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Abstract. Music playlist recommendation is an important component
in modern music streaming services, which is used for improving user
experience by regularly pushing personalized music playlists based on
users’ preferences. In this paper, we propose a novel music playlist rec-
ommendation problem, namely Personalized Music Playlist Recommen-
dation (PMPR), which aims to provide a suitable playlist for a user by
taking into account her long/short-term preferences and music contex-
tual data. We propose a data-driven framework, which is comprised of
two phases: user/music feature extraction and music playlist recommen-
dation. In the first phase, we adopt a matrix factorization technique to
obtain long-term features of users and songs, and utilize the Paragraph
Vector (PV) approach, an advanced natural language processing tech-
nique, to capture music context features, which are the basis of the sub-
sequent music playlist recommendation. In the second phase, we design
two Attention-based Long Short-Term Memory (AB-LSTM) models, i.e.,
typical AB-LSTM model and Improved AB-LSTM (IAB-LSTM) model,
to achieve the suitable personalized playlist recommendation. Finally, we
conduct extensive experiments using a real-world dataset, verifying the
practicability of our proposed methods.

1 Introduction

With the advent of lossy compression techniques (e.g., MP3 format), the field
of music distribution has changed from being medium based to being digitized,
which makes the music much easier to be downloaded or received by users on
their personal computers and mobile devices via Internet. However, with massive
amount of music available from thousands of web sites or online services, avoiding
overwhelming choices and finding the “right” music have become a challenge for
users. This is calling for effective music playlist recommendation techniques that
can provide suitable music playlists for users.

Most existing studies focus on user-preference-based music playlist recom-
mendation, which infer users’ preferences from past music-listening patterns or
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explicit feedbacks. For example, [7] characterizes both items and users by fac-
tor vectors inferred from item-rating patterns. However, they fail to effectively
incorporate users’ instant preferences and historical music-listening records. The
overall music-listening behavior of a user may be determined by her long-term
interest. But at any given time, a user is also affected by her instant preferences
due to transient events, such as issuance of new songs in the current time.

In the bulk of playlist recommendation research, music content, which is pri-
marily extracted from the audio signal, plays a key role in generating and rec-
ommending songs for users. For instance, Cano et al. [3] automatically extract
descriptions related to instrumentation, rhythm and harmony from music audio
signals and design a music browsing and recommendation system based on the
high-level music audio data similarity. However, content-based music recom-
mendation has not been applied very successfully in large range systems so
far [6]. Music context data, referring to all music-relevant information that is
not directly extractable from the audio signal itself, is another important fac-
tor for improving the quality of music recommendation. Context-based music
recommendation approaches have higher user acceptance and even outperform
content-based techniques for music retrieval [6,17]. For example, Rendle et al.
[14] explicitly model textual representations of musical knowledge (e.g., the pair-
wise interactions among users, items and tags) in music recommendation sys-
tem, which performs well in runtime and achieves good recommendation quality.
Cheng et al. [4] facilitate effective social music recommendation by considering
users’ location-related contexts as well as the global music popularity trends,
which overcomes the cold-start and sparsity problems. Nevertheless, the work
mentioned above ignores a crucial source of context-based data, comments of
songs, which influence how a user (e.g., a listener) perceives music.

In this paper we propose a two-phase data-driven framework, namely Data-
driven Music Playlist Recommendation (DMPR), which effectively combines
users’ long/short-term preferences and music contextual data. In the first phase,
we obtain users’ long-term preference features based on their favorite playlists,
and songs’ features (consisting of latent feature, semantic feature and category
feature) based on their music context (i.e., lyrics, comments and belonging pub-
lic playlists). In particular, we generate a rating matrix based on users’ favorite
playlists, and utilize a Matrix Factorization (MF) method to obtain users’ long-
term preference features for songs. The songs’ latent features can be obtained by
MF on the rating matrix as well. With the help of the Paragraph Vector (PV)
approach [8], we can extract each song’s semantic feature based on its lyrics and
comments, and compute each song’s category feature from its belonging public
playlists. The second phase aims to combine a user’s long/short-term preference
features based on two Attention-based Long Short-Term Memory (AB-LSTM)
models, i.e., typical AB-LSTM model and Improved AB-LSTM (IAB-LSTM)
model, and recommend her a suitable playlist, which contains top-k related
songs that have the highest probability of being liked.
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The contributions of this paper can be summarized as follows:

(1) We provide a novel framework of Data-driven Music Playlist Recommenda-
tion (DMPR) based on users’ long/short-term preferences and music con-
textual data, which aims to find a most suitable playlist for a user.

