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Abstract. With the booming traffic developments, estimating the travel time
for a trip on road network has become an important issue, which can be used for
driving navigation, traffic monitoring, route planning, and ride sharing, etc.
However, it is a challenging problem mainly due to the complicate spatial-
temporal dependencies, external weather conditions, road types and so on. Most
traditional approaches mainly fall into the sub-segments or sub-paths categories,
in other words, divide a path into a sequence of segments or sub-paths and then
sum up the sub-time, yet which don’t fit the real-world situations such as the
continuously dynamical changing route or the waiting time at the intersections.
To address these issues, in this paper, we propose an end to end Spatial Tem-
poral Deep learning network with Road type named STDR to estimate the travel
time based on historical trajectories and external factors. The model jointly
leverages CNN and LSTM to capture the complex nonlinear spatial-temporal
characteristics, more specifically, the convolutional layer extracts the spatial
characteristics and the LSTM with attention mechanism extracts the time series
characteristics. In addition, to better discover the influence of the road type, we
introduce a road segmentation approach which is capable of dividing the tra-
jectory based on the shape of trajectory. We conduct extensive verification
experiments for different settings, and the results demonstrate the superiority of
our method.

Keywords: Travel time estimation + CNN + LSTM -+ Road network

1 Introduction

Nowadays, with the explosive growth of the location-enabled devices, the importance
and usage of geospatial information have attracted more and more attention from
researchers in many applications. In this paper, we mainly focus on the estimation of
travel time, which can bring societal and environmental benefits, and is useful for
driving navigation, traffic monitoring, route planning, ride sharing and so on [1-5].
However, evaluating an accurate travel time is a challenging problem affected by the
following aspects: (1) The road traffic condition continuously dynamically changes
during the process of vehicles moving. (2) The driver needs to slow down or wait for a
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while at the intersection, and the waiting time is a random variable, modeling the
waiting time is not easy. (3) Different road segments may exhibit very different
behaviors due to external requirements, for instance, residential areas speed limits are
distinct from industrial areas. Although the problem has been widely studied in the
past, however, traditional travel time estimation approaches mostly adopt divide-and-
conquer approach [6—8]. Those methods mainly decompose a path into a sequence of
sub-segments or sub-paths, and then sum up the multiple sub-segments or sub-paths
travel time into a whole. Nonetheless, those methods are model-driven and can’t handle
the delay time caused by the turnings or intersections very well, and the estimated
travel time errors, which are affected by external factors such as weather or road types,
will also accumulate.

Generally speaking, solving this kind of optimal problem is not easy. Fortunately,
recently deep learning has achieved considerable achievements in computer vision,
machine translation, image generation, natural language processing field and road
trajectories [9, 10]. Deep learning approaches have a strong capability to learn more
latent features and simulate complicated dynamics trajectory problem [4, 11-13].
Motivated by aforementioned knowledge, in this paper, we propose an end-to-end
Spatial Temporal Deep learning network with Road types (STDR) by using convo-
lutional neural networks (CNN) and long short-term memory (LSTM) to jointly capture
complex spatial and temporal nonlinear correlations. The core idea lies in transforming
the trajectory data into vector space, and applying the neural network on them. The
contributions of this work are summarized as follows.

First, to capture the spatial features of a trajectory, we embed the GPS points into
corresponding vectors rather than working on them directly. The vectors can preserve
the original correlation of different points, and then are fed into the CNN to learn the
spatial dependencies.

Second, we introduce LSTM with attention mechanism to model the time series.
The attention mechanism can judge which segment has a higher weight for estimating
the whole trajectory. Meanwhile, the influences of external factors (e.g., weather and
time metadata) are also concentrated into the LSTM input, which can significantly
improve the predicting accuracies.

Third, since the trajectory sampling frequency is fixed, the travel distances with
different velocities at the same time interval are diverse. For example, the driving
distance on the highway is longer than the distance on an overpass at the same time
interval. Therefore, we partition the trajectory into many sub-segments based on the
road types, then the sub-segments are encoded into vectors and concatenated with the
output of LSTM for training the model together.

