
Multi-level Graph Compression for Fast
Reachability Detection

Shikha Anirban(B), Junhu Wang, and Md. Saiful Islam

Griffith University, Gold Coast, Australia
shikha.anirban@griffithuni.edu.au

Abstract. Fast reachability detection is one of the key problems in
graph applications. Most of the existing works focus on creating an index
and answering reachability based on that index. For these approaches,
the index construction time and index size can become a concern for
large graphs. More recently query-preserving graph compression has been
proposed and searching reachability over the compressed graph has been
shown to be able to significantly improve query performance as well as
reducing the index size. In this paper, we introduce a multilevel compres-
sion scheme for DAGs, which builds on existing compression schemes, but
can further reduce the graph size for many real-world graphs. We pro-
pose an algorithm to answer reachability queries using the compressed
graph. Extensive experiments with two existing state-of-the-art reacha-
bility algorithms and 10 real-world datasets demonstrate that our app-
roach outperforms the existing methods.

Keywords: Modular decomposition · Graph compression ·
Reachability queries · Algorithms

1 Introduction

The reachability query, which asks whether there exists a path from one vertex
to another in a directed graph, finds numerous applications in graph and network
analysis. Such queries can be answered by graph traversal using either breadth-
first or depth-first search in time O(|E| + |V |) without pre-processing (where V
and E are the vertex set and edge set respectively), or in constant time if we pre-
compute and store the transitive closure of each vertex, which takes O(|V ||E|)
time and O(|V |2) space. Unfortunately, neither of these approaches is feasible
for applications that need to process large graphs with limited memory. Over
the last decades, the problem has been extensively studied and many advanced
algorithms have been proposed, with most of them relying on building smart
indexes that can strike a balance between online query processing time and
offline index construction time (and index size).

More recently, researchers recognized that it is possible to reduce the graph
size by graph compression without loosing reachability information, and the
compressed graph can help speedup query processing as well as reduce index size
c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11447, pp. 229–246, 2019.
https://doi.org/10.1007/978-3-030-18579-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18579-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-18579-4_14

230 S. Anirban et al.

and index construction time. Specially, Fan et al. [6] define equivalence classes of
vertices with respect to reachability queries, and compress a graph by merging
all vertices in an equivalence class into a single vertex. However, finding all
equivalence classes is very time-consuming. Zhou et al. [21] propose an efficient
algorithm to do a transitive reduction which turns a directed acyclic graph (DAG)
into a DAG without redundant edges, after that the equivalence reduction of
[6] can be done much more efficiently. The resulting graph Gε after transitive
reduction and equivalence reduction over the original graph G can be a much
smaller graph that retains all reachability information, and it was experimentally
verified that for many real-world graphs, searching for reachability over Gε can
be much faster than searching over G using state-of-the-art algorithms.

This paper builds on the work of [21]. We observe that after the removal of
redundant edges many linear chains will be generated. Based on this, we pro-
pose a multi-level reachability - preserving compression method that can further
reduce the size of the graph obtained by the method in [21]. Our compression uti-
lizes a slightly modified concept of module [13], and constructs a modular decom-
position tree. We show how to use the decomposition tree to answer reachability
queries over the original graph efficiently. Furthermore, the decomposition tree
usually takes very small space. We make the following contributions:

1. We define a new concept of module, based on which we propose a multilevel
graph compression scheme that compresses graphs into a smaller graph Gc.

2. We organize the modules into a hierarchical structure called modular decom-
position tree, and propose an efficient algorithm to utilize the tree to answer
reachability queries.

3. We conduct extensive experiments with real-world graphs that demonstrate
the advantages of our proposed approach.

The remainder of this paper is organized as follows. We first discuss related
works in Sect. 2 and present the preliminaries in Sect. 3. Then we give an overview
of our approach and provide the theoretical foundations in Sect. 4, followed by
the detailed algorithms in Sect. 5. Our experimental results are given in Sect. 6.
We conclude our paper in Sect. 7.

2 Related Work

As briefly mentioned in Sect. 1, existing approaches for answering reachability
queries can be classified into index-based and compression-based.

Index-Based Approach: The index-based algorithms create labels for the ver-
tices, such labels contain the reachability information. These algorithms can be
divided into Label-only and Label+G methods [18]. The label-only [1,3,4,7,9–
12,19] methods use the labels of source and destination vertices only to answer
reachability. Agrawal [1] proposed tree cover approach that creates an optimal

Multi-level Graph Compression for Fast Reachability Detection 231

spanning tree to create index. Here, an interval for each vertex is created. A
reachability query is answered as true if the interval of target is contained in
the interval of source vertex. The index construction time and index size both
are high in this approach. A chain cover approach is first proposed in [7] where
the entire graph is divided into a number of pairwise disjoint chains to create
the index. The label of each vertex contains a minimal successor list containing
their chain number and position in the chain. A vertex u will be reachable to v
if label of u contains a pair (k, j) and v has an index pair (i, j) such that i ≥ k.
This chain cover approach is later improved in [3]. Path tree [9] uses the similar
concept of chain cover that uses paths to create index and has smaller index size
than chain cover. The recent approaches DL [10], PLL [19] and TF [4] use the
concept of 2-hop labeling proposed in [5]. In 2-hop labeling, a label is created
for each vertex containing the subset of vertices that it can reach (Lout) as well
as the subset of vertices that can reach it (Lin). Vertex u can reach vertex v if
Lout(u) ∩ Lin(v) �= ∅. [11] uses the concept of chain cover to improve 2-hop and
proposes a 3-hop labeling that creates a transitive closure contour (Con(G)) of
graph G using chain decomposition, and then applies 2-hop techniques. Path-
hop [2] improves 3-hop by replacing the chain decomposition with a spanning
tree. TF [4] proposes a topological folding approach for 2-hop labeling that can
significantly reduce the index size as well as the query time.