(2) The Matrix Factorization technique is adopted to effectively extract users’
long-term preference features and songs’ latent features.

(3) We introduce the Paragraph Vector (PV) approach, an advanced natural
language processing technique, to extract the semantic features and category
features of songs based on music context.

(4) Two Attention-based Long Short-Term Memory (AB-LSTM) models, are
designed to balance the long/short-term preferences of a user in order to
find the most suitable music playlist for her.

(5) We conduct extensive experiments on a real-world dataset, which empiri-
cally demonstrate the advantages of our proposed music playlist recommen-
dation models compared to the baseline.

The remainder of this paper is organized as follows. Section 2 introduces the
preliminary concepts and gives an overview of the proposed recommendation
framework. Then we extract major features used in our work in Sect. 3. Two
kinds of recommendation algorithms are presented in Sect. 4, followed by the
experimental results presented in Sect. 5. Section 6 surveys the related works
based on existing researches on music recommendation. Finally we conclude this
paper in Sect. 7.

2 Problem Statement

In this section, we introduce some preliminary concepts and give an overview of
the proposed recommendation framework. Table 1 summarizes the major nota-
tions used in the rest of the paper.

2.1 Preliminary Concept

Definition 1 (Song). A song, denoted by s =< l, c >, consists of its lyrics s.l
and comments s.c. In addition, we use S to represent a set of songs.

Definition 2 (User). A user, denoted by u =< f, h >, consists of her favorite
playlist u.f and historical playlist records u.h. In particular, the favorite playlist
of user u, denoted by u.f = (s1, s2, . . . , sn), is a sequence of songs which have
been marked as “like” by user u, and the playlist records history of user u, denoted
by u.h = (s1, s2, . . . , sm), is a finite sequence of songs sorted by time when u
heard the songs recently. We use U to represent a set of users.

Definition 3 (Public Playlist). A public playlist, denoted by pl = (s1, s2,
. . . , sn), is a finite sequence of songs, which is created by the active users in the
community.
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Table 1. Summary of notations

Notation Definition

s A song

s.l The lyrics of song s

s.c The comments of song s

S A song set

u A user

u.f The favorite playlist of user u

u.h The historical playlist records of user u

U A user set

ru,s Rating between user u and song s

pl A public playlist

pl.v Vector representation of the public playlist pl

eU Latent preference feature matrix of user set U

eS Latent feature matrix of song set S

s.v Distributed representation of song s

s.v(l) Lyric vector representation of song s

s.v(c) Comment vector representation of song s

s.v(ca) Category vector representation of song s

pu Probability vector of user u

Note that the public playlist is different from albums, and everyone in the
community can visit it without limits. For example, a HipHop fan can create
a public playlist named “The Best HipHop 100”, which consists of 100 HipHop
songs, and each user can access to this public playlist.

Problem Statement. Given a set of users, a set of songs and public playlists,
our Personalized Music Playlist Recommendation (PMPR) problem aims to pro-
vide each user an ideal playlist, which contains the top-k related songs that have
the highest probability of being liked.

2.2 Framework Overview

The proposed framework shown in Fig. 1 consists of two major phases: (1) feature
extraction; (2) music playlist recommendation.

Feature Extraction. This phase models long-term features of both users and
songs. The features considered in our proposed Data-driven Music Playlist Rec-
ommendation (DMPR) framework can be divided into two major parts: (1)
user preference feature, which describes a user’s long-term preference for music;
(2) music features, which describe the music context information.
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Fig. 1. Framework overview

User preference feature represents a user’s long-term preference for music,
which can be obtained by Matrix Factorization (MF) based on a user-song rating
matrix, which is observed from users’ favorite playlists. MF maps both users and
songs into a joint latent space, thus the user-song rating matrix is modeled as
inner products of a user feature matrix and a song feature matrix. The user
feature matrix and the song feature matrix contain latent features in this latent
space, where a user’s latent feature is regarded as her preference for music.