Fourth, extensive comprehensive experiments on the real datasets are conducted,
and results show the advancement of our approach.

The remainder of this paper is structured as follows. Section 2 describes a review of
literature, and Sect. 3 introduces the details of our algorithm. We conduct experiments
and evaluate the results in Sect. 4. Finally, Sect. 5 concludes the paper.
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2 Related Work

Existing researches can be roughly classified into two categories, i.e., the traditional
approaches with sub-segments or sub-paths, and the deep learning approaches. In this
section, we introduce the literature and summarize the key technologies.

2.1 Traditional Travel Time Prediction Approaches

Wang et al. [7] proposed an efficient and simple model that leverages plenty of his-
torical trips without using the intermediate trajectory points to evaluate the travel time
between source and destination. Comparing with the most existing approaches, it
retrieves the neighboring trips with a similar origin and destination to approximately
estimate the travel time. However, the method outperformed many online methods. To
deal with traffic time series which were usually sparse, dependent and heterogeneous
(e.g., some segments may have morning and afternoon peak hours, while others may
not), Yang et al. [14] proposed Spatial-Temporal Hidden Markov models (STHMM).
The dependencies and the correlations among different time series were modeled while
considering the topology of the road network. Wang et al. [6] modeled different dri-
vers’ travel times with a three-dimension tensor, the frequent trajectory patterns were
extracted from historical tips to decrease the candidates of concatenation and suffix-
tree-based indexes, then an object function was devised and proved to model the
tradeoff between the length of a path and the number of trajectories traversing the path.
The object function was then solved by a dynamic programming solution. Wen et al.
[8] proposed a novel probability-based method by constructing a temporally weighted
spatial-temporal distribution patterns to estimate the logistical transport time. In order
to explore location and time relationship, they designed frequent spatial connections, in
which area-based spatial-temporal probabilistic distribution can be identified by kernel
density estimation. Then the transportation time between two locations in the area can
be estimated. Similarly, Jabari et al. [15] established a mixture asymmetric probabilistic
statistical framework, i.e., a novel data-driven methodology of Gamma mixture den-
sities, to model complexity multi-modal urban travel time distributions, experiments
also demonstrated their methods can further solve the data sparsity.

2.2 Deep Learning Travel Time Prediction Approaches

To cope with the insufficiency of the input information, Li et al. [11] constructed a
more smooth and meaningful multi-task representation learning by leveraging the
underlying road network structure and spatial-temporal prior knowledge. Jindal et al.
[13] first predicted the distance between the origin and destination, and then estimated
the travel time based on the above predicted distance. The advance of ST-NN was that
it only take advantage of the raw trips data without demanding further feature engi-
neering. However, the road network structure, i.e., the spatial and temporal relation-
ship, was neglected. In order to solve the inaccuracies caused by the divide-and-
conquer methods, Wang et al. [16] proposed a novel end-to-end deep learning
framework to estimates the travel time of the whole path directly, they used a geo-
convolutional and LSTM layer to capture the spatial and temporal features meantime.
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In addition, they also introduced a multi-task learning to balance the effect of the entire
path and each local path. However, they didn’t consider the influences brought by the
driver’s habit and external road types. Zhang et al. [17] proposed an end-to-end
training-based model named DEEPTRAVE to predict the travel time of a whole path
directly, and designed an auxiliary supervision with dual interval loss mechanism to
fully leverage the temporal existing historical labeling information. They utilized a
feature extraction structure to effectively capture different dynamics, such as short-term
and long-term traffic features, for estimating the travel time accurately. Cui et al. [18]
presented a deep stacked bidirectional and unidirectional LSTM (SBULSTM) neural
network architecture, which investigated both spatial features and bidirectional tem-
poral dependencies from historical data. This mechanism can effectively handle the
missing value for input data, and can also address the passing information from a back-
propagation direction.

