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Abstract. Cross-modal hashing has drawn increasing research interests
in cross-modal retrieval due to the explosive growth of multimedia big
data. However, most of the existing models are trained and tested in a
close-set circumstance, which may easily fail on the newly emerged con-
cepts that are never present in the training stage. In this paper, we pro-
pose a novel cross-modal hashing model, named Cross-Modal Attribute
Hashing (CMAH), which can handle cross-modal retrieval of unseen cat-
egories. Inspired by zero-shot learning, attribute space is employed to
transfer knowledge from seen categories to unseen categories. Specifi-
cally, the cross-modal hashing functions learning and knowledge transfer
are conducted by modeling the relationships among features, attributes,
and classes as a dual multi-layer network. In addition, graph regulariza-
tion and binary constraints are imposed to preserve the local structure
information in each modality and to reduce quantization loss, respec-
tively. Extensive experiments are carried out on three datasets, and the
results demonstrate the effectiveness of CMAH in handling cross-modal
retrieval for both seen and unseen concepts.
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1 Introduction

Recent years have witnessed the rapidly increasing interests in cross-modal
retrieval that is becoming significant and imperative for many real-world appli-
cations, such as using image to search the relevant text documents or searching rel-
evant images with given text query [2,6,15,31,32]. Due to the large-scale and high-
dimensional properties of multimodal data, cross-modal hashing which has shown
fairly impressive performance in reducing storage cost and improving retrieval
speed, has been investigated intensively over the last few years [5,11,14,23,33].
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It is worth noting that, most of the current cross-modal hashing models are
trained and tested in a close set i.e. the training and test categories are identical.
However, with the explosion of newly-emerging concepts, it is infeasible to label
data for each class. Additionally, the number of labelled data for these new
concepts may be far from sufficient to build high-quality cross-modal hashing
model. The existing methods perform well on the seen data, but they may easily
fail on the unseen concepts that are never present before in the training stage.
This gives rise to an emerging demand to explore the problem of cross-modal
retrieval for unseen concepts.

Such learning with no data in unimodal scenario is termed zero-shot learning
(ZSL) [12,13,16,26] that has been widely studied in recent years. The fundamen-
tal goal of zero-shot learning is recognizing objects from classes that are not seen
during training. The key challenge of achieving this goal is to transfer knowl-
edge from the limited seen categories to unseen categories. Most of the previous
approaches employ an intermediate semantic space to conduct knowledge trans-
fer as well as to bridge the semantic gap between low-level visual feature and
high-level class label. For example, the authors in [26] proposed to learn semantic
embedding projection by matrix tri-factorization and manifold regularization. In
[13], semantic autoencoder is employed to learn a projection that can generalize
better to new unseen classes. In contrast, orthogonal semantic-visual embedding
was developed in [16] to inversely use semantic space to infer visual features for
unseen classes. However, all the above methods focus only on unimodal classi-
fication or recognition scenarios. Only a few works on zero-shot hashing have
been proposed. Zero-shot hashing [29] is one of the first works that focus on
handling visual indexing by hashing for unseen categories. In [27], a multi-layer
hierarchy was proposed for zero-shot image retrieval. However, in real world,
users may be not satisfied with image query, but more comfortable to use other
types of query such as text and sound. To the best of our knowledge, the zero-
shot learning problem in cross-modal retrieval has been rarely investigated in
previous works. In [4], the cross-modal retrieval for unseen categories was first
explored with external knowledge. It utilizes a weight vector to build the con-
nection between seen and unseen classes for knowledge transfer. However, this
method which simply combines the deep networks with dot product operation
uses the pre-trained model with ImageNet that actually includes the informa-
tion of unseen categories. Thus, the experimental results of cross-modal retrieval
for unseen classes are not convincing. Ji et al. also noticed the importance of
cross-modal retrieval for unseen concepts [10]. However, their work explores the
zero-shot cross-modal hashing with images and the class names, which is differ-
ent from the traditional cross-modal tasks i.e. image to text and text to image.
Therefore, this is the first work that explores cross-modal retrieval for unseen
concepts using hashing technique.

