens
within a short time interval (Alaniz et al. 2009).
The next iteration is characterization of the
phytobiome via metagenomics to study the
composition and expression profiles of microbial

Table 10.2 A survey of representative molecular techniques deployed to assess diverse phenotypes in grapevines

Phenotypes Type Molecular method Reference

Biotic stress Powdery mildew PCR, HPLC Brewer et al. (2011), Frenkel et al. (2012)

Downy mildew Proteomics,
metabolomics

Palmieri et al. (2012), Chitarrini et al.
(2017), Negrel et al. (2018)

Botrytis Nested PCR-RFLP,
qPCR

Cadle-Davidson (2008), Saito et al. (2009)

Trunk diseases Transcriptomics Spagnolo et al. (2012)

Bacteria response PCR, ELISA,
proteomics

Minsavage et al. (1994), Katam et al. (2015)

Virus RT-PCR, PCR Dubiela et al. (2013)

Pest response Chemical fingerprinting Benheim et al. (2011)

Abiotic stress Water deficit Proteomics Grimplet et al. (2009)

Salt stress Proteomics Jellouli et al. (2008)

High temperature
and heat shock

PCR Liu et al. (2012)

Herbicide Proteomics Castro et al. (2005)

Cold storage Proteomics Yuan et al. (2014)

Dormancy HPLC George et al. (2018)

Freeze shock Transcriptomics Tattersall et al. (2007), Xin et al. (2013), Xu
et al. (2014b), Londo et al. (2018)

Cold tolerance RT-PCR Hou et al. (2018)

UV stress RT-PCR Schoedl et al. (2013)

Physiology and
development

Post-harvest
withering

Proteomics Di Carli et al. (2011)

Dormancy
Induction

Transcriptomics Fennell et al. (2015)

Berry flesh
development

Proteomics Martínez-Esteso et al. (2011)

Berry
development

Transcriptomic,
proteomic and
metabolomics

Zamboni et al. (2010)

Berry
anthocyanins

Mass spectrometry Picariello et al. (2014)

Fermentation and
yeast

PAGE, PCR, and
RT-PCR, proteomics

Marks et al. (2003), Blein-Nicolas et al.
(2013)

Seedlessness PCR Lahogue et al. (1998)

Variety
identification

Proteomics Povero et al. (2010)

Leaf metabolome LC–MS Marti et al. (2014)
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communities in and around the grapevines.
While most phytobiomes change drastically in
response to environment, there appears to be a
genetic basis to phytobiome as a phenotype.
Such studies can generate details on biological
and metabolic processes in grape-microbe inter-
actions (Zarraonaindia et al. 2015; Alaimo et al.
2017).

10.5.1.2 Biomarkers for Phenology
and Berry Development

Extensive studies have been conducted to char-
acterize phenology and berry development in
grapevines using molecular tools. At various
stages of flower and berry development, (Wang
et al. 2014) determined an expression profile of
nine genes, three of which (VvAP1, VvAP3, and
VvFLC) accurately predicted grapevine phenol-
ogy. They used this “genetic phenology” to guide
urea fertilizer timing and suggested that gene
expression could be used in accurate diagnosis or
pre-diagnosis of the corresponding phenophases
for viticultural treatments. In another study, the
grapevine R2R3-MYB transcription factor
VvMYBF1 was shown to regulate flavonol syn-
thesis in the developing berries, with high
expression during flower development and in
skins of ripening barriers correlating with accu-
mulation of flavonols (Czemmel et al. 2009).

Proteomic tools can be applied to study pro-
tein expression, function, and interactions while
characterizing biological functions with possible
applications as biomarkers. Traditionally, two-
dimensional electrophoresis (2-DE) has been
extensively used to study grapevine proteomics
to examine defense and stress responses (Spag-
nolo et al. 2012; Delaunois et al. 2013). With the
release of the grape genome sequence, traditional
approaches are being replaced by shotgun pro-
teomics techniques including iTRAQ and TMT,
which have been widely used to study physio-
logical responses to fungal infections, heat stress,
and ripening events (Kambiranda et al. 2014; Liu
et al. 2014). Along these lines, proteomic
responses have been studied in numerous sys-
tems, such as: developing and ripening berries
responding to various stresses (Negri et al. 2008;
Kambiranda et al. 2014); grapevine stems in

response to Xylella fastidiosa (Yang et al. 2011);
and resistance induced against downy mildew by
Trichoderma harzianum (Palmieri et al. 2012).
While each story seems straightforward when
succinctly summarized, the phenome of an
organism is complex, dynamic, and conditional,
often determined by external responses, adding
complexity to pinpoint single time point
expression (Pendergrass et al. 2015). Thus, more
complex, dynamic analyses may be desirable in
some situations.

10.5.1.3 Systems Biology
and Expression QTL

Recently, systems biology has provided infor-
mation about the interaction of genes, proteins,
and metabolites through integration of omics
data (see Chap. 8). As technologies for generat-
ing omics data improve in sensitivity, resolution,
accuracy, depth, and speed, databases and data
analysis pipelines must keep pace. For example,
next generation sequencing technologies have
simplified simultaneously obtaining
transcriptome-wide expression profiles and
genome-wide marker data, which have created an
opportunity for expression QTL (eQTL) studies.
At the simplest, eQTL can analyze expression of
a single gene as the response variable. In ana-
lyzing expression of VvUFGT by reverse-
transcription quantitative PCR (RT-qPCR) in
the family Syrah � Grenache, a cis-eQTL in
VvUFGT explained 20% of expression variance
and a trans-eQTL at the VvMYBA locus
explained 35% (Huang et al. 2013). Building on
this, five proanthocyanidins also measured by
RT-qPCR indicated 21 eQTLs, of which only
four were previously known (Huang et al. 2014).
In studying the Rda1 locus for resistance to
Diaporthe ampelina, an eQTL approach based
on RNASeq analysis of a subset of recombinants
identified 16 candidate genes, and the Rda1 locus
predicted expression of 6 of those genes,
including two NB-LRR genes (Barba et al.
2018).

Integration of multiple omics data may be
justified by the modest correlations between gene
and protein expression levels: for example, only
one-third of proteins identified in mature berries
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were significantly correlated with their RNASeq
transcript abundance (Ghan et al. 2015). This
poses a complex problem: If proteomic and
metabolic data lie downstream from RNA, closer
to the phenotype, but our assays do not access all
expressed proteins and metabolites, how do we
gain clearer understanding of phenotypes from
more complex data having more assumptions,
comparisons, strengths, and weaknesses? It
becomes a challenge not just to analyze systems
biology data, but also to visualize and provide
meaningful interpretation.

10.5.2 Opportunities with Future
Technologies

Although molecular methods have been devel-
oping rapidly and constantly, their application as
phenotypes has been limited. In part, this may be
due to their indirect relationship to the selective
trait of interest (e.g., quantitation of pathogen
DNA vs quantitation of visible disease) and due
to the more accurate measures obtained by direct
observation. For instance, when using both
qPCR and disease ratings to discover REN6 and
REN7, while both methods detected the loci,
disease ratings explained more phenotypic vari-
ance and had higher LOD scores (Pap et al.
2016). Molecular phenotypes have a bright
future where their throughput is significantly
higher than other phenotypes while retaining trait
correlation, or where they create opportunities
not otherwise possible, such as in eQTL studies
and other systems biology approaches.

10.6 Information Technologies
in Agriculture (Precision
Agriculture and Big Data)

In recent decades, IT has had an important role in
agriculture management as a response to the
continuous increase of production demands and
the need to fulfill stricter quality control
requirements from governmental institutions.
The precision agriculture concept was adapted in
the 1990s by Lowenberg-DeBoer and Boehlje

(1996) in order to reference the implementation
of new IT to traditional agriculture science. The
challenge of precision agriculture is to maximize
crop production and product quality, while opti-
mizing returns on economic investments.
Therefore, precision agriculture follows a sus-
tainable agriculture scheme by means of strategy
adaptation based on collected data. The feasi-
bility of applying these methods for monitoring
large field areas and its capability of handling
environmental variance (Santesteban et al. 2013)
has been demonstrated in the scientific literature
during the last decades.

Precision agriculture methods are based on
gathering a wide scope of different field metrics,
markers, and heuristics which are accurately geo-
referenced by means of distribution maps usually
generated from airborne or satellite imagery. The
popularization of small unmanned aerial systems
(UAS) has been fostering the development of new
mapping approaches for precision agriculture
(Zhang and Kovacs 2012) as well as making final
implementations more affordable for researchers,
companies, and farmers. In addition, local-
operating ground mobile robots with automated
task capabilities can generate or use data from
precision agriculture methods. For example,
autonomous tractors use the global positioning
system (GPS) for localization and visual sensors
for obstacle detection (Moorehead et al. 2012). In
addition, the simultaneous localization and map-
ping (SLAM) method, a well-known relative
localization method in mobile robotics, was
implemented for the navigation system of auto-
mated agricultural machinery as an effective
solution in areas that often experience GPS signal
losses (Auat Cheein et al. 2011).

Computer vision methods in precision agri-
culture are commonly used to obtain visual
quantifiable data. However, the application of
such methods for field experimentation usually
involves an exponential increase of difficulty due
to added variables from uncontrolled environ-
mental factors (e.g., lighting, weather, and terrain
variations). As a result, there is not a wide scope
of robust computer vision systems for agricul-
ture, and most of those solutions work under
specific, restricted conditions. However, even
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with these limitations, much progress has been
made. For example, fruit yield estimations are
considered important information for producers
and breeders, and its automation has been pop-
ularly addressed in the literature. One such image
analysis method estimates total fruit load from
mango trees by means of taking high-resolution
photos (Payne et al. 2013). Similarly, immature
citrus fruit can be detected by means of applying
color filtering, illumination enhancement, water-
shed transform, and texture feature extraction
(Zhao et al. 2016), and orange citrus can be
counted based on color and watershed segmen-
tations (Dorj et al. 2017). Individual red grape
counting for yield estimation was developed to
work autonomously at night by using artificial
lighting (Font et al. 2014b). Automated harvest-
ing was also addressed by using similar fruit
detection mechanisms and a robotic manipulator
to collect citrus fruit within a computationally
estimated 3D plane (Mehta and Burks 2014).
Although IR-based depth cameras are not suit-
able for outdoor operation, other depth sensor
systems can be used such as stereovision cameras
for fruit harvesting (Font et al. 2014a). Moreover,
fruit detectability can be also a challenging
problem when dealing with complex plant
structures where fruits are often covered by
leaves. This problem can be addressed by
assessing fruit detectability from different camera
viewpoints, emphasizing the importance of set-
ting a balance between computational cost and
effectiveness (Hemming et al. 2014).

Literature on precision agriculture presents
many important contributions to the technical
challenges of using computational devices and
sensors for data gathering and information fusion.
However, many researchers consider that there is a
lack of research and application on the next step,
the decisionmaking (Lindblomet al. 2017).All the
collected data is almost useless without an effec-
tive information management plan capable of
generating final conclusions that define effective
strategies to be applied. Moreover, the capability
of deployment and implementation of such
strategies are also considered as a critical point
since farmers and field managers are often reticent

to the adaption of such modern techniques. Sonka
(2016) referenced big data as the evolution of the
precision agriculture concept regarding the new
advances on artificial intelligence which are
becoming powerful and are gaining presence in
our society. Bronson and Knezevic (2016) share a
similar perspective on the application of big data
technologies in food and agriculture; moreover,
they highlight the need of encouraging society to
get updated for such rising technologies.

10.7 Conclusions

In this chapter, we provided a perspective on
current phenotyping approaches as they relate to
large-scale genetic studies, considering first how
phenotypes are perceived and measured and then
giving examples of specific traits, to encourage
a broad perspective on phenotyping. With
increased access to genomic data at reduced cost,
we see a phenomics revolution in process, which
promises to bring improved precision, objectiv-
ity, reproducibility, and throughput. However,
with new approaches come challenges and stan-
dardization and data management and analysis
will be critical to the success of phenomics in
each application. The other key is the need to
validate phenotypes within the context of viti-
culture and breeding. We recommend a mindset
of breaking traits down to measurable phenotype
components, then building models back up to
vineyard validation and application.
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11Response and Recovery of Grapevine
to Water Deficit: From Genes
to Physiology

Silvina Dayer, Idan Reingwirtz, Andrew J. McElrone
and Gregory A. Gambetta

Abstract
Grapevine is a crop of global economic
importance which is often cultivated in dry
Mediterranean climates. In the context of
climatic change, periods of drought could
increase and become more intense. Growers
will face increasing pressure to increase
irrigation efficiently and/or adopt new grape-
vine varieties with increased drought resis-
tance and water use efficiency. Adapting
viticulture to these challenges requires an
improved understanding of how grapevines
behave under drought to enable sustainable

management strategies and develop new vari-
eties and rootstocks. This chapter summarizes
our current understanding of the changes in
physiology, signaling, metabolism, and gene
expression that mediate grapevine’s response
and adaptation to drought.

11.1 Introduction

Water scarcity, which occurs when demands
exceed supplies, threatens crop production in dry
growing regions across the globe. Changing
climatic conditions could exacerbate this situa-
tion, as more intense and prolonged drought
events are predicted for many regions (IPCC
2014). Grapevines are a high-value crop in many
parts of the world and are commonly grown in
Mediterranean-like regions with long, dry sum-
mers making them prone to extended periods of
drought. Unusually prolonged droughts (even
considered mega-droughts) have recently
wreaked havoc on grape growers in Australia,
California, and Chile (Thrupp et al. 2008; Abare
2008; Garreaud et al. 2017). With warmer win-
ters, regions in the western USA are also dealing
with less snowpack accumulation in mountain
ranges, which provide surface runoff that sup-
plies irrigation water (Mote et al. 2008). Growers
in regions that rely on irrigation have recently
faced restricted water allocations as they compete
with demands from urban, industrial, and
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conservation sectors. Given that agriculture water
use dominates total water use in these regions (i.e.,
*80% of the total in some regions), growers will
face increasing pressure to use water more effi-
ciently. This requires an improved understanding
of grapevine behavior under drought to enable
growers to manage deficit irrigation strategies
while respecting the vine’s stress thresholds.

Wine grapes in many parts of the world are
traditionally grown without supplemental irriga-
tion. This tradition still holds in many regions
(e.g., France, Spain, Italy), while many other
growing regions (and other grape commodities,
e.g., table grapes, juice, and raisins) rely on
irrigation to improve vine yields and avoid
drought-induced vine mortality. Even under
conditions where irrigation is applied, growers
often deliberately impose a water deficit partic-
ularly for premium wine grape production and to
facilitate earlier harvests and time to market for
table grapes. This is often accomplished using
regulated deficit irrigation, where less water is
applied than that needed to match the evapo-
transpiration demands of the vineyard. This
results in soil water depletion over time and
increased water stress in the vines particularly if
the deficit coincides with increased atmospheric
demand during the hottest portion of the growing
season. Deficit irrigation applied at the right time
and right intensity helps to control vegetative
growth, reduce humidity, and allow adequate
light penetration in the fruiting zone (Keller
2015). Maximizing water use efficiency in vine-
yards requires adequate understanding of the
physiological constraints imposed by water def-
icits so stress thresholds can be approached
without long-lasting detrimental effects that pre-
vent fruit ripening or bud fruitfulness in future
growing seasons.

The vast majority (>95%) of water absorbed
by grapevine root systems is transported directly
to the canopy and lost to the atmosphere via
transpiration. Water exits the leaves through the
stomata, where it is exchanged for CO2 needed
for photosynthesis. Water that remains within
grapevines is used for maintaining cell turgor,
building and expanding new cells, translocating

nutrients and sugars, providing evaporative
cooling, and facilitating gas exchange (Keller
2015). Under drought, these physiological pro-
cesses can be largely disrupted, but the timing
and degree of these disruptions vary across these
processes. Mild stress in grapevines occurs when
leaf water potential (Wleaf) ranges from approxi-
mately −0.8 MPa to −1.1 MPa, while moderate
stress is often characterized when Wleaf is −1.2 to
−1.4 MPa. Severely stress grapevines exhibit
Wleaf below −1.6 MPa.

11.1.1 Overview of Grapevine
Response to Drought:
From Mild to Severe
Stress

Growth and expansion of tissues are one of the
most sensitive indicators of drought-induced
water stress in grapevines. Non-stressed vines
that are actively growing usually have long
tendrils that extend past the shoot tip. Under mild
water stress, turgor and relative water content
start to decrease in grapevine cells, which results
in reduced cell division and expansion. One of
the earliest signals of drought stress is reduced
shoot tip and tendril growth. At this same time,
plants reduce cell wall synthesis and protein
production needed to drive cellular metabolism
(Hsiao 1973).

As soil water content continues to decrease
and water stress increases, abscisic acid (ABA), a
plant hormone and key water stress response
signal, is produced and combines with turgor loss
to initiate stomatal closure under mild–moderate
drought stress. This leads to initial reductions in
photosynthesis due to substrate limitation (i.e.,
CO2). ABA production also impacts other key
physiological processes at the molecular level
including cellular osmotic adjustment, regulation
of aquaporin activity, and antagonizing auxin to
inhibit cell loosening/expansion.

As grapevines approach moderate water
stress, shoot growth and leaf expansion cease
completely (Schultz and Matthews 1988).
Decreased canopy size and photosynthetic
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capacity lead to less carbon export to sinks and
thus depletion of reserves from storage sites in
woody organs (Holzapfel et al. 2010). This pro-
cess is likely associated with altered transport
processes in the phloem.

Root growth decreases under water stress due
to lost cell turgor and increases penetration resis-
tance of drying soils (Bengough et al. 2011), but the
reduction in root growth isgenerally less severe than
that of the canopy (likely associated with higher
expansin protein activity and osmotic regulation of
root tips; During and Dry 1995), thus leading to
higher root:shoot ratios under drought stress.
Grapevine root respiration is known to decrease
with soil water deficit, and a loss of membrane
integrity leads to root dieback under severe drought
stress. Both responses are likely associated with
lacuna formation in the cortex of grapevine fine
roots that also reduces the hydraulic conductivity
and precedes root shrinkage and xylemembolism in
these organs (Cuneo et al. 2016).

Under moderate to more severe stress shoot
tips will dry up and fall off and reduce the apical
dominance within the shoot. This response likely
induces a hormonal signal down the shoot trig-
gering responses in older leaves on the shoot.
Leaves change angle and orient themselves par-
allel to the sun’s rays, thus reducing incident
radiation and heat load as evaporative cooling
associated with transpiration is lost. Moderate to
severe water stress limits photosynthesis via
damage to various components integral to light
harvesting, electron transport, and carbon fixa-
tion by photosynthetic enzymes. Delays in
ripening, reduced bud fruitfulness, reduced win-
ter hardiness, and even sudden vine collapse can
eventually occur at this stage.

11.2 Regulating Water Use Under
Drought

11.2.1 Stomatal Regulation

Leaf gas exchange in vascular plants is facilitated
by stomata, tiny pores at the leaf surface each
encompassed by a pair of adjacent guard cells.
Changes in the turgor of the guard cells allow the

plant to open and close the stomata, regulating
the trade-off between carbon uptake and water
loss (Buckley and Mott 2002). Stomatal closure
initiates during the early stages of drought stress.
Plants close the stomata to avoid excessive water
loss, and consequently, xylem tensions that could
trigger cavitation. The physical mechanism by
which gs and water potential are coordinated is
complex and poorly understood because the
stomata are responding to a spectrum of factors at
any moment, from intercellular signaling to a
wide range of environmental factors (Hether-
ington and Woodward 2003). Stomatal regula-
tion can result directly from hydraulic signals,
i.e., changes in the local water status of (or
around) the guard cells (Fig. 11.1). These chan-
ges in water status can result from osmotic
changes within the guard cells themselves, and/or
through changes in the water potential gradient
resulting from the hydraulic conductance of the
pathway. At the same time, biochemical factors
(e.g., ABA discussed below) mediate stomatal
response to water deficit and can trigger stomatal
closure even in the absence of changes in leaf
water potential (Christmann et al. 2007).

Hydraulic and chemical signals have been
extensively studied, but their relative contribu-
tion to stomatal regulation remains under debate.
In some species and experimental conditions, one
signal may dominate (e.g., Comstock 2002;
Ahmadi et al. 2009). Experiments assessing the
stomatal response to ABA in basal lineages such
as ferns and lycophytes indicated that these
plants use only passive hydraulic mechanisms for
stomatal regulation (Brodribb and McAdam
2011; McAdam and Brodribb 2012). Further
examination of this response was studied by
comparing the stomatal responses to vapor
pressure deficit (VPD) under a wider group of
phylogenetic representative species including
ABA-sensitive stomata (angiosperms) and
ABA-insensitive stomata (ferns and conifers,
Brodribb and McAdam 2011; McAdam et al.
2016a, b). These studies observed that only
angiosperms are able to rapidly increase foliar
ABA levels during a VPD transition (from low to
high levels) to regulate stomatal closure, while
minimal changes in foliar ABA levels were
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observed for ferns and conifers (McAdam and
Brodribb 2015, 2016). Recent studies in grape-
vine showed that the hydraulic control was
dominant during the early phases of water stress,
while chemical signals seemed to have an addi-
tive effect involved in the long-term maintenance
of stomatal closure under prolonged water stress
(Tombesi et al. 2015). Thus, in grapevine an
integrated system that includes both types of
signals seems to be more likely than a control
based on either chemical or hydraulic signaling
alone (Fig. 11.1) (Tardieu and Davies 1993;
Peccoux et al. 2017).

At a molecular level, many proteins that reg-
ulate stomatal responses to the environment have
been identified. The ERECTA transcription fac-
tor family, putative leucine-rich repeat
receptor-like kinases have been related to the
perception of water stress signals across the cell
membranes in Arabidopsis (Masle et al. 2005).
ERECTA coordinates transpiration and photo-
synthesis, and as such is regarded as a transpi-
ration efficiency gene (Reynolds and Tuberosa
2008). On the other hand, several proteins loca-
ted in the plasma membrane and tonoplast of
guard cells, including channels and carriers, are
also known to be involved in the regulation of
stomatal movements (Chaves et al. 2011; Costa
et al. 2015). For instance, aquaporins (membrane
water channels) play an important role in stom-
atal regulation by facilitating the exchange of
water across membranes (Chaumont and Tyer-
man 2014). Experiments on grapevine showed
that the leaf hydraulic conductance decreased by
about 30% under water stress concomitantly with
a decrease of expression of some aquaporin iso-
forms (Pou et al. 2013). In that study, positive
correlations were observed between stomatal
conductance (gs), leaf hydraulic conductance,
and leaf aquaporin expression and activity, sug-
gesting a contribution of aquaporins in regulating
vine water use at the leaf level. Similarly,
experiments on field-grown Chasselas grapevines
growing under different radiation and irrigation
regimes revealed that short-term changes in the
hydraulic conductivity of the petioles were
explained largely by changes in the leaf gs and
the expression of aquaporins (Dayer et al.
2017a).

11.2.2 ABA as a Key Regulator
of Stomatal
Conductance

ABA is a plant growth regulator involved in
various physiological processes that include
positive or negative roles depending on the plant
conditions. For example, when ABA is at low
concentration under non-stressful conditions, it

Fig. 11.1 Summary of grapevine whole plant integration
under drought. The two pathways modulating stomatal
conductance, transpiration, and photosynthesis are bio-
chemical (black) and hydraulic (blue). Biochemical
signaling results from the production and sensing of
chemical signals (e.g., ABA), either locally in leaves
and/or via the long-distance transport from roots to leaves.
Hydraulic signals likely originate through the integration
of decreases in root (Lpr) and leaf (Kleaf) hydraulic
conductance resulting in decreases in water potential that
impact stomatal conductance (gs)
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has been shown to be essential for vegetative
growth in several organs (e.g., primary root
growth) (Sharp et al. 2000), but when ABA
accumulates under drought it reduces growth and
inhibits stomatal opening. ABA can be synthe-
sized in all cells and organs, including guard
cells, and thus plays an important role in regu-
lating gas exchange via stomatal closure as water
stress increases (Munns and Cramer 1996;
Boursiac et al. 2013). The 9-cis-epoxycarotenoid
dioxygenase (NCED) genes catalyze the first step
in ABA biosynthesis and represent the
rate-limiting step in Arabidopsis and presumably
many other plant species (Endo et al. 2008). In V.
vinifera, the VviNCED1 and VviNCED2 genes
are linked to ABA synthesis and were shown to
be up-regulated during water deficit (Speirs et al.
2013; Rossdeutsch et al. 2016). The expression
of other genes in the NCED family (VviNCED3,
VviNCED5, and VviNCED6) varies across three
different genotypes of Vitis; although the relative
contributions of these different isogenes in the
control of ABA biosynthesis, it is not entirely
clear (Hopper et al. 2016).

Under water deficit roots and shoots synthe-
size ABA and there have been conflicting views
on the relative contribution of root and leaf
derived ABA in stomatal regulation (Davies and
Zhang 1991; Tardieu and Simonneau 1998;
Dodd 2005). ABA content in roots is well cor-
related with both soil moisture and root-relative
water content in many plant species. At the
molecular level, Speirs et al. (2013) reported that
the expression of the ABA biosynthesis genes
VviNCED1 and VviNCED2 were activated in
roots, but not in leaves, in response to water
deficit, suggesting that roots could link stomatal
response to soil moisture status. On the other
hand, leaf cells are known to synthesize ABA
(Cutler and Krochko 1999) when their water
status is affected by local environmental condi-
tions such as high VPD so one would expect that
the same would be true for changes in water
status brought about by soil water deficits (via
hydraulic signals). In fact, there is an increasing
number of studies that suggest leaf derived ABA
is the dominant regulator of stomata. Reciprocal

grafting studies in tomato showed that changes in
apoplastic ABA levels in leaves were responsible
for stomatal closure, and that ABA production by
roots was not required to trigger the response
(Holbrook et al. 2002). In Arabidopsis, Christ-
mann et al. (2007) demonstrated that changes in
turgor pressure of leaf mesophyll cells occurred
within minutes of root-induced osmotic stress
and elicited activation of ABA biosynthesis in
shoots, putatively signaling stomatal closure. In
grapevine, the source of xylem sap ABA was
suggested to originate from the leaf rather than
the roots due to the abundance of leaf ABA and
the increased expression of VviNCED1 and
another ABA biosynthetic gene VviZEP in the
leaves during the day (Soar et al. 2006). Inter-
estingly, shoot derived ABA likely influences
root physiology as well. In angiosperms, ABA
levels in the roots, as well as root growth, were
influenced by ABA synthesized in the leaves
rather than sourced from the roots (McAdam
et al. 2016a). Although the importance and role
of root-sourced ABA are still controversial some
of the conflicting observations may be due to
differences in the intensity and speed of the
development of water deficit under experimental
conditions.

ABA biosynthesis and its subsequent regula-
tion of stomata are complex. In Arabidopsis, the
ABA biosynthesis core signal network involves
at least 138 proteins and over 500 interactions
(Lumba et al. 2014). In the absence of ABA, the
central ABA signaling 2C protein phosphatases
(PP2C) inhibit the activity of serine/threonine
protein kinases (SnRKs) and downstream ABA
signaling (Fig. 11.2). When ABA is present, the
PYR/PYL/RCAR protein family of ABA recep-
tors (Ma et al. 2009; Park et al. 2009) bind ABA
increasing their interaction with the PP2Cs. This
interaction disrupts the PP2C–SnRK interaction,
thus liberating the SnRKs to activate downstream
ABA responses. In grapevine, studies have
characterized how the expression of some of
these signaling components changes in response
to drought. The PP2Cs, VviHAI1 and VviAHG3,
and the SnRK, VviOST1 (ortholog of OST1
from rice), increase in Vitis leaves under water
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deficit (Hopper et al. 2016). In addition, the
abundance of VviABI5 and VviABF2, ABA-
responsive transcription factors which are tar-
geted by VviOST1, also increases during water
deficit (Haider et al. 2017). Two receptors
involved in ABA perception, VviRCAR5 and
VviRCAR6, were downregulated in leaves and
roots. Both genes are putative negative regulators
of VviPP2C4 and VviPP2C9 and showed higher
expression under water deficit (Boneh et al.
2012; Rossdeutsch et al. 2016).

Recent studies have identified the role of
protein phosphorylation in ABA-induced stom-
atal closure that involves kinases and phos-
phatases (Zhang et al. 2014). However, more
effort should be focused on revealing the protein

abundance and phosphorylation status of these
proteins to complete our understanding in the
plant response to stress.

Changes in the pH of xylem sap commonly
observed under drought stress can be an impor-
tant component of root-to-shoot signaling and
may act synergistically with ABA. The potential
effects of pH have been outlined elsewhere
(Wilkinson 1999) and include (1) changes in
ABA metabolism resulting in increased leaf ABA
concentration; (2) direct effects on leaf water
status that could alter guard cell turgor or sensi-
tivity to leaf ABA concentrations; (3) direct
effects on ion fluxes through the guard cell plasma
membrane; and (4) an increase of ABA concen-
tration in the apoplast surrounding guard cells.

Fig. 11.2 On overview of ABA biosynthesis, signaling,
and its role in mediating changes in leaf hydraulic
conductance and stomatal regulation during drought.
a ABA is biosynthesized from B-carotene (not all steps
are shown) with the zeaxanthin epoxidase (ZEP) and 9-
cis-epoxycarotenoid dioxygenase (NCED) proteins cat-
alyzing the rate-limiting steps. ABA is catabolized via
hydroxylation. b In response to drought, ABA is thought
to mediate decreases in outside-xylem hydraulic

conductance in the leaf lamina. c In the stomatal guard
cells, ABA signaling mediates stomatal closure. Under
well-watered conditions, the 2C protein phosphatases
(PP2C) inhibit the activity of serine/threonine-protein
kinases (SnRKs) and downstream ABA responses.
When ABA is present, it binds to the PYR/PYL/RCAR
receptors which disrupt the PP2C-SnRK interaction, thus
liberating the SnRKs to activate downstream ABA
responses
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11.2.3 The Influence of Root and Leaf
Hydraulic Conductance
on Plant Water Use

In addition to stomatal regulation, the hydraulic
conductance of leaves and roots also contributes
to the regulation of plant water use. Under water
deficit, hydraulic conductance decreases sharply
in fine roots and leaves. This drop-in hydraulic
conductance plays an important role in protecting
grapevines from more severe levels of water
stress that can result in embolism and mortality
(see Sect. 11.4).

While water deficit tends to decrease root
hydraulic conductance (Vandeleur et al. 2009)
contrasting results have been obtained for ABA
applications (Gambetta et al. 2017). An increase
in the root hydraulic conductance regulated by
aquaporins was observed in maize mutants
overexpressing ABA (Parent et al. 2009). In
contrast, other studies have observed only a
transient increase in root hydraulic conductance
(Hose et al. 2000), or even no effect (Wan and
Zwiazek 2001; Aroca et al. 2003), in response to
ABA applications. The increase in root hydraulic
conductance by ABA has been interpreted as a
mechanism to improve the water supply to the
shoot, decreasing the water potential gradient
along the flow pathway under soil or atmospheric
water stress (Kudoyarova et al. 2011; Pantin
et al. 2013).

Diurnal changes in root hydraulic conduc-
tance have also been observed under
well-watered conditions concomitantly with
changes in shoot transpiration (Vandeleur et al.
2009). In general, these variations correlate with
the transcript abundance of aquaporins in roots
suggesting that aquaporins facilitate water
transport across roots to meet the transpirational
demand of the shoots (Sakurai-Ishikawa et al.
2011; Laur and Hacke 2013; Vandeleur et al.
2014). Gene expression studies in various plant
species have reported contrasting responses of
aquaporin expression to water stress. Experi-
ments using mercuric chloride demonstrated a
decrease in aquaporin activity in water-stressed
dessert plants and Populus sp. seedlings (Martre
et al. 2001; Siemens and Zwiazek 2003; North

et al. 2004). In grapevine, Gambetta et al. (2012)
observed differences in root hydraulic conduc-
tance between low and high vigor conferring
rootstocks that corresponded to differences in the
expression and activity of aquaporins.

On the other hand, a great variation in the
apparent sensitivity of leaf hydraulic conduc-
tance to xylem ABA concentration has been
reported (Correia et al. 1995). For instance, a
large variability in leaf hydraulic conductance
sensitivity to exogenous ABA was observed
between different grapevine genotypes
(Coupel-Ledru et al. 2017). Those authors found
that ABA accumulation in the xylem sap of intact
grapevine plants was highly dependent on the
genotype, suggesting variability in ABA
biosynthesis capacity or catabolism. This obser-
vation was further confirmed in nine grapevine
genotypes where ABA-mediated responses to
water deficit separate the genotypes by their
genetic background (Rossdeutsch et al. 2016).
Thus, stomatal regulation likely results from the
complex integration of guard cell osmotic pres-
sure, leaf water status and hydraulic conductance,
and root-to-shoot controls.

Under water deficit, the increase in ABA
concentration in roots and leaves is coincident
with decreases in hydraulic conductance. In
leaves, studies showed that xylem fed-ABA
decreases the leaf hydraulic conductivity by
decreasing water permeability in the vascular
bundle sheath cells (Shatil-Cohen et al. 2011).
Pantin et al. (2013) further demonstrated that
vascular ABA decreased the leaf hydraulic con-
ductance putatively by inactivating bundle sheath
aquaporins, indicating that ABA indirectly
impacts guard cell water relations through these
changes in leaf hydraulics. These results led the
authors to suggest that ABA regulates stomata
via an additional indirect mechanism, whereby
reduced water permeability within leaf vascular
tissues results in local changes in water potential
that are sensed by guard cells (Fig. 11.2) (Pantin
et al. 2013). These decreases in the hydraulic
conductance in the pathway between the xylem
and the stomata (i.e., the outside-xylem pathway)
occur across species and contribute to stomatal
closure and protection from more severe stress
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levels (Scoffoni et al. 2017a, b); similar findings
have been found recently in grapevine leaves
(Albuquerque et al. unpublished data). The same
is true in fine roots where water deficit leads to
sharp decreases in hydraulic conductance which
occurs as a result of structural changes (Cuneo
et al. 2016) and aquaporin mediated decreases
(Fig. 11.3).

11.2.4 Cultivar Sensitivity to ABA:
The Iso/Aniso Debate

In some species, gs appears to regulate plant
water status so tightly that leaf water potential
does not vary significantly (Tardieu and Davies
1993; Saliendra et al. 1995). Plants that present
this conservative response under drought have
been classified as “isohydric”. In contrast, plants
that have a less strict stomatal control, exhibiting
more negative water potentials under drought
have been classified as “anisohydric” (Tardieu
and Simonneau 1998; Soar et al. 2006). This
broad classification assumes that genotype fixes a
plant’s behavior somewhere in between these
two theoretical extremes; however, it is widely
recognized that this is not always the case
(Chaves et al. 2010; Domec and Johnson 2012).
For instance, contrasting studies are plentiful in
the literature demonstrating the same grapevine

variety can exhibit different behaviors depending
on the growing conditions (e.g., field grown
versus potted plants; Medrano et al. 2003; Sousa
et al. 2006; Lovisolo et al. 2010; Charrier et al.
2018). This classification has also been used to
describe the underlying mechanisms of drought-
induced changes in plant physiology such as root
and leaf hydraulic conductance (Schultz 2003;
Vandeleur et al. 2009), nighttime gs (Cirelli et al.
2015), vulnerability to cavitation (Hukin et al.
2005), and plant mortality (McDowell et al.
2008). For instance, the degree of iso/anisohydric
behavior has been explained by the differential
expression of root aquaporins in two grapevine
genotypes (Grenache and Syrah; Vandeleur et al.
2009). In that study, both varieties show
increased root suberization under water stress,
thus reducing the total hydraulic conductance of
the root system, but only cv. Chardonnay (the
more drought-sensitive, anisohydric) seemed to
partially compensate for this decrease through
increased expression of the grape aquaporin
VvPIP1;1.

Differences in stomatal response to drought
might be partially determined by genetic differ-
ences in the capacity to produce ABA. Only part
of this variation is under heritable control since
leaf developmental stage and environmental
preconditioning exert a large influence on the
stomatal response to drought (Chaves et al.

Fig. 11.3 Responses of grapevine fine roots to drought.
Water transport (light blue arrow) from the soil across the
root cortex (gray) into the xylem decreases under water
deficit. This decrease in water uptake is first mediated by
decreases in hydraulic conductance which occurs as a
result of structural changes (e.g., lacuna formation in red)

and aquaporin mediated decreases. As stress increase, the
lacunas expand and the root shrinks largely disconnecting
the root from the soil, a process referred to as hydraulic
fusing. Eventually, if the stress becomes severe, enough
xylem vessels embolize (orange vessels)
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2010). In grapevine, different Vitis genotypes
exhibiting different levels of drought adaptation
differ in key steps involved in ABA metabolism
and signaling; both under well-watered condi-
tions and in response to water deficit (Ross-
deutsch et al. 2016).

11.2.5 Other Hormone Pathways:
Ethylene, GABA

Even though ABA signaling is seen as the main
pathway for stomatal regulation, chemical signals
other than ABA have been proposed (Christmann
et al. 2007; Wilkinson et al. 2007) including the
nonprotein amino acid c-aminobutyric acid
(GABA; Serraj et al. 1998). Rapid accumulation
of GABA was identified in plant tissues upon
exposure to drought (Serraj et al. 1998). In water
deficit studies in Arabidopsis, GABA accumu-
lation was observed to be stress-specific and its
accumulation induced stomatal closure (Mekon-
nen et al. 2016). In addition, other studies have
identified specific plant transporter proteins (e.g.,
aluminum-activated malate transporter) that are
modulated by GABA and affect diverse aspects
of the drought response (Ramesh et al. 2015).

Ethylene could be another important factor
under water deficit. A precursor of ethylene
1-aminocyclopropane-1-carboxylic acid (ACC)
that moves in the xylem from root to shoots has
been observed to increase in water-stressed
grapevines (Haider et al. 2017). A role for
ethylene under drought was demonstrated by the
use of ACC oxidase (ACO, which catalyzes the
conversion of ACC into ethylene) antisense lines
in tomato (Sobeih et al. 2004). In these plants,
ethylene evolution was much lower than normal
under both well-watered and drought conditions.
Under water deficit, the stomatal response in the
ACO antisense plants was the same as the wild
type, but a decrease in leaf growth was measured
in wild type, but not ACO antisense plants. ACC
synthase (ACS) is the rate-limiting enzyme in the
biosynthesis of ethylene and dehydrated leaves
of Cabernet Sauvignon exhibited increases in the

expression of VviACS7, VviACS4, and VviACS8-
like (Hopper et al. 2016).

In Arabidopsis, the ethylene response factors
(ERFs) are considered integrators of hormone
pathways, and ERF5 and ERF6 play a crucial
role in leaf growth as response to dehydration
(Dubois et al. 2013). Hopper et al. (2016)
observed an increase in VviERF6-like in Vitis
vinifera cv. Cabernet Sauvignon leaves under
water stress. Equally, the ethylene receptors
VviETR2, VviERS2, and VviERS1 are all
increased under water deficit. The WRKY gene
family is also known to affect the ethylene sig-
naling. In Arabidopsis, AtWRKY40 is regulated
by members of the APETALA 2/ethylene-
responsive element binding factor (AP2/ERF)
transcription factor family (Koyama et al. 2013),
and in some grape genotypes the grape ortho-
logue, VviWRKY40, is up-regulated under water
deficit along with AP2/ERF transcription factors
(Hopper et al. 2016). Genes from the ERF fam-
ily, VviERF9, VviERF055, VviERF022, and
VviERF128 showed increased expression under
water deficit (Hopper et al. 2016). VviERF055 is
homologous to an ERF transcription factor in
Arabidopsis, the translucent green (TG), which is
thought to increase drought tolerance by binding
to aquaporin promoters. These coordinated chan-
ges in gene expression suggest a role for ethylene
and ethylene signaling in the drought response, but
more research on this topic is needed.

Stomata play a key role in plant adaptation to
the environment, as they regulate the trade-off
between water and CO2 and modeling is an
effective tool to investigate the integration, sim-
ulation, and prediction of environmental effects
on stomatal regulation (Zhu et al. 2017, 2018).
However, models could be improved by incor-
porating a more nuanced understanding of addi-
tional chemical signals. For example, hydrogen
peroxide is an important reactive oxygen species
(ROS) molecule involved in guard cell func-
tioning and more specifically in the guard cell
ABA-signaling network (Schroeder et al. 2001).
Including the concentration of hydrogen perox-
ide in plant, models may provide an essential and
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complementary link between gs, photosynthesis,
and ABA (Damour et al. 2010).