3 Methodology

In this section, we formally depict the preliminaries and define the notions of the
problem, then present the details of our method.

3.1 Preliminaries

Definition 1. A road network G = (V, E) is a directed graph, the V = {vi(x;,y:)}
represents a set of vertices, each v; incorporates latitude x; and longitude y;, the E =

{ej(vm7 v,,)} represents a set of edges, each e; is comprised of two directly connecting
vertices.

Definition 2. A trajectory T is a sequence of GPS points generated from LBS
(Location Based Service) devices, which can be denoted as T = {py, pa...... Dn}-
Each GPS point p; contains 5-tuple (,;,x;, y;, velocity;, head;), where t,; denotes the
timestamp, x; and y; denote the latitude and longitude respectively, velocity; is the
vehicle speed, head; is the angle of driving direction.

Problem: Given a trajectory T and departure time #,, our goal is to estimate the
travel time for T by using a series of historical trajectories on road network G.

3.2 Framework of STDR

As presented in Fig. 1, we provide the details for our proposed spatial-temporal net-
work framework, which is comprised of three major components.

Spatial Component: We first leverage the road network embedding method to embed
the GPS points into corresponding vectors, thus we can use the convolutional layer
with many filters to extract the spatial characteristic [9], after that the output matrix
vectors of convolutional operation are used as the input of LSTM.

Temporal Component: We manually collect some external features from external
datasets, such as time of day, weather conditions, etc., and then embed them as a vector



160 J. Xu et al.

Xext, and concentrate with vectors Czy which are obtained from above spatial com-
ponent, moreover feed them into two stacked LSTM with attention mechanism to
extract the temporal characteristic with attention mechanism.

Road Type Component: We introduce a segmentation approach which is capable of
dividing the trajectory into sub-segments based on the road types, then calculate each
sub-segments average distance, which is further encoded into vectors. To enable the full
connected operations on the irregular vectors matrix, we pad zero where it is necessary.
Then the vectors further combine the output of the LSTM component, and furthermore go
through a fully connected layer at the end of the network for joint prediction.

Ground truth Y

< (Cos)

Paddingi

Fig. 1. The framework of STDR

3.3 Trajectory Embedding Representation

In [16], the geographical features they extracted are multiplied by latitude and longitude
of two points, which don’t consider the global road network dependencies among
different vertexes. Therefore, we first need to convert the GPS points into vectors rather
than working on them directly [9]. How to transfer the trajectory can be recognized as
the problem of embedding very large road networks into low-dimensional vector spaces,
aiming to capture and preserve the original network structure. The characteristics of
vertexes are dependent on both the local and global network structure. Therefore, how to
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simultaneously preserve above structures is a tough problem. In this paper, we use a road
network embedding method [19], which can effectively handle the distance and angle in
the road network space by using the Minkowski pth-order metrics:

Lp(xay) =

k 1/p
lei_)’ilp] (1)

i=1

Transforming a road network G = (V, E) into a vector space (R, D') is a mapping
V — RY,E — D/, where L is the vectors’ dimension and D'is one of Minkowski metrics
[19, 22]. The vertex is extended as follows: Let V; be a subset of V, x be a point, and
Dist(x, V;) = minyey;{Dist(x, y)}, here Dist(x, V;) is the distance from point x to
its closet neighbor in V;. Then let set R = {Vu, Vi Ve .V/;,k} be a subset
of V, where k is set as O(log n) and f3 is set as O(log n), the original space can be
embedded into a O(log” n) dimensional space. Specially, let E(v) = (Ry,,(v), ...,
Ry, (v), ... Ry,,(v)... Ry, (v)),inwhich Ry, (v) = Dist(v, V;;), thus for single point v,
the finally output is vector E(v) € R#** with the dimension f * k (the following is
denoted by L = f * k for the rest paper) on the road network. For dynamic insertion
adjustment in one specified reference subset V, ;, the new vertex Vy is modified by
Ry,,(Vy) = min(Dist(Vy, P;) + Dist(Pi,Vay), Dist(Vy,P;) + Dist(P;,Vap)), where
Dist(P;, V) is distance between P; and V,, 5, as presented in Fig. 2.