In this paper, we consider the problem of handling unseen classes in cross-
modal hashing. The main focus is on generalizing the cross-modal hashing model
from seen classes to unseen classes, which can produce effective hash codes for data
from unseen classes. Motivated by zero-short hashing and the recently proposed
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approaches [21,27,29], a novel cross-modal attribute hashing (CMAH) model is
presented in this work. During the cross-modal hashing functions learning, the
knowledge transfer between seen and unseen categories is conducted with the idea
of modelling the relationships among features, attributes, and classes as a dual
multi-layer network. As shown in Fig. 1, cross-modal data are projected into uni-
fied binary codes that are used to construct the relationship between attributes
and class labels, as well as build the connection of different modalities. More-
over, graph regularization and binary constraints are imposed to preserve the local
structure information in each modality and to reduce quantization loss, respec-
tively. Thus, the learned hashing functions for each modality through seen classes
not only can generate discriminative binary codes for seen classes, but also can
generalize well to the unseen classes. By conducting experiments on three non-
overlapping cross-modal datasets, the effectiveness of our method has been vali-
dated. Compared against the existing cross-modal hashing methods, our method
can effectively handle the cross-modal retrieval for unseen concepts. In addi-
tion, the proposed method also shows superior performance on the cross-modal
retrieval of seen classes.

The main contributions of this paper are:

– A novel cross-modal attribute hashing model is proposed to explore the prob-
lem of cross-modal retrieval in zero-shot scenario. To our best knowledge, this
is one of the first works which explores the cross-modal hashing for handling
unseen classes.

– A cross-modal multi-layer network is developed for simultaneously connect-
ing features, binary codes, attributes, and classes and building relationship
among different modalities. Furthermore, local structure information in each
modality has been preserved in the expected Hamming space.

– Experiments on cross-modal retrieval for both unseen query and seen query
are conducted to evaluate the effectiveness of the proposed method. We find
that the proposed method shows superior performance on both the seen query
and unseen query.

The rest of this paper is organized as follows. The previous works on cross-
modal hashing and zero-shot learning are reviewed in Sect. 2. The proposed
approach is presented in Sect. 3. Section 4 presents the experimental results.
Finally, we conclude our work in Sect. 5.

2 Related Work

Since our work mainly concerns handling the unseen classes in cross-modal
retrieval based on hashing, this section reviews the previous works from two
aspects, i.e. conventional cross-modal hashing and unimodal zero-shot learning.

2.1 Cross-Modal Hashing

Motivated by hashing, a number of methods have been proposed to conduct
cross-modal retrieval. For example, in Collective Matrix Factorization Hashing
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Fig. 1. The framework of the proposed method.

(CMFH) [5], matrix factorization is utilized to learn the latent concepts from
each modality, which has achieved an impressive result on cross-modal retrieval.
In [33], Latent Semantic Sparse Hashing (LSSH) was presented which learns the
semantic concepts of images and text by sparse coding and matrix factorization
respectively. The learned latent semantic features from images and text are then
mapped to a common abstraction space in which the unified hash codes are gen-
erated by quantization. Inspired by CMFH, several supervised extensions [14,23]
have been proposed to formulate the label information for boosting retrieval per-
formance. A unified linear regression model with dragging technique based on
semi-supervised learning for cross-modal retrieval was proposed in [30]. Most
of these methods adopt hand-crafted features as input. Recently, deep neural
networks such as convolutional neural networks (CNN) have drawn considerable
attention in cross-modal retrieval [11,28]. Due to the high-level abstract of orig-
inal data, the CNN based methods perform better than those based on low-level
hand-crafted features. However, these methods suffer from high time complexity
of training CNN. Most importantly, none of hand-crafted or CNN based methods
have considered the cross-modal retrieval for unseen concepts.

2.2 Zero-Shot Learning

Zero-shot learning has become an active topic in recent years due to the rapid
evolution of newly-emerging concepts. Most of the existing methods aim at solv-
ing the recognition task of unseen categories. A promising solution is to find an
intermediate representation which can bridge the semantic gap between visual
features and class labels, and can also transfer knowledge from seen classes to
unseen classes. For instance, the methods including [12,16] project both the
images and class labels into an attribute space, where a simple nearest neigh-
bor classifier can be adopted to recognize the instances from unseen categories.
However, these methods focus only on classification or recognition. Few works
on zero-shot hashing for retrieval have been presented. In [18], the authors inves-
tigated the hashing in the zero shot scenario for image retrieval, in which hash-
ing function is learned based on the combination of similarity preserving and
unsupervised domain adaptation. In [8], a zero-shot hashing based on CNN is
proposed, which considers the similarity transfer, discriminability, and discrete
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hashing comprehensively. However, the existing zero-shot hashing approaches
can only deal with single modality, the circumstance of multiple modalities has
not been explored. Therefore, a novel cross-modal hashing framework that can
handle cross-modal retrieval for unseen classes draws a significant need.