The Label+G approaches include [14–18,20] which require online searching
of data graph G if the query can not be answered from labels. [16] uses interval
labeling over a spanning tree and performs DFS online if needed. Grail [20]
and Ferrari [14] use multiple interval instead of single interval label for each
vertex over the spanning tree. Feline [17] creates coordinates i(u) = (Xu, Yu)
for a vertex u and answers reachability from u to v as true if the area of i(v)
is contained in that of i(u). Feline also uses interval labeling over spanning tree
and compares topological levels of u and v as additional pruning strategy to
reduce DFS search. IP+ [18] uses independent permutation numbering to label
each vertex. Feline and IP+ show significant improvement on query time and
require less index construction time and smaller index size. BFL [15] proposes a
Bloom-Filter Labeling to further improve the performance of IP+.

Compression-Based Approach: Graph compression based works include
Scarab [8], Equivalence reduction [6] and DAG reduction [21]. Scarab [8] com-
presses the original graph by creating a reachability backbone that carries the
major reachability information. To find reachability from vertex u to vertex v
the algorithm needs access to a list of local outgoing backbone vertices of u and
local incoming backbone vertices of v. The algorithm then performs a forward
BFS for u and backward BFS for v on the original graph to answer reacha-
bility from u to v. If the answer is false then it checks whether any outgoing
backbone vertex of u can reach any incoming backbone vertex of v in the reach-
ability backbone, if yes, then u can reach v. Scarab requires large index size with
high time complexity. Equivalence reduction [6] reduces the graph by merging

232 S. Anirban et al.

equivalent vertices into a single vertex. Two vertices are equivalent if they have
the same ancestors and same descendants. The algorithm requires high equiv-
alence class construction time. DAG reduction [21] improves the construction
time of equivalence classes by doing a transitive reduction of graph first.

Our work is different from the previous works in that we not only consider
equivalent classes, but also linear chains, when compressing the graph, and to the
best of our knowledge, none of the previous works uses multi-level compression
and modular decomposition tree in reachability queries.

3 Preliminaries

We consider directed graphs in this paper. For any directed graph G, we will use
VG and EG to denote the vertex set and the edge set of G, respectively. Given
two vertices u and v in G, if there is a path from u to v, we say v is reachable
from u, or equivalently, u can reach v. We use u �G v to denote u can reach v
in graph G. Given directed graph G and vertices u and v in G, a reachability
query from u to v, denoted ?u �G v, asks whether v is reachable from u in G.

A directed acyclic graph (DAG) is a directed graph without cycles. In the
literature, most works on reachability queries assume the graph G is a DAG,
because if it is not, it can be converted into a DAG by merging all vertices in
a strongly connected component into a single vertex, and vertices in a strongly
connected component can all reach each other. In this work, we also assume the
graph G is a DAG.

If (u, v) is an edge in DAG G, we say u is a parent of v, and v is a child of u.
For any vertex u ∈ VG, we will use parent(u,G) and child(u,G), respectively,
to denote the set of parents of u and the set of children of u in G. We will also
use anc(u,G) and des(u,G) to denote the set of ancestors of u and the set of
descendents of u in G, respectively. When G is clear from the context, we will
use the abbreviations parent(u), child(u), anc(u), and des(u) for parent(u,G),
child(u,G), anc(u,G), and des(u,G) respectively.

Let M be a subset of vertices in G. For any vertex u ∈ M and a parent
vertex u′ of u, we say u′ is an external parent of u (with respect to M) if u′ ∈
parent(u)−M . Similarly, we define an external child (resp. ancestor, descendent)
of u with respect to M as a vertex in child(u)−M (resp. anc(u)−M , des(u)−M).

Redundant Edges. Suppose (u, v) is an edge in G. If there is a path of length
greater than 1 from u to v, then (u, v) is redundant for reachability queries, that
is, removing (u, v) from G will not affect the answer to any reachability queries.

The redundant edges can be efficiently identified and removed by a transitive
reduction algorithm proposed in [21]. The following lemma is shown in [21]:

Lemma 1. Suppose G is a DAG without redundant edges, then for any two
vertices u and v in G, parent(u) = parent(v) if and only if anc(u) = anc(v);
child(u) = child(v) if and only if des(u) = des(v).

Multi-level Graph Compression for Fast Reachability Detection 233

Equivalence Class. Two vertices u and v are said to be equivalent if they
have the same ancestors and the same descendants, that is, anc(u) = anc(v),
des(u) = des(v) [6]. Because of Lemma 1, if G does not have redundant edges,
then u and v are equivalent if and only if they have the same parents and same
children. The equivalent vertices form an equivalence class. It is easy to see that
all vertices in the same equivalence class have the same reachability properties,
that is, if u is in an equivalence class, then for any other vertex u′, u can reach u′

(resp. u is reachable from u′) if and only if every vertex v in the same equivalence
class can reach u′ (resp. is reachable from u′).

Also as observed in [21], if G has no redundant edges, then all vertices in an
equivalence class form an independent set, that is, there are no edges between
the vertices in the same equivalence class.

Lemma 2. Suppose G is a DAG without redundant edges, then every equivalent
class is an independent set.

Modular Decomposition. The modular decomposition [13] of a directed graph
G partitions the vertex set into a hierarchy of modules, where a module is con-
ventionally defined as follows.

Definition 1. Let M be a set of vertices in G. We call M a module of G if all
vertices in M share the same external parents and the same external children. In
other words, for any u, v ∈ M , parent(u) − M = parent(v) − M and child(u) −
M = child(v) − M .