After the trajectory embedding, we can obtain 7 vectors € R”, where 7 is the number
of trajectory points.

Reference subset V,,

Dist(P;, V) Dist(P;, Vo)

Dist(VyP;) Dist(VyP))
Pi Wy P;

Fig. 2. Dynamic embedding for trajectory points

3.4 Trajectory Spatial Characteristics Captured by Convolutional Layer

Inspired by the successful applications of CNN on images, we also employ it to extract
the GPS spatial characteristics. Compared with image having two-dimensions spatial
structure, trajectory has only one-dimensional spatial structure like the sentence in
word2vec classification model, where words display in sequence. Thus we use the one-
dimension convolutions method to learn pixel-level spatial correlation features by
considering the trajectory points as an image of width ¢ and height 1.
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As in Fig. 1, let x; € R” [9] be the L dimensional road network embedding vector
corresponding to the i-th point in the trajectory sequence, the trajectory with length 7 is
presented as:

X1 =X1Dx2 D ... Dx; (2)

where @ thus the trajectory can be converted as a vector matrix, with the size L * 7. A
convolution operation involves a filter w € RE* whose kernel window size is &, and is
overlaid across the GPS points vectors ranging from i to i + k — 1. Next, it performs an
element-wise product, and then adds them together and obtains one new feature. For
example, the transformation from a window of x;; s is defined as follows:

ci = 0(Wi - Xisiy k-1 + D) (3)

where w; is a weight parameter and b is a bias and J(-) is a non-linear function. Thus, a
feature vector is generated from one filter, which is successively applied to GPS points
(x1:k7x2;k+1. e Xy—kt 1::) where stride equals 1, with the index ranging from 1 to
t—k + 1. Finally, for each trajectory connected by c filters, we get the output vectors
Civ € Re07%+1) presented by Formula 4.

Cy = [Cl, Coyevny C(r—k+l)] (4)

3.5 Trajectory Temporal Characteristics Captured by LSTM

A successful approach for solve the time sequential problems is RNN (Recurrent Neural
Network), which can remember the previous historical sequence by using a transition
function and leveraging an internal memory to process the dynamic temporal behavior.
RNN has proven the ability to model variable length sequence. However, traditional
RNN may also face the gradients exploding or vanishing because the time sequences is
too long, thereby the LSTM is designed [20] since it can decide whether or not to
abandon the previous hidden states depending on the time restrictions. Generally
speaking, LSTM extends RNN by adding three gate (i.e., one input gate, one forget gate,
one output gate) and a memory cell. The forget gate is employed to abandon some
irrelevant information and can effectively solve the vanishing or exploding gradient
problem. The input gate and output gate are utilized to control the input and output
vectors. The output is the last hidden state of LSTM. At each time interval ¢, LSTM takes
the output of convolutional layer as an input, and then all information is accumulated to
the memory cell, each cell in LSTM is defined as follows:

ﬁ = 5(Wf . [h,,l,x,] +bf) (5)

iy = 5(“’1 : [htflaxt] +bi) (6)
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C, = tanh(We - [h_1,%] + bc) (7)
C,=fioC_1+i0C (8)

0, = 06(W, - [h—1,x] +b,) 9)
h; = 0, o tanh(C;) (10)

where f;, i;, o, represent the forget gate, input gate, and output gate, Wy, W;, W,, W, are
the weight parameters matrices, by, b;, b, b, are the biases values, () denotes the non-
linear activation function, the fanh denotes the hyperbolic tangent function. Further-
more, the multi-layers LSTM is more efficient than a single LSTM layer [20].

