
Guoliang Li · Jun Yang ·
Joao Gama · Juggapong Natwichai ·
Yongxin Tong (Eds.)

 123

LN
CS

 1
14

47

24th International Conference, DASFAA 2019 
Chiang Mai, Thailand, April 22–25, 2019 
Proceedings, Part II

Database Systems 
for Advanced Applications



Lecture Notes in Computer Science 11447

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA



More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409


Guoliang Li • Jun Yang •

Joao Gama • Juggapong Natwichai •

Yongxin Tong (Eds.)

Database Systems
for Advanced Applications
24th International Conference, DASFAA 2019
Chiang Mai, Thailand, April 22–25, 2019
Proceedings, Part II

123



Editors
Guoliang Li
Tsinghua University
Beijing, China

Jun Yang
Duke University
Durham, NC, USA

Joao Gama
University of Porto
Porto, Portugal

Juggapong Natwichai
Chiang Mai University
Chiang Mai, Thailand

Yongxin Tong
Beihang University
Beijing, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-18578-7 ISBN 978-3-030-18579-4 (eBook)
https://doi.org/10.1007/978-3-030-18579-4

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2019, corrected publication 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3357-1195
https://doi.org/10.1007/978-3-030-18579-4


Preface

The International Conference on Database Systems for Advanced Applications
DASFAA provides a leading international forum for discussing the latest research on
database systems and advanced applications. DASFAA 2019 provided a forum for
technical presentations and discussions among database researchers, developers, and
users from academia, business, and industry, which showcases state-of-the-art R&D
activities in database systems and their applications. The conference’s long history has
established the event as the premier research conference in the database area.

On behalf of the DASFAA 2019 program co-chairs, we are pleased to welcome you
to the proceedings of the 24th International Conference on Database Systems for
Advanced Applications DASFAA 2019, held during April 22–25, 2019, in Chiang
Mai, Thailand. Chiang Mai is the largest city in northern Thailand. It is the capital of
Chiang Mai Province and was a former capital of the kingdom of Lan Na 1296–1768,
which later became the Kingdom of Chiang Mai, a tributary state of Siam from
1774 to 1899, and finally the seat of princely rulers until 1939. It is 700 km north of
Bangkok near the highest mountains in the country. The city sits astride the Ping River,
a major tributary of the Chao Phraya River.

We received 501 research paper submissions, each of which was assigned to at least
three Program Committee (PC) members and one SPC member. The thoughtful
discussion on each paper by the PC with facilitation and meta-review provided by the
SPC resulted in the selection of 92 full research papers (acceptance ratio of 18%) and
64 short papers (acceptance ratio of 28%). In addition, we included 13 demo papers and
six tutorials in the program. This year the dominant topics for the selected papers
included big data, machine learning, graph and social network, recommendation, data
integration and crowd sourcing, and spatial data management.

Three workshops are selected by the workshop co-chairs to be held in conjunction
with DASFAA 2019, including BDMS: the 6th International Workshop on Big Data
Management and Service; BDQM: the 4th Workshop on Big Data Quality Manage-
ment; GDMA: the Third International Workshop on Graph Data Management and
Analysis. We received 26 workshop paper submissions and accepted 14 papers.

The conference program included three keynote presentations by Prof.
Anthony K. H. Tung National University of Singapore, Prof. Lei Chen The Hong Kong
University of Science and Technology, and Prof. Ashraf Aboulnaga Qatar Computing
Research Institute.

We wish to thank everyone who helped with the organization including the chairs of
each workshop, demonstration chairs, and tutorial chairs and their respective PC
members and reviewers. We thank all the authors who submitted their work, all of
which contributed to making this part of the conference a success. We are grateful to
the general chairs, Xue Li from The University of Queensland, Australia, and Nat
Vorayos from Chiang Mai University, Thailand. We thank the local Organizing
Committee chairs, Juggapong Natwichai and Krit Kwanngern from Chiang Mai



University, Thailand, for their tireless work before and during the conference. Special
thanks go to the proceeding chairs, Yongxin Tong Beihang University, China and
Juggapong Natwichai Chiang Mai University, Thailand, for producing the proceedings.

We hope that you will find the proceedings of DASFAA 2019 interesting and
beneficial to your research.

March 2019 Guoliang Li
Joao Gama
Jun Yang
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Abstract. The efficiency of a query execution plan depends on the accu-
racy of the selectivity estimates given to the query optimiser by the
cost model. The cost model makes simplifying assumptions in order to
produce said estimates in a timely manner. These assumptions lead to
selectivity estimation errors that have dramatic effects on the quality
of the resulting query execution plans. A convenient assumption that
is ubiquitous among current cost models is to assume that attributes
are independent with each other. However, it ignores potential correla-
tions which can have a huge negative impact on the accuracy of the cost
model. In this paper we attempt to relax the attribute value indepen-
dence assumption without unreasonably deteriorating the accuracy of
the cost model. We propose a novel approach based on a particular type
of Bayesian networks called Chow-Liu trees to approximate the distribu-
tion of attribute values inside each relation of a database. Our results on
the TPC-DS benchmark show that our method is an order of magnitude
more precise than other approaches whilst remaining reasonably efficient
in terms of time and space.

Keywords: Query optimisation · Cardinality estimation ·
Bayesian networks

1 Introduction

During query processing [34], each query goes through an optimisation phase
followed by an execution phase. The objective of the optimisation phase is to
produce an efficient query execution plan in a very short amount of time. The
query optimiser draws on the cardinality estimates produced by the cost model
for each relational operator in a given plan. Bad cardinality estimates propagate
exponentially and have dramatic effects on query execution time [15]. Cardinality
estimates are usually made based on a set of statistics collected from the relations
and stored in the database’s metadata. Such statistics are kept simple in order
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to satisfy the limited time budget the query optimiser is allocated. However they
usually don’t capture attribute dependencies.

Formally, given a query Q(R,J ,A) over a set of relations R, a set of join
predicates J and a set of attribute predicates A, the cardinality of the query is
computed as follows:

|Q(R,J ,A)| = P (J ,A) ×
∏

R∈R
|R| (1)

where P (J ,A) is the selectivity of the query and
∏

R∈R |R| is the number of
tuples in the Cartesian product of the involved relations. The problem is that
P (J ,A) is not available. Moreover estimating it quickly leads to a combinato-
rial explosion. Simplifying assumptions are made in order to approximate the
selectivity whilst ensuring a realistic computational complexity [34].

The first assumption that is commonly made is that attributes are inde-
pendent within and between each relation. This is the so-called attribute value
independence (AVI) assumption. It allows to simplify the computation as follows:

P (A) �
∏

AR∈A
P (AR) �

∏

AR∈A

∏

ai∈AR

P (ai) (2)

where P (AR) refers to the selectivity concerning relation R whilst P (ai) stands
for the selectivity of a predicate on attribute ai. In practice the AVI assumption
is very error-prone because attributes often exhibit correlations. However it is
extremely practical because each distribution P (ai) can be condensed into a
one-dimensional histogram P̃ (ai).

Next, the join predicate independence assumption implies that join selectivi-
ties can be computed independently, which leads to the following approximation:

P (J ) �
∏

Ji∈J
P (Ji) (3)

Assume we are given two relations R and S. We want to join both relations
on their respective attributes R.K and S.F . In this case the selectivity of the
join (denoted J) can be computed exactly [34]:

P (J) = min(
1

|J.R.K| ,
1

|J.S.F | ) (4)

The previous assumption doesn’t usually hold if multiple foreign keys are
included in a join [15]. Finally, the join uniformity assumption states that
attributes preserve their distributions after joins. This allows the following
simplification:

P (J ,A) � P (J ) × P (A) (5)

Most relational databases [2,13,36] assume all the previous assumptions in
conjunction, which leads to the following formula:

P (J ,A) �
∏

Ji∈J
min(

1
|Ji.R.K| ,

1
|Ji.S.F | ) ×

∏

AR∈A

∏

ai∈AR

P̃ (ai) (6)
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In practice the previous approximation is much too coarse and is frequently
wrong by orders of magnitude. However it only requires storage space that grows
linearly with the number of attributes and doesn’t involve any prohibitive com-
putation. In other words accurate cardinality estimation is traded in exchange
for a low computational complexity. The natural question is if a better trade-off
is possible. That is, one that relaxes any of the previous assumptions.

A lot of work has gone into developing attribute-level synopses [12,32] which
approximate the distribution P (a) of each attribute a. Mostly this involves using
histograms and other well-studied statistical constructs. Although theoretically
sound, these methods do not help in handling commonplace queries that involve
more than one attribute predicate. Furthermore, table-level synopses [27] have
been proposed to capture dependencies between attributes. The problem is that
methods of this kind, such as multi-dimensional histograms, usually require an
amount of storage space that grows exponentially with the number of attributes.
Table-level synopses also includes various sampling methods [25,30,38] where the
idea is simply to execute a query on a sample of the database and extrapolate the
cardinality. Although they don’t handle dependencies across relations, they are
computationally efficient because they don’t require joins. Finally, schema-level
synopses [6,19,23,38] attempt to soften the join uniformity and join predicate
independence assumptions. Although these methods have the potential to han-
dle join-crossing correlations [21], they require a prohibitive amount of compu-
tational resources because of the amount of joins they necessitate.

Accurate schema-level methods based on Bayesian networks have been pro-
posed [10,37]. A Bayesian network factorises a distribution in order to represent
it with a product of lower dimensional distributions. Each lower dimensional dis-
tribution captures a dependency between two or more attributes. For example
the distribution P (hair, nationality) can be factorised as P (hair|nationality)×
P (nationality) because a person’s hair colour is correlated with his national-
ity. The trick is that finding the right factorisation is an NP-hard problem [18].
Moreover the time required to produce estimates increases with the complex-
ity of the factorisation [33]. The method proposed in [10] successfully captures
attribute dependencies across relations but it requires a prohibitive amount of
computational complexity that makes it unusable in practice. [37] propose a sim-
pler method that only attempts to capture dependencies between two relations
at most. Although their proposal is more efficient, it still requires performing a
significant amount of joins. Moreover the factorisation structures used in both
proposals incur an inference procedure that doesn’t run in linear time. We believe
that giving up some of the accuracy of existing proposals leads to methods that
strike a better balance between accuracy and computational complexity. To this
extent we propose to factorise the distribution of attributes only inside each
relation. We argue that having reliable selectivity estimates for single relations
is fundamental for estimating the size of joins [15]. Furthermore we propose to
extend a particular type of Bayesian networks called Chow-Liu trees. These allow
us to use network structures that are efficient space-wise and can be queried in
sub-linear time. Although our approach doesn’t capture as many dependencies
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as in [10] and [37], it can be compiled quicker and can produce selectivity esti-
mates in less time. Moreover it is still an order of magnitude more precise than
trivial models that assume independence.

The rest of this paper is organised as follows. Section 2 gives an overview of
existing methods and their associated pros and cons. This is also where we intro-
duce some notions relating to Bayesian networks. Section 3 is where we describe
our model and show how it can efficiently be used for the task of selectivity
estimation. Section 4 compares our model to PostgreSQL’s cost engine and to a
Bernoulli sampling estimator on the TPC-DS benchmark. We explain in what
cases our model succeeds and in what cases it doesn’t bring anything to the
table. Finally, Sect. 5 concludes and points to some research opportunities.

2 Related Work

2.1 Distribution Estimation

The most prominent approach in cost-based query optimisation is to approxi-
mate the distribution of attributes of a given database. This has been an area
of research ever since equi-width histograms were used for summarising a sin-
gle attribute [20]. Equi-height histograms are commonly used because of their
provably lower average error [30]. Meanwhile [16] showed that histograms that
minimise the average selectivity estimation error are ones that minimise variance
inside each bucket. These histograms are usually called V-optimal histograms and
involve a prohibitive mathematical optimisation process. As a compromise, [16]
introduced the notion of biased histograms to find a balance between memorising
exact frequencies and approximating them. Histograms are well understood in
theory and ubiquitously used in practice, however they don’t capture dependen-
cies between attributes.

Multi-column histograms [3,12,27] have been proposed to handle dependen-
cies between two or more attributes. Although they are sound in theory, in prac-
tice they are difficult to build and even more so to update [28]. Moreover they
require storage space that grows exponentially with the number of attributes.

To mitigate the exponential growth problem of multi-dimensional histograms,
one approach is use a factorised representation of a distribution. The idea is to
represent a distribution P (Ai, . . . , An) as a product of smaller conditional dis-
tributions P (Ai|Parents(Ai)). For example the distribution P (A1, A2, A3) can
be estimated as P̂ (A1, A2, A3) = P (A1|A2)P (A3|A2)P (A3). P̂ (A1, A2, A3) is
necessarily an approximation because it doesn’t capture the three-way interac-
tion between A1, A2, and A3. The benefit is that although P̂ (A1, A2, A3) is an
approximation, it requires less storage space. Moreover if A1 and A3 are inde-
pendent then no information is lost. Bayesian networks [18] have been shown to
be a strong method to find such approximations. However, querying a BN is an
NP-hard problem [8] and can take a prohibitive amount of time depending on the
structure of the network. Moreover, off-the-shelf implementations don’t restrict
the structure of the final approximation. This leads to approximations which
either require a prohibitive amount of storage space, or are too slow, or both.
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BNs are classically studied in the context of a single tabular dataset. However in
a relational database the data is contained in multiple relations that share rela-
tionships. [10] first introduced probabilistic relational models that could handle
the relational setting. They introduced the notion of a join indicator to relax the
join uniformity assumption. However for structure learning and inference they
use off-the-shelf algorithms with running complexities that are way too pro-
hibitive for a database context. [37] extended this work and proposed to restrict
the dependencies a BN can capture to be between two relations at most. Even
though their procedure is more efficient, it still requires joining relations, albeit
only two at once. Both of these proposals work at a schema-level and require
performing a prohibitive amount of joins. Although existing methods based on
Bayesian networks seem promising, we argue that they are still too complex to
be used at a large scale.

The problem of learning distributions is that they inescapably require a lot
of storage space. A radically different approach that has made it’s mark is to
execute the query on a sample of the database in order to extrapolate the query’s
cardinality.

2.2 Sampling

Sampling is most commonly used to estimate selectivity for a query that per-
tains to a single relation [30]. The simplest method is to sample a relation Ri

with probability pi. The obtained sample ri will then contain |Ri| × pi tuples.
To estimate the selectivity of a query on Ri one may run the query on it’s
associated sample ri and multiply the cardinality of the output by 1

p . This is
commonly referred to as Bernoulli sampling and works rather well given a suffi-
cient sample size. Adaptive methods [25] have also been proposed to determine
an optimal sample size for each relation. Sampling is attractive because it is
simple to implement and naturally captures dependencies between attributes.
Moreover, sampling can be performed on multiple relations in order to capture
inter-relational attribute dependencies.

Sampling across multiple relations is a difficult task. Indeed [4] showed that
the join of independent uniform samples of relations is not a uniform sample of
the join of the relations. Many methods have been proposed for two-way joins
[29,38]. Their common idea is to use a hash function h(a) → [0, 1] to make sure
joined samples share keys. Say R1 has an attribute A1 which is a foreign key to an
attribute A2 of a relation R2. By applying the same hash function h(a) to both
attributes, one may obtain samples which preserve join relationships by keeping
all the tuples that satisfy h(a) < p. This way all tuples from both relations that
satisfy h(a) < p will be included in the sample. The unbiased estimator for the
size of the result of the join is J(R1, R2) is J(r1,r2)

p . Although quite strong in
theory, join-aware sampling [24] requires a prohibitive full pass over the involved
relations if no index is available. Moreover, this approach doesn’t necessarily
extend to joins involving more than two relations [1].
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2.3 Learning

To completely sidestep the difficulties inherent to query optimisation, learning
procedures that correct their mistakes have been proposed [5,19,35]. In the case
of database optimisation learning has been used to tune various models and
to memorise observed selectivities. This is done by query feedback where the
cost model gets access to the actual cardinalities [5] after the query execution
phase. By comparing the estimates it has made with the actual values it can
make adjustments with the goal of making less mistakes for subsequent queries.
The most successful method in this category is DB2’s LEO optimiser [35]. The
approach LEO takes is simply to memorise the true cardinality of error-prone
parts of executed query plans. This works remarkably well in an environment
where a given query is run repeatedly. However it doesn’t help for estimating the
cardinality of unseen queries. Recently an interesting approach based on deep
learning has also been proposed [19]. Apart from LEO, learning approaches have
not yet matured enough to be used in practice.

2.4 Discussion

All of the previously mentioned methods offer a different compromise in terms
of accurate cardinality estimation, temporal complexity, and spatial complexity.
On the one hand, histograms are precise, quick, and lightweight. However, they
require a prohibitive amount of storage space if one wishes to capture attribute
dependencies. On the other hand, sampling can easily capture attribute depen-
dencies; but it is too slow because either the sample has to be constructed online
or loaded in memory. Finally learning is an original take on the problem but it
doesn’t help for unseen queries. Our contribution is to use Bayesian networks to
factorise the distribution of the attributes of each relation. This way we capture
the most important attribute dependencies and ignore the unimportant ones to
preserve storage space. A huge benefit of our method is that we can optimise
each Bayesian network on a sample of the associated relation to save time with-
out a significant loss in accuracy. The downside is that like most methods we
ignore dependencies between attributes of different relations.

3 Methodology

3.1 Finding a Good Network

A Bayesian network (BN) factorises a probability distribution P (X1, . . . , Xn)
into a product of conditional distributions. For any given probability distribution
P (X ) there exist many possible BNs. For example P (hair, nationality, gender)
can be factorised as P (hair|nationality)P (gender|nationality)P (nationality)
as well as P (hair|(nationality, gender))P (nationality)P (gender) (see Fig. 1).
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Fig. 1. Possible factorisations of P (hair, nationality, gender)

The goal of structure learning is to find a BN that closely matches P (X )
whilst preserving a low computational complexity. Indeed, for any given BN, the
cost of storing it and of computing a marginal distribution P (Xi) depend on it’s
structure.

The classic approach to structure learning is to define a scoring function that
determines how good a BN is – both in terms of accuracy and complexity –
and to run a mathematical optimisation procedure over the possible structures
[11]. The problem is that such kind of procedures are too costly and don’t fit
inside the tight computational budget a database typically imposes. Recently
linear programming approaches that require an upper bound on the number of
parents have also been proposed [17]; in practice these can handle problems with
up to 100 variables which is far from ideal. Finally, one can also resort to using
greedy algorithms that run in polynomial time but don’t necessarily find a global
optimum.

Chow-Liu trees [7] is one such method that finds a BN where dependencies
between two attributes are the only ones considered. Building a Chow-Liu tree
only involves three steps. Initially the mutual information (MI) between each
pair of attributes is computed. These values define a fully connected graph G
where each MI value is translated to a weighed edge. Next, a minimum spanning
tree (MST) of G is retrieved. This can be done in O(nlog(n)) time where n is
the number of attributes. Finally the MST has to be directed by choosing a node
at random and defining it as the root.

We choose to use Chow-Liu trees for two practical reasons. First of all they
are simple to construct. The only part that doesn’t scale well is computing the
MI values. However this can be accelerated by using a coarser representation of
the data such as histograms. Moreover the process can be run over a sample of
a relation. In our experience these two tricks greatly reduced computation time
without hindering the accuracy of the resulting trees. Secondly the output net-
work is a tree – hence there is only one parent per node. This is practical because
retrieving a marginal distribution – in other words inferring – from a tree can
be done in linear time [33]. Moreover, storing the network only requires saving
n − 1 two-dimensional distributions and one uni-dimensional distribution. On
top of this, [7] proves that Chow-Liu trees minimise the KL divergence, meaning
that they are the best possible trees from an information theory perspective. The
downside is that they can’t capture dependencies between more than 2 variables
– for example it only snows if it’s cold and rainy. However in our experience
these kind of dependencies are not so common.
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3.2 Estimating the Conditional Probabilities

Once a satisfying structure has been found, the necessary probability distribu-
tions have to be computed. Indeed recall that a Bayesian network is nothing
more than a product of conditional probability distributions (CPD). A CPD
gives the distribution of a variable given the value of one or more so-called par-
ent variables (Table 1). For example Tables 2 and 3 are two CPDs that are both
conditioned on the nationality variable.

Table 1. P (nationality)

American Swedish

0.5 0.5

Table 2. P (hair|nationality)

Blond Brown Dark

American 0.2 0.6 0.2

Swedish 0.8 0.2 0

Table 3. P (gender|
nationality)

Male Female

American 0.5 0.5

Swedish 0.45 0.55

The number of values needed to define a CPD is cp+1 where c is the cardinal-
ity of each variable – for simplicity we assume it is constant – and p is the number
of parent variables. This stems from the fact that each CPD is related to p + 1
variables and that each and every combination of values has to be accounted for.
The fact that Chow-Liu trees limits the number of parents each node has to 1
means that we only have to store c2 values per distribution. Moreover a sparse
representation can be used to leverage the fact that 0s are frequent. However, if
the cardinality of a variable is high then a lot of values still have to be stored.
This can be rather problematic in a constrained environment.

To preserve a low spatial complexity we propose to use end-biased histograms
described in Subsect. 2.1. The idea is to preserve the exact probabilities for the
k most common values of a variable and put the rest of the probabilities inside
j equi-height intervals. Using equi-height intervals means that we don’t have
to store the frequency of each interval. Indeed it is simply 1 − ∑

i=1 P (MCVi)
where P (MCVi) denotes the frequency of the ith most common value. Instead,
by assuming that the values inside an interval are uniformly distributed, we only
have to store the number of distinct values the interval contains. Table 4 shows
what a CPD with intervals looks like. In the example, given that a person is
American, there is probability of 1 − (0.2 + 0.5) = 0.3 that his hair colour is in
the [Dark, Red] interval. Because there are 3 distinct values in the [Dark, Red]
interval, the probability that an American has, say, hazel hair is 1−(0.2+0.5)

3 = 0.1.

Table 4. P (hair|nationality) with k = 2 and j = 1

Blond Brown [Dark, Red]

American 0.2 0.5 3

[British, French] 0.4 0.3 3

Swedish 0.8 0.2 0
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Compressing a CPD this way means we only have to store (k + j)2 values
per distribution. If we assume that there are n attributes inside a relation then
storing a Bayesian networks requires (k+j)+(n−1)(k+j)2 values in total – the
first (k + j) corresponds to the network’s root node which is not conditioned on
any other variable. This has the added advantage that we can handle continuous
variables that usually have extremely high cardinalities.

Fortunately, retrieving CPDs inside a relational database can easily be done
with the GROUP BY and COUNT statements. Moreover, the CPDs can be computed
on a sample of the relations to reduce computation time. Whats more, if data
is appended to the database then only the CPDs have to recomputed if one
assumes the structures of the Bayesian networks remain constant through time.
However, if new attributes are added to a relation then the structure of it’s
Bayesian network has to be rebuilt from scratch.

3.3 Producing Selectivity Estimates

As previously mentioned, inference is the task of obtaining a marginal distribu-
tion from a Bayesian network. For example we may want to know the probability
of Swedish people having blond hair (i.e. P (hair = “Blond” ∧nationality =
“Swedish”)). The idea is to treat the obtained probability as the selectivity
of the associated relational query. For each relation involved in a query, we
identify the part of the query that applies to the relation and determine it’s
selectivity. Then, by assuming that attributes from different relations are inde-
pendent, we simply multiply the selectivities together. Although this is a strong
assumption, we argue that capturing table-level dependencies can still have a
significant impact on the overall cardinality estimation. Of course we would be
even more precise if we had determined dependencies between different relations
as in [10,37], but it would necessarily involve joins. In other words our method
offers a different trade-off between accuracy and computational feasibility.

Performing inference over a BN is an NP-hard problem [8]. However, because
we have restricted our BNs to trees, we can make full use of purpose-built algo-
rithms that only apply to trees. The variable elimination (VE) algorithm [9] is
a simple exact inference algorithm that can be applied to any kind of network
topology. Specifically the complexity of VE is O(n exp (w)) where n is the num-
ber of nodes and w is the width of the network [33]. However the width of a tree
is necessarily 1, meaning VE can run in O(n) time. The formula for applying
VE is given in (7), wherein k attributes are being queried out of a total of n.

P (A1 = a1, . . . , Ak = ak) =
n∑

i=k+1

k∏

j=1

P (Aj = aj |Parents(Aj)) (7)

The idea of VE is to walk over the tree in a post-order fashion – i.e. start
from the leaves – and sum up each CPD row-wise. This avoids unnecessarily
computing sums more than needed and ensures the inference process runs in
linear time. The computation can be further increased by noticing that not all
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nodes in a BN are needed to obtain a given marginal distribution [18]. Indeed
the VE algorithm only has be run on a necessary subset of the tree’s nodes which
is commonly referred to as the Steiner tree [14]. Extracting a Steiner tree from
a tree can be done in linear time (see Algorithm 1).

G

S N

H P

Fig. 2. Steiner tree in blue containing nodes G, N, and H needed to compute H’s
marginal distribution (Color figure online)

In our case we are using CPDs with intervals, meaning that we have to tailor
the VE algorithm around them. Fortunately this is quite simple as we only have
to check if a given value is an interval or not. Range queries can be handled by
interpolating inside the interval whilst for equality queries we can assume that
all distinct values in the interval are equally frequent (Fig. 2).

Algorithm 1. Steiner tree extraction
1: function Walk(node, required, path, relevant)
2: if required is empty then
3: return {}
4: else if node in nodes then
5: required ← required \ {node}
6: relevant ← relevant ∪ path
7: end if
8: path ← path ∪ {node}
9: for child ∈ node.children() do

10: relevant ← relevant ∪ Walk(child, required, path, relevant)
11: end for
12: return relevant
13: end function

14: function ExtractSteinerTree(tree, nodes)
15: nodes ← nodes ∪ tree.root()
16: relevant ← Walk(tree, nodes, {}, {})
17: return tree.subset(relevant))
18: end function
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4 Experimental Study

4.1 Setup

We implemented a prototype of our method along with the Bernoulli sampling
described in Sect. 2.2 and the textbook method described in the introduction.
We chose these two methods because they are realistic and are used in practice.
We would have liked to compare our method to previous Bayesian approaches
proposed in [10,37], however we were not able to accurately reproduce their
results given the available information. We expect our method to be less accurate
but much more computationally efficient. Our goal is to quantitatively show why
our method offers a better trade-off than the other two implemented methods.
We ran all methods against a small subset of the queries contained in the TPC-
DS benchmark [31] with a scale factor of 201. We only picked queries that apply
more than one attribute predicate on at least one relation and that exhibit
dependencies. We chose this subset on purpose because our model doesn’t bring
anything new to the table if there is only one predicate. Indeed if there is only
one predicate then our model is equivalent to the textbook approach of using
one histogram per attribute.

We used four criteria to compare each method: (1) The construction time.
(2) The accuracy of the cardinality estimates. (3) The time needed to make a
cardinality estimate. (4) The number of values needed to store the model. We
ran our experiments multiple times to get statistically meaningful results. First
of all we used 10 different sample sizes to determine the impact of sampling.
Then, for each combination of method and sampling size we took measurements
with 10 different seeds. For each measurement we thus calculated it’s mean
and it’s standard deviation. To make the comparison fair we used equi-height
histograms with the same parameters for both the textbook and the Bayesian
networks approaches. Specifically we stored the exact frequencies of the 30 most
common values and approximated the rest with 30 buckets.

4.2 Construction Time

We first of all measured the time it takes to construct each model (see Fig. 3).
Naturally sampling is the method that takes the least time because noth-
ing has to be done once the sample is retrieved from the database. The
textbook and Bayesian network ours, that is) methods necessarily take longer
because they have to perform additional computations after having obtained
the sample. The textbook method only has to build equi-height histograms. The
Bayesian network method requires slightly more involved calculations. It spends
most of it’s time computing mutual information scores and processing GROUP BY
operations. Although these operations are unavoidable, their running time can
be mitigated as explained in Sect. 3.1. Moreover the GROUP BY results used for
computing mutual information scores can be reused for parameter estimation as

1 Specifically we used the following queries: 7, 13, 18, 26, 27, 53, 54, 91.
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explained in Sect. 3.2. However for the sake of simplicity we didn’t implement
these optimisations in our prototype. Still, the results we obtained seem better
than those presented in [37] where the authors claim their method can process
a database of 1 in about an hour. Our method can process the same amount of
data in under 8 min.

4.3 Cardinality Estimates

We then compared methods based on their average accuracy. In other words we
ran each method against each query and measured the average error. Although
our method improves the accuracy of cardinality estimation for queries on a
single relation; our goal in this benchmark is to measure how much this will
impact the overall accuracy for general queries over multiple relations. It is
possible that some queries bias the average accuracy because each query returns
a number of rows that can vary in magnitude in regard to the others. Because
of this, typical metrics such as the mean squared error (MSE) can’t be used.
[26] explain why using average multiplicative errors makes the most sense in the
context of query optimisation. For a given number of rows y and an estimate ŷ

we calculated the q-error [22] which is defined as q(y, ŷ) = max(y,ŷ)
min(y,ŷ) .
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Fig. 3. Construction time

The advantage of the q-error is that it returns an error that is independent
of the scale of the values at hand. Moreover the q-error is symmetric will thus
be the same regardless of the fact that we are underestimating or overestimating
the cardinality. For each combination of method and sampling rate we averaged
the q-error over all 8 queries. As previously mentioned we took measurements
with different samples so to reduce any possible bias in the results. The results
are displayed in Fig. 4.

Unsurprisingly, the textbook method produces estimates that are off by sev-
eral orders of magnitude. What is more interesting is that Bayesian networks
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Fig. 4. Average errors

are significantly better than sampling. The reason this occurs is because the
sampling method doesn’t place any uncertainty as to if a value is present in a
relation or not. A value is either in a sample or not. Meanwhile the Bayesian
networks method uses histograms to approximate the frequencies of the least
common values. This has a significant impact on the overall average, at least for
the subset of queries we chose.

4.4 Inference Time

We also measured the average time it takes to estimate the selectivity of a query.
A query optimiser has a very small amount of time to produce a query execution
plan. Only a fraction of this time can be allocated to cardinality estimation. It is
thus extremely important to produce somewhat accurate cardinality estimates
in a timely fashion. We recorded our results in Fig. 5.
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Fig. 5. Cardinality estimation time
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As can be seen the main pitfall of the sampling method is that it takes a
considerable amount of time to estimate a cardinality. This is expected because
for each set of predicates a full pass has to be made on the according sample.
Whats more we didn’t even take into account the fact that the necessary samples
have to be loaded in memory beforehand. As for the textbook method, it only has
to read values from a histogram. Meanwhile the Bayesian networks method has
to extract the Steiner tree and perform variable elimination on it as explained
in Sect. 3.3. This is naturally more burdensome than simply looking up values
in a histogram, but it is still on the same order of magnitude in terms of time.

4.5 Disk Usage

Finally we measured the number of values needed to store each model. For
the sampling method each and every sample has to be stored. Meanwhile the
textbook and Bayesian networks methods are synopses and require storing a
significantly lesser amount of values. In our experiments the worse case storage
bounds of both of these methods are pessimistic. For example in our experiments,
the theoretical upper bound textbook method is around 32000 values, but only
53% of the values actually need to be stored (the other 47% are 0s). Moreover
the same occurs for the Bayesian networks method; indeed for a 5% sample only
around 300000 values out of the theoretical 400000 have to be stored. This is
due to the fact that some attributes have a very low number of unique values
which makes the associated histograms smaller than expected.

Table 5. Storage size per method using a 5% sampling rate

Size Sparsity Effective size

Textbook 117KB 47% 62KB

Sampling 412MB 0% 412MB

Bayesian network 615KB 24% 467.4 KB

The numbers presented in Table 5 were obtained by using a 5% sample of
the database. Apart from the sampling method the numbers are more or less the
same when using different sample sizes. Indeed histograms and conditional prob-
ability distributions have a fixed size which doesn’t increase with the amount of
data they synthesise. Meanwhile using sampling means that the whole has to be
stored either in memory or on the disk. We noticed that the higher the dependen-
cies between the attributes, the higher the sparsity of the conditional probability
distributions. This is expected because of soft functional dependencies that lead
the conditioned histograms to possess only a few values.

5 Conclusion

The majority of cost models are blindfolded and do not take into account
attribute dependencies. This leads to cardinality estimation errors that grow
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exponentially and have a negative impact on the query execution time. To pre-
vent this we propose a novel approach based on Bayesian networks to relax the
independence assumption. In contrast to prior work also based on Bayesian net-
works we only capture dependencies inside each relation. This allows our method
to be compiled in much less time and to produce selectivity estimates in sub-
linear time. We do so by restricting the structure of the network to a tree and by
compressing each attribute’s conditional probability distributions. We ran our
method on a chosen subset of the TPC-DS benchmark and obtained satisfying
results. Our method is an order of magnitude more accurate than estimates that
assume independence, even though it doesn’t attempt to capture cross-relational
dependencies. Although our method requires storing a few two-dimensional dis-
tributions, the storage requirements are a tiny fraction of those of sampling
methods.

Like other table-level synopses, our model does not capture dependencies
between attributes of different relations. Whats more it doesn’t help in deter-
mining the size of multi-way joins. In the future we plan to work on these two
aspects of the cardinality estimation problem.
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Abstract. Cross-modal hashing has drawn increasing research interests
in cross-modal retrieval due to the explosive growth of multimedia big
data. However, most of the existing models are trained and tested in a
close-set circumstance, which may easily fail on the newly emerged con-
cepts that are never present in the training stage. In this paper, we pro-
pose a novel cross-modal hashing model, named Cross-Modal Attribute
Hashing (CMAH), which can handle cross-modal retrieval of unseen cat-
egories. Inspired by zero-shot learning, attribute space is employed to
transfer knowledge from seen categories to unseen categories. Specifi-
cally, the cross-modal hashing functions learning and knowledge transfer
are conducted by modeling the relationships among features, attributes,
and classes as a dual multi-layer network. In addition, graph regulariza-
tion and binary constraints are imposed to preserve the local structure
information in each modality and to reduce quantization loss, respec-
tively. Extensive experiments are carried out on three datasets, and the
results demonstrate the effectiveness of CMAH in handling cross-modal
retrieval for both seen and unseen concepts.

Keywords: Cross-modal retrieval · Unseen classes · Zero-shot learning

1 Introduction

Recent years have witnessed the rapidly increasing interests in cross-modal
retrieval that is becoming significant and imperative for many real-world appli-
cations, such as using image to search the relevant text documents or searching rel-
evant images with given text query [2,6,15,31,32]. Due to the large-scale and high-
dimensional properties of multimodal data, cross-modal hashing which has shown
fairly impressive performance in reducing storage cost and improving retrieval
speed, has been investigated intensively over the last few years [5,11,14,23,33].
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It is worth noting that, most of the current cross-modal hashing models are
trained and tested in a close set i.e. the training and test categories are identical.
However, with the explosion of newly-emerging concepts, it is infeasible to label
data for each class. Additionally, the number of labelled data for these new
concepts may be far from sufficient to build high-quality cross-modal hashing
model. The existing methods perform well on the seen data, but they may easily
fail on the unseen concepts that are never present before in the training stage.
This gives rise to an emerging demand to explore the problem of cross-modal
retrieval for unseen concepts.

Such learning with no data in unimodal scenario is termed zero-shot learning
(ZSL) [12,13,16,26] that has been widely studied in recent years. The fundamen-
tal goal of zero-shot learning is recognizing objects from classes that are not seen
during training. The key challenge of achieving this goal is to transfer knowl-
edge from the limited seen categories to unseen categories. Most of the previous
approaches employ an intermediate semantic space to conduct knowledge trans-
fer as well as to bridge the semantic gap between low-level visual feature and
high-level class label. For example, the authors in [26] proposed to learn semantic
embedding projection by matrix tri-factorization and manifold regularization. In
[13], semantic autoencoder is employed to learn a projection that can generalize
better to new unseen classes. In contrast, orthogonal semantic-visual embedding
was developed in [16] to inversely use semantic space to infer visual features for
unseen classes. However, all the above methods focus only on unimodal classi-
fication or recognition scenarios. Only a few works on zero-shot hashing have
been proposed. Zero-shot hashing [29] is one of the first works that focus on
handling visual indexing by hashing for unseen categories. In [27], a multi-layer
hierarchy was proposed for zero-shot image retrieval. However, in real world,
users may be not satisfied with image query, but more comfortable to use other
types of query such as text and sound. To the best of our knowledge, the zero-
shot learning problem in cross-modal retrieval has been rarely investigated in
previous works. In [4], the cross-modal retrieval for unseen categories was first
explored with external knowledge. It utilizes a weight vector to build the con-
nection between seen and unseen classes for knowledge transfer. However, this
method which simply combines the deep networks with dot product operation
uses the pre-trained model with ImageNet that actually includes the informa-
tion of unseen categories. Thus, the experimental results of cross-modal retrieval
for unseen classes are not convincing. Ji et al. also noticed the importance of
cross-modal retrieval for unseen concepts [10]. However, their work explores the
zero-shot cross-modal hashing with images and the class names, which is differ-
ent from the traditional cross-modal tasks i.e. image to text and text to image.
Therefore, this is the first work that explores cross-modal retrieval for unseen
concepts using hashing technique.

In this paper, we consider the problem of handling unseen classes in cross-
modal hashing. The main focus is on generalizing the cross-modal hashing model
from seen classes to unseen classes, which can produce effective hash codes for data
from unseen classes. Motivated by zero-short hashing and the recently proposed
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approaches [21,27,29], a novel cross-modal attribute hashing (CMAH) model is
presented in this work. During the cross-modal hashing functions learning, the
knowledge transfer between seen and unseen categories is conducted with the idea
of modelling the relationships among features, attributes, and classes as a dual
multi-layer network. As shown in Fig. 1, cross-modal data are projected into uni-
fied binary codes that are used to construct the relationship between attributes
and class labels, as well as build the connection of different modalities. More-
over, graph regularization and binary constraints are imposed to preserve the local
structure information in each modality and to reduce quantization loss, respec-
tively. Thus, the learned hashing functions for each modality through seen classes
not only can generate discriminative binary codes for seen classes, but also can
generalize well to the unseen classes. By conducting experiments on three non-
overlapping cross-modal datasets, the effectiveness of our method has been vali-
dated. Compared against the existing cross-modal hashing methods, our method
can effectively handle the cross-modal retrieval for unseen concepts. In addi-
tion, the proposed method also shows superior performance on the cross-modal
retrieval of seen classes.

The main contributions of this paper are:

– A novel cross-modal attribute hashing model is proposed to explore the prob-
lem of cross-modal retrieval in zero-shot scenario. To our best knowledge, this
is one of the first works which explores the cross-modal hashing for handling
unseen classes.

– A cross-modal multi-layer network is developed for simultaneously connect-
ing features, binary codes, attributes, and classes and building relationship
among different modalities. Furthermore, local structure information in each
modality has been preserved in the expected Hamming space.

– Experiments on cross-modal retrieval for both unseen query and seen query
are conducted to evaluate the effectiveness of the proposed method. We find
that the proposed method shows superior performance on both the seen query
and unseen query.

The rest of this paper is organized as follows. The previous works on cross-
modal hashing and zero-shot learning are reviewed in Sect. 2. The proposed
approach is presented in Sect. 3. Section 4 presents the experimental results.
Finally, we conclude our work in Sect. 5.

2 Related Work

Since our work mainly concerns handling the unseen classes in cross-modal
retrieval based on hashing, this section reviews the previous works from two
aspects, i.e. conventional cross-modal hashing and unimodal zero-shot learning.

2.1 Cross-Modal Hashing

Motivated by hashing, a number of methods have been proposed to conduct
cross-modal retrieval. For example, in Collective Matrix Factorization Hashing
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Fig. 1. The framework of the proposed method.

(CMFH) [5], matrix factorization is utilized to learn the latent concepts from
each modality, which has achieved an impressive result on cross-modal retrieval.
In [33], Latent Semantic Sparse Hashing (LSSH) was presented which learns the
semantic concepts of images and text by sparse coding and matrix factorization
respectively. The learned latent semantic features from images and text are then
mapped to a common abstraction space in which the unified hash codes are gen-
erated by quantization. Inspired by CMFH, several supervised extensions [14,23]
have been proposed to formulate the label information for boosting retrieval per-
formance. A unified linear regression model with dragging technique based on
semi-supervised learning for cross-modal retrieval was proposed in [30]. Most
of these methods adopt hand-crafted features as input. Recently, deep neural
networks such as convolutional neural networks (CNN) have drawn considerable
attention in cross-modal retrieval [11,28]. Due to the high-level abstract of orig-
inal data, the CNN based methods perform better than those based on low-level
hand-crafted features. However, these methods suffer from high time complexity
of training CNN. Most importantly, none of hand-crafted or CNN based methods
have considered the cross-modal retrieval for unseen concepts.

2.2 Zero-Shot Learning

Zero-shot learning has become an active topic in recent years due to the rapid
evolution of newly-emerging concepts. Most of the existing methods aim at solv-
ing the recognition task of unseen categories. A promising solution is to find an
intermediate representation which can bridge the semantic gap between visual
features and class labels, and can also transfer knowledge from seen classes to
unseen classes. For instance, the methods including [12,16] project both the
images and class labels into an attribute space, where a simple nearest neigh-
bor classifier can be adopted to recognize the instances from unseen categories.
However, these methods focus only on classification or recognition. Few works
on zero-shot hashing for retrieval have been presented. In [18], the authors inves-
tigated the hashing in the zero shot scenario for image retrieval, in which hash-
ing function is learned based on the combination of similarity preserving and
unsupervised domain adaptation. In [8], a zero-shot hashing based on CNN is
proposed, which considers the similarity transfer, discriminability, and discrete
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hashing comprehensively. However, the existing zero-shot hashing approaches
can only deal with single modality, the circumstance of multiple modalities has
not been explored. Therefore, a novel cross-modal hashing framework that can
handle cross-modal retrieval for unseen classes draws a significant need.

Overall, the cross-modal retrieval for unseen concepts has not yet been inves-
tigated well. The works in [4] and [10] have noticed the importance of this prob-
lem. However, due to the utilization of pre-trained model for feature extraction
and retrieval based on class name, their results are not convincing enough. To
our best knowledge, this paper is one of the first works that explore cross-modal
retrieval for unseen concepts using hashing technique.

3 Approach

In this section, the proposed CMAH for tackling cross-media retrieval of unseen
classes is described in detail followed by the optimization algorithm.

3.1 Problem Definition

The definition of zero-shot cross-modal hashing follows [29]. Given n pairs of
“seen” cross-modal data X(1) = {x

(1)
1 , · · · , x

(1)
n } and X(2) = {x

(2)
1 , · · · , x

(2)
n },

such as images and the associated text, where X(1) ∈ �d1×n, X(2) ∈ �d2×n,
d1 represents the dimensionality of image feature, d2 denotes the dimensionality
of text feature (usually d1 �= d2). The semantic label of the given data is Y ∈
{0, 1}n×c, where c is the size of “seen” classes. Different from the conventional
cross-modal hashing setting in which the training data and testing data are from
the seen classes, we assume that some testing data are from unseen classes which
are never present during training. The goal of our proposed method is to learn
cross-modal hashing model via seen classes and then generalize it to unseen
classes for generating high-quality discriminative binary codes.

3.2 Cross-Modal Attribute Hashing Formulation

Motivated by the recently proposed zero-shot learning approaches [21], the
knowledge transfer is conducted in the intermediate attribute space. As shown in
Fig. 1, we formulate the relationship of cross-modal data, binary codes, attribute,
and class labels as the following loss function:

L1 = ‖Y − BVS‖2F + α
∥
∥
∥B − (X(1))TP1

∥
∥
∥

2

F

+ β
∥
∥
∥B − (X(2))TP2

∥
∥
∥

2

F

s.t. B ∈ {−1,+1}n×k

(1)

where B is the unified binary codes of X(1) and X(2), k is the length of binary
codes, P1 ∈ �d1×k and P2 ∈ �d2×k are cross-modal hashing functions projecting
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images and text to hash codes, and V ∈ �k×a is the mapping matrix from
binary codes to attributes, S ∈ �a×c is the mapping from attributes to semantic
class labels, where a is the number of attributes. Here, we use the word vector
representation of class name as S following the idea of [3].

In addition, the local structure information preserving in each modality is
explored during learning cross-modal hashing functions. Thus, the similar items
in original feature space will share similar binary codes in the Hamming space,
which can further enhance the discriminative capability of learned hashing func-
tions. Laplacian Eigenmaps (LE) [1] is utilized to formulate the structure preser-
vation based on manipulations on an undirected weight graph which indicates
the neighborhood relationship of pairwise data. The objective with respect to
X(1) can be stated as:

min
P1

1
2

n∑

i=1

n∑

j=1

∥
∥
∥PT

1 x
(1)
i − PT

1 x
(1)
j

∥
∥
∥

2

w
(1)
ij (2)

where w
(1)
ij is the similarity of x

(1)
i and x

(1)
j . It usually can be defined according

to the neighborhood relationship as below:

w
(1)
ij =

⎧

⎨

⎩

exp(−‖x
(1)
i −x

(1)
j ‖2

2σ2 ), if x
(1)
i ∈ Nk(x(1)

j ) or x
(1)
j ∈ Nk(x(1)

i ),

0, otherwise.
(3)

where Nk(x(1)
j ) is the k-nearest neighbors of x

(1)
j . The Euclidean distance

between samples x
(1)
i and x

(1)
j is used for finding nearest neighbors. σ is the

bandwidth parameter which is set to σ = 1 in our experiments.
Through algebraic calculation, the objective function in Eq. (2) can be refor-

mulated as:
min
P1

tr(PT
1 X

(1)L1(X(1))TP1) (4)

where L1 is the Laplacian matrix, L1 = D1 − W(1), D1 is a diagonal matrix,
D1(i, i) =

∑

j w
(1)
ij . The elements of W(1) are w

(1)
ij . tr(·) is the trace operator.

Similarly, for modality X(2), we can have:

min
P2

tr(PT
2 X

(2)L2(X(2))TP2) (5)

where L2 is the Laplacian matrix of X(2). Finally, combining the relationship
modeling and local structure information preserving, the overall objective can
be stated as follows:

min
B,V,P1,P2

L1 + L2 + Ω(B,V,S,P1,P2)

s.t. B ∈ {−1,+1}n×k
(6)

where

L2 = λ1tr(PT
1 X

(1)L1(X(1))TP1) + λ2tr(PT
2 X

(2)L2(X(2))TP2) (7)
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where λ1, λ2 are balancing parameters. Inspired by [21], a regularization term
is also integrated which is defined as:

Ω(B,V,S,P1,P2)

= γ ‖VS‖2F + μ ‖BS‖2F + γμ ‖V‖2F + ξ1 ‖P1‖2F + ξ2 ‖P2‖2F
(8)

where γ, μ, ξ1, and ξ2 are trade-off parameters.

3.3 Optimization

It is intractable to directly minimize the objective in Eq. (6) because of the non-
convexity with four matrix variables P1, P2, V, and B. Fortunately, it is convex
with respect to any of them when the others are fixed. Therefore, we employ
an alternative optimization in an iterative manner to address the optimization
problem until convergence. The detailed optimization steps are listed as follows:

Update P1,P2. Fix other variables but P1, then the objective function shown
in Eq. (6) can be simplified as:

min
P1

λ1tr(PT
1 X

(1)L1(X(1))TP1)

+ α
∥
∥
∥B − (X(1))TP1

∥
∥
∥

2

F
+ ξ1 ‖P1‖2F

(9)

By setting its derivative w.r.t P1 to 0, we can have the closed-form solution
stated as follows:

P1 = (αX(1)(X(1))T + λ1X(1)L1(X(1))T + ξ1I)−1αX(1)B (10)

Similarly, P2 can be updated by:

P2 = (βX(2)(X(2))T + λ2X(2)L2(X(2))T + ξ2I)−1βX(2)B (11)

Update V. The objective can be transformed to the following when fixing the
other variables but V:

min
V

‖Y − BVS‖2F + γ ‖VS‖2F + μ ‖BV‖2F + γμ ‖V‖2F (12)

By setting its derivative w.r.t V to 0, we can have the closed-form solution
stated as follows:

V = (BTB + γI)−1BTYST (SST + μI)−1 (13)

Update B. Fixing other variables but B, we can learn the unified binary codes
of image and text directly without relaxation by solving the reformulated opti-
mization stated as:

min
B

‖Y − BVS‖2F + α
∥
∥
∥B − (X(1))TP1

∥
∥
∥

2

F

+ β
∥
∥
∥B − (X(2))TP2

∥
∥
∥

2

F
+ μ ‖BV‖2F

s.t. B ∈ {−1,+1}n×k

(14)
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The optimization defined in Eq. (14) under binary constraint can be easily
solved by using discrete cyclic coordinate descent (DCC) method [22].

The proposed model is summarized in Algorithm1. Through alternative opti-
mization, the objective is minimized in each iterative step, and it will converge
in the end.

4 Experiments

Extensive experiments are carried out in this section to evaluate the effectiveness
of the proposed method in cross-modal retrieval, where some classes may not
have been seen during training. Two tasks i.e. text to image (T2I) and image to
text (I2T), are designed to validate the proposed approach in handling “seen”
and “unseen” cross-modal retrieval. In our experiments, an image and a text are
considered to be relevant if they share the same semantic label.

4.1 Datasets

Wiki [20] dataset consists of 2866 image-text documents. These documents
can be grouped into 10 semantic categories. The images are described in 128-
dimensional bag-of-visual words SIFT feature vectors, while text is represented
by 10-dimensional topic vectors generated by the latent Dirichlet allocation
(LDA) model.

Pascal VOC [7] dataset contains 9963 testing image-tag pairs, which can
be classified into 20 categories. Since several image-tag pairs are multi-labeled,
we select the pairs with only one label as the way in [24]. The image modality
is represented by 512-dimensional GIST features [9], and the representations of
text modality are 399-dimensional word frequency features.

LabelMe [17] dataset contains 2688 outdoor scenes from 8 different classes.
We discard the words that occur in less than 3 times, resulting in 366 unique
words. Thus, the representation of text is a 366-dimensional word frequency.
The images are represented by 512-dimensional GIST features. Additionally, we
delete the samples without tags, which results in a dataset with 2686 image-text
pairs.

All the datasets are completely mutually exclusive, i.e. no overlapping sam-
ples between classes. In terms of attribute mapping S, the word vectors of class
names extracted from GloVe [19] are used in our experiments.

4.2 Settings

We construct the zero-shot scenario for three datasets as follows. For Wiki and
LabelMe, we randomly select 2 classes as the unseen concepts each time, and
the rest as seen classes. For Pascal dataset 4 classes are randomly selected as
unseen classes each time. We report the average result of 10 experiments with
randomly selected unseen concepts.
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Algorithm 1. CMAH
Input: Seen cross-modal data X(1) and X(2), label Y, attribute mapping S, the length

of hash codes k, and parameters α, β, λ1, λ2, ξ1, ξ2, μ, and γ.
Output: Unified hash codes B, hashing functions P1,P2.

1: Compute Laplacian matrix L1,L2

2: Initialize P1, P2, B, V.
3: repeat
4: Update P1, P2 by Eqs. (10) and (11);
5: Update V by Eq. (13);
6: Update B by solving Eq. (14);
7: until convergence
8: return B, P1, P2
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Fig. 2. MAP on unseen query of various approaches with varied hash code lengths on
three datasets.

In order to evaluate the performance on handling unseen classes cross-modal
retrieval. We use the testing data of unseen classes as query set, and we construct
the retrieval set by merging the retrieval set of both seen and unseen classes,
which follows the generalized zero-shot setting in [25]. In addition, the proposed
new model should still have the comparable or even better performance on the
seen classes. To this end, extra experiments of cross-modal retrieval are designed
on the seen classes. The testing data of seen classes are chosen as query set, and
the training data are regarded as retrieval set.

Two widely used metrics are employed to evaluate the performance of cross-
modal retrieval. One is the mean Average Precision (mAP) based on Hamming
ranking of all the retrieval set. The other is the mean precision within Hamming
distance radius 2 (PH2) based on lookup table.
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In our experiments, we empirically set α and β to 0.1. For balancing parame-
ters λ1 and λ2, we set them to 0.1. The trade-off parameters γ, μ, ξ1, and ξ2 are
set to 10−3, 10−3, 10, and 10, respectively. The Laplacian matrix is constructed
within the 5 nearest neighbors. For the optimization procedure, we restrain the
iteration number to 10.

4.3 Baselines

Since this is the first work of cross-modal hashing which considers the zero-shot
scenario, we compare the proposed CMAH against five state-of-the-art meth-
ods including three conventional cross-modal hashing methods and two zero-
shot hashing methods. The former three are CMFH [5], LSSH [33], and Super-
vised Matrix Factorization Hashing (SMFH) [23], respectively. The latter two
are Attribute Hashing (AH) [27] and Zero-Shot Hashing (ZSH) [29]. In partic-
ular, for unimodal methods AH and ZSH, we only fix the length of hash codes
such as 8 bits. Then hashing functions are trained independently on image and
text modality. In the testing phase, the binary codes of text and image for query
and retrieval are generated by the learned hashing functions respectively. The
parameters of the baselines are set according to the suggestion of their original
papers.

4.4 Experimental Results

Results on Unseen Query. Firstly, the performance of handling cross-modal
retrieval for unseen concepts is evaluated from two aspects.

First, the mAP results that indicate the overall performance of cross-modal
retrieval for unseen query are shown in Fig. 2. Compared against the conven-
tional cross-modal hashing approaches CMFH, LSSH, and SMFH, the proposed
method CMAH outperforms them with significant margins in most cases. This
is because they are trained in a close-set circumstance, which makes it limited
to generalize the hashing functions to newly emerged concepts that have never
been present. We also notice that AH and ZSH perform better than CMFH,
LSSH, and SMFH. Since they are excellent zero-shot learning methods, they
can handle the knowledge transfer from seen to unseen classes. However, AH
and ZSH are unimodal methods that ignore the correlation of different modali-
ties. Thus, our CMAH outperforms AH and ZSH in most cases. It demonstrates
the effectiveness of our proposed CMAH in handling cross-modal retrieval for
unseen concepts.

Second, the precision within Hamming radius 2 (PH2) that indicates the local
distribution performance which reveals how far the relevant instances is from the
query item is plotted in Fig. 3. It can be seen that our method outperforms others
in most cases except SMFH on the Labelme dataset. This outlier may be caused
by the weak correlations between unseen and seen classes in LabelMe. Different
from the mAP results, the PH2 of AH and ZSH are inferior than CMFH, LSSH,
and SMFH. This is because the encoding of cross-modal correlation enhances
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Fig. 3. Precision on unseen query of various approaches with varied hash code lengths
on three datasets.
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the performance of cross-modal methods, which is why the unimodal zero-shot
methods AH and ZSH obtain higher mAP but lower precision in most cases.

Moreover, from Fig. 2, we can find that all the methods show a slightly trend
toward degradation. The trend of PH2 of all baselines is similar to mAP but
with more rapid decreasing speed. It is because the longer binary codes can
carry more discriminant information but also introduces noise into the codes. In
contrast, our method generally has a rising trend of PH2 from 8 bits to 32 bits. It
demonstrates that the overall performance decreases slightly as the code length
increases, but more relevant instances are distributed around the query item. It
further depicts our cross-modal multi-layer network can enhance the robustness
to noise. The proposed CMAH is thus able to generate hash codes for unseen
query with high discriminative capability.

An additional observation to the hash code length is that as it increases,
the mAP shows a slightly trend toward degradation, while the precision has a
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rising trend from 8 bits to 16 bits and then decreases rapidly from 16 bits to
64 bits. This phenomenon indicates that an appropriate hash code length which
can balance the information encoding and noise is significant for cross-modal
retrieval for unseen concepts.

We also investigate the correlation between unseen and seen classes by con-
ducting additional experiments on Pascal VOC. One class is selected as the
unseen concept and the rest as seen concepts each time, and thus we have 20
different splits. The mAP results of cross-modal retrieval for the 20 unseen classes
are shown in Fig. 4, respectively. Generally, the T2I task performs better than
I2T task. More importantly, we find that the unseen class that shares more
similar attributes with seen classes will lead to a better performance when con-
ducting unseen query. For example, ‘dining table’ is quit close to four-leg ‘chair’,
and ‘cow’ is similar to ‘horse’ and ‘sheep’. Therefore, the selection of unseen
classes will affect the performance of cross-modal retrieval for unseen concepts.
For this reason, we present the average performance of repeated experiments
with randomly selected unseen classes.

Results on Seen Query. Then, we still evaluate the performance of our
method on seen query i.e. the same test setting with conventional cross-modal
retrieval methods. The mAP results of all approaches are reported in Table 1.
Similarly, the T2I task outperforms I2T tasks. This is because the representation
of text feature is closer to the object semantic than the visual feature. Different
from unseen query, it can be seen that AH and ZSH perform rather poorly, while
CMFH, LSSH, SMFH perform well in the cross-modal retrieval for seen classes.
This is because CMFH, SMFH and LSSH are trained in a close-set circum-
stance, which makes them limited to generalize the hashing functions to unseen
concepts. We can see that the results of our method with varied code lengths are
superior to AH and ZSH with large margin. Compared to the best cross-modal
hashing method, our proposed CMAH performs comparable or even better on
the three datasets. The reason is that our CMAH strives to achieve a balance
between unseen and seen query. CMAH mainly focus on the knowledge transfer
for unseen classes, which degrades slightly the discriminant of generated binary
codes of seen classes. However, due to the utilization of attributes the binary
codes can carry additional discrimination information, which results in superior
performance in some cases such as on LabelMe and Pascal datasets. In addition,
a rising trend is observed on seen query as the code length increases.

Overall Results. Finally, we analyze the average result of cross-modal retrieval
for seen and unseen classes. The average results on three datasets are plotted in
Fig. 5. Generally, it can be observed that our proposed CMAH is superior to the
others, which demonstrates the effectiveness of our method. More over, the cross-
modal methods CMFH, LSSH, SMFH, and our CMAH perform better than the
unimodal method AH and ZSH. In the view of mAP, our method outperforms
others in most cases except ZSH on Pascal with Image to Text task. The results
of cross-modal methods increase steadily as the code length varies from 8 to
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Table 1. MAP results on seen query of all methods with varied hash code lengths on
three datasets.

Task Method
Wiki Pascal VOC LabelMe

8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits

T2I

CMFH 0.4982 0.5281 0.5549 0.5779 0.4125 0.5885 0.5558 0.5314 0.5856 0.5306 0.4879 0.4801

LSSH 0.4698 0.5345 0.5688 0.5926 0.5013 0.5891 0.6362 0.6372 0.6192 0.6513 0.6707 0.7116

SMFH 0.6195 0.6653 0.6677 0.6874 0.4231 0.7216 0.7553 0.8277 0.6438 0.7329 0.6951 0.6291

ZSH 0.1418 0.1435 0.1522 0.1484 0.1165 0.1122 0.1161 0.1139 0.2305 0.2643 0.2657 0.2847

AH 0.2294 0.2295 0.224 0.2074 0.1312 0.1283 0.1226 0.1319 0.2441 0.2386 0.2579 0.2656

CMAH 0.5819 0.6256 0.6420 0.6282 0.7208 0.8417 0.8564 0.8713 0.9151 0.926 0.9252 0.9222

I2T

CMFH 0.2565 0.2579 0.2783 0.2817 0.1848 0.2235 0.2078 0.1969 0.4540 0.4266 0.3927 0.3879

LSSH 0.2292 0.2557 0.2708 0.2673 0.2650 0.2987 0.3094 0.3294 0.6217 0.6705 0.6878 0.7256

SMFH 0.3089 0.3240 0.3414 0.3402 0.2266 0.2828 0.2959 0.3245 0.5504 0.6221 0.6140 0.5607

ZSH 0.1777 0.1803 0.1689 0.1597 0.1105 0.1059 0.1071 0.1055 0.2376 0.2798 0.2566 0.2704

AH 0.2107 0.1924 0.1694 0.1736 0.1119 0.1103 0.1155 0.1120 0.1777 0.1796 0.1861 0.1998

CMAH 0.2342 0.2329 0.2365 0.2503 0.1919 0.2020 0.1900 0.2351 0.7694 0.8017 0.8136 0.8239
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Fig. 5. Average results of seen and unseen query of various approaches with varied
hash code lengths on three datasets.

64 bits. Whereas AH and ZSH present a slightly trend toward degradation. In
terms of PH2, all the baselines reach their peaks at 16 bits and then decrease
dramatically. The overall performance of our proposed CMAH shows a rising
trend on three datasets.

Therefore, we can conclude that our novel model is effective and the com-
petitive in cross-modal retrieval for both seen and unseen concepts.
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Fig. 6. Convergence analysis.

4.5 Convergence Analysis

The convergence of our method is evaluated via empirical experiments on Wiki,
Pascal VOC, and LabelMe when hash code length is 16 bits. As shown in Fig. 6,
our method can swiftly converge within 5 iterations, which demonstrates its
efficiency in real-life applications.

5 Conclusion

In this paper, an exploration on the zero-shot problem in cross-modal retrieval is
conducted. We proposed a novel cross-modal attribute hashing model that can
generalize the hashing functions to newly emerged concepts. A dual multi-layer
network is developed, where attribute plays a crucial role in not only helping
to well transfer knowledge from seen to unseen concepts, but also narrowing
down the semantic gap across visual features, text features, and class labels.
Experiments demonstrated the effectiveness of our model in cross-modal retrieval
for both seen and unseen concepts. With this initial exploration, many problems
are still worthy of further investigation, such as the selection of unseen classes
and the balance between seen query and unseen query.
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Abstract. Analyzing massive patient-centric Electronic Health Records
(EHRs) becomes a key to success for improving health care and treat-
ment. However, the amount of these data is limited and the access to
EHRs is difficult due to the issue of patient privacy. Thus high qual-
ity synthetic EHRs data is necessary to alleviate these issues. In this
paper, we propose a Sequentially Coupled Generative Adversarial Net-
work (SC-GAN) to generate continuous patient-centric data, including
patient state and medication dosage data. SC-GAN consists of two gen-
erators which coordinate the generation of patient state and medication
dosage in a unified model, revealing the clinical fact that the genera-
tion of patient state and medication dosage data have noticeable mutual
influence on each other. To verify the quality of the synthetic data, we
conduct comprehensive experiments to employ these data on real med-
ical tasks, showing that data generated from SC-GAN leads to better
performance than the data from other generative models.

Keywords: Continuous data · Patient-centric sequence ·
Sequentially coupled adversarial learning

1 Introduction

The effective analysis of Electronic Health Records (EHRs) has the potential
to improve clinical outcomes. However, since data of EHRs largely consists of
personal medical information, it raises a significant privacy issue which discour-
ages the public sharing of these data. In addition, the amount of these data
is limited, because most of EHRs are self-governed by healthcare organizations
which require formal collaborations and complex data usage agreements for even
academic research purpose. Thus, the limited access to EHRs becomes the bot-
tlenecks of advancing the field of healthcare [1] and hinders the development of
medical data mining solutions.

Simulation is a standard practice for medical data generation and learn-
ing. Due to the complex hand-crafted rules of simulation design, automatically
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generating synthetic data becomes a fashion for relieving privacy risks and the
data scarcity issue [2,3]. Specifically, deep generative models have recently been
employed for releasing medical data mining [4,5]. The generated medical data
can be exploited for mitigating the risk of privacy and alleviate the data scarcity
issue by data augmentation.

Fig. 1. The records in MIMIC-III show three blood pressure measurements of two
sepsis patients and the vasopressors dosage prescribed to them, where vasopressors is
used to counteract sepsis-induced vasodilation and elevate arterial pressure. The left
patient who takes small dosage of vasopressors shows a declining blood pressure. The
right patient who takes larger dosage has a rising blood pressure.

Generative Adversarial Networks (GANs) [6] train a generative model G
and a discriminative model D simultaneously with antagonistic objectives which
achieves promising results in generating realistic samples such as images [7–9],
text [10,11], etc. Only recently, a very few studies [4,5,12] apply GAN to syn-
thesize medical data generation. However, [4,5] focus on generating patient state
data, ignoring medication dosage data which is another crucial type of patient-
centric data. Although [12] enables the simultaneous generation of patient state
and corresponding medications, it could only generate discrete values at a spec-
ified time, unable to generate continuous sequential medical data which is more
in line with reality.

In this paper, we focus on the generation of continuous patient-centric
sequence, mainly including patient state and corresponding medication dosage
data, both of which play an important role in treatment recommendation [13,14].
The key observation is that the generation of patient state and medication dosage
data have significant mutual influence on each other. On one hand, doctors deter-
mine medication dosage mainly based on patients’ current state, leading to the
generation of medication dosage influenced by the generation of patient state. On
the other hand, the state of patients highly depend on the medication dosage
they take. For example, various fluids and vasopressor dosage strategies have
been proved to cause extreme variations in patient [15]. As shown in Fig. 1,
the blood pressures of sepsis patients are affected by the dosage of vasopressor
they take and the doctor also adjusts vasopressor dosage according to the blood
pressures.
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Inspired by the above observation, we propose a Sequentially Coupled GAN
(SC-GAN) model to generate the state of patients and medication dosage
together, which captures the interaction between them. Specifically, SC-GAN
consists of coupled generators: one is leveraged to first generate current state of
patients and the other further utilizes the acquired state to generate the cor-
responding medication dosage prescribed to each patient. As a result, the two
generators are directly associated and trained jointly in a unified model to benefit
each other.

Our main contributions are summarized as follows:

– We propose SC-GAN which consists of two interacted generators to produce
both the state of patients and the corresponding medication dosage. The
coupled generators capture the mutual influence of their generation, which
is overlooked by previous studies. In addition, we adopt a hybrid loss trick
which combines feature matching loss and standard generator loss to further
improve the performance.

– Experiments on public available real-world EHRs show the treatment rec-
ommendation model trained on the synthetic data generated by our model
achieves better performance than state-of-arts and incorporating the syn-
thetic data into the real datasets can further improve the performance.

2 Related Work

In this section, we overview the related studies from two aspects: sequentially
generative adversarial networks and medical data generation.

2.1 Sequentially Generative Adversarial Networks

Generative adversarial networks are generative models with the mechanism of
adversarial training, where the goal of D is to discriminate between real data
and the samples generated by G, and the goal of G is to fool D with generated
realistic data. Although GANs have achieved impressive success in image gen-
eration [16], there are limited studies using GANs to produce sequential data.
The most conventional methods with this regard are recurrent neural networks
(RNNs). RNNs have been utilized to generate sequential discrete tokens (e.g.,
machine translation [17]) and continuous values (e.g., music data [18,19]). The
most common objective for optimizing RNNs is based on maximum likelihood.
However, utilizing this criterion to generate sequence data has been argued to
suffer from the exposure bias [20]. In contrast, GANs work well to mitigate this
problem. SeqGAN [10] extends GAN with RNN to generate sequences of discrete
word tokens via policy gradient. C-RNN-GAN [21] trains RNNs with adversarial
training for continuous music generation, which is a pioneering study to gener-
ate sequential and continuous data. Several methods also employ convolutional
neural networks (CNNs) for generating audios and images. Although using con-
volutional GANs to generate sequential data may have faster training speed than
recurrent GANs, it loses the Markov property of trajectory samples.
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2.2 Medical Data Generation

The generated medical data helps to build predictive systems in the medi-
cal domain, such as predicting the patient-specific trajectories (e.g., Albumin,
Arterial pH, Calcium, etc.) or recommending treatments for a given patient.
Although the most commonly acceptable approach to generate EHRs dataset
for sharing is de-identification [22], the individual information of the patients
can be re-identified through residual distinguishable patterns [12]. For example,
re-identifying lab tests, demographics, and genomic variants. Generating syn-
thetic data becomes an alternative approach to reduce the privacy risk.

Followed by the successful applications of GANs mentioned above, a set of
studies begin to employ GANs to generate medical data for sharing. Li et al. [23]
proposed a hybrid GAN to generate text reports for medical image with high-
level and low-level modules. Most related to this work, Yahi et al. [5] utilized
RNNs with adversarial learning to generate the laboratory test time series data.
Nevertheless, it overlooks the fact that the patients’ state are highly influenced
by the medications they take. On the other hand, Beaulieu et al. [4] employed
the Auxiliary Classifier Generative Adversarial Network (AC-GAN) [9] to gen-
erate real-valued state of patient to provide a freely accessible public version for
discovery-oriented analysis. Esteban et al. [24] used a recurrent GAN to gen-
erate real-valued time-series state of patients, which also only considered the
generation of state as [9]. Edward et al. [12] combined autoencoder with GAN
to generate the discrete variables such as diagnosis, medication and procedure
codes. However, it only considers one-step generation instead of sequential gen-
eration.

To reflect the clinical fact, we propose SC-GAN to capture the interactions
between continuous state of patients and the medication dosage they take. Specif-
ically, SC-GAN designs coupled generators to produce the interdependent state
and medication dosage. Note that our proposed model is significantly different
from the Multi-Generator generative adversarial net [25] which utilizes multiple
generators to generate one single type of data.

3 Preliminaries

In this section, we first briefly introduce the data of continuous patient-centric
sequence and some basic notations, followed by the problem definition and the
description of GANs with its main variants.

3.1 Data Description and Notations

The major goal of this paper is to generate patient-centric medical sequence
data. Unlike previous studies [4,5,12], we focus on generating continuous values
with consideration of their mutual interactions. Generally, the numerical data
could be categorized into two aspects: (1) patient state data which includes lab
tests, vital signs, intake, etc; (2) medication dosage data.
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Since both patient state data and medication dosage data present sequential
characteristics, we assume st denotes the state data of a patient at time step
t. Noting that to simplify the notations, we omit the subscript about a specific
patient and can apply these notations to different patients. Correspondingly,
we represent the medication dosage data as at. For example, in the clinical
practice, doctors always design proper medication dosage for patients based on
their current state [13,26]. Meanwhile, patient state would vary after taking the
medication dosage.

Based on this intuition, we implement SC-GAN by ensuring that the current
state data st is generated based on the previous state data st−1 and the medica-
tion dosage data at−1, while in turn the medication dosage data at is produced
based on the input of the current state st.

3.2 Problem Definition

The detail of the problem studied in this paper is described in Problem 1.

Problem 1 [Continuous Patient-centric Sequence Generation]. For a
patient with given disease and medication, we aim at generating the sequen-
tial state S = {s1, s2, ..., sT } and corresponding dosage A = {a1,a2, ...,aT } with
the consideration of their mutual interactions.

3.3 Basics of GANs

Generative Adversarial Networks are generative models which consist of two
neural networks: Discriminator Net D(x; θd) and Generator Net G(z; θg), where
z is a random noise. D(x) indicates the probability that x comes from a real data
distribution. To discriminate the real data from synthetic data, it maximizes the
probability of real data and minimizes the probability of synthetic data generated
from G. In contrast, G has the opposite goal which is to generate realistic data
to make D indistinguishable. That is, D and G play the following minimax game
to reach a Nash equilibrium:

minGmaxDV (D,G) = Ex∼pdata(x)[logD(x)]
+Ez∼pz(z)[log(1 − D(G(z)))]

(1)

where pdata represents the distribution of real data. pz(z) denotes the distribu-
tion of noises where normal distribution N (0, 1) and uniform distribution U(0, 1)
are the common choices. D and G are iteratively optimized.

Unfortunately, if the discriminator D is excessively strong, then Eq. 1 may
be unable to give sufficient gradient for G to update its parameters. Instead of
using the objective which maximizes the predicted probability of the discrimi-
nator, Salimans et al. proposed feature matching [27] which is a new strategy to
optimize G.

Feature matching aims at generating samples actually fall into the real data
manifold. It also encourages greater variance in G as well as prevents it from
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overtraining on the current discriminator. Formally, the feature matching loss is
described as follows:

LG = ‖Ex∼pdata
f(x) − Ez∼pz(z)f(G(z))‖22 (2)

where f(x) is the representation of the last layer before the final classification of D.
Inspired by the above methodologies, we provide our SC-GAN model by

coupling two sequential generators in a unified generative adversarial network,
capturing the mutual interaction in continuous patient-centric medical sequence.

4 Methodology

4.1 Overview of SC-GAN

SC-GAN aims at generating synthetic patient-centric medical data which con-
sists of trajectory state data S (S = {s1, s2, ..., sT }) of patients and corresponding
medication dosage A (A = {a1,a2, ...,aT }) during treatment process. Specifi-
cally, the medication dosage data at at time step t is generated based on the
current state data st of a patient, and the current state st is generated based
on the previous state data st−1 and previous medication dosage data at−1. As
shown in Fig. 2, we establish two generators G1 and G2 for generating S and
A respectively, where at is with the input of random noise ẑa

t , state st, and st

is with the input of random noise ẑs
t−1, at−1 and st−1. In other words, the two

generators interact with each other to generate these two categories of data. To
implement the discriminator, we set a classification task to distinguish the real
and synthetic data at each time step.

1
1

0 0 0
0

2
2

1 1 1
1

−1 −1 −1
−1

…

G

D

…

√ × √ × √ ×

Coupled 
Generators

1 1 2 2

G1
G2

^ ^ ^

^ ^ ^

Fig. 2. The general framework of Sequentially Coupled GAN. This model consists
of three main components: a discriminator (a 2-layer bidirectional LSTM) and two
interdependent generators (two 2-layer LSTMs). st indicates trajectory state of the
patients at time-point t. at represents the medication dosage used for patients. ẑat and
ẑst are random noises of the medication dosage and patient state respectively. The
correct symbol (�) indicates the discriminator determines the data is real while the
incorrect symbol (×) indicates the data is judged as synthetic.
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4.2 Coupled Generators

The goal of the coupled generators G1 and G2 is to generate realistic synthetic
medical records of patients to maximize the probability of D for letting D make
a misjudgment. Both G1 and G2 have two layers of long short-term memory
networks (LSTM) [28]. The reasons are that: (1) LSTM is capable of exhibiting
temporal dynamics compared to feed-forward networks and CNNs; (2) LSTM
utilizes three gates to protect and control the cell state, which mitigates the
gradient vanishing and exploding problems compared to RNNs.

G1 generates medicaiton dosage data (a1,a2, ...,aT ) with the input of
sequential continuous state data (s0, s1, ..., sT−1) and a random noise sequence
(ẑa

0 , ẑ
a
1 , ..., ẑ

a
T−1). Formally, at each time step t, the input za

t of G1 is the con-
catenation of st and ẑa

t :
za

t ← [st; ẑa
t ], (3)

at = G1(za
t ), (4)

where st is the output of G2 at time step t and ẑa
t ∈ U(0, 1).

G2 is leveraged to generate the patient state data st with the input of previous
state st−1, the medication dosage data at−1, and the current random noise ẑs

t .
In other words, at each time step of G2, the input zs

t at time step t is the
concatenation of st−1, at−1, and ẑs

t :

zs
t ← [st−1;at−1; ẑs

t ], (5)

st−1 = G2(zs
t−1),at−1 = G1(za

t−1), (6)

where st−1 is the output of G2 at time step t − 1, at−1 is the output of G1 at
time step t − 1, and ẑa

t is also a uniform random value in [0,1].
As shown in Eqs. 4 and 6, the outputs of G1 and G2 are also the inputs of G2

and G1. Combining these two generators together and differentiating different
patients, we minimize the following objective function to train these generators:

LG =
1
N

1
T

N∑

i=1

T∑

t=1

log(1 − D(G(zi,t))) (7)

G(zi,t) = [G1(za
i,t);G2(zs

i,t)] (8)

where N is the number of patients, T is the time length of the patient record.
That is, the optimal generator G should generate both realistic patient state
data and medication dosage data at the same time.

As for training, we first conduct a supervised pretraining step for SC-GAN.
To avoid training an excessively strong discriminator to hamper the genera-
tors optimization, we only pretrain the coupled generators by utilizing the least
square loss to generate the sample of the next time step. The objective function
for the pretraining step is defined as follows:

Lpretrain =
1
N

1
T

N∑

i=1

T∑

t=1

(‖sreal
i,t − G1(za

i,t)‖22

+ ‖areal
i,t − G2(zs

i,t)‖22)
(9)
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where sreal
i,t and areal

i,t indicate the real state and dosage data of patient i at time
step t, respectively. In the pretraining step, the coupled generators are with the
input of concatenation of the random noise and the real data from training set.

During adversarial training, the goal of generator G is to produce samples
which can cheat D. Thus G could map pz(z) to only a few and low-volume
regions. That is, G may produce the same synthetic data. This problem is called
mode collapse. To improve the variance of G and address the instability of GANs,
we combine the feature matching loss shown in Eq. 2 with the standard generator
loss through a weighted linear fusion, which is defined as follows:

LG =
1
N

1
T

N∑

i=1

T∑

t=1

(
λfm

(‖f(strue
i,t ) − f(G1(za

i,t))‖22

+ ‖f(atrue
i,t ) − f(G2(zs

i,t))‖22
)

+λadv

(
log(1 − D(G(zi,t)))

))
(10)

where λfm ∈ [0, 1] and λadv ∈ [0, 1] are the weights of feature matching loss
and standard generator loss, respectively, and they are tuned empirically based
on the test performance. f is the representation of the last layer before final
classification of D.

4.3 Discriminator

The goal of discriminator D(x) is to correctly judge the real data and the gen-
erated synthetic data. SC-GAN classifies the data into real or synthetic at each
time step, to simplify the procedure of directly discriminating the whole sequence
of data. Specifically, D is trained to minimize the negative cross-entropy loss
between the real sequential patient-centric records ([s1;a1], [s2;a2], ..., [sT ;aT ])
and the generated data (G(z1), G(z2), ..., G(zT )). D has a 2-layer bidirectional
LSTM, which could integrate the context in both directions. Finally, the loss of
the discriminator can be described as follows:

LD = − 1
N

1
T

N∑

i=1

T∑

t=1

(
logD

(
xi,t

)
+ log

(
1 − D(G(zi,t))

))
(11)

xi,t = [st;at], G(zi,t) = [G1(za
i,t);G2(zs

i,t)] (12)

where xi,t consists of the real state of patient i and his/her medication dosage
data at time step t.

5 Experiments

In this section, we conduct extensive experiments on two distinct patient-centric
datasets extracted from real-world EHRs, aiming at demonstrating the data
generated by SC-GAN is better than those of several comparative models. The
source code will be released with the publication of this paper for relevant study.
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5.1 Dataset Description and Preprocessing

Patient Cohort. The experiments are conducted on a real-world EHRs, namely
the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC-III v1.4)
database [29]. MIMIC-III encompasses a population of 43 K patients and 474
million patient-centric state observations in intensive care units (ICUs) during
2001 and 2012. Based on MIMIC-III, we construct two distinct disease datasets:
sepsis and diabetes. Sepsis is a main cause of mortality in ICUs [13] and a
great deal of studies try to find optimal treatment dosage for sepsis. Diabetes
is a lifestyle-related chronic disease and glycemic control with proper dosage is
essential for diabetes [30].

We extract sepsis patients conforming to the Sepsis-3 criteria [31] and extract
diabetes, mycosis and isoniazid patients with ICD-9 codes for diabetes. We sum-
marize the basic statistics of the extracted patients in Table 1. We randomly
divide the dataset for training, validation, and testing sets by the proportion of
80:10:10.

Table 1. Basic statistics of the two datasets

Description Sepsis-3 Diabetes Mycosis Isoniazid

% Female 43.6 32.1 44.8 41.9

Mean age 66.6 76.8 62.7 68.2

Hours in ICU 59.3 82.7 63.4 79.5

Total population 13,773 5,538 6,722 3,245

State of Patients. For each patient, we extract relevant physiological param-
eters as his/her state, such as laboratory tests, vital signs and output events.
The details of these features are shown in Table 2. We aggregate the data into
windows of 4 h to obtain patient-centric multidimensional time series data. The
missing variables are imputed by k-nearest neighbors and the records with more
than 10 missing variables are removed. We rescale each feature at each time step
independently to the range [0, 1].

Medication Dosage of Patients. We select intravenous fluids (IV fluids) and
vasopressor as the main medications of sepsis patients and choose insulin for
diabetes patient. Because the dosage of these medications have been verified to
highly affect the state of diabetes patients and sepsis patients, and even their
mortality in ICU.
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Table 2. Description of the trajectory state of patients.

Laboratory tests Albumin, Arterial pH, Calcium, Glucose, Partial
Thromboplastin Time, Potassium, SGPT, Arterial Blood
Gas, Blood Urea Nitrogen, Chloride, International
Normalized Ratio, Sodium, Ionised Calcium, Arterial Lactate,
CO2, Creatinine, Prothrombin Time, SGOT Platelets Count,
Total bilirubin, White Blood Cell Count, Magnesium

Vital signs Diastolic Blood Pressure, PaCO2, Systolic Blood Pressure,
PaO2,Mean Blood Pressure, FiO2, PaOFiO2 ratio,
Respiratory Rate, Temperature (Celsius), SaO2, Heart Rate,
SpO2, Arterial BE

Output event Total Fluid Output

5.2 Models for Comparison

– SeqGAN [10]: SeqGAN considers the sequence generation procedure as a
sequential decision making process, where the generator represents a rein-
forcement learning agent and the discriminator indicates an evaluator to
guide the generator. We replace the last layer of the generator to produce
continuous medical data.

– C-RNN-GAN [21]: A method employs GANs for generating sequential con-
tinuous music. It utilizes an LSTM to represent the generator and a bidirec-
tional LSTM as the discriminator. The discriminator performs classification
for each sequence.

– RCGAN [5]: It has a similar architecture as C-RNN-GAN, except that the
outputs of the generator are not fed back into the inputs and the discriminator
conducts a discrimination at each time step of the sequence.

– Imitation (RNN): A RNN based model which has the same structure as the
generators of SC-GAN. It is also used as the pre-training process of SC-GAN.

– SC-GAN: Proposed model, which generates the state and medication dosage
of the patients simultaneously. To reflect the clinical facts, SC-GAN uses cou-
pled generators to produce state and medication dosage respectively, where
two generators are interacted with each other.

– SC-GAN (one G): A variant of SC-GAN, the state of patients and the
corresponding medication dosage are produced using one single generator
without interaction.

– SC-GAN (λfm = 0): A variant of SC-GAN, we set λfm = 0 and λadv = 1
in Eq. 10.

– SC-GAN (λadv = 0): A variant of SC-GAN, we set λfm = 1 and λadv = 0.

Although SeqGAN and C-RNN-GAN are not designed to generate medical
data, they are employed for generating sequential data which resembles our data
type and thus can be easily adapted to the medical domain.
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5.3 Quantitative Evaluation for Synthetic Data

It is challenging to evaluate the performance of GANs. Human judgment can be
a candidate choice, but it is impractical and costly especially for medical records.
We conduct both quantitative and qualitative analysis to evaluate the generated
data, such as dimension-wise probability [12], treatment recommendation task
evaluation, and Pearson correlations of real data and synthetic data [4], etc.

Dimension-Wise Probability. This metric is used to measure how the dis-
tribution of generated patient data matches the real data distribution. To be
specific, we discretize the values of the generated/real patient state features and
dosage with the window size of 0.1. Thus each feature or dosage has eleven value
slots (i.e., 0, 0.1, ..., 1). Then we calculate the probabilities of the occurrences
for each features in different slots. Take the i-th feature and m-th slot as an
example. Suppose the corresponding probability of real training data denoted as
pi,m and the value from synthetic or real test data denoted as p̂i,m. We regard
(pi,m, p̂i,m) as a point with x-coordinate x = pi,m and y-coordinate y = p̂i,m.
We collect all points regarding different datasets and plot them in Fig. 3. This
probability reflects the distribution of each value of the features and is a very
important statistical indicator. Intuitively, if more points appear near the line
x = y, it means the feature value distribution of p̂i,m better matches the feature
value distribution of pi,m.

From the results, we can see SeqGAN has poor performance, where the distri-
bution of the generated values is significantly different from that of the real data.
C-RNN-GAN and RCGAN generate a set of values with high/low probability
while the corresponding probability of the true data is reverse. The dimension-
wise probability performance increases as we consider the dependence between
medication dosage and state (compared to C-RNN-GAN and RCGAN). SC-
GAN also shows better performance than Imitation, which demonstrates that
the adversarial learning mechanism (SC-GAN) could work better than maximum
likelihood mechanism (Imitation) in generating sequential clinical data.

Treatment Recommendation Task Evaluation. It is an important issue to
utilize large amount of medical records (e.g., EHRs) to improve the quality of
medical treatment especially to design proper dosage for patients [13,26]. In this
section, we conduct a treatment recommendation model which designs proper
medication dosage for patients to evaluate whether the synthetic data could be
used for real applications, inspired by [32] which has three layers with size 58,
58 and 5 and the activation function Relu. The input is patient state and the
output is the medication dosage class recommended for patients. It is trained on
synthetic data and tested on real data. Two distinct generated patient-centric
data: sepsis and diabetes datasets are utilized for the task. Following the previous
work, we discretized the dosage of medications into 5 medication space. Thus,
the number of treatment/dosage classes is five.

Table 3 shows the precision and AUROC of the recommendation results on
different synthetic data. True data indicates that the recommendation model is
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Fig. 3. Dimension-wise probability results. The top three figures, from left to right,
represent the performance of Imitation, SC-GAN and True data while the below are
SeqGAN, RCGAN and C-RNN-GAN. Different color corresponds to a feature of the
patient. The x-axis indicates the probability for the real training data, and y-axis
represents the probability for the synthetic test data or the real test data. The diagonal
line is the optimal performance where the training data and test data exactly match.
(Color figure online)

trained with true data and test on the true data. We randomly select 11,018 sep-
sis samples and 4,430 diabetes samples from generated data with same amount
as real data in the training step. SeqGAN shows poor performance because it is
designed for generating discrete data which may not be suitable for continuous
data. RCGAN also performs not very well due to the reason that the outputs
of its generator are not utilized as input for modeling. Imitation (RNN) and
C-rnn-gan perform better than RCGAN, showing the benefits of leveraging out-
puts from last time step as current input and using RNN for modeling sequence
data. SC-GAN outperforms the other baselines. The reason is that it considers
the mutual interactions between drug dosage and state of patients, which reflects
the clinical practice (compared with C-rnn-gan, RCGAN and SC-GAN (one)). It
also utilizes the adversarial training mechanism to generate more realistic data
and mitigate the exposure bias of maximum likelihood methods (compared with
Imitation). By integrating both the standard loss and feature matching loss,
SC-GAN achieves better performance (compared with SC-GAN (λadv = 0) and
SC-GAN (λfm = 0)).

Data Augmentation Test. In addition to only using synthetic data, we train
the treatment recommendation model on augmented dataset, where the syn-
thetic data and true data are combined with the ratio of 2 : 3. This experiment
is utilized to show whether the generated data can bring more information and
help alleviate the clinical data scarcity issue.
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Table 3. Precision and AUROC of treatment recommendation task while trained on
real data or synthetic data and testing on real data (%).

Methods Sepsis-3 Diabetes Mycosis Tuberculosis

IV fluids Vasopressor Insulin Fluconazole Isoniazid

Pre. AUROC Pre. AUROC Pre. AUROC Pre. AUROC Pre. AUROC

True data 36.2 60.1 34.6 58.7 62.0 76.2 36.2 60.1 34.6 58.7

C-rnn-gan 26.8 53.3 24.1 52.6 53.4 71.3 24.4 51.8 23.1 51.2

SeqGAN 18.7 50.3 18.4 50.1 41.5 66.8 17.7 50.5 17.3 50.1

Imitation

(RNN)

27.1 53.7 25.3 52.8 54.1 71.8 25.3 52.5 24.0 51.4

RCGAN 25.6 52.6 23.5 51.3 51.9 70.3 24.1 51.6 22.8 50.9

SC-GAN 31.4 57.1 29.3 55.9 56.3 73.1 30.3 56.2 27.3 53.6

SC-GAN

(one G)

29.9 56.2 27.9 54.1 52.9 72.2 28.2 55.1 24.7 52.3

SC-GAN

(λadv = 0)

29.3 56.1 27.3 53.6 52.8 72.0 28.0 54.9 24.3 52.1

SC-GAN

(λfm = 0)

28.8 55.9 27.0 53.1 52.5 71.8 27.8 54.7 24.2 52.1

As shown in Table 4, the data generated by SeqGAN and RCGAN seems to
make no contribution to the real data because results show no improvements
over those of only employing real data, showing no additional useful information
is generated. Imitation and C-rnn-gan behave better for their contribution to
improving recommendation performance. Finally, by adding the data generated
by SC-GAN, the recommendation model achieves significantly better results,
demonstrating the generated data indeed provide additional useful information
to complement true data and it is good for data augmentation.

Table 4. Precision and AUROC of medication dosage recommendation task trained
with both synthetic and real training data and tested on real data (%).

Methods Sepsis-3 Diabetes Mycosis Tuberculosis

IV fluids Vasopressor Insulin Fluconazole Isoniazid

Pre. AUROC Pre. AUROC Pre. AUROC Pre. AUROC Pre. AUROC

True data 36.2 60.1 34.6 58.7 62.0 76.2 48.5 69.2 47.3 68.7

C-rnn-gan 36.9 60.4 33.4 58.1 62.9 76.6 36.6 63.7 32.4 61.3

SeqGAN 32.2 58.3 30.0 57.2 54.3 73.2 25.3 57.7 24.8 52.0

Imitation

(RNN)

37.3 60.7 34.8 59.2 63.2 76.9 36.5 64.8 33.6 61.6

RCGAN 35.4 59.7 33.2 58.0 61.4 76.3 36.1 63.4 32.3 61.1

SC-GAN 38.6 61.4 35.7 59.2 64.6 77.3 39.2 65.1 34.4 62.5

SC-GAN

(one G)

37.1 60.7 33.8 59.3 62.7 76.4 37.3 62.5 32.1 61.3

SC-GAN

(λadv = 0)

36.5 59.8 33.1 58.6 61.8 76.0 37.1 62.3 31.8 61.2

SC-GAN

(λfm = 0)

36.2 59.3 32.9 58.0 61.4 75.7 36.8 62.1 31.5 61.0
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5.4 Qualitative Evaluation for Synthetic Data

Pairwise Pearson Correlation. Following [4], we adopt Pearson correlation
coefficient (PCC) [33] to obtain Pearson correlation structures of feature pairs
for real data and synthetic data, respectively. The value of PCC ranges from +1
to −1, where 1 represents complete positive correlation, and −1 corresponds to
complete negative correlation. We select three features of the patients (systolic
blood pressure, spo2 and Arterial BE) and the dosage of Intravenous Fluids to
conduct Pearson correlation experiments. The Pearson correlation structures of
the real data is in Fig. 4(a) and generated data is in Fig. 4(b).

As shown in Fig. 4, s, o, a, m represent systolic blood pressure, spO2, Arte-
rial BE and Intravenous Fluids respectively. The numbers 0–18 indicate the ICU
stay length (hour) of the sepsis patients. Here we only extract ten time steps for
comparison due to the space limitation. Both the synthetic data and real data
show the Intravenous Fluids has positive correlation with systolic blood pressure
and spo2. But for Arterial BE and Intravenous Fluids, the synthetic data shows
weaker correlation than the real data. The synthetic data generated by SC-GAN
shows a little different result compared to the true data. The main trends of the
results remain consistent.

(a) Real Data (b) Synthetic Data

Fig. 4. Pairwise Pearson correlation (PPC) between time series features.

Generated Patient-Centric Data. To conduct a qualitative evaluation for
synthetic data, we randomly select eight features generated by SC-GAN to intu-
itively compare the difference between them and the true data. We also invite
two clinicians to evaluate the results.

For most of the generated data, the clinicians could not judge they are syn-
thetic, except for paO2. This is because paO2 involves frequent variation. As
shown in Fig. 5, the trends of the generated features are not regular. Because
the state of these patients can change significantly as the time goes on. However,
the mean of these data could be concentrated. Figure 5 shows that the values of
different patient features vary in different regions. The synthetic data produced
by SC-GAN obtains the similar values regions as the true data.
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Fig. 5. Generated trajectory data lasting from initial visit to 19 * 4 h for specified
features (“t” indicates the true data and “s” indicates the synthetic data)

6 Conclusion

In this paper, we have proposed SC-GAN to generate sequential and continuous
medical data including the state of patients and the dosage of medications the
patients take. The main novelty of the model is the coupled generators which
coordinate the generation of patient state and medication dosage to capture the
mutual interactions between medications and patient state. The comprehensive
experiments on the real world EHRs dataset demonstrate the data generated
by SC-GAN can not only gain performance close to the real data on treatment
recommendation task, but also be useful for data augmentation.
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Abstract. Disease diagnosis can provide crucial information for clin-
ical decisions that influence the outcome in acute serious illness, and
this is particularly in the intensive care unit (ICU). However, the cen-
tral role of diagnosis in clinical practice is challenged by evidence that
does not always benefit patients and that factors other than disease are
important in determining patient outcome. To streamline the diagnos-
tic process in daily routine and avoid misdiagnoses, in this paper, we
proposed a deep multi-source multi-task attention model (DMMAM) for
ICU disease diagnosis. DMMAM exploits multi-sources information from
various types of complications, clinical measurements, and the medical
treatments to support the diagnosis. We evaluate the proposed model
with 50 diseases of 9 classifications on an extensive collection of real-
world ICU Electronic Health Records (EHR) dataset with 151729 ICU
admissions from 46520 patients. Experiments results demonstrate the
effectiveness and the robustness of our model.

Keywords: Electronic Health Record · Disease prediction ·
Multi-source multi-task learning · Health care data mining

1 Introduction

The traditional model of clinical practice incorporates diagnosis, prognosis, and
treatment. Diagnosis is fundamental to the practice of medicine and mastery of it
is central to the process of both becoming and practicing as a doctor. Moreover,
the activity of diagnosis is central to the practice of medicine, and has, to date,
received the focused medical and computational science attention which many
have argued it warrants [3]. This is beginning to be outburst with an emergent
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computer-aided diagnosis, which seeks to explore the activity and its outcomes
as a prism through which many issues are played out [14]. It is argued that
diagnosis serves many functions for patients, clinicians, and wider society [14],
and can be understood both as a category and a process [3]. Diagnosis classifies
the sick patient as having or not having a particular disease. Historically, the
diagnosis was regarded as the primary guide to treatment and prognosis (“what
is likely to happen in the future”), and this is still considered the core component
of clinical practice [8].

Intensive care refers to the specialized treatment given to patients who are
acutely unwell and require critical medical care. Moreover, an Intensive Care
Unit (ICU) provides the critical care and life support for acutely ill and injured
patients. The ICU is one of the most critically functioning operational environ-
ments in a hospital. To healing ICU patients, the clinicians need to actions in
a remarkably short period. However, intensivists depend upon a large number
of measurements to make daily decisions in the ICU. However, the reliability of
these measures may be jeopardized by the effects of therapy [18]. Moreover, in
critical illness, what is normal is not necessarily optimal. Diagnosis as the initial
step of this medical practice is one of the most important parts of complicated
clinical decision making [1].

With Electronic Health Records (EHR) growth in biomedical and healthcare
communities, it is possible to use bedside computer-aided diagnosis to accurate
analysis of medical data, which can greatly benefit the ICU disease diagnosis
as well as patient care, and community services. However, the existing work
has focused on specialized predictive models that predict a limited set of dis-
ease. Such as Long et al. use the IT2FLS model to diagnosis heart disease [17],
Jiri PolivkaJr et al. tried to find the mystery of the brain metastatic disease
[22], Chaurasia et al. [4] use data mining techniques to detect breast cancer
and Nilashi et al. [20] use neuro-fuzzy technique for hepatitis disease diagnosis.
However, the day-to-day clinical practice involves an unscheduled and hetero-
geneous mix of scenarios and needs different prediction models in the hundreds
to thousands [7]. It is impractical to develop and deploy specialized models one
by one.

As shown in Fig. 1, this is the complication distribution of patients in the
Medical Information Mart for Intensive Care (MIMIC-III) [12]. We noticed that
the vast majority of patients in the ICU are diagnosed with more than one dis-
eases, that is to say, most of the patients have 5 to 20 complications. Moreover,
the human body as organic entities and different systems are closely connected,
and no diseases are isolated. In considering this, to establish a single model to
diagnosis the majority of the diseases, we designed a multi-source multi-task
attention [30] model for ICU diagnosis. The sources refer the different clinical
measurements and the medical treatment, and the tasks refer the diagnose of
different diseases, the detailed description will in the section of Problem Def-
inition. To the best of our knowledge, this is the first time that to utilizing the
shared feature space from different disease to boost the diagnose performance.
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Fig. 1. Complication distribution of patients in MIMIC-III.

The focus of this paper is upon diagnosis as a process, we put the diagnosis
into a temporal sequence and treated it as a step-by-step process, in particular
from the perspective of the EHR data streaming. We conduct our experiment on
real-world MIMIC-III benchmark dataset, and the result shows that our model is
highly competitive and outperforms the state-of-the-art traditional methods and
commonly used deep learning methods. Furthermore, we evaluated our model
on 9 human systems over 50 different kinds of diseases.

The main contributions of this work are summarized as follow:

– Multiple Perspectives for Disease Formulation. We formulate ICU
disease diagnose as a multi-source and multi-task learning problem, where
sources correspond to clinical measurements and medical treatment, tasks
correspond to the diagnosis of each disease. This work enables us to use a
straightforward model to handle different kinds of diseases over all categories.

– Diagnosis Step by Step. For the first time, we treat the disease diagnosis
as a gradual process over the observations along the temporal measure and
treat sequence as well as the complications.

– A Novel Integrated Model to diagnose the majority of the disease.
We designed a model DMMAM integrated with the input embedding, window
alignment, attention mechanisms, and focal loss functions.

– Comprehensive Evaluated Experiments. We conduct experiment on
MMIC-III benchmark dataset on 50 diseases over 9 categories, which cov-
ers most of the commonly diseases. The results demonstrate that our method
is effective, competitive and can achieve state-of-the-art performance.

The remainder of this paper is organized as follows. We present a review of
the recent advances in disease diagnoses briefly in Sect. 2. Section 3 gives out the
detailed problem definition and our proposed framework. Section 4 introduced
our experiment and our discussions. Section 5 concludes this study with future
work.
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2 Related Work

Diagnosis is the traditional basis for decision-making in clinical practice, infer-
ring the disease from the observations attracts more and more attention in
recent years [7,17,22,25,31]. Existing disease prediction methods can be roughly
divided into two categories: clinical based diagnosis [9,22,25] and data based
diagnosis [7,17,31]. Most existing clinical based diagnosis need profound knowl-
edge of medical and most of them are focused on the certain field, such as
specific diseases are caused by specific germs [21]. Until the last few years, most
of the techniques for computer-aided disease diagnosis were based on traditional
machine learning and statistical techniques such as logistic regression, support
vector machines (SVM) [27], random forests (RF) [19] and decision tree (DT)
[2,11,24]. Recently, deep learning techniques have achieved great success in many
domains through deep hierarchical feature construction and capturing long-range
dependencies in an effective manner [10]. Given the rise in popularity of deep
learning approaches and the increasingly vast amount of clinical electronic data,
there has also been an increase in the number of publications applying deep
learning to diseases diagnosis tasks [5–7,20] which yield better performance than
traditional methods and require less time-consuming preprocessing and feature
engineering. For instance, Zhenping et al. [5] use the Best Mimic Model for ICU
outcome prediction and got average 0.1 Area under Receiver Operating Char-
acteristic (AUROC) score than SVM, LR and DT, Zachary C et al. learned to
diagnose with long short-term memory (LSTM) recurrent neural networks and
got average 0.5981 F1 scores over 6 different diseases.

However, all these methods are designed for a specific disease based on either
the intensive use of domain-specific knowledge or taking advantage of advanced
statistical methods. Specifically, studies have been conducted on Alzheimer’s dis-
ease [31], heart disease [17], chronic kidney disease [28], and abdominal aortic
aneurysm [13]. Moreover, these models have been developed to anticipate needs
and focused on specialized predictive models that predict a limited set of diseases.
However, the day-to-day clinical practice involves an unscheduled and heteroge-
neous mix of scenarios and needs different prediction models in the hundreds to
thousands. It is impractical to develop and deploy specialized models one by one
[7]. So it is significant to develop a unified model and can apply for the majority
of diseases. This is beautiful dovetails to the multi-task learning, each disease
can be treated as a single learning task. Note that many approaches to multi-
task learning (ML) in the literature deal with a similar setting: They assume
that all tasks are associated with the single output, e.g., the multi-class MNIST
dataset is typically cast as 10 binary classification tasks. More recent approaches
deal with a more realistic, heterogeneous setting where each task corresponds
to a unique set of output [23]. We can not simply apply their approaches to
ours, because we multiple clinical observations, multiple, and multiple medical
treatments cannot be integrated into the existing frameworks.

More importantly, the human body as organic entities and different systems
are intimately connected, and no diseases are isolated, so there may be little
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difference between the complications. Therefore, based on our experiments it
is hard for traditional methods to apply to such huge dataset over 50 kinds of
diseases.

Inspired by the above problems, in this paper, we propose a general method-
ology, namely Deep Multi-source Multi-task Attention Model (DMMAM), to
predict the disease from multi-modal data jointly. Here the sources indicate the
clinical measurements and the medical treatments, the tasks represent the diag-
nosis of the diseases. In our work, the variables include not only the continuous
clinical variables for regression (time series step by step regression) but also
the categorical variable for classification (i.e., the class label for diseases clas-
sification). We treat the estimation of different diseases as different tasks, and
multi-task learning [31] method developed in the machine learning community
for joint learning. Multi-task learning can effectively increase the sample size that
we are using to train the model because the samples of some kinds of disease are
really small, which are not enough for learning (see Table 1). Specifically, at first,
we assume that related tasks share a common relevant feature subset such as the
age, temperature, heartbeat, blood pressure, et al. but with a varying amount
of influence on each task, and thus adopt a hand engineered feature selection
method to abstain a common feature subset for different tasks simultaneously.
Then, we use a window alignment to adjust the time window between different
sources and use one dense layer to reduce the dimensionality. Besides, we use two
attention layer to capture the correlations between the different input sources as
well as each time step. Finally, we use a gated recurrent unit (GRU) to fuse the
above-selected features from each modality to estimate multiple regression and
classification variables.

We will detail the problem definition in Sect. 3 and our proposed method in
Sect. 4.

3 Proposed Framework

3.1 Problem Statement

For a given ICU stay length of T hours, and a collection of diagnostic results
Rt, t ∈ T , it is assumed that we have a series of clinical observation:

O(t) =

{
Rt, if Rt /∈ ∅
0, otherwise

(1)

where O(t) is vector of bedside observations at time t. O(t) = P i
aΘQi

b, where P i
a

represent the i-th clinical measurement at time a, Qj
b represent the j-th medical

treatment at time b, and Θ is a window alignment operation between P i
a and

Qj
b, and Rt represent the diagnostic result at time t. Our objective is to generate

a sequence-level disease prediction at each sequence step. The type of prediction
depends on the specific task and can be donated as a discrete scalar vector Ri

t

for the multi-task classification. As all tasks are at least somewhat noisy, when
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training a model Taski, we expect to learn a good representation for Taski
that ideally ignore the data-dependent noise and generalize well. By sharing
representations between related tasks, we can enable our model to generalize
better on our original task.

3.2 Multi-modal Multi-task Temporal Learning Framework for
Temporal Data

Inspired by Daoqiang Zhang and Dinggang Shen’s work [31], we treat the diagno-
sis of the diseases as a sequential multi-modal multi-task (SM3T) learning prob-
lem. The multi-modal represents the clinical measurements and the medical treat-
ments. The tasks represent the diagnosis. The framework can simultaneously learn
multiple tasks from multi-model temporal data. Figure 2 illustrates the proposed
SM3T method and a comparison with the existing learning methods.
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Fig. 2. Multi-modal multi-task temporal learning framework for temporal data.

Figure 2(a) is single-modality single-task temporal learning, each subject has
only one modality of data represented as xi at each time step, and each subject
corresponds to only one task denoted as Yi, this is the most commonly used learn-
ing method; Fig. 2(b) is single-modality multi-task temporal learning the input is
similar as single-task temporal learning, but each object corresponds to multiple
tasks denoted as Y 1

i , Y 2
i , Y 3

i , ..., Y n
i , n > 1; Fig. 2(c) is multi-modality single-task

temporal learning, each subject has multiple modalities of data represented as
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x1
i , x

2
i , x

3
i , ..., x

n
i , n > 1 at each time step and each subject corresponds to only

one task denoted as Yi; Fig. 2(d) is multi-modality multi-task temporal learning,
each subject has multiple modality of data represented as x1

i , x
2
i , x

3
i , ..., x

n
i , n > 1

at each time step and each subject corresponds to multiple tasks denoted as
Y 1
i , Y 2

i , Y 3
i , ..., Y n

i , n > 1.
Similar to Zhang’s et al. [31] we can formally define the SM3T learning

as below. Given N training subjects over T time span and each is having M
modalities of data, represented as:

xt
i = {xt

i(1), xt
i(2), . . . xt

i(m), . . . , xt
i(M)}, i = 1, 2, . . . , N (2)

our SM3T method jointly learns a series of models corresponding to Y different
tasks denoted as:

Yi = {yt
i(1), yt

i(2), . . . , yt
i(j), . . . , y

t
i(Y )}, j = 1, 2, . . . , N (3)

Noting that SM3T is a general learning framework, and here we implement
it through an attention framework as shown in Fig. 3. The x-axis represents the
sequential data stream at time t, the y-axis represents the actions conducted on
each t point and z-axis is the modalities of the input sources. In our experiment,
N = 2 (e.g., S1 = clinical measurements and S2 = medical treatment) are used
for jointly learning models corresponding to different tasks. We will detail the
inner action of the SM3T framework in the following sections.
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Fig. 3. The proposed multi-source multi-task attention model.

3.3 Input Embedding and Window Alignment

Give the R actions for each step for each step t, the first step in our model
is to generate an embedding that captures the dependencies across different
disease without the temporal information. In the embedding step, let N denote
the number of diseases. The diagnosis process is first designed for each disease
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without temporal information. Let P denote the ICU patients. The p−th patient
have h diagnosis results at time t, and p − th patients with h − th diseases is
associated with two feature vectors Sah

p(t) and Sbhp(t) derived from the EHR,
where Sah

p(t) donate the clinical measurements and Sbhp(t) donates the medical
treatments. The dimension of Sa and Sb are α and β, respectively. Combined
Sa and Sb, we generated a new feature vector Φh for the p − th patient:

Φp ≡ [φp
1(t), φ

p
2(t), . . . , φ

p
h(t)] (4)

φh
p(t) = λh

1Sah
p(t) � λh

2Sbhp(t) (5)

where � is Window Alignment operation, and λ1 and λ2 are trainable hyper-
parameters for each disease.

Since our framework contains multiple actions, medical treatments Sb and
clinical measurements Sa. The intentions of why we add a window alignment
operation is that according to the common medical sense, the effect of treatment
usually has some delay to the measurements. Assume Sah

p(ti) represent the clin-
ical measurements at time ti and Sah

p(tj) represent the medical treatments at
time step tj. The alignment is performed by mapping Sah

p(ti) and Sah
p(tj) into

a unique time step Sh
p (t). The alignment parameters λh

i are learned according
to the patients and disease respectively. We found that tj usually later than ti,
and this well accords with the prevailing medical sense.

3.4 Dense Layer

To balance the computational cost as well as the predictable performance, we
need to reduce the dimensions before we transfer the raw medical data to the
next process step. The typical way is to concatenate an embedding at every step
in the sequence. However, due to the high-dimensional of the clinical features,
“cursed” representation which is not suitable for learning and inference. Inspired
by the Trask’s work [29] in Natural Language Processing (NLP) and Song’s [26]
in clinical data processing, we add a dense layer to unify and flatten the input
features. To prevent overfitting, we set dropout = 0.38 here.

3.5 The Gated Recurrent Unit Layer

The gated recurrent unit layer (GRU) takes the sequence of action {xt}Tt≥1 from
the previous dense layer and then associate p − th patient with a class label
vector Y along with the time span, donates the class label for the p − th patient
with the n − th disease at time T . Y n

p (t) is set ass follows:

Y n
p (t) =

{
diseaseID, if diagnosis recorded at time t

0, otherwise.
(6)

We create a T-dimensional response vector for the p − th patient:

Y (p) = (yp,1, yp,2, . . . , yp,pt
)� (7)
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For the diagnosis of ICU patients, we adopted GRU and represent the pos-
terior probability of the outcome of patient p has y − th disease as:

Pr[Pn
y (t) = 1|φp

h(t)] = σ(ω(p)T φp
h(t)) (8)

where φ(a) is the sigmoid function σ(a) ≡ (1 + exp(−a))−1 and ω(p) is a α + β
dimensional model parameter vector for the p − th patient.

To learn the mutual information of data resulting from the customization, we
model for all disease jointly, so that we can share the same vector space across
the disease, this is very useful for those diseases with fewer samples. We represent
the trainable parameters of the GRU as a (Sa + Sb) × T W ≡ [ω1, ω2, · · · , ωt].

3.6 Multi-head Attention and Feed Forward

This attention layer is designed to capture the dependencies of the whole
sequence, as we treated the diagnosis as a step-by-step process. In the ICU
scenario, the actions (clinical measurements and medical treatments) closer to
the current position are critical in helping the diagnosis. However, the observa-
tions further are less critical. Therefore, we should consider information entropy
differently based on the positions which we make observations.

Inspired by [30], we use H-heads attention to create multiple attention graphs,
and the resulting weighted representations are concatenated and linearly pro-
jected to obtain the final representation. Moreover, we also add 1D convolutional
sub-layers with kernel size 2. Internally, we use two of these 1D convolutional
sub-layers with ReLU (rectified linear unit) activation in between. Residue con-
nections are used in these sub-layers. Unlike the previous work [1,4,7,11] making
the diagnosis only once after a specific timestamp, we give out prediction at each
timestamp. This is because the diagnosis results may change during the ICU stay
and we make it as a dynamic procedure. This is more helpful for the ICU clini-
cians because they need to know the patients’ possible disease at any time other
than at the particular time. We stack the attention module N times and using
the final representations in the final model. Moreover, this attention layer is task
wise, that is to say if this attention will only work when this attention is helpful
to the diagnosis.

3.7 Linear and Softmax Layers

The linear layer is designed to obtain the logits from the unified output of atten-
tion layer. The activation function used in this layer is ReLU. The last layer is
preparing for the output based on different tasks. We use softmax to classify the
different diseases, and the loss function is:

Loss d =
1
N

N∑
n=1

−(yk • log(yk) + (1 − yk)). (9)

where N donate the number of diseases. Due to the distribution of the training
set we also introduce Focal Loss as our loss function [16].
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Table 1. Description of the prediction tasks based on ICD 9 code.

Category ICD 9 Title SampleSize Age

1: Infectious and Parasitic 008.45 Int inf clstrdium dfcile 2672 69.07± 24.31

038.9 Unspecified septicemia 5787 69.11± 32.13

2: Neoplasms 197.0 Secondary malig neo lung 866 62.23± 13.31

197.7 Second malig neo liver 926 64.63± 17.47

198.5 Secondary malig neo bone 984 63.59± 12.77

3: Endocrine, Nutritional, Metabolic

and Immunity

250.00 DMII wo cmp nt st uncntr 10585 71.40± 28.41

250.40 DMII renl nt st uncntrld 1574 69.26± 20.04

250.60 DMII neuro nt st uncntrl 1793 70.02± 26.25

263.9 Protein-cal malnutr NOS 2258 65.95± 26.35

4: Blood and Blood-forming Organs 280.0 Chr blood loss anemia 1346 68.34± 25.88

280.9 Iron defic anemia NOS 1992 67.38± 39.21

285.1 Ac posthemorrhag anemia 6998 69.10± 36.81

285.21 Anemia in chr kidney dis 2616 66.70± 28.35

285.29 Anemia-other chronic dis 2225 67.45± 32.21

285.9 Anemia NOS 8253 67.90± 34.13

5: Circulatory System 397.0 Tricuspid valve disease 1286 77.26± 40.76

401.9 Hypertension NOS 23153 71.27± 32.66

403.90 Hy kid NOS w cr kid I-IV 4712 81.32± 45.61

403.91 Hyp kid NOS w cr kid V 3756 65.27± 19.49

410.71 Subendo infarct initial 4474 74.17± 30.51

411.1 Intermed coronary synd 2200 69.42± 22.56

412 Iron defic anemia NOS 4479 74.93± 36.99

413.9 Angina pectoris NEC/NOS 1468 70.64± 27.84

414.00 Crnry athrscl natve vssl 2415 78.53± 37.30

414.01 Cor ath unsp vsl ntv/gft 14585 73.24± 32.09

414.8 Chr ischemic hrt dis NEC 1526 74.54± 28.52

431 Intracerebral hemorrhage 1561 69.71± 28.83

433.10 Ocl crtd art wo infrct 1109 75.77± 30.39

434.91 Crbl art ocl NOS w infrc 907 69.41± 28.22

6: Respiratory System 482.41 Meth sus pneum d/t Staph 1297 64.56± 22.81

486 Pneumonia organism NOS 7779 68.51± 32.89

491.21 Obs chr bronc w(ac) exac 1851 72.91± 24.79

493.20 Asthma NOS 1215 69.22± 26.13

493.90 Chronic obst asthma NOS 2781 59.18± 30.16

7: Digestive System 571.2 Cirrhosis of liver NOS 1529 55.93± 12.54

571.5 Alcohol cirrhosis liver 1820 60.29± 16.73

8: Genitourinary System 584.5 Ac kidny fail tubr necr 3567 65.98± 24.11

584.9 Acute kidney failure NOS 3564 71.45± 36.21

585.6 Chronic kidney dis NOS 2720 62.39± 20.38

585.9 End stage renal disease 4942 79.01± 41.90

600.00 BPH w/o urinary obs/LUTS 1850 79.81± 35.58

9: Conditions originating in the

perinatal period

765.18 Preterm NEC 2000-2499g 621 0.03± 0.03

765.19 33-34 comp wks gestation 557 0.02± 0.02

765.27 35-36 comp wks gestation 545 0.04± 0.03

765.28 Preterm NEC 2500+g 642 0.02± 0.02

769 Respiratory distress syn 511 0.10± 0.09

770.6 Primary apnea of newborn 535 0.02± 0.03

770.81 NB transitory tachypnea 331 0.10± 0.08

774.2 Neonat jaund preterm del 1021 0.08± 0.08

774.6 Fetal/neonatal jaund NOS 514 0.02± 0.04
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4 Experiment

4.1 Data Description

We use a real-world dataset from MIMIC III1 to evaluate our proposed app-
roach. MIMIC-III is a large, publicly-available database comprising de-identified
health-related data associated with approximately sixty thousand admissions of
patients who stayed in critical care units of the Beth Israel Deaconess Medical
Center between 2001 and 2012. The open nature of the data allows clinical stud-
ies to be reproduced and improved in ways that would not otherwise be possible
[12]. In our experiment, we treat each ICU stay as a single case, because different
ICU stay from the same patient may have diagnosed with a different disease.
Moreover, this operation can help us to obtain more samples to train. As shown
in Table 1, this is the first time that disease diagnosis conduct on such huge
amount categories. We category the dataset based on the International Classi-
fication of Diseases (ICD) code, ICD-9, and we select 151729 ICU admissions
over 50 commonly diagnosed disease. As shown in Fig. 1, most patients have
multiple complications, and we collected all the complications in the whole ICU
process temporally. Unlike the previous work, we did not filter any patients, this
may results low performance, compared with related work. For the features, we
included 529 clinical measurements features and 330 medical treatment features.
Due to the abundant and mussy training samples, the performance between dif-
ferent disease is hugely different.