11.3 Photosynthesis and the Effect
of Drought

Decreases in carbon fixation observed in
grapevines subjected to water stress is initially
due to stomatal closure (see above; Chaves 1991;
Flexas et al. 2004) as evidenced by a close cor-
relation between gs and photosynthesis (Naor and
Wample 1994; Flexas et al. 2002), by full
recovery of photosynthesis when exposing the
leaves to saturating amounts of CO2 (Cornic
2000), and by increasing instantaneous water use
efficiency (i.e., the ratio of photosynthesis to
transpiration) under these conditions (Cornic and
Fresneau 2002). Further decreases in photosyn-
thetic carbon assimilation under water stress are
associated with other biochemical processes such
as photophosphorylation and reduced activity of
RuBisCO (Tezara et al. 1999). Significant dis-
ruption of the photosynthetic machinery occurs
under severe stress that can often coincide with
high light and high-temperature conditions that
exacerbate the damage.

11.3.1 Diffusive Versus Metabolic
Limitations
to Photosynthesis

This diffusive limitation to CO2 is not only
imposed by the stomata but also by the pathway
from the substomatal cavity into mesophyll cells
and sites of carboxylation in the chloroplasts
(Perez-Martin et al. 2009). Conductance of CO2

into mesophyll cells (gm) can impose a signifi-
cant limitation on photosynthesis (Centritto et al.
2003; Flexas et al. 2007). It was proposed that
aquaporins and carbonic anhydrase play an
important role in regulating gm (Flexas et al.
2006; Kawase et al. 2013), and recent work
showed that most of the variations observed in gs
and gm in olive leaves was explained by two leaf
aquaporins and the expression of carbonic

anhydrase had a significant effect on gm under
water-stressed conditions (Perez-Martin et al.
2014).

When water stress becomes severe alterations
of photosynthetic metabolism occur, such as
decreases in ATP production,
ribulose-1,5-biphosphate RuBP regeneration, and
RuBisCO activity (Chaves 1991; Cornic 2000;
Flexas et al. 2004). Primary events of photo-
synthesis such as the electron transport rate are
very resilient to drought, and changes in the
efficiency of photosystem II (PSII) do not occur
until photosynthesis becomes very low (gs below
0.05 mol H2O m−2 s−1; Flexas et al. 2002, 2004;
Medrano et al. 2002). At this level of severe
water stress photosynthesis does not recover
upon re-watering (Quick et al. 1992), indicating
that non-stomatal inhibition is dominant. As gs
decreases, further RuBisCO activity steeply
declines (Bota et al. 2002, 2004; Flexas et al.
2002; Maroco et al. 2002). Thus, RuBisCO has
been proved to be highly stable and resistant to
water stress.

Similar to RuBisCO, the key carbon and
nitrogen metabolic enzymes sucrose-phosphate
synthase and nitrate reductase are also highly
stable under water stress (Flexas et al. 2004). By
contrast, less attention has been paid to other
enzymes involved in the regeneration of RuBP in
the Calvin cycle, and there is still lack of
knowledge regarding their regulation under
drought, particularly for grapevine.

11.3.2 Sugar Signaling Metabolism
and Osmotic Adjustment

Carbohydrates have different roles in the plant,
from energy storage compounds to metabolic
signaling molecules. There is evidence that an
increase of sugars in the guard cells under water
stress may determine the stomatal sensitivity to
ABA (Wilkinson and Davies 2002). In general,
soluble sugars tend to be maintained or even
increased under water stress despite a lower
carbon assimilation rate. This is possible mainly
because other processes such as growth and
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sucrose transport to sink tissues are inhibited. In
contrast, the concentration of starch decreases
under drought (Chaves 1991; Dayer et al. 2016).
In addition, sugars seem to favor the expression
of genes related to biosynthesis and storage of
reserves (e.g., starch) and repress those associ-
ated with photosynthesis and remobilization of
sugars (Ho 2001). Some evidence has been
provided that water deficit and other related
abiotic stresses affect the expression of sugar
transporter genes. For instance, in Arabidopsis
transcript accumulation of the tonoplast
monosaccharide transporters was increased in
response to drought treatment (Wormit et al.
2006). In grapevine, water stress increased the
gene expression for sucrose transporters known
to code for mesophyll cell proteins in leaves
without affecting the transcript abundance for the
phloem loading protein (Pastenes et al. 2014). In
addition, water stress may inhibit important
functions of vacuolar invertase-mediated sucrose
hydrolysis and osmotic potential modulation
(Andersen 2002). Studies in grapevine observed
that water stress induction of VvGIN2 gene
encoding a putative vacuolar invertase may
contribute to the increase of cell osmotic poten-
tial in response to water deficit that helps main-
tain basic metabolic functions (Medici et al.
2014).

Grapevines have the ability to support growth
and productivity under water deficit through
osmotic adjustment (Schultz and Matthews 1993;
Patakas and Nortsakis 1999). The accumulation
of osmolytes in leaves is attributable to a variety
of small molecules with both metabolomic and
transcriptomic studies highlighting the accumu-
lation of sugar and amino acids (Hochberg et al.
2013; Medici et al. 2014; Haider et al. 2017). For
instance, Patakas et al. (2002) demonstrated the
importance of organic solute and ion accumula-
tion under water stress in grapevines. Proline
metabolism is a common osmoprotectant across
plant species and is among the three most
responsive amino acids that change in response
to water deficit, increasing as much as two to
three times in V. vinifera leaves (Cramer et al.
2007). Haider et al. (2017) reported an increase
in proline levels during water deficit as well.

Increase in proline results from an increase in
delta 1-pyrroline-5-carboxylate synthetase
(P5CS) abundance, a biosynthetic enzyme that
initiates the proline pathway (Cramer et al.
2007). Another important enzyme in proline
metabolism is proline dehydrogenase
(PDH) whose expression also increases as a
result of water deficit (Peng et al. 1996). In Vitis,
PDH, P5CS, and other genes involved in proline
metabolism were up-regulated under water defi-
cit (Haider et al. 2017). This osmotic adjustment
may have long-term effects on grapevine per-
formance under drought. For example, vines that
have undergone successive water deficits are able
to maintain slightly higher levels of gs, which are
thought to result in part from osmotic adjustment
(Hochberg et al. 2017a). Two rootstocks (M4 and
101-14) that differ in their drought resistance
exhibited differences in their ability to osmoti-
cally adjust with the more drought-resistant
rootstock (M4) accumulating greater concentra-
tions of sugars, amino acids, and osmotin
like-proteins in response to drought (Prinsi et al.
2018).

Some transcript factors are involved in
osmoprotection change in response to abiotic
stress. For example, fructose bisphosphate aldo-
lase and galactinol synthase experienced an
increase in transcript abundance at an early stage
of water deficit in grapevines (Cramer et al.
2007). In Poplar, genes encoding sucrose syn-
thase, galactinol synthase, and raffinose synthase
were all increased under water deficits
(Shatil-Cohen et al. 2011). Similarly, genes
encoding galactinol and raffinose synthases were
similarly up-regulated in loblolly pine under
drought stress (Lorenz et al. 2011).

11.3.3 Photosynthetic Pigments
and Antioxidant Defense

Water stress reduces the tissue concentration of
photosynthetic pigments such as chlorophylls
and carotenoids (Poormohammad Kiani et al.
2008), primarily through the production of
reactive oxygen species in the thylakoids (Niyogi
1999; Reddy et al. 2004). Carotenoids, in
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addition to their function as accessory pigments,
play an important function as antioxidants pro-
tecting and sustaining photochemical processes
(Havaux 1998). Carotenoids form a key part of
the plant antioxidant defense system but are very
susceptible to oxidative destruction. b-Carotene,
presents in the chloroplasts of all green plants, is
exclusively bound to the core complexes of PSI
and PSII (Havaux 1998). A major protective role
of b-carotene in photosynthetic tissue may be
through direct quenching of triplet chlorophyll,
which prevents the generation of singlet oxygen
and protects from oxidative damage (Farooq
et al. 2009), which becomes increasingly
important under severe water stress conditions.

11.3.4 Photoinhibition and Oxidative
Stress

Under field conditions, plants are normally
exposed to different stresses simultaneously,
such as water deficit, high temperatures and
radiation regimes, and high VPD. Under well-
watered conditions, most of the light absorbed by
the leaves is used for photosynthesis and pho-
torespiration processes. However, in situations
where stomata close (e.g., water deficit) the
combination of high irradiance with low CO2

availability cause the plant to absorb an excess of
radiant energy that has the potential to damage
the photosynthetic apparatus. Under these con-
ditions, the leaves experience a transient decrease
of the photochemical efficiency of PSII in a
process called photoinhibition, which is a form of
non-photochemical quenching (Gamon and
Pearcy 1990; Baker 2008). Photoinhibition is
most commonly equated with photodamage, a
long-term depression of quantum efficiency due
to damage to the photosynthetic apparatus as a
result of excess photosynthetic photon flux den-
sity (Walters and Horton 1993). Chronic pho-
toinhibition may be considered as a depression of
photosynthetic efficiency from which the plant
does not recover after 3–4 days in shade (Greer
and Laing 1992). To avoid this damage, plants
can prevent this excess of light absorption by
either adjusting their leaf angles to the sun, losing

the chlorophyll content, or diverting the absorbed
light to different processes such as thermal dis-
sipation (Demmig-Adams and Adams 2006).
Thermal dissipation is a very important non-
radiative process that can dissipate >75% of the
light energy absorbed by the leaves (Niyogi
1999). The xanthophyll cycle plays a primordial
role in the thermal dissipation process (Demmig-
Adams and Adams 2006) and also a direct action
as antioxidant by increasing the tolerance of the
thylakoid membrane to lipid peroxidation
(Niyogi 1999).

When the leaf cannot keep pace between the
light energy absorbed and thermal dissipation of
this energy, the production of highly reactive
molecules is exacerbated. These molecules are
referred to as reactive oxygen species (ROS) and
are generated mainly in the chloroplast and may
lead to an oxidative damage (e.g., photooxida-
tion) of the photosynthetic apparatus if the plant
is not efficient in scavenging these molecules
(Niyogi 1999). Some of the ROS molecules
reported in the literature include hydrogen per-
oxide (H2O2), superoxide and hydroxyl radicals
and singlet oxygen (O2

−). Reactive oxygen spe-
cies are also essential signaling molecules that
mediate ABA-induced stomatal closure and
ABA-induced inhibition of stomatal opening
(Yan et al. 2007). Among all ROS, hydrogen
peroxide emerges as one of the most important
considering its role in guard cell functioning
and more specifically in the guard cell
ABA-signaling network (Schroeder et al. 2001;
Wang and Song 2008). In addition, Gunes et al.
(2006) showed that grapevine leaves can gener-
ate O2

− and H2O2 in response to boron excess,
which may happen under water deficit as well.

The balance between ROS synthesis and
scavenging depends on the rate and duration of
the water stress (Lawlor and Tezara 2009). For
example, when the water stress develops rapidly
over days under high light, ROS damage is
observed (Demmig-Adams and Adams 2006).
Detoxification mechanisms consume reducing
power and form water and include reactions with
reduced compounds such as ascorbate and glu-
tathione (Mittler 2002; Asada 2006). Interest-
ingly, increased ROS production along with the
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high redox state of the electron membrane chain
under water stress, induce the expression of
genes coding for components of energy-
dissipating and regulation systems in the
chloroplasts, allowing acclimation to stress con-
ditions (Pfannschmidt et al. 2003). In Vitis, genes
associated with ROS increased when exposed to
water deficit (Cramer et al. 2013). Genes
involved in ROS detoxification such as phos-
pholipid hydroperoxide glutathione peroxidase
(TC45235, O48646), gamma-glutamylcysteine
synthetase, and NADPH glutathione reductase
showed increases in their gene expression under
water deficit (Cramer et al. 2007). Photorespira-
tory enzymes of the glyoxysome/peroxisome
participate in water stress signal and in oxygen
free-radical metabolism (Corpas et al. 2001;
Moreno et al. 2005). Cramer et al. (2007) showed
that several of these enzymes increased their
transcript abundance in grapevines during water
deficit. GABA transaminase subunit isozyme 1 is
an enzyme in the “GABA shunt” pathway, which
is known for its role in defense against ROS
(Bouché et al. 2003; Fiorani et al. 2005; Umbach
et al. 2005). Cramer et al. (2007) showed an
increase in grapevine GABA transaminase tran-
script abundance in response to water deficit.

11.3.5 Membrane Stability

Cell and organelle membranes are one of the first
receptors of stress, and they can protect the cell
through modifications affecting both stress per-
ception and rigidity of the cell structure. Quan-
titative changes in the membrane lipids, such as
unsaturation level of phospholipids and glycol-
ipids, affect membrane fluidity and as a conse-
quence the activity of membrane-bound proteins
(Quartacci et al. 2002). Drought causes alter-
ations in membrane fluidity, and membrane sta-
bility is commonly used as a physiological index
for the evaluation of resistance to drought toler-
ance (Premachandra et al. 1990). In addition, cell
membranes are susceptible to damage from ROS
produced via the metabolism of the cell, and/or
as a result of stress (Koca et al. 2006), and the
interaction between ROS and cell membranes

produces lipid peroxides that can be used as a
stress indicator. Because ROS species are pro-
duced in the chloroplasts, chloroplast membranes
are particularly susceptible to oxidative stress.

A decrease in cellular volume caused by
membrane disruption increases the cytoplasmic
compounds, and the chances of molecular inter-
actions that can cause protein denaturation and
membrane fusion (Farooq et al. 2009). A broad
range of compounds has been identified that can
prevent such adverse molecular interactions.
Some of these include proline, glutamate, glycine
betaine, mannitol, sorbitol, polyols, trehalose,
sucrose, fructans, macromolecules (Hoekstra
et al. 2001). Such responses have not been
addressed in grapevines.

11.4 Extreme Drought
and Long-Term Productivity

11.4.1 Hydraulic Fusing
and Embolism

Under severe water deficits, grapevines have
more drastic responses such as petiole embolism,
leaf shedding, and in severe cases stem embo-
lism. However, the vulnerability of grapevine
organs to embolism is not equal with grapevine
petioles and leaves being significantly more
vulnerable to embolism than stems (Hochberg
et al. 2016, 2017b; Charrier et al. 2016). This
phenomenon is referred to as “vulnerability
segmentation” or “hydraulic fusing”. First put
forth by Zimmermann (1983), segmentation (or
fusing) results when an increased vulnerability to
embolism in distal organs such as petioles,
leaves, and/or fine roots prevents embolism in
perennial organs such as stems and trunks.
Studies suggest that grapevine leaves and peti-
oles have a P50 (i.e., the pressure at which there is
50% loss of hydraulic conductance via embo-
lism) ranging from −1.0 to −2.0 MPa (Hochberg
et al. 2016, 2017b; Charrier et al. 2016) while
stems have a P50 ranging from approximately
−2.0 to −3.0 MPa (Choat et al. 2010; Brodersen
et al. 2013; Charrier et al. 2018). Grapevine
stems become less and less vulnerable through
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the season and this likely increases the segmen-
tation between leaves/petioles and stems (Char-
rier et al. 2018).

Equally, roots could also be more vulnerable
to embolism to protect the vine against more
negative water potentials (Lovisolo and Schubert
2006; Lovisolo et al. 2008). More recent results
using noninvasive methods corroborated these
results and demonstrated that xylem of grapevine
fine roots had a P50 similar to that of leaves
(−1.8 MPa) (Cuneo et al. 2016). It was also
recently discovered that grapevine fine roots
subjected to drought stress form lacuna prior to
root shrinkage and embolism formation. Toge-
ther, these responses likely result in fine roots
becoming hydraulically disconnected from the
drying soil (Cuneo et al. 2016).

Hydraulic fusing in grapevine leads to pre-
mature leaf senescence and leaf shedding
(Hochberg et al. 2017b), and the progression of
leaf mortality mirrors increases in leaf and petiole
embolism (Charrier et al. 2018). Together with
other mechanisms (e.g., in roots), these responses
appear to isolate drought-induced damage of the
xylem systems to expendable plant parts other
than stems and trunks (Charrier et al. 2018).
Stem embolism is extremely detrimental to the
plant, and significant levels are typically fatal
(from 50 to 90% loss of conductivity depending
on species; Brodribb and Cochard 2009; Urli
et al. 2013; Li et al. 2015) so its prevention
and/or repair (discussed below) are likely critical.
In general, leaf shedding represents a move
toward dormancy helping deciduous plants such
as grapevine escape severe levels of water deficit
(Zhao et al. 2017; Volaire 2018). Although this
“abandon the current season and wait it out”
strategy may be effective for long-term sur-
vival, it would have severely negative effects on
current season productivity in an agricultural
setting.

11.4.2 Recovery and Repair

Drought stress responses such as reduced growth
and/or stomatal closure are largely reversible
over a short time frame. Stomatal conductance

recovers rapidly when grapevines are re-watered
while under moderate levels of water deficit
(Hochberg et al. 2017a; Dayer et al. 2017b).
However, this recovery time lengthens as the
severity of the stress experienced by the vine
increases (Charrier et al. 2018). Other responses
such as leaf shedding can only be reversed over
longer time frames. The repair (i.e., refilling) of
embolized xylem vessels can take place over
both short (hours to days) and long (over winter)
time frames (Brodersen and McElrone 2013).
Although embolism repair has been the subject
of debate because of methodological artifacts
leading to false conclusions (Torres-Ruiz et al.
2015), the increasing use of noninvasive imag-
ing, especially X-ray microCT, now provides a
much more robust means to examine embolism
repair in situ (Brodersen et al. 2010; Knipfer
et al. 2016; Hochberg et al. 2017b). Studies using
these technologies confirm that grapevines are
not as susceptible to embolism as previously
thought and thus routine cycles of embolism
formation and repair do not appear to occur on a
daily basis during the growing season.

The mechanisms involved in embolism repair
are still largely based on speculation. Root
pressure has traditionally been invoked as a
cornerstone mechanism in xylem repair across
many species including grapevine (Sperry 1993;
Tibbetts and Ewers 2000; Isnard and Silk 2009).
MicroCT studies have associated grapevine
embolism repair with root pressure (Knipfer et al.
2015; Charrier et al. 2016), and Vitis species
differing in their ability to produce root pressure
under drought exhibited corresponding abilities
to refill embolized xylem vessels (Knipfer et al.
2015). Certainly overwintering in grapevine,
with the significant amount of root pressure
produced in spring, should facilitate significant
embolism repair.

In the absence of root pressure, embolism
repair is thought to involve solute loading into
embolized vessels from adjacent living xylem
parenchyma thus creating an osmotic driving
force to facilitate vessel refilling (Brodersen and
McElrone 2013). Using microCT, Brodersen
et al. (2010) illustrated that vessel refilling in
grapevine was achieved by water influx from the
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xylem parenchyma manifesting as droplets that
expand until the vessels is filled. The orientation
of this refilling was most often associated with
ray tissues suggesting a possible role for carbo-
hydrates in the process. Studies in other species
also invoke the role of carbohydrates in the
production of the osmotic gradients that could
potentially drive the refilling process (Salleo
et al. 2009; Nardini et al. 2011). However, it
should be pointed out that refiling has only been
observed in potted grapevines where soil is uni-
formly saturated when re-watered, a case that is
almost always absent under field conditions.

There are currently no functional studies that
unequivocally identify any molecular mechanism
involved in embolism repair; however, numerous
attempts have been made to correlate changes in
gene expression with drought recovery in xylem
associated tissues. Transcriptomic studies in
Poplar during recovery from water deficit high-
light an induction of genes involved in transport,
including aquaporins and ion transporters, and
carbon metabolism (Secchi and Zwieniecki 2010;
Secchi et al. 2011). These findings correspond
with the hypothesized mechanisms discussed
above. In grapevine, a study by Chitarra et al.
(2014) revealed similar changes in targeted
drought, aquaporin, and carbon-related genes.
Studies that combine function analyses of puta-
tive proteins involved in the repair process with
noninvasive, real-time visualization of refilling
are required to make firm conclusions regarding
the molecular mechanisms involved in embolism
repair.

11.4.3 Carry Over Effects

Since water deficits are commonly applied in
viticulture, there are questions regarding their
effects on crop performance over the long-term;
to what extent do repeated seasonal water deficits
have carry over effects on growth and/or yield,
and to what extent can grapevines recover from
both moderate and more severe water deficits?
Some drought stress responses such as reduced
growth and/or stomatal closure are largely
reversible over a short time frame (i.e., within

season) while others such as leaf shedding can
only be reversed by overwintering.

Water deficits clearly decrease vigor and
yields in the current season and sometimes can
lead to carry over effects that reduce yields in the
following season through negatively impacting
bud fertility (Buttrose 1974; Williams and Mat-
thews 1990). However, this appears to be
dependent on the crop load (Dayer et al. 2013)
suggesting an important impact of source–sink
relationships and carbohydrate reserves. Several
recent leaf removal studies effects on grape berry
composition and starch reserves were only
observed in treatments that severely reduced the
source–sink ratio suggesting grapevines largely
compensate for these changes (Bobeica et al.
2015; Silva et al. 2017). The compensatory
capacity of grape berries to maintain normal
ripening (i.e., sugar accumulation) seems espe-
cially high (Pellegrino et al. 2014). At the
molecular level, Silva et al. (2017) demonstrated
compensatory changes in woody tissues that
increased sink strength via the upregulation of
VvSusy, a key regulator of starch synthesis, and
an increase in acid invertase activity when the
source was limiting. Similar changes may be
expected under water deficit where stomatal
closure and decreased photosynthesis equally
limit source production (discussed below).

11.5 Conclusions

Recent advances in grapevine have demonstrated
that a large number of genes are involved in plant
drought responses. There is strong evidence that
ABA plays a key role in various aspects of
metabolism in the overall response. The identi-
fication of genes that lead to the stress-induced
production of ABA and the perception of this
signal are important in understanding stomatal
regulation under mild water deficit. However,
further work is required to fully elucidate the
signal transduction and transcriptional regulation
of these genes under stress conditions, especially
at the protein level.

Further studies are essential to determine the
molecular basis of altered carbon assimilation
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and transport of sugars within the plant. For
instance, there is still lack of knowledge about
the enzymes involved in the regeneration of
RuBP in the Calvin cycle and their regulation
under drought, particularly for grapevine. Dor-
mancy and the redistribution of carbon stores
from season to season are also poorly understood
although they likely have a cornerstone role in
growth and productivity over the lifespan of a
vineyard.

Often drought is accompanied by other envi-
ronmental stresses such as high temperatures and
high VPD that also result in oxidative stress. And
like drought, scavenging of the reactive oxygen
species, cell membrane stability, expression of
aquaporins, and osmotic adjustment are some of
the protective mechanisms that allow plants to
cope with these stresses as well. Research has
advanced in the identification of redox signals
(e.g., hydrogen peroxide) that may regulate the
energy balance of the leaf involving the expres-
sion of several genes that are linked to photo-
synthesis and other metabolic pathways. It is
critical to understand how these different stress
response pathways are integrated in grapevine
and other plants.
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12The Genomics of Grape Berry
Ripening
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and Simone D. Castellarin

Abstract
Because of their economic and cultural impor-
tance, grapes are arguably the most studied
fruit crop and are considered a model system
for research on non-climacteric fruits. The
sequencing of the grapevine genome has led
to major discoveries that have increased our
understanding of the molecular regulation of
fruit ripening and berry metabolism, and how

the environment and viticultural practices
affect berry physiology. This chapter reviews
the most recent studies on the molecular and
metabolic pathways associated with grape
berry ripening including the pathways
involved in berry growth and softening, and
sugar, organic acid, phenolic, and aroma
accumulation. The role of hormones and
hormone crosstalk, as well as a compendium
of the most recent research on transcription
factors (TFs) and non-coding RNAs are
presented.

12.1 Introduction: General
Physiological Aspects
of Ripening

Grape berry growth follows a double-sigmoid
pattern where two rapid phases of growth are
interrupted by “lag” during which there is little or
no growth (Matthews and Shackel 2005). The
first growth stage (I) begins at flowering (i.e.,
anthesis) and continues until the lag stage (II),
while the start of the final growth stage (III) is
coincident with the onset of ripening, or veraison
(Fig. 12.1). Stage I growth results from both cell
division and cell expansion, but stage III growth
results exclusively from expansion (Coombe
1976; Ojeda et al. 1999). The transition from
stage II to stage III is abrupt (i.e., veraison) in
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individual berries. In viticulture, veraison is
regarded as a critical moment because, in addi-
tion to the resumption of growth, numerous
ripening processes begin, including softening,
rapid sugar accumulation, and most conspicu-
ously a change in color in red grape varieties.

Ripening is a critical stage for determining
grape and wine quality and has major implica-
tions for the economic value of the crop. The
grape berry is a non-climacteric fruit, which
means that ripening is not related to, or modu-
lated by, a burst of respiration and ethylene as in
climacteric fruits such as tomato or apple
(Coombe 1976; Gapper et al. 2013). In fact, the
onset of ripening was originally thought to be a
coordinated process where a multitude of physi-
ological changes (softening, sugar accumulation,
increase in ABA, and color development) were
coincident and preceded the resumption of
growth by several days (Coombe and Bishop
1980; Coombe 1992). More recently, studies
have delimited the earliest events at the onset of
ripening: softening, the associated decreases in
cell turgor, and increases in ABA concentration
(Thomas et al. 2006; Wada et al. 2009; Castel-
larin et al. 2016). Increases in sugar concentra-
tion and color development appear to occur only
later, when the firmness of the berry has already
decreased dramatically and the ABA concentra-
tion has further increased (Castellarin et al.

2016). Besides ABA, other hormones such as
brassinosteroids and ethylene are involved in the
ripening process, as well as sugars, which affect
the synthesis of anthocyanins (Symons et al.
2006; Hayes et al. 2007; Chervin et al. 2008;
Davies and Böttcher 2009; Dai et al. 2013).
Auxins—normally accumulated at early stages of
berry development—act as negative modulators
of the ripening process, and their deactivation is
necessary for ripening to begin (Böttcher et al.
2010, 2012a; Gouthu and Deluc 2015).

Sugars are one of the major metabolites that
accumulate in the grape berry during ripening.
Other compounds that accumulate during ripen-
ing are flavonols, which protect the berry from
UV light, anthocyanins which determine the
pink/red/blue coloration of red grape varieties,
and several volatile organic compounds (VOCs),
such as norisoprenoids, monoterpenes, thiols, or
their conjugated precursors (Adams 2006; Teix-
eira et al. 2013; Robinson et al. 2014a, b). These
VOCs determine the aroma of grapes, juices, and
wines, particularly when chemical changes
associated with acid and enzymatic modifications
of conjugated precursors occur during fermenta-
tion and wine aging.

Many key compounds for fruit and wine
quality are synthesized before veraison and nor-
mally decrease in concentration during the
ripening period. This is the case for organic

Fig. 12.1 Zinfandel grape (Vitis vinifera L.) clusters at
the onset of ripening (i.e., veraison). The timing of
veraison is heterogeneous among berries of the same

cluster and clusters of the same vine. In the picture, some
berries have just begun ripening (light pink), whereas
others are still green
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acids, hydroxycinnamates, tannins, and methox-
ypyrazines. The two major organic acids accu-
mulated in the grape berry, tartaric and malic
acid (Kliewer 1966; Kliewer et al. 1967; Shi-
raishi et al. 2010), strongly affect juice and wine
pH and contribute to the quality (freshness and
sourness notes) and longevity of wine. Phenolic
compounds such as hydroxycinnamates and
tannins confer bitterness and astringency to jui-
ces and wines (Teixeira et al. 2013). Finally,
methoxypyrazines impart the sensory character-
istics of bell pepper, asparagus, or pea to grapes
and wines. These aromas can be perceived as
good or bad depending on variety and wine style
(Robinson et al. 2014a, b).

12.2 Berry Growth and Softening

12.2.1 Cell Division and Expansion

Final berry size dictates in large part yield, and
thus genetic and molecular studies focused on
understanding the mechanisms controlling rates
of cell division and expansion are of agronomic
interest. Transcriptomic studies highlight the
transition from cell division driven growth, during
early stage I, to cell expansion driven growth,
later during stage I and stage III (Deluc et al.
2007). To date, very few cornerstone regulators of
grape berry size have been identified. The flesh-
less berry (flb) mutation, originally a somatic
variant and later used in crosses, exhibits pro-
found effects on fruit set and/or fruit size
depending on the meristem cell layers affected
(Fernandez et al. 2006a, b). Follow-up studies
identified that the mutation results from
mis-expression of a PISTILLATA-like MADS-
box transcription factor, VviPI (Fernandez et al.
2013). Chialva et al. (2016) identified three
potential genes involved in cell division during
stage I. Members of the grape AP2/ERF tran-
scription factor family, AINTEGUMENTA
(ANT) and AINTEGUMENTA-like (AIL), were
differentially expressed across different genotypes
that varied in ovary size and cell number. One
candidate, in particular, VviANT1, co-localizes

with previously identified QTLs for berry size in
both table and wine grapes (Doligez et al. 2002;
Cabezas et al. 2006; Chialva et al. 2016).

Later in stage I, and during stage III, berry
growth results from cell expansion. Cell expan-
sion is driven by cell turgor pressure, and the rate
of expansion is determined by cell wall extensi-
bility (i.e., the yield threshold; Cosgrove 2005).
Therefore, expansive growth will be modulated
through a combination of processes that affect
turgor, such as solute accumulation, and processes
that affect cell wall extensibility and involve cell
wall modifying enzymes (Matthews and Shackel
2005). During stage I, there is evidence that both
processes indeed contribute to growth. Water
deficits reduce berry growth, resulting largely
from decreases in berry turgor pressure (Thomas
et al. 2006). At the same time, expression analyses
during stage I across table grape genotypes with
contrasting rates of growth highlighted differences
in many genes encoding cell wall modifying
enzymes (Muñoz-Espinoza et al. 2016).

Grape berry cell turgor is high during stage I,
but decreases during stage II, and reaches very
low levels at the onset of ripening (Thomas et al.
2006; Wada et al. 2009; Castellarin et al. 2016).
This decrease in turgor prior to the onset of
ripening is thought to contribute to softening
(discussed below), but it creates a conundrum
regarding the resumption of growth that occurs at
the same time. Extremely low turgor requires a
corresponding decrease in the cell wall yield
threshold in order for rapid expansive growth to
resume. In fact, numerous studies have con-
cluded that the resumption of growth at the onset
of ripening corresponds to the upregulation of
many genes encoding cell wall modifying
enzymes (Nunan et al. 2001; Deluc et al. 2007;
Schlosser et al. 2008; Castellarin et al. 2016).
Nicolas et al. (2013) identified a basic helix–
loop–helix transcription factor, VviCEB1, that
positively regulates grape berry size through
enhanced cell expansion, and its action was
confirmed through ectopic expression in Ara-
bidopsis and tobacco (Lim et al. 2018). VviCEB1
overexpression led to the induction of numerous
genes encoding cell wall modification enzymes,
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which suggests a possible role for these enzymes
in changing the yield threshold to modulate cell
expansion (Nicolas et al. 2013). During berry
development, VviCEB1 expression increases
throughout stage I, peaks at the onset of ripening,
and remains high during stage III, consistent with
the period of expansive berry growth.

Stage III berry growth is peculiar because
grape berries are largely buffered hydraulically
from the parent plant (Matthews and Shackel
2005; Thomas et al. 2006). The traditional view,
that this hydraulic buffering was a result of a
physical disconnection of the xylem, has been
refuted (Keller et al. 2006), although the buffer-
ing does involve decreases in hydraulic conduc-
tivity (Choat et al. 2009; Knipfer et al. 2015).
The membrane water channel proteins, aqua-
porins, may contribute to these decreases in berry
hydraulic conductivity; however, the regulation
of this gene family during ripening is complex
(Choat et al. 2009; Wong et al. 2018). The extent
to which aquaporins mediate berry growth
remains unknown, but it is fair to speculate
that they play a role in berry growth via their
effects on berry water relations (Tyerman et al.
2012).

12.2.2 Softening: Decreases in Turgor
and Changes in Cell Wall
Composition

Berry softening occurs approximately 10 days
prior to the onset of ripening and represents one
of the earliest detectable changes in berry phys-
iology leading to veraison (Wada et al. 2008;
Matthews et al. 2009; Castellarin et al. 2016).
Softening is thought to result from the same two
compatible mechanisms as growth does decrea-
ses in cell turgor (introduced above) and changes
in the structure of cell walls (Brummell and
Harpster 2001; Gapper et al. 2013).

Interestingly, both of these mechanisms have
links with abscisic acid (ABA), one of the key
hormones regulating the onset of ripening in
grape (Gambetta et al. 2010; Castellarin et al.
2016; Pilati et al. 2017) and other fruits (Leng
et al. 2014). The decrease in turgor associated

with softening in grape corresponds to increases
in ABA, and both precede the increase in sugar
concentration at the onset of ripening (Castellarin
et al. 2016). The decrease in turgor results from
the accumulation of solutes, mostly malate and
sugars, in the apoplast of the berry (Wada et al.
2008, 2009). This accumulation of solutes in the
berry apoplast may result from apoplastic sucrose
unloading from the phloem and an upregulation
of acid invertases, which ABA stimulates (Pan
et al. 2005; Zhang et al. 2006; Koyama et al.
2010).

Many genes encoding cell wall modification
enzymes are up-regulated during softening in
grape, including many members of the expansin
and pectin methylesterase gene families, among
others (Dal Santo et al. 2013; Castellarin et al.
2016; Fasoli et al. 2016). In addition, cell wall
modification enzymes are thought to contribute
to postharvest changes in fruit texture and quality
(Brummell and Harpster 2001), and this is con-
sistent with findings in grape where many genes
encoding cell wall modification enzymes con-
tinue to be up-regulated late into ripening and
throughout the postharvest period (Castellarin
et al. 2016; Zenoni et al. 2016). The master
regulators of these increases are still unknown,
but ABA has been shown to up-regulate cell wall
modification enzymes, including expansins and
pectin methylesterases, in tomato (Sun et al.
2012). Increases in VviCEB1 expression (dis-
cussed above) correspond to softening, and along
with VviCEB1’s induction of genes encoding cell
wall modification enzymes, one can speculate a
role for VviCEB1 in softening as well (Nicolas
et al. 2013).

12.3 Berry Composition

Grape composition determines grape, juice, and
wine sensorial attributes. It changes dramatically
during fruit ripening and is strongly affected by
the genotype, the environment, and the viticul-
tural practices applied in the vineyard. The
complex regulation of the physiological and
metabolic pathways that determine grape com-
position, as well as the modulation of these
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pathways by the environment or viticultural
practices, have been intensively investigated
during recent years.

12.3.1 Sugars

Sugars play an important role in shaping berry
sensory properties, in determining alcohol con-
centration after fermentation, and as precursors
for the synthesis of organic acids, phenolics, and
aroma compounds (Dai et al. 2011). Vitis vinifera
berries accumulate large amounts of sugars,
predominantly glucose and fructose (in equal
concentrations) with only a trace amount of
sucrose (Hawker et al. 1976; Liu et al. 2006;
Shiraishi et al. 2010). Grapevine varieties exhibit
an impressively large range of sugar concentra-
tions at maturity. For example, Kliewer et al.
(1967) compared 78 table and wine grape vari-
eties and found that total soluble solids of the
berry juice—a good representation of berry sugar
concentration—varied at harvest from 18.5 to
28.2 °Brix.

In plants, sugars are synthesized in the cyto-
plasm of the leaf mesophyll cells and transported,
in the form of sucrose, via phloem into other
parts of the plant (Cheng et al. 2018). In the
grape berry, sucrose is then hydrolyzed by
invertases and stored in the vacuole in the form
of glucose and fructose. At the onset of berry
ripening or just before, sugar loading into the
berry from the phloem shifts from a symplastic to
an apoplastic pathway (Zhang et al. 2006). The
latter requires at least two transporters—one
secreting sugars from sieve elements/companion
cells, the other mediating reuptake into the
adjacent sink cells (Lalonde et al. 2004). Sugar
transport across membranes is mainly mediated
by the proton-coupled sucrose transporters
(SUTs, the disaccharide transporters) and hexose
transporters (HTs, the monosaccharide trans-
porters), together with several other subfamilies
of monosaccharide transporters. Acidic inver-
tases (AI), located in the vacuole or cell wall, and
neutral invertases (NI), located in the cytoplasm,
are the two major classes of sucrose metabolic
enzymes contributing to hexose accumulation in

grape berry. Although the vacuolar invertases are
considered important for sugar accumulation, the
expression of the genes encoding these enzymes
precedes the onset of hexose accumulation by
some weeks; therefore, the synthesis of these
enzymes cannot be considered a trigger for sugar
accumulation in grape berry (Davies and
Robinson 1996).

SUTs are essential for sucrose translocation in
plants (Lalonde et al. 2004). Four genes encoding
sucrose transporters have been identified in
grapevine, namely VviSUC11/VviSUT1, Vvi-
SUC12, VviSUC27, and VviSUT2. VviSUC11 and
VviSUC12 are high affinity sucrose transporters
(Ageorges et al. 2000; Manning et al. 2001;
Afoufa-Bastien et al. 2010), and VviSUC27 is a
low affinity sucrose transporter that has a very
similar structure to VviSUT2 (Zhang et al. 2007).
VviSUC11 and VviSUC12 expressions have been
detected in all organs. The weakest expression for
both genes was observed in berries at fruit set
(Afoufa-Bastien et al. 2010), but a significant
upregulation was observed during ripening
(Lecourieux et al. 2014). Afoufa-Bastien et al.
(2010) suggest that VviSUC12 either might be
involved in phloem unloading or in sucrose
import into the berry, and that VviSUC11 might
control sucrose uptake into berry vacuoles. In
contrast, VviSUT27 transcript amounts signifi-
cantly decrease during ripening (Davies et al.
1999), which suggests a different physiological
function for this transporter. On the other hand,
VviSUC27 transcripts have been detected at a
high level in petioles, stems, and tendrils, and less
abundantly in young leaves, mature leaves, and
roots (Afoufa-Bastien et al. 2010). The “Sugars
Will Eventually be Exported Transporter”
(SWEET) proteins are a newly identified family
of sugar efflux transporters (Chen 2014).
SWEETs are integral membrane proteins and
function as a prerequisite for SUT1-mediated
phloem loading (Chen et al. 2012). There are 17
SWEET genes, with different expression levels
among vegetative and reproductive organs,
identified in grapevine. Generally, most VviS-
WEET genes are more highly expressed in the
berry, and their expression level increases
throughout berry ripening (Chong et al. 2014).
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HTs in grapevine are encoded by a multigene
family, of which five members (VviHT1-5) are
well studied (Tanner and Caspari 1996; Zhang
et al. 2007; Agasse et al. 2009), and 17 were
identified more recently (VvHT8-24)
(Afoufa-Bastien et al. 2010). VviHT1 is expres-
sed mainly in grape berry (Fillion et al. 1999),
and its transcription greatly increases during leaf
development. VviHT3 and VviHT5 are expressed
in both mature leaves and grape berries, though
VviHT5 has a much lower expression level than
VviHT3. VviHT4, whose function is restricted to
glucose, is also expressed in grape berries (Hayes
et al. 2007). VvHT1, VvHT2, and particularly
VvHT3 are highly expressed at all stages of berry
development, with transcriptional patterns con-
sistent with the shift from a symplastic to an
apoplastic phloem unloading pathway that occurs
prior to veraison (Lecourieux et al. 2014). A gene
named VviHT8, which has a high similarity to
VviHT1, was identified as a molecular target for
the selection of grapes with improved sugar
accumulation (Xin et al. 2013).

Other monosaccharide transporters present
in the grapevine genome include tonoplast
monosaccharide transporters (VviTMTs), polyol/
monosaccharide transporters (VviPMTs), glucose
transporters (VviGlcTs), and ERD6-like trans-
porters (Afoufa-Bastien et al. 2010).

12.3.2 Organic Acids

Tartaric acid and malic acid are the major organic
acids in grapevine. Most of the tartrate and malate
in immature berries originate from glucose and
fructose (Hardy 1968). Tartaric and malic acid
accumulate in berry cell vacuoles before veraison.
Unlike many other fruits, grape berries do not
contain large amounts of citrate. During ripening,
the concentration of tartaric acid remains stable,
but the concentration decreases through a dilution
effect determined by cell expansion (Dai et al.
2011; Regalado et al. 2013). Malic acid also
decreases in concentration during ripening, but in
contrast to tartrate, most of this decrease is due to
degradation, use in respiration, and conversion
into sugars (Sweetman et al. 2009).