Intuitively, the travel time can be affected by many complex external factors, such as
weather conditions and time metadata (i.e., time-of-hour, day-of-week). For instance,
traffic on rainy days is usually more congested than usual, and the road is more prone to
have high-level crowd [3], etc. Note that these external factors cannot be directly fed into
a neural network, we embed the weather conditions [4] as X € R16, time-of-hour as
X € R*, day-of-week as X € R’, etc., by using the hot coding. Then the individ-
ual vectors are concatenated with the output of CNN, and fed into LSTM units.

Attention Mechanism Model: The traditional LSTM cannot detect which segment has
a greater weight for estimating the whole trajectory time. For example, the impacts of
expressway and speed limited road on the whole estimated time are different from each
other. In order to address this issue, we design an attention mechanism [21] that can
describe the key part of segments among whole trajectory segments. Let Xext €
Re(=%+1) represents the embedding of external factors, we append it to Czy as LSTM
input presented by Formula (11). Furthermore, Let H € R**~**1) be a matrix com-
prised of hidden vectors [hy, ho,. bk 1] that the LSTM produced in Formula (10). As
in Figs. 1 and 3, the attention vector takes hidden vectors H and Xext as input to
compute the probability distribution of source trajectory input. By utilizing this
mechanism, it is possible for finally prediction to capture somewhat global information
rather than solely to derive from hidden states. A vector including attention weights and
a weighted hidden representation of GPS points are denoted as o, h* respectively. The
details are presented from Formula 12 to 14.

Civ = Wi, Ciy + W Xext (11)
_ W,H

M = tanh( [ szXexJ (12)
o = softmax(w'M) (13)

h* = Ho (14)
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Fig. 3. The architecture of LSTM attention mechanism

Where Win € Rc*c’ Wextl S R(‘*e, Wh c RC*C, Wext2 c Re*e’ OJT S Rl*((‘+e), M S
Rlete)=k+1) =5y e RO-K+1) p* ¢ RC. Finally, the output of the temporal com
ponent is h*.

3.6 The Detail of Road Types Embedding

In fact, different road types have different effects on the travel time. For example,
driving on the overpass is more time-consuming than on the highway at the same time
interval. As in Fig. 4, a sample trajectory passes on the auxiliary road, urban
expressway road, overpass road, urban expressway road sequentially, different parts of
the trajectory exhibit diverse driving speeds marked out by ovals. For instance, the blue
oval denotes the overpass road, whose sampling locations are close to each other, while
the red oval denotes urban expressway road, whose sampling locations are far away
from each other.

In summary, we propose a trajectory segmentation approach [22, 23]. Trajectory
segmentation is a fundamental task which tries to partition a trajectory into several
segments based on a set of optimization goals. We aim to find the characteristic points
where the shape of a trajectory changes rapidly. The segmentation includes two
desirable properties: preciseness and conciseness [23], we leverage the concept of
Minimal Description Language (MDL) to find the optimal tradeoff between preciseness
and conciseness.

The MDL is comprised of two components: L(H) and L(D|H). L(H) is regarded as
the hypothesis description with the length of the data described in bit, which measures
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Xariver

Padding

FC Layer

Fig. 4. The framework of road type component (Color figure online)

the degree of conciseness, while the L(D|H) is regarded as the length of the description
of data under the hypothesis H, which measures preciseness. In our paper, L(H) is
simply equal to log, x. Furthermore, the L(H) represents the total length of the
Euclidean distance between all p; and p;.,, while the L(D|H) represents the sum of the
difference between a trajectory and its trajectory partitions. At last, a list of charac-
teristic points is picked out by minimizing L(H) + L(D|H). The trajectory is partitioned
into segments by these characteristic points.

