
Efficient Local Search for Minimum
Dominating Sets in Large Graphs

Yi Fan1,2,3, Yongxuan Lai1(B), Chengqian Li4, Nan Li5, Zongjie Ma3,
Jun Zhou3, Longin Jan Latecki5, and Kaile Su3

1 Shenzhen Research Institute/Software School, Xiamen University, Xiamen, China
yifan.sysu@gmail.com, laiyongxuan@gmail.com

2 Guangxi Key Lab of Trusted Software,
Guilin University of Electronic Technology, Guilin, China

3 Griffith University, Brisbane, Australia
zongjie.ma@griffithuni.edu.au, {jun.zhou,k.su}@griffith.edu.au

4 NetEase Guangzhou AI Lab, Guangzhou, China
lcqn2776@corp.netease.com

5 Temple University, Philadelphia, USA
{nan.li,latecki}@temple.edu

Abstract. The Minimum Dominating Set (MinDS) problem is an NP-
hard problem of great importance in both theories and applications.
In this paper, we propose a new local search algorithm ScBppw (Score
Checking and Best-picking with Probabilistic Walk) to solve the MinDS
problem in large graphs. For diversifying the search, our algorithm
exploits a tabu strategy, called Score Checking (SC), which forbids a
vertex to be added into the current candidate solution if the vertex’s
score has not been changed since the last time it was removed out of the
candidate solution. Also, to keep a good balance between intensification
and diversification during the search, we propose a strategy that com-
bines, in a novel way, best-picking with probabilistic walk at removing
stages. At this stage, the algorithm selects a vertex with the minimum
loss, or other vertices in the candidate solution with a probability pro-
portional to the their degrees, depending on how repeatedly the area
has been visited. Experimental results show that our solver significantly
outperforms state-of-the-art MinDS solvers. Also we conducted several
experiments to show the individual impacts of our novelties.

Keywords: Minimum dominating set · Score-based partition ·
Best-picking

1 Introduction

Given a simple undirected graph G = (V,E), a dominating set is a subset
D ⊆ V s.t. every vertex outside D has at least one neighbor in D. The Minimum

Supported by the Natural Science Foundation of China (61672441, 61872154), the
Shenzhen Basic Research Program (JCYJ20170818141325209), and the NSF grants
(IIS-1814745, IIS-1302164).

c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11447, pp. 211–228, 2019.
https://doi.org/10.1007/978-3-030-18579-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18579-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-18579-4_13

212 Y. Fan et al.

Dominating Set (MinDS) problem is to find a dominating set of the minimum
size. MinDS arises in many application areas, e.g., biological networks [20], metro
networks [1], power networks [13], computer vision [21,26], multi-document sum-
marization [23], and wireless communication [22]. Among various algorithms, e.g.
[6,10], local search is an effective approach and it is powerful on difficult graphs.

1.1 Local Search Techniques

Local search often suffers from the cycling problem, i.e., the search may spend
too much time visiting a small part of the search space, thus various tabu strate-
gies have been proposed to deal with this problem. Recently [5] proposed the
so-called configuration checking (CC) strategy, and after that numerous variants
of the CC strategy have been adopted to solve a wide range of combinatorial
problems e.g., [11,24,25]. The idea of the CC strategy can be described as fol-
lows. If a vertex is removed out of the candidate solution, then it is forbidden to
be added back until its configuration is changed, i.e., some neighboring vertex
is added or removed out of the candidate solution.

The forbidding strength of CC can be too weak, which may lead a CC-based
local search being stuck in a cycle. To escape from such a cycle, a CC-based local
search usually needs some other diversifying strategies like constraint weighting
[15], which is unfortunately time-consuming and impractical for large graphs. For
diversifying the search, we exploit a strong CC-like tabu strategy, called Score
Checking (SC), which forbids a vertex to be added into the current candidate
solution if its score has not been changed since the last time it was removed out of
the candidate solution. In this strategy, when a vertex is added or removed, some
vertices in the neighborhood are released, while some others are still forbidden.
This is different from usual CC variants.

To keep a good balance between intensification and diversification, we pro-
pose a strategy that combines, in a novel way, best-picking with probabilistic
walk at removing stages. Best-picking with random walk has proved to be effec-
tive in solving the minimum vertex cover problem in large graphs [18]. More
specifically, in greedy mode it chooses small-degree vertices while in random
mode it selects a vertex from a uniform distribution. However, the strategy may
still focus too much on small-degree vertices, in other words, there may not be
enough chances to select a big-degree vertex. Therefore we adopt a probabilis-
tic distribution to remove vertices in random mode. To be specific, a vertex is
selected to be removed with a probability proportional to its degree. Evidently,
this strategy gives more chances to big-degree vertices.

Also, when we are doing local search in large instances, the complexity
becomes a big issue. In each step there can be millions of possible moves, and
thus it is difficult to obtain a local move which maximizes certain kinds of ben-
efits. Since most real-world graphs are sparse [3,8,10], it is beneficial to develop
data structures so that the complexity of a single search step relies on the aver-
age degree rather than the number of vertices. For instance, a local search solver
LMY-GRS [11] follows this idea and finds good solutions for the maximum weight
clique problem. Inspired by this, we propose an efficient data structure named

Efficient Local Search for Minimum Dominating Sets in Large Graphs 213

score-based partition to implement best-picking. The score-based partition effec-
tively cuts off the average complexity of exchanging vertices in the local search
algorithm.

1.2 Our Contributions

In this paper, we develop a local search solver named ScBppw (Score Checking
and Best-picking with Probabilistic Walk) based on the strategies above. For
showing the effectiveness, we compare ScBppw with FastWMDS [24] on large
graphs1. Experimental results show that (1) our solver ScBppw significantly
outperforms FastWMDS on large graphs; (2) our proposed strategies play an
important role in our solver.