Overall, the cross-modal retrieval for unseen concepts has not yet been inves-
tigated well. The works in [4] and [10] have noticed the importance of this prob-
lem. However, due to the utilization of pre-trained model for feature extraction
and retrieval based on class name, their results are not convincing enough. To
our best knowledge, this paper is one of the first works that explore cross-modal
retrieval for unseen concepts using hashing technique.

3 Approach

In this section, the proposed CMAH for tackling cross-media retrieval of unseen
classes is described in detail followed by the optimization algorithm.

3.1 Problem Definition

The definition of zero-shot cross-modal hashing follows [29]. Given n pairs of
“seen” cross-modal data X(1) = {x

(1)
1 , · · · , x

(1)
n } and X(2) = {x

(2)
1 , · · · , x

(2)
n },

such as images and the associated text, where X(1) ∈ �d1×n, X(2) ∈ �d2×n,
d1 represents the dimensionality of image feature, d2 denotes the dimensionality
of text feature (usually d1 �= d2). The semantic label of the given data is Y ∈
{0, 1}n×c, where c is the size of “seen” classes. Different from the conventional
cross-modal hashing setting in which the training data and testing data are from
the seen classes, we assume that some testing data are from unseen classes which
are never present during training. The goal of our proposed method is to learn
cross-modal hashing model via seen classes and then generalize it to unseen
classes for generating high-quality discriminative binary codes.

3.2 Cross-Modal Attribute Hashing Formulation

Motivated by the recently proposed zero-shot learning approaches [21], the
knowledge transfer is conducted in the intermediate attribute space. As shown in
Fig. 1, we formulate the relationship of cross-modal data, binary codes, attribute,
and class labels as the following loss function:

L1 = ‖Y − BVS‖2F + α
∥
∥
∥B − (X(1))TP1

∥
∥
∥

2

F

+ β
∥
∥
∥B − (X(2))TP2

∥
∥
∥

2

F

s.t. B ∈ {−1,+1}n×k

(1)

where B is the unified binary codes of X(1) and X(2), k is the length of binary
codes, P1 ∈ �d1×k and P2 ∈ �d2×k are cross-modal hashing functions projecting
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images and text to hash codes, and V ∈ �k×a is the mapping matrix from
binary codes to attributes, S ∈ �a×c is the mapping from attributes to semantic
class labels, where a is the number of attributes. Here, we use the word vector
representation of class name as S following the idea of [3].

In addition, the local structure information preserving in each modality is
explored during learning cross-modal hashing functions. Thus, the similar items
in original feature space will share similar binary codes in the Hamming space,
which can further enhance the discriminative capability of learned hashing func-
tions. Laplacian Eigenmaps (LE) [1] is utilized to formulate the structure preser-
vation based on manipulations on an undirected weight graph which indicates
the neighborhood relationship of pairwise data. The objective with respect to
X(1) can be stated as:

min
P1

1
2

n∑

i=1

n∑

j=1

∥
∥
∥PT

1 x
(1)
i − PT

1 x
(1)
j

∥
∥
∥

2

w
(1)
ij (2)

where w
(1)
ij is the similarity of x

(1)
i and x

(1)
j . It usually can be defined according

to the neighborhood relationship as below:

w
(1)
ij =

⎧

⎨

⎩

exp(−‖x
(1)
i −x

(1)
j ‖2

2σ2 ), if x
(1)
i ∈ Nk(x(1)

j ) or x
(1)
j ∈ Nk(x(1)

i ),

0, otherwise.
(3)

where Nk(x(1)
j ) is the k-nearest neighbors of x

(1)
j . The Euclidean distance

between samples x
(1)
i and x

(1)
j is used for finding nearest neighbors. σ is the

bandwidth parameter which is set to σ = 1 in our experiments.
Through algebraic calculation, the objective function in Eq. (2) can be refor-

mulated as:
min
P1

tr(PT
1 X

(1)L1(X(1))TP1) (4)

where L1 is the Laplacian matrix, L1 = D1 − W(1), D1 is a diagonal matrix,
D1(i, i) =

∑

j w
(1)
ij . The elements of W(1) are w

(1)
ij . tr(·) is the trace operator.