Then we obtain the average distance of every segment, and embed them as vector
Xriver € R34 groups padding whatever it is necessary. Finally, the X ., is connected
with FC layer to yield vector Xgi,.r € R?, which concatenates LSMT to jointly train
the model, thus the Formula 14 is rewritten as:

h = Wh*h* + Wariver Xariver (15)

where Wy, € R, Wyyiper € R4

3.7 Prediction Component

The next step is to estimate the travel time by integrating the output of LSTM and the
output of road type component. We feed the i * into the fully connected network to get
the final estimated value fG, which is calculated as follows:

Y, = tanh(W,; - h* + b,s) (16)

where W,r and b,y are learnable parameters, tanh(x) is a hyperbolic tangent function,
which ensures the output values are in [-1 ~ 1]. The loss function we used is defined
by minimizing the mean squared error between the estimated time and the true time:

L(@) = |Yt - i/t|2

(17)
where 6 is the set of all learnable parameters needed to be trained. We continuously

adjust the parameter sets using back propagate by Tensorflow until loss function
converges.
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4 Experiments and Discussions

4.1 Dataset

Datasets: We test the method on the Beijing road network including about 330,000
vertices and 440,000 edges. We use two GPS trajectory datasets named Taxi and Ucar
[24]. The Taxi data contains about 180,000 trajectories generated by more than 7,000
public taxis, Ucar data contains about 480,000 trajectories generated by more than
6,000 private taxis in November 2015. Each sampling point includes timestamp, lati-
tude, longitude, vehicle speed, and direction. The abnormal records are first filtered out,
and then the map matching algorithm is employed to relocate the deviated sample
points. The data is divided into two subsets: we use the first 24 days data as the training
data, the rest days as the test data.

Meteorological data: We record the Beijing weather data from Beijing Meteoro-
logical Bureau, the data include rainfall, temperature, wind velocity and so on. The
weather conditions are divided into 14 types: cloudy, sunny, heavy rain, middle rain,
light rain, heavy snow, light snow, dense fog, little fog, overcast, hail, frost, smog and
haze, and sand storm.

4.2 Parameters Setting

Our model is implemented with Python 2.0. The model is deployed on the server with
Core 17-4790 CPU, 16 GB RAM, NVIDIA GTX1080 GPU. We adopt Adam opti-
mization algorithm with mini-batch size equals to 512 to train the parameters, the initial
learning rate is set as 0.01.

4.3 Baseline Algorithms for Comparison

To demonstrate the validity of our model, we compare it with 5 baseline methods
including:

ARIMA: ARIMA means Auto Regressive Integrated Moving Average, which is a
typical and well known statistical model that depicts a suite of different standard
temporal attributions.

XGBoost: XGBoost is an efficient, flexible machine learning technique for
regression, classification and sorting tasks by assembling multiple weak learning under
the gradient boosting framework, usually referring to decision trees. It belongs to
ensemble learning.

SimpleTTE [7]: SimpleTTE presents a Simple Travel Time Estimating method that
leverages the neighboring trips from the large amount of historical data. Being different
from the traditional approaches, SimpleTTE indexes all the neighboring points with
similar original and destination, and calculates the absolute temporal speed reference
under irregularities traffic condition. After that, the travel time is scaled and estimated
from the similar trips with the original demands.

Multi MASK [11]: Multi MASK is a multitasking representation learning model for
time estimation, which does not hypothesize that the travel route is predetermined, but
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utilizes the underlying road network with time and space prior knowledge. This method
also engenders a meaningful representation that retains the various travel attributes.
DeepTTE [16]: DeepTTE is an end-to-end deep learning framework approach for
estimating travel time of the whole path directly, the method presents a geo-
convolution operation to capture the spatial correlations, and leverages stacking LSTM
layers to capture the temporal dependencies as well. In addition, the relationships
between the local and the global tradeoff are determined by the multitasking they
presented. We apply this algorithm following the parameter settings deployed in [16].