It is easy to see that a singleton set is a module and the set of all vertices in G
is also a module. These modules are called trivial modules. Let G be a DAG that
has no redundant edges. By Lemma 1, an equivalent class is also a module, and
by Lemma 2, such a modules is an independent set. In the literature, modules
that are independent sets are referred to as parallel modules.

4 Overview of Our Approach

The basic idea of our method is to compress the graph without loosing reach-
ability information. We use modular decomposition, however the definition of
modules has been slightly modified from that found in the literature, in order to
help with reachability queries.

Definition 2. A module in a DAG G is a set of vertices M ⊆ VG that have
identical external ancestors and identical external descendants. In other words,
for any two vertices u, v ∈ M , anc(u) − M = anc(v) − M , and des(u) − M =
des(v) − M .

234 S. Anirban et al.

0

21

3 4

5

Fig. 1. Example
DAG, where the
vertices 1, 2, 3, 4
have same exter-
nal ancestors and
same external
descendants, but
not the same
external par-
ents and same
external children

Our module is an extension of the conventional module
defined in Definition 1, that is, conventional modules are also
modules by our definition. This is because vertices that share
the same external parents also share the same external ances-
tors, and vertices that share the same external children also
share the same external descendants. However, the converse
is not true. For example, in the graph shown in Fig. 1, the set
of vertices {1, 2, 3, 4} is a module by our definition. However,
it is not a module according to the conventional definition. In
what follows, when we say a module, we mean a module by
Definition 2, unless explicitly stated otherwise.

In this work, we are interested in two special types of mod-
ules, referred to as parallel modules and linear modules respec-
tively. A parallel module is a module that is an independent
set, and a linear module is one that consists of a chain of
vertices v1, . . . , vk such that there is an edge (vi, vi+1) for all
i ∈ [1, k − 1]. These modules have the following properties.

Lemma 3. Suppose G is a DAG that does not have redundant edges. (1) If M
is a parallel module of G, then all vertices in M have the same parents and same
children. (2) If M is a linear module consisting of the chain v1, . . . , vk, then for
each i ∈ [2, k], vi−1 is the only parent of vi, and vi is the only child of vi−1.

Proof. (1) Let M be a parallel module. By definition M is an independent set,
and all the vertices have the same external ancestors and the same external
descendants. Since M is an independent set, it is impossible for any vertex in M
to have an ancestor or descendent in M , therefore, all the vertices have the same
ancestors and the same descendants (both external and internal). By Lemma1,
all vertices in M have the same parents and the same children.

(2) Let M be a linear module consisting of the chain v1, . . . , vk. For any
i ∈ [2, k], if vi has a parent u that is not vi−1, then there are two possible
cases. The first case is that u is also in M , that is u is one of vi+1, . . . , vk. This
contradict the assumption that G is a DAG since there will be a cycle. The
second case is that u is not in M . In this case, by the definition of a module,
u must be an ancestor of v1, that is, there will be a path from u to vi with
length at least 2. Hence the edge (u, vi) would be redundant, contradicting the
assumption that there are no redundant edges in G. This proves vi−1 is the only
parent of vi. Similarly we can prove vi is the only child of vi−1.

In Fig. 2(a), the vertices v1, v2, v3 form a parallel module. In Fig. 2(b), the
vertices v1, v2, v3 form a linear module. Note, however, the set {v4, v1, v2, v3,
v6} in Fig. 2(b) is not a linear module.

Multi-level Graph Compression for Fast Reachability Detection 235

v4 v5

v6

v3v2v1

(a) {v1, v2, v3} is
a parallel module

v4 v5

v6

v3v2v1

v7

(b) {v1, v2, v3} is
a linear module

Fig. 2. Example of modules

It is worth noting that each sin-
gle vertex forms a parallel module as
well as a linear module. These mod-
ules are referred to as trivial modules,
along with the module that consists
of all of the vertices in G. According
to Lemma 3, a parallel module is an
equivalence class, if G is a DAG that
has no redundant edges.

Note that if two vertices are in the
same linear module, then their reach-
ability depends on their relative positions in the chain. If they are in the same
parallel module, then they cannot reach each other, as shown in the lemma
below.

Lemma 4. Let G be a DAG without redundant edges, and u, v be vertices in the
same parallel module of G, then u cannot reach v in G.

Proof. Let the parallel module that contains u and v be M . If the lemma is not
true, there will be a path u, v1, . . . , vs, v from u to v. Since M is an independent
set, v1 and vs cannot be in M . Hence v1 is an external child of u, and vs is
an external parent of v. By Lemma 3 and the definition of modules, v1 must
be a child of v and vs must be a parent of u. Therefore there will be a cycle,
contradicting the assumption that G is a DAG. Hence the proof.

1

9

8765432

10

(a) G

1

9

8765432

10

(b) G̃

Fig. 3. (a) A DAG G and (b) the DAG G̃ after transitive reduction

A set of vertices may be in multiple parallel (or linear) modules, e.g., in the
graph shown in Fig. 2(a), {v1, v2} and {v1, v2, v3} are both parallel modules.
However, we are only interested in the maximal modules as defined below.

Definition 3. A parallel (resp. linear) module M is said to be maximal if there
is no other parallel (resp. linear) module M ′ such that M ⊂ M ′.

For example, {v1, v2, v3} is a maximal parallel module in Fig. 2(a), and it is
a maximal linear module in Fig. 2(b).

Note that two different maximal parallel modules of G cannot have overlaps,
and two different maximal linear modules cannot have overlaps. Furthermore,
there cannot exist a non-trivial parallel module and a non-trivial linear module

236 S. Anirban et al.

such that they have a common vertex. In other words, each vertex can belong
to at most one non-trivial parallel or linear module.