Similarly, for modality X(2), we can have:

min
P2

tr(PT
2 X

(2)L2(X(2))TP2) (5)

where L2 is the Laplacian matrix of X(2). Finally, combining the relationship
modeling and local structure information preserving, the overall objective can
be stated as follows:

min
B,V,P1,P2

L1 + L2 + Ω(B,V,S,P1,P2)

s.t. B ∈ {−1,+1}n×k
(6)

where

L2 = λ1tr(PT
1 X

(1)L1(X(1))TP1) + λ2tr(PT
2 X

(2)L2(X(2))TP2) (7)
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where λ1, λ2 are balancing parameters. Inspired by [21], a regularization term
is also integrated which is defined as:

Ω(B,V,S,P1,P2)

= γ ‖VS‖2F + μ ‖BS‖2F + γμ ‖V‖2F + ξ1 ‖P1‖2F + ξ2 ‖P2‖2F
(8)

where γ, μ, ξ1, and ξ2 are trade-off parameters.

3.3 Optimization

It is intractable to directly minimize the objective in Eq. (6) because of the non-
convexity with four matrix variables P1, P2, V, and B. Fortunately, it is convex
with respect to any of them when the others are fixed. Therefore, we employ
an alternative optimization in an iterative manner to address the optimization
problem until convergence. The detailed optimization steps are listed as follows:

Update P1,P2. Fix other variables but P1, then the objective function shown
in Eq. (6) can be simplified as:

min
P1

λ1tr(PT
1 X

(1)L1(X(1))TP1)

+ α
∥
∥
∥B − (X(1))TP1

∥
∥
∥

2

F
+ ξ1 ‖P1‖2F

(9)

By setting its derivative w.r.t P1 to 0, we can have the closed-form solution
stated as follows:

P1 = (αX(1)(X(1))T + λ1X(1)L1(X(1))T + ξ1I)−1αX(1)B (10)

Similarly, P2 can be updated by:

P2 = (βX(2)(X(2))T + λ2X(2)L2(X(2))T + ξ2I)−1βX(2)B (11)

Update V. The objective can be transformed to the following when fixing the
other variables but V:

min
V

‖Y − BVS‖2F + γ ‖VS‖2F + μ ‖BV‖2F + γμ ‖V‖2F (12)

By setting its derivative w.r.t V to 0, we can have the closed-form solution
stated as follows:

V = (BTB + γI)−1BTYST (SST + μI)−1 (13)

Update B. Fixing other variables but B, we can learn the unified binary codes
of image and text directly without relaxation by solving the reformulated opti-
mization stated as:

min
B

‖Y − BVS‖2F + α
∥
∥
∥B − (X(1))TP1

∥
∥
∥

2

F

+ β
∥
∥
∥B − (X(2))TP2

∥
∥
∥

2

F
+ μ ‖BV‖2F

s.t. B ∈ {−1,+1}n×k

(14)
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The optimization defined in Eq. (14) under binary constraint can be easily
solved by using discrete cyclic coordinate descent (DCC) method [22].

The proposed model is summarized in Algorithm1. Through alternative opti-
mization, the objective is minimized in each iterative step, and it will converge
in the end.

4 Experiments

Extensive experiments are carried out in this section to evaluate the effectiveness
of the proposed method in cross-modal retrieval, where some classes may not
have been seen during training. Two tasks i.e. text to image (T2I) and image to
text (I2T), are designed to validate the proposed approach in handling “seen”
and “unseen” cross-modal retrieval. In our experiments, an image and a text are
considered to be relevant if they share the same semantic label.

4.1 Datasets

Wiki [20] dataset consists of 2866 image-text documents. These documents
can be grouped into 10 semantic categories. The images are described in 128-
dimensional bag-of-visual words SIFT feature vectors, while text is represented
by 10-dimensional topic vectors generated by the latent Dirichlet allocation
(LDA) model.

Pascal VOC [7] dataset contains 9963 testing image-tag pairs, which can
be classified into 20 categories. Since several image-tag pairs are multi-labeled,
we select the pairs with only one label as the way in [24]. The image modality
is represented by 512-dimensional GIST features [9], and the representations of
text modality are 399-dimensional word frequency features.

LabelMe [17] dataset contains 2688 outdoor scenes from 8 different classes.
We discard the words that occur in less than 3 times, resulting in 366 unique
words. Thus, the representation of text is a 366-dimensional word frequency.
The images are represented by 512-dimensional GIST features. Additionally, we
delete the samples without tags, which results in a dataset with 2686 image-text
pairs.

