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Abstract. Local differential privacy (LDP), as a state-of-the-art privacy
notion, enables users to share protected data safely while the private
real data never leaves user’s device. The privacy regime is one of the
critical parameters balancing between the correctness of the statistical
result and the level of user’s privacy. In the majority of current work,
authors assume that the privacy regime is totally determined by the
service provider and dispatched to all users. However, it is inelegant and
unpromising for all users to accept the same privacy level in real world.
In this paper, we propose a new LDP estimation method MLE which
is applicable for the scenario of multiple privacy regimes. MLE uses the
idea of parameter estimation to merge the results generated by users of
different privacy levels. We also propose an extension of MLE to handle
the situation when all users’ regimes are in a continuous distribution.
We also provide an Adapt estimator which assigns users to use different
LDP schemes based on their regimes, and it performs better than the
estimator with only one fixed LDP scheme. Experiments show that our
methods provide a higher level of accuracy than previous proposals in
this multiple regimes scenario.

Keywords: Local differential privacy · Multiple privacy regimes ·
Frequency estimation

1 Introduction

With the rapid penetration of Internet and Smartphone through the crowded,
large-scale collection of user data is already a necessary daily activity for com-
panies. User data has become one of the most important asset, which can give
support to data scientists to discover new patterns and provide training exam-
ples for machine learning models. However, this comes with huge risks–can these
companies protect users’ sensitive data from malicious access? Disclosure may
violate the users’ privacy and lead to scandal.
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Anonymization techniques are one common method to protect user privacy
by blurring the personalized or identifiable information, but it’s vulnerable to
the de-anonymization attack as shown in the case of Netflix Price [15]. For the
above scenario, Differential Privacy [6,7] successfully achieved releasing sanitized
datasets, but not at the client level.

Local Differential Privacy (LDP) [13] is a branch of DP, which gives the bene-
fits of population-level statistics without the collection of raw private data. With
LDP, service provider can get statistical information on all users by just aggre-
gating users’ noised report. This feature makes LDP widely used in real-world
scenarios. For example, Google’s use LDP scheme RAPPOR to constantly collect
the home-page that all users like to set up; Apple announced its implementa-
tion of LDP in iOS 10 and MacOS in WWDC 2016; Microsoft also deploys a
LDP-enabled data collection mechanism in Windows Insiders program to collect
application usage statistics.

LDP’s security parameter (privacy regime ε) represents the security level of
its randomization process. The bigger (or smaller) the security parameter, the
more (or less) availability of the noisy report that the user shares. However,
most LDP schemes assume that each user has the same ε, hence each user uses
the exact same randomized procedure to generate a noisy report from their own
data. There have been complaints that deployed LDP schemes use higher values
of ε while users are not given any choice. So it is questionable that ε is entirely
determined by the service provider who wants more availability of the data.

Multiple and Personalized Privacy Regimes. In order to meet the privacy
demands of different people, we argue that users should be allowed to set their
overall privacy levels (e.g., low/moderate/high) independently. Here, we assume
that this personalization of privacy regimes does not mean the user should set a
new ε every time he shares data. Instead, users will set an infrequently changing
ε, which will be consumed a fixed percentage every time users share data with
LDP. This assumption is derived from a study [17], which suggests that Apple’s
deployment [2] for LDP has an overall privacy regime as high as 16 everyday
and sets privacy consumption to 1 or 2 each time shares data while there is no
transparency.

In this paper, we consider that simple LDP mining task only contains one
data collection activity, and the common simple mining task includes frequency
estimation, mean value estimation, heavy-hitters identification and so on. So
even if users have the same overall privacy regime ε, multiple ε may still appear
in one mining task because the number of times that data is shared is different.
For example, it could involve the real-time sharing of trajectory data and is
not the focus of our analysis. We present the above personalization process in
Fig. 1(a).