4.4 Evaluation Metrics

We evaluate the performance of the proposed method based on three popular metrics.
Assume y;, ys, ..., v, denote the ground truth, y,, y-, ..., y, denote the estimated value,
and n denotes the numbers of samples points. Here, Mean Absolute Percentage Error
(MAPE), Mean Relative Error (MRE), and Mean Absolute Error (MAE) are employed
as evaluation metrics, their definitions are as follows:

mapE =S P 1 (18)
=1 Y n
Z |yt - S’t|
MRE=""— (19)
> vl
=1
Z [y: — Vil
MAE == (20)
n

4.5 Performance Comparisons

Table 1 shows the comparisons between baseline algorithms and our presented
method.

Table 1. Performance comparisons with baselines

Model Taxi Ucar
MAPE(%) | MRE(%) | MAE(s)  MAPE(%) | MRE(%) | MAE(s)
ARIMA 35.49 32.18 257 32.32 30.1 243

XGBoost 34.45 31.18 234 32.99 28.2 227
SimpleTTE | 26.93 25.71 213 22.75 223 219
Multi MASK | 23.35 22.63 207 21.53 19.45 186
DeepTTE 19.37 18.52 191 17.61 16.8 164
Ours STDR |16.19 15.54 155 15.04 13.31 136
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From the Table 1, we can see that the MAPE, RMSE, and MAE of the ARIMA and
XGboost perform poor results, which demonstrates that the simple traditional predic-
tion method cannot effectively describe the large scale complex spatial-temporal data.
The DeepTTE and Multi MASK both outperform ARIMA and XGBoost, the com-
parisons reveal that deep learning methods can work well. Furthermore, since the
DeepTTP considers utilizing the convolutional operation to capture the spatial char-
acteristic, it shows the better result than Multi Mask. Next, it is interesting the Sim-
pleTTE method displays an accept medium performance between the traditional and
deep learning methods. However, it is just an approximate method, which is more fit
for the ideal situation, such as the highway or urban expressway with little speed
changing. Finally, our algorithm significantly outperforms above mentioned methods
with the lowest MAPE (16.19% and 15.04%), MRE (15.54% and 13.31%), and MAE
(155 and 136) on two datasets respectively, which verifies the superiority and feasi-
bility of our approach. The reason is that our algorithm further exploits LSTM attention
mechanism and takes account of the influence of road type in the whole trajectory,
these settings can better preserve the spatial-temporal characteristics of the original
trajectory.

4.6 Comparison with Different Variants

To investigate the effectiveness of different components in Fig. 1, we compare our
STDR with 4 different varieties including: (1) LSTM and road type without CNN
component. (2) Only LSTM component, neither the CNN nor the road type is used.
(3) CNN and LSTM components without road type. (4) LSTM without attention
mechanism. All these models have identical inputs and the parameters are roughly the
same. The results are presented in Table 2.

Table 2. Evaluation of our method and its variants

Model Taxi Ucar
MAPE MRE MAE | MAPE MRE MAE
(%) (%) (s) (%) (%) (s)
(DOnly LSTM component 32.14 31.82 234 29.47 26.53 225
@LSTM + road type 29.25 26.72 207 25.78 24.38 183

without CNN
QCNN + LSTM without 22.48 21.68 188 22.16 21.63 167

road type
@STDR without attention 20.31 17.56 171 18.86 15.74 158
Our STDR 16.19 15.54 155 15.04 13.31 136

From Table 2, we have the following observations. Firstly, it is not surprising that
only LSTM component exhibits the lowest performance as expected. Secondly, con-
sidering the @LSTM + road type without CNN and the Q)CNN + LSTM without
road type, the impacts of CNN (MPAE is 22.48%) is more obvious than the road type
(MAPE is 29.25%). The reason for this phenomenon is that some road type
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characteristics can be also extracted by CNN in spatial component. Thirdly, both two
variants (i.e., the @CNN + LSTM without road type and @STDR without attention)
outperform the two variants without CNN (i.e., the @LSTM + road type without
CNN, and the Donly LSTM component), which demonstrates the significant role of
CNN in spatial trajectory data mining. Fourthly, the @STDR without attention is
weaker than our STDR, the explanation is that the error of various types roads will
continuously accumulate as the trajectory sequence grows, which confirms the effec-
tiveness of attention mechanism. Finally, the performance of our STDR achieves the
best when all aspects are considered.
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4.7 Impacts of Kernel Size and the Number of Road Types