Multi-level Compression and Modular Decomposition Tree. To utilize
parallel and linear modules in reachability search, we perform a multi-level com-
pression of the original graph G. First, we identify the maximal linear modules
and parallel modules, and merge the vertices in each module into a single super-
vertex. We add an edge from super-vertex s1 to super-vertex s2 if and only if
there exists u ∈ s1, and v ∈ s2 such that (u, v) is an edge in G. In this way,
we obtain the first level compressed graph G1 = Compress(G). Clearly, G1 is
also a DAG without redundant edges. Then we apply the same compression
process to G1 to obtain the next level compressed graph G2 = Compress(G1),
and this process is repeated until we obtain a graph Gc which can no longer be
compressed, i.e., Gc does not have singleton-set parallel or linear modules.

Example 1. Consider the DAG G of Fig. 3(a), which consists of ten vertices num-
bered 1 to 10. The graph is reduced to G̃ in Fig. 3(b) after transitive reduction.
We will apply our compression to graph G̃.

There are no parallel modules in G̃. However, vertices 2, 3 and 4 can form a
maximal linear module. Another maximal linear module exists in G̃ that consists
of vertices 5, 6 and 7. So, vertices 2, 3, 4 and vertices 5, 6, 7 are compressed
into two single nodes, and they are reduced into nodes LS1 and LS2 respectively
in graph G1 shown in Fig. 4(a) after the first level compression. Then G1 is
compressed again to obtain G2 as shown in Fig. 4(b), where the nodes LS1,
LS2 and 8 in G1 are merged as they form an equivalent set in G1. The third
level compression creates graph G3 in Fig. 4(c) by merging nodes 1 and IS1 in
G2 which form a linear module. The graph G3 does not contain any parallel or
linear modules thus cannot be compressed further. So, G3 is the final compressed
graph of data graph G.

1

9

8

10

2, 3, 4 5, 6, 7
LS1 LS2

(a) G1

1

910

2 - 8

IS1

(b) G2

910

1 - 8

LS3

(c) G3

Fig. 4. (a) Graph G1 after first level compression, (b) Graph G2 after second level
compression and (c) Graph G3 after final compression. LS denotes linear module and
IS denotes parallel module

We organize the modules in all levels of the compressed graphs into a
tree structure, called the modular decomposition tree, or decomposition tree for
brevity, as follows: The root of the tree is the final compressed graph Gc. Each
module in the previous-level compressed graph Gc−1 is a child node of the root;
Each child node of the root that corresponds to a non-trivial module of Gc−1,

Multi-level Graph Compression for Fast Reachability Detection 237

in turn, has its own children, representing modules in the previous level graph
Gc−2. This continues until we reach the nodes representing modules in the first-
level compressed graph, where each non-trivial module points to their children,
which are individual vertices in the original graph G. Note that the leaf nodes of
the tree are individual vertices in the original graph G. Also, to help reachability
detection, we keep a record of the vertex positions in the chain of each linear
module in a compressed graph Gi, where if the starting vertex has position 1,
the next vertex will have position 2, and so on. We will use pos(v, LS) to denote
the position of node v in the chain of LS. Obviously, for u, v ∈ LS, u �Gi

v if
and only if pos(u,LS) < pos(v, LS).

1 2

1 - 8

LS3
Root

2 - 8

2, 3, 4 5, 6, 7

109876543

IS1

LS1 LS2

Level 0

Level 1

Level 2

Level 3

Fig. 5. The modular decomposition tree T of
graph G̃

Figure 5 shows the modular
decomposition tree, T , of graph G̃
in Fig. 3(b). Let M be a non-leaf
node in the decomposition tree of
G. By definition, M is either a
parallel or linear module in some
compressed graph Gi (i < c), or it
is the final compressed graph Gc.
M can be regarded as a set of the
original vertices of G in the obvi-
ous way. Put in another way, we
say vertex v ∈ G belongs to (or is
in) M if v is a descendant of M in the decomposition tree. For example, the
vertices 2, 3, 4, 5, 6, 7, 8 belong to the module IS1 in Fig. 5.

We have the following observations about modules in the decomposition tree:

Lemma 5. The vertices of G that belong to each parallel or linear module M in
Gi (i < c) form a module of G. In other words, all vertices in M have the same
external ancestors, as well as the same external descendants in G.

The above lemma can be easily proved by induction on the compression level
i. Using Lemma 5, we can easily see:

Lemma 6. Given two distinct nodes N1 and N2 in Gi (i ≤ c), N1 �Gi
N2 iff

u �G v for every pair of vertices u ∈ N1, v ∈ N2.

Answering Reachability Queries Using Modular Decomposition Tree.
Suppose we have the decomposition tree T of G. For ease of presentation, let us
use G0 to denote the graph G. For any pair of vertices u, v in the original graph
G, we use LCA(u, v) to denote the lowest common ancestor of u and v in T .
Note that LCA(u, v) corresponds either to a module in some compressed graph
Gi (i ∈ [1, c − 1]), or to the final compressed graph Gc (i.e., the root of T). We
have the following result.

Theorem 1. Given two vertices u, v ∈ VG, if LCA(u, v) corresponds to a par-
allel module of some graph Gi (i ∈ [1, c − 1]), then u cannot reach v in G.

238 S. Anirban et al.

Proof. If LCA(u, v) corresponds to a parallel module M of Gi, then suppose N1

and N2 are the two vertices of Gi that contain u and v respectively. By Lemma 4,
we know N1 cannot reach N2 in Gi. Then by Lemma 6, we know u cannot reach
v in G.

With the above discussion, we are ready to present the method for answering
reachability queries using the decomposition tree and the final compressed graph
Gc. Given two vertices u, v ∈ VG, to find whether u �G v, we can find the lowest
common ancestor LCA(u, v) of u and v, and check the following:

1. If LCA(u, v) is a parallel module, then u cannot reach v in G, by Theorem 1.
2. If LCA(u, v) is a linear module, say M , then we check the positions of N1

and N2 in the corresponding chain of vertices in M , where N1 is the child of
LCA(u, v) in the decomposition tree that contains u, and N2 is the child of
LCA(u, v) that contains v, and u can reach v in G if and only if pos(N1,M) <
pos(N2,M).