4.2 Experiment Settings

Our experiment includes over 40000 patients among 9 categories of 50 kinds of
disease, the ICD9 code range from 001 to 779. A measure of the diagnosed dis-
ease, we set the outcome is “true” if the prediction result is right between the
diagnose time span we observed the disease otherwise “false”. In the training
process, we will give out predict every time step only if there are observations
during this time step, but in the test process we can give out diagnosis at every
time step, and the time span can be customized. The learning rate in this exper-
iment is 0.001, and the epochs size is 30. In our experiment, we set the batch size
to 32, with ADAM optimizer and set dropout = 0.35. According to our exper-
iment, we can get most of the best performance when then attention stack for
4 times. In order to conduct all the experiment in the same data, we manually
divide the training set, validation set, and test set, we listed it in the Table 2.

4.3 Compared Methods

We compared our proposed method with 6 commonly used methods, i.e., Logis-
tic Regression (LR) with L2 regularization, Random Forest (RF), Support Vec-
tor Machine (SVM), Decision Tree (DT), GRU, and the-state-of-the-art LSTM

1 Data available at https://mimic.physionet.org/.

https://mimic.physionet.org/


64 Z. Shi et al.

Table 2. Experiment settings for training, validating and test.

Task Train Validation Test Task Train Validation Test

008.45 1870 534 268 414.8 1068 305 153

038.9 4050 1157 580 431 1092 312 157

197.0 606 173 87 433.10 776 221 112

197.7 648 185 93 434.91 634 181 92

198.5 688 196 100 482.41 907 259 131

250.00 7409 2117 1059 486 5445 1555 779

250.40 1101 314 159 491.21 1295 370 186

250.60 1255 358 180 493.20 850 243 122

263.9 1580 451 227 493.90 1946 556 279

280.0 942 269 135 571.2 1070 305 154

280.9 1394 398 200 571.5 1274 364 182

285.1 4898 1399 701 584.5 2496 713 358

285.21 1831 523 262 584.9 2494 712 358

285.29 1557 445 223 585.6 1904 544 272

285.9 5777 1650 826 585.9 3459 988 495

397.0 900 257 129 600.00 1295 370 185

401.9 16207 4630 2316 765.18 434 124 63

403.90 3298 942 472 765.19 389 111 57

403.91 2629 751 376 765.27 381 109 55

410.71 3131 894 449 765.28 449 128 65

411.1 1540 440 220 769 357 102 52

412 3135 895 449 770.6 374 107 54

413.9 1027 293 148 770.81 231 66 34

414.00 1690 483 242 774.2 714 204 103

414.01 10209 2917 1459 774.6 359 102 53

based method [15]. Due to the page limitation we only listed the two of the top
two best methods in our paper. The first one is Logistic Regression (LR) with
L2 regularization, and the second is the-state-of-the-art LSTM based method
we listed LSTM+ in Table 3. As mentioned above, to ensure every evaluation
method uses the same data, we fixed the dataset. As shown in Table 2 the vali-
dation and test date we use is approximately 25% of the whole dataset.



Multi-source Multi-task Attention Model for ICU Diagnosis 65

Table 3. Performance evaluation on each diagnose task.

Cat. Task LR LSTM+ DMMAM(our method)

F1 Acc Recall F1 Acc Recall F1 Acc Recall

1 008.45 0.5822 0.6639 0.4784 0.8123 0.6840 1 0.8641 0.7240 1

038.9 0.5822 0.6639 0.9345 0.7442 0.5259 1 0.8641 0.8171 0.9216

2 197.0 0.5593 0.5679 0.2414 0.7919 0.5392 0.7122 0.8515 0.8281 0.8846

197.7 0.5895 0.5964 0.3333 0.7570 0.6357 0.8663 0.8162 0.7172 0.8945

198.5 0.5366 0.5286 0.4500 0.6012 0.5214 0.5667 0.6842 0.7118 0.6457

3 250.00 0.5465 0.6546 0.9754 0.5443 0.6533 0.0531 0.6545 0.7101 0.6153

250.40 0.8549 0.8941 0.0189 0.9485 0.9021 1.0000 0.9485 0.9021 1.0000

250.60 0.8382 0.8892 0.0056 0.9413 0.8892 0.9000 0.9613 0.9292 1.0000

263.9 0.8135 0.8602 0.0752 0.9252 0.8608 1.0000 0.9252 0.8608 1.0000

4 280.0 0.9139 0.9412 0.67454 0.6364 0.4116 0.5483 0.9704 0.9425 1.0000

280.9 0.8740 0.9130 0.5050 0.9557 0.9152 0.9210 0.9755 0.9347 1.0000

285.1 0.6405 0.6398 0.4037 0.8204 0.6995 0.9897 0.8482 0.7412 0.9988

285.21 0.8531 0.8717 0.1832 0.9409 0.8883 0.8328 0.9709 0.9283 1.0000

285.29 0.8589 0.9024 0.4327 0.9503 0.9054 0.9200 0.9503 0.9054 1.0000

285.9 0.5216 0.5196 0.7167 0.5852 0.4996 0.5447 0.7492 0.5533 0.8803

5 397.0 0.8429 0.8587 0.1163 0.9453 0.8962 0.9991 0.9457 0.8970 1.0000

401.9 0.5830 0.6232 0.1354 0.7277 0.6137 0.2380 0.9213 0.9137 0.7612

403.90 0.6787 0.6621 0.6271 0.8065 0.6838 0.9027 0.8255 0.7079 0.9466

403.91 0.7841 0.7892 0.4495 0.8777 0.7824 0.9956 0.8795 0.7852 0.9993

410.71 0.7007 0.7062 0.3764 0.8293 0.7159 0.9314 0.8333 0.7776 0.9499

411.1 0.7835 0.7670 0.5818 0.8559 0.7534 0.8887 0.8705 0.7749 0.9177

412 0.6930 0.7131 0.2806 0.8122 0.6924 0.8951 0.8382 0.7228 0.9668

413.9 0.8326 0.8611 0.1014 0.9345 0.8771 0.9937 0.9376 0.8827 1.0000

414.00 0.6858 0.6536 0.5331 0.7307 0.6081 0.6588 0.7419 0.6129 0.6894

414.01 0.5830 0.6232 0.2503 0.7606 0.6137 1.0000 0.8508 0.7091 1.0000

414.8 0.8215 0.8468 0.1046 0.9327 0.8739 0.9955 0.9350 0.8779 1.0000

431 0.8619 0.8540 0.5669 0.9317 0.8723 0.9954 0.9332 0.8747 1.0000

433.10 0.8588 0.8899 0.0089 0.9532 0.9106 1.0000 0.9532 0.9106 1.0000

434.91 0.8873 0.9058 0.0652 0.9123 0.9074 0.8975 0.9619 0.9266 1.0000

6 482.41 0.8705 0.9071 0.0153 0.9542 0.5091 0.8320 0.9762 0.7210 0.9045

486 0.4328 0.5337 0.9345 0.6016 0.5210 0.0292 0.9542 0.9125 1.0000

491.21 0.8180 0.8651 0.0269 0.9338 0.8758 1.0000 0.9338 0.8758 1.0000

493.20 0.8782 0.9158 0.8861 0.9575 0.9185 0.8921 0.9775 0.9432 1.0000

493.90 0.7508 0.7989 0.1039 0.8972 0.8136 0.8020 0.9454 0.8732 1.0000

7 571.2 0.5626 0.5685 0.4416 0.6866 0.5625 0.8846 0.6951 0.5744 0.8956

571.5 0.5626 0.5685 0.6758 0.4111 0.5625 0.3377 0.7204 0.6744 0.7455

8 584.5 0.7662 0.7505 0.2817 0.9257 0.8618 1.0000 0.9259 0.8620 1.0000

584.9 0.4235 0.5251 0.1003 0.5016 0.4945 0.0545 0.7739 0.7173 1.0000

585.6 0.8768 0.8966 0.2169 0.9441 0.8941 1.0000 0.9642 0.8943 1.0000

585.9 0.4858 0.4473 0.7859 0.8933 0.8072 0.7892 0.9241 0.8124 0.8600

600.00 0.8984 0.9184 0.0919 0.9637 0.9299 1.0000 0.9627 0.9281 1.0000

9 765.18 0.8260 0.8555 0.0794 0.9361 0.8799 0.9979 0.9372 0.8818 1.0000

765.19 0.8272 0.8593 0.5420 0.8446 0.8249 0.8213 0.9357 0.8799 0.9769

765.27 0.8499 0.8518 0.2545 0.9446 0.8949 0.9979 0.9456 0.8968 1.0000

765.28 0.8225 0.8255 0.2462 0.9340 0.8762 0.9979 0.9359 0.8799 1.0000

769 0.8401 0.8349 0.2308 0.9487 0.9024 1.0000 0.9487 0.9024 1.0000

770.6 0.8568 0.8518 0.3519 0.9476 0.9006 0.9192 0.9486 0.9238 1.0000

770.81 0.9044 0.9343 0.9101 0.9680 0.9381 1.0000 0.9691 0.9392 1.0000

774.2 0.6710 0.6379 0.4608 0.6174 0.4953 0.5035 0.7904 0.6717 0.7657

774.6 0.8679 0.8593 0.4423 0.9497 0.9043 0.9102 0.9765 0.9343 1.0000
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4.4 Evaluation Metric

To provide a comparison among the mentioned techniques, three evaluation tech-
niques were used in this research: F1-Measure, Accuracy, and Recall. Those eval-
uation techniques are defined as:

Accuracy =
TF + TN

TP + FP + TN + FN
Recall =

TP

TP + FN
(10)

F1-Measure =
2 × Precision × Recall

Precision + Recall
(11)

where TP and FP are the number of true positive and false negative,
respectively.

4.5 Experiment Results and Discussions

Table 3 shows the prediction results. We can see that our model is significantly
outperformed than all the baseline methods. Because we did not filter any ICU
admissions and included all categories of the disease, so some evaluation metrics
of our experiment are lower than those results appeared in Chen et al.’s work
[15] (marked as LSTM+ in Table 3), but under the same experiment settings,
our can always achieved the best performance. We can see that the number of
the sample can greatly improve the diagnosis performance, the more samples,
the better performance can achieve.

We discovered that the difference among categories are more evident than the
diseases in the same category, and can pass average 3.2% in accuracy. The disease
in category 3, Endocries, Nutritional, Metabolic and Immunity is the hardest
disease to diagnosis in our model, and the disease of Conditions originating
in the perinatal period in category 9 are the easiest ones to diagnosis. This is
because there are greater diversities between category 9 and others, and there
are smaller diversities between category 3 and others. Besides, the disease in
the same categories have different diagnosis performance indicate that there is a
higher relevance in the same system. We also conducted the ablation studies on
the process of diagnosis, and the results show that the multi-source and multi-
task can help us improved the performance among all the tasks over 3.6 percent
in F1 scores. That is to say, by share the context feature space in the hidden
layers the DMMAM can significantly improve the performance.

5 Conclusion and Future Work

In this study, we presented a new model named DMMAM for the disease diag-
nosis in the circumstances of the ICU. We modeled the ICU disease diagnosis
as a multi-source multi-task classification problem. Moreover, we treat the diag-
nosis as a gradually process along the clinical measurements and the clinical
treatments. The significances of our proposed model can be identified as:
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1. We considered the diversity of complications. This both accords with
the medical situation that no disease is isolated and different diseases have
different diagnostic criteria and different treatment methods, the proposed
multi-source multi-task model can perfectly suitable for this situations;

2. We considered the diagnosis sequential relationship. By introducing
the attention layer we simulated the clinicians’ diagnosis process and captured
the interaction information among the sequence.

3. Solved the imbalance problem. The sample variance among the training
data is hugely among different diseases. For example, the unspecified essential
hypertension has 23153 samples. However, the secondary malignant neoplasm
of the lung has only 866 samples. So if we are learning diagnosis without any
precautionary measures, the diagnosis result would definitely to the major-
ity ones. By using focal loss function, we alleviated problem caused by the
unbalance of the dataset in the training process.

We conducted our experiment on 50 diseases over 167884 samples the results
show the robustness and high accuracy. Moreover, this is the first time that
diagnosis been conducted on such huge dataset. Nevertheless, how to use these
diagnoses in further clinical actions remains a challenge in scientific research,
and future work can be focused on this problem.
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Abstract. Since lacking valid schemas is a critical problem for XML
and present research on interleaving for XML is also quite insufficient, in
this paper we focus on the inference of XML schemas with interleaving.
Previous researches have shown that the essential task in schema learn-
ing is inferring regular expressions from a set of given samples. Presently,
the most powerful model to learn XML schemas is the k-occurrence reg-
ular expressions (k-OREs for short). However, there have been no algo-
rithms that can learn k-OREs with interleaving. Therefore, we propose
an entire framework which can support both k-OREs and interleaving.
To the best of our knowledge, our work is the first to address these
two inference problems at the same time. We first defined a new sub-
class of regular expressions named k-OIREs, and developed an inference
algorithm iKOIRE to learn k-OIRE based on genetic algorithm and max-
imum independent set (MIS). We further conducted a series of experi-
ments on large-scale real datasets, and evaluated the effectiveness of our
work compared with both ongoing learning algorithms in academia and
industrial tools in real world. The results reveal the high practicability
and outstanding performance of our work, and indicate its promising
prospects in application.

Keywords: Regular expression · Language learning · Interleaving ·
XML schema

1 Introduction

Extensible Markup Language (XML), as a standard format for data representa-
tion and exchange, is ubiquitous in various applications on websites, and XML
schema specifies how to formally describe the elements in a XML document.
Though the presence of a schema for XML documents has many applications,
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such as data processing, automatic data integration and static analysis of trans-
formations [1,7,21,26–28,32], the research on XML schemas especially for the
unordered concatenation operator interleaving (shuffle) is relatively insufficient
due to its difficulty. Therefore, in this paper, we focus on the inference of XML
schemas with interleaving.

The practical situation of XML schemas, especially the valid ones, is unsat-
isfying. According to Grijzenhout et al. survey in 2013 [17], XML documents
with corresponding DTD/XSD definitions on the Web account for 24.8%, with
only 8.9% for valid ones. After five years, according to the latest investigation
we conducted, the figures only witnessed a slight increase. The investigation was
carried out on a much larger scale, and the source of XML files are more exten-
sive. It is clear that the problem of lacking XML schemas still remains. Thus,
schema inference is in desperate need to improve this situation. Besides, it is
also useful in situations where a schema is already available, such as in schema
cleaning and dealing with noise [3].

(a) Summary of the quality of the XML
Web in 2013

(b) Summary of the quality of the XML
Web in 2018

Fig. 1. Summary of the quality of the XML Web. DTD, XSD and Relax NG
(abbrev. RNG) are popular schema languages for XML.

To address schema inference, the essential task is to infer regular expres-
sions from a set of given samples [4,5,15]. In DTD language, the learned regular
expressions (REs) can be used directly as part of the schema, while in XSD and
RNG, they are the crucial components of schemas. However, a seminal result
by Gold [16] shows that the class of REs could not be identifiable from posi-
tive examples only. Consequently, researchers have turned to study subclasses of
REs and their corresponding inference algorithms. The well-studied subclasses of
regular expressions include single occurrence regular expressions (SOREs), chain
regular expressions (CHAREs), k-occurrence regular expressions (k-OREs) and
so on. Among the learning algorithms, most of them can only deal with single
occurrence regular expressions (i.e., expressions in which each symbol occurs at
most once), e.g., [3,4,11,13]. Later, a more powerful model, k-occurrence regular
expressions (k-OREs) was proposed [2], which allows to learn regular expres-
sions where each alphabet symbol occurs at most k times (k is usually small).
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The presence of k-OREs is reasonable and sufficient in real world, since the study
carried out by Li et al. revealed that when k is set to 7, almost 100% regular
expressions will be covered in DTDs, XSDs and RNGs [22]. However, k-OREs
do not support interleaving, while this operator is a contributing component of
RNG. And in fact, in the literatures, there have been only very few work that
support interleaving or k-occurrence [2,6,23,25,33,39]:

– k-OREs without interleaving. The inference of k-OREs is far more com-
plicated than the single occurrence ones, so the work supporting interleaving
is relatively limited.

– Interleaving without k-OREs. With interleaving, even for single occur-
rence regular expressions, the inference problem is already intractable, so
most existing work used approximate algorithms to address this problem.

Despite the challenge, we propose the first framework which supports k-OREs
and interleaving at the same time. Based on genetic algorithm and maximum
independent set (MIS), we address this problem successfully. Firstly, we intro-
duce the definition of a new subclass of regular expressions with interleaving,
(k-OIREs). Then, we develop the corresponding learning algorithm, iKOIRE,
to carry out k-OIREs inference automatically. To be more specific, we permit
interleaving of the form c1&c2& · · · &cq where & stands for interleaving and
ci represents particular Extended String (see Sect. 2 for their definitions). For
example, r = (a|b+)c∗((a∗b?)&(ab∗(c|d+)?))? is a k-OIRE. The massive experi-
mental results demonstrate the practicality of the proposed subclass as well as
the outstanding performance of our work.

The main contributions of the paper are as follows:

– We develop a framework which can support both k-OREs and interleaving.
To the best of our knowledge, our work is the first one to address these two
inference problems at the same time. We hope our work may shed some lights
on further research of their combination.

– We propose a new subclass of regular expressions with interleaving, k-OIREs.
This subclass could cover the most Relax NG compared with the existing
subclasses. Correspondingly, we also design an inference algorithm iKOIRE
which can learn k-OIRE effectively based on genetic algorithm and MIS.

– We conduct a series of experiments, comparing the performance of both ongo-
ing learning algorithms in academia and industrial tools in real-world. The
results not only reveal the high practicability of k-OIRE and the effectiveness
of iKOIRE, show the high preciseness and conciseness of our work, but also
indicate its promising prospects.

The rest of this paper is organized as follows. Preliminaries are presented in
Sect. 2. Section 3 provides the learning algorithm we used in this paper. Then
a series of experiments is presented in Sect. 4. Finally we conclude this work in
Sect. 5.
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2 Preliminaries

Let Σ be a finite alphabet. The set of all words over Σ is denoted by Σ∗. ε denotes
the empty word. A regular expression with interleaving over Σ is defined
inductively as follows: ε or a ∈ Σ is a regular expression, for regular expressions
r1 and r2, the disjunction r1|r2, the concatenation r1 ·r2, the interleaving r1&r2,
or the Kleene-Star r∗

1 is also a regular expression. The size of a regular expression
r, denoted by |r|, is the total number of symbols and operators occurred in
r. r? and r+ are abbreviations of r|ε and r · r∗, respectively. The language
L(r) of a regular expression r is defined as follows: L(∅) = ∅; L(ε) = {ε};
L(a) = {a}; L(r∗

1) = L(r1)∗; L(r1 · r2) = L(r1)L(r2); L(r1|r2) = L(r1) ∪ L(r2);
L(r1&r2) = L(r1)&L(r2).

Let u = au′ and v = bv′ where a, b ∈ Σ and u′, v′ ∈ Σ∗. Then u&ε = ε&u =
u. u&v = {a · (u′&v)}∪{b · (u&v′)}. For example, strings accepted by (abc)&(d)
is the set {abcd, dabc, adbc, abdc}.

The marked form of regular expression r (r), is obtained by marking symbols
in r with subscripts, such that each marked symbol occurs only once in r. For an
expression r = a(a|b)(ab)∗, its marked form can be a1(a2|b1)(a3b2)∗. The same
notation will also be used for dropping subscripts from the marked symbols:
r = r. We extend this notation for words and sets of symbols in the obvious way.

The new subclass of regular expressions proposed is called k-occurrence reg-
ular expressions with interleaving (k-OIREs). Before introducing its definition,
we first give a concept used in k-OIREs: particular Extended String (pES).

Definition 1. Particular Extended String (pES). Let Σ be a finite alpha-
bet. A pES is a finite sequence f1f2 · · · fn1 . fi can be of two forms. One is of
the form ab where a ∈ Σ, b ∈ {1, ?,+, ∗}. The other is (e1|e2| · · · |em1)

t where
t ∈ {1, ?} and ej is of the form of ab. For example, a∗b?c+d and a∗b(c|d+)? are
both pESs.

Definition 2. k-Occurrence regular expressions with interleaving (k-
OIREs). Let Σ be a finite alphabet. k-OIREs is a class of regular expressions
over Σ, in which each terminal symbol can occur at most k times. It consists of
a finite sequence of two kinds of factors. One kind is of the form (b1|b2| · · · |bm)t

where t ∈ {1, ?}, m ≥ 1 and b is a or a+, a ∈ Σ. The other kind is of the form
(d1|d2| · · · |dp)t where t ∈ {1, ?}, p ≥ 1 and di is of the form c1&c2& · · · &cq

where ci is a pES, q ≥ 2. For example, r = (a|b+)c∗((a∗b?)&(ab∗(c|d+)?))? is a
k-OIRE.

Definition 3 [2]. A k-OA is a node-labeled graph G = (V,R, lab) where:

• V is a finite set of nodes (also called states) with a distinguished source src
and sink snk.

• R is the edge relation: src has only outgoing edges; snk has only incoming
edges; every v ∈ V \ {src, snk} is reachable by a path from src to snk.

• lab is the labeling function with V \ {src, snk} → Σ.
• there are at most k states with the same symbol in Σ.
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When k = 1, it is a 1-OA, also called the single occurrence automaton (SOA).
A marked k-OA A is a k-OA in which each node is marked with a subscript

such that each node label is unique in A. Obviously a marked k-OA is an SOA.
A word a1 · · · an is accepted by automaton A if there exists a path

srcv1 · · · vnsnk in G such that ai = lab(vi) for 1 � i � n. We denote the set of all
words accepted by A as L(A). We use outσ(v) to denote {v1|(v, v1) ∈ R and σ =
lab(v1)}, i.e., the set of states of all direct successors of a state v in A.

Definition 4 A k-OA is deterministic, if for any v ∈ V \{src, snk} and σ ∈ Σ,
outσ(v) contains at most one state. src a a

bbsnk

Fig. 2. A 2-OA for r = a(ab)?b+

The corresponding 2-OA for r = a(ab)?b+ is
shown in Fig. 2. It is deterministic clearly.

3 The Learning Algorithm

Given a finite set S of positive samples, we aim to learn a k-OIRE r with some
fixed value of k such that S ⊆ L(r). The learning algorithm (iKOIRE) is mainly
based on genetic algorithm and maximum independent set (MIS). We show the
major technical details of our algorithm in this section. The main executing
processes are illustrated as follows.

1. For k ∈ [1, kmax], generate a deterministic k-OA A from S by Algorithm 2
GenKOA based on genetic algorithm.

2. We label each node in A with a subscript to a marked k-OA A. Then, using
A, we get a marked sample set S. This process is executed using functions
MarkKOA() and MarkSample().

3. Based on A and S, we convert A to a k-OIRE r. All these are implemented
by Algorithm 4 GenKOIRE.

3.1 The Main Algorithm

The pseudocode of the main algorithm is presented in Algorithm 1.
We have made many attempts with various k ∈ [1, kmax], where kmax is the

maximal number of occurrences of alphabets in S. Notably, after the analysis
of real-world data, there are about 99.9% of practical REs in which the sym-
bol can occur at most 7 times [22]. Therefore, we set kmax = 8 in this paper.
Different results will be learnt due to different values of k. The best one will
be chosen considering two measures of regular expressions: preciseness and con-
ciseness. Function bestRE() is to select an optimum result with certain value
of k, according to two measures: (a) Language Size [4] and (b) one part of the
minimum description length (MDL) [34].

Language Size, denoted by |L(r)|, is defined as: |L(r)| =
∑�max

�=1 |L�(r)|, where
|L�(r)| is the size of subset containing words with length � in L(r). Generally, L(r)
is an infinite language with infinitely large value of �, it is of course impossible
to take all words into account. Hence, we only consider the word length � up to
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a maximum value: �max = 2m + 1 where m is the length of r excluding ε, ∅
and regular expression operators. Language Size (|L(r)|) can well measure the
preciseness of a regular expression. Smaller the value of |L(r)| is, more precise
the regular expression will be.

Algorithm 1. iKOIRE
Input: a sample S
Output: a k-ORE r with S ⊆ L(r)

1 initialize candidate set C ← ∅
2 for k = 1 to kmax do
3 for n = 1 to N do
4 A ← GenKOA (S, k)
5 A ← MarkKOA(A)
6 S ← MarkSample(A, S)
7 r ← GenKOIRE(A, S)
8 add r to C

9 return r ← bestRE(C)

Part of MDL illustrates the length of an expression r in bits, defined as:
Len(r) = |r| ∗ 
log2(|Σ| + |M|)�, where |Σ| is the size of the alphabet and M is
the set of {|, ·,&, ?, ∗,+, (, )}. It reflects the conciseness of r. Similarly, smaller
the value of Len(r) is, more concise the regular expression will be.

Considering the above two indicators, bestRE() selects an optimum expres-
sion from the candidate set C with both the minimum values of |L(r)| and
Len(r).

Generally, optimization algorithms have to tackle the problem of local opti-
mization, with no exception for the genetic algorithm. In order to decrease the
probability of generating a local optimized result, we run the algorithms N times
consequently. In the experiments we set N = 10.

3.2 Generate a Deterministic k-OA from Samples

In this section, we introduce how the Algorithm 2 GenKOA learns a deterministic
k-OA from given samples based on genetic algorithm.

The Genetic Algorithm. Here, we aim to find an optimum deterministic k-
OA which can accept all strings in S, based on measures proposed above. In the
genetic algorithm, each individual in the population will evolve better through
crossover and mutation operations. After several generations, more adaptable
individuals will appear. In our paper, each individual in the population is rep-
resented by a binary string. The process of the algorithm is an optimization of
binary strings. And it can be divided into three steps.

Initialization. We first randomly initialize a population consisting of a number
of binary strings. The length of the string is (k ∗ |Σ| + 1)2. Each string can
be decoded into a k-OA easily, which is a possible solution with (k ∗ |Σ| + 2)
states and random edge relations. Take 2-OA for an example to explain the
corresponding relation between the automaton and the binary string.
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Algorithm 2. GenKOA
Input: a sample S, a k value
Output: a deterministic k-OA A with S ⊆ L(A)

1 P ← init(k), C ← ∅
2 for g= 1 to gmax do
3 koas ← decode(P )
4 values ← calcFitness(koas,S)
5 parents ← select(P ,values)
6 P ← crossover(parents)
7 P ← mutate(P )
8 A ← bestFA(decode(P ), S)
9 A ← DISAMBIGUATE(A, S)

10 add SIMPLIFY(A, S) to C

11 return A ← bestFA(C)

Algorithm 3. DISAMBIGUATE
Input: a sample S, a k-OA A
Output: a deterministic k-OA A

1 initialize queue Q to src
2 initialize marked states set B ← ∅
3 while |Q| �= 0 do
4 s ← first(Q)
5 while ∃ σ ∈ Σ, |outσ(s)| > 1 do
6 C ← ∅
7 for t ∈ outσ(s) do
8 A′ ← A
9 for ∀ t′ ∈ outσ(s) \ {t} do

10 delete edge(s, t′) from A′

11 add A′ to C

12 A ← bestFA(C, S)

13 add s to B and pop s from Q
14 enqueue ∀ β ∈ out(s) \ B to Q

15 return A

Fig. 3. The process of encoding an indi-
vidual

Fig. 4. Examples for crossover and
mutation operations
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Given a 2-OA in Fig. 3, we first compute its adjacency matrix W . Wij = 1 if
there is an edge from node of row i to node of column j, Wij = 0 otherwise. Then
its corresponding binary string is obtained by concatenating each row numbers
(with all columns) together. Similarly, we can decode a binary string to a k-OA
in an inverse process.

p1 100001010101000100010010100101010101101010101101001101011001100000001101110110101

p2 101001010101000001010010100010101001101000011101010101000110100001001011000110000

p3 011001010010010001001010011011010101100010000011000010101000011010100101001011111

p4 101001010011010101100110010101010011101001010101010100000110101001010010001010100

p5 100110100101010000001010011001001101101000010000101100010010101101010000111000111

p6 010110100100110101010101000011010001100010001101010100101010010011010010100111100

Fig. 5. Initialize the population P.

src

a b c d

a b c d

snk

decode p1 to A1, f(A1) = −0.666

src

a b c d

a b c d

snk

decode p2 to A2, f(A2) = −0.333

src

a b c d

a b c d

snk

decode p3 to A3, f(A3) = 0.333

src

a b c d

a b c d

snk

decode p4 to A4, f(A4) = 0.556

src

a b c d

a b c d

snk

decode p5 to A5, f(A5) = 0

src

a b c d

a b c d

snk

decode p6 to A6, f(A6) = 0.111

Fig. 6. Decode P to 2-OAs and calculate
fitness.

src

a b c d

a b c d

snk

Fig. 7. bestFA

src

a b c d

a b c d

snk

Fig. 8. disambiguate

src

a b c d

a snk

Fig. 9. Simplify

src

a1 b1 c1 d1

a2 snk

Fig. 10. Markedkoa

Selection. In each generation of the population, we select excellent individuals
to breed new generations. We measure individuals by a fitness function used for
finding preferential solutions. In our algorithm, the function will choose indi-
viduals which are representative enough to describe the class of languages of
samples. Here the fitness function f(A) for an automaton A is usually defined
as: f(A) = |TP |−|FN |

|S| , where TP = {w ∈ S | w ∈ L(A)} (means true positive),
FN = {w ∈ S | w /∈ L(A)} (means false negative), |S| is the size of the sam-
ples, respectively. To be mentioned, the computations of TP and FN involve
the membership problem of checking whether a word w ∈ L(A) or not. We use
the efficient algorithm in [18] to solve this problem. The f(A) guarantees that
the selected individuals can accept strings in S as many as possible. For an
automaton A, it will be chosen with much higher possibility if f(A) is larger.
The function bestFA() has the same effect as select. The only difference between
them is that select returns a pair of parents from selected individuals based on
the fitness function, while bestFA() only returns the best automaton A (with
the largest fitness value, i.e., 1, satisfying S ⊆ L(A)).

Crossover and Mutation. They are two popular ways to evolve into the next
generation of one population. For crossover, we first choose a pair of parents
from the individuals selected above. Then determine the starting and terminal
positions of each binary string. At last, we exchange the values between the two
positions of two binary strings. For mutation, we can randomly choose a position
in the binary string and change its value to the complementary number (i.e., 1
to 0). Figure 4 is an example.
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DISAMBIGUATE can convert a k-OA into a deterministic k-OA. For each
state s and symbol σ ∈ Σ such that |outσ(s)| > 1, we delete edges to keep
|outσ(s)| = 1, which is guided by the function bestFA(). SIMPLIFY is designed
to delete useless edges and states according to samples.

Here is an example. Suppose S = {aacba, adba, abca, abda, abac, aabad}, Σ =
{a, b, b, d}. We show the process of GenKOA to learn a deterministic 2-OA from
S. In the first step, we randomly initialize the first generation population P
(Fig. 5), consisting of 6 binary strings with length of (k ∗ |Σ| + 1)2 = 81. Each
string is decoded into a 2-OA with 10 states. They are shown in Fig. 6, together
with their fitness values, calculated by f(A) = |TP |−|FN |

|S| . After 50 generations
of mutation and crossover, we get the best 2-OA (Fig. 7). Using Algorithm 3
DISAMBIGUATE, we turn the 2-OA into a deterministic automaton (Fig. 8).
After removing useless states and edges by function SIMPLIFY(), the determin-
istic automaton is simplified, named as A (Fig. 9).

3.3 Mark the Deterministic k-OA and Samples

In this section, we use A obtained in Sect. 4.2 to mark each string in S, which is
an important step for following steps. Before that, we first use MarkKOA() to get
a marked k-OA A with subscripts for nodes in A such that node labels in A are
pairwisely distinct. Then for each string s ∈ S, we can find a unique accepting
path from src to snk in A, denoted by src ·v1v2 · · · vn ·snk. Obviously, this path
can be uniquely mapped to a marked form in A: src · v1k1v2k2 · · · vnkn

· snk,
where vi = viki

. After this operation, we obtain a marked strings set S.
Following the example in Sect. 3.2, the marked k-OA of A is shown in Fig. 10.

And the marked strings set is S = {a1a1c1b1a2, a1d1b1a2, a1b1c1a2, a1b1d1a2,
a1b1a2c1, a1a1b1a2d1}.

3.4 Convert the Marked k-OA into a k-OIRE

Based on the marked k-OA A and marked strings set S, we will introduce the
algorithm GenKOIRE to convert A to a k-OIRE for a fixed k (k ∈ [1, kmax]).
The input is A and S. The output is a k-OIRE r.

Following the example above, we first remove the self-loop in Fig. 10
and get a new SOA (Fig. 11). The maximum strongly connected compo-
nent in Fig. 11 is C = {a2, b1, c1, d1}. Using C, we get a new set S′ = Filter(C,
S) = {c1b1a2, d1b1a2, b1c1a2, b1d1a2, b1a2c1, b1a2d1} [25]. Using S′, we com-
pute the constraint tr [33] (Fig. 12) and construct its undirected graph
G of constraint tr (Fig. 13). There are two maximum independent sets
({a2, b1}, {c1, d1}) in G. String sets S′′

1 and S′′
2 are obtained from S′ by Filter()

using {a2, b1}, {c1, d1}, respectively. Two SOAs (Figs. 14 and 15) are constructed
from S′′

1 and S′′
2 using 2T-INF [14]. Each SOA is converted into a SORE by algo-

rithm Soa2Sore [13]. A new RE is obtained by combining all SOREs with inter-
leaving operator. The maximum strongly connected component, together with all
relative edges, is replaced by this new RE and the marked k-OA A is updated
shown in Fig. 16.
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Finally, we compute level number for each node in Fig. 16 and find the skip
levels [13]. Nodes of each level number are turned into one or more chain factors.
If there are more than one non-letter nodes (node with more than one terminal
symbols) with level number, or if the level number is a skip level, then ‘?’ is
appended to every chain factor on that level. At last, we drop all subscripts and
obtain the final 2-OIRE a+(ba&(c|d)).

Algorithm 4. GenKOIRE

Input: a marked k-OA A, a marked sample S
Output: a k-OIRE r

1 A ← A.RemoveSelfLoop()
2 while A has a cycle do
3 Let U be a strongly connected looped component of A
4 ζ ← MERGE(U , S); A ← A.contract(U , ζ)

5 A.constructLevelOrder()
6 r ← ε

7 for i = 1 to (level number of A.snk) −1 do
8 Vt ← all nodes with level number i and &
9 Vs ← all nodes with level number i and no &

10 if |Vt| ≥ 1 then
11 if |Vs| ≥ 1 or A.isSkipLevel(i) then
12 r ← r ·ALT(Vt)?

13 else r ← r ·ALT(Vt)

14 if |Vs| ≥ 1 then
15 if |Vt| ≥ 1 or A.isSkipLevel(i) then
16 r ← r ·ALT(Vs)?

17 else r ← r ·ALT(Vs)

18 return r ← drop(r)

Algorithm 5. MERGE
Input: a set of nodes U , a sample S
Output: an expression ζ

1 S′ ← Filter(U , S); constraint tr ← CS(S′); G ← Graph(constraint tr)
2 all mis ← ∅
3 while |G.nodes()| > 0 do
4 W ← clique removal(G); G ← G \ W ; all mis.append(G)

5 SubRE ← ∅
6 foreach mis in all mis do
7 S′′ ← Filter(mis, S); A1 ← SOA(S′′); sub re ← Soa2Sore(A1)
8 if ε ∈ S′′ then
9 SubRE.append(sub re?)

10 else SubRE.append(sub re)

11 ζ ← combine(SubRE)
12 return ζ;
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src

a
+
1

b1 c1 d1

a2 snk

Fig. 11. Remove self-loop

constraint tr

〈a2, c1〉 〈c1, a2〉
〈a2, d1〉 〈d1, a2〉
〈b1, c1〉 〈c1, b1〉
〈b1, d1〉 〈d1, b1〉

Fig. 12. constraint tr

a2

d1

c1

b1

Fig. 13. Undirected graph

src b1

a2snk

Fig. 14. SOA A1

src

c1

d1

snk

Fig. 15. SOA A2

src a
+
1

b1a2&(c1|d1)snk

Fig. 16. New marked k-OA

4 Experiments

In this section, we conduct a series of experiments to analyze the practicability
of our work, and compare our work with not only the learning algorithms from
ongoing researches but also the industrial-level tools used in real world. In terms
of preciseness and conciseness, our work has achieved satisfying results com-
pared with existing methods, reaching higher preciseness with less description
length. Specifically, indicators Language Size (|L(r)|) [2] and datacost (DC) [2]
are used to measure preciseness, while length of regular expressions (Len) and
Nesting Depth (ND) [24] for conciseness. Similar as the discussion of |L(r)|
and Len above, we have that larger the value of DC (ND) is, more precise
(concise) the regular expression will be. The learning algorithms used for exper-
iments are Soa2Sore [13] and Soa2Chare [13], GenEchare [11], iDREGEX [2],
learner+DME [8], conMiner [33], GenICHARE [39] and GenESIRE [25]. Among
them, the first three adopt standard regulation expression, iDREGEX exploits
k-occurrence, and the rest ones involve the interleaving. The industrial tools
which are capable of supporting inference of XML schemas used in this section
include XmlSchemaInference [30], Stylus Studio [35], FreeFormatter [12], devu-
tilsonline [9], mherman [29], EditiX [10], IntelliJ IDEA [20], Liquid Studio [36],
Trang [37], InstanceToSchema [19], Oxygen XML [31] and XMLBlueprint [38].
Among these practical tools, only about half of them are supportive of Relax
NG, and the supporting levels and methods vary.

For the massive comparative experiments, we conduct the experiments based
on two kinds of datasets: small dataset (i.e., mastersthesis) and large dataset
(i.e, www) of XML documents, which are both extracted from DBLP. DBLP
is a data-centered database of information on major computer science jour-
nals and proceedings. We download the file of version dblp-2015-03-02.xml.gz 1.

1 http://dblp.org/xml/release/dblp-2015-03-02.xml.gz.

http://dblp.org/xml/release/dblp-2015-03-02.xml.gz
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mastersthesis and www are two elements chosen from DBLP with 5 (small) and
2, 000, 226 (large) samples, respectively.

All our experiments are conducted on a machine with 16 cores Intel Xeon
CPU E5620 @ 2.40 GHz with 12M Cache, 24G RAM, OS: Windows 10. The con-
figurations are set as follow. We initialize the size of population P by randomly
generating 300 DNAs, the maximum number of generation evolution gmax is set
as 100. The parameters crossover rate and mutation rate are assigned as 0.8 and
0.003 according to the experience.

4.1 Analysis on Practicality

Though interleaving is indispensable in data-centric applications, the lack of
attention and research on it is still a concern. In Fig. 17, we visualized the cov-
erage rates of REs covered by different sublcasses on Relax NG. We can see that
the initial subclass, DME, only covers 50.62%. Then the proportions show an
upward trend, reaching more than 85.55% (ICRE, ICHARE, ESIRE). Compared
with their coverage, k-OIRE covers 95.43% Relax NG, which is about 10% more
than the second largest proportion. Therefore, the experimental result reveals
the high practicality of k-OIRE, and its strong support for interleaving.
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Fig. 17. The proportion of subclasses on Relax NG. The dataset used for this
statistical experiment is acquired from [22], with 509, 267 REs from 4, 526 RNGs.

4.2 Comparison with Learning Algorithms

To better illustrate the performance of our work, we first compare the inferred
results of our work with that of existing learning algorithms. The experimental
results are shown in Table 1.

We can see from Table 1(a) that for dataset mastersthesis, the first three
algorithms (Soa2Sore, Soa2Chare and GenEchare) reach high conciseness at
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enormous cost of |L(r)|, from unaffordable 1.0028 ∗ 1064 to 1.6383 ∗ 104. Algo-
rithms learner+DME and conMiner have highest conciseness, with 52 for Len,
yet their preciseness is not the highest among these algorithms. On the con-
trary, although with the highest precision, algorithm iDREGEX is the only one
whose ND is 2, which lowers its conciseness. Finally, the last three algorithms
including iKOIRE reach the performance at the same level, with highest pre-
ciseness and the equal magnitude of conciseness. Note that among algorithms
with shortest |L(r)|(5), iDREGEX exploits k-occurrence, while the last three
ones adopt interleaving. From the table we can draw a conclusion that though
both k-occurrence and interleaving could improve the preciseness, the former one
sacrifices the conciseness to some degree. For the second dataset (Table 1(b)),
the difference in performance is more obvious. Without supporting the usage
of interleaving, the previous five algorithms have huge |L(r)| and DC, from
1.0028 ∗ 1064 to 9.9478 ∗ 109 and from 21804.719 to 4299.165, respectively.
Among them, Soa2Chare has the shortest Len, which is 120, while iDREGEX

has the longest, which is 295. Soa2Sore has the deepest ND [24], with 3, followed
by GenEchare and iDREGEX, with 2 nestings. On the other hand, the algo-
rithms which support interleaving have smaller figures on average. Especially
for the indicator |L(r)|, the magnitudes are much smaller than that of the first
group of methods. It is noteworthy that our work reaches almost the same con-
ciseness with much less |L(r)|(2.6595 ∗ 108) and DC(4242.066), with about one
hundredth of the second smallest |L(r)| and half of the smallest DC.

It is clear from the above analysis, our work outperforms other state-of-the-
art learning algorithms, achieving the highest preciseness and the equal level
of conciseness. Furthermore, through the comparison, the performance of our
method indicates that methods using interleaving present higher capability than
others, and that the involvement of interleaving could contribute to both pre-
ciseness and conciseness.

Table 1. Results of inference using different learning algorithms

(a) mastersthesis (DBLP)

Algorithms |L(r)| DC Len ND

Original 1.0028 ∗ 1064 510.342 240 1

Soa2Sore 1.6383 ∗ 104 67.657 56 1

Soa2Chare 1.6383 ∗ 104 67.657 56 1

GenEchare 1.6383 ∗ 104 67.657 56 1

iDREGEX 5 80.500 80 2

learner+DME 984 102.446 52 1

conMiner 13 72.886 52 1

GenICHARE 5 65.072 60 1

GenESIRE 5 65.072 60 1

iKOIRE 5 65.072 60 1

(b) www (DBLP)

Algorithms |L(r)| DC Len ND

Original 1.0028 ∗ 1064 21804.719 240 1

Soa2Sore 1.3031 ∗ 1012 7190.139 165 3

Soa2Chare 1.3553 ∗ 1019 13696.752 120 1

GenEchare 1.3365 ∗ 1019 13685.703 150 2

iDREGEX 9.9478 ∗ 109 4299.165 295 2

learner+DME 1.4338 ∗ 1015 11150.850 175 1

conMiner 4.1147 ∗ 1013 10453.822 145 1

GenICHARE 1.4056 ∗ 1013 9961.492 170 2

GenESIRE 4.3899 ∗ 1011 8479.873 175 2

iKOIRE 2.6595 ∗ 108 4242.066 265 1

4.3 Comparison with Industrial Tools

Apart from ongoing research approaches, we also compare our work with indus-
trial tools in real-world. The experiment results indicate the outstanding perfor-
mance and promising application prospects of our work.
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We can see from Table 2(a) that apart from InstanceToSchema (|L(r)|:
984) and our work (|L(r)|: 5), other tools cost extremely huge |L(r)| (from
1.6383 ∗ 104 to 1.0028 ∗ 1064) to reach the equal level of conciseness. Even for
the tools such as Stylus Studio, mherman, IntelliJ IDEA and Trang with the
third shortest |L(r)|, the figures are more than 3000 times more than ours.
Even compared with InstanceToSchema, our |L(r)|(5) is still much shorter than
theirs(984). While for conciseness, these tools are almost at the same level, except
for XmlSchemaInference and EditiX, whose ND is 2. For the second dataset, the
advantage of our work is more outstanding. While other tools have tremendous
|L(r)| and DC, our work only need 2.6595 ∗ 108 for |L(r)| and 4242.066 for DC.
It means that no matter how complicated the regular expression is, our work
can still achieve stable results with both high preciseness. Though the Len of
our work is the largest, the gap is relatively small, especially compared with the
huge gap in |L(r)|.

In conclusion, even compared with published tools in real world, our work
still outweights the performances in terms of preciseness to the large extent, and
reaches the same level as the best conciseness. These results show the promising
prospects of our work, as well as the high possibility of application in practical.

Table 2. Results of inference using different schemas inference tools

(a) mastersthesis (DBLP)

Tools |L(r)| DC Len ND

Original 1.0028 ∗ 1064 510.342 240 1

XmlSchemaInference 1.5673 ∗ 1010 122.880 80 2

Stylus Studio 1.6383 ∗ 104 67.657 56 1

FreeFormatter/devutilsonline 1.5673 ∗ 1010 122.880 56 1

mherman 1.6383 ∗ 104 67.657 56 1

EditiX 1.5673 ∗ 1010 122.880 80 2

IntelliJ IDEA 1.6383 ∗ 104 67.657 56 1

Liquid Studio 1.5673 ∗ 1010 122.880 56 1

Trang 1.6383 ∗ 104 67.657 56 1

InstanceToSchema 984 102.446 52 1

Oxygen XML/XMLBlueprint 1.6383 ∗ 104 67.657 56 1

iKOIRE 5 65.072 60 1

(b) www (DBLP)

Tools |L(r)| DC Len ND

Original 1.0028 ∗ 1064 21804.719 240 1

XmlSchemaInference 1.1111 ∗ 1021 15158.773 160 2

Stylus Studio 1.2047 ∗ 1019 13606.698 125 1

FreeFormatter/devutilsonline 1.1111 ∗ 1021 15158.773 110 1

mherman 1.2047 ∗ 1019 13606.698 125 1

EditiX 1.1111 ∗ 1021 15158.773 160 2

IntelliJ IDEA 1.1859 ∗ 1019 13696.31283 120 1

Liquid Studio 1.1111 ∗ 1021 15158.773 120 2

Trang 1.2047 ∗ 1019 13606.698 125 1

InstanceToSchema 1.5339 ∗ 1018 13406.824 145 1

Oxygen XML/XMLBlueprint 1.2047 ∗ 1019 13606.698 125 1

iKOIRE 2.6595 ∗ 108 4242.066 265 1

5 Conclusions

In this paper, we proposed the first framework which can support both k-
occurrence and interleaving at the same time. Starting from defining a new sub-
class of regular expressions with interleaving, k-OIREs, we designed an inference
algorithm iKOIRE correspondingly. We further conducted a series of experi-
ments to evaluate the performance of our work. By comparing with ongoing
learning algorithms in academia and industrial tools in real world, our work
presents the outstanding results, with the highest preciseness and conciseness.
The experiment results reveal the effectiveness of our work in both research and
practical scenario.
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Abstract. Sentiment analysis is a fundamental problem in the field of
natural language processing. Existing methods incorporate both seman-
tics of texts and user-level information into deep neural networks to per-
form sentiment classification of social media documents. However, they
ignored the relations between users which can serve as a crucial evidence
for classification. In this paper, we propose SRPNN, a deep neural net-
work based model to take user social relations into consideration for sen-
timent classification. Our model is based on the observation that social
relations between users with similar sentiment trends provide important
signals for deciding the polarity of words and sentences in a document.
To make use of such information, we develop a user trust network based
random walk algorithm to capture the sequence of users that have similar
sentiment orientation. We then propose a deep neural network model to
jointly learn the text representation and user social interaction. Experi-
mental results on two popular real-world datasets show that our model
significantly outperforms state-of-the-art methods.

1 Introduction

With the popular social media such as microblog services and review sites, users
can conveniently share their personal feelings and opinions on the Internet, and
embed their characteristics and preferences into the subjective text [32]. Given
a collection of documents, the task of sentiment classification is to infer the sen-
timent polarity or intensity of each document. With the rapid growth of social
media data, sentiment classification has drawn much attention from research
communities in recent years [23,25,33], which arises in many real world applica-
tions such as opinion mining, personalized recommendation and market analysis.

Early studies in this area mainly adopt feature-based method and construct
classifiers to solve this problem. Pang and Lee [18] first adopted supervised
learning method to build classifiers. Many studies [10,12,21] tried to integrate
various types of features to enhance the effectiveness. Despite the plausible suc-
cess of some shallow learning methods, feature engineering is labor-intensive.
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Many models need domain-specific features, which make it difficult apply them
to other datasets or applications.

Recently there have been some neural network based studies to extract fea-
tures automatically so as to avoid the complicated feature engineering. Some pre-
vious studies focus on designing effective models for classification [2,22], while
others aim at learning better representations of the text [9,28]. Recent stud-
ies [27,33] further integrate features other than text representation, such as user
personality and product information into the model to enhance the effectiveness.
However, such studies also suffer from the data sparsity problem. For example,
in the product review rating, one product or topic has only a few reviews from a
user, which makes it difficult to develop an accurate predication of the sentiment.

To address this problem, we argue that the social relations between users
can be adopted to augment the data so as to provide important signals for senti-
ment analysis. Our idea is based on two observations. Firstly, users have specific
preferences on providing sentiment ratings. And users with similar sentiment ori-
entation tend to have similar comments on one product or event. For example,
if a user posts a tweet saying “Trump is the one who changes America”, it is dif-
ficult to judge his sentiment trend towards Trump. However, if we know that he
has many followers who are against Trump, we can infer that it is very likely that
he is against Trump, too. Secondly, a user with high authority (“opinion leader”)
provides strong signals on the sentiment. For example, a user complains that his
cellphone is easily overheating. He praises this brand of cellphones as “good at
its warmth in winter”. It is difficult to identify this ironic negative comments
from just the texts. However, if the user follows a tech leader who also blames
about the overheating of his cellphone in studies, it is easier to obtain the user’s
sentiment orientation to this cellphone by considering his interactions with the
tech leader. Therefore, by constructing user document with social relations
from above two aspects, the problem of data sparsity in original documents can
be extensively alleviated.

In this paper, we propose Social Relation Powered Neural Network (SRPNN)
model to utilize the user social relations for document-level sentiment classifica-
tion. We first model user social relations as a user trust network and then propose
a random walk algorithm to generate user documents from the network based
on both user authority and sentiment similarity. We then propose a deep neural
network model which exploits both the semantic representation of texts and user
document to predict the sentiment orientation. To the best of our knowledge,
this is the first work to jointly learn text representation and user social relations
for sentiment classification.

We evaluate SRPNN on two popular datasets Twitter and Yelp and compare
it with several state-of-the-art methods. Experimental results show that SRPNN
outperforms various baseline methods including both feature-based approaches
and deep learning based method. It also demonstrated the effectiveness of incor-
porating user social relations. The contributions of this paper are summarized
as following:
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– We propose a novel model SRPNN by leveraging the user social relations for
document-level sentiment classification. To the best of our knowledge, this is
the first work that combines the text representation and features of user social
relation as the input of deep neural networks.

– We design a random walk based algorithm to generate high quality user doc-
ument considering both user authority and sentiment similarity.

– We conduct extensive sets of experiments on two popular datasets. The exper-
imental results demonstrate the effectiveness of our model.

2 Related Work

Trust Learning in User Network. Random Walk is an algorithm that gen-
erates a sequence of visited nodes by iteratively selecting a random neighbor
of current node. It has been widely used in the applications like collaborate
filtering [3] and personalized recommendation [14]. A large number of studies
also adopt the idea of random walk [29,35]. DeepWalk [19] adopts the neural
language model to learn the embedding of network and terminates the random
walk sequence by setting a maximum step size. TidalTrust [4] utilizes a BFS
algorithm to search the trust score between users in a network. TrustWalker [6]
proposed a random walk based framework for recommendation problems.

Sentiment Classification. There is a long stream of studies for sentiment
classification on documents. Pang and Lee [18] proposed a supervised learn-
ing framework for sentiment classification. Many studies design rich features to
enhance the effectiveness, such as bag of opinion [21], product information [10]
and sentiment lexicon [7]. Some studies [12] focused on integrating emotional
signals into machine learning framework for sentiment analysis. Hu et al. [5]
utilized matrix manipulations to address the noises in microblog texts and con-
struct sentiment relations. Zhu et al. [38] focused on improving the efficiency of
sentiment analysis in large scale of social networks.

Many studies adopted data-driven approaches to avoid handcrafted fea-
tures [30,36]. Mikolov et al. [15] utilized the context information to train the
word and phrase embedding. Le and Mikolov [9] introduced paragraph embed-
ding. Socher et al. [22] and Dong et al. [2] proposed recursive deep neural net-
works for sentiment classification. Mishra et al. [16] adopted convolutional neural
network, while Tang et al. [24] and Qian et al. [20] adopted recurrent neural net-
work for sentiment analysis. Recently attention mechanism [17] is also widely
used in multiple NLP tasks especially in sentiment classification [11,13,34].

Personalized Sentiment Classification. Personalized Sentiment Classifica-
tion has become a popular topic recently. Tang et al. [28] incorporated sentiment
information when learning the word embedding. Tang et al. [27] obtained richer
feature for neural network by modeling the personality of users. They further inte-
grated the product information and the aspect level information to help improve
the effect of classification [25,26]. Chen et al. [1] adopted selectivity attention to
model the relation between users and products. Song et al. [23] adopted user’s



Learning from User Social Relation for Document Sentiment Classification 89

following relation matrix to extend Latent Factor Model in microblog sentiment
classification. Wu and Huang [33] constructed a personalized classifier to integrate
user’s social network to sentiment classification. Zhao et al. [37] introduced a net-
work embedding learning framework on heterogeneous microblog network. Wang
et al. [31] incorporated user’s cross-lingual sentiment consistency with a multi-task
learning framework to enrich the user post representation.

Fig. 1. User text-sentiment consistency for random walk

3 Constructing User Relation Sequence

In this section, we introduce the model to construct user relation sequences. We
first justify the rationality to generate a series of user sequences using random
walk and propose a user trust network to model the social similarity between
users. We then take advantage of the network and devise a trust score as the
metric to generate user relation sequence. Finally we propose a random walk
based algorithm to effectively obtain the user relation sequences.

3.1 User-Sentiment Consistency Verification

We have the observation that one user tends to produce documents with similar
sentiment orientation. For example, a harsh user tends to evaluate the weaknesses
of products, while an amiable user may focus on the advantages. Following this
route, we find that users with similar sentiment orientation always tend to have
similar comments on one product or event. We further argue that the sequence
of user with user-sentiment consistency can be obtained using random walk
algorithm. This can serve as the foundation of our model. Next we will validate
this assumption.

To test the consistency assumptions of the random walk algorithm, for each
user in Twitter and Yelp datasets we test for n = 50 iterations. Given a user
ui, we randomly pick out one review rating rj . If ui has adjacent users, we pick
another review rating rrwj from a user urw

i in the sequence of ui in the simi-
lar way of executing random walk algorithm. We then randomly pick another
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user urandom
j and his review rating rrandomj . By iteratively calculating the abso-

lute difference (rj , rrwj ) and (rj , rrandomj ), we can see the statistical discrepancy
between random walk user and random user.

The test results of all three datasets are shown in Fig. 1. We can see that
random walk users hold a lower difference of review rating than random users.
Such results confirms the sentiment consistency of the user sequence generated
by random walk algorithm.

3.2 User Trust Scoring

Although random walk algorithm can get a better result than selecting ran-
dom user, we hope to further improve the sentiment consistency. Following the
above assumption, we argue that users with similar sentiment orientation tend
to have similar comments on one product or event. We call such users trust users
and introduce a user trust network to model their relations. Figure 2 shows an
example of the user trust network. The nodes are individual users, with the rela-
tionship “user ui follows user uj” resulting in an edge directed from node ui to
node uj . The out-degree of a node denotes the number of people a user follows.
The weight rui

on node ui is its average rating. We utilize the degree of trust
T (ui, uj) on the adjacent users in the user trust network to denote the weight
of an edge. To describe the degree of trust, we propose a metric named user
trust score: for users ui and uj , the user trust score between them is denoted
as T (ui, uj). Users with higher scores will be treated as trust users. The user
trust score incorporates the information from two aspects: user authority and
sentiment similarity. Next we will discuss the details about them.

User authority describes how a user is given attention to in the social network.
A user with high authority can be regarded as the “opinion leader” in a specific
field. If a user pays more attention to opinion leaders, it definitely means that
he is interested in a particular topic and shares similar opinions with that user.
So opinion leaders should be assigned higher degrees of trust. With the help of
user authority, it is easy to find users with common interests.

To quantify user authority, for each user ui ∈ U , we assign a user authority
score denoted as A(ui). According to above discussion, an opinion leader with
more followers has higher authority, at the same time, followers will also con-
tribute to the authority of opinion leader. Here in the user trust network, the
in-degree of a node is the number of followers of a user; while the out-degree of
node can be regarded as the influence a user has on other users. Then we can
adopt the principle of PageRank to calculate the user authority score as shown
in Eq. 1.

A(ui) =
1 − α

|U | + α(
∑

u∈N(ui)

A(u)
L(ui)

) (1)

where N(ui) denotes the set of nodes that have an edge pointed to ui, L(ui)
denotes the out-degree of node Ui and α is the damping factor (α ∈ (0, 1)).
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The sentiment similarity describes the similarity of sentiment orientation
between users. For two users ui and uj , we use S(ui.uj) to denote the sentiment
similarity score between them. This score is evaluated by the average rating
difference between users. And a lower difference means more similar rating ori-
entation. With the help of sentiment similarity scores, we can find the candidate
users who hold similar sentiment orientation. Equation 2 shows the sentiment
similarity of users.

S(ui.uj) =
1∥∥rui

− ruj

∥∥ + 1
(2)

where rui
and ruj

are the average rating of user ui and uj , respectively. From
this equation, we can see that the similarity between users is higher when their
rating difference is lower.

Fig. 2. Toy example of user trust network

Finally we should take both user authority and sentiment similarity into
consideration when deciding the user trust score. Intuitively if a user follows
a high-authority user, they should be in the same user sequence. But if the
sentiment similarity between them is high, putting them together might lead to
some deviations in the result. Therefore, given two users ui and uj , we propose
a hybrid scoring function by combining user authority and sentiment similarity
scores of them. The way to calculate T (ui, uj) is shown in Eq. 3.

T (ui, uj) =
A(uj) · S(ui, uj)∑

u∈N(ui)
A(u) · S(ui, u)

(3)

We take the user trust network shown in Fig. 2 as an example to illustrate
the user trust scoring of node O. Suppose rO = rA1 = 3.0, rA2 = rA3 = 2.0,
rA4 = 4.5. As shown in Eq. 2, the sentiment similarity between node O and its
adjacent node Ai can be calculated as S(O,A1) = 1, S(O,A2) = S(O,A3) = 0.5,
S(O,A4) = 0.4. With the input of the graph structure (adjacency list), we get the
authority score A(u) of every user, namely, A(A1) = 0.115, A(A2) = A(A3) =
A(A4) = 0.056. According to Eq. 3, we normalize A(Ai)·S(O,Ai) to get the trust
scores T (O,Ai) of adjacent users as T (O,A1) = 0.594, T (O,A2) = T (O,A3) =
0.145, T (O,A4) = 0.116, which are used as the weight of the graph edge to
generate user relation sequence from O.



92 K. Zhao et al.

3.3 User-Trust Random Walk Algorithm

Based on above user network, we can construct the user sequences by applying
a random walk algorithm on the network structure. In order to include richer
information in the user document, we want to include as many users in the
sequence as possible. However, if a sequence of users is too long, the trust score
will become pretty low, which means a rather low sentiment consistency. To
make a trade-off between above factors, we set a stop probability φui,uj ,k for the
random walk algorithm as is shown in Eq. 4. It indicates the probability that
ui stops at uj after k steps. We also record the maximum number of steps to
make sure our algorithm could terminate. Each time when the stop condition is
satisfied, we obtain a user relation sequence.

φui,uj ,k =
1

1 + e− k
2

·
∥∥rui

− ruj

∥∥
C

(4)

where k is the step number, rui
is the average rating of ui and C is the number

of classification categories.

Input: User set U , user trust network N , maximum step length n
Output: Random walk sequence for all users

1 for u ∈ U do
2 k = 0, φ = 0, um = u;
3 Add u to its own user sequence;
4 while k < n and rand(0, 1) ≥ φ do
5 if um has adjacent users then
6 Calculate the trust score of um for N(um);
7 Sample the adjacent user in N(um) to utmp;
8 Add utmp to the user sequence of u;
9 k = k + 1, um = utmp;

10 Update stop probability φ;

11 end

12 end

13 end

Algorithm 1. Random walk on user trust network

Algorithm 1 shows the process of random walk. For all users in the network,
we first initialize their sequences by involving themselves. Then if a user um has
adjacent users, we will calculate the trust scores between um and all the adjacent
users using Eq. 4. Next we perform a weighted sampling on the adjacent users,
add the samples to um’s sequence and update the stop probability. We perform
above computation iteratively until reaching the maximum step or meeting the
stop probability.



Learning from User Social Relation for Document Sentiment Classification 93

4 Deep Learning Based Personalized Sentiment
Classification

4.1 Overall Architecture

In this section, we proposed the deep neural network model SRPNN for per-
sonalized sentiment classification as is shown in Fig. 3. This model consists of
two subnetworks: the left branch captures the features from semantics of review
texts. The right branch is a CNN that models the user relations generated by
the user trust network introduced in Sect. 3. Both branches consist of three lay-
ers: Word Representation Layer, Sentence Representation Layer and Document
Representation Layer.

Fig. 3. The architecture of SRPNN model

4.2 Representation Learning for Text Document

We first introduce the left branch of our model which aims at learning the
representation of review texts in Fig. 4. Here the first question we need to answer
is how to generate the representative vector of a document. The semantics of
a document can be obtained from the meanings of its sentences and the rules
to compose words into a sentence. Following this routine, we can model the
semantics of a document in two steps: we first generate the representation of
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a sentence from the word embeddings. Afterwards, we composite the document
representation with the embedding matrix of sentences.

For sentence level representation, we adopt the CNN model with multiple
filters (MF-CNN) to extract the feature vectors from words. In the Word Rep-
resentation layer, we transform words into representative vectors according to
pretrained word embedding. Here [w1, w2, ..., wln ] is the word sequence where
ln is the sentence length. Next we generate local features from the sequence
of word embedding using convolution layers. To represent the sentence, we
extract unigram, bigram and trigram features from the sentence. We can do
it with the filters in the convolutional layer: we use multiple convolutional filters
with different window sizes as lc = 1, 2, 3 to generate sentence representation.
Then the input sequence of the convolution layer is Ic = [ei, ei+1, ..., ei+lc−1]
(i ∈ [1, ln − lc + 1], Ic ∈ R

d×lc). The convolution layer has the following linear
transformation:

Oc = Wc · Ic + bc (5)

where Wc ∈ R
loc×d×lc , bc ∈ R

loc are parameters to be learned, loc denotes the
output dimension of linear convolution. Upon the convolution layers, we adopt
average pooling operation to aggregate ln − lc + 1 local features. We also apply
tanh function to develop the non-linear transformation in the hidden layers.
Finally, we obtain three feature vectors with size loc. We use the average of
above three vectors as the feature vector of sentence.

Fig. 4. Learning sentence representation with MF-CNN

To learn the document representation, we adopt the simplified LSTM (S-
LSTM) model to generate the sentence-document vector. In this process, we
hope to keep as much information of all sentences as possible. So compared
with standard LSTM, we discard the output gate and replace the new state
Ct with the origin candidate C̃t to simplify LSTM, which is similar to the



Learning from User Social Relation for Document Sentiment Classification 95

Gated Recurrent Neural Network (GRNN) model. The gating mechanism of
S-LSTM model is shown from Eqs. (6)–(9).

it = sigmoid(Wi · [st;ht−1] + bi) (6)
ft = sigmoid(Wf · [st;ht−1] + bf ) (7)
gt = tanh(Wg · [st;ht−1] + bg) (8)
ht = tanh(it � gt + ft � ht−1]) (9)

where st is the sentence vector at time t, Wi, Wf , Wg are the weight matrices.
bi, bf , bg are the offset vectors, � denotes the element-wise multiplication, it is
the input gate, ft is the output gate, gt is the new state and ht is the output
at time t. We regard the output of simplified LSTM as the feature vector of the
document.

Figure 5 shows the simplified LSTM to learn the document representation
from sentences. The input of each time ti is the sentence vector si and the latent
output hi−1 in the previous time unit; and the output is hi correspondingly. We
get the output of each time unit iteratively and finally obtain hn as the output
of this model.

Fig. 5. The simplified LSTM for learning document representation

4.3 Representation Learning for User Document

We then present the right branch of our model to learn the user documents. The
representation of user documents is also obtained in two steps, the same as text
document: first learning the user sequence and then the document. We generate
the user document in the following way: each user in the user network is assigned
an identifier. An identifier is regarded as a “word”. As we have generated the
sequences of users using random walk algorithm, we regard each user sequence
as a “sentence”. All the user sequences of the same user construct that user’s
document.

Similar to the text document, we also learn the representation of user doc-
ument using the CNN model. However, as the sentences in user document are
generated through executing the random walk algorithm multiple times, the
weights of all the sentences are equivalent. Unlike the text reviews, words in
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the user document are not closely related to each other in the contexts. There-
fore we only use one window size of filter in convolution layers. We set it as 5
empirically. For learning the document representation, since the sentence order
of user documents does not provide semantic information, we do not use LSTM
to capture high-level features. Instead we just average the sentence vectors to
generate the document representation.

4.4 Output of the Model

As the feature vectors are obtained from both text reviews and user documents,
we then generate the joint features by concatenating them, which has been shown
in Fig. 3. Then we feed it into a fully connected layer to predict the sentiment
label. We adopt softmax function to learn the probability of each classification
label. In the training process, we use cross-entropy loss as our loss function. And
correspondingly the objective function is denoted in Eq. 10.

loss =
∑

d∈T

C∑

i=1

P g
i (d) · log(Pi(d)) (10)

where T is the training set, d is a document in the training set, C is the number of
classification categories, P g

i (d) denotes whether document d belongs to class i (1
when true or 0 when false), Pi(d) is the probability of prediction for document d
with class i. We use the Adagrad algorithm to optimize the training process and
back-propagation to learn the model parameters. The learning rate is set as 0.03.

Table 1. The statistics of datasets

Item Twitter 1000 Twitter Yelp

# of posts 76517 1446557 1569264

# of users 1000 596714 366715

# of words 79266 805762 742875

# of posts per user 76.52 2.42 4.28

# of sentence per post 2.86 2.78 9.99

# of words per post 17 16.53 145.02

# of following people per user 8.24 32.97 7.55

sentiment distribution 0.37/0.63 0.5/0.5 0.1/0.09/0.14/0.30/0.37
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5 Evaluation

5.1 Data Observations

Datasets. We conduct an extensive set of experiments on two widely used
datasets: Twitter and Yelp. Table 1 describes the statistical information of the
datasets. Twitter is obtained from the Sentiment140 dataset1 and Twitter user
network [8]. Yelp is obtained from Yelp Dataset Challenge in 20152. The training,
validation and test set are constructed by randomly splitting data from a user
in the portion of (80/10/10). These two datasets are rather sparse. Following
the previous study [33], we also build the dense dataset Twitter 1000 from the
top 1000 users with most tweets. The number of classification labels is two for
Twitter and five for Yelp respectively.

Figure 6 shows the distribution of post number. We can see that the post
number obeys the long-tailed distribution. This can further prove the sparsity of
our datasets. We also describe the word frequency and follower number of each
datasets in Fig. 7. The distribution of word frequency and follower number can
demonstrate the property of text and user respectively. We can see that Twitter
and Yelp datasets perform similarly in both word frequency and follower number.
Even in Twitter 1000 we have filtered users with highest number of tweets, we
can still get the similar distributions. This demonstrates that we can use a unified
model to learn the representation of the user and document.

(a) Twitter 1000 (b) Twitter (c) Yelp

Fig. 6. Post distribution of datasets

Experiment Setup. Similar to previous studies [25,33], we use Accuracy and
Root Mean Square Error (RMSE) to measure the overall sentiment classification
performance.

1 http://help.sentiment140.com.
2 https://www.yelp.com/dataset challenge.

http://help.sentiment140.com
https://www.yelp.com/dataset_challenge.


98 K. Zhao et al.

Accuracy =
1
N

N∑

i=1

1(r̂i == ri) (11)

RMSE =

√∑N
i=1(r̂i − ri)2

N
(12)

The RMSE denotes the divergence between predicted sentiment rating (r̂i)
and ground truth rating (ri).

Next we introduce the setting of hyper parameters. For learning the user trust
network, we set the random walk step as 10, and every user has 10 random walk
sequences. We use the pre-trained word2vec embedding with 200 dimensions. The
number of filters of all convolution layers are set as 100. The output dimension
of LSTM is set as 60. The dimension of hidden layers in both branches is 50.

5.2 Baseline Methods

We compare SRPNN with following state-of-the-art baselines of sentiment clas-
sification domain, including two feature-based and three deep learning methods:

SVM+N-gram. Following many previous studies [23–25,27,33], we use uni-
gram, bigram and trigram as features to train a SVM classifier as the baseline
method.
PMSC. Personalized Microblog Sentiment Classification (PMSC) [33] is a
feature-based method assigning personalized weight parameter for each user.
As it only supports binary classification, we did not report its results on Yelp
dataset.
ParaVec. ParaVec [9] regards each document as a paragraph and learns the
paragraph representation. We use the Paravec features and adopt SVM as the
classifier to develop a supervised learning.
GRNN. Gated Recurrent Neural Network (GRNN) takes simplified LSTM to
classify sentiment polarity by [24]. They study the document modeling meth-
ods with deep learning and get significantly better performance than existing
approaches.
UPNN. User and Product Neural Network (UPNN) is a personalized sentiment
classification model based on convolutional neural network [25].

We obtained the source code of above methods from the authors. And for
all the methods, we tune the hyper parameters according to original papers and
report the best results we achieved.
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(a) Twitter 1000

(b) Twitter

(c) Yelp

Fig. 7. Word frequency (left) and follower number (right) of datasets

Table 2. Compare with state-of-the-art methods

Model Twitter 1000 Twitter Yelp

Accuracy RMSE Accuracy RMSE Accuracy RMSE

Feature-based

methods

SVM+unigram 0.7693 0.4804 0.7883 0.4601 0.6235 0.8356

SVM+bigram 0.7888 0.4596 0.8067 0.4396 0.6357 0.7762

SVM+trigram 0.7940 0.4538 0.8169 0.4279 0.6436 0.7580

PMSC 0.8211 0.4230 – – – –

Deep learning

methods

ParaVec 0.7495 0.5005 0.7650 0.4847 0.6016 0.8965

GRNN 0.7724 0.4770 0.8193 0.4250 0.6748 0.6812

UPNN 0.8218 0.4222 0.8192 0.4252 0.6475 0.7576

SRPNN 0.8205 0.4237 0.8304 0.4118 0.6865 0.6793

5.3 Model Comparisons and Analysis

We first compare our SRPNN with state-of-the-art methods. Table 2 shows our
experimental results. Note the PMSC method runs out of memory for Twitter
datasets, so we cannot report its performance here. We can see that SRPNN
outperforms all the other baselines on Twitter and Yelp datasets. The reason is
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that when faced with sparse data, other methods fail to capture enough infor-
mative features. Although UPNN can take advantage of products information,
the benefit is limited due to the problem of data sparsity. The observation that
our SRPNN model outperforms GRNN can further demonstrate the effect of user
trust network towards personalized sentiment classification: GRNN only focuses
on text features with a simplified LSTM, while SRPNN integrates features from
both text reviews and user trust network.

(a) Twitter 1000 (b) Twitter (c) Yelp

Fig. 8. Effect of proposed techniques

We then evaluate the effectiveness of our user-trust random walk algorithm by
changing the settings of user document. We compared it with 3 baseline methods:
Text does not include user document; Text+Random User uses randomly gener-
ated user document; Text+Random Walk adopts random walk algorithm on the
unweighted directed graph generated from user following relations; Text+Trust
User is our proposed method. The results are shown in Fig. 8. We can see that
Text+Trust User achieves the best results. At the same time, Text+Random
Walk ranks second as it involves user relation information. It is worth noting
that Text+Random User performs worst. The reason could be that randomly
generated user sequence contributes nothing but noise in the user document.
It indicates that our user trust network can provide important information of
sentiment.

Finally we analyze the result on Twitter 1000. We can see that SRPNN gets
very similar results with state-of-the-art methods. This is reasonable because
personalized modeling of a user has already been well supported by original
data. So there is no data sparsity. As both PMSC and UPNN directly model
users, they will have better performance on dense dataset. However, in the real
applications such as social media and review rating of products, datasets are
often very sparse. Therefore, although SRPNN does not outperform PMSC and
UPNN on Twitter 1000, it is still necessary in real-world scenarios.
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6 Conclusion

In this paper, we propose Social Relation Powered Neural Network (SRPNN),
a deep learning based model for document-level sentiment classification. We
propose a random walk algorithm to obtain the sequences of users with user-
sentiment consistency so as to generate the user document. We then jointly learn
the representation of text and user document. Experimental results on two public
datasets demonstrate the effectiveness of our proposed methods.

Acknowledgment. This work was supported by NSFC (91646202), National Key
R&D Program of China (SQ2018YFB140235), and the 1000-Talent program.
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Abstract. In this paper, we study how to recommend both accurate and
diverse top-N recommendation, which is a typical instance of the maxi-
mum coverage problem. Traditional approaches are to treat the process
of constructing the recommendation list as a problem of greedy sequen-
tial items selection, which are inevitably sub-optimal. In this paper, we
propose a reinforcement learning and neural networks based framework –
Diversify top-N Recommendation with Fast Monte Carlo Tree Search
(Div-FMCTS) – to optimize the diverse top-N recommendations in a
global view. The learning of Div-FMCTS consists of two stages: (1)
searching for better recommendation with MCTS; (2) generalizing those
plans with the policy and value neural networks. Due to the difficulty
of searching over extremely large item permutations, we propose two
approaches to speeding up the training process. The first approach is
pruning the branches of the search tree by the structure information of
the optimal recommendations. The second approach is searching over
a randomly chosen small subset of items to quickly harvest the fruits
of searching in the generalization with neural networks. Its effectiveness
has been proved both empirically and theoretically. Extensive experi-
ments on four benchmark datasets have demonstrated the superiority of
Div-FMCTS over state-of-the-art methods.

Keywords: Recommender system · Recommendation diversity ·
Monte Carlo Tree Search

1 Introduction

With the rapid growth of the Internet, the recommender system has become
an indispensable part for many companies (e.g. Amazon1, Netflix2, JD.com3) to
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overcome the information overload and to help customers find products. As a
basic service, recommender system aims at filtering out the unattractive items
and generating item recommendations in favor of user preferences. To cater to
users, the recommender system is designed to find best-fitted products for users
(e.g. highest rated movies, likest cellphone), which results in researches focusing
on improving the accuracy of recommendations. However, the most accurate
recommendations are sometimes not the recommendations that are most useful
to users [22,33]. Fully exploiting learned user preferences without exploration of
probably liking items might result in performance deterioration and falling into
the cycle of recommending same items, such as always recommending cellphones
if a new user only clicked a cellphone, which would disappoint users and cause
the loss of users. Improving the recommendation diversity has been recognized
as an effective way to alleviate this issue because it can broaden users’ horizon
and help users find new interesting items. Additionally, the platform can improve
both their performance and users’ satisfaction, which is a win-win situation.

During the last decade, various diversity-enhancing methods have been devel-
oped to increase diversity while maintaining the accuracy [1–3,5,41]. The pre-
vious methods for diversity improvement can be roughly divided into two cat-
egories: point-wise and list-wise approaches. The point-wise approaches usually
involve two phases: generating the candidate items with the highest accuracy
and re-ranking the items by heuristic methods [1], such as re-ranking with pop-
ularity [2]. For list-wise approach, it directly trains a supervised learning model
to generate the recommendation lists with high accuracy and diversity [5]. How-
ever, the ground truth training labels are obtained by greedy selection. All in all,
the existing approaches are treating the process of constructing the recommen-
dation list as a problem of greedy sequential items selection. At each step, the
algorithm iteratively selects the item with the highest marginal gain (which usu-
ally takes both accuracy and diversity into account) with respect to the selected
items. However, the diversity of an item depends on the other recommended
items, selecting an optimal ranking of items is a typical instance of the maximum
coverage problem, a classical NP-hard problem in computational complexity the-
ory [11]. Therefore, the recommendation lists produced by greedy items selection
are inevitably sub-optimal. In general, the recommendation algorithm needs to
explore the whole candidate item space, if the optimal recommendation list is
mandatory. However, it is usually infeasible in real recommender systems as the
huge space of possible recommendations: for selecting N(N ∼ 101) items from
K(K > 104) candidate items there exist K!

N ! (�1010) different recommendation
permutations. In this way, there is an urgent need for an algorithm suitable for
recommendation diversity task that can efficiently search for optimal results in
large spaces.

In this work, we will investigate to obtain accurate and diverse top-N rec-
ommendation in a sequential decision-making manner. To avoid local optimal
solution and learn the optimal global policy efficiently, we propose a novel
reinforcement learning and neural network based approach named Diversify
recommendation with Fast Monte Carlo Tree Search (Div-FMCTS).
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Specifically, Div-FMCTS formulates the generation of recommendation as a
finite-horizon MDP and finds the optimal policy by iterating between two pro-
cedure: (1) searching the space of item permutations to find optimal top-N rec-
ommendations; (2) generalizing those searching results with neural networks. In
searching stage, Monte Carlo Tree Search (MCTS) is proposed to heuristically
search for the optimal recommendations. However, searching with MCTS is slow
due to the extremely large size of candidate items. In this work, we propose two
approaches to deal with large items set. The first approach, called structure prun-
ing, uses the structure information of optimal recommendations to narrow down
the search space of MCTS. The second approach, called problem decomposition,
searches over a small randomly chosen subset of candidate items to quickly har-
vest the fruits of MCTS and generate more training sets for the imitation learning
in the second stage. To prove its validity, we theoretically and empirically ver-
ify that diversifying recommendations can be equivalently solved by searching
over many subset candidate item set. In the generalizing stage, a two-head GRU
with a factorized similarity model [37] is proposed to approximate the searching
results and estimate the goodness of current recommendations by tracking both
user’s temporary and intrinsic interests. Finally, extensive experiments on four
benchmark MovieLens datasets show that Div-FMCTS can recommend diverse
items at the same time maintaining high accuracy, which can not be achieved
by either traditional methods or the state-of-the-art methods [2,3,9,17,25,26].

The rest of the paper is organized as follows. Section 2 discusses the formu-
lation of diversify top-N recommendation and its difficulty. Section 3 describes
our proposed model and learning algorithm in detail. In Sect. 4, we propose how
to speed up the tree search process. We discuss related work on the diverse
top-N recommendation in Sect. 5. Experimental results for the analysis and per-
formance comparisons are presented in Sect. 6. We conclude with a summary of
this work in Sect. 7.

2 Diverse Top-N Recommendation as MDP

2.1 Diverse Top-N Recommendation

Assuming that there are a set of users U and a set of items I. For each item
i ∈ I, it lies on a set of topics/categories Zi = {ζij

}Z
j=1, where ζij

is one topic
of item i and Z is the number of associated topics, usually ranging from 1 to 5.
Given a user’s rated history Ou = {(ioj

, roj
)}O

j=1 where roj
are numeric ratings,

we are concerned with finding ranked N-items iν = [iνt
]Nt=1 from not being rated

set Cu = I − {ioj
}O

j=1 that maximize the trade-off between accurate and diverse
metrics as

max
{iνt }N

t=1⊂Cu

2
f(iν) × g(iν)
f(iν) + g(iν)

, (1)

where f, g : Y → R are the metrics on recommendation accuracy and diversity
respectively, e.g. NDCG, α-NDCG, Pairwise Accuracy Metric (PA), Normalized
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Topic Coverage (NTC) [5,6,13]. 2 f(·)g(·)
f(·)+g(·) is the F-measure between accuracy and

diversity, which is being widely used as the evaluation metric on recommendation
task [5].

Theoretically, recommendation diversity can be naturally stated as a bi-
criterion optimization problem, and it is NP-hard [3]. To comprehend its difficulty,
Fig. 1 shows a toy example, which includes the candidate set, the optimal rank-
ing and greedy ranking of top-3 recommendations. The greedy solution, selecting
the item that maximizing the relevance and diversity gain, is different with opti-
mal recommendations. In practice, most previous approaches on recommendation
diversity are based on greedy approximation, which sequentially selects a ‘local-
best’ item from the remanent candidate set [8], which inevitably is the suboptimal
recommendations. Therefore, it is urgent to view recommendation as a sequential
selection process and to optimize the ranking in a global view.

optimal solution [i1, i2, i3]
greedy solution [i4, i3, i1]

Movie id topic rating
i1 {1,2,3,4} 5
i2 {5,6,7} 5
i3 {8,9} 4
i4 {2,3,4,5,6} 5

Fig. 1. A toy example of top-3 recommendation.

2.2 MDP Formulation of Diverse Recommendation

In this work, we formulate the diverse top-N recommendation as a Markov Deci-
sion Process (MDP) and optimize whole recommendations with reinforcement
learning. A MDP is defined by M = 〈S,A, P,R, γ〉, where S is the state space,
A is the action space, P : S × A × S → R is the transition function with
p (st+1|st, at) being the probability of seeing state st+1 after taking action at at
st, R : S ×A → R is the mean reward function with r(s, a) being the immediate
goodness of (s, a), and γ ∈ [0, 1] is the discount factor. We design the state at
time step t as a tuple st = {iν<t

, u,Ou} consisted of the user’s rated history
Ou, user id u and previous t − 1 recommendations iν<t

= [iν1 , iν2 , . . . , iνt−1 ].
Given st, the recommendation agent chooses a action, e.g. the recommendation
iνt

, and updates the state by appending iνt
to iν<t

. Then, a reward rt(st, iνt
)

should be given for iνt
. To be consistent with the metrics defined in Eq. (1), we

consider the reward function as the accuracy and diversity gain deriving from
recommending item iνt

at position t as

rt(st, iνt
) = 2

G(iνt
) × α-G(iνt

)
log2(t + 1)(G(iνt

) + α-G(iνt
))

, (2)

where rt(st, iνt
) is the discounted F-measure of accuracy gain G(iνt

) and diver-
sity gain α-G(iνt

) on t-th recommendation. 1
log2(t+1) is the discounted factor for

the t-th recommendation, which has been widely used in metrics for recommen-
dation evaluation [6,13]. Because of the discount factor and the fact that top-N
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recommendation is a finite-horizon MDP problem, there is no need for additional
discount on the reward function and we set the discounted factor as γ = 1.

To maximize the reward, we usually learn a policy π : S × A → R, which
maps the state st to the probability of recommending iνt

at time step t. With
the policy π, the probability of recommending iν can be modeled by the chain
rule as,

p(iν) =
N∏

t=1

π(iνt
|st). (3)

We aim to learn a parameterized policy πθ that assigns highest probability p(iν)
to the recommendation i∗

ν with the biggest reward, e.g. maximizing the accuracy
and diversity of top-N recommendations.

3 The Training Framework

To find the optimal recommendation policy π∗, we split the learning algorithm
into two-stage iterative optimization problem: (1) given the parameterized pol-
icy πθ, searching for better policies πe by using πθ as prior knowledge. In this
work, we employ MCTS for finding the better policy πe, which usually selects
much stronger moves than the raw probabilities πθ [30]; (2) updating the πθ by
minimizing the difference between πe and πθ. Then, the updated policy πθ is
used in the next iteration to make the πe even stronger.

3.1 The Architecture of Policy and Value Neural Networks

For the success of training a good policy, the architecture of policy function is
important. Apart from the policy function, the value function is also parame-
terized in our neural network, which evaluates the goodness of following current
policy. We employ a two-head architecture for reinforcement learning, which
has two advantages: (1) training with the information from the expert policy
and estimating value can effectively avoid the overfitting; (2) the parameter-
ized value function is helpful for fast estimation of leaf nodes’ value in the tree
search phases. In the following, we first discuss how to model user’s preferences
in states. Then, based on user’s preferences, the policy and value functions have
been built.

Preference Embedding. The state st = {iν<t
, u,Ou} contains user’s historical

information. We first computes state embedding as,

st =
[
u�, GRU (Ou, iν<t

)�
]�

where u� ∈ RdU is a latent factor used to embed user’s intrinsic preference.
GRU (Ou, iν<t) is a GRU model to summary user’s temporary preference on
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first t − 1 recommendation. The initial hidden state h0 = GRU(Ou) is set by a
factorized similarity model [37] as,

h0 =
∑

(ioj
,roj )∈Ou

roj
ioj

+ bu

where bu ∈ RdH is the bias term, ioj
∈ RdH is the embedding vector for item ioj

.

The Policy and Value Function. Given the state embedding st, the recommen-
dation policy πθ and value function vθ are defined as

πθ (iνt
|iν<t

, u,Ou) =
exp (Γ (iνt

|st))∑
ij∈I exp (Γ (ij |st))

Γ (i1, . . . , iI |st) = Wsst + bs

vθ (st) = V �st + bv

where Ws ∈ R(dU+dH)×dI , V ∈ RdU+dH , bs ∈ RdI and bv are the weight and bias
terms. Γ (ij |st) is the score for recommending item ij . πθ is set as the softmax
of score Γ (ij |st).

3.2 Searching for the Expert Policy

In the first phases, we employ MCTS to search for an improved policy compared
with current πθ. In the executing process, the MCTS planning process incre-
mentally builds an asymmetric search tree that is guided in the most promising
direction by an exploratory action-selection policy. This process usually consists
of four phases: selection, evaluation, expansion and backup as

– Selection: At each node st, MCTS uses a selection policy to balance of
exploitation of actions with high value estimates and exploration of actions
with uncertain value estimates. To balance the trade-off of exploitation and
exploration, a variant of PUCT is employed [30]. Specifically, an action iνt

is
selected at node st so as to maximize action value plus uncertain estimate:

iνt
= arg maxi(Q(st, i) + cpuctP (st, i)

√∑
b∈Cu

N(st, b)

1 + N(st, i)
)

where Q(st, a) is the mean action-value, P (st, i)
√∑

b∈Cu
N(st,b)

1+N(st,i)
is the uncertain

value estimate, P (st, i) is the prior probability of selecting that edge, N(st, i)
is the visit count and cpuct is the constant determining the level of exploration.

– Evaluation: When the iteration reaches a leaf node st, the node v(st)
is evaluated either with the value function vθ(st) or with the predefined
performance measure if the node is the end of an episode and the human
labels are available.
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– Expansion: The leaf node st may be expanded. Each edge from the leaf posi-
tion st is initialized as: P (st, iνt

) = p(iνt
|st), Q(st, iνt

) = 0, and N(st, iνt
) = 0.

In this paper all of the available actions of st are expanded.
– Backup: Finally, we recursively back-up the results in the tree nodes. Denot-

ing the current forward trace in the tree as {s1, i1, s2, .., st}. For ∀(sj , ij) j < t,
we recursively update the Q(sj , ij) as

Q(sj , ij) ← N(sj , ij) × Q(sj , ij) + v(sj)
N(sj) + 1

v(sj) ← v(sj+1) + rj(sj , ij).

This cycle of selection, evaluation, expansion and backup is repeated until the
maximum iteration number has been reached. At this point, the best action is
been chosen by selecting the action that leads to the most visited state (robust
child) as follow:

iνt
= arg max

iνt

πe(iν |st)

πe(iν |st) =
N(st, iν)∑

b∈Cu
N(st, b)

, (4)

where πe(st) = [πe(i|st)]�i∈Csu
is the improved policy after MCTS.

3.3 Generalizing with Policy and Value Neural Networks

The policy and value neural network is learned to mimic the searching policy
πe and predicts the expected return vπe

of the following πe. Specifically, the
parameters θ are adjusted by gradient descent on a loss � over the cross-entropy
loss between πθ and the search policy πe, and the mean-squared error between
the predicted value vθ(st) and the sample discount reward zt by following πe in
training stage as:

�(θ) =
{
(zt − vθ(st))2 − πe(st)� log πθ(st)

−(1 − πe(st))� log(1 − πθ(st))
}

+ ρ‖θ‖2, (5)

where πθ(st) = [πθ(i|st)]�i∈Csu
, and ρ is a parameter controlling the level of �2

weight regularization.

4 Dealing with Large-Scale Datasets

One disadvantage of DIV-MCTS is that the heuristic search over a large can-
didate item set is time-cost especially when dealing with massive datasets. For
example, when the candidate item set contains 1000 items (not a very big item
set), they will be nearly 1000 nodes to be evaluated at every expansion, which
means that every node has nearly 1000 child nodes. Additionally, the expansion
operation will be repeated over and over again until the maximum iteration is
reached. Searching over such a broad tree would be problematic. To alleviate
this problem, we propose two approaches to solve this problem.
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4.1 MCTS with Structure Pruning

The first improvement is to prune the branches that seem impossible to be the
optimal recommendations before expanding the leaf node. To reduce meaningless
search, the structure of optimal recommendations has been incorporated into the
expansion of the search tree to efficiently narrow down the searching space.

Lemma 1. Assuming the undiscounted accuracy and diversity gain of item i at
t is ht(i) = 2G(i)×α-G(i)

G(i)+α-G(i) , and the optimal ranking for st = {u,Ou, iν<t
} with Cu

is i∗
ν≥t

= [i∗νt
, i∗νt+1

, . . . , i∗νN
], then we have ht(i∗νt

) ≥ ht(i∗νt+1
) ≥ · · · ≥ ht(i∗νN

).

Proof. ∵ the accuracy and diversity gain is discounted with t.

∴ the total reward is proportional to
∑N

j=t

hj(i
∗
νj

)

log2(j+1) .
∀t1, t2 ∈ [t,N ], t1 < t2, if ht1(i

∗
νt1

) < ht1(i
∗
νt2

), then [i∗νt
, . . . , i∗νt2

, . . . , i∗νt1
. . . , i∗νN

]
would be the optimal ranking, which is conflict with the assumption that i∗

ν≥t

is the optimal ranking. So, we have ht(i∗νt
) ≥ ht(i∗νt+1

) ≥ · · · ≥ ht(i∗νN
). �

Lemma 1 shows that the optimal recommendations must be descend on the
undiscounted accuracy and diversity gains, which is a very valuable property for
pruning unpromising leaf node in tree search. Combined with naive MCTS, we
stop the expanding of a leaf node if the undiscounted accuracy and diversity gain
is bigger than the parent node. Specifically, in FMCTS, the action node in the
tree stores {N(s, i), P (s, i), Q(s, i),H(s, i)}, where H(s, i) is the undiscounted
immediate reward. During the expansion, the leaf node is expanded only when
the undiscounted reward of edge h(sl, iνl

) is smaller than the parent node’s
H(sl−1, iνl−1). Finally, the new edge is initialized with H(sl, iνl

) = h(sl, iνl
).

Figure 2 plots the pruning expansion process.

sl

sl−1

H(sl−1, iνl−1)

h(sl, il1) ≤ H(sl−1, iνl−1) h(sl, il4) > H(sl−1, iνl−1)

Fig. 2. The structure pruning of node-expansion on MCTS.

4.2 Acceleration with Problem Decomposition

Although the efficiency problem can be alleviated by pruning branches of the
search tree, training over such large candidate item set can still be problem-
atic. The intuitive idea is to reduce the size of the candidate item set, which
is helpful for harvesting the fruits of tree search more frequently and sharing
this knowledge over different tree search. To reduce the search space, we pro-
pose to decompose the top-N recommendation problem into many sub-problems
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(e.g. searching over a small subset of candidate item set Cu). Then, sharing the
searching results by the generalization of the neural network. In Theorem1, we
prove that searching over a randomly chosen subset Csu

⊂ Cu will discovery the
optimal policy in the limits under a mild condition.

Theorem 1. Assuming that the optimal policy for st = {u,Ou, iν<t
} under

candidate item set Cu is πe. If the searching over a randomly chosen subset
Csu

⊂ Cu satisfying (1 + M
K ) (M−1)!(K−N)!

(K−1)!(M−N)! ≥ 1, where M = |Csu
|, K = |Cu|,

K,M >> N . ∀p, q ∈ Cu with πe(ipνt
|s) ≥ πe(iqνt

|s), we have E[π̂e(ipνt
|s)] ≥

E[π̂e(iqνt
|s)], where π̂e is the optimal planning policy under Csu

.

Proof. Assuming that the optimal ranking under Cu starts with ipνt
is

ip
ν≥t

= [ipνt
, ipνt+1

, . . . , ipνN
]. From Lemma 1, we can infer that E[π̂e(ipνt

|s)] ≥
E[π̂e(ipνt+i

|s)],∀i ≥ 1.

For a item iqνt
(iqνt

�∈ ip
ν≥t

), the probability of ip
ν≥t

⊂ Csu
is p(ip

ν≥t
⊂ Csu

) =
C

M+t−(N+1)
K+t−(N+1)

CM
K

and p(ip
ν≥t

�⊂ Csu
and iqνt

∈ Csu
) = (1 − C

M+t−(N+1)
K+t−(N+1)

CM
K

)
CM−1

K−1

CM
K

.

Fig. 3. The influence of M
K

on the mismatch of π̂e and πe.

Then,

E[π̂e(ipνt
|s)] ≥ E[π̂e(iqνt

|s)]
⇐ p(ip

ν≥t
⊂ Csu

) ≥ p(ip
ν≥t

�⊂ Csu
and iqνt

∈ Csu
)

⇐
C

M+t−(N+1)
K+t−(N+1)

CM
K

≥ (1 −
C

M+t−(N+1)
K+t−(N+1)

CM
K

)
CM−1

K−1

CM
K

⇔ 1 ≤ (1 +
M

K
)
(M − 1)!(K − N)!
(K − 1)!(M − N)!

(6)

So, ∀p, q ∈ Cu with πe(ipνt
|s) ≥ πe(iqνt

|s), we have E[π̂e(ipνt
|s)] ≥ E[π̂e(iqνt

|s)]. �
The condition in Eq. (6) is a very restrictive, since we assume that iqνt

would
be the optimal solution with ip

νt
�⊂ Csu

. To get a loosen condition, we study the
influence of M

K on E[π̂e] by simulating on a synthetic dataset. For the construc-
tion of synthetic dataset, we randomly create multi-candidate item sets Csu

with
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100 items, 20 topics, and 5 ratings, and searching over a randomly chosen subset
Csu

with a fixed size M . Then, MCTS is employed to generate expert policy π̂e.
Finally, we study the difference between π̂e and πe by comparing the recommen-
dation chosen by πe and π̂e, because it determines the policies’ performances.
The simulation code is available on https://github.com/zoulixin93/FMCTS. In
Fig. 3, we show the difference between π̂e and πe by comparing the recommenda-
tion made by π̂e and πe. As we can see, the bigger M

K means greater possibility
of choosing optimal recommendation i∗νt

with π̂e. For M/K ≥ 0.25, the rec-
ommendation made by πe and π̂e would be same, which is much more loosen
than the condition in Eq. (6). Combining these two techniques with the training
framework, the resulting detailed training procedure is provided in Algorithm 1.

5 Related Work

In this section, we briefly review works related to our study. In general, the
related work can be mainly grouped into the following three categories: recom-
mendation diversity, deep learning based methods, and reinforcement learning
based methods.

ALGORITHM 1. Training of Div-FMCTS

Input: Training dataset D = {(u(j), O(j)
u , C(j)

u )}D
j=1, learning rate δ, maximum iteration

number Λ, trade-off parameter cpuct, reward function r, subset size M , buffer size B.
Output: Well-trained πθ.

1 Randomly initialize parameters θ ← U(−0.1, 0.1)
2 Initialize a queue Ψ to capacity B
3 repeat
4 for {(u, Ou, Cu)} ∈ D do
5 Randomly chose M items from Cu as the candidate set Csu
6 for t from 1 to N do
7 Set st ← {u, Ou, iν<t }
8 Do MCTS under st until the maximum iteration number Λ is reached
9 Choose iνt = arg maxi∈Csu

πe(i|st)

10 Calculate the reward rt with Equation (2)

11 end
12 z = 0
13 for t from N to 1 do
14 z ← rt + γz
15 Store the tuple {u, Ou, iν<t , z, πe} in Ψ

16 end
17 Sample a mini-batch of {u, Ou, iν<t , z, πe} from Ψ

18 Update parameters θ ← θ − δ
∂�(θ)

∂θ with Equation (5)

19 end

20 until converge;

5.1 Recommendation Diversity

Recommendation diversity refers to aggregate diversity and individual diver-
sity. Aggregate diversity means the overall diversity of all users and is being
measured by using absolute and relative long-tail metrics [1,4]. Adomavicius
et al. [1] firstly proposed a graph-theoretic approach for maximizing aggregate

https://github.com/zoulixin93/FMCTS
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recommendation diversity based on maximum flow or maximum bipartite match-
ing computations. Individual diversity aims at maximizing the recommenda-
tion diversity for each user and is usually being measured by topic coverage or
α-NDCG [19,41]. In this study, the focus is on individual diversity.

The methods for individual diversity improvement can be divided into two
categories. The first category is the point-wise methods, which involves two
phases: generating the accuracy estimates of items and heuristically ranking
the items considering both the accuracy and diversity. For example, a popular
heuristic re-ranking approach has been proposed in [2]. Ziegler et al. [41] came up
with a novel approach named topic diversification to balance and diversify per-
sonalized recommendations. Azin et al. [3] proposed a greedy selection method
for diversifying individual recommendation. The second category is the list-wise
approach, which directly generates a subset accurate and diverse recommen-
dation. For example, Cheng et al. [5] presented a supervised learning method,
which combined parameterized matrix factorization and structural learning to
seek significant improvement in diversity while maintaining accuracy. However,
point-wise methods require fine-tuning features for heuristic methods. Addition-
ally, leveraging heuristic method possibly only find the suboptimal solution to
the problem. For list-wise approach, ground truth labels for training is needed,
which is usually obtained by heuristic methods and can not scale for the large
datasets.

5.2 Deep Learning Based Recommendation

With the booming success of deep learning in computer vision and natural lan-
guage processing [15], there are many works trying to apply neural networks for
recommender systems. The first work is proposed in [27], which uses a variant of
the restricted boltzmann machine for collaborative filtering (RBM-CF). Similar
to RBM, Autoencoders and the stacked-denoising autoencoders based recom-
mender systems have been analyzed in [18,31], which are compact and efficiently
trainable model. Recently, Zheng et al. [40] introduced a neural autoregressive
approach for collaborative filtering (CF-NADE), which has beat the state-of-
the-art methods on MovieLens and Netflix datasets. Xue et al. [12] proposed to
use DNN to learn the latent factors from the sparse user-item matrix and make
recommendations based on the relevance measure of user-item latent factors.
There are also many hybrid methods, which combine matrix factorization (MF)
with DNN to solve the problem of cold start, such as [34,35]. Apart from the
traditional recommender, recurrent neural networks have been widely employed
to sequential recommender system, such as GRU4Rec [10], NARM [17]. In spite
of its success, all these methods are mainly concerned with increasing the rec-
ommendation accuracy in traditional user-item setting and none of these works
could directly optimize the diversity of recommendation.
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5.3 Reinforcement Learning Based Methods

Since the great success in playing Atari 2600 video games and Go at a superhu-
man level directly from image pixels [23,24,29], deep reinforcement learning has
attracted enormous research interests. However, due to the difficulty of dealing
with larger action space, there are just a few works applying the techniques of
deep reinforcement learning to the recommender system. For example, in [28],
an MDP based recommender system has been proposed, which recommends
most likely purchasing items by using a sample-based transition distribution. It
requires huge samples to learn the transition distribution and is limited to solve
the problem with small state space. To maximize the accumulative rewards,
Mahmood et al. [21] adopted the reinforcement learning technique to optimize
the responses of users in a conversational recommender. Sunehag et al. [32] intro-
duced slate-MDPs and successfully addressed sequential decision problems with
high-dimensional combinatorial slate-action spaces. Arnold et al. [7] proposed a
actor-critic based model to deal with the problem of large discrete action spaces.
It leverages the policy gradient to learn a policy mapping from state to a continu-
ous action and chooses the action with the biggest Q-value in candidate actions,
which is generated by finding the k-nearest neighbors of continuous action in
discrete action space. In [20], it proposed to use the latent factors learned from
probability matrix factorization (PMF) as the belief states and approximate the
Q-value by using a neural network with the latent factors as input.

Apart from the recommendation scene, reinforcement learning has also been
applied to information retrieval. For example, in [38], MDP has been adapted
to solve the search result diversification by using policy gradient. Yisong et al.
formulated [39] the real-time learning in the search engine as a dueling bandit.

6 Experiments

In this section, we conduct experiments to demonstrate the effectiveness of our
proposed method. We also do some extensive experiments to analysis the effec-
tiveness of structure pruning and the decomposition of diversity recommendation.

6.1 Experimental Settings

Dataset. Since we mainly focus on the recommendation diversity, the chosen
datasets have to satisfy a fundamental requirement: each item should be associ-
ated with topics for generating training instances and evaluating the predictions.
In this study, fours benchmark datasets MovieLens 100k, 1M, 10M and 20M4

have been chosen to evaluate Div-FMCTS. The statistics of datasets are shown
in Table 1.

4 https://grouplens.org/datasets/movielens/.

https://grouplens.org/datasets/movielens/
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Table 1. Summary statistics of datasets.

Dataset #user #item #rating #topic average topics

MovieLens100k 943 1,682 100,000 19 1.72

MovieLens1M 6,040 3,900 1,000,209 19 1.67

MovieLens10M 71,567 10,681 10,000,054 18 2.02

MovieLens20M 138,493 26,774 20,000,263 20 2.00

Baselines. First of all, we choose DCF [5] as our main baseline, which is a strong
baseline on diverse top-N recommendation. Besides, since Div-FMCTS is a rein-
forcement learning based algorithm, we also choose REINFORCE [36] as our
baseline. Additionally, we also compare Div-FMCTS with a RNN-based recom-
mendation model NARM [17] and the most popular and widely used matrix
factorization (MF) [16].

Evaluation. Like most diverse recommender systems [5], we choose NDCG@N
and α-NDCG@N as the metrics to evaluate the effectiveness on recommenda-
tion accuracy and diversity. Furthermore, we also utilize the F -measure, named
FNDCG@N , to assess the trade-off performance with consideration of both accu-
racy and diversity.

Parameter Settings. For each datasets, 10% of the ratings are randomly selected
as the test set, leaving the remaining 90% of the ratings as the training set.
Among the ratings in the training set, 5% are used as validation set, which is
used to find the optimal hyperparameters. For neural network, we randomly
initialized model parameters with a uniform distribution ranging from −0.01 to
0.01, optimizing the model with mini-batch Adam [14]. In MCTS, the trade-
off parameter for exploitation and exploration is set as cpuct = 2000. The M

K
is set as 0.2 for K ≥ 100. The maximum iteration number of MCTS is 1000
on experiments. Following the setting of DCF [5], we mainly consider top-3
recommendation problem, where a list of 3 items is recommended for each user.
The models are defined and trained in Tensorflow on a Nvidia Tesla P40 GPU.
The source code for Div-FMCTS can be found at Github: https://github.com/
zoulixin93/FMCTS.

6.2 Experimental Results

Comparison Against Baselines. We compared Div-FMCTS with state-of-the-art
methods. The results of all methods over the benchmark datasets in terms of
three metrics are shown in Table 2. From the results we can see that, Div-FMCTS
outperformed all of the baseline methods on α-NDCG@3 and FNDCG@3 by a
large margin. And also, even if it is not the best result, it is not much different
from the best result in term of α-NDCG@3. We conducted significance testing
(t-test) on the improvements of our approaches over the all baselines. � denotes

https://github.com/zoulixin93/FMCTS
https://github.com/zoulixin93/FMCTS
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strong significant divergence with p-value< 0.05. The improvements are signif-
icant, in terms of α-NDCG@3 and FNDCG@3. The results indicate that our
model Div-FMCTS can indeed improve recommendation diversity while main-
taining recommendation accuracy.

Table 2. Comparison between Div-FMCTS and state-of-the-art methods.

Methods MovieLens100k MovieLens1M

NDCG@3 α-NDCG@3 FNDCG@3 NDCG@3 α-NDCG@3 FNDCG@3

Div-FMCTS 0.8080 0.8364 0.8222 0.8288 0.8277 0.8282

REINFORCE 0.7523� 0.6291� 0.6888� 0.7546� 0.6075� 0.6731�

DCFa 0.7070 0.7414 0.7238 0.7415 0.6735 0.7059

NARM 0.8213 0.5208� 0.6374� 0.8305 0.4935� 0.6191�

MF 0.8041� 0.5346� 0.6422� 0.8023� 0.5011� 0.6169�

MovieLens10M MovieLens20M

Div-FMCTS 0.8274 0.8201 0.8237 0.8053 0.8278 0.8165

REINFORCE 0.7277� 0.6442� 0.6834� 0.7325� 0.6232� 0.6734�

NARM 0.8206 0.5098� 0.6289� 0.8310 0.4782� 0.6071�

MF 0.8047� 0.4774� 0.5992� 0.8179� 0.4702� 0.5971�
aThe experimental results of DCF is taken from [5].

Comparison Between FMCTS and Naive MCTS. It is a key question that how
much impact on the learned policy π̂θ through MCTS over a subset of candi-
date item set. To investigate its influence, we train a policy π̂θ by MCTS over
the complete candidate set Cu, named Div-MCTS. For the sake of fairness, Div-
FMCTS and Div-MCTS are trained with same hyperparameters. In Fig. 4, we
show the FNDCG@3 w.r.t. the training iteration. The blue one is the perfor-
mance of training with problem decomposition and the orange one is training
with the complete candidate item set Cu. From Fig. 4, the FNDCG@3 is nearly
same on these four benchmark dataset, which means that training over a subset
of candidate set does not influence the performance. Meanwhile, Div-FMCTS
converges faster than Div-MCTS, which indicates that MCTS over a subset of
candidate item set can do the optimization more efficiently.

The Advantage of FMCTS on Searching Time. To examine the advantage of Div-
MCTS, we compared average searching time of four different MCTS: (1) Div-
MCTS is searching over the whole candidate item set without structure pruning;
(2) Pruning the MCTS with the descend immediate reward – Div-PMCTS; (3)
MCTS with problem decomposition, named Div-DMCTS; (4) The proposed
Div-FMCTS, searching with a smaller candidate set and structure pruning. In
our experiments, the tree searches are running on a server with 64 GB memory
and an INTEL Core i7-7800X CPU, the maximum iteration number of MCTS
are 1000. Figure 5 plots the average searching time over these four datasets. We
can see that the searching time of Div-FMCTS and Div-DMCTS do not increase
too much with respect to the increasing number of items. In contrast, the average
searching time of Div-MCTS and Div-PMCTS grow fast w.r.t the increasing size
of datasets. Additionally, using structure pruning will decrease planning time.
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From the results, we can see that searching over a subset of candidate item set
and pruning branches with descend immediate reward is helpful on saving the
training time.

Fig. 4. The influence of planning over a subset of candidate item set.

Fig. 5. The average tree searching time of four different MCTS.

7 Conclusion

In this paper, we have proposed a novel MDP based method – Div-FMCTS –
to directly maximize the trade-off between accuracy and diversity for the top-
N recommendation. The learning of Div-FMCTS is decomposed into iteration
between searching with MCTS and generalizing those plans with a policy-value
neural network. To faster the tree search process, a novel structure pruning tech-
nique has been incorporated into the node expansion to narrow down searching
space for MCTS. Additionally, we theoretically and empirically verify that the
diversity recommendation can be equivalently solved by planning under the sub-
problems. Extensive experiments on four benchmark datasets have demonstrated
the effectiveness of our proposed method.
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Abstract. Retweeting provides an efficient way to expand information
diffusion in social networks, and many methods have been proposed
to model user’s retweeting behaviors. However, most of existing works
focus on devising an effective prediction method based on social network
data, and few research studies explore the data characteristic of retweet-
ing behaviors which is typical binary discrete distribution and sparse
data. To this end, we propose two novel retweeting prediction models,
named Binomial Retweet Matrix Factorization (BRMF) and Context-
aware Binomial Retweet Matrix Factorization (CBRMF). The two pro-
posed models assume that retweetings are from binomial distributions
instead of normal distributions given the factor vectors of users and mes-
sages, and then predicts the unobserved retweetings under matrix factor-
ization. To alleviate data sparsity and reduce noisy information, CBRMF
first learns user community by using community detection method and
message clustering by using short texts clustering algorithm from social
contextual information on the basis of homophily assumption, respec-
tively. Then CBRMF incorporates the impacts of homophily character-
istics on users and messages as two regularization terms into BRMF to
improve the prediction performance. We evaluate the proposed meth-
ods on two real-world social network datasets. The experimental results
show BRMF achieves better the prediction accuracy than normal dis-
tributions based matrix factorization model, and CBRMF outperforms
existing state-of-the-art comparison methods.
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1 Introduction

Recent years have witnessed an increasing amount of social network services
such as Twitter, Facebook and Weibo. One of the distinguishing features of
these services is the retweeting mechanism which forwards messages published
by other users and shares them with one’s own followers. Most of existing stud-
ies have shown that retweeting is considered as a key mechanism of information
diffusion in social networks [1,18]. Taking full advantage of the function, one
can achieve better insights into the process of information diffusion, making
a right strategic decision for many tasks of social network applications such
as event discovery [10], community detection [3,28], and recommender system
[5,16]. Thus, understanding the influencing factors of retweetings from the
observed data and predicting the hidden mechanism underlying diffusion is a
critical and fundamental task in these applications.

Fig. 1. An example of social groups on social network. Users have diverse topical inter-
ests, each group corresponding to a user community with common interests. Messages
also have the diversity topics, each topic corresponding to a topic space with similar
semantic content.

Considerable work has been carried out on investigating the influencing fac-
tors of retweeting decision through user survey [1,18] and statistical analysis
[23,30]. These studies find that the interests of user’s topics and the strength
of social influence are two most important influencing factors when user decides
to retweet a message. Compared with the above efforts, more and more studies
have been getting to focus on devising an effective retweeting prediction model
from different perspectives. For example, a simple but powerful strategy is to
consider the retweeting prediction as a classification problem by extracting the
different features like user’s profile, network structure and message’s content,
historical interactions [2,9,12]. Although these studies can solve the problem of
retweeting prediction to some extent, there is lack of a more principled way to
extract the set of related features. The social influence-based models are also
proposed to quantify the strength of user influence from the views of network
structure and historical interactions [11,32]. However, these models depend on
the different types of information, which may not be always available in some
platforms. The factor graph-based methods are used to represent factorization
of retweeting probability distribution function [19,33]. However, such models are
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too complex and difficult to be applicable to large-scale applications. Recently,
the attention-based deep neural network method is proposed by incorporating
social contextual information for this task [34]. However, the training process of
neural networks requires a large amount of labeled data, it is not always avail-
able in most social networks. Another matrix factorization-based methods con-
vert the problem into matrix completion based on the observed entities [25,26].
These methods leverage the power of matrix factorization model to achieve a
relatively high accuracy of prediction by incorporating explicit information and
implicit feedback. However, none of methods focus on the data characteristic of
retweeting behaviors with binary distributions on social networks.