Music features comprehensively describe a song’s latent feature, as well as
its lyrics, comments and category information. Specifically, the music features
extracted in our work consist of three parts: latent feature, semantic feature of
both lyrics and comments, and category feature. Latent features of songs, which
implies the ratings between users and songs, can be captured from users’ favorite
playlists via MF. We use a Paragraph Vector (PV) approach to obtain semantic
feature from each song’s lyrics and comments and design a Mean Value (MV)
method to extract each song’s category feature based on the public playlists,
which usually contain a sequence of similar songs.

Music Playlist Recommendation. In this phase, we use two Attention-based
Long Short-Term Memory (AB-LSTM) models to recommend a user the top-
k related songs that have the highest probability of being liked based on her
long/short-term preferences and songs’ music features. The user preference fea-
ture extracted in the first phase represents a user’s long-term preference for
music, and the current songs’ music features represent her short-term preference
for music. Based on a user’s long/short-term preferences for music, we propose
two AB-LSTM model, i.e., typical AB-LSTM model and Improved AB-LSTM
(IAB-LSTM) model, to recommend a suitable playlist to her.

3 Feature Extraction

In this section, we extract the main features that will be used in our work.
The features can be mainly divided into two parts: (1) user preference feature,
which describes a user’s long-term preference for music; (2) music features, which
describe the music context information.
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3.1 User Preference Feature Extraction

In this section, we model users’ long-term preference feature by Matrix Factor-
ization (MF). MF performs well in learning latent features of users and songs
from the observed ratings in the user-song rating matrix. Therefore we utilize the
MF technique to model users’ latent preference feature based on the user-song
rating matrix, which can be obtained from users’ favorite playlists, in order to
describe the users’ long-term preferences for songs.

We first generate a user-song rating matrix, R ∈ R
N∗M , which consists of N

users and M songs based on users’ favorite playlists. Each entry ru,s in matrix R
denotes user u’s rating on song s. For instance, if song s exists in user u’s favorite
playlists, then we have an indication that user u likes song s (i.e., ru,s = 1).
Otherwise, we set ru,s = 0. We use two latent feature matrices to represent
users and songs respectively, namely user feature matrix (eU ∈ R

N∗d) and song
feature matrix (eS ∈ R

M∗d), which explain the ratings between users and songs.
MF maps ratings between users and songs into a latent space, such that users’
preference for songs is modeled as inner product between eU and eS in that
latent space. The mapping of users’ latent preference feature matrix eU and
songs’ latent feature matrix eS , is achieved by approximating the rating matrix
by solving the following optimization problem:

min
eU ,eS

∑

(u,s)∈K

(ru,s − eUu eSs
T
)2 + λ(||eUu ||2 + ||eSs ||2), (1)

where K is the set of <user, song> pairs observed from users’ favorite playlists,
ru,s is the rating between user u and song s, eUu denotes the latent preference
feature of user u, eSs denotes the latent feature of song s and λ is the regulariza-
tion coefficient. The regularization coefficient λ is used to avoid overfitting. We
apply gradient descent algorithm to solve the optimization problem in Eq. 1 and
obtain the users’ latent preference feature matrix eU and songs’ latent feature
matrix eS .

3.2 Music Feature Extraction

Music features comprehensively describe each song’s latent feature, semantics
and category. As shown in Fig. 2, the music features extracted in our work consist
of three parts: (1) latent feature; (2) semantic feature of lyrics and comments;
(3) category feature.

Latent Feature Extraction. Latent feature of song s, denoted as eSs , describes
not only its musical identity but also many significant qualities that are relevant
to understanding users’ musical preferences. With the user-song rating matrix
generated from users’ favorite playlists, we can obtain each song’s latent feature
based on MF, following the same process as of user preference feature.
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Fig. 2. Music feature extraction

Semantic Feature Extraction. In this part, we capture the songs’ semantic
feature of lyrics and comments to describe their music context. Lyrics is an
important aspect of musical semantics since they usually imply the information
about the artist/performer, e.g., cultural background, political orientation, and
style of music [6]. Comments in the community are user-generated content, which
have an increasingly impact on a user’s preference.