Tartaric acid is synthesized from L-ascorbic
acid (vitamin C). L-idonate dehydrogenase (L-
IdnDH) is responsible for catalyzing the proposed
rate-limiting step, the oxidization of L-idonic acid
to 5-keto-gluconic acid (DeBolt et al. 2006;
Cholet et al. 2016), and is the only known enzyme
to be involved in tartaric acid accumulation
(DeBolt et al. 2006). The sudden increase of tar-
taric acid during stage I is paralleled by VviL-
IdnDH gene expression and translation (Grimplet
et al. 2007; Wen et al. 2010; Cholet et al. 2016).
There are three different isoforms of VviL-IdnDH
genes: two of them are specifically expressed in
young berries, and the third increases during
berry ripening (Sweetman et al. 2012).

The accumulation of malate before the onset
of ripening is thought to be mainly due to its de
novo synthesis in berries (Sweetman et al. 2009).
Malic acid is produced from phosphoenolpyru-
vate (PEP) through the activity of different
enzymes: phosphoenolpyruvate carboxylase
(PEPC), malate dehydrogenase (MDH) (Givan
1999; Sweetman et al. 2012), malic enzyme
(ME) (Sweetman et al. 2012), and fumarase
(FUM) (Shangguan et al. 2015). There are two
VviPEPCs, one VviMDHs, and two VviFUMs
identified in grapevine (Shangguan et al. 2015).

The cytoplasmic MDH and the mitochondrial
ME appear to be key enzymes for malic acid
synthesis, since the decrease in expression of
their codifying genes correlates to decreases in
malate concentration during ripening (Sweetman
et al. 2012).

MDH enzymes catalyze the reversible con-
version of oxaloacetate into malate; therefore, the
possible decrease of oxaloacetate in mature ber-
ries caused by altered expression of VviPEPC
and VviPEPCK could influence malate degrada-
tion by shifting the function of MDH enzymes
towards malate catabolism (Sweetman et al.
2012). Since the catabolism of malate can only
occur when the acid is accessible to metabolic
enzymes outside the vacuole, the compartmen-
tation of malate may also influence the rates of its
degradation during berry development. For this
reason, the decrease of malate could also be
attributed partly to the down-regulation of the
genes encoding the tonoplast dicarboxylate
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transporters (VviTDTs) (Sweetman et al. 2009,
2012), which are responsible for the transport of
malate into vacuoles. Moreover, the decrease in
acid content during grape ripening has been
mainly associated with mitochondrial malate
oxidation (Regalado et al. 2013). Three mito-
chondrial dicarboxylate/tricarboxylate carriers
(VviDTC1–VviDTC3) have been characterized in
Vitis vinifera. VviDTC1 is able to transport all the
dicarboxylates/tricarboxylates of the TCA cycle,
with the exception of fumarate, and exhibits high
specificity for malate. The expression of
VviDTC2 and VviDTC3 transcripts is strongly
enhanced in the mesocarp at the onset of ripen-
ing, which suggests that their role in the transport
of malate into mitochondria might be critical
(Regalado et al. 2013).

12.3.3 Phenolics

Phenolics are synthesized from phenylalanine via
the phenylpropanoid, flavonoid, and stilbenoid
pathways. The phenylpropanoid pathway leads to
the production of p-coumaryl-CoA from pheny-
lalanine, which involves enzymes such as pheny-
lalanine ammonia lyase (PAL), cinnamate-
4-hydroxylase (C4H), and 4-coumarate-CoA
ligase (4CL). p-Coumaryl-CoA and malonyl-CoA
are the substrates of both chalcone synthase
(CHS) and stilbene synthase (STS), which catalyze
the first steps of the flavonoid and stilbenoid path-
way, respectively.

Hydroxycinnamic acids, such as p-coumaric,
caffeic, and ferulic acid and their esterified
forms coutaric, caftaric, and fertaric acid are the
major phenolic acids in the berry. Their synthesis
occurs before veraison via modifications of
the intermediates of the phenylpropanoid path-
way catalyzed by caffeic acid 3-O-metyl-
transferase (COMT) and caffeoyl-CoA 3-O-
methyltransferase (CCoAOMT). Recently, two
TFs, VviMYB4a and VviMYB4b, have been
characterized as negative regulators of phenyl-
propanoid genes and hydrocinnamic acid syn-
thesis (Cavallini et al. 2015).

Stilbenoids (e.g., cis- and trans-resveratrol,
piceatannol, cis- and trans-piceid, astringin,

pallidol, and a-, b-, c-, d-, e-viniferin) are mostly
accumulated from veraison onward (Gatto et al.
2008) and are strongly modulated by both biotic
and abiotic factors (Vannozzi et al. 2012; Savoi
et al. 2017). Forty-five stilbene synthases are
found in the grapevine genome, with at least 33
encoding full-length proteins. This gene family
arose from multiple events of tandem and seg-
mental duplications (Vannozzi et al. 2012).
Recent large-scale transcriptomic analysis has
shown that the expression of many VviSTSs
changes during fruit development and ripening
(Massonnet et al. 2017). In red berry varieties,
induction of VviSTSs is particularly pronounced
during the late stages of ripening. The two
R2R3 MYB transcription factors, VviMYB14
and VviMYB15 (Höll et al. 2013), which are
known to regulate stilbene biosynthesis, also
share similar expression profiles. Nonetheless,
among the many TFs proposed to regulate this
pathway (Wong et al. 2016b; Vannozzi et al.
2018), two WRKY TFs, VviWRKY24 and
VviWRKY03, participate at different levels of
VviSTS regulation—via direct activation of
VviSTSs or synergistic action with MYB TFs to
regulate VviSTSs.

The flavonoid pathway leads to the production
of flavonols, flavan-3-ols, and anthocyanins. The
modulation of the pathway during berry devel-
opment and under environmental stresses has
been largely investigated in grapevine (Teixeira
et al. 2013; Kuhn et al. 2013). Most of the genes
of the flavonoid pathway are present in low copy
numbers except for those encoding the flavonoid-
3′,5′-hydroxylases (F3′5′H s). Flavonoid-3′-
hydroxylases (F3′Hs) and F3′5′Hs divide the
pathway into two major branches, whose
compounds are either di-hydroxylated or tri-
hydroxylated. In most plants, F3′5′H genes are
present in low copy numbers, but a proliferation
of the F3′5′Hs has occurred in the grapevine
genome and given rise to 15 paralogs within
650 kb (Falginella et al. 2010). Most VviF3′5′Hs
are predominantly expressed in berries, and dif-
ferences in cis-regulatory sequences of promoter
regions are paralleled by temporal specialization
of gene transcription during fruit ripening and in
berry tissues (Falginella et al. 2010, 2012).
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Flavonol synthases (FLSs) are key enzymes
for the synthesis of berry flavonols such as
kaempferol, quercetin, myricetin, isorhamnetin,
laricitrin, and syringetin (Downey et al. 2004).
The expression of the FLSs is well known to be
under the control of a light-induced transcription
factor (VviMYBF1/VviMYB12) (Czemmel et al.
2009). Two recent studies now show that three
additional bZIP TFs, VviHY5, VviHYH, and
VvibZIPC22 (Malacarne et al. 2015; Loyola
et al. 2016), are involved in the regulation of
flavonol synthases and flavonol accumulation in
the berry. VviMYBF1 was shown to be part of a
regulatory cascade of VviHY5/HYH that poten-
tially involves positive feedback regulation
(Loyola et al. 2016; Czemmel et al. 2017). Fla-
vonols are normally glycosylated (as glucosides,
galactosides, rhamnosides, rutinosides, and glu-
curonides) and the flavonol-3-O-glycosyl-
transferases (VviGT3-5-6) and flavonol-3-O-
rhamnosyltransferase (VviRhaT1) responsible
for this glycosylation have been recently char-
acterized in grapevine (Ono et al. 2010; Czem-
mel et al. 2017).

Flavan-3-ols are produced via the activity of
leucoanthocyanidin reductases (LAR1-2) or an
anthocyanidin reductase (ANR) (Bogs et al.
2005). Their synthesis is promoted from anthesis
to veraison and is regulated by transcription
factors of the MYB family. In particular, Vvi-
LAR1 and VviANR are under the control of
VviMYBPA1 and VviMYBPA2 (Bogs et al.
2007; Terrier et al. 2009), whereas VviLAR2 is
under the control of VviMYBPAR (Koyama
et al. 2014). The monomeric flavan-3-ols accu-
mulated in grape, (+)-catechin, (−)-epicatechin,
(−)-epicatechin-3-O-gallate, (+)-gallocatechin
and (−)-epigallocatechin, differ according to
stereochemistry, level of hydroxylation, and
acylation by gallic acid (Mattivi et al. 2009).
Until now, the mechanisms involved in either
polymerization into tannins, galloylation, and
transport into the vacuoles have not yet been well
understood (Zhao et al. 2010). However, a QTL
study revealed different genetic determinisms for
PA composition in seeds and skin, including PA
total content, PA building blocks, degree of

polymerization, and ratio between building
blocks (Huang et al. 2012). Three annotated
glycosyltransferases (VviGT1-3) were described
to be putatively involved in the galloylation of
proanthocyanidins and the production of
hydroxycinnamic esters (Khater et al. 2012), and
two specific transporters of proanthocyanidin
were identified (VviPAMATE1-2) (Pérez-Díaz
et al. 2014).

Anthocyanins are responsible for the pigmen-
tation of the grape berries. They are synthetized in
the epidermis and hypodermis cells from veraison
onward and then stored in the vacuole. Teinturier
varieties, such as Alicante Bouschet, also accumu-
late anthocyanin in theflesh (Castellarin et al. 2011;
Falginella et al. 2012). In Vitis vinifera, antho-
cyanins are glycosylated at the 3′ position by the
addition of a glucose moiety through the activity of
the enzyme UDP-glucose, flavonoid-3-O-gluco-
syltransferase (UFGT). Both di-hydroxylated
and tri-hydroxylated anthocyanins are syn-
thetized by VviUFGT. The O-methyltransferases
(VviAOMT1-3)methylate cyanidin-3-O-glucoside
and delphinidin-3-O-glucoside into peonidin-3-O-
glucoside, petunidin-3-O-glucoside, and malvidin-
3-O-glucoside (Fournier-Level et al. 2011). More-
over, anthocyanins can also be acylated at the 6″
position of the glucose, which produces 3-O-6″-
acetyl-, 3-O-6″-coumaroyl- and 3-O-6″-caffeoyl-
monoglucosides and, recently, an anthocyanin-3-
O-glucoside-6″-O-acyltransferase was character-
ized (Vvi3AT) (Rinaldo et al. 2015).

The MYBA1-A2 TFs are crucial genetic
determinants of berry color (Walker et al. 2007).
Recent studies show that additional members of
theMYBA cluster, VviMYBA6 andVviMYBA7,
have the capacity to influence fruit anthocyanin
pigmentation and composition under severe
environmental conditions (i.e., UV-B) during
veraison (Czemmel et al. 2017).
Anthocyanin-acylglucosides are translocated into
the vacuole by MATE-type transporters localized
in the tonoplast (VviAnthoMATE1-3) (Gomez
et al. 2009), whereas the glycosylated antho-
cyanins are translocated via a glutathione-
dependent, ATP-binding cassette (ABC) protein
(VviABCC1) (Francisco et al. 2013).
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Furthermore, a recent QTL study identified a set of
new candidate genes for the regulation of antho-
cyanin variation among cultivars (Costantini et al.
2015).

Overall, the synthesis of hydroxycinnamic
acids, stilbenes, flavonols, flavan-3-ols, and
anthocyanins is spatiotemporally separated dur-
ing grape berry development and ripening and
tightly regulated by positive and/or negative
regulators. Besides the TFs described above, two
(VviMYB5a-b) are general regulators of the fla-
vonoid pathway and, in particular, modulate the
expression profile of several flavonoid genes
(VviCHI, VviF3′5′H, VviLDOX, VviLAR, and
VviANR) during berry development and ripening
(Lauvergeat et al. 2006; Cavallini et al. 2015).
Recently, two TFs (VviMYBC2-L1 and L3)
were characterized as repressors of both proan-
thocyanidin and anthocyanin biosynthesis
(Huang et al. 2014; Cavallini et al. 2015).
Moreover, a bHLH (VviMYC1) interacts with
VviMYB5a-b, VviMYBPA1, and VviMYBA1-
A2 in the transcriptional control of proantho-
cyanidin and anthocyanins biosynthesis in
grapevine (Hichri et al. 2010).

12.3.4 Volatile Organic Compounds

Terpenes are a major class of volatiles in grapes
and strongly affect the aroma of grapes and wines
of several varieties. The sesquiterpenes and
monoterpenes accumulate in the berry before and
after veraison, respectively. Two independent
pathways produce terpenes in plants: (1) the
plastidial 2C-methyl-erythritol-4-phosphate
(MEP) pathway, which is the predominant path-
way for monoterpenes (C10) and diterpenes (C20),
and (2) the cytosolic mevalonate (MVA) pathway,
which is the primary pathway for sesquiterpenes
(C15) (Bohlmann and Keeling 2008).

The major monoterpenes produced in grapes
are linalool, geraniol, nerol, citronellol, hotrienol,
a-terpineol, and rose oxides (Matarese et al. 2014);
these compounds conferflowery and fruity notes to
wines (Robinson et al. 2014a; Siebert et al. 2018).
Sesquiterpenes have a minor impact on grape and
wine aroma because usually their concentrations

are below the olfactory threshold. Themost studied
sesquiterpene is rotundone, which gives peppery
character in some red and white varieties (Siebert
et al. 2008; Wood et al. 2008; Mattivi et al. 2011;
Caputi et al. 2011). Recently, key genes (VviGuaS,
VviTPS24, VviSTO2) involved in rotundone
biosynthesis were identified (Drew et al. 2015;
Takase et al. 2015).

Among the several structural genes of the
MEP pathway, 1-deoxy-xylulose 5-phosphate
synthase (VviDXS) was identified as a key
modulator of total monoterpene content in
grapevine (Battilana et al. 2009, 2011). Terpene
synthases (TPSs) control monoterpene or
sesquiterpene production (Martin et al. 2010;
Matarese et al. 2013, 2014). Interestingly, in the
genome of Vitis vinifera there are 69 putative
terpene synthases, 39 of them functionally char-
acterized (Martin et al. 2010). Generally, TPSs
are divided into seven clades: TPS-a, TPS-b,
TPS-c, TPS-d, TPS-e/f, TPS-g, and TPS-h (Chen
et al. 2011). The TPS-a clade (30 genes) contains
mostly sesquiterpene and possibly diterpene
synthases, whereas the TPS-b clade (19 genes)
and TPS-g clade (17 genes) consist mostly of
monoterpene synthases. TPS-c (2 genes) and
TPS-e/f (1 gene) clades contain plant hormone
metabolism genes that are typically represented
with a single gene copy in plant genomes. No
full-length TPS-d and TPS-h were found in
grapevine (Martin et al. 2010). Recently, several
genes, such as nudix hydroxylase, vesicle-
associated proteins, ABCG transporters, glu-
tathione S-transferases, and amino acid perme-
ases have been proposed as candidate genes for
regulating the monoterpene biosynthesis and
accumulation in the berry (Costantini et al.
2017). Moreover, positive correlation between
aroma production and ERF TFs indicates that
ethylene signaling could be a factor in affecting
the final terpene content (Cramer et al. 2014). In
addition, a major role of jasmonic acid and
methyljasmonate has been hypothesized for the
regulation of terpene biosynthesis in grapes
(Savoi et al. 2016; D’Onofrio et al. 2018).

Most monoterpenes and sesquiterpenes are
present in grapevine as non-volatile terpene
glycosides. In grapevine, only three

12 The Genomics of Grape Berry Ripening 255



monoterpenol glycosyltransferases have been
characterized, VviGT7-14-15 (Bönisch et al.
2014a, b; Li et al. 2017) and the cytochrome
P450 CYP76F14, which catalyzes the conversion
of linalool to (E)-8-carboxylinalool, which, dur-
ing wine fermentation, generates a wine lactone,
a key odorant of Gewurztraminer wines (Ilc et al.
2017).

Other terpenoids synthesized in the berry
before ripening are the carotenoids, which are
pigments contributing to light harvesting and to
protecting the photosynthetic apparatus from
photooxidation (Rodrı guez-Concepción and
Boronat 2002). The genes involved in their
biosynthetic pathway were recently identified in
grapevine (Young et al. 2012). Carotenoids can
be cleaved via other carotenoid cleavage dioxy-
genases (VviCCD1a/b, VvCCD4a/b/c) (Lash-
brooke et al. 2013) to form volatile flavor and
aroma-related compounds, such as the C13-nor-
isoprenoids b-ionone and b-damascenone, which
contribute to floral and fruity aromas. The
majority of them are glycosylated in grape
(Robinson et al. 2014a).

The unsaturated C18 fatty acids linoleic acid
and linolenic acid are the precursors of other
volatile organic compounds such as C6-alde-
hydes and alcohols like hexanal and hexanol
(Kalua and Boss 2009). They are formed by the
activity of lipoxygenases (VviLOX) (Podolyan
et al. 2010), hydroperoxide lyase
(VviHPL1-2) (Zhu et al. 2012), and (3Z)-(2E)
enal isomerase and alcohol dehydrogenase
(VviADH) (Kalua and Boss 2009). Their syn-
thesis occurs mainly pre-veraison (Kalua and
Boss 2009), and they are responsible of
green-grassy aromas even though, considering
their detection threshold, they rarely contribute to
the herbaceous character of juices and wines
(Robinson et al. 2014a).

Methoxypyrazines like 3-isobutyl-2-
methoxypyrazineare (IBMP), 3-isopropyl-2-
methoxypyrazine (IPMP) are extremely volatile
compounds accumulated before veraison. They
contribute to the specific green-herbaceous aroma
of some wines such as Sauvignon blanc, Cabernet
Sauvignon, Cabernet Franc, and Merlot. Their

biosynthesis starts with an adicarbonyl addition to
the amino acid leucine or valine for IBMP and
IPMP, respectively, followed by methoxylation
reactions to form the final methoxypyrazines.
Four O-methyltransferases (VviOMT1-4) have
been identified in grape, with VviOMT3 having a
major role in IBMP production (Dunlevy et al.
2010; Guillaumie et al. 2013).

Finally, thiols confer typical aromatic features
to some varieties such as Sauvignon blanc.
The thiols in grape are normally accumulated
during ripening in a non-volatile form, bounded
to S-cysteine or S-glutathione via the VviGST3
and VviGST4 activity (Kobayashi et al. 2011).
These compounds are released during and after
fermentation, conferring to wines many desired
properties and sometimes off-flavors, depending
on the concentration (Peña-Gallego et al. 2012).

12.4 Hormonal Regulation of Berry
Ripening

Several hormones participate in the control of
grape ripening. Genomic and high throughput
technologies have been essential in characteriz-
ing the crosstalk between hormones and the
expression of associated downstream genes
(McAtee et al. 2013; Fortes et al. 2015)
(Fig. 12.2).

12.4.1 Auxins

Several studies have established that IAA decline
is associated with the initiation of ripening, both
in climacteric fruit and in non-climacteric fruit
such as grapes (Böttcher et al. 2011; Fortes et al.
2015). Auxin treatments retard sugar and antho-
cyanin accumulation and prevent the decrease in
acidity and chlorophyll concentration, but also
cause a delay in the usual ripening-associated
increase in the levels of abscisic acid (ABA), by
altering gene expression in grape berry (Davies
et al. 1997; Ziliotto et al. 2012).

Gouthu and Deluc (2015) showed that the
timing of ripening initiation is related to an auxin

256 R. Falchi et al.



signal and is linked to the relative seed content in
berries. In a recent study that compared the berry
physiology and composition to the whole gen-
ome gene expression analyzed by RNA-seq, a

potential role of auxin and its conjugates in
determining asynchrony between berries of dif-
ferent sizes was suggested (Wong et al. 2016a).
Moreover, it was shown that the tight control of

Fig. 12.2 Hormone dynamics during berry development
and ripening. Several studies have shown that increases in
auxin, cytokinin, gibberellin, and jasmonic acid occur
during the first phases of fruit growth (Stage I); brassi-
nosteroids, ethylene, and ABA are mainly involved in
physiological changes related to berry ripening (Stage
III). The up- and down-regulation of the main
biosynthetic/catabolic and associated downstream signal-
ing genes are reported for each different hormone. In
detail, gene names are abbreviated as follows:
TRYPTOPHAN AMINOTRANSFERASE OF ARABID
OPSIS1/TRYPTOPHAN AMINOTRANSFERASE
RELATED (TAA/TAR); YUCCA (YUC); auxin response
factors (ARF); IAA-amido synthetase (GH3-1);
9-cis-epoxy-carotenoid dioxygenase (NCED); zeaxanthin
epoxidase (ZEP); b-glucosidases (BG); transcription

factors ABA insensitive (ABI3); ABRE-binding factors
(ABF); UDP-glucosyltransferases (UGT); ABA 8’-hydro-
xylase (ABA-8’H); ACC oxidase (ACO); ethylene recep-
tors (ETR2, EIN4, ERS); Adenosine phosphate-
isopentenyltransferase (IPT); phosphoribohydrolase
“Lonely guy” (LOG); cytokinin histidine kinase (CHK)
receptors; response regulators (RR); cytokinin oxidase/
dehydrogenase (CKX); brassinosteroid 6-oxidase gene
(BR6OX); BR receptors (BRI1); GA-oxidases; S-adeno-
syl-L-methionine:jasmonic acid carboxyl methyltrans-
ferase (JMT); JA-amido synthetases (GH3-7 and GH3-
9); lipoxygenase (LOX); allene oxide synthase (AOS);
12-oxophytodienoate reductase (OPR), CORONATINE
INSENSITIVE 1 (COI1) jasmonate receptor; jasmonate
ZIM domain (JAZ)
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the hormone concentration derives from the
coordinated interplay of biosynthesis, transport,
degradation, and conversion pathways (Nor-
manly et al. 2010; Zhao 2010), in association
with the fine regulation of the pool of IAA
conjugates during grape ripening (Fortes et al.
2015).

The conjugation of IAA to amino acids is
catalyzed by auxin-inducible GH3 proteins and
provides a negative feedback loop to control
auxin homoeostasis (Böttcher et al. 2010). A pu-
tative IAA-amido synthetase gene, VviGH3-1,
was identified in grape berries. This gene
displays a developmental expression pattern
consistent with the increase of IAA-conjugates,
which in turn is coupled to several ripening-
associated processes in the berry. Indeed, the
increasing levels of IAA-aspartate in grapes
might be linked to the low levels of active IAA
that were observed during ripening, and provide
evidence for a possible mechanism for the
maintenance of low auxin levels during ripening
(Böttcher et al. 2012b). Members of both
the TRYPTOPHAN AMINOTRANSFERASE
OF ARABIDOPSIS1/TRYPTOPHAN
AMINOTRANSFERASE RELATED (TAA1/
TAR) and YUCCA (YUC) gene families (Won
et al. 2011), involved in the two-step pathway of
auxin biosynthesis, are also expressed in devel-
oping berries. Recent transcriptomic analyses
revealed a consistency between TAA/TAR and
YUC transcripts’ evolution and auxin accumu-
lation during berry development and ripening
(Wong et al. 2016a).

Auxins’ effects are mediated by early
response genes, such as Aux/IAA, GH3, and
SAUR family members. Several putative auxin
response elements (AuxREs) have been identi-
fied, and it has been demonstrated that the con-
served motif TGTCTG is responsible for the
binding of the auxin response factors (ARFs) that
confer specificity to auxin response through the
selection of target genes, i.e., transcription fac-
tors (Hayashi 2012; Li et al. 2016). Nineteen
VviARF genes, categorized into four groups
(Classes 1, 2, 3 and 4) have been identified. Most
VviARFs display the highest transcript levels in
the berry, suggesting that they may play

important roles in the regulation of grape berry
maturation processes (Wan et al. 2014).

12.4.2 ABA

An increase in free ABA levels around veraison
accompanies sugar accumulation, pigmentation,
and softening (Deluc et al. 2007; Wheeler et al.
2009; Sun et al. 2010; Gambetta et al. 2010;
Pilati et al. 2017), which suggests a major role
for the hormone in controlling several ripening-
associated processes in grape berry (Kuhn et al.
2013; Fortes et al. 2015). A decrease in fruit
firmness was observed by transforming tomato
with the Vitis transcription factor VvABF2,
involved in ABA and abiotic stress signaling and
expressed in the berry at the onset of ripening
(Nicolas et al. 2014). Moreover, the upregulation
of a gene encoding a glycine-rich protein, pos-
sibly involved in cell wall biogenesis and
degradation, confirms a role for the hormone in
fruit softening (Rattanakon et al. 2016).

The effect of ABA on the transcription of
genes involved in its own biosynthesis, degra-
dation, conjugation, transport, and signaling
pathways has been extensively studied in differ-
ent organs of grapevine (Rattanakon et al. 2016;
Pilati et al. 2017). These studies highlighted
that a small amount of ABA can trigger a
positive feedback regulation of genes involved in
ABA biosynthesis, including a significant up-
regulation of VviABI3 (transcription factor
involved in ABA responsiveness) during the lag
phase, which further supports the regulatory role
of ABA in grape ripening (Rattanakon et al.
2016).

ABA biosynthesis comprises crucial steps
catalyzed by 9-cis-epoxy-carotenoid dioxygenase
(VviNCED) and zeaxanthin epoxidase (Vvi-
ZEP). The genes codifying for those proteins are
up-regulated around veraison. Conversely, ABA
8′-hydroxylase (VviABA-8′H), which regulates
ABA catabolism, is down-regulated at the same
stage (Deluc et al. 2007; Fortes et al. 2015).
Moreover, the activity of cytosolic UDP-
glucosyltransferases (VviUGTs), which conju-
gate ABA to form the ABA-glucose ester, and
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the activity of b-glucosidases (VviBGs), which
release ABA from the above conjugated form,
further control ABA levels in the berry tissues
(Owen et al. 2009).

Higher accumulation of anthocyanins has
been observed in the skin of berries treated with
ABA (Wheeler et al. 2009; Gambetta et al.
2010). This is consistent with the increased
expression of anthocyanins’ biosynthetic genes
VviCHI, VviF3H, VviDFR, and VviUFGT, and of
the related transcription factors VviMYBA1 and
VviMYBA2 (Koyama et al. 2010). ABA is also a
key modulator of water stress responses, and
water deficit promotes ripening and color accu-
mulation in grape berries (Castellarin and Di
Gaspero 2007; Herrera and Castellarin 2016;
Savoi et al. 2017); however, several studies have
shown that under water deficit, ABA is not the
only signal for color development, and sugars
and other stimuli may co-regulate the metabolic
response of the berry (Gambetta et al. 2010;
Ferrandino and Lovisolo 2014; Pilati et al. 2017).
Supporting this hypothesis, Pilati et al. (2017)
analyzed berry skin transcriptional modulation
by RNA-seq, and observed that ABA treatment
by itself did not induce anthocyanins’ biosyn-
thetic genes.

In addition to the regulation of secondary
metabolism, ABA may be able to hasten the
initiation of sugar accumulation when applied
before veraison by stimulating the uptake and
storage of sugars in berries (Davies and Böttcher
2009; Fortes et al. 2015). The link between ABA
and sugar metabolism is also supported by a
study demonstrating that ABA increased the
activity of both soluble and cell wall acid
invertases in berry discs (Pan et al. 2005).

12.4.3 Other Hormones

12.4.3.1 Ethylene
The role of ethylene in regulating berry ripening
was usually considered negligible (Sun et al.
2010; Muñoz-Robredo et al. 2013). However,
ethylene can alter the progression of ripening. For
example, the application of an ethylene-releasing
compound (2-chloroethylphosphonic acid,

2-CEPA) delayed ripening when applied early in
berry development, and treatments with an
inhibitor of ethylene biosynthesis, aminoeth-
oxyvinylglycine (AVG), advanced ripening
(Böttcher et al. 2013). However, the response to
CEPA and AVG clearly changed during berry
development, and this was speculated to be due to
the different sensitivity of the ethylene biosyn-
thesis and perception pathways to exogenous
ethylene at different times (Böttcher et al. 2013).
Interestingly, CEPA application at veraison
generated an increase in the concentration of
anthocyanin in Cabernet Sauvignon berries, with
a concomitant increase in expression of genes
such as VviCHS, VviF3H, and VviUFGT
(El-Kereamy et al. 2003).

Ethylene also promotes berry size, stimulating
the expression of several genes encoding aqua-
porins, polygalacturonases, xyloglucan endo-
transglycosylase, cellulose synthases, and
expansins (Chervin et al. 2008). Ethylene is
perceived by transmembrane-receptor proteins,
belonging to the EThylene Receptor (ETR) fam-
ily, localized in the endoplasmic reticulum.
Chervin and Deluc (2010) analyzed the transcript
abundance of several ethylene receptors
(VviETR2, VviEIN4, VviERS) and transcription
factors (VviEIN3 and VviMADS4) across berry
development and the impact of the ethylene
inhibitor 1-MCP on their expression. Recently, a
phylogenetic analysis performed on ETRs and
related proteins, in both climacteric and
non-climacteric fruits, pointed out that both
classes share many aspects of ethylene percep-
tion and signaling during fruit ripening. More-
over, grape, as non-climacteric fruit, exhibits an
earlier expression peak of four ETRs, concomi-
tant with the onset of sugar accumulation (Chen
et al. 2018). One gene coding for ACC oxidase
(VviACO) was found to increase its expression at
the early stages of berry development (Deluc
et al. 2007), with a peak around veraison; a
similar observation, together with the increase of
ethylene levels, was related to the beginning of
fruitlet abscission in Chardonnay berries (Hilt
and Bessis 2003). Recently, the expression of
genes involved in the ethylene signaling path-
way, as well as ethylene transcription factors
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with recognized roles in leaf senescence, were
found to increase during the late stages of
ripening of Cabernet Sauvignon, which suggests
that ethylene may play a bigger role than
expected in regulating grape berry ripening
(Cramer et al. 2014).

12.4.3.2 Cytokinins
Although previous studies reported that cytoki-
nins do not participate in ripening in grapevine
(Inaba et al. 1976), more recently some studies
have highlighted the importance of this hormone
both at the pre- and post-veraison stages
(Böttcher et al. 2015; Pilati et al. 2017). Grape-
vine orthologues of five Arabidopsis gene fami-
lies involved in cytokinin metabolism and
signaling were identified, and their expression
patterns were analyzed in developing berries.
Genes regulating cytokinin biosynthesis
(VviIPTs), activation (VviLOGs), perception
(VviCHKs), and signaling (VviRRs) were found
to be expressed in all stages of berry develop-
ment and most significantly just before and after
veraison, and during this time the expression of
genes involved in cytokinin degradation
(VviCKXs) progressively decrease (Böttcher et al.
2015).

12.4.3.3 Brassinosteroids
Expression analysis of genes encoding brassi-
nosteroid (BR) biosynthetic enzymes or BR
receptors (i.e., VviBRI1) during berry develop-
ment revealed transcript accumulation patterns
consistent with the dramatic increase in endoge-
nous BR levels observed at the onset of fruit
ripening (Symons et al. 2006). It has been shown
that levels of castasterone, the bioactive BR, and
its precursor 6-deoxo-castasterone increase at
veraison and remain high during ripening in
Cabernet Sauvignon berries due to the upregu-
lation of a brassinosteroid 6-oxidase gene (Vvi-
BR6OX) (Symons et al. 2006). The application of
exogenous brassinosteroid increases the total
anthocyanin content in berries, and the full col-
oration of grapes occurred earlier in BR-treated
samples, with increased expression of antho-
cyanin biosynthetic genes (i.e., VviF3H, VviF3′5′
H, VviDFR, VviANS, VviUFGT) (Luan et al.

2013; Serrano et al. 2017). In addition, the
involvement of BR in sugar unloading into the
berry has been recently demonstrated. Exoge-
nous treatment of Cabernet Sauvignon berries
with BR (24-epibrassinolide) increases the sol-
uble sugar content by enhancing the activities of
enzymes related to sugar unloading, including
neutral and acidic invertases and sucrose syn-
thase, and up-regulating the expression of
sucrose transporter genes (Xu et al. 2015).

12.4.3.4 Gibberellins
The involvement of gibberellins (GAs), produced
in the seeds, in grape berry development and size
determination is well known (Coombe 1960).
GAs peak early during stage I (Davies and
Böttcher 2009), and increase again at the initia-
tion of stage III (Pérez et al. 2000).

A comprehensive annotation and characteri-
zation of GA-oxidases (GAox)—involved in
GAs biosynthesis and deactivation—has been
performed in grapevine (Giacomelli et al. 2013).
The authors propose that the pool of bioactive
GAs is controlled by the stage- and tissue-
specific regulation of GA oxidase, and Vvi-
GA3ox1 and VviGA2ox4 transcripts are signifi-
cantly up-regulated at fruit set.

RNA-seq analysis of “Centennial Seedless”
berries treated with GAs after flowering showed
an increased expression of xyloglucan endo-
transglycosylase (VviXET) genes, which partici-
pate in cell wall expansion. A crosstalk between
GAs, ABA, and ethylene during berry enlarge-
ment period has also been reported, and
GA3-application induces gene expression chan-
ges in plant hormone metabolism and signaling
pathways (Chai et al. 2014). Moreover, GAs’
soaking of cv. Kyoho clusters strongly hastens
berry coloration, which allows the hypothesis of
a role for the hormone in regulating anthocyanin
biosynthesis (Cheng et al. 2015). In the same
study, a large number of the identified differen-
tially expressed genes were involved in GA
biosynthetic and signaling pathways. Zhang et al.
(2014) provided new insights into the crosstalk
mechanism of GAs and glucose hexokinase-
dependent signaling during grape berry sugar
accumulation, and hypothesized that GAs might
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regulate the expression of invertase and sucrose
synthase genes in order to maintain intracellular
sugar levels and normal cell metabolism.

12.4.3.5 Sugars
Notably, besides their role as a metabolic sub-
strate, sugars directly or indirectly control a wide
range of processes, including photosynthesis,
sugar transport itself, phenylpropanoid metabo-
lism, cell wall metabolism, auxin homeostasis,
and ultimately berry growth and ripening
(Smeekens et al. 2010). The sugar-dependent
regulation of anthocyanin pathway and of
biotic/abiotic stress responses has been exten-
sively reviewed by Lecourieux et al. (2014).
Interaction between sugar and ABA signaling
pathways likely plays a pivotal role in ripening,
which is suggested by the parallel increase of
sugars and ABA in the berries at veraison
(Gambetta et al. 2010; Lecourieux et al. 2014).
Interestingly, both sucrose and ABA were able to
increase VviSK1—a gene encoding a protein
kinase with sugar signaling function—expression
in grape cell suspensions, which underlines the
tight interaction between sugars and hormone
signaling pathways (Smeekens 2000; Finkelstein
and Gibson 2002; León and Sheen 2003).

12.4.3.6 Jasmonic Acid
The plant hormone jasmonic acid (JA) is crucial
for stress responses in plants, but its role in fruit
development and ripening is becoming increas-
ingly clear. In non-climacteric fruits such as
grape, the jasmonate levels are high at early
developmental stages, decreasing to lower values
at the onset of ripening (Kondo and Fukuda
2001; Fortes et al. 2011, 2015). Conjugation of
JA to isoleucine (JA-Ile) is a critical step in the
JA signaling pathway since only JA-Ile is rec-
ognized by the jasmonate receptor. The conju-
gation reaction is catalyzed by JA-amido
synthetases, belonging to the family of GH3
proteins. Böttcher et al. (2015) report that the
transcriptional profiles of two grapevine GH3
genes, VviGH3-7 and VviGH3-9, support a pri-
mary role for JA signaling in fruit set and cell
division, but do not justify JA’s involvement in
the ripening process.

Methyl jasmonate (MeJA) also plays an
important role in signal transduction processes
that regulate the synthesis of secondary metabo-
lites (Pauwels et al. 2009); grapevine plants and
cell cultures respond to MeJA with an increase in
aroma compounds or stilbene levels (D’Onofrio
et al. 2009; Almagro et al. 2014; D’Onofrio et al.
2018; Portu et al. 2018). The gene coding for
S-adenosyl-L-methionine:jasmonic acid carboxyl
methyltransferase (JMT), putatively involved in
volatile methyl jasmonate synthesis, was
down-regulated in ripe fruits of three grape
varieties. On the other hand, the gene coding for
the jasmonate ZIM domain (JAZ) containing
protein 8, a repressor of jasmonic acid signaling,
has been identified as a putative positive marker
of ripening (Agudelo-Romero et al. 2013).
Treatments with MeJA increase the transcription
levels of several ripening-related genes, such as
color-related genes (i.e., VviPAL1, VviDFR,
VviCHI, VviF3H, VviGST, VviCHS, and
VviUFGT), softening-related genes (i.e., VviPG,
VviPL, VviPE, VviCell, VviEG1, and VviXTH1),
and aroma-related genes (i.e.,VviEcar, VviQR,
and VviEGS). Moreover, jasmonic acid positively
regulated its biosynthesis pathway genes such as
lipoxygenase (LOX), allene oxide synthase
(AOS), 12-oxophytodienoate reductase (OPR),
and signal pathway genes such as VviCOI1 and
VviJMT. In addition, the overexpression of grape
jasmonic acid receptor VviCOI1 in strawberry
fruit accelerated the fruit ripening process (Jia
et al. 2016).

12.5 Molecular Regulators of Fruit
Ripening

Transcription factors (TFs) regulate the spatial
and temporal expression of genes by specific
binding to cis-regulatory elements (CREs or
“motifs”) present in the promoter region of
genes. In plants, as many as 58 TF families have
been described (Jin et al. 2016), of which many
play essential roles in biological processes,
including fleshy fruit development, ripening, and
regulation of fruit quality/composition (Karlova
et al. 2014). A plethora of TFs involved in
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ripening have been discovered using tomato, a
climacteric fruit species, as the model species for
understanding fruit ripening. For example, the
MADS-box (e.g., RIPENING-INHIBITOR,
RIN; FRUITFULL, FUL1 and FUL2), SBP
(e.g., COLORLESS NON-RIPENING, CNR;
TOMATO AGAMOUS-LIKE1, TAGL1), NAC
(e.g., NON-RIPENING, NOR; NAC4), HD-Zip
homeobox (HB1), and AP2/ERF (e.g., APETA-
LA2a) TFs are among the many widely known
regulators of ripening. Moreover, TFs involved
in hormone response and signaling such as
AP2/ERFs (e.g., ERF1, ERF6) and ARF (e.g.,
ARF2) are also implicated in fruit ripening and
participate in the regulation of ripening-
associated phenotypic traits such as flavonoid/
anthocyanin biosynthesis, sugar accumulation,
and softening.

While much is known about the regulation of
climacteric fruit ripening, our understanding of
the TFs involved in ripening remains limited for
non-climacteric fruit. The roles of some TFs
involved in tomato development and ripening
have been elucidated also in grapevine. For
example, the MADS-box TF SEPALLATA
(VviSEP4) may fulfil similar functions to RIN in
grapes, as revealed by its ability to partially
complement the non-ripening phenotype of RIN
mutants (Mellway and Lund 2013).

A grapevine bZIP TF, namely,
ABSCISIC ACID RESPONSE ELEMENT-
BINDING FACTOR2 (VviABF2), was shown
to play a direct role in the ABA-dependent berry
ripening processes (Nicolas et al. 2014). Regu-
latory networks encompassing ABA responses
were either enhanced and/or altered by
VviABF2, which led to enhanced sensitivity to
ABA. In addition, the role of VviABF2 in the
regulation of ripening-associated processes such
as the biosynthesis of phenolic metabolites was
also demonstrated in tomato and grapevine. The
lack of MADS-box TF participation together
with the enrichment of TFs (i.e., bZIP, AP2/ERF,
R2R3-MYB, and NAC) in the ABA signaling
network during berry ripening (Pilati et al. 2017)
suggest that grapevine MADS-box TFs do not
play a key role in overall ripening regulation in
grapevine. This is also supported by a strong

enrichment of cis-regulatory motifs bound by
bZIP and NAC TFs and the lack of MADS-box
TF motifs in the promoters of ABA-modulated
genes in the berry (Pilati et al. 2017). Nonethe-
less, other TFs such as VviERF045 (AP2/ERF)
(Leida et al. 2016) and VviCEB1 (bHLH)
(Nicolas et al. 2013) have been implicated in the
control of ripening. For example, genes involved
in wax metabolism, cell expansion, defense, and
phenylpropanoid/flavonoid metabolism are
potential targets of VviERF045, while VviCEB1
may stimulate cell expansion through the acti-
vation of auxin metabolism, auxin signaling, and
multiple cell expansion related genes.