The present findings demonstrate that social users and information flows nat-
urally form social communities and topic clusters underlying network structure
and interactions, as shown in Fig. 1. Moreover, many social networks such as
Facebook and Google+ provide “social group” function, which allows the users
to be incorporated into a new densely connected subgraph with the same or
similar personal interest preference. In this case, user’s decision is strongly influ-
enced by the other active neighbors from his friends [32]. On the other hand,
information flows can also be mapped into the topic space where clusters of mes-
sages form topics. Therefore, we argue that the problem of retweeting prediction
should be modeled by considering discrete distribution of social data and the
impacts of homophily characteristics on users and messages.

In this paper, we propose two novel matrix factorization methods for the
retweeting prediction, named Binomial Retweet Matrix Factorization (BRMF)
and Context-aware Binomial Retweet Matrix Factorization (CBRMF). The two
models assume retweetings are from binomial distributions instead of normal
distributions. CBRMF is an extended BRMF model by considering social cir-
cles and message clustering to alleviate the data sparsity and reduce the noisy
information based on the impacts of homophily.

Contributions. In this paper, we make the following three contributions:

– We propose two novel matrix factorization methods for retweeting prediction
problem. The two methods assume retweetings are from binomial distributions
instead of normal distributions. To the best of our knowledge, this is the
first work for retweeting prediction to exploit binomial distributions with the
matrix factorization model.

– We utilize user community and document clustering as contextual regular-
ization terms into binomial retweet matrix factorization based on homophily
assumption to alleviate the data sparsity and reduce the noisy information,
as well as improve the performance of prediction.

– We conduct several analysis experiments with two real-world social network
datasets, the experimental results demonstrate our proposed models outper-
form state-of-the art comparison methods.

Outline. The rest of this paper is organized as follows. Section 2 introduces the
related work. Section 3 provides the formal definition of the retweeting prediction
problem and introduces notations used in this paper. In Sect. 4, we present two
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retweeting prediction model based on binomial distributions and its learning and
inference procedures. Section 5 evaluates our proposed models with the real large
social network datasets in terms of accuracy. Section 6 gives a conclusion of this
work.

2 Related Work

Social Recommendation with Matrix Factorization. Recommender sys-
tems are used as an efficient tool for dealing with the information overload prob-
lem. Many social recommendation approaches have been developed in recent
years. For example, SoRec [13] employs both users’ social network informa-
tion and rating records to solve the data sparsity and poor prediction accuracy
problems based on probabilistic matrix factorization. Similarly, Context MF [8]
incorporates individual preference and interpersonal influence based on proba-
bilistic matrix factorization for improving the accuracy of social recommenda-
tion. Ensemble methods predict a missing rating for a given user by a linear
combination of ratings from the user and the social network. STE [14] repre-
sents the formulation of the social trust restrictions by fusing the users’ tastes
and their trusted friends’ favors together on the recommender systems. mTrust
[24] studies multi-faceted trust relationships between users for rating prediction.
Regularization methods focus on a user’s preference and assume that a user’s
preference should be similar to that of her social network. SocialMF [6] incorpo-
rates the mechanism of trust propagation into the matrix factorization approach
for recommendation in social networks. Social Regularization [15] imposes social
regularization terms to constrain matrix factorization objective functions based
on users’ social friend information. TBPR [27] studies the effects of distinguish-
ing strong and weak ties by using neighbourhood overlap to approximate tie
strength in social recommendation. In summary, social recommendation meth-
ods have been successfully applied in the missing values prediction tasks.

Retweet Behavior Modeling. Existing studies focus on exploring the influ-
encing factors of retweeting behaviors by conducting user survey [1,18] and per-
forming empirical analysis [17,22,29]. These results indicate that the intention
of user retweeting message is positively influenced by sharing the informative
content of message, and enhancing social influence from social relationships. On
the other hand, more efforts have been guided on modeling how a message be
retweeted in social network. For instance, feature-based methods take the set
of related features to predict retweeting behavior such as social features [7,12],
visual features [4]. Social influence-based methods also have been proposed to
model user retweeting behavior [32]. Most of the above methods apply heuristic
methods to extract the set of features for retweeting prediction. However, some
of these features may be computationally expensive or not always available in
some social networks. Zhang et al. [33] propose a novel nonparametric Bayesian
model adapted from the hierarchical Dirichlet process to combine textual, struc-
tural, and temporal information for the task. Subsequently, Zhang et al. [34]
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also propose a attention-based deep neural network retweet model by incorpo-
rating the user, author, user interests, and similarity information between the
tweets and user interests. Besides, other studies employ matrix factorization by
using social contextual information from user and content dimensions to solve
the problem [26]. Nevertheless, no research considers discrete distributions of
retweeting values on social networks. The retweeting prediction has still some
unsolved problems such as exploring the data characteristic and studying the
role of group structure on users and messages.

3 Problem Preliminaries

We give some necessary notations used in this paper and present a formal rep-
resentation of the retweeting prediction problem under the probabilistic matrix
factorization model.

(a) An example of a binary data with
unknowns. Users are presented in rows,
while messages are in columns.

(b) Retweeting data can be represented
in the matrix R, which is usually sparse
with a high percentage of missing values.

Fig. 2. Matrix representation with retweeting data.

Given M users and N messages, the behaviors of users retweeting messages
are represented in an M × N retweeting matrix R = [r1, · · · , rN ], in which
each row corresponds to a user and each column corresponds to a message.
Retweeting has only two states, where Rij takes the value of 1 if ui retweets mj

and 0 otherwise. Let U ∈ R
K×M and V ∈ R

K×N be the latent user and message
feature matrices respectively, where Ui represents a user and Vj represents a
message in latent feature space. K is the number of the latent features. The
likelihood function of the observed retweetings is factorized across M users and
N messages with each factor based on Probabilistic Matrix Factorization (PMF)
[20] as

P (R|U, V, σ2
R) =

M∏

i=1

N∏

j=1

[N (Rij |UT
i Vj , σ

2
R)] (1)

where N (·|μ, σ2) is the probability density function of the Gaussian distribution
with mean μ and variance σ2.
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PMF is learned by maximizing posterior probability of matrices U and V ,
which is equivalent to minimizing sum-of-squares of factorization error as

min
U,V

M∑

i=1

N∑

j=1

Iij(Rij − UT
i Vj)2 + λ(‖U‖2F + ‖V ‖2F ) (2)

where the prior distributions over U and V are assumed to zero-mean Gaussian,
(‖U‖2F + ‖V ‖2F ) can prevent overfitting, || · ||F denotes the Frobenius norm of
the matrix.

It’s known that PMF assumes that all ratings are from normal distribu-
tions given the corresponding user and item factor vectors. However, the normal
assumption in the retweeting prediction problem is not suitable since the values
of retweetings only have 0s and 1s, as shown in Fig. 2. For this reason, we will
explore how to use binomial distributions to solve the problem in the following
section.

4 The Proposed Model

With the assumption that retweetings are from binomial distributions, we pro-
pose Binomial Retweet Matrix Factorization (BRMF) and Context-aware Bino-
mial Retweet Matrix Factorization (CBRMF) for the retweeting prediction task.
CBRMF is an extended BRMF model by incorporating user community and
document clustering as social contextual regularization terms to alleviate the
data sparsity and reduce the noisy information and improve the performance of
prediction. The detailed descriptions of our proposed models are as follows.

4.1 Binomial Retweet Matrix Factorization

Since retweeting has only two states, i.e., {retweet, not retweet} in our datasets,
the assumption of normal distributions sampled from retweet data doesn’t draw
the retweeting behaviors. Instead, we assume that all retweetings are from bino-
mial distributions with different preference parameters.

The binomial distributions for retweetings satisfy the following conditions:
(1) retweetings are independent and identically distributed, (2) retweeting has
only two choices, and (3) the retweeting probability of each user is approximately
equal to the ratio of the occurring time of retweetings and the total number of
retweetings in our datasets. Here, we replace the Gaussian distribution with the
Bernoulli distribution in Eq. (1) as

P (R|U, V ) =
M∏

i=1

N∏

j=1

B(Rij |S, UT
i Vj) (3)

where B(k|n, p) is the binomial probability mass function with parameters n
and p, and S is the number of retweetings in our datasets. For given a user ui

and a message mj , our goal is to maximize the probability of ui retweets mj as

P (R|U, V ) =
M∏

i=1

N∏

j=1

p(Rij)Iij (1 − p(Rij))1−Iij (4)



Retweeting Prediction Using Matrix Factorization 127

where p(·) is the probability that ui retweets mj . I ∈ {0, 1} is an indicator matrix
where Iij is equal to 1 if ui retweets mj and 0 otherwise. The sigmoid function
g(x) = 1/(1 + exp(−x)) bound the range of UT

i Vj denoting the user-message
association.

To learn the model, we maximize the following likelihood objective function
as

P (R|U, V ) =
M∏

i=1

N∏

j=1

(g(Rij)Iij (1 − g(Rij))1−Iij )) (5)

The log of posterior distribution with Eq. (5) is given by

L(U, V |R) =
M∑

i=1

N∑

j=1

[Iij ln
g(Rij)

1 − g(Rij)
+ ln(1 − g(Rij))]

− 1
2σ2

U

M∑

i=1

UT
i Ui − 1

2σ2
V

N∑

j=1

V T
j Vj + Const

(6)

where users and messages draw zero-mean Gaussian distributions.
Maximizing Eq. (6) is equivalent to minimizing the following objective func-

tion as

M∑

i=1

N∑

j=1

[ln(eU
T
i Vj + 1) − UT

i VjIij ] +
λ

2
(
M∑

i=1

‖Ui‖2F +
N∑

j=1

‖Vj‖2F ) (7)

where (||Ui||2F + ||Vj ||2F ) are also to avoid overfitting.
The local minimum of the objective function given by Eq. (7) can be found

by performing stochastic gradient descent (SGD) approach on feature vectors Ui

and Vj as

∂L
∂Ui

=
N∑

j=1

eU
T
i Vj

eU
T
i Vj + 1

Vj − IijVj + λUi (8)

∂L
∂Vj

=
M∑

i=1

eU
T
i Vj

eU
T
i Vj + 1

Ui − IijUi + λVj (9)

4.2 Context-Aware Binomial Retweet Matrix Factorization

As mentioned above, contextual information is an indispensable factor for
retweeting prediction due to its effect on users’ decisions. Thus, we propose
Context-aware Binomial Retweet Matrix Factorization (CBRMF) by considering
user community and document clustering learned from contextual information
for retweeting behaviors.

User Community Modeling. According to sociology and psychology, users
under the effect of network structure and information diffusion together grad-
ually form communities corresponding to close social circles or interest groups
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with the similar personal preference. In this case, behaviors are more likely to be
effected each other in the same social community, e.g., some users like to follow
others’s message and are easily influenced by the active neighbors’ decisions.

Based on the above facts, we introduce user community with the hypothesis
that the users that are similar in hidden user space have similar personal prefer-
ences. We here apply a new community detection algorithm building upon the
distance dynamics [21], which automatically spots communities in a network by
examining the changes of distances among nodes. Specifically, we first construct
an undirected interaction graph G = (V,E,W ), where V is the set of users, E is
the set of edges and W is the corresponding set of weights. e = {u, v} ∈ E indi-
cates a social relationship between the users u and v. w(u, v) denotes the weight
of edge e. There are various explicit and implicit relations in social networks. For
instance, following represents that a user pays close attention to another user,
and retweeting reflects that two users appear in the same message with action
relevancy. These behaviors can be modeled as the interaction relation graph G,
in which wij is the association weight measuring the co-occurrences of users
ui and uj , i.e. wij =

∑
(#follow, #retweet, #mention) to represent the sum of

occurrence times with these actions, where # denotes the number of occurrences
for users ui and uj given an action. In particular, we set wij = 1 in case of the
users ui and uj only connected by following relationship.

After constructing the interaction graph, the next crucial step is to obtain
the user communities by performing Attractor method [21]. For the Attractor
algorithm, the cohesion parameter λ is used to determine the positive or nega-
tive interaction influence on the distances from exclusive neighbors. We use the
implementation provided by the authors and the recommended settings as in
their paper1. Once the clustering is done, we denote user community matrix as
W ∈ R

M×M , where Wij takes the value of 1 if Cui
and Cuj

belong to the same
community and 0 otherwise.

The user communities make different users with the same group become
similar in the latent hidden space. Then we can arrive at the following user
social community regularizer as

L1(U) = ‖W − g(UTU)‖2F (10)

where the same community for users indicates the two users should be very close
and could be large otherwise.

Document Clustering Modeling. An empirical observation is the documents
with similar content in observed space have similar semantic distance in hidden
space, and the similar messages have a high retweeting probability when they
have retweeted in the past. However, short text on social networks is very sparse
and exists the noisy data, making it hard to find sufficient statistical factors
to discover syntactic and semantic dependencies. Here, to alleviate the problem

1 https://github.com/YcheCourseProject/CommunityDetection.

https://github.com/YcheCourseProject/CommunityDetection.
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of data sparseness and noisy, we use a collapsed Gibbs sampling method by
Dirichlet multinomial mixture (DMM) model for short text clustering, called
GSDMM [31]. The model has some good property for the problem of short
text clustering, such as fast to converge and cope with the sparse and high
dimensional problem of short texts. The model code used are publicly available2.

More specifically, we cluster all short texts into different groups by using
GSDMM model that documents are similar to one another within the same
cluster and are dissimilar to documents in other clusters. After clustering, in
our proposed model, we represent document clustering matrix as H ∈ R

N×N ,
where Hij takes the value of 1 if Cdi

and Cdj
belong to the same clustering and

0 otherwise.
Similarly, once document clusters are finished, we may arrive at the following

document similarity cluster regularizer

L2(V ) = ‖H − g(V TV )‖2F (11)

where the same group for documents indicates the latent distance should be very
close and could be large otherwise.

Prediction Approach. We demonstrate how to construct user community and
document clustering regularization terms in the above section. Next, we factorize
user and message latent factors with matrices W and H collaboratively as

L(U, V |R) =
M∑

i=1

N∑

j=1

ln[g(Rij)Iij (1 − g(Rij)1−Iij ))]

− 1
2σ2

W

M∑

i=1

M∑

k=1

I
(W )
ik (Wik − g(UT

i Uk))2

− 1
2σ2

H

N∑

j=1

N∑

k=1

I
(H)
jk (Hjk − g(V T

j Vk))2

− 1
2σ2

U

M∑

i=1

UT
i Ui − 1

2σ2
V

N∑

j=1

V T
j Vj + Const

(12)

where IW is a user indicator matrix where IWij is equal to 1 if users ui and ui

belong to the same social group and 0 otherwise, and IH is a message indicator
matrix where IHij is equal to 1 if message mi and mj belong to the same topic
group and 0 otherwise.

2 https://github.com/rwalk/gsdmm.

https://github.com/rwalk/gsdmm.
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Similarly, maximizing the posterior distribution is equivalent to minimizing
the sum-of-squared errors function with hybrid quadratic regularization terms:

min
U,V

L(U, V |R) =
M∑

i=1

N∑

j=1

[ln(eU
T
i Vj + 1) − UT

i VjIij ]

+
α

2

M∑

i=1

M∑

k=1

I
(W )
ik (Wik − g(UT

i Uk))2

+
β

2

N∑

j=1

N∑

k=1

I
(H)
jk (Hjk − g(V T

j Vk))2

+
λ

2
(
M∑

i=1

‖Ui‖2F +
N∑

j=1

‖Vj‖2F )

(13)

Training Model. Since the objective function is convex with regard to each
parameter, a local minimum can be achieved by updating each parameter iter-
atively. We also directly use SGD method to update the feature vectors Ui and
Vj given by Eq. (13) as

∂L
∂Vj

=
M∑

i=1

eU
T
i Vj

eU
T
i Vj + 1

Ui − IijUi + λVj

+ β

N∑

k=1

I
(H)
jk g′(V T

j Vk)(g(V T
j Vk) − Hjk)Vk

(14)

∂L
∂Vj

=
M∑

i=1

eU
T
i Vj

eU
T
i Vj + 1

Ui − IijUi + λVj

+ β

N∑

k=1

I
(H)
jk g′(V T

j Vk)(g(V T
j Vk) − Hjk)Vk

(15)

where g′(x) = exp(−x)/(1+exp(−x))2 is the derivative of g(x). In each iteration,
U and V are updated based on the latent variables from the previous iteration.

5 Experiments

5.1 Experimental Settings

We use two real-world social network datasets to evaluate the validity of our pro-
posed model. Weibo is one of the most popular social network platforms in China.
In this paper, we use publicly available Weibo dataset [32]. The dataset contains
1,787,443 users, and 300,000 popular messages and 23,755,810 retweetings. In
term of messages, we randomly choose 100,000 popular messages and extract the
corresponding relationship and retweetings as our experimental dataset. Besides,
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we also collect Twitter data using the RESTful APIs with the crawling process
from August 10, 2015 to December 10, 2015. The crawl strategy is designed as
followings: randomly select 100 users and then collect their tweet lists, the con-
tent of each tweet and following relationships among them. Finally, the dataset
contains 4,913 users, 275,820 messages and 570,314 retweetings. The basic sta-
tistical information is shown in Table 1.

Table 1. Statistics of experimental dataset.

Dataset #Users #Messages #Relations #Retweetings Sparseness

Weibo 71,649 100,000 1,125,365 7,198,730 0.1%

Twitter 4,913 275,820 1,075,820 570,314 0.04%

We evaluate the quality of the approximate values for retweeting matrix R
using the Root Mean Square Error (RMSE). We can see that a smaller RMSE
value means a better performance. Due to the nature of the problem, both the
observation and prediction are binary. Hence, we also use the Precision, Recall,
F1 and Accuracy to evaluate the performance of the proposed algorithms. We
randomly split each dataset into two disjoint sets, 80% for training and 20% for
testing, and perform 5-fold cross validation.

5.2 Baseline Methods

We compare our models against the following traditional and state-of-the-art
models:

– PMF. This method assume that retweetings are from the normal distributions
given the factor vectors of users and messages. The user’s retweeting behaviors
can be predicted by the inner products of user and message factor vectors
based on matrix completion in missing data [20].

– LRC-BQ. The method proposes a notion of social influence locality based on
pairwise influence and structural diversity, and then uses a logistic regression
classifier to predict user’s retweeting behavior [32].

– MNMFRP. This method utilizes nonnegative matrix factorization to predict
retweeting behavior from user and content dimensions, respectively, by using
strength of social relationship to constrain objective function [26].

– SUA-ACNN. The model proposes a novel attention-based deep neural net-
work to incorporate user’s attention interests and social information for this
task by embedding to represent the user, the user’s attention interests, the
author and message respectively [34].

– HCFMF. This method learns message embedding by jointly taking the mes-
sage co-occurrence, semantics, social patterns into consideration, then decom-
poses the user-message matrix and message-message similarity matrix based
on a co-factorization model for learning user’s retweeting behavior [25].
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We also implement the different configurations of our proposed model to
verify the effectiveness of our algorithm.
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Fig. 3. Impact of α with CBRMF model on two datasets.
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Fig. 4. RMSE vs. latent feature number on two datasets.

– CBRMF-U. This method only employs user community factor by eliminat-
ing the effect of document clustering regularization term with setting β = 0
in Eq. (13).

– CBRMF-M. This method only uses document clustering factor by elimi-
nating the effect of user community regularization term with setting α = 0
in Eq. (13).

5.3 Experimental Results

This section presents some important results settings and also give the results
in more details by comparing these baseline methods and discuss the impact of
different factors.

Parameter Settings. The parameters α and β provide important contribution
strengths for social contextual information in our CBRMF model. The impact
of β generally shares the same trend as α. Hence, we here only illustrate the
results of α due to the space limitation. The experimental results of α on Weibo
and Twitter datasets are shown in Fig. 3. From the figure, we can observe that
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the RMSE values gradually decrease while parameter β and dimension of latent
features increasing on two datasets, and α become stable around 10−3. Hence,
we set α = 10−3 in our experimental setup. Similarly, we also empirically set the
parameters β = 10−3 and η = 10−2 on two datasets in our models.

Number of Latent Features. We perform PMF, BRMF, MNMFRP, HCFMF,
and CBRMF models to discover the proper number of latent features on Weibo
and Twitter datasets, respectively. The conducted experimental results are
shown in Fig. 4 with number of latent features K from 2 to 200. From these
results, we can find that with the latent feature number K increasing, the RMSE
first decreases and then increases, and reach the lowest point around 100. Con-
sidering the calculation effect and time efficiency, we choose K = 100 as the
dimension of latent feature space.
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Fig. 5. RMSE vs. Iteration Number on two datasets.

Number of Iterations. Similarly, to find the proper number of updating iter-
ations to get a good performance while avoid overfitting, we record the RMSE
values for each iteration. Figure 5 illustrates the impacts of the number of iter-
ations on two datasets. From the results, we can see that RMSE values on two
datasets decrease gradually with the number of iterations increasing. To reach
a converged result with an acceptable computational cost, we set number of
iterations to 100 in our proposed models.

Performance Comparison for Retweeting Prediction. We demonstrate
the prediction performance of our proposed methods and all baseline methods to
find who will retweet. Specifically, we run all methods for 5 runs, and report the
average results of each method in Table 2. From these results, we can observe the
following conclusions: (1) our proposed CBRMF, which incorporates user com-
munity and document clustering together, significantly outperforms the baseline
methods in our experimental results; (2) the proposed BRMF outperforms PMF,
which indicates it is reasonable that retweetings are from binomial distributions
instead of normal distributions given the factor vectors of users and messages;
(3) the comparison between CBRMF-U vs. CBRMF and CBRMF-M vs.
CBRMF, reveals that the user factors and message factors are comparable results
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compared with the social factors for retweeting prediction. (4) most of matrix
factorization methods such as MNMFRP, HCFMF and CBRMF for retweeting
prediction can achieve the accuracy of prediction relatively well. These results
suggest that matrix factorization is suitable for the task. (5) SUA-ACNN per-
forms slightly better than most of baseline methods, and also the improvements
are statistically significant compared to BRMF. The results demonstrate that
the attention-based deep neural network can benefit the performance. We also
notice slightly different performance of the two datasets. For example, the BRMF
and CBRMF methods achieve better prediction results on Weibo dataset than
on Twitter dataset. A possible reason is the average number of retweetings per
user on Weibo dataset is much higher than the number on Twitter dataset. In
this case, user-based method can generally generate better results since every
user has more information to use. This is the possible cause of why the user-
based method has better performance. In summary, we conclude that BRMF
and CBRMF following binomial distributions are a reasonable assumption, and
improve the prediction accuracy by using social contextual information.

Table 2. Performance of retweeting prediction with different baseline methods on
Weibo and Twitter datasets.

Method Weibo dataset Twitter dataset

Precision Recall F1 Accuracy Precision Recall F1 Accuracy

PMF 0.628 0.607 0.612 0.619 0.611 0.654 0.631 0.621

BRMF 0.669 0.645 0.657 0.668 0.657 0.612 0.635 0.643

LRC-BQ 0.698 0.770 0.733 0.719 0.669 0.638 0.653 0.656

MNMFRP 0.754 0.705 0.729 0.757 0.711 0.688 0.699 0.693

SUA-ACNN 0.746 0.733 0.739 0.753 0.728 0.713 0.720 0.725

HCFMF 0.756 0.742 0.749 0.763 0.739 0.725 0.732 0.735

CBRMF-U 0.723 0.702 0.712 0.723 0.727 0.712 0.719 0.743

CBRMF-M 0.733 0.716 0.724 0.738 0.762 0.751 0.757 0.778

CBRMF 0.802 0.785 0.794 0.797 0.795 0.774 0.784 0.785

Impact of the Number of Clusters. The number of clusters with user and
message has a great effect on the performance of our proposed CBRMF model.
Figure 6 shows the accuracy of retweeting prediction with various values of user
and document clusters found on two datasets. From the result, we can see that
(1) these datasets have a optimal value for number of clusters when we enlarge
the number of cluster; (2) The best number of clusters found by CBRMF is
near the latent factor number of groups which means CBRMF can infer the
number of clusters automatically when the number of cluster is large enough.
Therefore, we can conclude that it is a better practice to set user communities
and document clusters to 40 and 80 on Weibo dataset, and 40 and 70 on Twitter
dataset, respectively.

Performance Comparison with Different Community Detection and
Short Text Clustering Methods. We investigate the effects of different
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Fig. 7. Performance comparison of CBRMF with different community detection and
short text clustering methods on datasets.

methods of community detection and short text clustering in our proposed
model. The detailed description is as

– CBRMF-GN. The method utilizes the Girvan-Newman algorithm to detect
user communities.

– CBRMF-CNM. This method uses the Clauset-Newman-Moore community
detection method for large networks.

– CBRMF-KMeans. This method employs k-means clustering to partition
short text documents into clusters.

– CBRMF-DBSCAN. This method uses density-based spatial clustering of
applications with noise to group short texts documents into clusters.

Figure 7 shows the prediction performance with different community detec-
tion and short text clustering methods on Weibo and Twitter datasets. From
these results, we can see when choosing Attractor algorithm to perform
user’s community detection, CBRMF-Attractor outperforms CBRMF-GN and
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CBRMF-CNM on two datasets. We have the similar observation CBRMF-
GSDMM performs better than CBRMF-KMeans and CBRMF-DBSCAN over
short text clustering while the GSDMM is done. In a word, these results sug-
gest the Attractor and GSDMM models are a better choice for detecting user
community and clustering short text documents on social network datasets.

6 Conclusion

We propose two novel retweet prediction models based on binomial distributions
and contextual information. The proposed two models assume retweetings are
from binomial distributions instead of normal distributions under matrix factor-
ization. CBRMF is an extended BRMF model by incorporating user commu-
nity and document clustering as social regularization terms to alleviate the data
sparsity and reduce the noisy information. By experimental evaluation using two
real-world social network datasets, we can conclude it is reasonable to assume
that retweetings are from binomial distributions, and our proposed methods
outperform existing state-of-the-art comparison methods.
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Abstract. Communication bandwidth is a bottleneck in distributed
machine learning, and limits the system scalability. The transmission of
gradients often dominates the communication in distributed SGD. One
promising technique is using the gradient compression to reduce the com-
munication cost. Recently, many approaches have been developed for the
deep neural networks. However, they still suffer from the high memory
cost, slow convergence and serious staleness problems over sparse high-
dimensional models. In this work, we propose Sparse Gradient Compres-
sion (SGC) to efficiently train both the sparse models and the deep neu-
ral networks. SGC uses momentum approximation to reduce the memory
cost with negligible accuracy degradation. Then it improves the accuracy
with long-term gradient compensation, which maintains global momen-
tum to make up for the information loss caused by the approximation.
Finally, to alleviate the staleness problem, SGC updates model weight
with the accumulation of delayed gradients at local, called local update
technique. The experiments over the sparse high-dimensional models and
deep neural networks indicate that SGC can compress 99.99% gradients
for every iteration without performance degradation, and saves the com-
munication cost up to 48×.

Keywords: Distributed computing system ·
Distributed optimization algorithm · Gradient compression

1 Introduction

Synchronous Stochastic Gradient Descent (SGD) [1–4] has been widely used as a
distributed training method for various machine learning models, such as Logistic
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Regression [5], Support Vector Machine [6], Graphical Models [7,8], and Neural
Networks [9]. During the training, the workers need to communicate gradients
frequently, and this yields a severe bottleneck for scalability, especially when the
devices are low-bandwidth [10–12]. Therefore, gradient compression methods are
introduced for communication-efficient distributed training.

Gradient sparsification is one effective technique to reduce communication
data by only sending large gradients and delaying the transmission of small gra-
dients [13–15]. One example is Gradient Dropping (GD) [14]. It accumulates the
gradients in workers, and transmits them when they reach a certain threshold.
Another one is Deep Gradient Compression (DGC) [10], which is the state-of-
the-art gradient sparsification-based method. It uses momentum correction to
deduce the accumulated discounting factor of gradients, thus guaranteeing the
accuracy. To alleviate staleness, DGC applies momentum factor masking, which
drops the so-called stale gradients.

Fig. 1. The overviews of DGC and SGC. Best viewed in color. (Color figure online)
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However, the existing gradient sparsification solutions still have the following
three problems.

Expensive Memory Cost on the Sparse High-Fimensional Model. With
large gradient sparsity, most of gradients are delayed, and the size of local accu-
mulation becomes proportion to the number of features. This incurs expensive
memory cost when we train sparse high-dimensional models with the existing
gradient sparsification solutions. Especially for the DGC, it at least doubles the
used memory compared with GD, and makes the memory cost more expensive.
As shown in Fig. 1(a), DGC not only stores the accumulation (rt), but also main-
tains the momentum (vt) in workers. Assume that we train a Logistic Regression
model on CTR dataset, which is a private dataset and has around 10 billions
different features, DGC will use around 447 GB memory for each worker once
the whole feature set is traversed. However, a physical node can hardly afford
such huge memory in commodity clusters. In practice, with the limited memory
capacity, the expensive memory cost will incur high communication instead.

Long-Term Gradients Missing. Reddi [16] has rigorously proven that long-
term gradients (i.e., past gradients) can improve the empirical performance and
fix the convergence issues. However, in DGC, the momentum factor masking
drops the gradients once pushed to the global model, and the long-term values of
the dropped gradients are never contributed to accelerating the convergence. GD
does not benefit from the long-term gradients as well, because it only accumulates
gradients without momentum.

The Staleness Problem on Sparse Models. Due to the gradient delay mech-
anism [13], the local accumulation of gradients on workers is outdated against
the global model. The longer gradients delayed, the more inconsistency between
the global model and the delayed updates. This is also known as the staleness
problem. During the gradient compression, sparse models make the gradients
delay for a longer period and aggravate the staleness problem. Although DGC
alleviates staleness by momentum factor masking, it fails to maintain the long-
term gradients which may help accelerate the convergence.

In this paper, we propose a novel sparse gradient compression method,
namely SGC, which addresses all the above problems. Figure 1(b) shows the
overview of SGC. It applies momentum approximation to ensure the memory
efficiency, and also employs long-term gradient compensation to improve the
convergence performance. Besides, SGC uses local update to ease the staleness
effect.

We empirically verify our techniques for compressing gradients on both the
sparse high-dimensional linear model and the deep neural network. The experi-
mental results demonstrate that SGC is able to compress 99.99% gradients for
every iteration without performance degradation. Furthermore, SGC only uses
half of the memory compared with DGC, and also reduces the overall commu-
nication cost up to 48×.
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In summary, our technique contributions are three-fold:

– We study the relationship between the momentum term and the gradient
accumulation under the compression scheme, and propose the momentum
approximation technique to reduce memory. Momentum approximation only
accumulates gradients at local. When updating the global model, it generates
the approximated momentum by ignoring gradients with high-order discount-
ing factors, which only incurs slight accuracy degradation.

– We propose long-term gradient compensation on top of the momentum
approximation to improve the accuracy of model performance. Considering
that both momentum approximation and momentum factor masking discard
the past gradients at local, the long-term gradient compensation uses global
momentum to capture the lost gradients, so that the model can still converge
fast.

– We apply the local update on each worker to diminish the inconsistency
between model and delayed update. Specifically, before calculating the lat-
est gradients with the new model at local, we update the model weight by
applying the delayed gradients.

– The experiments clearly showcase that, compared with the standard Momen-
tum SGD, SGC is able to achieve the same convergence when gradient spar-
sity is 99.99%. As far as we known, SGC is the first compression approach to
achieve such a high gradient sparsity.

The remains of the paper are organized as follows: we present the related
work and the backgrounds in Sects. 2 and 3 respectively. In Sect. 4, we elaborate
our Sparse Gradient Compression with introducing three techniques, which are
momentum approximation, long-term gradient compensation, and local update.
In the next section, we empirically study the performance of SGC. We conclude
our work in Sect. 6.

2 Related Work

Reducing the communication data in distributed training is a fundamental prob-
lem to achieve high-performance solutions. Many types of research have been
conducted on this problem. One basic idea is to compress the gradients to reduce
the size of communication data. Gradient quantization and sparsification are two
general solutions on top of gradient compression.

Gradient Quantization. Seide et al. [17] heuristically quantized each gradient to
one bit without accuracy loss. The method emphasized the importance of accu-
mulating the quantization error to guarantee the convergence. Further, Alistarh
et al. [18] quantized each gradient to a tuple, which made a trade-off between com-
munication cost and convergence speed. He proved that the compression-variance
trade-off is inherent. Wu et al. [19] proposed another quantization-based method,
which starts from a similar error feedback scheme, but accumulates both the cur-
rent gradients and the previous quantization error to narrow the sub-optimal gap.
Our proposed SGC is orthogonal to these quantization methods.
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Gradient Sparsification. Strom et al. [13] proposed to only transmit the gra-
dients that exceed a fixed threshold for compression. They empirically verified
that a big fraction of gradients can be safely delayed. Dryden et al. [20] further
extended this idea by adopting two approximate adaptive thresholds (positive
and negative) and delaying a fixed proportion of gradients. Instead of drop-
ping the positive and negative gradients separately, Aji et al. [14] used a single
threshold based on absolute values. They also observed that local thresholds
may outperform the global threshold, because parameters have different scales.
AdaComp [21] handles the diversity of neural networks, and it tunes the gradient
sparsity automatically by grouping the gradients into different bins. Although
AdaComp avoids sorting the accumulation to find the threshold, it traverses each
bin to find the maximum of the accumulation. Wang et al. [15] dropped gradients
by the probability to balance the sparsity and variance. They also appropriately
amplified the gradients to ensure the unbiasness of the sparsity. DGC [10] is
the state-of-the-art method. It employs momentum correction and local gradi-
ent clipping to improve the local gradient accumulation. It also uses momentum
factor masking and warm-up training to overcome the staleness effect. The gra-
dient sparsity of DGC can be 99.9%, which is the highest for deep learning as
far as we know. Although most works delayed gradients according to the scale
of gradients, Tsuzuku et al. [11] focused on the variance of the gradients and
delayed the ambiguous gradients by storing both the gradients and the variances
at local.

Staleness. Staleness is a common problem leading to performance degradation in
the asynchronous training, where workers update the global model weight using
outdated gradients. Mitliagkas et al. [22] pointed out that asynchrony leads to
staleness, which can be viewed as adding a momentum-like term to the SGD
iteration. Wei et al. [23] focused on understanding the effect of stale gradient
updates during distributed training, and mitigated the effects of staleness by
adjusting the learning rate. Jiang et al. [24] conducted a systematic study that
distributed training suffered performance degradation in heterogeneous envi-
ronments because stragglers harm the convergence, and they used the delayed
information of updates to achieve stable convergence.

3 Backgrounds

In this section, we introduce the basic concepts of gradient sparsification through
reviewing two approaches: Gradient Dropping and Deep Gradient Compression.

3.1 Gradient Dropping

Gradient sparsification reduces the communication bandwidth by delaying the
transmission of less important gradients. Gradient Dropping [14], a gradient
sparsification-based method, accumulates the delayed gradients locally and
transmits them when the accumulated values exceed a threshold. Given the
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learning rate ε and the threshold δ, where δ is controlled by the input gradient
sparsity, Gradient Dropping updates the model weight w in the tth iteration as
below:

gt = ∇ft(wt−1),
rt = rt−1 + εgt,
st = {rt,k | rt,k > δ} ,
wt,k = wt−1,k − st,k,

(1)

where gt is the gradient at iteration t, k is the feature index of model weight,
st is the set of gradient accumulations that exceed the threshold, and rt is the
accumulation of delayed gradients. Furthermore, rt,k which exceeds the threshold
is reset to zero after it updates the model weights:

rt,k = 0, if rt,k > δ. (2)

Assume the gradient on feature index k has been accumulated for T iterations
before updating the model weights, the change of wt,k is as follows,

wt+T,k = wt,k − ε [gt+T,k + gt+T−1,k + · · · + gt+1,k] . (3)

Lin et al. [10] point out that, compared to the Momentum SGD [25], Gradient
Dropping ignores the accumulated discounting factor since it simply accumulates
the raw gradients, thus leading to the loss of convergence performance.

3.2 Deep Gradient Compression

Deep Gradient Compression (DGC) employs four techniques to compress the
gradients without loss of model accuracy. Figure 1(a) illustrates the overview of
DGC, which is proposed on the basis of Momentum SGD. Momentum SGD is
widely used to accelerate training, especially in the presence of high curvature
or noisy gradients. It operates as follows:

νt = ανt−1 + εgt,
wt = wt−1 − νt,

(4)

where ν is the momentum that accelerates training and α is the hyper-parameter
of momentum which decays the moving average of past gradients.

In order to reduce the impact on convergence from gradient compression and
achieve the same performance as momentum SGD, DGC uses the momentum
correction which calculates the compressed momentum on workers, instead of
servers. In the tth iteration, the momentum correction is executed as below,

gt = ∇ft(wt−1),
νt = ανt−1 + εgt,
rt = rt−1 + νt,
st = {rt,k | rt,k > δ} ,
wt,k = wt−1,k − st,k.

(5)
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Compared with GD, DGC accumulates the momentum vt instead of the raw
gradient gt. In addition, DGC employs momentum factor masking to alleviate
staleness after the delayed momentums update the global model weights,

rt,k = 0, if rt,k > δ,

vt,k = 0, if rt,k > δ.
(6)

Assume a worker delays the gradient on feature index k for T iterations, then
the change of wt,k is as follows,

wt+T,k = wt,k − ε

[
gt+T,k + (1 + α)gt+T−1,k + · · · +

(
T−1∑
τ=0

ατ

)
gt+1,k

]
. (7)

Comparing the Eq. 3 and the Eq. 7, DGC deduces the accumulated discounting
factor

∑T−1
τ=0 ατ for the delayed gradients. Therefore, DGC can alleviate the effect

of delaying gradients and achieve a higher gradient sparsity without accuracy
loss.

Algorithm 1. The Pseudocode of SGC
Input: dataset χ, gradient sparsity h
1: Initialize:

w = {w[0], w[1], · · · , w[D]}
V = {V [0], V [1], · · · , V [D]}
r ← 0; s ← Ø

2: for t = 0, 1, · · · do
3: //1. Worker: Gradient Calculation and Compression
4: Sample a minibatch of examples Xt from χ
5: gt ← SGD(wt−1 − rt−1, Xt) {Local Update}
6: rt ← rt−1 + εgt
7: δ = select threshold(rt, h)
8: for rt,k in rt do
9: if rt,k > δ then

10: vt,k ← rt,k + αrt−1,k {Momentum Approximation}
11: rt,k = 0
12: st ← st ∪ {vt,k}
13: end if
14: end for
15: transmit(st)
16:
17: //2. Server: Model Update
18: receive(st)
19: St ← average(st)
20: Vt ← αVt−1 + St {Long-term Gradient Compensation}
21: wt ← wt−1 − Vt

22: end for



146 H. Sun et al.

Memory Cost Analysis. However, from Eq. 5, we find that DGC needs to
maintain both the momentum ν and the accumulation r on a single worker.
The memory used in the workers is at least twice larger than that of Gradient
Dropping. In other words, DGC sacrifices the memory to achieve high model
accuracy. As briefly discussed in the Introduction, when using DGC to train
a sparse high-dimensional model, a commodity cluster cannot afford sufficient
memory for each worker. In this paper, we focus on proposing a novel gradient
compression method, which entails the same memory cost as GD, while achieving
similar (or even better) model accuracy compared with DGC.

4 Sparse Gradient Compression

Figure 1(b) shows the logical overview of Sparse Gradient Compression (SGC). In
each worker, SGC employs the momentum approximation technique, which accu-
mulates the delayed gradients with small memory and generates approximated
momentum. Then, in the servers, SGC uses the long-term gradient compensation
to maintain past gradients and obtain high model accuracy. Moreover, to alle-
viate the staleness effect, SGC uses the local update in each worker to diminish
the inconsistency between the global model and delayed update. Algorithm 1
illustrates the pseudo code of SGC.

4.1 Momentum Approximation

As Mitliagkas et al. [22] claim, the model of asynchrony results in a form of
implicit momentum compared with the explicit momentum ν. The claim implies
that the acceleration of explicit momentum with small absolute magnitude can
be ignored. Actually, DGC also drops the momentums with stale information on
the workers via momentum factor masking. Following a similar idea, we propose
to achieve the momentum approximation by ignoring the high-order discount-
ing factors which are decayed too much. Instead of accurately calculating the
momentum νt as shown in Eq. 5, SGC uses the first-order momentum for approx-
imation, and in each iteration, it computes as below,

gt = ∇ft(wt−1),
rt = rt−1 + εgt,
st = {rt,k + αrt−1,k | rt,k > δ} ,
wt,k = wt−1,k − st,k.

(8)

Note that the term αrt−1 is the approximation of momentum νt. Compared
with GD, SGC transmits the first-order momentum instead of the gradients.

We also reset rt,k to zero at local after it is applied to the model update,

rt,k = 0, if rt,k > δ. (9)

After T iterations of local accumulation, the change of wt,k is:

wt+T,k = wt,k − ε [gt+T,k + (1 + α)gt+T−1,k + · · · + (1 + α)gt+1,k] . (10)
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From the Eqs. 7 and 10, it is easy to figure out that the momentum approx-
imation actually discards the high-order discounting factor of past gradients.
With such approximation, SGC only needs to store the rt on each worker, and
entails the same memory cost with GD, but it speeds up the convergence with
momentum. Compared with DGC, the empirical study will demonstrate that in
practice the momentum approximation obtains the similar model performance.

4.2 Long-Term Gradient Compensation

Both momentum approximation and DGC employ momentum factor masking
to relieve the staleness. However, this also overlooks the acceleration of past
gradients which may not be stale. Reddi et al. [16] have pointed out that long-
term gradients can improve empirical performance and fix the convergence issues.
Therefore, to compensate for these missing information and achieve high model
accuracy, SGC applies long-term gradients compensation which maintains long-
term gradients globally (in servers). To model how the past gradients affect the
updating direction of the current global model, we simply present the long-term
gradients in the form of global momentum.

Without gradient compression, we can maintain the ideal global momentum
Vt by averaging the gradients from the N workers as follows,

Gt = 1
N

N∑
i=1

gi
t,

Vt = αVt−1 + εGt,
wt = wt−1 − Vt.

(11)

Now considering the gradient compression in SGC, we revise the ideal global
momentum for the momentum approximation as follows,

St = 1
N

N∑
i=1

si
t,

Vt = αVt−1 + St,
wt = wt−1 − Vt.

(12)

Theoretical Analysis. Long-term gradient compensation makes up for the
information loss caused by the momentum approximation and momentum factor
masking in SGC. Here we give a theoretical analysis in a simplified version of
gradient sparsification. Assume that the delayed momentum is transmitted for
every T iterations, and the transmission has been taken K times, we proceed
to compare the momentum vKT+1 in the (KT + 1)-th iteration of SGC, DGC
and Momentum SGD [25] as follows. For the Momentum SGD, the momentum
vKT+1 is

vKT+1 =
K−1∑
k=0

T∑
t=1

αT−t+K−kgkT+t + gKT+1. (13)

And the momentum vKT+1 in DGC with momentum factor masking is

vKT+1 = gKT+1. (14)
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Compared with the Eq. 13, DGC loses the past gradients from g1 to gKT . In
other words, Momentum SGD with momentum factor masking degenerates to
vanilla SGD under the worst case scenario.

With the long-term gradient compensation, the momentum in SGC is as
follows:

vKT+1 =
K−1∑
k=0

T∑
t=1

(1 + α)αK−kgkT+t + gKT+1, (15)

which preserves the past gradients as Momentum SGD does. In addition, com-
paring the Eq. 13 and the Eq. 15, the global momentum places more emphasis
on the past gradients (i.e., (1 + α)αK−k > αT−t+K−k), which suggests that
we should decrease the hyper-parameter of the momentum for SGC. However,
according to our experiments, we observe that SGC can obtain a similar perfor-
mance as the Momentum SGD even if choosing the same hyper-parameter.

4.3 Local Update for the Staleness Effect

Parameter staleness is a common phenomenon in distributed training, which
might update the model in the wrong direction [23,26]. The gradient compression
delays the update of the model, and incurs the staleness problem, which leads
to performance degradation. When training the sparse high-dimensional model,
the staleness effect becomes even worse because the gradients may be delayed
for a longer period.

The key observation for compression scheme is that the latest model weights
pulled from servers lack the information of delayed gradients, which are locally
compressed as an accumulated value. Nesterov et al. [27] calculate the gradi-
ent after updating the model weight with momentum, aiming at avoiding the
momentum being too large to jump over the optimality. Inspired by this work,
we update model weights with r locally, and then compute the latest gradients
gt according to the updated model. We formalize the computation as below:

wt−1 = wt−1 − rt−1,
gt = ∇f(wt−1).

(16)

By considering the information of delayed momentum rt, the latest gradients gt

do revise the wrong directions may be introduced by the stale accumulation at
local. Actually, the local update is orthogonal to the previous techniques [10] for
staleness. The prior works all ignore making use of the advance update to relieve
the staleness effect caused by gradient compression.

5 Experiments

In this section, we validate our approach for both convex optimization and non-
convex optimization respectively, i.e., analyze the effectiveness of our proposed
SGC algorithm on �2-regularized Logistic Regression and the deep neural net-
work. Then we evaluate the advantages of the techniques used by SGC separately.
At last, we demonstrate the superiority of SGC for the sparse high-dimensional
model by presenting the memory cost and communication time.
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5.1 Experimental Settings

Benchmarks. We choose �2-regularized Logistic Regression (LR) as the sparse
model, and Factorization-machine supported Neural Networks (FNN) [28] as
Deep Neural Network respectively.

Environments. Both models are implemented on the parameter server (PS)
[29,30], a common distributed ML framework. PS consists of two roles—workers
and servers, where workers calculate the gradients of model given a subset of the
training data, and servers store the global ML model. And there are three steps
on workers inside one iteration of SGD—pull the current model (weight vector)
from servers, compute the gradients with a minibatch, and push the gradients to
the servers. The PS runs on a cluster, where each physical machine is equipped
with 128 GB RAM, 48 cores and 10 GB Ethernet. In addition, for LR, every
worker uses 12 GB RAM and 4 cores, and each server uses 100 GB RAM and
40 cores. For FNN, each worker uses 18 GB RAM and 6 cores, and each server
uses 100 GB RAM and 40 cores.

Table 1. Dataset statistics

Dataset Size Dimension #non-zero-features

KDD2010 2.5 GB 20.2M 19.3M

URP 169.7 GB 400M 100M

CTR 3.1 TB 100G 10G

Datasets. Table 1 summarizes the statistics of datasets used in the experiments.
KDD2010 is the public dataset for predicting student performance on mathe-
matical problems. CTR is a large-scale proprietary click-through rate dataset,
and URP is a user-response-prediction dataset. The CTR and URP are two
internal datasets from our industrial partner. We train LR model on KDD2010
and CTR, and train FNN model on URP. The FNN consists of one embedding
layer and four full-connected layers, and we apply the gradient compression on
the full-connected layers which have more parameters than the embedding layer.

Compared Methods and Parameter Settings. SGC is the proposed method with
momentum approximation, long-term gradient compensation, and local update.
SGC-MA is the method only applying momentum approximation, and SGC-
MA-LG is the method applying momentum approximation and long-term gra-
dient compensation. Further, we compare SGC with three competitors. One is
the momentum SGD without compression, named Baseline. The other two are
Gradient Dropping (GD) [14] and DGC [10].

All the gradient compression methods use the same hyper-parameters as the
Baseline, except the gradient sparsity. Gradient sparsity is defined as the
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Table 2. The AUC and LOGLOSS of various methods on KDD2010, CTR and URP
datasets.

Baseline GD GD-LU DGC DGC-LU SGC-MA SGC-

MA-LG

SGC

KDD2010

(50 epochs)

Auc 85.30% 84.57% 84.83% 84.74% 85.20% 84.72% 85.37% 85.58%

Logloss 0.2996 0.3040 0.3025 0.3032 0.3004 0.3033 0.2978 0.2966

CTR

(50 epochs)

Auc 73.30% 72.63% 72.92% 73.19% 73.27% 73.16% 73.33% 73.40%

Logloss 0.4063 0.4097 0.4076 0.4066 0.4054 0.4069 0.4053 0.4047

URP

(30 epochs)

Auc 72.78% 72.59% 72.68% 72.71% 72.82% 72.68% 72.95% 72.98%

Logloss 0.3577 0.3585 0.3581 0.3578 0.3573 0.3580 0.3567 0.3566

number of delayed parameters divided by the total number of parameters in
one iteration. To show the compression efficiency, we try to choose the gradient
sparsity as high as possible until the convergence speed becomes degenerated
compared with the Baseline. We will present the gradient sparsity in the corre-
sponding experiments.

Metrics. We evaluate the effectiveness of gradient compression algorithms with
two metrics: Area Under the Curve (AUC) and logistic loss (LOGLOSS). AUC
is equal to the probability that a classifier ranks a randomly chosen positive
instance higher than a randomly chosen negative one. LOGLOSS measures the
performance of a classification model where the prediction is a probability value
between 0 and 1.

5.2 Effectiveness Comparison

In Fig. 2, we visualize the AUC and LOGLOSS of comparing SGC, SGC-MA,
SGC-MA-LG, DGC and GD on all the three datasets. Table 2 summarizes the
AUC and LOGLOSS of the final model. For CTR and URP, we set the gradient
sparsity to 99.99%. For KDD2010, the gradient sparsity is 99.88%, because the
size of gradients for a worker in one iteration is really small (e.g., only several
thousand) and the higher gradient sparsity leads to the model being divergent.
Besides, LR runs 50 epochs, and FNN uses 30 epochs.

Comparison of SGC, Baseline, DGC, and GD. First, we discuss the performance
of LR on KDD2010 and CTR as the sparse case. Figures 2(a) and (d) show the
AUC and LOGLOSS of KDD2010, while Figs. 2(b) and (e) present the results of
CTR. It is clear that SGC has the best convergence performance (both AUC and
LOGLOSS) across different datasets during the whole training. For instance, on
KDD2010, it takes 27 epochs for SGC to reach 84.50% AUC, while Baseline,
GD and DGC need 31, 47, 41 epochs, respectively. On the other hand, both GD
and DGC converge more slowly than the Baseline because of the staleness effect
and the missing long-term gradients. In addition, SGC solves the problem with



Sparse Gradient Compression for Distributed SGD 151

local update and long-term gradient compensation, and it can achieve better
performance than the Baseline. Table 2 shows, on CTR, SGC reaches 73.40%
AUC, while Baseline has the AUC of 72.63%.

Second, we study the effectiveness of FNN on URP with various gradient
compression methods. Different from the sparse case, the whole model weights
are pulled by each worker, therefore the gradient size of the full-connected layer
is fixed and each gradient is traversed. Figures 2(c) and (f) are the AUC and
LOGLOSS of URP. There is no significant difference between GD and DGC,
both of which show slight convergence degradation compared with the Baseline
because most of the gradients are delayed. In the early stage of training, all
the compression methods converge slower than the Baseline, but SGC catches
up soon for 3 epochs and achieves better performance on AUC (+0.20%) when
executing 30 epochs.

In summary, SGC offers significant improvement on the sparse high-
dimension model. It also achieves higher gradient sparsity on Deep Neural Net-
work.

(a) KDD2010 AUC (b) CTR AUC

(c) URP AUC (d) KDD2010 LOGLOSS

(e) CTR LOGLOSS (f) URP LOGLOSS

Fig. 2. Training results of various methods on KDD2010, CTR and URP datasets.

Comparison of SGC-MA, SGC-MA-LG and SGC. Here we analyze the effects
of the three techniques (i.e., momentum approximation, long-term gradient com-
pensation, and local update) in SGC respectively. Figures 2(a), (b), (d) and (e)
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illustrate the results of the sparse high-dimensional model. First, we observe
that DGC and SGC-MA are almost indistinguishable on the convergence speed.
For example, the difference of LOGLOSS between them is around 0.02%. This
implies that the drop of high-order discounting factors does not degrade the
performance significantly. Second, with the long-term gradients, SGC-MA-LG
is much faster and reaches better performance than SGC-MA. Finally, with the
technique of local update, SGC performs the best against SGC-MA and SGC-
MA-LG. Furthermore, we also demonstrate that local update is an orthogonal
optimization technique, and can improve the performance of other gradient com-
pression solutions. We ran GD-LU and DGC-LU on the three datasets. Table 2
shows that local update decreases the AUC degradation of GD from 0.73% to
0.47% on KDD2010, and decreases the performance loss of DGC from 0.11% to
0.03% on CTR.

In Figs. 2(c) and (f), all the solutions have similar performance on URP
with FNN. The results demonstrate that SGC and its corresponding optimiza-
tion techniques also guarantee the convergence performance on Deep Neural
Networks.

(a) Memory cost w/o AR (b) Memory cost w/ AR

(c) Comm. cost on one worker

Fig. 3. Results of efficiency comparison

5.3 Efficiency Comparison

Memory Cost. We compare the memory usage of DGC and SGC on CTR to
illustrate the advantage of SGC for the sparse high-dimensional model. Before
presenting the results, we introduce an Accumulation Removing (AR) operation
to make the compression techniques more reliable in practice. AR is an operation
which mandatory pushes the accumulation to the servers when the memory usage
of the accumulation is close to the maximum capacity of a worker. Although
this may harm the benefit of gradient compression because of occupying the
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network bandwidth, it guarantees the systematic reliability of all the gradient
compression techniques for the extremely large data set, like CTR.

Figure 3(a) shows the memory usage of a worker without Accumulation
Removing (AR). It is easy to figure out that DGC is 3× faster than SGC to
reach the memory budget. For instance, when the gradient sparsity is 99.99%,
the accumulation size of DGC reaches the upper limit quickly for about 1600
iterations, while SGC requires around 4700 iterations to reach the same limit.
Because with the help of momentum approximation, SGC uses at most half-
memory of the one DGC does. Figure 3(b) shows the memory usage with AR.
With the help of AR, all algorithms can be executed successfully, and the AR
operation improves the reliability of gradient compression solutions. And we also
observe that DGC executes AR more frequently (3×) than SGC, and this leads
to increasing the communication time.

Communication Cost. Finally, we compare the communication time among dif-
ferent gradient compression methods. Figure 3(c) is the communication cost of a
single worker for one epoch. Compared with the Baseline, both of the gradient
compression techniques reduce the communication cost of push operation. The
push operation of Baseline takes about 582 s, while DGC and SGC only takes
95 s (i.e., 6× faster) and 12 s (i.e., 48× faster), respectively. However, DGC is
about 8× slower than SGC, despite using the same gradient sparsity. The reason
is that DGC needs more AR to reduce the memory overhead of workers, while
SGC alleviates the large memory footprints via momentum approximation.

6 Conclusion

In this paper, we introduced a new gradient compression approach, called Sparse
Gradient Compression (SGC), for efficiently training the sparse models with dis-
tributed SGD. To reduce the memory cost of accumulate gradients, we proposed
momentum approximation. Then by designing long-term gradient compensa-
tion, SGC can effectively make up for the missing of acceleration information
brought by the approximation and momentum factor masking. Furthermore, we
applied local update to ease the staleness effect. We also theoretically analyzed
the momentum convergence behavior under the new compression scheme. Exper-
imental results on the sparse high-dimensional model and deep neural network
demonstrated the efficiency of our proposed solution.
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Abstract. With the booming traffic developments, estimating the travel time
for a trip on road network has become an important issue, which can be used for
driving navigation, traffic monitoring, route planning, and ride sharing, etc.
However, it is a challenging problem mainly due to the complicate spatial-
temporal dependencies, external weather conditions, road types and so on. Most
traditional approaches mainly fall into the sub-segments or sub-paths categories,
in other words, divide a path into a sequence of segments or sub-paths and then
sum up the sub-time, yet which don’t fit the real-world situations such as the
continuously dynamical changing route or the waiting time at the intersections.
To address these issues, in this paper, we propose an end to end Spatial Tem-
poral Deep learning network with Road type named STDR to estimate the travel
time based on historical trajectories and external factors. The model jointly
leverages CNN and LSTM to capture the complex nonlinear spatial-temporal
characteristics, more specifically, the convolutional layer extracts the spatial
characteristics and the LSTM with attention mechanism extracts the time series
characteristics. In addition, to better discover the influence of the road type, we
introduce a road segmentation approach which is capable of dividing the tra-
jectory based on the shape of trajectory. We conduct extensive verification
experiments for different settings, and the results demonstrate the superiority of
our method.

Keywords: Travel time estimation � CNN � LSTM � Road network

1 Introduction

Nowadays, with the explosive growth of the location-enabled devices, the importance
and usage of geospatial information have attracted more and more attention from
researchers in many applications. In this paper, we mainly focus on the estimation of
travel time, which can bring societal and environmental benefits, and is useful for
driving navigation, traffic monitoring, route planning, ride sharing and so on [1–5].
However, evaluating an accurate travel time is a challenging problem affected by the
following aspects: (1) The road traffic condition continuously dynamically changes
during the process of vehicles moving. (2) The driver needs to slow down or wait for a
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while at the intersection, and the waiting time is a random variable, modeling the
waiting time is not easy. (3) Different road segments may exhibit very different
behaviors due to external requirements, for instance, residential areas speed limits are
distinct from industrial areas. Although the problem has been widely studied in the
past, however, traditional travel time estimation approaches mostly adopt divide-and-
conquer approach [6–8]. Those methods mainly decompose a path into a sequence of
sub-segments or sub-paths, and then sum up the multiple sub-segments or sub-paths
travel time into a whole. Nonetheless, those methods are model-driven and can’t handle
the delay time caused by the turnings or intersections very well, and the estimated
travel time errors, which are affected by external factors such as weather or road types,
will also accumulate.

Generally speaking, solving this kind of optimal problem is not easy. Fortunately,
recently deep learning has achieved considerable achievements in computer vision,
machine translation, image generation, natural language processing field and road
trajectories [9, 10]. Deep learning approaches have a strong capability to learn more
latent features and simulate complicated dynamics trajectory problem [4, 11–13].
Motivated by aforementioned knowledge, in this paper, we propose an end-to-end
Spatial Temporal Deep learning network with Road types (STDR) by using convo-
lutional neural networks (CNN) and long short-term memory (LSTM) to jointly capture
complex spatial and temporal nonlinear correlations. The core idea lies in transforming
the trajectory data into vector space, and applying the neural network on them. The
contributions of this work are summarized as follows.

First, to capture the spatial features of a trajectory, we embed the GPS points into
corresponding vectors rather than working on them directly. The vectors can preserve
the original correlation of different points, and then are fed into the CNN to learn the
spatial dependencies.

Second, we introduce LSTM with attention mechanism to model the time series.
The attention mechanism can judge which segment has a higher weight for estimating
the whole trajectory. Meanwhile, the influences of external factors (e.g., weather and
time metadata) are also concentrated into the LSTM input, which can significantly
improve the predicting accuracies.

Third, since the trajectory sampling frequency is fixed, the travel distances with
different velocities at the same time interval are diverse. For example, the driving
distance on the highway is longer than the distance on an overpass at the same time
interval. Therefore, we partition the trajectory into many sub-segments based on the
road types, then the sub-segments are encoded into vectors and concatenated with the
output of LSTM for training the model together.

Fourth, extensive comprehensive experiments on the real datasets are conducted,
and results show the advancement of our approach.

The remainder of this paper is structured as follows. Section 2 describes a review of
literature, and Sect. 3 introduces the details of our algorithm. We conduct experiments
and evaluate the results in Sect. 4. Finally, Sect. 5 concludes the paper.
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2 Related Work

Existing researches can be roughly classified into two categories, i.e., the traditional
approaches with sub-segments or sub-paths, and the deep learning approaches. In this
section, we introduce the literature and summarize the key technologies.

2.1 Traditional Travel Time Prediction Approaches

Wang et al. [7] proposed an efficient and simple model that leverages plenty of his-
torical trips without using the intermediate trajectory points to evaluate the travel time
between source and destination. Comparing with the most existing approaches, it
retrieves the neighboring trips with a similar origin and destination to approximately
estimate the travel time. However, the method outperformed many online methods. To
deal with traffic time series which were usually sparse, dependent and heterogeneous
(e.g., some segments may have morning and afternoon peak hours, while others may
not), Yang et al. [14] proposed Spatial-Temporal Hidden Markov models (STHMM).
The dependencies and the correlations among different time series were modeled while
considering the topology of the road network. Wang et al. [6] modeled different dri-
vers’ travel times with a three-dimension tensor, the frequent trajectory patterns were
extracted from historical tips to decrease the candidates of concatenation and suffix-
tree-based indexes, then an object function was devised and proved to model the
tradeoff between the length of a path and the number of trajectories traversing the path.
The object function was then solved by a dynamic programming solution. Wen et al.
[8] proposed a novel probability-based method by constructing a temporally weighted
spatial-temporal distribution patterns to estimate the logistical transport time. In order
to explore location and time relationship, they designed frequent spatial connections, in
which area-based spatial-temporal probabilistic distribution can be identified by kernel
density estimation. Then the transportation time between two locations in the area can
be estimated. Similarly, Jabari et al. [15] established a mixture asymmetric probabilistic
statistical framework, i.e., a novel data-driven methodology of Gamma mixture den-
sities, to model complexity multi-modal urban travel time distributions, experiments
also demonstrated their methods can further solve the data sparsity.

2.2 Deep Learning Travel Time Prediction Approaches

To cope with the insufficiency of the input information, Li et al. [11] constructed a
more smooth and meaningful multi-task representation learning by leveraging the
underlying road network structure and spatial-temporal prior knowledge. Jindal et al.
[13] first predicted the distance between the origin and destination, and then estimated
the travel time based on the above predicted distance. The advance of ST-NN was that
it only take advantage of the raw trips data without demanding further feature engi-
neering. However, the road network structure, i.e., the spatial and temporal relation-
ship, was neglected. In order to solve the inaccuracies caused by the divide-and-
conquer methods, Wang et al. [16] proposed a novel end-to-end deep learning
framework to estimates the travel time of the whole path directly, they used a geo-
convolutional and LSTM layer to capture the spatial and temporal features meantime.
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In addition, they also introduced a multi-task learning to balance the effect of the entire
path and each local path. However, they didn’t consider the influences brought by the
driver’s habit and external road types. Zhang et al. [17] proposed an end-to-end
training-based model named DEEPTRAVE to predict the travel time of a whole path
directly, and designed an auxiliary supervision with dual interval loss mechanism to
fully leverage the temporal existing historical labeling information. They utilized a
feature extraction structure to effectively capture different dynamics, such as short-term
and long-term traffic features, for estimating the travel time accurately. Cui et al. [18]
presented a deep stacked bidirectional and unidirectional LSTM (SBULSTM) neural
network architecture, which investigated both spatial features and bidirectional tem-
poral dependencies from historical data. This mechanism can effectively handle the
missing value for input data, and can also address the passing information from a back-
propagation direction.

3 Methodology

In this section, we formally depict the preliminaries and define the notions of the
problem, then present the details of our method.

3.1 Preliminaries

Definition 1. A road network G ¼ V ; Eð Þ is a directed graph, the V ¼ fviðxi; yiÞg
represents a set of vertices, each vi incorporates latitude xi and longitude yi, the E ¼
ej vm; vnð Þ� �

represents a set of edges, each ej is comprised of two directly connecting
vertices.

Definition 2. A trajectory T is a sequence of GPS points generated from LBS
(Location Based Service) devices, which can be denoted as T ¼ p1; p2. . .. . .pnf g.
Each GPS point pi contains 5-tuple tpi; xi; yi; velocityi; headi

� �
, where tpi denotes the

timestamp, xi and yi denote the latitude and longitude respectively, velocityi is the
vehicle speed, headi is the angle of driving direction.

Problem: Given a trajectory T and departure time to, our goal is to estimate the
travel time for T by using a series of historical trajectories on road network G.

3.2 Framework of STDR

As presented in Fig. 1, we provide the details for our proposed spatial-temporal net-
work framework, which is comprised of three major components.

Spatial Component: We first leverage the road network embedding method to embed
the GPS points into corresponding vectors, thus we can use the convolutional layer
with many filters to extract the spatial characteristic [9], after that the output matrix
vectors of convolutional operation are used as the input of LSTM.

Temporal Component: We manually collect some external features from external
datasets, such as time of day, weather conditions, etc., and then embed them as a vector
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Xext, and concentrate with vectors CIN which are obtained from above spatial com-
ponent, moreover feed them into two stacked LSTM with attention mechanism to
extract the temporal characteristic with attention mechanism.

Road Type Component: We introduce a segmentation approach which is capable of
dividing the trajectory into sub-segments based on the road types, then calculate each
sub-segments average distance, which is further encoded into vectors. To enable the full
connected operations on the irregular vectors matrix, we pad zero where it is necessary.
Then the vectors further combine the output of the LSTMcomponent, and furthermore go
through a fully connected layer at the end of the network for joint prediction.

3.3 Trajectory Embedding Representation

In [16], the geographical features they extracted are multiplied by latitude and longitude
of two points, which don’t consider the global road network dependencies among
different vertexes. Therefore, we first need to convert the GPS points into vectors rather
than working on them directly [9]. How to transfer the trajectory can be recognized as
the problem of embedding very large road networks into low-dimensional vector spaces,
aiming to capture and preserve the original network structure. The characteristics of
vertexes are dependent on both the local and global network structure. Therefore, how to

Fig. 1. The framework of STDR
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simultaneously preserve above structures is a tough problem. In this paper, we use a road
network embedding method [19], which can effectively handle the distance and angle in
the road network space by using the Minkowski pth-order metrics:

Lpðx; yÞ ¼
Xk
i¼1

xi � yij jp
" #1=p

ð1Þ

Transforming a road network G = (V, E) into a vector space RL;D0ð Þ is a mapping
V ! RL;E ! D0, where L is the vectors’ dimension andD′ is one of Minkowski metrics
[19, 22]. The vertex is extended as follows: Let Vi be a subset of V, x be a point, and
Dist x;Við Þ ¼ miny2Vi Dist x; yð Þf g, here Dist x; Við Þ is the distance from point x to
its closet neighbor in Vi. Then let set R ¼ V1;1; . . .V1;k;. . .Vb;1. . .Vb;k

� �
be a subset

of V, where k is set as O(log n) and b is set as O(log n), the original space can be
embedded into a O(log2 n) dimensional space. Specially, let E vð Þ ¼ ðRV1;1 vð Þ; . . .;
RV1;k vð Þ; . . . RVb;1 vð Þ . . . RVb;k vð ÞÞ, inwhichRVi;j vð Þ ¼ Dist v;Vi;j

� �
, thus for single point v,

the finally output is vector E vð Þ 2 Rb�k with the dimension b � k (the following is
denoted by L = b � k for the rest paper) on the road network. For dynamic insertion
adjustment in one specified reference subset Va,b, the new vertex VN is modified by
RVa;b VNð Þ ¼ min Dist VN ;Pið Þþ Dist Pi;Va;b

� �
; Dist VN ;Pj

� � þ Dist Pj;Va;b
� �� �

, where
Dist Pi;Va;b

� �
is distance between Pi and Va;b, as presented in Fig. 2.

After the trajectory embedding, we can obtain t vectors 2 RL, where t is the number
of trajectory points.

3.4 Trajectory Spatial Characteristics Captured by Convolutional Layer

Inspired by the successful applications of CNN on images, we also employ it to extract
the GPS spatial characteristics. Compared with image having two-dimensions spatial
structure, trajectory has only one-dimensional spatial structure like the sentence in
word2vec classification model, where words display in sequence. Thus we use the one-
dimension convolutions method to learn pixel-level spatial correlation features by
considering the trajectory points as an image of width t and height 1.

Fig. 2. Dynamic embedding for trajectory points
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As in Fig. 1, let xi 2 RL [9] be the L dimensional road network embedding vector
corresponding to the i-th point in the trajectory sequence, the trajectory with length t is
presented as:

x1:t ¼ x1 � x2 � . . .� xt ð2Þ

where ⊕ thus the trajectory can be converted as a vector matrix, with the size L * t. A
convolution operation involves a filter w 2 RL�k , whose kernel window size is k, and is
overlaid across the GPS points vectors ranging from i to i + k − 1. Next, it performs an
element-wise product, and then adds them together and obtains one new feature. For
example, the transformation from a window of xi:iþ k�1 is defined as follows:

ci ¼ d wi � xi:iþ k�1 þ bð Þ ð3Þ

where wi is a weight parameter and b is a bias and d(�) is a non-linear function. Thus, a
feature vector is generated from one filter, which is successively applied to GPS points
x1:k;x2:kþ 1. . . xt�kþ 1:t
� �

where stride equals 1, with the index ranging from 1 to
t−k + 1. Finally, for each trajectory connected by c filters, we get the output vectors
CIN 2 Rc�ðt�kþ 1Þ presented by Formula 4.

CIN ¼ ½c1; c2; . . .; c t�kþ 1ð Þ � ð4Þ

3.5 Trajectory Temporal Characteristics Captured by LSTM

A successful approach for solve the time sequential problems is RNN (Recurrent Neural
Network), which can remember the previous historical sequence by using a transition
function and leveraging an internal memory to process the dynamic temporal behavior.
RNN has proven the ability to model variable length sequence. However, traditional
RNN may also face the gradients exploding or vanishing because the time sequences is
too long, thereby the LSTM is designed [20] since it can decide whether or not to
abandon the previous hidden states depending on the time restrictions. Generally
speaking, LSTM extends RNN by adding three gate (i.e., one input gate, one forget gate,
one output gate) and a memory cell. The forget gate is employed to abandon some
irrelevant information and can effectively solve the vanishing or exploding gradient
problem. The input gate and output gate are utilized to control the input and output
vectors. The output is the last hidden state of LSTM. At each time interval t, LSTM takes
the output of convolutional layer as an input, and then all information is accumulated to
the memory cell, each cell in LSTM is defined as follows:

ft ¼ dðWf � ½ht�1; xt� þ bf Þ ð5Þ

it ¼ dðWi � ½ht�1; xt� þ biÞ ð6Þ
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~Ct ¼ tanhðWC � ½ht�1; xt� þ bCÞ ð7Þ

Ct ¼ ft � Ct�1 þ it � ~Ct ð8Þ

ot ¼ dðWo � ½ht�1; xt� þ boÞ ð9Þ

ht ¼ ot � tanhðCtÞ ð10Þ

where ft; it; ot represent the forget gate, input gate, and output gate, Wf ; Wi; Wc; Wo are
the weight parameters matrices, bf, bi, bc, bo are the biases values, d(�) denotes the non-
linear activation function, the tanh denotes the hyperbolic tangent function. Further-
more, the multi-layers LSTM is more efficient than a single LSTM layer [20].

Intuitively, the travel time can be affected by many complex external factors, such as
weather conditions and time metadata (i.e., time-of-hour, day-of-week). For instance,
traffic on rainy days is usually more congested than usual, and the road is more prone to
have high-level crowd [3], etc. Note that these external factors cannot be directly fed into
a neural network, we embed the weather conditions [4] as X 2 R16, time-of-hour as
X 2 R24, day-of-week as X 2 R7, etc., by using the hot coding. Then the individ-
ual vectors are concatenated with the output of CNN, and fed into LSTM units.

Attention Mechanism Model: The traditional LSTM cannot detect which segment has
a greater weight for estimating the whole trajectory time. For example, the impacts of
expressway and speed limited road on the whole estimated time are different from each
other. In order to address this issue, we design an attention mechanism [21] that can
describe the key part of segments among whole trajectory segments. Let Xext 2
Re�ðt�kþ 1Þ represents the embedding of external factors, we append it to CIN as LSTM
input presented by Formula (11). Furthermore, Let H 2 Rc� t�kþ 1ð Þ be a matrix com-
prised of hidden vectors h1; h2;...;ht�kþ 1

� �
that the LSTM produced in Formula (10). As

in Figs. 1 and 3, the attention vector takes hidden vectors H and Xext as input to
compute the probability distribution of source trajectory input. By utilizing this
mechanism, it is possible for finally prediction to capture somewhat global information
rather than solely to derive from hidden states. A vector including attention weights and
a weighted hidden representation of GPS points are denoted as a, h* respectively. The
details are presented from Formula 12 to 14.

CIN ¼ WinCIN þWext1Xext ð11Þ

M ¼ tanhð WhH
Wext2Xext

� 	
Þ ð12Þ

a ¼ softmax xTM
� � ð13Þ

h� ¼ Ha ð14Þ
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where Win 2 Rc�c, Wext1 2 Rc�e, Wh 2 Rc�c, Wext2 2 Re�e, xT 2 R1�ðcþ eÞ, M 2
Rðcþ eÞ�ðt�kþ 1Þ, a 2 Rðt�kþ 1Þ; h� 2 Rc. Finally, the output of the temporal com
ponent is h*.

3.6 The Detail of Road Types Embedding

In fact, different road types have different effects on the travel time. For example,
driving on the overpass is more time-consuming than on the highway at the same time
interval. As in Fig. 4, a sample trajectory passes on the auxiliary road, urban
expressway road, overpass road, urban expressway road sequentially, different parts of
the trajectory exhibit diverse driving speeds marked out by ovals. For instance, the blue
oval denotes the overpass road, whose sampling locations are close to each other, while
the red oval denotes urban expressway road, whose sampling locations are far away
from each other.

In summary, we propose a trajectory segmentation approach [22, 23]. Trajectory
segmentation is a fundamental task which tries to partition a trajectory into several
segments based on a set of optimization goals. We aim to find the characteristic points
where the shape of a trajectory changes rapidly. The segmentation includes two
desirable properties: preciseness and conciseness [23], we leverage the concept of
Minimal Description Language (MDL) to find the optimal tradeoff between preciseness
and conciseness.

The MDL is comprised of two components: L(H) and L(D|H). L(H) is regarded as
the hypothesis description with the length of the data described in bit, which measures

LSTM LSTM

LSTM LSTM

LSTM

LSTM

LSTM

LSTM

H: Hidden Vector 

 Xext: External Vector

 Xext: External Vector

CIN

h*

ht-k+1h1 h2 h3

Vector: M

Fig. 3. The architecture of LSTM attention mechanism

164 J. Xu et al.



the degree of conciseness, while the L(D|H) is regarded as the length of the description
of data under the hypothesis H, which measures preciseness. In our paper, L(H) is
simply equal to log2 x. Furthermore, the L(H) represents the total length of the
Euclidean distance between all pj and pj+1, while the L(D|H) represents the sum of the
difference between a trajectory and its trajectory partitions. At last, a list of charac-
teristic points is picked out by minimizing L(H) + L(D|H). The trajectory is partitioned
into segments by these characteristic points.

Then we obtain the average distance of every segment, and embed them as vector
Xdriver 2 R8�dr groups padding whatever it is necessary. Finally, the Xdriver is connected
with FC layer to yield vector Xdriver0 2 Rdr, which concatenates LSMT to jointly train
the model, thus the Formula 14 is rewritten as:

h� ¼ Wh�h� þWdriverXdriver0 ð15Þ

where Wh� 2 Rc�c;Wdriver 2 Rc�dr.

3.7 Prediction Component

The next step is to estimate the travel time by integrating the output of LSTM and the
output of road type component. We feed the h* into the fully connected network to get
the final estimated value ~Yt, which is calculated as follows:

~Yt ¼ tanhðWof � h� þ bof Þ ð16Þ

where Wof and bof are learnable parameters, tanh(x) is a hyperbolic tangent function,
which ensures the output values are in [−1 * 1]. The loss function we used is defined
by minimizing the mean squared error between the estimated time and the true time:

L hð Þ ¼ Yt � ~Yt


 

2 ð17Þ

where h is the set of all learnable parameters needed to be trained. We continuously
adjust the parameter sets using back propagate by Tensorflow until loss function
converges.

Padding

FC Layer

XdriverXdriver

1 2 dr

Fig. 4. The framework of road type component (Color figure online)

STDR: A Deep Learning Method for Travel Time Estimation 165



4 Experiments and Discussions

4.1 Dataset

Datasets: We test the method on the Beijing road network including about 330,000
vertices and 440,000 edges. We use two GPS trajectory datasets named Taxi and Ucar
[24]. The Taxi data contains about 180,000 trajectories generated by more than 7,000
public taxis, Ucar data contains about 480,000 trajectories generated by more than
6,000 private taxis in November 2015. Each sampling point includes timestamp, lati-
tude, longitude, vehicle speed, and direction. The abnormal records are first filtered out,
and then the map matching algorithm is employed to relocate the deviated sample
points. The data is divided into two subsets: we use the first 24 days data as the training
data, the rest days as the test data.

Meteorological data: We record the Beijing weather data from Beijing Meteoro-
logical Bureau, the data include rainfall, temperature, wind velocity and so on. The
weather conditions are divided into 14 types: cloudy, sunny, heavy rain, middle rain,
light rain, heavy snow, light snow, dense fog, little fog, overcast, hail, frost, smog and
haze, and sand storm.

4.2 Parameters Setting

Our model is implemented with Python 2.0. The model is deployed on the server with
Core i7-4790 CPU, 16 GB RAM, NVIDIA GTX1080 GPU. We adopt Adam opti-
mization algorithm with mini-batch size equals to 512 to train the parameters, the initial
learning rate is set as 0.01.

4.3 Baseline Algorithms for Comparison

To demonstrate the validity of our model, we compare it with 5 baseline methods
including:

ARIMA: ARIMA means Auto Regressive Integrated Moving Average, which is a
typical and well known statistical model that depicts a suite of different standard
temporal attributions.

XGBoost: XGBoost is an efficient, flexible machine learning technique for
regression, classification and sorting tasks by assembling multiple weak learning under
the gradient boosting framework, usually referring to decision trees. It belongs to
ensemble learning.

SimpleTTE [7]: SimpleTTE presents a Simple Travel Time Estimating method that
leverages the neighboring trips from the large amount of historical data. Being different
from the traditional approaches, SimpleTTE indexes all the neighboring points with
similar original and destination, and calculates the absolute temporal speed reference
under irregularities traffic condition. After that, the travel time is scaled and estimated
from the similar trips with the original demands.

Multi MASK [11]: Multi MASK is a multitasking representation learning model for
time estimation, which does not hypothesize that the travel route is predetermined, but
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utilizes the underlying road network with time and space prior knowledge. This method
also engenders a meaningful representation that retains the various travel attributes.

DeepTTE [16]: DeepTTE is an end-to-end deep learning framework approach for
estimating travel time of the whole path directly, the method presents a geo-
convolution operation to capture the spatial correlations, and leverages stacking LSTM
layers to capture the temporal dependencies as well. In addition, the relationships
between the local and the global tradeoff are determined by the multitasking they
presented. We apply this algorithm following the parameter settings deployed in [16].

4.4 Evaluation Metrics

We evaluate the performance of the proposed method based on three popular metrics.
Assume y1, y2, …, yn denote the ground truth, y ̃1, y ̃2, …, y ̃n denote the estimated value,
and n denotes the numbers of samples points. Here, Mean Absolute Percentage Error
(MAPE), Mean Relative Error (MRE), and Mean Absolute Error (MAE) are employed
as evaluation metrics, their definitions are as follows:

MAPE ¼
Xn
t¼1

yt � ~yt
yt










 � 1n ð18Þ

MRE ¼
Pn
t¼1

yt � ~ytj j
Pn
t¼1

ytj j
ð19Þ

MAE ¼
Pn
t¼1

yt � ~ytj j
n

ð20Þ

4.5 Performance Comparisons

Table 1 shows the comparisons between baseline algorithms and our presented
method.

Table 1. Performance comparisons with baselines

Model Taxi Ucar
MAPE(%) MRE(%) MAE(s) MAPE(%) MRE(%) MAE(s)

ARIMA 35.49 32.18 257 32.32 30.1 243
XGBoost 34.45 31.18 234 32.99 28.2 227
SimpleTTE 26.93 25.71 213 22.75 22.3 219
Multi MASK 23.35 22.63 207 21.53 19.45 186
DeepTTE 19.37 18.52 191 17.61 16.8 164
Ours STDR 16.19 15.54 155 15.04 13.31 136
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From the Table 1, we can see that the MAPE, RMSE, and MAE of the ARIMA and
XGboost perform poor results, which demonstrates that the simple traditional predic-
tion method cannot effectively describe the large scale complex spatial-temporal data.
The DeepTTE and Multi MASK both outperform ARIMA and XGBoost, the com-
parisons reveal that deep learning methods can work well. Furthermore, since the
DeepTTP considers utilizing the convolutional operation to capture the spatial char-
acteristic, it shows the better result than Multi Mask. Next, it is interesting the Sim-
pleTTE method displays an accept medium performance between the traditional and
deep learning methods. However, it is just an approximate method, which is more fit
for the ideal situation, such as the highway or urban expressway with little speed
changing. Finally, our algorithm significantly outperforms above mentioned methods
with the lowest MAPE (16.19% and 15.04%), MRE (15.54% and 13.31%), and MAE
(155 and 136) on two datasets respectively, which verifies the superiority and feasi-
bility of our approach. The reason is that our algorithm further exploits LSTM attention
mechanism and takes account of the influence of road type in the whole trajectory,
these settings can better preserve the spatial-temporal characteristics of the original
trajectory.

4.6 Comparison with Different Variants

To investigate the effectiveness of different components in Fig. 1, we compare our
STDR with 4 different varieties including: (1) LSTM and road type without CNN
component. (2) Only LSTM component, neither the CNN nor the road type is used.
(3) CNN and LSTM components without road type. (4) LSTM without attention
mechanism. All these models have identical inputs and the parameters are roughly the
same. The results are presented in Table 2.

From Table 2, we have the following observations. Firstly, it is not surprising that
only LSTM component exhibits the lowest performance as expected. Secondly, con-
sidering the ②LSTM + road type without CNN and the ③CNN + LSTM without
road type, the impacts of CNN (MPAE is 22.48%) is more obvious than the road type
(MAPE is 29.25%). The reason for this phenomenon is that some road type

Table 2. Evaluation of our method and its variants

Model Taxi Ucar
MAPE
(%)

MRE
(%)

MAE
(s)

MAPE
(%)

MRE
(%)

MAE
(s)

①Only LSTM component 32.14 31.82 234 29.47 26.53 225
②LSTM + road type
without CNN

29.25 26.72 207 25.78 24.38 183

③CNN + LSTM without
road type

22.48 21.68 188 22.16 21.63 167

④STDR without attention 20.31 17.56 171 18.86 15.74 158
Our STDR 16.19 15.54 155 15.04 13.31 136
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characteristics can be also extracted by CNN in spatial component. Thirdly, both two
variants (i.e., the ③CNN + LSTM without road type and ④STDR without attention)
outperform the two variants without CNN (i.e., the ②LSTM + road type without
CNN, and the ①only LSTM component), which demonstrates the significant role of
CNN in spatial trajectory data mining. Fourthly, the ④STDR without attention is
weaker than our STDR, the explanation is that the error of various types roads will
continuously accumulate as the trajectory sequence grows, which confirms the effec-
tiveness of attention mechanism. Finally, the performance of our STDR achieves the
best when all aspects are considered.

4.7 Impacts of Kernel Size and the Number of Road Types

We first evaluate the performance of kernel size of the convolutional filter. From Fig. 5,
we observe that the MAPE of both data decreases as the kernel size grows, this discloses
that the large kernel size can better capture the far away spatial dependences on the
trajectory. However, when the kernel size exceeds 4, the effect becomes doubtful and the
MAPE even rises. The cause is that although a larger filter can capture more informa-
tion, it also imports much unnecessary noise, damaging the original road network
correlation, such as two contradictory features generated by two successive turnings.

The impacts of the number of road types are exhibited in Fig. 6. As we can see, the
results reveal that when the number of road type is smaller than 6, the corresponding
average distance on the road is about 14 km according to historical trajectories
statistics, the MAPE, MRE, and MAE are nearly unchanged, the reason may be related
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to that the Beijing’s layout of streets is in the shape of regular block layout. However,
as the number of road types increases continually, the growth ratio rises dramatically,
this indicates that more influencing factors produced by a long trajectory on the road
can easily result in inaccurate predictions.

4.8 Impact of Weather Conditions

In this paper, we estimate the travel time by utilizing the weather forecasting as the
approximate weather at future time interval n + 1. But in fact, weather forecasting is
not fairly accurate all the time due to the technology and so on. To investigate the
effectiveness of the weather component, first we remove it and compare it with STDR,
then pick out five typical kinds weather, i.e., cloudy, sunny, rain, snow, and fog. The
comparisons are shown in Table 3 and Fig. 7.

In Table 3, we can see that the performance of STDR without weather conditions
decrease by 31.7% comparing with our STDR (w.r.t. Taxi’s MAPE), this indicates the
weather has a significant influence on travel time. Next, from Fig. 7, we can discover
that the MAPE on cloudy and sunny days are almost the same, suggesting that good
weather condition has few impacts on travel time. On the rainy and foggy days, the
results are relatively poor, and are generally worse than cloudy and sunny days, this is
because bad weather can affect people’s attention and result in slow response. The
outcome on snowy days is the worst, the cause is that drivers need to be much longer
waiting time at intersections due to the wet slippery road, this also conforms to our
intuitive sense.

Table 3. Experimental results without weather conditions

Taxi Ucar
Model MAPE

(%)
MRE
(%)

MAE
(s)

MAPE
(%)

MRE
(%)

MAE
(s)

STDR without weather
conditions

23.71 19.48 196 21.53 16.21 177

Our STDR 16.19 15.54 155 15.04 13.31 136
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5 Conclusions

In this paper, we propose a novel deep learning end-to-end model based on CNN and
LSTM for estimating travel time by using real historical traffic data. The method first
embeds trajectory into low dimension vectors with the road network, then employs
CNN to capture the spatial characteristic, further utilizes LSTM with attention mech-
anism to capture the time sequence characteristic. What’s more, we import the road
segmentation to fully depict the influence of road type. To validate the effectiveness of
the proposed STDR, extensive experiments with 5 baselines are conducted. The results,
in terms of MAPE, MRE, and MAE, demonstrate the superiority of our methodologies.
In the future we plan to work on three interesting directions: (1) Incorporate the social
network for the estimating travel time model. (2) Apply machine learning to inter-
disciplinary areas such as smart transportation and economics disciplines. (3) Extend
and apply the framework to other trajectory problems.
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Abstract. Recurrent neural networks (RNNs) have been widely used in
text similarity modeling for text semantic representation learning. How-
ever, referring to the classical topic models, a text contains many dif-
ferent latent topics, and the complete semantic information of the text
is described by all the latent topics. Previous RNN based models usu-
ally learn the text representation with the separated words in the text
instead of topics, which will bring noises and loss hierarchical structure
information for text representation. In this paper, we proposed a novel
fractional latent topic based RNN (FraLT-RNN) model, which focuses
on the text representation in topic-level and largely preserve the whole
semantic information of a text. To be specific, we first adopt the frac-
tional calculus to generate latent topics for a text with the hidden states
learned by a RNN model. Then, we propose a topic-wise attention gat-
ing mechanism and embed it into our model to generate the topic-level
attentive vector for each topic. Finally, we reward the topic perspective
with the topic-level attention for text representation. Experiments on
four benchmark datasets, namely TREC-QA and WikiQA for answer
selection, MSRP for paraphrase identification, and MultiNLI for textual
entailment, show the great advantages of our proposed model.

Keywords: Latent topic · Fractional calculus ·
Recurrent neural network

1 Introduction

Text similarity modeling is a crucial issue in many neural language processing
(NLP) tasks, such as paraphrase identification [4,10], question answering [25,35],
and textual entailment [18,23]. Take the paraphrase identification task as an
example, text similarity is utilized to assess whether the two pieces of texts are
semantically equivalent.

Recently, the recurrent neural networks (RNNs) have gained popularity in text
similarity modeling, due to its good performance and less human interventions.
Specifically, a hidden vector is learned for each word in the text via a hidden state in
c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11447, pp. 173–190, 2019.
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RNN, and thewhole text is represented by the aggregation of all the hidden vectors.
Then, the similarity of a pair of texts is calculated with their representations and
a similarity function. Most RNN based models, including those embedded with
attention mechanisms, focus on using sequential hidden vector in word-level to
generate the text representation, while the hierarchical structures of the text, such
as features in phrase-level and sentence-level, are neglected. However, a piece of
text has complicated structures, it is essential to understand and represent the
text both sequentially and hierarchically [15].

Referring to the well-known topic models, such as latent dirichlet allocation
(LDA) [3], it can be found that words in the text generate various topics, and the
distribution of the topics demonstrates the semantic representation of the text.
Noting that a topic is generated by a group of words, [4,35] use the aligned tex-
tual information to model text similarity, which first locates the textual snippets
that have the same semantic meanings in the text pair, and then highlights the
weight of those textual snippets for text representation. However, this method
usually focuses on the co-occurrent words between the text pair, instead of the
high-level topics, which will bring noise during text similarity modeling. Take
the following text pair as an example for illustration.

T1: A child gets a fever, but he has no symptoms of influenza.
T2: A kid with the symptoms of mild influenza and low fever can be
cured by the Oseltamivir.

Obviously, there are two topics in T1, namely “the child has a fever” as topic 1,
and “the child has no influenza” as topic 2. It can be seen that topic 1 is relevant
to T2, while topic 2 is not. Therefore, T1 and T2 should have a lower similarity.
However, textual alignment approaches pay more attention on the aligned words,
such as “fever” and “influenza”, and will generate a higher similarity score for T1
and T2 and lead to mismatching problem. Hence, modeling the text similarity
in topic-level is meaningful and promising, which should arouse much attention.

To the best of our knowledge, how to generate topics based on the words inter-
actions and use interactions among topics for text similarity modeling are still not
well studied in RNN. In this paper, we propose a fractional latent topic based
RNN (FraLT-RNN) model, where the hierarchical features, namely features in
word-level and topic-level, as well as the word sequential patterns, are incorpo-
rated into RNN for text representation by means of the fractional latent topics.
To be specific, we first adopt the fractional latent topic generator to learn latent
topics based on the hidden states learned by a RNN structure. In particular, the
fractional latent topic generator is derived from the fractional calculus, which com-
putes the function’s integral in fractional order, instead of integer order, and has
been successfully introduced into image processing for generation and denoising,
due to its excellent characteristics in memory and heredity. Then, we design a
topic-wise attention mechanism to generate an topic-level attentive vector for each
latent topic, which measures the perspective of the latent topic and enhances the
interactions between a text pair. Finally, the latent topics are rewarded by the
attentive vector for text representation and similarity calculation. We evaluate
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our FraLT-RNN model on four benchmark collections, namely Trec-QA and Wik-
iQA for question answering, MSRP for paraphrase identification, and MultiNLI
for textual entailment. The experimental results show great advantages of the pro-
posed FraLT-RNN on text similarity modeling. It is notable that we achieve the
new state-of-the-art performance on TREC-QA, WikiQA, and MSRP. Further-
more, our model is comparable to if not better than the recent neural network
based approaches on MultiNLI.

The contribution of this paper is summarized as follows:

– We propose a new fractional latent topic based RNN model, where the text
is represented in topic-level for better semantic capturing and understanding.

– This is the first attempt to introduce the fractional calculus into neural lan-
guage processing for latent topics generation.

– We conduct elaborate analyses of the experimental results on three text simi-
larity tasks, which provides a better understanding of the effectiveness of our
model.

2 Related Work

Recently, the deep neural networks have been widely used in text similarity
modeling [26,32], especially the recurrent neural networks (RNN) due to their
capacity in modeling the sentence with variable length. [7,42] applied the long
short-term memory (LSTM) [12] based RNN model to obtain the semantic rel-
evance between text pairs for the community based question selection.

To capture the salient information for better sentence representations, the
attention mechanism was introduced into the neural networks [25,31]. [41] pro-
posed an attentive interactive neural network, which focused on the interac-
tions between text segments for answer selection. In addition, the interactions in
sentence-level or word-level are incorporated for the attentive weight generation
within the RNN framework. In [29], the attentive weights for an answer sentence
relied on the interactions with the question sentence. In [25], the word-by-word
interactions were utilized for the attentive sentence representations.

Most of the previous work focused on representing the text in word-level,
while the hierarchical structure of the text is neglected. Topic models, such
as PLSA [13] and LDA [3], showed that words in the text generate various
latent topics, and the perspectives of the latent topics demonstrate the semantic
meaning of the text. Furthermore, topic models had shown great advantages in
text understanding. In this paper, we will attempt to incorporate latent topics
into RNN for text similarity modeling.

3 Fractional Latent Topic Based Recurrent Neural
Network

In this section, we will introduce our fractional latent topic based RNN (FraLT-
RNN) model for text similarity modeling in detail. For a better understanding,
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we first give a brief introduction of the traditional RNN models as well as some
notations used in this paper.

Given a pair of text as X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn}, we let xi

and yj denote the embedding representations of the word xi and yj respectively.
The traditional RNN approaches model each text separately. Take the text X as
an example, we suppose the sequential hidden state as hx

1 ,hx
2 , ...,hx

m and each
hidden state corresponds to a word in text X. Then, the hidden state can be
calculated by:

hx
i = f(xi,hx

i−1), (1)

where f can be defined with the long short-term memory (LSTM) model or
the gated recurrent unit (GRU), and hx

i contains the context information from
the first word to the current one [16]. After that, the text is represented by the
attention [29] method over the hidden states as

HX =
m∑

i=1

αihx
i , (2)

where αi is the attention of hx
i . Finally, the similarity score is computed accord-

ing to the two text representations (HX and HY ) and a similarity function, such
as cosine similarity.

3.1 Framework of FraLT-RNN

Previous work on RNN based text similarity modeling mainly learned the text
representation in word-level, namely using the word representation for sentence
representation and similarity modeling, while the hierarchical structures of a text
pair are neglected. Topics of a text are generated by groups of words, and the
distribution of the topics has been used for text similarity modeling. Referring
to the topic models, it can be found that the semantic meaning of a text is more
susceptible to the perspective of the topics it involves compared with the word-
level features. In this paper, we facilitate the hierarchical structures of a text in
similarity modeling and proposed a fractional latent topic based RNN (FraLT-
RNNN) model, which automatically learn latent topic and the topic attentive
vector for text representation and similarity modeling.

The framework of our proposed FraLT-RNN model is shown in Fig. 1. Com-
pared with the traditional RNN based models which learn the representation of
a text with separated and independent words, our model takes a group of words
in the text as a whole to generate latent topic which can better capture the hier-
archical information and the topic-level interactions in the text pair. Specifically,
we first generate the fractional latent topics for text Y by mean of a fractional
latent topic generator which involves the hidden states learned by RNN and a
fractional calculus. With this step, the latent topics in the text will be captured
and encoded. Then, a topic-wise attention gating mechanism is presented and
embedded into our model, which controls the information flow between the text
pair. As shown in Fig. 1, besides the topic representation, the word-level atten-
tion based text representations (HX and HY ) are also the inputs of the gating to
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Fig. 1. A framework of fractional latent topic based RNN

help determine the perspectives of the topics. We will give a detailed description
of each step in the following sections.

3.2 Fractional Latent Topic

Traditional topic models, such as PLSA [13] and LDA [3], usually use probabil-
ities to analysis the latent topic distribution of the text, and have shown great
advantages on text understanding and decoding. However, those models take the
text as a bag of words and assume that words are independent with other, while
the contextual information is neglected during latent topic generation. On the
other hand, RNN models, such as LSTM and GRU, are excellent in processing
and generating word sequence via taking the term dependency into considera-
tion. Therefore, directly heap up the RNN model and traditional topic model
for latent topic generation will miss contextual information such as sequential
structure and term dependency in the text pair. To cope with this problem, we
propose a fractional latent topic generator, which learns the latent topic of a text
by means of the fractional calculus. Furthermore, the latent topic learned by the
fractional latent topic generator is defined as the fractional latent topic. In
the rest of this subsection, we will provide an insight into the fractional calculus,
and then introduce the approach of the fractional latent topic generation.

Fractional Calculus. Fractional calculus, including fractional integral and
fractional differential, which has been successfully used in image generation and
denoising [2,22]. Different from the ordinary integral and differential which con-
duct computing in integer order, the factional calculus refines the computational
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step into fractional order and considers the value of time-delayed states (namely
the states before the current state) for the integral or differential implementa-
tion. Therefore, the fractional calculus has excellent characteristics of memory
and heredity in processing sequential data. In this paper, we focus on the frac-
tional integral, which is introduced in [17]. Suppose f(x) is a continues function,
then the Riemann-Louville definition of the fractional integral in α order is for-
mulated as:

Iαf(x) =
1

Γ (α)

∫ x

0

(x − t)α−1f(t)dt. (3)

where Iα stands for the fractional integral operator, and Γ (·) is the gamma
function which is defined by the Formula 4.

Γ (α) =
∫ +∞

0

tα−1e−tdt (4)

Taking the term
∫ x

0
(x − t)α−1f(t)dt in Formula 3 into consideration, the

fractional integral of f(x) in order α can be seen as the convolution operation
between f(x) and xα−1, which involves all states of function f(·) in the time
interval [0, x]. If we take the f(·) as a function of memory, 0 is the beginning of
the memory and x is the end of the memory, then with this step, the fractional
integral incorporates all states of f(·) in the memory period [0, x] based on their
convolutional interactions, and generates a overall perspective of the memory
f(·). This also explains why the fractional integral operator has the capacity to
process sequential data and has good performance in memory.

Fractional Latent Topic Generation. Since a text is usually composed by
a word sequence, the latent semantic information of a text is closely related
to the words semantic meanings and the contextual information such as term
dependency and sequential structure [1,14]. In this paper, therefore, we assume
that the latent topic of a text can be reasoned and inferred from the occurred
words’ semantic representation and contextual information. It is notable that
word semantic representation can be easily learned by the hidden state of a
RNN model. Regarding to the contextual information, we first adopt a contex-
tual window for text snippet sampling by sliding over the input word sequence,
which has been reported to be effective in contextual feature extraction [27].
Then, we use a fractional latent topic generator derived from fractional calculus
to aggregate contextual features and generate latent topics based on the text
snippets. Figure 2 shows the procedure of the fractional latent topic generation.

Text Snippet Sampling. In RNN, hidden states are used to learn words represen-
tations. Since a text can be seen as a word sequence, the corresponding hidden
state sequence can be regarded as a mirroring or projection of the given text.
Therefore, we adopt a contextual window which slides from the beginning to
the end of the hidden state sequence for text snippet sampling. As is shown in
Fig. 2, the red box stands for the contextual window, the length of the contextual
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Fractional Latent 
Topic State

Hidden
State

Fractional Latent
Topic Generator Iα Iα

Sliding

Topic 1 Topic 2

Memory Stride

Memory Period

Fig. 2. Procedure of the Fractional Latent Topic Generation. Where the red box stands
for the contextual window, and the blue box indicates the location where the contextual
window will sliding to in the next time. (Color figure online)

window is defined as the memory period and denoted by p, and the step length
that the contextual window moving forward is defined as the memory stride.
After the contextual window sliding over the whole text with a constant stride,
we obtain all text snippets for the latent topic generation.

Fractional Latent Topic Generator. In the text snippet sampling step, we obtain
various text snippets. The fractional latent topic generator, which is derived by
fractional calculus, aims to learn a latent topic for each text snippet. It is notable
that the fractional calculus is defined on a continues function, while the hidden
state in RNN is a discrete variable. Therefore, we are required to transform
the fractional calculus to its discrete format. Formally, suppose a text snippet
contains the hidden states as hy

i−p+1, ..., hy
i−1, hy

i , then the hidden topic ti in
this memory period is calculated by the fractional latent topic generator as

ti =
1

Γ (α)

i∑

j=i−p+1

(i + 1 − j)α−1hy
j , (5)

where p is the length of the memory period, and the fractional calculus order
α ∈ (0, 1] restricts the weights of hidden states. Different text snippets will
generate different fractional latent topics, for example “Topic 1” and “Topic 2”
in Fig. 2. With this step, we can obtain all fractional latent topics of the given
text on the sampled text snippets.

3.3 Topic-Wise Attention

Intuitively, different topics tend to have different perspectives. Noting that the
similarity of a text pair can be measured by the perspectives relevance of the
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topics, we are motivated to decrease the perspective distance between topics
in a relevant text pair, and increase the distance for an irrelevant pair, after
generating the fractional latent topics for each text. In particular, we present
a topic-wise attention gating mechanism for our model, which automatically
rewards the perspectives of the topics with an attentive vector.

WX

WX

WT

+

σ g ×

Fig. 3. Topic-wise attention gating mechanism

The structure of our topic-wise attention gating are shown in Fig. 3. Different
from the traditional attention based RNN models, our gating mechanism makes
full use of the information in two texts rather than a single one for the topic
perspective rewarding. Specifically, to reward the perspective of a topic, our
topic-wise attention mechanism mainly performs the following two steps, namely
relevance measurement and perspective rewarding.

Relevance Measurement. The relevance measurement step measures the rel-
evance between the fractional latent topic ti of text Y and the text X, which
serves as a good criteria to decide how much information in the fractional latent
topic should be rewarded. In particular, the whole semantic meaning of the text
Y should also be taken into consideration during the relevance calculation, since
the fractional latent topic ti is generated on a segment of text Y, instead of the
whole Y. More concretely, the relevance is formulated as:

g = σ(WXHX + WY HY + Wtti + b), (6)

where WX , WY and Wt are weight matrices, b is a bias vector, and σ(·) is an
element-wise sigmoid function. It is worth noting that the obtained g is a vector,
which reflects the relevance in each hidden dimension.

Perspective Rewarding. In topic perspective rewarding step, the original frac-
tional latent topic ti is refined by the rewarding vector g obtained by Formula
6. With this step, the perspective tendency of a topic is modified to be more dis-
tinguishable for better text similarity modeling. The rewarded fractional latent
topic is formulated as:

t
′
i = g � ti, (7)



Using Fractional Latent Topic to Enhance Recurrent Neural Network 181

where � denotes the element-wise multiplication, and t
′
i is the new rewarded

hidden topic.
With the above two steps, the topic perspective gap in relevant text pair will

be narrowed down, while it is opposite for the irrelevant one. It will have a big
influence on the whole text modeling with the text is represented by

H
′
Y =

τ∑

i=1

t
′
i. (8)

4 Empirical Study

4.1 Datasets and Evaluation Metrics

To evaluate the effectiveness of our proposed model, we conduct experiments on
three well-known text similarity tasks, namely question answering, paraphrase
identification, and textual entailment.

Question Answering. Given a question and a list of candidate answers, the
question answering task is to rank the candidates according to their similarities
with the question. Two widely used datasets, namely TREC-QA and WikiQA,
are adopted in our experiments. TREC-QA was created by Wang et al. [33]
based on the QA track (8–13) data of Text REtrieval Conference. WikiQA [38]
is an open domain QA dataset in which all answers were collected from the
Wikipedia. Both TREC-QA and WikiQA have the train, development and test
sets, and each sample is labeled as 1 or 0 to indicate whether the candidate
answer is right or wrong for a given question. The statistics of the datasets are
presented in Table 1. The performance of answer selection is usually measured
by the mean average precision (MAP) and mean reciprocal rank (MRR) [25].

Paraphrase Identification. The paraphrase identification task can be treated
as a binary classification problem, and the goal is to judge whether two texts
are paraphrases or not according to their similarity. We utilize the Microsoft
Research Paraphrase corpus (MSRP) [5] for experiment, which is constructed
from a large corpus of temporally and topically clustered news articles. The
MSRP dataset contains 4,076 sentence pairs in the training set, and 1,725 ones
in the test set. Each text pair is labeled with 1 or 0 to indicate whether the
two text are paraphrases or not. To evaluate the performance, two widely used
metrics, namely accuracy (Acc) and F1 score are adopted [39].

Textual Entailment. For a sentence pair, one of a sentence can be seen as the
premise and the other as the hypothesis. The textual entailment task is to judge
whether the hypothesis can be inferred by the premise according to their simi-
larity. We use the Multi-Genre Natural Language Inference (MultiNLI) corpus
for experiment, which is a crowd-sourced collection of sentence pairs annotated
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Table 1. Statistics of the Datasets. “Avg QL”, “Avg AL”, “Avg Para1L”, “Avg
Para2L”, “Avg Sent1L” and “Avg Sent2L” denote the average length of questions,
answers, the first paragraphs, the second paragraphs, the first sentences and the sec-
ond sentences respectively.

Answer
selection

Dataset # of Questions Avg QL Avg AL

TREC-QA train 1162 7.57 23.21

dev 65 8.00 24.9

test 68 8.63 25.61

WikiQA train 873 7.16 25.29

dev 126 7.23 24.59

est 243 7.26 24.59

Paraphrase
Identification

Dataset # of Paragraph
Pair

Avg Para1L Avg Para2L

MSRP train 4077 18.99 18.93

test 1725 18.82 18.80

Textual
Entailment

Dataset # of Sentence
Pair

Avg Sent1L Avg Sent2L

MultiNLI train 392,702 19.91 10.12

matched 10,000 19.40 10.08

mismatched 10,000 19.90 10.98

with textual entailment information. In MultiNLI, the relationship between a
sentence pair is classified into three categories, namely neutral, contradiction,
and entailment. During our experiments, we assign the value of −1, 0, 1 to the
label of neutral, contradiction, and entailment respectively. Furthermore, this
corpus has served as the basis for the shared task of the RepEval 2017 Work-
shop1 at EMNLP in Copenhagen. and the evaluation metric used in this corpus
is accuracy (Acc) [36].

4.2 Training

We use the bidirectional LSTM (BLSTM) [9] model as the function in Formula 1
to obtain the original hidden states, which can effectively mitigate the gradient
vanish problem. Then, we utilize the Manhattan distance similarity function with
l1 norm and restrict it to a range of [0, 1] for text similarity calculation [20]:

s(X,Y ) = exp(−||H′
X − H

′
Y||1) (9)

where, H
′
X and H

′
Y are text representations learned by the proposed FraLT-RNN

model. The predicted probability of a text pair labeled as 1 or 0 is defined according
to the relevance score: p̂(c = 1|X,Y ) = s(X,Y ) and p̂(c = 0|X,Y ) = 1− s(X,Y ).

1 https://repeval2017.github.io/shared/.

https://repeval2017.github.io/shared/
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For each text pair, the loss function is defined by the cross-entropy of the
predicted and true label distributions for training:

L(X, Y ; c) = −
C−1∑

j=0

p(c = j|X, Y ) log p̂(c = j|X, Y ) (10)

where C is the number of classes, and p(c = 1|X,Y ) is the gold probability of
label c, which equals to 1 with ground truth and otherwise is 0.

4.3 Parameter Settings

We implement the proposed FraLT-RNN model by using TensorFlow. The opti-
mization is relatively straightforward with standard back-propagation [24]. We
apply stochastic gradient descent method Adagrad [6] with mini-batches (64 in
size), which can be easily parallelized on single machine with multi-cores. The
rectifier linear unit ReLU = max(0, x) is adopted as the activation function,
which is a common choice in the deep learning literature [19]. For regularization,
we use dropout [11] strategy for our model, and the dropout rate is selected from
[0.0, 0.1, 0.2, 0.5]. Regarding to the word embeddings, we adopt the pre-trained
100-dimensional GloVe word vectors2, which are trained based on the global
word co-occurrence [21]. Moreover, the fractional integral order α is valued from
0.1 to 1 with the stride of 0.1, and the memory period is selected in the set
[2, 3, 4, 5, 6, 7, 8, 9, 10].

5 Experimental Results and Analyses

5.1 Effectiveness of FraLT-RNN

To investigate the effect of our FraLT-RNN model, the BLSTM based RNN
model which does not involve any topic information, and the recently proposed
word-level attention mechanism [29] are utilized for comparisons. Table 2 shows
the performance of various models for question answering, paraphrase identifi-
cation, and textual entailment tasks. It is observed that we achieve significant
improvements over classical BLSTM and attention based BLSTM models on all
datasets, by incorporating fractional latent topic into text representation. It is
also notable that the classical BLSTM model relies more on the attention mech-
anism to capture the salient information for text similarity modeling. However,
the attention method mainly focuses on measuring the weight of each hidden
state, while does not pay specifical attention to the surrounding context of the
words in a text pair. Moreover, the attentive weight is produced after obtaining
all the hidden states, which neglects the internal interactions and hierarchical
structure of the text during hidden state generation. In contrast, our proposed
FraLT-RNN model can explicitly capture the internal relations and the hierar-
chical features between two texts, by incorporating the fractional latent topics

2 http://nlp.stanford.edu/data/glove.6B.zip.

http://nlp.stanford.edu/data/glove.6B.zip
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and topic-wise attentions for text representation. Therefore, our FraLT-RNN
model integrated can yield better performance than the traditional attention
mechanism.

Table 2. Comparison with Various RNN Models. “BLSTM” stands for BLSTM with
no more optimization, and “A-BLSTM” stands for traditional word attention based
BLSTM. “∗” and “+” imply significant improvements over “BLSTM” and “A-BLSTM”
respectively.

Model TREC-QA WikiQA MSRP MultiNLI

MAP MRR MAP MRR Acc(%) F1 Matched

(Acc %)

Mismatched

(Acc %)

BLSTM 0.6487 0.6991 0.6581 0.6691 73.6 81.8 67.5 67.1

A-BLSTM 0.7369∗ 0.8208∗ 0.7258∗ 0.7394∗ 75.4∗ 82.7∗ 71.1∗ 70.8∗

FraLT-RNN 0.8359∗+ 0.8962∗+ 0.7401∗+ 0.7519∗+ 81.2∗+ 87.5∗+ 81.9∗+ 81.3∗+

5.2 Comparison with Recent Progress

In addition to the classical BLSTM model, we compare our model with the recent
progress in question answering, paraphrase identification and textual entailment.

Table 3. Performance comparisons on TREC-QA

System MAP MRR

Wang, Liu, and Zhao 2016 [31] 0.7369 0.8208

Wang and Ittcheriah 2015 [34] 0.7460 0.8200

Santos et al. 2016 [25] 0.7530 0.8511

Wang, Mi, and Ittycheriah 2016 [35] 0.7714 0.8447

Chen et al. 2018 [4] 0.8227 0.8886

FraLT-RNN 0.8359 0.8962

Results on Question Answering. Table 3 and Table 4 summarize the results
on TREC-QA and WikiQA respectively. [25,31,40] are the recent attention based
models that focus on the word-level attentive text representations. It is observed
that our proposed model achieves the new state-of-the-art performance on both
TREC-QA and WikiQA. Specifically, we outperform the best results on TREC-
QA and WikiQA with absolute improvements of 0.132 and 0.0043 in terms of
MAP, and 0.0076 and 0.0069 in terms of MRR. Regarding to the word alignment
models [4,34,35], which take the aligned words and the neighboring texts into
consideration for text representation, our model is also much more effective and
does not rely on the laboursome feature engineering. This is mainly owing to the
hierarchical structure embedded in our model, namely the latent topics, which
are neglected in the above models.
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Table 4. Performance comparisons on
WikiQA

System MAP MRR

Santos et al. 2016 [25] 0.6886 0.6957

Yin et al. 2015 [40] 0.6921 0.7108

Wang, Mi, and
Ittycheriah 2016 [35]

0.7058 0.7226

Wang, Liu and Zhao
2016 [31]

0.7341 0.7418

Chen et al. 2018 [4] 0.7358 0.7450

FraLT-RNN 0.7401 0.7519

Table 5. Performance comparisons on
MSRP

System Acc F1

Hu et al. 2014 [15] 69.9 80.9

Socher et al. 2011 [28] 76.8 83.6

Yin and Schutze 2015
[39]

78.1 84.4

Chen et al. 2018 [4] 77.3 84.0

He, Gimpel, and Lin
2015 [10]

78.6 84.7

FraLT-RNN 81.2 87.5

Results on Paraphrase Identification. The results from recent work on
MSRP are summarized in Table 5. [39] presented a convolutional neural network
based deep learning architecture, which modeled interaction features at multi-
ple levels of granularity. However, their model relied much on the pretraining
step. In [10], a similar model was proposed, which also used a CNN model for
feature extraction at a multiplicity of perspectives. We observe that our model
also achieve the best results among the existing work. Furthermore, our model
automatically generates fractional latent topics with a fractional latent topic
generator, which requires no more parameter besides the fractional order α and
has a lower computation complexity.

Table 6. Performance comparisons on MultiNLI

System Matched Mismatched

Williams, Nangia, and Bowman 2017 [37] 72.3 72.1

Gong, Luo, and Zhang 2018 [8] 78.8 77.8

Tay, Tuan, and Hui 2017 [30] 78.7 77.9

Kim, Kang, and Kwak 2018 [18] 79.1 78.4

Radford et al. 2018 [23] 82.1 81.4

FraLT-RNN 81.9 81.3

Results on Textual Entailment. Table 6 shows the comparison with recent
work on matched and mismatched problems of MultiNLI collection. It can be
seen that our model outperforms most of the recent work, and can be comparable
to if no better than the state-of-the-art model [23]. [23] makes use of task-aware
input transformations to achieve effective transfer for natural language under-
standing. However, their model requires to learn a pre-trained model at first, and
then tunes parameters in the pre-trained model for a better performance. Dur-
ing the model tuning step, numerous parameters need to be learned. In contrast,
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our FraLT-RNN model does not need a pre-trained model and only requires one
parameter, namely the fractional integral order, besides the RNN parameters
during model learning.