In addition, when LDP handles complex mining task like “Frequent Itemset
Mining” [20] which contains several rounds of data collection activities, it is
common to randomly assign all users to several groups, and then different groups
finish each step of the mining task respectively with the same ε. However, some



Multiple Privacy Regimes Mechanism for Local Differential Privacy 249

groups of users only need to pay a small amount of privacy to complete easy
step (e.g., frequency estimation in small candidate space), the remaining can be
assigned to challenging steps by segmentation as shown in Fig. 1(b). Combining
the above two points, it’s urgent to deal with multiple privacy regimes under
LDP.

Fig. 1. Application scenarios for multiple privacy regimes.

In this paper, we assume that users may have different privacy acceptances
for personalization: Once a user sets his overall privacy regime ε, he does not
change this value frequently and his participation in any tasks will automatically
consume a certain proportion of this ε until it’s used up; Since the collection
behavior is usually long-term and the user’s privacy data may change (e.g., web
pages visited), users’ specific choices of privacy regimes are not related to the
value of the private data.

As far as we know, frequency estimation is the most basic LDP mining task,
so it is meaningful to apply it under the mechanism of multiple privacy regimes.
An obvious method of frequency estimation in this scenario, is to divide users
with the same ε into the same group, and estimate frequency for different groups
separately. In the end, service provider aggregates each group’s estimated value
by weighting. This is discussed in Sect. 3.

Contributions

– We propose MLE method which applies the idea of parameter estimation to
obtain an optimal estimate from user groups with different privacy regimes.
Our theoretical analysis shows that the accuracy of MLE can be equivalent to
tradition method which forces all users to choose one specific privacy regime,
and this equivalence shows that MLE is practical.
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– We propose S-MLE method to handle the situation when all users’ privacy
regimes are subject to continuous distribution in one mining task. It uses a
predefined β parameter to segment the contiguous ε on the basis of MLE. The
experiments show that the β parameter of S-MLE may greatly influences the
accuracy under certain conditions.

– We propose Adapt-MLE method which encompasses different LDP schemes
for multiple privacy regimes. And the performance of Adapt-MLE is better
than that of MLE, especially when the discrete values of ε of different users
span a wide range.

2 Preliminaries and Notations

We assume that all users are willing to share their information to help service
provider update its statistical information. For the sake of privacy, each user
perturbs his own data by advanced technique (via LDP) with different demands
for security. The service provider aims to find out the frequencies of values among
the population. Such a process involves the following preliminaries.

2.1 Local Differential Privacy

Definition 1 (Local Differential Privacy). An algorithm A satisfies ε-local dif-
ferential privacy (ε-LDP) where ε > 0, if and only if for any input v1 and v2,
we have ∀y ∈ Range(A),

Pr(A(v1) ∈ y)
Pr(A(v2) ∈ y)

≤ eε,

where Range(A) denotes the set of all possible outputs of the algorithm A.

When privacy regime ε is small, the adversary can’t identify the true value
from the noise version reliably. The basic core of algorithm A is Randomized
response (RR) [21], which is a statistical technique used for collecting social
embarrassing questions.

2.2 Frequency Estimation in LDP

Let f = (f1, ..., fk) be a probability distribution on a set containing k candidate
values, f1 is the true frequency of v1 and the sum of f is 1. We can consider
that f is the proportion of N users choosing different values. Using LDP allows
the server to obtain an estimate ̂f = ( ̂f1, ..., ̂fk) without obtaining the user’s
original data.

Each of N users holds a value vj taken from the above k candidates and
shares this vj to the service provider in a LDP manner. In the beginning, user
need to encode the vj to a specific format, xj = E(vj), then select a parameter
ε t to obtain yj by randomization. Finally, service provider aggregates N data
records (y1, ..., yN ) and figures out ̂f .
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2.3 General LDP Schemes

Randomization mechanisms that satisfy LDP have been widely studied in recent
years, our work involves the following very common schemes.

kRR (k-ary Randomized Response) [12] is a generalization of binary randomized
response (RR) which performs well in low privacy level.