3. If LCA(u, v) is the root of T , namely Gc, then suppose N1, N2 are the children
of LCA(u, v) that contain u and v respectively. Then u �G v if and only if
N1 �Gc

N2. Thus we only need to check whether N1 �Gc
N2. We can do it

using any existing reachability algorithms. Since Gc is usually much smaller
than G, checking N1 �Gc

N2 in Gc is likely to be faster than checking u �G v
in G.

Example 2. Consider the decomposition tree T shown in Fig. 5.

(1) For the query ?2 �G 6, we find lowest common ancestor of vertices 2 and 6
is a parallel module, therefore, we know vertex 2 cannot reach vertex 6.

(2) For the query ?2 �G 4, we find LCA(2, 4) is a linear module, and the
position of vertex 2 is before that of vertex 4. Therefore we conclude that
2 �G 4.

(3) For the query ?2 �G 9, Since 2 and 9 are in different children of the root,
i.e., LS3 and 9 respectively, we only need to check whether LS3 �G3 9.

5 Algorithms

The previous section provides the main ideas of our approach. This section
presents the detailed algorithms.

5.1 Building Modular Decomposition Tree

Algorithm 1 shows the process of creating the modular decomposition tree along
with the final compressed graph. The algorithm takes a DAG that has no redun-
dant edges G as input and returns the modular decomposition tree and the final
compressed graph. The algorithm first creates a tree with a root node r. Starting
with a random vertex v, the algorithm first tries to find all other vertices that
can form a linear module with v (Line 7). If no such module is found then it will

Multi-level Graph Compression for Fast Reachability Detection 239

Algorithm 1. BuildMDT(G)
Input: DAG G with no redundant edges
Output: Modular Decomposition Tree T and Gc

1 if T does not exist then
2 Create Tree T with root node r; i ← 0; Gi ← G

3 S ← ∅
4 for each v ∈ VGi

do
5 if v.isVisited is false then
6 v.isVisited ← true
7 M ← FindLinearModule(v, Gi)
8 if M �= null then
9 S ← S ∪ M

10 Add M as child of r
11 for each vertex u in M do
12 u.isVisited ← true; Add u as a child of M

13 else
14 M ← FindParallelModule(v, Gi)
15 if M �= null then
16 S ← S ∪ M
17 Add M as child of r
18 for each vertex u in M do
19 u.isVisited ← true; Add u as a child of M

20 else
21 Add v as a child of r

22 if S �= ∅ then
23 i++
24 Gi ← Compress(Gi−1, S)
25 BuildMDT(Gi)

26 else
27 r ← Gi

28 return T , Gi

search for a maximal parallel module for v (Line 14). If such a module cannot
be found, then v will be added as a child of r (Line 21), otherwise the found
module M will be added as child of r, and each vertex in the module will be
added as a child of M (Lines 8–12, 16–19). We record all such modules in S
(Lines 9,16), and use them to compress the graph into a new graph (Line 24).
Then we recursively call the algorithm to compress the new graph (Line 27). If
no non-single-vertex module is found in the current graph, the current tree T
will be returned, and the current graph will be returned as Gc.

The functions FindParallelModule() and FindLinearModule() used in Algo-
rithm 1 are shown in Algorithms 2 and 3 respectively. These algorithms try to
find a relevant module based on Lemma 3.

Algorithm 2 takes a vertex v and DAG G as input, and it finds the set of
vertices, M , that share the same parents and same children with v. To do that,
it first finds the set of vertices, M1, that share the same parents with v, and
then finds the set of vertices, M2, that share the same children with v. Then M
is the intersection of M1 and M2.

Algorithms 3 takes a vertex v and DAG G as input, and it first searches
for a possible chain of ancestors of v (Lines 2–12), and then searches for a
chain of descendants of v (Lines 13–26). Both parts are via an iterative process.

240 S. Anirban et al.

Specifically, Lines 2 and 4 check whether v has a sole parent v′, and v′ has a
sole child v, if so v′ is the parent of v in a linear module. After that lines 7–12
try to find a parent of the first vertex in the chain, one by one. In the process,
it also provides a position number for each vertex found (Line 10). Note that
the position does not have to be a positive number, as long as it can provide an
appropriate order of the vertices in the chain, it will be fine. Lines 13–26 work
similarly.

Complexity. Algorithm 3 takes L steps to find the linear module that contains v
(checking the |parent(|v|) = 1 is just checking the in-degree of v), where L is the
size of the linear module that contains v. Algorithm 2 takes Σu∈parent(v)|child(u)|
+ Σu∈child(v)|parent(u)| steps to find vertices that share the same parents and
same children with v. If we use Imax and Omax to denote the maximum in-degree
and maximum out-degree respectively, then Algorithm 2 takes O(Imax × Omax)
time. In Algorithm 1, for the first level compression, we visit each vertex in VG

that has not been put in a module, and once the vertex is visited or put into
a module, it will no longer be visited. In the worst case, no non-trivial module
exists, so that every vertex will be visited. Therefore, the first level compression
takes O(|V |×Imax ×Omax). Each next level compression will take no more than
that of the previous level. Therefore, Algorithm 1 takes O(|V |×Imax×Omax×h),
where h is the height of the decomposition tree.