5.3 Influence of the Parameters in Fractional Latent Topic
Generation

For the proposed FraLT-RNN model, there are two components in fractional
latent topic generation, namely the text snippet sampling and the fractional
latent topic generator. The memory period and the fractional calculus order
is the main parameter in the text snippet sampling and the fractional latent
topic generator respectively. We conduct experiments on the four datasets to
investigate the influence of the two parameters.

(a) TREC-QA (b) WikiQA

(c) MSRP (d) MultiNLI

Fig. 4. Influence of the memory period.

Figure 4 show the influence of the memory period on the FraLT-RNN. The
memory period decides the range of the term dependency, i.e. a large memory
period implies a long-term dependency. It can be seen that TREC-QA is more
sensitive on the memory period compared with the other three datasets. To
ensure a better and steady performance of FraLT-RNN, it is recommended to
select the memory period value of the contextual window in the set [4, 5, 6, 7].
Regarding to the fractional calculus order α, Fig. 5 illustrates its influence on
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(a) TREC-QA (b) WikiQA

(c) MSRP (d) MultiNLI

Fig. 5. Influence of the fractional calculus order α.

the proposed FraLT-RNN model. It is interesting to find that TREC-QA is also
more sensitive on the fractional calculus order compared with the other three
datasets, which is consistent with the memory period parament. Furthermore, to
obtain a more reliable result, it is recommended to assign the value of fractional
calculus order α in the interval [0.4, 0.8].

6 Conclusion and Future Work

In this paper, we proposed a fractional latent topic based RNN model, which
incorporate the hierarchical structures of the text during text representation. In
particular, we provide a novel latent topic generation approach, which is imple-
mented by means of the fractional calculus. To the best of our knowledge, this is
the first attempt to apply the fractional calculus in natural language processing.
Experiments on four benchmark datasets, namely TREC-QA and WikiQA for
question answering, MSRP for paraphrase identification, and MultiNLI for tex-
tual entailment show the great advantages of our proposed model. It is notable
that we achieve the new state-of-the-art results on TREC-QA, WikiQA, and
MSRP. It is also interesting to find that the TREC-QA is more sensitive to the
parameters of fractional latent topic generator. In the future, we will investigate
how to apply the fractional calculus into more natural language processing tasks
and deep learning models to cope with the time series and hierarchical structure
problems.
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Abstract. Given a database of transactions, where each transaction is
a set of items, maximal frequent itemset mining aims to find all itemsets
that are frequent, meaning that they consist of items that co-occur in
transactions more often than a given threshold, and that are maximal,
meaning that they are not contained in other frequent itemsets. Such
itemsets are the most interesting ones in a meaningful sense. We study
the problem of efficiently finding such itemsets with the added constraint
that only the top-k most diverse ones should be returned. An itemset
is diverse if its items belong to many different categories according to
a given hierarchy of item categories. We propose a solution that relies
on a purposefully designed index structure called the FP*-tree and an
accompanying bound-based algorithm. An extensive experimental study
offers insight into the performance of the solution, indicating that it is
capable of outperforming an existing method by orders of magnitude and
of scaling to large databases of transactions.

Keywords: Frequent itemsets · Diversification · Algorithm

1 Introduction

Frequent itemset mining [2] is important data analysis functionality. The proto-
typical application is supermarket basket analysis that allows a retailer to learn
which items are commonly bought together. For instance, it might be found
that “bread” and “milk” are often bought together. A major issue in frequent
itemset mining is the consideration of a huge number of itemsets, many of which
are eventually found to be insignificant. Hence, researchers have made efforts
to mine different constraint-based frequent itemsets, considering different kind
of itemsets, including closed [13], maximal [4], periodic [19], top-k [14], cost
(utility) [15], sequential [12], weighted [20], and diverse [17,18] itemsets.

Diverse frequent itemset mining [17,18] targets scenarios where it may be
useful to give priority to frequent itemsets with items belonging to different
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item categories. A measure called DiverseRank was introduced to quantify the
extent to which items in a set belong to multiple categories. The existing algo-
rithm [17] is inefficient for computing the diverse frequent itemsets on large data
sets. The algorithm first extracts all frequent itemsets using the state-of-the-art
algorithm [9] and then extracts the possibly very small subset of diverse item-
sets from the frequent itemsets. It is a waste of time computing frequent itemsets
that are later eliminated because they are not diverse.

We combine the maximality and diversity constraints and study the problem
of efficiently finding the top-k maximal diverse frequent itemsets (MDFIs). Com-
pared to just finding diverse frequent itemsets, the maximality constraint is able
to reduce the number of discovered itemsets, since a frequent itemset is maximal
if none of its supersets are frequent. To support MDFI mining efficiently on large
data sets, we propose the FP*-tree, a variant of the FP-tree [9] that not only
is able to store compactly the necessary information for MFI computation, but
also contains a posting list for each item, which makes it possible to construct
supersets for maximal frequent itemsets (MFIs). We show that these supersets
can cover all the MFIs in the data set. However, the function for computing
the diversity score is non-monotonous. Therefore, the diversity score of those
supersets cannot be used as upper bounds on the diversity scores of the cov-
ered MFIs. Hence, we propose an algorithm that derives upper bounds on the
diversity scores of the MFIs to be computed. Using the FP*-tree, we present a
bound-based algorithm that is able to return the top-k MDFIs while computing
only some of the MFIs in the data set. Unlike existing methods that mine the
MFIs in descending order of item frequency, the proposed algorithm adopts a
new ordering based on the upper bounds on the diversity score for the MDFI
computation, so that the top-k result can be obtained by computing only a
few candidate MFIs. The proposed algorithm is compared to a basic algorithm
that extends two existing algorithms. The performance evaluation on a real data
set shows that the proposed algorithm on the FP*-tree outperforms the basic
algorithm by up to several orders of magnitude.

The rest of the paper is organized as follows. First, Sect. 2 presents pre-
liminaries and defines the paper’s problem formally. Then, Sect. 3 presents the
FP*-tree and the accompanying bound-based algorithm. Experimental results
are reported in Sect. 4, and Sect. 5 reviews related work. Finally, Sect. 6 con-
cludes and offers research directions.

2 Preliminaries and Problem Definition

Let I be a finite set of items, I = {i1, i2, · · · , im}. A database D = {T1, T2, · · · , Tn}
is a set of transactions, where each transaction Tj ∈ D (1 ≤ j ≤ n) is a subset of
I and is assigned an unique identifier j. An itemset X = {i1, i2, · · · , il} is a set
of l items, where ij ∈ I (1 ≤ j ≤ l) and l is the length of X. An itemset X is
contained in a transaction T if X ⊆ T . The support1 s(X ) of an itemset X is the
1 The support of an itemset can be also defined as the fraction of transactions that

contain it. For simplicity, we use the count of transactions, which is equivalent when
database D is fixed.
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number of transactions containing X in D. Given 1 ≤ σ ≤ |D|, an itemset X is
called σ-frequent in D if s(X) ≥ σ. A σ-frequent itemset X in D is a maximal
σ-frequent itemset (MFI) in D if no σ-frequent itemset X ′ exists in D such that
X ′ ⊃ X [4].

A category tree CT is a tree structure, where non-leaf nodes correspond to
categories and leaf nodes are items in I. Each internal node is the sub-category of
its parent node. Each item (leaf node) ij ∈ I (1 ≤ j ≤ m) belongs to the category
of its parent node. Nodes close to the root correspond to general categories, while
nodes close to leaf nodes correspond to specialized categories. The height h of a
category tree is the length of the longest path from the root to a leaf node. The
height of the root is h, and the height of a leaf node is 0. The level of a node is
the length of the path from the node to the root. The level of the root is then 0,
and the level of a leaf node is h. We consider only balanced category trees, i.e.,
paths from the root to a leaf node have the same length. Including a category
tree in maximal frequent itemset mining makes it possible to distinguish between
itemsets with similar items and itemsets with dissimilar items.

Definition 1. Let X be an itemset, let l be a level in the category tree, where
0 ≤ l ≤ h. We define GP(X, l) to be the generalized pattern [17] of X at
level l as follows. GP(X,h) = X, and GP(X, l), l < h, is obtained by replacing
each item in GP(X, l +1) with its corresponding parent at level l with duplicates
removed, if any.

Definition 2. The Merging Factor [17] MF (X, l) of itemset X at a level l
depends on the number of items getting merged when the pattern is moved from
the immediate lower level (l + 1) to level l in the category tree

MF (X, l) =
|GP(X, l)| − 1

|GP(X, l + 1)| − 1
, 0 ≤ l ≤ h − 1 (1)

Definition 3. The Proportional Level Factor [17] PLF (l) of level l is
defined as:

PLF (l) =
2(h − l)
(h − 1)h

, 1 ≤ l ≤ h − 1, h > 1 (2)

Definition 4. The diversity score div(X) of itemset X is defined as the
DiverseRank [17] of X.

div(X) =
s+1∑

l=h−1

PLF (l)MF (X, l), (3)

where s is the level at which |GP(X, s)| = 1.

A generalized pattern GP of an itemset represents the itemset in a category
space. The smaller the level of a category is, the more general the category
is. The merging factor reflects how fast the size of the GP is reduced when
moving upward in the category tree. The PLF assigns weights to levels. The
contributions of the levels near the root should be larger than those of the levels
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near the leaf nodes. The diversity score of a frequent itemset ranges from [0, 1].
If all the items in a frequent pattern have the same immediate parent, the score
is 0. On the other hand, if all the items in a frequent itemset have only the root
as the common ancestor, the score is 1. The higher the score is, the more diverse
the itemset is.

Example 1. Figure 1 shows an example of a category tree with height h =
4. Consider itemset X = {c, e, f}. The generalized pattern of X at level 3 is
GP(X, 3) = {C9, C11}. Items c and e both have C9 as parent at level 3 and
because the parent of item f at level 3 is C11. The merging factor MF (X, 3) of
itemset X at level 3 is (|GP(X, 3)|−1)/(|GP(X, 4)|−1) = (2−1)/(3−1) = 0.5.
The proportional level factor (PLF) at each level is shown in Fig. 1. The diversity
score of itemset X is div(X) = PLF (3)MF (X, 3) + PLF (2)MF (X, 2) = (1/6) ·
0.5+(1/3) · 1 = 0.42 because the generalized pattern of X at level 1 is {C2} and
|GP(X, 1)| = 1, meaning that s = 1.

Definition 5. An itemset X is called a top-k maximal diversified σ-
frequent itemset (kMDFI) in D if it satisfies two conditions:

1. X is a maximal σ-frequent itemset in D.
2. There are fewer than k maximal σ-frequent itemsets in D with diversity scores

that exceed div(X).

Problem Statement. Given a database D of transactions, a category tree CT ,
a user-defined support threshold σ, and a desired number of itemsets k, the
problem is to find efficiently a set of top-k maximal diversified σ-frequent
itemsets (kMDFIs) in D, i.e., to discover efficiently k maximal σ-frequent item-
sets with the highest diversity scores in D.

Example 2. Consider the transactional database D in Table 1 and the category
tree CT in Fig. 1. Let σ = 2. The top-2 maximal diversified 2-frequent itemsets
are X1 = {a, c, e, g} and X2 = {a, b, c, e, f} with diversity scores div(X1) = 0.78
and div(X2) = 0.24.

Fig. 1. Example category tree

T1 a b c e f o

T2 a c g

T3 e i

T4 a c d e g

T5 a c e g l

T6 e j

T7 a b c e f p

T8 a c d

T9 a c e g m

T10 a c e g n

Table 1. Transactions
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3 Bound-Based Mining Algorithm

We present a method that is able to efficiently compute the kMDFIs in large
databases. Section 3.1 introduces the FP*-tree that stores information necessary
to enable kMDFI mining. Section 3.2 presents the bound-based algorithm that
uses the FP*-tree for mining kMDFIs. Section 3.3 derives bounds on the diversity
scores of MDFIs.

3.1 The FP*-Tree

The FP-tree [9] is an index on transactions that enables frequent itemset mining.
It consists of a tree structure and a header table. Each row in the header table
stores a frequent item, its frequency, and a pointer to a tree node. The rows are
sorted in non-increasing order of their frequencies. Ties are broken arbitrarily if
multiple items have the same frequency. The header table for the transactions in
Table 1 is shown in Fig. 2, given σ = 2. The tree structure stores all information
necessary for mining frequent itemsets in a compact manner. It is built in the
following way. Initially, the tree contains only one root node. Tree nodes are
created and updated as transactions are scanned one by one. A branch in the
FP-tree stores items that appear in the same transactions, and the nodes along
a branch occur in the same order of the corresponding items in the header
table. Overlapping itemsets are represented by the sharing of prefixes of the
corresponding branches. For each transaction, the items included are sorted using
the item order in the header table. Consider the transactions in Table 1. The scan
of the first transaction leads to the construction of the first branch of the tree:
(e : 1), (c : 1), (a : 1), (b : 1), (f : 1). Item o is removed, since it is not contained in
the header table, meaning that o is infrequent. For the fourth transaction, since
its (ordered) frequent item list e, c, a, g, d shares a common prefix e, c, a with the
existing path, the count of each node along the prefix is incremented by 1, and
a new node (g : 1) is created and linked as a child of (a : 2) and another new
node (d : 1) is created and linked as the child of (g : 1). The tree-structure on
the right side of Fig. 2 is the FP-tree built on the transactions in Table 1.

Before presenting the FP*-tree, we define the rank r(i) of item i in the header
table as the position of i in the table. The rank of the first item is 1, and if item i
occurs before item i′, r(i) < r(i′). Let T (i) be the set of transactions that contain
i. The FP*-tree extends the FP-tree [9] by adding a posting list L(i) of (item,
counter) pairs for each item i in the header table. A pair (i′, counter) for item i
indicates that i and i′ co-occur counter times in transactions. An item i′ must
satisfy two conditions to be included in the posting list of item i: r(i′) < r(i)
and T (i) ∩ T (i′) �= ∅.

Example 3. Figure 2 shows the FP*-tree of the transactions in Table 1 for σ =
2. The header table and the tree structure are the same as in the FP-tree. The
posting list of item e is empty, since it is the first item in the header table and no
item has lower rank. The posting list of item a consists of pairs (c, 8) and (e, 6),
meaning that (1) c and e have lower rank than a, (2) items c and a co-occur 8
times in transactions, and (3) items e and a co-occur 6 times in transactions.
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Fig. 2. Example FP*-Tree

An FP*-tree can be built by a procedure that is a minor modification of that
for building the FP-tree. The construction of an FP-tree requires two scans of
the transactional database. After the first scan, the header table is constructed.
The posting list of each item can be built during the second scan when the tree
structure is being constructed. For each transaction, the items are first sorted
following the item order in the header table. Then the items are inserted into
the tree structure one by one. In addition, each item i (except the first one) in
the transaction is added to the posting lists of the items whose ranks are lower
in the header table than that of i, and the corresponding counters are updated.
The following example shows how to build posting lists during the second scan.

Example 4. Figure 3 shows how posting lists are updated as transactions are
processed. So far, the header table has been constructed for σ = 2 (Fig. 2).
Initially, the posting list of each item is empty. When transaction T1 in Table 1
is processed, the items in T1 are re-ordered as e, c, a, b, f to follow the item order
in the header table. Item o is removed, since it does not occur in the header
table, meaning that its frequency is less than σ = 2. The posting lists of item
c, a, b, and f are updated as shown in Fig. 3. Take item a as an example. Items
e and c are added to its posting list, since their ranks in the header table are
higher than that of a. The corresponding counters are set to 1 because both e
and c co-occur with a in T1. Similarly, when T2 is processed, the posting lists
are updated as shown.

Fig. 3. Building posting lists
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3.2 Algorithm

Given a transaction database D and a category tree CT , a user defined frequency
threshold σ, and the desired number of MDFIs k, the state-of-the-art method
FPMAX [8] can compute the result kMDFIs by first discovering all maximal
frequent itemsets (MFIs) using the FP-tree and then computing the diversity
score of each MFI. Finally, the kMDFIs are the k MFIs with the largest diversity
scores. The limitation of FPMAX is that it has to compute many MFIs with
small diversity scores that do not contribute to the result.

The proposed bound-based algorithm adopts the FP*-tree, making it possi-
ble to avoid computing MFIs with small diversity scores, thus saving substantial
computational costs. Algorithm 1 shows the pseudo code. It first uses Algo-
rithm 2 to construct a superset for each item and then uses Algorithm 3 to
compute an upper bound on the diversity score for each item. Next, the items
in the header table are sorted in non-increasing order of their bounds, and the
algorithm then processes the items using this bound-based order. For each item
i, the algorithm computes the MFIs containing i as does FPMAX. The discov-
ered MFIs are added to the candidate set, and the diversity score of the current
kth MFI is recorded as τ . Next, when an item is to be processed, its bound is
first compared with τ . If the bound is smaller than τ , the algorithm returns the
current top-k MFIs; otherwise, the item is processed, and the MFIs containing
the item are computed. Function getNextItem() follows the bound-based order
in the header table and returns the next unprocessed item, and function MFI(i)
is the sub-routine in algorithm FPMAX that computes the MFIs that contain
item i.

input : Transactional database D, category tree CT , frequency threshold σ,
desired number of MFIs k

output: Top-k MDFIs

1 Xi ← call Algorithm 2 to construct a superset of the MFIs containing item i in
the header table according to σ;

2 Call Algorithm 3 to compute the upper bound bi on the diversity scores of the

MFIs containing item i using Xi;
3 Sort the items in the header table in descending order of their upper bounds;

4 τ ← −∞ ; � The diversity score of the current kth MFI.

5 while i ← getNextItem() ∧bi ≥ τ do
6 X ← MFI(i);
7 foreach X ∈ X do
8 Compute the diversity score div(X) of X;
9 Add X to the candidate set;

10 τ ← the diversity score of the current kth MFI in the candidate set;

11 end

12 end
13 Return the top-k MFIs in the candidate set;

Algorithm 1. Bound-based Algorithm
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3.3 Bounds on Diversity Scores

To define bounds on diversity scores, we need the concept of the tail of an itemset.

Definition 6. The tail t(X) of an itemset X is the item in X whose rank in
the header table is lower than the ranks of all the other items in X.

We derive a bound on the diversity score of an itemset (Lemma 2) and
a bound on the diversity scores of the MFIs who have the same tail (Defini-
tion 6 and Lemma 4). Our bound-based algorithm efficiently computes the top-k
MDFIs using these bounds.

Lemma 1. Given an FP*-tree, σ, and item i, Algorithm 2 constructs a superset
Xi of all possible MFIs whose tails are i. Note that there may exist multiple MFIs
whose tails are i.

Proof. Let Mi be the set containing all MFIs X such that t(X) = i. We now
prove that Xi as constructed by Algorithm 2 is a superset of any X in Mi.
Suppose an itemset X ′ exists in Mi that is not a subset of Xi. Then there must
be an item i′ in X ′ that is not in Xi. Since X ′ ∈ Mi is an MFI and t(X ′) = i,
items i′ and i must co-occur no fewer than σ times in transactions, and the
rank of i′ must be higher than that of i in the header table. According to the
method for constructing L(i), item i′ must be contained in L(i). And based on
Algorithm 2, item i′ should be added to Xi, which contradicts the assumption
that i′ is not in Xi. Thus, we have ∀X ∈ Mi (Xi ⊇ X).

input : FP*-tree, support σ, item i
output: A superset of all possible MFIs whose tail is i

1 Get the posting list L(i) of item i from the FP*-tree;

2 Add i to Xi;
3 foreach item i′ in L(i) do
4 if the count associated with i′ ≥ σ then

5 Add i′ to Xi;
6 end

7 end

Algorithm 2. Superset Construction

Lemma 2. Given an itemset X, the set Xw = {iL, iR} consists of the furthest
apart pair of items in X according to the shortest path length in the category
tree. Then, the diversity score of Xw is an upper bound on the diversity score of
X, i.e., div(Xw) ≥ div(X).
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Proof. Let C be the lowest common ancestor of the items in X, and let the level
of C in the category tree be s. Then C is also the lowest common ancestor of
the items in Xw, since set Xw = {iL, iR} consists of the furthest apart pair of
items in X according to the shortest path length. Then, we have |GP(X, s)| =
|GP(Xw, s)| = 1. For s + 1 ≤ l ≤ h − 1, MF (X, l) ≤ 1 = MF (Xw, l). This holds
because (i) Xw contains only two items, and C is the lowest common ancestor
of the two items at level s, so that the cardinality of the generalized pattern of
Xw at level s + 1 ≤ l ≤ h − 1 is 1, and (ii) |GF (X, l)| ≤ |GF (X, l + 1)|. Hence,
div(Xw) ≥ div(X).

Example 5. To exemplify Lemma 2, consider Fig. 4 where X = {a, c, e}. The
furthest apart pair of items in X are a and e, so Xw = {a, e}. Both X and Xw

have the same lowest common ancestor C4 and its level is 2 in the category tree
in Fig. 1. The diversity score of Xw is (1/6) · 1 = 0.17, and the diversity score of
X is (1/6) · (1/2) = 0.08, so that div(Xw) > div(X).

Fig. 4. Example of Lemma 2

Lemma 3. Let itemsets X1 and X2 each consist of two items, and let
|GP(X1, s1)| = 1 and |GP(X2, s2)| = 1. If s1 ≤ s2, div(X1) ≤ div(X2).

Proof. Since itemset X1 consists of two items and |GP(X1, s1)| = 1, we have
div(X1) =

∑s1+1
l=h−1 PLF (l)·1. Similarly, we obtain div(X2) =

∑s2+1
l=h−1 PLF (l)·1.

If s1 ≤ s2, we have div(X1) ≤ div(X2).

Lemma 4. div(Xi
w
) is an upper bound on the diversity score of any MFI whose

tail is i.

Proof. According to Lemma 1, set Xi is a superset of any MFI whose tail
is i. Let X represent any MFI whose tail is i. Sets Xi

w
and Xw consist of

the furthest apart pair of items in Xi and X, respectively. Given a category
tree, |GP(Xi

w
, s1)| = 1 and |GP(Xw, s2)| = 1. Since X ⊆ Xi, it follows that

s1 ≥ s2. Based on Lemma 3, div(Xi
w
) ≥ div(Xw). According to Lemma 2, we

have div(Xw) ≥ div(X). Hence, we derive div(Xi
w
) ≥ div(X), meaning that

div(Xi
w
) is an upper bound on the diversity score of any MFI with tail i.
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According to Lemma 4, the bound on the diversity score of any MFI whose
tail is i is the diversity score of Xi

w
which consists of the furthest apart pair of

items in Xi returned by Algorithm 2. Actually, the diversity score of Xi
w

can
be computed without explicitly finding the furthest apart pair of items in Xi

using Algorithm 3. It takes the codes of the items in Xi as input. The length of
each code is the height of the category tree. Each element in the code of an item
corresponds to a node on the path from the root to the item. The diversity score
bound is initialized to 0. The algorithm checks the elements at the same level in
the codes of all the items from level = h − 1 to the level of the lowest common
ancestor of all the items. At each level, the corresponding proportional level
factor is added to the diversity score bound. It is because that for Xi

w
, before

reaching the level where the lowest common ancestor is found, MF (Xi
w
, l) = 1.

Finally, the bound on the diversity score of any MFI with tail i is returned.

Example 6. Table 2 shows itemsets Xi and the diversity score bounds div(Xi
w
)

computed by Algorithms 2 and 3, given the FP*-tree in Fig. 2. Then bound-based
order of the items in the header table is g, b, f, a, d, c. Suppose the top-1 MFI
is requested. The bound-based algorithm first computes the MFIs whose tail is
item g, i.e., itemset {a, c, e, g} with diversity score 0.78. Now, it is found that
the diversity score of the current top-1 candidate exceeds the bound of the item
to be processed next (0.78 > 0.5). The algorithm returns {a, c, e, g} as the top-1
result and terminates. If using the FPMAX algorithm, following the order of the
item frequency before finding the top-1 result, items c, a, g, b, and f have to be
processed. Even when item d has been processed, FPMAX is still not aware of
whether the MFIs that have not been found will have higher diversity scores.

input : Codes of items in set Xi

output: Bound on the diversity score of the MFIs with tail i

1 div ← 0;
2 level ← h − 1;
3 while level > 0 do
4 if the elements at level in all the codes are the same then
5 Break;
6 end
7 else
8 div ← div + PLF (level);
9 level ← level − 1;

10 end

11 end
12 Return div ;

Algorithm 3. Bound Computation



Efficiently Mining Maximal Diverse Frequent Itemsets 201

Table 2. Example diversity score bounds

Item i Xi div(Xi
w
)

g a, c, e, g 1

b a, b, c, e 0.5

f a, b, c, e, f 0.5

a a, c, e 0.17

d a, c, d 0.17

c c, e 0

4 Empirical Study

The proposed algorithms are evaluated on a real commercial data set that con-
sists of 3,040,715 transactions. The number of unique items is 37,984. The height
of the category tree is 5. The number of non-leaf nodes in the category tree is
1,947. All algorithms have been implemented using Java and performed on a
machine with Intel(R) Core(TM) i5-4590 CPU @ 3.30 GHz 3.30 GHz, 16 GB
RAM and the Windows 10 Professional operating system.

4.1 Result Investigation

Maximal Diversified Frequent Itemsets (MDFIs). Table 3 shows example
MDFIs and the number of MDFIs found from the real data set using various
frequency threshold σ, where N is the number of transactions in the data set.
The items in the discovered MDFIs belong to different categories. Take MDFI
“yoghurt, pear” as an example. Item “yoghurt” belongs to category “drink” and
item “pear” belongs to category “vegetable”. The data set used only contains
food-related categories. It is expected that more interesting MDFIs will be found
if other types of items, such as clothes and home appliances, are included. When
σ is small, e.g., 0.000005 × N , a large number (980, 241) of MDFIs are found.

Table 3. Maximal diversified frequent itemsets

σ = 0.001 × N σ = 0.0005 × N σ = 0.0001 × N

MDFIs: 71 div MDFIs: 457 div MDFIs: 11313 div

yoghurt, banana 1 yoghurt, salt 1 stationary, auto accessories 1

pork, tomato 1 pork, pumpkin 1 yoghurt, fish 1

rice, fish 1 tomato, shrimp 1 rice, chicken 1

σ = 0.00005 × N σ = 0.00001 × N σ = 0.000005 × N

MDFIs: 32990 div MDFIs: 356204 div MDFIs: 980241 div

yoghurt, hot dog 1 pistachio, tea 1 basket, chocolate, pistachio, sugar box, tea 1

yoghurt, dumpling 1 Coca Cola, nuts 1 yoghurt, shorts 1

potato, curry 1 oil, shampoo 1 sugar, crab 1
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When σ is large, e.g., 0.001 × N , only 71 MDFIs are discovered. In this dataset,
no MDFI is found when σ ≥ 0.005 × N .

Length of MDFIs. Figure 5 shows the length distribution of the MDFIs. When
σ is large (0.0005×N), all MDFIs are of length 2. When σ = 0.00005×N , around
90% of the MDFIs are of length 2 and 10% of the MDFIs contain 3 items. When
σ is small (0.000005 × N), 50% of the MDFIs are of length 2, 40% contain 3
items, and 10% are of length larger than 3. It is expected that longer MDFIs are
found when using small σ values, since more items are considered as frequent.

Diversity Score Distribution. Figure 6 shows the diversity score distribution
of the discovered MDFIs. When σ is large (0.0005×N), 66% of the MDFIs have
diversity scores from 0.75 to 1, and 10% have diversity scores from 0.5 to 0.75.
When σ is small (0.000005 × N), 42% of the MDFIs have diversity scores from
0.75 to 1, 19% have diversity scores from 0.25 to 0.5, and 40% have diversity
scores from 0 to 0.25. As expected, when using small σ values, long MDFIs with
high diversity scores are found.
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4.2 Efficiency

We proceed to evaluate the performance of the proposed algorithm and a basic
algorithm under different parameter settings.

Basic Algorithm. No algorithm exists that targets top-k MDFIs. Instead, for
comparison, we provide a basic algorithm that extends some existing techniques.
The basic algorithm has two steps. It firstly finds all maximal frequent itemsets
using the FPMAX [8] algorithm. Then, it computes the diversity score of each
discovered maximal frequent itemset using the Item-Encoding algorithm [17].
Finally, the top-k MDFIs with the highest diversity scores are returned.

Varying the Number of Requested Sets k. Recall that to obtain the top-k
MDFIs, the basic algorithm computes all the MFIs from the data set, while the
bound-based algorithm only computes a few candidate MFIs. Figure 7 shows
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the number of MFIs computed and the CPU time of the two algorithms when
k is varied from 1 to 50. Parameter σ is set to 4000, which is roughly 0.13% of
the transactions in the data set. Note that the number of MFIs computed and
the CPU time of the basic algorithm do not change with k, since whatever k
is, the basic algorithm always computes all the MFIs in the data set and ranks
them. Nevertheless, the number of MFIs computed, and the CPU time of the
bound-based algorithm increase as k increases. Because the more MDFIs that are
requested, the more candidates are computed, yielding more computational cost.
When k = 1, the number of MFIs computed using the bound-based algorithm is
55% less than that of the basic algorithm and the CPU time of the bound-based
algorithm is only 0.6% of the CPU time of the basic algorithm. When k is set to
10 and 20, the bound-based algorithm also significantly outperforms the basic
algorithm. When k = 50, the performance of the bound-based algorithm and
the basic algorithm are the same. The reason is that there are 38 MFIs in the
data set under the current parameter setting. Requesting top-50 MDFIs incurs
the same computational cost for both algorithms.
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Varying the Frequency Threshold σ. Figure 8 shows the number of MFIs
computed and the CPU time of the two algorithms when σ is varied from 1500
(0.05% of the transactions in the data set) to 4000 (0.1% of the transactions in
the data set). The number of requested MDFIs k is fixed at 10. When σ is small,
many MFIs can be discovered. When σ is large, only few MFIs exist. Hence, as
σ increases, the computational costs of both algorithms decrease. The bound-
based algorithm beats the basic algorithm for all values of σ. The number of
MFIs computed using the bound-based algorithm is 53%–83% of that using the
basic algorithm. The CPU time of the bound-based algorithm is 0.6%–7.2% of
the CPU time of the basic algorithm.

Scalability. To study how the computational cost of the proposed algorithm
changes when varying the size of the data set, we have generated five data sets
from the original data set by randomly selecting 200K, 400K, 600K, 800K, and
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1M transactions. Figure 9 shows the number of MFIs computed and the CPU
time of the two algorithms when the size of the data set is varied. Parameter
σ is set to 500, which is roughly 0.25%, 0.125%, 0.083%, 0.063%, and 0.05% of
the number of transactions in the five data sets, respectively. The number of
requested MDFIs k is fixed at 1. The computational costs of both the basic and
the bound-based algorithms increase as the size of data set increases. On the
five data sets, the bound-based algorithm outperforms the basic algorithm by
orders of magnitude in terms of CPU time. The number of computed MFIs of
the bound-based algorithm is 33.3%–82.3% of that of the basic algorithm.

 0

 100

 200

 300

 400

 500

200 400 600 800 1000

nu
m

be
r 

of
 M

F
Is

number of transaction(k)

Basic
Bound-based

(a) # of MFIs

1e+00

1e+01

1e+02

1e+03

1e+04

200 400 600 800 1000

ru
nt

im
e

(m
s)

number of transaction(k)

Basic
Bound-based

(b) CPU time

Fig. 9. Varying the number of transactions

5 Related Work

Frequent Itemsets with Various Constraints. Since mining frequent item-
sets from transactional databases involves an exponential mining space and gen-
erates a huge number of itemsets, efficient discovery of constrained or user-
interest based frequent itemsets is attractive. In many real-world scenarios, it is
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often sufficient to mine a small and interesting representative of frequent item-
sets. Hence, various constraints have been posed on the frequent itemsets in the
literature. An itemset X is closed in a data set if there exists no superset that has
the same frequency as X. Pasquier et al. [13] propose the A-Close algorithm that
uses a closure mechanism to find frequent closed itemsets. A frequent itemset
is maximal if none of its supersets are frequent. Burdick et al. [4] introduce the
MAFIA algorithm for mining maximal frequent itemsets from a transactional
database. A frequent itemset is periodic-frequent if it appears at a user-specified
regular interval in the database. Tanbeer et al. [19] present the periodic-frequent
pattern tree that captures the database contents in a highly compact manner
and enables a pattern growth mining technique to generate the complete set of
periodic-frequent itemsets in a database for user-given periodicity and support
thresholds. Top-k frequent itemset mining finds interesting itemsets from the
highest support to the k-th support. The CRM and CRMN algorithms [14] are
proposed to mine top-k frequent itemsets efficiently. In utility mining, each item
has external utility such as a profit or price and internal utility that refers to a
non-binary value in a transaction. The importance of an itemset is measured by
the concept of utility, which is the sum of the products of external and internal
utilities of items in the itemset. An itemset is called a high utility itemset [15]
when its utility is no less than a user-specified minimum utility threshold. Mallick
et al. [12] consider the problem of the incremental mining of sequential patterns
when new transactions or new customers are added to an original database.
They present an algorithm for mining frequent sequences that uses information
collected during an earlier mining process to cut down the cost of finding new
sequential patterns in the updated database. Frequent weighted itemset mining
considers a database where each item in a transaction may have a different sig-
nificance. Vo et al. [20] propose a method for mining frequent weighted itemsets
using WIT-trees. The diverse frequent itemset mining [17] uses the DiverseRank
to rank the frequent itemsets based on the items’ categories. Later, Swamy et
al. [18] study the diverse frequent itemsets in the context where there concept
hierarchies are unbalanced.

In this paper, we study the MDFI that extends the diverse frequent itemset by
considering the maximality constraint. And an efficient bound-based algorithm
is proposed for mining the top-k MDFIs.

Maximal Frequent Itemset Mining. MAFIA [5] mines maximal frequent
itemsets (MFIs) using a depth-first traversal of the itemset lattice with pruning
mechanisms and combining a vertical bitmap representation of the database.
GenMax [6,7] is a backtrack search based algorithm for mining MFIs. It uses
progressive focusing to perform maximality checking, and it uses diffset prop-
agation to perform fast frequency computation. MinMax [21] is also based on
depth-first traversal and iterations for mining MFIs. It removes all the non-
maximal frequent itemsets without enumerating all the frequent itemsets from
smaller ones. It backtracks to the proper ancestor directly, instead of level by
level. Algorithms LFIMiner and LFIMiner-ALL [10] adopt a pattern fragment
growth methodology based on the FP-tree for mining maximum length frequent
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itemsets that is a subset of the MFIs. Yang [23] studied the complexity-theoretic
aspects of MFI mining, from the perspective of counting the number of solu-
tions. MaxDomino [16] uses the notions of dominance factor and collapsibility
of transaction for efficiently mining MFIs. It employs a top-down strategy with
selective bottom-up search. Pincer-Search [11] combines both bottom-up and
top-down search for discovering MFIs. A restricted search is conducted in the
top-down direction for maintaining and updating the maximum frequent candi-
date set, which is used for early pruning of candidates that would normally be
encountered in the bottom-up search. CfpMfi [22] is a depth-first search algo-
rithm based on CFP-tree for mining MFIs. It uses a variety pruning techniques
and an item ordering policy to reduce the search space. DepthProject [1] finds
long itemsets using a depth first search of a lexicographic tree of itemsets, and
it uses a counting method based on transaction projections along its branches.
MaxMiner [3] employs a breadth-first traversal of the search space and reduces
database scanning by employing a look-ahead pruning strategy, i.e., if a node
with all its extensions can be determined to be frequent, there is no need to
further process that node. FPMAX [8] is an extension of the well know FP-
growth [9] for mining MFIs. The maximal frequent itemset tree (MFI-tree) is
used to keep track of all maximal frequent itemsets.

The basic algorithm for mining MDIFs proposed in this paper uses the state-
of-the-art FPMAX as a component. And the proposed bound-based algorithm
outperforms the basic algorithm significantly.

6 Conclusions

This work studies the problem of finding the top-k most diverse itemsets that
are frequent. It tries to find long frequent itemsets of items belonging to different
categories. Since no existing algorithm targets top-k MDFIs mining, we propose
a basic algorithm that extends existing techniques. However, the basic algorithm
fails to scale well to large data sets. We also propose the so-called FP*-tree along
with a bound-based algorithm that is able to reduce the computational costs very
significantly. Extensive experiments conducted on a large data set demonstrate
that the proposed method consistently outperforms the basic algorithm.
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Abstract. The Minimum Dominating Set (MinDS) problem is an NP-
hard problem of great importance in both theories and applications.
In this paper, we propose a new local search algorithm ScBppw (Score
Checking and Best-picking with Probabilistic Walk) to solve the MinDS
problem in large graphs. For diversifying the search, our algorithm
exploits a tabu strategy, called Score Checking (SC), which forbids a
vertex to be added into the current candidate solution if the vertex’s
score has not been changed since the last time it was removed out of the
candidate solution. Also, to keep a good balance between intensification
and diversification during the search, we propose a strategy that com-
bines, in a novel way, best-picking with probabilistic walk at removing
stages. At this stage, the algorithm selects a vertex with the minimum
loss, or other vertices in the candidate solution with a probability pro-
portional to the their degrees, depending on how repeatedly the area
has been visited. Experimental results show that our solver significantly
outperforms state-of-the-art MinDS solvers. Also we conducted several
experiments to show the individual impacts of our novelties.

Keywords: Minimum dominating set · Score-based partition ·
Best-picking

1 Introduction

Given a simple undirected graph G = (V,E), a dominating set is a subset
D ⊆ V s.t. every vertex outside D has at least one neighbor in D. The Minimum
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Dominating Set (MinDS) problem is to find a dominating set of the minimum
size. MinDS arises in many application areas, e.g., biological networks [20], metro
networks [1], power networks [13], computer vision [21,26], multi-document sum-
marization [23], and wireless communication [22]. Among various algorithms, e.g.
[6,10], local search is an effective approach and it is powerful on difficult graphs.

1.1 Local Search Techniques

Local search often suffers from the cycling problem, i.e., the search may spend
too much time visiting a small part of the search space, thus various tabu strate-
gies have been proposed to deal with this problem. Recently [5] proposed the
so-called configuration checking (CC) strategy, and after that numerous variants
of the CC strategy have been adopted to solve a wide range of combinatorial
problems e.g., [11,24,25]. The idea of the CC strategy can be described as fol-
lows. If a vertex is removed out of the candidate solution, then it is forbidden to
be added back until its configuration is changed, i.e., some neighboring vertex
is added or removed out of the candidate solution.

The forbidding strength of CC can be too weak, which may lead a CC-based
local search being stuck in a cycle. To escape from such a cycle, a CC-based local
search usually needs some other diversifying strategies like constraint weighting
[15], which is unfortunately time-consuming and impractical for large graphs. For
diversifying the search, we exploit a strong CC-like tabu strategy, called Score
Checking (SC), which forbids a vertex to be added into the current candidate
solution if its score has not been changed since the last time it was removed out of
the candidate solution. In this strategy, when a vertex is added or removed, some
vertices in the neighborhood are released, while some others are still forbidden.
This is different from usual CC variants.

To keep a good balance between intensification and diversification, we pro-
pose a strategy that combines, in a novel way, best-picking with probabilistic
walk at removing stages. Best-picking with random walk has proved to be effec-
tive in solving the minimum vertex cover problem in large graphs [18]. More
specifically, in greedy mode it chooses small-degree vertices while in random
mode it selects a vertex from a uniform distribution. However, the strategy may
still focus too much on small-degree vertices, in other words, there may not be
enough chances to select a big-degree vertex. Therefore we adopt a probabilis-
tic distribution to remove vertices in random mode. To be specific, a vertex is
selected to be removed with a probability proportional to its degree. Evidently,
this strategy gives more chances to big-degree vertices.

Also, when we are doing local search in large instances, the complexity
becomes a big issue. In each step there can be millions of possible moves, and
thus it is difficult to obtain a local move which maximizes certain kinds of ben-
efits. Since most real-world graphs are sparse [3,8,10], it is beneficial to develop
data structures so that the complexity of a single search step relies on the aver-
age degree rather than the number of vertices. For instance, a local search solver
LMY-GRS [11] follows this idea and finds good solutions for the maximum weight
clique problem. Inspired by this, we propose an efficient data structure named
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score-based partition to implement best-picking. The score-based partition effec-
tively cuts off the average complexity of exchanging vertices in the local search
algorithm.

1.2 Our Contributions

In this paper, we develop a local search solver named ScBppw (Score Checking
and Best-picking with Probabilistic Walk) based on the strategies above. For
showing the effectiveness, we compare ScBppw with FastWMDS [24] on large
graphs1. Experimental results show that (1) our solver ScBppw significantly
outperforms FastWMDS on large graphs; (2) our proposed strategies play an
important role in our solver.

2 Preliminaries

2.1 Basic Notations

We use N(v) = {u ∈ V |{u, v} ∈ E} to denote the set of v’s neighbours, and we
use N [v] to denote N(v) ∪ {v}. The degree of a vertex v, denoted by d(v), is
defined as |N(v)|. We use

N2(v) = (N(v) ∪ {u|{u,w} ∈ E andw ∈ N(v)})\{v}

to denote the set of vertices whose distance from v is at most 2. Also we
use d̄2(G) to denote the average size of N2(v) over all the vertices, i.e.,
d̄2(G) = 1

|V |
∑

v∈V |N2(v)|, suppressing G if understood from the context. In
graph theory, we have the following proposition that is useful in implementing
our solver.

Proposition 1.
∑

v∈V d(v) = 2|E|.
A vertex is said to be covered by a set D if it is in D or at least one of its

neighbors is in D. Otherwise it is said to be uncovered by D. If u’s removal from
D makes v become uncovered, we also say that u’s removal uncovers v. Likely
if u’s addition into D makes v become covered, we also say that u’s addition
covers v. For a vertex v ∈ D, the loss of v, denoted as loss(v), is defined as the
number of covered vertices that will become uncovered by removing v from D.
For a vertex v �∈ D, the gain of v, denoted as gain(v), is defined as the number
of uncovered vertices that will become covered by adding v into D. Both gain
and loss are scoring properties. Obviously we have

Proposition 2. For all v ∈ V , gain(v) ∈ [0, d(v) + 1], loss(v) ∈ [0, d(v) + 1].

In MinDS solving, we have a proposition below which shows the set of vertices
whose score needs to be updated.

1 http://networkrepository.com/networks.php.

http://networkrepository.com/networks.php
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Algorithm 1: LocalSearchForMinDS(G, cutoff )
input : A graph G = (V,E), the cutoff time
output: A dominating set of G

D ← InitDS(G);1

while elapsed time < cutoff do2

if D covers all vertices then3

D∗ ← D;4

remove a vertex from D with the minimum loss, breaking ties randomly;5

lastStepImproved ← false;6

else7

ExchangeVertices(G,D);8

return D∗;9

Proposition 3. 1. When a vertex u is added or removed, for any vertex v �∈
N2(u), gain(v)/loss(v) remains unchanged.

2. If gain(v) or loss(v) is changed, then at least one vertex u ∈ N2(v) has been
added or removed.

In any step, a vertex v has two possible states: inside D and outside D. We
use age(v) to denote the number of steps that have been performed since last
time v’s state was changed.

2.2 An Iterative Local Search Framework

Algorithm 1 presents a local search framework for MinDS. It consists of the
construction phase (Line 1) and the local search phase (Lines 2 to 8).

In our algorithm, we will adopt a simple greedy strategy to implement
InitDS(G), which works as follows. Given an empty set D, repeat the follow-
ing operations until D becomes a dominating set: select a vertex v �∈ D with
the maximum gain and add v into D, breaking ties randomly. Actually we can
use the data reduction rules in [2] to generate better initial solutions and more
importantly simplify the input graph. Yet currently we do not do so, because
our main concern in this paper is to develop an efficient local search algorithm.

In the local search phase, each time a k-sized dominating set is found (Line 3),
the algorithm removes a vertex from D (Line 5) and proceeds to search for a
(k − 1)-sized dominating set, until a certain time limit is reached (Line 2). A
local move consists of exchanging a pair of vertices (Line 8): a vertex u ∈ D
is removed from D, and a vertex v �∈ D is added into D. Such an exchanging
procedure is also called a step or an iteration by convention. In our algorithm,
we also employ a predicate lastStepImproved s.t. lastStepImproved = true iff the
number of uncovered vertices was decreased in the last step. This predicate will
be used in the best-picking with probabilistic walk strategy we propose. Lastly,
when the algorithm terminates, it outputs the smallest dominating set that has
been found.
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2.3 A Fast Hashing Function

In order to detect revisiting, we will use the hash function in [12] which is shown
below.

Definition 1. Given a candidate set D and a prime number p, we define the
hash value of D, denoted by hash(D), as (

∑
vi∈D 2i) mod p, which maps a can-

didate set D to its hash entry hash(D).

Also, they showed that each time a vertex is added or removed, the hash
value can be updated in O(1) complexity.

2.4 Geometric Distribution

To analyze the complexity of our algorithm, we first introduce Geometric Distri-
bution which depicts the probability that the first success occurs in a particular
trial.

Definition 2. A random variable X has a geometric distribution if the prob-
ability that the kth trial (out of k trials) is the first success is Pr(X = k) =
(1−p)k−1p, where k is a positive integer and p denotes the probability of success
in a single trial.

Then the average number of trials needed for the first success is 1
p according to

the following theorem [19].

Theorem 1. If X is a geometric random variable with parameter p, then the
expected value E(X) is given by 1

p .

2.5 Sorting Vertices wrt. Degrees

Our algorithm implementation requires sorting vertices into non-decreasing order
wrt. their degrees in advance, so we introduce an efficient sorting algorithm
as follows. Considering that 0 ≤ d(v) ≤ |V | for any v ∈ V , this satisfies the
assumption of counting sort which runs in linear time [9]. So we have

Proposition 4. Sorting the vertices into non-decreasing order wrt. their degrees
can be done in O(|V |) complexity.

2.6 Configuration Checking

In MinDS solving, there are three different CC strategies, i.e., neighboring ver-
tices based CC (NVCC) [5], two-level CC (CC2) [25] and three-valued two-level
CC (CC2V3). In NVCC, the configuration of a vertex v refers to the state of
the vertices in N(v). On the other hand, in CC2, the configuration of a vertex v
refers to the state of the vertices in N2(v).

We use VNV CC to denote the set of vertices whose configuration is changed
according to the NVCC strategy, and use VCC2 to denote the set of vertices
whose configuration is changed according to the CC2 strategy. [25] presented
the proposition below which shows that the forbidding strength of NVCC is
stronger than that of CC2.
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Proposition 5. If VNV CC = VCC2 in some step, then VNV CC ⊆ VCC2 in the
next step.

3 Score Checking

We first define the notion of reversing operations and then propose a tabu strat-
egy which is based on score change.

Effects of a Local Move. Given a vertex v, there are two possible operations:
removing v from D and adding v into D, and we call them a pair of reversing
operations. Adding a vertex into D has two types of effects: (1) turning some
vertices from being uncovered to being covered by 1 vertex; (2) turning some
vertices from being covered by c(c ≥ 1) vertices to being covered by (c + 1)
vertices. Likely, a removing operation has analogous effects. Given a pair of
reversing operations in a sequence of local search steps, we say that their effects
are neutralized if and only if they have completely opposite effects.

Obviously if a pair of reversing operations occur consecutively, their effects
will be neutralized. This is the worst case and any tabu strategy prevents such
cases from happening. However, even though two reversing operations are not
consecutive, their effects may still be neutralized. So the question is in under
what condition their effects will not be neutralized.

Our Tabu Strategy. In fact it is impractical to record all the effects of an oper-
ation, since it requires much space and time for checking. To make it practicable,
a compromising method is to memorize some important effects like the set of
vertices which become covered (or uncovered). Then we avoid any two reversing
operations which cover and uncover the same set of vertices.

However, maintaining these sets and checking equality relation still consumes
too much time. Therefore we choose to consider the score (gain or loss) of the
operations. Then we attempt to avoid any pair of reversing operations if their
scores are opposite. Now we give an example to describe our motivation.

Example 1. Suppose a vertex v is removed from the candidate solution at Step
i with lossi(v), and then added back at Step j with gainj(v). We observe that

1. if lossi(v) �= gainj(v), then the effects of these two operations will not be
neutralized;

2. even though lossi(v) = gainj(v), their effects are not necessarily neutralized,
since they may cover and uncover different sets of vertices respectively;

3. if gain(v) keeps unchanged after v’s removal, then v’s removal and later addi-
tion will uncover and cover the same set of vertices respectively.

Based on these observations, we propose a tabu strategy which is based on
score change: After a vertex is removed from the candidate solution, it cannot be
added back until its score has been changed. Throughout this paper, this strategy
will be called Score Checking (SC).
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Our strategy is implemented with a Boolean array named free s.t. free(v) = 1
means v is allowed to be added into the candidate solution, and free(v) = 0
otherwise. Then we maintain the free array as follows:

1. initially free(v) is set to 1 for all v ∈ V ;
2. when v is removed from D, free(v) is set to 0;
3. when gain(v) is changed, free(v) is set to 1.

We notice that there is a concept called promising variable in SAT [17], which
allows a variable to be flipped if its score becomes positive because of the flips
of its neighboring variables. This concept is in some sense similar to the score
checking strategy here.

3.1 Comparing SC to NVCC

Example 2 shows that SC has stronger forbidding strength than NVCC, while
Example 3 shows the opposite.

Example 2. Suppose that we have a graph G2 as below, the current candidate
solution D = {v2, v5}, free(v3) = 1 and free(v4) = 0.

Now we add v3 into D. According to NVCC, free(v4) will become 1, because
one of its neighbors, v3, has changed its state. However, according to SC, free(v4)
will still be 0, because gain(v4) has not changed. So the forbidding strength of
SC is stronger than that of NVCC in this case.

v1 v2 v3 v4 v5

v6 G2

Example 3. Suppose that we have a graph G3 as below, the current candidate
solution D = {v2, v6}, free(v3) = 1 and free(v4) = free(v5) = 0.

Now we add v3 into D. According to NVCC, free(v5) will still be 0, because
none of its neighbors has changed its state. However, according to SC, free(v5)
will become 1, because gain(v5) is decreased by 1. So the forbidding strength of
NVCC is stronger than that of SC in this case.

v1 v2 v3 v4 v5

v6 G3

Based on the examples above, we have

Proposition 6. There exists a case in which the forbidding strength of SC is
stronger than that of NVCC, and there also exists a case in which the forbidding
strength of NVCC is stronger than that of SC.
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3.2 Comparing SC to CC2

By Item 2 in Proposition 3, if a vertex’s score is changed, then it must be that
its configuration is changed according to CC2 strategy. Therefore if a vertex is
released by SC, it must also be released by CC2. So the forbidding strength of
SC is at least as strong as that of CC2. On the other hand, Example 2 shows that
the forbidding strength of SC can sometimes be stronger than that of NVCC,
and thus also stronger than that of CC2 by Proposition 5. Therefore we have
a proposition below which shows that the forbidding strength of SC is strictly
stronger than that of CC2.

Proposition 7. Let VSC be the set of vertices which are free according to SC, then
we have (1) VSC ⊆ VCC2 always hold; (2) VCC2 ⊆ VSC does not always hold.

4 Our Algorithm for Exchanging Vertices

Here, we present the ExchangeVertices(G,D) procedure in Algorithm 2, which
adopts our new tabu strategy. In this algorithm, we use uncov v num1 and

Algorithm 2: ExchangeVertices
uncov v num1 ← the number of uncovered vertices;1

if lastStepImproved then2

if hash(D) is marked then3

u ← a vertex in D with a probability proportional to its4

degree;// random mode

else5

mark hash(D);6

u ← a vertex in D with the minimum loss, breaking ties7

randomly;// greedy mode

else8

u ← a vertex in D with the minimum loss, breaking ties9

randomly;// greedy mode

remove u from D;10

free(u) ← 0;11

free(x) ← 1 for all x s.t. gain(x) is changed;12

v ← a random uncovered vertex;13

w ← a vertex u in N [v] s.t. free(u) = 1 with the greatest gain, breaking ties in14

favor of the greatest age;
add w into D;15

free(y) ← 1 for all y s.t. gain(y) is changed;16

uncov v num2 ← the number of uncovered vertices;17

if uncov v num2 < uncov v num1 then18

lastStepImproved ← true;19

else20

lastStepImproved ← false;21
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uncov v num2 to denote the number of uncovered vertices before and after
exchanging vertices respectively. Furthermore, it adopts the two-stage exchange
strategy in NuMVC [4].

4.1 Removing Stage

In the removing stage (Lines 2 to 12), we propose a heuristic called best-picking
with probabilistic walk. The intuition is as follows: if the local search has spent
only a little time in the current area, we prefer greedy mode to find a good
solution; otherwise we favor random mode to leave.

To be specific, we exploit the hash function in the preliminary section to
approximately detect revisiting. Like [12], we set the prime number to be 109

+ 7 and do not resolve collisions. Since in our experiments, our solver performs
less than 5 × 108 steps in any run, given the 109 + 7 hash entries, the number
of collisions is negligible. Notice that we mark and detect the hash table only
when lastStepImproved = true. The intuition is that if a solution is revisited
together with the same lastStepImproved value as before, then the current area
has been visited to a significant extent. In this situation, a vertex is removed from
the candidate solution with a probability proportional to its degree. We tend to
remove large-degree vertices, because we rarely remove them in the greedy mode,
and this will further strengthen the diversification in our algorithm.

To implement probabilistic selections, we employ an array with length 2|E|,
where |E| is the number of edges, to store copies of the vertices. Before doing local
search, given any vertex, say u, we put d(u) copies of u into the array. According
to Proposition 1, there are exactly 2|E| copies of the vertices in the array. When
we perform the probabilistic selection, we do the following: Randomly select an
item in the array and if the result is in D, then return; otherwise repeat the
random selection.

Now we analyze the complexity of this procedure. Each time we obtain an
item, the probability that it is in D, denoted by p, is at least |D|

2|E| (we use “at
least” because usually a vertex in D has more than one copy in the array).
Then by Theorem 1, the averaged number of trials needed for the first success
is 1

p ≤ 2|E|
|D| . Moreover, we find that 2|E|

|D| ≤ 500 in most graphs. So the time

complexity is O( 2|E|
|D| ) = O(1).

4.2 Adding Stage

In the adding stage (Lines 13 to 16), our algorithm chooses a random uncovered
vertex and selects a vertex in its neighborhood to add into D. By the following
proposition we ensure that Line 14 in Algorithm 2 always returns a valid vertex
outside D2.

2 In some graphs there are vertices whose degree is 0. In these cases, we prevent such
vertices from being removed.
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Proposition 8. 1. If v is uncovered, then N [v] ∩ D = ∅;
2. For any uncovered vertex v s.t. d(v) �= 0, there exists at least one vertex

n ∈ N [v] s.t. free(n) = 1.

The proof follows the arguments in [4].

5 Speeding up of Best-Picking

In this section we present the details of our data structure that achieves the
average complexity of ExchangeVertices(G, D) (Algorithm 2) of O(d̄2).

Score-Based Partition. The idea is to partition the vertices wrt. their scores,
i.e., two vertices are in the same partition if they have the same score, otherwise
they are in different partitions (see Fig. 1). Given a graph G = (V,E) and a
candidate solution D, we implement the score-based partition on an array where
each position holds a vertex. Besides, we maintain two types of pointers, i.e.,
Pgain and Ploss, each of which points to the beginning of a specific partition.

Fig. 1. Initial state before adding v68 into D

Algorithms and Implementations. We use loss-k (resp. gain-k) partition
to denote the partition that contains vertices whose loss (resp. gain) is k. All
the loss-k partitions are shown as dark regions, and all the gain-k partitions are
shown as light ones. Then we use Algorithm 3 to find those vertices with the
minimum loss.

Algorithm 3: randomMinLossVertex
input : A sequence of score-based partitions
output: A random vertex v ∈ D with the minimum loss

k ← 0;1

while the loss-k partition is empty do k ← k + 12

return a random vertex in the loss-k partition;
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Since loss(v) ≤ d(v) + 1 for any v ∈ V , we have

Proposition 9. If Algorithm 3 returns a vertex v, then the complexity of its
execution is O(d(v)).

Fig. 2. Swapping vertex v68 and v91

Fig. 3. Moving pointer Pgain−52

At the beginning when D is empty, there are no dark regions in our data
structure, so initializing the partitions is equivalent to sorting the vertices into a
non-decreasing order wrt. their gain. Notice that at this time, gain(v) = d(v)+1
for all v ∈ V . By Proposition 4, we have

Proposition 10. The complexity of initializing the partitions is O(|V |).
In both construction and local search phases, our algorithm will repeatedly

add vertices into D or remove vertices from D, until some cutoff arrives. When
a vertex v is added or removed, we have to maintain the gain or loss wrt. the
vertices in N2(v). There are two cases in which a particular vertex, say v, has to
be moved from one partition to another: (1) adding (resp. removing) v into (resp.
from) D; (2) increasing/decreasing gain(v)/loss(v). Thus the core operation is
to move a vertex v to an adjacent partition.

Now we show how to do this with an example (See Figs. 1, 2 and 3). In this
example, we are to add v68 into D. Before v91 and v68 are in the gain-52 partition
and thus their gain is 52 (Fig. 1). Notice that after being added, v68’s loss will
become 52, i.e., it should be in the loss-52 partition. Thus the operation is like
this: (1) v68 is swapped with v91 (Fig. 2); (2) Pgain-52 is moved (Fig. 3).

We define placeVertexIntoD(v) as the procedure that moves v from
some gain-k partition to the respective loss-k partition. Also we define
dec_gain_move(v) to be the procedure that moves v from some gain-k parti-
tion to the respective gain-(k-1) partition. Likely we define dec_loss_move(v),
inc_gain_move(v), inc_loss_move(v) and placeVertexOutFromD(v). Then we
have

Proposition 11. All the procedures above are of O(1) complexity.
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Complexity Analysis. When a vertex v is added or removed, we simply need
to maintain the gain or loss wrt. the vertices in N2(v). Hence we have

Theorem 2. Suppose that each vertex has equal probability to be added or
removed, then the average complexity of ExchangeVertices(G, D) (Algorithm 2)
is O(d̄2).

Table 1. Results on large graphs where FastWMDS and ScBppw found different Dmin

or Davg

Graph FastMWDS ScBppw δmin

Dmin(Davg) Dmin(Davg) (δavg)

aff-orkut-user2groups 796325 (796405.9) 791051 (791057.0) 5274 (5348.9)

bn-human-BNU 1 1189958 (1189968.3) 1190244 (1190256.1) −286 (−287.8)

ca-coauthors-dblp 35626 (35634.3) 37060 (37090.3) −1434 (−1456.0)

ca-hollywood-2009 50752 (50928.2) 50334 (50364.5) 418 (563.7)

ca-MathSciNet 65572 (65572.0) 65594 (65598.0) −22 (−26.0)

channel-500 403347 (405584.3) 392298 (392409.6) 11049 (13174.7)

dbpedia-link∗ 1537046 (1537073.6) 1536656 (1536657.3) 390 (416.3)

delaunay n22 744846 (746514.5) 689101 (689191.1) 55745 (57323.4)

delaunay n23 1514747 (1516652.2) 1378214 (1378400.0) 136533 (138252.2)

delaunay n24∗ 3044234 (3045694.7) 2756143 (2756488.0) 288091 (289206.7)

friendster 656866 (656992.3) 656464 (656466.4) 402 (525.9)

hugebubbles-00020∗ 7464363 (7464956.0) 6809676 (6810434.5) 654687 (654521.5)

hugetrace-00010∗ 3849625 (3850125.7) 3392608 (3393012.3) 457017 (457113.4)

hugetrace-00020∗ 5111615 (5112821.7) 4508857 (4509283.6) 602758 (603538.1)

inf-europe osm∗ 18854839 (18855830.6) 17007576 (17009440.0) 1847263 (1846390.6)

inf-germany osm∗ 4236871 (4238019.7) 3846526 (3846836.6) 390345 (391183.1)

inf-roadNet-CA 628942 (632080.1) 595745 (595800.1) 33197 (36280.0)

inf-roadNet-PA 345733 (346350.5) 332071 (332138.1) 13662 (14212.4)

inf-road-usa∗ 8400680 (8401874.2) 7852863 (7853454.2) 547817 (548420.0)

rec-epinions 9598 (9598.0) 9599 (9599.0) −1 (−1.0)

rgg n 2 23 s0 739203 (741106.5) 687540 (687945.5) 51663 (53161.0)

rgg n 2 24 s0 4102680 (4103927.2) 4006264 (4006471.4) 96416 (97455.8)

rt-retweet-crawl 75740 (75740.0) 75740 (75740.1) 0 (−0.1)

sc-ldoor 62473 (62484.7) 64912 (66171.9) −2439 (−3687.2)

sc-pwtk 4194 (4197.8) 5479 (5504.5) −1285 (−1306.7)

sc-rel9 119531 (120439.9) 124304 (129925.1) −4773 (−9485.2)

soc-delicious 55722 (55722.0) 55726 (55727.8) −4 (−5.8)

soc-digg 66155 (66155.0) 66155 (66156.6) 0 (−1.6)

soc-flickr 98062 (98062.3) 98063 (98064.9) −1 (−2.6)

soc-flickr-und 295773 (295790.9) 295702 (295705.1) 71 (85.8)

soc-FourSquare 60982 (60985.7) 60979 (60979.0) 3 (6.7)

soc-groups 1072250 (1072306.7) 1071123 (1071124.0) 1127 (1182.7)

soc-ljournal-2008 1015711 (1015933.3) 1005983 (1005988.2) 9728 (9945.1)

(contniued)
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Table 1. (contniued)

Graph FastMWDS ScBppw δmin

Dmin(Davg) Dmin(Davg) (δavg)

soc-orkut-dir 98716 (99715.8) 94012 (94037.5) 4704 (5678.3)

soc-pokec 213149 (213241.0) 207383 (207389.7) 5766 (5851.3)

soc-youtube-snap 213122 (213131.0) 213122 (213123.3) 0 (7.7)

socfb-A-anon 201691 (201699.5) 201690 (201690.5) 1 (9.0)

socfb-B-anon 187030 (187030.2) 187030 (187030.1) 0 (0.1)

tech-as-skitter 182427 (182736.4) 181852 (181869.8) 575 (866.6)

tech-ip 160 (161.2) 156 (157.1) 4 (4.1)

tech-RL-caida 40095 (40095.8) 40142 (40152.9) −47 (−57.1)

web-it-2004 32997 (32997.0) 32998 (32999.3) −1 (−2.3)

web-wikipedia2009 348003 (348024.5) 346676 (346682.4) 1327 (1342.1)

web-wikipedia-growth 117626 (117663.0) 116817 (116818.5) 809 (844.5)

web-wikipedia link it 618963 (619083.8) 617660 (617661.3) 1303 (1422.5)

wikipedia link en∗ 23995928 (23995933.6) 23995924 (23995924.0) 4 (9.6)

6 Experimental Evaluations

We compared the overall performances of our solver ScBppw to FastWMDS on
the benchmark instances in [24] and [16] which contain more than 5 × 105 ver-
tices. Notice that large graphs are the main challenge of current solvers, and
their size will keep growing due to the amount of data available. There are some
other MinDS solvers like SAMDS [14], CC2FS [25] and RLS-DS [7], but they
do not materially change our conclusions below, because our preliminary experi-
ments show that FastWMDS significantly outperforms them. Also we conducted
experiments to evaluate the individual impacts.

6.1 Experimental Setup

FastWMDS was compiled by g++ 5.4.0 with O3 option while ScBppw was com-
piled by g++ 4.7.3 with O3 option. The experiments were conducted on a clus-
ter equipped with Intel Xeon E5-2670 v3 2.3 GHz with 64 GB RAM, running
CentOS6. Each solver was executed on each instance with seeds from 1 to 10.
The cutoff was set to 1,000s. For each algorithm on each instance, we report
the minimum size (“Dmin”) and averaged size (“Davg”) of the dominating sets
found by the algorithm over the 10 runs. To make the comparisons clearer,
we also report the difference (“δmin”) between the minimum size returned by
ScBppw and that returned by other solvers. Similarly δavg represents the dif-
ference between the averaged sizes. A positive difference indicates that ScBppw
performs better, while a negative value indicates the opposite. For the sake of
space, we do not report results on those graphs where all solvers found the
same Dmin and Davg. The best Dmin and Davg values are shown in bold font.
For the sake of space, in each table we will write bn-human-BNU 1 in short
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for bn-human-BNU 1 0025865 session 1-bg, channel-500 in short for channel-
500x100x100-b050, and soc-groups in short for soc-livejournal-user-groups.

6.2 Main Results

Table 1 compares the overall performances of FastWMDS and ScBppw. From
this table, we observe that:

1. ScBppw outperforms FastWMDS on most instances in terms of Dmin and
Davg.

2. Further observations show that there are 11 graphs which contain more than
107 vertices. Among these graphs, ScBppw outperforms FastWMDS on 9
graphs (marked with * in the table) in terms of both Dmin and Davg. On the
other 2 graphs, i.e., soc-sinaweibo and socfb-uci-uni, both solvers found
the same Dmin and Davg. So ScBppw is more scalable than FastWMDS.

We also did similar experiments on those graphs in [24] and [16] whose vertex
number lies between 2 × 104 and 5 × 105. Experimental results show that
ScBppw is comparable and complementary with FastWMDS. More specifically,
they have different performances, and the number of graphs on which ScBppw
performs better is roughly equal to the number of graphs on which FastWMDS
performs better. In addition, both solvers outperforms the other MinDS solvers.

Notice that FastWMDS exploits a list of reduction rules to simplify the input
graphs before doing local search, while our solver only adopts a simple greedy
heuristic. Therefore we can conclude that pure local search is also competitive.

6.3 Individual Impacts

In what follows, we first modify our algorithm and develop several variants. Then
we redo the experiments above and compare them in terms of average solution
quality.

Effectiveness of Score Checking. We replace the SC strategy in ScBppw
with the NVCC, CC2 and CC2V3 strategies, and develop three variants named
NVCCBppw, CC2Bppw and CC2V3Bppw respectively.

When comparing NVCCBppw with ScBppw, we find that

1. ScBppw performs better on 19 instances;
2. NVCCBppw performs better on 14 instances.

This means that the SC strategy is more suitable than the NVCC strategy in
our solver. The detailed results are shown in Table 2.

Furthermore, when comparing CC2Bppw, CC2V3Bppw with ScBppw, we
find that

1. CC2Bppw outperforms the other solvers on 0 instances;
2. CC2V3Bppw outperforms the others on 6 instances;
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Table 2. Results on large graphs where NVCCBppw and ScBppw found different Dmin

or Davg

Graph NVCCBppw ScBppw δmin

Dmin(Davg) Dmin(Davg) (δavg)

aff-orkut-user2groups 791055 (791063.7) 791051 (791057.0) 4 (6.7)

ca-coauthors-dblp 37069 (37095.3) 37060 (37090.3) 9 (5.0)

ca-hollywood-2009 50418 (50445.9) 50334 (50364.5) 84 (81.4)

delaunay n22 689100 (689190.7) 689101 (689191.1) −1 (−0.4)

delaunay n23 1378207 (1378398.3) 1378214 (1378400.0) −7 (−1.7)

delaunay n24 2756090 (2756470.0) 2756143 (2756488.0) −53 (−18.0)

hugebubbles-00020 6809994 (6810453.1) 6809676 (6810434.5) 318 (18.6)

hugetrace-00010 3392673 (3393040.0) 3392608 (3393012.3) 65 (27.7)

hugetrace-00020 4508901 (4509384.1) 4508857 (4509283.6) 44 (100.5)

inf-europe osm 17006505 (17009166.9) 17007576 (17009440.0) −1071 (−273.1)

inf-germany osm 3846466 (3846831.3) 3846526 (3846836.6) −60 (−5.3)

inf-roadNet-CA 595868 (595938.4) 595745 (595800.1) 123 (138.3)

inf-roadNet-PA 332093 (332190.3) 332071 (332138.1) 22 (52.2)

inf-road-usa 7855630 (7856923.6) 7852863 (7853454.2) 2767 (3469.4)

rgg n 2 23 s0 687538 (687944.9) 687540 (687945.5) −2 (−0.6)

rgg n 2 24 s0 4006264 (4006469.2) 4006264 (4006471.4) 0 (−2.2)

sc-ldoor 64485 (65997.7) 64912 (66171.9) −427 (−174.2)

sc-rel9 124210 (129763.8) 124304 (129925.1) −94 (−161.3)

soc-delicious 55726 (55727.4) 55726 (55727.8) 0 (−0.4)

soc-digg 66155 (66156.5) 66155 (66156.6) 0 (−0.1)

soc-flickr 98064 (98065.7) 98063 (98064.9) 1 (0.8)

soc-FourSquare 60979 (60979.4) 60979 (60979.0) 0 (0.4)

soc-orkut-dir 93999 (94032.2) 94012 (94037.5) −13 (−5.3)

soc-pokec 207559 (207597.9) 207383 (207389.7) 176 (208.2)

soc-youtube-snap 213122 (213123.5) 213122 (213123.3) 0 (0.2)

socfb-A-anon 201690 (201690.6) 201690 (201690.5) 0 (0.1)

socfb-B-anon 187030 (187030.3) 187030 (187030.1) 0 (0.2)

tech-as-skitter 181874 (181890.1) 181852 (181869.8) 22 (20.3)

tech-ip 155 (156.7) 156 (157.1) −1 (−0.4)

tech-RL-caida 40143 (40152.5) 40142 (40152.9) 1 (−0.4)

web-wikipedia2009 346675 (346687.9) 346676 (346682.4) −1 (5.5)

web-wikipedia-growth 116817 (116818.8) 116817 (116818.5) 0 (0.3)

3. ScBppw outperforms the others on 32 instances.

This indicates that the SC strategy is more effective than the CC2 and CC2V3
strategies. For the sake of space, we omit the detailed results here. Overall, the
SC strategy plays an essential role in our solver.

Now we analyzes the performances. (1) Apart from the tabu strategy, we
find that there are two powerful diversification strategies in FastWMDS: a fre-
quency based scoring function and a best-from-multiple-selection heuristic with
some random walks. In contrast, besides the tabu strategy, ScBppw only exploits
two weak diversification strategies: (i) best-picking with probabilistic walk; (ii)
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randomly selecting an uncovered vertex. Since (i) and (ii) are weak diversifica-
tion strategies, an effective tabu strategy in our solver should be stronger than
the CC2V3 strategy in FastWMDS. Indeed, NVCC and SC greatly outperform
CC2 and CC2V3 in our solver. (2) When a vertex v is added or removed, SC
can release some vertices whose distance from v is 2. However, NVCC tends to
release more vertices whose distance from v is 1. Thus SC is more likely to search
in a bigger area while NVCC is more cautious in current areas. Therefore their
performances are quite different.

Effectiveness of Best-Picking with Probabilistic Walk. We modify this
strategy and develop two variants, ScBprw (Score Checking and Best-picking
with Random Walk) and ScBppw-nlsp (ScBppw with no lastStepImproved)
as follows. To develop ScBprw, we replace the probability selection in ScBppw
with random walk, which means every vertex in D has equal probability to
be removed. On the other hand, to develop ScBppw-nlsp, we remove the
lastStepImproved predicate from ScBppw so that our algorithm will mark and
check the hash table regardless of the lastStepImproved value. More specifically,
we remove lines 1, 2, 8, 9, and 17 to 21, so as to develop ScBppw-nlsp. Then we
compare these two variants with ScBppw. Experimental results show that

1. ScBprw outperforms the other solvers on 7 instances;
2. ScBppw-nlsp outperforms the others on 7 instances;
3. ScBppw outperforms the others on 21 instances.

Moreover, we remove the probabilistic selection component and develop a
variant called ScDS, which will always do best-picking in the removing stage.
Experimental results show ScBppw significantly outperforms ScDS as well.

Overall, we conclude that the probabilistic selection as well as the
lastStepImproved predicate play an important role in ScBppw. For the sake of
space, we omit the detailed results here.

7 Conclusions

In this paper, we have developed a local search MinDS solver named ScBppw.
Experimental results show that our solver outperforms state-of-the-art on large
graphs. In particular, it makes a substantial improvement on those graphs that
contain more than 107 vertices. The main contributions include: (1) a tabu strat-
egy based on score change; (2) a best-picking with probabilistic walk strategy;
(3) a data structure to accelerate best-picking.

For future works, we will develop efficient heuristics to solve the MinDS
problem on massive graphs which are too large to be stored in the main memory
and has to be accessed through disk IOs.
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Abstract. Fast reachability detection is one of the key problems in
graph applications. Most of the existing works focus on creating an index
and answering reachability based on that index. For these approaches,
the index construction time and index size can become a concern for
large graphs. More recently query-preserving graph compression has been
proposed and searching reachability over the compressed graph has been
shown to be able to significantly improve query performance as well as
reducing the index size. In this paper, we introduce a multilevel compres-
sion scheme for DAGs, which builds on existing compression schemes, but
can further reduce the graph size for many real-world graphs. We pro-
pose an algorithm to answer reachability queries using the compressed
graph. Extensive experiments with two existing state-of-the-art reacha-
bility algorithms and 10 real-world datasets demonstrate that our app-
roach outperforms the existing methods.

Keywords: Modular decomposition · Graph compression ·
Reachability queries · Algorithms

1 Introduction

The reachability query, which asks whether there exists a path from one vertex
to another in a directed graph, finds numerous applications in graph and network
analysis. Such queries can be answered by graph traversal using either breadth-
first or depth-first search in time O(|E| + |V |) without pre-processing (where V
and E are the vertex set and edge set respectively), or in constant time if we pre-
compute and store the transitive closure of each vertex, which takes O(|V ||E|)
time and O(|V |2) space. Unfortunately, neither of these approaches is feasible
for applications that need to process large graphs with limited memory. Over
the last decades, the problem has been extensively studied and many advanced
algorithms have been proposed, with most of them relying on building smart
indexes that can strike a balance between online query processing time and
offline index construction time (and index size).

More recently, researchers recognized that it is possible to reduce the graph
size by graph compression without loosing reachability information, and the
compressed graph can help speedup query processing as well as reduce index size
c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11447, pp. 229–246, 2019.
https://doi.org/10.1007/978-3-030-18579-4_14
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and index construction time. Specially, Fan et al. [6] define equivalence classes of
vertices with respect to reachability queries, and compress a graph by merging
all vertices in an equivalence class into a single vertex. However, finding all
equivalence classes is very time-consuming. Zhou et al. [21] propose an efficient
algorithm to do a transitive reduction which turns a directed acyclic graph (DAG)
into a DAG without redundant edges, after that the equivalence reduction of
[6] can be done much more efficiently. The resulting graph Gε after transitive
reduction and equivalence reduction over the original graph G can be a much
smaller graph that retains all reachability information, and it was experimentally
verified that for many real-world graphs, searching for reachability over Gε can
be much faster than searching over G using state-of-the-art algorithms.

This paper builds on the work of [21]. We observe that after the removal of
redundant edges many linear chains will be generated. Based on this, we pro-
pose a multi-level reachability - preserving compression method that can further
reduce the size of the graph obtained by the method in [21]. Our compression uti-
lizes a slightly modified concept of module [13], and constructs a modular decom-
position tree. We show how to use the decomposition tree to answer reachability
queries over the original graph efficiently. Furthermore, the decomposition tree
usually takes very small space. We make the following contributions:

1. We define a new concept of module, based on which we propose a multilevel
graph compression scheme that compresses graphs into a smaller graph Gc.

2. We organize the modules into a hierarchical structure called modular decom-
position tree, and propose an efficient algorithm to utilize the tree to answer
reachability queries.

3. We conduct extensive experiments with real-world graphs that demonstrate
the advantages of our proposed approach.

The remainder of this paper is organized as follows. We first discuss related
works in Sect. 2 and present the preliminaries in Sect. 3. Then we give an overview
of our approach and provide the theoretical foundations in Sect. 4, followed by
the detailed algorithms in Sect. 5. Our experimental results are given in Sect. 6.
We conclude our paper in Sect. 7.

2 Related Work

As briefly mentioned in Sect. 1, existing approaches for answering reachability
queries can be classified into index-based and compression-based.

Index-Based Approach: The index-based algorithms create labels for the ver-
tices, such labels contain the reachability information. These algorithms can be
divided into Label-only and Label+G methods [18]. The label-only [1,3,4,7,9–
12,19] methods use the labels of source and destination vertices only to answer
reachability. Agrawal [1] proposed tree cover approach that creates an optimal
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spanning tree to create index. Here, an interval for each vertex is created. A
reachability query is answered as true if the interval of target is contained in
the interval of source vertex. The index construction time and index size both
are high in this approach. A chain cover approach is first proposed in [7] where
the entire graph is divided into a number of pairwise disjoint chains to create
the index. The label of each vertex contains a minimal successor list containing
their chain number and position in the chain. A vertex u will be reachable to v
if label of u contains a pair (k, j) and v has an index pair (i, j) such that i ≥ k.
This chain cover approach is later improved in [3]. Path tree [9] uses the similar
concept of chain cover that uses paths to create index and has smaller index size
than chain cover. The recent approaches DL [10], PLL [19] and TF [4] use the
concept of 2-hop labeling proposed in [5]. In 2-hop labeling, a label is created
for each vertex containing the subset of vertices that it can reach (Lout) as well
as the subset of vertices that can reach it (Lin). Vertex u can reach vertex v if
Lout(u) ∩ Lin(v) �= ∅. [11] uses the concept of chain cover to improve 2-hop and
proposes a 3-hop labeling that creates a transitive closure contour (Con(G)) of
graph G using chain decomposition, and then applies 2-hop techniques. Path-
hop [2] improves 3-hop by replacing the chain decomposition with a spanning
tree. TF [4] proposes a topological folding approach for 2-hop labeling that can
significantly reduce the index size as well as the query time.

The Label+G approaches include [14–18,20] which require online searching
of data graph G if the query can not be answered from labels. [16] uses interval
labeling over a spanning tree and performs DFS online if needed. Grail [20]
and Ferrari [14] use multiple interval instead of single interval label for each
vertex over the spanning tree. Feline [17] creates coordinates i(u) = (Xu, Yu)
for a vertex u and answers reachability from u to v as true if the area of i(v)
is contained in that of i(u). Feline also uses interval labeling over spanning tree
and compares topological levels of u and v as additional pruning strategy to
reduce DFS search. IP+ [18] uses independent permutation numbering to label
each vertex. Feline and IP+ show significant improvement on query time and
require less index construction time and smaller index size. BFL [15] proposes a
Bloom-Filter Labeling to further improve the performance of IP+.

Compression-Based Approach: Graph compression based works include
Scarab [8], Equivalence reduction [6] and DAG reduction [21]. Scarab [8] com-
presses the original graph by creating a reachability backbone that carries the
major reachability information. To find reachability from vertex u to vertex v
the algorithm needs access to a list of local outgoing backbone vertices of u and
local incoming backbone vertices of v. The algorithm then performs a forward
BFS for u and backward BFS for v on the original graph to answer reacha-
bility from u to v. If the answer is false then it checks whether any outgoing
backbone vertex of u can reach any incoming backbone vertex of v in the reach-
ability backbone, if yes, then u can reach v. Scarab requires large index size with
high time complexity. Equivalence reduction [6] reduces the graph by merging
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equivalent vertices into a single vertex. Two vertices are equivalent if they have
the same ancestors and same descendants. The algorithm requires high equiv-
alence class construction time. DAG reduction [21] improves the construction
time of equivalence classes by doing a transitive reduction of graph first.

Our work is different from the previous works in that we not only consider
equivalent classes, but also linear chains, when compressing the graph, and to the
best of our knowledge, none of the previous works uses multi-level compression
and modular decomposition tree in reachability queries.

3 Preliminaries

We consider directed graphs in this paper. For any directed graph G, we will use
VG and EG to denote the vertex set and the edge set of G, respectively. Given
two vertices u and v in G, if there is a path from u to v, we say v is reachable
from u, or equivalently, u can reach v. We use u �G v to denote u can reach v
in graph G. Given directed graph G and vertices u and v in G, a reachability
query from u to v, denoted ?u �G v, asks whether v is reachable from u in G.

A directed acyclic graph (DAG) is a directed graph without cycles. In the
literature, most works on reachability queries assume the graph G is a DAG,
because if it is not, it can be converted into a DAG by merging all vertices in
a strongly connected component into a single vertex, and vertices in a strongly
connected component can all reach each other. In this work, we also assume the
graph G is a DAG.

If (u, v) is an edge in DAG G, we say u is a parent of v, and v is a child of u.
For any vertex u ∈ VG, we will use parent(u,G) and child(u,G), respectively,
to denote the set of parents of u and the set of children of u in G. We will also
use anc(u,G) and des(u,G) to denote the set of ancestors of u and the set of
descendents of u in G, respectively. When G is clear from the context, we will
use the abbreviations parent(u), child(u), anc(u), and des(u) for parent(u,G),
child(u,G), anc(u,G), and des(u,G) respectively.

Let M be a subset of vertices in G. For any vertex u ∈ M and a parent
vertex u′ of u, we say u′ is an external parent of u (with respect to M) if u′ ∈
parent(u)−M . Similarly, we define an external child (resp. ancestor, descendent)
of u with respect to M as a vertex in child(u)−M (resp. anc(u)−M , des(u)−M).

Redundant Edges. Suppose (u, v) is an edge in G. If there is a path of length
greater than 1 from u to v, then (u, v) is redundant for reachability queries, that
is, removing (u, v) from G will not affect the answer to any reachability queries.

The redundant edges can be efficiently identified and removed by a transitive
reduction algorithm proposed in [21]. The following lemma is shown in [21]:

Lemma 1. Suppose G is a DAG without redundant edges, then for any two
vertices u and v in G, parent(u) = parent(v) if and only if anc(u) = anc(v);
child(u) = child(v) if and only if des(u) = des(v).
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Equivalence Class. Two vertices u and v are said to be equivalent if they
have the same ancestors and the same descendants, that is, anc(u) = anc(v),
des(u) = des(v) [6]. Because of Lemma 1, if G does not have redundant edges,
then u and v are equivalent if and only if they have the same parents and same
children. The equivalent vertices form an equivalence class. It is easy to see that
all vertices in the same equivalence class have the same reachability properties,
that is, if u is in an equivalence class, then for any other vertex u′, u can reach u′

(resp. u is reachable from u′) if and only if every vertex v in the same equivalence
class can reach u′ (resp. is reachable from u′).

Also as observed in [21], if G has no redundant edges, then all vertices in an
equivalence class form an independent set, that is, there are no edges between
the vertices in the same equivalence class.

Lemma 2. Suppose G is a DAG without redundant edges, then every equivalent
class is an independent set.

Modular Decomposition. The modular decomposition [13] of a directed graph
G partitions the vertex set into a hierarchy of modules, where a module is con-
ventionally defined as follows.

Definition 1. Let M be a set of vertices in G. We call M a module of G if all
vertices in M share the same external parents and the same external children. In
other words, for any u, v ∈ M , parent(u) − M = parent(v) − M and child(u) −
M = child(v) − M .

It is easy to see that a singleton set is a module and the set of all vertices in G
is also a module. These modules are called trivial modules. Let G be a DAG that
has no redundant edges. By Lemma 1, an equivalent class is also a module, and
by Lemma 2, such a modules is an independent set. In the literature, modules
that are independent sets are referred to as parallel modules.

4 Overview of Our Approach

The basic idea of our method is to compress the graph without loosing reach-
ability information. We use modular decomposition, however the definition of
modules has been slightly modified from that found in the literature, in order to
help with reachability queries.

Definition 2. A module in a DAG G is a set of vertices M ⊆ VG that have
identical external ancestors and identical external descendants. In other words,
for any two vertices u, v ∈ M , anc(u) − M = anc(v) − M , and des(u) − M =
des(v) − M .
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Fig. 1. Example
DAG, where the
vertices 1, 2, 3, 4
have same exter-
nal ancestors and
same external
descendants, but
not the same
external par-
ents and same
external children

Our module is an extension of the conventional module
defined in Definition 1, that is, conventional modules are also
modules by our definition. This is because vertices that share
the same external parents also share the same external ances-
tors, and vertices that share the same external children also
share the same external descendants. However, the converse
is not true. For example, in the graph shown in Fig. 1, the set
of vertices {1, 2, 3, 4} is a module by our definition. However,
it is not a module according to the conventional definition. In
what follows, when we say a module, we mean a module by
Definition 2, unless explicitly stated otherwise.

In this work, we are interested in two special types of mod-
ules, referred to as parallel modules and linear modules respec-
tively. A parallel module is a module that is an independent
set, and a linear module is one that consists of a chain of
vertices v1, . . . , vk such that there is an edge (vi, vi+1) for all
i ∈ [1, k − 1]. These modules have the following properties.

Lemma 3. Suppose G is a DAG that does not have redundant edges. (1) If M
is a parallel module of G, then all vertices in M have the same parents and same
children. (2) If M is a linear module consisting of the chain v1, . . . , vk, then for
each i ∈ [2, k], vi−1 is the only parent of vi, and vi is the only child of vi−1.

Proof. (1) Let M be a parallel module. By definition M is an independent set,
and all the vertices have the same external ancestors and the same external
descendants. Since M is an independent set, it is impossible for any vertex in M
to have an ancestor or descendent in M , therefore, all the vertices have the same
ancestors and the same descendants (both external and internal). By Lemma1,
all vertices in M have the same parents and the same children.

(2) Let M be a linear module consisting of the chain v1, . . . , vk. For any
i ∈ [2, k], if vi has a parent u that is not vi−1, then there are two possible
cases. The first case is that u is also in M , that is u is one of vi+1, . . . , vk. This
contradict the assumption that G is a DAG since there will be a cycle. The
second case is that u is not in M . In this case, by the definition of a module,
u must be an ancestor of v1, that is, there will be a path from u to vi with
length at least 2. Hence the edge (u, vi) would be redundant, contradicting the
assumption that there are no redundant edges in G. This proves vi−1 is the only
parent of vi. Similarly we can prove vi is the only child of vi−1.

In Fig. 2(a), the vertices v1, v2, v3 form a parallel module. In Fig. 2(b), the
vertices v1, v2, v3 form a linear module. Note, however, the set {v4, v1, v2, v3,
v6} in Fig. 2(b) is not a linear module.
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v3v2v1

(a) {v1, v2, v3} is
a parallel module

v4 v5

v6
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(b) {v1, v2, v3} is
a linear module

Fig. 2. Example of modules

It is worth noting that each sin-
gle vertex forms a parallel module as
well as a linear module. These mod-
ules are referred to as trivial modules,
along with the module that consists
of all of the vertices in G. According
to Lemma 3, a parallel module is an
equivalence class, if G is a DAG that
has no redundant edges.

Note that if two vertices are in the
same linear module, then their reach-
ability depends on their relative positions in the chain. If they are in the same
parallel module, then they cannot reach each other, as shown in the lemma
below.

Lemma 4. Let G be a DAG without redundant edges, and u, v be vertices in the
same parallel module of G, then u cannot reach v in G.

Proof. Let the parallel module that contains u and v be M . If the lemma is not
true, there will be a path u, v1, . . . , vs, v from u to v. Since M is an independent
set, v1 and vs cannot be in M . Hence v1 is an external child of u, and vs is
an external parent of v. By Lemma 3 and the definition of modules, v1 must
be a child of v and vs must be a parent of u. Therefore there will be a cycle,
contradicting the assumption that G is a DAG. Hence the proof.

1

9

8765432

10

(a) G

1

9

8765432

10

(b) G̃

Fig. 3. (a) A DAG G and (b) the DAG G̃ after transitive reduction

A set of vertices may be in multiple parallel (or linear) modules, e.g., in the
graph shown in Fig. 2(a), {v1, v2} and {v1, v2, v3} are both parallel modules.
However, we are only interested in the maximal modules as defined below.

Definition 3. A parallel (resp. linear) module M is said to be maximal if there
is no other parallel (resp. linear) module M ′ such that M ⊂ M ′.

For example, {v1, v2, v3} is a maximal parallel module in Fig. 2(a), and it is
a maximal linear module in Fig. 2(b).

Note that two different maximal parallel modules of G cannot have overlaps,
and two different maximal linear modules cannot have overlaps. Furthermore,
there cannot exist a non-trivial parallel module and a non-trivial linear module
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such that they have a common vertex. In other words, each vertex can belong
to at most one non-trivial parallel or linear module.

Multi-level Compression and Modular Decomposition Tree. To utilize
parallel and linear modules in reachability search, we perform a multi-level com-
pression of the original graph G. First, we identify the maximal linear modules
and parallel modules, and merge the vertices in each module into a single super-
vertex. We add an edge from super-vertex s1 to super-vertex s2 if and only if
there exists u ∈ s1, and v ∈ s2 such that (u, v) is an edge in G. In this way,
we obtain the first level compressed graph G1 = Compress(G). Clearly, G1 is
also a DAG without redundant edges. Then we apply the same compression
process to G1 to obtain the next level compressed graph G2 = Compress(G1),
and this process is repeated until we obtain a graph Gc which can no longer be
compressed, i.e., Gc does not have singleton-set parallel or linear modules.

Example 1. Consider the DAG G of Fig. 3(a), which consists of ten vertices num-
bered 1 to 10. The graph is reduced to G̃ in Fig. 3(b) after transitive reduction.
We will apply our compression to graph G̃.

There are no parallel modules in G̃. However, vertices 2, 3 and 4 can form a
maximal linear module. Another maximal linear module exists in G̃ that consists
of vertices 5, 6 and 7. So, vertices 2, 3, 4 and vertices 5, 6, 7 are compressed
into two single nodes, and they are reduced into nodes LS1 and LS2 respectively
in graph G1 shown in Fig. 4(a) after the first level compression. Then G1 is
compressed again to obtain G2 as shown in Fig. 4(b), where the nodes LS1,
LS2 and 8 in G1 are merged as they form an equivalent set in G1. The third
level compression creates graph G3 in Fig. 4(c) by merging nodes 1 and IS1 in
G2 which form a linear module. The graph G3 does not contain any parallel or
linear modules thus cannot be compressed further. So, G3 is the final compressed
graph of data graph G.

1

9

8

10

2, 3, 4 5, 6, 7
LS1 LS2

(a) G1

1

910

2 - 8

IS1

(b) G2

910

1 - 8

LS3

(c) G3

Fig. 4. (a) Graph G1 after first level compression, (b) Graph G2 after second level
compression and (c) Graph G3 after final compression. LS denotes linear module and
IS denotes parallel module

We organize the modules in all levels of the compressed graphs into a
tree structure, called the modular decomposition tree, or decomposition tree for
brevity, as follows: The root of the tree is the final compressed graph Gc. Each
module in the previous-level compressed graph Gc−1 is a child node of the root;
Each child node of the root that corresponds to a non-trivial module of Gc−1,
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in turn, has its own children, representing modules in the previous level graph
Gc−2. This continues until we reach the nodes representing modules in the first-
level compressed graph, where each non-trivial module points to their children,
which are individual vertices in the original graph G. Note that the leaf nodes of
the tree are individual vertices in the original graph G. Also, to help reachability
detection, we keep a record of the vertex positions in the chain of each linear
module in a compressed graph Gi, where if the starting vertex has position 1,
the next vertex will have position 2, and so on. We will use pos(v, LS) to denote
the position of node v in the chain of LS. Obviously, for u, v ∈ LS, u �Gi

v if
and only if pos(u,LS) < pos(v, LS).

1 2

1 - 8

LS3
Root

2 - 8

2, 3, 4 5, 6, 7

109876543

IS1

LS1 LS2

Level 0

Level 1

Level 2

Level 3

Fig. 5. The modular decomposition tree T of
graph G̃

Figure 5 shows the modular
decomposition tree, T , of graph G̃
in Fig. 3(b). Let M be a non-leaf
node in the decomposition tree of
G. By definition, M is either a
parallel or linear module in some
compressed graph Gi (i < c), or it
is the final compressed graph Gc.
M can be regarded as a set of the
original vertices of G in the obvi-
ous way. Put in another way, we
say vertex v ∈ G belongs to (or is
in) M if v is a descendant of M in the decomposition tree. For example, the
vertices 2, 3, 4, 5, 6, 7, 8 belong to the module IS1 in Fig. 5.

We have the following observations about modules in the decomposition tree:

Lemma 5. The vertices of G that belong to each parallel or linear module M in
Gi (i < c) form a module of G. In other words, all vertices in M have the same
external ancestors, as well as the same external descendants in G.

The above lemma can be easily proved by induction on the compression level
i. Using Lemma 5, we can easily see:

Lemma 6. Given two distinct nodes N1 and N2 in Gi (i ≤ c), N1 �Gi
N2 iff

u �G v for every pair of vertices u ∈ N1, v ∈ N2.

Answering Reachability Queries Using Modular Decomposition Tree.
Suppose we have the decomposition tree T of G. For ease of presentation, let us
use G0 to denote the graph G. For any pair of vertices u, v in the original graph
G, we use LCA(u, v) to denote the lowest common ancestor of u and v in T .
Note that LCA(u, v) corresponds either to a module in some compressed graph
Gi (i ∈ [1, c − 1]), or to the final compressed graph Gc (i.e., the root of T ). We
have the following result.

Theorem 1. Given two vertices u, v ∈ VG, if LCA(u, v) corresponds to a par-
allel module of some graph Gi (i ∈ [1, c − 1]), then u cannot reach v in G.
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Proof. If LCA(u, v) corresponds to a parallel module M of Gi, then suppose N1

and N2 are the two vertices of Gi that contain u and v respectively. By Lemma 4,
we know N1 cannot reach N2 in Gi. Then by Lemma 6, we know u cannot reach
v in G.

With the above discussion, we are ready to present the method for answering
reachability queries using the decomposition tree and the final compressed graph
Gc. Given two vertices u, v ∈ VG, to find whether u �G v, we can find the lowest
common ancestor LCA(u, v) of u and v, and check the following:

1. If LCA(u, v) is a parallel module, then u cannot reach v in G, by Theorem 1.
2. If LCA(u, v) is a linear module, say M , then we check the positions of N1

and N2 in the corresponding chain of vertices in M , where N1 is the child of
LCA(u, v) in the decomposition tree that contains u, and N2 is the child of
LCA(u, v) that contains v, and u can reach v in G if and only if pos(N1,M) <
pos(N2,M).

3. If LCA(u, v) is the root of T , namely Gc, then suppose N1, N2 are the children
of LCA(u, v) that contain u and v respectively. Then u �G v if and only if
N1 �Gc

N2. Thus we only need to check whether N1 �Gc
N2. We can do it

using any existing reachability algorithms. Since Gc is usually much smaller
than G, checking N1 �Gc

N2 in Gc is likely to be faster than checking u �G v
in G.

Example 2. Consider the decomposition tree T shown in Fig. 5.

(1) For the query ?2 �G 6, we find lowest common ancestor of vertices 2 and 6
is a parallel module, therefore, we know vertex 2 cannot reach vertex 6.

(2) For the query ?2 �G 4, we find LCA(2, 4) is a linear module, and the
position of vertex 2 is before that of vertex 4. Therefore we conclude that
2 �G 4.

(3) For the query ?2 �G 9, Since 2 and 9 are in different children of the root,
i.e., LS3 and 9 respectively, we only need to check whether LS3 �G3 9.

5 Algorithms

The previous section provides the main ideas of our approach. This section
presents the detailed algorithms.

5.1 Building Modular Decomposition Tree

Algorithm 1 shows the process of creating the modular decomposition tree along
with the final compressed graph. The algorithm takes a DAG that has no redun-
dant edges G as input and returns the modular decomposition tree and the final
compressed graph. The algorithm first creates a tree with a root node r. Starting
with a random vertex v, the algorithm first tries to find all other vertices that
can form a linear module with v (Line 7). If no such module is found then it will
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Algorithm 1. BuildMDT(G)
Input: DAG G with no redundant edges
Output: Modular Decomposition Tree T and Gc

1 if T does not exist then
2 Create Tree T with root node r; i ← 0; Gi ← G

3 S ← ∅
4 for each v ∈ VGi

do
5 if v.isVisited is false then
6 v.isVisited ← true
7 M ← FindLinearModule(v, Gi)
8 if M �= null then
9 S ← S ∪ M

10 Add M as child of r
11 for each vertex u in M do
12 u.isVisited ← true; Add u as a child of M

13 else
14 M ← FindParallelModule(v, Gi)
15 if M �= null then
16 S ← S ∪ M
17 Add M as child of r
18 for each vertex u in M do
19 u.isVisited ← true; Add u as a child of M

20 else
21 Add v as a child of r

22 if S �= ∅ then
23 i++
24 Gi ← Compress(Gi−1, S)
25 BuildMDT(Gi)

26 else
27 r ← Gi

28 return T , Gi

search for a maximal parallel module for v (Line 14). If such a module cannot
be found, then v will be added as a child of r (Line 21), otherwise the found
module M will be added as child of r, and each vertex in the module will be
added as a child of M (Lines 8–12, 16–19). We record all such modules in S
(Lines 9,16), and use them to compress the graph into a new graph (Line 24).
Then we recursively call the algorithm to compress the new graph (Line 27). If
no non-single-vertex module is found in the current graph, the current tree T
will be returned, and the current graph will be returned as Gc.

The functions FindParallelModule() and FindLinearModule() used in Algo-
rithm 1 are shown in Algorithms 2 and 3 respectively. These algorithms try to
find a relevant module based on Lemma 3.

Algorithm 2 takes a vertex v and DAG G as input, and it finds the set of
vertices, M , that share the same parents and same children with v. To do that,
it first finds the set of vertices, M1, that share the same parents with v, and
then finds the set of vertices, M2, that share the same children with v. Then M
is the intersection of M1 and M2.

Algorithms 3 takes a vertex v and DAG G as input, and it first searches
for a possible chain of ancestors of v (Lines 2–12), and then searches for a
chain of descendants of v (Lines 13–26). Both parts are via an iterative process.
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Specifically, Lines 2 and 4 check whether v has a sole parent v′, and v′ has a
sole child v, if so v′ is the parent of v in a linear module. After that lines 7–12
try to find a parent of the first vertex in the chain, one by one. In the process,
it also provides a position number for each vertex found (Line 10). Note that
the position does not have to be a positive number, as long as it can provide an
appropriate order of the vertices in the chain, it will be fine. Lines 13–26 work
similarly.

Complexity. Algorithm 3 takes L steps to find the linear module that contains v
(checking the |parent(|v|) = 1 is just checking the in-degree of v), where L is the
size of the linear module that contains v. Algorithm 2 takes Σu∈parent(v)|child(u)|
+ Σu∈child(v)|parent(u)| steps to find vertices that share the same parents and
same children with v. If we use Imax and Omax to denote the maximum in-degree
and maximum out-degree respectively, then Algorithm 2 takes O(Imax × Omax)
time. In Algorithm 1, for the first level compression, we visit each vertex in VG

that has not been put in a module, and once the vertex is visited or put into
a module, it will no longer be visited. In the worst case, no non-trivial module
exists, so that every vertex will be visited. Therefore, the first level compression
takes O(|V |×Imax ×Omax). Each next level compression will take no more than
that of the previous level. Therefore, Algorithm 1 takes O(|V |×Imax×Omax×h),
where h is the height of the decomposition tree.

5.2 Finding Reachability Using the Decomposition Tree

As discussed in the previous subsection, to answer reachability query ?u �G v
using the decomposition tree, we only need to find LCA(u, v) and then take
appropriate actions depending on the type of LCA(u, v). To save time for finding
the LCA, we design a slightly modified algorithms as shown in Algorithm 4.
Given vertices u and v, we first find the children of the root that u and v belong

Algorithm 2. FindParallelModule
Input: DAG G with no redundant edges, vertex v
Output: The maximal nontrivial parallel module that v is in, or null if such module does

not exist
1 Create module M = {v}
2 M.type = trivial
3 if |parent(v)| = 0 then
4 M1 ← {v′| |parent(v′)| = 0}
5 else
6 M1 ← {v′|v′ ∈ ⋂

u∈parent(v) child(u), v′ �= v}
7 if |child(v)| = 0 then
8 M2 ← {v′| |child(v′)| = 0}
9 else

10 M2 ← {v′|v′ ∈ ⋂
u∈child(v) parent(u), v′ �= v}

11 if M1 ∩ M2 �= ∅ then
12 M.type ← Parallel M ← (M1 ∩ M2) ∪ M Return M

13 else
14 Return null
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to respectively, let us suppose u ∈ N1, v ∈ N2, if they are different (this is
equivalent to say LCA(u, v) is the root), we will use some existing algorithm to
check ?N1 �Gc

N2. Otherwise we will find the lowest linear LCA of u, v (note
that to do so we only need to record the linear module ancestors of the vertices),
if no such LCA exists, then u cannot reach v. Otherwise, suppose the linear LCA
is M , we will check the relative positions of u and v in M to determine whether
u can reach v. Here the position of u is defined to be same as the position of the
child of M that contains u. If LCA(u, v) is a parallel module then that module
will be a child of M . So, u and v will have the same position in M thus u cannot
reach v. It is easy to see that the algorithm is equivalent to the process described
in Sect. 4, hence its correctness is guaranteed.

Size of the Decomposition Tree. To answer reachability queries in the orig-
inal graph G, we only need to store the final compressed graph Gc and the
decomposition tree T . The total number of nodes in the tree is |V | + m + 1,
where m denotes the number of non-trivial modules. The number of edges in T
is |V | + m.

6 Experiments

Setup: We obtained the source code of DAG reduction, IP+ and Feline from
the authors which are written in C++, and compiled thm using G++ 7.3.0.
We implemented our multilevel compression and reachability query processing
algorithms in C# using Visual Studio 2017. We created the index of IP+ and
Feline for each graph using the original code from the authors. Then we used
that index to process the reachability queries. The experiments were run on a
PC with Intel Core i7-7700 with 3.60 GHz CPU, 32 GB memory and Windows
10 operating system. We tested our approach with 10 real data sets. First we
applied the transitive reduction of [21] to find G̃, which is a DAG without redun-
dant edges. Then we applied our multilevel compression algorithm to get Gc. We
used two state-of-the-art reachability algorithms IP+ [18] and Feline [17] to pro-
cess reachability queries over Gc and over the graph Gε which is obtained by
DAG reduction. We compared our method with DAG reduction [21] which is the
most recent graph compression method for reachability queries. We randomly
generated 100,000 reachability queries for each graph.

Datasets: We used 10 real datasets Kegg1, XMark (see footnote 1), Patent
(see footnote 1), Citeseerx (see footnote 1), soc-Epinions2, Web (see footnote
2), LJ (see footnote 2), 05Patent3, 05Citeseerx (see footnote 3) and DBpedia4.

1 https://code.google.com/archive/p/grail/downloads.
2 http://snap.stanford.edu/data/index.html.
3 http://pan.baidu.com/s/1bpHkFJx.
4 http://pan.baidu.com/s/1c00Jq5E.

https://code.google.com/archive/p/grail/downloads
http://snap.stanford.edu/data/index.html
http://pan.baidu.com/s/1bpHkFJx
http://pan.baidu.com/s/1c00Jq5E
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Algorithm 3. FindLinearModule
Input: DAG G with no redundant edges, vertex v ∈ VG

Output: The maximal nontrivial linear module that v is in, or null if such module does not
exist

1 Create module M = {}; M.type = trivial
2 if |parent(v)| =1 then
3 v′ ← unique parent of v

4 if |child(v′)| = 1 /* v′ and v are in the same linear module
5 then
6 add v, v′ to M ; M.type ← Linear; pos(v, M) ← 1; pos(v′, M) ← pos(v, M)− 1

7 while |parent(v′)| = 1 do
8 u ← unique parent of v′

9 if |child(u)| = 1 then
10 add u to M ; pos(u, M) ← pos(v′, M) − 1; v′ ← u

11 else
12 break

13 if |child(v)| =1 then
14 v′ ← unique child of v

15 if |parent(v′)| = 1 then
16 if M.type = trivial then
17 add v, v′ to M ; M.type ← Linear

18 pos(v, M) ← 1; pos(v′, M) ← pos(v, M) + 1

19 else
20 add v′ to M ; pos(v′, M) ← pos(v, M) + 1

21 while |child(v′)| = 1 do
22 u ← unique child of v′

23 if |child(u)| = 1 then
24 add u to M ; pos(u, M) ← pos(v′, M) + 1; v′ ← u

25 else
26 break

27 if M.type = trivial then
28 Return null

29 else
30 Return M

Algorithm 4. Find reachability from vertex u to vertex v
Input: Modular decomposition tree T , Compressed Graph Gc, vertex u, vertex v
Output: true if u is reachable to v, false otherwise

1 N1 ← Corresponding node of u in Gc

2 N2 ← Corresponding node of v in Gc

3 if N1 = N2 then
4 M ← FindLinearLCA(u, v)
5 if M exists then
6 if pos(u, M) < pos(v, M) then
7 return true

8 return false

9 else
10 return AlgoReachability(Gc, N1, N2)



Multi-level Graph Compression for Fast Reachability Detection 243

Table 1. Datasets and their compression ratio after ER reduction and multilevel com-
pression. rn(re) is the ratio of the number of vertices (edges) in G̃, Gε and Gc

Dataset G G̃ Gε Gc

|V | |E| re% rn% re% rn% re%

Kegg 3617 3908 93.8 37.6 35.7 9.7 9.3

XMark 6080 7025 99 55.8 57 25.7 31

soc-Epinions 42176 43797 96.6 19.9 19.3 13 12.7

Web 371764 517805 79.8 30.5 24.9 16.6 14.6

LJ 971232 1024140 95.1 11.1 10.8 7.9 7.6

Patent 3774768 16518947 71.6 91.2 68.9 90.5 68.7

05Patent 1671488 3303789 90.1 80.3 78.9 78.8 78.2

05Citeseerx 1457057 3002252 81 37.9 50 37.4 49.7

Citeseerx 6540401 15011260 74.4 39.7 46.4 38.9 46.1

DBpedia 3365623 7989191 59.2 50.5 31.7 43.9 28.9

Table 2. Graph size before and after compression

Dataset G Gε Gc

|V | + |E| |VGε | + |EGε | + |IS| rGε% |VGc | + |EGc + |m| rGc%

Kegg 7,825 2,816 36 1,340 17.1

XMark 13,105 8,312 63.4 6,282 47.9

soc-Epinions 85,973 17,602 20.5 13,433 15.6

Web 889,569 265,341 29.8 193,252 21.7

LJ 1,995,372 226,830 11.4 180,308 9

Patent 20,293,715 15,011,351 74 14,986,127 73.8

05Patent 4,975,277 4,111,385 82.6 4,086,800 82.1

05Citeseerx 4,459,309 2,180,701 48.9 2,173,504 48.7

Citeseerx 21,551,661 10,110,673 46.9 10,058,232 46.7

DBpedia 11,354,814 4,517,284 39.8 4,226,247 32.2

Among the datasets Kegg and XMark are very small graphs. Datasets soc-
Epinions, Web and LJ are comparatively larger whereas other 5 graphs can
be considered as large graphs. Here Kegg is a metabolic network and XMark is
an XML document. Datasets soc-Epinions and LJ are the online social networks.
Web is the web graph from Google. Patent, 05Patent, 05Citeseerx and Citeseerx
are the citation networks and DBpedia is a knowledge graph. The statistics of
these datasets are shown in the first two columns of Table 1.
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6.1 Comparison of Compression Ratio

Table 3. Compression time
(sec.)

Dataset Time (sec.)

Kegg 0.057
XMark 0.16
soc-Epinions 4.49
Web 286.67
LJ 3073
Patent 389.23
05Patent 71.65
05Citeseerx 175.69
Citeseerx 8772.81
Dbpedia 89764.32

The compression ratios of transitive reduction,
DAG reduction (i.e., transitive reduction and
equivalence reduction), and our modular decom-
position are shown in Table 1. From the table we
can see that our approach has more compression
for every graph than DAG Reduction. The dataset
XMark has the best result with 30.1% more com-
pression of vertex and 26% more compression of
edges than DAG Reduction. For larger graphs,
DBpedia shows best compression with 6.6% more
compression of nodes and 2.8% more compres-
sion of edges. On the other hand, our compres-
sion scheme does not show much better compres-
sion ratio than DAG reduction over the Citeseerx
and the Patent data sets. This could be because
these data sets do not contain many linear mod-
ules. Generally, the reduction ratio depends on the
structure of the graph.

Note however, a small percentage of compression for a large graph can also
have great impact on query processing since even a small percentage of com-
pression means reduction of lots of vertices and edges in large graphs (see the
Patent dataset in Table 6 for example).

Table 2 shows the size of G, Gε and Gc. Here, we calculated the size of the
graph as the sum of the number of vertices and the number of edges. For Gε we
have also added the number of equivalent classes as we need them for reachability
detection. For the same reason, we have added the number of modules to the size
of graph Gc. Table 3 shows the time required for building the decomposition tree
using our algorithms which are implemented in C#, where the dataset Dbpedia

Table 4. Index construction time (ms)

Dataset IP+ Feline

Gε Gc Gε Gc

Kegg 0 0 0.60 0.49

XMark 0.02 0 0.79 0.56

soc-Epinions 0.04 0.03 2.18 1.77

Web 0.04 0.03 47.21 29.53

LJ 0.05 0.03 35.98 29.83

Patent 5.7 5.64 3959.15 3732.31

05Patent 1.42 1.31 1051.72 1056.2

05Citeseerx 0.53 0.51 336.61 341.9

Citeseerx 3.16 2.78 1836.02 1834.36

DBpedia 1.24 1.14 874.81 845.69

Table 5. Index size (MB)

Dataset IP+ Feline

Gε Gc Gε Gc

Kegg 0.043 0.008 0.031 0.008

XMark 0.12 0.05 0.08 0.03

soc-Epinions 0.21 0.12 0.19 0.12

Web 3.25 1.62 2.59 1.41

LJ 2.71 1.72 2.47 1.75

Patent 67.91 66.84 78.76 78.22

05Patent 18.35 17.79 30.71 30.16

05Citeseerx 12.64 12.47 12.63 12.47

Citeseerx 67.91 66.84 59.46 58.27

DBpedia 45.35 38.54 38.87 33.84



Multi-level Graph Compression for Fast Reachability Detection 245

has taken the most time and is comparable that of dataset Citeseerx. As the
indexing is done offline, we consider these timings as viable in practice.

6.2 Performance on Reachability Query Processing

Table 6. Query time (ms)

Dataset IP+ Feline
Gε Gc Gε Gc

Kegg 100 116 26 23

XMark 165 121 45 31

soc-Epinions 108 83 30 28

Web 198 186 69 65

LJ 160 151 76 72

Patent 6866 5414 16459 14186

05Patent 189 189 134 113

05Citeseerx 315 284 169 163

Citeseerx 252 246 121 122
DBpedia 172 170 83 73

Table 4 shows the comparison of
index construction time for IP+

and Feline algorithms over Gε

and Gc. The better results are
highlighted in bold font in the
table. Here, multilevel compres-
sion requires less index construc-
tion time for every graph for cre-
ating index for IP+. For Feline,
we also have better result for
each graph except 05Patent and
05Citeseerx. The index size of IP+

and Feline, for Gε and Gc, are
shown in Table 5. From the table
we can see that the index sizes
of Gc are smaller for every graph
than Gε for both IP+ and Feline,
although for the Citeseerx and Patent datasets the difference is very small. This
is not surprising because the sizes of Gc and Gε are very close for these data
sets.

Table 6 shows the comparison of the query time for both IP+ and Feline. We
run each query 10 times and the time shown is the average of the 10 runs. We
can see that our compression outperforms DAG reduction in query processing
for almost every graph. Surprisingly, the best improvement is over the Patent
dataset, where our approach is much faster than DAG reduction in both IP+

and Feline. It is also surprising that IP+ is lower using our approach than using
DAG reduction in Kegg dataset.

7 Conclusion

We presented a method to compress a DAG that has no redundant edges, using
two types of modules, to obtain a decomposition tree. We showed how to use
the decomposition tree to answer reachability queries over the original graph.
Experiments show that for many real-world graphs, our method can compress
the graph to much smaller graphs than DAG reduction, and reachability queries
can be answered faster, and the index size can be smaller as well.
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Abstract. Local differential privacy (LDP), as a state-of-the-art privacy
notion, enables users to share protected data safely while the private
real data never leaves user’s device. The privacy regime is one of the
critical parameters balancing between the correctness of the statistical
result and the level of user’s privacy. In the majority of current work,
authors assume that the privacy regime is totally determined by the
service provider and dispatched to all users. However, it is inelegant and
unpromising for all users to accept the same privacy level in real world.
In this paper, we propose a new LDP estimation method MLE which
is applicable for the scenario of multiple privacy regimes. MLE uses the
idea of parameter estimation to merge the results generated by users of
different privacy levels. We also propose an extension of MLE to handle
the situation when all users’ regimes are in a continuous distribution.
We also provide an Adapt estimator which assigns users to use different
LDP schemes based on their regimes, and it performs better than the
estimator with only one fixed LDP scheme. Experiments show that our
methods provide a higher level of accuracy than previous proposals in
this multiple regimes scenario.