Base RAPPOR is simplest configuration of RAPPOR [9] which has been
widely accepted. It has a output alphabet υ = {0, 1}k of size 2k. It first maps
vi(1 ≤ i ≤ k) onto ei ∈ 0, 1k, where x = ei is the i-th standard basis vector. At
last a length-k binary vector y is generated from x by y = RR(x), RR here can
be seen with a pair of alterable probability p and q.

Pr(y[i] = 1|x[i] = 1) = p; Pr(y[i] = 1|x[i] = 0) = q (1)

Base Rappor sets p to eε/2/(eε/2 + 1) and q to 1 − p. For the fact that Base
RAPPOR is classical and is the basis of many other schemes, we mainly use it
to analyze the scenario of multiple privacy regimes in Sects. 3 and 4.

Optimal Scheme [22] and OLH [18] are two similar schemes, and they are all
obtained by optimizing the probability of RR in the Base RAPPOR (Change
p, q in Eq. 1), the difference is that the latter is evolved from SH [3] and reduces
communication cost by hash method.

At Last, frequency estimation formulas of these schemes are all

f̂i =
C(i) − q ∗ N

(p − q) ∗ N

where C(i) is the count of reported vector which has the i’th bit being 1. From
OLH, we get the following properties.

Lemma 1. For LDP scheme which uses RR with probability p and q, the fre-
quency estimation f̂i is an unbiased estimate of fi, and its variance is

var(f̂i) =
(fi ∗ p + (1 − fi) ∗ q) ∗ (1 − fi ∗ p − (1 − fi) ∗ q)

N(p − q)2

Employing Base rappor’s settings for p and q and taking eε/2 > 1 >> fi into
account, Base rappor’s variance is as follows:

var(f̂i) =
eε/2

N(eε/2 − 1)2
(2)

3 Problem Formulation

In this paper, we consider the specific LDP problem that users specific choices
of privacy level will lead to multiple ε in one mining task. In this section, we first
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Table 1. Notations

Notations Explanations Notations Explanations

v Raw data in frequency
estimation

p, q Defined in equation (1)

x Encoded data N Total number of users
in the collection

y Sanitized data nm The size of the m-th
group

f Frequency distribution k The domain of value

fi The true frequency of
vi

f̂i An estimate of fi

introduce a primary method called Raw-PCE (Personalized Count Estimation)
which can be considered a simplified version of PCE [5] proposed for the handling
spatial data aggregation. Compared with the original PCE scheme, only the cus-
tomization of privacy regime is preserved in Raw-PCE while the customization
of other factors are omitted. Then we analyze the estimate of Raw-PCE and get
a new probability model (Table 1).

3.1 A Multiple Privacy Regime Scheme: Raw-PCE

Raw-PCE is an intuitive and primitive method handling this scenario. Suppose
there are totally M different privacy regimes namely ε1, ε2, ...,εM .

Firstly, the service provider groups the users according to their personalized
privacy regimes which results in totally M groups.

Then, each group with the same privacy regime independently generate its
frequency estimate vector, the estimate vector generated by group m is denoted
as ˆf(m) = ( ˆf(m)1,

ˆf(m)2, ...,
ˆf(m)k). Totally M estimates are generated. With-

out loss of generality, here we consider only one candidate value v to simplify
the problem. The M estimates for value v can be denoted as ˆf(1), ˆf(2), ..., ˆf(M).