Beyond these few cases, the function of the
vast majority of TFs remains to be elucidated. To
facilitate the discovery of fruit-associated TF
functions, adoption of multi-omics approaches
(i.e., transcriptome, metabolome), the application
of network-based approaches to analyze the
omics data, and subsequent network integration
across different domains could be particularly
useful (reviewed in Wong and Matus 2017). For
example, gene co-expression network analysis of
a large accession of berry cultivars during fruit
development and ripening has been performed to
identify putative regulators of berry develop-
mental and ripening (Palumbo et al. 2014; Mas-
sonnet et al. 2017). Not surprisingly, many of
these putative genes encode TFs that belong to
AP2/ERF, MYB, NAC, and WRKY families.
Independent studies were also able to link several
of these ripening-related TFs to their potential
roles during berry ripening using gene-metabolite
co-response networks (Savoi et al. 2017). For
example, VviERF1 and VviNAC33, two com-
mon berry TFs (Massonnet et al. 2017), are
potentially related to the regulation of proline
biosynthesis in the berry, given their strong
coordinated regulation with pyrroline-5-
carboxylate synthase (P5CS), the gene encoding
enzyme involved in proline biosynthesis, and
with proline content in the berry. Similarly,
NACs such as VviNAC13 and VviNAC33 are
potentially new candidate regulators for antho-
cyanin compounds that exhibit tight association
with several anthocyanin biosynthetic gene and
metabolite profiles (Savoi et al. 2017).
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Such approaches can also be used to infer the
regulatory candidates involved in the regulation
of fruit-associated volatiles (e.g., terpenes), one
of the least understood components of berry
ripening. For example, Savoi et al. (2016) high-
lighted one promising regulatory candidate
(VviMYB24) for monoterpene biosynthesis,
given its strong gene-metabolite co-response
profile with several TPS and monoterpene (e.g.,
linalool, nerol, a-terpineol) abundance in the fruit
during ripening and under an abiotic stress such
as drought (Fig. 12.3).

Notwithstanding the crucial roles fulfilled by
various TFs during ripening, new evidence sup-
porting the involvement of regulatory
non-coding RNA classes, especially micro RNA
(miRNA) and long non-coding RNA (lncRNA),
in the regulation of fruit ripening and composi-
tion have been described. Although it is possible
to infer the function of miRNAs in fruits through
comprehensive miRNA expression profiling
during development and ripening and performing

in silico target prediction analysis (Gao et al.
2015; Xin et al. 2015; Zeng et al. 2015; Belli
Kullan et al. 2015), the first and only study to
date demonstrating a direct role for miRNAs in
overall ripening regulation and fruit softening
investigated the tomato miR157 and miRNA156
(Chen et al. 2015). Tomato miR156 impacts fruit
softening especially at the late stages of ripening
but contributes little to overall ripening regula-
tion (Chen et al. 2015). Interestingly, miR156
sequences are highly conserved in plants,
including grapevine (Belli Kullan et al. 2015).
Like its tomato counterpart, grapevine miR156
also exhibits ripening-associated expression, and
it has been postulated to induce ripening via the
regulation of multiple SPL (Squamosa Promoter
binding Like protein) and anthocyanin pathway
genes (Belli Kullan et al. 2015).

Compared to miRNAs, lncRNAs are an
emerging class of RNA species that are opera-
tionally defined as non-coding transcripts, greater
than 200nt in length. The advent of sequencing
technologies has led to the discovery of thou-
sands of lncRNAs in both model (Liu et al. 2015)
and non-model fruit crops such as tomato (Wang
et al. 2018), grapevine (Vitulo et al. 2014; Harris
et al. 2017), kiwi (Tang et al. 2016), and sea
buckthorn (Zhang et al. 2018); however, for the
vast majority of these crops, the functions of
lncRNAs remain unknown. Only a small fraction
of these have been validated experimentally (Liu
et al. 2015). lncRNAs are known to possess tis-
sue- and developmental stage-specific expression
in plants and these properties also manifests in
the fruit (Tang et al. 2016; Zhang et al. 2018;
Wang et al. 2018). Only recently their role in the
regulation of fruit ripening and composition was
confirmed. For example, using a combination of
lncRNA-miRNA-mRNA network and functional
analysis, LNC1 and LNC2 were shown to be
negative and positive regulators, respectively, of
anthocyanin in sea buckhorn fruits.

While novel lncRNAs continue to be discov-
ered in grapevines (Vitulo et al. 2014; Harris
et al. 2017), very little work has been done to
profile their expression during ripening and/or to
infer their potential regulatory role in the fruit. To
date, this was done only to understand the

Fig. 12.3 Predicted gene-metabolite networks related to
nerol (A), a-terpineol (B), and linalool (C) accumulation in
grape berries during development. Genes and metabolites
are represented by circle and square nodes, respectively.
Edges represent associations (P < 0.001) between tran-
scripts andmetabolites. Node borders in red represent genes
that are modulated (differentially expressed, DE) under
drought. Purple and green nodes identify terpene synthase
genes and transcription factors, respectively. The network
was re-designed from Savoi et al. (2016)
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complex regulation of phenylpropanoid and
flavonoid biosynthesis in the grape berry
(Wong and Matus 2017). Using integrated
lncRNA-miRNA-mRNA network analysis (as in
Zhang et al. 2018), several lncRNAs identified
showed strong co-regulated expression and
co-location with key structural pathway genes.
Notable examples include one lncRNA
(VIT_210s0042n00100) that is situated within
close proximity of nine VviSTSs. The expression
pattern of the lncRNA closely mirrored the
ripening-associated expression of the nine
VviSTSs. Similarly, one predicted lncRNA
(VIT_203s0180n00020) was co-located and
closely mirrored the expression of VviGT2, a
gene potentially involved in the production of
hydroxycinnamic esters and proanthocyanidins
galloylation (Khater et al. 2012). Such initiatives
have provided a glimpse into the potential
large-scale regulatory function of lncRNAs on
the regulation of fruit composition during
development and ripening.

12.6 Conclusion

Taken together, all these studies and information
indicate the complex feedback and multifaceted
regulation of grape berry ripening. The long-
standing interest in grapevine production has led to
a good knowledge in this field, but a large number
of research questions, many of which have crucial
practical implications, still need to be answered.
New insights about the control of berry metabo-
lism and ripening will be gained by clearly
assigning functions to key regulators of these
processes. This is challenging and will require
innovative functional genomic approaches; in this
regard, new-generation sequencing and emerging
genome editing technologies, currently being
developed for grapevine, could provide important
contributions to our understanding.
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Abstract
A major goal of viticulture is to exert control
over ripening and produce fruit of repro-
ducible yield and quality. This implies devel-
oping effective viticultural practices, breeding
cultivars with improved characteristics, and
requires considering the numerous variables
that can influence development and ripening,
like cultivar-specific traits, regional climate,
and stresses. Molecular tools aid these efforts.
Among them, transcriptome measurements
that capture expression across the genome
allow monitoring which genomic features are
transcribed given the aforementioned vari-
ables. The technologies used to study the

transcriptome have rapidly improved and
become less expensive since the early 2000s,
increasing the feasibility of developing molec-
ular marker-driven practices. This chapter
briefly reviews the history and state of tran-
scriptomic technologies since they have been
applied to grapevine, reviews the seminal
publications that have used these tools, and
proposes a direction for this field in the future.

13.1 Introduction

Grapevine is one of the most extensively grown
fruit crops worldwide (http://www.fao.org/).
Grapes are predominantly used for winemaking
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(56%; http://www.oiv.int/), though are also con-
sumed fresh, pressed for juice, dried into raisins,
and distilled into spirits. Wine grapes are com-
monly evaluated by measuring fruits’ sugars,
organic acids, pigments, tannins, and metabolites
associated with aroma potential (Bisson 2001;
Cozzolino and Dambergs 2010). What is consid-
ered optimal fruit quality varies with their purpose
and the market’s preferences (Poni et al. 2018). To
achieve desired fruit composition, viticultural
practices thought to change the balance between
vegetative (photosynthetic organs) and reproduc-
tive (fruit) growth like shoot and cluster thinning,
diverse rootstock–scion pairings, and planting
cover-crops are used (Jackson and Lombard 1993;
Matthews and Nuzzo 2007; Vaillant-Gaveau et al.
2014; Poni and Gatti 2017).

Complicating these efforts, however, are the
numerous environmental factors that impact the
fruit (van Leeuwen et al. 2004; Dai et al. 2011).
In pursuit of an optimal product, grape growers
contend with diverse abiotic and biotic stresses
and the regional environmental conditions
sometimes described as terroir. These variables
influence how regions distinguish themselves
and which cultivars they grow (van Leeuwen and
Seguin 2006; Renouf et al. 2010; Jones et al.
2012; Anderson and Aryal 2013). Stresses like
drought and disease can have devastating effects
by reducing fruit quality and causing major crop
losses (Madden and Wheelis 2003; Mittler 2006;
Oerke 2006; Alston et al. 2013; Bock et al. 2013;
Fuller et al. 2014; Suzuki et al. 2014). For grape,
as in other crops, mitigating or circumventing
these pressures involves developing management
practices to deploy in the vineyard and devel-
oping varieties with superior traits (Duchêne
et al. 2010; Østergård et al. 2009; Viers et al.
2013; Poni et al. 2018). Both strategies might be
expedited with a deep understanding of the
grapevine genome that whole-genome expres-
sion (transcriptome) studies provide.

Transcriptomic studies describe the genome-
wide expression and co-expression dynamics
during developmental processes, in response to

treatments, and how these processes vary
between samples (Wang et al. 2009; Lowe et al.
2017). This helps identify the metabolic and
signaling pathways involved in these responses.
The technology can also be used to improve the
annotation of reference genomes by resolving
full-length, individual transcripts and make it
possible to know which gene isoforms are con-
textually relevant (Abdel-Ghany et al. 2016;
Wang et al. 2016; Minio et al. 2019). Impor-
tantly, expression studies can aid the identifica-
tion of markers for breeding and for adopting
practices based on expression markers (Gramazio
et al. 2016; Pandey et al. 2016; Xu et al. 2018).
Finally, the biochemical uniformity of tran-
scripts’ composition makes their collective
measurement relatively simpler than measuring
the metabolome or proteome and yields func-
tional information that cannot be known from the
genome sequence alone.

The methods used for measuring the tran-
scriptome have changed and improved repeat-
edly over the last decades. Early transcriptome
studies used Sanger sequencing or a gel-based
profiling method to characterize gene expression
differences (Vuylsteke et al. 2007; Lowe et al.
2017). Then, the availability of hybridization-
based arrays and the publication of the grape
genome led to an expansion of grapevine tran-
scriptome research (Jaillon et al. 2007; Velasco
et al. 2007). Without the requirement of prede-
fined, transcript-specific probes, RNA sequenc-
ing (RNA-seq) and isoform sequencing (Iso-Seq)
are now commonly used to measure expression
with higher sensitivity than earlier technologies
and to annotate novel transcripts (Xu et al. 2013;
Zhao et al. 2014; Minio et al. 2019).

In this chapter, we review how transcriptomic
technologies have been applied historically to
studying grapevine and discuss the seminal
publications about the grapevine transcriptome,
specifically those concerned with the impact of
source-sink management, rootstocks, terroir,
drought stress, and pathogens on fruit develop-
ment and ripening.
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13.2 History and Current State
of Grapevine Transcriptomics

The first large-scale studies of gene expression
in Vitis vinifera were performed using low-
throughput Sanger sequencing of expressed
sequence tags (ESTs), i.e., short transcript
sequences generated from randomly selected
complementary DNA (cDNA) clones (Parkinson
and Blaxter 2009). The EST-based method was
used to determine the transcript composition of
multiple grapevine organs, including the grape
berry, at different developmental stages (Ablett
et al. 2000; Terrier et al. 2001; Moser et al. 2005).
This costly approach generated a limited number
of ESTs per sample, ranging from 100 to 2,279
sequences. Grape berry ripening was also studied
using gel-based amplified fragment length poly-
morphism, another large-scale approach that does
not rely on sequencing information (cDNA-
AFLP; Venter et al. 2001; Burger and Botha
2004). Both approaches revealed differences in
transcript content across grape organs and berry
development, consistent with what was observed
by Davies and Robinson (2000) in a study of
berry transcripts that used a differential screening
method to monitor 17 grape ripening-induced
(“Grip”) cDNAs.

The first high-throughput gene expression
profiling analyses became possible with the
emergence of the DNA arrays. The first
hybridization-based gene expression profiling
analyses on grape berry development were per-
formed using cDNA-based arrays (Terrier et al.
2005; Waters et al. 2005). Then, the concomitant
increase of publicly available DNA sequence
information and rapid technological progress led
to the first commercial high-density oligonu-
cleotide array for grapevine in 2004. This array
could monitor the expression of up to 14,000
Vitis vinifera transcripts and 1,700 transcripts
from other Vitis species (Affymetrix GeneChip®

Vitis vinifera Genome Array). This array was
used to study tissue-specific gene expression
(Grimplet et al. 2007), gene expression during
the development of Cabernet Sauvignon and
Pinot Noir berries (Deluc et al. 2007; Pilati et al.
2007), and the effects of heat, water, and other

environmental stresses on berry ripening (Deluc
et al. 2009; Mori et al. 2007).

The release of the first complete grapevine
genome sequence in 2007 (Jaillon et al. 2007;
Velasco et al. 2007) led to the creation of
microarray platforms that qualitatively monitor
grapevine transcripts. These included the Com-
biMatrix GrapeArray 1.2 array and the Nim-
bleGen 12 � 135 K array which was developed
using the 12X genome assembly and V1 gene
prediction (Forcato 2010; Pastore et al. 2011).
The NimbleGen array included 12 sub-arrays
containing 135,000 60-mer oligonucleotide
probes; each sub-array could detect the expres-
sion of 29,549 grapevine transcripts. This array
was used to build a tissue and developmental
stage-specific transcriptome atlas for the grape-
vine cultivar Corvina (Fasoli et al. 2012). This
study revealed a deep transcriptome shift driving
maturation.

Next-generation sequencing methods like
RNA sequencing (RNA-seq) generate short reads
of cDNA sequences that can be absolutely
quantified when aligned to reference sequences
and counted (Mortazavi et al. 2008). The advent
of this technology was very useful for studying
grapevine. The first application of RNA-seq to
grapevine research was a 2010 study of Corvina
berries at three stages of development (Zenoni
et al. 2010). Approximately, 59 million single-
ended reads between 36 and 44 base pairs
(bp) long were generated and aligned to the
PN40024 reference genome (Jaillon et al. 2007)
and 17,324 transcripts with diverse expression
levels and patterns were captured. The study
reported substantial transcriptional complexity
during berry development. Many studies since
have used RNA-seq to show genome-wide tran-
scriptional dynamics during grape berry ripening,
identifying important genes involved in the reg-
ulation of berry development (Massonnet et al.
2017a; see Chap. 14), characterizing cultivar-
specific and phenotype-associated gene expres-
sion patterns (Da Silva et al. 2013), and evalu-
ating the transcriptional responses of different
grape organs to biotic stress as well as profil-
ing grapevine pathogen transcriptomes during
infection (Amrine et al. 2015; Blanco-Ulate et al.
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2015, 2017; Massonnet et al. 2017b; Brilli et al.
2018; Massonnet et al. 2018; Morales-Cruz et al.
2018). In addition to these applications, RNA-
seq was used to detect novel and cultivar-specific
transcripts, expressed single nucleotide poly-
morphisms, and splicing variants (Zenoni et al.
2010; Da Silva et al. 2013; Venturini et al. 2013;
Amrine et al. 2015; Gambino et al. 2017; Minio
et al. 2019).

Further technological advancements made
full-length cDNA sequencing in long reads pos-
sible; the Iso-Seq method developed by Pacific
Biosciences provides accurate information about
alternative transcripts. This data has helped
improve genome annotations and gene discovery
(Clavijo et al. 2017; Li et al. 2017a, b; Minio
et al. 2019). It has also been used to identify
alternative transcripts that participate in various
biological processes and stress responses (Cheng
et al. 2017; Kim et al. 2017; Li et al. 2017a, b;
Zhu et al. 2017; Minio et al. 2019). Importantly,
full-length cDNA sequencing removes the
necessity of a reference genome and has the
potential to unlock information about cultivar-
specific traits, plant defense, and plant develop-
ment yet unseen.

13.3 Impact of the Viticultural
Practices on the Berry
Transcriptome

13.3.1 Source-Sink Management

Achieving high yield and quality is the most
important objective in viticulture. Crop yield is
often referred to as the amount of ripened fruit
produced by a vine or vineyard and fruit quality
is related to its composition, which includes
sugars, acids, polyphenolics, and other metabo-
lites. Maximizing crop yield without reducing
grape quality requires optimally balancing the
vine’s vegetative and reproductive growth or its
“source to sink” ratio. This balance can be
assessed by measuring crop load, which is crop
size (yield per vine or per unit of land area)
relative to vine size (assessed as dormant pruning
weight or leaf area). In general, a leaf area of 10–

15 cm2 is required to fully ripen 1 g of fruit and
this normally results in a yield to pruning weight
ratio between 5 and 10 (Kliewer and Dokoozlian
2005). If crop load is lower than this, the vine is
considered undercropped or sink limited and will
tend to divert more resources toward vegetative
growth to the detriment of fruit quality (Kliewer
and Dokoozlian 2005). Conversely, with insuf-
ficient leaf area, the vine may be unable to sup-
port ripening and is considered overcropped or
source limited (Kliewer and Dokoozlian 2005).
When crop size and vegetative growth are opti-
mally balanced, grapevines produce a greater
yield of high-quality fruit (Kliewer and Dokoo-
zlian 2005). Many cultural practices are used to
achieve vine balance, including defoliation and
cluster thinning. The impact of these practices on
the berry transcriptome has been studied and will
be discussed in this section.

Defoliation involves selectively removing
leaves around grape clusters. This practice redu-
ces the leaf photosynthetic area and increases air
circulation and the exposure of clusters to sun-
light (Poni et al. 2006). Leaves can be removed at
any time between pre-bloom and berry véraison
with different consequences (Hunter et al. 1991).
Pre-bloom defoliation causes a slight increase in
sugar and anthocyanin levels in Sangiovese ber-
ries and defoliation at véraison can reduce
anthocyanin concentration and increase the inci-
dence of sun damage (Pastore et al. 2013). In
order to determine the molecular mechanisms
underlying those changes in berry composition,
Pastore et al. (2013) did a transcriptomic analysis
during berry ripening using a genome-wide
microarray. Defoliated vines were transcription-
ally different than control vines; their ripening
programs were relatively delayed and photosyn-
thetic genes were shut down relatively later than
control vines. The timing of defoliation also
caused disparate transcriptional effects. Structural
and regulatory genes controlling anthocyanin
biosynthesis were differentially expressed and
accompanied differences in anthocyanins
between the treatments. More recently, Zenoni
et al. (2017) compared the agronomic and
molecular berry responses to pre-bloom defolia-
tion in Sangiovese and three other Italian cultivars
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grown in different regions to identify molecular
markers of early defoliation treatment indepen-
dent of genotype and environment. The study
used the NimbleGen 12 � 135 K microarray to
evaluate the significance of the interaction
between location and early defoliation on San-
giovese berry development. One hundred and
twenty-five putative molecular markers associ-
ated specifically with pre-flowering defoliation

were identified. Three candidates were validated
across all genotypes using real-time qPCR
(Fig. 13.1). These included a flavonol synthase
gene, a jasmonate O-methyltransferase gene, and
the gene encoding the ABA receptor PYL4.

Cluster thinning is another method of pursuing
vine balance (Kliewer and Dokoozlian 2005;
Dokoozlian 2009). This practice affects berry
ripening rate (Dokoozlian and Hirschfelt 1995;

Fig. 13.1 Identification of molecular markers of pre-
flowering defoliation (PFD) treatment in different geno-
types and environments (Zenoni et al. 2017). a Schematic
representation of the sampling design used. b Real-time
qPCR analysis of PFD treatment common molecular
markers in 2013. Real-time qPCR analysis of the
genes encoding flavonol synthase (VIT_18s0001g03470)
at Stage 1, jasmonate O-methyltransferase
(VIT_18s0001g12890) at Stages 2 and 3 and abscisic
acid receptor PYL4 (VIT_08s0058g00470) at Stage 4 of

berry development from PFD and control (C) vines of
Sangiovese at Bologna (SG-BO) and Ancona (SG-AN)
sites, Nero d’Avola, (ND), Ortrugo (OR) and Ciliegiolo
(CI). The mean normalized expression (MNE)-value was
calculated for each sample referred to VvUBIQUITIN1
(VIT_16s0098g01190). Bars represent means ± SE of
three biological replicates. All genes in all genotypes
resulted significantly modulated (t-test; P-value < 0.05)
between C and PFD berries. Source Zenoni et al. (2017)
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Palliotti and Cartechini 2000; Guidoni et al. 2002,
2008). The impact of cluster thinning on the berry
transcriptome during ripening was first shown in
Sangiovese, where it also caused an increase in
berry sugars and anthocyanins (Pastore et al.
2011). Modifying the source:sink ratio via cluster
thinning affects genes associated with carbohy-
drate metabolism and synthesis and transport
of secondary products. Flavonoid and anthocyanin
biosynthesis pathway genes, including a dihy-
droflavonol reductase (DFR), VviMYBA1, and
three flavonoid glucosyltransferases, as well as
anthocyanin-related transporters (e.g., the
glutathione-S-transferase VviGST4), were
up-regulated in berries from cluster-thinned vines
and reflect the increase in anthocyanins observed.
Non-anthocyanin, flavonoid-related genes, like a
flavanone 3-hydroxylase (F3H), leucoantho-
cyanidin dioxygenase (LDOX), and the leucoan-
thocyanidin reductase VviLAR1, were down-
regulated in berries from cluster-thinned plants.

The impact of crop load on the transcriptome
and metabolome was recently studied in Pinot
noir using RNA-seq (Fasoli et al. 2018a). Pinot
noir grapevines at three crop load levels achieved
via cluster thinning (overcropped, undercropped,
and balanced) were compared throughout berry
development in three consecutive vintages. The
data generated from weekly sampling showed
that crop load manipulation affects genes that
may trigger ripening (Fasoli et al. 2018b). Genes
involved in softening and other crucial compo-
nents of ripening initiation responded to crop
load changes. Differential expression of these
genes likely influenced the whole ripening phase.
Consistent with earlier reports, anthocyanins
biosynthesis was higher at lower crop loads. This
coincided with the up-regulation of a key enzyme
in the anthocyanin biosynthetic pathway during
maturation, UDP glucose:flavonoid-3-O-gluco-
syltransferase (VviUFGT) (Fig. 13.2).

These studies support that grape metabolism
and the berry transcriptome are remarkably
flexible, with treatments inducing extensive,
genome-wide changes in expression during
development. Their results support the potential
of modifying source:sink ratios as means of
optimizing grape yield and quality. Moreover, if

the molecular basis of both variables is better
understood, more precise vineyard management
regimens can be developed and practiced.

13.3.2 Rootstock Selection

Grafting valuable grape varieties on tolerant
rootstocks is a common practice in modern viti-
culture. More than 80% of the vineyards world-
wide use grafted plants made with a V. vinifera
scion grafted onto a rootstock of single American
Vitis species or interspecific hybrids of Vitis
species that combine multiple desirable traits,
like V. riparia, V. berlandieri, V. rupestris, and
V. vinifera (Ollat et al. 2016; see Chaps. 2 and 16
). This practice was first adopted in Europe in the
late nineteenth century because of the Phylloxera
epidemic. Then, the replacement of the entire
root system of vinifera varieties with non-vini-
fera species gradually became a general practice
as a biological control strategy against the soil-
borne pest. In addition to conferring resistance to
various root pathogens, rootstocks can provide

Fig. 13.2 Expression profile of VviUFGT (VIT_
16s0039g02230) by crop load level (Fasoli et al.
2018a). Line graphs were created using data from three
vintages plotted by days after véraison. Gray shading
indicates 0.95 confidence level relative to the smoothed
conditional means plotting method. RPKM: reads per
kilobase of transcript per million mapped reads
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adaptation to abiotic factors including drought
(Gambetta et al. 2012; Marguerit et al. 2012;
Corso et al. 2015) and salinity (Fisarakis et al.
2001; Meggio et al. 2014), as well as benefits to
the scion, such as regulating vine vigor and fruit
quality (Walker et al. 2002, 2004; Gregory et al.
2013). Rootstocks can also differentially impact
the ripening rate, likely by influencing the
abundance of auxin and the expression of
auxin-related genes (Corso et al. 2016).

Combining multiple favorable traits in elite
rootstocks is the focus of breeding programs
worldwide. Though marker-assisted selection
accelerated the development of improved geno-
types, our understanding of the molecular
mechanisms underlying rootstock traits is still
limited. Few studies focused on the transcrip-
tomic behaviors of rootstocks in response to
abiotic stress. Corso et al. (2015) used a com-
parative transcriptomic approach to characterize
the biological processes affected by water deficit
in root and leaf tissues of two rootstock geno-
types with contrasting hydraulic behavior. The
RNA-seq study revealed that stilbene- and
flavonoid-related genes were higher expressed
in roots and leaves, respectively, of the
drought-tolerant rootstock during stress. Authors
speculated that the induction of phenolic
biosynthesis helps drought-tolerant rootstocks
cope with oxidative stress associated with water
deficit. The response of the grape berry tran-
scriptome to water deficit can also be influenced
by the rootstock used. For instance, expression of
genes associated with jasmonic acid biosynthesis
and secondary metabolism was found induced
(and/or less repressed) by water limitation in
Pinot noir berries from vines grafted on
the drought-sensitive rootstock 125AA com-
pared to the drought-tolerant one 110R (Berdeja
et al. 2015).

Along with water uptake, rootstock genotype
can also affect scion growth by its ability to cope
with nutrient-limited conditions. Transcriptomics
has been used to better understand nitrogen
metabolism and iron deficiency tolerance
(Cochetel et al. 2017; Vannozzi et al. 2017). In
their study, Cochetel et al. (2017) investigated
the transcriptomic responses to changes in nitrate

availability in two rootstocks, V. riparia cv.
Riparia Gloire de Montpellier and the hybrid
1103P; these rootstocks are known to have dis-
parate effects on scion growth. Comparative
transcriptomic analysis of root samples showed
that the two rootstocks responded in a
genotype-dependent manner to heterogeneous
nitrogen availability. Interestingly, the transcrip-
tomic response was more pronounced in the
rootstock conferring lower scion vigor (Riparia
Gloire de Montpellier). This suggested that the
ability of a rootstock to uptake and assimilate
nitrogen influenced scion vigor. Rootstock
responses to iron deficiency were also studied at
the transcriptomic level (Vannozzi et al. 2017).
RNA-seq analysis of root apices of the hybrid
101.14 (V. riparia � V. rupestris), a commonly
used grapevine rootstock susceptible to iron
chlorosis, showed that many ortholog genes of
the Arabidopsis “ferrome” were differentially
expressed in roots of iron-deprived plants versus
non-stressed plants. Comparison between the
rootstocks 101.14 and M1, another rootstock
genotype with high tolerance to iron deficiency,
showed a correlation between the expression of
two genes, encoding a plasma membrane H+-
ATPase (AHA2) and an iron deficiency-inducible
ferric chelate reductase (FRO2), and the mani-
festation of leaf chlorosis symptoms.

Our understanding of the molecular basis of
graft compatibility, a critical factor determining
the success of the union between rootstock and
scion, is also still limited (Pina and Errea 2005;
Lider et al. 1978; Fallot et al. 1979; Todić et al.
2005). Successful grafting is a complex process,
requiring the adhesion of the two individuals,
followed by a callus formation, and finally the
establishment of a functional vascular system
between the two grafting partners (Milien et al.
2012). In order to dissect the transcriptomic
dynamics occurring at the rootstock–scion inter-
face during grafting process, Cookson et al.
(2013, 2014) studied the transcriptional changes
induced at the rootstock–scion union site in both
homo- and hetero-grafted plants using the Nim-
bleGen 12 � 135 K microarray. Self-grafting
(Cabernet Sauvignon onto Cabernet Sauvignon)
led to the differential expression of many genes
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involved in secondary metabolism, wounding
response (e.g., chitinases, peroxidases, germin-
like proteins, and transcription factors), hormone
signaling (jasmonate-related genes), and callus
maintenance (LATERAL ORGAN BOUND-
ARIES DOMAIN (LBD) proteins) during graft
union formation (Cookson et al. 2013). In con-
trast, grafting Cabernet Sauvignon onto two dif-
ferent rootstocks (Cookson et al. 2014) revealed
that grafting with non-self rootstocks triggers the
up-regulation of genes associated with plant
stress responses at the graft interface, including
genes involved in oxidative and biotic stress
responses like pathogenesis-related (PR) pro-
teins. Those results suggested that cells at the
graft interface are capable of detecting the pres-
ence of the non-self-grafting partner and induce
an immune-type response.

13.4 Effect of the Environment
on Genome-Wide
Transcriptional Dynamics
During Berry Ripening

13.4.1 Impact of the “Terroir”: The
Berry Transcriptomic
Plasticity

In viticulture and enology, the environmental
factors that characterize a specific vineyard and
impact grape and wine composition are referred
to as “terroir”. A first definition of this term was
initially given by Seguin (1988), classifying ter-
roir as an interactive ecosystem in a given place
including climate, soil, and the vine. In a
non-scientific context, the term terroir grew to
include the impact of human intervention and
gave rise to another term, typicity, which
describes the specific qualitative properties of
wines (van Leeuwen et al. 2004). Wine typicity
arises from the extensive phenotypic plasticity of
grapes. Plasticity refers to the ability of a single
genotype to produce a range of phenotypes as a
function of its environment (Bradshaw et al.
1965). Grapevines are characterized by consid-
erable phenotypic plasticity, with the same clone
showing variability within individual berries,

among berries within a cluster, between clusters
on a vine, and among vines in the vineyard (Dai
et al. 2011). A widely accepted notion in viti-
culture is that different cultivated genotypes
(cultivars) uniquely interact with a given envi-
ronment (van Leeuwen et al. 2004). When phe-
notypic plasticity differs between genotypes, it is
attributed to a “Genotype x Environment”
(GxE) interaction (Saltz et al. 2018). Despite the
scientific and commercial importance of geno-
type interactions with growing conditions, few
studies have characterized the molecular basis of
phenotypic plasticity.

The transcriptional plasticity of Corvina in
different environments and in different vintages
was characterized using a microarray (Dal Santo
et al. 2013). The Corvina berry transcriptome is
highly sensitive to growing conditions. Most of
the berry transcriptome clustered according to the
year of growth rather than common environ-
mental or viticultural practices, highlighting the
significant impact of climate conditions on berry
ripening and fruit composition (van Leeuwen
et al. 2004). Transcripts related to secondary
metabolism, especially those involved in
phenylpropanoid metabolism, were significantly
repressed during a vintage with unfavorable cli-
mate. These results were supported by metabo-
lomic data that confirmed the extreme sensitivity
of grapes to their environment and adverse cli-
mate conditions. Considering fruit from 11 dif-
ferent vineyards in a single year, environmentally
sensitive genes were approximately 18% of
genes modulated during berry development.
Gene ontology categories including “DNA/RNA
metabolic process”, “transcription factor activ-
ity”, “transport”, and “secondary metabolism”
were enriched among plastic genes. Together,
these results implied that GxE effects may have
consequences for berry development, ripening,
and wine quality.

A study of the metabolomic and transcrip-
tomic basis of the broad phenotypic plasticity of
Garganega, a white cultivar, was studied at four
locations with different pedoclimates (Dal Santo
et al. 2016). The study revealed many environ-
mentally modulated genes. Moreover, transcripts
commonly modulated during berry development
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showed extensive expression plasticity, indicated
by different coefficients of variation between the
four ripening stages. Plasticity in the expression
of core metabolism prompted the authors to
compare Garganega (white berry cultivar) and
Corvina (red berry cultivar) transcriptomes, and
more specifically, to compare the gene expres-
sion and metabolite accumulation in the context
of the phenylpropanoid/flavonoid pathway. The
levels of transcripts and metabolites varied by
vineyard for Garganega berries, whereas Corvina
samples were similar at all four sites, suggesting
that the white cultivar was more flexible during
ripening and given different environments than
the red cultivar.

Another GxE study in grapevine compared
berry development in two cultivars (Sangiovese
and Cabernet Sauvignon) grown in three different
environments over two consecutive years (Dal
Santo et al. 2018). Sangiovese, a typical central
Italian cultivar, differently modulated almost
twofold more genes across the three locations
than Cabernet Sauvignon. The lower transcrip-
tomic plasticity of Cabernet Sauvignon, with its
relatively invariable response to its environment,
could have contributed to the widespread culti-
vation of the variety. Gene functions related to
photosynthesis, the generation of energy, and
central carbohydrate metabolism were overrep-
resented among developmental stage-specific
genes unaffected by genotype or environment.
Biotic stress genes were enriched among
cultivar-specific genes unaffected by the envi-
ronment. Importantly, vintage and location vari-
ables interacted to influence the berry
transcriptome. The area of cultivation alone
contributed less to variation in berry gene
expression during ripening than other variables,
though was associated with variably expressed
secondary metabolism genes. GxE-specific gene
expression was also enriched with secondary
metabolism-related genes involved in the
phenylpropanoid and anthocyanin biosynthetic
pathways, lignin biosynthesis, and volatile
metabolite production. These data suggest that
location plays an important role in determining
the performance of different varieties and could

mediate the abundance of metabolites related to
wine aroma, structure, and color.

A climate changing over time will alter the
terroir of major wine-producing regions and
could disrupt the conventional notion of terroir
entirely (White et al. 2009). Studies that explore
the link between terroir and the transcriptome
during berry development and ripening will help
broaden our understanding of terroir and sustain
viticulture and wine production.

13.4.2 Effect of Drought
Conditions on the Berry
Transcriptome During
Development

Many premium wine-producing areas are located
in dry and warm regions where grapevines often
suffer from periods of seasonal drought.
Well-known examples are the Mediterranean
regions, where limited summer precipitation and
high evaporative demand due to high tempera-
ture frequently lead to moderate and even severe
water deficits in vineyards, especially later in the
growing season during the period of fruit ripen-
ing. Grapevines respond to water deficit by
activating a plethora of physiological and meta-
bolic pathways that ultimately lead to a reduction
of canopy and berry growth, as well as changes
in berry composition (Castellarin et al. 2007a, b;
Chaves et al. 2010). In non-irrigated regions, dry
vintages are often considered better (van Leeu-
wen et al. 2009). Accordingly, deficit irrigation, a
cultural practice that involves maintaining/
imposing a moderate water deficit, has been
used to improve berry composition by stimulat-
ing the production of key compounds associated
with wine quality (Chaves et al. 2010). Deficit
irrigation can stimulate fruit ripening in red
varieties (Castellarin et al. 2007a; Gambetta et al.
2010; Herrera and Castellarin 2016) and the
biosynthesis of key phenolics and aromatics
(Bindon et al. 2007; Castellarin et al. 2007b). For
this reason, managing vine water use through the
choice of plant material and/or irrigation is a
major issue in viticulture. Different grapevine
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varieties have been described as being more or
less drought-tolerant, and this definition has been
largely based on differences in their hydraulic
behavior, either isohydric (water-saving) or
anisohydric (water-consuming; Schultz 2003;
Chaves et al. 2010; Lovisolo et al. 2010; Zarrouk
et al. 2016). More than 60 studies have been
done since the first publication about this topic;
together, this research suggests that the differ-
ences may arise as much from environmental
differences as from genetic backgrounds (Herrera
et al. 2017; Hochberg et al. 2018; Charrier et al.
2018). The adoption of ‘omics’ technologies,
including genome sequencing, metabolomics,
and transcriptomics, has generated valuable
insights into the regulation of fruit metabolism
and composition in response to water deficit.

Deluc et al. (2009) were the first to apply
transcriptomics to analyze the effects of
long-term, seasonal water deficit on berries of
Cabernet Sauvignon and Chardonnay vines
grown in California and Nevada vineyards,
respectively. Authors used the Affymetrix® Vitis
Genome Array for transcriptomic analyses and
considered seven berry developmental stages.
The study showed that water deficit affected key
metabolic pathways related to berry physiology
and quality, including the phenylpropanoid,
abscisic acid (ABA), isoprenoid, carotenoid,
amino acid, and fatty acid metabolic pathways.
Drought treatment also triggered the expression
modulation of genes associated with the cell
response to osmotic stresses, including those
involved in glutamate and proline synthesis.
Interestingly, the study highlighted that the
response of the transcriptome to water deficit was
inconsistent between varieties. For instance, in
the red grape variety Cabernet Sauvignon, water
deficit strongly modulated the expression of
anthocyanin-related genes (including VviMYBA1,
VviMYBA2, and VviUFGT). In the white grape
variety Chardonnay, water deficit induced the
expression of flavonol synthase genes and genes
associated with the production of aroma com-
pounds, including a terpenoid synthase and a
carotenoid-cleavage dioxygenase. Commonali-
ties in the deficit response between varieties were
also found. For example, water deficit had

similar effects for both varieties on fatty acid
metabolism, inducing the expression of lipoxy-
genase and hydroperoxide lyase genes that lead
to the production of some aroma compounds.

More recently, two studies used transcrip-
tomic and large-scale metabolic analyses to
characterize the responses of berries from two
cultivars, the white-fruited Tocai Friulano and
the red-fruited Merlot, to water deficit (Savoi
et al. 2016, 2017). Both studies were conducted
in the same experimental vineyard and applied
similar deficit irrigation treatments from early
stages of berry development to harvest. Water
deficit increased the concentration of phenyl-
propanoids, monoterpenes, and tocopherols in
the white cultivar Tocai Friulano; carotenoid and
flavonoid concentrations were differentially
affected according to the berry developmental
stage (Savoi et al. 2016). Consistently, phenyl-
propanoid, flavonoid, carotenoid, and terpenoid
structural genes were modulated by water deficit.
Given the contribution of monoterpenes to wine
aroma, the authors analyzed gene and metabolite
relationships, focusing on ripening-related
monoterpenes induced by water stress. The
gene-metabolite network included the top 100
correlated transcripts for each monoterpene. Half
of the genes belonging to the network were dif-
ferentially expressed under water deficit (52%),
and a large proportion of the correlated genes
were involved in terpenoid, lipid, and hormone
metabolism (Fig. 13.3a). Interestingly, the anal-
ysis also identified a promising candidate that
might regulate monoterpene biosynthetic path-
ways in grapevine. The transcription factor gene,
VviMYB24, has high homology with Arabidopsis
MYBs that regulate terpenoid biosynthesis. Its
expression was strongly correlated with the
concentration of the deficit-responsive monoter-
penes and the expression of several terpene
synthases modulated by water limitation. In
Merlot berries, water deficit promoted the accu-
mulation of proline, branched-chain amino acids,
phenylpropanoids, anthocyanins, and free vola-
tile organic compounds in the berry, and the
increases in concentration of these compounds
coincided with the regulation of key structural
pathway genes (Savoi et al. 2017). A total of 447
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transcription factors were modulated in the berry
in response to water deficit. Gene-gene and
gene-metabolite network analyses showed that
water-deficit-responsive transcription factors
such as bZIPs, AP2/ERFs, MYBs, and NACs
could be involved in the molecular regulation of
the synthesis of those metabolites. The expres-
sion of deficit-modulated bZIP (e.g., VviABF4
and VviGBF3), AP2/ERF (e.g., VviRAP2.1,
VviRAP2.4, VviERF62), and NAC (e.g.,
VviNAC87, VviRD26) transcription factors were
frequently correlated with various deficit-
modulated anthocyanin structural and regulatory
genes and anthocyanin contents (Fig. 13.3b).
This analysis provided new insight into the reg-
ulation of the metabolic response of grape berries
to water deficit and narrowed down the list of
candidate genes for the functional validation of
these regulators.