Keywords: Local differential privacy · Multiple privacy regimes ·
Frequency estimation

1 Introduction

With the rapid penetration of Internet and Smartphone through the crowded,
large-scale collection of user data is already a necessary daily activity for com-
panies. User data has become one of the most important asset, which can give
support to data scientists to discover new patterns and provide training exam-
ples for machine learning models. However, this comes with huge risks–can these
companies protect users’ sensitive data from malicious access? Disclosure may
violate the users’ privacy and lead to scandal.
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Anonymization techniques are one common method to protect user privacy
by blurring the personalized or identifiable information, but it’s vulnerable to
the de-anonymization attack as shown in the case of Netflix Price [15]. For the
above scenario, Differential Privacy [6,7] successfully achieved releasing sanitized
datasets, but not at the client level.

Local Differential Privacy (LDP) [13] is a branch of DP, which gives the bene-
fits of population-level statistics without the collection of raw private data. With
LDP, service provider can get statistical information on all users by just aggre-
gating users’ noised report. This feature makes LDP widely used in real-world
scenarios. For example, Google’s use LDP scheme RAPPOR to constantly collect
the home-page that all users like to set up; Apple announced its implementa-
tion of LDP in iOS 10 and MacOS in WWDC 2016; Microsoft also deploys a
LDP-enabled data collection mechanism in Windows Insiders program to collect
application usage statistics.

LDP’s security parameter (privacy regime ε) represents the security level of
its randomization process. The bigger (or smaller) the security parameter, the
more (or less) availability of the noisy report that the user shares. However,
most LDP schemes assume that each user has the same ε, hence each user uses
the exact same randomized procedure to generate a noisy report from their own
data. There have been complaints that deployed LDP schemes use higher values
of ε while users are not given any choice. So it is questionable that ε is entirely
determined by the service provider who wants more availability of the data.

Multiple and Personalized Privacy Regimes. In order to meet the privacy
demands of different people, we argue that users should be allowed to set their
overall privacy levels (e.g., low/moderate/high) independently. Here, we assume
that this personalization of privacy regimes does not mean the user should set a
new ε every time he shares data. Instead, users will set an infrequently changing
ε, which will be consumed a fixed percentage every time users share data with
LDP. This assumption is derived from a study [17], which suggests that Apple’s
deployment [2] for LDP has an overall privacy regime as high as 16 everyday
and sets privacy consumption to 1 or 2 each time shares data while there is no
transparency.

In this paper, we consider that simple LDP mining task only contains one
data collection activity, and the common simple mining task includes frequency
estimation, mean value estimation, heavy-hitters identification and so on. So
even if users have the same overall privacy regime ε, multiple ε may still appear
in one mining task because the number of times that data is shared is different.
For example, it could involve the real-time sharing of trajectory data and is
not the focus of our analysis. We present the above personalization process in
Fig. 1(a).

In addition, when LDP handles complex mining task like “Frequent Itemset
Mining” [20] which contains several rounds of data collection activities, it is
common to randomly assign all users to several groups, and then different groups
finish each step of the mining task respectively with the same ε. However, some
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groups of users only need to pay a small amount of privacy to complete easy
step (e.g., frequency estimation in small candidate space), the remaining can be
assigned to challenging steps by segmentation as shown in Fig. 1(b). Combining
the above two points, it’s urgent to deal with multiple privacy regimes under
LDP.

Fig. 1. Application scenarios for multiple privacy regimes.

In this paper, we assume that users may have different privacy acceptances
for personalization: Once a user sets his overall privacy regime ε, he does not
change this value frequently and his participation in any tasks will automatically
consume a certain proportion of this ε until it’s used up; Since the collection
behavior is usually long-term and the user’s privacy data may change (e.g., web
pages visited), users’ specific choices of privacy regimes are not related to the
value of the private data.

As far as we know, frequency estimation is the most basic LDP mining task,
so it is meaningful to apply it under the mechanism of multiple privacy regimes.
An obvious method of frequency estimation in this scenario, is to divide users
with the same ε into the same group, and estimate frequency for different groups
separately. In the end, service provider aggregates each group’s estimated value
by weighting. This is discussed in Sect. 3.

Contributions

– We propose MLE method which applies the idea of parameter estimation to
obtain an optimal estimate from user groups with different privacy regimes.
Our theoretical analysis shows that the accuracy of MLE can be equivalent to
tradition method which forces all users to choose one specific privacy regime,
and this equivalence shows that MLE is practical.
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– We propose S-MLE method to handle the situation when all users’ privacy
regimes are subject to continuous distribution in one mining task. It uses a
predefined β parameter to segment the contiguous ε on the basis of MLE. The
experiments show that the β parameter of S-MLE may greatly influences the
accuracy under certain conditions.

– We propose Adapt-MLE method which encompasses different LDP schemes
for multiple privacy regimes. And the performance of Adapt-MLE is better
than that of MLE, especially when the discrete values of ε of different users
span a wide range.

2 Preliminaries and Notations

We assume that all users are willing to share their information to help service
provider update its statistical information. For the sake of privacy, each user
perturbs his own data by advanced technique (via LDP) with different demands
for security. The service provider aims to find out the frequencies of values among
the population. Such a process involves the following preliminaries.

2.1 Local Differential Privacy

Definition 1 (Local Differential Privacy). An algorithm A satisfies ε-local dif-
ferential privacy (ε-LDP) where ε > 0, if and only if for any input v1 and v2,
we have ∀y ∈ Range(A),

Pr(A(v1) ∈ y)
Pr(A(v2) ∈ y)

≤ eε,

where Range(A) denotes the set of all possible outputs of the algorithm A.

When privacy regime ε is small, the adversary can’t identify the true value
from the noise version reliably. The basic core of algorithm A is Randomized
response (RR) [21], which is a statistical technique used for collecting social
embarrassing questions.

2.2 Frequency Estimation in LDP

Let f = (f1, ..., fk) be a probability distribution on a set containing k candidate
values, f1 is the true frequency of v1 and the sum of f is 1. We can consider
that f is the proportion of N users choosing different values. Using LDP allows
the server to obtain an estimate ̂f = ( ̂f1, ..., ̂fk) without obtaining the user’s
original data.

Each of N users holds a value vj taken from the above k candidates and
shares this vj to the service provider in a LDP manner. In the beginning, user
need to encode the vj to a specific format, xj = E(vj), then select a parameter
ε t to obtain yj by randomization. Finally, service provider aggregates N data
records (y1, ..., yN ) and figures out ̂f .
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2.3 General LDP Schemes

Randomization mechanisms that satisfy LDP have been widely studied in recent
years, our work involves the following very common schemes.

kRR (k-ary Randomized Response) [12] is a generalization of binary randomized
response (RR) which performs well in low privacy level.

Base RAPPOR is simplest configuration of RAPPOR [9] which has been
widely accepted. It has a output alphabet υ = {0, 1}k of size 2k. It first maps
vi(1 ≤ i ≤ k) onto ei ∈ 0, 1k, where x = ei is the i-th standard basis vector. At
last a length-k binary vector y is generated from x by y = RR(x), RR here can
be seen with a pair of alterable probability p and q.

Pr(y[i] = 1|x[i] = 1) = p; Pr(y[i] = 1|x[i] = 0) = q (1)

Base Rappor sets p to eε/2/(eε/2 + 1) and q to 1 − p. For the fact that Base
RAPPOR is classical and is the basis of many other schemes, we mainly use it
to analyze the scenario of multiple privacy regimes in Sects. 3 and 4.

Optimal Scheme [22] and OLH [18] are two similar schemes, and they are all
obtained by optimizing the probability of RR in the Base RAPPOR (Change
p, q in Eq. 1), the difference is that the latter is evolved from SH [3] and reduces
communication cost by hash method.

At Last, frequency estimation formulas of these schemes are all

f̂i =
C(i) − q ∗ N

(p − q) ∗ N

where C(i) is the count of reported vector which has the i’th bit being 1. From
OLH, we get the following properties.

Lemma 1. For LDP scheme which uses RR with probability p and q, the fre-
quency estimation f̂i is an unbiased estimate of fi, and its variance is

var(f̂i) =
(fi ∗ p + (1 − fi) ∗ q) ∗ (1 − fi ∗ p − (1 − fi) ∗ q)

N(p − q)2

Employing Base rappor’s settings for p and q and taking eε/2 > 1 >> fi into
account, Base rappor’s variance is as follows:

var(f̂i) =
eε/2

N(eε/2 − 1)2
(2)

3 Problem Formulation

In this paper, we consider the specific LDP problem that users specific choices
of privacy level will lead to multiple ε in one mining task. In this section, we first
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Table 1. Notations

Notations Explanations Notations Explanations

v Raw data in frequency
estimation

p, q Defined in equation (1)

x Encoded data N Total number of users
in the collection

y Sanitized data nm The size of the m-th
group

f Frequency distribution k The domain of value

fi The true frequency of
vi

f̂i An estimate of fi

introduce a primary method called Raw-PCE (Personalized Count Estimation)
which can be considered a simplified version of PCE [5] proposed for the handling
spatial data aggregation. Compared with the original PCE scheme, only the cus-
tomization of privacy regime is preserved in Raw-PCE while the customization
of other factors are omitted. Then we analyze the estimate of Raw-PCE and get
a new probability model (Table 1).

3.1 A Multiple Privacy Regime Scheme: Raw-PCE

Raw-PCE is an intuitive and primitive method handling this scenario. Suppose
there are totally M different privacy regimes namely ε1, ε2, ...,εM .

Firstly, the service provider groups the users according to their personalized
privacy regimes which results in totally M groups.

Then, each group with the same privacy regime independently generate its
frequency estimate vector, the estimate vector generated by group m is denoted
as ˆf(m) = ( ˆf(m)1,

ˆf(m)2, ...,
ˆf(m)k). Totally M estimates are generated. With-

out loss of generality, here we consider only one candidate value v to simplify
the problem. The M estimates for value v can be denoted as ˆf(1), ˆf(2), ..., ˆf(M).

Finally, if there is no other auxiliary information, the way in which the esti-
mated value f̂ is calculated by Raw-PCE is as follows:

f̂ =
M
∑

m=1

ˆf(m)α(m) (3)

where α(·) represents the weights of each group’s estimation. Raw-PCE here
ignores the fact that every estimate’s accuracy is different, and it just takes the
size of each group as the weights where αm = nm/N . Combining Eqs. 2 and 3,
we have:

Lemma 2. In Base RAPPOR scheme, estimation of Raw-PCE has the variance
as follows,

var(f̂) =
M
∑

m=1

n2
meεm/2

(eεm/2 − 1)2 ∗ N3
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The above formula shows that the error is cumulative, whenever there is
an estimation with large error among M estimations, final errors are greatly
increased which is rather unacceptable.
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Fig. 2. The true frequency of vi(i ∈
[k]) is 0, and there are three estima-
tions of fi which are drawn from three
normal distribution.
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Fig. 3. S-MLE: dividing continuous ε
into discrete values and the size of each
shadow area is β.

3.2 Probabilistic Model of Multiple Regimes Setting

Although users are divided into different groups with different ε, their choices of
privacy regimes can be considered as irrelevant to the choices of their favourite
items, which means user’s possibility of choosing item v is the same in all M
groups.

After the randomization process, the reported number C (C(i) is introduced
in Sect. 2.3 and here we omit i) is a random variable from a binomial distribu-
tion, namely C˜B(N, pf + q(1 − f)). We use p′ to denote pf + q(1 − f). Fur-
thermore, N is usually big enough to ensure normal approximation and we have
C˜N(Np′, Np′(1 − p′)). ˆf(m) is a normalization of C(m) and follows a Gaussian
distribution.

Then all M groups follow M different normal distributions, which share the
same expectations but have different variances due to the different values of ε.
Therefore, as Fig. 2 shows, the M estimates generated by M groups, respectively
ˆf(1), ˆf(2), ..., ˆf(M), can be regarded as M random samplings of the actual user

proportion fv, each of which follows a unique normal distribution.
The problem of multiple privacy regimes can be regarded as equivalent to

the problem of obtaining the best estimate of fv from M group estimations
ˆf(1), ˆf(2), ..., ˆf(M), which are random samples separately drawn from M normal

distributions. Our target is simplified as to give the optimal estimate of the
expectation with the help of parameter estimation methods.

4 Estimate Methods

In this section, we present two types of frequency estimate for multiple privacy
regimes. In Sect. 4.1, we discuss a new MLE method and give theoretical proof.
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Then we prove MLE’s accuracy is much better than the basic Raw-PCE (given
in Sect. 3.1). In Sect. 4.2, we discuss the situation when there exists large number
of groups after grouping operation and propose S-MLE method on the basis of
MLE.

4.1 MLE

Maximum likelihood is an effective method in parameter estimation, which is
adopted here to generate unbiased expectation f . Once the service provider gets
M estimations ( ˆf(1), ˆf(2), ..., ˆf(M)) and their variances as well, the Maximum
likelihood estimation (MLE) f̂ is defined as follows:

Theorem 1. Given the M estimate ( ˆf(1), ˆf(2), ..., ˆf(M)), the MLE for the mul-
tiple privacy regimes scenario is

f̂ = (
M
∑

m=1

ˆf(m)

var( ˆf(m))
)/(

M
∑

m=1

1

var( ˆf(m))
)

The proof is in Appendix A.
It’s interesting to observe that the expectation we derived for MLE is in a

weighted-sum manner. The weights become the reciprocal of the variances. Bring
it to Eq. 3 for demonstration,

αm =
1/var( ˆf(m))

∑M
m=1 1/var( ˆf(m))

Estimation Accuracy Analysis. Due to MLE is unbiased and contains group-
ing operation, its accuracy can be somehow equivalent to a traditional LDP
method with a special privacy regime ε. Assuming there are two service providers
doing the same collection on a population. One allows user to choose different
ε and groups them, finally there are M groups whose size and privacy regime
are (n1, ε1), (n2, ε2), ..., (nM , εM ); The other makes all users in the same privacy
regime. So in which condition they achieve the same level of accuracy or their
estimations have the same variance. The latter obliges all users to have the same
ε, and here we call this reckless method traditional estimation (TE).

Theorem 2. The variance of the estimates obtained by the MLE is var(f̂) =
1/(

∑M
m=1

1
var( ˆf(m))

).

The proof is in Appendix B. It can be inferred from the formula that if the
data collector only uses the estimate with the least error, its effect is not as good
as that of MLE which combines all the estimates.

When substituting the variance generated by Base RAPPOR into the The-
orem 2, we obtain a new lemma.
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Lemma 3. In Base RAPPOR, if any eεm/2 >> 1, there exists a privacy regime
ε′ ≈ 2∗ln

∑
nm∗exp(εm)∑

nm
such that makes the accuracy of directly using TE method

with ε′ equals to MLE with multiple εm(m ∈ [M ]).

The proof is in Appendix C.
Comparing Theorem 2 with Lemma 2, we find that the overall variance of

MLE is much lower than that of Raw-PCE method. The explanation can be
that Theorem 2 implies the final estimate will be accurate as long as at least
one of the estimates has low variance, while Lemma 2 has high variance if just
one group has high variance. Our experiments also show MLE is much more
accurate than Raw-PCE.

4.2 S-MLE

When the user are allowed to choose any value as their overall privacy regimes
from a considerate large set, there will be too many groups and some groups
inevitably contain too few users. In this scenario, the above MLE method may
be inapplicable because large errors are introduced into f̂ . And one extreme
situation is that ε is continuous function over real number field as shown in
Fig. 4. In this section, we start by analyzing why the minimum size of the group
(βN) should be set and explaining what factors will affect the value, then we
provide a supplement method called S-MLE for this scenario.

βN : Minimum Size of the Group. From the perspective of sampling theory,
the essence of grouping process in MLE is that the users are randomly sampled
into M groups, and the frequency estimation result of each group is equivalent
to the result of sampling scheme without replacement. And what we’ll find is
that the sample size of this M group is different and there may exist invalid
sample group because sample survey with low sample size introduces lots of
sampling error and would not represent the whole. Specifically, small group’s
unbiased estimation ˆfi(m) on value vi differs greatly from the actual results of
the population. Namely, |E( ˆfi(m)) − fi| < σ can’t hold where σ is tolerable
sampling error.

So it makes sense to determine the minimum of the sample size which is also
a basis for dividing the group. According to the sampling theory, the sample size
is usually determined by the variation degree of the research object, the total
number of samples and the demand for accuracy. In our MLE, sample size can
be mainly determined by the size of candidate set (k), the total number of users
(N), and the complexity of candidate set’s frequency (the distribution of f). So
we get the proposition as follows:

Proposition 1. In MLE, for any group whose size does not exceed βN , it’s
necessary to ignore its estimation or make users in this group join other higher
privacy level group.

Combining the Proposition 1 and MLE, we need to figure out an empirical value
for β and segment privacy regimes and re-merge existing groups.
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S-MLE. The S-MLE method can be further extended to the situation when
the type of ε value is unlimited (continuous distribution).

From Theorem 2 we can see that the entire accuracy is depend on all users’
distribution of ε. let users who have temp largest ε value form a group (size
= β ∗ N) recursively is an efficient segmenting way (segmenting in Fig. 3).
Since it’s difficult and complexity to figure out sample size β, we give some
empirical values here. In the experiment when fixing N to 100000, we find β ∈
[0.05, 0.1] ([0.1, 0.15]) is reasonable for the situation when f is generated by zipf’s
distribution (uniform distribution) and k is ranging from 20 to 200, β should be
bigger as k increases.

5 Adapt MLE and Universality of Mining Scenarios

MLE and S-MLE have been able to achieve relatively high accuracy in frequency
estimation by Base RAPPOR. Furthermore, they are also applicable for other
mining scenarios like heavy-hitter identification, and replace Base RAPPOR
with other scheme for better accuracy. In this section, we propose the Adapt
MLE method which adaptively selects the most suitable LDP scheme for each
group of users to share data, then we briefly show how to apply MLE to other
LDP mining tasks.

Adapt MLE. The process of selecting schemes just fits in with some work [11,
18,22] on how to select LDP schemes based on privacy regime ε, the size of k
and communication cost.

Here we attach importance to accuracy and use variance as the evaluation
criteria to select LDP scheme for frequency estimation. Because uniform distri-
bution is the most difficult to estimate analyzed by minimax [22], we set each
value in f to be the same and easily calculate the variance of each scheme
through Lemma 1. So by comparing their variances, we can get the following
directly:

Adapt MLE(Group m) =
{

kRR if k < 3eεm + 2
OptimalSchemes otherwise

In other scenarios like sampling step in frequent item mining [20], “3eε + 2”
might change slightly. So the accuracy of Adapt MLE is higher than that of MLE
when the discrete values of ε of different users span a wide range. However, accu-
racy is not the only factor that matters, communication cost and computational
complexity are also worth considering in real world.

As far as we know, our multiple privacy setting still can be used for heavy-
hitters identification. SH [3] consists of two important steps. First step uses
hash function to separate the values into a lot of channels, with high probability
each channel has at most one frequent value, then identify whether there is a
frequent item in each channel. Referred to Chen [5], multiple privacy setting
is fully applicable to this step. The second step employs a frequency oracle to
estimate the frequency of those frequent values obtained from first step. And this
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is similar to the mining task of frequency estimation while obtaining variance
from frequency oracle is in another form and the final estimates are slightly
biased (still consistent with the goal of heavy-hitters).

6 Experiments

In this section, we evaluate and compare the performance of our proposed per-
sonalized approach through extensive experiments. Since there is no existing
work for our settings, we mainly verify the correctness of our analysis.

Setup. All experiments are performed 10 times and we plot the Mean Abso-
lute Percentage Error (MAPE) of all frequency estimation. The MAPE is
1
k

∑

i in[k]
|f̂i−fi|
fi+σ , where fi is the actual fraction of all users taking value i and

σ is to prevent the denominator from 0.
In RAPPOR [9] with h = 1, their value for epsilon is actually set to 2ln3 and

the number of users is a million level. And Apple also set epsilon to 1 or 2. So we
assume that 100 thousand users participates the collection, and set M options
in most experiments to ε = [0.2, 1.0, 2.0, 3.0] and the proportion of users in each
group is G = [0.2, 0.3, 0.3, 0.2] where G denotes the corresponding proportion.

For better verification of correctness, we generate two synthetic data which
are from Zipf’s distribution (parameter a = 2.5) and uniform distribution. The
schemes used in each experiment contain KRR, Base Rappor and Optimal
Scheme. We change the distribution of f by controlling the size of k.

6.1 Accuracy of MLE Method

Whatever the distribution of f is in Fig. 4, MAPE curves generated by four
groups shows that group with higher ε generates better estimates; Raw-PCE’s
accuracy has been greatly affected by the group with low variance, namely ε =
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0.2; From Theorem 2 and this figure, we know the variance of MLE is always
smaller than the variance estimated by each group.

In uniform distribution (Fig. 4(a)), MAPE increases as k increases, roughly
the same multiple because the denominator of MAPE’s calculation is actually
1/k. In fact, the size of the variance is independent of k. So in zipf’s distribution
(Fig. 4(a)), the change in MAPE will not be obvious when k does not exceed
200. This also the reason why uniform distribution is difficult to estimate.

6.2 S-MLE Method on Continuous ε

When there are too many options of M or all users’ ε is continuously distributed,
the value of β can help to divide all users into �1/β� groups as described in
Sect. 4.2. Small β will increase sampling error, but it can also reduce the overall
variance from Theorem 2. A balance between overall variance and sampling error
is reasonable.
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Fig. 5. the influence of β ’s value on MAPE, varying k.

In this part, we make the proportion of users choosing different ε obey
N(2.5, 0.8) and ε’s contiguous interval be [1.0,4.0], namely G obeys N(2.5, 0.8)
and ε is continuous in [1.0,4.0]. It can be observed from Fig. 5(a) that when k
is small, the MAPE with small β is acceptable, namely, the sampling error has
little effect. On the contrary, when k becomes larger than 60 for β = 0.0625,
the sampling error even exceeds the error generated by estimator. But for Zipf’s
distribution, the effect of k on sampling error is not obvious until k > 150. So for
our settings above concerning the number of users and ε ratio, β ∈ [0.05, 0.1] for
Zipf’s distribution and β ∈ [0.1, 0.15] for uniform distribution are appropriate
choices.

6.3 Multiple Schemes for Different Groups

In Sect. 5, we claim that users in different groups can use different LDP schemes
to achieve better accuracy. From Sect. 5, kRR performs better when k < 3eε +2.
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We divide 100 thousand users into 4 groups with ε = [1.0, 2.0, 3.0, 3.2] and G =
[0.3, 0.35, 0.3, 0.05].

Learning from Fig. 6, “Adapt-MLE” performs better because users of these 4
groups use kRR if k are less than 10, 25 and 62 and 76 respectively and otherwise
use Optimal Scheme.
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Fig. 6. Adapt MLE with multiple schemes, “MLE(kRR)” represents only KRR and
“MLE(Opt)” represents only Optimal scheme.

7 Related Work

The traditional differential privacy (DP) was developed for interactive query-
response on a central database and provides theoretical privacy guarantee by
mathematically randomizing the results of statistical queries. However, the major
limitation of DP is that all users need to trust a central server. Despite attacks
from aggregate queries, individual’s data may also suffer from privacy leakage
before aggregation [8].

On the other hand, Local differential privacy (LDP) [13], a variant of DP,
guarantees privacy of data without that server. Random Response (RR) [21],
where the user responds either true or opposite answer depending on coin flip-
ping, is the most basic technique in LDP schemes.

Widely accepted schemes for frequency estimation under LDP are Rappor
by Erlingsson et al. [9] and succinct histogram (SH) by Bassily and Smith [3].
RAPPOR’s key idea is encoding values into Bloom filters and applying RR
to each bit of Bloom filters. In order to conquer hash collision problems in
Bloom filters, RAPPOR brings in cohorts. In this paper, we use RAPPOR’s no
bloom filter version to analyze our multiple setting. SH’s has two important data
structures—frequency oracle and succinct histogram, these two work together to
estimate those values whose frequencies exceed η, so some applications do heavy
hitters [5,16,19] identification referred to SH. Due to the high complexity of
SH, Bassily et al. [4] recently developed an efficient way to query the frequency
estimation based on SH mechanism.

In addition, discrete distribution estimation under LDP considers all val-
ues’ frequency accuracy. Kairouz et al. [11] analyzed several key factors (privacy
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regimes, discrete distribution) which affect accuracy. Ye et al. [22] came up with
Optimal Scheme for discrete distribution estimation. About [11,22], their analy-
sis tools all contained minimax with l2-norm as loss function which is similar to
variance. Wang et al. [18] introduced a framework that can generalize the most
LDP schemes by recognizing RR’s features. These work all have a prerequisite
that the size of k is limited.

In personalization privacy fields, Jorgensen et al. [10] incorporated personal-
ized settings for DP (PDP), and Li et al. [14] proposed a k-partition strategy to
improve it. Then Chen et al. [5] first introduced the concept of personalized pri-
vacy in LDP (PLDP), it allows users to have two optional privacy regime ε and
τ . The former has no change, while τ represents a small piece of the candidates
list. They assume some users set small size of candidates list and this part of
users can greatly improve their performance on heavy-hitter mining task. Obvi-
ously, τ makes this personalization process complex for users. Akter et al. [1]
borrowed the definition of PLDP to estimate numeric data like average instead
of heavy-hitters mining.

8 Conclusion

In this paper, we mainly study frequency estimation under Local Differential
Privacy (LDP) in multiple regimes scenarios. We have formulated the problem
of multiple privacy levels and proposed a MLE method to deal with this situation.
Then, we propose S-MLE and Adapt-MLE to deal with the situation when users’
privacy levels are in some special cases.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (No. U1636216) and National Key R&D Program of China (No.
2016YFB0502302).

9 Appendix

A. Proof of Theorem 1

Proof. ( ˆf(1), ˆf(2), ..., ˆf(M)) are drawn from different normal distributions, normal
distribution has probability density function as follows:

g(x) =
1√

2πσ2
exp(− (x − u)2

2σ2
)

According to probability density function g(x), we know the closer estimation
ˆf(m) is to the expectation, the greater the g( ˆf(m)). For ease of calculation, we

use Eq. 2 to ignore the effect of fi on variance. g( ˆf(m)) actually has only one
variable–expectation. Separately bring each ˆf(m) into function and multiply these
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functions according to maximum likelihood, we get the final target function
which needs to be maximized.

F (f) =
M
∏

m=1

gm(f)

We first turn it to logarithmic function y = ln(F (f)), and after derivation,
the first derivative and the two derivative of F (f) are obtained sequentially.

y′ =
∂ln(F (f))

∂f
= −

∑M

m=1

ˆf(m) − f

σ2
m

y′′ =
y′

∂f
=

∑M

m=1

1
σ2

m

Through simple analysis, y′′ is always bigger than 0 and y′ is a strictly mono-
tone increasing function. So F (f) is a convex function with a max value. Then set

the first derivative function to zero, here when f̂ = (
∑M

m=1

ˆf(m)

σ2
m

)/(
∑M

m=1
1

σ2
m

),
we can get the maximum of the F (f).

B. Proof of Theorem 2

Proof. First use tm to denote var( ˆf(m)), the final estimation using maximum

likelihood is f̂ = (
∑M

m=1

ˆf(m)

tm
)/(

∑M
m=1

1
tm

). When we calculate the variance of
f̂ as follows:

var(f̂) = var(
∑M

m=1

ˆf(m)

tm
/
∑M

m=1

1
tm

)

Since the estimations fm(m ∈ [M ]) are independent of each other, and tm
here is actually a constant number.

var(f̂) =
∑M

m=1
(
var(f̂m)

t2m
)/(

∑M

m=1

1
tm

)2 = 1/
∑M

m=1

1
tm

C. Proof of Lemma 3

Proof. We still judge the accuracy of the final estimation from the perspective
of variance. The Lemma 1 shows base rappor’s estimation variance is var(f̂i) =

eε/2

n(eε/2−1)2
, for the sake of simplicity, let’s first assume eε/2 
 1 and use tm to

denote var( ˆf(m)). So that tm = (1/(nmeεm/2)).
We are clear that the f̂ ’s variance and ˆf(m)’s variance are the same format,

because f is regarded as using Base RAPPOR on the whole population while
all users have the same privacy regime ε′.

Combining the above equations and Theorem 2 together, we can find ε′ =
2 ∗ ln

∑
nm∗exp(εm)∑

nm
. If eε/2 
 1 doesn’t hold in some situation, the calculation

can still be based on the above formula and the result will become a little more
complicated.
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Abstract. Prevalence of the Infrastructure as a Service (IaaS) clouds
has enabled organizations to elastically scale their stream processing
applications to public clouds. However, current approaches for elastic
stream processing do not consider the potential security vulnerabili-
ties in cloud environments. In this paper we describe the design and
implementation of an Elastic Switching Mechanism for data stream pro-
cessing which is based on Homomorphic Encryption (HomoESM). The
HomoESM not only does elastically scale data stream processing appli-
cations into public clouds but also preserves the privacy of such appli-
cations. Using a real world test setup, which includes an email filter
benchmark and a web server access log processor benchmark (EDGAR)
we demonstrate the effectiveness of our approach. Multiple experiments
on Amazon EC2 indicate that the proposed approach for Homomorphic
encryption provides significant results which is 10% to 17% improvement
of average latency in the case of email filter benchmark and EDGAR
benchmarks respectively. Furthermore, EDGAR add/subtract operations
and comparison operations showed 6.13% and 26.17% average latency
improvements respectively. These promising results pave the way for real
world deployments of privacy preserving elastic stream processing in the
cloud.

Keywords: Cloud computing · Elastic data stream processing ·
Compressed event processing · Data compression · IaaS ·
System sizing and capacity planning

1 Introduction

Data stream processing conducts online analytics processing on data streams [5].
Data stream processing has applications in diverse areas such as health informat-
ics [1], transportation [16], telecommunications [24], etc. These applications have
been implemented on data stream processing engines [5]. Most of the initial data
c© Springer Nature Switzerland AG 2019
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stream processors were run on isolated computers/clusters (i.e., private clouds).
The rise of cloud computing era has resulted in the ability of on demand pro-
visioning of hardware and software resources. This has resulted in data stream
processors which run as managed cloud services (e.g., [10,14]) as well as hybrid
cloud services (e.g., Striim [23]).

Stream processing systems often face resource limitations during their oper-
ation due to unexpected loads [2,6]. Several approaches exist which could solve
such an issue. Elastically scaling into an external cluster [15,21], load shedding,
approximate query processing [20], etc. are some examples. Out of these, elas-
tic scaling has become a key choice because approaches such as load shedding,
approximate computing has to compromise accuracy which is not accepted by
certain categories of applications. Previous work has been there which used data
compression techniques to optimize the network connection between private and
public clouds [21]. However, current elastic scaling mechanisms for stream pro-
cessing do not consider a very important problem: preserving the privacy of the
data sent to public cloud.

Preserving the privacy of stream processing operation becomes one of the
key questions to be answered when scaling into a public cloud. Sending the
data unencrypted to the server definitely exposes them to prying eyes of the
eavesdroppers. Sending data encrypted over the network and decrypting them to
get original values at the server may also expose sensitive information. Multiple
work has recently being conducted on privacy preserving data stream mining.
Privacy of patient health information has been a serious issue in recent times [19].
Fully Homomorphic Encryption (FHE) has been introduced as a solution [9].
FHE is an advanced encryption technique that allows data to be stored and
processed in encrypted form. This gives cloud service providers the opportunity
for hosting and processing data without even knowing what the data is. However,
current FHE techniques are computationally expensive needing excessive space
for keys and cypher texts. However, it has been shown with some experiments
done with HElib [12] (an FHE library) that it is practical to implement some
basic applications such as streaming sensor data to the cloud and comparing the
values to a threshold.

In this paper we discuss elastic scaling in a private/public cloud (i.e., hybrid
cloud) scenario with privacy preserving data stream processing. We design and
implement a privacy preserving Elastic Switching Mechanism (HomoESM) over
private/public cloud system. Homomorphic encryption scheme of HElib has been
used on top of this switching mechanism for compressing the data sent from
private cloud to public cloud. Application logic at the private cloud is imple-
mented with Siddhi event processing engine [16]. We designed and developed
two real world data stream processing benchmarks called EmailProcessor and
HTTP Log Processor (EDGAR benchmark) during the evaluation of the pro-
posed approach. Using multiple experiments on real-world system setup with the
stream processing benchmarks we demonstrate the effectiveness of our approach
for elastic switching-based privacy preserving stream processing. We observe
that Homomorphic encryption provides significant results which is 10% to 17%
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improvement of average latency in the case of Email Filter benchmark.
EDGAR comparison and add/subtract operations showed 26.17% average
latency improvement. HomoESM is the first known data stream processor which
does privacy preserving data stream processing in hybrid cloud scenarios effec-
tively. We have released HomoESM and the benchmark codes as open source
software123. Specifically, the contributions of our work can be listed as follows.

– Privacy Preserving Elastic Switching Mechanism (HomoESM) - We design
and develop a mechanism for conducting elastic scaling of stream processing
queries over private/public cloud in a privacy preserving manner.

– Benchmarks - We design and develop two benchmarks for evaluating the per-
formance of HomoESM.

– Optimization of Homomorphic Operations - We optimized several homomor-
phic evaluation schemes such as equality, less than/greater than comparison.
We also do data batching based optimizations.

– Evaluation - We evaluate the proposed approaches by implementing them on
real world systems.

The paper is organized as follows. Next, we provide related work in Sect. 2.
We provide the details of system design in Sect. 3 and implementation of the
HomoESM in Sect. 4. The evaluation details are provided in Sect. 5. We make a
discussion of the results in Sect. 6. We provide the conclusions in Sect. 7.

2 Related Work

There have been multiple previous work on elastic scaling of event processing
systems in cloud environments.

Cloud computing allows for realizing an elastic stream computing service, by
dynamically adjusting used resources to the current conditions. Hummer et al.
discussed how elastic computing of data streams can be achieved on top of Cloud
computing [13]. They mentioned that the most obvious form of elasticity is to
scale with the input data rate and the complexity of operations (acquiring new
resources when needed and releasing resources when possible). However, most
operators in stream computing are stateful and cannot be easily split up or
migrated (e.g., window queries need to store the past sequence of events). In
HomoESM we handle this type of queries by query switching.

Stormy is a system developed to evaluate the “stream processing as service”
concept [18]. The idea was to build a distributed stream processing service using
techniques used in cloud data storage systems. Stormy is built with scalability,
elasticity and multi-tenancy in mind to fit in the cloud environment. They have
used distributed hash tables (DHT) to build their solution. They have used
DHTs to distribute the queries among multiple nodes and to route events from

1 https://github.com/arosharodrigo/event-publisher.
2 https://github.com/arosharodrigo/statistics-collector.
3 https://github.com/arosharodrigo/simple-siddhi-server.

https://github.com/arosharodrigo/event-publisher
https://github.com/arosharodrigo/statistics-collector
https://github.com/arosharodrigo/simple-siddhi-server
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one query to another. Stormy builds a public streaming service where users can
add new streams on demand. One of the main limitations in Stormy is it assumes
that a query can be completely executed on one node. Hence, Stormy is unable
to deal with streams for which the incoming event rate exceeds the capacity of
a node. This is an issue which we address in our work via the concept of data
switching of HomoESM.

Cervino et al. try to solve the problem of providing a resource provisioning
mechanism to overcome inherent deficiencies of cloud infrastructure [2]. They
have conducted some experiments on Amazon EC2 to investigate the problems
that might affect badly on a stream processing system. They have come up
with an algorithm to scale up/down the number of VMs (or EC2 instances)
based solely on the input stream rate. The goal is to keep the system with a
given latency and throughput for varying loads by adaptively provisioning VMs
for streaming system to scale up/down. However, none of the above-mentioned
works have investigated on reducing the amount of data sent to public clouds in
such elastic scheduling scenarios. In this work we address this issue.

Data stream compression has been studied in the field of data mining.
Cuzzocrea et al. have conducted research on a lossy compression method for effi-
cient OLAP [3] over data streams. Their compression method exploits semantics
of the reference application and drives the compression process by means of the
“degree of interestingness”. The goal of this work was to develop a methodol-
ogy and required data structures to enable summarization of the incoming data
stream. However, the proposed methodology trades off accuracy and precision
for the reduced size.

Dai et al. have implemented homomorphic encryption library [4] on Graphic
Processing Unit (GPU) to accelerate computations in homomorphic level. As
GPUs are more compute-intensive, they show 51 times speedup on homomorphic
sorting algorithm when compared to the previous implementation. Although
computation wise it gives better speed up, when encrypting a Java String field,
its length goes more than 400 KB which is too large to be sent over a public
network. Hence we used HElib as the homomorphic encryption library in our
work.

Intel has included a special module in CPU, named Software Guard eXtension
(SGX), with its 6th generation Core i5, i7, and Xeon processors [22]. SGX reduces
the trusted computing base (TCB) to a minimal set of trusted code (programmed
by the programmer) and the SGX processor. Shaon et al. developed a generic
framework for secure data analytics in an untrusted cloud setup with both single
user and multi-user settings [22]. Furthermore, they proposed BigMatrix which
is an abstraction for handling large matrix operations in a data oblivious manner
to support vectorizations. Their work is tailored for data analytics tasks using
vectorized computations, and optimal matrix based operations. However, in this
work HomoESM conducts stream processing which is different from the batch
processing done by BigMatrix.
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3 System Design

In this section we first describe the architecture of HomoESM and then describe
the switching functions which determine when to start sending data to public
cloud.

The HomoESM architecture is shown in Fig. 1. The components highlighted
in the dark blue color correspond to components which directly implement pri-
vacy preserving stream processing functionality.

In this system architecture Scheduler collects events from the Plain Event
Queue according to the configured frequency and the timestamp field on the
event. Then it routes the events into the private publishing thread pool and to
the public publishing queue, according to the load transfer percentage and the
threshold values.

Receiver receives events from both private & public Siddhi. If the event is
from the private Siddhi, it is sent to the Profiler. If not the event is a compos-
ite event and it is directed to the ‘Composite Event Decode Worker’ threads
located inside the Decryptor which basically performs the decryption function.
Finally, all the streams which goes out from HomoESM run through Profiler
which conducts the latency measurements.

Fig. 1. The system architecture of Homomorphic Encryption based ESM (HomoESM)
(Color figure online).

In this paper we use the same switching functions described in [21] for trig-
gering and stopping data sending to public cloud (See Eq. 1). It should be noted
that the main contribution of this paper is to describe the elastic privacy pre-
serving stream functionality. Here φVM (t) is the binary switching function for a
single VM, t is the time period of interest. Lt−1 and Dt−1 are the latency and
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data rate values measured in the previous time period. A time period of τ has
to be elapsed in order for the VM startup process to trigger. Ds is the threshold
for total amount of data received by the VM from private cloud.

φV M (t) =

⎧
⎪⎨

⎪⎩

1, Lt−1 ≥ Ls, τ has elapsed.

0, Dt−1 < Ds, Lt−1 < Lp Otherwise

. (1)

4 Implementation

In this Section first we describe the implementation details of HomoESM in
Sect. 4.1 and we describe the benchmark implementations in Sects. 4.2, 4.3, 4.4,
and 4.5.

4.1 Implementation of HomoESM

We have developed the HomoESM on top of the WSO2 Stream Processor (WSO2
SP) software stack. WSO2 SP is an open source, lightweight, easy-to-use, stream
processing engine [26]. WSO2 SP internally uses Siddhi which is a complex event
processing library [16]. Siddhi feature of WSO2 SP lets users run queries using
an SQL like query language in order to get notifications on interesting real-time
events.

High-level view of the system implementation is shown in Fig. 2. Input events
are received by the ‘Event Publisher’. Java objects are created for each incoming
event and put into a queue. Event publisher thread picks those Java objects
from the queue according to the configured period. Next, it evaluates whether
the picked event needs to be sent to the private or the public Siddhi server,
according to the configured load transfer percentage and threshold values. If
that event needs to be sent to private Siddhi, it will mark the time and delegate
the event into a thread pool which handles sending to private Siddhi. If that
event needs to be sent to public Siddhi, it will mark the time and put into the
queue which is processed by the Encrypt Master asynchronously.

Private cloud

Public cloud

Event 
Publisher

Encrypt 
Master

Composite 
Event 

Encode 
Worker

Encrypted 
Event 

Publisher

Event 
Receiver

Private 
Siddhi 
Server

Public Siddhi Server

Composite 
Event 

Decode 
Worker

Scheduler OutputProfilerInput

Fig. 2. Main components of HomoESM
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Encrypt Master thread (see Fig. 3(a)) periodically checks a queue which keeps
the events required to be sent to public cloud. The queue is maintained by the
‘Event Publisher’ (See Fig. 4(a)). If that queue size is greater than or equal to
composite event size, it will create a list of events equal to the size of composite
event size. Next, it delegates the event encryption and composite event creation
task to the ‘Composite Event Encode Worker’ (see Fig. 3(b)).

Composite Event Encode Worker is a thread pool which handles event
encryptions and composite event creations. First, it combines non-operational
fields of each plain events in the list by the pre-defined separator. Then it converts
operational fields into binary form and combines them together. Next, it pads
the operational fields with zeros, in order to encrypt using HElib API. Finally, it
performs encryption on those operational fields and puts the newly created com-
posite event into a queue which is processed by the ‘Encrypted Events Publisher’
thread (See Fig. 4(b)).

Firing events into the public VM is done asynchronously. Decision of how
many events sent to the public Siddhi server was taken according to the per-
centage we have configured initially. But the public Siddhi server’s publishing
flow has max limit of 1500 TPS (Tuples Per Second). If the Event Publisher
receives more than the max TPS, the events are routed back into the private
Siddhi server’s VM.

‘Encrypted Events Publisher’ thread periodically checks for encrypted events
in the encrypted queue which is put by the ‘Composite Event Encode Worker’ at
the end of the composite event creation and encryption process (See Fig. 3(b)).
First, it combines non-operational fields of each plain event in the list by the
pre-defined separator. If there are encrypted events, it will pick those at once
and send to public Siddhi server. The Encryptor module batches events into
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Create a list of plain events 
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Convert operational 
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Perform encryption on 
operational fields 
using HElib API

Put encrypted composite 
event into encrypted queue 

which is processed by 
'Encrypted-Events-Publisher'

(a) (b)

Fig. 3. Data encryption and the composite event creation process at the private Siddhi
server. (a) Encrypt Master thread (b) Composite Event Encode Worker thread
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composite events and encrypts each composite message using Homomorphic
encryption. The encrypted events are sent to the public cloud where Homo-
morphic CEP Engine module conducts the evaluation.

We encrypt operand(s) and come up with composite operand field(s) in each
HE function initially, in order to perform HE operations on operational fields
in composite event. For example, in the case of the Email Filter benchmark,
at the Homomorphic CEP engine which supports Homomorphic evaluations,
initially it converts the constant operand into an integer (int) buffer with size 40
with a necessary 0 padding. Then it replicates the integer buffer 10 times and
encrypts using HElib [11]. Finally, the encrypted value and the relevant field in
the composite event are used for HElib’s relevant (e.g., comparison, addition,
subtraction, division, etc.) operation homomorphically. The result is replaced
with the relevant field in the composite event and is sent to the Receiver without
any decryption.

The received encrypted information is decrypted and decomposed to extract
the relevant plain events. The latency measurement happens at the end of this
flow. ‘Event Receiver’ thread checks if the event received from the Siddhi server
is encrypted with Homomorphic encryption. If so it delegates composite event
into ‘Composite Event Decode Worker’. If not it will read payload data and
calculate the latency (See Fig. 5(a)).

After receiving a composite event from the Event Receiver the Composite
Event Decode Worker handles all decomposition and decryptions of the compos-
ite event (See Fig. 5(b)). It first splits non-operational fields in the composite
event by the pre-defined separator. Second, it performs decryption on the oper-
ational fields using HElib API and splits the decrypted fields into fixed-length
strings. Then it creates plain events using the splitted fields. Next, it checks each
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Fig. 4. Operation of the Event Publisher and the Encrypted Events Publisher compo-
nents. (a) Event Publisher (b) Encrypted Events Publisher
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operational fields in the plain event to see whether it contains zeros and then
processes the events. Finally, it calculates the latency of the decoded events.

Note that we implement the Homomorphic comparison of values following the
work by Togan et al. [25]. For two single bit numbers with x and y, Togan et al.
[25] have shown that the following equations (see Eq. 2) will satisfy greater-than
and equal operations, respectively.

x > y ⇔ xy + x = 1
x = y ⇔ x + y + 1 = 1

(2)

Togan et al. have created comparison functions for n-bit numbers using divide
and conquer methodology. In our case we derived 2-bit number comparisons as
follows. x1x0 and y1y0 are the two numbers with 2-bits (see Eq. 3). Here every
‘+’ operation is for XOR gate operation and every ‘.’ operator is for AND gate
operation.

x1x0 > y1y0 ⇔ (x1 > y1) ∨ (x1 = y1) ∧ (x0 > y0) = 1
⇔ (x1.y1 + x1) + (x1 + y1 + 1)(x0.y0 + x0) = 1

⇔ x1.y1 + x1 + x1.x0.y0 + x1.x0+
y1.x0.y0 + y1.x0 + x0.y0 + x0 = 1

x1x0 == y1y0 ⇔ (x0 + y0 + 1).(x1 + y1 + 1) = 1
⇔ x0.x1 + x0.y1 + x0 + y0.x1 + y0.y1 + y0 + 1 = 1

x1x0 < y1y0 ⇔ (x1x0 > y1y0) + (x1x0 == y1y0) + 1 = 1
⇔ (x1.y1 + x1 + x1.x0.y0 + x1.x0 + y1.x0.y0

+y1.x0 + x0.y0 + x0) + (x0.x1 + x0.y1

+x0 + y0.x1 + y0.y1 + y0 + 1) + 1 = 1

(3)
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Fig. 5. Event receiving, decomposition, and decryption processes.
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Reason that we build up comparison functions for two bit numbers is to
apply the concept of homomorphic encryption and evaluation into the CEP
engine. Even for 2-bit number comparisons, there are a number of XOR and
AND gate evaluations need to be done as above.

After evaluating the individual HE operations at public SP, filtering using
those gate operations happens at private SP. Boolean conditions are evaluated on
encrypted operands using HE with above limitations for input number range, and
‘NOT’, ‘AND’, and ‘OR’ gate operations evaluate at private SP after decrypt-
ing/decoding the events which comes from public SP after HE evaluations.

We have evaluated the HomoESM’s functionality using four benchmark appli-
cations developed using two data sets. Next, in order to ensure the completeness
of this section we describe the implementation details of the two benchmarks.

4.2 Email Filter Benchmark

Email Filter is a benchmark we developed based on the canonical Enron email
data set [17]. The data set has 517,417 emails with an average body size of
1.8 KB, the largest being 1.92 MB. The Email Filter benchmark only had fil-
ter operation and was used to compare filtering performance compared to the
EDGAR Filter benchmark which is described in the next subsection. The archi-
tecture of the Email Filter benchmark is shown in Fig. 6. The events in the input
emails stream had eight fields iij timestamp, fromAddress, toAddresses, ccAd-
dresses, bccAddresses, subject, body, regexstr where all the fields were Strings
except iij timestamp which was long type. We formatted the toAddresses and
ccAddresses fields to have only single email address to support HElib evalua-
tions. The criteria for filtering out Emails was to filter by the email addresses
lynn.blair@enron.com and richard.hanagriff@enron.com. The filtering Sid-
dhiQL statement can be stated as in Listing 1.1,

NOT ( ( fromAddress i s equal to ‘ lynn . b la i r@enron . com ’ ) AND
(( toAddresses i s equal to ‘ r i cha rd . hanagr i f f@enron . com ’ )
OR ( ccAddresses i s equal to ‘ r i cha rd . hanagr i f f@enron . com ’
) ) )

Listing 1.1. EmailFilter condition.
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4.3 EDGAR Filter Benchmark

We developed another benchmark based on a HTTP log data set published
by Division of Economic and Risk Analysis (DERA) [8]. The data provides
details of the usage of publicly accessible EDGAR company filings in a simple
but extensive manner [8]. Each record in the data set consists of 16 different
fields hence each event sent to the benchmark had 16 fields (iij timestamp, ip,
date, time, zone, cik, accession, extension, code, size, idx, norefer, noagent, find,
crawler, and browser). Similar to the Email Filter benchmark all of the fields
except iij timestamp were Strings. Out of these fields we used noagent field
by adding lengthy string of 1024 characters to the existing value, in order to
increase the events’ size (Note that we have done the same for all the EDGAR
benchmarks described in this paper).

The EDGAR benchmark was developed with the aim of implementing fil-
tering support. Basic criteria was to filter out EDGAR logs, which satisfy the
conditions shown in Listing 1.2.

( ex tens i on == ‘ v16003sv1 . htm ’ ) and ( code ==
‘200 . 0 ’ ) and ( date == ‘2016 −10 −01 ’)))

Listing 1.2. EDGAR filter condition.

Most of the EDGAR log events were same and the logs did not have any
data rate variation inherently. Therefore, we introduced varying data rate by
publishing events in different TPS values according to a custom-defined function.

4.4 EDGAR Comparison Benchmark

Using the same EDGAR data set we developed EDGAR Comparison benchmark
to evaluate the performance [7] of Homomorphic Comparison operation. In the
EDAGR Comparison benchmark We have changed the input format of the zone
and find fields to integer (Int) in order to do comparison operations. Since we are
doing only bitwise operations, we limited the HElib message space to 2, in order
to use only 0s and 1s. Therefore, maximum length for encrypting field when
we used message space as 2 was 168, and we used composite event size as 168
when sending to public Siddhi server. The architecture of EDGAR Comparison
benchmark is similar to the topology shown in Fig. 6. Basic criteria is to filter
out EDGAR logs, which satisfy following conditions (See Listing 1.3).

( zone == 0) and ( f i nd > 0) and ( f i nd < 3)
Listing 1.3. EDGAR comparison condition.

4.5 EDGAR Add/Subtract Benchmark

In EDGAR add/subtract benchmark we have changed the input format to an
Integer, for code, idx, norefer, and find fields in order to support add/subtract
operations. The corresponding siddhi query which depicts the addition and sub-
tract operations conducted by this benchmark is shown in Listing 1.4.
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@info (name = ’ query5 ’ ) from
inputEdgarStream s e l e c t i i j t imes tamp , ip , date , time ,
zone , c ik , acce s s i on , extens ion , code −100 as code , s i z e ,
idx+30 as idx , no r e f e r+20 as nore f e r , noagent , f ind −10 as
f ind , crawler , browser i n s e r t i n to outputEdgarStream ;

Listing 1.4. EDGAR add/subtract siddhi query.

5 Evaluation

We conducted the experiments using three VMs in Amazon EC2. In this experi-
ment two VMs were hosted in North Virginia, USA and they were used as private
cloud while the VM used as public cloud was located in Ohio, USA. We used the
Email Filter benchmark in this experiment which does filtering of an email event
stream. Out of the two VMs in North Virginia one was a m4.4xlarge instance
which had 16 cores, 64 GB RAM while the private CEP Engine was deployed in
a m4.xlarge instance which had 4 CPU cores, 16 GB RAM. In m4.4xlarge VM we
have deployed ‘event-publisher’ (Event Publisher) and ‘statistic-collector’ (Event
Receiver) modules. The Stream Processor engine running in the public cloud was
deployed on the VM running in Ohio which was a m4.xlarge instance. All the
VMs were running on Ubuntu 16.04.2 LTS (Long Term Support). Using a net-
work speed measurement tool we observed that network speed between the two
VMs in North Virginia was around 730 Mbits/s while the network speed between
North Virginia and Ohio was 500 Mbits/s. Figure 7 shows the architecture of the
experiment setup. The input data rate variation of the Email benchmark and
the EDGAR benchmark data sets is shown in Fig. 8(a) and (b) respectively. The
two charts indicate that the workloads imposed by the two benchmarks have
significantly different characteristics.
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Server

Public Siddhi 
ServerHomoESM

Private Cloud Public Cloud

EC2 instance type: m4.xlarge
Region: North Virginia, USA
Hardware: 4 cores, 16GB RAM
OS: Ubuntu 16.04.2 LTS

EC2 instance type: m4.4xlarge
Region: North Virginia, USA
Hardware: 16 cores, 64GB RAM
OS: Ubuntu 16.04.2 LTS

730Mbits/sec 500Mbits/sec

EC2 instance type: m4.xlarge
Region: Ohio, USA
Hardware: 4 cores, 16GB RAM
OS: Ubuntu 16.04.2 LTS

Fig. 7. Experiment setup of HomoESM on Amazon EC2.
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(a)

(b)

Fig. 8. Input data rate variation of the two benchmarks (a) Email Filter benchmark
(b) EDGAR benchmarks.

5.1 Email Filter Benchmark

In the first round we used Email Filter benchmark. The results of this experi-
ment is shown in Fig. 9. The curve in the blue color (dashed line) indicates the
private cloud deployment. The red color curve indicates the deployment with
switching to public cloud. It can be observed a clear reduction of average latency
when switched to the public cloud in this setup compared to the private cloud
only deployment. With homomorphic elastic scaling an overall average latency
reduction of 2.14 seconds per event can be observed. This is 10.24% improvement
compared to the private cloud only deployment. Note that in all the following
charts we have marked the times where VM start/VM stop operations have been
invoked in order to start/stop the VM in the public cloud. Since VM startup
and data sending times are almost similar, in this paper we assume VM startup
time as the data sending time and VM stop time as the point where we stop
sending data to public cloud.

VM
Start

VM
Stop

VM
Start

VM
Stop

VM
Start

Fig. 9. Average latency of elastic scaling of the Email Filter benchmark with securing
the event stream sent to public cloud via homomorphic encryption (Color figure online).
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5.2 EDGAR Filter Benchmark

In the second round we used EDGAR Filter benchmark for evaluation of our
technique. The results are shown in Fig. 10. It can be observed significant perfor-
mance gain in terms of latency when switching to public cloud with the EDGAR
benchmark. A notable fact is that EDGAR data set had relatively smaller mes-
sage size. The average message size of the EDGAR benchmark was 1.1 KB. The
HomoESM mechanism was able to reduce the delay with considerable improve-
ment of 17%.
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VM
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Fig. 10. Average latency of elastic scaling of the EDGAR benchmark with Homomor-
phic filter operations.

5.3 EDGAR Comparison Benchmark

Next, we evaluated the Homomorphic comparison operation. Here we have used
a slightly modified version of the EDGAR Filter benchmark to facilitate com-
parison operation in a homomorphic manner. Here also we add lengthy string of
1024 characters to the existing value of ‘noagent’ field. The results are shown in
Fig. 11.
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Fig. 11. Average latency of elastic scaling of the EDGAR benchmark with Homomor-
phic comparison operations.

We could see only a slight improvement of latency with EDGAR comparison
benchmark. The improvement of the average latency was around 449 ms which is
3% improvement compared to the private only deployment. Compared to equal
only operation, less-than & greater-than operations consume more XOR & AND
gate operations in the Homomorphic Encryption (HE) level. Due to that Siddhi
engine processing throughput, when having homomorphic less-than & greater-
than operations is quite low compared to equal operation only case. Therefore,
the portion of events sent to public Siddhi is lesser than other cases. That’s why
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we could not see much advantage (only 3%) on latency curves for both private
& public Siddhi setup compared to private Siddhi only setup. During the middle
spike shown in Fig. 11, a 26.17% improvement in latency was observed.

5.4 EDGAR Add/Subtract Benchmark

Finally, we evaluated the Homomorphic add/subtract operation using the
EDGAR benchmark. The addition and subtraction HE operations’ supported
message space range is from 0 to 1201. Although 32-bit full adder circuits using
HElib could increase the range further we keep this as a further work. The over-
all improvement was 3.68% for the scenario where 1.5% of the load was sent to
the Public VM. We observed a maximum 6.13% performance improvement in
the third spike shown in Fig. 12.
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Fig. 12. Average latency of elastic scaling of the EDGAR benchmark with Homomor-
phic Add/Subtract operations.

6 Discussion

Privacy preserving data mining in clouds has been an area of significant interest
in recent times. However, none of the previous work on elastic stream processing
has demonstrated the feasibility of conducting elastic privacy preserving data
stream processing. In this paper we have not only implemented a mechanism for
elastic privacy preserving data stream processing but also have shown consider-
able performance benefits on real world experiment setups. Results comparing
HomoESM to the private cloud only deployments demonstrate 3–17% latency
improvements. Furthermore, during large workload spikes HomoESM has shown
6–26% latency improvements which is almost doubled performance improvement.
Workload spikes are the key situations where HomoESM needs to be deployed
which indicates HomoESM’s effectiveness in handling such situations.

Although one could argue that the techniques presented in this paper are
restricted due to the nature of the modern homomorphic encryption techniques,
we have overcome the difficulties via batching and compressing the events, which
is one of the key contributions of this paper. We have used high performance
VM instance type m4.4xlarge in the evaluations, because composite event com-
posing & decomposing require more CPU for publisher and statistics collector.
A limitation of FHE is that it needs prior knowledge of the data to conduct
different operations on the encrypted data. Hence, HomoESM is applicable only
for data streams with finite and unchanging data.
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7 Conclusion

Privacy has become an utmost important barrier which hinders leveraging IaaS
for running stream processing applications. In this paper we introduce a mech-
anism called HomoESM which conducts privacy preserving elastic data stream
processing. We evaluated our approach using two benchmarks called Email Filter
and EDGAR on Amazon AWS. We observed significant improvements of over-
all latency of 10% and 17% for Email Processors and EDGAR data sets with
using HomoESM on equality operation. We also implemented comparison and
add/subtract operations in HomoESM which resulted in maximum 26.17% and
6.13% improvement in the average latencies respectively. In future, we plan to
extend this work to handle more complicated streaming operations. We also plan
to experiment with multiple query based tuning for privacy preserving elastic
scaling.
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Abstract. Recent years have witnessed the rapid advances in location
based services (LBSs) with the fast development of mobile devices and
communication technologies. Outsourcing spacial databases to Cloud pro-
vides an economical and flexible way for the LBS provider to deploy ser-
vices. For an LBS enterprise, the collected data might be its most valu-
able strategic asserts. However, in the outsourced database paradigm, the
third-party database server at cloud is not completely trustworthy, there-
fore, protecting data privacy is critical. A polynomial evaluation algorithm
over road network returns top-k results (restaurant) to a user (tourist).
It is a fundamental and important query mode has been widely used in
LBS applications. In this paper, we extend the Order-Revealing Encryp-
tion (ORE) to design a privacy-preserving polynomial evaluation algo-
rithm over the spacial data with security guarantee. To reduce the compu-
tation overhead, we introduce an influence model to store the encrypted
point data (restaurant). Besides the stronger security, this work is a prac-
tical polynomial evaluation algorithm over the road network. The prac-
ticality is mainly manifested in two aspects: evaluation over multiple
attributes, and the dynamic evaluation function rather than fixed function
in advance. We formally prove the security of our scheme in the random
oracle model. Finally, we implement a prototype to evaluate the perfor-
mance of our scheme. The experimental results over the real road network
dataset demonstrate that the proposed scheme is an efficient and practical
polynomial evaluation algorithm for the LBS applications.

Keywords: Order-revealing encryption ·
Privacy-preserving polynomial evaluation algorithm · Road network ·
kNN query

1 Introduction

The development of location-aware smartphone is leading a new wave of location-
based services (LBSs). Crowd-sourced review forum is probably the most com-
monly used of all service models in LBS applications (such as Yelp, TripAdvisor,
and Meituan). Using smartphones, any user can rate and review the points of
interests (POIs) after he enjoys their services.
c© Springer Nature Switzerland AG 2019
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By these rating data and reviews, a user is easy to select the best POIs which
are near and appropriate for himself, even though he never visited them. Taking
Yelp as an example, users (customers) of this application would like to submit
their reviews of some POIs (restaurants) using Yelp’s rating system after their
consumptions. These reviews are collected by Yelp rating system to evaluate all
the POIs in a city. While a user attempts to access the POIs around him, the
rating scores can help him to make his decision. Receiving the query request
with user’s location, the LBS server can use the evaluation algorithm to pick up
the candidate best surrounding POIs for him.

With the rapid growth of LBS’s dataset, the query processes inevitably intro-
duce the huge overheads of computation and storage. Furthermore, the complex-
ity of evaluation algorithm based on the user location depends heavily on the
denseness of the POIs around him. It also leads to a high overhead, especially
in a big city. To lighten the burden, more and more LBS providers tend to dele-
gate the dataset and query operations to a cloud service provider (CSP), which
provides storage and online query services such as Amazon S3.

The data owner, for example, an enterprise which provides LBS, can farm
out the dataset to the cloud, and CSP will process the query request according
to the previously agreed protocol. There is no doubt that the outsourced service
mode provides an efficient and economic way for the enterprise to implement LBS
applications, however, it also raises the security concerns. For an LBS enterprise,
the collected dataset including the rating scores and the reviews for all the POIs
might be its most valuable strategic asserts. There are considerable risks that
the malicious attackers will attack the data center for enormous commercial
values of these data. Moreover as the CSP is not completely trustworthy, directly
outsourcing these data may do harm to the enterprise’s interests. Therefore, it
is very important for an LBS provider to conduct a privacy-preserving service
mechanism in the cloud-based outsourced data management model.

At present, there have been a number of research efforts [3,4,9,10,17,18,20]
focused on the privacy-preserving query for the scenario of LBS. Nonetheless,
most of them are kNN queries which adopt the Euclidean distance as the eval-
uating indicator. Even though some methods provide good performances, the
kNN query based on Euclidean distance still cannot satisfy the requirements of
some real-world applications.

For a practically privacy-preserving polynomial evaluation algorithm in LBS
applications, we think there are three below challenges that need to be overcome:

– The POIs in a city are distributed along the road. The user can only visit
the desired POIs through the paths in the road network. So, a user is more
interested in the POIs which are near to him on the road network than those
are near in Euclidean distance. How to evaluate the distance in the road
network without leaking out privacy is the first challenge.

– Besides the distance factor, a user usually considers the rating scores to select
the best POIs. Therefore, a privacy-preserving polynomial evaluation algo-
rithm over multiple attributes (such as distance, rating score) is highly desir-
able for the real LBS applications.
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– The polynomial evaluation algorithm should be personalized, which contains
two meanings: the parameters of the polynomial can be decided by the user,
and the evaluation polynomial is not fixed in advance.

To address this issue, we extend the Order-Revealing Encryption (ORE) to
design a privacy-preserving polynomial evaluation algorithm which meets all
the practical requirements mentioned above with strong security guarantee. The
main contributions of this paper can be summarized as:

– First, we propose a novel homomorphic and ORE scheme to encrypt the spa-
cial data and the rating scores without leaking out the sensitive information.

– Second, we design a privacy-preserving polynomial evaluation algorithm over
road network. By it, the CSP is allowed to directly execute polynomial com-
putation over the encrypted data with strong security guarantee.

– Third, we introduce an influence model to evaluate the influence ranges of the
point and the querier to reduce the overheads of storage and computation.

– Finally, we formally prove the security of the proposed scheme in the random
oracle model.

2 Related Work

The kNN query is an important query type applied in many fields such as
data mining and LBS applications. In order to reserve the distance relationship
between the candidate points, Wong et al. [15] proposed an asymmetric scalar-
product-preserving encryption(ASPE) scheme as distance-recoverable encryp-
tions. It used an invertible matrix as the encryption key for the database and
query request. Some researches have been done on the approximate Privacy Pre-
serving kNN (PPkNN) query. Yiu et al. [19] proposed three transformation tech-
niques providing some trade-offs among data privacy, query cost and accuracy.
Yao et al. [16] proposed a privacy-preserving kNN method based on partitioned
Voronoi diagram. But all the works above cannot execute kNN query accurately.
To provide the accurate PPkNN service, Zhu et al. [22] proposed a query scheme
based on Pallier cryptosystem, and Zhou et al. [21] proposed an efficient kNN
query scheme which only reveals limited information of data owner. Both of
them are not secure when the cloud server attempts to obtain the data access
patterns. In addition, Elmehdwi et al. [2] offered a secure query scheme which
allows two non-colluding clouds to perform the PPkNN query.

The PPkNN over road network is much more complicated. In a typical LBS
application, not only the POI dataset will cause the leakage of business secret,
but also the data access pattern and query requests will reveal the user’s pri-
vacy. Mix zone [9] can preserve the location privacy of query request, but it
is vulnerable under the background knowledge attack. Hu et al. [5] proposed
a secure traversal framework which can be categorized as a scheme based on
geographic data transformation. Papadopoulos et al. [10] and Yi et al. [17] also
proposed secure kNN query algorithms based on Private Information Retrieval
(PIR) schemes [3,4]. Yi et al. [18] proposed a much more practical scheme which
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can be applied to multiple discrete type attributes of private location-based
queries. Besides, Paulet et al. [12] provided a method which combines PIR with
a stage of obvious transfer(OT), which maps user’s location into the public grid
and maps POIs into the private grid. Liu et al. [7] extended this model with
two rounds of oblivious transfer extension. But both of them didn’t provide per-
sonalized services. Taking the road networks into consideration, Zhou et al. [20]
proposed a practical kNN query scheme over road networks, but it is not scal-
able enough for issuing a personalized query request. Song et al. [13] proposed
a verifiable scheme for the delegated polynomial functions at the cloud server.

To the best knowledge of us, the practically privacy-preserving polynomial
evaluation algorithm over road network is still lacking. It is the main motivation
of this work.

3 Preliminaries

3.1 Order-Revealing Encryption

An order-revealing encryption (ORE) scheme [1,6] is a tuple of algorithms
Π=(ORE.Setup, ORE.Encrypt, ORE.Compare):

– ORE.Setup(1λ) → sk: On input a security parameter λ, the setup algorithm
outputs a secret key sk.

– ORE.Encrypt(sk,m) → ct: On input a secret key sk and a message m ∈ D,
the encryption algorithm outputs a ciphertext ct.

– ORE.Compare(ct1, ct2) → b: On input two ciphertexts ct1, ct2, the compare
algorithm outputs a bit b ∈ {0, 1}.

Correctness: We say an ORE scheme defined over a well-ordered domain D is
correct if for sk ←ORE.Setup(1λ) and all message m1,m2 ∈ D,

Pr[ORE.Compare(ct1, ct2) = 1(m1 < m2)] = 1 − negl(λ),

in which negl(λ) denotes a negligible function in λ.

3.2 Homomorphic Encryption

Homomorphic encryption is a form of encryption that allows computation on
ciphertexts, generating an encrypted result which, when decrypted, matches the
result of the operations as if they had been performed on the plaintext.

In this paper, we adopt Paillier algorithm [11], which supports unlimited
number of homomorphic additions between ciphertexts and homomorphic multi-
plication between a ciphertext and a scalar constant, to implement the privacy-
preserving polynomial evaluation algorithm. The Paillier cryptosystem has a
plaintext space ZN and a ciphertext space ZN2 . Suppose E(·) and D(·) are the
encrypting operator and decrypting operator. For a message m ∈ ZN , the Pail-
lier encryption is given as E(m) = gmrNmod N2, where g is the public key and
r is a random number. For a ciphertext ct, the Paillier decryption is given as



Privacy-Preserving Polynomial Evaluation Algorithm 285

D(ct) = L(ctλmod N2)/L(gλmod N2)mod N , where λ is the decryption key.
The Paillier cryptosystem has additive homomorphic property given as

D(E(m1) · E(m2)) = m1 + m2 mod N2

D(E(m)a) = a · m mod N2,∀a ∈ Z.

Definition 1. In this paper, we build the privacy-preserving homomorphic addi-
tive encryption algorithm CMP based on Paillier cryptosystem as

CMP(m1,m2) = E(m1) · E(m2). (1)

The encryption algorithm CMP has the following properties: (1) CMP(m1,m2)
= E(m1 +m2); (2) CMP(m1,m2) ·CMP(m3,m4) = E(m1 +m2 +m3 +m4); (3)
CMP(m1,m2)a = E(am1 + am2) = CMP(am1, am2).

4 Problem Statement

4.1 System Model

In this work, we consider an LBS system composed of three entities as shown in
Fig. 1, i.e., the cloud service provider (CSP), the LBS provider, and the clients.
The LBS provider collects the data of points (restaurant, hotel and so on) in a
city and provides the location-based recommendation services to the clients. The
collected data include the points’ locations and the rating scores. As the huge
scale of the collected data, the LBS provider uploads the data and delegates the
evaluation computation to the CSP which has strong computation power.

Fig. 1. Privacy-preserving LBS system model

During services, the client submits a query request to the LBS provider for
seeking the suitable points of interest. To support the real LBS scenario, we
adopt a polynomial evaluation algorithm1 to select the best points for the client.

1 To simply our description, we present the protocol by the evaluation algorithm in
Eq. 2. It is worth to note that it is easy to extend our scheme to the polynomial
evaluation algorithm over the multiple inputs for the real-world LBS applications.
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Eva(P,Q) = α × dis(P, c) + β × ratingP , α < 0 and β > 0. (2)

Suppose a client c issues a query Q(c, α, β), where α, β are the coefficients
of the inputs distance and rating score, dis(P, c) is the distance between c and
the point P in the road network, ratingP is P ’s rating score. The LBS provider
collects the rating scores from the clients and generates the rating score ratingP

for every point P . In our scheme, the parameters α and β are decided by the
querier. If the querier more concerns with the distance, he will select a bigger α
value. Otherwise, he will select a bigger β value.

To protect the enterprise’s interests, the LBS provider encrypts the point
location and the rating score before uploading. Moreover, the LBS encrypts
the query request from the client to generate a query trapdoor to protect the
client’s privacy. By the proposed encryption scheme, the CSP executes the poly-
nomial evaluation over the encrypted data. While the LBS provider receives the
encrypted results from the CSP, it decrypts and returns the results to the client.

4.2 Threat Model

For a privacy-preserving LBS application, it should protect the data privacy and
the client privacy. The privacy violation could come from three aspects, i.e., the
dataset of POIs, the encrypted point data and the query trapdoors. In general,
the LBS provider will encrypt the POI description information using a block
cipher such as AES [14]. Therefore, it is safe to claim that the privacy of the
dataset of POIs itself is well protected. So, we focus on the privacy of other two
aspects, i.e., the point privacy and the trapdoor privacy.

Point Privacy: The LBS provider encrypts the location and rating score to
protect point privacy. The point privacy is twofold. Firstly, the cloud server
should not learn the rating score through analyzing the encrypted point data.
Secondly, since the point location is public and fixed, the location privacy in our
scheme means that the CSP could not know the exact point location.

Trapdoor Privacy: The trapdoor is generated by the LBS provider to allow
the CSP to execute polynomials over the encrypted point data. Intuitively, the
trapdoor contains the query information but in an encrypted form. The trapdoor
privacy means that the cloud server should learn nothing about the client from
it, including his location and the polynomial evaluation function he decided.

5 Privacy-Preserving Polynomial Evaluation Algorithm

5.1 Overview

For n,NL, Nr ∈ N, we write [n] to denote the set of integers {1, . . . , n}. Let
[NL], [Nr] be the message spaces of point’s location and rating score, and F :
{0, 1}λ × {0, 1}λ → {0, 1}λ be a secure pseudorandom function (PRF) [8]. We
design an intersection-based method to describe the point location in the road
network. By this method, the LBS provider uses a number dis ∈ [NL] to describe
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the distance between a point to the specific intersection. The LBS provider and
the CSP store the road network in the city as the basic information. Given a
road network RN(I,R), I = {I1, I2, . . .} and R = {r1, r2, . . .} represent the set of
intersections and roads respectively. The road r(rid, Ij) is identified by the road
id rid and described by one of its intersection Ij . Given a point P (ri, dis) which is
on the road r(ri, Ij), Ij is ri’s intersection and dis describes the distance between
P and Ij . Figure 2 illustrates the example of road network. Based on the road
network, the LBS provider stores the distances between any two intersections.
For a querier c, we map him to the nearest point c′(ri, dis) on the road r(ri, Ij)
in which dis represents the distance between c′ and ri’s intersection Ij . We will
detail the data encryption and storage mechanism in Sect. 5.3.

Fig. 2. Data storage over the road network

5.2 Homomorphic and Order-Revealing Encryption

In this paper, we propose a novel homomorphic and order-revealing encryption
algorithm to design the privacy-preserving polynomial evaluation algorithm over
road network. It consists of four polynomial-time algorithms as below:

– Setup(1λ) → {F,CMP, N, sk} is run by the LBS provider to initialize the
system. It first constructs a secure pseudorandom function F : {0, 1}λ ×
{0, 1}λ → {0, 1}λ and an additive homomorphic algorithm CMP as Definition
1 for the system. The LBS provider stores the secret key of CMP locally.
Then, it takes a security parameter λ as input and outputs the secret key sk.
The setup algorithm samples a PRF key k

R←− {0, 1}λ for F , and a uniform
random permutation π : [N ] → [N ], in which [N ] = max{NL, Nr} denotes
the message space of the plaint text. The secret key sk = (k, π).

– EncryptL(sk,m) → ctL is the left encryption algorithm run by the LBS
provider. Given the secret key sk = (k, π), the EncryptL algorithm outputs
the left ciphertext for the message m as:

ctL = (F (k, π(m)), π(m)). (3)
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– EncryptR(sk,m) → ctR is the right encryption algorithm run by the LBS
provider. Given the secret key sk = (k, π), the EncryptR algorithm first sam-
ples a random element r

R←− {0, 1}λ. Then, for each i ∈ [N ], it computes the
value as

vi = CMP(π−1(i),m) + H(F (k, i), r)mod p, (4)

in which H : {0, 1}λ × {0, 1}λ → Zp is a one way hash function. Finally, it
outputs the right ciphertext for m as ctR = (r, v1, v2, . . . , vN ).

– Compute(ctm1
L , ctm2

R ) → result is run by the CSP. It takes m1’s left cipher-
text ct

(m1)
L and m2’s right ciphertext ct

(m2)
R as inputs and outputs result =

CMP(m1,m2), in which m1,m2 are encrypted by the same key sk = (k, π).
The Compute algorithm first parses ctm1

L = (k′, h) = (F (k, π(m1)), π(m1))
and ctm2

R = (r, vm2
1 , vm2

2 , . . . , vm2
N ), then outputs the result as:

result = vh − H(k′, r) mod p. (5)

Proof (correctness). Let sk = (k, π) ← Setup(1λ), and any m1,m2 ∈ [N ] be
encrypted with sk, ctm1

L = (k′, h) = (F (k, π(m1)), π(m1)) ← EncryptL(sk,m1)
and ctm2

R = (r, vm2
1 , . . . , vm2

N ) ← EncryptR(sk,m2). Then, we have

result = vh − H(k′, r)

= CMP(π−1(h),m2) + H(F (k, π(m1)), r) − H(F (k, π(m1)), r)

= CMP(π−1(π(m1)),m2) + H(F (k, π(m1)), r) − H(F (k, π(m1)), r)
= CMP(m1,m2) ∈ Z.

Note that, as defined in Definition 1, CMP(m1,m2) = E(m1) · E(m2) = E(m1 +
m2) provides the ciphertext of m1 + m2, so correctness follows.

5.3 Data Encryption and Storage

Based on the proposed homomorphic and order-revealing encryption scheme, we
design the privacy-preserving polynomial evaluation algorithm over the location
data and rating scores of the points in the road network. To protect data privacy,
the LBS provider encrypts the point’s data, i.e., the location and the rating score.

Let RN(I,R), I = {I1, . . . , INinter
}, R = {r1, . . . , rNroad

} be the road network
in a city. In this work, an intersection Ii(i∈[Ninter]) is described by its identifier
Ii, and a road ri(i∈[Nroad]) is described by the pair (ri, Ij) in which ri is the
road identifier and Ij is one intersection of this road. We name Ij the road ri’s
intersection. We use dis(Ii, Ij) to represent the distance between Ii and Ij .

The LBS provider first calls Setup(1λ) → {F,CMP, N, sk} to initialize the
system. Then, it generates the secret key ski = (ki, πi), in which ki is a secret
PRF key of F and πi is a uniform random permutation πi : [N ] → [N ], for every
intersection Ii.

In this work, we assume that all the points are on the roads. If a point is not on
a road, we map it to the nearest point on the road as shown in Fig. 2. We use the
road and the distance between the point and the road’s intersection to describe
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a point. Given a point P (ri, disP , ratingP ), disP ∈ [NL], ratingP ∈ [Nr], it
means that P is on the road ri, the distance between P and ri’s intersection
is disP , and the rating score of P is ratingP . We design an encryption algorithm
Encrypt(P ) → ctP by which the LBS provider encrypts P to protect its privacy.

Let P (ri, disP , ratingP ) be on the road ri(ri, Ij) in which Ij ’s secret key is

skj = (kj , πj), the LBS provider selects a random element r
R←− {0, 1}λ and

encrypts the point data by the EncryptR algorithm with the key skj as Eq. 6. For
a new point, the system sets its rating score ratingP as a default value.

ctR(disP ) = EncryptR(skj , disP ) = (r, vd
1 , vd

2 , . . . , v
d
NL

),

vd
i = CMP(π−1

j (i), disP ) + H(F (kj , i), r) mod p i ∈ [NL],

ctR(ratingP ) = EncryptR(skj , ratingP ) = (r, vR
1 , vR

2 , . . . , vR
Nr

), (6)

vR
i = CMP(π−1

j (i), ratingP ) + H(F (kj , i), r) mod p i ∈ [Nr].

By Encrypt(P ) → ctP , the LBS provider outputs the ciphertext for the point
P (ri, disP , ratingP ) as ctP = (ri, ctR(disP ), ctR(ratingP )). In this work, we
assume that the point’s location will not be changed. During service, the LBS
will periodically update the point’s rating score2.

5.4 Generation of Query Trapdoor

While a client c attempts to retrieve the suitable points around him, c generates
a query request Q(locc, α, β) and asks the LBS provider to execute the poly-
nomial evaluation f = α × dis(P, c) + β × ratingP for him. In our scheme, we
design a probabilistic trapdoor generation algorithm TrapdoorGen(sk,Q) → TQ
to protect the client’s privacy. The LBS provider calls TrapdoorGen(skj ,Q) → TQ
to generate the query trapdoor to evaluate all the points P (ri, dis) where ri’s
secret key is skj(kj , πj). After receiving the query request Q(locc, α, β), the LBS
provider generates the query trapdoor TQ as follows:

1. If c is not on a road, the LBS provider maps him to the nearest node on the
road ri. The LBS provider transforms the query request Q to Q(ri, disc, α, β),
in which disc is the distance between c and ri’s intersection Ii.

2. Given the distance between Ii and Ij dis(Ii, Ij), the LBS provider calculates
the distance between c and Ij as dis(c, Ij) = dis(Ii, Ij) + disc. Then, the
LBS provider encrypts dis(c, Ij) by EncryptL algorithm with Ij ’s secret key
skj(kj , πj) as

ctL(disQ) = (F (kj , πj(dis(c, Ij))), πj(dis(c, Ij))). (7)

3. The LBS provider selects a random number rQ ∈ [Nr] and encrypts it by
EncryptL algorithm with skj as

ctL(rQ) = (F (kj , πj(rQ)), πj(rQ)). (8)
2 In this paper, we don’t discuss how does the LBS provider decide the rating score

from the users’ responses. There are many mature technologies to address this issue.
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4. The LBS provider selects a random number r′ ∈ Zp and outputs the query
trapdoor TQ = (Ij , ctL(disQ), ctL(rQ), r′α, r′β).

5.5 Query of Privacy-Preserving Polynomial Evaluation

After receiving the trapdoor TQ = (Ij , ctL(disQ), ctL(rQ), r′α, r′β) from the LBS
provider, the CSP calls Query(TQ, P ) → ωP to execute query over P ’s ciphertext
ctP (ri, ctR(disP ), ctR(ratingP )) which intersection also is Ij as follows:

1. Let the set SQ be SQ = {P |ctP = (ri, ctR(disP ), ctR(ratingP )), ri = (ri, Ij)}.
The CSP executes the query TQ over every point P ∈ SQ.

2. By the Compute algorithm, the CSP first parses

(k′
dis, hdis) = ctL(disQ) = (F (kj , πj(dis(c, Ij))), πj(dis(c, Ij)))

(k′
rating, hrating) = ctL(rQ) = (F (kj , πj(rQ)), πj(rQ)).

3. Given ctR(disP ) = (r, vd
1 , . . . , vd

NL
) and ctR(ratingP ) = (r, vr

1, . . . , v
r
Nr

), the
CSP computes

μP = vd
hdis

− H(k′
dis, r) mod p, νP = vR

hrating
− H(k′

rating, r) mod p

ωP = μr′α
P · νr′β

P

4. Remove P from SQ. If SQ �= ∅, pick another point P ′ ∈ SQ and go back
to the step 3, otherwise the CSP returns the result (ωP )P∈SQ to the LBS
provider.

5. The LBS provider decrypts (ωP )P∈SQ as EvaP = D(ωP ) by CMP algorithm
and sorts them. Finally, the LBS provider returns the top ones to the client.

Proof (correctness). Let skj = (kj , πj) ← Setup(1λ) be the secret
key of the intersection Ij , ctL(disQ) ← EncryptL(skj , dis(c, Ij)), ctP ←
EncryptR(skj , disP ), and ctR(disP ) = (r, vd

1 , . . . , v
d
NL

). Then, we have

μP = vd
hdis

− H(k′
dis, r) mod p

= COM(π−1
j (hdis), disP ) + H(F (kj , hdis), r) − H(F (kj , πj(dis(c, Ij)), r)

= COM(π−1
j (πj(dis(c, Ij))), disP ) + H(F (kj , πj(dis(c, Ij)), r)

− H(F (kj , πj(dis(c, Ij)), r)
= COM(dis(c, Ij), disP )

Similarly, we also have that νP = COM(rQ, ratingP ).
Based on the homomorphic property of COM algorithm, we have

ωP = μr′α
P · νr′β

P = COM(dis(c, Ij), disP )r′α · COM(rQ, ratingP )r′β

= COM(r′α × dis(c, Ij), r′α × disP ) · COM(r′β × rQ, r′β × ratingP )
= E(r′α × dis(c, Ij) + r′α × disP + r′β × rQ + r′β × ratingP ).
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Then, the LBS provider can decrypt the query results (ωP )P∈SQ and sort them
as below:

D(ωP ) = D(μr′α
P · νr′β

P ) = D(E(r′αdis(c, Ij) + r′αdisP + r′βrQ + r′βratingP ))
= r′α(dis(c, Ij) + disP ) + r′β(rQ + ratingP ),

in which dis(c, Ij) + disP describes the distance between the querier c and P .
Obviously, if D(ωP1) > D(ωP2), we have that P1’s evaluation value is larger
than P2’s evaluation value by the polynomial evaluation function Eva(P, c) =
α × dis(P, c) + β × ratingP . So, the correctness follows.

Remark 1. In the correctness proof, we declare that dis(c, Ij) + disP equals to
the distance between c and P . Note that it exists some errors in this measure.
For the example in Fig. 2, the shortest path from c′ to P1 is c′ → I8 → P1.
Since P1’s intersection is I3, dis(c, Ij) + disP describes the path length of c′ →
I8 → I3 → P1. The measure error is O(length) in which length represents the
length of road. So, we can divide a physical road into several short ones to reduce
this measure error. Moreover, we can store a physical road by two visual roads
with its two intersections respectively. For a query, we map the querier into two
visual roads. By this method, we can remove this measure error completely. But,
it also will double the costs of storage and computation. Therefore, in a real LBS
application, the LBS provider could extend our scheme to find a balance between
the costs and the accuracy.

5.6 Influence Model

By the basic scheme introduced above, the CSP need execute the query on all
the intersections. This query mode will consume a lot of computation resources.
We introduce an influence model to extend our scheme.

Point Influence Model: Executing the query on the distant intersections is
useless, so we evaluate the influence range of the point and store the point on
the intersections in its influence range.

Given the evaluation function Eva(P, c) = α × dis(P, c) + β × ratingP , the
parameters α ∈ [rangeα

min, rangeα
max], β ∈ [rangeβ

min, rangeβ
max], the maximal

acceptable distance dismax, and the minimal acceptable evaluation value smin,
we define the point P ’s influence range as the set of SP

range = {Ii|dis(Ii, P ) <

dismax, rangeα
max × dis(Ii, P ) + rangeβ

max × ratingP > smin}. By the point
influence model, the LBS provider encrypts and stores P on all the intersections
in its influence range SP

range. While a client c issues a query Q(ri, disc, α, β),
the LBS provider only needs to generate the query trapdoor on Ii which is
ri’s intersection. Because, Ii has stored all the candidates for the querier whose
intersection also is Ii, CSP only needs to execute the query on Ii.

Querier Influence Model: Except for the point influence model, we introduce
a querier influence model to limit the query range to improve the query efficiency.
Given the same parameter setting with those in the point influence model, we
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define the querier c’s influence range as the set of SQ
range = {Ii|dis(Ii, c) <

dismax}. By the querier influence model, the LBS provider generates the query
trapdoor TQ(ri, disc, α, β) on all the intersections in c’s influence range rather
than executing the query on all the intersections in the road network.

By the influence model, the LBS provider is able to find a tradeoff in the
storage, communication and query efficiency. With the point influence model, the
CSP need store the multiple copies for a point on the intersections in its influence
range, and the CSP only executes one-time query on the querier’s intersection.
With the querier influence model, the CSP does not store the redundant copies
for a point, but it also need execute the queries on all the intersections in the
querier’s influence range.

6 Performance Analysis

6.1 Communication Cost

For the query request Q(locc, α, β), the LBS provider generates the query
trapdoor TQ = (Ij , ctL(disQ), ctL(rQ), r′α, r′β). The size of Q(locc, α, β) is
|Sl| + 2|Sint|, where Sl is the size of an element describing the user location,
and |Sint| is the size of an integer. The size of TQ is |Sid|+2(|SF |+ |Sint|), where
Sid is the size of the intersection identify, SF is the size of one element in {0, 1}λ.

In the basic scheme, the LBS provider need generate the query trapdoor on
all the intersections. So, the communication costs for a query is Countint|Sid| +
2Countint(|SF | + |Sint|), in which Countint is the number of intersections in
the road network. In the improved scheme of the point influence model, the
LBS provider only generates a query trapdoor on the intersection of the querier.
In this case, the communication costs for a query is |Sid| + 2(|SF | + |Sint|). In
the improved scheme of the querier influence model, the communication costs
for a query is Countint

range|Sid| + 2Countint
range(|SF | + |Sint|), where Countint

range

represents the number of intersections in the querier’s influence range.

6.2 Computation Cost

The computation cost of generating the query trapdoor by TrapdoorGen
(skj ,Q) → TQ algorithm is Tadd + 2TF + 4Tπ + 2Tmul time, where Tadd, TF ,
Tπ and Tmul represent one addition operation, one pseudorandom operation,
one uniform random permutation operation and one multiplication operation.

During the query, for each point in the set SQ, it takes Tadd +Thash for both
distance and rating score according to Eq. 5 and 2Texp + Tmul for generating
ωP . After receiving the results, the LBS provider takes TD for each record and
Tsort to return the top results, where TD represents one decryption operation
and Tsort represents one quick-sort operation. Therefore, the total computation
costs for a query is |SQ|(2Tadd + 2Thash + 2Texp + Tmul + TD) + Tsort. In the
improved scheme, we reduce the computation costs by reducing the scale of SQ.



Privacy-Preserving Polynomial Evaluation Algorithm 293

7 Security Analysis

In this section, we prove that our scheme is secure under the random oracle
model. Let Π = (Setup,EncryptL,EncryptR,Compute) be the encryption scheme
defined in Sect. 5.3. Let A = (A1, . . . ,Aq) be an adversary for some q = poly(λ),
and let S = (S0,S1, . . . ,Sq) be a simulator. We adopt the similar experiments
REALA(λ) and SIMA,S(λ) defined in [6]. We say that Π is a secure encryption
scheme if for all polynomial-size adversaries A = (A1,A2, . . . ,Aq), there exists a
polynomial-size simulator S = (S0,S1,S2, . . . ,Sq) such that the two distributions
REALA(λ) and SIMA,S(λ) are computationally indistinguishable.

Suppose the adversary has not issued an encryption query for a message
m ∈ [N ]. We prove that the adversary’s view in the experiment is independent
f(π(m)) in which f is a random function. Consider the ciphertext ct′ = (ct′L, ct′R)
the adversary obtains when it requests an encryption of some messages m′ �= m.
Since π is a permutation, π(m′) �= π(m). Next, because f is a random function,
f(π(m′)) is independent of f(π(m)). So, we conclude that the components of
ct′L are distributed independently of f(π(m)).

Consider ct′R = (r′, v′
1, v

′
2, . . . , v

′
N ) for m′. Since r′ is sampled uniformly at

random from {0, 1}λ, it is distributed independently of f(π(m)). And ∀i ∈ [N ],
v′

i = CMP(π−1(i),m′)+H(f(i), r′). The value of CMP(π−1(i),m′) is independent
of the function f . Similarly, the output of the random oracle on (f(i), r′) is
independent of its input, i.e., independent of f(π(m)). Therefore, the components
of ct′R are distributed independently of f(π(m)).

Finally, the responses from the random oracle are distributed independently
of f . Now, we let z1, z2, . . . , zl, l = poly(λ) be the adversary’s queries on the
random oracle before it requests for an encryption of m. So, each zi must be
chosen independently of f(π(m)). Since f is a random function, the probability
that there exists zi = (f(π(m)), y) for any y is at most l/2λ = negl(λ). Because
F in our scheme is a secure random function, we conclude that the proposed
encryption scheme is secure under the random oracle model.

8 Experimental Study

8.1 Experiment Setup

We utilize jPaillier to implement the proposed homomorphic and order-revealing
encryption in this paper. All the experiments are conducted under Ubuntu with
an Intel 2.5 GHz processor and 16 GB memory. We use the representative real-
world data set for California road network with California’s points of interest3.
The size of POI data set is 104,770 and the size of road network’s intersections is
21,048. We compare our scheme with the PIR-based LBS query protocols in [12,
17,18]. As most of recent works didn’t provide personalized services, we fix the
rating score parameter in query and simulate the polynomial evaluation scheme
only considering the distance inputs. In data preparation stage, we randomly

3 https://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm.

https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
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selects a rating score for each POI data, which is normally distributed from 1 to
5. In experiments, we randomly choose 100 points in the road network to issue
the query request, in which α is a random value while β is a fixed value.

8.2 Time Cost of Encrypting Point Data

In our scheme, the LBS provider encrypts the point data before outsourcing.
We measure the time for preprocessing data with respect to the scale of data,
which ranges from 10, 000 to 100, 000. We compare the time cost of encrypting
data in our work with those in Yi et al. [17], Yi et al. [18] and Paulet et al.
[12]. As the experimental results shown in Fig. 3, the encryption efficiency of
our scheme is comparable with others. By the basic scheme, the time costs of
encrypting point data are from 1.816 to 10.455 s, which depends on the scale
of POI dataset. When we choose the point influence model, it costs the extra
time for encrypting POI data on the intersections in the influence range. It is
consistent with the theoretical analysis.

8.3 Time Cost of Generating Query Trapdoor

In our scheme, the computation cost of generating the query trapdoor includes
the cost of building a query in the road network and the cost of generating the
trapdoor. We carry out the experiment to evaluate the computation costs at the
LBS provider for generating the query trapdoor. We compare the time cost of
our scheme with those in [12,17,18]. The experimental results in Fig. 4 show that
our scheme can effectively reduce the time cost at the LBS provider because only
pseudorandom function and uniform random permutation are executed. More-
over, the influence model can further reduce the time costs by only generating
the query trapdoors on the intersections in the influence range. While the same
operations in [12,17,18] are executed on the whole map.

8.4 Time Cost of Executing Polynomial Evaluation

We carry out the experiments to measure the time costs for executing a poly-
nomial evaluation. The experimental results are shown in Fig. 5. By the basic
scheme, the query request needs to be executed on all the intersections in the
road network. The CSP finishes the query from 4.856 to 12.950 s. After using
the influence model, our scheme can provide the more efficient polynomial eval-
uation. The time costs are from 1.132 to 2.650 s with the point influence model
and from 2.105 to 3.523 s with the querier influence model. Our scheme achieves
a better query performance than others. Moreover, our scheme can support the
personalized polynomial evaluation, which still can not be implemented by the
existing researches.
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Fig. 3. Time cost for data encryption
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Fig. 4. Time cost for trapdoor generation
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Fig. 5. Time cost of query

9 Conclusion

In this paper, we examined the practical problem of executing the privacy-
preserving polynomial evaluation function over the outsourced data in the road
network. We further identified three practical requirements for this problem.
To fulfill these requirements, we proposed a novel privacy-preserving polyno-
mial evaluation algorithm based on order-revealing encryption. For practical
purposes, we extended our scheme by introducing an influence model to reduce
the overheads of computation and communication. We have proved that our
scheme is secure for the LBS scenarios. We also carried out several experiments
to show that the query processes are efficient and our scheme is appropriate for
using in the cloud-based LBS systems.
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Abstract. User preferences are dynamic and diverse in real world, while
historical preference of a user may not be equally important as current
preference when predicting future interests. As a result, learning the
evolving user representation effectively becomes a critical problem in per-
sonalized recommendation. However, existing recommendation solutions
often use a fixed user representation, which is not capable of modeling the
complex interests of users. To this end, we propose a novel metric learning
approach named Adaptive Collaborative Metric Learning (AdaCML) for
recommendation. AdaCML employs a memory component and an atten-
tion mechanism to learn an adaptive user representation, which dynami-
cally adapts to locally activated items. In this way, implicit relationships
of user-item pairs can be better determined in the metric space and users’
interests can be modeled more accurately. Comprehensive experimental
results demonstrate the effectiveness of AdaCML on two datasets, and
show that AdaCML outperforms competitive baselines in terms of Pre-
cision, Recall, and Normalized Discounted Cumulative Gain (NDCG).

Keywords: Recommender systems · Attention mechanism ·
Metric learning

1 Introduction

With the explosive growth of e-commerce and social media, we are living in
an era of information explosion. Recommender Systems (RS) can alleviate the
dilemma of information overload by delivering more relevant products to us.
Collaborative Filtering (CF) is one of the most successful ways to build recom-
mender systems and has received significant success in the past decades [1,11,17].
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Fig. 1. The left image shows the standard collaborative metric learning method, and
the right image denotes the adaptive user representation that can dynamically adapt
to related items.

Specifically, it considers users’ historical interactions and makes recommenda-
tions based on their similar preferences. Among all models of CF, Matrix Fac-
torization (MF) [11] remains the most popular one, which tries to characterize
both users and items in a low-dimensional latent vector space inferred from a
historical user-item interaction matrix. However, MF captures users’ preferences
for items by performing the dot product operation that violates the triangu-
lar inequality, resulting in suboptimal performance [9]. The triangle inequality
states that for any three objects, the sum of any two pairwise distances should
be greater than or equal to the remaining pairwise distance [9]. This implies
that if x is close to y and z, then y is also close to z. Therefore, the MF method
based on the dot product operation can only capture the local preferences of
the observed data (e.g., x is close to y and z), but fails to capture the potential
preference information (e.g., y is also close to z). Hseih et al. [9] proposed Collab-
orative Metric Learning (CML) scheme that uses Euclidean distance to measure
user-item relationships, which follows triangle inequality. CML not only captures
user-item relationships, but also learns user-user similarity and item-item simi-
larity in vector space. This collaborative metric learning (CML) method [9] has
demonstrated highly competitive performance on many benchmark datasets.

Although CML obtains promising performance, it still faces some challenges.
CML often projects users and items as fixed low-dimensional representation vec-
tors into a user-item joint space. However, a fixed user representation greatly
limits the ability of the CML method to model the diversities of users’ interests.
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This leads to a lack of flexibility in the CML model, which is unable to approach
different candidate items discriminatively. In fact, users prefer different kinds
of items, and only a subset of users’ historical items is relevant to the candi-
date products. For instance, a user has previously purchased books, shoes, and
badminton rackets, and then the user may buy badminton. His/Her purchase of
badminton is more related to the badminton rackets than the books or the shoes
previously purchased. Hence, it is difficult to use a fixed user representation to
model the diversities of users’ interests. As shown in Fig. 1, a user ui liked a
list of different kinds of items {vj1 , vj2 , vj3 , vj4}. The user ui and these items are
represented as a latent vector in a user-item metric space. Since similar items are
projected to similar locations, these items that user ui liked form two clusters
according to the types of items. Figure 1(a) shows that the essential idea of CML
is to pull positive items (such as, items {vj1 , vj2 , vj3 , vj4}) closer to the user ui

and push the negative items (i.e., items that the user did not like, such as, item
vs and vf ) away until they are beyond the safety margin. Given a list of can-
didate items {vj , vk, vh}, the CML method with a fixed user representation will
recommend the nearest unvisited items, such as item vh, as shown in Fig. 1(b).
Although item vh is closer to user ui than item vj and item vk, it is obvious that
item vj and item vk are more reliable and valuable recommendations. Moreover,
CML pursues performance while ignoring interpretability and significant insight,
which is also a common problem of other methods [8,14].

To address the above problems, we propose an Adaptive Collaborative Met-
ric Learning (AdaCML) method for recommendation. AdaCML uses a memory
module and a novel attention mechanism to learn an adaptive user representa-
tion in a metric space. In this work, we assume that each user prefers different
kinds of items and only a subset of the user’s purchased products can reveal
whether the user is interested in a candidate product. Hence, for different candi-
date items, an adaptive user representation adaptively selects locally activated
items from user’s historical items. As shown in Fig. 1(b), for the candidate item
vj , an adaptive user representation uj

i is obtained by dynamically weighting the
vectors of items vj1 and vj2 . Similarly, another adaptive user representation uk

i

is more related to items vj3 and vj4 . In this way, our model not only improves
the performance but also enables interpretable recommendation results.

The main contributions of this paper are summarized as follows:

• The proposed AdaCML novelly applies an adaptive user representation to
metric learning. The adaptive user representation can be dynamically adapted
to locally activated items.

• We use a memory component and an attention mechanism to flexibly acquire
adaptive user representations based on candidate items, which not only
greatly improve the accuracy of the model, but also provide insight and inter-
pretability for the model.

• We evaluate our AdaCML model on two real-world datasets. Our experi-
mental results show that AdaCML outperforms various benchmarks with a
significant margin.
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The rest of the paper is organized as follows. We first define the problem of this
paper in Sect. 2 and then present the framework of AdaCML in Sect. 3. After
reporting our experimental study in Sect. 4, we introduce related work in Sect. 5.
We finally conclude this paper in Sect. 6.

2 Problem Definition

In this section, we first introduce notations used in this paper, and then define
the recommendation problem of our study. We apply bold capital letters (e.g.,
X) and bold lowercase letters (e.g., x) to represent matrices and vectors, respec-
tively. Also, we employ non-bold letters (e.g., x, X) to denote scalars, and squig-
gle letters (e.g., X ) to denote sets. In this paper, we denote a set of users as
U = {u1, u2,..., uN} and an item set as I = {v1, v2,..., vM}, where N and
M denote the number of users and items, respectively. For a user ui ∈ U , let
R+

i = {v1, v2, ..., vni
} denotes the set of ni items liked by user ui and R−

i denotes
the remaining items. Then, given user set U and item set I, for each user ui ∈ U ,
the recommendation task is defined as recommending a list of items from R−

i

that the user ui may be interested in.

3 Adaptive Collaborative Metric Learning (AdaCML)

In this section, we first propose the overall architecture of AdaCML, and then
introduce the details of each layer. Lastly, we will introduce the optimization
details and time complexity analysis of AdaCML.

3.1 The Model Architecture

Figure 2 illustrates the architecture of the Adaptive Collaborative Metric Learn-
ing (AdaCML). The AdaCML model is based on a personalized memory mod-
ule and a novel adaptive attention mechanism. Intuitively, users’ interests are
diverse, and users’ historical records contain different types of items. The core
issue of AdaCML is to design an adaptive user representation to characterize
appetites of a user more accurately when the user interacts with different can-
didate items. Our model consists of five components, input layer, embedding
layer, attention component, adaptive user representation and prediction layer.
Specifically, the bottom input layer consists of two sparse vectors that denote
user and item, respectively, where each element of each vector is either 0 or 1.
Note that unlike the CML model that uses one-hot vector of each user as the
input feature, AdaCML leverages multi-hot historical item IDs of each user as
input features. Then the sparse vector is fed to the embedding layer, and each
element with a value of 1 in the sparse vector corresponds to a dense vector.
That is, feeding a user sparse vector to the embedding layer returns multiple
dense vectors. Hence, we apply a memory matrix M to store the representation
of each item in each user’s historical records, so the memory matrix M natu-
rally reflects the user’s preferences. To design an adaptive user representation,
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Fig. 2. The architecture of the adaptive collaborative metric learning.

we introduce an item-level attention mechanism on the memory matrix M to
capture items in R+

i relevant to item vj . Here, we regard each item as a unit
and model the impact of previously purchased items on the target item. After
getting the adaptive user representation, we use the metric learning method to
train and optimize our model AdaCML. Next, we will introduce each part of our
model in details.

Input Layer. As shown in Fig. 2, the bottom input layer consists of two sparse
vectors uU

i and vI
j that describe user ui and item vj , respectively. Moreover, the

elements of the input vector of user ui and item vj are composed of 0 or 1. For
uU
i , item IDs visited by user ui are represented as 1, and the unvisited items are

0; for vI
j , where the index corresponding to item vj is represented as 1 and the

rest of positions are 0.

Embedding Layer and Memory Component. Above the input layer is the
embedding layer that projects sparse representation to dense representation. The
obtained each dense representation can be regarded as the latent feature vector
for an item. Hence, for an item vj , we formulate the item embedding vector as

vj = QTvI
j , (1)

where Q ∈ R
K×M , denoting the latent vector matrix for all items. M is the

number of items and K is the dimensionality of the user/item latent vector.
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Since the user sparse vector uU
i contains all item IDs previously accessed by the

user ui, this sparse vector input embedding layer will get multiple dense vectors.
Therefore, we apply a memory module to store these dense feature vectors. This
memory matrix M is constructed as

M = {m1,m2, ...,mni
}, (2)

where M ∈ R
K×ni . Each column of matrix M corresponds to a representation

of an item in R+
i , so the matrix M reflects all interests of a specific user.

Attention Component. As mentioned in the introduction section, a fixed user
vector representation may fail to convey diverse appetites of a user, resulting in
the limitation of the representation ability of a model. Although the memory
matrix M stores the information of all historical items purchased by each user,
the goal of the attention mechanism is to selectively pick items that are closely
related to the target item from M and then aggregate the representation of
informative items to characterize the interests of a specific user [3]. Hence, given
the user-item pair, (ui, vj), the AdaCML model uses an inner product to learn
the similarity between the q-th item of the memory component and the target
item vj . Each element of the similarity score wij is defined as follows:

wq
ij = mT

q vj ,∀q = 1, 2, ..., ni, (3)

where mq ∈ R
K×1 is the q-th column vector of memory matrix M. In order to

normalize the similarity score wij to the attention weights distribution, we adopt
the softmax function, which is a common practice in the attention network. We
use αq

ij to denote the q-th element of the attention vector α as:

αq
ij =

exp(wq
ij)∑

h∈R+
i

exp(wh
ij)

. (4)

Note that the larger αq
ij indicates the higher relevance between a target item vj

and a corresponding item vq in M.

Adaptive User Representation. In order to generate a dynamic and adaptive
user representation, we use the attention vector α to calculate a weighted sum
representation of M, i.e., adaptively selecting valuable pieces from the memory
matrix M. Hence, the adaptive user representation uj

i is derived by weighting
M according to the candidate item vj as:

uj
i =

∑

q∈R+
i

mqα
q
ij , (5)

where mq corresponds to the q-th column of the memory matrix M, and R+
i

denotes historical items liked by user ui. It’s worth noting that the proposed
user representation is non-fixed and dependent on the candidate item vj .

Prediction Layer. After computing an adaptive user representation uj
i and

an item vector vj , we learn these vectors according to their Euclidean distance.
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Hence, when making predictions, we feed the final adaptive user representation
uj
i and the target item embedding vj into the Euclidean distance:

d(i, j) = ‖uj
i − vj‖, (6)

where the adaptive user representation uj
i is dependent on the attributes of

the target item vj and the user ui’s historical preferences. Here, the Euclidean
function is used to measure the distance of user ui and item vj . It’s more likely
that the user ui prefers item vj if the distance between them is closer.

Overall, our proposed model AdaCML has the following advantages. First,
considering the case where a given user’s interests are diverse, we can leverage all
items rated by the user to gain additional information. Second, with an attention
mechanism, we allow each member of historical records of a user to contribute in
adaptive user representation decision, where the contribution of each member is
dependent on its feature and the property of a target item. Finally, an adaptive
user representation can dynamically adapt to the user’s interests based on the
characteristics of the target item in an interpretable manner.

3.2 Model Inference

Finally, our model AdaCML adopts the hinge loss for optimization. For each
positive user-item pair, (ui, vj), we randomly select several items from the user’s
unvisited records to form several negative user-item pairs. Similar to positive
examples, negative pairs are represented as corresponding users and items hidden
vectors in the same way. The hinge loss is defined as follow:

L =
∑

(i,j)∈S

∑

(i,j′ )/∈S
σij [λ + d(i, j)2 − d(i, j

′
)2]+, (7)

where S is a set of positive user-item pairs, j is an item user ui preferred, j
′
is an

item he/she did not like, [z]+ = max(z, 0) denotes the standard hinge loss, and
λ > 0 is the safety margin size that separates positive pairs and negative pairs. It
is worth noting that because the user’s representation depends on the attributes
of the target item, positive user-item pairs do not share the same representation
with negative user-item pairs. Namely, given a positive user-item pair (ui, vj)
and a negative user-item pair (ui, vj′ ), the corresponding user feature vector are

uj
i and uj

′

i , respectively.
Besides, our model, like CML, also uses a rank-based weighting scheme called

Weighted Approximate-Rank Pairwise (WARP) loss, which was proposed by
Weston et al. [16], to penalize positive items at a lower rank. As a result, we
penalize the positive item vj based on its rank by setting

σij = log(rankd(i, j) + 1), (8)

where rankd(i, j) denotes the rank of item vj in the recommended list of user
ui. At last, we employ regularization to constrain all the item embedding within
a unit ball, i.e., ‖v‖2 ≤ 1, to prevent overfitting and ensure the robustness of
the learned metric.



308 T. Zhang et al.

3.3 Time Complexity Analysis

In this subsection, we will analyze the time complexity of the AdaCML model.
As we described in Sect. 3.1, the adaptive user representation component of
AdaCML directly reflects the time cost of AdaCML in testing, i.e., Eq. (5). For
a user-item pair, (ui, vj), the main time cost of an adaptive user representation
uj
i comes from the attention network. We use K to denote the embedding size,

|R+
i | to denote the number of historical interactions of user ui, and a to denote

the attention size. In this work, a is equal to K. And then we can obtain that the
time complexity of each element of the similarity score wij is O(aK). However,
the similarity score wij includes |R+

i | elements, so after using the softmax func-
tion to normalize wij , the time complexity of the attention weight αij becomes
O(aK|R+

i |). Finally, we use the weighted sum of the attention weight and the
memory matrix to get the user adaptive representation. Hence, for each user, the
time score of AdaCML is O(aK|R+

i |2). However, considering that the denomi-
nator term is shared across the computation of all items in |R+

i |, we only need
to calculate it once and cache it for all items in |R+

i |. Therefore, the final time
complexity of evaluating an AdaCML prediction is O(aK|R+

i |).

4 Experiments

In this section, we will conduct experiments with the aim of answering the fol-
lowing research questions:

RQ1. How does our proposed model AdaCML perform, compared with state-
of-the-art recommendation methods?

RQ2. How do the hyper-parameters influence the performance of AdaCML?
RQ3. Can the AdaCML model improve the interpretability of recommendation?

4.1 Experimental Settings

Datasets. We will study the performance of AdaCML on the Amazon dataset [7,
13]. Amazon1 is an e-commerce platform and is widely used for product recom-
mendation evaluation. We used two subsets of the Amazon review data as two
datasets, namely Instant Video and Automotive. The Instant Video dataset con-
tains users’ ratings and review texts for the instant videos, while the Automotive
dataset provides users’ purchase records of various auto parts and accessories.
Since we focus on the implicit feedback of users, we transformed the detailed
ratings in the two datasets into 0 or 1, which indicates whether the user has
rated the item. The statistics of the datasets are summarized in Table 1.

Baselines. We will compare our model AdaCML with following five state-of-
the-art baseline models.

1 http://jmcauley.ucsd.edu/data/amazon/.

http://jmcauley.ucsd.edu/data/amazon/
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Table 1. Datasets statistics

Dataset Users Items Ratings Sparsity

Instant video 1352 7785 16863 99.84%

Automotive 2928 1835 12962 99.76%

• BPR [14] is a strong baseline for building CF recommendation from implicit
feedback data, which proposes a pair-wise optimization method to model the
relative preference of users.

• MLP [8] applies a multi-layer perceptron above user and item embeddings to
learn the scoring function. It is a standard neural network model with ReLu
activates.

• NeuMF [8] is a unified framework fusing Matrix Factorization and Multi-
Layer Perceptron. This model combines the linearity of Matrix Factorization
and the non-linearity of Deep Neural Networks for modeling user-item inter-
actions. Following the original work, we use the proposed tower structure.

• MARS [18] is a combination of Convolutional Neural Network (CNN) and
attention mechanisms to learn an adaptive user representation. Since our
experiment does not consider the text content of each item, we randomly
initialize the item embedding based on Gaussian distribution to replace the
operation of CNN extracting item features.

• CML [9] is a metric-based collaborative recommendation method, which
solves the limitation of the inner product operate and obeys the triangle
inequality.

Evaluation Metrics and Implementation Details. We divided each user’s
ratings into trainsets/testsets in a 70%/30% split. To evaluate these models
described above, we repeated each individual model five times, and reported the
average result of each model. In addition, we evaluated AdaCML and all base-
lines in terms of three different metrics, i.e., Precision, Recall, and Normalized
Discounted Cumulative Gain (NDCG). We optimized all models with the Adam
Optimizer. The learning rate of all models are tuned amongst {0.1, 0.01, 0.005,
0.001} and the batch size is fixed to 512. Without a special mention in this
paper, we fixed the embedding size of all models to 32 for a fair comparison.
Also, we set the margin size λ = 1.5 for AdaCML model, and λ = 2 for CML
model on two datasets. We will investigate the influences of embedding size and
margin size in Sect. 4.3. For AdaCML, the number of negative samples is fixed at
10, while the number of negative samples of all the baselines follows the setting
in corresponding original papers. Both AdaCML and CML apply regularization
by normalizing all user/item embedding to be constrained within the Euclidean
ball. Also, for NeuMF and MLP, we employ a three-layer MLP that follows the
original paper settings with the shape of (32, 16, 8). The MARS model can be
understood as a variant of BPR, which takes the user adaptive representation
into account, but it still uses dot product operations to capture the relationships
between users and items.
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Table 2. Experimental results of AdaCML and baselines. The best performance of
each column (the larger the better) is in bold, and the second best is underlined.

Dataset Method @5 @10 @20

Recall PrecisionNDCG Recall PrecisionNDCG Recall PrecisionNDCG

Instant VideoBPR 0.01518 0.01102 0.03582 0.02595 0.00954 0.04635 0.04493 0.00825 0.05974

MLP 0.01835 0.01295 0.03407 0.03161 0.01128 0.04726 0.04688 0.00871 0.05752

NeuMF 0.02686 0.01975 0.05117 0.04347 0.01631 0.06503 0.07160 0.01333 0.08204

CML 0.02573 0.01795 0.05069 0.04413 0.01614 0.06749 0.07720 0.01423 0.08804

MARS 0.01870 0.01302 0.04478 0.02693 0.01002 0.05397 0.04228 0.00803 0.06495

AdaCML0.035870.02626 0.072980.065530.02374 0.096450.106330.01923 0.11800

Automotive BPR 0.02023 0.01031 0.03240 0.03342 0.00856 0.04230 0.05298 0.00675 0.01198

MLP 0.02412 0.01220 0.03873 0.03719 0.00927 0.04866 0.06770 0.00853 0.06476

NeuMF 0.03930 0.01961 0.06037 0.06041 0.01508 0.07358 0.09445 0.01182 0.09003

CML 0.03231 0.01600 0.04691 0.05456 0.01352 0.06131 0.08218 0.01032 0.07446

MARS 0.04892 0.02377 0.07137 0.07771 0.01913 0.09181 0.11810 0.01470 0.10942

AdaCML0.055840.02777 0.080870.090580.02249 0.102030.136540.01711 0.12161

4.2 Performance Comparison (RQ1)

We compared the performance of AdaCML with five state-of-the-art baselines
regarding Recall, Precision, and NDCG with cutoffs at 5, 10, and 20 on two
datasets. Their overall recommendation performances are shown in Table 2. The
experimental results reveal many interesting points as follows.

• Firstly, regardless of the datasets and the evaluation metrics, AdaCML always
achieves the best performance, outperforming the state-of-the-art methods by
a significant margin. This shows that by merging the adaptive user represen-
tation to metric learning, AdaCML can better model users’ dynamic and
diverse interests in a metric space, resulting in better recommendations.