2 Preliminaries

2.1 Basic Notations

We use N(v) = {u ∈ V |{u, v} ∈ E} to denote the set of v’s neighbours, and we
use N [v] to denote N(v) ∪ {v}. The degree of a vertex v, denoted by d(v), is
defined as |N(v)|. We use

N2(v) = (N(v) ∪ {u|{u,w} ∈ E andw ∈ N(v)})\{v}

to denote the set of vertices whose distance from v is at most 2. Also we
use d̄2(G) to denote the average size of N2(v) over all the vertices, i.e.,
d̄2(G) = 1

|V |
∑

v∈V |N2(v)|, suppressing G if understood from the context. In
graph theory, we have the following proposition that is useful in implementing
our solver.

Proposition 1.
∑

v∈V d(v) = 2|E|.
A vertex is said to be covered by a set D if it is in D or at least one of its

neighbors is in D. Otherwise it is said to be uncovered by D. If u’s removal from
D makes v become uncovered, we also say that u’s removal uncovers v. Likely
if u’s addition into D makes v become covered, we also say that u’s addition
covers v. For a vertex v ∈ D, the loss of v, denoted as loss(v), is defined as the
number of covered vertices that will become uncovered by removing v from D.
For a vertex v �∈ D, the gain of v, denoted as gain(v), is defined as the number
of uncovered vertices that will become covered by adding v into D. Both gain
and loss are scoring properties. Obviously we have

Proposition 2. For all v ∈ V , gain(v) ∈ [0, d(v) + 1], loss(v) ∈ [0, d(v) + 1].

In MinDS solving, we have a proposition below which shows the set of vertices
whose score needs to be updated.

1 http://networkrepository.com/networks.php.

http://networkrepository.com/networks.php

214 Y. Fan et al.

Algorithm 1: LocalSearchForMinDS(G, cutoff)
input : A graph G = (V,E), the cutoff time
output: A dominating set of G

D ← InitDS(G);1

while elapsed time < cutoff do2

if D covers all vertices then3

D∗ ← D;4

remove a vertex from D with the minimum loss, breaking ties randomly;5

lastStepImproved ← false;6

else7

ExchangeVertices(G,D);8

return D∗;9

Proposition 3. 1. When a vertex u is added or removed, for any vertex v �∈
N2(u), gain(v)/loss(v) remains unchanged.

2. If gain(v) or loss(v) is changed, then at least one vertex u ∈ N2(v) has been
added or removed.

In any step, a vertex v has two possible states: inside D and outside D. We
use age(v) to denote the number of steps that have been performed since last
time v’s state was changed.

2.2 An Iterative Local Search Framework

Algorithm 1 presents a local search framework for MinDS. It consists of the
construction phase (Line 1) and the local search phase (Lines 2 to 8).

In our algorithm, we will adopt a simple greedy strategy to implement
InitDS(G), which works as follows. Given an empty set D, repeat the follow-
ing operations until D becomes a dominating set: select a vertex v �∈ D with
the maximum gain and add v into D, breaking ties randomly. Actually we can
use the data reduction rules in [2] to generate better initial solutions and more
importantly simplify the input graph. Yet currently we do not do so, because
our main concern in this paper is to develop an efficient local search algorithm.

In the local search phase, each time a k-sized dominating set is found (Line 3),
the algorithm removes a vertex from D (Line 5) and proceeds to search for a
(k − 1)-sized dominating set, until a certain time limit is reached (Line 2). A
local move consists of exchanging a pair of vertices (Line 8): a vertex u ∈ D
is removed from D, and a vertex v �∈ D is added into D. Such an exchanging
procedure is also called a step or an iteration by convention. In our algorithm,
we also employ a predicate lastStepImproved s.t. lastStepImproved = true iff the
number of uncovered vertices was decreased in the last step. This predicate will
be used in the best-picking with probabilistic walk strategy we propose. Lastly,
when the algorithm terminates, it outputs the smallest dominating set that has
been found.

Efficient Local Search for Minimum Dominating Sets in Large Graphs 215

2.3 A Fast Hashing Function

In order to detect revisiting, we will use the hash function in [12] which is shown
below.

Definition 1. Given a candidate set D and a prime number p, we define the
hash value of D, denoted by hash(D), as (

∑
vi∈D 2i) mod p, which maps a can-

didate set D to its hash entry hash(D).

Also, they showed that each time a vertex is added or removed, the hash
value can be updated in O(1) complexity.

2.4 Geometric Distribution

To analyze the complexity of our algorithm, we first introduce Geometric Distri-
bution which depicts the probability that the first success occurs in a particular
trial.

Definition 2. A random variable X has a geometric distribution if the prob-
ability that the kth trial (out of k trials) is the first success is Pr(X = k) =
(1−p)k−1p, where k is a positive integer and p denotes the probability of success
in a single trial.

Then the average number of trials needed for the first success is 1
p according to

the following theorem [19].

Theorem 1. If X is a geometric random variable with parameter p, then the
expected value E(X) is given by 1

p .

2.5 Sorting Vertices wrt. Degrees

Our algorithm implementation requires sorting vertices into non-decreasing order
wrt. their degrees in advance, so we introduce an efficient sorting algorithm
as follows. Considering that 0 ≤ d(v) ≤ |V | for any v ∈ V , this satisfies the
assumption of counting sort which runs in linear time [9]. So we have

Proposition 4. Sorting the vertices into non-decreasing order wrt. their degrees
can be done in O(|V |) complexity.