We first evaluate the performance of kernel size of the convolutional filter. From Fig. 5,
we observe that the MAPE of both data decreases as the kernel size grows, this discloses
that the large kernel size can better capture the far away spatial dependences on the
trajectory. However, when the kernel size exceeds 4, the effect becomes doubtful and the
MAPE even rises. The cause is that although a larger filter can capture more informa-
tion, it also imports much unnecessary noise, damaging the original road network
correlation, such as two contradictory features generated by two successive turnings.
The impacts of the number of road types are exhibited in Fig. 6. As we can see, the
results reveal that when the number of road type is smaller than 6, the corresponding
average distance on the road is about 14 km according to historical trajectories
statistics, the MAPE, MRE, and MAE are nearly unchanged, the reason may be related
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to that the Beijing’s layout of streets is in the shape of regular block layout. However,
as the number of road types increases continually, the growth ratio rises dramatically,
this indicates that more influencing factors produced by a long trajectory on the road
can easily result in inaccurate predictions.

4.8 Impact of Weather Conditions

In this paper, we estimate the travel time by utilizing the weather forecasting as the
approximate weather at future time interval n + /. But in fact, weather forecasting is
not fairly accurate all the time due to the technology and so on. To investigate the
effectiveness of the weather component, first we remove it and compare it with STDR,
then pick out five typical kinds weather, i.e., cloudy, sunny, rain, snow, and fog. The
comparisons are shown in Table 3 and Fig. 7.

Table 3. Experimental results without weather conditions

Taxi Ucar
Model MAPE MRE MAE MAPE MRE MAE
(%) (%) (s) (%) (%) (s)
STDR without weather 23.71 19.48 196 21.53 16.21 177
conditions
Our STDR 16.19 15.54 155 15.04 13.31 136
28 %Li;‘,'i;‘; 28 %E’;ir%aa‘; %Eizir%??a

cloudy sunny rain snow fog cloudy sunny rain  snow fog cloudy sunny rain  snow  fog
(a) Weather (b) Weather (c) Weather

Fig. 7. Impact of weather conditions

In Table 3, we can see that the performance of STDR without weather conditions
decrease by 31.7% comparing with our STDR (w.r.t. Taxi’s MAPE), this indicates the
weather has a significant influence on travel time. Next, from Fig. 7, we can discover
that the MAPE on cloudy and sunny days are almost the same, suggesting that good
weather condition has few impacts on travel time. On the rainy and foggy days, the
results are relatively poor, and are generally worse than cloudy and sunny days, this is
because bad weather can affect people’s attention and result in slow response. The
outcome on snowy days is the worst, the cause is that drivers need to be much longer
waiting time at intersections due to the wet slippery road, this also conforms to our
intuitive sense.
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5 Conclusions

In this paper, we propose a novel deep learning end-to-end model based on CNN and
LSTM for estimating travel time by using real historical traffic data. The method first
embeds trajectory into low dimension vectors with the road network, then employs
CNN to capture the spatial characteristic, further utilizes LSTM with attention mech-
anism to capture the time sequence characteristic. What’s more, we import the road
segmentation to fully depict the influence of road type. To validate the effectiveness of
the proposed STDR, extensive experiments with 5 baselines are conducted. The results,
in terms of MAPE, MRE, and MAE, demonstrate the superiority of our methodologies.
In the future we plan to work on three interesting directions: (1) Incorporate the social
network for the estimating travel time model. (2) Apply machine learning to inter-
disciplinary areas such as smart transportation and economics disciplines. (3) Extend
and apply the framework to other trajectory problems.
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