All the datasets are completely mutually exclusive, i.e. no overlapping sam-
ples between classes. In terms of attribute mapping S, the word vectors of class
names extracted from GloVe [19] are used in our experiments.

4.2 Settings

We construct the zero-shot scenario for three datasets as follows. For Wiki and
LabelMe, we randomly select 2 classes as the unseen concepts each time, and
the rest as seen classes. For Pascal dataset 4 classes are randomly selected as
unseen classes each time. We report the average result of 10 experiments with
randomly selected unseen concepts.
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Algorithm 1. CMAH
Input: Seen cross-modal data X(1) and X(2), label Y, attribute mapping S, the length

of hash codes k, and parameters α, β, λ1, λ2, ξ1, ξ2, μ, and γ.
Output: Unified hash codes B, hashing functions P1,P2.

1: Compute Laplacian matrix L1,L2

2: Initialize P1, P2, B, V.
3: repeat
4: Update P1, P2 by Eqs. (10) and (11);
5: Update V by Eq. (13);
6: Update B by solving Eq. (14);
7: until convergence
8: return B, P1, P2
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Fig. 2. MAP on unseen query of various approaches with varied hash code lengths on
three datasets.

In order to evaluate the performance on handling unseen classes cross-modal
retrieval. We use the testing data of unseen classes as query set, and we construct
the retrieval set by merging the retrieval set of both seen and unseen classes,
which follows the generalized zero-shot setting in [25]. In addition, the proposed
new model should still have the comparable or even better performance on the
seen classes. To this end, extra experiments of cross-modal retrieval are designed
on the seen classes. The testing data of seen classes are chosen as query set, and
the training data are regarded as retrieval set.

Two widely used metrics are employed to evaluate the performance of cross-
modal retrieval. One is the mean Average Precision (mAP) based on Hamming
ranking of all the retrieval set. The other is the mean precision within Hamming
distance radius 2 (PH2) based on lookup table.
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In our experiments, we empirically set α and β to 0.1. For balancing parame-
ters λ1 and λ2, we set them to 0.1. The trade-off parameters γ, μ, ξ1, and ξ2 are
set to 10−3, 10−3, 10, and 10, respectively. The Laplacian matrix is constructed
within the 5 nearest neighbors. For the optimization procedure, we restrain the
iteration number to 10.

4.3 Baselines

Since this is the first work of cross-modal hashing which considers the zero-shot
scenario, we compare the proposed CMAH against five state-of-the-art meth-
ods including three conventional cross-modal hashing methods and two zero-
shot hashing methods. The former three are CMFH [5], LSSH [33], and Super-
vised Matrix Factorization Hashing (SMFH) [23], respectively. The latter two
are Attribute Hashing (AH) [27] and Zero-Shot Hashing (ZSH) [29]. In partic-
ular, for unimodal methods AH and ZSH, we only fix the length of hash codes
such as 8 bits. Then hashing functions are trained independently on image and
text modality. In the testing phase, the binary codes of text and image for query
and retrieval are generated by the learned hashing functions respectively. The
parameters of the baselines are set according to the suggestion of their original
papers.

4.4 Experimental Results

Results on Unseen Query. Firstly, the performance of handling cross-modal
retrieval for unseen concepts is evaluated from two aspects.

First, the mAP results that indicate the overall performance of cross-modal
retrieval for unseen query are shown in Fig. 2. Compared against the conven-
tional cross-modal hashing approaches CMFH, LSSH, and SMFH, the proposed
method CMAH outperforms them with significant margins in most cases. This
is because they are trained in a close-set circumstance, which makes it limited
to generalize the hashing functions to newly emerged concepts that have never
been present. We also notice that AH and ZSH perform better than CMFH,
LSSH, and SMFH. Since they are excellent zero-shot learning methods, they
can handle the knowledge transfer from seen to unseen classes. However, AH
and ZSH are unimodal methods that ignore the correlation of different modali-
ties. Thus, our CMAH outperforms AH and ZSH in most cases. It demonstrates
the effectiveness of our proposed CMAH in handling cross-modal retrieval for
unseen concepts.