2.6 Configuration Checking

In MinDS solving, there are three different CC strategies, i.e., neighboring ver-
tices based CC (NVCC) [5], two-level CC (CC2) [25] and three-valued two-level
CC (CC2V3). In NVCC, the configuration of a vertex v refers to the state of
the vertices in N(v). On the other hand, in CC2, the configuration of a vertex v
refers to the state of the vertices in N2(v).

We use VNV CC to denote the set of vertices whose configuration is changed
according to the NVCC strategy, and use VCC2 to denote the set of vertices
whose configuration is changed according to the CC2 strategy. [25] presented
the proposition below which shows that the forbidding strength of NVCC is
stronger than that of CC2.

216 Y. Fan et al.

Proposition 5. If VNV CC = VCC2 in some step, then VNV CC ⊆ VCC2 in the
next step.

3 Score Checking

We first define the notion of reversing operations and then propose a tabu strat-
egy which is based on score change.

Effects of a Local Move. Given a vertex v, there are two possible operations:
removing v from D and adding v into D, and we call them a pair of reversing
operations. Adding a vertex into D has two types of effects: (1) turning some
vertices from being uncovered to being covered by 1 vertex; (2) turning some
vertices from being covered by c(c ≥ 1) vertices to being covered by (c + 1)
vertices. Likely, a removing operation has analogous effects. Given a pair of
reversing operations in a sequence of local search steps, we say that their effects
are neutralized if and only if they have completely opposite effects.

Obviously if a pair of reversing operations occur consecutively, their effects
will be neutralized. This is the worst case and any tabu strategy prevents such
cases from happening. However, even though two reversing operations are not
consecutive, their effects may still be neutralized. So the question is in under
what condition their effects will not be neutralized.

Our Tabu Strategy. In fact it is impractical to record all the effects of an oper-
ation, since it requires much space and time for checking. To make it practicable,
a compromising method is to memorize some important effects like the set of
vertices which become covered (or uncovered). Then we avoid any two reversing
operations which cover and uncover the same set of vertices.

However, maintaining these sets and checking equality relation still consumes
too much time. Therefore we choose to consider the score (gain or loss) of the
operations. Then we attempt to avoid any pair of reversing operations if their
scores are opposite. Now we give an example to describe our motivation.

Example 1. Suppose a vertex v is removed from the candidate solution at Step
i with lossi(v), and then added back at Step j with gainj(v). We observe that

1. if lossi(v) �= gainj(v), then the effects of these two operations will not be
neutralized;

2. even though lossi(v) = gainj(v), their effects are not necessarily neutralized,
since they may cover and uncover different sets of vertices respectively;

3. if gain(v) keeps unchanged after v’s removal, then v’s removal and later addi-
tion will uncover and cover the same set of vertices respectively.

Based on these observations, we propose a tabu strategy which is based on
score change: After a vertex is removed from the candidate solution, it cannot be
added back until its score has been changed. Throughout this paper, this strategy
will be called Score Checking (SC).

Efficient Local Search for Minimum Dominating Sets in Large Graphs 217

Our strategy is implemented with a Boolean array named free s.t. free(v) = 1
means v is allowed to be added into the candidate solution, and free(v) = 0
otherwise. Then we maintain the free array as follows:

1. initially free(v) is set to 1 for all v ∈ V ;
2. when v is removed from D, free(v) is set to 0;
3. when gain(v) is changed, free(v) is set to 1.

We notice that there is a concept called promising variable in SAT [17], which
allows a variable to be flipped if its score becomes positive because of the flips
of its neighboring variables. This concept is in some sense similar to the score
checking strategy here.

3.1 Comparing SC to NVCC

Example 2 shows that SC has stronger forbidding strength than NVCC, while
Example 3 shows the opposite.

Example 2. Suppose that we have a graph G2 as below, the current candidate
solution D = {v2, v5}, free(v3) = 1 and free(v4) = 0.

Now we add v3 into D. According to NVCC, free(v4) will become 1, because
one of its neighbors, v3, has changed its state. However, according to SC, free(v4)
will still be 0, because gain(v4) has not changed. So the forbidding strength of
SC is stronger than that of NVCC in this case.

v1 v2 v3 v4 v5

v6 G2

Example 3. Suppose that we have a graph G3 as below, the current candidate
solution D = {v2, v6}, free(v3) = 1 and free(v4) = free(v5) = 0.

Now we add v3 into D. According to NVCC, free(v5) will still be 0, because
none of its neighbors has changed its state. However, according to SC, free(v5)
will become 1, because gain(v5) is decreased by 1. So the forbidding strength of
NVCC is stronger than that of SC in this case.

v1 v2 v3 v4 v5

v6 G3

Based on the examples above, we have

Proposition 6. There exists a case in which the forbidding strength of SC is
stronger than that of NVCC, and there also exists a case in which the forbidding
strength of NVCC is stronger than that of SC.

218 Y. Fan et al.

3.2 Comparing SC to CC2

By Item 2 in Proposition 3, if a vertex’s score is changed, then it must be that
its configuration is changed according to CC2 strategy. Therefore if a vertex is
released by SC, it must also be released by CC2. So the forbidding strength of
SC is at least as strong as that of CC2. On the other hand, Example 2 shows that
the forbidding strength of SC can sometimes be stronger than that of NVCC,
and thus also stronger than that of CC2 by Proposition 5. Therefore we have
a proposition below which shows that the forbidding strength of SC is strictly
stronger than that of CC2.

Proposition 7. Let VSC be the set of vertices which are free according to SC, then
we have (1) VSC ⊆ VCC2 always hold; (2) VCC2 ⊆ VSC does not always hold.