• Secondly, pertaining to the performance of the baselines, we found that the
performance of BPR is inferior on the two datasets. CML performs better
than BPR. This indicates that modeling user-item relationships based on
metric learning methods is more efficient than inner product. We can also
see that NeuMF and CML perform similarly and outperform all other base-
lines on Instant Video. On the Automotive dataset, NeuMF also shows excel-
lent performance and defeats most baselines except MARS. This shows that
the NeuMF combines MF and MLP for a better performance. Moreover, we
observed that MLP usually performs better than BPR, but falls short of CML
on the two datasets in terms of Recall and Precision metrics. It is possible that
NeuMF is a combination of multiple models to achieve well performance, and
MLP alone may not yield good results. Besides, MARS performs better than
BPR on the two datasets. This confirms that it is also effective to consider
adaptive user representation in BPR.

• Finally, it is interesting to see that the performance of MARS is quite unsta-
ble. MARS performs quite well on the dataset Automotive while it does not
perform well on Instant Video. This may be because the Instant Video is
more relevant to real-time information, and only a small amount of items
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previously accessed by the user are related to the current recommendation.
However, AdaCML still achieves excellent results in this situation. This con-
firms the advantages of the metric learning method.

Fig. 3. Performance of these models under difference choices of the embedding size K.

4.3 Hyper-parameter Study (RQ2)

As we mentioned in Sect. 3, AdaCML has two crucial hyper-parameters (i.e., the
embedding size K and the margin size λ). In this subsection, we will investigate
the impact of the two hyper-parameters respectively. We only show the experi-
mental results of the Recall@10 and NDCG@10 because of the space limitation.

Figure 3 shows the performance of theses methods at embedding size 8, 16,
32, and 64. Due to the poor performance of BPR and MLP, they are omit-
ted in Fig. 3 to better highlight the performance differences among the rest of
methods. On both datasets, AdaCML achieves the best performance under most
cases, with the only exception of the embedding size setting as 8 on the dataset
Automotive. This may be because the smaller embedding size is not enough to
capture the complex relationships between users and items in the metric space.
We also notice that CML performs extremely horribly with the embedding size
setting as 8, which validates that a small hidden factor fails to represent users-
items relationships. On the dataset Automotive, MARS reaches the peak when
the embedding size is set as 32, followed by a degradation potentially due to
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Fig. 4. Performance of AdaCML and CML under difference choices of the margin size
λ.

overfitting. Compared with other models, the fluctuation of the experimental
results of MARS is slight. This confirms that the method based on the dot prod-
uct operation is not enough to capture the implicit relationships between users
and items. Last but not least, as the embedding size increases, the performance
of most models on the two datasets increases. This is because larger dimensions
could capture more hidden factors of users and items, and then achieve better
performance.

Figure 4 shows the performance of AdaCML and CML at margin size 0.5,
1.0, 1.5, 2.0, and 3.0. We can see that regardless of the setting of the margin
size λ, AdaCML always outperforms CML. As we can see from Fig. 4, when λ
= 1.5, AdaCML achieves the best performance, while CML reaches the peak at
λ = 2. We attribute the phenomenon to the trade-off between positive items
and negative items: too small λ can hardly distinguish between the positive and
negative products, while too large λ brings much more noises (negative products)
than useful products (positive products) within the safety margin.

4.4 The Interpretability of AdaCML (RQ3)

To gain a better insight into the interpretation ability of AdaCML, we conducted
a qualitative experiment in this subsection. Table 3 shows the item-level attention
weights concerning the items that users liked on the dataset Automotive. The
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weights have been normalized to make a clear comparison. For example, for user
#541, the target item #1486 is a positive example in the testset, while items
#856, #85, and #237 are historical ones. We can see that AdaCML assigns
higher weights on items #856 and #85, a lower weight on item #237, successfully
evaluating the target item #1486 as the item desired by the user. However,
for user #2048, the historical items #337 and #1014 have a higher weight,
indicating that items #337 and #1014 are more relevant to the target item
#397. To demonstrate the rationality, we further investigated the content of
these items (i.e., the Automotive review text). Regarding user #541, we found
that both the target item #1486 and the two higher attended items #856 and
#85 are for better engine performances, while the lowest weight item #237 is
about the windshield wiper. For user #2048, items #393 and #1014 with higher
weights and the target item #397 are led lights, while the lowest weight item
is Hoerr Racing Products. This is expected, because when predicting a user’s
preference on a target item, his/her historical items of the same category should
have a larger impact than other less relevant items. Overall, this case study
shows that AdaCML has great interpretability to explain its recommendation
results.

5 Related Work

Our proposed AdaCML can be seen as an improvement of the popular Col-
laborative Metric Learning method (CML) [9]. It overcomes the drawbacks of
CML by using a memory module and a novel attention mechanism to learn an
adaptive user representation in a metric space. In this section, we will briefly
discuss closely related work from two aspects, which are collaborative filtering
and attention mechanism.

Table 3. A case study on the interpretability of AdaCML. The first column shows
the user ID, the second column displays the target item ID, and the third column has
three sub-columns, each of which contains a historical item and an attention weight,
where the attention value is shown in parentheses.

User ID Target item ID Historical items

1 2 3

#541 #1486 #856 (0.398) #85 (0.399) #237 (0.203)

#2048 #397 #337 (0.393) #1267 (0.239) #1014 (0.368)

5.1 Collaborative Filtering

Collaborative Filtering (CF) is one of the most successful technique to build
recommender systems, operating on explicit and implicit feedback data. Implicit
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collaborative filtering is a method of learning user-item interactions from implicit
data (e.g., buy or not buy, like or not), and also known as the one-class recom-
mendation [7]. In implicit feedback data, user-item relationships are binary in
nature (i.e., 1 if observed, and 0 otherwise). Bayesian Personalized Ranking
(BPR) [14] is a well-known framework for disposing of the implicitness in CF.
Instead of point-wise learning as in SVD [6], BPR uses a pair-wise learning algo-
rithm to model the relative preferences of users, which makes the items that
each user preferred more forward than those items he/she did not like. CML [9]
is a recently proposed algorithm for CF and has demonstrated highly competi-
tive performance on several benchmarks. CML learns a joint metric space that
not only encodes users’ preference for items but also learns user-user similarity
and item-item similarity. Unlike most methods, CML uses Euclidean distance to
measure the preferred relationships between users and items. CML minimizes the
distance between each positive user-item interaction in Euclidean space. Hence,
in this space, the items that users liked will keep coming close to users, and
the uninterested items will be pushed further away. But CML still faces some
challenges. Firstly, the representation of users is fixed and is insufficient to cap-
ture the complex and diverse interests. Secondly, CML lacks interpretability. To
address these challenges, we propose AdaCML, which uses a memory module
and a novel attention mechanism to learn an adaptive user representation in
a metric space. It not only greatly improves the recommendation performance,
but also provides the greater insight and the interpretability of recommendation.
The details of AdaCML was explained in Sect. 3.

5.2 Attention Mechanism

Attention mechanism are prevalent in many domains, such as image/video cap-
tion [4,5], machine translation [12], and so on. The attention mechanism origi-
nates from the neural science studies by empirically demonstrating that human
usually focus on specific parts of the target entity rather than using all available
information [10]. The key idea of attention is to learn or select the attentive
weights from a set of inputs. Higher (lower) weights indicate that the relevant
components (members) are more informative (less informative) to generate the
end output. Recently, the attention mechanism has been widely wielded to more
accurately represent features in recommender systems [2,3,15]. For example,
Chen et al. [2] proposed an interesting attention-driven factor model for recom-
mendation. It adopts the attention model to measure the relevance of each part
of each item. To get the representation for a multimedia object (e.g., image or
video), Chen et al. [3] aggregated its components (e.g., regions or frames) with an
attention network, where a similar attention mechanism is applied to aggregate
interacted items to get a user representation for making recommendation.

Moreover, in most models, the attention mechanism is usually applied to cal-
culate the importance of each feature in the item content to the user, which does
not consider candidate items. This method generally captures the user’s general
preference and lacks flexibility, causing weak performance and poor explana-
tion. Zheng et al. [18] utilized CNN and the attention mechanism to adaptively
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capture local crucial historical items based on the contents of candidate items.
However, MARS [18] still uses inner product to portray user-item interactions,
which violates the triangular inequality. Hence, we present an AdaCML model
that follows the triangle inequality. Our experimental results show that it has a
better performance in capturing the diverse interests of users by combining the
metric learning method with the attention mechanism.

6 Conclusion

In this paper, we propose an Adaptive Collaborative Metric Learning (AdaCML)
model to perform a personalized recommendation for users. As we know, users’
interests are diverse and involved in various domains. Most existing methods
often focus on learning a fixed and static user representation. This is not enough
to model the diverse interests of users. To tackle this problem, we used a memory
component and an attention mechanism to learn an adaptive user representa-
tion, and utilized a metric learning algorithm to capture the relationships of
user-item, user-user, and item-item. To the best of our knowledge, AdaCML is
the first model to apply an adaptive user representation to a metric learning
algorithm. We conducted extensive experiments on two real-world datasets and
demonstrated that AdaCML could consistently outperform the state-of-the-art
models by a significant margin.
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Abstract. Due to the dynamic and evolutionary characteristics of user
interests, sequential recommendation plays a significant role in recom-
mender systems. A fundamental problem in the sequential recommen-
dation is modeling dynamic user preference. Recurrent Neural Networks
(RNNs) are widely adopted in the sequential recommendation, especially
attention-based RNN becomes the state-of-the-art solution. However the
existing fixed attention mechanism is insufficient to model the dynamic
and evolutionary characteristics of user sequential preferences. In this
work, we propose a novel solution, Adaptive Attention-Aware Gated
Recurrent Unit (3AGRU), to learn adaptive user sequential representa-
tions for sequential recommendation. Specifically, we adopt an attention
mechanism to adapt the representation of user sequential preference, and
learn the interaction between steps and items from data. Moreover, in the
first level of 3AGRU, we construct adaptive attention network to describe
the relevance between input and the candidate item. In this way, a new
input based on adaptive attention can reflect users’ diverse interests.
Then, the second level of 3AGRU applies adaptive attention network to
hidden state level to learn a deep user representation which is able to
express diverse interests of the user. Finally, we evaluate the proposed
model using three real-world datasets from various application scenarios.
Our experimental results show that our model significantly outperforms
the state-of-the-art approaches on sequential recommendation.

Keywords: Adaptive attention mechanism · GRU ·
Recommender system
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1 Introduction

With the explosion of Web information, recommender system plays a more and
more significant role in online services, where capturing users’ preferences is
critical. Due to the intrinsically dynamic and evolving characteristics of user
interests, sequential recommendation has attracted a lot of attention in recom-
mender systems. A fundamental problem in the sequential recommendation is
how to model dynamic and evolutionary user preferences to satisfy user needs
better [19].

For modeling sequential patterns, Factorizing Personalized Markov Chain
(FPMC) model was proposed to factorize user-specific transition matrix by the
Markov Chain (MC) [19]. A significant drawback of MC-based solutions is that
they adopt the static representation for user’s interests. With the success of
neural networks in many application domains, recurrent neural networks (RNNs)
are widely adopted in the sequential recommendation, such as session-based
recommendation [8], next-basket and next-item recommendations [12,13].

Besides the essential dynamic and evolutionary characteristics, the user’s
interests are also diverse (not singular) in the same period, and they usually
involve multiple fields. For example, we may find that a user who likes reading
books about deep learning also likes purchasing household appliances. Although
various extensions of RNN, like LSTM and GRU, can better capture the long-
term dependency of user preference, they assume temporal dependence has a
monotonic change with each step. In other words, the current item is more
significant than the previous one to predict the next one, which is not always
true. Attention network based RNN can solve the above problem, where the
attention mechanism can automatically assign different influences to previous
items, and achieve the state-of-the-art performance [2,12,24].

However, the recommendation process can be too dynamic for the attention-
based solutions to capture. A previous item may play a different role and exhibit
different influences in choosing next items of different types due to the spe-
cialty. Nevertheless, existing attention-based RNN solutions use a fixed strategy
to aggregate the influences of previous step items. As such, they are insufficient to
capture the dynamic process of users’ diverse sequential decision makings, result-
ing in a suboptimal solution. Let us illustrate the above problem with an example.
Suppose a user bought three items e.g., Python book, iPad, RecommenderSys-
tem book in a time order. Subsequently, the user purchases an iWatch, and the
sequential history is finalized as Python book, iPad, RecommenderSystem book,
iWatch. If we take the first three items as the context and the last one as the tar-
get to recommend, existing fixed attention-based methods may suggest books like
deep learning books due to the more influence of book items. However, the choice
of the target item iWatch may depend on the first item (iPad). In this case, recom-
mender systems should pay more attention to the iPad when computing the score
of candidate recommendation item iWatch, because iPad may be more related to
the next choice iWatch. This example shows the influence of previous items may
be more related to candidate items. Therefore, it may not be optimal and realistic
to recommend next items with a fixed attention mechanism.
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In this paper, to express the dynamics and diversity of users’ interests, we
develop an Adaptive Attention-Aware Gated Recurrent Unit model (3AGRU)
for sequential recommendation. First of all, we leverage the strength of the recur-
rent architecture of GRU to capture complex long-term dependencies and that of
the attention network to discover the local sequential pattern. More importantly,
motivated by the observation of user behaviors, we facilitate GRU with a novel
adaptive item-level attention mechanism to devise a deep adaptive user sequen-
tial interest representation. Unlike fixed attention-based user representations,
adaptive user representations dynamically adapt to locally activated items. The
first level of 3AGRU is conducted on the input level to make the hidden state
stronger. We input a new input generated by current item and adaptive atten-
tion which considering the information of candidate item to GRU. The second
level of 3AGRU is executed on the hidden state level to utilize adaptive attention
network to learn a deep adaptive user representation. Accordingly, the hidden
state strengthened by the adaptive input is further intensified, which is more in
line with the users’ interests. The contributions of this work can be summarized
as follows:

• We introduce a novel adaptive attention-aware recurrent neural network for
adaptive user representation, which adaptively combines both user’s long-
term and short-term preferences to generate a high-level hybrid representation
of users.

• The adaptive contextual attention networks on input level and hidden state
level are further integrated to improve the performance of sequential recom-
mendation.

• We compare our model 3AGRU with state-of-the-art methods and verify the
superiority of 3AGRU through quantitative analysis on three large real-world
datasets. The experimental results reveal that our method is capable of lever-
aging user historical records effectively.

In the following part of the paper, we first introduce the related work in
Sect. 2, and define the problem in Sect. 3. Then, we illustrate our framework in
Sect. 4. In Sect. 5, we verify the effectiveness of our method with experimental
results. Finally, the conclusions and outlooks of this work are presented in Sect. 6.

2 Related Work

Our Adaptive Attention-Aware Gated Recurrent Unit (3AGRU) is proposed for
sequential recommendation. Therefore, in this section, we discuss related work
from two aspects, i.e., general recommendation and sequential recommendation.

2.1 General Recommendation

General recommendation recommends items through modeling the users’ general
tastes from their historical interactions. The key idea is collaborative filtering
(CF), which can be further categorized into memory-based CF and model-based
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CF [21]. The memory-based CF provides recommendations by finding k-nearest-
neighbours of users or items based on similarity [15], while the model-based CF
tries to factorize the user-item correlation matrix for recommendation [9,11]. [17]
introduces weights to user-item pairs, and optimizes the factorization with both
least-square and hinge-loss criteria. [18] optimizes the latent factor model with a
pairwise ranking loss in a Bayesian framework. [26] optimizes cross-entropy loss
between the true pairwise preference ranking and predicted pairwise preference
ranking for each user. General recommendation can capture users’ general taste,
but can hardly adapt its recommendations directly to users’ recent interactions
without modeling sequential behaviors.

2.2 Sequential Recommendation

Sequential recommendation views the interactions of a user as a sequence and
aims to predict which item the user will interact with next. A typical solution to
this setting is to compute an item-to-item relational matrix, whereby the most
similar (the nearest) items to the last interacted one are recommended to users.
For example, Markov Chain based methods estimate an item-to-item transition
probability matrix and use it to predict the probability of the next item given
the last interaction of a user [19,20]. [20] presents a recommender based on
Markov decision processes and shows that a predictive Markov Chain model is
effective for next basket prediction. [19] combines a factorization method and
Markov Chains, using the factorization method to model the user general taste
and Markov Chains to mine user sequential patterns. Hierarchical representa-
tion model combines the last action information with the general user interest
to model user representations for next basket recommendation [22]. For these
Markov Models, it is difficult to model the long-range dependence. Prod2Vec,
inspired by word embedding technique [16], learns distributed item representa-
tions from the interaction sequences and uses them to compute a cosine similarity
matrix [5]. [6] assumes that items are embedded into a “transition space” where
each user is modeled by a translation vector.

Recently, Recurrent Neural Network (RNN), a state-of-the-art deep learning
method for sequence modeling, is shown to be effective in capturing sequential
user behavioral patterns [3,8,27]. Different from previous methods, applying
RNN to sequential recommender introduces the capability of modeling the whole
historical interactions. [8] implements an improved version of the GRU network
for session-based recommendation, which utilizes a session-parallel mini-batch
training process and employs ranking-based loss functions for learning the model.
DREAM [25] utilizes pooling to summarize the basket of embedded items and
then feeds into vanilla RNN to solve next basket recommendation. [10] integrates
the RNN-based networks with knowledge base enhanced Key-Value Memory
Network (KV-MN) to capture sequential user preference and attribute-level user
preference. [14] explains a K-plet Recurrent Neural Network for accommodating
multiple sequences jointly to capture global structure and localized relationships
at the same time.
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However, our proposed 3AGRU model differs from existing attention-based
RNN solutions. These solutions use a fixed attention mechanism to aggregate
influence of previous items while 3AGRU facilitates relevance between previous
items and candidate items to devise a deep adaptive user sequential interest
representation. Thus, our model 3AGRU can express the dynamics and diversity
of users’ interests.

3 Problem Statement

In this section, we first introduce basic notations that will be used in this paper.
Let U = {u1, u2, ..., u|U|} denote a set of users and I = {i1, i2, ..., i|I|} denote
a set of items, where |U| and |I| are the total numbers of users and items,
respectively. Each user u is associated with a sequence of some items from I,
Iu = {iu1 , . . . , iut , . . . , iun}, where iut ∈ I and n is the number of items interacted
with user u. The index t for iut denotes the relative time index, not the absolute
timestamp.

With the above notations, we define the sequential recommendation task as
follows. In this work, we focus on the case of implicit action feedback. Given a
user u′s history transaction sequence Iu, we aim to predict a list of items that
the user would probably interested in the near future.

4 Adaptive Attention-Aware Gated Recurrent Unit

In this section, we will display the process of our proposed Adaptive Attention-
Aware Gated Recurrent Unit model (3AGRU) for sequential recommendation
in details. Firstly, we introduce the basic GRU model. Secondly, we present the
overall architecture of 3AGRU and then introduce the details of each layer of it.
Finally, we offer the optimization procedures.

4.1 Gated Recurrent Unit

As a variant of LSTM, GRU solves the problem of long-term dependence of
RNN well and simplifies the structure of LSTM. It contains a reset gate rt and
an update gate zt. Besides, it has the candidate state h̃t which uses rt to control
the inflow of the last hidden state containing previous information. If the reset
gate is approximately zero, the last hidden state will be discarded. rt determines
how much information was forgotten in the past. ht is the hidden state which
uses zt to update the last hidden state ht−1 and the h̃t. The update gate zt

controls the importance of the previous hidden state at the current moment.
The formulas are as follows.

rt = σ(xtWxr + ht−1Whr + br) (1)

zt = σ(xtWxz + ht−1Whz + bz) (2)

h̃t = tanh(xtWxh + rt � ht−1Whh + bh) (3)
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ht = zt � ht−1 + (1 − zt) � h̃t (4)

In these formulas, xt is the input vector while t is the time step, Wxr, Whr, Wxz,
Whz, Wxh, Whh, br, bz, bh represent the transition matrices and bias of the input
and hidden levels in rt and zt respectively, � is the element-wise product between
two vectors, and the sigmoid function σ(x) is used to do nonlinear projection.
The last ht is the final representation of the sequence.

4.2 3AGRU

The 3AGRU model is a hierarchical structure that consists of input level, GRU,
hidden state level and output level. What we will do is to apply adaptive atten-
tion network to the input level and the hidden state level of GRU. The modeling
architecture is shown in Fig. 1. In the input level, the sparse inputs are embedded
into dense representations to get memory component C which contains informa-
tion of all items of user u and vj which is the representation of a candidate item
iuj . Then the adaptive attention network is employed on C as the input of GRU.
In this way, the input of GRU at each time step has different weights, and the
larger the weight value is, the more similar iuj and the corresponding item are. In
the hidden state level, the adaptive attention network is also applied to the set
of the hidden state at each time step to get the new hidden state with different
weights. The different weights denote the relevance between the candidate item
and the hidden state of GRU at each time step. With the information passed
to the final hidden state, the final hidden state is used to be the adaptive user
representation. Finally, we use the final hidden state with attention to measure
the user’s preference score over item iuj . Then, we will introduce each part of our
model in detail.

Fig. 1. The architecture of 3AGRU. The weight in Adaptive Attention Network indi-
cates the correlation between the corresponding input item and the candidate item.
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Adaptive Attention Network in Input Level. The input level is composed
of embedding layer and adaptive attention network. As we all known, both orig-
inal input and candidate item have limited representation ability that is similar
to discrete words symbols in natural language processing. Therefore, our model
3AGRU will use item embedding to project sparse inputs to dense representa-
tions. Formally, let C ∈ R

k×n represent dense input whose column corresponds
to a representation of an item in Iu and vj ∈ R

k×1 represent a candidate item iuj .
Hence the matrix C characterizes the user’s interests and k is the dimensionality
of the latent factor. Although C stores all item information of user u, our goal
is to learn a deep representation of user u through the adaptive attention. Since
items in Iu are diverse and only a subset of Iu is relevant to candidate item
iuj , we introduce an item-level attention mechanism named as adaptive attention
network on the memory component C to capture items in Iu relevant to item
iuj . More items in Iu with high relevance scores to the item iuj denotes that the
user u is more likely interested in item iuj . The adaptive attention network in the
input level which is used to measure the relevance scores between iuj and each
item representation in C is defined as:

αu
c =

exp(CT vj)∑
im∈I/Iu exp(CT vm)

(5)

Defined in this way, αu
c ∈ R

n×1 is the adaptive attention column vector of user u
for item iuj in the input level of GRU. The larger value in αu

c , the higher relevance
between item iuj and a corresponding item in Iu and a higher weight for deriving
interests of user u for item iuj . Therefore, the input of GRU is formed as:

V u = αu
c � C (6)

where � is the element-wise product and V u = {vu
1 , vu

2 , . . . , vu
n}. The formulas

of GRU will be rewritten as:

rt = σ(vu
t Wxr + ht−1Whr + br) (7)

zt = σ(vu
t Wxz + ht−1Whz + bz) (8)

h̃t = tanh(vu
t Wxh + rt � ht−1Whh + bh) (9)

ht = zt � ht−1 + (1 − zt) � h̃t (10)

Let H = {h1, h2, . . . , hn} represent the set of intermediate output of GRU and vu
t

denote the item in V u at time step t. In this way, the ht contains the information
of relevance of candidate item iuj and the previous input items.

Adaptive Attention Network in Hidden State Level. The hidden state
level is to further relieve the monotonic assumption problem and give different
weights to current hidden state, especially the final hidden state. Since the RNN-
based methods mostly employ the final hidden state as the user’s representation
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then making recommendations to users, we use the adaptive attention again to
get a deep adaptive user representation.

Similar to the adaptive attention in the input level, H characterizes the user’s
representation at each time step. With the H and vj , we measure the relevance
between each hidden state in H and item iuj . Thus, the adaptive attention net-
work in hidden state level is formed as:

αu
h =

exp(HT vj)∑
im∈I/Iu exp(HT vm)

(11)

The larger value in αu
h, the higher relevance between item iuj and corresponding

hidden state in H. Consider that GRU can transmit previous information to
the current state, it can enable the final hidden state to focus on the diversified
interests of users through giving different weights to the mediate hidden state.
The formula of the hidden state set which contains different weights is as follows:

Hu = αu
h � H (12)

where � is the element-wise product and the final hidden state with attention
is the adaptive user representation which is adaptively focusing on items in Iu

activated by item iuj .

Output Level. In the output level, let hj
u denote the final hidden state with

attention of GRU. We use hj
u to represent the deep adaptive user representation.

Recall that the adaptive user representation hj
u is obtained by placing the adap-

tive attention on the memory component C and the set of hidden state H. Given
the representation of a candidate item iuj , we can compute the user’s preference
score over item iuj as:

ŷj
u = (hj

u)T vj (13)

ŷj
u is the preference score which reflects the preference of user u for item iuj .

4.3 Network Learning

The goal of our model is to recommend a ranked list of items that satisfy user’s
interests. To train 3AGRU optimized for ranking inspired by BPR, we formalize
the training data D by (u, p, q) triples as:

D = {(u, p, q)|u ∈ U ∧ p ∈ Iu ∧ q ∈ I/Iu} (14)

where u denotes the target user, p and q represent the positive and negative
items respectively. Item p is from user’s history Iu while item q is randomly
chosen from the rest items. Similar to BPR, instead of scoring single items, we
use item pairs to calculate user’s preference for positive and negative items. The
objective function minimizes the following formula:

L = arg min
θ

∑

(u,p,q)∈D

− ln(σ(ŷp
u − ŷq

u)) +
λ

2
‖θ‖2 (15)
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where ŷp
u and ŷq

u represent the user u’s preference score over item p and q. θ rep-
resents all of the model parameters that are learned while λ is the regularization
terms. The sigmoid function σ maps user u’s preference score of item p and q
into probabilities.

5 Experiment

In this section, we first explain the setup of experiments, and then analyze the
results of experiments. After that, we explore the advantages of the adaptive
attention network over the fixed attention mechanism. Finally, we present the
influence of hyper-parameters. We aim to answer these questions as follows:

Q1: What’s the performance of 3ARGU, comparing to other state-of-the-art
methods?

Q2: What’s the advantage of adaptive attention, comparing to fixed attention?
Q3: How do the parameters affect model performance, such as the dimension of

latent vectors and the regularization terms?

5.1 Experimental Setup

Datasets. We conduct the experiments on the three datasets with different
kinds of items. The basic statistics of datasets are listed in Table 1. Specifically,
CA is a Foursquare1 dataset where users are in California. It was collected from
January 2010 to February 2011, and used in [4]. Gowalla2 and Brightkite3 are two
widely used LSBN datasets, which contain massive implicit feedbacks through
user-POI check-ins. To remove rare cases, we eliminated users’ interactions with
fewer than 15 items and items interacted by fewer than 10 users in the three
datasets.

Table 1. Statistics of datasets

Dataset Users Items Feedbacks Avg.seq.len Density

CA 2031 3112 106,229 52.30 1.68%

Gowalla 5073 7021 252,944 49.87 0.71%

Brightkite 1850 1672 257,369 139.12 8.12%

Baseline. To evaluate the performance of 3ARGU, we compare it with following
comparative methods.

1 https://sites.google.com/site/yangdingqi.
2 http://snap.stanford.edu/data/loc-gowalla.html.
3 http://snap.stanford.edu/data/loc-brightkite.html.

https://sites.google.com/site/yangdingqi
http://snap.stanford.edu/data/loc-gowalla.html
http://snap.stanford.edu/data/loc-brightkite.html


326 A. Luo et al.

• BPR-MF: Bayesian Personalized Ranking based Matrix Factorization
(BPR-MF) is a popular method for top-N recommendation. It is based on
users’ pair-wise preferences and neglects the usage of item content.

• FPMC4 [19]: Factorizing Personalized Markov Chain (FPMC) was designed
to predict the items in the next basket. It can not only learn the general taste
of a user by factorizing the matrix over observed user-item preferences, but
also model sequential behaviors by learning a transition graph over items,
which is used to predict the next action based on the recent actions of a user.

• GRU: Gated Recurrent Unit based RNN (GRU) is the most advanced
method for sequential recommendation, which can capture the long-term
dependency and compact vanishing gradients of RNN to recommend following
items.

• GRU-ATT [2]: Similar to our model 3AGRU, we apply the fixed attention
mechanism on the input level and hidden state level of GRU, since the fixed
attention mechanism [23] has been used in text classification tasks and has a
good preference. Here, we name this method GRU-ATT.

• RUM5 [1]: RUM utilizes external memories to improve sequential recom-
mendation, which contains two variants, item-level (RUMI) and feature-level
(RUMF ).

Evaluation Metrics. For next-future recommendation whose aim is to recom-
mend next item collection that user would probably interact with in the future,
we hold out the first 70% of each user’s interaction sequence in the time order
as the training set and the remaining 30% for testing. Besides, we remove the
duplicate items in each user’s test sequence. Following previous work [7,10], we
randomly sample 50 items that are not interacted by the user, while other 50
items are samples according to the popularity. We expect that the recommen-
dation system can not only retrieve relevant items out of all available items, but
also retrieve the results as accurately as possible. Besides, we hope it can provide
a ranking where items of user’s interests are ranked in the top. Therefore, we
use the Precision, Recall and Mean Average Precision (MAP) to evaluate the
preference of our model.

• Precision, Recall. The precision is widely used to measure the predictive
accuracy in sequential recommendation system area. P@K represents the pro-
portion of test cases that recommend items correctly in a top K position in
generated recommendation list for a user. The recall is used to measure how
well a model can recommend relevant items out of all available items. R@K
represents the proportion of test cases that recommend items correctly in
a top K position in the set of user’s interacted items in the test data. The
definitions of P@K and R@K are given as:

P@K =
#Hits

length of generated recommendation list
(16)

4 https://github.com/khesui/FPMC.
5 https://github.com/ch-xu/RUM.

https://github.com/khesui/FPMC
https://github.com/ch-xu/RUM
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R@K =
#Hits

total number of items the user likes
(17)

• MAP. Mean Average Precision is the average of AP to measure the ranking
performances.

MAP =
1

|U|
∑

u∈U

AveP (u), (18)

AveP (u) =
1

|K ′ |

K
′

∑

k=1

pu(k)relu(k) (19)

where pu(k) represents the precision of the top k products recommendation
to user u; relu(k) denotes whether the kth item has interacted with user u in
the test data; K

′
is the cut-off point.

5.2 Comparison of Performance

Our experimental results of 3ARGU and the several comparative methods on
the three real-world datasets are shown in Table 2. From Table 2, we can observe
following phenomena.

First, in terms of the three evaluation metrics (i.e., precision, recall and
MAP), 3AGRU consistently outperforms other methods with a large margin on
all three real-world datasets. This indicates that 3AGRU is capable to model
complicated process of sequential decision through adaptive attention network.

Second, the performance of BPR-MF, which contains no sequential infor-
mation, is the worst among that of all competitive methods under most cases.
This shows that sequential information is important for improving recommen-
dation performance, which confirms that user’s interests are dynamic. FPMC,
which considers sequential information, has a certain improvement, comparing
with BPR-MF. However, since the sequential information considered is based on
users’ recent actions in FPMC, the effectiveness is not as good as other methods
utilizing long-term and short-term information such as GRU.

Third, RUM models use historical records with external memories, and aim to
solve the representation of fixed hidden layers and make recommendation more
explanatory. From Table 2, we can see that in terms of MAP, RUM on both
item-level and feature-level does not perform as well as GRU on the Gowalla
dataset, but it performs well on the other two datasets. This is possibly because
the data distribution of the Gowalla dataset is relatively sparse. This suggests
that the use of attention mechanisms in the hidden state level can describe the
user’s dynamic preferences.

Fourth, Table 2 shows that GRU-ATT performs much better than GRU.
This is because GRU-ATT uses the fixed attention network. It is known that
the attention mechanism can improve the performance of recommendation to a
certain extent. This also proves that it is effectiveness of the attention mechanism
to capture users’ evolving appetites for items.
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Table 2. Experimental results of different methods on three real-world datasets. Note
that the larger the number in the table, the better the performance is. And the boldface
results are the best while the second best are underlined.

Dataset Method @5 @10 @15 @20 MAP

Precision Recall Precsion Recall Precsion Recall Precsion Recall

CA BPR-MF 0.0282 0.0108 0.0207 0.0164 0.0170 0.0200 0.0153 0.0233 0.0136

FPMC 0.0430 0.0191 0.0267 0.0235 0.0203 0.0266 0.0170 0.0296 0.0230

RUMI 0.0633 0.0253 0.0470 0.0372 0.0387 0.0454 0.0348 0.0538 0.0371

RUMF 0.0500 0.0206 0.0419 0.0247 0.0370 0.0279 0.0337 0.0308 0.0360

GRU 0.0746 0.0266 0.0525 0.0363 0.0415 0.0429 0.0349 0.0476 0.0260

GRU-ATT 0.0845 0.0293 0.0576 0.0398 0.0460 0.0481 0.0382 0.0533 0.0287

3AGRU 0.1074 0.0502 0.0782 0.0731 0.0591 0.0828 0.0527 0.0986 0.0477

Gowalla BPR-MF 0.0105 0.0234 0.0150 0.0172 0.0183 0.0144 0.0208 0.0127 0.0111

FPMC 0.0510 0.0261 0.0329 0.0317 0.0247 0.0364 0.0202 0.0394 0.0243

RUMI 0.0406 0.0218 0.0299 0.0307 0.0245 0.0367 0.0216 0.0425 0.0158

RUMF 0.0236 0.0117 0.0188 0.0184 0.0159 0.0228 0.0146 0.0269 0.0106

GRU 0.0634 0.0271 0.0412 0.0347 0.0321 0.0397 0.0270 0.0438 0.0252

GRU-ATT 0.0718 0.0314 0.0445 0.0377 0.0334 0.0418 0.0273 0.0450 0.0267

3AGRU 0.0756 0.0418 0.0488 0.0512 0.0382 0.0583 0.0338 0.0669 0.0344

Brightkite BPR-MF 0.0222 0.0044 0.0198 0.0079 0.0173 0.0105 0.0160 0.0128 0.0068

FPMC 0.0101 0.0066 0.0088 0.0109 0.0080 0.0151 0.0079 0.0191 0.0122

RUMI 0.0728 0.0199 0.0556 0.0320 0.0476 0.0404 0.0423 0.0483 0.0156

RUMF 0.0356 0.0092 0.0309 0.0166 0.0263 0.0202 0.0216 0.0211 0.0240

GRU 0.0685 0.0120 0.0478 0.0181 0.0383 0.0221 0.0329 0.0256 0.0136

GRU-ATT 0.0786 0.0139 0.0531 0.0200 0.0418 0.0246 0.0354 0.0285 0.0150

3AGRU 0.1129 0.0767 0.0769 0.1031 0.0568 0.1137 0.0467 0.1229 0.0680

At last, we can make comparisons between our model 3AGRU and GRU-
ATT, since both have adopted the attention mechanism. Table 2 shows the
advantage of 3AGRU, comparing with GRU-ATT in terms of all three evalu-
ation metrics. This indicates that the adaptive attention network is better than
the fixed attention mechanism. We will further explore the advantage of the
adaptive attention network over the fixed attention mechanism in the next sub-
section.

In Summary, our experimental results prove that our proposed model 3AGRU
does reflect the user’s interest effectively and performs better than other state-
of-the-art methods.

5.3 Influence of Components

In order to judge the advantage of the adaptive attention network, comparing
to the fixed attention mechanism, we conduct experiments on cases where the
adaptive attention network is applied only to the input level or only to the
hidden level of GRU. We use 3AGRU-I to present that the adaptive attention
network is only applied in the input level, while 3AGRU-H is used to indi-
cate the adaptive attention network is only applied to the hidden state level.
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We will observe the results of experiments on 3AGRU-I, 3AGRU-H, 3AGRU and
two competitive methods (i.e., GRU and GRU-ATT). Our experimental results
are shown in Fig. 2. Due to space limitation, we only show their performance in
terms of Recall@20 and MAP.

(a) CA (b) Gowalla (c) Brightkite

Fig. 2. Exploration of the role of fixed attention mechanism and adaptive attention
mechanism in terms of Recall@20 and MAP.

Figure 2 shows that the fixed attention mechanism indeed improves the per-
formance of sequential recommendation to a certain extent. However, we can see
that the approaches (i.e., 3AGRU-I, 3AGRU-H, and 3AGRU) based the adaptive
attention network perform better than GRU and GRU-ATT. This shows that
the adaptive attention network is much better than the fixed attention mech-
anism. This can prove that the adaptive attention network can better depict
users’ dynamic preferences.

From Fig. 2, we can also find that the relationship between 3AGRU and
its variants (i.e., 3AGRU-I and 3AGRU-H) is different in different datasets. In
terms of performance on CA and Gowalla, 3AGRU performs more or less better
than both 3AGRU-I and 3AGRU-H, this indicates that the adaptive attention
mechanism is better applied to both the input level and the hidden state level,
instead of only one level. This is because the diversity and dynamics of user
preferences are further depicted in the hidden state level according to the items
to be recommended. In addition, the effect of 3AGRU is only slightly improved
compared with that of 3AGRU-I and 3AGRU-H, possibly because users’ pref-
erences for a given item via an adaptive attention network are so accurate that
adding another adaptive attention network doesn’t make much difference. When
comparing 3AGRU-I and 3AGRU-H, we note that sometimes 3AGRU-I works
better and sometimes 3AGRU-H works better, supporting that both the input
level and the hidden state level play the important role in GRU. We further
investigate the performance on Brightkite. We can observe that 3AGRU-H per-
forms best in terms of Recall@20, this may be operations of GRU for forgetting
and updating information play a larger role in dense datasets, making input
based on adaptive attention network to some extent forgotten. And the original
input to do the same operation, the disadvantages are relatively small.

The above analysis shows that the core part of our model 3AGRU, adap-
tive attention network, can embody dynamic and diversity characteristics of
user sequential preferences. It is indeed more effective than fixed attention
mechanism.
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Fig. 3. Influence of dimension size Fig. 4. Influence of regularization
terms

5.4 Influence of Hyper-parameter

In this subsection, we explore the influences of the dimension size and different
regularization terms in our model 3AGRU. Due to space limitation, we just show
the results under the metric of MAP.

Influence of Dimension Size k. Dimension size in our model is relevant not
only item embedding sizes but also hidden unit size in GRU network which
represents the number of features in the hidden state. The size of hidden unit
represents the number of nodes that used to remember and store previous states
and shows the capability of GRU while dimension size reflects the ability of
latent vector representation. Therefore, we choose k in {16, 32, 64, 128, 256, 512}
to find the size which makes the performance of our model 3AGRU better. It
can be seen in Fig. 3 that, the performance of the model is improved at the
beginning and reaches the best at k = 128 with the increase of k, and then the
performance starts to deteriorate. As Brightkite dataset is relatively dense, this
trend is particularly evident in it. In terms of dimension size, it indicates that
low-dimension vector has a limitation of modeling complex interactions while the
high-dimension vector may affect the generalization of the model and increase
the number of parameters. In terms of hidden unit size, proper hidden unit size
can help achieve best performance.

Influence of Different Regularization Terms. We further investigate the
influence of different regularization terms λ. In our model, we utilize L2 regular-
ization terms (λ) mainly on the representation vector of items to avoid overfitting
problem. We search the λ from {0.00001, 0.0001, 0.001, 0.01} to optimize perfor-
mance of our model. Figure 4 shows the influence of regularization at MAP. As
shown in the figure, small λ can improve our model in terms of MAP and the
3AGRU reaches its best preference when λ is set to 0.0001. When the value of
λ continues to decrease, the performance hardly changes.



3AGRU 331

6 Conclusion

In this paper, we proposed a novel model named Adaptive Attention-Aware
Gated Recurrent Unit (3AGRU) to learn adaptive user sequential represen-
tations and capture users’ short-term and long-term interests to embody the
diversity and the dynamics of user interests. With the items to be recommended
and users’ history records, we constructed a novel attention mechanism called
adaptive attention mechanism to reflect the diverse interests of users. First, we
embedded the sequence of inputs and the targets into low-rank dimension spaces,
and then generated the adaptive attention network in the input level and the
hidden state level to adapt the representation of user sequential preferences,
and to learn the interactions between steps and items from data. Experimen-
tal results demonstrated that 3AGRU achieved a good performance in terms of
precision, recall, and MAP, comparing with several competitive methods on the
three real-world datasets.
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Abstract. The sequential recommendation, which models sequential
behavioral patterns among users for the recommendation, plays a criti-
cal role in recommender systems. Conventionally, user general taste and
recent demand are combined to promote recommendation performance.
However, existing methods usually neglect that user long-term preference
keeps evolving over time and only use a static user embedding to model
the general taste. Moreover, they often ignore the feature interactions
when modeling short-term sequential patterns and integrate user-item or
item-item interactions through a linear way, which limits the capability of
model. To this end, we propose an Attention and Convolution enhanced
memory network for Sequential Recommendation (ACSR) in this paper.
Specifically, an attention layer learns user’s general preference, while the
convolutional layer searches for feature interactions and sequential pat-
terns to capture user’s sequential preference. Moreover, the outputs of
the attention layer and the convolutional layer are concatenated and fed
into a fully-connected layer to generate the recommendation. This app-
roach provides a unified and flexible network structure for capturing both
general taste and sequential preference. Finally, we evaluate our model
on two real-world datasets. Extensive experimental results show that our
model ACSR outperforms the state-of-the-art approaches.
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1 Introduction

With the fast development of platform economy, many companies like Amazon,
TaoBao, and Uber are creating self-ecosystems to retain users through inter-
actions with products and services. Users can access these platforms through
mobile devices in daily life. As a result, a great amount of behavior logs have
been generated. For instance, 68 million user trips have been accumulated in
June 2017 at Uber, and more than 11 billions check-ins have been generated by
over 50 million users at Foursquare. To build effective recommender systems,
a key factor is to accurately characterize and understand user’s interests and
tastes, which are intrinsically dynamic and evolving. To achieve this goal, the
sequential recommendation has been proposed to recommend successive items
that a user is likely to interact with based on the historical activity sequences.

Different from conventional recommender systems, more and more data is
originated from transactions or sessions in sequential recommendation. These
transactions or sessions form user’s sequential patterns, where next few items
are more likely depended on the items engaged recently by a user. For instance,
buying milk and butter together leads to a higher probability of buying flour
than buying milk or butter individually. However, conventional recommenda-
tion methods like collaborative filtering [17], matrix factorization [9], and top-N
recommendation [14], are not suitable for capturing sequential patterns because
they do not model the order of actions. To solve this problem, early sequen-
tial methods based on Markov chains, such as [4,5,16], usually employ sepa-
rate models to characterize user’s long-term preference (i.e., a general taste)
and short-term preference (i.e., sequential preferences), and then integrate them
together. However, these Markov chains-based methods model local sequential
behaviors between every two adjacent items but have difficulties to model high
order relationships. Recently, deep neural networks have been intensively studied
in related domains and have a great influence on sequential recommendation.
The most popular neural network used to model user’s sequential patterns is
Recurrent Neural Network (RNN). RNN-based methods become more powerful
than traditional sequential methods do. However, RNN assumes that temporal
dependency changes monotonically [12], which means that the current or hidden
state is more important than the previous one. In the sequential recommenda-
tion, not all adjacent actions have dependent relationships. To deal with this
problem, Caser [18] adopts convolutional filters from Convolutional Neural Net-
work (CNN) and models sequential patterns as local features of the embeddings
of previous items. However, this method just treats user embedding as user’s
general taste that may not be adequate to learn user’s general taste which is
also very important for sequential recommendation [5,16].

In this paper, we propose an Attention and Convolution enhanced mem-
ory network for Sequential Recommendation, namely ACSR. It leverages both
strengths of attention mechanism and CNN to capture user’s long-term and
short-term preferences and makes a non-linear combination of the long-term
preference and short-term preference for recommendation. Specifically, we mine
user’s general taste by an attention network through user’s interaction records
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firstly, and then we utilize convolutional filters to search for user’s local sequen-
tial features. Horizontal convolutional filters are introduced to capture non-linear
feature interactions, while the vertical convolutional filters are used for searching
for non-monotone local patterns. And then we concatenate the outputs of the
two types of convolutional layers and feed them into a fully-connected neural
network layer to get more high-level and abstract features. Finally, the output
of the attention network and the output of the convolutional neural network are
concatenated together to describe user’s overall interest, and then feed them into
another fully-connected neural network layer for generating recommendation. To
learn the parameters of our model ACSR, we employ the Bayesian personalized
ranking optimization criterion to generate a pair-wise loss function [16]. From
our experimental results on two real-word datasets, we can observe that ACSR
outperforms state-of-the-art methods. Our contributions in this paper can be
summarized as follows.

• We propose a novel sequential recommendation network ACSR, which uti-
lizes attention network and conventional neural network to model general
taste and short-term preference, respectively, to generate a high-level hybrid
representation of a user.

• We introduce horizontal convolutional filters to capture non-linear feature
interactions and vertical convolutional filters to search for local sequential
patterns.

• Experimental results on two large real-world datasets reveal that ACSR out-
performs state-of-the-art methods.

2 Related Work

Markov chains have been introduced by previous work to model user’s individ-
ual and sequential information jointly for traditional recommendation. Rendle
et al. [16] combined a factorization method with Markov chains. They used
the factorization method to mine user’s general taste, and used Markov chains
to model user’s sequential patterns. Following this idea, researchers utilized
different methods to extract user’s general taste and short-term preference.
Chen et al. [1] and Feng et al. [4] used metric embedding to project items into
points in a low-dimension Euclidean space for playlist prediction and successive
location recommendation. Liang et al. [11] leveraged word embedding to mine
information from item-item co-occurrence to improve the performance of the
matrix factorization. However, these methods have a limited capability on cap-
turing high-level user-item interactions, since the weights of different components
are fixed.

Recently, researchers turn to graphical models and neural networks in rec-
ommender systems. Liu et al. [13] proposed a bi-weighted low-rank graph con-
struction model, which integrates user’s interests and sequential preferences with
temporal interval assessment. Cheng et al. [3] combined wide linear models with
cross-product feature transformations and employed deep neural network to
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learn highly nonlinear interactions. However, this model needs feature engineer-
ing to design cross features, which can be rarely observed in high sparse data.
To deal with this problem, Xiao et al. [21] designed attentional pooling layers
to learn a second-order features based on the traditional factorization machine
technology. Wu et al. [20] employed recurrent neural network (RNN) to mine
dynamic user and item preferences in trajectory data. However, RNN holds an
assumption that temporal dependency changes monotonically [13], which means
that the current item or the hidden state is more important than previous one.
In sequential recommendation, not all adjacent actions have dependent relation-
ships. While Tang and Wang [18] did not model sequential patterns as adjacent
actions, they adopted convolutional filters from CNN and modeled sequential
pattern as local features of the embeddings of previous items. Beyond that, atten-
tional mechanisms have been recently explored due to the ability of model user’s
attention. For example, Li et al. [10] proposed a hybrid encoder with an attention
mechanism to emphasize user’s main purpose. Ying et al. [22] was designed as a
hierarchical attention network to capture user’s long- and short-term preference
in a high-level way. However, this method did not consider feature interactions
when modeling sequential patterns. Our proposed approach takes these problem
into consideration.

3 ACSR Memory Network

In this section, we first describe the problem definition in our work, and then
explain the details of our Attention and Convolution Enhanced Memory Network
(ACSR). Finally, we will present the optimization procedures of ACSR.

3.1 Problem Definition

Before explaining our model ACSR, we first introduce basic notations that will
be used in this paper. Let U = {u1, u2, . . . , u|U|} denote a set of users, and
V = {v1, v2, . . . , v|V|} denote a set of items, where |U| and |V| are the number of
users and items, respectively. Each user is associated with a sequence of items
from V and we can form the interaction sequence Lu = {vu

1 , vu
2 , . . . , vu

|Lu|} for
each user by sorting interaction records in a chronological order. The index t
for vu

t denotes the relative time index, instead of the absolute time index in
temporal recommendation like [16,19,20].

With these notations, we defined the sequential recommendation task as
follows. In this work, we focused on extracting information from implicit and
sequential user-item feedback data (e.g., user’s successive check-ins and purchase
transaction records), which concerns that a user u ∈ U is interacted with an item
v ∈ V at time t. Given a user u and his/her historical sequence Lu, the goal is
to recommend a list of items that maximize her/his future needs, by considering
both general preference and sequential patterns.
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Fig. 1. The network architecture of ACSR. A hybrid user representation is learned by
the attention and convolution neural network, which combines both the general taste
and short-term preference.

3.2 The Network Architecture of ACSR

As we mentioned before, ACSR incorporates an attention network to learn
user’s long-term interests and a convolutional neural network to search for users’
sequential patterns. As is shown in Fig. 1, ACSR consists of four components,
i.e., an Embedding layer, an Attention layer, a Convolutional layer and a Fully-
connected Layer. The basic idea of ACSR is to capture a nonlinear high-level
representation for each user to generate the recommendation. More specifically,
we first embedded sparse user and item inputs (i.e., one-hot representations) into
low-dimensional dense vectors, which endows each user or each item an infor-
mative representation instead of the basic index. Secondly, we learned users’
long-term preference by an attention layer. Then, due to the strength of convo-
lutional filters to capture sequential patterns [18], we searched for local sequential
patterns and features interactions by employing horizontal and vertical convo-
lutional filters. Finally, we integrated the output of attention network and the
output of convolutional neural network to a fully-connected layer for generating
final prediction. The details of each component of ACSR will be explained as
follows.

Embedding Layer. Similar to discrete word symbols in natural language pro-
cessing, the original user and item IDs have very limited representation capacity.
Therefore, our memory network ACSR first embeds user and item IDs (i.e.,one-
hot representations) into two continuous low-dimensional spaces. Formally, let
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U ∈ R
K×|U| and V ∈ R

K×|V| be two matrices consisting of the user and item
embeddings, respectively, where K is the dimensionality of latent embedding
spaces. Theoretically, traditional matrix factorization is equivalent to a two-
layer neural network, which constructs low-rank embeddings for users and items
in the first layer and employs inner product operation in the second layer. How-
ever, embeddings through matrix factorization only capture a low-level, bi-linear
and static representation, which limits the capability of representations [11]. On
the contrary, our method learns a dynamic and high-level user representation
based on these basic embeddings.

Attention Layer. In sequential recommender systems, long-term and short-
term preferences correspond to user’s general taste and sequential patterns,
respectively [16]. Since the long-term item set of a user usually changes over
time, learning a static long-term preference representation for each user cannot
fully express the dynamics of the user’s long-term preference. Moreover, we argue
that the same items might have different impact on different users, and different
items have different influences on the next few items that will be purchased. For
instance, user a buys item m for himself because of interest, while user b buys
item m as a gift for his/her friend. In this case, it is reasonable to infer that item
m has different weights or attentions on user a and b when predicting what they
may purchase in the near future.

To meet the above requirements, we turn to use the attention mechanism,
which has been successfully applied in many tasks, such as image question
answering, document classification and recommendation. Given a user u, we
first compute the importance of each item in his/her history sequence at time
step t, and then we aggregate the embeddings of these items to form the user’s
long-term preference representation. Formally, the attention network is defined
as follows.

hj = φ(W 1vj + b1), (1)

αj =
exp(uThj)∑

m∈Lu exp(uThm)
, (2)

where W 1 ∈ R
K×K and b1 ∈ R

K×1 are model parameters. We assume that
the items are consecutively labeled from 1 to |V| and vj presents the dense
embedding vector of item j. Firstly, we feed the dense low-dimensional embed-
ding of each item j ∈ {v1, . . . , vt−1} through a multi-layer perception (MLP) to
get the hidden representation hj . φ(·) is an activation function, and RELU is
used to enhance nonlinear capability. Unlike traditional attention models that
use the same context vectors for each input, we treat the embedding u of user
u as the context vector and measure the attention score αj as the normalized
similarity between hj and u with the softmax function, which characterizes the
importance of item j for user u. Finally, we compute the user’s long-term rep-
resentation ulong as a sum of the item embeddings weighted by the attention
scores as follows.

ulong =
∑

j∈Lu
t

αjvj . (3)
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Convolutional Layer. The convolutional layer leverages the recent success of
convolutional filters of CNN in capturing local features for image recognition and
natural language processing. We present embeddings of the previous l items (i.e.,
from vt−l to vt−1) of user u at time step t as a l ×K matrix E(u,t), and the rows
of the matrix preserve the order of items. And then we regard the matrix E(u,t)

as an “image” to make the horizontal and the vertical convolutional operations
respectively. More details are explained below.

Horizontal Convolutional Layer. In this layer, we utilize horizontal filters
Fx ∈ R

h×K (1 ≤ x ≤ n, h ∈ [1, . . . , l]) to slide over a sequence and pick up
signals for sequential patterns at different time steps, where h is the height of
the horizontal filter, n is the number of horizontal filters and K is the size of
low-dimension. For each time step t in the sequence Lu of user u, we have a
window matrix E(u,t) ∈ R

l×K . Each Fx will slide from the top to bottom on
E(u,t) of the item i(1 ≤ i ≤ l − h + 1). The result of the feature interactions is
the i-th convolution value given by the following equation.

cx
i = φH(Ei:i+h−1 · F x), (4)

where φH is an activation function for convolutional layers, and RELU is used to
enhance its nonlinear capability. This value is the inner product between F x and
the sub-matrix formed by the row i to i + h − 1 of E(u,t), denoted by Ei:i+h−1.
The final convolution result of F x is the vector as follows.

cx = [cx
1c

x
2 . . . cx

l−h+1]. (5)

Then, we apply a max pooling operation to cx to extract the maximum value
from all values produced by this particular filter. The maximum value captures
the most significant feature extracted by the filter. Therefore, for the n filters in
this layer, the output value o ∈ R

n is:

o = {max(c1),max(c2), . . . ,max(cn)}, (6)

Horizontal filters interact with every successive h items for features interactions
through their embeddings E(u,t). By sliding the filters of various heights, this
layer can search for the feature interactions and item-item interactions.

Vertical Convolutional Layer. This layer is shown in the lower part of the
second component in Fig. 1. A tilde(∼) is used as the symbol of this layer. Sup-
pose that there are ñ vertical filters F̃x ∈ R

l×1 for the operation of vertical
convolution, 1 ≤ x ≤ ñ. For each time step t in the sequence Lu, we have a
window matrix E(u,t) with l previous consecutive items. Each F̃x interacts with
each column of E(u,t) by sliding K times from left to right for user u at time
step t in a valid way. We can obtain the vertical convolutional result c̃x ∈ R

K

as follows.
c̃x = [c̃x

1 c̃x
2 . . . c̃x

K ]. (7)
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For the inner product interaction, it is easy to verify that this result is equal
to the weighted sum over the l rows of E(u,t) with F̃

x
as the weights. That is,

c̃x =
l∑

j=1

F̃
x

s · E(u,t)
s , (8)

where s is the s-th row of E(u,t). With the vertical filters, we can learn to
aggregate the embeddings of the l previous items, similar to [5]. Thus, these ver-
tical filters can capture user u’s local sequential patterns at time step t through
weighted sums over the latent representations of previous items. While [5] used a
single weighted sum for each user, we can use ñ global vertical filters to produce
ñ weighted sums õ ∈ R

K×ñ for all users as follows.

õ = [c̃1c̃2 . . . c̃ñ]. (9)

There is no need to apply a pooling operation over the vertical convolutional
results, as we want to keep the aggregation for every latent dimensions. Thus,
the output of this layer is õ.

Finally, We concatenate the output of the two convolutional layers and then
feed them into a fully-connected neural network layer to get more high-level and
abstract features as follows.

ushort = φa(W 2

[
o
õ

]

+ b2), (10)

where W 2 ∈ R
K×(n+K×ñ) is the weight matrix that projects the concatenation

layer to a K-dimensional hidden layer, b2 is the corresponding bias term, and
φa(·) is the activation function RELU for the fully-connected layer.

Fully-Connected Layer. To capture user’s current overall preference, we also
concatenate the output of attention network ulong and the output of convolu-
tional layer ushort together and project them into an output layer with |V| nodes,
denoted as follows.

y(u,t) = W 3

[
ulong

ushort

]

+ b3, (11)

where b3 ∈ R
|V| and W 3 ∈ R

|V|×2K are the bias term and the weight matrix for
the output layer, respectively. Note that the value y

(u,t)
i in the output layer is

associated with the probability of how likely user u will interact with item i at
time step t. ulong captures user long-term preferences, whereas ushort intends
to capture short-term sequential patterns.

3.3 Network Learning

The goal of our model is to provide a top-N ranked list of items given the
sequence item sets of a user at time t. We followed the BPR optimization criterion
objective function for our model ACSR. We assumed that users prefer the next
future purchased items than unobserved items, and defined a ranking order �u,Lu

over items p and q as follows.
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p �u,Lu p ⇔ yu,t
p > yu,t

q , (12)

where p is the purchased item by user u at time step t, and q is an unobserved
item generated by bootstrap sampling. For each observation (u,Lu, p), we gen-
erated a set of pairwise preference order D = {(u,Lu, p, q)}. Then we trained
our model ACSR by maximizing a posterior (MAP) as follows.

arg min
Θ

∑

(u,Lu,p,q)∈D

− ln σ(yu,t
p − yu,t

q ) + λ||Θ||2, (13)

where Θ presents all of the model parameters that are learned, λ is the regular-
ization weight, and σ is the logistic function.

4 Experiment

We have conducted experiments to evaluate our model ACSR on two real-world
datasets, by comparing with baseline methods. Before showing our experimental
results, we first briefly described the two real-world datasets and our evaluation
metrics.

4.1 Experimental Setup

Datasets. We performed experiments on two real-world datasets, i.e., Gowalla1

and TaoBao2. The dataset Gowalla records the time and the point-of-interest
information of check-ins of users in a location-based social networking site,
Gowalla. Taobao is the largest B2C platform in China. The dataset TaoBao
is from IJCAI 2017 competition. It is a user-purchase dataset, containing users’
shop information from July 1, 2015 to October 31, 2016. We removed items that
have been observed by less than 10 users and eliminated users interacting with
fewer than 15 items. After preprocessing, basic statistics of both datasets are
summarized in Table 1.

Table 1. Statistics of the datasets

Dataset #users #items #feedbacks avg.seq.len sparsity(%)

Gowalla 5,073 7,020 252,944 49.86 99.29

TaoBao 2,499 1,619 76,331 33.24 98.12

Evaluation Metrics. In our experiments, we took the first 70% of interaction
sequences as the training set, the rest 30% for testing. Like [14], the performance
of each method is evaluated on the test set in terms of Recall@N , Percision@N

1 http://snap.stanford.edu/data/loc-gowalla.html.
2 https://tianchi.shuju.aliyun.com/datalab/dataSet.

http://snap.stanford.edu/data/loc-gowalla.html
https://tianchi.shuju.aliyun.com/datalab/dataSet
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and MeanAveragePrecision (MAP ). A list of top N predicted items for a
user is denoted R̂1:N , where R presents the corresponding test set. Therefore,
Recall@N and Percision@N are calculated as follows.

Recall@N =

∣
∣
∣R ∩ R̂1:N

∣
∣
∣

|R| , (14)

Pre@N =

∣
∣
∣R ∩ R̂1:N

∣
∣
∣

N
, (15)

We conducted each experiment five times, and reported the average perfor-
mance of all users with N ∈ {1, 5, 10}. The Average Precision (AP) is define as
follows.

AP =
∑|R̂|

N=1 Pre@N × rel(N)
∣
∣
∣R̂

∣
∣
∣

, (16)

where rel(N) = 1 if the N-th item in R̂ is in R. The Mean average Precision
(MAP) is the average of AP for all users. Note that a larger metric value indicates
a better performance.

Baselines. We compared our model ACSR with baseline methods as follows.

• BPR-MF [15] This method is a state-of-the-art framework for evaluating
implicit user feedback data through pairwise learning, and matrix factoriza-
tion is chosen as its internal predictor.

• FPMC [16] This method models user preference through matrix factorization
and sequential information through first-order Markov chain simultaneously,
and then combines them by a linear way for next basket recommendation.

• FOSSIL [6] This method integrates factored item similarity with Markov
chain to model user’s long-term and short-term preferences.

• LSTM [7] This method is a variant of RNN, which contains a memory cell
and three multiplicative gates to hold long-term dependencies.

• NARM [10] This method is a RNN-based state-of-the-art model, which
employs an item-level attention mechanism to capture user’s main purpose
from hidden states and combines it with sequential behaviors as user’s final
representation to generate recommendation.

• RUM [2] This method utilizes external memories to improve sequential rec-
ommendation, which contains two variants, i.e., item-level and feature-level
variant.

• Caser [18] This method is the first model of leveraging convolutional neural
network to capture user’s sequential patterns.

• SHAN [22] This method is a hierarchical attention network, which utilizes
two same attention networks to capture long-term and short-term preferences,
respectively.
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Parameter Settings. All methods have several parameters to tune. We either
followed the reported optimal parameter settings or optimized each model sep-
arately using the validation set. The weight parameters in our model ACSR are
randomly initialized by a normal distribution. For other parameters, we searched
for their optimal settings. That is, we searched the optimal hidden size K from
{5, 10, 20, 30, 50, 100, 120}, the length of previous items l from {2, 4, 6, 8, 10, 12},
the number of horizontal filters n and vertical filters ñ from {2, 4, 8, 16, 32}, and
the regularization parameter λ from {10−2, 10−3, 10−4}. To control the model
complexity and avoid overfitting, we used a dropout technique with 50% drop
ratio on the final fully-connected layer.

Table 2. The performance of ACSR and the baselines on the two real-world datasets.
The best performance is highlighted in boldface (the higher the better).

Datasets Methods Pre@1 Pre@5 Pre@10 Rec@1 Rec@5 Rec@10 MAP

Gowalla BPR-MF 0.1526 0.0787 0.0539 0.0113 0.0320 0.0450 0.0302

FPMC 0.1531 0.0789 0.0564 0.0126 0.0342 0.0450 0.0315

FOSSIL 0.1539 0.0801 0.0577 0.0131 0.0354 0.0478 0.0329

RUMI 0.1547 0.0846 0.0597 0.0139 0.0380 0.0512 0.0380

RUMF 0.1570 0.0799 0.0565 0.0149 0.0347 0.0480 0.0360

LSTM 0.1491 0.0884 0.0652 0.0139 0.0405 0.0600 0.0437

Caser 0.1679 0.0906 0.0672 0.0164 0.0455 0.0699 0.0519

NARM 0.1892 0.1034 0.0765 0.0184 0.0506 0.0730 0.0552

SHAN 0.2053 0.1141 0.0887 0.0189 0.0498 0.0750 0.0621

ACSR 0.2230 0.1233 0.0951 0.0207 0.0573 0.0815 0.0682

TaoBao BPR-MF 0.1608 0.1309 0.1052 0.0170 0.0735 0.1207 0.0807

FPMC 0.2128 0.1416 0.1020 0.0235 0.0764 0.1131 0.0809

FOSSIL 0.2263 0.1637 0.1273 0.0256 0.0778 0.1148 0.0811

RUMI 0.2313 0.1382 0.1313 0.0248 0.0786 0.1238 0.0842

RUMF 0.2341 0.1487 0.1387 0.0245 0.0849 0.1288 0.0866

LSTM 0.3973 0.2123 0.1405 0.0491 0.1191 0.1603 0.1246

Caser 0.4105 0.2195 0.1446 0.0502 0.1231 0.1622 0.1251

NARM 0.4362 0.2245 0.1489 0.0492 0.1233 0.1695 0.1330

SHAN 0.4471 0.2419 0.1535 0.0515 0.1409 0.1721 0.1511

ACSR 0.4588 0.2531 0.1577 0.0592 0.1503 0.1795 0.1632

4.2 Comparison of Performance

Table 2 shows the performance of all methods in terms of Recall, Precision and
MAP. From this table, we can observe that:

First, BPR-MF has the worst performance under almost all cases among
all baselines. This demonstrates that sequential information is very important
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for sequential recommendation. The classic model FPMC performs better than
BPR-MF under most cases because of taking the sequential correlation between
adjacent actions into account. Over all, the experimental results in Table 2 verify
that sequential information can help improve the recommendation performance
in real-world system.

Second, both RNN-based models (i.e., LSTM, NARM) and memory-based
models (i.e., Caser, RUM) improve the effectiveness by using deep neural net-
works. This shows the ability of neural networks on modeling user general taste
and sequential behaviors. Caser achieves better performances than LSTM on
both datasets. This indicates that Caser can capture more sequential local pat-
terns, which motivates us to combine convolutional neural network with other
networks for improvement.

Third, between the two memory-based methods, Caser performs better than
RUM on both datasets, especially on TaoBao. This phenomenon indicates that
the TaoBao dataset has more sequential signals than the Gowalla dataset,
because Caser performs much more better in a dataset with more sequential
signals. Over all, both RUM and Caser perform well. This indicates that both
KV-MN architecture and convolutional operations can capture user’s sequen-
tial preferences. Furthermore, the state-of-the-art attention-based model SHAN
beats all the other baselines on both datasets. This shows us that the effectiveness
of the attention mechanism to capture user’s appetite for items. SHAN incor-
porates user’s embedding as extra context into a hierarchical attention network,
which may make a greate improvement for recommendation.

Finally, our model ACSR consistently outperforms all the baselines under all
measurements on both datasets. For instance, ACSR improves 9.5% and 15% at
Recall@1, compared with the second best method SHAN, on the Gowalla and the
TaoBao dataset, respectively. This indicates that ACSR captures more high-level
complicated nonlinear information for long-term and short-term representation
through attention and convolutional network, respectively, while SHAN ignores
feature interactions that is very important for modeling sequential patterns espe-
cially with sparse data [8,23]. The performance of ACSR is better than Caser,
possibly because Caser is not adequate to model the general taste by learning
user embedding. Finally, because of the sparsity differences, we also observed
that the performances of most models degrade when datasets become sparser.

4.3 Influence of Components

To evaluate the contribution of each component for final user preference repre-
sentation, we conducted experiments of two different variants (i.e., ACSR-L and
ACSR-S) of ACSR. ACSR-L means that only user’s general taste is modeled, and
ACSR-S means that only user’s sequential preference is considered. Our experi-
mental results are shown in Fig. 2(a). From Fig. 2(a) and Table 2, we can see that
ACSR-L achieves better performance than BPR does. Note that BPR also only
models long-term preference. Its performance in terms of Recall@10 is 0.0450
and 0.1207 on the Gowalla and TaoBao dataset, respectively. This indicates that
modeling the general taste is better than using an embedding vector. Besides,
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(a) (b)

Fig. 2. (a) shows the influence of long-term and short-term preference in terms of
Recall@10. (b) shows the influence of convolutional filters in terms of MAP.

Fig. 2(a) shows that ACSR-S performs better than ACSR-L with a large margin.
This demonstrates that short-term sequential information plays a more impor-
tant role in sequential recommendation. Finally, ACSR performs better than
each variant on both datasets. It demonstrates that considering both long-term
and short-term preferences is important to improve sequential recommendation.
Moreover, we also evaluated the contribution of the horizontal and the vertical
filters on both datasets in terms of MAP . Our experimental results are shown in
Fig. 2(b). ACSR-V is a variant of ACSR that only contains the general taste and
its vertical convolutional operations, while ACSR-H is another variant of ACSR
that only considers the general taste and its horizontal convolutional operation.
From Fig. 2(b), we can see that both ACSR-H and ACSR-V perform worse than
ACSR on the two datasets. This indicates that the horizontal and vertical con-
volutional operations of ACSR can help improve the prediction by considering
feature interactions and searching for local sequential patterns, respectively.

4.4 Influence of Hyper-parameters

We also investigated the influence of the parameters, such as the length of pre-
vious items l, the number of dimensions K, the regularization parameter λ, and
the number of convolutional filters n and ñ. Due to space limitation, we just
showed our experimental results in terms of three metrics, i.e., MAP , Prec@10
and Recall@10.

Figure 3(a) and (b) show the experimental results with different lengths of
previous items l used in the convolutional layer. From Fig. 3(a) and (b), we can
see that ACSR achieves the better performance by setting a proper larger length
l on the two datasets, suggesting that the convolutional filters can utilize more
extra information provided by a proper lagrer l.

Figure 3(c) and (d) show the experimental results with different dimension
sizes K in terms of Recall@10 and MAP . As we mentioned before, the dimension
size is relevant to not only the embedding size users and items, but also the
parameters of fully-connected layer. From Fig. 3(c) and (d), we can observe that
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(a) (b)

(c) (d)

Fig. 3. (a) and (b) show the influence of the length l on both datasets in terms of
Recall@10 and MAP respectively. (c) and (d) show the impact of the dimension size
K on both datasets in terms of Recall@10 and MAP respectively.

high dimensions can embed better for users and items, and are more helpful to
build high-level factor interactions through our model ACSR. According to our
experimental results, the dimension size can be set as 100 for recommendation
quality on both datasets.

Because of the limitation of the space, the experimental results of different
values of the regularization parameter are not show in this paper, but we can
learn that the regularization parameter has a great impact on the performance
of ACSR and our method achieves the best performance when the regularization
parameter λ is set to 0.001.

We also conducted experiments to investigate the impact of the number of
convolutional filters n and ñ. We applied a grid search over combinations of
n ∈ {2, 4, 8, 16, 32} and ñ ∈ {2, 4, 8, 16, 32} for a better recommendation. The
experimental results in terms of MAP are shown in Table 3. From Table 3, we can
see that ACSR achieves the best performance with setting n = 16, ñ = 8 on the
Gowalla dataset, while it achieves the best performance with setting n = 8, ñ = 4
on the TaoBao dataset. This may be related to the average sequence length in
the two datasets, and the longer sequence needs more filters to search for local
sequential patterns.
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Table 3. The performance of ACSR with varying n and ñ in terms of MAP on Gowalla
and Taobao dataset.

Dataset
n

MAP ñ
ñ = 2 ñ = 4 ñ = 8 ñ = 16 ñ = 32

Gowalla

n =2 0.0597 0.0606 0.0641 0.0616 0.0594
n =4 0.0617 0.0629 0.0657 0.0640 0.0610
n =8 0.0634 0.0647 0.0664 0.0655 0.0639
n =16 0.0658 0.0658 0.0682 0.0669 0.0654
n =32 0.0641 0.0654 0.0668 0.0654 0.0648

Taobao

n =2 0.1556 0.1611 0.1618 0.1605 0.1621
n =4 0.1603 0.1628 0.1607 0.1582 0.1612
n =8 0.1587 0.1632 0.1626 0.1595 0.1609
n =16 0.1566 0.1623 0.1613 0.1594 0.1582
n =32 0.1598 0.1615 0.1608 0.1592 0.1575

5 Conclusion

In this paper, we propose an Attention and Convolution enhanced memory net-
work for Sequential Recommendation (ACSR), which leverages the strengths of
both attention mechanism and convolutional filters for sequential recommenda-
tion. Our memory network first utilizes an attention network to capture user’s
long-term preference. Then, we use vertical convolutional filters and horizon-
tal convolutional filters to search for non-linear feature interactions and non-
monotone local patterns to capture user’s short-term preference. Finally, the
outputs of the two networks are concatenated and fed into a fully-connected
layer to generate the recommendation. Extensive experimental results on two
real-world datasets show that ACSR outperforms the state-of-the-art methods
on sequential recommendation.
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Abstract. Personalized tag recommender systems suggest tags to users
when annotating specific items. Usually, recommender systems need to
take both users’ preference and items’ features into account. Existing
methods like latent factor models based on tensor factorization use low-
dimensional dense vectors to represent latent features of users, items and
tags. The problem with these models is using the static representation for
the user, which neglects that users’ preference keeps evolving over time.
Other methods based on base-level learning (BLL) only use a simple
time-decay function to weight users’ preference. In this paper, we propose
a personalized tag recommender system based on neural networks and
attention mechanism. This approach utilizes the multi-layer perceptron
to model the non-linearities of interactions among users, items and tags.
Also, an attention network is introduced to capture the complex pattern
of the user’s tagging sequence. Extensive experiments on two real-world
datasets show that the proposed model outperforms the state-of-the-art
tag recommendation method.

Keywords: Tag recommendation · Attention mechanism ·
Neural networks

1 Introduction

In current web services, users are both consumers and generators of web contents.
They have generated a large amount of personalized information. Tag, which is
the keyword that users use to annotate web resources such as music, bookmarks
and movies, is one of important user-generated contents in web services. A tag
often represents a specific characteristic of the related resource, which not only
helps users manage their resources, but also helps the website integrate resources
and provide personalized content services.

Tag systems can greatly improve the search efficiency of web resources, help
websites describe the attributes of users and products, improve the accuracy
of recommendations, and alleviate the cold start problem. However, a resource
may have a large number of associated tags and users are often unable to think
of the appropriate keyword at the first time. Personalized tag recommenders
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G. Li et al. (Eds.): DASFAA 2019, LNCS 11447, pp. 350–365, 2019.
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suggest the user a list of tags that he is likely to use for the specific resource
by analyzing the user’s historical tagging behavior. It helps websites increase
the chances of getting a resource annotated, remind a user what the resource is
about and consolidate the vocabulary across users [11].

The personalized tag recommender system mainly focuses on recommending
a personalized set of tags based on the user and the item. Different users may use
different tags for the same item since their personal preferences. Inspired by the
application of the matrix factorization, tensor factorization techniques, as the
generalization of matrix factorization, are used in some works [20,21,23]. These
models formulate the tag recommendation as the tensor completion task, and
learn latent representations for users, items and tags. However, these methods
often ignore the information of temporal dynamics since the user’s behaviors
have changed with time [3,12,27]. As a result, some studies [13,16,29] have pro-
posed the base-level learning equation to mimics the way humans draw on items
in their long-term memory. Essentially, BLL-like models are based on the time
decay and the frequency of tagging. It tends to recommend most recently used
tags to users, but this kind of approaches cannot capture the complex behavior
patterns of users due to only considering simple factors. Recently, the person-
alized time-aware tag recommendation has been proposed by considering both
personalization and the temporal factor [24], and achieves a better recommen-
dation result.

All of the above methods do not take into account the sequence informa-
tion in the users’ tagging behavior. In this paper, we utilize the attention-based
multi-layer neural networks for learning the complex pattern of the user’s tagging
sequence. Tags used by a user in sequence may have strong relevance in a specific
topic, e.g., a user may like using the name of stars to annotate movies, but the
naive model can’t capture it. Recently, deep neural networks have been widely
used in recommender systems [7–9,27]. Some studies have shown that deep neu-
ral network can better model user-item interaction in item recommender sys-
tems [7,8]. Besides, the attention mechanism, which is introduced to provide the
ability to reference specific records in neural networks, has been applied in many
tasks, such as the neural machine translation [1], reading comprehension [17]
and other fields [26,28]. Nevertheless, there is relatively little work on employ-
ing attention model for tag recommendation in contrast to a large amount of
literature on general item recommender systems.

This paper proposes an attention-based neural networks framework to
address the aforementioned problems. Specifically, we first embed users, items
and tags into low-dimensional dense spaces. Just like the tensor factorization
technique, tags will be embedded as two vectors for users and items, respectively.
Then this paper focuses on the users’ tagging behavior, and an attention layer
is employed to compute different weights of tags in the user tagging sequence to
generate user-tag representation. Finally, a multi-layer neural network is used to
capture user-tag and item-tag interactions. To learn the parameters, we employ
the Bayesian personalized ranking optimization criterion to generate a pair-wise
loss function [21].
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The main contributions of this paper are:

• We present a neural network framework to model latent features of users,
items and tags, which is used to capture pairwise nonlinear interactions among
users, items and tags.

• We introduce the attention mechanism to model personal preference and to
explore the sequence pattern of the users’ tagging behavior. To the best of
our knowledge, we are the first to use the attention mechanism in tag recom-
mender systems.

• We conduct several experiments on two real-world datasets to demonstrate
the performance of our model. The experimental results show that the pro-
posed model outperforms the state-of-art methods.

2 Relate Work

2.1 Personal Tag Recommendation

Early literature on personalized tag recommendation focuses on collabora-
tive filtering method [18]. The representative works are FlokRank [10,11] and
PITF [21]. FolkRank is an adaption of PageRank, which combines PageRank
algorithm and the similarity between users. PITF is the pairwise interaction
tensor factorization. It is a special case of tensor factorization technique, which
is widely used for the tag recommendation. This technique explicitly models the
pairwise interactions between users, items and tags and is trained with an adap-
tion of the Bayesian personalized ranking (BPR) criterion. The literature [23]
utilizes the High-Order-Singular-Value-Decomposition (HOSVD), which learns
latent vectors of users, items, and tags by Tucker Decomposition (TD). Then
a better TD model RTF-TD is introduced in [20], which learns parameters by
maximizing the ranking measure AUC (area under the ROC-curve). To learn
better representations, Gaussian radial basis function is used in [4] to increase
the model’s capacity based on tensor factorization.

Since methods mentioned above all ignore that users’ tagging behaviors
change over time, some studies explore temporal dynamics in tag recommen-
dation. Based on the frequency and the time information, the work [29] pro-
poses GIPR model and extends it by considering the most popular tags. Then
exponential distribution is applied to model the interval of tagging behaviors.
BLLAC [15], BLL + MPm [16] and BLLac + MPm [13] are proposed based on
the theory of human memory. Essentially, these methods tend to recommend
tags which are used recently and consider the frequency or association compo-
nent to capture features of items. However, these methods only recommend tags
that the user has used and cannot capture complex features of users, items, and
tags. In [22], the topic model LDA is applied to process the semantic informa-
tion, which is to mimic the human category learning for better representations
of users and items.

Recently, the method TAPITF has been proposed in [24]. It extends PITF
by adding weights to user-tag interaction and item-tag interaction respectively
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and calculates the weight using the idea from BLL. The work has shown that
introducing temporal information helps improve the performance of PITF.

2.2 Sequential Recommendation

Another relevant study is the next item prediction from sequential user inter-
action logs [19]. The goal is to recommend items that match a given sequence
of user actions. The work [9] is the first to employ the recurrent neural net-
work to tackle session-based recommendation. Since the attention mechanism
can automatically assign different influences (weights) of items to capture the
dynamic property, recently, some papers exploit it in sequence-aware recommen-
dation. The work [25] used it for next-item recommendation in the transactional
context, where the attention mechanism is used to calculate the relevant items.
In [2], the user memory network with attention mechanism is used to explain
that how user’s historical records affect current decisions. The work [30] intro-
duces an attention-based user behavior modeling framework and [28] proposes a
novel two-layer hierarchical attention network, which is used to couple user long-
term and short-term preferences. However, these works are all item recommender
systems and no work uses the attention mechanism in tag recommendation.

3 Notations and Preliminaries

In this section, we first formalize the problem of the tag recommendation, and
then shortly recapitulate the pairwise interaction tensor factorization since this
paper also uses the pairwise interaction model.

3.1 Problem Statements

Let U , I and T denote the set of all users, all items and all tags respectively.
Given the user u and the item i, the task of tag recommendation is to find a list
T (u, i) ⊆ T that the user u want to annotate the item i. Usually, it is formulated
as a ranking problem which is to predict the order of the user’s tagging preference
in the T [20,24]. So we could define the list of the Top-N tags as:

Top(u, i,N) := arg
N

max
t∈T

ŷu,i,t,

where ŷu,i,t denotes the prediction score of triple < u, i, t >.
Moving one step forward, since tags the user used are often related to previous

behaviors and the timestamp, we use L to denote the list the user used and s to
denote the timestamp. Then the score we need to predict is

Top(u, i, s, lsu, N) := arg
N

max
t∈T

ŷ
s,lsu
u,i,t,

where lsu ⊆ L denotes the tag list that the user used before the timestamp s.



354 J. Yuan et al.

3.2 Pairwise Interaction Tensor Factorization (PITF)

Given the user-item pair (u, i), the PITF model predicts a scoring function Ŷ :
U × I × T → R which can be used to derive an order that trivially satisfies
antisymmetry and transitivity [21], where Ŷ is a three dimensional tensor. Then
to get the ŷu,i,t, this model supposes the interaction between the pair u and i
has no impact on the final result, and has the equation as

ŷu,i,t =
∑

k

ûu,k · t̂Ut,k +
∑

k

îi,k · t̂Ii,k

where ûu,k and îi,k are latent vector elements of the user u and the item i
respectively. t̂Ut,k and t̂Ii,k are both latent vector elements of the tag t, but they
are used in different relations of user-tag and item-tag. k is the dimensionality
of latent vectors.

PITF is a special case of the Canonical Decomposition (CD) model with
dimensionality 2 ·k [21]. It explicitly models the two-way interactions of user-tag
and item-tag. In this paper, we will further explore the representation of users,
items and tags.

4 Attention-Based Neural Tag Recommendation

In this section, we first present our general framework and compare it with the
PITF model. Then we propose an attention-based model to learn the user-tag
representation. Lastly, a multi-layer perceptron (MLP) is introduced to capture
the pairwise interactions among users, items and tags.

4.1 General Framework

As illustrated in Fig. 1, the general framework of the proposed model has four
layers and the target of modeling is to estimate the score of alternative tags.
This framework does not take the dynamic at different time steps into account.

The bottom input layer consists of three binarized sparse vectors with one-hot
encoding that denote user u, item i and tag t, respectively. Similar to the one-hot
encoding of words in natural language processing, there is an embedding layer
above the input layer, which is a fully connected layer to embed these one-hot
representations into the continuous low-dimensional space. Note that the tag will
have two different dense vectors since the user-tag interaction is different from
the item-tag interaction. Formally, the embedding layer consisting of matrices
is:

U ∈ R
|U|×k, I ∈ R

|I|×k, TU ∈ R
|T |×k, T I ∈ R

|T |×k. (1)

Then the user embedding vu and the tag embedding vu
t are fed into a hidden

layer to get a vector that represents the user and tag interaction. The hidden
layer is a customized multi-layer network which is used to capture features of
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User (u)

User-Tag

Tag (t) Item (i)

Item-Tag

Layer 1

Last layer
...

Layer 1

Last layer
...

Layer 1

Last layer
...

Output score

Embedding Layer

Input Layer

Hidden Layer

Output Layer

Fig. 1. The architecture of the general framework. It consists of four layers

user-tag interactions. The item embedding vi and the tag embedding vi
t will be

processed in the same way. Formally,

vu,t = φu,t
last(...φ

u,t
2 (φu,t

1 (vu, vu
t ))...) (2)

vi,t = φi,t
last(...φ

i,t
2 (φi,t

1 (vi, v
i
t))...) (3)

where vu,t and vi,t are vectors representing user-tag interactions and item-tag
interaction respectively. φx denotes the mapping function for the x-th network
layer. Note that the dimension of vectors of users, items and tags may be different
from vu,t and vi,t.

The final layer of output is also a multi-layer network,

yu,i,t = φu,i,t
last (...φu,i,t

2 (φu,i,t
1 (vu,t, vi,t))...), (4)

since yu,i,t denotes the score of the tag t, this network should map tow vectors
into a numerical value. What needs a special attention is that φx could be the
neural network or any other form, e.g., element-wise product.

Some studies have demonstrated that the traditional matrix factorization is
equivalent to a three-layer network [7,8], which has the input layer and embed-
ding layer to embed users and items into dense low-rank vectors and uses the
inner product in the output layer. Similarly, the PITF can be also interpreted
as a special case of the general framework. For the hidden layer, the PITF is
defined as

vu,t = φu,t
1 (vu, vu

t ) = vu � vu
t

vi,t = φi,t
1 (vi, v

i
t) = vi � vi

t

where � denotes the element-wise product of vectors. Then the output layer is

yu,i,t = φu,i,t
1 (vu,t, vi,t) = vu,t + vi,t.
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Tagging list (L)

User-Tag

Item (i)

Item-Tag

Layer 1

Last layer
...

Layer 1

Last layer
...

Output score

Embedding Layer

Input Layer

Hidden Layer

Output Layer

...

Tag (t)User (u)

Attention net

...

User vector

Layer 1

Last layer

...

Fig. 2. The architecture of ABNT, which has a attention network to learn the user
representation

Under this framework, the PITF model can be easily extended. For example,
we could re-weight the contribution of user-tag and item-tag interactions as

yu,i,t = φu,i,t
1 (vu,t, vi,t) = wu,t · vu,t + wi,t · vi,t (5)

where wu,t is the weight of user-tag and wi,t is the weight of item-tag. It can be
learned from the data or handcrafted.

4.2 ABNT: Attention-Based Neural Tag Recommendation Model

In this section, we introduce a novel approach based on the general framework
and the attention mechanism according to the following characteristics of the
user’s tagging behavior. Firstly, the user’s tagging behavior is dynamic at dif-
ferent time steps, and then for a user, different tags have different influences on
his choices. Finally, for different users, same tags may have different impacts on
the next tag choice by them.

As shown in Fig. 2, compared with the general framework proposed above,
the ABNT model has a user tag list in the input layer and an attention-based
pooling layer in the hidden layer. More specially, the tags in the list will also be
embedded into dense vectors. Since we only focus on the user’s tagging behavior,
these tags will use the same mapping matrix with the vu

t . Then the attention net
is employed to infer the weight guided by the user embedding and the weight is
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used to get the user representation to endow it more information about tagging
sequence. Next, each part of ABNT will be introduced in details.

Input and Embedding Layer. Different from the general framework, the
tagging list lsu before the time stamp s is given in the input layer. Supposing the
length of lsu is m, the input of this model is (u, i, t, s, (tu1 , tu2 , ..., tum)), where t is
the tag of which the score we want to estimate.

The embedding layer is the same as shown in Expression 1. Tags in
(tu1 , tu2 , ..., tum) are also embedded into vectors by TU .

Hidden Layer. In the hidden layer, the attention mechanism is applied for com-
puting the importance of each tag in the lsu, and then aggregates the embedding
of these tags to form the user preference representation. The attention network
can be formulated as

hu
j = a(Watt · vu

j + batt)

αj =
exp(u�hj)∑

p∈lsu
exp(u�hp)

(6)

where the first formula is a fully connected layer. Watt ∈ R
k×k and batt ∈ R

k×1

are the model parameters. vu
j is the embedding vector of tuj in the lsu, which is

fed into the connected layer to get a hidden representation hu
j . a is the activation

function and we utilize ReLU to enhance nonlinear capability in this paper. To
capture the information of the user’s preference, the user embedding vector u
is used to be the context vector to measure the attention score with hj . The
softmax function is employed to calculate attention weight αj . Then the tagging
behavior representation vu

b is

vu
b =

∑

j∈lsu

αj · vu
j (7)

It is the sum of tags embedding in the tagging list weighted by the attention
score, and we defined the user representation as follows

vhybrid
u = a(Whybrid ·

[
vu

vu
b

]
+ bhybrid) (8)

where the Whybrid ∈ R
2k×k and bhybird ∈ R

k×1 are model parameters. The two
vectors vu and vu

b will be concatenated to learn a better representation. We note
that some of sequence models such as recurrent neural network can be used there
and we leave the exploration as a future work.

Then in this model, the vector denoting the interaction between u and t is
defined as

vu,t = alast(W
u,t
last(...a2(W

u,t
2 (Wu,t

1 ·
[
vhybrid

u

vu
t

]
+ bu,t

1 ) + bu,t
2 )...) + bu,t

last) (9)
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where Wu,t
x , bu,t

x and au,t
x denote the weight matrix, bias vector and activation

function, respectively. Since we only focus on the user’s tagging behavior, the
way to learn vi,t is the same as Eq. 3, and the hidden layer is a standard MLP
like the Eq. 9. It is formulated as

vi,t = alast(W
i,t
last(...a2(W

i,t
2 (W i,t

1 ·
[
vi

vi
t

]
+ bi,t

1 ) + bi,t
2 )...) + bi,t

last) (10)

The last layer will map latent vectors of the user-tag and the item-tag inter-
action to a numerical value in the proposed model. In other words, supposing
the dimension of latent vectors in the last layer but one is f , parameters of the
last layer are

Wlast ∈ R
f×1, blast ∈ R

1×1 (11)

Output Layer. Following the previous work [24], considering the both time-
awareness and personalization aspects, the output layer of this proposed model
is defined as

ŷ
s,lsu
u,i,t = ws

u,t · vu,t + ws
i,t · vi,t (12)

where vu,t is calculated by the Eq. 9 and vi,t is calculated by the Eq. 10. wu,t and
wi,t are weights of the user-tag embedding and item-tag embedding, respectively.
More specifically, it is an extended re-weight model of PITF.

Intuitively, the higher frequency of the past occurrences of the tag, the larger
weight it should have. So this model uses the same way as time-aware PITF
model introduced in [24] to calculate weights in advance. Formally, weights are
defined as

ws
u,t = 1 + log10(1 + 10α · ||τ(u, t, s)||) (13)

ws
i,t = 1 + log 10(1 + 10α · |||Ŷi,t|||) (14)

where constant α is used to control the growth rate of the weight. |Ŷi,t| is the
frequency that the item i is annotated by the tag t and |||Ŷi,t||| is its normal-
ized value. For the weight of user-tag interaction, ||τ(u, t, s)|| is the normalized
intensity value of the event at time s, and the formulation of it is given as follows,

τ(u, t, s) = τ0 +
∑

si<s

exp−d(s−si) (15)

where d is the intensity parameter and si is the time stamp of the tagging event
before s. More information about this can be found in [24].

4.3 Model Inference

The task of this work is to provide a ranked list of tags given (u, i, lsu, s). Following
the previous work [21,24], the pair-wise ranking objective function is used to
learn parameters of this model. It utilizes the BPR optimization criterion [20]
and assumes that users prefer the next tag to be used instead of other unobserved
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Table 1. Properties of two datasets, |U| is the number of users, |I| is the number of
resources,|T | is the number of tags.

Datasets |U| |I| |T | #train samples #test samples

Movielens 984 5852 8778 45034 1507

LastFM 1803 12504 9701 180396 5947

tags. Supposing tneg is the negative tag which is sampled from unobserved tags,
the objective is defined as

arg min
Θ

∑

(u,i,t,tneg,s,lsu)∈D

− ln σ(ŷs,lsu
u,i,t − ŷ

s,lsu
u,i,tneg

) + λ||Θ|| (16)

where Θ is the set of parameters we need to estimate, D is the set of training
samples, σ is the logistic function, and λ is the regularization parameter. all
activation functions of the neural network in this paper is ReLU, which is more
biologically plausible and proven to be non-saturated [5]. Since the derivative
of parameters can be calculated with standard back-propagation, Θ is updated
with gradient descent.

5 Experiments

In this section, we evaluate the proposed model on two real-world datasets. We
first introduce the setup of experiments and then report the experimental results.
We further discuss the influence of the components in the proposed model and
the length of the tagging list.

5.1 Experimental Setup

Datasets. We evaluate the proposed method on two real-world datasets [14],
Movielens and LastFM1. The domain of Movielens is the movie and of LastFM
is music. Since the proposed model uses the tagging list to learn the user’s
embedding vector, we filtered out users whose number of tagging less than 3.
The relevant statistical properties are described in Table 1 after filtering.

Since different users have the different number of tagging behaviors and
too long-term records may have minimal impact on the present, we set the
length of tagging list a constant for each record in the experiment. Specially,
supposing that lu = (t1, t2, t3, ..., t|lu|) is the tagging list for the user u and
m denote the constant of the length of tagging list. Without loss of gener-
ality, for a record (u, i, tj , s), we generate the sample as (u, i, tj , s, l

s
u), where

lsu = (tj−m−1, tj−m, ..., tj−1) and j denotes the j-th tagging. If j < m, we pad
with zero and ignore it when training the model.

1 Both datasets can be found in http://files.grouplens.org/datasets/hetrec2011.

http://files.grouplens.org/datasets/hetrec2011
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Table 2. Some of hyper-parameters of PITF, TAPITF and the proposed model ABNT.
k is the latent factor dimension, in other words, it is the parameter of embedding layer
in Eq. 1. λ is the regularization parameter, d is defined in Eq. 15.

Models
Parameters

k λ learning rate # negative samples d

PITF 64 0.00005 0.05 100 -
TAPITF 64 0.00005 [0.001,0.0005,0.0001] 10 0.5
ABNT 64 0.00005 [0.001,0.0005,0.0001] 10 0.5

Then we use the same protocol as described in [24], which split train and
test sets by leave-one-out evaluation. For each user, we put tags of the last item
the user annotated into the test set and utilize the remaining data for training.
If the user only annotated one item, his tagging records are all put into the test
set so that he is a cold-start user.

Metrics. To evaluate the performance of the proposed method, we adopt two
widely used metrics:

F1@N :=
2 · Precision · Recall

Precision + Recall
@N

NDCG@N :=
DCG

IDCG
@N

The F1 score is the harmonic average of the precision and recall of the
test sample, and the NDCG, which is Normalized Discounted Cumulative Gain,
accounts for the position of the result by assigning higher scores to the correct
ranking [6]. The larger metric values indicate better performances and we report
the average score for all samples in the test set.

Baseline. We compared the proposed methods ABNT with the following
methods:

• MP. Tags are ranked by the popularity judged by the number of use.
• PITF [21]. This method is pairwise interaction tensor factorization model

which modifies traditional tensor factorization approach and has been intro-
duced in Sect. 3.2.

• BLL-like. We use BLLAC + MPm [13], which estimates the probability of a
tag being applied by a particular user as a function of usage frequency and
recency of the tag in the user’s past behavior.

• TAPITF [24]. This method extends PITF by adding weights to user-tag inter-
action and item-tag interaction respectively and exploits Hawkes process with
the exponential intensity to calculate the use-tag weight.
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Fig. 3. Performance of Top-N tag recommendation where K ranges from 1 to 10 on
the two datasets

Parameter Setting. We implemented our proposed methods based on Pytorch.
For BLLAC + MPm methods, we follow the setting in [14]. As we discussed
above, PITF and TAPITF are both special cases of our proposed general frame-
work, following the setting in [24], some of the hyper-parameters are described
in Table 2. For TAPITF and ABNT, we initialize their embedding parameters
using the pre-trained models, and we tune the learning rate of [0.001, 0.0005,
0.0001]. We also tune the length of lsu of [5, 10, 15, 20, 25, 30] for ABNT. Another
important hyper-parameter is α, which is the growth rate in Eqs. 13 and 14. We
test it of [0.5, 1, 1.2, 1.4, 1.6, 1.8, 2] and report the best value for the model
TAPITF and ABNT. In order to reduce the complexity, we employ three MLP
layers for learning intermediate representation vectors like the work [8], and one
full connected layer for get the final representation values in Eqs. 2 and 3. In
other words, the dimension of hidden vectors is 128 → 64 → 32 → 1.

5.2 Comparison of Performance

Figure 3 shows the performance of Top-N recommended list where N ranges from
1 to 10. Different from item recommendation which may offer users many items
on the web page, tag recommender systems often do not give users too many
options. So the N we set is not too big.

As can be seen, ABNT outperforms all other methods in most cases. It
demonstrates the superiority of the proposed model. Especially, on Movielens
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Table 3. Influence of components at F1@5 and NDCG@5. Non-Neural is the model
which we only used the attention mechanism and Non-Attention is only MLP used in.

Dataset Method F1@5 NDCG@5

MovieLens TAPITF 0.1704 0.3333

Non-Neural 0.1724 0.3264

Non-Attention 0.1828 0.3451

ABNT 0.1899 0.3526

LastFM TAPITF 0.2314 0.3341

Non-Neural 0.2366 0.3381

Non-Attention 0.2411 0.3403

ABNT 0.2418 0.3441

dataset, ABNT improves 10.1% and 5.9% in terms of F1@5 and NDCG@5 com-
pared with the second best methods, i.e., TAPITF or BLL-like. Note that in
reality the recommendation system offers not only one option, we think the result
has more practical significance when N = 5. For baseline methods, TAPITF out-
performs BLL-like methods at NDCG but not always better at F1. When N is
larger than 5, the value of TAPITF is worse than BLL-like at F1. Compared
with PITF, the relative performance improvement by TAPITF is 8.88% at F1@5
and 9.67% at NDCG@5.

On LastFM dataset, all methods have similar results except MP, but the
proposed model has the relative improvement over the best baseline 3.69% at
F1@5 and 1.47% at NDCG@5. Surprisingly, PITF model surpasses TAPITF in
most case on this dataset, and we attribute it to not enough temporal information
by only re-weighting the contribution of user-tag and item-tag interactions.

5.3 Influence of Components

The contribution of each component for the final result is shown in Table 3. Espe-
cially, On both datasets, the impact of neural networks on results is pronounced
compared with TAPITF, which improves 7.23%, 4.19% at F1@5 and 3.54%,
2.01% at NDCG@5 on Movielens and LastFM, respectively. This indicates that
the hidden layer consisting of MLP layers could learn a better representation of
interactions among users, items and tags. Also, it shows the interactions may
have complex non-linearities.

Then the attention network could also improve the result of the model. For
example, Non-Neural achieves better performance at F1@5 on both Movielens
and LastFM datasets compared with TAPITF. Then after using the attention
network, ABNT outperforms Non-Attention on two metrics. Values of F1@5
and NDCG@5 are 0.1899 and 0.3526 on Movielens dataset and 0.2418, 0.3431
on LastFM dataset. The reason may be that the attention network has further
captured the dynamic performances and complex patterns in the sequence of
users.
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Table 4. Influence of the length.

Metrics 5 10 15 20 25 30

MovieLens

F1@5 0.1862 0.1899 0.1864 0.1857 0.1869 0.1865

NDCG@5 0.3503 0.3525 0.3519 0.3403 0.3506 0.3407

LastFM

F1@5 0.2418 0.2388 0.2374 0.2394 0.2376 0.2411

NDCG@5 0.3441 0.3391 0.3294 0.3369 0.3284 0.3375

5.4 Influence of the Length of Tagging List

The length of the tagging list is the unique hyper-parameter in our proposed
model ABNT. The influence of it has been summarized in Table 4. As shown
in this table, when the length is 10 for Movielens and 5 for LastFM, the model
have the best performance. It is not the longer length the better performance
in our model. Intuitively, this phenomenon can be explained that users usually
have a strong trend to reused the recently used tags, so the shorter list may have
enough information for recommendation.

On the contrary, the longer list may have more useless information and reduce
the performance of the model. We think that this is a deficiency of the attention
mechanism. Essentially, the attention mechanism still assigns a small weight to
the irrelevant record in the sequence, which adds the noise for the training of
the model. When the length of the sequence increases, the irrelevant record may
also increase, causing the useless information to accumulate. This observation
has also verified the rationality of BLL-like methods at a certain extent since
they are based on users’ recent tagging behaviors.

6 Conclusion

In this paper, we explored neural networks and the attention mechanism for the
tag recommendation. We proposed a general framework and an attention-based
method − ABNT, which captures the complex pattern of the user’s tagging
sequence to represent the user embedding vectors and model the non-linearity
of interactions among users, items and tags. From the experiment, we observed
the better performance of the proposed model compared with all baselines.

In the future work, we will study the sequence modeling for the user embed-
ding vector such as recurrent neural networks and extend ABNT to model more
information of interactions between items and tags.
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Abstract. In e-commerce platforms, mining temporal characteristics in
user behavior is conducive to recommend the right product for the user
at the right time. Recently, recurrent neural networks (RNNs) based
methods have achieved profitable performance in exploring temporal fea-
tures, however, in complex e-commerce scenarios, user preferences chang-
ing over time have not been fully exploited. In order to fill the gap,
we propose a novel representation for user preferences with the inspi-
ration of a quantum concept, density matrix. It encodes a mixture
of item subspaces and represents distribution of user preferences at one
time stamp. Further, such a representation and RNNs are combined to
form our proposed Density Matrix based Preference Evolution Networks
(DMPENs). Experiments on Amazon datasets as well as real-world e-
commerce datasets demonstrate the effectiveness of the proposed meth-
ods, which achieve rapid convergence and superior performance com-
pared with the state-of-the-art methods in terms of AUC and accuracy.

Keywords: E-commerce recommendation ·
Recurrent neural networks · Density matrix

1 Introduction

Temporal dynamics is a typical feature of purchase behavior in the e-commerce
platform. For example, as the time changing from summer to winter, users’
shopping characteristics shift from cool to warm. In order to capture tempo-
ral characteristics, recurrent neural networks (RNNs) based approaches have
been recently proposed and demonstrated their competitive capacity to rec-
ommend proper items for users at the right time [19,26]. For example, RNNs
exhibit better performance than DNN, SVD, and time-SVD++ in sequence pre-
diction tasks and session-based recommendation tasks [6,23,25]. Subsequently,
some machine learning or statistical learning methods, such as attention mech-
anism [26], matrix factorization [19], and point process [4], were assisted with
c© Springer Nature Switzerland AG 2019
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EA→FU→DM 8%

FU→EA→DM 11%

purchasing sequences            probability

EA→DM→FU                      14%

FU→DM→EA                      16%

DM→FU→EA                      26%

DM→EA→FU                      25%

Fig. 1. Probability statistics about six purchasing sequences derived from three prod-
ucts, i.e. electric appliance (EA), furniture (FU) and decoration material (DM)

RNNs to further promote recommendation. Although these RNNs-based meth-
ods achieved profitable performance, temporal characteristics of user preference
have not been fully exploited yet, especially in complex e-commerce scenarios.

User behavior is highly complex and diverse in real e-commerce scenarios. To
illustrate this, we survey the purchase order among electric appliance (EA), furni-
ture (FU) and decoration material (DM) on Taobao website, which is the largest
e-commerce platform in China. The statistical results are shown in the Fig. 1.
The average time interval between any two categories of them is 2–3 months.
In general, we believe that most of users would buy DM to renovate the house,
and then purchase EA and FU. However, the statistic results show that only
about 51% of users choose to buy DM first. 30% of users choose to buy DM
after purchasing EA or FU, and about 19% users consider to buy DM at last.
Intuitively, the diversity of purchase order is not explicitly observed.

Fig. 2. Statistics about repurchase cycles of shampoo and coffee beam from Taobao
website.

In addition, the repurchase is also an important feature that the e-commerce
recommendation system needs to capture. It can avoid recommending similar
products that users have just bought. However, this feature is also diverse in
complex e-commerce scenarios. To this end, we also collect data from Taobao
and make statistics about the distribution of repurchase cycle of coffee bean
and shampoo, as shown in the Fig. 2. It can be seen that the repurchase cycle
distribution of shampoo is significantly smoother than that of coffee bean. It
illustrates that users choose to buy shampoo again at any time. In contrast,
most users repurchase coffee bean within 100 days. The diversity of repurchase
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may limit currently proposed RNNs based methods to effectively capture user
preferences.

In this paper, we aim to address the above problem with the support of
quantum theory, which has been successfully applied in the field of information
science [1,14,21]. Density matrix, a concept describing the quantum state statis-
tically, plays a key role in currently proposed quantum theory inspired methods.
One of the representative tasks is the quantum language model proposed for
traditional information retrieval task [14]. In this method, density matrix was
used to represent user information needs and the evaluated documents, and then
the relative entropy was used to calculate the similarity as the document rank-
ing score. The density matrix is also in conjunction with Convolutional Neural
Network (CNN) to mine the correlation between questions and answers. How-
ever, to the best of our knowledge, existing works fail to theoretically explain
the effectiveness of density matrix based representation for learning embedding
and training neural network.

From the above analysis, both density matrix and RNNs have their advan-
tages, in which the former has strong representation ability, the latter effec-
tively captures temporal features. We thus combine the advantages of both den-
sity matrix and RNNs to model the evolution of user preferences in complex
e-commerce scenarios, and propose Density Matrix based Preference Evo-
lution Networks (DMPENs). Specifically, our proposed methods make the
following contributions:

– A novel user preference representation based on density matrix.
In previous RNNs based methods, features were first mapped into low-
dimensional embedding vectors and then fed to RNNs. In this paper, we
convert these vectors into density matrices before feeding them to RNNs.
Compared with the embedding vector, the density matrix takes into account
the 2-order correlation between original embedding entries. The correlation
makes the update of one embedding entry affect other entries, and is able to
improve the preference representation of RNNs.

– Integrating density matrix into RNNs. In this article, we integrate the
density matrix directly into three kinds of RNNs, i.e. basic-RNN [18], GRU [3],
and LSTM [7]. The BPTT algorithm [17] for training RNNs is also applicable.
In order to preserve 2-order correlations and avoid losing information, we do
not choose to lower dimension of density matrix. Observed from the experi-
mental results, we find that the convergence speed of DMPENs is over three
times faster than that of other compared methods, which indicates density
matrix is very effective and efficient for all RNN variables.

– Effective methods with a rapid convergence and a significant
improvement. We evaluate our proposed DMPENs on Amazon product
datasets and Taobao e-commerce datasets of high complexity and variety
over time. A series of systematic experiments have shown that our proposed
methods achieve a rapid convergence and also significantly outperform the
state-of-the-art methods in terms of Area Under the Curve (AUC) and
Accuracy. The high precision of our proposed methods on predicting user
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preferences illustrates that density matrix effectively captures the temporal
diversity of user behavior, e.g., repurchasing cycle in e-commerce platforms
described above.

We clarify that our motivation of using a concept in quantum theory is
to inspire new perspective and formulation for the application of user prefer-
ences prediction, instead of developing quantum computation algorithms. We
also remind that density matrix based representation is totally different from
a feature combination method proposed by Product-based Neural Networks
(PNN) [13], in which outer product is conducted between different features’
embeddings. By contrast, outer product utilized in our proposed methods is
conducted on one feature embedding itself. To the best of our knowledge, this
is the first attempt to integrate density matrix into RNNs for recommendation
task.

2 Related Work

In this section, we introduce the application of density matrix in several infor-
mation science fields, as well as methods for predicting the evolution of user
preferences based on RNNs.

Density matrix based representation was first rising in Information
Retrieval (IR). van Rijsbergen argued that density matrix can be thought of
a generalized query [15]. Then, queries were exactly expressed as density matri-
ces [11]. Later, density matrix was further utilized to model term dependen-
cies with the property of quantum entanglement [20]. For more complex search
scenarios, e.g. session search, density matrix was used to model the transfor-
mation of user information needs [9,12]. Except for IR, it was extended into
natural language processing (NLP), in which the density matrix was employed
to encode dependency neighborhoods and represent sentence sequence [1,2]. In
the work of sentiment analysis, density matrix was also developed to model
correlations between images and texts [22]. Although the density matrix based
representation was well applied in the field of information science, it has not
been introduced into recommendation task. Its application in this paper makes
a preliminary attempt. RNNs based methods have been successively applied
to model temporal dependencies on sequential user behavior. Except for the pre-
vious described work, a variant of LSTM was proposed to model the time inter-
val between users’ actions and improved the recommendation performance [25].
Later, an adapted Attention-GRU model with three important modifications was
proposed for brand-level ranking system in e-commerce platform [26]. Besides,
RNNs were utilized in a session-based recommendation task that user records
were created in a session-align way and put into multi-layer GRU architec-
tures [6]. These three state-of-the-art methods will be compared with our pro-
posed methods in the experiment section. In this paper, we will combine the
advantages of both density matrix and RNNs to improve the accuracy of user
preferences prediction in complex e-commerce scenarios.
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3 Density Matrix Based Preference Evolution Networks

In this section, we describe our model in the context of user preferences pre-
diction, which aims at improving prediction accuracy based on sequential user
behavior. Specifically, we introduce our model in the following steps. First, we
introduce preliminary of density matrix. Next, we design a density matrix based
representation for user preferences. Then, we show how to integrate such a rep-
resentation into RNNs architectures. The detail is described below.

3.1 Preliminary of Quantum Theory

The mathematical formalism of quantum theory is based on linear algebra. Now,
we briefly introduce some basic concepts that will be utilized in this paper. In
quantum theory, quantum state refers to the state of a quantum system. It pro-
vides a probability distribution for the outcome of each possible measurement on
the system. A basic quantum state can be described by a unit vector, u ∈ R

n×1

over an Hilbert space H. In the common mathematical formalism of quantum
theory, u is often denoted by |u〉 with the Dirac’s notation, called a ket. Its
transpose u� is denoted by 〈u|, called a bra. The projector Π onto the direction
|u〉 is represented by |u〉〈u|, i.e. Π = |u〉〈u|, which is an outer product (also
called dyad) of |u〉 itself. If a quantum state can be represented as a vector, it
is always called a pure state. However, a quantum system can be in a statistical
ensemble of different state vectors. For example, there may be a 50% probabil-
ity that the state vector is |u1〉 and a 50% chance that the state vector is |u2〉.
This means that the system is in a mixed state. The density matrix is especially
useful for describing the mixed state. A density matrix ρ is defined as a mixture
of |ui〉〈ui|, i.e. ρ =

∑
i piΠi =

∑
i pi|ui〉〈ui|, where pi represents the probabil-

ity of |ui〉〈ui|. In general, both pure and mixed state can be characterized by a
single density matrix. When the density matrix is applied into data science, it
is necessary to first determine the object it describes. For instance, in quantum
language model [14], the object described is text, which is a mixture of query
terms. In e-commerce scenarios, user’s selection of products typically reflect their
preferences. In this paper, user preferences are the objects we aim to describe,
and they can be regarded as a mix of selected products.

3.2 Density Matrix Based Representation for User Preferences

User preferences at one time stamp are characterized by the mix of selected
items. Following this idea, we first implement the vector representation of each
selected item. Item features are commonly mapped into lower embedding vec-
tors in currently developed deep learning based methods [24]. In this paper, item
features are also transformed in the same way. We construct a items’ embedding
matrix, denoted as E ∈ R

|V |×d, where |V | is the length of items and d is the
dimension of embedding. Note that, the whole embedding matrix is initialized
randomly, but can be updated during the training process. Each item embed-
ding is denoted as −→ei � = (ei1, ei2, · · · , eid) ∈ E. Since each item is served as a
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pure state, which is an unit state vector, we should first normalize each item
embedding vector (−→ei � ∈ E) as follow:

|ei〉 =
−→ei

||−→ei ||2 , (1)

where |ei〉 = (e′
i1, e

′
i2, · · · , e′

id)
T . Then the corresponding projector Πi, i.e. a

subspace spanned by the embedding-based state vector |ei〉, is computed by an
outer product as follow:

Πi = |ei〉〈ei| =
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From this equation, it is easily observed that the projector contains 2-order
correlation, for example, e′

i1e
′
i2, between any two entries of |ei〉. Next, user

preference corresponding to a mixed state at one time stamp is represented by
a density matrix, which is derived as:

ρ =
∑

i

piΠi =
∑

i
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where pi stands for the selected frequency of item i, and
∑

i pi = 1. It is clearly
that density matrix is symmetric. This process for constituting a density matrix
is also illustrated in Fig. 3.

Embeddings Matrix Projectors Density Matrix

Outer
Products

Sum

Fig. 3. Density matrix based representation

Distinct from currently proposed RNNs-based methods, which directly align
the embedding vector for each item, the mixture of the subspaces spanned by
the embedding vectors has not been taken into consideration. From Eqs. (2) and
(3), it can be observed that each entry in the normalized embedding is mul-
tiplied with other entries under the formalization of density matrix. In other
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Fig. 4. Density Matrix based Preference Evolution Network

words, the density matrix contains more correlation features than the embed-
ding vector. Among RNNs based methods, the embedding vector is trainable, in
which each entry in it is considered as a variable and is updated as the RNN is
trained. Each embedding entry is independent during the training process such
that it is updated without affecting other entries. However, by constructing a
density matrix, each entry is correlated with other entries, causing the update
of one entry affecting other entries that are multiplied with it. This correlation
may be beneficial for learning the embedding matrix, and even training RNNs
architectures. Here, we make a hypothesis that density matrix based representa-
tion can assist RNNs to accelerate the convergence of the training process. This
hypothesis will be confirmed in the experimental part.

3.3 Learning Evolution of User Preferences

In this paper, recurrent neural networks (RNNs) are employed to model the
evolution of user preferences. Specifically, we use density matrix ρt ∈ R

d×d

obtained by Eq. (3) to represent user preference at time t. ρt is then fed into
RNNs. Although the input is a matrix, the training algorithm (back-propagation
through time, BPTT) remains available. For simplicity, we take a basic-RNN [18]
as an example. The updating form of hidden state ht(ρt) ∈ R

k×d is described
below:

ht(ρt) = σ(Wht−1(ρt−1) + Vρt + b) (4)

where W ∈ R
k×k,V ∈ R

k×d are weight parameters, and b ∈ R
k×d denotes the

bias. σ(·) is an activation function, such as commonly used Tanh or Sigmoid
function (Tanh is utilized in this paper). Equation (4) can be replaced with
updating functions adopted in other kinds of RNNs, for example, LSTM [7] and
GRU [3].

For the predicted item, it is first formed with a density matrix and then
as input into the last time stamp T of RNNs. The corresponding hidden state
hT (ρT ) is regarded as feature for prediction. Due to the matrix form of hT (ρT ),
for convenient, we accumulate it into a vector, denoted as xfeat ∈ R

1×d simply
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by rows. And then putting it into a fully-connected layer, as shown in Fig. 4. The
softmax activation is adopted, and outputs the probabilities of both positive label
(i.e. being selected) and negative label (i.e. not being selected) of the predicted
item. If necessary, the probability of the positive sample can be served as ranking
score in real-world application scenarios, for example, recommending top-k items
for the user. The back propagation is trained with the cross entropy loss:

L = −
N∑

i

[yi log p(xfeat) + (1 − yi) log(1 − p(xfeat))] (5)

where p(xfeat) is probability output by softmax, and yi represents the target
label. Our proposed density matrix based representation can be applied to any
kinds of RNNs architectures to model user preferences, these integrated meth-
ods are collectively named as Density Matrix based Preference Evolution
Networks (DMPENs). Figure 4 summarizes the basic architecture of our pro-
posed DMPENs. We also abstract the above approach in Algorithm1.