Understanding how varying degrees of water
deficit affect berry development, grape compo-
sition, and wine quality, and how the climate and
genotype interact to produce responses to water
deficit remains among the major research prior-
ities for the grape and wine industry. Transcrip-
tomics has proven to be an invaluable tool that in
combination with other ‘omics’ technologies has
generated important insights into water deficit
response.

13.5 The Application
of Transcriptomics to Study
Grapevine–Pathogen
Interactions

Cultivated grapevines are susceptible to numer-
ous pathogens that negatively impact plant fit-
ness, fruit composition, and fruit yield. These
pathogens include bacteria, fungi, oomycetes,
and viruses (Bertsch et al. 2013; Wilcox et al.
2015; Armijo et al. 2016). Downstream of the
detection of pathogens and their often destructive
effects are an elaborate array of transcriptional,
post-transcriptional, epigenetic, hormonal, and
other responses. The outcome of the interaction
between the plant and its pathogen depends on
how the plant recognizes and defends itself, and

whether the pathogen is able to undermine plant
defense, grow, and reproduce in plant tissue
(Jones and Dangl 2006). Multiple sources of
genetic resistance have been identified within
Vitis and Muscadinia rotundifolia for some dis-
eases, like powdery mildew, downy mildew, and
Pierce’s disease (Ruel and Walker 2006; Gessler
et al. 2011; Qiu et al. 2015; Buonassisi et al.
2017). Characterizing the basis of both host
resistance and microbial virulence is crucial for
creating sustainable cultivars through breeding
programs and for developing phytosanitary
strategies.

This portion of the chapter will review the
studies that applied transcriptomic tools to
understand the responses of grapevines to diverse
pathogens, the basis of resistance, and the man-
ifestation of symptoms, as well to investigate the
virulence mechanisms of some pathogens
(Table 13.1). These studies compared infected to
uninfected vines, have exploited variability in the
effects of disease (Camps et al. 2010), identified
genes associated with compatible versus incom-
patible responses to different strains of the same
pathogen (Li et al. 2015), and characterized the
responses of resistant varieties to infection
(Weng et al. 2014; Amrine et al. 2015). More-
over, experiments comparing infected to unin-
fected plants sometimes include hormone and/or
secondary metabolite data to support their find-
ings and demonstrate the validity of using tran-
scriptomic technologies to predict the functional
implications of disease (Vega et al. 2011; Li et al.
2015; Agudelo-Romero et al. 2015; Blanco-Ulate
et al. 2015, 2017; Massonnet et al. 2017b). The
application of transcriptomics to survey the
vineyard metagenome, profile pathogen tran-
scripts, and better understand virulence will also
be discussed. This body of work generated
valuable insights into the relationships between
plant and pathogen, and the architecture and
regulation of their transcriptomes.

Vineyards can host a multitude of microbes,
among which fungi and oomycetes are the most
numerous known pathogens that affect grapevine
(Wilcox et al. 2015). However, the interaction
between grapevine and only a handful of fungal
pathogens has been investigated at the
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Fig. 13.3 Examples of gene-metabolite network of white
and red cultivars, Tocai and Merlot, respectively, during
berry development under water deficit (Savoi et al. 2016,
2017). a Predicted gene-metabolite network related to
monoterpenes: linalool (1), a-terpineol (2), and nerol (3), in
Tocai berries. Genes and metabolites are represented by
circle and square nodes, respectively. Edges represent
associations (P-value < 0.001) between transcripts and
metabolites. The top 100 correlators for each metabolite
are shown. Node borders in red represent differentially
expressed (DE) transcripts. Node colors indicate the
pathway of the transcripts. b Network representation of

co-expressed genes having ripening-associated expression
patterns in Merlot berries, centered on significantly corre-
lated transcription factors (TFs) and/or structural genes
with anthocyanin (pink, lavender blue, cyan, blue, and
purple). Structural genes, TF genes, and metabolites are
represented by circle, square, and diamond nodes, respec-
tively. Thick edges in light red represent associations
between structural genes/TFs (Pearson Correlation Coeffi-
cient (PCC) > 0.8; P-value < 0.01). Gene-metabolite asso-
ciations (PCC > 0.8; P-value < 0.01) are depicted in
thinner edges with colors denoting the different antho-
cyanin categories. Source Savoi et al. (2016, 2017)
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transcriptomic level. Those include the oomycete
Plasmopara viticola and the ascomycete Ery-
siphe necator, causal agents of grapevine downy
(DM) and powdery (PM) mildew, respectively,
the ascomycete Botrytis cinerea, responsible for
bunch rot and noble rot, and some grapevine
trunk pathogens. Profiles of vineyards’ microbial
diversity and understanding pathogens’ infection
strategies complement our understanding of
grapevine biology and are the basis of under-
standing how they interact.

Morales-Cruz et al. (2018) characterized the
metatranscriptome of the vineyard microbiome
associated with trunk diseases by mapping
RNA-seq reads from woody tissues to a
multi-species transcriptome reference composed of
common and consequential grapevine trunk fungal
pathogens including Eutypa lata, Neofusicoccum
parvum, Diplodia seriata, Phaeoacremonium
minimum, Phaeomoniella chlamydospora and
Diaporthe ampelina. Gene expression of putative
virulence factors distinguished samples with dif-
ferent disease symptoms (Morales-Cruz et al.
2018). Grapevine trunk pathogens colonize the
woody structures of the plant through wounds,
often pruning wounds, causing chronic infections
that compromise the translocation of water and
nutrients throughout the plant and cause a variety
of symptoms in growing green tissues (Bertsch
et al. 2013; Gramaje et al. 2018). Using a grape-
vine microarray, Camps et al. (2010) compared the
leaf transcriptomes of healthy, symptomatic, and
asymptomatic vines infected with E. lata to iden-
tify genes that might prevent foliar symptoms.
Asymptomatic plants uniquely up-regulated genes
primarily associated with energy metabolism and
the light phase of photosynthesis, possibly to help
maintain chloroplast function and redox balance
and circumvent the otherwise harmful effects of
E. lata toxins.

The interaction between grapevine and
another trunk pathogen, N. parvum, was also
studied at the transcriptomic level (Massonnet
et al. 2017b). Host plant leaves and stems
infected with N. parvum underwent extensive,
common, and temporally separated transcrip-
tional changes. Woody stems, where the patho-
gen is localized, reacted earlier than leaves to

infection. The temporal difference in response
was indicated by genes related to signal percep-
tion, signal transduction, and downstream bio-
logical processes including oxidative stress, cell
wall rearrangement, and cell death. The results
suggested that leaves perceive similar signals as
the infection site without interacting directly with
the pathogen. The RNA-seq data were also used
to investigate the virulence mechanisms used by
N. parvum during the infection (Massonnet et al.
2018). Gene expression analysis showed that
N. parvum co-expresses genes associated with
secondary metabolism and plant cell wall
degradation in function of the growth substrate
and the stage of plant infection. Co-expressed
genes were found to be physically clustered and
to share common regulatory elements in their
promoters, suggesting that their co-regulation
might contribute to its virulence.

Transcriptomic analyses performed during
P. viticola infection showed that the grape
response involves the activation of defense-
related mechanisms, including the expression of
PR genes, phenylpropanoid genes, signal trans-
duction (Mitogen-activated protein kinases
(MAPKs), calmodulin-binding proteins, receptor
kinases) and hormone signaling pathway genes,
albeit to a lesser extent in V. vinifera than in the
DM-resistant V. riparia (Polesani et al. 2010; Wu
et al. 2010; Vannozzi et al. 2012). Li et al. (2015)
used a DM-resistant species, Vitis amurensis, as
a model to study the molecular determinants of
compatible versus incompatible responses that
result from infection with different strains of
Plasmopara viticola. The incompatible interac-
tion and onset of DM symptoms were associated
with the up-regulation of 37 resistance genes
shortly after infection, genes that participate in
the reactive oxygen species and nitric oxide
(ROS/NO) and phenylpropanoid biosynthesis,
and MAPK and hormone signaling pathways. In
contrast, the incompatible interaction involved
the repression of photosynthesis and fatty acid
synthesis genes. De novo sequencing and
assembly of P. viticola genome, combined with
transcriptome profiling of V. vinifera during
infection identified an RxLR effector gene
induced during pathogen colonization (Brilli
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et al. 2018). In planta expression of this effector
triggered a strong necrotic response in V. riparia,
though no noticeable symptoms were visible on
V. vinifera leaves. This suggested that suscepti-
bility of V. vinifera to DM might be partly due to
a failure to recognize P. viticola virulence
factors.

Infecting PM-resistant V. pseudoreticulata
with E. necator revealed a strong induction of
effector-triggered immunity, basal defense, sys-
temic acquired resistance (SAR), and secondary
metabolism (Weng et al. 2014). Weng et al.
(2014) proposed that V. pseudoreticulata resis-
tance does not include preventing host-cell
penetration by the fungus, but involves the
accumulation of phytoalexins, a heightened sal-
icylic acid-related response, depressed jasmonic
acid-associated response, cell wall thickening,
SAR, and ROS-dependent hypersensitive
responses. In another PM study, constitutively
expressed and PM-inducible genes shared among
resistant accessions were identified, as were 81
genes with expression linked to phenotypic dif-
ferences among the most resistant accessions
(Amrine et al. 2015). The study used sequenced
transcripts to examine expression and the basis of
variable resistance (Amrine et al. 2015).

Integrating metabolite and transcriptomic data
has yielded particularly interesting insights into
Botrytis cinerea infections, a fungus that can
cause either noble rot (desirable) or bunch rot
(undesirable) (Agudelo-Romero et al. 2015;
Blanco-Ulate et al. 2015; Kelloniemi et al. 2015).
Blanco-Ulate et al. (2015) observed an
up-regulation of genes during noble rot that
affects the accumulation of valuable aroma
compounds contributing to the distinctiveness of
botrytized wines, as well an induction of
the phenylpropanoid genes coupled with the
accumulation of anthocyanins, the first such
observation in white-skinned berries. Authors
compared their data to that published by
Agudelo-Romero et al. (2015), a study of bunch
rot, and found only 11.9% of noble
rot-responsive genes behaving similarly during
bunch rot. However, no study has simultaneously
compared bunch rot, noble rot, and uninfected
plants to our knowledge.

Grapevine diseases caused by bacteria include
Pierce’s disease, crown gall, bacterial blight, and
grapevine yellows. Pierce’s disease is caused by
the xylem-inhabiting bacterium Xyllela fastid-
iosa, and a few studies have explored its effects
and the basis of its virulence (Choi et al. 2013;
Rapicavoli et al. 2018). Grapevines respond to
Pierce’s disease infection by up-regulating genes
encoding phytoalexins, PR proteins, and proteins
associated with abscisic acid- and jasmonic acid-
responsive biosynthesis, and down-regulating
transcripts related to photosynthesis and growth
(Choi et al. 2013; Zaini et al. 2018). Like most of
the Gram-negative bacteria, the X. fastidiosa cell
envelope is composed of lipopolysaccharides
that can be rapidly recognized by the plant and
induce a quick oxidative burst (Erbs and New-
man 2012). In their study, Rapicavoli et al.
(2018) showed that the bacterium produces a
long-chain O-antigen that masks the elicitor
portions of the lipopolysaccharides. Transcrip-
tomic analysis showed that the lack of the
O-antigen leads to a fast plant perception of
mutant X. fastidiosa, triggering the induction of
PR genes and a salicylic acid-mediated defense
pathway. The authors suggested that the
long-chain O-antigen enables X. fastidiosa to
delay the initial plant recognition, thereby
allowing it to effectively subvert plant defense
responses and establish itself in the host.

To date, nearly 70 different viruses have been
identified as grape pathogens, accounting for
* 25 different diseases (Martelli 2014). The most
damaging viral diseases include Fanleaf degener-
ation, Leafroll disease, Rupestris stem-pitting
disease, and Red blotch (Meng et al. 2017). An
early study of Rupestris stem-pitting virus
(GRSPaV) used the NimbleGen microarray for
grapevine (Gambino et al. 2012). Responses were
tissue-specific and included the induction of
senescence-related genes, consistent with separate
observations of leaves infected with Grapevine
leafroll-associated virus 3 (GLRaV-3) (Espinoza
et al. 2007). In infected leaves, signal-transducing
kinases and hormone signaling were up-regulated
compared to uninfected leaves, as were secondary
metabolism genes associated with terpene, flavo-
nol, and lignin biosynthesis. In berries, genes
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affected by the viral infection were predominantly
down-regulated and many were associated with
plant defense. During GLRaV-3 infection, sugar
transporters and anthocyanin biosynthesis-related
genes were down-regulated in fruit; Vega et al.
(2011) concomitantly observed reduced sugar
levels, total anthocyanins and malvidin-3-O-
glucoside in GLRaV-3-infected berries. Like
GLRaV-3, Grapevine red blotch-associated virus
(GRBaV) has a negative effect on fruit composi-
tion (Blanco-Ulate et al. 2017). Transcriptomic,
enzymatic, and metabolite data supported an
alteration of hormone signaling and secondary
metabolism in berries during ripening (Blanco-
Ulate et al. 2017). Moreover, sequencing of
virus-derived small RNAs has been shown to be a
useful diagnostic tool for detecting known and
novel viruses and viral genome reconstruction
(Navarro et al. 2009; Pantaleo et al. 2010; Giam-
petruzzi et al. 2012; Czotter et al. 2018).

Transcriptomic tools have been effectively
used to better understand the relationship
between grapevine and its pathogens and for
discovering virulence factors, assessing plant
sanitary status, and discovering new pathogens.
Efforts can and have been made to understand
how specific virulence factors, like those identi-
fied by Morales-Cruz et al. (2018), are regulated
and cause disease symptoms. Gene co-expression
may also be an important determinant of viru-
lence and should continue to be evaluated in
transcriptomic studies (Massonnet et al. 2017b,
2018). Furthermore, understanding the basis of
plant resistance and pathogen virulence will be
essential to sustaining viticulture, particularly as
the number of pathogens resistant to fungicides
grows (Gubler et al. 1996; Baudoin et al. 2008;
Gisi and Sierotzki 2008). Finally, we would be
remiss to not mention that stress can selectively
induce the expression of specific gene isoforms
and alternative transcripts (Vitulo et al. 2014; Liu
et al. 2016; Han et al. 2017; Jiang et al. 2017).
With the advent of full-length isoform sequenc-
ing technologies, our understanding of infection
will grow as we learn how pathogens alter the
isoform landscape and whether particular iso-
forms are related to resistance.

13.6 Conclusions

This chapter described the expansive application
of transcriptomics to viticulture research.
Thanks to technological progress and declining
sequencing costs over the last 20 years, the grape
community has been able to apply global gene
expression profiling to investigate many key
issues of viticulture. Combined with other
experimental data, like agronomical and physio-
logical measurements, hormone and secondary
metabolite information, and by integrating addi-
tional “omics” data (see Chap. 8), genome-wide
transcriptional profiling has provided a deeper
understanding of the effects of viticultural prac-
tices, scion–rootstock pairings, variable envi-
ronmental conditions, and diverse types of stress.
The implementation of novel tools, like Iso-Seq
and 3’RNA-seq, should further improve and
accelerate the application of transcriptomics to
viticulture. In addition to facilitating gene can-
didate identification when combined with genetic
association approaches, transcriptomics will help
identify useful molecular markers that can be
used to improve viticulture practices, e.g., to
predict flavonoid composition or to signal the
type of stress experienced by grapevines.
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14Grape Rootstock Breeding and Their
Performance Based on the Wolpert
Trials in California

Jean Catherine Dodson Peterson, Roger Duncan,
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Rhonda Smith, Ed Weber, James Wolpert,
Michael Anderson, Jason Benz and M. Andrew Walker

Abstract
Pest and disease pressures have traditionally
driven the use of grapevine rootstocks. How-
ever, with competing demands on limited
water resources and changing climate condi-
tions, the water available for agriculture will
likely continue to diminish. This inevitability
has resulted in an increased interest in grape
rootstock effects on scion growth, specifically
yield components, as a function of parentage
and in terms of drought tolerance. It has also
spurred efforts to breed new rootstocks with
combined pest, disease, and abiotic stress
resistance. Field studies examining rootstock
effect on scion growth and development
have been inconsistent due to complications

associated with varying soil types and weather
factors unique to each site. Other factors tend
to vary from site to site including trellising
systems, scion cultivar selection and manage-
ment practices, each of which also has a role
in determining vine phenology. Due to these
issues, rootstock trial data is often presented
on a site-by-site basis with the objective of
determining if a specific rootstock tends to
yield more or less than other rootstocks on a
given site. Although inherently limited by the
aforementioned challenges, rootstock trails are
arguably one of the best methods of providing
insight into rootstock performance and scion
interactions. The Wolpert rootstock trails
in California were one of the more
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comprehensive efforts to understand and clas-
sify rootstock performance as a function of
site. General trends in performance were
observed as a function of rootstock selection
with regard to yield and pruning weights.

14.1 Introduction

The utilization of rootstocks in grape production
is relatively recent considering the extensive
history humans have cultivating grapes. The
catalyst for rootstock breeding and implementa-
tion as an industry mainstay traces back to the
European phylloxera crisis. Grape phylloxera
(Daktuloshpaira vitifoliae) was imported into
Europe in 1845 and quickly devastated the
European winegrape industry (Campbell 2005).
By 1873, it was found feeding on California
vineyards (Granett et al. 1987a, b). Although it
was widely assumed at the time that all Native
American grapevine species would be equally
resistant to phylloxera feeding, it was quickly
realized that some rootstocks were more tolerant
to feeding than others (Lider 1958). This
prompted much of the initial rootstock research
designed to quantify the resistance and viticul-
tural attributes by genetic parentage (Ramming
2010). The initial California rootstock research
centering around phylloxera tolerance was com-
pleted by the State Viticultural Commission
(Doyle 1894).

Although the California State Viticultural
Commission was deeply invested in phylloxera
research, it was the French and Italians who ini-
tially took the lead with respect to breeding
resistant rootstocks. By the end of the late nine-
teenth century, France was grappling with the
introduction of phylloxera, powdery and downy
mildew. The almost simultaneous appearance of
these issues into France resulted in two distinc-
tive, but complementary efforts by French grape
breeders (Reynolds 2015). The first was the cre-
ation of rootstocks resistant to phylloxera that
would allow the preservation of the well-known
cultivars that were currently in production.

Secondarily, French breeders established grape
breeding programs designed to integrate resis-
tance to phylloxera, powdery and downy mildew,
into V. vinifera backgrounds, while attempting to
preserve the favorable fruit quality and sensory
attributes of V. vinifera (Reynolds 2015). Key
French breeders behind these early hybridization
efforts included Albert Seibel (1844–1936),
Eugene Kuhlman (1858–1932), Bertille Seyve
(1895–1959) and Joannes Seyve (1900–1966) to
name a few. Additionally, aside from the thou-
sands of French-American hybrids bred by the
French, there were also many noteworthy root-
stocks created. The majority of the initial root-
stocks released for use were hybrids of Vitis
rupestris � V. riparia. French expeditions to
North America resulted in the collection of many
Vitis species, but the only two that rooted well
from dormant cuttings and possessed strong
phylloxera resistance were V. rupestris and V.
riparia. Despite being phylloxera resistant, the
French soon found that these rootstock hybrids
failed in the calcareous soils common in much of
Europe. This eventually prompted the collection
of V. berlandieri for the sole purpose of incor-
porating lime tolerance into their breeding efforts.

Equally important as the French efforts, the
Italians devoted the majority of their breeding
efforts to new rootstocks starting from the time
phylloxera was first formally identified in Italy in
1879 (Bavaresco et al. 2015). It was the Italians
who recognized the long-term benefits of capi-
talizing on the native American species that
co-evolved with phylloxera, and as a result, they
founded the first American species nursery in
1881 (Bavaresco et al. 2015). Notably, Federico
Paulsen (1861–1943) began breeding grapes
rootstocks (1889) with V. berlandieri parentage.
Paulsen’s effort to incorporate the lime tolerance
of V. berlandieri was one of the first documented
efforts in grape rootstock breeding that focused
on traits beyond phylloxera tolerance. Paulsen
also recognized the potential of the relatively
expansive root systems of his V. ber-
landieri � V. rupestris hybrids had with respect
to drought tolerance. His lime- and drought-
tolerant rootstock, 1103P remains one of the
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leading rootstocks in use worldwide. Another
early Italian grape breeder who considered
genotypic attributes beyond phylloxera tolerance
was Antonio Ruggeri (1859–1897). Ruggeri also
focused on V. berlandieri � V. rupestris
hybrids, but also created V. berlandieri � V.
riparia hybrids. His 140Ru rootstock, a V. ber-
landieri � V. rupestris cross, is still used today
for its strong drought and salt tolerance.

In 1875, phylloxera was documented in part
of Hungary which is now modern-day Serbia.
Zsigmond Teleki (1854–1910) quickly became
the primary Hungarian rootstock expert. Teleki
began by planting a variety of rootstocks/native
American species grafted to traditional wine-
grape cultivars (Hajdu 2015). He was displeased
with the performance of those trials. Unfortu-
nately, at the time a black rot quarantine pre-
vented the free movement of plant material. To
avoid the quarantine, Teleki began breeding his
own rootstocks from seeds he obtained from
France. His efforts focused on selecting seedlings
with phylloxera resistance and lime tolerance, as
well as factors such as vigor induction and
rootstock–scion graft compatibility. Károly
Bakonyi continued Teleki’s work in Hungary
since 1970 and that work is currently directed by
László Kocsis (Hajdu 2015).

German efforts at rootstock breeding also date
back to the nineteenth century (Ruehl et al.
2015). Like France, Germany was searching for
solutions to foliar diseases such as downy and
powdery mildew. Unfortunately, German breed-
ers were prohibited from obtaining American
rootstocks and hybrids. To get around this
restriction, breeders imported V. riparia seeds
from New England selections. Challenges asso-
ciated with the lack of lime tolerance in V.
riparia temporarily stalled German rootstock
breeding efforts. Eventually, it was the Teleki
hybrids that made it possible for the German
breeding programs to move forward (Ruehl et al.
2015). Teleki shared ten of his most promising
selections with Austrian viticulturist Franz
Kober. Kober fine-tuned Teleki’s screening pro-
cess and made selections of the most robust and
vigor inducing hybrids. The partnership between
the Hungarian and Austrian programs eventually

expanded to include Geisenheim under the
direction of Heinrich Birk (Ruehl et al. 2015).
The Teleki rootstocks resulting from these part-
nerships include Teleki-Fuhr SO4, Teleki-Kober
5BB and Teleki 5C (Csepregi and Zilai 1955), all
of which have been widely used since their
development.

Grape breeding efforts in the Western USA
were conducted by Harold Olmo (1931–1979) at
the University of California, Davis. Olmo’s
research stretched beyond breeding table, raisin
and winegrape cultivars, and included the V.
vinifera � Muscadinia rotundifolia (VR) root-
stock selection O39-16 (Walker et al. 1994)
which controls fanleaf disease and its dagger
nematode vector, Xiphinema index. Olmo’s
efforts formed the foundation for M. Andrew
Walker’s breeding program that has included
classical breeding of rootstocks and wine grapes,
the identification of new resistance sources and
using molecular tools to accelerate breeding. In
addition to Walker’s Pierce’s Disease (Xylella
fastidiosa), nematode, powdery mildew and
ongoing phylloxera research efforts, he has pur-
sued drought and salt tolerance. This
all-inclusive approach to rootstock breeding has
made significant strides toward addressing new
and ongoing pest and disease issues as well as
working to clarify rootstock performance
expectations. To date, Walker has released
(2008) five rootstocks (GRN1–5). The GRNs are
the result of a rather complex hybridization of
several species including V. rupestris, M. rotun-
difolia, V. rufotomentosa, V. champinii and V.
riparia. These new releases have been screened
against several nematode species and have doc-
umented resistance to phylloxera. Unlike the
original pest resistance trials, Walker has recog-
nized the importance of determining and char-
acterizing the role rootstock genetic background
has on the scion performance, which is often
complicated by environmental factors such as
soil texture, water availability, climatic variation
and management practices.

As in the Western USA, breeding programs in
other parts of the world remain active as well
although some have shifted focus from root-
stocks to scion selection. Efforts in Germany
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from Geisenheim University and Geilweilerhof
(part of the Julius Kuhn-Institute) are currently
directed at clonal variation, genetic diversity
between clones and exploring variation in vine
growth factors (cluster compactness, berry size
and berry chemistry factors). These programs
have also been selecting clones that demonstrate
higher tolerance to Botrytis bunch rot. Hungarian
breeding efforts are currently led by Pál Kozma
Jr., János Korbuly and Lászlo Kocsis (Hajdu
2015). Kozma has continued developing hybrids
using V. vinifera and M. rotundifolia, as well as
V. amurensis. His most recent work is dedicated
to incorporating powdery mildew resistance into
newly bred varieties. Korbuly has been evaluat-
ing seedlings since 1980 with the hope of
improving resistance to fungal diseases and frost
using V. amurensis for winegrape production.
Kocsis has been important with respect to root-
stock breeding. Since the late 1990s, he has been
breeding to increase lime and drought tolerance
while preserving phylloxera resistance in root-
stocks. Italian breeding efforts, led by the
University of Milan, have also been developing
rootstocks centered around drought tolerance and
lime (Bavaresco et al. 2015). Additionally, the
Research and Innovation Centre at Fondazione
Edmund Mach (FEM) S. Michele all’ Adige
(Bavaresco et al. 2015; Emanuelli et al. 2013)
and the University of Udine are developing new
winegrape cultivars resistant to downy and
powdery mildew (Bavaresco et al. 2015; Cole-
man et al. 2009; Di Gaspero et al. 2012; Venuti
et al. 2013).

One of the binding features of rootstock trials
is that rootstock performance is deeply affected
by the site they are tested on. Resistance to
phylloxera was the primary focus of these
breeding programs, and detailed classification of
rootstock effects on scions across sites was not
thoroughly investigated, which left a substantial
void in our understanding of rootstock selection.

From the late 1980s to the early 2000s, James
Wolpert at UC Davis conducted an extensive
rootstock evaluation program to understand the
role rootstock selection has on scion perfor-
mance. The program tested a genetically diverse
group of eighteen rootstocks across six vineyard

sites of varying soil composition and analyzed
fruit yield and pruning weight data. The factors
varied at each trail site reflecting differing man-
agement decisions appropriate for the particular
site and scion cultivar. The primary objective
was to determine if trends in yield and pruning
weights existed across diverse environments. The
secondary objective was to develop a guide that
would allow rootstock recommendations for
specific soil types and vineyard sites.

14.2 Site Selection and Trial Details

The selected commercial vineyard sites were all
located in California and were organized as a
completely randomized design with respect to
rootstock. Vineyard management practices, such
as degree of pruning, irrigation amounts and tim-
ing, fertilization regimens and canopy manage-
ment, were executed in accordance with vineyard
collaborator practices. Shoots from lateral buds as
well as positions that had double primary shoots
were thinned. Cluster thinning was not performed
at any of the sites. Yield at the time of harvest and
pruning weight data was taken from the rootstocks
planted across the six sites. There were between
five and eight vines, depending on the vineyard site
availability, for treatment replicates. The data for
yields and pruning weights were collected on a
per-vine basis from the center three to six vines in
each set of treatment replicates and an average
value was used for analysis.

Table 14.1 summarizes the trial information
with scion cultivars, nearest California Irrigation
Management Information System (CIMIS)
weather station, location, cumulative degree-days
and yearly average rainfall for the years of data
collection. Table 14.1 also includes the site
summary for each trial location including site
name, scion, number of rootstocks present, soil
type and depth and any abiotic or biotic stress
present. Table 14.2 lists the rootstocks present at
a given site and the corresponding parentage of
each rootstock. Paul Anamosa (1998) verified the
soil profile descriptions at each vineyard site for
accuracy with the United States Soil Survey
Descriptions (Soil Survey Division Staff 1993).
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A principal component analysis (PCA) was run
on the pruning weights, and yields for the various
years’ data were collected for each of the sites. The
figures were designed so that the X-axis represents
pruning or yield weight and the Y-axis represents
the change in yields or pruning weights over time.
Statistical Analysis Software (SAS) version 9.1.3
(SAS Institute Inc., Cary, NC, USA) was used to
perform the analyses, which found that rootstocks
tended to separate into three distinctive groupings
with regard to pruning and fruit weights. These
groupings were subsequently designated as high,
medium and low (Table 14.3).

14.2.1 Findings and Interpretation

This study was conducted across multiple vine-
yard sites throughout California over the course
of nine years. However, it is important to note
that in this rootstock survey, not all rootstocks
were present at each site and the years in which
the data were collected were not always consis-
tent across all sites. Data should be considered on
a site-by-site basis as it is difficult to make across
site comparisons due variation in pests, disease
or soil factor variation at each of the vineyard site
locations. Data are presented for each site

Table 14.3 Rootstock performance, classified as high, medium or low, as a function of site for yield and pruning
weights across all years of the study

Trial site Scion
cultivar

Factor Low Medium High

Sonoma
Chalk Hill

Merlot Pruning
Weight

44-53, 420A 101-14, 110R, 5C, 140Ru,
5BB, 3309

1103P

Yield 44-53 420A, 101-14 1103P, 140Ru, 5BB,
3309, 110R, 5C

Mendocino
La Ribera

Cabernet
Sauvignon

Pruning
Weight

AXR1, 101-14,
420A, 3309C

5C, Harmony, Freedom O39-16, 110R

Yield 101-14, AXR1 420A, 3309C, 5C,
Harmony, Freedom

110R, O39-16

Napa
Rutherford

Cabernet
Sauvignon

Pruning
Weight

101-14, SO4,
420A, 3309C

Harmony, Riparia, 110R,
1103P, Freedom

O39-16

Yield 101-14, SO4 420A, 3309C, Harmony,
Riparia, 110R, 1103P,
Freedom

O39-16

Sacramento
Delta

Chardonnay Pruning
Weight

44-53, 420A,
O39-16

5BB, 5C, 3309C, 110R, St.
George, 1616C, Ramsey,
101-14, Harmony

Freedom, 1103P

Yield 44-53 O39-16, 420A, St. George,
5BB, 1616C, 5C, Harmony

1103P, Ramsey,
Freedom, 3309C,
101-14, 110R

Sacramento
Delta

Cabernet
Sauvignon

Pruning
Weight

44-53, 3309C,
O39-16

St. George, 420A, 101-14 1616C, Freedom, 5BB,
Harmony, 1103P,
Ramsey, 5C, 110R

Yield St. George,
1103P, 44-53

Ramsey, 3309C, Freedom,
5C, 101-14, 110R

Harmony, O39-16,
1616C, 420A, 5BB

Amador
Montevina

Zinfandel Pruning
Weight

101-14, 420A,
44-53, 3309C,
Harmony, 110R

Ramsey, O39-16, 5C, St.
George

1616C, Freedom,
1103P, 5BB

Yield 5BB, 420A,
110R, 1103P

Harmony, 5C, Freedom,
Ramsey, St. George, 44-53,
1616

3309C, 101-14, O39-16
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individually; meaning rootstocks within a site
were ranked against others at the same site
location for crop yields and pruning weights.
Trends in groupings that transcend a specific site
are discussed, which allows the performance of a
range of rootstocks on a given vineyard site with
similar location, soil type, or pest and disease
pressures to be compared.

Rootstocks were found to have an impact on
yield and pruning weights and, within each site,
were classified as low, moderate or high pro-
ducers based on harvest weight and pruning
weight (Table 14.3). Although statistical com-
parisons among sites could not be made, trends
were apparent. 43-53 was consistently lower in
yields and pruning weights regardless of site
conditions. St. George was consistently lower in
yields and pruning weights in the trial regardless
of site, which is unusual given its previously
documented performance (Christensen
et al. 2003). 420A, 5BB and 5C usually were
clustered tightly, but 420A tended to be the
lowest of the three for yields and pruning
weights. 3309C had relatively high yields and
lower pruning weights when compared to the
other rootstocks.

Rootstock performance is impacted by the site
environment and management practices (Rogiers
and Clarke 2013), available soil water (Ozden
et al. 2010) and soil fertility and structure
(Lambert et al. 2008; Wolf and Pool 1988). Scion
performance is impacted by temperature, and
light (Bergqvist et al. 2001), management prac-
tices such as leaf and lateral shoot removal
(Koblet et al. 1994; Bledsoe et al. 1988), pruning
practices (Lider et al. 1973), irrigation (McCar-
thy et al. 1997; Ozden et al. 2010) and fertiliza-
tion (Keller et al. 2001; Dalbo et al. 2011;
Neilsen et al. 2010). Despite influences from
various management techniques and site envi-
ronmental profiles, rootstock behavior and suit-
ability are also driven, to a certain extent, by
parentage. Particular genetic backgrounds are
better adapted to dealing with specific soil
moistures and texture types than others.

Until relatively recently, there was a general
assumption that little to no rootstock scion
interaction existed and instead that scion

genotypes performed much the same way whe-
ther or not they were grafted to rootstock or
growing on own roots (Christensen 1984).
However, it is now clear rootstock–scion inter-
actions exist and that they can have large impacts
(Virgona et al. 2003; Vrsic et al. 2015; Dodson
Peterson and Walker 2017), particularly in regard
to mineral nutrition (Koblet and Keller 1996;
Lambert et al. 2008), which varies site to site as
well as yield (Li et al. 2019), vine vigor (Li et al.
2019) and physiochemical (weight, size, pH,
soluble solids, titratable acidity) quality attributes
of the grape berries (Rodrigues da Silva et al.
2018). For example, grafting to a rootstock that is
associated with poor magnesium uptake can
result in deficiency symptoms. The rootstock
44-53 has a higher affinity for potassium (K) than
magnesium (Mg), which can be compounded if
the soil is rich in K, limiting the ability of 44-53
to take up Mg from the soil (Brancadoro et al.
1994). In contrast to 44-53’s preference for K,
the rootstock 1103 is known to have a higher
affinity for Mg (Scienza et al. 1986).

Another example of rootstock variation is in
response to soil lime content. Calcareous soils
can have a large impact on the ability of some
rootstocks to take up iron. The ability to deal
with this type of environmental challenge seems
to be based on genetic background. Vitis ber-
landieri-based rootstocks (140 Ru, 110R, 420A)
tend to be more lime tolerant, while V. riparia-
based rootstocks (101-14) are generally more
sensitive to lime (calcium carbonate) (Bavaresco
et al. 1993). Additionally, rootstocks with a
V. berlandieri background are associated with
lower petiole potassium content at bloom (Wol-
pert et al. 2005; Lambert et al. 2008), which can
result in developmental issues of the reproductive
and vegetative organs. There are also examples
in which rootstock or scion cultivar selection
impacted vine performance in response to salin-
ity (Bybordi 2012), soil texture (Morano and
Kliewer 1994), soil moisture (Paranychianakis
et al. 2004), irrigation amount (Williams 2010;
Nelson et al. 2016) and various disease pressures
(Goodman et al. 1993; Harris 1984). There are
also documented effects of scion selection effects
on rootstock performance (Virgona et al. 2003).
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Although many of the sites in this study did
exhibit clear rootstock trends based on genetic
parentage, it was difficult to determine which site
and environment factors were influencing root-
stock–scion behavior and to what degree; a
determination that was confounded by the dif-
ferences in soils, management practices, envi-
ronmental conditions, pest and disease pressures
and scion cultivars (Table 14.1). The noted dif-
ferences in rootstock behavior and the resulting
variation in scion yield and pruning weights
emphasize the impact that soils and nutrients
have on vineyard development and resource
allocation (Lambert et al. 2008).

Most of the rootstocks in commercial use
derive from crosses among V. riparia, V. rupes-
tris and V. berlandieri. The first two were utilized
because they are resistant to phylloxera and easy
to propagate, and V. berlandieri was included
because of its lime tolerance. Crosses are gener-
ally made between these three native North
American species to produce the commercial
rootstocks used to combat grapevine pests, dis-
eases and soil-related challenges. Vitis riparia
V. rupestris-derived rootstocks are generally best
suited for fertile soils, without excess lime issues,
and however, the nematode resistance varies
greatly. They typically induce moderate-to-low
vigor in the scions and are generally good can-
didates for higher density plantings, but will not
do well on dry-farmed vineyard sites. Common
examples include 3309C (nematode susceptible)
and 101-14 (moderate nematode resistance). Vitis
berlandieri � V. riparia-derived rootstocks are
generally more phylloxera resistant, have mod-
erate nematode resistance and are lime tolerant.
Rootstocks in this grouping have been found to
have higher fine root hydraulic conductivity,
which can be traced, in part, to higher aquaporin
expression and activity (Gambetta et al. 2012).
Generally, this hybrid category is considered to
induce moderate vigor rootstocks (420A is the
exception with low vigor) and generally have
moderate to shallow rooting architecture. Exam-
ples include Teleki 5C, 5BB, SO4 and 420A.
Furthermore, although no difference in yields was
found, Blank et al. (2018) recently found that
SO4 produced almost double the amount of

pruning mass compared to that of lower vigor
stocks such as Riparia Gloire and Schwarzmann
when grafted to Pinot noir (Blank et al. 2018).
Vitis berlandieri � V. rupestris-derived root-
stocks are known for their drought (Yildirim et al.
2018) and lime tolerance, deeper rooting archi-
tecture (drought avoidance), minimal nematode
resistance and moderate to good phylloxera
resistance. This grouping is considered to be more
difficult to root and graft with the exception of
1103P which is easy to propagate. Well-known
examples include 110R, 1103P and 140Ru, all of
which are considered to induce high vegetative
vigor when planted on deep fertile soils. Most
rootstocks in this hybrid cross are considered to
be better suited to deficit irrigation regimes (Sabir
and Sahin 2018).

Other species have been used in rootstock
breeding including V. champinii, V. aestivalis,
M. rotundifolia, V. labrusca and V. candicans.
Rootstocks from these less utilized species are
also not fully understood when it comes to per-
formance in commercial vineyards. Vitis cham-
pinii-derived rootstocks have high vigor, are
drought tolerant due to the plunging root system
and have broad nematode resistance. These
characteristics make these rootstocks useful in
soils with low fertility and high populations of
root-knot nematodes. Freedom and Harmony
were produced by crossing 1613C (V. solonis
((V. riparia � V. labrusca) � V. vinifera) OP
seedling � Dog Ridge (possibly V. candi-
cans � V. berlandieri) OP Seedling for the
purpose of providing a nematode-resistant root-
stock for low fertility soils. They have low
phylloxera resistance due to the V. vinifera
parentage of the 1613C parent and are also sen-
sitive to virus infections. The majority of these
characteristics are anecdotal, based on un-
replicated observations in vineyards.

The V. vinifera � M. rotundifolia siblings
039-16 and O43-43 are the only sources of tol-
erance to fanleaf degeneration. Unfortunately,
O43-43 is susceptible to phylloxera and O39-16
is susceptible to root-knot nematodes. Despite
being difficult to propagate, they are both con-
sidered to induce high vigor. O43-43 is no longer
commercially available.
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14.2.2 Sacramento County, Delta:
Chardonnay

The Sacramento County’s Delta Chardonnay
rootstock site was on a clay soil in the Egbert
clay loam series and was found to be below the
potassium-to-CEC ratio predicted value of 2.5
referenced in the literature for this type of soil
(Champagnol 1984; Etourneaud and Loue 1986),
and thus, the available soil potassium and soil
fertility of this site were lower than what would
typically be found in an Egbert clay loam soil. In
a soil of this nature (depths of 1.22 m, no doc-
umented pest pressure), the V. berlandieri � V.
rupestris, V. riparia � V. rupestris and the V.
champinii rootstocks produced the highest fruit
yields (Fig. 14.1a). Despite the lower than
expected potassium level, 420A (V. ber-
landieri � V. riparia), thought to be susceptible
to potassium deficiency (Pongrácz 1983), main-
tained moderate yield output and was clustered
with the other V. berlandieri � V. riparia-
derived rootstocks. The low rainfall at this site
put V. rupestris (deep anchoring root system) and
V. berlandieri (deep rooting)-based rootstocks at
an advantage over V. riparia-based (shallow
rooting) rootstocks (Guillon 1905; Pongrácz
1983).