Second, the precision within Hamming radius 2 (PH2) that indicates the local
distribution performance which reveals how far the relevant instances is from the
query item is plotted in Fig. 3. It can be seen that our method outperforms others
in most cases except SMFH on the Labelme dataset. This outlier may be caused
by the weak correlations between unseen and seen classes in LabelMe. Different
from the mAP results, the PH2 of AH and ZSH are inferior than CMFH, LSSH,
and SMFH. This is because the encoding of cross-modal correlation enhances



30 F. Zhong et al.

8 16 32 64
Code Length

0

0.1

0.2

0.3

P
H

2
Text-to-Image on Wiki

CMFH
LSSH

SMFH
ZSH

AH
CMAH

8 16 32 64
Code Length

0

0.1

0.2

0.3

P
H

2

Text-to-Image on Pascal VOC

CMFH
LSSH

SMFH
ZSH

AH
CMAH

8 16 32 64
Code Length

0

0.1

0.2

0.3

0.4

0.5

0.6

P
H

2

Text-to-Image on LabelMe

CMFH
LSSH

SMFH
ZSH

AH
CMAH

8 16 32 64
Code Length

0

0.1

0.2

0.3

P
H

2

Image-to-Text on Wiki

CMFH
LSSH

SMFH
ZSH

AH
CMAH

8 16 32 64
Code Length

0

0.1

0.2

0.3
P

H
2

Image-to-Text on Pascal VOC

CMFH
LSSH

SMFH
ZSH

AH
CMAH

8 16 32 64
Code Length

0

0.1

0.2

0.3

0.4

0.5

P
H

2

Image-to-Text on LabelMe

CMFH
LSSH

SMFH
ZSH

AH
CMAH

Fig. 3. Precision on unseen query of various approaches with varied hash code lengths
on three datasets.
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the performance of cross-modal methods, which is why the unimodal zero-shot
methods AH and ZSH obtain higher mAP but lower precision in most cases.

Moreover, from Fig. 2, we can find that all the methods show a slightly trend
toward degradation. The trend of PH2 of all baselines is similar to mAP but
with more rapid decreasing speed. It is because the longer binary codes can
carry more discriminant information but also introduces noise into the codes. In
contrast, our method generally has a rising trend of PH2 from 8 bits to 32 bits. It
demonstrates that the overall performance decreases slightly as the code length
increases, but more relevant instances are distributed around the query item. It
further depicts our cross-modal multi-layer network can enhance the robustness
to noise. The proposed CMAH is thus able to generate hash codes for unseen
query with high discriminative capability.

An additional observation to the hash code length is that as it increases,
the mAP shows a slightly trend toward degradation, while the precision has a
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rising trend from 8 bits to 16 bits and then decreases rapidly from 16 bits to
64 bits. This phenomenon indicates that an appropriate hash code length which
can balance the information encoding and noise is significant for cross-modal
retrieval for unseen concepts.

We also investigate the correlation between unseen and seen classes by con-
ducting additional experiments on Pascal VOC. One class is selected as the
unseen concept and the rest as seen concepts each time, and thus we have 20
different splits. The mAP results of cross-modal retrieval for the 20 unseen classes
are shown in Fig. 4, respectively. Generally, the T2I task performs better than
I2T task. More importantly, we find that the unseen class that shares more
similar attributes with seen classes will lead to a better performance when con-
ducting unseen query. For example, ‘dining table’ is quit close to four-leg ‘chair’,
and ‘cow’ is similar to ‘horse’ and ‘sheep’. Therefore, the selection of unseen
classes will affect the performance of cross-modal retrieval for unseen concepts.
For this reason, we present the average performance of repeated experiments
with randomly selected unseen classes.

Results on Seen Query. Then, we still evaluate the performance of our
method on seen query i.e. the same test setting with conventional cross-modal
retrieval methods. The mAP results of all approaches are reported in Table 1.
Similarly, the T2I task outperforms I2T tasks. This is because the representation
of text feature is closer to the object semantic than the visual feature. Different
from unseen query, it can be seen that AH and ZSH perform rather poorly, while
CMFH, LSSH, SMFH perform well in the cross-modal retrieval for seen classes.
This is because CMFH, SMFH and LSSH are trained in a close-set circum-
stance, which makes them limited to generalize the hashing functions to unseen
concepts. We can see that the results of our method with varied code lengths are
superior to AH and ZSH with large margin. Compared to the best cross-modal
hashing method, our proposed CMAH performs comparable or even better on
the three datasets. The reason is that our CMAH strives to achieve a balance
between unseen and seen query. CMAH mainly focus on the knowledge transfer
for unseen classes, which degrades slightly the discriminant of generated binary
codes of seen classes. However, due to the utilization of attributes the binary
codes can carry additional discrimination information, which results in superior
performance in some cases such as on LabelMe and Pascal datasets. In addition,
a rising trend is observed on seen query as the code length increases.