Algorithm 1. DMPEN: Density Matrix based Preference Evolution Network
Input:

|V |: length of items; d: dimension of embedding.
Output:

p(xfeat): predicted probability for feature xfeat.
1: Initialize an embedding matrix E ∈ R

|V |×d;
2: for each time stamp t ∈ [1, T ] do
3: Obtain user’s selected item set Ct at time t;
4: for each item i ∈ Ct do
5: Normalize the embedding |ei〉 using Eq.(1);
6: Calculate the frequency pi of item i;
7: Construct projector Πi by Eq.(2);
8: end for
9: Derive density matrix ρt via Eq.(3);

10: Update hidden state in Eq.(4);
11: end for
12: Acquire the last hidden state hT (ρT ) as a feature vector xfeat;
13: Put xfeat into a fully-connected layer, and the softmax activation is adopted to

compute p(xfeat).

3.4 A Time-Align Way for Capturing Repurchase Characteristic

To facilitate the training of RNNs, the sequence length (i.e. the number of hidden
state) is often fixed. However, the length of input sequence is usually unequal
to RNNs’ length. In order to solve the mismatch between lengths, a method of
directly padding zeroes into input is commonly adopted. This does not fit our
task that our goal is capturing the temporal characteristic, such as repurchase
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cycle, in complex e-commerce scenarios. Let’s take an example to illustrate this.
One purchase sequence of user A is {‘i1’, ‘i2’, ‘i3’, ‘i1’}. User B has another
purchase sequence of {‘i1’, ‘i4’, ‘i5’, ‘i1’}. Intuitively, both A and B have the
same repurchase interval of ‘i1’, because there are two items before repurchasing
‘i1’ in both sequences. Actually, user A may repurchase ‘i1’ after 2 weeks, while
user B purchases ‘i1’ again after 2 months. The two repurchase periods are quite
different. Padding zeroes directly would make no sense in this paper. Therefore,
we adopt a time-align way to obtain input sequence. User behavior data at
each day is recorded in the log of e-commerce website. We first sort logs in
chronological order. Then, we extract each user record from logs and sort them
by time. If the day has no behavior, it will be filled with zero. After preprocessing,
all user sequences are of equal length. The above process is also described in
Fig. 5. ui,j indicates the record of ith user on the jth day.

Fig. 5. A time-align user sequence creation

4 Experiments

In this section, we present the experiments in detail, including datasets, prepro-
cessing, experimental setups, comparison models, and results analysis. Experi-
ments on a public dataset as well as a real-world dataset collected from Taobao,
one of the biggest e-commerce platform in China, demonstrate the effectiveness
of DMPENs which outperform the state-of-the-art methods on user preferences
prediction task.

4.1 Datasets, Preprocessing and Statistics

Amazon Dataset1. It contains product reviews and metadata from Amazon,
which is used as benchmark dataset [5,10,16,24]. We conduct experiments on
a subset named ‘Clothing, Shoes and Jewelry’. In general, the user can make
a comment on the product after purchasing it. It means that the dataset only
contains the purchase records, which can directly reflect repurchase characteris-
tics in user behavior. More statistics about Amazon dataset are summarized in
Table 1.
1 http://jmcauley.ucsd.edu/data/amazon/.

http://jmcauley.ucsd.edu/data/amazon/
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Table 1. Characteristics of three datasets. (Taobao datasets are collected in 2018).

Dataset Amazon-I Amazon-II Taobao-I Taobao-II Taobao-III

Users 10044 6792 164244 161051 216726

Categories 538 499 10707 11502 12153

Train set 7/10/1999-23/07/2014 13/06-13/07 14/04-13/06 13/02-14/05

Test set 14/07-13/08 14/06-13/08 15/5-13/08

Train size 135016 88854 645844 628484 914070

Test size 174 506 209188 196392 245946

PreInHis.train 2.63% 5.60% 9.10% 13.07% 15.20%

PreInHis.test 0.5% 10.98% 12.35% 16.04% 17.85%

Taobao Dataset2. It is collected from Taobao, the largest e-commerce web-
site in China. We select 974,702 users from user pool and extract user behavior
logs from February 8, 2018 to August 13, 2018. In this dataset, we will consider
scenarios that are more complex than Amazon dataset. Repurchase is not only
explicitly reflected by purchase behavior, but also implicitly related with clicks,
collections and add-to-cart. The e-commerce website is used for online shop-
ping as well as providing a wealth of product information for user to reference.
Users may browse the website to obtain product information, and then choose
other online websites or offline shops to purchase. Therefore, it is necessary to
consider such an implicit repurchase scenario. To this end, we extract user’s
clicking, collecting, purchasing, and adding-to-cart, these four kinds of records,
to capture both explicit and implicit repurchase characteristics. More statistics
are summarized in Table 1.

Preprocessing. Product information, such as ‘product ids’, is particularly
sparse for crawling repurchase feature. The user buys some products with dif-
ferent product ids, but in reality these products belong to the same category. In
order to capture the repurchase characteristics of user behavior, we only extract
the ‘category id’ as a feature to predict user preferences. The time-align method
described above is used to preprocess user sequence consisting of ‘category id’.
To confirm that our model can grasp the long-term preference with different time
lengths, we further divide each user sequence into subsequences according to the
time length of 60-days, 120-days and 180-days, which correspondingly form three
sub-datasets, denoted by I, II, and III respectively. For each sub-dataset, the first
half of each subsequence is served as train sample, and the second half is used
as test sample. After that, the time lengths of both train set and test set under
three sub-datasets are 30 days, 60 days, and 90 days, respectively. Each day is a
time stamp. Categories at the last time stamp in both train set and test set are
used as positive samples. The negative samples are equal with positive samples,
and randomly selected from category pool by removing positive samples. We

2 https://www.taobao.com/.

https://www.taobao.com/
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filter out users who have no record at the last time stamp in both train and
test set. Since Amazon dataset generates too few test sample with the 180-day
duration (only one sample), we decided to remove this sub-dataset and reserve
‘Amazon-I’ and ‘Amazon-II’ with 60 days and 120 days, respectively. For the
Taobao dataset, we separately take the last 60 days, the last 120 days and the
last 180 days from all 187 days to form ‘Taobao-I’, ‘Taobao-II’ and ‘Taobao-III’.

Statistics. We summarize the statistics of five datasets in detail, as shown
in Table 1. PreInHis.train and PreInHis.test indicate the average proportion of
predicted categories appeared in the historical categories on train set and test
set, respectively. The values of both Amazon and Taobao are less than 20%,
indicating the diversity of user preferences. Volume of Taobao Dataset is much
larger than Amazon, which brings more challenges.

4.2 Compared Methods, Implementation and Evaluation Metrics

In this paper, we integrate density matrix based representation into three kinds
of RNNs, i.e. basic-RNN, GRU, and LSTM. According to the combined RNN
architectures, we divide all of compared methods into the following groups. The
details are described as:

Basic-RNN, DMPEN-RNN: Basic-RNN is the popular architecture for mod-
eling temporal dynamics of long-term user preferences [4,23]. DMEPN-RNN
combines the density matrix based representation with basic-RNN.

GRU, Session-RNN, Attention-GRU-3M, DMPEN-GRU: GRU is com-
monly used popular architecture for modeling long-term user preferences.
Session-RNN exploits a three-layer GRU structure to capture user’s short-
term interest based on sequential actions within a session [6]. In this paper,
we consider the log recorded in one day on the e-commerce platform as a ses-
sion. A mini-batch is aligned with user id. That is, a mini-batch is actually a
user record. Attention-GRU-3M is designed for a brand-level ranking system in
e-commerce platform, and has achieved three modifications based on Attention-
GRU model [26]. The time interval is set to 1. The dimension of attention cell
is set to 10. The dimension of dense layer is set to 128. It would be a com-
petitive method in this paper. DMPEN-GRU integrates density matrix based
representation with GRU.

LSTM, Time-LSTM, DMPEN-LSTM: LSTM is the representative RNNs
architecture. Time-LSTM equips LSTM with time gates to model real time inter-
val feature [25]. Since real time interval is not taken into consideration in our
proposed methods, for a fair comparison, time interval of each user record is
set to 1. DMPEN-LSTM integrates density matrix based representation with
LSTM.

All methods are implemented based on TensorFlow platform. We set the
hidden state dimension of all utilized RNNs to 100 and the embedding dimension
to 20. We use ADAM [8] as the optimizer with an initial learning rate of 0.001.
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For Amazon datasets, we set the mini-batch size to 50 and the epoch to 10. For
Taobao datasets, we set the mini-batch size to 500 and the epoch to 50.

To test whether these methods can correctly predict user preference (i.e.
categories) at the last time stamp, Area Under ROC Curve (AUC) and Accuracy
(ACC) are employed as the evaluation metrics.

4.3 Results Analysis on Amazon Datasets

In this section, we analyze the experimental results and the convergence among
all methods on Amazon-I and Amazon-II. Table 2 displays the evaluation results
across Amazon datasets in terms of AUC and ACC. It can be seen that DMPENs
almost achieve the best results among all groups. Specifically, for basic-RNN
based group, DMPEN-RNN has large improvements against baseline method
over two datasets under the evaluation of two metrics. For Amazon-I, DMPEN-
RNN is increased by 5.98% under AUC and 5.75% under ACC. For Amazon-
II, DMPEN-RNN is significantly improved by 9.67% under AUC. These three
results have the greatest improvements in comparison of other groups. In addi-
tion, DMPEN-RNN achieves the best performance of 0.9800 against all compared
methods on Amazon-I in terms of ACC.

Table 2. Model comparison on Amazon datasets. (Bold typeset indicates the best per-
formance among compared groups. (·) denotes the improved percentage of the DMPEN
based method against the Baseline in the corresponding group. Session-RNN is imple-
ment with multi-layer GRU cell.)

Methods Amazon-I Amazon-II

AUC ACC AUC ACC

Basic-RNN (Baseline) 0.9332 0.9267 0.9004 0.9100

DMPEN-RNN 0.9890 0.9800 0.9875 0.9300

(5.98%) (5.75%) (9.67%) (2.20%)

GRU (Baseline) 0.9593 0.9667 0.9422 0.9180

Session-RNN 0.9765 0.9400 0.9706 0.9320

Attention-GRU-3M 0.9742 0.9800 0.9708 0.9360

DMPEN-GRU 0.9876 0.9600 0.9859 0.9620

(2.95%) (−0.96%) (4.64%) (4.79%)

LSTM (Baseline) 0.9664 0.9533 0.9536 0.9400

Time-LSTM 0.9646 0.9400 0.9503 0.9180

DMPEN-LSTM 0.9895 0.9667 0.9890 0.9340

(2.39%) (1.40%) (3.71%) (−0.64%)

For GRU-based methods, DMPEN-GRU is slightly lower than GRU on
Amazon-I under AUC, but it is further improved compared to GRU under
the rest of metrics and datasets. And DMPEN-GRU achieves the best result
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of 0.9620 under ACC on Amazon-II. Session-RNN has improvements over
GRU, mainly because of using a three-layer GRU structure. Attention-GRU-3M
achieves better results than Session-RNN, indicating that the attention mecha-
nism can assist to further enhance the performance of GRU. Although it achieves
the best performance with ACC on Amazon-I, but it is still lower than DMEPN-
GRU under the rest of evaluation metrics and datasets.

For LSTM-based group, DMPEN-LSTM obtains improvements by more than
1.40% against LSTM. It also achieves the best performance of 0.9895 and 0.9890
among all groups across two datasets in terms of AUC. Time-LSTM always
performs worse than LSTM, indicating that setting the real time interval to 1
makes no effect.

Fig. 6. The performance comparisons over epochs of all methods with respect to AUC
and cross entropy loss on Amazon-I and Amazon-II datasets. DMPENs achieve higher
AUC and lower cross entropy loss than their competitors.

The upper of Fig. 6 describes the AUC curves of all the compared methods on
Amazon-I and Amazon-II. It can be easily observed that DMPEN based methods
exhibit faster convergence than other compared methods. They can get a stable
convergence within 4 epochs, however, other methods even can not get a conver-
gence after 10 epochs, such as, basic-RNN, GRU, and LSTM. DMPEN-LSTM has
the most rapid convergence across both datasets. All kinds of DMPENs start to
coincide as epoch is larger than 3. Session-RNN converges faster than Attention-
GRU-3M, but both of them almost coincide with each other at last. LSTM per-
forms better than GRU and basic-RNN, and has a similar trend of convergence
with Time-LSTM, due to the useless of its time gate.
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The bottom two subfigures describe the cross entropy loss curves performed
on Amazon-I and Amazon-II. DMPENs also achieve the rapidest convergence,
which is similar to AUC curves. They get a stable convergence after running 4
epochs. DMPEN-LSTM obtains the lowest loss after 10 epochs. Attention-GRU-
3M has a slower speed than Session-RNN at the beginning on both datasets, but
it reaches a lower loss at last. Basic-RNN still performs the worst. LSTM con-
verges faster than basic-RNN and GRU. Time-LSTM remains the same trends
with LSTM on both datasets.

4.4 Results Analysis on Taobao Datasets

The experimental results of Taobao datasets are shown in Table 3. For basic-
RNN based group, DMPEN-RNN achieves the maximum increment over 17.0%
against basic-RNN compared with the improvements in other groups across three
datasets in terms of AUC and ACC. It can be attributed to the weak memory
of basic-RNN.

Table 3. Model comparison on Taobao datasets. (Bold typeset indicates the best
performance among their compared groups. (·) denotes the improved percentage of the
DMPEN based method against the Baseline in the corresponding group. Session-RNN
is implement with multi-layer GRU cell.)

Methods Taobao-I Taobao-II Taobao-III

AUC ACC AUC ACC AUC ACC

Basic-RNN (Baseline) 0.7288 0.7371 0.7706 0.7260 0.8323 0.7330

DMPEN-RNN 0.9584 0.8680 0.9557 0.8520 0.9662 0.8587

(31.50%) (17.76%) (24.2%) (17.36%) (18.09%) (17.15%)

GRU (Baseline) 0.8383 0.7773 0.8282 0.7668 0.8744 0.7890

Session-RNN 0.8865 0.8582 0.8787 0.8525 0.9236 0.8580

Attention-GRU-3M 0.9347 0.8674 0.9420 0.8496 0.9621 0.8539

DMPEN-GRU 0.9601 0.8640 0.9594 0.8660 0.9687 0.8612

(14.53%) (11.15%) (15.84%) (12.94%) (10.78%) (10.04%)

LSTM (Baseline) 0.8517 0.7919 0.8516 0.7823 0.8817 0.7893

Time-LSTM 0.8572 0.7938 0.8556 0.7987 0.8940 0.8058

DMPEN-LSTM 0.9692 0.8821 0.9697 0.8782 0.9774 0.8645

(13.80%) (11.39%) (13.87%) (12.26%) (10.85%) (9.53%)

Among GRU based methods, DMPEN-GRU achieves the largest improve-
ment over other methods, although it is slightly lower than Attention-GRU-3M
in terms of ACC on Taobao-I. To be specific, compared with GRU, DMPEN-
GRU achieves improvement over 10% across three datasets with respect to AUC
and ACC. All evaluation results of Session-RNN is better than GRU. Attention-
GRU-3M exceeds GRU and Session-RNN with respect to AUC.
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For all of LSTM based methods, DMPEN-LSTM has a remarkable improve-
ment of 13.8% (AUC) and 11.39% (ACC) on Taobao-I, 13.87% (AUC) and
12.26% (ACC) on Taobao-II, and 10.85% (AUC) and 9.53% (ACC) on Taobao-III
against LSTM. DMPEN-LSTM achieves the best performance over all the other
compared methods, but has a relatively lower improvement than DMPEN-RNN.
This is because LSTM is more effective than basic-RNN to memorize long-term
user preferences. Time-LSTM has a similar performance with LSTM, which is
consistent with the performance of Amazon datasets.

From both Amazon datasets and Taobao datasets, DMPENs almost achieve
large improvements over other baseline methods and state-of-the-art methods.
It verifies the effectiveness of our proposed density matrix based representation,
which the 2-order correlation between two embedding entries provides useful
patterns for predicting user preferences changing over time.

Fig. 7. The performance comparisons over epochs of all methods with respect to AUC
and cross entropy loss on Taobao-I, Taobao-II, and Taobao-III datasets. DMPENs
achieve higher AUC and lower cross entropy loss than their competitors.

As analyzed above, density matrix based representation can significantly
improve the prediction performance. Next, we further investigate the advantage
of density matrix, and compare the convergence performance in terms of AUC
and loss, as illustrated in Fig. 7. For AUC curves, DMPENs reach a stable con-
vergence after running 10 epochs across three datasets. Attention-GRU-3M can
reach a stable convergence when epoch reaches 40. For other compared methods,
they still have a gentle upward trend after 50 epochs. Although their performance
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could be further improved with much more epochs, the convergence is too slow
to reach. LSTM, Time-LSTM and GRU have similar convergence trends due to
their analogical architectures.

For loss curves, DMPENs achieve the rapidest convergence after 10 epochs.
Especially for DMPEN-GRU and DMPEN-LSTM can get stable convergence
when epoch is around 5 among three datasets. DMPEN-RNN has lower loss than
other non-DMPEN methods across Taobao-I and Taobao-II. Attention-GRU-3M
exhibits a similar loss curve with DMPEN-RNN on Taobao-III. Session-RNN
apparently performs better than Time-LSTM, and other RNNs. Time-LSTM
has a slightly lower loss than LSTM. From the figures, LSTM, Time-LSTM,
GRU and Session-RNN have not reached a stable convergence at the end of
training. It shows the complexity of user behavior in Taobao datasets, but verifies
the robustness of our proposed methods. The good performance of DMPENs
mainly benefits from the representation of density matrix, in which each entry
is correlated with other entries in the same embedding, and its update has an
effect on other entries. In contrast, each entry in embedding based representation
is independent, in which the update of one entry does not affect other entries.
Therefore, the convergence of DMPENs is largely accelerated.

5 Conclusions

In this paper, we propose Density Matrix based Preference Evolution Networks
(DMPENs) which integrate the density matrix, a key concept in quantum theory,
into RNNs architectures and combine with a time-align data-preprocess method
to model complex temporal characteristics in the evolution of user preferences.
Our proposed density matrix based representation encodes user preferences at
one time stamp into subspaces, in which 2-order correlation between embedding
entries is involved. Since the update of each entry in density matrices can affect
other entries, it further accelerates the convergence of RNNs. DMPENs are eval-
uated on Amazon datasets and real-world e-commence datasets. The loss curves
show that DMPENs obtain a stable convergence after running 3 or 5 epochs
across all datasets, however, other compared methods even can not achieve a
convergence after 10 epochs or 50 epochs. Under the evaluation of AUC and
ACC, DMPENs realize a significant improvement by approximately from 2%
to 32% against all baseline methods. In particular, DMPEN with LSTM almost
exhibits the best performance compared with the state-of-the-art methods across
all datasets.
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Abstract. As the sheer volume of available micro-videos often under-
mines the users’ capability to choose the micro-videos, in this paper,
we propose a multi-source multi-net micro-video recommendation model
that recommends micro-videos fitting users’ best interests. Different from
existing works, as micro-video inherits the characteristics of social plat-
forms, we simultaneously incorporate multi-source content data of items
and multi-networks of users to learn user and item representations for rec-
ommendation. This information can be complementary to each other in a
way that multi-modality data can bridge the semantic gap among items,
while multi-type user networks, such as following and reposting, are able
to propagate the preferences among users. Furthermore, to discover the
hidden categories of micro-videos that properly match users’ interests,
we interactively learn the user-item representations. The resulted cate-
gorical representations are interacted with user representations to model
user preferences at different level of hierarchies. Finally, multi-source con-
tent item data, multi-type user networks and hidden item categories are
jointly modelled in a unified recommender, and the parameters of the
model are collaboratively learned to boost the recommendation perfor-
mance. Experiments on a real dataset demonstrate the effectiveness of
the proposed model and its advantage over the state-of-the-art baselines.

Keywords: Micro-video recommendation · Multi-network modelling

1 Introduction

The explosion of micro-videos has arisen as a problem on social media in recent
years, as the sheer volume of micro-videos can often undermine a users’ capabil-
ity to choose the micro-videos that best fit their interests. Recommender systems
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appear as a natural solution to this problem, helping social applications to effi-
ciently determine the information offering to consumers and allowing users to
quickly find the most useful information.

Most of the traditional methods for recommendation are based on Collabo-
rative Filtering (CF) [17], however, that suffers from data sparseness and cold-
start problem, as the only information they employed is the user-item interaction
matrix that is extremely sparse. Thus, it is impossible to make recommendation
for an unseen user or item unless its latent representation is learned beforehand.
To approach this problem, many existing works incorporate additional infor-
mation sources by joint learning users, items and auxiliary information such as
texts, images, video and social connections. Although those methods that con-
sider auxiliary information can be effective for recommendation task are not
applicable for micro-video recommendation due to the following reasons. First,
micro-videos involve multiple modalities such as textual, visual and acoustic,
and each modality reveals different characteristic of micro-videos. For example,
the descriptive text associated with a micro-video indicates the main content of
the micro-video, while the frames in a micro-video carry the partial information
of the content that are more intuitive than text. Therefore, it is necessary to
design a recommender system that can cater for different characteristics of aux-
iliary information and incorporate high-level representations of modality infor-
mation into a unified model for micro-video recommendation. In [5,29], it only
leverage data of a single modality, and they usually design a specific process of
information extraction from the single-source data and tightly couple it with the
recommend frameworks, which limits the scalability of the frameworks, such as
integrating heterogeneous data sources. Second, many previous works employ
social connections for improving recommendation accuracy based on the idea
that social friends interrelated with strong social connections are more likely to
have similar interests. However, many of them [15,21] simply utilize the follow-
ing relationship as social regularization, while ignoring other user relationships.
In the previous research [1], information from a single social network may con-
flict with the true reasons underlying user-item interactions, while clues from
multiple networks can be complementary to each other for accurate recommen-
dation. For example, family members may be “friends” in a social network but
with completely different item preferences, while users consume the same item
explicitly indicating the similarity of their interests.

To address those problems, we propose a multi-source multi-net method for
micro-video recommendation. Beside user-item interactions, we leverage hetero-
geneous information sources for better item profiling, and integrate the latent
representations of the multiple sources into a unified model to promote person-
alized recommendation. Different domain information can be complementary to
each other and reveals the true factors of user preferences over items.

Furthermore, we employ multiple social networks for propagating user repre-
sentations in a shared latent space based on the idea that strong social ties are
supposed to be located in a close proximity. We learn the hidden representations
of users and items in an end-to-end neural network, and back-propagate the
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recommendation errors to update the parameters of the network jointly. Thus
the user and item representations can best explain the user preferences over the
items by considering heterogeneous data sources and multiple social networks.
The contributions of this paper are listed as follows.

– The proposed model incorporates multiple information sources and multi-
ple user networks in a unified model for micro-video recommendation. Each
modality can be complementary to each other for better modelling user and
item representations.

– The proposed model discovers hidden item category information for the rec-
ommendation task. The hierarchy of item-level and category-level information
can reflect the underlying reason of user preferences over items.

– We demonstrate the effectiveness of the proposed solution using a real dataset,
and present insights and its advantage over the state-of-the-art recommenders
with comprehensive experiments and analysis.

2 Related Work

Many existing video-oriented websites, such as YouTube1, MSN Video2, have
provided video recommendation services. For example, content-based filtering
approach [18] is employed in Youtube, where videos are recommended to users
based on the past viewed videos. In VideoReach [17], video recommendation is
performed based on the multi-modality relevance and users’ click-through data.

The main limitation of these methods is that they only consider the video-
video relations, while ignoring the related users’ preferences.

In the past decade, deep learning techniques have been applied in several
fields such as computer vision, speech recognition and natural language pro-
cessing. As for recommendation, many previous works have tried to combine
various neural network structures with collaborative filtering to boost the per-
formance [11]. For example, [7] and [16] combine generalized matrix factoriza-
tion with multi-layer perceptron to capture the interrelations between users
and items. Some others [12,23] apply auto-encoders to model user-item interac-
tions, and the recommendations are made by reconstructing the user preferences
over the item with the pre-trained de-noising auto-encoders. Although these are
demonstrated to be effective in previous works, they are inapplicable in our
scenario as the models are learned solely based on the user-item interactions.

Recently, many works propose to jointly model the auxiliary information
associated with users or items for recommendation. The underlying reason of
incorporating additional data sources is that they are highly inter-related with
user-item interactions and can alleviate the data sparseness and cold-start prob-
lem. The considered data modalities include text, audio and visual. Those observ-
able attributes are processed into abstract representations with popular deep
learning techniques (e.g. CNNs, RNNs), and interact them with user or item

1 https://www.youtube.com/?hl=zh-cn.
2 https://www.msn.com/en-us/video.

https://www.youtube.com/?hl=zh-cn
https://www.msn.com/en-us/video
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representations to compensate sparse user-item interactions. However, most of
those methods linearly combine representations from different sources, without
considering the hierarchy of items and item categories for better modelling user-
item interactions. Another limitation of those methods is that the underlying
user networks that interlink the user have not been explicitly exploited. The
projection of users into low-dimensional representations needs to preserve local
structures in the user networks. [21] considers social connections and explicitly
regularize social friends to have similar representations. However, those works
leverage a single user network to propagate user similarities, and discovering
similar users with information of single modality may provide conflict evidence
and compromise recommendation accuracy [3,19].

3 The Proposed Model

This section describes the details of the proposed model. Subsection 3.1 provides
the problem formulation. After that, Subsects. 3.2 and 3.5 presents the modelling
of content of micro-videos and the modelling of user networks that considers
multiple-types of user networks, respectively. Multi-source data contents are uti-
lized in our model, such as textual, visual features of micro-videos and user net-
works. Subsection 3.3 details the modelling of hidden category that learns the
hidden categories of micro-videos that match users’ interests. Subsection 3.6
describes the unified model that incorporates multiple data sources.

3.1 Problem Formulation

We denote a user-item interaction matrix as R ∈ R
M×N , where M and N denote

the number of users and items respectively. The non-empty entries Rij refers to
the positive interaction between user ui ∈ U and item vj ∈ V. In our case, each
item vj is associated with a textual description and a keyframe (xj ,gj). More
importantly, there are multiple user networks, representing different relations
such as following and liking. For a user network Gk = (U,Ek), where U,Ek is
the set of nodes and edges, (ui, ul) ∈ E

k means there is a positive connection
between ui and ul. In this work, our framework considers following and liking
user networks as examples, which are easily extended to incorporate other user
networks such as reposting. Given the interaction matrix R, the set of user U

and item V, the observable texts and images (xj ,gj , j = 1, · · · , N) associated
with the items and the user network Gk, k = 1, 2, our task is to predict the
missing values in R.

3.2 Content Modelling

In this subsection, we describe the modelling of content information (i.e. textual
and visual information) for the micro-videos. Since similar items are more likely
to have similar textual descriptions and visual information, the latent represen-
tations of those items are supposed to be in a proximity close to each other in
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the shared latent space. Therefore, the content information is able to bridge the
semantic gaps between items, and we can learn better item latent representations
by exploiting content information.

Textual Representations. The descriptive text xj associated with micro-
video vj summarizes the overall content of the item, and underlying reason of
modelling textual data sources is that a user’s preference over an item can be
explained by the fact that the user is attracted by the overall content of a micro-
video. First, we transform each text, xj = {wn

j }|xj |
n=1 where wn

j is the nth word in

xj , into embedding vectors with Glove: Ej = {en
j }|xj |

n=1. We pad the embedding
vectors into the same length by padding 0 to the end of those word sequences.
The embedding vectors are then fed into a convolution layer and a max pooling
layer to obtain the representation of each document:

oj = CNN − maxpooling(Ej) (1)

where oj ∈ R
n1 is the output of the CNN and max-pooling layer. More details of

this process are referred to [26]. The vector oj is then pass to a fully connected
layer to obtain the hidden representation for the descriptive text xj , as shown
in Eq. (2):

htext
j = f(Wtext × oj + btext) (2)

where Wtext ∈ R
n1×d and btext ∈ R

d are the transformation matrix and the
biases, and n1 is the size of the vocabulary and d is the predefined hidden size.

Visual Representations. The idea of extracting visual features from video
frames for micro-video recommendation is that frames can reflect the user specific
interests in a straightforward way, which are usually difficult to be described by
text [22].

In this paper, we choose CNNs for extracting visual features, as CNNs are
powerful in learning high-level visual representations for image classification and
object detection. In the experiment, we select the first frame of each micro video
as the visual feature, as the collected micro-video is short, 6 s, and keyframe can
be used for long videos. We utilize the VGG-16 to obtain the visual features of
video frames. For each micro-video frame gj , we use the output of the third-to-
last layer, and pass it to a fully connected layer to obtain the representation of
the frame, as shown in Eq. (3):

himage
j = f(Wimage × CNN(gj) + bimage) (3)

where CNN(gj) ∈ R
4096 is the output of the third-to-last layer of the VGG-16

model.

Latent-Content Modelling. The idea of modelling item content is to learn
mapping function to project item latent representations and content represen-
tations (i.e. htext

j ,himage
j ) of different modalities into a common space so that
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the similarities between them can be directly measured. We denote the latent
representation of item vj as vj , and then the conditional probability of observing
an item latent representation given its content representations as follows,

P (htext
j |vj) =

1

1 + e−v�
j Mtexthtext

j

= σ(v�
j Mtexthtext

j )

P (himage
j |vj) =

1

1 + e−v�
j Mimagehimage

j

= σ(v�
j Mimagehimage

j )

(4)

where Mtext,Mimage are two linear transformation matrices that map an item
latent representation and its content representations into a common space. The
basic idea of Eq. (4) is that the latent representation of an item is similar to its
content representation in the shared common space. The employment of sigmoid
function for measuring the similarity between two objects is commonly used in
previous works [2,24].

3.3 Hidden Category Modelling

Existing works [4,10] have demonstrated that information of different hierar-
chies can be incorporated to boost recommendation performance. For example,
the category information of an item can help to capture user preferences in a
more general granularity. While a user’s interest in a specific item is unclear,
his/her general taste on the item category is obvious. Therefore, category and
item representations can be complementary with each other for better modelling
user preferences. However, the category information in our case is not explicitly
available, so we propose to discover category-level information for the items, and
model user preferences on both item- and category-levels.

Specifically, we perform clustering over the item representations, and results
in several cluster centroids. Instead of regarding the centroids as category rep-
resentations, we draw the category representations from a Gaussian distribution
parameterized by the centroids. Thus the category representations can be used
for modelling user preference in a more general granularity, which is detailed in
the next subsection. Notice that the clustering process is iteratively performed
with the item representations learning process, and they mutually benefit each
other. As items consumed by similar users share similar characteristics, the learn-
ing of item representations drives similar items to have similar representations,
and it benefits the clustering process. Furthermore, the category information
can help to reveal real user preferences, which in return benefits the learning of
representative item latent feature vectors.
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In this paper, we employ KMeans for discovering latent categories and denote
the category id for item vj as cj . The clustering process aims to minimize the
following objects.

argmin

K∑

k=1

∑

cj=k

||vj − νk||2 (5)

where K is the pre-specified category number, and νk is the centroid for category
k. The parameters {cj}N

j=1 and {νk}K
k=1 is iteratively updated as in Eq. (6).

cj = argmink||vj − νk||2

νk =

∑
cj=k vj∑

j I(cj = k)
(6)

where I(x) = 1 if x holds, and 0 otherwise. Instead of using {νk}K
k=1 as the

category representations, we introduce extra vectors {θk}K
k=1 for representing

the categories, and assume Gaussian distribution on the residual noise of the
clustered centroids as

P (νk|θk) = N (νk |θk, σ2
cI)N (θk|0, σ2

θI) (7)

where N (x|μ, σ2) is the Gaussian distribution with mean μ and variance σ2,
and I is the identity matrix. N (θk|0, σ2I) is the Gaussian prior we place on the
category representations to avoid overfitting.

3.4 Interaction Modelling

In this subsection, we introduce the modelling of user-item interaction. We
choose Probabilistic Matrix Factorization (PMF) as our basic model for micro-
video recommendation, as it is one of the most popular collaborative filtering
models and is commonly used for recommendation tasks [20]. In this work, we
have hierarchy of item- and category-level representations, and to capture user
preferences at different level of granularity, we assume Gaussian distribution over
observed interaction data as,

P (Rij |ui,vj ,θcj ) = N (ui|0, σuI)N (vj |0, σ2
vI)

= N (Rij |uT
i (vj + θcj ), σ

2I)
(8)

where N (ui|0, σuI),N (vj |0, σ2
v) are the Gaussian priors we place on the user

and item representations ui,vj respectively. In Eq. (8), uT
i θcj explicitly model

user’s general preferences over the item categories, and uT
i vj model user prefer-

ences over the item content, as item representations are collaborative modelled
with the raw content information in the common latent space (shown in Eq. (4)).
Therefore, we model user interests with a hierarchy of item- and category-level
information, which can be complementary with each other for promoting recom-
mendation performance.
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3.5 User Network Modelling

In social recommendation, the behaviour of a user is affected by his social neigh-
bours, hence user preferences can be propagated through the social ties and
encourage users with strong social connections to have the similar interests.
Following [8], we employ probabilistic social matrix factorization to propagate
preferences among social users. The advantage of our model is that we utilize
multiple user networks to accurately model user’s interests. We denote uk

i as the
representation of user ui in kth user network. A user’s representation depends
on the latent representations of the connected social friends.

uk
i =

∑

uk
n∈Nk

i

T k
inu

k
n (9)

where Nk
i is set of social ties of the user ui in kth user network, and T k

in = 1
Nk

i

.
The above equation implies that the representation of a user is the average of
the representations of his/her connected neighbours. Similarly, the unified repre-
sentation of a user across the user networks is dependent on the representations
of the user in each network. We formulate the unified representation ui as the
weighted sum of the representations uk

i across the networks.

ui =
K∑

k=1

δ(πik)uk
i (10)

where δ(πik) is a softmax function in the form of δ(πik) = exp(πik)∑
k exp(πik)

. δ(πik)
can be explained as the impact of user representation in each individual network
on the unified user representation. Considering the conditional probability of
unified user representations, we have:

P (ui, {uk
i }K

k=1|{T k}K
k=1, σ

2
U1

, σ2
U2

, σ2
T )

∝ P (ui|{ui}k
k=1, σ

2
U1
I)

∏

k

(P (uk
i |0, σ2

U2
I) × P (uk

i |T k, σ2
T I))

= N (ui|
K∑

k=1

δ(πik)uk
i , σ2

U1
I)

×
K∏

k=1

(N (uk
i |0, σ2

U2
I) × N (uk

i |
∑

uk
n∈Nk

i

T k
inu

k
n, σ2

T I))

(11)



392 J. Ma et al.

3.6 The Unified Model

With the aforementioned information modelling, the conditional probability of
the latent parameters given the observed data can be modelled as follows,

P (U,V, {θ}K
k=1|R, {xj}N

j=1, {gj}N
j=1, {Gk}2k=1, {νk}K

k=1)

∝ P (R|U,V, {θ}K
k=1)P (G|U)P ({xj}N

j=1|V)P ({gj}N
j=1|V)

P ({νk}K
k=1|{θk}K

k=1)P (U)P (V)P ({θ}K
k=1)

=
∏

(ui,vj)

{N (Rij |uT
i (vj + θcj ), σ

2I)N (ui|
K∑

k=1

δ(πik)uk
i , σ2

U1
I)

×
K∏

k=1

[N (uk
i |0, σ2

U2
I)N (uk

i |
∑

uk
n∈Nk

i

T k
inu

k
n, σ2

T I)]

× σ(v�
j Mtexthtext

j )σ(v�
j Mimagehimage

j )

× N (νcj
|θcj , σ

2
cI)N (θcj |0, σ2

θI)N (ui|0, σuI)N (vj |0, σ2
vI)}

(12)

By taking the negative likelihood of the above conditional probability, the
loss function that needs to be minimized as follows,

‡L =
∑

(ui,vj)

{1
2
[Rij − uT

i (vj + θcj )]
2

+
∑

k

[
λT

2
(uk

i −
∑

uk
n∈Nk

i

T k
inu

k
n)2 +

λU2

2
(uk

i )2]

+
λU1

2
(ui −

∑

k

δ(πik)uk
i )2

− αlogσ(v�
j Mtexthtext

j ) − αlogσ(v�
j Mimagehimage

j )

+
λc

2
(νcj − θcj )

2 +
λθ

2
(θcj )

2 +
λu

2
(ui)2 +

λv

2
(vj)2}

(13)

where λT = σ2
T /σ2, λU1 = σ2

U1
/σ2, λU2 = σ2

U2
/σ2, λc = σ2

c/σ2, λθ = σ2
θ/σ2, λu =

σ2
u/σ2, λv = σ2

v/σ2, α = 2σ2.
The objective function can be optimized by stochastic gradient descent

(SGD) [9]. The update equations are as follows,

θnew ← θold − lr
∂L(θ)

∂θ
(14)

where lr is the learning rate, while the ∂L(θ)
∂θ can be computed by chain rule in

back-propagation.
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4 Evaluation

4.1 Dataset

As the existing datasets (video datasets) either do not contain the social infor-
mation or do not fit for micro-video scenarios, to validate the effectiveness of
the proposed model, a real dataset is collected for our experiments. We collected
a year’s data during 2015 and 2016 from Vine3. Inspired by the existing works
such as [13,14], we filter out the users with fewer than 5 review records and the
micro-videos with fewer than 5 viewers. Finally, the processed dataset includes
9412 users, 19058 micro-videos and 109433 interactions. On average, each user
has 11.6 records and each micro-video has 5.7 viewers.

4.2 Setup

We set the hyper-parameters of the proposed model to the following default
values: for the regularization terms in the loss function, the λs are the hyper-
parameters, defaulted to 0.01; for the texts associated with the items, we initial-
ize the embedding matrix with Glove and tune it during the training process; for
parameters in CNNs processing the texts, we set the number of filters to be 100
for each of the filter size in the range of 2 to 4; for the training configuration, we
set the initial learning rate to 0.001, and decay it by 0.95 for every 1000 steps.
The batch size is set to 1024, and the model is trained for a maximum of 1000
epochs. For each user, we randomly sample 5 missing interactions as negative
samples for each positive samples. In addition, for each user 70% of the respec-
tive positive and negative samples are used for training. Beside the following
social network, another social network is created by connecting users if they like
the same micro-videos. In addition to the aforementioned default values, we also
evaluate the proposed model with different network structures.

As for the validation process, for each ground truth item for a user, we mix
each test ground truth with 100 randomly sampled items, and rank the ground
truth among the randomly-sampled items. Therefore, for a user with 5 positive
items in the testing set, those items are rank with 500 unobserved items. The
final result is an average over all users. Finally, we apply three commonly used
metrics, including precision@k, recall@k and nDCG@k, to evaluate our model
from different point of views.

4.3 Baselines

We compare the proposed model with the following state-of-the-art baselines.

– NeuMF [7]: applies matrix factorization with an end-to-end neural network.
– PACE [25]: introduces contexts to bridge the semantic gap between users and

items, in addition to the modelling of user-item interactions.

3 Vine: https://vine.co/.

https://vine.co/


394 J. Ma et al.

– TrustSVD [6]: learns user and item representations from user-item interac-
tion data. In addition, an adjacency matrix of trust network is leveraged to
factorize truster and trustee representations.

– DeepCoNN [29]: utilizes user- and item-generated texts to represent users and
items, and applies a deep neural network to model their interactions.

– CKE [27]: applies deep learning methods (stacked de-noising auto-encoders
and stacked convolution auto-encoders) to joint learn item textual and visual
representations for recommendation.

– JRL [28]: learns user and item representations in each individual information
source (e.g. review text, image, numerical rating), that are then integrated to
obtain the joint representations for users and items.

– MSN (the proposed model): incorporates multiple data sources and multiple
user networks for micro-video recommendation with item category discovery.

We select these baselines as they constitute the state-of-the-art methods that
consider information of different sources. For example, NeuMF models latent user
and item representations from rating information with deep neural network, and
DeepCoNN models the interaction between user-item pairs with the similarity
measurement between their respective textual features. PACE and TrustSVD
both consider user interaction and social information, and the difference is the
way that they exploit social information for regularizing user representations.
CKE and JRL incorporates data source of multiple modalities, and the different
is that CKE extracts item features in each data source (e.g. text, image) and
then generates unified item representations for modelling user-item interaction
data, while JRL learns user and item representations in each data space and
then combines them for recommendation.

4.4 Performance Comparison

The performance comparison among those models on different metrics are pre-
sented in Fig. 1. From the figures, we have the following observations.

Fig. 1. Performance comparisons

First, we find that JRL performs better than CKE across different metrics,
which has been demonstrated by previous work [28]. This is because JRL model
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user-item representations and adds up their interaction scores from each of the
information sources to rerank the top-N recommendations. Therefore, items can
be ranked higher in the final recommendation lists as long as the user prefer-
ences over the items are properly profiled in any one of the information sources.
On the contrary, CKE linearly combines the item representations over the infor-
mation sources, and assume the unified item representations to be drawn from
a Gaussian distribution parameterized by the linear combinations. As a result,
evidence from different sources can negatively affect each other for reranking
recommendation lists.

Second, the reason that JRL and CKE outperform DeepCoCNN with large
margin is that the DeepCoCNN only consider the textual information for mod-
elling the user-item interactions, while JRL and CKE include multiple data
sources (e.g. interactions, texts and images) to learn user-item representations
for the recommendation.

Third, PACE performs slightly better than NeuMF across different metrics,
which demonstrates the benefit of incorporating social context for propagating
user preferences. However, its improvement over NeuMF is marginal, and the
reason is two-fold. The original PACE integrates geographic contexts for regu-
larizing items, but they are not available in our dataset, and this component is
ignored when implementing PACE. Moreover, we fine-tune the parameters for
NeuMF as the original model faces the overfitting problem in our dataset due
to the data spareness. To do this, we add l2-norm for all the parameters and
apply batch normalization on the output of fully-connect layers, and we finally
grid search the learning rate to achieve the best result.

Also, TrustSVD outperforms PACE with large margin, especially on recall
and nDCG. PACE leverages social contexts to regularize user latent vectors.
The user latent vectors are used to predict their social contexts and the losses
are back-propagated to update the vectors so that users who share the similar
social friends are forced to be in a proximity that is close to each other. How-
ever, the regularization of users is detached from the objective function, namely
the user latent features are not updated in a way towards the optimization of
the recommendation performance. On the contrary, TrustSVD jointly optimizes
the objective function and regularize user latent vectors together. More impor-
tantly, TrustSVD explicitly regularizes users with matrix factorization, while
PACE implicitly propagates user preferences based on similar contexts, which
may account for its insufficiency in learning real user preferences.

NeuMF uses deep neural networks to model user-item interactions. The
advantage of the model is that the non-linear transformations in the neural
network are able to capture informative user-item semantics for the recommen-
dation, and the informative user-item semantics cannot be modelled with simple
dot product in traditional matrix factorization. Moreover, due to the limited
information sources, NeuMF still faces the problem of data spareness, and this
other models such as CKE and JRL significantly outperforms NeuMF, as they
are able to incorporate rich information from both users and items.
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Unexpectedly, DeepCoCNN performs the worst of all baselines. The model
exploits user-generated and item-generated texts for modelling their respective
latent features. The basic idea is that user-generated texts reflect users pref-
erence and texts associated with items indicate their characteristics. However,
the features learned from texts are basically biased to the textual semantic and
cannot be generalized to reflect user latent vectors. One possible solution to this
problem is to add user and item embedding along with the textual features, and
this result can be regarded as a variant of JRL.

Furthermore, we can conclude that JRL and CKE perform better than
TrustSVD and PACE. However, these two types of recommenders are not com-
parable, as JRL and CKE leverage content information for modelling item rep-
resentations, while TrustSVD and PACE exploit user network for propagating
user preferences. For datasets where the social information is discriminative,
TrustSVD and PACE may outperform JRL and CKE. And for datasets where
content data is informative, JRL and CKE may be superior.

Finally, the proposed model MSN outperforms the state-of-the-art baselines
with large margins. The advantage of the proposed over JRL and CKE demon-
strates the effectiveness of incorporating user networks for recommendations.
The information from multiple user networks can be exploited for better user
profiling and network local structure preservation. The superiority of MSN over
PACE and TrustSVD shows the benefit of extracting content information from
item side for better item representations learning, as the data of different modal-
ities associated with items can bridge similar items in the shared latent space.
However, it may be unfair to compare with those baselines since we are able
to integrate different data modalities for joint modelling user-item interactions,
even though this is one of the major contributions of this paper. For a fair com-
parison, we examine the effectiveness of the proposed model with each modality
(e.g. content, category and user network), when compared with the baselines.

4.5 Structure Study

In this subsection, we study different variants of the proposed model to inves-
tigate the effect of each modelling component (e.g. content, category and user
networks). The variants of our model are listed as follows:

– MSN-con: incorporates item content information and user-item interaction
data for modelling user-item representations and recommendation.

– MSN-cat: models user-item interactions and discovers item category itera-
tively, and then incorporates category representations for predicting the rat-
ing scores.

– MSN-net: integrates user-item interaction and user networks for regularizing
user representations and recommendation simultaneously.

We compare MSN-con with JRL, CKE and DeepCoCNN since all of them
explore item content information for the recommendation. MSN-cat is compared



Multi-source Multi-net Micro-video Recommendation 397

with NeuMF, as both of them only consider rating matrix for user-item repre-
sentations learning and recommendation, the difference is that MSN-cat dynam-
ically discovers item category with clustering technique and incorporate the hier-
archy of item- and category-level information for modelling user preference over
the item at different granularities. Finally, MSN-net is compared with TrustSVD
and PACE, because all of them take advantage of the user network for preserving
the local structures in the network when learning user representations.

Table 1. Precision, Recall, nDCG@10 of different comparable models

Models Precision@10 Recall@10 nDCG@10

DeepCoCNN (0.06964) (0.21963) (0.20145)

CKE (0.08656) (0.27311) (0.25021)

JRL (0.08999) (0.28397) (0.26079)

MSN-con (0.09076) (0.28724) (0.26327)

NeuMF (0.07791) (0.24517) (0.22526)

MSN-cat (0.0822) (0.25879) (0.23736)

PACE (0.08183) (0.25785) (0.23659)

TrustSVD (0.08654) (0.27174) (0.24948)

MSN-net (0.09008) (0.28384) (0.26095)

MSN (0.1034) (0.3257) (0.29904)

According to the comparison results presented in Table 1, we have the fol-
lowing observations. First, for models that leverage content information for
recommendations, MSN-con, JRL and CKE achieve better performance than
DeepCoCNN, this is because they exploit both textual and visual features for
recommendations, while DeepCoCNN only considers textual information. The
reason of performance variance among MSN-con, JRL and CKE is the way they
employ to process the content data. We adopt convolution and max pooling
mechanisms for processing texts and images, and they are proved to be able to
capture the most informative features for information retrieval tasks [27]. CKE
utilizes stacked de-noising auto-encoders for extracting textual and visual fea-
tures, and JRL employs word embedding and convolution techniques to process
texts and images. Even though the performance improvement of MSN-con is
not noticeable, the proposed model MSN is able to outperform JRL and CKE
significantly by incorporating user network and item category information. Fur-
thermore, by comparing MSN-cat with NeuMF, we can observe the benefit of
discovering latent item categories and incorporating them for modelling hier-
archical user preferences. MSN-cat and NeuMF are comparable since both of
them leverage user interaction data for learning user-item representations and
recommendation, except that MSN-cat draws category representations from the
centroids of clustered item representations and incorporates them to model user-
item interactions. The hierarchy of item- and the category-level information is
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Fig. 2. Recommendation performance as a function of the cluster centroids.

able to capture user interests at different levels of granularity and improve rec-
ommendation performance. Finally, the advantage of MSN-net over TrustSVD
and PACE demonstrate the effectiveness of incorporating multiple user networks
for propagating user preferences, since a single user network may contain con-
flicting evidence against the real factors underlying user-item interaction, while
information from multiple user networks can be complementary to each other for
better regularizing user representations. Comparing different variants of the pro-
posed models, we can find that MSN-cat is inferior to MSN-con and MSN-net,
this is because the only information available for MSN-cat is the rating matrix.
Therefore, MSN-cat still faces the problem of data sparseness.

4.6 Parameter Study

In this paper, the number of centroids needs to be pre-specified for clustering
items, thus we study the effect of the centroid number on the recommendation
performance in this subsection. Few item clusters can make the category rep-
resentations not discriminative enough to model hierarchical user preferences.
While many centroids can make the category representations less informative
for bridging items having similar characteristics, considering the special case
where each item is regarded as a cluster. We present in Fig. 2 the recommen-
dation performance across different metrics by varying the number of cluster
centroids. We can see that the number of pre-specified cluster centroids have
little impact on our recommendation model, as we are able to achieve similar
recommendation performance when we vary the centroids number amongst. This
is because with the different pre-specified number of centroids, we can cluster
the items into different level of hierarchies. Therefore, as long as the categorical
structure of the items data is preserved, the item categorical representations can
be informative and discriminative for distinguishing items with different charac-
teristics. The underlying reason that the discovered category representations can
boost accurate recommendation performance is two-fold. From the items’ point
of view, the discovered categorical information encourages items with similar
characteristics to have a unified category representation, and the representation
is able to bridge the semantic gap among items in the category. From the users’
perspective, by interacting users with both items and categories, we are able to
capture user preferences at different levels of granularity, and an item tends to
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be ranked higher in the recommendation list as long as the user preference on the
item is properly profiled either on the item level or on the category level. This
experiment demonstrates that it is flexible to specify the item category number
for achieving competitive recommendation accuracy.

5 Conclusion

By leveraging the multi-modality information sources in micro-videos and the
multi-type networks among users, we propose to incorporate the latent repre-
sentations of the multiple sources into a unified model to facilitate recommen-
dation, and employ multiple user networks for propagating user representations
in a shared latent space. The multiple information sources act as bridges to
interrelate items with similar content, while the user networks regularize users
with strong social ties to have similar preferences. In addition, we propose to
discover hidden categorical representations of micro-videos and interact them
with user representations for boosting recommendation. The hidden categorical
information can help to capture user preference at different levels of granularity.
The modelling of hidden category and the user-item representations learning
are iteratively performed in a unified model, and the recommendation losses are
back-propagated to update the parameters in a way that can best optimize the
recommendation performance. Finally, we validate the proposed model on a real
dataset and study different variants of the proposed model, which demonstrates
its advantage over the state-of-the-art baselines.
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Abstract. Text classification (TC) is an important task in natural lan-
guage processing. Recently neural network has been applied to text clas-
sification and achieves significant improvement in performance. Since
some documents are short and ambiguous, recent research enriches doc-
ument representation with concepts of words extracted from an exter-
nal knowledge base. However, this approach might incorporate task-
irrelevant concepts or coarse granularity concepts that could not dis-
criminate classes in a TC task. This might add noise to document repre-
sentation and degrade TC performance. To tackle this problem, we pro-
pose a task-oriented representation that captures word-class relevance as
task-relevant information. We integrate task-oriented representation in a
CNN classification model to perform TC. Experimental results on widely
used datasets show our approach outperforms comparison models.

Keywords: Natural language processing · Text classification ·
Neural network

1 Introduction

Text Classification (TC) is an important task in natural language processing
(NLP) and is widely applied to NLP tasks like information retrieval, web search,
and sentiment analysis [2,14,16]. Recently, due to the efficacy of deep learning,
neural network models like convolutional neural networks (CNN) and recur-
rent neural networks (RNN) are utilized to perform Text Classification [6]. An
important part in text classification is document representation [6]. Generally,
documents are represented by word embeddings and then document representa-
tion are fed to neural network models to perform classification. Some documents
are short, ambiguous and sparse, which makes text classification hard. To resolve
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Table 1. Example sentences of text classification. The correct class for each task is
shown in bold. The first two examples are question type classification task. Classes in
this task represent the type of answer to a question. e.g., cnumeric means the answer
to the question should be a numeric value.

Example Sentence to be classified Classes in a TC task

1 When did Hawaii become a state? cnumeric, cdescription

2 Who died 1 feet from where John F. Kennedy did? chuamn, clocation

3 IBM workers banned from using USB sticks cbusiness, ctechnology

(a) Irrelevant concept of a
irrelevant word (Example
1)

(b) Irrelevant concept of
a relevant word (Example
2)

(c) Coarse-granularity
concepts (Example 3)

Fig. 1. Relation between words, classes and concepts of Table 1. Concepts of words
extracted from Probase are shown as gray nodes. The white and green nodes represent
classes and words, respectively. Dash lines between concept nodes and word nodes
suggest they have ‘is-a’ relation. Red edges between word nodes and class nodes indicate
the word is relevant to the class, which is drawn based on intuition. Blue edges represent
the relevance between concepts and classes. (Color figure online)

this problem, Wang et al. [19] extract concepts of words from a knowledge base
(KB), which is Probase [21]. They construct document representation which con-
sists of word embeddings and concept embeddings (vectorial representation of
concepts). Nevertheless, this approach has two limitations.

(1) The first limitation is that incorporated concepts of words might be task-
irrelevant. For this limitation, there could be two cases:

– One case is that a word and the concept of this word both are irrelevant to
the task. Let us consider Example 1.

Example 1. The TC task is to classify the first sentence in Table 1 into two
classes: cnumeric and cdescription. w and c with subscripts are used to denote
words and classes respectively. This is a question type classification task. Intu-
itively, whawaii is irrelevant to both cnumeric and cdescription in the text classifica-
tion task. The concept of whawaii is “popular exotic location”, which is also irrel-
evant to both classes. As TC is performed based on classes in the task, whawaii
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can be considered as task-irrelevant. Incorporating the concept of whawaii might
add noise to the document representation.

– The other case is that a word itself is task-relevant while the concept of the
word is task-irrelevant. This can occur due to task-relevant concepts are not
present in a knowledge base. Let us consider Example 2.

Example 2. The TC task is to classify the second sentence in Table 1 into
chuman and clocation. This is also a question type classification task. We show
the concept of wwho in Fig. 1(b), which is “stopwords”. wwho itself is relevant
to chuman and it is a strong indicator of chuman. Yet “stopwords” is irrelevant
to both chuman and clocation. Incorporating irrelevant concepts might introduce
noise to document representation and lead to performance degradation.

(2) The second limitation is that even though concepts incorporated are rele-
vant, the granularity of these concepts might be too coarse to discriminate
classes in the confronting TC task. Let us consider Example 3.

Example 3. The TC task is to classify the third sentence in Table 1 into
cbusiness and ctechnology. The sentence is a news headline. The concept of wIBM

is “company”, which is relevant to both cbusiness and ctechnology. Thus, “com-
pany” might not discriminate these two classes. Incorporating this concept in
document representation might not provide useful information to the confronting
task.

If we could compute the relevance between words and classes, we could iden-
tify relevance between classes and documents that these words constituted. Since
text classification is performed based on classes in the TC task, word-class rel-
evance can be regarded as task-relevant information. Thus, we consider that it
is necessary to incorporate word-class relevance in word representation. If word-
class relevance between a word and each classes in the TC task are incorporated
in representation of the word, the granularity of this representation is the same
as classes. Thus the problem caused by incorporating coarse granularity can be
alleviated.

In this paper, we propose an approach to incorporate task-oriented repre-
sentation (TOR) that leverages task-relevant information in text classification.
Specifically, we encode word-class relevance as task-relevant information in TOR
and investigate methods to compute word-class relevance. Further, we study how
to incorporate TOR into a CNN classification model.

The contributions of our work are summarized as follows:

– We propose an approach to incorporate task-relevant information in task-
oriented representation to tackle the problem of including irrelevant concepts
in word representation. Our approach also alleviates the problem caused by
coarse-granularity concepts.

– Our proposed task-oriented representation is explicit and explainable while
widely used word embeddings are implicit and not interpretable.

– We evaluate our proposed approach on widely used text classification datasets
and our approach outperforms comparison approaches.
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2 Related Work

Conventionally, one-hot representation of a document is used to perform Text
Classification, where different term weighting schemes are designed to assign a
score to each word [20]. Nevertheless, word order is not taken into consideration
in those methods. Recently, due to the effectiveness of neural network, many
neural network models (e.g., Convolutional Neural Network) are widely applied
to perform Text Classification [6,9,10,19,23]. Some work seeks to design archi-
tecture of neural network model to better learn features from training data.
Conneau et al. [1] build a very deep Convolutional Neuragl Networks. Zhou
et al. [25] integrates bidirectional Long Short-Term Memory (LSTM) with Two-
dimensional max pooling. [8] averages word embeddings in the same windows as
input to the classification model. [17] introducing a 1-vs-res layer to tackle the
problem of open space classification.

Some research focuses on incorporating linguistic features in neural network
models. Johnson et al. [7] builds deep pyramid CNN on a word level. Wang
et al. [5] build recursive neural model regarding the discourse dependency tree
based on discourse structure. Li et al. [11] initialize CNN filters to encode seman-
tic features of n-gram.

Besides, some study focus on enriching document representation by incorpo-
rating lexical resources. Xu et al. [22] utilize datasets of other languages and dis-
till knowledge to the neural network model in a target language. Wang et al. [19]
combine word-concept and character-level features as input. However, concept
features from a general-purpose knowledge base might not be relevant to the
classification task confronting. Also, these concepts might be too coarse with
respect to the classification task. Therefore, in our work, we enrich input using
discriminative information, in the sense that it is relevant to the classification
task and free from granularity problem. In our work, we utilize the relevance
between words and classes to enrich input representation as task-relevant infor-
mation, which is captured by the proposed task-oriented representation of a
word. There exists research focusing on the computation of relevance between
words and classes [4]. However, these work adopts unsupervised approach, that
is the class in while the class labels in our task are known. The computation of
relevance between words and classes is supervised in our approach.

3 The Proposed Approach

The previous model incorporates concepts extracted from a KB to represent
documents [19]. However, noise might be added to document representation by
incorporating task-irrelevant concepts and coarse-granularity concepts, which
results in performance degradation. To alleviate these problems, we leverage
task-relevant information by encoding word-class relevance in the proposed task-
oriented representation (TOR) of words. We introduce two methods to compute
word-class relevance, which are class probability and word probability. Further,
we present two possible methods to integrate TOR in a CNN classification model,
which are concatenation and using subnetwork.
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For notation, we denote words as w. Let C = {c1, c2, ...c|C|} be a collection
of classes in a particular text classification task and |C| is the total number
of classes. −→vw and

−→
vrw denote word embedding and task-oriented representation

respectively.

3.1 Task-Oriented Representation

If we can obtain the word-class relevance between all words constituting a doc-
ument and each classes in the TC task, we can identify the most relevant class
of the document. To incorporate task-relevant information, we propose task-
oriented representation (TOR) to capture word-class relevance. TOR is a vec-
torial representation of w denoted by

−→
vr . Each dimension of TOR represents

the relevance between w and a class in the TC task. In this way, we encode
word-class relevance between w with each class in a TC task. Formally, TOR of
a word w is shown as follows:

−→
vrw = [r(w, c1), r(w, c2), ..., r(w, c|C|)]

where r(w, ci) is the relevance between w and ci in the range of [0, 1].

3.2 Word-Class Relevance Computation

In text classification, word-class relevance reflects how strongly connected a word
(w) and a class (ci) are. If w and ci have a high relevance, then: (1) the occurrence
of w in a document indicates a high probability that the document being labeled
as ci; (2) conversely, given a ci document, w appears in this document with a
high probability. These two ideas can be mathematically modeled as p(ci|w)
and p(w|ci), which we name as class probability (CP) and word probability
(WP), respectively. In what follows, we introduce how to estimate CP and WP
in details.

Class Probability. The problem now is how to estimate p(ci|w). Intuitively, if
w is frequently observed in documents of ci, p(ci|w) should be high. We use |N |
to denote word occurrence: |Nw,ci | is the occurrence of w in ci and |Nw| is the
total occurrence of w in all classes. Then, p(ci|w) can be estimated as:

p̂(ci|w) =
|Nw,ci |
|Nw|

The relevance between w and ci computed using class probability is:

rCP (w, ci) = p̂(ci|w)

where p̂(ci|w) is the estimate of p(ci|w), which is used as the value of relevance
between w and ci. A drawback in CP is that the error in estimation of low-
frequency word is relatively high. Let us consider Example 4.
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Example 4. Suppose we are to classify documents into classes cpolitic or
cbusiness. The occurrence of a word wcongress is 25 in cpolitic while the occur-
rence is 0 in cbusiness. Another word wcell happens to appear once in cbusiness.
Yet, p̂(c|w) is the same for those two words, with p̂(cpolitic|w) = 1 and
p̂(cbusiness|w) = 0. The error of estimation is lower in p̂(c|wcongress) than that
in p̂(c|cell). If rCP (w, ci) of words with high and low frequency are given as the
same, the classification model could not differentiate between the TOR of these
words. The task-relevant information encoded in TOR could not be utilized to
find out the more informative words. This leads to performance degradation
(Table 2).

Table 2. Example of p(ci|w) estimate

w p̂(cpolitic|w) p̂(cbusiness|w)

wcongress 1 0

wcell 1 0

In a dataset, low-frequency words might constitute a large proportion of
vocabulary. Therefore, we propose a strategy to tackle the problem caused by
error in estimating CP of low-frequency word.

K-Most Frequent. We propose a strategy named K-Most Frequent (KMF) to
tackle the problem of using CP to compute word-class relevance of low-frequency
words. Since the error of p̂(ci|w) of low-frequency words are high, we only com-
pute the word-class relevance of words with high frequency. Specifically, we use
CP to initialize the top k most frequent words in the training set while randomly
initialize TOR of other words. Thus, with KMF strategy the relevance between
a word and each classes (rKMF (w, ci)) is given as:

rKMF (w, ci) =

{
p̂(ci|w) freq rank(w) < k

random freq rank(w) > k

where freq rank(w) denotes the frequency rank of w with the most frequent
word rank first.

Word Probability. WP differs from CP in that word frequency is considered.
Let us revisit Example 4 for illustration. As wcongress occurs more often in cpolitic
than wcell, p(wcongress|cpolitic) is greater than p(wcell|cpolitic). This matches with
our intuition that r(wcongress, cpolitic) should be higher than r(wcell, cpolitic).
Formally, we use Nci to denote the total number of word occurrences in ci.
Thus, the estimate of p(w|ci) follows:

p̂(w|ci) =
|Nw,ci |
|Nci |

Relevance between w and ci computed using word probability is:

rWP (w, ci) = p̂(w|ci)
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Fig. 2. Combining task-oriented representation and Word Embedding with two Sub-
networks in triple classification

3.3 Integration of Task-Oriented Representation in Classification
Model

In this section, we investigate methods to incorporate task-oriented representa-
tions to perform classification. Specifically, we introduce two possible methods
which are concatenation and subnetwork (using two subnetworks to extract fea-
tures from task-oriented representations and word embeddings simultaneously).

Concatenation. Intuitively, we can leverage task-oriented representations by con-
catenating task-oriented representations and word embeddings as input to a clas-
sification model. We employ the state-of-the-art text classification model (CNN),
with filters that can capture n-gram features [9]. The input of the CNN model
are −→v ⊕ −→

vr , where ⊕ denotes concatenation.

Subnetwork. The structure of vector space for word embedding and task-oriented
representation might be different. While general semantic are encoded in word
embedding space [15], we consider task-oriented information are encoded in vec-
tor space of TOR. Thus, inspired by Wang et al. [19], we apply two CNNs to
encode features of word embeddings and TOR respectively. We combine features
extracted from the two CNNs by concatenating intermediate hidden layers. The
overall model is shown in Fig. 2. Specifically, the figure illustrates the classifica-
tion model tackling a triple classification problem, where the dimension of TOR
is three. The model consists of two components: the upper sub-network with
word embeddings as input, and the lower sub-network with task-oriented repre-
sentation as input. The two components are the same except for the input and
each component consists of four layers: one input layer, one convolution layer,
one pooling layer and one hidden layer. After concatenating the hidden layers of
these two components, we apply an output layer on the concatenated vector to
convert the output numbers into the probability of each class.
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4 Experiments

4.1 Experiment Setup

We conduct experiments on commonly used datasets for text classification:
TREC, AG News, and SST1 [12,18,24]. TREC is a question type classifica-
tion dataset, which contains six different kinds of questions, such as questions
about a person, a location, numeric information and description of something1.
TREC is selected because many words in training documents are task-irrelevant
and indiscriminative for the TC task. Our approach encodes task-relevant infor-
mation in task-oriented representation. AG News is a dataset used in [19], which
consists of news headline from four different classes. We choose AG News in
order to evaluate our approach on a large dataset. SST1 is a fine-grained sen-
timent classification dataset consists of five classes, which are {very positive,
positive, neural, negative, very negative}2. We evaluate our approach on SST1,
which is different from the former two datasets in that: data of SST1 are clas-
sified by the degree of positiveness or negativeness, which can be considered as
metric labeling problem [13]. We name CNN model that integrates TOR in TC
as task-oriented CNN (TCNN) model. In Table 4, we show hyper parameters
of our TCNN, tuned on dev set. We apply accuracy of prediction as evaluation
metric. We use the 300-dimension word2vec pre-trained on Google News.3 In the
training process, Adagrad is used to optimize the loss function [3]. Experiments
are conducted on an NVIDIA GTX1080Ti GPU.

Table 3. Dataset statistic

Datasets #class (|C|) Training/Test set Vocabulary size (|V|)
TREC 6 5,452/500 9,170

AG News 4 120,000/7,600 32,309

SST1 5 11,855/2,210 16,112

Table 4. Hyper parameters of TCNN

Parameter Values

Filter sizes upper and lower: [2, 3, 4, 5]

Dropout rate 0.5

Hidden layers dimension |C| (upper and lower)

Embedding dimension 300

Learning rate α = 0.01

Batch size 50

1 http://cogcomp.cs.illinois.edu/Data/QA/QC/.
2 https://nlp.stanford.edu/sentiment/.
3 https://code.google.com/archive/p/word2vec/.

http://cogcomp.cs.illinois.edu/Data/QA/QC/
https://nlp.stanford.edu/sentiment/
https://code.google.com/archive/p/word2vec/


Incorporating Task-Oriented Representation in Text Classification 409

Table 5. Performance comparison of accuracy on TREC, AG and SST1

Model TREC AG SST1

CNN-non-static 93.6 - 48.0

WCCNN [19] 91.2 85.6 -

KPCNN [19] 93.5 88.4 -

TCNN-CP-KMF (Subnetwork) 93.7 88.6 48.1

TCNN-WP (Subnetwork) 94.0 89.0 48.7

TCNN-CP-KMF (Concatenate) 93.3 87.3 48.0

TCNN-WP (Concatenate) 92.3 87.4 49.5

We compare our approach with several state-of-the-art approaches. (1)
CNN-non-static This is proposed by Kim [9]. A CNN with a non-static channel
is used to perform text classification. (2) WCCNN This is proposed by Wang
et al. [19], where words and concepts obtained from Probase are used to enrich
input representation. A CNN model with the static channel is used, following
by a pooling layer to extract higher-level features. (3) KPCNN The methods
combine word-level features used in WCCNN and character-level features to per-
form text classification. These two level features are extracted using two CNN
separately and combined using a hidden layer. This method is also proposed by
Wang et al. [19].

Fig. 3. Learning curves of rand(|C|d), WP and CP-KMF on AG test set

Table 5 demonstrates results of our approach and comparison approaches
on all datasets. CP-KMF stands for class probability with KMF strategy and
WP is short for word probability. The parameter k is separately tuned on each
dataset since the number of class-indicators in different datasets differs. We can
observe that even without the external knowledge base, our approaches still
outperforms KPCNN proposed by Wang et al. [19] which incorporates concepts
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Table 6. Effectiveness of Task-oriented Representation (Class probability and Word
probability)

Model TREC AG SST1

Number of classes (|C|) 6 4 5

k 0.3|V | |V | 0.4|V |
RAND (|C|d) 86.1 85.5 35.6

RAND (100d) 88.2 85.3 37.9

RAND (200d) 89.7 84.7 35.7

RAND (300d) 88.9 84.2 37.1

CP (|C|d) 78.7 87.6 35.2

CP-KMF (|C|d) 90.3 88.5 40.3

WP (|C|d) 90.2 86.3 44.4

from an external KB. The reason is that our proposed TOR incorporate task-
relevant information rather than leveraging concepts of words which might be
task-irrelevant or too coarse to be discriminative.

Fig. 4. Learning curves of rand(|C|d), WP and CP-KMF on SST1 test set

Table 5 presents that word probability achieves the best results on all
datasets. We consider it is due to WP leverages word frequency information,
which is important in measuring word-class relevance. While CP-KMF also lever-
ages word frequency information, it might still omit word frequency information
of words which are randomly initialized. As shown in Table 5, concatenation per-
forms inferior to using subnetworks on TREC and AG while outperforms using
subnetworks on SST1. Additionally, using subnetwork significantly outperforms
concatenation on AG (about 2%). The reason is there are more parameters
in using subnetwork than concatenation and AG is larger than the other two
datasets.
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Fig. 5. Learning curves of rand(|C|d), WP and CP-KMF on TREC test set

Effect of k in Class Probability. We investigate the effect of parameter k in
CP-KMF on TREC and AG, as their size largely differ. We use |V | to denote
the vocabulary size of a dataset. As shown in Fig. 6, we set k for each dataset
to a percentage of the vocabulary size (|V |) of the corresponding dataset. For
example, with k set to 0.1|V | and |V | of datasets shown in Fig. 3, k for TREC
is 917 and k for AG is 3230.

Fig. 6. Learning curves of different k on TREC and AG dataset

Figure 6 shows that performance of TREC peaks for k = 0.3|V | and decreases
afterwards. This suggests that the error in estimating class probability of low-
frequency words hurt performance. There is no performance decrease as k
increases on AG. We consider that the large size of AG makes it robust to
noise introduced by error in estimating CP of low-frequency words.

Effect of Task-oriented Representation. To evaluate the efficacy of our proposed
task-oriented representation, we compare TOR with a random baseline (Random
vectors with the same dimension of TOR) as shown in Table 6. We use RAND
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to indicate random vectors and show the dimension in following parentheses.
Specifically, we only use the lower sub-network in Fig. 2, because we want to
evaluate the effect of TOR. For a fair comparison, we set the dimension of the
random vector the same as TOR such that the parameter in these two settings
are the same, which means the capacity of two classification models is also the
same. The input word embeddings of a classification model are often set between
50 and 500, therefore, we also perform experiments with a 100-dimension, 200-
dimension and 300-dimension random vectors for comparison.

Table 7. Task-oriented representation of words ‘but’, ‘worst’ and ‘great’ before and
after training

Dimension 1 2 3 4 5
Class very positive positive neutral negative very negative

vrbut
Before training 0.2496 0.1771 0.1505 0.1723 0.2505
After training 0.4532 0.1532 -0.0577 0.2111 0.4045

vrworst

Before training 0.1270 0.1884 0.1953 0.2441 0.2451
After training -0.0946 0.0650 0.3512 0.4565 0.4714

vrgreat
Before training 0.2236 0.2156 0.199 0.1835 0.1782
After training 0.2980 0.2454 0.1994 0.1311 0.0701

As shown in Table 6, our approaches (CP-KMF and WP) outperform all
random vectors (with dimension of |C|, 100, 200 and 300). This is noteworthy
because the dimension of our input vector (

−→
vr) is less than 10. Table 6 shows

the specific dimension of TOR in the second line. However, the dimension of
commonly used input vector is often about hundreds. For random input vec-
tor, limiting the dimension down to a small number might (|C|) significantly
degrade performance. This can be observed by comparing RAND(|C|d) with
RAND(100d, 200d and 300d). Despite the relatively low dimension of our pro-
posed task-oriented representation, TOR achieves a better result than the ran-
dom vector with higher dimension. The performance improvement validates our
assumption that task-relevant information is helpful to text classification.

We can see that CP-KMF outperforms CP without KMF. We think that the
initial value of TOR computed with CP overfits the training dataset, as the CP is
computed based on the statistic of the training dataset. It can be observed that
CP without KMF performs badly on TREC. We hypothesize this is because the
number of indicators of TREC is relatively small and a large proportion of words
in vocabulary are noise. Thus using the class probability to compute word-class
relevance degrades performance. CP without KMF perform better on AG than
the other two dataset, this is due to the fact that AG is much larger than the
other two datasets and classification model is able to generalize despite noise in
initial value.

We show the learning curves of |C|-dimension random vector, TOR with
WP and CP-KMF on TREC, AG and SST1 in Figs. 5, 3 and 4 respectively.
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Generally, CP-KMF and WP converge faster than rand(|C|). CP-KMF and WP
achieve higher accuracy on first a few epochs than rand(|C|) except for WP
on SST1. This encompasses our hypothesis that the task-relevant information
encoded in TOR provides useful information to classification model.

5 Discussion

In this section, we compare task-oriented representation of words wbut, wworst

and wgreat before and after training on SST1 dataset. The TOR of these words
are shown in Table 7. Since WP generally performs better than CP, the presented
TOR is computed using WP. Table 7 shows the dimension of TOR and the
corresponding classes in the first two lines. Every two rows in the chart represent
TOR before and after training of a word. For the TOR after training, we color
increased value in red and decreased value in green.

For TOR of wworst, we can observe values ascend from the first to the last
dimension. This suggests wworst indicates negative sentiment, which validates
that TOR incorporates task-relevant information. After training, the last three
dimension of

−−−→
vrworst increase while the first two decrease, which suggests classi-

fication model effectively captures information of training dataset. The change
of value in TOR of the word wgreat contrasts to wworst because it is a posi-
tive sentiment word, which further validates that TOR captures task-relevant
information.

wbut is not a sentiment word yet sentiment expressed before and after ‘but’
is often different.

−−→
vrbut shows a significant decrease in the third dimension and

an increase in the first and last dimension after training. We consider this is
because the occurrence of ‘but’ often indicates sentiment shift and emphasizes
the sentiment after ‘but’. (e.g., ‘funny but overall limp’) Thus, ‘but’ is less likely
to appears in neutral documents and the value of the third dimension decrease
to −0.0577. As TOR is explicit and explainable, we could shed light on the
behavior of the classification model.

6 Conclusion

In this paper, we propose an approach that incorporates task-oriented repre-
sentation to perform text classification. Task-oriented representation of a word
captures word-class relevance in a text classification. We present two different
methods (class probability and word probability) to compute word-class rele-
vance and further investigate two methods (concatenation and subnetwork) to
integrate TOR in classification model.
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Abstract. Music playlist recommendation is an important component
in modern music streaming services, which is used for improving user
experience by regularly pushing personalized music playlists based on
users’ preferences. In this paper, we propose a novel music playlist rec-
ommendation problem, namely Personalized Music Playlist Recommen-
dation (PMPR), which aims to provide a suitable playlist for a user by
taking into account her long/short-term preferences and music contex-
tual data. We propose a data-driven framework, which is comprised of
two phases: user/music feature extraction and music playlist recommen-
dation. In the first phase, we adopt a matrix factorization technique to
obtain long-term features of users and songs, and utilize the Paragraph
Vector (PV) approach, an advanced natural language processing tech-
nique, to capture music context features, which are the basis of the sub-
sequent music playlist recommendation. In the second phase, we design
two Attention-based Long Short-Term Memory (AB-LSTM) models, i.e.,
typical AB-LSTM model and Improved AB-LSTM (IAB-LSTM) model,
to achieve the suitable personalized playlist recommendation. Finally, we
conduct extensive experiments using a real-world dataset, verifying the
practicability of our proposed methods.

1 Introduction

With the advent of lossy compression techniques (e.g., MP3 format), the field
of music distribution has changed from being medium based to being digitized,
which makes the music much easier to be downloaded or received by users on
their personal computers and mobile devices via Internet. However, with massive
amount of music available from thousands of web sites or online services, avoiding
overwhelming choices and finding the “right” music have become a challenge for
users. This is calling for effective music playlist recommendation techniques that
can provide suitable music playlists for users.

Most existing studies focus on user-preference-based music playlist recom-
mendation, which infer users’ preferences from past music-listening patterns or
c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11447, pp. 416–432, 2019.
https://doi.org/10.1007/978-3-030-18579-4_25
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explicit feedbacks. For example, [7] characterizes both items and users by fac-
tor vectors inferred from item-rating patterns. However, they fail to effectively
incorporate users’ instant preferences and historical music-listening records. The
overall music-listening behavior of a user may be determined by her long-term
interest. But at any given time, a user is also affected by her instant preferences
due to transient events, such as issuance of new songs in the current time.

In the bulk of playlist recommendation research, music content, which is pri-
marily extracted from the audio signal, plays a key role in generating and rec-
ommending songs for users. For instance, Cano et al. [3] automatically extract
descriptions related to instrumentation, rhythm and harmony from music audio
signals and design a music browsing and recommendation system based on the
high-level music audio data similarity. However, content-based music recom-
mendation has not been applied very successfully in large range systems so
far [6]. Music context data, referring to all music-relevant information that is
not directly extractable from the audio signal itself, is another important fac-
tor for improving the quality of music recommendation. Context-based music
recommendation approaches have higher user acceptance and even outperform
content-based techniques for music retrieval [6,17]. For example, Rendle et al.
[14] explicitly model textual representations of musical knowledge (e.g., the pair-
wise interactions among users, items and tags) in music recommendation sys-
tem, which performs well in runtime and achieves good recommendation quality.
Cheng et al. [4] facilitate effective social music recommendation by considering
users’ location-related contexts as well as the global music popularity trends,
which overcomes the cold-start and sparsity problems. Nevertheless, the work
mentioned above ignores a crucial source of context-based data, comments of
songs, which influence how a user (e.g., a listener) perceives music.

In this paper we propose a two-phase data-driven framework, namely Data-
driven Music Playlist Recommendation (DMPR), which effectively combines
users’ long/short-term preferences and music contextual data. In the first phase,
we obtain users’ long-term preference features based on their favorite playlists,
and songs’ features (consisting of latent feature, semantic feature and category
feature) based on their music context (i.e., lyrics, comments and belonging pub-
lic playlists). In particular, we generate a rating matrix based on users’ favorite
playlists, and utilize a Matrix Factorization (MF) method to obtain users’ long-
term preference features for songs. The songs’ latent features can be obtained by
MF on the rating matrix as well. With the help of the Paragraph Vector (PV)
approach [8], we can extract each song’s semantic feature based on its lyrics and
comments, and compute each song’s category feature from its belonging public
playlists. The second phase aims to combine a user’s long/short-term preference
features based on two Attention-based Long Short-Term Memory (AB-LSTM)
models, i.e., typical AB-LSTM model and Improved AB-LSTM (IAB-LSTM)
model, and recommend her a suitable playlist, which contains top-k related
songs that have the highest probability of being liked.
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The contributions of this paper can be summarized as follows:

(1) We provide a novel framework of Data-driven Music Playlist Recommenda-
tion (DMPR) based on users’ long/short-term preferences and music con-
textual data, which aims to find a most suitable playlist for a user.

(2) The Matrix Factorization technique is adopted to effectively extract users’
long-term preference features and songs’ latent features.

(3) We introduce the Paragraph Vector (PV) approach, an advanced natural
language processing technique, to extract the semantic features and category
features of songs based on music context.

(4) Two Attention-based Long Short-Term Memory (AB-LSTM) models, are
designed to balance the long/short-term preferences of a user in order to
find the most suitable music playlist for her.

(5) We conduct extensive experiments on a real-world dataset, which empiri-
cally demonstrate the advantages of our proposed music playlist recommen-
dation models compared to the baseline.

The remainder of this paper is organized as follows. Section 2 introduces the
preliminary concepts and gives an overview of the proposed recommendation
framework. Then we extract major features used in our work in Sect. 3. Two
kinds of recommendation algorithms are presented in Sect. 4, followed by the
experimental results presented in Sect. 5. Section 6 surveys the related works
based on existing researches on music recommendation. Finally we conclude this
paper in Sect. 7.

2 Problem Statement

In this section, we introduce some preliminary concepts and give an overview of
the proposed recommendation framework. Table 1 summarizes the major nota-
tions used in the rest of the paper.

2.1 Preliminary Concept

Definition 1 (Song). A song, denoted by s =< l, c >, consists of its lyrics s.l
and comments s.c. In addition, we use S to represent a set of songs.

Definition 2 (User). A user, denoted by u =< f, h >, consists of her favorite
playlist u.f and historical playlist records u.h. In particular, the favorite playlist
of user u, denoted by u.f = (s1, s2, . . . , sn), is a sequence of songs which have
been marked as “like” by user u, and the playlist records history of user u, denoted
by u.h = (s1, s2, . . . , sm), is a finite sequence of songs sorted by time when u
heard the songs recently. We use U to represent a set of users.

Definition 3 (Public Playlist). A public playlist, denoted by pl = (s1, s2,
. . . , sn), is a finite sequence of songs, which is created by the active users in the
community.
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Table 1. Summary of notations

Notation Definition

s A song

s.l The lyrics of song s

s.c The comments of song s

S A song set

u A user

u.f The favorite playlist of user u

u.h The historical playlist records of user u

U A user set

ru,s Rating between user u and song s

pl A public playlist

pl.v Vector representation of the public playlist pl

eU Latent preference feature matrix of user set U

eS Latent feature matrix of song set S

s.v Distributed representation of song s

s.v(l) Lyric vector representation of song s

s.v(c) Comment vector representation of song s

s.v(ca) Category vector representation of song s

pu Probability vector of user u

Note that the public playlist is different from albums, and everyone in the
community can visit it without limits. For example, a HipHop fan can create
a public playlist named “The Best HipHop 100”, which consists of 100 HipHop
songs, and each user can access to this public playlist.

Problem Statement. Given a set of users, a set of songs and public playlists,
our Personalized Music Playlist Recommendation (PMPR) problem aims to pro-
vide each user an ideal playlist, which contains the top-k related songs that have
the highest probability of being liked.

2.2 Framework Overview

The proposed framework shown in Fig. 1 consists of two major phases: (1) feature
extraction; (2) music playlist recommendation.

Feature Extraction. This phase models long-term features of both users and
songs. The features considered in our proposed Data-driven Music Playlist Rec-
ommendation (DMPR) framework can be divided into two major parts: (1)
user preference feature, which describes a user’s long-term preference for music;
(2) music features, which describe the music context information.
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Fig. 1. Framework overview

User preference feature represents a user’s long-term preference for music,
which can be obtained by Matrix Factorization (MF) based on a user-song rating
matrix, which is observed from users’ favorite playlists. MF maps both users and
songs into a joint latent space, thus the user-song rating matrix is modeled as
inner products of a user feature matrix and a song feature matrix. The user
feature matrix and the song feature matrix contain latent features in this latent
space, where a user’s latent feature is regarded as her preference for music.

Music features comprehensively describe a song’s latent feature, as well as
its lyrics, comments and category information. Specifically, the music features
extracted in our work consist of three parts: latent feature, semantic feature of
both lyrics and comments, and category feature. Latent features of songs, which
implies the ratings between users and songs, can be captured from users’ favorite
playlists via MF. We use a Paragraph Vector (PV) approach to obtain semantic
feature from each song’s lyrics and comments and design a Mean Value (MV)
method to extract each song’s category feature based on the public playlists,
which usually contain a sequence of similar songs.

Music Playlist Recommendation. In this phase, we use two Attention-based
Long Short-Term Memory (AB-LSTM) models to recommend a user the top-
k related songs that have the highest probability of being liked based on her
long/short-term preferences and songs’ music features. The user preference fea-
ture extracted in the first phase represents a user’s long-term preference for
music, and the current songs’ music features represent her short-term preference
for music. Based on a user’s long/short-term preferences for music, we propose
two AB-LSTM model, i.e., typical AB-LSTM model and Improved AB-LSTM
(IAB-LSTM) model, to recommend a suitable playlist to her.

3 Feature Extraction

In this section, we extract the main features that will be used in our work.
The features can be mainly divided into two parts: (1) user preference feature,
which describes a user’s long-term preference for music; (2) music features, which
describe the music context information.
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3.1 User Preference Feature Extraction

In this section, we model users’ long-term preference feature by Matrix Factor-
ization (MF). MF performs well in learning latent features of users and songs
from the observed ratings in the user-song rating matrix. Therefore we utilize the
MF technique to model users’ latent preference feature based on the user-song
rating matrix, which can be obtained from users’ favorite playlists, in order to
describe the users’ long-term preferences for songs.

We first generate a user-song rating matrix, R ∈ R
N∗M , which consists of N

users and M songs based on users’ favorite playlists. Each entry ru,s in matrix R
denotes user u’s rating on song s. For instance, if song s exists in user u’s favorite
playlists, then we have an indication that user u likes song s (i.e., ru,s = 1).
Otherwise, we set ru,s = 0. We use two latent feature matrices to represent
users and songs respectively, namely user feature matrix (eU ∈ R

N∗d) and song
feature matrix (eS ∈ R

M∗d), which explain the ratings between users and songs.
MF maps ratings between users and songs into a latent space, such that users’
preference for songs is modeled as inner product between eU and eS in that
latent space. The mapping of users’ latent preference feature matrix eU and
songs’ latent feature matrix eS , is achieved by approximating the rating matrix
by solving the following optimization problem:

min
eU ,eS

∑

(u,s)∈K

(ru,s − eUu eSs
T
)2 + λ(||eUu ||2 + ||eSs ||2), (1)

where K is the set of <user, song> pairs observed from users’ favorite playlists,
ru,s is the rating between user u and song s, eUu denotes the latent preference
feature of user u, eSs denotes the latent feature of song s and λ is the regulariza-
tion coefficient. The regularization coefficient λ is used to avoid overfitting. We
apply gradient descent algorithm to solve the optimization problem in Eq. 1 and
obtain the users’ latent preference feature matrix eU and songs’ latent feature
matrix eS .

3.2 Music Feature Extraction

Music features comprehensively describe each song’s latent feature, semantics
and category. As shown in Fig. 2, the music features extracted in our work consist
of three parts: (1) latent feature; (2) semantic feature of lyrics and comments;
(3) category feature.

Latent Feature Extraction. Latent feature of song s, denoted as eSs , describes
not only its musical identity but also many significant qualities that are relevant
to understanding users’ musical preferences. With the user-song rating matrix
generated from users’ favorite playlists, we can obtain each song’s latent feature
based on MF, following the same process as of user preference feature.
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Fig. 2. Music feature extraction

Semantic Feature Extraction. In this part, we capture the songs’ semantic
feature of lyrics and comments to describe their music context. Lyrics is an
important aspect of musical semantics since they usually imply the information
about the artist/performer, e.g., cultural background, political orientation, and
style of music [6]. Comments in the community are user-generated content, which
have an increasingly impact on a user’s preference.

We utilize the Paragraph Vector (PV) [8] technique, which is an unsupervised
algorithm that learns continuous distributed vector representations for texts with
any length, to obtain semantic feature of lyrics and comments. PV builds a word
matrix W , where every word is mapped to a unique vector represented by a
column, and builds a paragraph matrix D, where every paragraph is mapped to
a unique vector represented by a column. For instance, a song’s comments are
considered as a sequence of words in a paragraph, denoted as (w1, w2, . . . , wT ).
This comment paragraph is mapped into a unique vector represented by a column
in matrix D and every word is mapped into a unique vector represented by a
column in matrix W . In PV, the word vectors are asked to contribute to a
prediction task about the next word, and the paragraph vector of this comment
paragraph should also contribute to the prediction task of the next word when
the contexts (sampled from the paragraph) are given. Thus, the goal of PV is to
maximize the average log probability as follows:

1

T

T−k∑

t=k

log p(wt|wt−k, . . . , wt+k), (2)

where T is the length of the current paragraph, k controls the size of context
window, and p(wt|wt−k, . . . , wt+k) is the probability that the predicted word is
word wt. The prediction task for the predicted word can be done via a multi-class
classifier like softmax, which can be computed as follows:

p(wt|wt−k, . . . , wt+k) =
exp(ywt)∑
i exp(yi)

, (3)

where exp is the exponential function, y is a probability vector, and yi is the
un-normalized log-probability for word i to be the predicted word. y can be
computed in Eq. 4.

y = b + Uh(wt−k, . . . , wt+k; W ; D), (4)
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where U and b are the softmax parameters, h is constructed by a concatenation
of the word vectors of (wt−k, . . . , wt+k) and the paragraph vector extracted from
word matrix W and paragraph matrix D.

After training, we get word matrix W , softmax weights U and b, and para-
graph matrix D on comments and lyrics. Then we add new lyrics paragraphs and
comment paragraphs as columns in D and use gradient descendent on D while
holding W , U , b fixed. Finally, we obtain the lyric vector representation s.v(l)
and comment vector representation s.v(c) of song s from paragraph matrix D.

Category Feature Extraction. As mentioned before, a public playlist consists
of a sequence of similar songs, which can be regarded as the same category.
Therefore, we obtain the songs’ category information based on public playlists.

With the lyrics vector representation s.v(l) and comment vector representa-
tion s.v(c) for each song s contained in the public playlist pl, the vector repre-
sentation of pl, denoted by pl.v, can be formulated as follows:

pl.v =
1

n

n∑

i=1

g(si.v(l), si.v(c)), (5)

where n is the amount of songs in the public playlist pl, g is constructed by a
concatenation of si.v(l) and si.v(c).

It is worth noting that a song may be contained in multiple public playlists,
such that we calculate the song’s category information by combining all its
belonging public playlists’ vectors as follows:

s.v(ca) =

∑
pl∈P(s) pl.v

|P(s)| , (6)

where s.v(ca) is song s’s category vector representation, P(s) is a set of pub-
lic playlists that contain song s and |P(s)| is the size of P(s). In addition, we
concatenate semantic feature of lyrics s.v(l) and comments s.v(c), and category
feature s.v(ca) as the distributed representation of song s, denoted by s.v ∈ R

k.
Given a song s, we can describe its music features by a combination of the

latent feature eSs , and the distributed representation s.v.

4 Music Playlist Recommendation

In this section, we introduce our Attention-based Long Short-Term Memory
(AB-LSTM) and Improved Attention-based Long Short-Term Memory (IAB-
LSTM), which generate personalized playlists based on users’ long/short prefer-
ences for songs and music context features.

LSTM is a variant of RNN, which is effective and scalable for sequential pre-
diction problems [16]. Considering the time-ordered playlist records as sequen-
tial data, we adopt the Long Short-Term Memory (LSTM) to generate a suit-
able playlist that fits a user’s musical interests. Recently, attention-based neural
networks have been successfully used in many tasks like machine translation.
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For example, [1] calculates weight attention score for each word in original sen-
tences during the translation of the word. In our model, the attention mecha-
nism can be used to calculate the weight attention scores for users’ long/short-
term preferences, which helps in recommendation performance. As a result, we
use attention-based LSTM model to recommend suitable playlists for users. In
particular, we design two models with different attention mechanisms. Firstly
we adopt a typical Attention-Based Long Short-Term Memory (AB-LSTM)
model to recommend playlists. Then we make some modification based on
AB-LSTM, namely Improved Attention-Based Long Short-Term Memory (IAB-
LSTM) model, to get better performance in recommendation.

4.1 AB-LSTM-Based Music Playlist Recommendation

In this section, we apply AB-LSTM model to recommend suitable songs for an
individual user.

The architecture of AB-LSTM model is shown in Fig. 3, which contains three
layers: input layer, hidden layer and output layer. The input layer contains the
latent preference feature matrix of the user set U (eU ∈ R

N∗d, N is the quantity
of users in U), and user u’s historical playlist records u.h = (s1, . . . , st, . . . , sm).
At each time step t, we concatenate the latent feature of song st, denoted by
eSst ∈ R

d, and the distributed representation of song st, denoted by st.v ∈ R
k,

as the music feature of song st, and input the music feature of song st and user
preference feature matrix eU to the hidden layer respectively.

Fig. 3. Diagram of attention-based long short-term memory

The hidden layer, consisting of LSTM cells, is the key component of the
AB-LSTM model, in which the hidden state can be computed as:

ht = LSTM(ht−1, xt), (7)

where ht is the hidden state at time step t in the hidden layer, and xt is a
concatenation of the latent feature of song st (eSst), song st’s distributed repre-
sentation (st.v) and the context vector of user u at time t cut . The context vector
cut is calculated in the attention part based on the user latent preference feature
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and the hidden state in the previous time step, which can be considered as an
extra input to help AB-LSTM to fully get long-term preference of the user. cut
is calculated in Eq. 8.

cut =
U∑

v

au
v,te

U
v , (8)

where au
v,t is the attention weight of user u on user v at time step t, eUv represents

the latent preference feature of user v. The attention weight au
v,t is computed as

follows:
au
v,t =

exp(σ(ht−1, e
U
v ))

∑U
v′ exp(σ(ht−1, eUv′))

, (9)

where σ is a feed-forward neural network to produce a real-valued score. The
attention weight au

v,t determines which user’s latent preference feature should be
selected to generate user u’s probability vector of predicted songs.

The probability vector of M predicted songs for user u at time step t, denoted
as put ∈ R

M , can be calculated by a single layer neural network activated by
softmax in the output layer. The output of AB-LSTM model, put , can be com-
puted as:

pu
t = softmax(g(ht)) = softmax(Wht + b), (10)

where W and b are parameters of single layer neural network g, softmax function
is used to squash the probability vector into a vector where each entry is in the
range (0, 1), and all the entries add up to 1. In this model, we usually use pum
at the last time step m as the probability vector of the predicted songs for user
u, denoted by pu.

Finally, we generate the top-k related songs that have the highest probability
of being liked by the user. As mentioned before, user u’s probability vector of the
predicted songs, denoted by pu, is a M -length vector, where M is the amount of
predicted songs. The value of puj corresponds to the predicted probability that
user u likes the j-th predicted song. Given a specified playlist length k, we select
the top-k songs with the k greatest probability values from user u’s probability
vector (pu) as the recommendation result.

4.2 IAB-LSTM-Based Music Playlist Recommendation

We further propose a novel model, namely Improved Attention-based Long
Short-Term Memory (IAB-LSTM), with a new designed attention mechanism
to recommend suitable songs for an individual user. We utilize an attention
layer between hidden layer and output layer of IAB-LSTM, to replace the atten-
tion weight calculation during each time step of AB-LSTM’s hidden layer, which
helps in improving recommendation effectiveness. More importantly, IAB-LSTM
focuses on calculating the attention weight of hidden states (implying the user’s
recent listened songs’ music features) while AB-LSTM calculates the attention
weight of user preference feature, which makes IAB-LSTM better in capturing
the user’s short-term preference.

The architecture of IAB-LSTM model is shown in Fig. 4, which contains
four layers: input layer, hidden layer, attention layer and output layer. The
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Fig. 4. Diagram of improved attention-based long short-term memory

input layer contains the latent preference feature of the user u, denoted by
eUu ∈ R

d, and her historical playlist records u.h = (s1, . . . , st, . . . , sm). And
at each time step t, we concatenate the latent feature of song st, denoted by
eSst ∈ R

d, and the distributed representation of song st, denoted by st.v ∈ R
k,

as an input xt to the hidden layer. The hidden layer, consisting of LSTM cells,
is an important component of the IAB-LSTM model, in which the hidden state
can be computed as:

ht = LSTM(ht−1, xt), (11)
where ht is the hidden state at time step t in the hidden layer.

The attention layer is the key component of IAB-LSTM, in which we sum-
marize all hidden states as hu, which is computed as follows:

hu =
m∑

t=1

au
t ht, (12)

where m is the quantity of hidden states, au
t is the attention weight of user u on

hidden state ht at time step t, which is computed as follows:

au
t =

exp(g(ht)
TCu)∑

t′ exp(g(ht′)TCu)
, g(ht) = tanh(Wht + b), (13)

where W and b are parameters of single layer neural network g, and context
vector Cu is randomly initialized and jointly learned during the training process.
The context vector Cu can be seen as a high level representation of a fixed query
“what is the informative song” in the user u’s historical playlist records.

Finally, the probability vector of M predicted songs for user u, denoted as
pu ∈ R

M , can be calculated by a single layer neural network activated by softmax
in the output layer. The output of IAB-LSTM model, pu, can be computed as:

pu = softmax(g′(hu, eUu )) = softmax(W ′(hu ⊕ eUu ) + b′), (14)

where pu is user u’s probability vector of the predicted songs, eUu is the latent
preference feature of user u, W ′ and b′ are parameters of single layer neural
network g′, ⊕ is defined as a concatenation and hu is calculated in Eq. 12. Getting
the probability vector, we generate a suitable playlist for the user by the same
way as AB-LSTM.
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5 Experiments

In this section, we conduct extensive experiments on a real-world dataset to study
the performance of the proposed models. All the algorithms are implemented on
an Intel(R) Xeon(R) CPU E7-4860 v2 @ 2.60 GHz with 64 G RAM.

5.1 Experiment Setup

Dataset. We use a real-world dataset generated by Netease Cloud Music, which
is a freemium music streaming service. Netease Cloud Music has 300 million users
and a music database consisting of more than over 10 million songs. Specifically,
we crawl a dataset containing 35365 users, 1496 public playlists, 35469 songs
and 377194 comments.

Evaluation. We study and compare the performance of the following algorithms:

(1) CF: a model-based Collaborative Filtering approach [7], which utilizes
matrix factorization to calculate the ratings between all the users and songs
and recommends the top-k songs with highest rating values for each user.

(2) BPR: Bayesian Personalized Ranking [13] ranks each user’s preference for
songs and provides a top-k recommendation.

(3) P-AB-LSTM: Preference-Based AB-LSTM, an AB-LSTM without song’s dis-
tributed representation (i.e., a song’s semantics and category information).

(4) P-IAB-LSTM: Preference-Based IAB-LSTM without song’s distributed rep-
resentation (i.e., a song’s semantics and category information).

(5) AB-LSTM: Attention-Based Long Short-Term Memory model (based on
both the user’s preference and song’s distributed representation).

(6) IAB-LSTM: Improved Attention-Based Long Short-Term Memory model
(based on both the user’s preference and song’s distributed representation).

Four widely-used metrics, Precision@k (P@k, the accuracy rate of top-k rec-
ommendation), Normalized Discounted Cumulative Gain@k (NDCG@k), Mean
Average Precision (MAP) and Mean Reciprocal Rank (MRR), are used to eval-
uate the recommendation precision of the above methods. The greater values of
the above metrics mean the better performance. CPU time is given by the aver-
age time cost of recommending the top-k songs by the recommendation models.
We also evaluate the recommended playlists based on the number of recalled
songs. Specifically, for each user, we use CF, AB-LSTM and IAB-LSTM to gen-
erate a playlist containing 10 songs and compare it with her real playlist records
of next 10 songs. In addition, CF selects top-10 related songs with highest rat-
ings as the generated playlist. A greater number of recalled songs mean better
performance.

Table 2 shows our experimental settings, where the default values of all
parameters are underlined.
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Table 2. Experiment parameters

Parameters Values

Size of ratings 25%, 50%, 75%, 100%

Length of historical playlist records 20, 30, 40, 50

Amount of features extracted via MF 20, 40, 60, 80

5.2 Experiment Results

We first compare our proposed models with two baseline methods including CF
and BPR. The experimental results are summarized in Table 3. Our models con-
sistently outperform the baseline methods by a noticeable margin. Taking the
P@10 as an example, our IAB-LSTM achieves the most accurate recommenda-
tion result, whose accuracy is improved by around 83% compared with CF and
152% compared with BPR.

Table 3. Results of models

P@3 P@5 P@10 NDCG@3 NDCG@5 NDCG@10 MAP MRR

CF 0.0509 0.0517 0.0580 0.0846 0.1024 0.1376 0.1104 0.1181

BPR 0.0474 0.0453 0.0421 0.0856 0.1009 0.1150 0.0996 0.1077

P-AB-LSTM 0.0838 0.0822 0.0919 0.1047 0.1154 0.1742 0.1752 0.1920

P-IAB-LSTM 0.0891 0.0930 0.1020 0.1159 0.1440 0.2279 0.1840 0.2001

AB-LSTM 0.0817 0.0832 0.1061 0.1113 0.1281 0.1859 0.1858 0.2040

IAB-LSTM 0.0962 0.0966 0.1356 0.1416 0.1640 0.2430 0.1916 0.2151

Effect of the Size of Ratings. In this part of experiments, we change the size
of the ratings used in feature extraction and study their effects on music playlist
recommendation. As shown in Fig. 5, the precision of all approaches increases
(with MAP and P@10 increase) when more ratings are used. Among all the
methods, IAB-LSTM achieves the highest precision since IAB-LSTM effectively
captures users’ preferences and music context features, which demonstrates the
robustness of our proposed algorithms. The CPU cost of all methods is not
apparently affected by the size of the ratings since the prediction phrase is not
directly computed from the ratings. Moreover, AB-LSTM (IAB-LSTM) runs
slower than P-AB-LSTM (P-IAB-LSTM) because of the extra time cost for
integrating the song’s semantics and category features into the recommendation.

Effect of the Length of Historical Playlist Records. Figure 6 illustrates
the effect of the length of historical playlist records on the performance of our
models. Naturally the precision of all model gradually increases (with MAP
and P@10 increase) as the length of historical playlist records grows. Obviously
the performance of IAB-LSTM is better than P-IAB-LSTM, which proves the
effectiveness of song’s distributed representation. The CPU cost increases when
the length of historical playlist records increases, since the size of input in our
models is determined by the length of historical playlist records.
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Fig. 5. Effect of the size of ratings

Fig. 6. Effect of the length of historical playlist records

Effect of the Amount of Features Extracted via MF. Next we study the
effects of the amount of features extracted via MF. From Fig. 7 we can see that
the precision of all algorithms increases (with MAP and P@10 increase) when
the amount of features extracted via MF grows. The CPU cost slightly increases
when the amount of features extracted via MF increases, since the greater size
of the latent preference feature of the user increases computational complexity.

Recalled Songs. Finally we provide the recommended music playlists gener-
ated by some algorithms (i.e., CF, AB-LSTM and IAB-LSTM) for two users
who are randomly selected from the dataset. The predicted songs existing in
the user’s real playlist records will be marked by � in Table 4, which shows
that our proposed IAB-LSTM can better capture the preferences of users than
other methods. Taking user 16596 as an example, IAB-LSTM recalls 4 songs and

Fig. 7. Effect of the amount of features extracted via MF



430 H. Yang et al.

AB-LSTM recalls 2 songs, while CF recalls 0 song. This means our model can
make better music playlist recommendation with users’ long/short term prefer-
ences and music context features.

Table 4. The recalled songs from Top-10 candidates

User Id CF AB-LSTM IAB-LSTM

16596 We Don’t Talk Anymore Lie � She Say

Fade Willow Lie �
Into A River Iron Heart I Am You

Something Old Street In Fact, No

Make You Mine Travel Along The Way

A Half Be What You Wanna Be Cheng Du

East Of Eden Chasing The Wind Outside The Light Years

Es rappelt im Karton Young And Young � Lone Ranger �
Counting Stars Yesterday Young And Young �
I Am You Star Falling Trap �

8759 Say Honestly Those Were The Days Stupid �
Special Waste Lie �
Lover Boy 88 When You Blue Lotus

Jocelyn Flores Lie � Don’t Understand

Complete Iron Heart Vincent

Regret Young And Young Don’t Talk

Meet Yesterday Young And Young

Destination Trap Mind

My Heart Will Go On Calorie Trap

No Sad No Bad Star Falling Best

6 Related Work

The music playlist recommendation has attracted a number of researchers in
recent years. In this section, we categorize the major methodologies used by
recommendation systems as being based on: (1) music content; (2) music context.

Music Content-Based Recommendation. Music content-based features
refer to tonality, pitch, and beat, symbolic features extracted from the music
scores [9]. Existing research in the area of audio content-based music recommen-
dation usually focuses on measuring music similarity [2]. For example, McFee et
al. [10] treat music similarity learning as an information retrieval problem, where
the music similarity is learned to optimize the ranked list of results in response
to a query song. Dieleman et al. [11] use content-based latent factors to produce
sensible recommendations, ignoring the fact that there is a large semantic gap
between the song’s characteristics and its corresponding audio signal. Wang et
al. [19] simultaneously learn features from audio content and make personalized
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recommendation, which performs well on both the warm-start and cold-start
problems. However, content-based music recommendation has not been applied
very successfully in large range systems so far [6].

Music Context-Based Recommendation. In music recommendation field,
contextual data refers to all music-relevant information that is not included in
the audio signal itself. In particular, we review three main types of context-
based approaches: (1) text-retrieval-based approaches; (2) co-occurrence-based
approaches; (3) user-preference-based approaches.

Text-retrieval-based approaches exploit textual representations of musical
knowledge originating from web pages, user tags, or song lyrics. Oramas et al.
[12] exploit tags and textual descriptions to extract and link entities to external
graphs which are in turn used to semantically enrich the initial data in music rec-
ommendation. Schedl et al. [15] address the problem of similarity measurement
among music artists via text-based features extracted from Web pages.

Co-occurrence-based approaches follow an immediate mechanism to estimate
similarity based on the occurrence of two music pieces or artists within the same
context like web pages, microblogs, playlists, and Peer-to-Peer (P2P) networks.
Zangerle et al. [20] use the absolute numbers of co-occurrences between songs
in order to measure the similarities between songs and artists, which helps in
music recommendation systems.

User-preference-based approaches usually estimate music context similarity
based on users’ feedbacks. Cheng et al. [5] present a venue-aware music rec-
ommender system that recommends music to match different types of common
venues in user’s everyday life. Wang et. al. [18] learn the low dimensional rep-
resentations of music pieces from users’ music listening sequences using neural
network models. Cheng et al. [4] develop an effective social music recommenda-
tion system by considering users’ location-related contexts as well as the global
music popularity trends.

7 Conclusions

In this paper, we study the problem of Personalized Music Playlist Recommen-
dation, where each user can receive a personalized music playlist based on her
historical playlist records and music context. To settle this problem, we pro-
pose a novel Data-driven Music Playlist Recommendation (DMPR) framework,
which incorporates long/short-term preferences of users and music features to
improve the performance of recommendation. We address a few challenges by
proposing different strategies to extract the long-term features of users and songs
and designing effective AB-LSTM models to recommend a personalized music
playlist (including top-k related songs that have the highest probability of being
liked) for each user by obtaining her short-term preference. Extensive empirical
study based on a real dataset demonstrates our proposed models can effectively
capture long/short-term preferences of users via attention mechanisms, and rec-
ommend suitable personalized playlists to users.
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Abstract. Studying recommender systems with implicit feedback has
become increasingly important. However, most existing works are
designed in an offline setting while online recommendation is quite chal-
lenging due to the one-class nature of implicit feedback. In this paper,
we propose an online collaborative filtering method for implicit feedback.
We highlight three critical issues of existing works. First, when positive
feedback arrives sequentially, if we treat all the other missing items for
this given user as the negative samples, the mis-classified items will incur
a large deviation since some items might appear as the positive feedback
in the subsequent rounds. Second, the cost of missing a positive feedback
should be much higher than that of having a false-positive. Third, the
existing works usually assume that a fixed model is given prior to the
learning task, which could result in poor performance if the chosen model
is inappropriate. To address these issues, we propose a unified frame-
work for Online Collaborative Filtering with Implicit Feedback (OCFIF).
Motivated by the regret aversion, we propose a divestiture loss to heal
the bias derived from the past mis-classified negative samples. Further-
more, we adopt cost-sensitive learning method to efficiently optimize
the implicit MF model without imposing a heuristic weight restriction
on missing data. By leveraging meta-learning, we dynamically explore a
pool of multiple models to avoid the limitations of a single fixed model
so as to remedy the drawback of manual/heuristic model selection. We
also analyze the theoretical bounds of the proposed OCFIF method and
conduct extensive experiments to evaluate its empirical performance on
real-world datasets.
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1 Introduction

Recommender systems aim to alleviate information overload by providing per-
sonalized suggestions from a superabundant of choices based on the historical
behaviour. Among various recommendation algorithms, Collaborative Filtering
(CF), an approach that uses known preferences of some users to make predic-
tions to the unknown preferences of other users, has been widely used as one
of the core learning techniques in building real-world recommender systems.
The prevalent of E-commerce and social media sites generate massive data at
an unprecedented rate. More than 10 million transactions are made per day
in eBay1 [1] and about half a billion tweets are generated every day [12]. Such
data is temporally ordered, high-velocity and time varying. Unfortunately, tradi-
tional CF based methods adopt batch machine learning techniques which assume
all training data are provided prior to model training. Such assumption makes
them unsuitable and non-scalable for real-world applications for the following
reasons. First, the user-item interactions usually arrive sequentially and periodi-
cally while batch learning model has to be retrained from scratch whenever new
samples are received, making the training process extremely expensive. Second,
whenever a new user/item is added to the system, batch learning cannot handle
such changes immediately without involving an expensive re-training process.
Third, it is common that user preferences are likely to change through time, but
it is difficult for a batch learning model to capture the changes. Therefore, it is
imperative to develop real-time scalable recommendation algorithms.

Recent years have witnessed some emerging studies for online recommenda-
tion methods [1,10,21]. These methods generally follow the paradigm of Matrix
Factorization (MF) model which associates each user and item with a latent
vector respectively and assume that the corresponding rating is estimated by
the vector inner product. These works formulate the recommendation task as
a rating prediction problem which is denoted by explicit feedback. Neverthe-
less, implicit feedback, such as monitoring clicks, view times, purchases, etc, is
much cheaper to obtain than explicit feedback, since it comes with no extra cost
for the user and thus is available on a much larger scale. Compared to explicit
ratings, implicit feedback is much more challenging due to the natural scarcity
of negative feedback (also known as the one-class problem). One popular solu-
tion to solve this problem is to select some negative instances from unlabeled
entries [2,14]. However, this adversely decreases the efficacy of the predictive
model due to insufficient data coverage. Another solution [8] is to contrast the
positive feedback against all the non-observed interactions. However, this strat-
egy significantly increases the computation cost. A state-of-the-art MF method
for implicit feedback is the eALS [7], which treats all missing data as the neg-
ative feedback but with a heuristic weight. Despite its success in dealing with
batch learning setting, it is challenging to develop online recommendation meth-
ods with implicit feedback for the following reasons: (i) when positive feedback
arrives sequentially, if we treat all the other missing items for this given user as

1 http://www.webretailer.com/articles/ebay-statistics.asp.

http://www.webretailer.com/articles/ebay-statistics.asp
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the negative feedback, the mis-classified items will incur a large deviation since
some items might appear as the positive feedback in the subsequent rounds;
(ii) the cost of missing a positive target is much higher than that of having a
false-positive [23]; (iii) the existing works usually assume that prior to the learn-
ing task, a fixed model is given either by manual selection or via cross validation.
This could result in poor performance if the chosen model is inappropriate in
a new environment, which happens commonly for real-world applications since
user preferences and item attributes dynamically change over time.

To address these issues, we propose a unified framework for Online Collabo-
rative Filtering with Implicit Feedback (OCFIF). First, motivated by the regret
aversion [16], we propose a divestiture loss to heal the bias derived from the past
mis-classified negative samples. Next, we utilize cost-sensitive learning method
[3] to efficiently optimize the implicit MF model without imposing a heuristic
weight restriction on missing data. Finally, we leverage meta-learning method
[18] to explore a pool of multiple models, which are assigned with weights accord-
ing to their real-time performance, to remedy the drawback of using a single
fixed model by existing methods that often suffer considerably when the sin-
gle model is inappropriate. In this way, the selection of the optimal model is
adaptive and evolving according to the streaming data. By leveraging divesti-
ture loss, cost-sensitive learning and meta-learning, our implicit MF objective
function integrates them into a joint formulation. We theoretically analyze the
regret bounds of the proposed framework. To validate the efficacy of the pro-
posed method, we conduct extensive experiments by evaluating the proposed
algorithms on real-world datasets, showing that our method outperforms the
existing state-of-the-art baselines.

2 Related Work

The proposed work in this paper is mainly related to following two directions:
(i) recommendation with implicit feedback; (ii) online recommender systems.

2.1 Recommendation with Implicit Feedback

While early literature on recommendation has largely focused on explicit feed-
back [9,15], recent attention is increasingly shifting towards implicit data
[7,8,23]. We can categorize previous works for implicit feedback into two types:
sample-based learning and whole-data based learning. The first type samples
negative instances from missing data [2,14]. The BPR method [14] randomly
samples negative instances from missing data, optimizing the model with a pair-
wise ranking loss. Later on, [2] improves BPR with a better negative sampler by
additionally leveraging view data in E-commerce. By reducing negative examples
in training process, these sample-based methods are more efficient in training,
but the convergence speed is slower. The second type treats all missing entries
as negative instances [6–8]. For example, the WALS [8] method models all miss-
ing entries as negative instances, assigning them with a uniform lower weight in
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point-wise regression learning. Recently, [6] develops efficient learning algorithms
for any non-uniform weight on missing data. These whole-data based methods
can achieve a higher data coverage, but the training cost is much more expensive.
Although the aforementioned batch learning methods achieve relatively accurate
prediction performance, they often suffer poor efficiency and scalability issues
for the online recommendation tasks.