Finally, if there is no other auxiliary information, the way in which the esti-
mated value f̂ is calculated by Raw-PCE is as follows:

f̂ =
M
∑

m=1

ˆf(m)α(m) (3)

where α(·) represents the weights of each group’s estimation. Raw-PCE here
ignores the fact that every estimate’s accuracy is different, and it just takes the
size of each group as the weights where αm = nm/N . Combining Eqs. 2 and 3,
we have:

Lemma 2. In Base RAPPOR scheme, estimation of Raw-PCE has the variance
as follows,

var(f̂) =
M
∑

m=1

n2
meεm/2

(eεm/2 − 1)2 ∗ N3
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The above formula shows that the error is cumulative, whenever there is
an estimation with large error among M estimations, final errors are greatly
increased which is rather unacceptable.
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Fig. 2. The true frequency of vi(i ∈
[k]) is 0, and there are three estima-
tions of fi which are drawn from three
normal distribution.
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Fig. 3. S-MLE: dividing continuous ε
into discrete values and the size of each
shadow area is β.

3.2 Probabilistic Model of Multiple Regimes Setting

Although users are divided into different groups with different ε, their choices of
privacy regimes can be considered as irrelevant to the choices of their favourite
items, which means user’s possibility of choosing item v is the same in all M
groups.

After the randomization process, the reported number C (C(i) is introduced
in Sect. 2.3 and here we omit i) is a random variable from a binomial distribu-
tion, namely C˜B(N, pf + q(1 − f)). We use p′ to denote pf + q(1 − f). Fur-
thermore, N is usually big enough to ensure normal approximation and we have
C˜N(Np′, Np′(1 − p′)). ˆf(m) is a normalization of C(m) and follows a Gaussian
distribution.

Then all M groups follow M different normal distributions, which share the
same expectations but have different variances due to the different values of ε.
Therefore, as Fig. 2 shows, the M estimates generated by M groups, respectively
ˆf(1), ˆf(2), ..., ˆf(M), can be regarded as M random samplings of the actual user

proportion fv, each of which follows a unique normal distribution.
The problem of multiple privacy regimes can be regarded as equivalent to

the problem of obtaining the best estimate of fv from M group estimations
ˆf(1), ˆf(2), ..., ˆf(M), which are random samples separately drawn from M normal

distributions. Our target is simplified as to give the optimal estimate of the
expectation with the help of parameter estimation methods.

4 Estimate Methods

In this section, we present two types of frequency estimate for multiple privacy
regimes. In Sect. 4.1, we discuss a new MLE method and give theoretical proof.
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Then we prove MLE’s accuracy is much better than the basic Raw-PCE (given
in Sect. 3.1). In Sect. 4.2, we discuss the situation when there exists large number
of groups after grouping operation and propose S-MLE method on the basis of
MLE.

4.1 MLE

Maximum likelihood is an effective method in parameter estimation, which is
adopted here to generate unbiased expectation f . Once the service provider gets
M estimations ( ˆf(1), ˆf(2), ..., ˆf(M)) and their variances as well, the Maximum
likelihood estimation (MLE) f̂ is defined as follows:

Theorem 1. Given the M estimate ( ˆf(1), ˆf(2), ..., ˆf(M)), the MLE for the mul-
tiple privacy regimes scenario is

f̂ = (
M
∑

m=1

ˆf(m)

var( ˆf(m))
)/(

M
∑

m=1

1

var( ˆf(m))
)

The proof is in Appendix A.
It’s interesting to observe that the expectation we derived for MLE is in a

weighted-sum manner. The weights become the reciprocal of the variances. Bring
it to Eq. 3 for demonstration,

αm =
1/var( ˆf(m))

∑M
m=1 1/var( ˆf(m))

Estimation Accuracy Analysis. Due to MLE is unbiased and contains group-
ing operation, its accuracy can be somehow equivalent to a traditional LDP
method with a special privacy regime ε. Assuming there are two service providers
doing the same collection on a population. One allows user to choose different
ε and groups them, finally there are M groups whose size and privacy regime
are (n1, ε1), (n2, ε2), ..., (nM , εM ); The other makes all users in the same privacy
regime. So in which condition they achieve the same level of accuracy or their
estimations have the same variance. The latter obliges all users to have the same
ε, and here we call this reckless method traditional estimation (TE).