5.2 Finding Reachability Using the Decomposition Tree

As discussed in the previous subsection, to answer reachability query ?u �G v
using the decomposition tree, we only need to find LCA(u, v) and then take
appropriate actions depending on the type of LCA(u, v). To save time for finding
the LCA, we design a slightly modified algorithms as shown in Algorithm 4.
Given vertices u and v, we first find the children of the root that u and v belong

Algorithm 2. FindParallelModule
Input: DAG G with no redundant edges, vertex v
Output: The maximal nontrivial parallel module that v is in, or null if such module does

not exist
1 Create module M = {v}
2 M.type = trivial
3 if |parent(v)| = 0 then
4 M1 ← {v′| |parent(v′)| = 0}
5 else
6 M1 ← {v′|v′ ∈ ⋂

u∈parent(v) child(u), v′ �= v}
7 if |child(v)| = 0 then
8 M2 ← {v′| |child(v′)| = 0}
9 else

10 M2 ← {v′|v′ ∈ ⋂
u∈child(v) parent(u), v′ �= v}

11 if M1 ∩ M2 �= ∅ then
12 M.type ← Parallel M ← (M1 ∩ M2) ∪ M Return M

13 else
14 Return null

Multi-level Graph Compression for Fast Reachability Detection 241

to respectively, let us suppose u ∈ N1, v ∈ N2, if they are different (this is
equivalent to say LCA(u, v) is the root), we will use some existing algorithm to
check ?N1 �Gc

N2. Otherwise we will find the lowest linear LCA of u, v (note
that to do so we only need to record the linear module ancestors of the vertices),
if no such LCA exists, then u cannot reach v. Otherwise, suppose the linear LCA
is M , we will check the relative positions of u and v in M to determine whether
u can reach v. Here the position of u is defined to be same as the position of the
child of M that contains u. If LCA(u, v) is a parallel module then that module
will be a child of M . So, u and v will have the same position in M thus u cannot
reach v. It is easy to see that the algorithm is equivalent to the process described
in Sect. 4, hence its correctness is guaranteed.

Size of the Decomposition Tree. To answer reachability queries in the orig-
inal graph G, we only need to store the final compressed graph Gc and the
decomposition tree T . The total number of nodes in the tree is |V | + m + 1,
where m denotes the number of non-trivial modules. The number of edges in T
is |V | + m.

6 Experiments

Setup: We obtained the source code of DAG reduction, IP+ and Feline from
the authors which are written in C++, and compiled thm using G++ 7.3.0.
We implemented our multilevel compression and reachability query processing
algorithms in C# using Visual Studio 2017. We created the index of IP+ and
Feline for each graph using the original code from the authors. Then we used
that index to process the reachability queries. The experiments were run on a
PC with Intel Core i7-7700 with 3.60 GHz CPU, 32 GB memory and Windows
10 operating system. We tested our approach with 10 real data sets. First we
applied the transitive reduction of [21] to find G̃, which is a DAG without redun-
dant edges. Then we applied our multilevel compression algorithm to get Gc. We
used two state-of-the-art reachability algorithms IP+ [18] and Feline [17] to pro-
cess reachability queries over Gc and over the graph Gε which is obtained by
DAG reduction. We compared our method with DAG reduction [21] which is the
most recent graph compression method for reachability queries. We randomly
generated 100,000 reachability queries for each graph.

Datasets: We used 10 real datasets Kegg1, XMark (see footnote 1), Patent
(see footnote 1), Citeseerx (see footnote 1), soc-Epinions2, Web (see footnote
2), LJ (see footnote 2), 05Patent3, 05Citeseerx (see footnote 3) and DBpedia4.

1 https://code.google.com/archive/p/grail/downloads.
2 http://snap.stanford.edu/data/index.html.
3 http://pan.baidu.com/s/1bpHkFJx.
4 http://pan.baidu.com/s/1c00Jq5E.

https://code.google.com/archive/p/grail/downloads
http://snap.stanford.edu/data/index.html
http://pan.baidu.com/s/1bpHkFJx
http://pan.baidu.com/s/1c00Jq5E

242 S. Anirban et al.

Algorithm 3. FindLinearModule
Input: DAG G with no redundant edges, vertex v ∈ VG

Output: The maximal nontrivial linear module that v is in, or null if such module does not
exist

1 Create module M = {}; M.type = trivial
2 if |parent(v)| =1 then
3 v′ ← unique parent of v

4 if |child(v′)| = 1 /* v′ and v are in the same linear module
5 then
6 add v, v′ to M ; M.type ← Linear; pos(v, M) ← 1; pos(v′, M) ← pos(v, M)− 1

7 while |parent(v′)| = 1 do
8 u ← unique parent of v′

9 if |child(u)| = 1 then
10 add u to M ; pos(u, M) ← pos(v′, M) − 1; v′ ← u

11 else
12 break

13 if |child(v)| =1 then
14 v′ ← unique child of v

15 if |parent(v′)| = 1 then
16 if M.type = trivial then
17 add v, v′ to M ; M.type ← Linear

18 pos(v, M) ← 1; pos(v′, M) ← pos(v, M) + 1

19 else
20 add v′ to M ; pos(v′, M) ← pos(v, M) + 1

21 while |child(v′)| = 1 do
22 u ← unique child of v′

23 if |child(u)| = 1 then
24 add u to M ; pos(u, M) ← pos(v′, M) + 1; v′ ← u

25 else
26 break

27 if M.type = trivial then
28 Return null

29 else
30 Return M

Algorithm 4. Find reachability from vertex u to vertex v
Input: Modular decomposition tree T , Compressed Graph Gc, vertex u, vertex v
Output: true if u is reachable to v, false otherwise

1 N1 ← Corresponding node of u in Gc

2 N2 ← Corresponding node of v in Gc

3 if N1 = N2 then
4 M ← FindLinearLCA(u, v)
5 if M exists then
6 if pos(u, M) < pos(v, M) then
7 return true

8 return false

9 else
10 return AlgoReachability(Gc, N1, N2)