4 Our Algorithm for Exchanging Vertices

Here, we present the ExchangeVertices(G,D) procedure in Algorithm 2, which
adopts our new tabu strategy. In this algorithm, we use uncov v num1 and

Algorithm 2: ExchangeVertices
uncov v num1 ← the number of uncovered vertices;1

if lastStepImproved then2

if hash(D) is marked then3

u ← a vertex in D with a probability proportional to its4

degree;// random mode

else5

mark hash(D);6

u ← a vertex in D with the minimum loss, breaking ties7

randomly;// greedy mode

else8

u ← a vertex in D with the minimum loss, breaking ties9

randomly;// greedy mode

remove u from D;10

free(u) ← 0;11

free(x) ← 1 for all x s.t. gain(x) is changed;12

v ← a random uncovered vertex;13

w ← a vertex u in N [v] s.t. free(u) = 1 with the greatest gain, breaking ties in14

favor of the greatest age;
add w into D;15

free(y) ← 1 for all y s.t. gain(y) is changed;16

uncov v num2 ← the number of uncovered vertices;17

if uncov v num2 < uncov v num1 then18

lastStepImproved ← true;19

else20

lastStepImproved ← false;21

Efficient Local Search for Minimum Dominating Sets in Large Graphs 219

uncov v num2 to denote the number of uncovered vertices before and after
exchanging vertices respectively. Furthermore, it adopts the two-stage exchange
strategy in NuMVC [4].

4.1 Removing Stage

In the removing stage (Lines 2 to 12), we propose a heuristic called best-picking
with probabilistic walk. The intuition is as follows: if the local search has spent
only a little time in the current area, we prefer greedy mode to find a good
solution; otherwise we favor random mode to leave.

To be specific, we exploit the hash function in the preliminary section to
approximately detect revisiting. Like [12], we set the prime number to be 109

+ 7 and do not resolve collisions. Since in our experiments, our solver performs
less than 5 × 108 steps in any run, given the 109 + 7 hash entries, the number
of collisions is negligible. Notice that we mark and detect the hash table only
when lastStepImproved = true. The intuition is that if a solution is revisited
together with the same lastStepImproved value as before, then the current area
has been visited to a significant extent. In this situation, a vertex is removed from
the candidate solution with a probability proportional to its degree. We tend to
remove large-degree vertices, because we rarely remove them in the greedy mode,
and this will further strengthen the diversification in our algorithm.

To implement probabilistic selections, we employ an array with length 2|E|,
where |E| is the number of edges, to store copies of the vertices. Before doing local
search, given any vertex, say u, we put d(u) copies of u into the array. According
to Proposition 1, there are exactly 2|E| copies of the vertices in the array. When
we perform the probabilistic selection, we do the following: Randomly select an
item in the array and if the result is in D, then return; otherwise repeat the
random selection.

Now we analyze the complexity of this procedure. Each time we obtain an
item, the probability that it is in D, denoted by p, is at least |D|

2|E| (we use “at
least” because usually a vertex in D has more than one copy in the array).
Then by Theorem 1, the averaged number of trials needed for the first success
is 1

p ≤ 2|E|
|D| . Moreover, we find that 2|E|

|D| ≤ 500 in most graphs. So the time

complexity is O(2|E|
|D|) = O(1).

4.2 Adding Stage

In the adding stage (Lines 13 to 16), our algorithm chooses a random uncovered
vertex and selects a vertex in its neighborhood to add into D. By the following
proposition we ensure that Line 14 in Algorithm 2 always returns a valid vertex
outside D2.

2 In some graphs there are vertices whose degree is 0. In these cases, we prevent such
vertices from being removed.

220 Y. Fan et al.

Proposition 8. 1. If v is uncovered, then N [v] ∩ D = ∅;
2. For any uncovered vertex v s.t. d(v) �= 0, there exists at least one vertex

n ∈ N [v] s.t. free(n) = 1.

The proof follows the arguments in [4].

5 Speeding up of Best-Picking

In this section we present the details of our data structure that achieves the
average complexity of ExchangeVertices(G, D) (Algorithm 2) of O(d̄2).

Score-Based Partition. The idea is to partition the vertices wrt. their scores,
i.e., two vertices are in the same partition if they have the same score, otherwise
they are in different partitions (see Fig. 1). Given a graph G = (V,E) and a
candidate solution D, we implement the score-based partition on an array where
each position holds a vertex. Besides, we maintain two types of pointers, i.e.,
Pgain and Ploss, each of which points to the beginning of a specific partition.

Fig. 1. Initial state before adding v68 into D

Algorithms and Implementations. We use loss-k (resp. gain-k) partition
to denote the partition that contains vertices whose loss (resp. gain) is k. All
the loss-k partitions are shown as dark regions, and all the gain-k partitions are
shown as light ones. Then we use Algorithm 3 to find those vertices with the
minimum loss.

Algorithm 3: randomMinLossVertex
input : A sequence of score-based partitions
output: A random vertex v ∈ D with the minimum loss

k ← 0;1

while the loss-k partition is empty do k ← k + 12

return a random vertex in the loss-k partition;

Efficient Local Search for Minimum Dominating Sets in Large Graphs 221

Since loss(v) ≤ d(v) + 1 for any v ∈ V , we have

Proposition 9. If Algorithm 3 returns a vertex v, then the complexity of its
execution is O(d(v)).

Fig. 2. Swapping vertex v68 and v91

Fig. 3. Moving pointer Pgain−52

At the beginning when D is empty, there are no dark regions in our data
structure, so initializing the partitions is equivalent to sorting the vertices into a
non-decreasing order wrt. their gain. Notice that at this time, gain(v) = d(v)+1
for all v ∈ V . By Proposition 4, we have

Proposition 10. The complexity of initializing the partitions is O(|V |).
In both construction and local search phases, our algorithm will repeatedly

add vertices into D or remove vertices from D, until some cutoff arrives. When
a vertex v is added or removed, we have to maintain the gain or loss wrt. the
vertices in N2(v). There are two cases in which a particular vertex, say v, has to
be moved from one partition to another: (1) adding (resp. removing) v into (resp.
from) D; (2) increasing/decreasing gain(v)/loss(v). Thus the core operation is
to move a vertex v to an adjacent partition.