Pruning weights were clustered by parentage
as well, but the groupings often overlapped
(Fig. 14.1b). The V. champinii-based rootstocks
were clustered in the high and the higher end of
the moderate spectrum (Fig. 14.1b). The V.
berlandieri � V. riparia-based rootstocks also
were clustered, but overlapped the low and lower
end of the moderate spectrum (Fig. 14.1b). The
V. riparia � V. rupestris rootstocks, 3309C and
101-14, were clustered closely within the mod-
erate grouping and varied less from year to year
compared to the vines on St. George or 1616C
(Fig. 14.1b). It is interesting to note that the
V. riparia � V. rupestris rootstocks produced
high yields in comparison to the rest of the
rootstocks, but only moderate pruning weights.
This allocation of resources directed to repro-
ductive versus vegetative growth may result in
more light penetration into the canopy, promot-
ing more fruitful buds (May et al. 1976). This
would lead one to infer that the less dense
canopies of the V. riparia-based rootstocks
would produce higher yields than those root-
stocks that induce more vigorous canopies and
more shaded buds. However, the higher vigor
rootstocks typically have higher yields despite
having denser canopies and more shaded buds.
One possible explanation for this might be the

Fig. 14.1 Sacramento County, Delta Chardonnay prin-
cipal component analysis for a yield and b pruning
weights of the different rootstocks. The first principal
component (X-axis) correlated in all cases to either

pruning weight or yield and accounted for the majority of
the variation. The second principal component (Y-axis)
correlated to year and accounted for relatively little
variation
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variation in spatial rooting patterns and distri-
bution (deep versus shallow) (Morlet and Jacquet
1993), as well as the actual rooting density of a
given rootstock (Swanepoel and Southey 1989).
Another possible explanation might be due to the
difference in affinity for certain nutrients among
rootstocks (Bavaresco et al. 1991; Grant and
Matthews 1996; Lambert et al. 2008; Romero
et al. 2018) which impacts overwintering mineral
nutrient stores, perhaps giving vines grafted to
more densely rooted rootstocks a greater pool of
resources to allocate to both vegetative and
reproductive growth.

14.2.3 Sacramento County, Delta:
Cabernet Sauvignon

The Sacramento County’s Delta Cabernet Sau-
vignon rootstock site was on a Tinnin loamy
sand soil that increased in sand content with
depth. This site was also slightly potassium
deficient with a relatively low CEC. Unlike in the
heavier clay soils of the Delta Chardonnay site,
1103P had one of the lowest yields compared to
the rest of the rootstocks (Fig. 14.2a), but had
one of the highest pruning weight productions
(Fig. 14.2a) and these observations agreed with
Williams’ (2010) findings in which 1103P also

had the highest pruning weights regardless of
irrigation treatment imposed. However, the
results do conflict with Keller et al. (2012), who
found that 1103P reduced pruning weights in a
trial on Shano silt loam soil comparing multiple
rootstocks. Although higher vegetative vigor is
typically associated with lower light penetration
to the buds (May et al. 1976), it does not always
result in reduced fruitfulness (Sanchez and
Dokoozlian 2005). Clearly, the interaction
between rootstock selection, accessible resour-
ces, canopy density and bud fruitfulness is not
fully understood and warrant further exploration.

O39-16 (V. vinifera � M. rotundifolia)
behaved similar to 1103P with yield and pruning
weights at the opposite ends of the classification
scale (Fig. 14.2a, b). O39-16 had one of the
highest yields and the second to lowest pruning
weight, but did have more variation from year to
year in pruning weight compared to the rest of
the rootstocks examined at this site.

14.2.4 Amador County, Montevina:
Zinfandel

The Amador County’s Montevina Zinfandel site
was a Sierra coarse sandy loam. The sandy tex-
ture of this site resulted in a low water holding

Fig. 14.2 Sacramento County, Delta Cabernet Sauvi-
gnon principal component analysis for a yield and
b pruning weights of the different rootstocks. The first
principal component (X-axis) correlated in all cases to

either pruning weight or yield and accounted for the
majority of the variation. The second principal component
(Y-axis) correlated to year and accounted for relatively
little variation
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capacity, and it was found to be high in potas-
sium due to the fertilization practices at this site
(Lambert et al. 2008). There was also a high
calcium-to-magnesium ratio, which resulted in a
lower degree of exchangeable magnesium
(Lambert et al. 2008).

Yields at this site were clustered closely by
genetic background. High yields and low pruning
weights were correlated with V. riparia � V.
rupestris rootstocks, 101-14 and 3309C
(Fig. 14.3a, b). 101-14 produced lower pruning
weights than 3309C, which was similar to the
findings of Keller et al. (2012) who examined
pruning weights on three different sites. Typi-
cally, lower yields would be expected with lower
vegetative growth; however, more resources
were diverted to reproductive growth rather than
vegetative growth. Although the Montevina
Zinfandel was not under deficit irrigation condi-
tions, the V. berlandieri � V. riparia rootstocks
5C, 5BB and 420A had very different pruning
weights from one another (Fig. 14.3b): 420A,
had the lowest pruning weights; 5C had moderate
pruning weights; and 5BB had high pruning
weights. This ranking was consistent with that of
Christensen et al. (2003). Although closely
clustered as having moderate yields, V. champi-
nii-derived rootstocks, Freedom, Harmony and
Ramsey separated into different categories for

pruning weights (Fig. 14.3a, b)—Harmony is
considered to be less vigorous than Freedom
(Christensen et al. 2003).

14.2.5 Mendocino County, La Ribera:
Cabernet Sauvignon

The Mendocino County’s La Ribera Cabernet
Sauvignon site is a Russian loam with gravelly
substratum. This site has a history of nematode
infestation including dagger, ring and root-knot
nematodes. Despite being considered susceptible
to most nematodes, 110R had consistently high
yields and pruningweights on this site (Fig. 14.4a,
b). O39-16 is resistant to X. index and ring nema-
tode, but moderately susceptible to root-knot
nematode, but it also had high yields and pruning
weights (Fig. 14.4a, b). Nematode-resistant root-
stocks, Harmony and Freedom, produced moder-
ate yields and pruning weights compared to the
other rootstocks at this site (Fig. 14.4a, b). 420A
and 101-14 are considered to havemoderate to low
nematode resistance, respectively (Christensen
et al. 2003). At this site, they performed similar
to 3309C, a nematode-susceptible rootstock
(Fig. 14.4a, b). These results suggest that either the
nematode population is sporadically distributed at
this site, no longer an issue, or that 110R and

Fig. 14.3 Amador County, Montevina Zinfandel princi-
pal component analysis for a yield and b pruning weights
of the different rootstocks. The first principal component
(X-axis) correlated in all cases to either pruning weight or

yield and accounted for the majority of the variation. The
second principal component (Y-axis) correlated to year
and accounted for relatively little variation
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O39-16 are vigorous enough that the damage by
the nematode population is not having a profound
effect yet.

14.2.6 Sonoma County, Chalk Hill:
Merlot

The Sonoma County’s Chalk Hill Merlot site is
considered to be a Clear Lake/Haire clay soil and
was found to be potassium deficient (Lambert
et al. 2008). Rootstocks 420A, 110R, 5BB, 5C
and 1103P are sensitive to soil potassium defi-
ciencies (Christensen et al. 2003). 420A is par-
ticularly sensitive to potassium deficiency, and
its low yields and pruning weights were consis-
tent with low potassium levels (Fig. 14.5a, b).
Despite the deficiency, V. berlandieri �
V. rupestris-based rootstocks (110R and 1103P)
performed well on this heavy clay site with high
yields and moderate to high pruning weights
(Fig. 14.5a, b). 5C and 5BB (V. berlandieri �
V. riparia) also appeared to be unaffected by
the potassium deficiency. 101-14 was less vig-
orous and produced less yield than 3309C
(Fig. 14.5a, b). 44-53 is known to have a high
affinity for potassium and boron uptake and poor

magnesium uptake. Despite the ability to scav-
enge potassium in a low potassium environment,
44-53 had the lowest pruning and fruit weights at
this site (Fig. 14.5a, b).

14.2.7 Napa County, Rutherford:
Cabernet Sauvignon

The Napa County’s Rutherford Cabernet Sauvi-
gnon site was on Cortina very gravelly loam and
had a known history of biotype B phylloxera
infestation (Anamosa 1998). Harmony and
Freedom are considered to have only low to
moderate resistance to phylloxera (Christensen
et al. 2003). Despite phylloxera’s presence, both
were classified as having moderate yields
(Fig. 14.6a and pruning weights (Fig. 14.6b). It
is possible that without phylloxera, both would
have had high yields and pruning weights, as
both are considered to be highly productive and
vigor inducing (Christensen et al. 2003). O39-16
was the only rootstock with high yield and high
pruning weights. Rootstocks considered to be
drought susceptible clustered together in the low
pruning weight category: 420A, 101-14, 3309C
and SO4 (Fig. 14.6b).

Fig. 14.4 Mendocino County, La Ribera Cabernet Sau-
vignon principal component analysis for a yield and
b pruning weights of the different rootstocks. The first
principal component (X-axis) correlated in all cases to

either pruning weight or yield and accounted for the
majority of the variation. The second principal component
(Y-axis) correlated to year and accounted for relatively
little variation
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14.3 Conclusions

Differences among the rootstocks in the various
trial sites emphasize the role soil texture, water
and nutrient availability, pest and disease pres-
sure, trellising and scion cultivar have on the
productivity of grapevines, specifically with
regard to fruit yields and pruning weights. These
rootstock trials serve to guide to continued

rootstock breeding efforts focusing on
site-specific production and site adaptation goals.

Despite genetically driven differences in
rootstock behavior, site soil conditions are para-
mount in selecting an appropriate rootstock. On
the heavily textured clay soils of the Delta
Chardonnay, the highest pruning weights and
fruit yields were associated with the rootstocks
with strong affinity for deep fertile clay soils such
as 1103P and 110R. On lower fertility gravelly

Fig. 14.5 Sonoma County, Chalk Hill Merlot principal
component analysis for a yield and b pruning weights of
the different rootstocks. The first principal component
(X-axis) correlated in all cases to either pruning weight or

yield and accounted for the majority of the variation. The
second principal component (Y-axis) correlated to year
and accounted for relatively little variation

Fig. 14.6 Napa County, Rutherford Cabernet Sauvignon
principal component analysis for a yield and b pruning
weights of the different rootstocks. The first principal
component (X-axis) correlated in all cases to either

pruning weight or yield and accounted for the majority of
the variation. The second principal component (Y-axis)
correlated to year and accounted for relatively little
variation
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soils such as the Mendocino and Napa sites, the
more poorly adapted V. riparia-driven root-
stocks, 101-14, 3309C, 420A and SO4, had
lower yields and pruning weights. On the sandy
soil sites of the Delta Cabernet Sauvignon,
Montevina and Lodi sites, rootstocks such as
110R and 5BB typically had the higher pruning
weights and yields.
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15Scion Breeding for Resistance
to Biotic Stresses

Ian Dry, Summaira Riaz, Marc Fuchs, Mark Sosnowski
and Mark Thomas

Abstract
The majority of grapevine cultivars used for
wine, table grape and dried-fruit production
are derived from the Eurasian grape species
Vitis vinifera because of its superior aroma
and flavour characteristics. However, this
species has little or no genetic resistance
against the major pests and pathogens that
attack above-ground parts of the grapevine
including the trunk, canopy and bunches. As a
result, grape production is highly dependent
on the frequent use of fungicides and pesti-

cides, which has significant implications for
the economic and environmental sustainability
of grape production. This chapter will sum-
marize our current knowledge of the different
resistance loci/genes that have been identified
in wild grapevine species that could poten-
tially be used to develop new grapevine
cultivars with enhanced genetic resistance by
marker-assisted selection.

15.1 Introduction

The Eurasian grape species, Vitis vinifera, which
is the predominant species used for wine, table
grape and dried grape production all over the
world is susceptible to numerous pests and
pathogens including fungi, oomycetes, bacteria,
viruses, phytoplasma, insects and arachnids. All
parts of the grapevine plant are subject to attack
by these organisms including the roots, trunk,
arms, cordons, canes, shoots, leaves, rachis and
berries. One reason for the susceptibility of V.
vinifera cultivars to many of the major pests and
pathogens is that these organisms are not
indigenous to Eurasia, and as such, there has
been no selection pressure to evolve resistance.

At the moment, most of these pests and
pathogens are controlled by the frequent appli-
cation of fungicides and pesticides. Depending
on the region and the season, grape growers may
be applying anywhere between 10 and 25
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applications per season (Butault et al. 2010). Not
only does this translate into increased production
costs for growers, but there are also potential
negative impacts of these chemicals on the health
of vineyard soils (Komarek et al. 2010; Brunetto
et al. 2016), beneficial organisms (Gadino et al.
2011), vineyard workers (Le Moal et al. 2014)
and even surrounding populations (Raanan et al.
2017). In a recent study, Esteve-Turrillas et al
(2016) analysed 250 commercial wines from the
major wine-growing regions of the world for the
presence of five of the most commonly used
new-generation organic fungicides and found
44% of wines contained at least one of the
fungicides at concentrations > 10 µg per L and
more than 100 µg per L in 8.4% of the wines
tested. This clearly has potential implications for
consumer health and international trade.

A more economically and environmental
sustainable method to reduce the susceptibility of
grapevines to attack by these pests and patho-
gens would be to breed new cultivars with
enhanced genetic resistance. Indeed, European
grape breeders started introgressing resistance
(R) loci from wild North American Vitis spp. into
V. vinifera in the late 1880s, in response to the
accidental introduction of powdery mildew and
downy mildew from North America. While this
resulted in the generation of many Vitis inter-
specific hybrids with improved resistance to
powdery and downy mildew, the reduced quality
of wine made from these resistant hybrids has
significantly limited their adoption for wine
production (Pedneault and Provost 2016). This is
because the time and cost involved in mounting a
grapevine breeding program meant that breeders,
in the main, did not undertake sufficient back-
crossing to remove deleterious wine-quality traits
while preserving the resistance loci.

With the publication of the PN40024 grape
genome in 2007, the use of more efficient
breeding techniques, such as marker-assisted
selection (MAS), to introgress resistance loci
from wild grape species from North America and
East Asia is now possible. Chapter 14 has cov-
ered the breeding of new rootstocks with resis-
tance to belowground pathogens; this chapter

will focus specifically on breeding strategies to
improve the resistance of the grapevine scion.

15.2 Breeding for Resistance
to Mildews

Plant pathogens can be divided into biotrophs,
hemi-biotrophs and necrotrophs, according to
their lifestyles (Glazebrook 2005). Biotrophs
derive nutrients from living host tissues, whereas
necrotrophs derive nutrients from dead or dying
cells. Some pathogens can be clearly assigned as
biotrophs or necrotrophs. However, many others
behave as both biotrophs and necrotrophs,
depending on the conditions in which they find
themselves or the stages of their life cycles. Such
pathogens are called hemi-biotrophs.

Microbes become pathogens when they
evolve the capacity to breach the first line of
plant defence called pathogen-associated molec-
ular pattern-triggered immunity (PTI). They do
this by secreting small proteins into plant cells,
called effectors, which suppress PTI and facilitate
infection (Dodds and Rathjen 2010). Overtime,
certain plant species in which PTI had been
compromised, evolved resistance genes (R-ge-
nes) that encode proteins that specifically rec-
ognize these effectors, leading to effector-
triggered immunity (ETI). Effector-triggered
immunity is commonly associated with pro-
grammed cell death (PCD) (observed as a
hypersensitive response), which kills the invaded
cell and thereby prevents biotrophic pathogens
from obtaining the nutrition required for further
growth and development.

The world grape industry is based predomi-
nately on cultivars of the Eurasian grape species,
V. vinifera, which were bred in Europe some
200–600 years ago (Robinson et al. 2012).
However, powdery mildew (Erysiphe necator
syn. Uncinula necator) and downy mildew
(Plasmopora viticola) were only introduced into
Europe from North America in the
mid-nineteenth century (Gessler 2011; Gadoury
et al. 2012). As a result, the important V. vinifera
cultivars have little or no genetic resistance to
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these pathogens and grape growers rely on the
frequent use of agrochemicals to minimize the
potentially devastating impact of these pathogens
on grape yield and quality. While the use of older
contact fungicides based on sulphur and copper
remain effective, the development of E. necator
and P. viticola isolates with resistance to sys-
temic fungicide chemistries introduced since the
1960s presents a serious management problem in
some viticultural regions (Colcol and Baudoin
2016). In contrast, many wild grapevine species
endemic to North America and China display
significant levels of resistance to these pathogens
(Wan et al. 2007; Cadle-Davidson 2008; Cadle-
Davidson et al. 2011), which offers the potential
to generate new mildew-resistant grape cultivars.

15.2.1 Powdery Mildew Resistance
Loci

To date, 12 loci have been identified from a
range of different grape species native to North
America, China and Central Asia, to confer
resistance to E. necator (Table 15.1).

Run1 (Resistance to Uncinula necator 1) was
the first locus identified from the wild North
American grapevine speciesM. rotundifolia (syn.
V. rotundifolia) cv. Thomas that could confer
strong resistance to powdery mildew following
introgression into V. vinifera (Bouquet 1986;
Pauquet et al. 2001). The gene responsible for
powdery mildew resistance at the Run1 locus
was cloned and functionally characterized by
Feechan et al. (2013) and shown to encode a
Toll/interleukin-1 receptor (TIR)—nucleotide-
binding site (NB)—leucine-rich repeat domain
(LRR) domain protein which represents the most
important class of R proteins in plants (Gururani
et al. 2012). These NB-LRR proteins specifically
recognize pathogen effector molecules secreted
during infection and initiate effector-triggered
immunity, which is highly effective against bio-
trophic pathogens such as powdery mildew.
Interestingly, the genomes of perennial woody
plants appear to possess a larger number of
NB-LRR resistance genes than annual herba-
ceous plants which most probably reflects the

more diverse range of pathogens that perennial
plants have to deal with over their lifespan
(Tobias and Guest 2014). The gene, designated
MrRUN1, confers complete resistance against
isolates from Australia, North America and
France by rapidly inducing PCD in penetrated
epidermal cells (Feechan et al. 2013). However, a
powdery mildew isolate (Musc4) collected from
the south-eastern region of North America
(Brewer and Milgroom 2010) to which M.
rotundifolia is native, was found to be capable of
breaking MrRUN1 resistance (Feechan et al.
2013) indicating that the effector recognized by
the MrRUN1 protein has either been mutated or
completely lost from the Musc4 isolate.

Two other powdery mildew R loci have also
been mapped to different chromosomes in other
M. rotundifolia cultivars. Allelic variants of the
Run2 locus, Run2.1 and Run2.2 on chr18, have
been identified in the M. rotundifolia cultivars
‘Magnolia’ and ‘Trayshed’, respectively (Riaz
et al. 2011). Like Run1, powdery mildew resis-
tance mediated by Run2.1 and Run2.2 appears to
be mediated via programmed cell death
(PCD) (Feechan et al. 2015). However, whereas
Run2.1 was able to mount a resistance response
against as the Musc4 isolate, Run2.2 was com-
pletely susceptible. The resistance conferred by
Run2.1 against the Musc4 isolate makes it a good
candidate for pyramiding with Run1. Ren5
(Resistance to Erysiphe necator) was mapped to
chr14 inM. rotundifolia cv. ‘Regale’ (Blanc et al.
2012) and appears to exert its action after the
formation of the first appressorium and by stop-
ping further mycelium development.

Other North American Vitis species have also
been shown to be potential sources of powdery
mildew resistance, but the level of resistance
appears to be weaker than that conferred by
powdery mildew R genes from M. rotundifolia.
The Ren2 locus, from V. cinerea, provides partial
resistance to powdery mildew including the
Musc4 isolate (Feechan et al. 2015). The Ren3
locus was originally reported by Welter et al.
(2007) to confer partial resistance to powdery
mildew and was mapped to chr15. This locus
was originally identified as coming from the
interspecific hybrid ‘Regent’ which has a
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Table 15.1 Resistance loci in grapevine species that confer resistance to scion pathogens

Locus Pathogen
species

Chr Resistance
type

Source of
resistance

Origin of
R locus

References

Powdery mildew

Run1 Erysiphe
necator

12 Major M. rotundifolia North America Pauquet et al.
(2001)

Run2 18 Major M. rotundifolia North America Riaz et al.
(2011)

Ren1 13 Major V. vinifera
subsp. sylvestris

Central Asia Hoffmann et al.
(2008)

Ren2 14 Partial V. cinerea North America Dalbo et al.
(2001)

Ren3 15 Partial unknown North America Zendler et al.
(2017)

Ren4 18 Major V. romanetii China Ramming et al.
(2011)

Ren5 14 Major M. rotundifolia North America Blanc et al.
(2012)

Ren6 9 Major V. piasezkii China Pap et al. (2016)

Ren7 19 Partial V. piasezkii China Pap et al. (2016)

Ren8 18 Minor unknown North America Zyprian et al.
(2016)

Ren9 15 Partial unknown North America Zendler et al.
(2017)

Ren10 2 Minor unknown North America Teh et al. (2017)

Downy
mildew

Rpv1 Plasmopara
viticola

12 Partial M. rotundifolia North America Merdinoglu
et al. (2003)

Rpv2 18 Major M. rotundifolia North America Merdinoglu,
2018, pers.
comm.

Rpv3 18 Partial Multiple Vitis
species (see
text)

North America Welter et al.
(2007), Bellin
et al. (2009), Di
Gaspero et al.
(2012)

Rpv4 4 Minor unknown North America Welter et al.
(2007)

Rpv5 9 Minor V. riparia North America Marguerit et al.
(2009)

Rpv6 12 Minor V. riparia North America Marguerit et al.
(2009)

Rpv7 7 Minor unknown North America Bellin et al.
(2009)

Rpv8 14 Major V. amurensis China Blasi et al.
(2011)

(continued)
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Table 15.1 (continued)

Locus Pathogen
species

Chr Resistance
type

Source of
resistance

Origin of
R locus

References

Rpv9 7 Minor V. riparia North America Moreira et al.
(2010)

Rpv10 9 Partial V. amurensis China Schwander et al.
(2012)

Rpv11 5 Minor unknown North America Fischer et al.
(2004)

Rpv12 14 Major V. amurensis China Venuti et al.
(2013)

Rpv13 12 Minor V.riparia North America Moreira et al.
(2011)

Rpv14 5 Minor V. cinerea North America Ochssner et al.
(2016)

Rpv15 18 Major V. piasezkii China Pap et al.
(unpublished)

Rpv16 9 Minor V. piasezkii China Pap et al.
(unpublished)

Rpv17 8 Minor unknown North America Divilov et al.
(2018)

Rpv18 11 Minor unknown North America Divilov et al.
(2018)

Rpv19 14 Minor V. rupestris North America Divilov et al.
(2018)

Rpv20 6 Minor unknown North America Divilov et al.
(2018)

Rpv21 7 Minor unknown North America Divilov et al.
(2018)

Rpv22 15 Partial V. amurensis China Song et al.
(2018)

Rpv23 2 Minor V. amurensis China Song et al.
(2018)

Rpv24 18 Minor V. amurensis China Song et al.
(2018)

Rpv25 15 Partial V. amurensis China Lin et al. (2019)

Rpv26 15 Partial V. amurensis China Lin et al. (2019)

Rpv27 18 Partial V. aestivalis cv.
‘Norton’

North America Sapkota et al.
(2019)

Botrytis bunch rot

Unnamed
QTL

Botrytis cinerea 2 Major V. aestivalis cv.
‘Norton’

North America Hwang et al.
(2018)

Non-Botrytis bunch rots

Rgb1 Guignardia
bidwellii

14 Major V. cinerea North America Rex et al. (2014)

Rgb2 16 Minor V. cinerea or
V. riparia

North America Rex et al. (2014)

(continued)
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complex pedigree involving V. vinifera and
North American Vitis species. Thus, the original
source of Ren3 is still unknown. Further fine
mapping of the Ren3 locus indicated that the
original locus may, in fact, be composed of two
adjacent R loci, Ren3 and Ren9 (Zendler et al.
2017). The mechanism of resistance conferred by
the Ren3 and Ren9 loci is unknown, but involves
a post-invasion response as demonstrated by the
fact that E. necator is still able to develop a dense
mycelial network on the leaf surface, but only
infrequently forms conidia. Two other minor
powdery mildew R loci, Ren8 and Ren10, from
North American Vitis species of unknown origin
have also been reported (Zyprian et al. 2016; Teh
et al. 2017).

Wild Chinese Vitis species also represent an
important source of major dominant R loci
against powdery mildew with resistance levels
similar to that observed for Run1. Ren4 has been
successfully introgressed into V. vinifera from
the V. romanetii and shown to segregate as a
single dominant locus (Ramming et al. 2011;
Mahanil et al. 2012). Ren4 resistance was ini-
tially reported to be associated with high levels
of penetration resistance and did not appear to be
dependent on the induction of PCD (Ramming
et al. 2011). However, more recent studies indi-
cate that Ren4-mediated resistance occurs
post-penetration and may involve two different
mechanisms; penetrated epidermal cells either
undergo PCD or the haustoria becomes encased

in callose (Fig. 15.1), thereby effectively block-
ing nutrient uptake (Dry IB, unpublished). We
have also confirmed that Ren4 resistance is not
broken by the Musc4 isolate (Fig. 15.1).

Another wild Chinese grapevine species, V.
piasezkii, has also been shown to contain at least
two powdery mildew R loci, designated Ren6
and Ren7, on chr 9 and 19, respectively, which
mediate a PCD-based resistance response (Pap
et al. 2016). The Ren6 resistance response was
found to be even stronger than that mediated by
the Run1 locus, when compared in the same Vitis
background with 92–95% of epidermal cells
displaying effective PCD, i.e. no development of
secondary hyphae, after 2 dpi. In contrast, the
resistance response of Ren7 genotypes was much
slower than Ren6 resulting in a high percentage
of penetrated epidermal cells in which either no
PCD is observed or the PCD induction can be
considered ineffective because the fungus is still
able to produce a secondary hyphae (Pap et al.
2016).

Finally, it is now clear that certain accessions
of V. vinifera from Central Asia also contain a
major R locus that, while less effective than
Run1-mediated resistance, still significantly
restricts powdery mildew growth and sporula-
tion. The Ren1 locus has been mapped to chr13
in two V. vinifera cultivars, ‘Kishmish vatkana’
and ‘Dzhandzhal kara’, originating from
Uzbekistan (Hoffmann et al. 2008; Coleman
et al. 2009). The speed of PCD induction in

Table 15.1 (continued)

Locus Pathogen
species

Chr Resistance
type

Source of
resistance

Origin of
R locus

References

Bacterial diseases

Pdr1 Xylella
fastidiosa

14 Major V. arizonica North America Riaz et al.
(2006)

Rcg1 Agrobacterium
spp.

15 Major V. amurensis China Kuczmog et al.
(2012)

Trunk
disease

Rda1 Diaporthe
ampelina

15 Major V. cinerea North America Barba et al.
(2018)

Rda2 7 Minor Multiple Vitis
species

North America Barba et al.
(2018)
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penetrated epidermal cells appears to be slower
than that observed in Run1 genotypes, and as a
result, more powdery mildew hyphal growth and
sporulation is observed on Ren1 plants than on
Run1 plants (Hoffmann et al. 2008). The synte-
nous region in the V. vinifera PN40024 reference
genome contains a cluster of genes that encode
putative coiled-coil (CC)-NB-LRR proteins
(Coleman et al. 2009). However, no data has yet
been published to indicate what candidate R ge-
nes are present in this region in ‘Kishmish vat-
kana’ or ‘Dzhandzhal kara’. Riaz and co-workers
(2013) subsequently identified an additional six
V. vinifera and two V. vinifera subsp. sylvestris
accessions from Central Asia that also contained
a Ren1-like locus. Based on genetic marker
analysis, they concluded that the Ren1-like
resistance in V. vinifera subsp. sylvestris was
most likely the progenitor of the resistance in the
Central Asian V. vinifera accessions.

15.2.2 Breeding for Reduced
Susceptibility
to Powdery Mildew?

Successful penetration of a plant host by an
adapted powdery mildew species has been shown
to be dependent on the presence of a functional
allele of the Mildew resistance locus O (MLO) in
a number of crop species (Kusch and Panstruga
2017). This therefore represents an example of a
pathogen susceptibility gene. MLO proteins
belong to large gene families, which are unique
to plants and encode seven-transmembrane
domain proteins of unknown biochemical
activity localized in the plasma membrane
(Acevedo-Garcia et al. 2014). Significantly, only
specificMLO genes within the family are capable
of acting as powdery mildew susceptibility genes
and these appear to encode proteins with con-
served motifs within the cytoplasmic C-terminal

Fig. 15.1 Ren4-mediated resistance involves the induc-
tion of both programmed cell death and callose encase-
ment of the haustorial complex. a Grapevine powdery
mildew spores of a various North American isolates
(Feechan et al. 2015) were inoculated onto detached
leaves of a BC2-Ren4 genotype and samples after 2 days.
Visualization and scoring for PCD and callose deposition
were performed as described by Feechan et al. (2011).
Results are expressed as the percentage of successful
infections that resulted in either PCD induction (grey bar)

or callose deposition (white bar). Note that isolates Musc4
and Musc5 are virulent and NY1-137 partially virulent on
Run1 genotypes, whereas the Ren4 genotype is highly
resistant to all isolates tested. b Photographs of infection
by NY19 isolate. Top panel shows germinated conidium
(c) and appressoria (ap) on the surface of the leaf. Middle
panel is focussed below the appressorium to show the
globular papillum (arrow). Bottom panel is the same view
as middle panel but viewed using a blue light filter set to
visualize callose deposition around the haustorial complex
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domain of the MLO protein (Panstruga 2005).
The mechanism by which MLO proteins act as
powdery mildew susceptibility factors is yet to
be resolved.

Based on sequence homology, the presence of
conserved C-terminal motifs and expression
kinetics following powdery mildew infection,
Feechan et al. (2008) identified three members of
the VvMLO gene family that may act as powdery
mildew susceptibility genes in grapevine. Pessina
et al. (2016) subsequently demonstrated that
RNAi-mediated silencing of one of these genes
VvMLO-7 (designated VvMLO17 in (Feechan
et al. 2008)) significantly increased resistance to
powdery mildew in the grapevine.

MLO-based resistance is recessive and
non-race specific. As such, it is likely to be much
more durable in the field than the resistance
conferred by to the dominant race-specific
resistance conferred by the powdery mildew
R-genes described above. However, being a
recessive trait poses significant challenges for
strategies based on conventional breeding tech-
niques in comparison to targeted gene-editing
approaches, which are currently still considered
as transgenic in some countries. Indeed, gene
editing has already been shown to be effective in
generating powdery mildew-resistant bread
wheat through the simultaneous editing of three
MLO homoalleles (Wang et al. 2014).

Thus, for the foreseeable future, the only way
to generate a non-transgenic powdery mildew-
resistant MLO grapevine mutant is to employ
techniques such as EcoTILLING (Mejlhede et al.
2006) to search V. vinifera germplasm collec-
tions for point mutations and/or small insertions/
deletions in VvMLO7, where the powdery mil-
dew resistance phenotype is masked by the
presence of the wild-type MLO allele.

15.2.3 Downy Mildew Resistance Loci

As many as 27 R loci have been reported from
wild grapevine species that are capable of con-
ferring some level of increased resistance to
P. viticola when introgressed into V. vinifera
(Table 15.1).

The first downy mildew R locus to be iden-
tified from a wild grape species was Rpv1
(Resistance to Plasmopora viticola 1) from
M. rotundifolia cv. ‘Trayshed’ and was found to
be tightly linked to the Run1 locus (Merdinoglu
et al. 2003). It was subsequently shown that Rpv1
and Run1 were co-located within the same region
on chr12 (Anderson et al. 2011). Indeed, to date,
no recombinants have been identified in over
4000 progeny that have been analysed for a
recombination event between Run1 and Rpv1
(Dry IB, unpublished). Therefore, these two
resistance specificities can effectively be consid-
ered as being part of the same genetic locus, the
Run1/Rpv1 locus. Subsequent sequencing of the
Run1/Rpv1 locus showed it to contain seven
genes that encode TIR-NB-LRR proteins, one of
which confers resistance to powdery mildew
(MrRUN1) and one which confers resistance to
downy mildew (MrRPV1) (Feechan et al. 2013).
While the mechanism of resistance mediated by
both Run1 and Rpv1 in V. vinifera appears to be
based on induction of PCD following penetra-
tion, the level of resistance conferred by these
two loci is different. Run1 resistance is found to
be qualitative in most V. vinifera backgrounds
with little or no hyphal development or sporu-
lation, whereas Rpv1 resistance can be consid-
ered as quantitative, typically reducing downy
mildew sporulation by 70–80%. Even so, Rpv1
still confers strong resistance to downy mildew
under field conditions (Fig. 15.2). Interestingly,
Feechan et al. (2013) demonstrated that the level
of downy mildew resistance in MrRPV1 trans-
genic vines was significantly higher than that
observed in the Rpv1 backcross 5 breeding line
BC5:3294-R23 which may be the result of the
much higher levels of MrRPV1 transcription in
transgenic vines relative to the BC5 line.

A second major downy mildew R locus, des-
ignated Rpv2, has been introgressed into
V. vinifera from M. rotundifolia cv. Trayshed
(D. Merdinoglu, 2018, personal communication).
In contrast to Rpv1, Rpv2 confers total resistance
to downy mildew with no sporulation and the
appearance of small localized necrotic lesions.
The Rpv2 locus has been mapped to a region on
chr18, which contains a cluster of five genes
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encoding putative TIR-NB-LRR proteins within
the syntenous region on chr18 of the PN40024
V. vinifera reference genome.

Numerous minor downy mildew R loci have
been identified from a range of North American
Vitis species (Fischer et al. 2004; Welter et al.
2007; Bellin et al. 2009; Marguerit et al. 2009;
Moreira et al. 2010; Ochssner et al. 2016; Divi-
lov et al. 2018) (Table 15.1). While many of
these minor R loci could be useful, when used in
combination with other major downy mildew
R loci to enhance the durability of resistance in
the field, it is not clear from the data available as
to whether they would provide significant field
resistance if deployed on their own. For this
reason, this chapter will not consider these minor
downy mildew R loci in any further detail.

One exception is Rpv3, which confers partial
resistance to downy mildew characterized by the
induction of PCD and the development of sparse
sporangiophores around the site of attempted
infection (Welter et al. 2007; Bellin et al. 2009;
Di Gaspero et al. 2012; Zyprian et al. 2016).
Since the late 1800s, the Rpv3 locus has been
introgressed into numerous hybrid wine grape
cultivars from the complex interspecific hybrid

‘Villard blanc’ (Bellin et al. 2009). This has led
to the generation of seven different Rpv3 haplo-
types originating from at least four different
North American donor species: V. labrusca, V.
lincecumii, V. riparia and V. rupestris (Di Gas-
pero et al. 2012). The widespread use of these
downy mildew-resistant hybrid cultivars in
Eastern Europe, since the early twentieth century,
may also be responsible for the appearance of
downy mildew isolates that are avirulent on Rpv3
genotypes (Peressotti et al. 2010). However, it is
also worth noting that downy mildew isolates
virulent on the Rpv3-containing cultivar ‘Regent’
were observed in Bordeaux within only 5 years
after planting (Delmotte et al. 2014) raising
questions about the durability of the Rpv3 locus
for breeding purposes. The same isolates that
were found to be virulent on ‘Regent’ were still
avirulent on the Rpv1 genotype Mtp3082-1-42
demonstrating that Rpv1 and Rpv3 have different
pathogen specificities (Delmotte et al. 2014).

A recent report has also highlighted the
influence of the genetic background on the
intensity of Rpv3-dependent downy mildew
resistance. Foria et al. (2018) analysed the level
of downy mildew resistance in the field of 76

Fig. 15.2 Rpv1 confers strong resistance against downy
mildew in the field. Comparison of impact of heavy
downy mildew infection on the performance of the
susceptible V. vinifera cultivar ‘Chasan’ and the Bouquet

breeding line BC4:3082-1-42 containing the Rpv1 downy
mildew resistance locus grown in an unsprayed vineyard
at INRA Pech Rouge, France (Photograph courtesy of
Alain Bouquet, deceased)
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grape cultivars into which the Rpv3 locus had
been introgressed. Their results demonstrated
that while all cultivars exhibited a PCD-mediated
resistance response, some genotypes exhibited
high resistance under all conditions, whereas
others performed well under low disease pres-
sure, but suffered substantial damage with higher
disease pressure.

A clue to what other grapevine genes might be
important in modulating the effectiveness of the
Rpv3 locus comes from analysis of the segrega-
tion of downy mildew resistance in a population
derived from a cross between the downy
mildew-resistant cultivar ‘Merzling’ (a complex
hybrid with both V. rupestris and V. lincecumii in
its background) and susceptible V. vinifera cv.
Teroldego (Vezzulli et al. 2018). QTL mapping
showed that downy mildew resistance in this
population was not only associated strongly with
inheritance of the Rpv3-3 locus, but was also
associated with a number of other QTLs linked to
stilbenoid production. This led to the conclusion
that an important component of Rpv3-3-mediated
downy mildew resistance may involve the action
of stilbene phtyoalexins which have previously
been shown to have toxic effects on downy
mildew growth (Pezet et al. 2004a, b; Alonso-
Villaverde et al. 2011).

As with powdery mildew R loci, a number of
wild Chinese Vitis species have also been iden-
tified as potential source of major R loci against
P. viticola. Some accessions of V. amurensis
display a high level of resistance to P. viticola
(Staudt and Kassemeyer 1995; Wan et al. 2007;
Cadle-Davidson 2008). Using a population of
232 progeny from a selfing of V. amurensis,
Blasi et al. (2011) reported the mapping of a
major downy mildew R locus on the upper arm
of chr14 which they designated Rpv8. The Rpv8
locus mediates a strong induction of PCD
resulting in a low level of sporulation. Subse-
quently, Venuti et al. (2013) using a different,
and much larger segregating population of 2532
individuals, also mapped a major downy mildew
R locus in V. amurensis, which they designated
as Rpv12, to the same approximate location on
chr14. Rpv12 conferred the ability to establish a
HR within 24–48 h post-inoculation and

significantly restricted sporulation of P. viticola.
A direct comparison of the resistance phenotype
with genotypes containing Rpv12 and Rpv3
indicated that the restriction of P. viticola
sporulation by Rpv12 was more significant than
Rpv3. Further investigation will be required to
confirm whether the resistance conferred by Rpv8
and Rpv12 is mediated by the same R-gene or
paralogous genes. Analysis of the syntenous
region in the PN40024 reference genome
identified a cluster of 13 CC-NB-LRR genes
which form part of a more complex structure of
46 clustered NB-LRRs in the upper arm of chr14
(Venuti et al. 2013).

Another downy mildew R locus, Rpv10, has
also been mapped to chr9 of V. amurensis
(Schwander et al. 2012). Rpv10 confers partial
resistance to downy mildew, equal to or slightly
better than that observed for Rpv3. No informa-
tion is available as to the mechanism of Rpv10-
mediated resistance, although Schwander et al.
(2012) noted that the syntenous region on chr9 in
the PN40024 reference genome contains a large
CC-NBS-LRR gene cluster.

More recently, five more downy mildew R loci
have been identified in two specific V. amurensis
cultivars. Three QTLs (Rpv22, Rpv23 and Rpv24)
were identified in ‘ShuangHong’ while two QTLs
(Rpv25 and Rpv26) were mapped in ‘Shuangyou’.
Both Rpv25 and Rpv26map to chr15, and it is still
not certain if they represent the same locus or two
different loci. It is interesting to note that Rpv22
also maps to chr15 and that both Rpv22 and
Rpv25/26 confer partial resistance. Given that
both ‘ShuangHong’ and ‘Shuangyou’ are derived
from the same parent (V. amurensis cv.
Shuangqing) (Huang et al. 1988; Song et al.
1998), there is a possibility that Rpv22, Rpv25
and Rpv26 are actually the same locus.

Finally, another Chinese species V. piasezkii
is also reported to have two downy mildew R loci
(D. Pap, 2018, personal communication). This
includes a major R locus, designated Rpv15, on
chr18 and a minor downy mildew R locus des-
ignated Rpv16, which maps to chr9. Preliminary
results indicate that Rpv15 confers strong
PCD-mediated resistance similar to that observed
for Rpv12 (Dry IB, unpublished).
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15.2.4 Potential Sources of New
Mildew R Loci

In addition to the wild grapevine species listed in
Table 15.1, there are a number of other Vitis
species that have been reported to show good
resistance to powdery mildew and downy
mildew that warrant further investigation as
potential sources of new major R loci to be used
for future grapevine breeding programs.