Theorem 2. The variance of the estimates obtained by the MLE is var(f̂) =
1/(

∑M
m=1

1
var( ˆf(m))

).

The proof is in Appendix B. It can be inferred from the formula that if the
data collector only uses the estimate with the least error, its effect is not as good
as that of MLE which combines all the estimates.

When substituting the variance generated by Base RAPPOR into the The-
orem 2, we obtain a new lemma.
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Lemma 3. In Base RAPPOR, if any eεm/2 >> 1, there exists a privacy regime
ε′ ≈ 2∗ln

∑
nm∗exp(εm)∑

nm
such that makes the accuracy of directly using TE method

with ε′ equals to MLE with multiple εm(m ∈ [M ]).

The proof is in Appendix C.
Comparing Theorem 2 with Lemma 2, we find that the overall variance of

MLE is much lower than that of Raw-PCE method. The explanation can be
that Theorem 2 implies the final estimate will be accurate as long as at least
one of the estimates has low variance, while Lemma 2 has high variance if just
one group has high variance. Our experiments also show MLE is much more
accurate than Raw-PCE.

4.2 S-MLE

When the user are allowed to choose any value as their overall privacy regimes
from a considerate large set, there will be too many groups and some groups
inevitably contain too few users. In this scenario, the above MLE method may
be inapplicable because large errors are introduced into f̂ . And one extreme
situation is that ε is continuous function over real number field as shown in
Fig. 4. In this section, we start by analyzing why the minimum size of the group
(βN) should be set and explaining what factors will affect the value, then we
provide a supplement method called S-MLE for this scenario.

βN : Minimum Size of the Group. From the perspective of sampling theory,
the essence of grouping process in MLE is that the users are randomly sampled
into M groups, and the frequency estimation result of each group is equivalent
to the result of sampling scheme without replacement. And what we’ll find is
that the sample size of this M group is different and there may exist invalid
sample group because sample survey with low sample size introduces lots of
sampling error and would not represent the whole. Specifically, small group’s
unbiased estimation ˆfi(m) on value vi differs greatly from the actual results of
the population. Namely, |E( ˆfi(m)) − fi| < σ can’t hold where σ is tolerable
sampling error.

So it makes sense to determine the minimum of the sample size which is also
a basis for dividing the group. According to the sampling theory, the sample size
is usually determined by the variation degree of the research object, the total
number of samples and the demand for accuracy. In our MLE, sample size can
be mainly determined by the size of candidate set (k), the total number of users
(N), and the complexity of candidate set’s frequency (the distribution of f). So
we get the proposition as follows:

Proposition 1. In MLE, for any group whose size does not exceed βN , it’s
necessary to ignore its estimation or make users in this group join other higher
privacy level group.

Combining the Proposition 1 and MLE, we need to figure out an empirical value
for β and segment privacy regimes and re-merge existing groups.
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S-MLE. The S-MLE method can be further extended to the situation when
the type of ε value is unlimited (continuous distribution).

From Theorem 2 we can see that the entire accuracy is depend on all users’
distribution of ε. let users who have temp largest ε value form a group (size
= β ∗ N) recursively is an efficient segmenting way (segmenting in Fig. 3).
Since it’s difficult and complexity to figure out sample size β, we give some
empirical values here. In the experiment when fixing N to 100000, we find β ∈
[0.05, 0.1] ([0.1, 0.15]) is reasonable for the situation when f is generated by zipf’s
distribution (uniform distribution) and k is ranging from 20 to 200, β should be
bigger as k increases.

5 Adapt MLE and Universality of Mining Scenarios

MLE and S-MLE have been able to achieve relatively high accuracy in frequency
estimation by Base RAPPOR. Furthermore, they are also applicable for other
mining scenarios like heavy-hitter identification, and replace Base RAPPOR
with other scheme for better accuracy. In this section, we propose the Adapt
MLE method which adaptively selects the most suitable LDP scheme for each
group of users to share data, then we briefly show how to apply MLE to other
LDP mining tasks.