Now we show how to do this with an example (See Figs. 1, 2 and 3). In this
example, we are to add v68 into D. Before v91 and v68 are in the gain-52 partition
and thus their gain is 52 (Fig. 1). Notice that after being added, v68’s loss will
become 52, i.e., it should be in the loss-52 partition. Thus the operation is like
this: (1) v68 is swapped with v91 (Fig. 2); (2) Pgain-52 is moved (Fig. 3).

We define placeVertexIntoD(v) as the procedure that moves v from
some gain-k partition to the respective loss-k partition. Also we define
dec_gain_move(v) to be the procedure that moves v from some gain-k parti-
tion to the respective gain-(k-1) partition. Likely we define dec_loss_move(v),
inc_gain_move(v), inc_loss_move(v) and placeVertexOutFromD(v). Then we
have

Proposition 11. All the procedures above are of O(1) complexity.

222 Y. Fan et al.

Complexity Analysis. When a vertex v is added or removed, we simply need
to maintain the gain or loss wrt. the vertices in N2(v). Hence we have

Theorem 2. Suppose that each vertex has equal probability to be added or
removed, then the average complexity of ExchangeVertices(G, D) (Algorithm 2)
is O(d̄2).

Table 1. Results on large graphs where FastWMDS and ScBppw found different Dmin

or Davg

Graph FastMWDS ScBppw δmin

Dmin(Davg) Dmin(Davg) (δavg)

aff-orkut-user2groups 796325 (796405.9) 791051 (791057.0) 5274 (5348.9)

bn-human-BNU 1 1189958 (1189968.3) 1190244 (1190256.1) −286 (−287.8)

ca-coauthors-dblp 35626 (35634.3) 37060 (37090.3) −1434 (−1456.0)

ca-hollywood-2009 50752 (50928.2) 50334 (50364.5) 418 (563.7)

ca-MathSciNet 65572 (65572.0) 65594 (65598.0) −22 (−26.0)

channel-500 403347 (405584.3) 392298 (392409.6) 11049 (13174.7)

dbpedia-link∗ 1537046 (1537073.6) 1536656 (1536657.3) 390 (416.3)

delaunay n22 744846 (746514.5) 689101 (689191.1) 55745 (57323.4)

delaunay n23 1514747 (1516652.2) 1378214 (1378400.0) 136533 (138252.2)

delaunay n24∗ 3044234 (3045694.7) 2756143 (2756488.0) 288091 (289206.7)

friendster 656866 (656992.3) 656464 (656466.4) 402 (525.9)

hugebubbles-00020∗ 7464363 (7464956.0) 6809676 (6810434.5) 654687 (654521.5)

hugetrace-00010∗ 3849625 (3850125.7) 3392608 (3393012.3) 457017 (457113.4)

hugetrace-00020∗ 5111615 (5112821.7) 4508857 (4509283.6) 602758 (603538.1)

inf-europe osm∗ 18854839 (18855830.6) 17007576 (17009440.0) 1847263 (1846390.6)

inf-germany osm∗ 4236871 (4238019.7) 3846526 (3846836.6) 390345 (391183.1)

inf-roadNet-CA 628942 (632080.1) 595745 (595800.1) 33197 (36280.0)

inf-roadNet-PA 345733 (346350.5) 332071 (332138.1) 13662 (14212.4)

inf-road-usa∗ 8400680 (8401874.2) 7852863 (7853454.2) 547817 (548420.0)

rec-epinions 9598 (9598.0) 9599 (9599.0) −1 (−1.0)

rgg n 2 23 s0 739203 (741106.5) 687540 (687945.5) 51663 (53161.0)

rgg n 2 24 s0 4102680 (4103927.2) 4006264 (4006471.4) 96416 (97455.8)

rt-retweet-crawl 75740 (75740.0) 75740 (75740.1) 0 (−0.1)

sc-ldoor 62473 (62484.7) 64912 (66171.9) −2439 (−3687.2)

sc-pwtk 4194 (4197.8) 5479 (5504.5) −1285 (−1306.7)

sc-rel9 119531 (120439.9) 124304 (129925.1) −4773 (−9485.2)

soc-delicious 55722 (55722.0) 55726 (55727.8) −4 (−5.8)

soc-digg 66155 (66155.0) 66155 (66156.6) 0 (−1.6)

soc-flickr 98062 (98062.3) 98063 (98064.9) −1 (−2.6)

soc-flickr-und 295773 (295790.9) 295702 (295705.1) 71 (85.8)

soc-FourSquare 60982 (60985.7) 60979 (60979.0) 3 (6.7)

soc-groups 1072250 (1072306.7) 1071123 (1071124.0) 1127 (1182.7)

soc-ljournal-2008 1015711 (1015933.3) 1005983 (1005988.2) 9728 (9945.1)

(contniued)

Efficient Local Search for Minimum Dominating Sets in Large Graphs 223

Table 1. (contniued)