In terms of powdery mildew resistance, this
includes the three North American species V.
doaniana, V. palmata and V. shuttleworthii and
the three Chinese species V. davidii, V. davidii
var. ‘cyanocarpa’, V. pseudoreticulata var.
‘Baihe-35-1’ and V. quinquangularis (Staudt
1997; Wan et al. 2007; Cadle-Davidson et al.
2011). However, a more recent survey of pow-
dery mildew resistance in Chinese Vitis species,
carried out by Gao et al. (2016), indicated that
the level of powdery mildew resistance observed
for V. davidii, V. davidii cv. cyanocarpa and V.
quinquangularis was lower than had been pre-
viously reported (Wan et al. 2007). These dif-
ferences may be the result of differences in
powdery mildew isolates used in each study or
the different assay systems used, i.e. inoculated
detached leaves versus natural field infections.
A number of these same species also show good
resistance to downy mildew including V. davidii
var. ‘cyanocarpa’, V. pseudoreticulata, V. quin-
quangularis and V. shuttleworthii as well as V.
romanetii and V. yeshanensis (Staudt and
Kassemeyer 1995; Wan et al. 2007; Cadle-
Davidson 2008).

One important point to note about the results
of these surveys of powdery mildew and downy
mildew resistance of wild Vitis species is that not
all accessions of a particular species show the
resistance phenotype (Staudt and Kassemeyer
1995; Wan et al. 2007; Cadle-Davidson 2008). It
is therefore critical to confirm the resistance
phenotype of any new germplasm with local
powdery mildew and/or downy mildew isolates
before using it as a parent to generate new
resistant genotypes.

15.3 Breeding for Resistance
to Bunch Rots

The most common and economically significant
bunch rot for grape production is caused by
Botrytis cinerea. Any bunch rot caused by
organisms other than B. cinerea is classified as a
non-Botrytis bunch rot. They can be caused by a
range of fungi, yeasts and some bacteria,
including acetic acid bacteria. The majority of
the organisms involved are fungi that spread
through the formation of fungal spores and can
be carried in the wind or by rain splash. Many are
opportunistic pathogens that infect berries
through wounds (e.g. berry splitting after rain
events). Bunch rots reduce grape yields and have
negative effects on grape and wine quality. Some
bunch rots infect berries directly including alter-
naria rot (Alternaria spp.), bitter rot (Greeneria
uvicola), black rot (Guignardia bidwellii),
botryosphaeria rot (Botryosphaeria spp.), cla-
dosporium rot (Cladosporum spp.) and ripe rot
(Colletotrichum spp.). Other bunch rots are sec-
ondary invaders that enter the berry through
wounds or following infection by a primary
invader and include aspergillus rot (Aspergillus
spp.), penicillium rot (Penicillium spp.), rhizopus
rot (Rhizopus spp.), sour rot (various fungi, yeasts
and bacteria) and white rot (Coniella diplodiella).
For further information about these different
non-botrytis rots, the reader is directed to the
comprehensive review of Wilcox et al. (2015).

In general, the pathogens responsible for
bunch rots fall into the category of necrotrophic
pathogens, and in contrast to the success of
plants in evolving major R-genes to resist or
reduce infection by biotrophic pathogens by ETI,
such a defence response will clearly not be
successful against necrotrophic pathogens that
colonize dead or dying tissue. It is not surprising
therefore that no major R-genes have been found
in any crop species that confer strong resistance
against necrotrophic pathogens. Instead, plants
generally rely on the contribution of many minor
defence genes to try and restrict the development
of necrotrophic pathogens.
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15.3.1 Resistance to Botrytis Bunch
Rot

Botrytis bunch rot can result in a reduction in
wine quality by causing oxidation, off-flavours
and other biochemical changes (Ribéreau-Gayon
et al. 1980). Economic loss for grape production
worldwide is estimated to be at least 2 billion
$US per annum (Elmer and Michailides 2004).
The level of B. cinerea infection observed in the
vineyard can be considered the result of at least
two major factors. The first is the expression of
any genetic resistance within the developing
grape berry. Analysis of genetic inheritance of
Botrytis resistance in tomato, Arabidopsis and
gerbera has demonstrated that it is quantitative
and genetically complex, requiring the contribu-
tion of multiple loci to reduce disease severity
(Finkers et al. 2007; Rowe and Kliebenstein
2008; Fu et al. 2017). This can only be accurately
assessed in grapevine by the inoculation of
individual grape berries.

The second major factor determining the
susceptibility of different grape cultivars to
Botrytis bunch rot is bunch architecture. Culti-
vars with tight (compact) bunches develop severe
rot, whereas those with loose (open) bunches are
less susceptible (Vail and Marois 1991; Smithy-
man et al. 1998; Vail et al. 1998; Zabadal and
Dittmer 1998). This heightened susceptibility in
tight bunches is most likely due to the fact that
the inner surface of the cluster is exposed to high
water vapour concentrations and, possibly,
extended periods of surface wetness (Vail and
Marois 1991). This can lead to an increase in
micro-cracking of the berry cuticular membrane
(Becker and Knoche 2012) which is thought to
play a critical role as a barrier to B. cinerea
infection. A significant correlation has also been
demonstrated between cuticular fractures on the
surface of sweet cherries and incidence of B.
cinerea infections (Borve et al. 2000). The reader
is referred to an excellent review summarizing
the current knowledge around the genetic and
environmental factors influencing grapevine
bunch compactness by Tello and Ibanez (2018).

15.3.1.1 Genetic Basis of Resistance
of Grape Berries
to Botrytis cinerea
Infection

Gabler et al. (2003) investigated morphological,
anatomical and chemical characteristics of 42
genetically diverse grape cultivars and selections
with various levels of resistance to B. cinerea to
determine which features were associated with
resistance. Little or no resistance exists in berries
of V. vinifera cultivars, whereas North American
grape species or hybrids such as M. rotundifolia,
V. labrusca or V. labrusca � V. vinifera hybrids
were found to be highly resistant. Similar results
were obtained by Naegele (2018). Highly resis-
tant cultivars were characterized by a number of
properties including (a) a low number of surface
pores on berries, (b) a thick cuticle and a high
wax content and (c) the number and thickness of
epidermal and hypodermal cell layers. The
importance of the berry skin features with regard
to the mechanical protection against B. cinerea
was further supported by the observation of a
positive correlation between the electrical impe-
dance of cuticle and epicuticular waxes and
resistance of berries to B. cinerea (Herzog et al.
2015).

Another North American grape which is
highly resistant to Botrytis bunch rot is ‘Norton’
which is thought to be hybrid between V. vinifera
and V. aestivalis (Ambers 2013). Mature Norton
berries inoculated with B. cinerea spores showed
only a low level of disease incidence (7.5%) and
disease severity (3.7%) after 10 days compared
to V. vinifera cv. Cabernet Sauvignon berries
which were highly infected exhibiting an average
disease incidence and severity of greater than
90% (Sapkota et al. 2015). Subsequent QTL
analysis of a Norton � V. vinifera Cabernet
Sauvignon mapping population indicates the
presence of a major R locus on chr2 for Botrytis
bunch rot (Chin-Feng et al. 2018).

A survey of wild Chinese Vitis species for
resistance to B. cinerea has also been undertaken
but using grapevine leaves instead of berries
(Wan et al. 2015). Little or no resistance was
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observed with V. vinifera cultivars, whereas
eighteen of the thirty Chinese Vitis species were
resistant to the fungus with the highest levels of
resistance observed with selected accessions of
V. amurensis, V. adstricta and V. yenshanensis.
However, how leaf resistance relates to berry
resistance in these genotypes requires further
examination, especially as the two V. labr-
usca � V. vinifera hybrids tested were found to
be highly susceptible to B. cinerea, which would
appear to be at odds with the results of other B.
cinerea assays using individual berries (Gabler
et al. 2003; Naegele 2018).

15.3.1.2 Genetics of Bunch
Architecture

The breeding of new grape cultivars with more
open bunches is likely to result in a significant
reduction in the incidence of Botrytis bunch rot.
Clones of the cultivars Chardonnay (Vail et al.
1998) and Albarino (Alonso-Villaverde et al.
2008) with the least compact clusters were found
to have the lowest levels of Botrytis bunch rot in
the field. In a pruning trial with Seyval blanc,
treatments that led to reduced fruit set, and con-
sequently more open bunches, were shown to
significantly reduce Botrytis bunch rot across
two seasons (Smithyman et al. 1998).

To identify genes that regulate bunch archi-
tecture, it is first necessary to identify the key
structural characteristics that determine whether a
bunch is compact or loose. Shavrukov et al.
(2004) identified inflorescence length (in partic-
ular rachis internode length) as the major trait
responsible for the difference in bunch architec-
ture between two compact (Chardonnay and
Riesling) and two loose (Exotic and Sultana)
cultivars. In a more recent study, Tello et al.
(2015) analysed the genetic variability of bunch
compactness of 125 table and wine grape culti-
vars across three consecutive seasons and
showed that the main components determining
bunch compactness were length of the rachis, the
number of berries per bunch and, to a lesser
extent, berry size.

To date, three studies have been published on
the genetic analysis of bunch architecture. Correa
et al. (2014) analysed a segregating population

derived from a cross of ‘Ruby Seed-
less’ � ‘Sultanina’ and identified 19 QTLs
across chr5, 8, 9, 14, 17 and 18. Using an asso-
ciation analysis with 114 cultivars, Tello et al.
(2016) identified a number of SNPs associated
with rachis internode length and bunch com-
pactness, including four that were recurrently
associated with the rachis internode length across
the three seasons evaluated. However, it is not
known how these SNPs relate to the QTLs
identified by Correa et al. (2014).

A third study has been undertaken across two
seasons on 150 F1 progeny derived from a cross
between GF.GA-47-42 (‘Bacchus’ � ‘Seyval
blanc’) which has loose clusters, crossed with
‘Villard blanc’(Richter et al. 2017). More than 20
QTLs related to key determinants of bunch
architecture including rachis length, peduncle
length and pedicel length were reproducibly
found over two seasons and they are dispersed
throughout the genome. No information was
provided as to how these QTLs link to the results
of the two previous studies.

In summary, the results of these published
studies indicate that the genetic control of bunch
architecture is likely to be highly complex with
many genes contributing minor effects. At this
point in time, there appear to be no obvi-
ous candidates for use in MAS of new cultivars
with more open clusters.

15.3.2 Resistance to Non-Botrytis
Bunch Rots

To date, genetic resistance within wild grapevine
species for non-botrytis bunch rots has only been
reported for black rot and ripe rot.

Black rot (G. bidwellii) is a hemibiotrophic
fungus native to North America. The fungus
infects all green parts of the plant, and complete
crop loss can occur in warm, humid climates. All
V. vinifera cultivars are highly susceptible, but
resistance has been observed in North American
Vitis species. Barrett (1953) tested several wild
North American species for black rot resistance
including V. cinerea, V. rupestris and V. lince-
cumii and found V. cinerea to have the highest
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level of resistance, with nearly every accession
tested free of black rot both on foliage and fruit.
Dalbó et al. (2000) subsequently mapped three
QTLs linked to black rot resistance in a popula-
tion derived from a cross between ‘Horizon’
(whose pedigree includes V. vinifera, V. labr-
usca, V. aestivalis and V. rupestris) � ‘Illinois
547–1’ (V. rupestris � V. cinerea B9). The
hybrid cultivar ‘Börner’ (V. riparia Gm183 � V.
cinerea Arnold) was also shown to display a high
level of resistance to black rot (Rex et al. 2014).
A major QTL was detected based on the results
of phenotyping a mapping population generated
from a cross of the susceptible breeding line
V3125 (Schiava grossa � Riesling) with Börner.
The QTL designated Rgb1 (Resistance to Guig-
nardia bidwellii 1) is located on chr14 and
explained up to 21.8% of the phenotypic varia-
tion. A second minor QTL, designated Rgb2, was
mapped to chr16 and explained 8.5% of the
phenotypic variation. Rex et al. (2014) concluded
that the Rgb1 locus derived from V. cinerea
Arnold is most likely allelic to the QTL mapped
by Dalbó et al. (2000) from V. cinerea B9.
Recent analysis of V. amurensis hybrids also
indicates that wild Chinese species are a potential
source of strong resistance to black rot (Roznki
et al. 2017).

Ripe rot is associated with vineyards that
experience warm and wet conditions close to
harvest and is more frequently found in open
canopies where the fruit is exposed. There are
two species of the fungus responsible for ripe rot,
Colletotrichum acutatum and Colletotrichum
gloeosporioides, but C. acutatum is the pre-
dominant species found in vineyards. There is
limited published information available about the
resistance of grape species or cultivars to ripe rot.
However, the available information tends to
suggest that the resistance varies widely within
species rather than between species. For exam-
ple, a survey of M. rotundifolia cultivars showed
that the incidence of ripe rot on the
bronze-fruited cultivars (‘Carlos’, ‘Fry’, ‘Mag-
nolia’, ‘Scuppernong’) ranged from 6.7 to
33.5%, while symptoms of ripe rot were never

observed on the black-fruited cultivars (‘Noble’,
‘Tarheel’, ‘Pride’) (Daykin and Milholland
1984). Similarly, a survey of table grape cultivars
from South Korea showed that four were resis-
tant to ripe rot; two were derived from V. vini-
fera; and two were interspecific hybrids with
North American species (Jang et al. 2011). Fur-
ther work needs to be undertaken to examine the
inheritance of this ripe rot resistance.

15.4 Other Fungal Diseases

Grapevines are also susceptible to a number of
other fungal pathogens which cause symptoms
other than bunch rot. Anthracnose, or black spot,
caused by the fungus Elsinoe ampelina is a very
damaging disease in viticultural regions with a
warm, humid climate and results in lesions which
destroy leaves, shoots and fruit. It has been
reported that V. vinifera cultivars are highly
susceptible, whereas accessions of North Amer-
ican species including V. aestivalis, V. shuttle-
worthii, V. labrusca, V. rupestris and M.
rotundifolia are completely resistant (Mortensen
1981). Wang et al. (1998) surveyed multiple
accessions of thirteen different wild Chinese
species including V. amurensis, V. davidii, V.
piasezkii, V. pseudoreticulata, V. quinquangu-
laris and V. romanetii and showed them to also
be resistant to E. ampelina. Genetic analysis of
inheritance of resistance to anthracnose from
crosses involving V. labrucsa, V. rupestris and V.
riparia confirmed that anthracnose resistance is
controlled by a single dominant locus (Kim et al.
2008). Although no information is currently
available as to the location of this locus, a RAPD
marker was identified that predicted the
presence/absence of the anthracnose resistance
across V. labrucsa-, V. rupestris- and V. riparia-
derived genotypes.

Grapevine leaf rust, caused by the fungus
Phakopsora euvitis, occurs mainly in warm
temperate and subtropical grape growing regions.
It infects leaves causing chlorotic spots in the
infected area and necrosis in older infections, but
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can also infect the fruit, stems and rachis. Severe
disease may cause defoliation, reducing the vig-
our and yield of infected vines (Hennessy et al.
2007). A number of North American grape spe-
cies have been assessed as being highly resistant
(asymptomatic) to grape rust including cultivars
of M. rotundifolia, V. labrusca, V. berlandieri, V.
candicans, V. champini and V. palmata (Clayton
and Ridings 1970; Patil et al. 1998). However, a
number of these species were assessed as being
susceptible in a later study (Hennessy et al. 2007)
highlighting the need for further phenotypic
analysis before considering using these geno-
types for resistance breeding.

15.5 Breeding for Resistance
to Bacterial Diseases

15.5.1 Pierce’s Disease

Pierce’s disease (PD) is a serious impediment to
viticulture in North America (Hopkins and Pur-
cell 2002; Kyrkou et al. 2018). It is caused by the
xylem-limited bacterium, Xylella fastidiosa,
which is classified as a single species with mul-
tiple subspecies and strains that cause disease in
over 100 monocotyledonous and dicotyledonous
plants (Hopkins and Purcell 2002; Newman et al.
2003). It is transmitted to host plants by spe-
cialized insect vectors; in the case of grapevines,
it is the glassy-winged sharpshooter. Symptoms
are expressed as xylem vessels become blocked
by bacterial aggregation and the formation of
gums and tyloses, leading to desiccation. Infec-
ted grapevines show distinct symptoms
(Fig. 15.3) including marginal and inter-vein leaf
scorch, leaf blades that drop leaving attached
petioles (‘matchsticks’), irregular shoot matura-
tion referred to as ‘green islands’, shrivelled fruit
in late summer and eventual plant death within
one to five years of infection (Hopkins 1989;
Krivanek and Walker 2005; Fritschi et al. 2007).
Until recently, the pathogen was primarily found
in North America, but in 2013 the first European
outbreak was recorded in olive trees in Italy
(Saponari et al. 2013).

Pierce’s disease was first reported in the
mid-nineteenth century when an outbreak
destroyed thousands of acres of vineyards in
Anaheim California (Pierce 1892). It was later
reported across the southern USA (Stoner 1953;
Crall and Stover 1957; Hewitt 1958; Perry et al.
1974) and Mexico (Raju et al. 1979). Grape
species from the south-eastern USA, such as
V. aestivalis and V. shuttleworthii, are resistant to
PD and early breeding efforts utilized them to
develop resistant cultivars. However, these cul-
tivars had limited acceptance because their fruit
characters were less favourable than pure
V. vinifera cultivars (Loomis 1958; Mortensen
1968; Mortensen et al. 1977; Mortensen 1988;
Halbrooks and Mortensen 1989).

A PD resistance breeding program was initi-
ated at the UC Davis in 1990 s based on breeding
populations developed from crosses of V.
rupestris � M. rotundifolia originally made by
Dr. Harold P. Olmo. However, genetic mapping
of these populations indicated that the majority
of the seedlings were not true to type and that PD
resistance in this population actually originated
from V. arizonica (Riaz et al. 2007). The first PD
R locus, PdR1, was identified on chr14 of
b43-17, a hybrid of V. arizonica � V. candicans,
collected by Olmo near Monterrey, Mexico
(Krivanek et al. 2006; Riaz et al. 2006, 2007,
2008). The PdR1 locus is the foundation of the
PD-resistant wine grape breeding program at the
UC-Davis, in which MAS has been used to
facilitate the introgression of PD resistance into
elite V. vinifera selections using a two-year
seed-to-seed cycle (Riaz et al. 2009). Certified
virus-free plant material of five superior resistant
lines was released to the nurseries in 2017, and
public release is scheduled in 2020.

One objective of the breeding program is to
expand the genetic base of PD resistance and
develop lines that incorporate resistance from
more than one genetic background. To meet this
objective, a large portion of the germplasm col-
lected from Mexico and south-western USA was
evaluated and many accessions with strong
resistance to PD were identified based on the
greenhouse screening method optimized by
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Krivanek et al. (2005). A recent study by Riaz
et al. (2018a) utilized a limited mapping strategy
that combines greenhouse phenotyping of small
breeding populations with genotyping data from
SSR markers linked to PdR1. The study identi-
fied nine accessions with a major QTL within the
PdR1 genomic region and three accessions
whose PD resistance was not associated with
PdR1-linked markers. Comparative sequence
analysis is currently being used to determine
whether the resistant accessions possess different
alleles of the same candidate resistance gene
and/or different genes, making them good can-
didates for future sequence analysis studies
aimed at understanding the evolution of PD R-
genes. Interestingly, the physical map of the
PdR1 locus has revealed a large cluster of puta-
tive LRR receptor kinase genes. This is signifi-
cant because resistance to bacterial blight, a
vascular disease of rice caused by the bacterium
Xanthomonas oryzae pv. oryzae, is conferred by
the XA21 gene from the wild rice species Oryza
longistaminata which encodes a LRR receptor
kinase (Park et al. 2010). Transformation studies
with two of these candidate LRR-RK genes are
currently underway to determine if they confer
resistance to PD in susceptible grapevines (Riaz
et al. unpublished).

15.5.2 Crown Gall

Crown gall of grapevine is caused mainly by
Agrobacterium vitis and occasionally by
Agrobacterium tumefaciens and occurs in most
parts of the world where grapes are grown
(Kuczmog et al. 2012). Infected plants may
remain symptomless until they are injured by
freezing, pruning, grafting or other mechanical
treatments used in maintaining the vineyard. As
the gall forms, vascular bundle tissues become
highly disorganized and lose their ability to
transfer water and photosynthetic products.
Large galls girdle the stem and result in signifi-
cant grape decline and may even lead to plant
death.

Cultivars of V. vinifera are highly susceptible
to Agrobacterium infections and crown gall for-
mation, but certain wild Vitis species, including
V. labrusca and V. amurensis, have been shown
to be resistant (De Cleene and De Ley 1976).
Introgression of crown gall resistance from V.
amurensis into V. vinifera demonstrated it to be
inherited as a single dominant locus that pro-
vided resistance against both A. vitis and A.
tumefaciens (Szegedi and Kozma 1984). The
R locus, designated Rcg1 (Resistance to crown
gall 1), was found to be tightly linked to the SSR

Fig. 15.3 Typical symptoms of Pierce’s disease. a Cane
from a grapevine infected with Pierce’s disease (left)
compared to a cane from a healthy vine (right) showing
loss of leaves and irregular shoot maturation with ‘green

islands’. b Close up of ‘green islands’ on cane from
infected vine. c Leaf from infected vine showing marginal
and inter-vein leaf scorch
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markers VVIV67, VVS16 and UDV015 on
chr15. At present, there is no information avail-
able about the mechanism of Rcg1-mediated
resistance.

15.6 Breeding for Resistance
to Trunk Diseases

Grapevine trunk diseases (GTDs), which include
Eutypa, Botryosphaeria and Phomopsis dieback,
as well as esca, Petrie and black foot diseases, are
caused by a wide and complex range of wood
invading fungal species (Gramaje et al. 2018).
GTDs threaten the sustainability of viticulture,
with an estimated worldwide economic impact of
US$1.5 billion per year based on the annual
replacement of 1% of vines (Hofstetter et al.
2012).

There have been reports of varying suscepti-
bility of V. vinifera cultivars to GTDs. Field
surveys have reported varying levels of foliar
symptoms of Eutypa dieback on a wide range of
cultivars (Carter 1991; Highet and Wicks 1998;
Loschiavo et al. 2007). The colonization by
Eutypa lata, the primary causal agent of Eutypa
dieback, of wood of different cultivars also var-
ied significantly (Sosnowski et al. 2007). For
species that cause Botryosphaeria dieback, lesion
length varied in canes of different cultivars
(Billones-Baaijens et al. 2014; Guan et al. 2016).
Sosnowski et al. (2016) reported a large variation
in GTD dieback symptoms on mature vines in a
V. vinifera germplasm repository and subse-
quently found significant differences between
cultivars in the rate of pathogen colonization of
grapevine canes by E. lata and Diplodia seriata
(Botryosphaeria dieback). Esca symptoms in the
vineyard have been reported with varying inci-
dence between cultivars (Marchi 2001; Fussler
et al. 2008; Murolo and Romanazzi 2014). Fur-
thermore, inoculations with Phaeoacremonium
minimum and Phaeomoniella chlamydospora
(casual agents of esca and Petrie disease,
respectively) indicated variable susceptibility of
grapevine cultivars (Feliciano et al. 2004; Landi
et al. 2012). Greenhouse screening of cultivated
and wild Vitis spp. for the length of wood

discolouration by the causal agents of Botryo-
sphaeria dieback, esca, Eutypa dieback and
Phomopsis dieback revealed significant variation
for all diseases (Travadon et al. 2013).

Interestingly, in contrast to observations for
many other fungal pathogens of grapevine, Tra-
vadon et al. (2013) found that some of the North
American grape species examined actually
showed higher susceptibility to E. lata than most
of the V. vinifera cultivars tested. This led them
to speculate that because the centre of origin for
E. lata is thought to be Europe (Travadon et al.
2012) that co-evolution of the pathogen and V.
vinifera may have enriched cultivars of this
species for increased resistance to E. lata relative
to the North American Vitis species.

In summary, no single V. vinifera cultivar or
Vitis spp. have been reported to be completely
resistant to any of the grapevine trunk diseases,
but variation in the expression of disease symp-
toms suggests differences in tolerance. Current
research is exploring clonal variation within V.
vinifera cultivars, and preliminary results are
promising, with the likelihood of identifying low
susceptibility germplasm for future plantings
(Berlanas et al. 2017; Sosnowski 2018, unpub-
lished data).

There is very little known about the mecha-
nisms of resistance to GTDs. Enhanced
resistance to E. lata toxin was reported in
transgenic ‘Richter 110’ grapevines that were
constitutively expressing a eutypine detoxyfing
gene (Vr-ERE) (Legrand et al. 2003). It was
believed that eutypine was responsible for foliar
symptom expression; however, the most dam-
aging symptom of trunk disease is the death of
wood tissue. Relatively high lignin levels have
been associated with wood and cane tissue of
grapevine cultivars having less susceptibility to
E. lata infection (Rolshausen et al. 2008; Ham-
blin 2015). Furthermore, cultivar susceptibility
was correlated to xylem vessel diameter for esca
pathogens (Pouzoulet et al. 2014) and E. lata
(Hamblin 2015). Bertsch et al. (2013)
reviewed the biochemical defence mechanisms
that have been reported for GTDs, but these are
yet to be specifically correlated to cultivar
susceptibility.
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Barba et al. (2018) recently identified two
major R loci that reduce the severity and inci-
dence of Phomopsis cane and cluster symptoms
(caused by Diaporthe ampelina which also cau-
ses Phomopsis dieback). These two loci, desig-
nated Rda1 (Resistance to Diaporthe ampelina)
and Rda2, originate from V. cinerea B9 and
‘Horizon’, respectively. Grapevines with either
the Rda1 or Rda2 locus showed either no
symptoms or only small, discrete lesions com-
pared to susceptible vines. These dominant R loci
offer the best potential yet for the breeding of
new cultivars with resistance to GTD.

To date, no single R locus has been identified
that is capable of controlling all GTDs. This is
not surprising as it would be unlikely that a
single gene would be effective against all
pathogens within the GTD complex. Continued
efforts to identify sources of tolerance or resis-
tance to GTD pathogens are required. The gen-
omes of the GTD fungi Botryosphaeria dothidea
(Joint Genomics Institute (JGI), http://1000.
fungalgenomes.org), D. seriata (Morales-Cruz
et al. 2015), E. lata (Blanco-Ulate et al. 2013c),
Neofusicoccum parvum (Blanco-Ulate et al.
2013a), P. minimum (Blanco-Ulate et al. 2013b)
and P. chlamydospora (Antonielli et al. 2014)
have now been sequenced in their entirety. This
substantially improves our ability to locate,
compare and manipulate the genes associated
with the mechanisms of pathogenesis and viru-
lence in these pathogens (Morales-Cruz et al.
2015, 2018) and, ultimately, the resistance of
grapevines.

15.7 Transgenic Approaches
for Virus Resistance

Viruses, viroids and phytoplasmas threaten grape
production and vineyard profitability by reducing
vigour, yield, fruit quality and the productive
lifespan of vineyards. While viruses can cause
serious economic losses worldwide, phytoplas-
mas are only problematic in certain grape-
producing regions, and viroids only have a lim-
ited detrimental effect (Maliogka et al. 2014;

Wilcox et al. 2015; Dermastia et al. 2017;
Mannini and Digiaro 2017; Martelli 2017).

To date, breeding efforts for resistance in
grapevine have focused primarily on viruses.
Conventional breeding is currently not an option
because Vitis species with virus resistance are yet
to be identified (Oliver and Fuchs 2011; Mali-
ogka et al. 2014). Therefore, genetic engineering
techniques have been employed in an attempt to
generate new grapevine cultivars with resistance
to viruses (Laimer et al. 2009; Maliogka et al.
2014; Saporta et al. 2016; Fuchs and Lemaire
2017).

Early on the most commonly used approach to
achieve virus resistance consisted of expressing
virus-derived gene constructs in susceptible Vitis
cultivars, as an application of pathogen-derived
resistance (Sanford and Johnston 1985). The coat
protein (CP) gene was the most routinely used
viral gene to engineer resistance (Laimer et al.
2009; Maliogka et al. 2014; Saporta et al. 2016)
based on a successful application of the same
approach in other perennial crops such as papaya
(Gonsalves et al. 2008), plum (Scorza et al.
2016) and citrus (Soler et al. 2011). The move-
ment protein (MP) gene was another viral gene
used to confer virus resistance in Vitis cultivars.
Several transgenic cultivars expressing CP orMP
were produced including the wine grape cultivars
‘Chardonnay’ (Mauro et al. 1995; Dal Bosco
et al. 2018), ‘Nebbiolo’, ‘Lumassina’ and
‘Blaufränkish’ (Gambino et al. 2005, 2010), and
the table grape cultivars ‘Thompson Seedless’
(Scorza et al. 1996), ‘Superior Seedless’ (Marti-
nelli et al. 2000) and ‘Russalka’ (Gölles et al.
2000; Maghuly et al. 2006). These cultivars were
engineered for resistance to Arabis mosaic virus,
grapevine fanleaf virus (GFLV), tomato ringspot
virus, grapevine leafroll-associated virus 3,
grapevine virus A and grapevine virus B (Laimer
et al. 2009; Saporta et al. 2016; Dal Bosco et al.
2018). The insertion and expression of CP or MP
genes, as well as the level of methylation of
transgenes and their regulatory sequence ele-
ments, were extensively characterized in trans-
genic cultivars. However, information on virus
resistance is extremely limited although

336 I. Dry et al.

http://1000.fungalgenomes.org
http://1000.fungalgenomes.org


transgenic ‘Nebbiolo’ and ‘Blaufränkish’ were
not immune to GFLV infection following chal-
lenge inoculation by grafting (Gambino et al.
2010).

More recently, RNA interference (RNAi), a
potent defence mechanism of plants against
viruses (Duan et al. 2012), was applied to
achieve resistance to GFLV in the table grape
cultivar ‘Arich Dressé’ using inverted repeat MP
constructs (Jardak-Jamoussi et al. 2009). Another
RNAi method using modified microRNA (miR-
NAs) precursor genes was developed to express
artificial miRNAs (amiRNAs) targeting the CP
of GFLV in somatic embryos of ‘Chardonnay’
(Jelly et al. 2012). Yet resistance has to be
reported for RNAi and amiRNAs transgenic Vitis
cultivars.

It is anticipated that future efforts to develop
virus resistance in Vitis cultivars will rely
extensively on RNAi approaches and on genome
editing techniques, as documented for
‘Chardonnay’ (Ren et al. 2016) and ‘Thompson
Seedless’ (Wang et al. 2018), to target genes
required for essential steps of the virus infectious
cycle. Nonetheless, until resistant cultivars are
available, the adoption of prophylactic measures
will remain indispensable to mitigate the impact
of viruses in vineyards (Maliogka et al. 2014).

Flavescence dorée (FD) is a severe epidemic
disease of grapevine in Europe caused by
FD-phytoplasma (FDp): a small wall-less bacte-
ria transmitted by the leafhopper vector Sca-
phoideus titanus (Eveillard et al. 2016). During
summer, infected grapevines show leaf yellow-
ing or reddening, depending on the cultivar,
downward leaf curling, drying of inflorescence
and bunches, lack of cane lignification, presence
of black spots on the new canes and premature
leaf fall (Caudwell 1990). No evidence for
resistance to FD was observed in thirteen wild
North American and Chinese Vitis species
examined, but differences in susceptibility were
observed between V. vinifera cultivars. (Eveillard
et al. 2016). Cabernet Sauvignon was found to be
highly susceptible, with a high proportion of
symptomatic branches and high FDp titres.
Merlot, on the other, had much lower FPp titres
in symptomatic branches, and this characteristic

appears to have been inherited from its maternal
parent, Magdeleine Noire des Charentes.

15.8 Insects/Arachnids

The most destructive and economically signifi-
cant insect pests of grapevine are the root pests,
root-knot nematode and phylloxera, that were
discussed in Chap. 14. However, the grapevine
scion is also subject to attack by a range of other
insect pests including leafhoppers, grape berry
moths, mealybugs, thrips and mites (member of
the arachnid family) (Creasy and Creasy 2009;
Wilcox et al. 2015; Thiery et al. 2018). Cur-
rently, there are no published reports detailing
any variation in resistance of any grapevine
species or cultivars to these insect/arachnid pests.
However, a novel transgenic approach has been
developed which may offer the prospect of
reducing the susceptibility of grapevines to grape
berry moths.

The European grapevine moth (Lobesia
botrana), the American berry moth (Polychrosis
viteana) and the Australian light brown apple
moth (Epiphyas postvittana) all produce larvae
that feed on grape flowers and fruits, causing
direct damage as the larvae penetrate the berry
and hollow out the grapes. Damage is further
compounded by the invasion of damaged berries
with secondary infections such as Botrytis bunch
rot. Current control systems are based primarily
on the use of insecticides or on mating disrup-
tion. Previous studies have shown that the
European grapevine moth host uses a
ratio-specific blend of three ubiquitous plant
volatiles to find the grapevine host. The odour
signal that attracts mated females to grape con-
sists of the terpenoids (E)-beta-caryophyllene,
(E)-beta-farnesene and (E)-4,8-dimethyl-
1,3,7-nonatriene (Tasin et al. 2006). Further-
more, when the specific ratio of these compounds
is disrupted there is a significant decrease in
attractiveness. Building on this observation,
Salvagnin and co-workers (Salvagnin et al. 2018)
created stable grapevine transgenic lines which
produced an altered ratio of these three ter-
penoids and demonstrated that these transgenic
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lines were less attractive to the European grape-
vine moth. They proposed that a strategy based
on volatile ratio modification could form the
basis for the development of new environmen-
tally friendly approaches for berry moth control
in grapevines.

15.9 Pyramiding Resistance Genes
for Increased Durability

One of the most effective ways to increase the
durability of R-genes in the field is to combine or
‘stack’ R-genes from different wild species,
within the same plant (Mundt 2018). This is
because plant resistance proteins, such as
MrRUN1 and MrRPV1, are activated by the
recognition of effectors that are secreted into the
plant cell by the invading pathogen (Dodds and
Rathjen 2010). Activation of the host resistance
protein initiates ETI which prevents further
infection by biotrophic pathogens. Thus, if a
mutation occurs in an effector that is normally
recognised by the plant resistance protein, such
that recognition can no longer take place, a
defence response will not be initiated upon
infection and the pathogen will be able to colo-
nize the plant.

It is generally assumed that R-genes from
different sources or regions have evolved to
recognize different pathogen effector proteins,
and that by combining these R-genes in the one
genotype, the likelihood of a single pathogen
isolate simultaneously mutating both effectors to
overcome both resistance loci, at the same time,
is significantly reduced. McDonald and Linde
(2002) have highlighted the fact that the risk
posed by different pathogens for breaking resis-
tance in the field depends more on the charac-
teristics of the pathogen, than on the R-gene. For
example, pathogens that reproduce exclusively
via asexual spores and have limited potential for
spread because they are soil-borne, have the
lowest risk category. In contrast, pathogens such
as powdery mildew that have a mixed

reproduction system and produce large amounts
of asexual spores that are disseminated over long
distances by wind, are in the highest risk
category.

At present, the only grapevine pathogens for
which sufficient R loci have been identified to
enable a pyramiding strategy to be employed are
powdery and downy mildew (Table 15.1).
However, limited information is available
regarding the race-specificity of these different
mildew R loci. Feechan et al. (2015) demon-
strated that the powdery mildew resistance con-
ferred by Run2.1 and Ren2 is not overcome by
the Run1-breaking Musc4. Similarly, preliminary
studies with Ren4 and Ren6 also suggest that the
resistance conferred by these two loci is not
compromised by the Musc4 isolate (Dry IB,
unpublished) making these R loci good candi-
dates for pyramiding with Run1. Much more
work is required to determine the race-specificity
of the mildew R loci that have been identified.

Assuming that the R-genes to be employed in
a pyramiding strategy do produce proteins that
recognize different pathogen effectors, how many
R-genes need to be combined within the same
cultivar to ensure long-term durability in the
field? This is especially important for a perennial
crop, like grapevine, that is expected to be in the
field for 20+ years. Stam and McDonald (2018)
estimated that for a cereal powdery mildew
population, the probability of two mutations
occurring simultaneously within the same
pathogen isolate that would enable it to over-
come two R-genes in the plant host at the same
time corresponds to ten double mutants per
hectare per day. However, if three R-genes were
present, they estimated that only one triple
mutant capable of overcoming this triple resis-
tance would be produced each day in 10,000
infected hectares. Finally, they hypothesized that
a pyramid of four R-genes would be expected to
be virtually impregnable.

Many wine grape and table grape breeding
programs around the world in France (Merdi-
noglu et al. 2018), Germany (Eibach et al. 2007),
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Italy (Cipriani et al. 2018), USA (Riaz et al.
2018b), Australia (Dry and Thomas 2015), Chile
(Agurto et al. 2017) and Brazil (Sánchez-Mora
et al. 2017) are currently developing new
mildew-resistant cultivars containing at least two
powdery mildew and/or downy mildew R loci.
The most advanced of these programs is the
INRA-ResDur breeding program (Merdinoglu
et al. 2018) (Fig. 15.4). Four new mildew-
resistant ResDur1 cultivars ‘Artaban’, ‘Floreal’,
‘Vidoc’ and ‘Volti’ containing two PM R loci
(Run1 + Ren3) and two DM R loci (Rpv1 +
Rpv3) have already been released. These new
dual PM and DM R loci genotypes were created
by combining the Run1/Rpv1 locus from selected
Bouquet backcross 4 resistant breeding selections
with the Ren3 and Rpv3 loci from the inter-
specific resistant hybrids ‘Regent’ and ‘Villaris’.
Future crosses will see the introduction of a third
powdery mildew R locus (Ren3.2) and a third
downy mildew R locus (Rpv10). However,
the race-specificities of the different R loci used
in this pyramiding strategy are yet to be
determined.
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Abstract
Genetic improvement of grapevine relies on
conventional breeding and genetic engineer-
ing, but the latter often seems far from having
a significant impact. A small but important
difference with previous breeding efforts is
that, today, genome studies and technology
advances in grapevine genetic engineering
have become available in such a way that new
varieties can be developed that are compatible
with market challenges. Since the completion
of the first reference grapevine genome
sequence, relevant information has been gath-
ered that allows for the identification of novel
genes, analysis of structural gene variants, and
discovery of SNPs. Also, regulatory regions
for coding sequences, analyses of small RNA
populations, and modulation processes cou-
pled to DNA modification (i.e., methylations)

have started to be elucidated, thereby enabling
the New Breeding Techniques (NBTs), also
referred to as precision breeding. RNA inter-
ference (RNAi) and RNA-guided editing of
genomes are among the most promising new
techniques for RNA-based systems that affect
gene expression. Also, both RNAi and
RNA-guided editing of DNA are expanding
technical platforms by which DNA methyla-
tion can also be proposed, thus adding possi-
bilities for epigenetic regulation. Here, we will
present and discuss advances in gene transfer
procedures from a NBTs’ perspective. We will
use a chronological arrangement of gene
transfer experimentation carried out over the
last 10 years as a complementary view to
recent excellent works already available. Also,
our experience in the use of the editing
systems will be introduced.
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16.1 Cell Tissue Culture Techniques
for Grape Gene Transfer

16.1.1 Somatic Embryogenesis

While both organogenesis and embryogenesis
approaches can be induced for adventitious
regeneration in grapevines, somatic embryogen-
esis (SE) is currently the focus of efforts, aiming
at its application in germplasm propagation and
storage, sanitation, and gene transfer. The SE
process is a remarkable developmental switch in
which the induction of embryo development
from differentiated plant cells integrates stress,
hormonal, and developmental pathways (Fehér
2015).

Grapevine SE is not a routine procedure that
can be easily and efficiently reproduced in dif-
ferent cultivars (Martinelli and Gribaudo 2001;
Araya et al. 2008). Baseline experimental pro-
cedures were established several years ago, using
as source explant anthers (Rajasekaran and
Mullins 1983; Araya et al. 2008), unfertilized
ovules (Mullins and Srinivasan 1976), ovaries
(Martinelli and Gribaudo 2001), leaves (Marti-
nelli et al. 1993), petioles (Martinelli et al. 1993),
and tendrils (Salunkhe et al. 1997). SE feasibility
depends on parameters such as selection and
treatment of the original explant tissue and the
procedures for the generation, selection, and
maintenance of cell lines; this includes consid-
ering the physicochemical culture conditions of
the growth and the differentiation/production
phases of the full process, as well as analyses
regarding factors such as induction media and
genotype, source, and developmental stage of the
explants (Saporta et al. 2016; Vidal et al. 2009).
‘Chardonnay’ and ‘Thompson Seedless’ have
been identified as by far the best responding
genotypes for SE establishment leading to
whole-plant production, mostly based on the
treatment of floral explants (anthers and ovaries)
with the combination of the plant growth regu-
lators 2,4-dichlorophenoxyacetic acid (2,4-D)
plus the cytokinin 6-Benzylaminopurine (BAP).
These systems represent starting points, and
important derivative procedures have allowed SE
establishment in other V. vinifera cultivars (San

Pedro et al. 2017; Carra et al. 2016; Araya et al.
2008) and Vitis hybrids—including common
rootstocks (Oláh et al. 2009) and some Vitis
species described until very recently as recalci-
trant (Li et al. 2014).