We utilize the Paragraph Vector (PV) [8] technique, which is an unsupervised
algorithm that learns continuous distributed vector representations for texts with
any length, to obtain semantic feature of lyrics and comments. PV builds a word
matrix W , where every word is mapped to a unique vector represented by a
column, and builds a paragraph matrix D, where every paragraph is mapped to
a unique vector represented by a column. For instance, a song’s comments are
considered as a sequence of words in a paragraph, denoted as (w1, w2, . . . , wT ).
This comment paragraph is mapped into a unique vector represented by a column
in matrix D and every word is mapped into a unique vector represented by a
column in matrix W . In PV, the word vectors are asked to contribute to a
prediction task about the next word, and the paragraph vector of this comment
paragraph should also contribute to the prediction task of the next word when
the contexts (sampled from the paragraph) are given. Thus, the goal of PV is to
maximize the average log probability as follows:

1

T

T−k∑

t=k

log p(wt|wt−k, . . . , wt+k), (2)

where T is the length of the current paragraph, k controls the size of context
window, and p(wt|wt−k, . . . , wt+k) is the probability that the predicted word is
word wt. The prediction task for the predicted word can be done via a multi-class
classifier like softmax, which can be computed as follows:

p(wt|wt−k, . . . , wt+k) =
exp(ywt)∑
i exp(yi)

, (3)

where exp is the exponential function, y is a probability vector, and yi is the
un-normalized log-probability for word i to be the predicted word. y can be
computed in Eq. 4.

y = b + Uh(wt−k, . . . , wt+k; W ; D), (4)
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where U and b are the softmax parameters, h is constructed by a concatenation
of the word vectors of (wt−k, . . . , wt+k) and the paragraph vector extracted from
word matrix W and paragraph matrix D.

After training, we get word matrix W , softmax weights U and b, and para-
graph matrix D on comments and lyrics. Then we add new lyrics paragraphs and
comment paragraphs as columns in D and use gradient descendent on D while
holding W , U , b fixed. Finally, we obtain the lyric vector representation s.v(l)
and comment vector representation s.v(c) of song s from paragraph matrix D.

Category Feature Extraction. As mentioned before, a public playlist consists
of a sequence of similar songs, which can be regarded as the same category.
Therefore, we obtain the songs’ category information based on public playlists.

With the lyrics vector representation s.v(l) and comment vector representa-
tion s.v(c) for each song s contained in the public playlist pl, the vector repre-
sentation of pl, denoted by pl.v, can be formulated as follows:

pl.v =
1

n

n∑

i=1

g(si.v(l), si.v(c)), (5)

where n is the amount of songs in the public playlist pl, g is constructed by a
concatenation of si.v(l) and si.v(c).

It is worth noting that a song may be contained in multiple public playlists,
such that we calculate the song’s category information by combining all its
belonging public playlists’ vectors as follows:

s.v(ca) =

∑
pl∈P(s) pl.v

|P(s)| , (6)

where s.v(ca) is song s’s category vector representation, P(s) is a set of pub-
lic playlists that contain song s and |P(s)| is the size of P(s). In addition, we
concatenate semantic feature of lyrics s.v(l) and comments s.v(c), and category
feature s.v(ca) as the distributed representation of song s, denoted by s.v ∈ R

k.
Given a song s, we can describe its music features by a combination of the

latent feature eSs , and the distributed representation s.v.

4 Music Playlist Recommendation

In this section, we introduce our Attention-based Long Short-Term Memory
(AB-LSTM) and Improved Attention-based Long Short-Term Memory (IAB-
LSTM), which generate personalized playlists based on users’ long/short prefer-
ences for songs and music context features.