Graph FastMWDS ScBppw δmin

Dmin(Davg) Dmin(Davg) (δavg)

soc-orkut-dir 98716 (99715.8) 94012 (94037.5) 4704 (5678.3)

soc-pokec 213149 (213241.0) 207383 (207389.7) 5766 (5851.3)

soc-youtube-snap 213122 (213131.0) 213122 (213123.3) 0 (7.7)

socfb-A-anon 201691 (201699.5) 201690 (201690.5) 1 (9.0)

socfb-B-anon 187030 (187030.2) 187030 (187030.1) 0 (0.1)

tech-as-skitter 182427 (182736.4) 181852 (181869.8) 575 (866.6)

tech-ip 160 (161.2) 156 (157.1) 4 (4.1)

tech-RL-caida 40095 (40095.8) 40142 (40152.9) −47 (−57.1)

web-it-2004 32997 (32997.0) 32998 (32999.3) −1 (−2.3)

web-wikipedia2009 348003 (348024.5) 346676 (346682.4) 1327 (1342.1)

web-wikipedia-growth 117626 (117663.0) 116817 (116818.5) 809 (844.5)

web-wikipedia link it 618963 (619083.8) 617660 (617661.3) 1303 (1422.5)

wikipedia link en∗ 23995928 (23995933.6) 23995924 (23995924.0) 4 (9.6)

6 Experimental Evaluations

We compared the overall performances of our solver ScBppw to FastWMDS on
the benchmark instances in [24] and [16] which contain more than 5 × 105 ver-
tices. Notice that large graphs are the main challenge of current solvers, and
their size will keep growing due to the amount of data available. There are some
other MinDS solvers like SAMDS [14], CC2FS [25] and RLS-DS [7], but they
do not materially change our conclusions below, because our preliminary experi-
ments show that FastWMDS significantly outperforms them. Also we conducted
experiments to evaluate the individual impacts.

6.1 Experimental Setup

FastWMDS was compiled by g++ 5.4.0 with O3 option while ScBppw was com-
piled by g++ 4.7.3 with O3 option. The experiments were conducted on a clus-
ter equipped with Intel Xeon E5-2670 v3 2.3 GHz with 64 GB RAM, running
CentOS6. Each solver was executed on each instance with seeds from 1 to 10.
The cutoff was set to 1,000s. For each algorithm on each instance, we report
the minimum size (“Dmin”) and averaged size (“Davg”) of the dominating sets
found by the algorithm over the 10 runs. To make the comparisons clearer,
we also report the difference (“δmin”) between the minimum size returned by
ScBppw and that returned by other solvers. Similarly δavg represents the dif-
ference between the averaged sizes. A positive difference indicates that ScBppw
performs better, while a negative value indicates the opposite. For the sake of
space, we do not report results on those graphs where all solvers found the
same Dmin and Davg. The best Dmin and Davg values are shown in bold font.
For the sake of space, in each table we will write bn-human-BNU 1 in short

224 Y. Fan et al.

for bn-human-BNU 1 0025865 session 1-bg, channel-500 in short for channel-
500x100x100-b050, and soc-groups in short for soc-livejournal-user-groups.

6.2 Main Results

Table 1 compares the overall performances of FastWMDS and ScBppw. From
this table, we observe that:

1. ScBppw outperforms FastWMDS on most instances in terms of Dmin and
Davg.

2. Further observations show that there are 11 graphs which contain more than
107 vertices. Among these graphs, ScBppw outperforms FastWMDS on 9
graphs (marked with * in the table) in terms of both Dmin and Davg. On the
other 2 graphs, i.e., soc-sinaweibo and socfb-uci-uni, both solvers found
the same Dmin and Davg. So ScBppw is more scalable than FastWMDS.

We also did similar experiments on those graphs in [24] and [16] whose vertex
number lies between 2 × 104 and 5 × 105. Experimental results show that
ScBppw is comparable and complementary with FastWMDS. More specifically,
they have different performances, and the number of graphs on which ScBppw
performs better is roughly equal to the number of graphs on which FastWMDS
performs better. In addition, both solvers outperforms the other MinDS solvers.

Notice that FastWMDS exploits a list of reduction rules to simplify the input
graphs before doing local search, while our solver only adopts a simple greedy
heuristic. Therefore we can conclude that pure local search is also competitive.

6.3 Individual Impacts

In what follows, we first modify our algorithm and develop several variants. Then
we redo the experiments above and compare them in terms of average solution
quality.

Effectiveness of Score Checking. We replace the SC strategy in ScBppw
with the NVCC, CC2 and CC2V3 strategies, and develop three variants named
NVCCBppw, CC2Bppw and CC2V3Bppw respectively.

When comparing NVCCBppw with ScBppw, we find that

1. ScBppw performs better on 19 instances;
2. NVCCBppw performs better on 14 instances.

This means that the SC strategy is more suitable than the NVCC strategy in
our solver. The detailed results are shown in Table 2.

Furthermore, when comparing CC2Bppw, CC2V3Bppw with ScBppw, we
find that

1. CC2Bppw outperforms the other solvers on 0 instances;
2. CC2V3Bppw outperforms the others on 6 instances;

Efficient Local Search for Minimum Dominating Sets in Large Graphs 225

Table 2. Results on large graphs where NVCCBppw and ScBppw found different Dmin

or Davg

Graph NVCCBppw ScBppw δmin

Dmin(Davg) Dmin(Davg) (δavg)

aff-orkut-user2groups 791055 (791063.7) 791051 (791057.0) 4 (6.7)

ca-coauthors-dblp 37069 (37095.3) 37060 (37090.3) 9 (5.0)

ca-hollywood-2009 50418 (50445.9) 50334 (50364.5) 84 (81.4)

delaunay n22 689100 (689190.7) 689101 (689191.1) −1 (−0.4)

delaunay n23 1378207 (1378398.3) 1378214 (1378400.0) −7 (−1.7)

delaunay n24 2756090 (2756470.0) 2756143 (2756488.0) −53 (−18.0)

hugebubbles-00020 6809994 (6810453.1) 6809676 (6810434.5) 318 (18.6)

hugetrace-00010 3392673 (3393040.0) 3392608 (3393012.3) 65 (27.7)