Adapt MLE. The process of selecting schemes just fits in with some work [11,
18,22] on how to select LDP schemes based on privacy regime ε, the size of k
and communication cost.

Here we attach importance to accuracy and use variance as the evaluation
criteria to select LDP scheme for frequency estimation. Because uniform distri-
bution is the most difficult to estimate analyzed by minimax [22], we set each
value in f to be the same and easily calculate the variance of each scheme
through Lemma 1. So by comparing their variances, we can get the following
directly:

Adapt MLE(Group m) =
{

kRR if k < 3eεm + 2
OptimalSchemes otherwise

In other scenarios like sampling step in frequent item mining [20], “3eε + 2”
might change slightly. So the accuracy of Adapt MLE is higher than that of MLE
when the discrete values of ε of different users span a wide range. However, accu-
racy is not the only factor that matters, communication cost and computational
complexity are also worth considering in real world.

As far as we know, our multiple privacy setting still can be used for heavy-
hitters identification. SH [3] consists of two important steps. First step uses
hash function to separate the values into a lot of channels, with high probability
each channel has at most one frequent value, then identify whether there is a
frequent item in each channel. Referred to Chen [5], multiple privacy setting
is fully applicable to this step. The second step employs a frequency oracle to
estimate the frequency of those frequent values obtained from first step. And this
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is similar to the mining task of frequency estimation while obtaining variance
from frequency oracle is in another form and the final estimates are slightly
biased (still consistent with the goal of heavy-hitters).

6 Experiments

In this section, we evaluate and compare the performance of our proposed per-
sonalized approach through extensive experiments. Since there is no existing
work for our settings, we mainly verify the correctness of our analysis.

Setup. All experiments are performed 10 times and we plot the Mean Abso-
lute Percentage Error (MAPE) of all frequency estimation. The MAPE is
1
k

∑

i in[k]
|f̂i−fi|
fi+σ , where fi is the actual fraction of all users taking value i and

σ is to prevent the denominator from 0.
In RAPPOR [9] with h = 1, their value for epsilon is actually set to 2ln3 and

the number of users is a million level. And Apple also set epsilon to 1 or 2. So we
assume that 100 thousand users participates the collection, and set M options
in most experiments to ε = [0.2, 1.0, 2.0, 3.0] and the proportion of users in each
group is G = [0.2, 0.3, 0.3, 0.2] where G denotes the corresponding proportion.

For better verification of correctness, we generate two synthetic data which
are from Zipf’s distribution (parameter a = 2.5) and uniform distribution. The
schemes used in each experiment contain KRR, Base Rappor and Optimal
Scheme. We change the distribution of f by controlling the size of k.

6.1 Accuracy of MLE Method

Whatever the distribution of f is in Fig. 4, MAPE curves generated by four
groups shows that group with higher ε generates better estimates; Raw-PCE’s
accuracy has been greatly affected by the group with low variance, namely ε =
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0.2; From Theorem 2 and this figure, we know the variance of MLE is always
smaller than the variance estimated by each group.

In uniform distribution (Fig. 4(a)), MAPE increases as k increases, roughly
the same multiple because the denominator of MAPE’s calculation is actually
1/k. In fact, the size of the variance is independent of k. So in zipf’s distribution
(Fig. 4(a)), the change in MAPE will not be obvious when k does not exceed
200. This also the reason why uniform distribution is difficult to estimate.

6.2 S-MLE Method on Continuous ε

When there are too many options of M or all users’ ε is continuously distributed,
the value of β can help to divide all users into �1/β� groups as described in
Sect. 4.2. Small β will increase sampling error, but it can also reduce the overall
variance from Theorem 2. A balance between overall variance and sampling error
is reasonable.