LSTM is a variant of RNN, which is effective and scalable for sequential pre-
diction problems [16]. Considering the time-ordered playlist records as sequen-
tial data, we adopt the Long Short-Term Memory (LSTM) to generate a suit-
able playlist that fits a user’s musical interests. Recently, attention-based neural
networks have been successfully used in many tasks like machine translation.
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For example, [1] calculates weight attention score for each word in original sen-
tences during the translation of the word. In our model, the attention mecha-
nism can be used to calculate the weight attention scores for users’ long/short-
term preferences, which helps in recommendation performance. As a result, we
use attention-based LSTM model to recommend suitable playlists for users. In
particular, we design two models with different attention mechanisms. Firstly
we adopt a typical Attention-Based Long Short-Term Memory (AB-LSTM)
model to recommend playlists. Then we make some modification based on
AB-LSTM, namely Improved Attention-Based Long Short-Term Memory (IAB-
LSTM) model, to get better performance in recommendation.

4.1 AB-LSTM-Based Music Playlist Recommendation

In this section, we apply AB-LSTM model to recommend suitable songs for an
individual user.

The architecture of AB-LSTM model is shown in Fig. 3, which contains three
layers: input layer, hidden layer and output layer. The input layer contains the
latent preference feature matrix of the user set U (eU ∈ R

N∗d, N is the quantity
of users in U), and user u’s historical playlist records u.h = (s1, . . . , st, . . . , sm).
At each time step t, we concatenate the latent feature of song st, denoted by
eSst ∈ R

d, and the distributed representation of song st, denoted by st.v ∈ R
k,

as the music feature of song st, and input the music feature of song st and user
preference feature matrix eU to the hidden layer respectively.

Fig. 3. Diagram of attention-based long short-term memory

The hidden layer, consisting of LSTM cells, is the key component of the
AB-LSTM model, in which the hidden state can be computed as:

ht = LSTM(ht−1, xt), (7)

where ht is the hidden state at time step t in the hidden layer, and xt is a
concatenation of the latent feature of song st (eSst), song st’s distributed repre-
sentation (st.v) and the context vector of user u at time t cut . The context vector
cut is calculated in the attention part based on the user latent preference feature
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and the hidden state in the previous time step, which can be considered as an
extra input to help AB-LSTM to fully get long-term preference of the user. cut
is calculated in Eq. 8.

cut =
U∑

v

au
v,te

U
v , (8)

where au
v,t is the attention weight of user u on user v at time step t, eUv represents

the latent preference feature of user v. The attention weight au
v,t is computed as

follows:
au
v,t =

exp(σ(ht−1, e
U
v ))

∑U
v′ exp(σ(ht−1, eUv′))

, (9)

where σ is a feed-forward neural network to produce a real-valued score. The
attention weight au

v,t determines which user’s latent preference feature should be
selected to generate user u’s probability vector of predicted songs.

The probability vector of M predicted songs for user u at time step t, denoted
as put ∈ R

M , can be calculated by a single layer neural network activated by
softmax in the output layer. The output of AB-LSTM model, put , can be com-
puted as:

pu
t = softmax(g(ht)) = softmax(Wht + b), (10)

where W and b are parameters of single layer neural network g, softmax function
is used to squash the probability vector into a vector where each entry is in the
range (0, 1), and all the entries add up to 1. In this model, we usually use pum
at the last time step m as the probability vector of the predicted songs for user
u, denoted by pu.

Finally, we generate the top-k related songs that have the highest probability
of being liked by the user. As mentioned before, user u’s probability vector of the
predicted songs, denoted by pu, is a M -length vector, where M is the amount of
predicted songs. The value of puj corresponds to the predicted probability that
user u likes the j-th predicted song. Given a specified playlist length k, we select
the top-k songs with the k greatest probability values from user u’s probability
vector (pu) as the recommendation result.

4.2 IAB-LSTM-Based Music Playlist Recommendation

We further propose a novel model, namely Improved Attention-based Long
Short-Term Memory (IAB-LSTM), with a new designed attention mechanism
to recommend suitable songs for an individual user. We utilize an attention
layer between hidden layer and output layer of IAB-LSTM, to replace the atten-
tion weight calculation during each time step of AB-LSTM’s hidden layer, which
helps in improving recommendation effectiveness. More importantly, IAB-LSTM
focuses on calculating the attention weight of hidden states (implying the user’s
recent listened songs’ music features) while AB-LSTM calculates the attention
weight of user preference feature, which makes IAB-LSTM better in capturing
the user’s short-term preference.