Multi-level Graph Compression for Fast Reachability Detection 243

Table 1. Datasets and their compression ratio after ER reduction and multilevel com-
pression. rn(re) is the ratio of the number of vertices (edges) in G̃, Gε and Gc

Dataset G G̃ Gε Gc

|V | |E| re% rn% re% rn% re%

Kegg 3617 3908 93.8 37.6 35.7 9.7 9.3

XMark 6080 7025 99 55.8 57 25.7 31

soc-Epinions 42176 43797 96.6 19.9 19.3 13 12.7

Web 371764 517805 79.8 30.5 24.9 16.6 14.6

LJ 971232 1024140 95.1 11.1 10.8 7.9 7.6

Patent 3774768 16518947 71.6 91.2 68.9 90.5 68.7

05Patent 1671488 3303789 90.1 80.3 78.9 78.8 78.2

05Citeseerx 1457057 3002252 81 37.9 50 37.4 49.7

Citeseerx 6540401 15011260 74.4 39.7 46.4 38.9 46.1

DBpedia 3365623 7989191 59.2 50.5 31.7 43.9 28.9

Table 2. Graph size before and after compression

Dataset G Gε Gc

|V | + |E| |VGε | + |EGε | + |IS| rGε% |VGc | + |EGc + |m| rGc%

Kegg 7,825 2,816 36 1,340 17.1

XMark 13,105 8,312 63.4 6,282 47.9

soc-Epinions 85,973 17,602 20.5 13,433 15.6

Web 889,569 265,341 29.8 193,252 21.7

LJ 1,995,372 226,830 11.4 180,308 9

Patent 20,293,715 15,011,351 74 14,986,127 73.8

05Patent 4,975,277 4,111,385 82.6 4,086,800 82.1

05Citeseerx 4,459,309 2,180,701 48.9 2,173,504 48.7

Citeseerx 21,551,661 10,110,673 46.9 10,058,232 46.7

DBpedia 11,354,814 4,517,284 39.8 4,226,247 32.2

Among the datasets Kegg and XMark are very small graphs. Datasets soc-
Epinions, Web and LJ are comparatively larger whereas other 5 graphs can
be considered as large graphs. Here Kegg is a metabolic network and XMark is
an XML document. Datasets soc-Epinions and LJ are the online social networks.
Web is the web graph from Google. Patent, 05Patent, 05Citeseerx and Citeseerx
are the citation networks and DBpedia is a knowledge graph. The statistics of
these datasets are shown in the first two columns of Table 1.

244 S. Anirban et al.

6.1 Comparison of Compression Ratio

Table 3. Compression time
(sec.)

Dataset Time (sec.)

Kegg 0.057
XMark 0.16
soc-Epinions 4.49
Web 286.67
LJ 3073
Patent 389.23
05Patent 71.65
05Citeseerx 175.69
Citeseerx 8772.81
Dbpedia 89764.32

The compression ratios of transitive reduction,
DAG reduction (i.e., transitive reduction and
equivalence reduction), and our modular decom-
position are shown in Table 1. From the table we
can see that our approach has more compression
for every graph than DAG Reduction. The dataset
XMark has the best result with 30.1% more com-
pression of vertex and 26% more compression of
edges than DAG Reduction. For larger graphs,
DBpedia shows best compression with 6.6% more
compression of nodes and 2.8% more compres-
sion of edges. On the other hand, our compres-
sion scheme does not show much better compres-
sion ratio than DAG reduction over the Citeseerx
and the Patent data sets. This could be because
these data sets do not contain many linear mod-
ules. Generally, the reduction ratio depends on the
structure of the graph.

Note however, a small percentage of compression for a large graph can also
have great impact on query processing since even a small percentage of com-
pression means reduction of lots of vertices and edges in large graphs (see the
Patent dataset in Table 6 for example).

Table 2 shows the size of G, Gε and Gc. Here, we calculated the size of the
graph as the sum of the number of vertices and the number of edges. For Gε we
have also added the number of equivalent classes as we need them for reachability
detection. For the same reason, we have added the number of modules to the size
of graph Gc. Table 3 shows the time required for building the decomposition tree
using our algorithms which are implemented in C#, where the dataset Dbpedia

Table 4. Index construction time (ms)

Dataset IP+ Feline

Gε Gc Gε Gc

Kegg 0 0 0.60 0.49

XMark 0.02 0 0.79 0.56

soc-Epinions 0.04 0.03 2.18 1.77

Web 0.04 0.03 47.21 29.53

LJ 0.05 0.03 35.98 29.83

Patent 5.7 5.64 3959.15 3732.31

05Patent 1.42 1.31 1051.72 1056.2

05Citeseerx 0.53 0.51 336.61 341.9

Citeseerx 3.16 2.78 1836.02 1834.36

DBpedia 1.24 1.14 874.81 845.69

Table 5. Index size (MB)

Dataset IP+ Feline

Gε Gc Gε Gc

Kegg 0.043 0.008 0.031 0.008

XMark 0.12 0.05 0.08 0.03

soc-Epinions 0.21 0.12 0.19 0.12

Web 3.25 1.62 2.59 1.41

LJ 2.71 1.72 2.47 1.75

Patent 67.91 66.84 78.76 78.22

05Patent 18.35 17.79 30.71 30.16

05Citeseerx 12.64 12.47 12.63 12.47

Citeseerx 67.91 66.84 59.46 58.27

DBpedia 45.35 38.54 38.87 33.84

Multi-level Graph Compression for Fast Reachability Detection 245

has taken the most time and is comparable that of dataset Citeseerx. As the
indexing is done offline, we consider these timings as viable in practice.