20 40 60 80 100 120
0%

5%

10%

15%

20%

size of k

M
A

P
E

β = 0.2
β = 0.15
β = 0.1
β = 0.0625

(a) uniform distribution of f

20 50 80 120 150 200

3%

8%

13%

18%

size of k

M
A

P
E

β = 0.2
β = 0.15
β = 0.1
β = 0.0625

(b) zipf’s distribution of f

Fig. 5. the influence of β ’s value on MAPE, varying k.

In this part, we make the proportion of users choosing different ε obey
N(2.5, 0.8) and ε’s contiguous interval be [1.0,4.0], namely G obeys N(2.5, 0.8)
and ε is continuous in [1.0,4.0]. It can be observed from Fig. 5(a) that when k
is small, the MAPE with small β is acceptable, namely, the sampling error has
little effect. On the contrary, when k becomes larger than 60 for β = 0.0625,
the sampling error even exceeds the error generated by estimator. But for Zipf’s
distribution, the effect of k on sampling error is not obvious until k > 150. So for
our settings above concerning the number of users and ε ratio, β ∈ [0.05, 0.1] for
Zipf’s distribution and β ∈ [0.1, 0.15] for uniform distribution are appropriate
choices.

6.3 Multiple Schemes for Different Groups

In Sect. 5, we claim that users in different groups can use different LDP schemes
to achieve better accuracy. From Sect. 5, kRR performs better when k < 3eε +2.
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We divide 100 thousand users into 4 groups with ε = [1.0, 2.0, 3.0, 3.2] and G =
[0.3, 0.35, 0.3, 0.05].

Learning from Fig. 6, “Adapt-MLE” performs better because users of these 4
groups use kRR if k are less than 10, 25 and 62 and 76 respectively and otherwise
use Optimal Scheme.
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Fig. 6. Adapt MLE with multiple schemes, “MLE(kRR)” represents only KRR and
“MLE(Opt)” represents only Optimal scheme.

7 Related Work

The traditional differential privacy (DP) was developed for interactive query-
response on a central database and provides theoretical privacy guarantee by
mathematically randomizing the results of statistical queries. However, the major
limitation of DP is that all users need to trust a central server. Despite attacks
from aggregate queries, individual’s data may also suffer from privacy leakage
before aggregation [8].

On the other hand, Local differential privacy (LDP) [13], a variant of DP,
guarantees privacy of data without that server. Random Response (RR) [21],
where the user responds either true or opposite answer depending on coin flip-
ping, is the most basic technique in LDP schemes.

Widely accepted schemes for frequency estimation under LDP are Rappor
by Erlingsson et al. [9] and succinct histogram (SH) by Bassily and Smith [3].
RAPPOR’s key idea is encoding values into Bloom filters and applying RR
to each bit of Bloom filters. In order to conquer hash collision problems in
Bloom filters, RAPPOR brings in cohorts. In this paper, we use RAPPOR’s no
bloom filter version to analyze our multiple setting. SH’s has two important data
structures—frequency oracle and succinct histogram, these two work together to
estimate those values whose frequencies exceed η, so some applications do heavy
hitters [5,16,19] identification referred to SH. Due to the high complexity of
SH, Bassily et al. [4] recently developed an efficient way to query the frequency
estimation based on SH mechanism.

In addition, discrete distribution estimation under LDP considers all val-
ues’ frequency accuracy. Kairouz et al. [11] analyzed several key factors (privacy
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regimes, discrete distribution) which affect accuracy. Ye et al. [22] came up with
Optimal Scheme for discrete distribution estimation. About [11,22], their analy-
sis tools all contained minimax with l2-norm as loss function which is similar to
variance. Wang et al. [18] introduced a framework that can generalize the most
LDP schemes by recognizing RR’s features. These work all have a prerequisite
that the size of k is limited.