The architecture of IAB-LSTM model is shown in Fig. 4, which contains
four layers: input layer, hidden layer, attention layer and output layer. The
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Fig. 4. Diagram of improved attention-based long short-term memory

input layer contains the latent preference feature of the user u, denoted by
eUu ∈ R

d, and her historical playlist records u.h = (s1, . . . , st, . . . , sm). And
at each time step t, we concatenate the latent feature of song st, denoted by
eSst ∈ R

d, and the distributed representation of song st, denoted by st.v ∈ R
k,

as an input xt to the hidden layer. The hidden layer, consisting of LSTM cells,
is an important component of the IAB-LSTM model, in which the hidden state
can be computed as:

ht = LSTM(ht−1, xt), (11)
where ht is the hidden state at time step t in the hidden layer.

The attention layer is the key component of IAB-LSTM, in which we sum-
marize all hidden states as hu, which is computed as follows:

hu =
m∑

t=1

au
t ht, (12)

where m is the quantity of hidden states, au
t is the attention weight of user u on

hidden state ht at time step t, which is computed as follows:

au
t =

exp(g(ht)
TCu)∑

t′ exp(g(ht′)TCu)
, g(ht) = tanh(Wht + b), (13)

where W and b are parameters of single layer neural network g, and context
vector Cu is randomly initialized and jointly learned during the training process.
The context vector Cu can be seen as a high level representation of a fixed query
“what is the informative song” in the user u’s historical playlist records.

Finally, the probability vector of M predicted songs for user u, denoted as
pu ∈ R

M , can be calculated by a single layer neural network activated by softmax
in the output layer. The output of IAB-LSTM model, pu, can be computed as:

pu = softmax(g′(hu, eUu )) = softmax(W ′(hu ⊕ eUu ) + b′), (14)

where pu is user u’s probability vector of the predicted songs, eUu is the latent
preference feature of user u, W ′ and b′ are parameters of single layer neural
network g′, ⊕ is defined as a concatenation and hu is calculated in Eq. 12. Getting
the probability vector, we generate a suitable playlist for the user by the same
way as AB-LSTM.
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5 Experiments

In this section, we conduct extensive experiments on a real-world dataset to study
the performance of the proposed models. All the algorithms are implemented on
an Intel(R) Xeon(R) CPU E7-4860 v2 @ 2.60 GHz with 64 G RAM.

5.1 Experiment Setup

Dataset. We use a real-world dataset generated by Netease Cloud Music, which
is a freemium music streaming service. Netease Cloud Music has 300 million users
and a music database consisting of more than over 10 million songs. Specifically,
we crawl a dataset containing 35365 users, 1496 public playlists, 35469 songs
and 377194 comments.

Evaluation. We study and compare the performance of the following algorithms:

(1) CF: a model-based Collaborative Filtering approach [7], which utilizes
matrix factorization to calculate the ratings between all the users and songs
and recommends the top-k songs with highest rating values for each user.

(2) BPR: Bayesian Personalized Ranking [13] ranks each user’s preference for
songs and provides a top-k recommendation.

(3) P-AB-LSTM: Preference-Based AB-LSTM, an AB-LSTM without song’s dis-
tributed representation (i.e., a song’s semantics and category information).

(4) P-IAB-LSTM: Preference-Based IAB-LSTM without song’s distributed rep-
resentation (i.e., a song’s semantics and category information).

(5) AB-LSTM: Attention-Based Long Short-Term Memory model (based on
both the user’s preference and song’s distributed representation).

(6) IAB-LSTM: Improved Attention-Based Long Short-Term Memory model
(based on both the user’s preference and song’s distributed representation).

Four widely-used metrics, Precision@k (P@k, the accuracy rate of top-k rec-
ommendation), Normalized Discounted Cumulative Gain@k (NDCG@k), Mean
Average Precision (MAP) and Mean Reciprocal Rank (MRR), are used to eval-
uate the recommendation precision of the above methods. The greater values of
the above metrics mean the better performance. CPU time is given by the aver-
age time cost of recommending the top-k songs by the recommendation models.
We also evaluate the recommended playlists based on the number of recalled
songs. Specifically, for each user, we use CF, AB-LSTM and IAB-LSTM to gen-
erate a playlist containing 10 songs and compare it with her real playlist records
of next 10 songs. In addition, CF selects top-10 related songs with highest rat-
ings as the generated playlist. A greater number of recalled songs mean better
performance.

