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Abstract. Predicting the travel time of a given path plays an indis-
pensable role in intelligent transportation systems. Although many prior
researches have struggled for accurate prediction results, most of them
achieve inferior performance due to insufficient extraction of travel speed
features from the sparse trajectory data, which confirms the challenges
involved in this topic. To overcome those issues, we propose a deep learn-
ing framework named Tensor-CNN-LSTM (TCL) in this paper, which
can extract travel speed effectively from historical sparse trajectory data
and predict travel time with better accuracy. Empirical results over two
real-world large-scale datasets show that our proposed TCL can achieve
significantly better performance and remarkable robustness.

1 Introduction and Related Work

Thanks to the popularity of GPS-embedded devices, much more trajectory data
has been generated, by analyzing which municipal authorities may identify and
optimize the traffic congestion in advance. However, predicting an accurate travel
time is still very challenging as the travel time is affected by many dynamic
factors, such as dynamic departure time, dynamic traffic conditions and dynamic
driver behavior. All these ‘dynamics’ make it intractable to predict future pattern
of traffic with statistic model [6].

With rapid evolution of deep learning, some studies adopt embedding tech-
nologies to solve the challenge of dynamics [3,7]. They transform departure time,
drivers, weather and locations into low-dimensional learnable real vectors, and
construct a deep neural network to predict the travel time. Nevertheless, most of
them don’t extract travel speed features adequately from sparse trajectory data
because trajectory data isn’t necessarily generated on all road segments at every
moment1, which results in poor performance.

1 In our experiments, there are only 1.00% and 1.56% roads in Beijing and Shanghai
can satisfy this condition, respectively.
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Meanwhile, tensor/matrix decomposition algorithms have been adopted to
solve the data sparsity [5,8]. However, these decomposition methods often take
several minutes to restore the travel time/speed on a road, which is almost
infeasible in reality. Even worse, tensor/matrix decomposition algorithms can
only estimate the previous travel time/speed of a road because there’s no future
data in the tensor/matrix. Consequently, it cannot be directly applied to the
problem of travel time prediction2.

With the aim of solving the aforementioned challenges, we propose a novel
deep learning framework named Tensor-CNN-LSTM (TCL) for travel time pre-
diction, which can extract travel speed features effectively from historical sparse
trajectory data and predict the travel time of a given path with better accuracy.

2 Model Architecture

In this section, we introduce the framework of our proposed TCL model, as
is shown in Fig. 1. TCL is comprised of three major components: non-negative
tensor decomposition, long-short-term speed CNN and LSTM prediction model.

Fig. 1. The framework of TCL model.

Non-negative Tensor Decomposition. In the module of non-negative tensor
decomposition, we partition an hour into M time slots, and construct three
homogenous matrices Ah, Am, Ar ∈ R

N2×M , where Ar(i, j) = a denotes the
i-th grid with travel speed a in time slot j, and Ah is constructed based on
historical trajectories over a long period of time (e.g. a week). Am is a mixed
matrix to combine Ar and Ah. After constructing these matrices, we concatenate
them together to construct a 3D non-negative tensor A ∈ R

N2×M×3. We fill the
missing value in A by using a fast non-negative CP decomposition algorithm [2].

2 Once future information is added, such as the real travel speed, the problem will no
longer be travel time prediction [1].
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Long-short-term Speed CNN. In the module of long-short-term speed CNN,
we extract the long/short-term speed features from a given path, based on A∗,
where the long-term speed features are the travel speed values of the target grid
in the past 7 days, and the short-term speed features are the speed distributions
in that grid and relevant grids in the previous hour3. Afterwards, we construct
a CNN to obtain the whole speed features, as is shown in Fig. 2.

LSTM Prediction Model. The LSTM prediction model consists of two parts:
feature extraction layer and prediction layer, as is shown in Fig. 3. The former
extracts useful features from the path, such as augment features (the driver
ID, the departure time, the day of the week, the travel distance and holiday
indicator) and location features (the latitude, the longitude and the grid ID).
The prediction layer predicts travel time of the path, which consists of a 2-layer
LSTM and a multi-layer perceptron (MLP). The loss function of our model is
Mean Absolute Percentage Error(MAPE), and the optimizer is Adam.

Fig. 2. Architecture of CNN model. Fig. 3. Architecture of LSTM model.

3 Experiments

Datasets: We evaluate the performance of our model on two real-world tra-
jectory datasets, namely Beijing and Shanghai. The Beijing dataset contains
3,384,847 trajectories of 10,039 drivers from Oct. 1st to Oct. 31st in 2013. The
Shanghai dataset contains 9,727,798 trajectories of 13,622 drivers from Apr. 1st

to Apr. 30th in 2015. For each dataset, we split the trajectories generated in the
last 7 days as the test set and the rest as the training set4.

Results: We select TEMP [4], XGBoost, DeepTTE [3] as baseline methods
for comparison with our model. For DeepTTE and TCL, we train these models
for 50 epochs and repeat each experiment 3 times. The mean and the standard
deviation are calculated, and the results are shown in Table 1.

3 The top-k most relevant grids are calculated by time-shifting KL-divergence.
4 The sampling rates on two datasets are different, Beijing has low sampling rates

(sampling interval is 60 s), and Shanghai owns higher sampling rates (10 s).
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Table 1. Performance comparison of travel time prediction.

Dataset Beijing Shanghai

Metrics MAPE (%) MAE (sec) RMSE (sec) MAPE (%) MAE (sec) RMSE (sec)

TEMP 23.92 247.20 395.08 23.05 142.25 228.06

XGBoost 18.53 179.41 274.73 21.80 124.84 192.16

DeepTTE 13.47± 0.15 137.32± 1.03 221.03± 1.22 15.11± 0.08 99.77± 1.55 164.47± 3.83

TCL 12.40± 0.10 124.58± 0.99 200.06± 0.38 13.08± 0.05 85.96± 0.23 142.75± 1.07

As we can see, TEMP only considers the information of starting points and
destinations, resulting in the worst performance. XGBoost performs better than
TEMP on both datasets because the feature selection of XGBoost is consistent
with our model. However, XGBoost can not handle sequence data, so fixing the
length of a path will lose some information. DeepTTE consider various factors
which may affect the travel time, the performance of DeepTTE are much bet-
ter than aforementioned methods. Our proposed TCL captures the travel speed
accurately, which is the most important factor affecting travel time. TCL scores
12.40% and 13.08% (on two datasets respectively) in MAPE, and also outper-
forms other models in other metrics.

4 Conclusion

In this paper, we propose a novel deep learning framework, namely TCL, to
predict the travel time of a given path. Specifically, TCL can extract travel
speed effectively from historical sparse trajectory data and predict travel time
with better accuracy. TCL achieves satisfying performance on two real-world
datasets, which means that we have conquered the challenges of dynamics and
sparsity in the trajectory data.
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