In personalization privacy fields, Jorgensen et al. [10] incorporated personal-
ized settings for DP (PDP), and Li et al. [14] proposed a k-partition strategy to
improve it. Then Chen et al. [5] first introduced the concept of personalized pri-
vacy in LDP (PLDP), it allows users to have two optional privacy regime ε and
τ . The former has no change, while τ represents a small piece of the candidates
list. They assume some users set small size of candidates list and this part of
users can greatly improve their performance on heavy-hitter mining task. Obvi-
ously, τ makes this personalization process complex for users. Akter et al. [1]
borrowed the definition of PLDP to estimate numeric data like average instead
of heavy-hitters mining.

8 Conclusion

In this paper, we mainly study frequency estimation under Local Differential
Privacy (LDP) in multiple regimes scenarios. We have formulated the problem
of multiple privacy levels and proposed a MLE method to deal with this situation.
Then, we propose S-MLE and Adapt-MLE to deal with the situation when users’
privacy levels are in some special cases.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (No. U1636216) and National Key R&D Program of China (No.
2016YFB0502302).

9 Appendix

A. Proof of Theorem 1

Proof. ( ˆf(1), ˆf(2), ..., ˆf(M)) are drawn from different normal distributions, normal
distribution has probability density function as follows:

g(x) =
1√

2πσ2
exp(− (x − u)2

2σ2
)

According to probability density function g(x), we know the closer estimation
ˆf(m) is to the expectation, the greater the g( ˆf(m)). For ease of calculation, we

use Eq. 2 to ignore the effect of fi on variance. g( ˆf(m)) actually has only one
variable–expectation. Separately bring each ˆf(m) into function and multiply these
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functions according to maximum likelihood, we get the final target function
which needs to be maximized.

F (f) =
M
∏

m=1

gm(f)

We first turn it to logarithmic function y = ln(F (f)), and after derivation,
the first derivative and the two derivative of F (f) are obtained sequentially.

y′ =
∂ln(F (f))

∂f
= −

∑M

m=1

ˆf(m) − f

σ2
m

y′′ =
y′

∂f
=

∑M

m=1

1
σ2

m

Through simple analysis, y′′ is always bigger than 0 and y′ is a strictly mono-
tone increasing function. So F (f) is a convex function with a max value. Then set

the first derivative function to zero, here when f̂ = (
∑M

m=1

ˆf(m)

σ2
m

)/(
∑M

m=1
1

σ2
m

),
we can get the maximum of the F (f).

B. Proof of Theorem 2

Proof. First use tm to denote var( ˆf(m)), the final estimation using maximum

likelihood is f̂ = (
∑M

m=1

ˆf(m)

tm
)/(

∑M
m=1

1
tm

). When we calculate the variance of
f̂ as follows:

var(f̂) = var(
∑M

m=1

ˆf(m)

tm
/
∑M

m=1

1
tm

)

Since the estimations fm(m ∈ [M ]) are independent of each other, and tm
here is actually a constant number.

var(f̂) =
∑M

m=1
(
var(f̂m)

t2m
)/(

∑M

m=1

1
tm

)2 = 1/
∑M

m=1

1
tm

C. Proof of Lemma 3

Proof. We still judge the accuracy of the final estimation from the perspective
of variance. The Lemma 1 shows base rappor’s estimation variance is var(f̂i) =

eε/2

n(eε/2−1)2
, for the sake of simplicity, let’s first assume eε/2 
 1 and use tm to

denote var( ˆf(m)). So that tm = (1/(nmeεm/2)).
We are clear that the f̂ ’s variance and ˆf(m)’s variance are the same format,

because f is regarded as using Base RAPPOR on the whole population while
all users have the same privacy regime ε′.

Combining the above equations and Theorem 2 together, we can find ε′ =
2 ∗ ln

∑
nm∗exp(εm)∑

nm
. If eε/2 
 1 doesn’t hold in some situation, the calculation

can still be based on the above formula and the result will become a little more
complicated.
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