Overall Results. Finally, we analyze the average result of cross-modal retrieval
for seen and unseen classes. The average results on three datasets are plotted in
Fig. 5. Generally, it can be observed that our proposed CMAH is superior to the
others, which demonstrates the effectiveness of our method. More over, the cross-
modal methods CMFH, LSSH, SMFH, and our CMAH perform better than the
unimodal method AH and ZSH. In the view of mAP, our method outperforms
others in most cases except ZSH on Pascal with Image to Text task. The results
of cross-modal methods increase steadily as the code length varies from 8 to
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Table 1. MAP results on seen query of all methods with varied hash code lengths on
three datasets.

Task Method
Wiki Pascal VOC LabelMe

8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits

T2I

CMFH 0.4982 0.5281 0.5549 0.5779 0.4125 0.5885 0.5558 0.5314 0.5856 0.5306 0.4879 0.4801

LSSH 0.4698 0.5345 0.5688 0.5926 0.5013 0.5891 0.6362 0.6372 0.6192 0.6513 0.6707 0.7116

SMFH 0.6195 0.6653 0.6677 0.6874 0.4231 0.7216 0.7553 0.8277 0.6438 0.7329 0.6951 0.6291

ZSH 0.1418 0.1435 0.1522 0.1484 0.1165 0.1122 0.1161 0.1139 0.2305 0.2643 0.2657 0.2847

AH 0.2294 0.2295 0.224 0.2074 0.1312 0.1283 0.1226 0.1319 0.2441 0.2386 0.2579 0.2656

CMAH 0.5819 0.6256 0.6420 0.6282 0.7208 0.8417 0.8564 0.8713 0.9151 0.926 0.9252 0.9222

I2T

CMFH 0.2565 0.2579 0.2783 0.2817 0.1848 0.2235 0.2078 0.1969 0.4540 0.4266 0.3927 0.3879

LSSH 0.2292 0.2557 0.2708 0.2673 0.2650 0.2987 0.3094 0.3294 0.6217 0.6705 0.6878 0.7256

SMFH 0.3089 0.3240 0.3414 0.3402 0.2266 0.2828 0.2959 0.3245 0.5504 0.6221 0.6140 0.5607

ZSH 0.1777 0.1803 0.1689 0.1597 0.1105 0.1059 0.1071 0.1055 0.2376 0.2798 0.2566 0.2704

AH 0.2107 0.1924 0.1694 0.1736 0.1119 0.1103 0.1155 0.1120 0.1777 0.1796 0.1861 0.1998

CMAH 0.2342 0.2329 0.2365 0.2503 0.1919 0.2020 0.1900 0.2351 0.7694 0.8017 0.8136 0.8239
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Fig. 5. Average results of seen and unseen query of various approaches with varied
hash code lengths on three datasets.

64 bits. Whereas AH and ZSH present a slightly trend toward degradation. In
terms of PH2, all the baselines reach their peaks at 16 bits and then decrease
dramatically. The overall performance of our proposed CMAH shows a rising
trend on three datasets.

Therefore, we can conclude that our novel model is effective and the com-
petitive in cross-modal retrieval for both seen and unseen concepts.
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Fig. 6. Convergence analysis.

4.5 Convergence Analysis

The convergence of our method is evaluated via empirical experiments on Wiki,
Pascal VOC, and LabelMe when hash code length is 16 bits. As shown in Fig. 6,
our method can swiftly converge within 5 iterations, which demonstrates its
efficiency in real-life applications.

5 Conclusion

In this paper, an exploration on the zero-shot problem in cross-modal retrieval is
conducted. We proposed a novel cross-modal attribute hashing model that can
generalize the hashing functions to newly emerged concepts. A dual multi-layer
network is developed, where attribute plays a crucial role in not only helping
to well transfer knowledge from seen to unseen concepts, but also narrowing
down the semantic gap across visual features, text features, and class labels.
Experiments demonstrated the effectiveness of our model in cross-modal retrieval
for both seen and unseen concepts. With this initial exploration, many problems
are still worthy of further investigation, such as the selection of unseen classes
and the balance between seen query and unseen query.
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