Routine SE for grapevine germplasm conser-
vation, propagation, and gene transfer has also
been improved using bioreactors (Tapia et al.
2009). After the initiation step using solid media,
‘Thompson Seedless’ pro-embryogenic masses
have been conducted into their propagation and
development using liquid versions of SE cul-
tures, assisted by use of agitated (i.e., perma-
nently oxygenated) containers. Expansion of this
platform to other genotypes has been success-
fully assayed for other varieties and rootstocks
(Fig. 16.1). Similarly, SE yields have been
improved using recurrent cycles of secondary
embryogenesis induced over torpedo and
mid-cotyledonary cells in ‘Thompson Seedless’
(Zhou et al. 2014).

Although these improvements in SE proce-
dures continue to develop, gene transfer experi-
ments have added new factors to regular embryo
development, which need to be considered. The
condition for optimal Agrobacterium tumefa-
ciens-grapevine somatic embryo interaction is
well described as genotype-dependent (Saporta
et al. 2016). In general, the quality of the
embryogenic culture plays key roles in success-
ful transformation, and cells at the stages
between pro-embryonic masses, embryogenic
cells, and globular somatic embryos can be
considered the most suitable explants for
Agrobacterium infection. Also, transformation
efficiency is determined by several other factors,
including co-cultivation conditions (Vidal et al.
2009), Agrobacterium strain (Saporta et al. 2016;
Torregrosa et al. 2002), and selection regime
(Saporta et al. 2016; Wang et al. 2005).

16.1.2 Protoplasts

The multicellular status of somatic embryos
represents a limiting step for genetic engineering
techniques, such as gene transfer and DNA-
editing techniques. Thus, the use of protoplasts
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has regained attention in recent years. Currently,
plant protoplasts represent an important tool for
studying many aspects of plant biology, includ-
ing plant defense mechanisms, protein activity,
and genetic engineering. The first successful
procedures obtaining fully regenerative grape-
vine protoplasts were described as early as in the
second half of the 1990s. The first system used
‘Seyval Blanc’ embryogenic calli obtained from
leaf disks cultured in solid Nitsch’s medium
supplemented with naphthoxyacetic acid
(NOA) and thidiazuron (TDZ) and subsequent
sub-cultivation in hormone-free medium (Reustle
et al. 1995); an improvement on those approa-
ches that relied on early stage ‘Koshusanjaku’
pro-embryogenic masses made friable by several
subsequent sub-cultures in modified Nitsch’s
medium (lacking vitamins, inositol, and glycine)
supplemented with 2,4-D, sucrose, and activated
charcoal (Zhu et al. 1997). Both approaches used
gellan gum as a gelling agent during the
embryogenesis steps, and cellulase, celiulysin,

and macerozyme R-10 as enzymatic disruption
treatments of these cells led to viable protoplasts
which after regeneration led to whole plants with
no morphology change. Grapevine protoplast
generation, biochemistry, recalcitrance, and
ultrastructure have been exhaustively reviewed
by Papadakis et al. (2001, 2009).

The grapevine protoplast technology was
soon applied to gene transfer experiments.
Electroporation of the CAT gene into ‘Cabernet
Sauvignon’ protoplast was described during the
same period (Kovalenko and Schuman 1997). In
a period when pathogen-derived resistance
received much attention, and the insertion of
viral coat protein (and other viral sequences)
genes was intensively used to generate resistant
individuals, Grapevine fanleaf virus (GFLV)
viral RNA was delivered into leaf-derived 41B
rootstocks protoplasts (Valat et al. 2000) as part
of a rapid screening assay for the identification of
virus resistant transgenic 41B (Vitis vinifera �
Vitis berlandieri) individuals (Valat et al. 2006).

Fig. 16.1 High-throughput somatic embryogenesis sys-
tems in different Vitis genetic backgrounds. Somatic
embryogenesis (SE) is today the most convenient proce-
dure for gene transfer experimentation. Although the basis
of SE was developed during the 1970s and 1980s, these
protocols have led to improved approaches by which SE
can be optimized and scaled up. Routine gene transfer
experimentation can be achieved using liquid media
(a) and automatic permanent immersion systems

(bioreactors, b). These systems improve the nutrients
transference coefficients into cells, thereby accelerating
the rates for embryo development. The current goal is to
spread SE platforms to diverse Vitis genotypes. Systems
for SE based on liquid media in ‘Red Globe,’ ‘Crimson
Seedless,’ Freedom (1613 (solonis � Othello) �
Dogridge) and 110 Richter (Berlandieri � rupestris) are
shown. Details can be obtained from Tapia et al. (2009)
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Since then, many protocols for grapevine proto-
plast generation have been developed using
several cell sources (Nunan et al. 1997; Fontes
et al. 2010; Wang et al. 2015; Zhao et al. 2016).
Recently, these same procedures have led to the
development of ‘Chardonnay’ protoplasts sus-
ceptible to gene editing by delivery of the editing
reagents, a work in which the authors described
the production of edited grapevine cells without
stable exogenous DNA incorporation into their
genome (Malnoy et al. 2016).

16.2 Genetic Transformation

16.2.1 Transient Gene Transfer
Systems

Advances in the understanding (annotation) of
grapevine genomes have enabled deeper studies
of the proposed coding sequences of key candi-
date genes and the functional role of their regu-
latory sequences. For this reason, experimental
approaches regarding both the overexpression of
such coding sequences and RNAi assays target-
ing specific sequences and gene regions, ideally
at their specific tissues or organs, have begun to
be evaluated. Transient expression assays have
become relevant as screening systems prior to
experimentation linked to precise breeding as
they avoid the technical difficulty and lengthy
periods associated with whole-plant generation.
A complete summary of transient expression
assays in V. vinifera is given by Jelly et al.
(2014).

Ten years ago, transient gene expression in
grapevine was limited to particle bombardment
of cell suspensions. Thus, factors influencing leaf
agroinfiltration procedures started to be studied
and optimized (Santos-Rosa et al. 2008). Today,
the most immediate approach in transient
expression assays is based on the development of
agroinfiltration techniques. Both in vitro plantlets
and young plants are the most regular sources
used in these assays. Attached (Zottini et al.
2008) or detached leaves (Santos-Rosa et al.
2008) and roots (Terrier et al. 2009) have been
also used from in vitro plantlets (Chialva et al.

2018), and isolated leaves from potted individu-
als (Merz et al. 2015). In addition to leaf
explants, several other works describe the use of
agroinfiltration procedures in cell suspensions,
somatic embryos, and protoplasts. The explant
quality and genotype have been found to be
critical for this type of experimentation.

The increasing amount of information and the
urgency for candidate gene or sequence evalua-
tion in vivo has led transient gene transfer toward
a more systemic approach. A recent example was
the functional elucidation of the role of VviAGL11
in seed formation. Overexpression and RNAi
constructs for this gene allowed the analysis of
seed formation in berries by direct injection of
clusters’ peduncles at their base end in the seeded
‘Prosecco,’ ‘Alvarinho,’ ‘Chardonnay,’ ‘Italia,’
‘Moscato Giallo,’ ‘Pinot Noir,’ ‘Ruby,’ and
‘Trebbiano’ plants and in the apirenic ‘Clara,’
‘Linda,’ and ‘Thompson Seedless’ plants (Mal-
abarba et al. 2018). More recently, a whole-plant
agroinfiltration protocol was reported in which
promoter regions of members of the VviSTS gene
family were evaluated and the effect of different
elicitors pursued (Chialva et al. 2018). The
whole-plant agroinfiltration procedure was
applicable in ‘Thompson Seedless,’ ‘Chardon-
nay,’ ‘Pinot Meunier,’ and ‘Carménere’ plants,
and in the rootstocks Harmony (1613 (solonis
Othello) � Dogridge) and Salt Creek (Ramsey;
Vitis parentage champinii) (Fig. 16.2).

As we indicated in the previous section,
the edited grapevine protoplasts allowed the
corroboration of editing tools with no foreign
DNA integration and increased the need for
screening/reporter systems coupled to precise
breeding. As we will discuss later in this chapter,
CRISPR/Cas9 technology requires the develop-
ment of multiple accessory techniques in order to
be applied to produce stable edited individuals.

16.2.2 Stable Gene Transfer

Regardless of the public acceptance of geneti-
cally modified crops, stably transformed grape-
vine plants and their field trials have represented
a limiting factor for an effective application of
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genetic engineering in breeding. While some
research was scaled up to field tests during the
2000s (Gray et al. 2011), there are currently only
a few active field trials for genetically modified
grapevines, including some studies addressing
Pierce’s disease and Xylella fastidiosa, virus
diseases, such as Grapevine leafroll-associated
virus 3 (APHIS 2018), and tolerance to fungal
diseases, such as powdery mildew (Rubio et al.
2015). Long-term maintenance of a transgenic
collection in field plots not only allowed the
evaluation of durability of disease tolerance, but
also led to the identification of other interesting
phenotypes, such as individuals showing repro-
ducible recess delay (Fig. 16.3).

The first attempts to overcome the drawbacks
in transgenic development came from the elimi-
nation of selection marker genes. The use of the
Cre/lox P recombination system as an element in
transformation vectors to remove the undesired
vector and reporter gene sequences has been
formally described in model species (Ow 2007).
In grapevines, using the cultivar ‘Brachetto,’ the
estrogen receptor-based fusion transactivator
XVE (XVE System; Zuo et al. 2001) showed that
17-b-estradiol supply was useful in nptII gene
removal in plantlets derived from three mor-
phogenic in vitro systems. This system was very
effective in the roots and partially effective in
leaves (Martinelli et al. 2009; Dalla Costa et al.

Fig. 16.2 A whole-plant agroinfiltration technique for
transient expression. Using vacuum infiltrations, whole
in vitro plants can transiently express different DNA
sequences. The most relevant advantage of this approach
is that it produces lower mechanical wounding on the
infiltrated tissues, thus allowing for plants maintenance
under culture conditions and further experimentation, if
required. For this reason, this technique is suitable for
overexpression of CDS, artificial miRNA expression, or
evaluation of promoter responses upon a battery of

challenges. Expression of reporter genes, such as GUS,
GFP, and VvimybA1, is shown as representative examples
of the level of effectiveness on cells. Inset boxes
correspond to images captured by optical microscopy
(10�) for GUS and VvimybA1 expression and under
epifluorescence microscopy for GFP expression (10�).
WT, wild-type individuals; 35S, Cauliflower virus 35S
RNA promoter. Details can be obtained in Chialva et al.
(2018)
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2010). In a similar approach, the expression of
the yeast flippase (Flp) recombinase (Lyznik
et al. 2003) was successfully induced in ‘Bra-
chetto’ (Dalla Costa et al. 2016). By using the
heat-shock Gmhsp17.5-E promoter (Czarnecka
et al. 1989), Flp expression was induced in the
transgenic plant subjected to temperature
increases (40–42 °C), which resulted in the effi-
cient excision of the nptII marker gene flanked
by flippase recognition target (FRT) sites.

Removal of non-grape sequences (marker and
selection genes) in gene transfer-derived indi-
viduals can be considered as a technical effort
focused on producing individuals transformed
with only-grape sequences, i.e., intragenics. The
approach toward cisgenics (Nielsen 2003;
Schouten et al. 2006), using genetic elements
derived from the grape genome, has also begun
to be considered for the plasmids used in gene
transfer. Selected from the group of
pathogenesis-related proteins produced by
grapevines under fungal challenge, a
thaumatin-like protein VviTL1 has been used in
the generation of ‘Thompson Seedless’ plants
with delayed powdery mildew infection under
greenhouse conditions, tolerance to the fungus
Guignardia bidwellii (grape black rot) at field
level, and decreased incidence of sour-rot in
berries under storage at room temperature
(Dhekney et al. 2011).

The availability of genome sequences opens
the possibility to advance toward improved
concepts in grapevine cisgenics by defining
plant-derived transfer DNAs (Rommens et al.
2005). These elements can be assembled into
gene transfer plasmids adequate for plant (in
general) and grapevine (in particular) genetic
transformation experiments. Conserved and
variable regions in the Agrobacterium tumefa-
ciens Ti plasmid accessions have been reviewed
and mimicked by synthetic blocks that can be
studied for their effect in the DNA transfer pro-
cess (Conner et al. 2007; Rommens et al. 2005;
Holme 2013). For instance, the 25-nt Agrobac-
terium T-DNA right borders function in the ini-
tiation of DNA transfer and have a highly
conserved 13-bp 5′-ATATATCCTG-[C/T]-CA
motif preceded by a more degenerate 12-bp
consensus 5′-[A/C/G][A/T]-[A/T]-[G/T]-AC-
[A/C/T]-N-[C/G/T]-[A/C/G]-[A/C/G]-N (Rom-
mens et al. 2005). Similarly, several conserved
blocks can be deduced from both T-DNAs and Ti
plasmids. These ‘codes’ have allowed the design
of synthetic elements, for example, possible right
borders, and their evaluation of their integration
capability. According to that information, plant
DNA sequences can be searched in datasets and
proposed as plant-derived transfer DNA modules
equivalent to those used by Agrobacterium.
Figure 16.4 shows the proof of concept for an

Fig. 16.3 Phenotypical variations on grapevine trans-
genic events. Genetic transformation in grapevine has
generated several reports for field trials of individuals
during recent years. However, policy and public percep-
tion issues have affected these assays, and most of them
have already declined. One of these trials is located at La
Platina Station in INIA-Chile, which is still maintained as
a collection. While, the main goal of this research was the
generation of individuals with improved tolerance to

fungal diseases (Rubio et al. 2015), the long-term analysis
has also shown interesting new traits as presented in this
set of pictures. ‘Thompson seedless’ lines transformed
with chitinases and glucanases derived from Trichoderma
spp. were established on the field since 2004 against
fungal pathogens. After 14 years of field evaluations, a
single event (115) shows a delay in recess relative to wild-
type and other transgenic plants placed in the block
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‘All Grape’ vector developed in our laboratory,
expressing a GFP cassette in Nicotiana ben-
thamiana explants, thus combining the high
functionality as transfer DNAs of the selected
elements found in the grapevine genome.

In the development of the ‘All Grape’ vector,
we relied on several key elements found in the
T-DNA and surrounding segments, which—
based on the available information—can be
mimicked by the grapevine genome. Nucleotide
sequences belonging to right and left T-DNA
borders were compared among Agrobacterium
strains and used to create search patterns based
on regular expressions to search over various
databases that include grapevine genome infor-
mation (e.g., NCBI, Gramene, and Genoscope).
These alignments were carried out following
special BLAST parameters, as indicated by
Rommens et al. (2005). From this, we built a
table of candidate regions in the grapevine gen-
ome that could accomplish this function
(Table 16.1).

In addition to these positions, we recorded
down- and upstream blocks in these sequences to

obtain additional ‘codes’ found in the T-DNA.
Some of these blocks include the right T-border
(RB) sequence and their upstream sequences
(such as overdrive sequences that promote DNA
transference such as AC-rich (ACR) domain) and
RB downstream sequences (10-nt motifs (de-
camers; DR) and CCCG blocks (Tzfira et al.
2004; Tzfira and Citovsky 2008; Toro et al.
1988; van Haaren et al. 1987; Culianez-Macia
and Hepburn 1988; Lee and Gelvin 2008), Left
T-border (LB) sequences and their LB upstream
sequences (AT-Rich domain and UL motif), and
LB downstream sequences (C-cluster) (Rom-
mens et al. 2005; Rommens 2004; Tzfira et al.
2004; An et al. 2013; Gelvin 2000); a summary
with the sequence requirements is shown in
Table 16.2.

Although cisgenics has been classified among
the New Breeding Techniques, its closeness to
transgenics has stalled the progress of this tech-
nology. The advantages associated with vectors
based on plant DNA most probably the use of
RNAi and gene-editing approaches will seem
likely to gain traction in near future.

Fig. 16.4 Functional evaluation of grapevine-derived
transfer DNAs in Nicotiana benthaminana. Using the
genome draft information, bioinformatic analyses allowed
us to identify several grapevine genome modules that can
mimic the T-DNA function in gene transfer experiments.
As a proof of concept, a green fluorescent protein
(GFP) expression cassette was cloned into the All Grape

vector (a) and used in N. benthamiana gene transfer
experiments. A transformed explant time course
(b) showed GFP expression from the early stages of the
organogenesis process up to 70 days post-infection and
subsequently, in the fully regenerated plants (c four
months after infection)
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16.3 New Breeding Techniques

We will focus this section on only two tech-
nologies that are considered major current
applications with impact, both based on small
RNAs: RNAi and CRISPR. Both technologies
have several elements and concepts in common
and are derived from regular cell processes.

16.3.1 RNA Interference (RNAi)

Biotechnological uses of silencing mechanisms
began with the work of Fire and colleagues (Fire
et al. 1998), where the authors demonstrated that
a double-stranded RNA can be used to interfere

with the expression of an endogenous gene by
producing RNAi. Later, one of the most used
systems inducing RNAi was designed by the
generation of hairpin RNAs, composed of a
sense RNA (with respect to the target gene) and
its corresponding antisense, separated by a spacer
region (Wang and Waterhouse XXX; Wesley
et al. 2001). These double-stranded RNAs
(dsRNAs) induced vectors and then trigger the
biosynthesis of small interfering RNA (siRNA).

16.3.2 Small Interfering RNAs
(siRNAs)

RNAi is triggered by the formation of endoge-
nous or exogenous dsRNA precursors via the

Table 16.1 Putative grapevine transfer DNA-mimicking T-DNA borders

Genome region* Identity

Chr18: 19096056-19096979 VIT_18s0072g00080

Chr15: 18461532-18461555 Intergenic

Chr04: 22043123-22043145 Intergenic

Chr13: 7204421-7204442 Intergenic

Chr13: 4497591-4497610 Intergenic

Chr16: 3096123-3096140 VIT_16s00039g02720

Chr18: 615525-615544 VIT_18s0122g00850

Chr07: 18380158-18380177 VIT_07s0031g02240

Chr04: 19365963-19365987 Intergenic

Chr18: 18140575-18140593 VIT_12s0059g00150

Chr01: 10177649-10177665 VIT_01s0026g01170

Chr03: 96578-96598 Intergenic

Chr10: 4999352-4999371 VIT_10s0003g02880

Chr06: 11633925-11633943 Intergenic

*Locations according to Phytozome v12.1

Table 16.2 Summary of nucleotide motifs involved in T-DNA function

Motif
name

Characteristic

ACR C or T, separated by an A-rich tri-nucleotide segment. Pyrimidine hexa-nucleotide close to the border

DR [A/C/T]-[A/C]-[A/C/T]-[A/G/T]-[A/T]-T-[A/C]-G-[G/T]-[G/T]

AT-Rich [A/G]TTTACA[A/C/T][A/C/T][A/C/T] [C/G]AATATATCCTGCC[A/G]

UL A[C/T]T[C/G]A[A/T]T[G/T][C/T][G/T][C/G]A[C/T][C/T][A/T]

C-cluster CCN1-11CCN1-11CCN1-11CC
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activity of one or more cellular RNA-dependent
RNA polymerase (Incarbone and Dunoyer
2013). These precursors are processed by the
Dicer or Dicer-like ribonuclease III (DCL) en-
zymes to form siRNA duplexes, which are pro-
tected from exonucleolytic degradation (Li et al.
2005) and loaded into Argonaute effectors
through the selection of one strand as a guide for
target identification and the removal of the pas-
senger strand (Vazquez et al. 2006). These events
facilitate the formation of the RNA Interference
Silencing Complex (RISC) for cleavage of the
target RNA. Of the total pool of siRNA species
generated, molecules between 21- and 24-nt long
play roles in gene silencing (Montes et al., 2014).

The accumulation of different RNAs species
and its double-strain structures (aberrant RNAs)
due to several cellular process involved in siRNA
biosynthesis can be triggered, from a technology
point-of-view, using virus-based vectors
expressing high amounts of specific RNAs or
using double-stranded RNA hairpin-inducing
plasmids, in which 200–600-bp segments of
specific genes are arranged in sense and antisense
orientation in an expression vector.

In grapevines, siRNAs generation has been
strongly supported by transient expression assays.
Based on the single-stranded RNA genome of the
Grapevine leafroll-associated virus-2
(GLRaV-2), an assembled DNA version of a
GLRaV-2-based vector was built harboring an
expression cassette for foreign sequences (Kurth
et al. 2012). First assayed for the GFP gene
expression, this expression cassette was then
modified and fused downstream of this reporter
with a sense fragment of the ‘Syrah’ phytoene
desaturase (PDS) gene or antisense of the ‘Syrah’
subunit I of magnesium-protoporphyrin IX che-
latase (ChlI) gene. In both cases, constructs led to
leaf bleaching due to the loss of chlorophyll in the
agroinfiltrated grapevine leaves. Additional
examples for RNAi in grapevines have relied on
hairpin-inducing vectors. Agroinfiltration proce-
dures were used in ‘Carbenet Franc’ leaves for the
expression of a hairpin-inducing construct to
decrease mRNA levels of the defense-related
gene VviPGIP1, encoding a polygalacturonase-
inhibiting protein (PGIP) (Bertazzon et al. 2012).

More recently, a silencing construct based on
sequences of the VviAGL11 gene, which is
involved in seed formation in grapevines, was
used in infiltration experiments of peduncles of
the seeded ‘Italia’ and ‘Ruby’ and conducted for
the downregulation of VviAGL11 mRNAs, also
resulting in seedless and seed rudiments in clus-
ters in the infiltrated individuals (Malabarba et al.
2018).

Stable transformation assays using
hairpin-inducing constructs have also been car-
ried out. The cloned somatic embryos of the ref-
erence accession PN40024 were used to develop
a silencing construct directed against the GFP
reporter gene (Romon et al. 2013). In these
experiments, the authors also analyzed the effect
of low temperatures on the silencing capability in
the plants and found that the process is unaffected
by temperature treatments of these stably trans-
formed grapevine plants up to 4 °C of incubation,
in contrast to Arabidopsis transgenic lines sub-
jected to similar situations, whose GFP fluores-
cence recovered. Stable transformed plants were
generated with a dsRNA hairpin that induced
silencing constructs for different gene isoforms of
the susceptibility gene Mildew Locus O
(MLO) gene family (Pessina et al. 2016). Specific
silencing constructs for the VviMLO6, VviMLO7,
VviMLO11, and VviMLO13 gene versions were
built and used in gene transfer experiments of
‘Brachetto’ somatic embryos, and successfully
regenerated plants were evaluated for fungal tol-
erance. Using these data, the authors propose the
VviMLO6 and VviMLO7 genes as responsible in
the fungus–plant interaction and suggest them as
a target for gene editing to generate powdery
mildew-resistant grapevines.

16.3.3 MicroRNAs (miRNAs)

Directly linked to the genomic knowledge of the
species and the use of next-generation sequenc-
ing (NGS) systems, the regulatory role of miR-
NAs has become a key topic of genetic
engineering.

MicroRNAs are the processed version of
nuclear genes (miRNA genes) and are responsible
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for gene regulation in several key pathways in
organisms. During their processing, the primary
miRNA gene transcripts (pri-miRNAs) form a
partially double-stranded stem-loop structure
(pre-miRNA) that is processed by DCL1 proteins
to release mature and functional miRNAs (Bartel
2004). Mature miRNAs are recruited to the RISC,
where they become single-stranded to execute
different functions.

Today, we know that these molecules play a
crucial role in the genetic programming and fine
tuning of plant biology (Bartel 2004; Kurihara
and Watanabe 2004; Brodersen and Voinnet
2006), which is of major relevance in grapevine,
a species with a life cycle spanning a two-season
period with multiple developmental stages. One
of the first maps for these molecules came from
miRVine (Belli-Kullan et al. 2015), a dedicated
miRNA database for the species, obtained from
NGS of small RNAs obtained from ‘Corvina’
and from the ‘Pinot Noir’ derived reference
grape genome sequence accession PN0024,
leading the announcement of over 285 miRNAs.

In comparison to siRNA species, miRNA
pathways could operate through less transitivity
(secondary siRNA biogenesis), thus the practical
application of gene silencing via the design and
use of artificial miRNAs (amiRNAs) could rep-
resent a powerful alternative in RNAi in terms of
specificity (Montes et al. 2014; Castro et al.
2016). However, this involves the technical
inconvenience of requiring a backbone sequence
that ensures the generation of the correct
miRNA. Several examples of silencing using
amiRNAs exist in species such as Arabidopsis
thaliana, Oryza sativa,Medicago truncatula, and
Chlamydomonas reinhardtii (Schwab et al. 2006;
Warthmann et al. 2008; Álvarez et al. 2006;
Molnar et al. 2009; Devers et al. 2013). These
studies relied on the use of the simple stem-loop
structure as backbones (pre-miRNAs) for the
processed, final miRNA, such as the A. thaliana
pre-miRNA319a (ath-miR319a). The pre-
miRNA319a has been incorporated into the
plasmid pRS300, becoming an amiRNA
assembly-expression tool (Schwab et al. 2006).
In a recent work, we described the use of the
simplest member of the grapevine miR319

family in terms of size and structure, the
vvi-miRNA319e, as a suitable artificial miRNA
template for genetic engineering (Castro et al.
2016). The simplicity observed in this molecule
and its precursor makes it an easy-to-handle
silencing tool, which can also be proposed as a
part of vectors harboring multiple expression
cassettes for simultaneous gene silencing and
replacement (Fig. 16.5) experiments. We have
also designed a Web tool by which the primers
for both synthesis and stem-loop detection can be
deduced (available as ‘Plant amiRNA designer’
at www.fruit-tree-genomics.com, tab ‘Biotools’).

16.3.4 Clustered Regularly
Interspaced Short
Palindromic Repeats
(CRISPR)/Cas9
in Grapevines

In the last 10 years, programmable DNA-binding
proteins (effectors), such as zinc finger and
transcription activator-like effectors, have
emerged as an alternative to conventional edit-
ing, mainly based on random mutagenesis tech-
niques. An advantage of these tools is their
recognition capability of specific target DNA
sequences based on the joining of tailored (cus-
tomized) arrangements of one (TALE) or three
(ZF) nucleotides, thereby bringing to these places
a nuclease (generally C-terminal domain of FokI)
that disrupt DNA adjacent to the recognition
zones. Both ZF- and TALE-nucleases, ZFN and
TALEN, respectively, require two effectors (left
and right) to define a nuclease (FokI) cutting site,
located between the left and right effectors (Gaj
et al. 2013).

While many research teams have started to use
ZFNs and TALENs, in June 2012, Doudna and
Carpentier (Jinek et al. 2012) adaptedRNA-guided
machinery to direct the nuclease Cas9 to cleave
DNA. The Clustered Regularly Interspaced Short
Palindromic Repeat (CRISPR)/Cas9 system has
been a revolutionary molecular tool since its dis-
covery as an adaptive line of defense against viral
infection in Archae (Mojica et al. 2000). CRISPR/
Cas9 is currently one of the most relevant
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gene-editing techniques that allow for the direct
generation of sequence modifications in the gen-
ome. First described as an adaptive immune
response in Streptococcus pyogenes, the main
elements of this system have been adopted as
biotechnology tools for targeted mutagenesis. This
involves making guide RNAs (gRNAs) that target
customized sequences in the genome to direct the
Cas9 nuclease activity to generate double-stranded
breaks adjacent to the gRNA joining location.

Currently, CRISPR/Cas9 has been used suc-
cessfully in humans (Baumann 2017), insects
(Taning et al. 2017), fungi (Nødvig et al. 2015),
and plants (Demirci et al. 2017). Delivery of
CRISPR/Cas9 components into the plant cell has
been achieved by their stable integration into the
genome using gene transfer techniques, which has
mostly relied on the use of binary, Ti-derived
plasmids convenient for Agrobacterium-mediated
transformation.

The term gRNA refers a short synthetic RNA
composed of a scaffold sequence necessary for
Cas-binding and a user-defined 20 nucleotide
spacer that determines the genomic target to be
modified. The target sequence recognized by the
spacer will be a protospacer sequence, located
contiguous to an adjacent motif recognized by
Cas9 required for DNA cleavage, which is an
NGG nucleotide arrangement called protospacer
adjacent motif (PAM). For practical uses in the
next paragraphs, we will use gRNA to indicate
the user-defined spacer sequence only.

16.3.4.1 Theoretical Gene Editing
The challenge of setting CRISPR/Cas9 technol-
ogy involves a previous knowledge of genome
information. Several pipelines based on the use
of gRNA + PAM target site datasets have been
described and used for on-target and off-target
predicting activity of gRNAs inside a genome

Fig. 16.5 Gene replacement using an artificial grapevine
microRNA (amiRNA). An amiRNA based on the
VvimiRNA319e backbone (Castro et al. 2016) was
synthesized targeting the green fluorescent protein
(GFP) gene and 3′-fused to a GUS CDS directed by the
35S CaMV promoter, generating the gene replacement
construct GUS-amiR-GFP (a). This construct was used in
transient expression assays of leaves from ‘Thompson

Seedless’ plants stably expressing GFP (b). Leaves were
evaluated at 4 and 6 days post-infiltration (dpi) using
epifluorescence microscopy (UV light) and GUS staining.
In (b) amiR-GFP, leaves agroinfiltrated with an amiR319e
construct targeting the GFP gene; GUS, leaves agroinfil-
trated with a GUS expressing construct; GUS-amiR-GFP,
leaves with the GUS-amiR319-GFP construct
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(Pulido-Quetglas et al. 2017). In the case of
grapevine, genome tools for CRISPR design are
available in several Web sites on the basis of the
‘PN40024’ reference grape genome (Brazelton
et al. 2015). However, the use of the reference
genome can generate problems if the target
genome differs in homology, entailing loss of
PAM sites or the occurrence of non-predicted
off-targets. Also, these tools have been focused
on a single-gRNA approach, leading to discrete
mutations in the target sequence. While early
studies utilizing individual gRNAs to induce
mutations in protein coding regions frequently
resulted in complete loss-of-function gene
mutations by frameshifting, indels induced by
single gRNA targeting non-coding regions are
less likely to produce loss-of-function mutations
(Shalem et al. 2014; Hart et al. 2015). With these
considerations, we implemented a more dedi-
cated tool to process the genome information of
several woody fruit crops, including grapevines.
Our systems allow the generation of ‘gRNA
pairs’ that lead to gene deletions flanking a target
region (Ho et al. 2015; Aparicio-Prat et al. 2015).

One of our first aims was to establish gene
editing in the laboratory and to develop essential
tools for correct candidate gene visualization and
analyses, which means an ex-ante visualization
of on-target and off-target activities of the
designed gRNAs. The analysis of an on-target
activity is closely related to the gRNA design.
There are several online tools that allow the
design of single gRNAs for different plant gen-
omes; these tools are based on thermodynamic
parameters and different predictive models that
lead to defining a ranking of the best candidate
molecules. Among these, the empirical logistic
regression model by Doench et al. (2014) is
noteworthy; this model was initially trained with
experimental assays for 1841 gRNAs for human
and mouse genes and considers the nucleotide
sequence features of the [protospacer + NGG]
region plus four and three nucleotides upstream
and downstream, respectively.

The computing of PAMs for Cas9 over a
target genome allows for a first-dimensional
analysis of the putative cut sites for the nucle-
ase upon gRNA leadership. Wang et al. (2016)

described the occurrence of more than 35 million
PAMs in the grapevine genome. In the con-
struction of our dedicated system for Vitis, we
found a total of 36,505,702 potential CRISPR
sites [protospacer + PAM] in the reference gen-
ome (Genoscope 12X, Jaillon et al. 2007). They
were uniformly distributed among the 20 chro-
mosomes, ranging from 1,397,855 (chr17) to
3,040,562 (chrUn). Of all protospacer sequences,
22,994,707 (63%) were unique and 37,047 pro-
tospacers contained an ‘N’ (an unknown residue)
and, for this reason, were not useful during
gRNAs design. Four types of PAM were scored
(AGG, TGG, CGG, and GGG). The most
abundant PAM type across the genome was TGG
(32.8%), followed by AGG, GGG, and CGG,
with the latter accounting for just 7.4% of the
total. Interestingly, expanding this study to other
woody fruits, we have found similar results in the
analysis of the apple genome (GDDH13 Version
1.1).

Subsequently, gRNA target sequences (i.e.,
protospacers) added to this dataset of PAM sites
will allow the generation of every possibility in
the genome for the gRNA/Cas9 complex. This
collection of combinations constitutes the
potential target sites within a genome, which can
also be considered as potential off-targets of a
specific gRNA if mismatches are allowed within
their native sequences. The generation of
off-target databases (previously calculated for
different genomes) represents a useful approach
for fast genome scoring of unwanted editing
activity using CRISPR/Cas9. The main property
of this approach is to represent a relatively ‘light
processing’ workflow for computers and online
work.

The system was based on CRISPR-Analyzer
(Shen et al. 2014) and CRISPETa (Pulido-
Quetglas et al. 2017). CRISPETa is a suite of
command-line Python scripts that find all possi-
ble gRNAs given a target genome region. This
tool also ranks each gRNA according to its pre-
dicted on-target activity using an empirical
logistic regression model (Doench et al. 2014).
Alternatively, CRISPR-Analyzer, a collection of
command-line C++ scripts, enabled us to find
and index all the possible [protospacer + NGG
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sequences] along the V. vinifera reference gen-
ome. Next, we generated the possible ‘CRISPR
sites’ for this Vitis reference. This database was
additionally processed to compute the possible
off-targets sites with 0–4 mismatches for each
recorded site and stored them in a MySQL
database, which is used to quickly find the
number of off-targets upon gRNA query. The
pipeline for the V. vinifera genome is presented
as a Web application and integrates this infor-
mation using the JBrowse Genome Browser
(Skinner et al. 2009) and SequenceServer
(Priyam et al. 2015). As in CRISPETa, the user
can also establish advanced parameters, such as
the maximum allowed number of off-targets with
0, 1, 2, 3, and 4 mismatches and the minimal
individual and paired scores for the gRNAs. The
results for the off-targets are individualized
according to the chromosome, sequence coordi-
nates, mismatch number and position, and loca-
tion (exonic, intronic, or intergenic). Our
grapevine ‘CRISPR search tool,’ as well as
similar tools for other woody fruit crops, is
available at Genome Browser at https://www.
fruit-tree-genomics.com (tab ‘Biotools’).

16.3.4.2 Experimental Gene Editing
Woody fruit species, such as grapevine, present
their own difficulties when subjected to gene
transfer experiments; these include low efficiency
in regeneration and transformation, chimerism,
recalcitrance, and a long-time regeneration pro-
cess. These conditions are also predictable for
CRISPR/Cas9 experimentation. Once a set of
candidate gRNAs are derived from the grapevine
CRISPR search tool or from a different available
tool, these molecules must be evaluated for their
efficiency at directing Cas9 to the target site in
the grapevine genome. While some works have
proposed the use of RNAi for fast screening of
the target candidate sequences (Pessina et al.
2016), we think that a recall for transient
expression systems could also be an extremely
useful tool. In our experience, the use of transient
expression systems is the most suitable, conve-
nient, and fast procedure to carry out gRNA

evaluation processes. From the above-referred
strategies, the fastest experimentally effective
assays have been the use of agroinfiltration pro-
cedures, using either whole plants (Chialva et al.
2018) or leaf agroinfiltrations (Zottini et al. 2008;
Miccono et al. 2018) (Fig. 16.6).

Several reports have described grapevine
genome editing by generating transgenic indi-
viduals expressing the editing reagents gRNAs
and Cas9 (Ren et al. 2016; Nakajima et al. 2017;
Wang et al. 2017). These works demonstrated the
feasibility of gene editing in the species and
encouraged additional efforts into editing indi-
viduals without foreign DNA insertion into the
genome, as for instance, the delivery of the
already assembled ribonucleoprotein-editing
reagents (Malnoy et al. 2016).

Using a different approach, we have con-
ducted several trials that finally allowed for the
establishment of a DNA-replicons strategy
(Baltes et al. 2014), based on the Bean yellow
dwarf virus (BeYDV) genome structure in the
absence of proteins required for its multiplication
(i.e., disarmed virus). This allows a high copy
number in the cell without the insertion of the
replicon into the plant genome.

By assembling the LSL cis-elements (Baltes
et al. 2014) from the geminivirus genome, we
designed and built a universal plasmid capable of
replicational release of a BeYDV-derived repli-
con from a regular T-DNA. These elements
allow the simultaneous expression of Cas9
nuclease and up to four different gRNAs. The
vector, called pGMV-U (Addgene plasmid
#112797), was used in the proof-of-concept
study for the editing of the VviSWEET4 gene, a
sugar transporter up-regulated under several
biotic stresses in grapevine, as well as in fungi
and bacteria (Chong et al. 2014). Using
‘Thompson Seedless,’ SE, and pGMV-U, a
conventional SE Agrobacterium-mediated gene
transfer experimentation has allowed for the
generation and identification of the first edited
non-transgenic individuals for the VviSWEET4
gene (Miccono et al. 2018), which are currently
under functional evaluation.
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16.4 Future Prospects

The advance in gene transfer technology has
been considerable. We are witnessing an era in
which the fundamentals of tissue culture, geno-
mics, and the promising genetic engineering
seem to be advancing faster than ever. A relevant
aspect of these facts is to realize that the extent of
the advances has been based on a return to the
works and techniques developed more than 30
years ago. Tissue culture techniques have
regained interest following the development of
the new technologies involving precise breeding,
such as trans-grafting, protoplast techniques, and
SE (in the case of grapevines). It has become
evident that a fusion between genome knowledge
and genetic engineering is finally challenging our
laboratory skills to translate those hypotheses
arising from bioinformatics.

There is little doubt that the gene-editing era
has driven these different routes into

complementary workflows in which efforts in
genetic transformation could contribute to
grapevine breeding. The refinement of
gene-editing technology is also accelerating
future developments in gene transfer technolo-
gies. Recently, a high-throughput assembly
module, available as a Web-based toolkit, has
been released for custom design of vectors for
gene editing in plants (Čermák et al. 2017). In the
toolkit, TALEN or CRISPR/Cas9 reagents for
creating targeted DNA sequence modifications
can be assembled, enabling the use of CRISPR/
Cas9 technology assisted by up to 12 gRNAs at a
time, based on the use of a polycistronic mRNA.
Additional improvements to the CRISPR/Cas9
vectors considered in the kit were the fusion of a
single C-terminal nuclear localization signal for
the nuclease, thereby improving Cas9 efficiency.
On the other hand, new approaches in CRISPR
effector nucleases by which improved novel Cas-
like proteins are leading to new approaches in
gene editing (Zetsche et al. 2015) and related

Fig. 16.6 Fast screening system for the evaluation of
guide RNAs. A preliminary system for in vivo evaluation
of designed gRNAs was applied using transient expres-
sion assays. In our experience, the generation of edited
grapevine individuals requires long-term experimentation
based on somatic embryogenesis gene transfer experi-
ments. Before proceeding with this experimentation,
functional analyses of the designed gRNAs are recom-
mended. Vectors carrying the designed gRNAs are
infiltrated using a needleless syringe in leaves of

acclimatized plants (a). After infiltrations, tissue samples
from the exposed areas are used for genomic DNA
extraction and analysis. A paired gRNAs-editing strategy
in grapevines (Miccono et al. 2018) enables to cleave a
considerable fragment of a target gene (b); in this case,
gene editing can be monitored by conventional PCR of
the extracted DNA (c). In the (c), the three bands
correspond to edited genes; amplicons of 121 bp (indi-
cated by the white arrows) confirmed the targeted deletion
(wild-type amplicon size: 1542 bp)
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techniques, such as Base Editing (Komor et al.
2016) and even RNA editing by Cas13 (Cox
et al. 2017).

Finally, while the commercial success of new
individuals derived from precise breeding will be
subject to public concerns and criticism, as
happened in the transgenics era, the scope of new
techniques from a technical point-of-view is clear
and will certainly represent a boost in the gen-
ome knowledge for Vitis.
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