Table 2 shows our experimental settings, where the default values of all
parameters are underlined.
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Table 2. Experiment parameters

Parameters Values

Size of ratings 25%, 50%, 75%, 100%

Length of historical playlist records 20, 30, 40, 50

Amount of features extracted via MF 20, 40, 60, 80

5.2 Experiment Results

We first compare our proposed models with two baseline methods including CF
and BPR. The experimental results are summarized in Table 3. Our models con-
sistently outperform the baseline methods by a noticeable margin. Taking the
P@10 as an example, our IAB-LSTM achieves the most accurate recommenda-
tion result, whose accuracy is improved by around 83% compared with CF and
152% compared with BPR.

Table 3. Results of models

P@3 P@5 P@10 NDCG@3 NDCG@5 NDCG@10 MAP MRR

CF 0.0509 0.0517 0.0580 0.0846 0.1024 0.1376 0.1104 0.1181

BPR 0.0474 0.0453 0.0421 0.0856 0.1009 0.1150 0.0996 0.1077

P-AB-LSTM 0.0838 0.0822 0.0919 0.1047 0.1154 0.1742 0.1752 0.1920

P-IAB-LSTM 0.0891 0.0930 0.1020 0.1159 0.1440 0.2279 0.1840 0.2001

AB-LSTM 0.0817 0.0832 0.1061 0.1113 0.1281 0.1859 0.1858 0.2040

IAB-LSTM 0.0962 0.0966 0.1356 0.1416 0.1640 0.2430 0.1916 0.2151

Effect of the Size of Ratings. In this part of experiments, we change the size
of the ratings used in feature extraction and study their effects on music playlist
recommendation. As shown in Fig. 5, the precision of all approaches increases
(with MAP and P@10 increase) when more ratings are used. Among all the
methods, IAB-LSTM achieves the highest precision since IAB-LSTM effectively
captures users’ preferences and music context features, which demonstrates the
robustness of our proposed algorithms. The CPU cost of all methods is not
apparently affected by the size of the ratings since the prediction phrase is not
directly computed from the ratings. Moreover, AB-LSTM (IAB-LSTM) runs
slower than P-AB-LSTM (P-IAB-LSTM) because of the extra time cost for
integrating the song’s semantics and category features into the recommendation.

Effect of the Length of Historical Playlist Records. Figure 6 illustrates
the effect of the length of historical playlist records on the performance of our
models. Naturally the precision of all model gradually increases (with MAP
and P@10 increase) as the length of historical playlist records grows. Obviously
the performance of IAB-LSTM is better than P-IAB-LSTM, which proves the
effectiveness of song’s distributed representation. The CPU cost increases when
the length of historical playlist records increases, since the size of input in our
models is determined by the length of historical playlist records.
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Fig. 5. Effect of the size of ratings

Fig. 6. Effect of the length of historical playlist records

Effect of the Amount of Features Extracted via MF. Next we study the
effects of the amount of features extracted via MF. From Fig. 7 we can see that
the precision of all algorithms increases (with MAP and P@10 increase) when
the amount of features extracted via MF grows. The CPU cost slightly increases
when the amount of features extracted via MF increases, since the greater size
of the latent preference feature of the user increases computational complexity.

Recalled Songs. Finally we provide the recommended music playlists gener-
ated by some algorithms (i.e., CF, AB-LSTM and IAB-LSTM) for two users
who are randomly selected from the dataset. The predicted songs existing in
the user’s real playlist records will be marked by � in Table 4, which shows
that our proposed IAB-LSTM can better capture the preferences of users than
other methods. Taking user 16596 as an example, IAB-LSTM recalls 4 songs and

Fig. 7. Effect of the amount of features extracted via MF
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AB-LSTM recalls 2 songs, while CF recalls 0 song. This means our model can
make better music playlist recommendation with users’ long/short term prefer-
ences and music context features.