hugetrace-00020 4508901 (4509384.1) 4508857 (4509283.6) 44 (100.5)

inf-europe osm 17006505 (17009166.9) 17007576 (17009440.0) −1071 (−273.1)

inf-germany osm 3846466 (3846831.3) 3846526 (3846836.6) −60 (−5.3)

inf-roadNet-CA 595868 (595938.4) 595745 (595800.1) 123 (138.3)

inf-roadNet-PA 332093 (332190.3) 332071 (332138.1) 22 (52.2)

inf-road-usa 7855630 (7856923.6) 7852863 (7853454.2) 2767 (3469.4)

rgg n 2 23 s0 687538 (687944.9) 687540 (687945.5) −2 (−0.6)

rgg n 2 24 s0 4006264 (4006469.2) 4006264 (4006471.4) 0 (−2.2)

sc-ldoor 64485 (65997.7) 64912 (66171.9) −427 (−174.2)

sc-rel9 124210 (129763.8) 124304 (129925.1) −94 (−161.3)

soc-delicious 55726 (55727.4) 55726 (55727.8) 0 (−0.4)

soc-digg 66155 (66156.5) 66155 (66156.6) 0 (−0.1)

soc-flickr 98064 (98065.7) 98063 (98064.9) 1 (0.8)

soc-FourSquare 60979 (60979.4) 60979 (60979.0) 0 (0.4)

soc-orkut-dir 93999 (94032.2) 94012 (94037.5) −13 (−5.3)

soc-pokec 207559 (207597.9) 207383 (207389.7) 176 (208.2)

soc-youtube-snap 213122 (213123.5) 213122 (213123.3) 0 (0.2)

socfb-A-anon 201690 (201690.6) 201690 (201690.5) 0 (0.1)

socfb-B-anon 187030 (187030.3) 187030 (187030.1) 0 (0.2)

tech-as-skitter 181874 (181890.1) 181852 (181869.8) 22 (20.3)

tech-ip 155 (156.7) 156 (157.1) −1 (−0.4)

tech-RL-caida 40143 (40152.5) 40142 (40152.9) 1 (−0.4)

web-wikipedia2009 346675 (346687.9) 346676 (346682.4) −1 (5.5)

web-wikipedia-growth 116817 (116818.8) 116817 (116818.5) 0 (0.3)

3. ScBppw outperforms the others on 32 instances.

This indicates that the SC strategy is more effective than the CC2 and CC2V3
strategies. For the sake of space, we omit the detailed results here. Overall, the
SC strategy plays an essential role in our solver.

Now we analyzes the performances. (1) Apart from the tabu strategy, we
find that there are two powerful diversification strategies in FastWMDS: a fre-
quency based scoring function and a best-from-multiple-selection heuristic with
some random walks. In contrast, besides the tabu strategy, ScBppw only exploits
two weak diversification strategies: (i) best-picking with probabilistic walk; (ii)

226 Y. Fan et al.

randomly selecting an uncovered vertex. Since (i) and (ii) are weak diversifica-
tion strategies, an effective tabu strategy in our solver should be stronger than
the CC2V3 strategy in FastWMDS. Indeed, NVCC and SC greatly outperform
CC2 and CC2V3 in our solver. (2) When a vertex v is added or removed, SC
can release some vertices whose distance from v is 2. However, NVCC tends to
release more vertices whose distance from v is 1. Thus SC is more likely to search
in a bigger area while NVCC is more cautious in current areas. Therefore their
performances are quite different.

Effectiveness of Best-Picking with Probabilistic Walk. We modify this
strategy and develop two variants, ScBprw (Score Checking and Best-picking
with Random Walk) and ScBppw-nlsp (ScBppw with no lastStepImproved)
as follows. To develop ScBprw, we replace the probability selection in ScBppw
with random walk, which means every vertex in D has equal probability to
be removed. On the other hand, to develop ScBppw-nlsp, we remove the
lastStepImproved predicate from ScBppw so that our algorithm will mark and
check the hash table regardless of the lastStepImproved value. More specifically,
we remove lines 1, 2, 8, 9, and 17 to 21, so as to develop ScBppw-nlsp. Then we
compare these two variants with ScBppw. Experimental results show that

1. ScBprw outperforms the other solvers on 7 instances;
2. ScBppw-nlsp outperforms the others on 7 instances;
3. ScBppw outperforms the others on 21 instances.

Moreover, we remove the probabilistic selection component and develop a
variant called ScDS, which will always do best-picking in the removing stage.
Experimental results show ScBppw significantly outperforms ScDS as well.

Overall, we conclude that the probabilistic selection as well as the
lastStepImproved predicate play an important role in ScBppw. For the sake of
space, we omit the detailed results here.

7 Conclusions

In this paper, we have developed a local search MinDS solver named ScBppw.
Experimental results show that our solver outperforms state-of-the-art on large
graphs. In particular, it makes a substantial improvement on those graphs that
contain more than 107 vertices. The main contributions include: (1) a tabu strat-
egy based on score change; (2) a best-picking with probabilistic walk strategy;
(3) a data structure to accelerate best-picking.

For future works, we will develop efficient heuristics to solve the MinDS
problem on massive graphs which are too large to be stored in the main memory
and has to be accessed through disk IOs.