6.2 Performance on Reachability Query Processing

Table 6. Query time (ms)

Dataset IP+ Feline
Gε Gc Gε Gc

Kegg 100 116 26 23

XMark 165 121 45 31

soc-Epinions 108 83 30 28

Web 198 186 69 65

LJ 160 151 76 72

Patent 6866 5414 16459 14186

05Patent 189 189 134 113

05Citeseerx 315 284 169 163

Citeseerx 252 246 121 122
DBpedia 172 170 83 73

Table 4 shows the comparison of
index construction time for IP+

and Feline algorithms over Gε

and Gc. The better results are
highlighted in bold font in the
table. Here, multilevel compres-
sion requires less index construc-
tion time for every graph for cre-
ating index for IP+. For Feline,
we also have better result for
each graph except 05Patent and
05Citeseerx. The index size of IP+

and Feline, for Gε and Gc, are
shown in Table 5. From the table
we can see that the index sizes
of Gc are smaller for every graph
than Gε for both IP+ and Feline,
although for the Citeseerx and Patent datasets the difference is very small. This
is not surprising because the sizes of Gc and Gε are very close for these data
sets.

Table 6 shows the comparison of the query time for both IP+ and Feline. We
run each query 10 times and the time shown is the average of the 10 runs. We
can see that our compression outperforms DAG reduction in query processing
for almost every graph. Surprisingly, the best improvement is over the Patent
dataset, where our approach is much faster than DAG reduction in both IP+

and Feline. It is also surprising that IP+ is lower using our approach than using
DAG reduction in Kegg dataset.

7 Conclusion

We presented a method to compress a DAG that has no redundant edges, using
two types of modules, to obtain a decomposition tree. We showed how to use
the decomposition tree to answer reachability queries over the original graph.
Experiments show that for many real-world graphs, our method can compress
the graph to much smaller graphs than DAG reduction, and reachability queries
can be answered faster, and the index size can be smaller as well.

Acknowledgement. This work is supported by Australian Research Council discov-
ery grant DP130103051.

246 S. Anirban et al.

References

1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive rela-
tionships in large data and knowledge bases. In: SIGMOD, pp. 253–262 (1989)

2. Cai, J., Poon, C.K.: Path-hop: efficiently indexing large graphs for reachability
queries. In: CIKM, pp. 119–128 (2010)

3. Chen, Y., Chen, Y.: An efficient algorithm for answering graph reachability queries.
In: ICDE, pp. 893–902 (2008)

4. Cheng, J., Huang, S., Wu, H., Chen, Z., Fu, A.W.: TF-label: a topological-folding
labeling scheme for reachability querying in a large graph. In: SIGMOD (2013)

5. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries
via 2-hop labels. In: SIAM, pp. 937–946 (2002)

6. Fan, W., Li, J., Wang, X., Wu, Y.: Query preserving graph compression. In: SIG-
MOD, pp. 157–168 (2012)

7. Jagadish, H.V.: A compression technique to materialize transitive closure. TODS
15, 558–598 (1990)

8. Jin, R., Ruan, N., Dey, S., Yu, J.X.: SCARAB: scaling reachability computation
on large graphs. In: SIGMOD, pp. 169–180 (2012)

9. Jin, R., Ruan, N., Xiang, Y., Wang, H.: Path-tree: an efficient reachability indexing
scheme for large directed graphs. TODS 36, 7 (2011)

10. Jin, R., Wang, G.: Simple, fast, and scalable reachability oracle. PVLDB 6, 1978–
1989 (2013)

11. Jin, R., Xiang, Y., Ruan, N., Fuhry, D.: 3-HOP: a high-compression indexing
scheme for reachability query. In: SIGMOD, pp. 813–826 (2009)

12. Jin, R., Xiang, Y., Ruan, N., Wang, H.: Efficiently answering reachability queries
on very large directed graphs. In: SIGMOD, pp. 595–608 (2008)

13. McConnell, R.M., de Montgolfier, F.: Linear-time modular decomposition of
directed graphs. Discret. Appl. Math. 145(2), 198–209 (2005)

14. Seufert, S., Anand, A., Bedathur, S.J., Weikum, G.: Ferrari: Flexible and efficient
reachability range assignment for graph indexing. In: ICDE, pp. 1009–1020 (2013)

15. Su, J., Zhu, Q., Wei, H., Yu, J.X.: Reachability querying: can it be even faster?
TKDE 29, 683–697 (2017)

16. Trißl, S., Leser, U.: Fast and practical indexing and querying of very large graphs.
In: SIGMOD, pp. 845–856 (2007)

17. Veloso, R.R., Cerf, L., Junior, W.M., Zaki, M.J.: Reachability queries in very large
graphs: a fast refined online search approach. In: EDBT, pp. 511–522 (2014)

18. Wei, H., Yu, J.X., Lu, C., Jin, R.: Reachability querying: an independent permu-
tation labeling approach. PVLDB 7, 1191–1202 (2014)

19. Yano, Y., Akiba, T., Iwata, Y., Yoshida, Y.: Fast and scalable reachability queries
on graphs by pruned labeling with landmarks and paths. In: CIKM (2013)

20. Yildirim, H., Chaoji, V., Zaki, M.J.: GRAIL: a scalable index for reachability
queries in very large graphs. VLDBJ 21, 509–534 (2012)

21. Zhou, J., Zhou, S., Yu, J.X., Wei, H., Chen, Z., Tang, X.: DAG reduction: fast
answering reachability queries. In: SIGMOD, pp. 375–390 (2017)

	Multi-level Graph Compression for Fast Reachability Detection
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Overview of Our Approach
	5 Algorithms
	5.1 Building Modular Decomposition Tree
	5.2 Finding Reachability Using the Decomposition Tree

	6 Experiments
	6.1 Comparison of Compression Ratio
	6.2 Performance on Reachability Query Processing

	7 Conclusion
	References