Table 4. The recalled songs from Top-10 candidates

User Id CF AB-LSTM IAB-LSTM

16596 We Don’t Talk Anymore Lie � She Say

Fade Willow Lie �
Into A River Iron Heart I Am You

Something Old Street In Fact, No

Make You Mine Travel Along The Way

A Half Be What You Wanna Be Cheng Du

East Of Eden Chasing The Wind Outside The Light Years

Es rappelt im Karton Young And Young � Lone Ranger �
Counting Stars Yesterday Young And Young �
I Am You Star Falling Trap �

8759 Say Honestly Those Were The Days Stupid �
Special Waste Lie �
Lover Boy 88 When You Blue Lotus

Jocelyn Flores Lie � Don’t Understand

Complete Iron Heart Vincent

Regret Young And Young Don’t Talk

Meet Yesterday Young And Young

Destination Trap Mind

My Heart Will Go On Calorie Trap

No Sad No Bad Star Falling Best

6 Related Work

The music playlist recommendation has attracted a number of researchers in
recent years. In this section, we categorize the major methodologies used by
recommendation systems as being based on: (1) music content; (2) music context.

Music Content-Based Recommendation. Music content-based features
refer to tonality, pitch, and beat, symbolic features extracted from the music
scores [9]. Existing research in the area of audio content-based music recommen-
dation usually focuses on measuring music similarity [2]. For example, McFee et
al. [10] treat music similarity learning as an information retrieval problem, where
the music similarity is learned to optimize the ranked list of results in response
to a query song. Dieleman et al. [11] use content-based latent factors to produce
sensible recommendations, ignoring the fact that there is a large semantic gap
between the song’s characteristics and its corresponding audio signal. Wang et
al. [19] simultaneously learn features from audio content and make personalized
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recommendation, which performs well on both the warm-start and cold-start
problems. However, content-based music recommendation has not been applied
very successfully in large range systems so far [6].

Music Context-Based Recommendation. In music recommendation field,
contextual data refers to all music-relevant information that is not included in
the audio signal itself. In particular, we review three main types of context-
based approaches: (1) text-retrieval-based approaches; (2) co-occurrence-based
approaches; (3) user-preference-based approaches.

Text-retrieval-based approaches exploit textual representations of musical
knowledge originating from web pages, user tags, or song lyrics. Oramas et al.
[12] exploit tags and textual descriptions to extract and link entities to external
graphs which are in turn used to semantically enrich the initial data in music rec-
ommendation. Schedl et al. [15] address the problem of similarity measurement
among music artists via text-based features extracted from Web pages.

Co-occurrence-based approaches follow an immediate mechanism to estimate
similarity based on the occurrence of two music pieces or artists within the same
context like web pages, microblogs, playlists, and Peer-to-Peer (P2P) networks.
Zangerle et al. [20] use the absolute numbers of co-occurrences between songs
in order to measure the similarities between songs and artists, which helps in
music recommendation systems.

User-preference-based approaches usually estimate music context similarity
based on users’ feedbacks. Cheng et al. [5] present a venue-aware music rec-
ommender system that recommends music to match different types of common
venues in user’s everyday life. Wang et. al. [18] learn the low dimensional rep-
resentations of music pieces from users’ music listening sequences using neural
network models. Cheng et al. [4] develop an effective social music recommenda-
tion system by considering users’ location-related contexts as well as the global
music popularity trends.

7 Conclusions

In this paper, we study the problem of Personalized Music Playlist Recommen-
dation, where each user can receive a personalized music playlist based on her
historical playlist records and music context. To settle this problem, we pro-
pose a novel Data-driven Music Playlist Recommendation (DMPR) framework,
which incorporates long/short-term preferences of users and music features to
improve the performance of recommendation. We address a few challenges by
proposing different strategies to extract the long-term features of users and songs
and designing effective AB-LSTM models to recommend a personalized music
playlist (including top-k related songs that have the highest probability of being
liked) for each user by obtaining her short-term preference. Extensive empirical
study based on a real dataset demonstrates our proposed models can effectively
capture long/short-term preferences of users via attention mechanisms, and rec-
ommend suitable personalized playlists to users.
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