Efficient Local Search for Minimum Dominating Sets in Large Graphs 227

References

1. Abseher, M., Dusberger, F., Musliu, N., Woltran, S.: Improving the efficiency of
dynamic programming on tree decompositions via machine learning. In: IJCAI
2015, pp. 275–282 (2015)

2. Alber, J., Fellows, M.R., Niedermeier, R.: Efficient data reduction for Dominating
Set: a linear problem kernel for the planar case. In: Penttonen, M., Schmidt, E.M.
(eds.) SWAT 2002. LNCS, vol. 2368, pp. 150–159. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45471-3 16

3. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

4. Cai, S., Su, K., Luo, C., Sattar, A.: NuMVC: an efficient local search algorithm for
minimum vertex cover. J. Artif. Intell. Res. (JAIR) 46, 687–716 (2013)

5. Cai, S., Su, K., Sattar, A.: Local search with edge weighting and configuration
checking heuristics for minimum vertex cover. Artif. Intell. 175(9–10), 1672–1696
(2011)

6. Campan, A., Truta, T.M., Beckerich, M.: Fast dominating set algorithms for social
networks. In: Proceedings of the 26th Modern AI and Cognitive Science Conference
2015, pp. 55–62 (2015)

7. Chalupa, D.: An order-based algorithm for minimum dominating set with applica-
tion in graph mining. Inf. Sci. 426, 101–116 (2018)

8. Chung, F.R., Lu, L.: Complex graphs and networks, vol. 107 (2006)
9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,

3rd edn. MIT Press, Cambridge (2009)
10. Eubank, S., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Wang, N.: Structural

and algorithmic aspects of massive social networks. In: Proceedings of SODA 2004,
pp. 718–727 (2004)

11. Fan, Y., Li, C., Ma, Z., Wen, L., Sattar, A., Su, K.: Local search for maximum
vertex weight clique on large sparse graphs with efficient data structures. In: Kang,
B.H., Bai, Q. (eds.) AI 2016. LNCS (LNAI), vol. 9992, pp. 255–267. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-50127-7 21

12. Fan, Y., Li, N., Li, C., Ma, Z., Latecki, L.J., Su, K.: Restart and random walk
in local search for maximum vertex weight cliques with evaluations in clustering
aggregation. In: IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 622–
630 (2017)

13. Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in
graphs applied to electric power networks. SIAM J. Discrete Math. 15(4), 519–529
(2002)

14. Hedar, A.R., Ismail, R.: Simulated annealing with stochastic local search for min-
imum dominating set problem. Int. J. Mach. Learn. Cybern. 3(2), 97–109 (2012)

15. Hoos, H.H., Stützle, T.: Stochastic local search. In: Handbook of Approximation
Algorithms and Metaheuristics (2007)

16. Jiang, H., Li, C., Manyà, F.: An exact algorithm for the maximum weight clique
problem in large graphs. In: AAAI, California, USA, pp. 830–838 (2017)

17. Li, C.M., Huang, W.Q.: Diversification and determinism in local search for satisfi-
ability. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 158–172.
Springer, Heidelberg (2005). https://doi.org/10.1007/11499107 12

18. Ma, Z., Fan, Y., Su, K., Li, C., Sattar, A.: Local search with noisy strategy for
minimum vertex cover in massive graphs. In: Booth, R., Zhang, M.-L. (eds.) PRI-
CAI 2016. LNCS (LNAI), vol. 9810, pp. 283–294. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-42911-3 24

https://doi.org/10.1007/3-540-45471-3_16
https://doi.org/10.1007/978-3-319-50127-7_21
https://doi.org/10.1007/11499107_12
https://doi.org/10.1007/978-3-319-42911-3_24
https://doi.org/10.1007/978-3-319-42911-3_24

228 Y. Fan et al.

19. Murray, R.S.: Theory and Problems of Probability and Statistics. McGraws-Hill
Book and Co., Singapore (1975)

20. Nacher, J.C., Akutsu, T.: Minimum dominating set-based methods for analyzing
biological networks. Methods 102, 57–63 (2016)

21. Potluri, A., Bhagvati, C.: Novel morphological algorithms for dominating sets on
graphs with applications to image analysis. In: Barneva, R.P., Brimkov, V.E.,
Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 249–262. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34732-0 19

22. Samuel, H., Zhuang, W., Preiss, B.: DTN based dominating set routing for manet
in heterogeneous wireless networking. Mob. Netw. Appl. 14(2), 154–164 (2009)

23. Shen, C., Li, T.: Multi-document summarization via the minimum dominating set.
In: COLING 2010, Beijing, China, pp. 984–992 (2010)

24. Wang, Y., Cai, S., Chen, J., Yin, M.: A fast local search algorithm for minimum
weight dominating set problem on massive graphs. In: IJCAI 2018, pp. 1514–1522
(2018)

25. Wang, Y., Cai, S., Yin, M.: Local search for minimum weight dominating set with
two-level configuration checking and frequency based scoring function. J. Artif.
Intell. Res. 58, 267–295 (2017)

26. Yao, B., Fei-Fei, L.: Action recognition with exemplar based 2.5D graph matching.
In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV
2012. LNCS, vol. 7575, pp. 173–186. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33765-9 13

https://doi.org/10.1007/978-3-642-34732-0_19
https://doi.org/10.1007/978-3-642-33765-9_13
https://doi.org/10.1007/978-3-642-33765-9_13

	Efficient Local Search for Minimum Dominating Sets in Large Graphs
	1 Introduction
	1.1 Local Search Techniques
	1.2 Our Contributions

	2 Preliminaries
	2.1 Basic Notations
	2.2 An Iterative Local Search Framework
	2.3 A Fast Hashing Function
	2.4 Geometric Distribution
	2.5 Sorting Vertices wrt. Degrees
	2.6 Configuration Checking

	3 Score Checking
	3.1 Comparing SC to NVCC
	3.2 Comparing SC to CC2

	4 Our Algorithm for Exchanging Vertices
	4.1 Removing Stage
	4.2 Adding Stage

	5 Speeding up of Best-Picking
	6 Experimental Evaluations
	6.1 Experimental Setup
	6.2 Main Results
	6.3 Individual Impacts

	7 Conclusions
	References