2.2 Online Recommender Systems

There are a variety of research works studying online recommendation algorithms
for explicit feedback. Most of these works focus on how to update the model effi-
ciently in online setting. Inspired by online multi-task learning, OMTCF algo-
rithm [20] treats users as tasks and update the models of multiple users simul-
taneously. [9] and [11] algorithms consider second-order information to achieve
faster convergent rate. Beyond the efficient updating problem, RKMF model [15]
focuses on solving the new user/item problem in the stream setting. [1] employs a
continuous markov process for each time-varying user/item latent vector to solve
the user interest drift problem. Recently, [21] solves new user/item, user inter-
est drift and overload problem in a single framework with probabilistic matrix
factorization model. By contrast, there are few studies on implicit online rec-
ommendation. [19] develops a fast incremental Matrix Factorization algorithm
for recommendation with positive-only feedback. However, modeling only the
positive feedback results in biased representations in user profile [8]. To this
end, [7] proposes an online implicit matrix factorization method, called eALS,
which models all the missing data as negative feedback. Although eALS could
update model in online setting, the basic model needs to be trained offline on a
large amount of historical data first (compared to the amount of data for online
update). Otherwise, the performance of eALS will significantly drop which limits
model’s flexibility and scalability for real applications.

3 Online Collaborative Filtering with Implicit Feedback

3.1 Problem Formulation

First, we motivate the problem by introducing the formulation of implicit MF
model. For a user-item rating matrix A ∈ R

m×n, m and n denote the number
of users and items respectively, Ω denotes the set of user-item pairs that have
interactions. In the implicit setting, we define the observation matrix R, where
Rij = 1 if (i, j) ∈ Ω, and Rij = 0 otherwise. MF maps both users and items
into a joint latent feature space of k dimension. Formally, let U ∈ R

k×m be the
latent factor corresponding to the users, where the i-th column ui ∈ R

k is the
latent factor for user i. Similarly, let V ∈ R

k×n be the latent factor for the items,
where the j-th column vj ∈ R

k is the latent factor for item j. In this work, we
cast implicit MF as an online learning problem. On each round t, an observed
matrix entry rt

ij is revealed, where (i, j) ∈ Ω. The goal of OCFIF is to update ut
i



Online Collaborative Filtering with Implicit Feedback 437

and vt
j such that rt

ij ≈ (ut
i)

�vt
j . The existing online recommendation methods

[9,11] then alternatively update ut
i and vt

j while keeping the other one fixed by
minimizing the incurred loss �(rt

ij , r̂
t
ij), where r̂t

ij = (ut
i)

�vt
j .

However, this learning process is not suitable for online recommendation with
implicit feedback for the following reasons: (i) when positive feedback arrives
sequentially, if we treat all the other missing items for this given user as the neg-
ative feedback, it will significantly increase the time for updating model which
hinders it from deploying online. Moreover, the data we treat as negative feed-
back can appear as positive feedback later, which brings a non-negligible side-
effect to the model; (ii) the cost of missing a positive target is much higher
than that of having a false-positive; (iii) the existing works usually assume that
prior to the learning task, a fixed model is given either by manual selection or
via cross validation. This could result in poor performance if the chosen model
is inappropriate in a new environment, which is widely observed in real-world
applications since user preferences and item attributes dynamically change.

3.2 OCFIF Framework

Due to the one-class problem, the model cannot receive any negative samples
for training in online setting. Thus, we follow the conventional assumption that
treats all the other missing items for the given user at each round as the negative
feedback. To address the above issues, we propose a unified framework for Online
Collaborative Filtering with Implicit Feedback (OCFIF) as shown in Fig. 1. First,
motivated by the regret aversion [16], we propose a divestiture loss to heal the
bias derived from the past mis-classified negative samples. Next, we develop
a cost-sensitive learning method [3] that efficiently optimizes the implicit MF
model without imposing a heuristic weight restriction on missing data. Finally,
we utilize meta-learning [18] to explore a pool of multiple models, which are
assigned with weights according to their real-time performance, to remedy the
drawback of using a single fixed model by existing methods as their performance
often degrade considerably when the single model is inappropriate. In this way,
the selection of the optimal model is adaptive and evolving according to the
streaming data. By leveraging divestiture loss, cost-sensitive learning and meta-
learning, the proposed framework integrates them into a joint formulation.

Divestiture Loss. To tackle the issue of mis-classified negative samples, we
adopt the regret aversion [16] idea to amend the bias. Regret aversion is origi-
nated from decision theory, which encourages to anticipate regret when facing a
decision and thus incorporate their desire to eliminate or reduce this possibility
in their choice. It has been found to influence choices in a variety of important
domains including health-related decisions, consumer behavior, and investment
decisions. In our setting, we hypothesize that model should attach a higher
weight to the positive samples that were mis-classified as the negative samples
in the past than the other data. Therefore, we explicitly deal with this cost as
the divestiture loss and integrate it into the optimization problem. Formally, we
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Fig. 1. The OCFIF framework.

denote the set of historical user-item pairs which are treated as negative samples
before round t as Nt, then the divestiture loss is formulated as:

ξ(rt
ij , r̂

t
ij) = (1 + λI[(i, j) ∈ Nt])�(rt

ij , r̂
t
ij), (1)

where � could be any convex loss function and we instantiate it as the ε-insensitive
loss �(rt

ij , r̂
t
ij) = max(|rt

ij − r̂t
ij |−ε). I[·] is the indicator function that equals to 1

if the statement holds; and 0 otherwise. λ ≥ 0 is a hyper-parameter that balance
the original loss and the extra penalty. If λ = 0, the extra penalty disappears and
the loss function becomes the conventional one. I[(i, j) ∈ Nt] indicates whether
the user-item pair (i, j) has been mis-classified as the negative sample in the
past.

In order to meet high efficiency requirement of online recommendation and
reduce the number of mis-classified samples, we denote the set of user-item
pairs which have not been fed to the model before round t as Bt, then sample
Z negative instances from Bt for model update. A naive sample strategy is to
uniformly sample from Bt which assumes each missing entry is negative feedback
with equal probability. We follow the assumption in [7,13] that popular items
are more likely to be known by users in general, and thus a miss on a popular
item is more likely to be truly negative. In this way, we sample negative instances
according to the global item popularity. Let Dt denotes the set of user-item pairs
that revealed before round t. The sampling distribution of item j is defined as:

p(j) =
∑m

i′=1 I[(i
′, j) ∈ Dt]∑n

j′=1

∑m
i′=1 I[(i′, j′) ∈ Dt]

. (2)

Cost-Sensitive Learning. Although ξ can deal with the issue of mis-classified
negative samples, it equally penalizes the mistakes on both positive and negative
entries. However, in the implicit feedback scenario, the cost of missing a positive
target is much higher than that of having a false-positive. Thus, we assume
rij = I[r̂ij ≥ q], where q ∈ [0, 1] is a threshold, and adopt cost-sensitive learning
method with a more appropriate metric, such as the sum of weighted recall and
specificity.
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sum = μp × recall + μn × specificity, (3)

where μp + μn = 1 and 0 ≤ μp, μn ≤ 1. In general, the higher the sum, the
better the performance. Besides, another appropriate metric is to measure the
total cost of algorithm:

cost = cp × Mp + cn × Mn, (4)

where Mp denotes the number of false negatives and Mn denotes the number
of false positives. cp + cn = 1 and 0 ≤ cp, cn ≤ 1 are the misclassification cost
of positive and negative, respectively. In general, the lower the cost value, the
better the performance.

Lemma 1. The goal of maximizing the weighted sum in (3) or minimizing the
weighted cost in (4) is equivalent to minimizing the following objective:

∑

rij=+1

ρI(r̂ij≤q) +
∑

rij=0

I(r̂ij>q), (5)

where ρ = ηpTn

ηnTp
for the maximization of the weighted sum, and ρ = cp

cn
for the

minimization of the weighted cost. Tp and Tn are the number of positive examples
and negative examples, respectively.

Lemma 1 gives the explicit objective function to optimize, but the indicator
function is not convex. To solve this problem, we replace this objective function
by its convex surrogate and derive the following two cost-sensitive loss functions:

�I(rij , r̂ij) = ρI(rij=1)�(r̂ij , 1) + I(rij=0)�(r̂ij , 0),

�II(rij , r̂ij) = I(rij=1)�(r̂ij , ρ) + I(rij=0)�(r̂ij , 0).

We could find that the slope of �I(rij , r̂ij) changes for specific class, leading to
more “aggressive” updating while the required margin of �I(rij , r̂ij) changes for
specific class, resulting in more “frequent” updating.

Meta-learning. By introducing cost-sensitive loss and divestiture loss, we can
solve the problem of implicit feedback in online recommendation. However, how
to decide the value of hyper-parameter like ρ remains an issue. Typically, in a
batch learning setting, one can choose hyper-parameters with manual selection
or via cross validation prior to the learning task, which is impossible for online
learning setting. Moreover, in the real-world online recommender systems, user
preferences and item attributes dynamically change. To address this issue, we
adopt the meta-learning method [22] to exploit the benefit of multiple implicit
MF models. The motivation is that if multiple implicit MF models with a number
of hyper-parameters are learned simultaneously, there must exist one setting
that is most appropriate to the streaming data. Specifically, take the hyper-
parameter ρ as an example, we construct a pool of multiple values of parameter
ρ by discretizing (0, 1) into S evenly distributed values 1

S+1 , ..., s
S+1 , ... S

S+1 and
setting ρs to (1 − s

S+1 )/( s
S+1 ).
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A remaining issue is how to choose appropriate implicit MF model from
S candidates for prediction and update them at each round. We apply the
Hedge algorithm [4] and randomly select a model according to a distribution
pt = (p1t , ..., p

S
t ) such that

∑
s ps

t = 1 and ps
t ≥ 0. The sampling probabilities

represents the online predictive performance of each model which is defined as

ps
t =

exp(γMs
t )

∑S
s=1 exp(γMs

t )
, s = 1, ..., S, (6)

where γ > 0 is a temperature hyper-parameter, and Ms
t is an online performance

measure on historical data. Here we choose two commonly used performance
measure in recommendation with implicit feedback task: F-measure and AUC
[14,23]. However, both of these two performance measures are non-decomposable
which makes it significantly challenging to directly optimize them in the online
process. Motivated by [22], we propose the following update methods.

Update F-measure. For each entry rt
ij at round t, the model produces an N-

size ranking list of items for user i. We denote ht as the hit result that equals to
1 if item j appears in the ranking list and 0 otherwise. Then the F-measure can
be computed by F@Nt+1 = 2

∑t
τ=1 rτ

ijhτ
∑t

τ=1 rτ
ij+

∑t
τ=1 hτ

. However, directly calculating the
online F-measure by going through all entries in history is expensive. Therefore,
we introduce an incremental calculation method according to [22]. Let at =∑t

τ=1 rτ
ijhτ and ct =

∑τ
τ=1(r

τ
ij + hτ ), then we can calculate F@Nt+1 = 2at

ct
and

update at and ct incrementally by

at+1 =

{
at + 1, if rt+1

ij = 1 and ht+1 = 1,

at, otherwise;

ct+1 =

⎧
⎪⎨

⎪⎩

ct + 2, if rt+1
ij = 1 and ht+1 = 1,

ct + 1, if rt+1
ij = 1 or ht+1 = 1,

ct, otherwise.

Update AUC. Similar to F-measure case, directly calculating the online AUC
is difficult, which requires to compare the present entry to historically received
entries. To avoid storing the prediction results of all entries, we introduce two E-
length hash tables Lt

+ and Lt
− with ranges (0, 1/E), (1/E, 2/E), ..., ((E−1)/E, 1).

For e ∈ 1, ..., E, Lt
+[e] and Lt

−[e] store the number of positive entries and nega-
tive entries before round t respectively, whose prediction result r̂ij are such that
1/(1 + exp(−r̂ij)) ∈ [(e − 1)/E, e/E). Then, we can approximately update
the online AUC using the two hash tables according to [22]. In particular, if

rt+1
ij = 1, AUCt+1 = Nt

+
Nt

++1
AUCt + 1

(Nt
++1)Nt

−

(∑e
k=1 Lt

−[k] + Lt
−[e+1]

2

)
, where e

is the largest index such that e/E ≤ 1/(1 + exp(−r̂t+1
ij )); if rt+1

ij = 0, we have

AUCt+1 = Nt
−

Nt
−+1

AUCt + 1
Nt

+(Nt
−+1)

(∑E−1
k=e+1 Lt

−[k] + Lt
+[e]

2

)
, where e is the

smallest index such that e/E ≥ 1/(1 + exp(−r̂t+1
ij )).
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Now we can summarize our proposed framework in Algorithm1. We could
use any online optimization methods [17] to solve the objective in (1). A default
choice is online gradient descent (OGD) [17] due to its simplicity and popularity.
At each round t, we alternatively update ut

i and vt
j while keeping the other

matrix fixed, the update rules are:

ut+1
i = ut

i − ηt∇ui
ξ(rt

ij , r̂
t
ij), (7)

vt+1
j = vt

j − ηt∇vj
ξ(rt

ij , r̂
t
ij), (8)

where ηt is the learning rate.

Algorithm 1. The OCFIF Framework
Input: the number of models S
Randomly initialize Us, Vs for s = 1, 2, . . . , S, p1 = (1/S, 1/S, . . . , 1/S);
for t = 1, 2, . . . , T do

Receive an observed entry ritjt ;
Sample negative item set Z from Bt \ {(it, jt)};
for all rij ∈ {{ritjt} ∪ {ri′j′ = 0|i′ = i, j′ ∈ Z}} do

Sampling a model s according to the distribution in (6);
Compute prediction r̂ij and loss ξ;
for s = 1, 2, . . . , S do

Update us,i,vs,j with Eqs. (7), (8);
Update the performance Ms;

end for
Update pt+1 with Eq. (6);

end for
Update Bt+1 ← Bt \ {(it, jt) ∪ Z}, Nt+1 ← Nt ∪ Z and Dt+1 ← Dt ∪ (it, jt);

end for

3.3 Theoretical Analysis

We now analyze the theoretical performance of the OCFIF framework in
terms of online regret bound analysis. To ease our discussion, we simplify some
notations in our analysis as in Table 1.

We denote by S the set of indexes that correspond to the trials when a loss
happens, S = {t|ξt(wt) > 0}. Similarly, we denote by Sp = {t|ξt(wt) > 0 and
yt = 1}, Sn = {t|�t(wt) > 0 and yt = 0}, Sp = |Sp|, Sn = |Sn|.

Table 1. Simplification of notations.

Notations Meaning

vt
j or ut

i xt input

ut
i or vt

j wt current status

ut+1
i or vt+1

j wt+1 solution

u or v w variable

rtij yt target
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Theorem 1. Let (x1, y1), ..., (xT , yT ) be a sequence of input-target pairs, where
xt ∈ R

k and G = maxt ‖xt‖2, yt ∈ {0, 1}. Let w1, ...,wT be a sequence of
vectors obtained by the proposed algorithm. Then for any w ∈ R

k, by setting
η = ‖w‖√

G[(ρ+ρλ)2Sp+Sn]
for ξI , η = ‖w‖√

G[(1+λ)2Sp+Sn]
for ξII , we then have the

bounds of the proposed algorithms:

T∑

t=1

ξI
t (wt) −

T∑

t=1

ξI
t (w) ≤ ‖w‖

√
G[(ρ + ρλ)2Sp + Sn],

T∑

t=1

ξII
t (wt) −

T∑

t=1

ξII
t (w) ≤ ‖w‖

√
G[(1 + λ)2Sp + Sn].

Proof. Relying on the definition of OGD, we have

‖wt+1 − w‖ = ‖wt − η∇ξt(wt) − w‖2
= ‖wt − w‖2 + η2‖∇ξt(wt)‖2 − 2η∇ξt(wt)(wt − w).

For the convexity of the loss function: ξt(wt) − ξt(w) ≤ ∇ξt(wt)(wt − w)), we
have the following:

ξt(wt) − ξt(w) ≤ ‖wt − w‖2 − ‖wt+1 − w‖2
2η

+
η

2
‖∇ξt(wt)‖2.

Summing over t = 1, ..., T , gives

T∑

t=1

(ξt(wt) − ξt(w)) ≤ ‖w‖2
2η

+
η

2

T∑

t=1

‖∇ξt(wt)‖2.

When we adopt ξI , it is easy to see that ‖∇ξt(wt)‖ ≤ √
G if t ∈ Sn, ‖∇ξt(wt)‖ ≤

ρ(1 + λ)
√

G if t ∈ Sp and ‖∇ξt(wt)‖ = 0 otherwise. Thus, we can obtain the
bound ‖w‖2

2η + ηG[(ρ+ρλ)2Sp+Sn]
2 , by setting η = ‖w‖√

G[(ρ+ρλ)2Sp+Sn]
. Similarly, when

we adopt ξII , ‖∇ξt(wt)‖ ≤ √
G if t ∈ Sn, ‖∇ξt(wt)‖ ≤ (1 + λ)

√
G if t ∈ Sp and

‖∇ξt(wt)‖ = 0 otherwise. Thus, we can obtain the bound ‖w‖2

2η + ηG[(1+λ)2Sp+Sn]
2

by setting η = ‖w‖√
G[(1+λ)2Sp+Sn]

.

Because Sp + Sn ≤ T , we get a regret bound
√

T . From this theorem, our
framework is guaranteed to converge to obtain the optimal average loss with
respect to the online learning setting with divestiture loss and cost-sensitive loss.
According to the theory of the Hedge algorithm [4], we can show that the OCFIF
framework can achieve an optimal upper bound of regret by

√
T ln S/2 with S

models after T iterations. This implies that it can asymptotically approach the
most appropriate parameter setting and ensure the per-round regret vanishes
over time in a sub-linear rate. The details of the proof can be found in [4].
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4 Experiments

In this section, we conduct experiments with the aim of answering the following
research questions:

RQ1: Does our proposed OCFIF framework outperform the state-of-the-art
online implicit collaborative filtering methods?

RQ2: How do our sampling strategies perform? Which negative sampling
strategy is better?

RQ3: How sensitive is our framework to hyper parameters?
In what follows, we first present the experimental settings, followed by

answering the above three research questions.

4.1 Experimental Setting

Dataset. We experimented with three publicly accessible datasets: MovieLens2,
Yelp3 and Pinterest4. The characteristics of the three datasets are summarized
in Table 2.

– MovieLens. This movie rating dataset has been widely used in recommen-
dation task. We used the version containing one million ratings, where each
user has at least 20 ratings. We transformed it into implicit data, where each
entry is marked as 0 or 1 indicating whether the user has rated the item.

– Yelp. This is the Yelp Challenge data of user ratings on businesses. We use
the filtered subset created by [7].

– Pinterest. This implicit feedback data is constructed by [5] for evaluating
content-based image recommendation. The original data is very large but
highly sparse. We filtered the dataset in the same way as for the MovieLens
data that retained only users with at least 20 interactions (pins). This results
in a subset of the data that contains 55,187 users and 1,500,809 interactions.

Evaluation Metrics. For experimental setup, each dataset is randomly divided
into two parts: 80% for training and 20% for test. We repeat such a random per-
mutation 10 times for each dataset and compute the average results of each
algorithm over the 10 runs. For the metrics, The accuracy of a recommendation
model is measured by two widely-used metrics, namely AUC and F-measure@N.
AUC measures whether the items which are observed were held out during learn-
ing are ranked higher than unobserved items. F-measure@N is the weighted
harmonic mean of precision and recall. In our experiments, we set N = 20. Basi-
cally, the higher these measures, the better the performance. For each metric,
We report the score averaged by all the users.

2 http://grouplens.org/datasets/movielens/.
3 https://www.yelp.com/dataset/challenge.
4 https://sites.google.com/site/xueatalphabeta/academic-projects.

http://grouplens.org/datasets/movielens/
https://www.yelp.com/dataset/challenge
https://sites.google.com/site/xueatalphabeta/academic-projects
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Baselines. We compare three variants of the proposed OCFIF framework with
the state-of-the-art algorithms for online recommendation tasks with implicit
feedback as follows:

– OBPR. BPR [14] is a sample-based method that optimizes the pair-wise
ranking between the positive and negative samples via SGD. We propose an
Online BPR by online incremental learning [15]. We use a fixed learning rate,
varying it and reporting the best performance.

– ISGD [19]. This is a incremental matrix factorization method for positive-
only feedback. It learns by incremental SGD, which is acceptable for streaming
data.

– NN-APA [9]. A second order online collaborative filtering algorithm.
– OCFIF. The proposed OCFIF framework. To examine the effectiveness of

the framework on different components, we run two variants of OCFIF,
OCFIF-C and OCFIF-CD. OCFIF-C only adopts cost-sensitive loss, and
OCFIF-CD consider both cost-sensitive loss and divestiture loss.

For parameter settings, we adopt the same parameter tuning schemes for
all the compared algorithm to enable fair comparisons. We perform grid search
to choose the best parameters for each algorithm on the training set. For MF
methods, the number of latent factors is tuned from {10, 15, ..., 50}. For OCFIF,
we search the ranges of values for negative sample size from {1, 5, 10, ..., 50}, cost
sensitive parameter ρ = cp

cn
tuned with cp from {0.5, 0.55, ..., 0.95} with a stepsize

of 0.5, and extra loss parameter λ ∈ {0.1, 0.2, 0.5, 1, 2}. We set the number of
models S = 10 and adopts uniform sampling strategy.

Table 2. Statistics of the evaluation datasets.

Dataset #Interaction #Item #User

MovieLens 1000209 3706 6040

Yelp 731671 25815 25677

Pinterest 1500809 9916 55187

4.2 Performance Comparison (RQ1)

Table 3 summarizes the comparison results in terms of AUC and F-measure, from
which we can draw several observations. First, it is clear to see that the proposed
OCFIF framework and its variants significantly outperform OBPR, ISGD and
NN-APA on all the datasets. This encouraging results validate the effectiveness
of utilizing cost-sensitive loss. Furthermore, by examining the two variants of
the proposed framework, we found that the OCFIF-CD with both divestiture
loss and cost-sensitive loss significantly outperforms the OCFIF-C with only
cost-sensitive loss. The reason is that divestiture loss could heal the bias derived
from the past mis-classified negative samples. By further comparing OCFIF
with its variants, we found that OCFIF is able to achieve the best performance.
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This result highlights the importance of meta learning which dynamically
explores a pool of multiple models to avoid the limitations of a single fixed
model. Interestingly, we can observe that NN-APA outperform OBRP and ISGD
in most cases, which is consistent with [9] that exploiting second-order informa-
tion can improve the performance for explicit feedback. This could be a potential
direction for OCFIF.

Table 3. Comparison of different algorithms in terms of AUC and F-measure for
recommendation task.

Algorithm Metrics Movielens Yelp Pinterest

OBPR AUC 0.8433 ± 0.0012 0.7754 ± 0.0004 0.6996 ± 0.0023

F-measure 0.0487 ± 0.0004 0.0105 ± 0.0004 0.0210 ± 0.0003

ISGD AUC 0.8578 ± 0.0009 0.8165 ± 0.0018 0.8620 ± 0.0018

F-measure 0.0618 ± 0.0008 0.0150 ± 0.0003 0.0231 ± 0.0005

NN-APA AUC 0.8600 ± 0.0003 0.8427 ± 0.0012 0.8810 ± 0.0008

F-measure 0.0581 ± 0.0008 0.0155 ± 0.0001 0.0246 ± 0.0004

OCFIF-C AUC 0.8953 ± 0.0010 0.8621 ± 0.0016 0.8901 ± 0.0022

F-measure 0.0750 ± 0.0007 0.0162 ± 0.0003 0.0259 ± 0.0007

OCFIF-CD AUC 0.9043 ± 0.0008 0.9105 ± 0.0011 0.9012 ± 0.0016

F-measure 0.0788 ± 0.0009 0.0176 ± 0.0005 0.0263 ± 0.0006

OCFIF AUC 0.9105± 0.0006 0.9126± 0.0012 0.9312± 0.0013

F-measure 0.0809± 0.0004 0.0186± 0.0005 0.0275± 0.0002
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Fig. 2. Evaluation of different sample strategies: AUC (a) and F-measure (b).

4.3 Sampling Strategies Comparison (RQ2)

We compared OCFIF under different sampling strategies: uniform sampling and
popularity based sampling. In particular, we set the sampling size gradually
increasing from 0 to 50, and report the performance under different sampling
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strategies. Figure 2(a) shows the performance evaluated by AUC and Fig. 2(b)
shows the performance evaluated by F-measure. We can observe that popularity
based sampling strategy is able to achieve the better performance than uniform
sampling strategy. Moreover, the results show the same trend that better per-
formance is obtained by increasing the sampling size. However, when sampling
size is set too large, the performance suffers. The reason is that the likelihood
of positive entries in negative sampling set will increase rapidly when sampling
size is too large, which results in severely negative side-effect on the model.
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Fig. 3. Impact of cost sensitive parameter ρ.

4.4 Evaluation of Parameter Sensitivity (RQ3)

For the proposed OCFIF framework, there are two key parameters: cost sensitive
parameter ρ and divestiture loss parameter λ. Figures 3 and 4 show the results
of parameter sensitive evaluations using different values of ρ and λ.
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Fig. 4. Impact of divestiture loss parameter λ.

First of all, by examining the influence of cost sensitive parameter ρ, we found
that the performance of framework is gradually improved with the increase of ρ.
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This indicates the effectiveness of our cost sensitive learning. Moreover, when ρ
is larger than 10, the performance starts to drop significantly. This reveals the
drawback of over-updating of positive entries.

Second, by examining the influence of divestiture loss parameter λ, we found
that the better performance is achieved by balancing between the impact of
cost-sensitive loss and divestiture loss, while either a large or a small value of
λ will adversely degrade the performance. This is primarily because that too
large divestiture loss can cause excessive correction, then reducing the accuracy
of model.

5 Conclusion

In this work, we propose a unified framework for online collaborative filtering
with implicit feedback. Specifically, motivated by the regret aversion, we pro-
pose a divestiture loss to heal the bias derived from the past mis-classified nega-
tive samples. Furthermore, we adopt cost-sensitive learning method to efficiently
optimize the implicit MF model without imposing a heuristic weight restriction
on missing data. By leveraging meta-learning, we dynamically explore a pool of
multiple models to avoid the limitations of a single fixed model so as to remedy
the drawback of manual/heuristic model selection. We also analyze the theoret-
ical bounds of the proposed OCFIF method, conduct extensive experiments and
ablation studies, and achieve state-of-the-arts results on real-world datasets for
online recommendation with implicit feedback task.
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Abstract. Neighborhood-based collaborative filtering (NCF) typically
uses a similarity measure for finding similar users to a target user or simi-
lar products on which the target user rated. To find neighbor users, tradi-
tional similarity measures rely only on the ratings of co-rated items when
calculating similarity of pairwise users. Some hybrid similarity measures
can avoid this situation but they suffer from the time-consuming issue.
To solve the mentioned issues, the current paper presents an effective
method of subspace ensemble-based neighbor user searching (SENUS)
for NCF. First, three item subspaces are constructed, or interested, nei-
ther interested nor uninterested, and uninterested subspaces. In each
subspace, we calculate the co-rating support values for pairwise users.
Then, SENUS combines three co-rating support values to get the total
co-rating support values for pairwise users, which are utilized to generate
direct neighbor users for a target user. For the target user, its neighbor
users include direct and indirect ones in SENUS, where its indirect neigh-
bors are the direct neighbors of its direct neighbors. Experimental results
on public datasets indicate that the proposed method is promising in rec-
ommender systems.

Keywords: Recommendation system · Collaborative filtering ·
Similarity measure · Neighbor user searching · Subspace ensemble

1 Introduction

Obviously, the Internet has become an important part of people’s lives. The
development of the Internet has made it possible to access different types of
data online [14]. Therefore, people almost feel that they are surrounded by many
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different items that are available for selection. However, each user can only visit
a limited number of items since the number of items available is very large
(such as the millions of items offered by Taobao). Moreover, it is very rare that
different users would visit the same items. Recommendation system (RS) [9,11]
techniques have been successfully used to help people cope with the information
overload problem, and established as an integral part of e-business domain over
last decades [22]. The main task of RSs is to provide an individual user with
personalized suggestions on products or items filtering through a large product
or item space. Many RS algorithms have been developed in various applications,
such as tourism [10], movies [8], music [19], and news [31].

Based on the modeling ways of RSs, the RS methods can be categorized
into content-based and collaborative filtering algorithms. Content-based filtering
algorithms try to analyze the profile of a target user, the profile of a target item
and profiles of items that the target user preferred in past when recommending
the target item to the target user. However, it is hard to analyze profiles in many
applications such as multimedia data. Collaborative filtering (CF) algorithms are
the most successful and widely used in RSs [1,6,28]. The assumption behind CF
is that if some users have similar interesting items up to now, these users would
have similar interests in future. CF is domain independent and more accurate
than content-based filtering. There are two main approaches for recommending
items in CF, called neighborhood-based CF (NCF) and model-based CF (MCF).
NCF is simple, intuitive, and can provide an immediate response to a new user
after receiving upon his/her feedback. In addition, NCF only works with a single
parameter (the number of neighborhood) while MCF needs many parameters
(say, learning parameter, regularization parameters, etc.).

Generally, NCF is to find a set of users, which are called neighbor users and
similar to the given target user, through using a similarity measure. There are
several well-known similarity measures including Pearson coefficient, cosine and
their variants. Most of these measures consider ratings of the co-rated items
between the target user and the other users. Therefore, it is insufficient to find
the effective neighbor users especially for the sparse user who would rate only a
small number of items. To remedy this, new hybrid similarity measures have been
proposed, such as singularity-based similarity measure (SBSM) [7], proximity-
impact-popularity (PIP) [3], new heuristic similarity model (NHSM) [21], CF
based on the Bhattacharyya-coefficient (BCF) [24], and hybrid user similarity
model (HUSM) [30]. Apparently, the computational complexity of hybrid sim-
ilarity measures is much greater than that of single similarity measures. Thus,
NCF with hybrid similarity measures is generally time-consuming.

To speed NCF, the idea of subspace has been adopted to find simi-
lar users [4,29]. Generally, the original data would be partitioned to several
subspaces, user subspaces, item subspaces or both. It has been shown that
the clustering algorithms do a good job finding similar users for a target
user [4,5,15,17,20,29]. The users in the subspace to which the target user belongs
are taken as its neighbor users. In doing so, we can reduce the computational
complexity of NCF since the number of users in the subspace is significantly less
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than the total number of users. In addition, it is shown that the RS based on
ratings of similar users may be more accurate [13]. Moreover, item subspaces
are also useful. Agarwal et al. found direct neighbor users in the subspace of
items with “interested” rating values [2]. A users’ tree accessed on subspace
(UTAOS) approach was presented to generate a neighbor user tree in the sub-
space of items with “interested” rating values [26]. Based on UTAOS, Hamidreza
et al. developed a neighbor users by subspace clustering on collaborative filter-
ing (NUSCCF) approach [16]. NUSCCF tries to construct three neighbor user
trees in three subspaces and then generate direct and indirect neighbor users
for the target user by searching these trees. However, since these methods select
neighbor users too less to represent the true neighbor relationship of the target
user. Moreover, these methods would occupy a lot of space because of the use of
global tables.

To enhance the performance of NCF, this paper presents an effective method
of subspace ensemble-based neighbor user searching (SENUS) for NCF. Similar
to NUSCCF, we first construct three item subspaces of interested, neither inter-
ested nor uninterested, and uninterested subspaces. In each subspace, we cal-
culate the co-rating support values for pairwise users. SENUS generates direct
neighbor users for each user according to the total co-rating support value com-
bined from three subspaces. For a target user, its neighbor users include direct
and indirect ones in SENUS, where its indirect neighbors are the direct neighbors
of its direct neighbors.

The rest of this paper is organized as follows. Section 2 proposes the novel
method, SENUS. Section 3 reports and analyzes experimental results. Finally,
our conclusions are drawn in Sect. 4.

2 Subspace Ensemble-Based Neighbor User Searching

NCF, as we know, has two main stages: searching neighbor users, and predict-
ing rating scores. Both stages require similarity measures and generally adopt
the same similarity measure. To enhance the performance of NCF, this section
presents the novel subspace ensemble-based neighbor user searching (SENUS)
method for the stage of neighbor searching. The framework of SENUS is shown
in Fig. 1, where U = {u1, u2, · · · , um} and T = {t1, t2, · · · , tn} are the sets of
users and items, respectively, Ti is the subset of items rated by user ui, m is the
number of users and n is the number of items.

First, SENUS generates three item subspaces according to interested (INT),
NINU, and uninterested (UNI) items. Then, SENUS calculates co-rating sup-
port values for pairwise users in these three subspaces and combines the results.
Finally, SENUS searches neighbor users according to the total co-rating sup-
ports.

2.1 Item Subspaces

To consider the user rating preference, SENUS covers the whole item
space T using three item subspaces. Note that three item subspaces are not
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Fig. 1. Framework of SENUS.

a partition of T . Let R ∈ R
m×n be the user-item rating matrix, where the i-row

and j-column element rij ∈ {1, 2, · · · , rmax} is the rating score made by user ui

on item tj , and rmax is the highest rating.
Given a threshold θ, we find a covering of T and form three subspaces, T INT ,

TNINU and TUNI , respectively. Without loss of generality, items with rij > θ
are considered as the INT ones, items with rij = θ are thought as the NINU
ones, and items with rij < θ are the UNI ones. Namely,

T INT = {tj |rij > θ, j = 1, · · · , n} (1)
TNINU = {tj |rij = θ, j = 1, · · · , n} (2)

and
TUNI = {tj |rij < θ, j = 1, · · · , n} (3)

Empirically, we set θ = �rmax/2�, where the function �·� rounds the value · to
the nearest integer towards infinity. Since the three item subspaces is a covering
of T , we have ⎧

⎪⎪⎨

⎪⎪⎩

T INT ∩ TNINU �= ∅
T INT ∩ TUNI �= ∅
TNINU ∩ TUNI �= ∅
T INT ∪ TNINU ∪ TUNI = T

2.2 Co-rating Support

The Jaccard similarity is a common similarity measure for pairwise users [18],
but the Jaccard similarity overly concerns the local information only on pairwise
users themselves. Here, to measure the similarity of a pairwise user (ui, up), we
modify the Jaccard similarity and define a term “co-rating support”. In three
item subspaces, we give the definition about this term.

Definition 1. Given the INT item set T INT , a pairwise user (ui, up), and their
rated interested item sets T INT

i ⊆ T INT and T INT
p ⊆ T INT , then the co-rating

support of (ui, up) in the INT item subspace is defined as:
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sINT (ui, up) =
|T INT

i ∩ T INT
p |

|T INT | (4)

where 0 ≤ sINT (ui, up) ≤ 1.

Definition 2. Given the NINU item set TNINU , a pairwise user (ui, up), and
their rated NINU item sets TNINU

i ⊆ TNINU and TNINU
p ⊆ TNINU , then the

co-rating support of (ui, up) in the NINU item subspace is defined as:

sNINU (ui, up) =
|TNINU

i ∩ TNINU
p |

|TNINU | (5)

where 0 ≤ sNINU (ui, up) ≤ 1.

Definition 3. Given the UNI item set TUNI , a pairwise user (ui, up), and their
rated uninterested item sets TUNI

i ⊆ TUNI and TUNI
p ⊆ TUNI , then the co-

rating support of (ui, up) in the INT item subspace is defined as:

sUNI(ui, up) =
|TUNI

i ∩ TUNI
p |

|TUNI | (6)

where 0 ≤ sUNI(ui, up) ≤ 1.

Here, the implied assumption is that the pairwise user (ui, up) is similar if
these two users have rated more INT items, NINU items, and UNI items. To
unify the results of three subspaces, we define the total co-rating support of
(ui, up) as

s(ui, up) =
1
3

(
sINT (ui, up) + sNINU (ui, up) + sUNI(ui, up)

)
(7)

where 0 ≤ s(ui, up) < 1.

2.3 Neighbor User Searching

Now, our mission is to find neighbor users for a given target user ua. We take
the total co-rating support as the similarity measure and compute s(ua, ui), i =
1, · · · ,m according to (7). It is easy to find the k direct neighbor users for ua

by sorting the total co-rating support with respect to ua. Note that the greater
s(ua, ui) is, the higher the similarity between ua and ui. Let ND

a be the set of
direct neighbor users for ua.

To efficiently calculate similarity in the stage of prediction, we take into
account indirect neighbor users except direct neighbors.

Definition 4. Given the set of users U = {u1, · · · , um}, and their direct neigh-
bor user sets ND

i , i = 1, · · · ,m, the set of indirect neighbor users for ua ∈ U is
defined as:

N I
a = {ui|ui ∈ ND

p ∧ up ∈ ND
a ∧ ui �∈ ND

a } (8)
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Definition 4 states that an indirect neighbor user of ua is the direct neighbor
user of some direct neighbor user of ua. Since the neighbor relation has transi-
tivity, it is reasonable to choose these indirect neighbor users as the neighbors.
Thus, the set of neighbor users for the target user ua should be

Na = ND
a ∪ N I

a (9)

2.4 Algorithm and Its Computational Complexity

SENUS is the first stage in NCF for searching neighbor users in despite of
which similarity measure is adopted in the prediction stage. The description
of SENUS is given in Algorithm1. According to Algorithm1, we can see that
SENUS consists of five steps. In Step 1, the computational complexity of gen-
erating three subspaces is O(3mn), where m is the number of users and n is
the number of items. In Step 2, the computational complexity of calculating the
co-rating support in three subspaces is O(6n′m2), where n′ is the maximum of
item numbers rated by users. In Step 3, the computational complexity of select-
ing k direct neighbors is O(k log k + m − k). The computational complexity of
generating indirect neighbor sets in Step 4 is O(k(k log k + m − k)). Step 5 uni-
fies direct and indirect neighbor users and has the computational complexity of
O(k(k + 1)). Therefore, the total computational complexity of this algorithm is
O(3mn + 6m2n′ + (k + 1)(k log k + m)).

For a given target user ua, SENUS only provides its neighbor user set Na.
To recommend an unrated item tj for ua, we need to estimate the rating score
of ua on this item. The estimated rating score can be calculated as follow:

r̂aj = r̄a +

∑
i∈Na

sim(ua, ui)(rij − r̄i)
∑

i∈Na
|sim(ua, ui)| (10)

where sim(ua, ui) is a similarity measure, and r̄a is the average rating score of
user ua, If the estimated rating score is greater than or equal to the threshold
θ, we would recommend item tj to user ua.

Algorithm 1: Subspace ensemble-based neighbor user searching

Input: User-item rating matrix �R, the user set U = {ui}mi=1, the
threshold θ, the number of direct users k, and the target user ua.

Output: The set Na of neighbor users for the target user ua.
1. Generate three item subspaces T INT by (1), TNINU by (2), and TUNI

by (3), respectively;
2. Calculate the co-rating support values in three item subspaces
according to Definitions 1, 2 and 3, respectively;
3. Calculate the total co-rating support s(ua, ui), i = 1, · · · ,m by (7) and
generate the set ND

a of direct neighbor users;
4. For each ug ∈ ND

a , calculate the total co-rating support
s(ug, ui), i = 1, · · · ,m and generate the set N I

a of indirect neighbor users
by (8);
5. Return Na = ND

v ∪ N I
a .
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2.5 An Example

In the following, we give an example to illustrate the calculation of co-rating
support and the result of finding the neighbor users for a target user.

Let U = {u1, u2, · · · , u7} and T = {t1, t2, · · · , t8}. Assume that the user-
item rating matrix has the form in Fig. 2(a), where “-” means that users do
not rate on items. Obviously, the highest score rmax = 5 and the threshold
θ = 3. Items with ratings of 4 and 5 in �R are considered as the INT items, with
rating of 3 as the NINU ones, and with ratings of 1 and 2 as the UNI ones.
Then, the INT, NINU, and UNI item sets are T INT = {t2, t3, t4, t5, t6, t7, t8},
TNINU = {t1, t2, t4, t6, t7}, and TUNI = {t1, t2, t3, t5, t6}, respectively.

Figures 2(b), (c) and (d) show the co-rating support matrices �SINT , �SNINU ,
and �SUNI of pairwise users (ui, up), i, p = 1, · · · , 7 in three subspaces, respec-
tively, where “∞” denotes the co-rating support of pairwise users (ui, ui). These
matrices are symmetrical. Figure 2(e) gives the total co-rating support of all
pairwise users. Based on Fig. 2(e), we can obtain the direct user sets for seven
users. Let k = 2.

If user u4 is taken as the target user, the direct neighbor user set of u4

may be {u3, u7} or {u6, u7} by the observation on Fig. 2(e). If there are multiple
candidate sets, we randomly select one from them. Without loss of generality, let
ND

4 = {u6, u7}. Naturally, we can get the indirect neighbor users of u4 through
merging the direct users of u6 and u7. Finally, the neighbor user set of u4 may
be N4 = {u6, u7} with the probability of 1/6, and N4 = {u3, u6, u7} with the
probability of 5/6. If we make another choice, or ND

4 = {u3, u7}, we would
obtain N4 = {u3, u7} with the probability of 1/6, and N4 = {u3, u6, u7} with
the probability of 5/6. Therefore, N4 = {u3, u6, u7} has the highest probability
being the neighbor user set of u4.

Now, we carefully observe Fig. 2(a) and have a conclusion that users u3, u6

and u7 are similar to u4 because they have the similar rating preference when
rating items. Thus, u3, u6 and u7 are effective neighbor users.

In SENUS, we calculate the similarity (total co-rating support) of pairwise
users by combining the co-rating support of pairwise users in three item sub-
spaces. Why do we consider the user rating preference? An intuitive idea is to
compute the co-rating support of pairwise users in the whole item space instead
of three subspaces, which has the form:

sWhole (ui, up) =
|Ti

⋂
Tp|

|T | (11)

where Ti is the rated item subset of ui. Continue the example mentioned above.
By using (11), the target user u4 would have two neighbor users u2 and u7.
Figure 2(a) shows that u2 and u4 have co-rated four items, t1, t3, t5 and t6.
However, their rating preference is totally different. In other words, the interests
of u4 and u2 are opposite. Thus, we thought that u2 is not a good neighbor
user of u4. In a nutshell, SENUS can find effective neighbor users by taking into
account the user rating preference.
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3 Experiments

In order to validate the performance of SENUS, we perform comparison experi-
ments on public datasets. All numerical experiments are performed on a personal
computer with an Inter Core I5 processor with 8 GB RAM. This computer runs
Windows 7, with Matlab R2012b.

Fig. 2. Neighbor users of Example, (a) user-item rating matrix �R, (b) co-rating support
matrix �SINT in the INT item subspace, (c) co-rating support matrix �SNINU in the
NINU item subspace, (d) co-rating support matrix �SUNI in the UNI item subspace,
and (e) total co-rating support matrix �S.

3.1 Experimental Setting

Since SENUS is the method for searching neighbors, we need to combine it
with other prediction schemes. Here, we design four SENUS-based methods,
SENUS-ACPCC, SENUS-NHSM, SENUS-BCF, and SENUS-HUSM by combin-
ing SENUS with AC-PCC [25], NHSM [21], BCF [23] and HUSM [30], respec-
tively. In the following, we list all the compared methods.

NHSM [21]: NHSM is a hybrid similarity method, which distinguishes two users
by utilizing the user rating preferences and considering co-rated items. In both
searching and prediction stages, the hybrid similarity has been applied.

AC-PCC [25]: AC-PCC takes into account two additional weighting factors: the
compromise factor and weighting factor, which is a hybrid similarity scheme.
In both searching and prediction stages, AC-PCC uses the hybrid similarity.

BCF [24]: BCF is a hybrid similarity method based on the Bhattacharyya coef-
ficient. BCF can utilize all ratings and provide a more reliable recommended
list for active users. In the two stages of NCF, BCF uses the same similarity.
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HUSM [30]: NUSM is a hybrid similarity measure, which considers the influence
of all possible rated items, the non-linear relationship between variables, the
asymmetry between users, and the rating preference of users. In the two stages
of NCF, NUSM adopts the same similarity.

UTAOS [26]: UTAOS is a fast method for searching neighbor users, which
constructs a neighbor user tree in the INT item subspace. In the prediction
stage, UTAOS uses a weighted average-based recommendation method to
recommend items.

NUSCCF [16]: NUSCCF is a fast method for searching neighbor users in the
INT, NINU and UNI item subspaces. NUSCCF defines the novel similarity
to predict rating, which is related to the neighbor trees constructed in three
subspaces.

SENUS-ACPCC: SENUS-ACPCC is the combination of SENUS and AC-
PCC. For a target user, SENUS is used for searching its neighbor users, and
the similarity measure defined in AC-PCC is used for predicting ratings of
recommended items.

SENUS-NHSM: SENUS-NHSM is the combination of SENUS and NHSM.
We first adopt SENUS to find neighbor users for a target user, and then use
the similarity measure defined in NHSM to predict ratings of recommended
items.

SENUS-BCF: SENUS-BCF is the combination of SENUS and BCF. SENUS
is used in the stage of searching, and BCF the stage of prediction.

SENUS-HUSM: SENUS-HUSM is the combination of SENUS and HUSM,
where SENUS searches neighbor users, and HUSM predicts ratings.

Most methods mentioned above have one main parameter k, the number of
neighbor users. In ACC-PC, NHSM, BCF and HUSM, we empirically set the
number of neighbor users to 20.

Each of datasets in experiments is categorized into five subsets by applying
five-fold cross-validation, which follows the way in [15] and [29]. In each trial, four
subsets are used for training and the remaining for test. As a result, we report the
average performance on five trials. To evaluate the recommendation quality of
compared algorithms, we adopt three performance indexes, mean absolute error
(MAE), recall, and coverage [24,27,32]. MAE is the most commonly used metric
for measuring the accuracy of a recommendation algorithm, and is defined by
comparing the predicted rating values against actual rating values. Namely,

MAE =
1
m′

m′
∑

a=1

1
n′
a

n′
a∑

j=1

|raj − r̂aj | (12)

where m′ is the number of users in the test set and n′
a is the number of all

predicted items for the target user ua, raj and r̂aj are the actual and predicted
ratings of user ua on item tj , respectively. Note that a smaller MAE indicates a
better performance. Recall is defined as below:

Recall =
1
m′

m′
∑

a=1

|IRap ∩ IRaa|
|IRaa| (13)
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where IRap represents the predicted recommendation list (set) for user ua, and
IRaa is the set of actual recommendation items for user ua in the test set. A
greater Recall means better performance. Coverage is a measure of the percent-
age of items for which a RS can provide recommendations [27], and is expressed
as follows:

Coverage =
∑m′

a=1 |IRap ∩ Tat|
∑m′

a=1 |Tat|
(14)

where Tat denotes the set of items rated by user ua in the test set.

3.2 Experiments on ML-Latest-Small

The ML-Latest-Small dataset is from MovieLens which was collected by the
GroupLens Research Project at the University of Minnesota [12]. This dataset
describes 5-star rating that movies were rated on a floating point scale of 0.5
(bad) to 5 (excellent) with scale of 0.5, and contains 100,004 ratings across 9,066
movies. The ML-Latest-Small dataset was created by 671 users from January
09, 1995 to October 16, 2016. Users were selected at random for inclusion. All
selected users had rated at least 20 movies. The sparsity of ML-Latest-Small is
98.3%.

SENUS has the parameter k. To illustrate the effect of the parameter k on the
prediction performance of SENUS-based methods, we perform 5-fold cross vali-
dation on the ML-Latest-Small dataset. Let k vary in the range of {5, · · · , 15}.
The variation of average performance indexes vs. k on the prediction perfor-
mance of SENUS-based methods is given in Fig. 3, where Figs. 3(d), (a), (c),
and (b) show SENUS-NHSM, SENUS-ACPCC, SENUS-BCF, and SENUS-
HUSM, respectively. These figures are dual ordinate coordinate diagrams where
MAE, Recall, and Coverage curves are on the left, and Running time is on the
right.

Observation on the curves of Running time indicates that the running time
has an approximately linear relationship with k. The greater k is, the more
time SENUS-based methods need. Thus, k should not be too greater. From
curves of three performance indexes of MAE, Recall, and Coverage, we can see a
commonality of them. These indexes fluctuate so little as k increases so that there
is no significant change from the curves. Even so, it is better to set k between
6 and 9 according to the comparative experimental results. In SENUS-based
methods, we set the neighbor parameter k = 8.

Table 1 shows the performance comparison on the ML-Latest-Small dataset,
including average MAE, Recall, Coverage and Running time. From Table 1, we
can have the following conclusions.

– On the index of Running time, SENUS-ACPCC is the fastest and followed
by SENUS-NHSM. However, the fast algorithm UTAOS ranks the third. In
other words, our proposed scheme may have a faster speed than the existing
fast methods which do not adopt hybrid similarity measures and have bad
recommendation performance. Note that the running time of SENUS-based
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methods depends on the hybrid similarity measure in the prediction stage.
Since the computational complexity of HUSM is relatively great, SENUS-
HUSM takes more time.

– It can be seen that SENUS-based methods are apparently superior to the
fast searching methods UTAOS and NUSCCF on the performance of MAE,
Recall, and Coverage, which indicates that our SENUS-based methods can
enhance the recommendation performance of fast algorithms.

– Compared to the original algorithms, SENUS-based methods are faster and
have a compared performance. For example, SENUS-HUSM is almost three
times faster than HUSM on the index of Running time. The MAE obtained
by SENUS-HUSM is slightly better than that of HUSM.
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(a) SENUS-NHSM
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(b) SENUS-ACPCC
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(c) SENUS-BCF
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(d) SENUS-HUSM

Fig. 3. Comparison of performance indexes vs. k in SENUS-based methods

3.3 Experiments on ML-100K

The ML-100k dataset is also from MovieLens [12]. The data was collected
through the MovieLens web site (movielens.umn.edu) and has been cleaned up,
where users who had less than 20 ratings or did not have complete demographic

http://www.movielens.umn.edu
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information were removed from this data set. This data set contains 100,000
ratings provided by 943 users for 1,682 movies. Movies were rated on an integer
scale 1 (bad) to 5 (excellent). This matrix has a sparsity of 93.7%.

Table 1. Performance comparison on the ML-Latest-Small dataset

Method MAE Recall Coverage Running time (min.)

UTAOS 0.8021 0.5495 0.3758 0.6740

NUSCCF 1.0880 0.079 0.1682 4.9166

NHSM 0.7128 0.7244 0.6600 3.2

SENUS-NHSM 0.7107 0.7319 0.6502 0.5414

ACPCC 0.6983 0.7345 0.6593 5.81

SENUS-ACPCC 0.7049 0.7096 0.6437 0.3395

BCF 0.7087 0.7248 0.6545 181.8

SENUS-BCF 0.7092 0.7152 0.6513 43.30

HUSM 0.7102 0.7211 0.6520 380

SENUS-HUSM 0.7083 0.7237 0.6512 98

Table 2. Comparison of six methods on the ML-100K dataset

Method MAE Recall Coverage Running time (min.)

UTAOS 0.8638 0.4393 0.336 0.2481

NUSCCF 0.9808 0.1248 0.1615 5.3972

NHSM 0.7424 0.6398 0.5947 4.3

SENUS-NHSM 0.7379 0.6896 0.6207 0.5257

ACPCC 0.7294 0.6636 0.6054 5.76

SENUS-ACPCC 0.7366 0.6691 0.6156 0.2389

BCF 0.7452 0.6834 0.6308 188.19

SENUS-BCF 0.7423 0.6793 0.6261 18.2105

HUSM 0.7453 0.6672 0.6141 377.6

SENUS-HUSM 0.7405 0.6813 0.6226 37.2075

Table 2 gives the comparison of ten methods on the ML-100K dataset. We
have a similar conclusion as before. The MAE, Recall and Coverage of SENUS-
based methods are much better than both UTAOS and NUSCCF, and very close
to the corresponding original methods. On the index of Running time, SENUS-
based methods are faster than the corresponding original methods, and may be
faster than UTAOS or NUSCCF.
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4 Conclusions

Neighbor-based collaborative filtering algorithms rely on the historical behavior
of neighboring users, and recommend the target users based on historical data
of neighbors. Thus, finding the effective neighbor users and providing higher
accuracy in RSs are the major issues. This paper proposes an SENUS method for
searching the effective neighbor users with little running time consume. SENUS
first calculates the co-rating support of pairwise users in the INT, NINU, and
UNI item subspaces, respectively and then combines them to generate the total
co-rating supports of pairwise users, which are used to find neighbor users for
a target user. SENUS can be combined with any similarity measure which is
adopted in the prediction stage. Four SENUS-based methods are designed, or
SENUS-ACPCC, SENUS-NHSM, SENUS-BCF and SENUS-NUSM.

Experimental results on the ML-Latest-Small and ML-100K datasets indicate
that SENUS can greatly speed up the recommendation procedure of the origi-
nal NCF methods. In other words, SENUS is effective when searching neighbor
users. Moreover, compared with the other fast methods UTAOS and NUSCCF,
SENUS-based methods have an obvious advantage in the recommendation per-
formance of MAE, Recall, and Coverage. Since the running time of SENUS-based
methods mainly depends on the complexity of similarity measures, some SENUS-
based methods can have a fast recommendation procedure than the existing fast
methods.
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Abstract. Query result diversification is critical for improving users’
query satisfaction by making the top ranked results cover more differ-
ent query semantics. The state-of-the-art works address the problem via
bi-criteria (namely, relevance and dissimilarity) optimization. However,
such works only consider how dissimilar the returned results are to each
other, which is referred to “local diversity”. In contrast, some works con-
sider how similar the not returned results are to the returned results,
which is referred to “global diversity”, and however need a user defined
threshold to predicate whether a result set is diverse. In this paper, we
extend the traditional bi-criteria optimization problem to a tri-criteria
problem that considers both local diversity and global diversity. For that,
we formally define the metrics of global diversity and global-and-local
diversity. Then, we prove the NP-hardness of the proposed problems,
and propose two heuristic algorithms, greedy search and vertex substi-
tution, and sophisticated optimization techniques to solve the problems
efficiently. To evaluate our approach, we perform comprehensive experi-
ments on three real datasets. The results demonstrate that our approach
can indeed find more reasonably diversified results. Moreover, our greedy
search algorithm can significantly reduce the time cost by leveraging the
critical object, and then our vertex substitution algorithm can incremen-
tally improve the objective value of results returned by greedy search
with extra time cost.

Keywords: Query result diversification · Algorithm ·
Optimization

1 Introduction

Traditionally, the results of information retrieval or database query are only
ranked by their own features, such as relevance to the query, authority, etc. It
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may cause that the top ranked results are too homogeneous to meet different
users’ demands. For example, given an ambiguous keyword like “apple”, if all the
top ranked results are about the Apple company, such as its official website, logo,
founder and products, it obviously reduces the query satisfaction of users who
want the information about apple as as a fruit. Thus, query result diversification
is getting more and more attention for improving users’ satisfaction, and has
been widely used in many applications [1–3,5–8,10,11,13,15].

As summarized by the survey [16], most previous works [9,13] use the dissim-
ilarity (also known as distance) between each pair of results in a specific K-size
candidate result set as a metric of its diversity. Since this kind of diversity is
determined only by the K candidates, we call it local diversity. While, some
other works [3,5,7,15] measure diversity from a different perspective. Typically,
they aim to find a K-size set of results such that the other results not belong to
the set are similar to at least one of them, namely, can be “covered” by them.
We call this kind of diversity that is determined by the dissimilarity between the
candidates and the other results as global diversity. Both the local diversity and
the global diversity are to make the returned K results include as most different
interpretation of query as possible.

Moreover, there are usually two ways of importing the diversity into query
result evaluation, no matter local or global. One is predication, which means a set
of candidate results is either diverse, if the dissimilarity between results can meet
a certain condition, or not diverse, otherwise. For instance, a set of candidate
results is generally considered to be diverse if the dissimilarity between each
pair of candidates is greater than a given threshold, in the case of local diversity.
The other is bi-criteria, which combines the own feature of each candidate and
the diversity of the set of K candidates, which is evaluated as the aggregation
of dissimilarity between results, into a unified objective function. For instance,
the objective function of the classical diversification algorithm MMR (Maximal
Marginal Relevance) [4] is the linear summation of candidates’ relevance and the
minimum dissimilarity between each pair of candidates.

The predication style approaches [5,7–9,12–15] that focus on finding the most
relevant diverse result set may suffer from evaluating the threshold. Since the
degree of dissimilarity between results depends on the given query, it is actually
infeasible to diversify the results of different queries with a fixed threshold. Even
if we can tune the threshold to adapt to different queries, how to get a suitable
threshold for a particular query is still intractable. In contrast, the bi-criteria
style approaches [2,4,9] try to optimize the objective value of returned result
set without the threshold. Due to the NP-hardness of such optimization prob-
lems, the heuristic or approximate algorithms are usually applied. However, the
existing bi-criteria style approaches only consider the local diversity. Although
some works have studied the problem of global diversification, they only apply
the predication style approach. For example, DISC [7] proposes the zoom-in
and zoom-out operators to adjust the dissimilarity threshold for achieving bet-
ter global diversity. To the best of our knowledge, the bi-criteria style approach
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that aims to find the globally diverse or even both locally and globally diverse
result set has not been well studied yet.

Therefore, we extend the bi-criteria approach to a novel tri-criteria approach
in this paper, which leverages the global diversity to improve query result diver-
sification. Firstly, we formally define the global diversity and global-and-local
diversity for the bi-criteria style approach. Let P be the set of candidate results
to a given query. For a subset of candidate results S ⊆ P with |S| = K, the
global diversity is the maximum dissimilarity between any result in P\S and
its most similar result in S. Then, the global-and-local diversity integrates the
aggregated dissimilarity between the K candidates in S together. As a result,
the tri-criteria approach that applies global-and-local diversification will return
more reasonably diversified relevant results.

For example, we visualize a set of candidate results as dots according to their
dissimilarity/distance to each other in a 2D space in Fig. 1. The red dots are the
ten results returned by our diversification approach. The green circles are used
to visualize the coverage of returned results (i.e., red dots as centers), and their
radius are actually their maximum dissimilarity to the blued dots that are more
similar to them than other red dots. There is a red dot with a very small circle
that is too close to two other red dots in Fig. 1(a), because only global diversity
is considered. Thus, many blue dots in the middle of the space are far away from
the red dots. In contrast, we can see that the distribution of red dots chosen by
global-and-local diversification in Fig. 1(b) is more reasonable.

To address the problem of tri-criteria approach, we propose two heuristic
algorithms. The first one adopts a greedy methodology like the classical bi-
criteria approach MMR, namely, chooses the result with the maximum marginal
gain and adds it to the final result set iteratively. Moreover, a critical pruning
technique is also proposed to improve the efficiency. The second one is a vertex
substitution algorithm that optimizes the returned result set of the first algo-
rithm by substituting one of its results with another result not belong to the final
result set iteratively. For finding the optimal substitution quickly, we present a
dedicated algorithm and the corresponding data structures.

Our contributions are summarized as follows.

– We firstly define global diversity and global-and-local diversity for bi-criteria
approach, and formalize a novel tri-criteria problem.

– We propose two heuristic algorithms, greedy search and vertex substitution,
and several optimization techniques to solve the problem.

– We perform comprehensive experiments on three real datasets. The experi-
mental results show that global-and-local diversification is more effective than
local diversification and global diversification. Moreover, our algorithms and
optimization techniques can improve the efficiency significantly.

The rest of this paper is organized as follows. Section 2 introduces the for-
mulation of problem. Section 3 introduces the greedy search algorithm. Section 4
introduces the vertex substitution algorithm. Section 5 introduces the experi-
ments. Lastly, Sect. 6 concludes the paper.
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(a) global diversity. (b) global-and-local diversity

Fig. 1. A comparison between global diversification and global-and-local diversification.
(Color figure online)

2 Problem Formulation

Let P be a set of objects matched by a user query and S ⊂ P with |S| = K be
the set of objects returned by diversification from P . We denote by oi ∈ S and
pi ∈ P\S an object chosen as the diversified result and an object not chosen as
the diversified result, respectively. We refer to oi ∈ S as a diverse object.

We measure the dissimilarity between two objects using a user-defined dis-
tance function dis : P ×P �→ [0, 1]. The specific definition of dis depends on the
applications. For example, Jaccard distance based on label and Cosine distance
based on TF/IDF are often used for information retrieval. In particular, we use
N(oi) ⊂ P\S to denote the set of neighbors of an object oi ∈ S, each of which
is an object pi ∈ P\S that is closer to oi than any other object in S\oi. We call
oi the center of pi ∈ N(oi). The formal definition of N(oi) is given as follows.

N(oi) = {pi|dis(pi, oi) ≤ dis(pi, oj),∀oj ∈ S ∧ oj 
= oi} (1)

Given a set of neighbors N(oi) of oi, we denote by roi the maximum distance
between oi and each neighbor pi ∈ N(oi), and by r the maximum value of roi
for all oi ∈ S. Thus we have

r = max
oi∈S

roi = max
oi∈S

max
pi∈N(oi)

dis(oi, pi) (2)

Moreover, we denote by d the minimum distance between each pair of objects
in S. Thus we have

d = min
oi,oj∈S,oi �=oj

dis(oi, oj) (3)

The r and d are actually the metrics of global diversity and local diversity
respectively. For a diversified result set, the shorter the r the better the global
diversity, and the longer the d the better the local diversity. In addition, we
denote by weightoi ∈ [0, 1] the relevance of oi to the query. Then we define the
optimal result set Sg with respect to global diversity and the the optimal result
set Sg+l with respect to global-and-local diversity as follows.
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Definition 1 (Sg). Given a set of objects P matched by a given query and an
integer K � 1, a set of objects Sg is optimal with respect to global diversity if
and only if

1. Sg ⊂ P ;
2. |Sg| = K;
3. fg = µ

∑
oi∈Sg

weightoi/K − (1 − µ)r is maximized.

where µ ∈ (0, 1) is the weight of relevance.

With the objective function fg, the objects in Sg should be as relevant to the
query as possible and also as similar to the other objects in P\Sg as possible.
Thereby, each object in P\Sg can have at least a relevant representative that is
close to it in semantics in Sg.

Definition 2 (Sg+l). Given a set of objects P matched by a given query and
an integer K � 1, a set of objects Sg+l is optimal with respect to global-and-local
diversity if and only if

1. Sg+l ⊂ P ;
2. |Sg+l| = K;
3. fg+l = µ 1

K

∑
oi∈Sg

weightoi − (1 − µ)(r − d) is maximized;

where µ ∈ (0, 1) is the weight of relevance.

The difference between the objective functions of Sg+l and Sg is that the
objects in Sg+l should also be as dissimilar to each other as possible. Therefore,
Sg+l is optimal with respect to tri-criteria.

Lastly, we define the two problems to be addressed in this paper. The first one
is global diversification, and the second one is global-and-local diversification.

Problem 1. Given a set of objects P and an integer K � 1, find the optimal
subset Sg ⊂ P with respect to global diversity.

Problem 2. Given a set of objects P and an integer K � 1, find the optimal
subset Sg+l ⊂ P with respect to global-and-local diversity.

In order to find an exact solution to the above problems, we need to traverse
the whole solution space, the size of which is CK

|P |. Moreover, evaluating the
objective function for each solution costs O(K|P |) time according to Definitions 1
and 2. Thus, the total time complexity of the proposed problems is O(K|P |∗|P |!

(K−1)! ).

3 Greedy Search Algorithm

We present a greedy search algorithm to address the proposed problems in this
section. The basic greedy algorithm iteratively selects the optimal object into
the result set, which maximizes the objective value of the current set, until there
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have been K objects in the set, so that it can obtain a relatively reliable solution
to the problems avoiding traversing the whole solution space.

From Eq. (2), we can know for each diverse object oi selected into S, the
basic greedy algorithm has to traverse all pi ∈ P\S to calculate the maximum
distance r. In order to further improve the efficiency of the greedy algorithm, we
propose a pruning method to avoid repeatedly calculating the maximum distance
r of the objective function. The pruning method is based on two properties we
observe. To demonstrate the properties, we need the following two definitions.
We denote by center(p) the nearest diverse object o of an object p. The critical
object denoted as ∗p is defined as followed:

∗ p = arg max
pi∈P\S

r (4)

Property 1. If we add an diverse object to S, the r of S decreases or does not
change.

Proof. First, if the critical object ∗p does not change when a new diverse
object is added, no matter its center diverse object, denoted by center(∗p),
changes or not, it is easy to know that dis(∗p, center(∗p)) ≤ r. Second, if ∗p
changes, we denote by ∗pnew the new critical object. If its new center diverse
object centernew(∗pnew) is the new diverse object onew added to S, we denote
the previous center of ∗pnew by centerpre(∗pnew). We have dis(∗pnew, onew) <
dis(∗pnew, centerpre(∗pnew)). Because dis(∗pnew, centerpre(∗pnew)) ≤ r, we have
dis(∗pnew, onew) < r which means r decreases. If centernew(∗pnew) is the diverse
object denoted by opre in previous S, we have dis(∗pnew, opre) ≤ r which means
the r does not change or decrease. In summary, we prove the property.

Property 2. If r decreases due to adding a new object to S, the new diverse
object onew must be closer to the critical object ∗p than the previous center
diverse object of ∗p.
Proof. Assume that when r decreases, the new diverse object onew is not closer
to ∗p than its previous center centerpre(∗p). We can deduce that the center of
∗p does not change. First, if ∗p is still the critical object, r does not change. This
contradicts the condition that r decreases. Second, we denote the new critical
object by ∗pnew, ∗pnew 
= ∗p. If its new center diverse object centernew(∗pnew) is
the new diverse object onew added to S, we denote the previous center of ∗pnew
by centerpre(∗pnew). We have dis(∗pnew, onew) < dis(∗pnew, centerpre(∗pnew)).
Since dis(∗pnew, centerpre(∗pnew)) ≤ dis(∗p, centerpre(∗pnew)), we deduce that
dis(∗pnew, onew) ≤ dis(∗p, centerpre(∗pnew)). However, since ∗pnew is the critical
object, we have dis(∗pnew, onew) ≥ dis(∗p, centerpre(∗pnew)). They are paradox-
ical. If its new center diverse object centernew(∗pnew) is the diverse object opre
in previous S, we have dis(∗pnew, opre) ≤ dis(∗p, centerpre(∗p)). This also con-
tradicts that ∗pnew is the critical object. So the assumption does not hold. The
property has been proved.
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Algorithm 1. Greedy Search.
Require: a matched object set P , a real positive number K
Ensure: a final result set S
1: candidateSet ← P , topSet ← ∅, r ← ø
2: for i = 1 to K do
3: for all p ∈ candidateSet do
4: if |topSet| == 0 then
5: for all p′ ∈ candidateSet, p′ �= p do
6: if dis(p, p′) > r then
7: r ← dis(p, p′)
8: ∗p′ ← p′

9: end if
10: end for
11: else if dis(p, ∗p) < dis(C(∗p), ∗p) then
12: for all p′ ∈ candidateSet do
13: tempR ← min{dis(p′, C(p′)), dis(p′, p)}
14: if tempR > r then
15: r ← tempR
16: ∗p′ ← p′

17: end if
18: end for
19: else
20: r ← dis(C(∗p), ∗p)
21: end if
22: calculate the function score f(p)
23: if f(p) > f(o) then
24: o ← p, f(o) ← f(p)
25: end if
26: end for
27: topSet.add(o),candidateSet.remove(o)
28: update the current critical object ∗p, ∗p ← ∗p′

29: update the index C and T
30: end for
31: S ← topSet
32: return S

With Properties 1 and 2, we can know that if the new diverse object is not
closer to the critical object ∗p than the previous center diverse object of ∗p, the
r of S must not change. Therefore, we can avoid recalculating r for some new
diverse objects which are not closer to the critical object ∗p than the previous
center diverse object of ∗p. This greatly improves the efficiency of the algorithm
when |P | is particularly large since it costs O(|P |) to calculate r. The worst
time complexity of the algorithm for Problem 2 is O(K|P |2). The average time
complexity for Problem 2 is close to that for Problem 1, namely, O(K|P |).

Algorithm 1 gives the pseudo code of our greedy algorithm. In the
Algorithm 1 we use some indexes to reduce the time complexity. C is an index
which records the nearest diverse object o of each object p, and T records the
nearest other diverse object of each diverse object o. topSet is used to save the cur-
rently selected diverse object and candidateSet is used to save the other objects.
The algorithm selects the diverse object into topSet one by one until the |topSet|
reaches K. At the beginning, when there is no object in topSet, the algorithm
adds the object farthest from other objects (line 4–10). In each iteration, the algo-
rithm firstly decides whether the new diverse object is closer to the critical object
∗p than the previous center diverse object of ∗p (line 11). If true, the algorithm
retrieves r by traversing all object in candidateSet (line 12–18). Otherwise, r is
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Fig. 2. An example of greedy-based search. (Color figure online)

equal to the distance between the critical object ∗p and the center diverse object
of ∗p, namely, dis(C(∗p), ∗p) (line 20). Then, the algorithm calculates the func-
tion score and selects the object o into topSet which makes the function score f
maximal (line 22–27). At the end of iteration, the algorithm updates the critical
object ∗p and the index T and C of which time complexity is O(|K|) and O(|P |)
(line 28–29). Finally, a final result subset S will be returned until it loops K times
(line 32).

Example 1. Figure 2 shows an example of greedy based search. There are four
objects in P = {p1, p2, p3, p4}. The distance between objects in P and the weight
of each object are shown in Fig. 2(a). In the Fig. 2(b–h), the red point is the object
that has been selected to be a diverse object temporarily. The critical object is
the object furthest from the diverse object. For example, in Fig. 2(b), p2 is the
diverse object and p4 is the corresponding critical object which determines that
r = 0.95. Assume µ = 0.3. We have fg(b) = fg+l(b) = −0.395, fg(c) = fg+l(c) =
−0.44, fg(d) = fg+l(d) = −0.485, fg(e) = fg+l(e) = −0.39. So after the first iter-
ation, p1 is picked into the topSet. In the next iteration, fg(f) = −0.235, fg(g) =
−0.17, fg(h) = −0.42 and fg+l(f) = 0.395, fg+l(g) = 0.39, fg+l(h) = 0.07. For
the Problem 1, the p3 is picked and for the Problem 2, the p2 is picked.

4 Vertex Substitution Algorithm

Let X = {o1, o2, ..., oK} denote a feasible solution of the problem we defined.
The vertex substitution neighborhood of X, denoted as Nor(X), is obtained by
replacing, in turn, each diverse object belonging to the topSet by each object in
the candidateSet. Thus, the cardinality of Nor(X) is |K| ∗ (|P | − |K|). For a
certain object o ∈ candidateSet, Noro(X) is obtained by replacing each diverse
object belonging to the topSet by the object o. The cardinality of Noro(X) is
|K|. Our approach finds the best solution X

′ ∈ Noro(X). If fg(X
′
) > fg(X) or
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Algorithm 2. Vertex Substitution.
Require: a initial result set topSet, a candidate object set candidateSet
Ensure: a final result set S
1: while ∃p ∈ candidateSet,∃o ∈ topSet, f(p) > f(o) do
2: for all in ∈ candidateSet do
3: out ← ø
4: rin ← 0, Ro ← ø, Rout ← ø
5: for all p ∈ candidateSet do
6: if dis(p, in) < dis(p, C(p)) then
7: if dis(p, in) > rin then
8: rin = dis(p, in)
9: end if
10: else
11: if dis(p, C(p)) > Ro(C(p)) then
12: Ro(C(p)) = dis(p, C(p))
13: end if
14: Rout(C(p)) = max{Rout(C(p)),min{dis(p, in), dis(p, SC(p))}}
15: end if
16: end for
17: ro1 = maxo∈topSet Ro(o)
18: co = argmaxo∈topSet Ro(o)

19: ro2 = max
o

′ ∈topSet&o
′ �=co

Ro(o
′
)

20: for all o ∈ topSet do
21: if o == co then
22: r = max{rin, ro2, Rout(o)}
23: else
24: r = max{rin, ro1, Rout(o)}
25: end if
26: calculate the current function score f(o)
27: if f(o) > fmax then
28: out ← obj, fmax ← f(o)
29: end if
30: end for
31: if f increase then
32: candidateSet.remove(in), candidate.add(out)
33: topSet.remove(out), topSet.add(in)
34: end if
35: end for
36: update the index C, SC and T
37: end while
38: S ← topSet
39: return S

fg+l(X
′
) > fg+l(X), a replacement is made (X ←− X

′
), a new neighborhood

Nornew(X) is defined, and the process is repeated. Otherwise, continue to try
the next object in candidateSet. If the solution cannot be improved eventually,
the procedure stops. Since it costs too much time to calculate r, we apply a
method to quickly retrieve r. The pseudo codes is given in the Algorithm 2.

Compared to greedy based search algorithm, it can usually gives a better
solution with higher fg or fg+l. Experiments show that it can usually improve
the result of greedy based algorithm when it uses the solution of the greedy
based algorithm as the initial solution.

Example 2. Figure 3 shows an example of improving the solution of greedy
based algorithm through vertex substitution. There are four objects in P =
{p1, p2, p3, p4} with their corresponding weight and the distance between each
other. Figure 3(a) is the solution of the greedy based search algorithm. The
topSet is composed of red points. Figure 3(b) is the solution that replacing p1
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Fig. 3. Improve the solution of greedy based algorithm through vertex substitution.

with p2 into the topSet. Assume µ = 0.5. We have fg(a) = 0.375, fg+l(a) = 0.825
and fg(b) = 0.4, fg+l(b) = 0.85. Obviously Fig. 3(b) is a better solution whether
it is Problems 1 or 2.

In the Algorithm 2, there are K possible replacements by replacing each
diverse object in topSet by this object. We will find the best solution X

′
and if

fg(X
′
) > fg(X) or fg+l(X

′
) > fg+l(X) (X is the original solution), a replace-

ment is made. In order to calculate the f of each solution, we use the following
data structure shown in Table 1.

Table 1. Data structure.

Character Meaning

SC(p) the second nearest diverse object o of an object p ∈ candiateSet

in the new diverse object added to the topSet

rin the radius of the new diverse object in

Ro(o) the current radius of the original diverse object o when in is added to topSet

co argmaxo∈topSet Ro(o)

ro1 maxo∈ topSet Ro(o)

ro2 max
o

′ ∈ topSet&o
′ �=co

Ro(o
′
)

out the diverse object that is selected to be deleted from topSet

Rout(o) maxp∈N(o)∪o dis(p, C(p)), where object o is selected as out

Algorithm 2 will continually replace the result in topSet until the function
score f cannot increase. Firstly, the algorithm updates the radius rin of the new
diverse object in, the current radius Ro(o) of all original diverse object o when in
is added to topSet and the radius Rout(o) if o is removed from topSet (line 5–16).
Then, it finds the maximum value ro1 from Ro(o) and the corresponding object
co (line 17–18). What’s more, it finds the second maximum value ro2 (line 19).
Thus, we can avoid repeating traversing all object in candidateSet to calculate
r in the following replacement. The algorithm traverses the diverse object o in
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topSet to find the object out that the function score f is the maximum if out
is removed from the topSet according to whether o is co (line 20–30). At the
end of iteration, if the function score is greater than the origin score, the new
diverse object in will be added to topSet and out will be removed (line 31–34).
Before determining whether the function score f is the maximum, it updates the
index C,SC and T (line 36). Finally, the algorithm returns the final result set
S (line 39). The time complexity is O(|P |2).

inRo(4)

1

2

3

4
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6

7

8

9

10
11

13

12
14

15

rin
Ro(10)

Ro(13)

(a)

(b)

outRout(10)

in

(c)

ro2

ro1
rin

Fig. 4. Example of replacement.

Example 3. Figure 4 shows a simple example to quickly calculate r with the
data structure rin,Ro(), ro1, ro2, Rout(). Figure 4(a) shows that there are 15
objects in P , and the topSet = {4, 10, 13}. In the Fig. 4(b), object 7 is added
to the topSet. rin is the largest distance between in and the object it covered.
Ro() records the largest distance between the diverse object and the object it
covered. In the Fig. 4(c), Rout() records the largest distance between an object
and its currently center diverse object when its original center diverse object is
deleted from topSet. According to the Ro(), we can find the ro1 and ro2. As
shown in the Fig. 4(c), out 
= 13, thus, r = max{ro1, rin,Rout(out)}. Otherwise,
if out == 13, r = max{ro2, rin,Rout(out)}.

5 Experiments

In this section we evaluate the performance of our proposed algorithms using
real datasets. The experiments are performed on a Windows 2012 server with
3.3 GHz CPU and 128 GB memory. Our algorithms are implemented in Java 1.7.

Datasets and Algorithms. We evaluate the performance of our algorithms
with varied parameters using two real point datasets. Moreover, a real document
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dataset is used to evaluate the performance of our algorithms on real document
search. The two real point datasets, “Brightkite” and “Gowalla”1, are the collec-
tion of 2-dimensional points representing geographic information. We randomly
and uniformly assign weights to objects in real point datasets which are nor-
malized in [0,1]. We use the normalized Euclidean distance which can be seen
as dissimilarity for real point datasets. The real document dataset, “Reuters”2,
contains 21,578 news assigned with one or multiple tags. We measure the sim-
ilarity of documents using the TF*IDF score normalized by the length of the
corresponding document.

Table 2 summarizes the participant algorithms. The first four are greedy
search algorithms to solve Problems 1 or 2. The difference is whether the algo-
rithm applies critical object ∗p for optimization. The next four are vertex sub-
stitution algorithms to solve Problems 1 or 2 with different initial solution. The
last one is the classic local diversification algorithm MMR. The parameter µ is
set to 0.2 in all the following experiments.

Table 2. Participant algorithms.

Algorithm Abbreviation Description

Greedy-Basic-Problem1 GBP1 Do not apply critical object ∗p for
optimization

Greedy-Basic-Problem2 GBP2 Do not apply critical object ∗p for
optimization

Greedy-Optimized-Problem1 GOP1 Apply critical object ∗p for
optimization

Greedy-Optimized-Problem2 GOP2 Apply critical object ∗p for
optimization

Substitution-RandomInitialValue-Problem1 SRP1 The initial solution is randomly
assigned

Substitution-RandomInitialValue-Problem2 SRP2 The initial solution is randomly
assigned

Substitution-GreedyInitialvalue-Problem1 SGP1 Apply the solution of greedy
algorithm as the initial solution

Substitution-GreedyInitialvalue-Problem2 SGP2 Apply the solution of greedy
algorithm as the initial solution

Maximal-Marginal-Revenue MMR Algorithm based on maximal
marginal revenue

Exp-1. In this experiment we test the effectiveness of our optimization strategy
in the greedy-based search algorithm on both point datasets. In the previous
section, we mention that the critical object ∗p can be used to save much overhead
because adding an object into the topSet far away from the critical object do not

1 https://snap.stanford.edu/data.
2 http://kdd.ics.uci.edu/databases/reuters21578/.

https://snap.stanford.edu/data
http://kdd.ics.uci.edu/databases/reuters21578/
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Fig. 5. Test optimization strategy of greedy-based search.
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Fig. 6. Problem 1: Gowalla.
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Fig. 7. Problem 1: Brightkite.

change r. The test results are shown in Fig. 5 and all the experimental results
demonstrated in the following are actually the average of 50 sets of experiments.

In Fig. 5(a) and (b), we set the dataset size to 10000 and 20000 respectively.
When K increases, the response time of all algorithms increases. GBP1 and
GBP2 increase sharply and GOP1 and GOP2 keep stable. In Fig. 5(a), when
K increases to 100, the response time of GBP1 is 26 times that of GOP1 and
GBP2 is 12 times that of GOP2. In Fig. 5(b), when K increases to 120, the
multiples are 11 and 19 respectively. GOP1 and GOP2 take seconds or tens of
seconds while GBP1 and GBP2 may take a few minutes. This proves that our
optimization strategy can effectively reduce the time overhead of the algorithm
when K increases.

Exp-2. In this experiment we test three algorithms GOP1, SRP1 and SGP1
for Problem 1. We also get the local-diversified results obtained by the method
MMR under the same conditions. We compare the results of the four algorithms
on r, weight, objective function value fg and average response time of diverse
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objects on both point datasets. The dataset size is set to 5000 and all the exper-
imental results demonstrated in the following are actually the average of 50 sets
of experiments.

Figures 6 and 7 show the testing results with varied K. Figures 6(a) and 7(a)
show the comparison of r of the four algorithms. Algorithm MMR is the worst
for the optimization of r. Because the objective function of MMR focus on opti-
mizing the distance between diverse objects and weight of diverse objects. This
causes that there is an object not similar to any diverse objects in the return set.
Thus, the return set may lack representativeness. Algorithms SRP1 and SGP1
perform best. In Figs. 6(b) and 7(b), for optimizing weight of diverse objects,
GOP1, SRP1 and SGP1 also perform better than MMR. When K increases, r
and weight of diverse objects decrease. This shows that a user can get more rep-
resentative results by increasing K although it may introduce some less relevant
results into the return set.

From Figs. 6(c) and 7(c), we can see that when we use the objective function
of global-diversity to measure the results of local-diversity, the value of MMR
is the worst obviously. Figures 6(d) and 7(d) show the response time of the four
algorithms. GOP1 and MMR perform best. Algorithm SGP1 is much faster than
SRP1. The difference between the algorithm SGP1 and SRP1 is that the former
applies the solution of greedy-based algorithm as the initial solution and the
initial solution of the latter is randomly assigned. Although SGP1 costs the
time of both greedy-based algorithm and vertex substitution-based algorithm,
it saves much more time by applying less vertex substitution. Since the greedy-
based algorithm has little time overhead compared with the vertex substitution-
based algorithm, applying the vertex substitution-based algorithm to optimize
the solution of the greedy-based algorithm is a good choice.
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Exp-3. In this experiment we test three algorithms GOP2, SRP2 and SGP2 for
Problem 2. Here we also compare our results with the results obtained by MMR.
We compare the results of the four algorithms on r, d, weight, objective function
value fg+l and average response time of diverse objects on both point datasets.
The dataset size is set to 5000 and all the experimental results demonstrated in
the following are actually the average results of 50 sets of experiments.

Figures 8 and 9 show the testing results with varied K. We have the following
observations.

– In Figs. 8(a) and 9(a), when K increases, r decreases. However, in the
Brightkite dataset, as K increases, r of all four algorithms eventually con-
verges. In the Gowalla dataset, algorithm SGP2 and GOP2 always perform
best and MMR perform worst. This may be because the objects of the
Brightkite dataset are distributed more evenly in space.

– In Figs. 8(b) and 9(b), algorithm SRP2 has a poor performance, especially
when K increases. It shows that the randomized initial solution is not good for
vertex substitution-based algorithm to solve the Problem 2. In Figs. 8(c) and
9(c), when K increases, the average weight of SGP2, SRP2 and MMR keeps
stable and the average weight of algorithm GOP2 decreases. From Figs. 8(e)
and 9(e), we can conclude that SGP2 is currently the best way to solve Prob-
lem 2. In summary, SRP2 performs worst for solving the Problem 2 and it
is even worse than MMR. Thus it is important and vital to give a relatively
good initial solution for the vertex substitution-based algorithm.

– In Figs. 8(d) and 9(d), when K increases, the response time of GOP2 and
MMR keeps stable while the response time of SRP2 and SGP2 increases.
Similar to Problem 1, although SGP2 costs the time of both greedy-based
algorithm and vertex substitution-based algorithm, it still saves much more
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Table 3. Results of keyword search results on Reuters.

Keyword All tag number K Tag number

MMR SGP1 SGP2

oper 3 3 2 2 3

7 3 2 3

16 3 3 3

payout 15 26 11 4 15

238 15 13 15

260 15 15 15

china 91 10 11 7 19

50 33 15 53

100 50 36 78

paris 145 50 44 42 59

100 77 57 103

150 108 89 118

today 322 100 76 73 80

200 124 104 140

300 145 136 164

time by applying less number of vertex substitution. In summary, applying
good initial solution to the vertex substitution-based algorithm can not only
improve the value of the objective function, but also effectively reduce the
response time.

Exp-4. In this experiment we evaluate the effectiveness of algorithms for respec-
tively traditional local diversity, Problems 1 and 2, namely, global diversity and
global and local diversity in real document dataset “Reuters”. From the above
experiments, we can find that SGP1 and SGP2 are the best solutions to Prob-
lems 1 and 2. Thus, we compare the representative local method MMR and the
best solution to Problems 1 and 2, i.e. SGP1 and SGP2 in keyword search.

Table 3 shows the performance of MMR, SGP1 and SGP2 on keyword search
of documents. From the table, we have the following observation. When we select
a special keyword such as “oper” which only corresponds to three tags, namely,
“canada”, “earn” and “usa”, SGP2 can obtain the results of all tags with K set
to 3 while MMR and SGP1 can only obtain the results with two tags. When K
is set larger as to 7, MMR can obtain all tags. SGP1, by contrast, has to set K
to be 16 until it obtains all tags. Likewise, keyword “payout” is the same. We
find that K has to be set terribly large with not a lot overall tags for MMR and
SGP1 if we want to get the results of all tags. Thus, we can conclude that SGP2
can return the least results with all tags. In other words, SGP2 can cover all
keyword semantics with least results.



480 M. Zhong et al.

For a great many overall tags of keyword such as “china”, “paris” and
“today”, we compare the tag number of different algorithms with varied K. We
find that SGP2 always returns results with more tags at the same K. Although
in experiment 2 SGP1 performs better than MMR, in this experiment MMR
takes a second place while SGP1 is the worst. Because the solution to Problem 1
can only find the representative results, which cannot ensure that the returned
results are dissimilar. By contrast, the algorithm for local diversity is to find the
different results as far as possible, which can include more tags easily. Thus, we
can conclude that SGP2 can contain more tags or semantics in results of the
same number. Overall, the algorithm SGP2 integrating both local and global
diversity can find more different and representative results.

6 Conclusion

In this paper, we study a novel tri-criteria optimization problem that aims to
find a subset of K query results with the optimal linear summation of relevance,
local diversity and global diversity. We formalize the problem and present two
heuristic algorithms with sophisticated optimization techniques to address it. We
perform experiments on real datasets. Compared with the previous bi-criteria
approaches that only consider the local diversity, our approach can improve the
global diversity of final results with an extra time cost, which can be reduced
remarkably by our algorithms. Consequently, we establish an extended general
query result diversification framework.

Acknowledgement. This paper was supported by National Natural Science Founda-
tion of China under Grant No. 61202036, 61502349 and 61572376 and Natural Science
Foundation of Hubei Province under Grant No. 2018CFB616.

References

1. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results.
In: WSDM, pp. 5–14 (2009)

2. Angel, A., Koudas, N.: Efficient diversity-aware search. In: SIGMOD, pp. 781–792
(2011)

3. Capannini, G., Nardini, F.M., Perego, R., Silvestri, F.: Efficient diversification of
web search results. VLDB 4(7), 451–459 (2011)

4. Carbinell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reorder-
ing documents and producing summaries. SIGIR 51(2), 335–336 (1998)

5. Demidova, E., Fankhauser, P., Zhou, X., Nejdl, W.: DivQ: diversification for key-
word search over structured databases. In: SIGIR, pp. 331–338 (2010)

6. Deng, T., Fan, W.: On the complexity of query result diversification. ACM Trans.
Database Syst. 39(2), 15 (2014)

7. Drosou, M., Pitoura, E.: Disc diversity: result diversification based on dissimilarity
and coverage. VLDB 6(1), 13–24 (2012)

8. Fraternali, P., Martinenghi, D., Tagliasacchi, M.: Top-k bounded diversification.
In: SIGMOD, pp. 421–432 (2012)



Towards Both Local and Global Query Result Diversification 481

9. Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In:
WWW, pp. 381–390 (2009)

10. Hu, S., Dou, Z., Wang, X., Sakai, T., Wen, J.: Search result diversification based
on hierarchical intents. In: CIKM, pp. 63–72 (2015)

11. Liu, Z., Sun, P., Chen, Y.: Structured search result differentiation. VLDB 2(1),
313–324 (2009)

12. Qin, L., Yu, J.X., Chang, L.: Diversifying top-k results. VLDB 5(11), 1124–1135
(2012)

13. Vee, E., Shanmugasundaram, J., Amer-Yahia, S.: Efficient computation of diverse
query results. IEEE Data Eng. Bull. 32(4), 57–64 (2009)

14. Vieira, M.R., et al.: On query result diversification. In: ICDE, pp. 1163–1174 (2011)
15. Zhao, F., Zhang, X., Tung, A.K.H., Chen, G.: Broad: diversified keyword search

in databases. VLDB 4(12), 1355–1358 (2011)
16. Zheng, K., Wang, H., Qi, Z., Li, J., Gao, H.: A survey of query result diversification.

Knowl. Inf. Syst. 51(1), 1–36 (2017)



Social Network



Structured Spectral Clustering
of PurTree Data

Xiaojun Chen1(B) , Chao Guo1, Yixiang Fang2, and Rui Mao1

1 College of Computer Science and Software, Shenzhen University, Shenzhen,
People’s Republic of China

{xjchen,mao}@szu.edu.cn, guo28296@vip.qq.com
2 Department of Computer Science, University of Hong Kong,

Pok Fu Lam, Hong Kong
yxfang@cs.hku.hk

Abstract. Recently, a “Purchase Tree” data structure is proposed to
compress the customer transaction data and a local PurTree Spectral
clustering method is proposed to recover the cluster structure from the
purchase trees. However, in the PurTree distance, the node weights for
the children nodes of a parent node are set as equal and the difference
between different nodes are not distinguished. In this paper, we propose
a Structured PurTree Subspace Spectral (SPSS) clustering algorithm
for PurTree Data. In the new method, we propose a PurTree subspace
similarity to compute the similarity between two trees, in which a set
of sparse and structured node weights are introduced to distinguish the
importance of different nodes in a purchase tree. A new clustering model
is proposed to learn a structured graph with explicit cluster structure.
An iterative optimization algorithm is proposed to simultaneously learn
the structured graph and node weights. We propose a balanced cover
tree for fast k-NN searching during building affinity matrices. SPSS was
compared with six clustering algorithms on 10 benchmark data sets and
the experimental results show the superiority of the new method.

Keywords: Transaction data · Clustering · Structure clustering

1 Introduction

Transaction data is the collection of daily shopping transactions of customers at a
retail company. A transaction is a sequence of products (items) bought by a cus-
tomer in one basket. Clustering of customer transaction data is one of the most
critical tasks in successful modern marketing and customer relationship manage-
ment [9]. It is used to categorize customers into different groups based on their
purchase behaviors, so that the customers in the same cluster bought more simi-
lar products to each other than to those in other clusters. The early segmentation
methods use general variables like customer demographics, lifestyle, attitude and
psychology, because such variables are intuitive and easy to operate [6]. With
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the rapid increase of customer behavior data, the new study turns to use prod-
uct specific variables such as items purchased [7,12,16]. Although some methods
were proposed to segment customers based on the item set data [13,15,16], the
huge amount of item sets hinders the usage of these methods in real applications.

Recently, Chen et al. proposed a PurTreeClust clustering algorithm for cus-
tomer segmentation from large-scale transaction data [2,3]. In this algorithm,
a product tree is used to organize the categories in the transaction data, in
which the leaf nodes denote products and the internal nodes represent product
categories. A purchase tree is built for each customer, in which each purchased
product corresponds to a leaf node in the product tree. A PurTree distance
metric was defined to measure the difference between two purchase trees, and a
PurTreeClust method was proposed to cluster purchase trees. The PurTreeClust
algorithm first builds a cover tree for indexing the purchase tree data set, then
selects initial cluster centers with a fast density estimation method. Finally, the
clustering result is obtained by assigning each customer to its nearest cluster cen-
ter. Chen et al. further proposed a Local PurTree Spectral clustering method,
which can learn an adaptive similarity matrix from the local distances and the
level weights in the PurTree distance simultaneously [4]. In their method, the
node weights in the PurTree distance are set as equal for the children nodes of
a parent node and a parameter γ is used to control the level weights. However,
since a product tree often consists of hundreds of thousands nodes, it is desired
to learn a set of sparse node weights such that only a few important nodes are
considered.

In this paper, we propose a clustering algorithm to address the above prob-
lems, namely Structured PurTree Subspace Spectral (SPSS). A PurTree sub-
space similarity is proposed to compute the similarity between two trees, in
which a set of sparse node weights are introduced to distinguish the impor-
tance of different nodes in a purchase tree. The new model aims to learn a
structured graph that best approximates the input node affinity matrices and
contains explicit cluster structure. We present an iterative optimization algo-
rithm to optimize the proposed model, in which the structured graph and node
weights are simultaneously learned. A balanced cover tree is proposed for fast
k-NN searching during building affinity matrices. A series of experiments were
conducted on 10 benchmark data sets and the experimental results show the
superior performance of SPSS.

The rest of this paper is organized as follows. Notations and preliminaries are
given in Sect. 2. We propose the PurTree subspace distance in Sect. 3, and the
SPSS algorithm in Sect. 5. The experimental results and analysis are presented
in Sect. 6. Conclusions and future work are given in Sect. 7.

2 Notations

Let T be a tree with nodes N(T ) and edges E(T ) ∈ N(T ) × N(T ). The root
of T is denoted by root(T ). A node without children is a leaf, and otherwise
an internal node. For an edge {v, w} ∈ E(T ), node v is the parent and w is a
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child, Pw(T ) = v and w ∈ Cw(T ). The descendants of v, the nodes in all paths
reachable from v to a leaf node, is denoted as des(v). The level of a node is
defined by 1 + (the number of edges between the node and the root). N l(T )
represents nodes in the l-th level of T . The height of tree T , denoted by H(T ),
is the number of edges on the longest downward path between the root and a
leaf node.

Let Ψ be a rooted tree used to systematically organize the items with multiple
levels of categories, in which each leaf node represents an item and each internal
node represents a category. All leaf nodes in Ψ are assumed to have equal depth
in [3]. A purchase tree ϕ is used to illustrate the items bought by a customer,
which is a subgraph of Ψ , i.e., N(ϕ) ⊆ N(Ψ), E(ϕ) ⊆ E(Ψ). Given a leaf node
u ∈ N(ϕ), the path from root(ϕ) to u also exists in Ψ . For each purchase tree
ϕ, we have H(ϕ) = H(Ψ).

3 PurTree Subspace Similarity

Given a product tree Ψ and a set of n purchase trees Φ = {ϕ1, ..., ϕn} where
ϕi ∈ Ψ , let H(Φ) be the height of these purchase trees, root(ϕ) be the empty
root node of the purchase tree. The PurTree distance is defined as follows [3]

d(ϕi, ϕj) =
H(Φ)∑

l=1

βl

∑

v∈N l(ϕi)∪N l(ϕj)

αvδv(ϕi, ϕj) (1)

where δv(ϕi, ϕj) is the Jaccard distance of ϕi and ϕj on an internal node v,
which is defined as

δv(ϕi, ϕj) = 1 − |Cv(ϕi)
⋂

Cv(ϕj)|
|Cv(ϕi)

⋃
Cv(ϕj)| (2)

and αv is the node weight for node v ∈ N(Ψ) and βl is the l-th level weight.
{β1, ..., βH(Φ)} is a geometric sequence with common ratio γ (γ >= 0) under
constraint

∑H(Φ)
l=1 βl = 1. In 2017, Chen et al. proposed a spectral clustering

method LPS to learn a set of optimal level weights β for the PurTree distance [4].
However, the node weights α are still set to fixed values.

In the PurTree distance [3], the node weights α are set as fixed values and a
parameter γ is used to control the level weights β. However, since a product tree
often consists of hundreds of thousands nodes, it is desired to learn a set of sparse
node weights such that only a few important nodes are considered. Moreover,
most graph-based clustering algorithms require an affinity matrix A ∈ R

n×n as
input. In this paper, we propose an approach to construct initial affinity graph
A. Given a set of n purchase trees Φ = {ϕ1, ..., ϕn} and a set of node weights
Ω = {ωv|v ∈ N(Φ)}, we define the similarity between two purchase trees ϕi and
ϕj as

aij =
H(Φ)∑

l=1

∑

v∈N l(ϕi)∪N l(ϕj)

ωvav
ij (3)
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where av
ij is the node similarity between ϕi and ϕj on node v. Ω = {ωv|v ∈

N(Φ)} consists of the node weights for the purchase tree data set Φ. To well
model the tree structure in Φ, we impose the following constraint on Ω

⎧
⎪⎨

⎪⎩

∀v ∈ N(Ψ), ωv ∈ [0, 1]∑H(Φ)
l=1

∑
v∈N l(Φ) ωv = 1∑

t∈Cv(Ψ) ωt = ωv

(4)

It is desirable to learn the affinity values of A such that smaller node distance
δv(ϕi, ϕj) corresponds to a larger node similarity sv

ij . In addition, we simply set
aii = 0. For each ai, we propose to learn sv

ij by solving the following problem

min
aT

I
1=1,ai≥0,aii=0

n∑

j=1

H(Φ)∑

l=1

∑

v∈Nl(ϕi)∪Nl(ϕj)

δv(ϕi, ϕj)a
v
ij + γ

n∑

j=1

H(Φ)∑

l=1

∑

v∈Nl(ϕi)∪Nl(ϕj)

(av
ij)

2

(5)
which can be rewritten as

min
aT

i 1=1,ai≥0,aii=0

H(Φ)∑

l=1

∑

v∈N l(ϕi)∪N l(ϕj)

∥∥∥∥a
v
i +

δv
i

2γ

∥∥∥∥
2

2

(6)

where av
i ∈ R

n×1, δv
i ∈ R

n×1 consists of {δv(ϕi, ϕ1), · · · , δv(ϕi, ϕn)}.
In real applications, we often prefer a sparse affinity matrix A. To achieve

this goal, we can learn A with the maximal γ such that the optimal solution av
i

to problem (5) has exactly k nonzero values. Let {δv
i1, · · · , δv

in} is ordered from
small to large as {dv

i,1, · · · , dv
i,n} and Mk(ϕi) contains the k-nearest-neighbors of

ϕi according to {δv
i1, · · · , δv

in}. Here, dv
i,i is set as +∞ in order to make av

ii = 0.
With a similar procedure as those in [11], we obtain the optimal affinities av

ij as
follows

av
ij =

{
dv

i,k+1−δv
ij

kdv
i,k+1−∑k

l=1 dv
i,l

ϕj ∈ Mk(ϕi)

0 otherwise
(7)

4 Fast k-NN Search with Balanced Cover Tree

In this section, we propose a balanced cover tree for fast k-nearest neighbor
searching of purchase tress during building affinity matrices.

4.1 Balanced Cover Tree

Cover tree, first invented by Beygelzimer et al., is a leveled tree data structure
for fast nearest neighbor operations in metric spaces [1]. In this paper, we extend
the original cover tree to a balanced cover tree.

Let CT be a cover tree on a data set S with base parameter α. Each level in
CT is indexed by an integer scale l which decreases from top to bottom. Let the
cover set CSl denote the set of objects in S associated with the nodes at level
l. Each object in S appears at most once in each level, but may be associated



Structured Spectral Clustering of PurTree Data 489

with multiple nodes in the tree. The basic operation to build a cover tree is
the insertion operation, which is shown in Algorithm 1. Here, Ql is a subset
of the objects at level l which may contain the new object p as a descendant.
If S consists of n objects, the computational complexity of inserting an object
is O(c6 log(n)) [1]. A cover tree can be built on a data set S by sequentially
applying Algorithm 1 to insert each object in S.

In the original paper [1], the base parameters α is fixed as 2. In this paper,
we set the base parameter α ∈ [1.62,+∞] in order to build more balanced cover
tree for fast k-nearest neighbor searching. The following theorem ensures the
correctness of Algorithm 1.

Algorithm 1. Insert (object p, cover set Ql, level l, base parameter α)
Output: true if insertion succeeds, false otherwise.
1: Set Ql−1 = {q ∈ Ql : d(p, q) ≤ αl}.
2: if Ql−1 = ∅ then
3: return false.
4: else
5: if Insert(p, Ql−1, l − 1) fails then
6: Pick q = arg minq∈Ql d(p, q).
7: if d(q, p) = 0 then
8: exit.
9: else

10: insert p as a child of q.
11: return true.
12: end if
13: else
14: return true.
15: end if
16: end if

Theorem 1. Given a cover tree CT on S, Insert(p,CS∞,∞, α) returns a cover
tree on S ∪ {p} if α ≥ 1+

√
5

2 .

Proof. If there exists an object q ∈ Ql such that d(p, q) = 0, Algorithm 1 may
be infinitely called. To avoid such infinite looping, we add step 6 to drop such
object p. If ∀q ∈ CT , d(q, p) > 0, we can easily prove that p is guaranteed to
be insert into some level in CT . The nesting and covering tree invariants can be
proved in a similar way as those for Theorem 4 in [1].

We now prove that the insertion maintains separation invariant. If p is
inserted in level l − 1, consider q ∈ CSl−1. If q ∈ Q = {C(q)|q ∈ Ql}, p can
be inserted into l − 1 level iff Ql−1 = ∅, which means that d(p, q) > αl−1. If
q /∈ Q = {C(q)|q ∈ Ql}, there must exit some parent of q in iteration l′ > l, say
q′ ∈ CSl′−1, was eliminated in step 1, which implies that d(p, q′) > αl′ . Assume
that there exists a set of {qj |l − 1 ≤ j ≤ l′ − 1} such that qj+1 is the parent
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of qj , ql′−1 = q′ and ql−1 = p. Using the covering tree invariant and triangular
inequality, we have

d(p, q) ≥ d(p, q′) −
l′−2∑

j=l−1

d(qj , qj+1) > d(p, q′) −
l′−1∑

j=l

αj > αl′ − αl′ − αl

α − 1

= αl−1 αl′−l(α2 − 2α) + α

α − 1

Since α ≥ 1+
√
5

2 and l′ − l ≥ 1, we know that αl′−l(α2−2α)+α
α−1 ≥ α(α − 1) ≥ 1.

Therefore, d(p, q) ≥ αl−1. The theorem proves.

The basic operation to build a cover tree is the insertion operation, as shown
in Algorithm 1. Here Ql is a subset of the objects at level l which may contain
the new object p as a descendant. If S consists of n objects, the computational
complexity of inserting a object is O(c6 log(n)) [1]. A cover tree can be built on
a data set S by sequently calling Algorithm 1 to insert each object in S, with a
total computational complexity of O(c6n log(n)).

Although a cover tree is defined on levels from −∞ to ∞, the objects usually
lie in a few levels. To measure the cover tree structure, we define the height of a
cover tree as

H(CT ) = tl(CT ) − bl(CT ) + 1 (8)

where tl(CT ) is the top level of CT which is defined as the highest level l such
that |CSl| ≥ 1, i.e.,

tl(CT ) = max
l

{|CSl| ≥ 1} (9)

bl(CT ) is the bottom level of CT which is defined as the highest level l such that
CRl = 100%, i.e.,

bl(CT ) = max
l

{|CSl| = n} (10)

where n is the number of objects in S.
The height of a cover tree can be measured as follows.

Theorem 2. The height of a cover tree CT built on S = {s1, ..., sn} with
metric d is bounded in H(CT ) < logα(dmax(S)

dmin(S) )+3, where dmax(S) =
maxsi,sj∈S d(si, sj) and dmin(S) = minsi,sj∈S d(si, sj).

Proof. From the covering invariant of cover tree, we have dmin(S) < αbl(CT )+1,
i.e., bl(CT ) > logα(dmin(Φ)) − 1. From the separation invariant, we have
dmax(Φ) > αtl(CT )−1, i.e., tl(CT ) < logα dmax(Φ) + 1. Then H(CT ) = tl(CT ) −
bl(CT ) + 1 < logα

dmax(S)
dmin(S) + 3.

If a cover tree consists of too few or too many levels, more distance com-
parisons will be involved during the insertion and searching operations. If the
data consists of n objects, we wish to build a balanced cover tree with hight
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approximate to log2 n. In order to build a balanced cover tree, we need to set

the base parameter as α ≈ max{ 1+
√
5

2 , dmax(S)
dmin(S)

1/(logn
2 −3)}.

To find the nearest neighbor of a point p from a cover tree CT , we descend
through the tree level by level, keeping track of a subset Qi ∈ CSi of nodes
that may contain the nearest neighbor of p as a descendant. The algorithm for
finding the k nearest neighbors of an object p from a cover tree CT is shown in
Algorithm 2, which iteratively constructs Qi−1 by expanding Qi to its children
in CSi−1 then throwing away any child q that cannot lead to the k-nearest
neighborhoods of p. Note that although the algorithm is stated using an infinite
loop over the implicit representation, it only needs to operate on the explicit
representation (Fig. 1).

Figure 2 shows an example of 4-nearest neighbors search, in which nodes in
light color represent the current found k nearest neighbors. Here, Qi, Q, R and
β are variables in Algorithm 2.

The following theorem ensures the correctness of Algorithm 2.

Algorithm 2. Find-kNN (Cover tree CT , object p, number of nearest neighbors
k, base parameter α)
1: Input: the nearest neighbor of p in CT .
2: Set Q∞ = C∞, where C∞ is the root level of CT .
3: Set R = C∞
4: for i = ∞ to -∞ do
5: Set Q′ = {Cq : q ∈ Qi}.
6: Set Q = Q′ ∪ R.
7: if |Q| ≥ k then
8: Form R with k nearest objects in Q, i.e., |R| = max k, |Q| and ∀q ∈ R and

q′ ∈ Q − R, d(p, q) ≤ d(p, q′).
9: β = maxq∈R d(p, q).

10: Form cover set Qi−1 = {q ∈ Q′ : d(p, q) ≤ β + αi

α−1
}.

11: else
12: Form cover set Qi−1 = {q ∈ Q′}.
13: end if
14: end for
15: If |Q| > k, update Q by only retaining the k-nearest neighbor of p. Return Q as

the ultimate result.

Theorem 3. Given a cover tree CT on D, Find − kNN(T, p, k) returns the
exact k nearest neighbors of p in D.

Proof. For any q ∈ CSi−1, the distance between q and any descendant q′ is
bounded by d(q, q′) ≤ ∑−∞

j=i−1 αj = αi

α−1 . If q′ is a k nearest neighbor of p, we
have d(p, q′) ≤ β. Since d is a metric, according to the triangularity, d(p, q′) ≤
d(p, q′)+d(q′, q) ≤ αi

α−1+β. Therefore, step 10 can never throw out a grandparent
of the k nearest neighbor of q. Eventually, k nearest neighbors are in Qi and step
15 returns the exact k nearest neighbors of p.
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Fig. 1. Process of finding 4 nearest neighbors in the cover tree from top to bottom by
Algorithm 2.

5 Structured PurTree Spectral Clustering

Given a product tree Ψ and n purchase trees Φ = {ϕ1, ..., ϕn}, we want to
cluster Φ into c clusters. Simultaneously, we want to learn the structured node
weights Ω to model the PurTree structure. Intuitively, the parent node is more
important than its children nodes in distinguishing the different purchase trees.
Therefore, we impose a constraint

∑
t∈Cv(Ψ) ωt = ωv on Ω such the sum of

children node weights equal to the parent node weights. The following theorem
states the properties of Ω:

Theorem 4. ∀1 ≤ l ≤ H(Φ),
∑

v∈N l(Φ) ωv = 1
H(Φ) .

Proof. ∀1 ≤ l ≤ H(Φ), we can verify that
∑

v∈N l(Φ)

ωv =
∑

v∈N l(Φ)

∑

t∈Cv(Ψ)

ωt =
∑

v∈N l+1(Ψ)

ωv

Then we have
∑

v∈N l(Φ) ωv = 1
H(Φ) .

Inspired by the work in [11], we wish to learn a new structured graph rep-
resented by an affinity matrix S = [sij ]n×n, in which sij is the probability that
two trees ϕi and ϕj are connected. In order to find c clusters from Φ, we hope
that the graph constructed from S only consists of c connected components. On
the other side, we hope that S best approximates the input affinity matrix. To
achieve this goal, we present the following problem to simultaneously learn the
node weights Ω = {ωv|v ∈ ∪H(Φ)

l=1 N l(Φ)} and the affinity matrix S

min

∥
∥
∥
∥
∥
∥

S −
H(Φ)
∑

l=1

∑

v∈Nl(ϕi)∪Nl(ϕj)

ωvA
(v)

∥
∥
∥
∥
∥
∥

2

F

+ η

H(Φ)
∑

l=1

∑

v∈Nl(Φ)

ω2
v

s.t. ST1 = 1, s 	 0,

H(Φ)
∑

l=1

∑

v∈Nl(Φ)

ωv = 1, Ω 	 0,
∑

t∈Cv(Ψ)

ωt = ωv, rank(LS) = n − c

(11)
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where {A(1), · · · ,A(
∑H(Φ)

l=1 |N l(Φ)|} is a set of node-based affinity matrices com-
puted according to Eq. (7), LS = DS − ST +S

2 is the Laplacian matrix, the degree
matrix DS ∈ R

n×n is defined as a diagonal matrix in which dij =
∑n

j=1
sij+sji

2
and η is a regularization parameter.

According to the analysis in [10], problem (11) is equivalent to the following
problem

min

∥
∥
∥
∥
∥
∥

S −
H(Φ)
∑

l=1

∑

v∈Nl(ϕi)∪Nl(ϕj)

ωvA
(v)

∥
∥
∥
∥
∥
∥

2

F

+ η
∑

v∈N(Φ)

ω2
v + 2μTr(F

TLSF) (12)

where μ is a large enough parameter.
We can apply the alternative optimization approach to solve problem (12).

5.1 Optimization of F

When S and Ω are fixed, problem (12) becomes

min
F∈Rn×c,FT F=I

Tr(FT LSF) (13)

The optimal solution F in problem (13) is formed by c eigenvectors of LS which
corresponds to its c smallest eigenvalues.

5.2 Optimization of S

When F and Ω are fixed, problem (12) becomes

min
ST 1=1,S≥0

∥
∥
∥
∥
∥
∥

S −
H(Φ)
∑

l=1

∑

v∈Nl(Φ)

ωvA
(v)

∥
∥
∥
∥
∥
∥

2

F

+ λ
n∑

i,j=1

‖fi − fj‖2
2 sij (14)

where fi ∈ R
c×1 is the transpose of the i-th row of F.

Note that problem (14) is independent between different i, so we can solve
it independently for each si (the vector form of [si1, . . . , sin]) from the following
problem

min
sT

i 1=1,sij≥0

n∑

j=1

(sij − aij)2 + λ

n∑

j=1

‖fi − fj‖22 sij (15)

Denote df
ij = ‖fi − fj‖22 and df

i ∈ R
n×1 as a vector with the j-th element as

df
ij , problem (15) can be rewritten as

min
1T si=1,sij≥0

∥∥∥∥∥si − (ai − λdf
i

2
)

∥∥∥∥∥

2

2

(16)

which has a closed-form solution and can be solved directly with the method
in [14].
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5.3 Optimization of Ω

When S and F are fixed, problem (12) becomes

min
∑H(Φ)

l=1

∑
v∈Nl(Φ) ωv=1, Ω	0,

∑
t∈Cv(Ψ) ωt=ωv

∥∥∥∥∥∥
S −

∑

v∈N(ϕi)∪N(ϕj)

ωvA(v)

∥∥∥∥∥∥

2

F

(17)

According to Theorem 4, the sum of node weights in each level is a constant
value 1

H(Φ) . Therefore, we can sequently optimize the node weights level by level.
We first let ωRoot = 1

H(Φ) . Then given an internal node t ∈ N l(Φ), we fix ωt and
solve the following problem for {ωv|v ∈ Ct}

min∑
v∈Ct

ωv=ωt,ωv≥0

∥∥∥∥∥SV −
∑

v∈Ct

ωvA(v)

∥∥∥∥∥

2

F

(18)

where SV = S − ∑
v∈N(ϕi)∪N(ϕj)

ωvA(v) +
∑

v∈Ct
ωvA(v). Problem (18) can be

rewritten as
min

1T β=ωt,β≥0
βT Gβ − βT h (19)

where β ∈ R
|Ct|×1 consists of node weights of nodes in Ct. G is a |Ct| × |Ct|

matrix in which gjl is defined as

gjl = Tr((A(j))T A(l)) (20)

and h is a |Ct| × 1 column vector in which hl is defined as

hl = 2Tr(ST
V A(l)) (21)

Problem (19) is difficult to directly solve since it involves βT Dβ. In this
paper, we can use ALM to solve the above problem. Specifically, we need to
solve the following problem

min
βT 1=1,β≥0,γ=β

βT Gγ − βT h +
μ

2

∥∥∥∥β − γ +
Λ

μ

∥∥∥∥
2

F

(22)

We use the alternating direction method of multipliers (ADMM) to solve
this problem. Specifically, we optimize problem (22) with respect to one variable
when fixing another variable, which results in the following two subproblems.
When γ is fixed, problem (22) can be rewritten as

min
βT 1=ωt,β≥0

∥∥∥∥β − γ +
Λ + Gγ − h

μ

∥∥∥∥
2

F

(23)

When β is fixed, problem (22) can be rewritten as

min
γT 1=ωt,γ≥0

∥∥∥∥γ − β +
GT β − Λ

μ

∥∥∥∥
2

F

(24)

Problems (23) and (24) have closed-form solutions and can be solved directly
with the method in [14].
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5.4 The Optimization Algorithm

The detailed algorithm to solve problem (12), namely Structured PurTree Spec-
tral Clustering (SPSS), is summarized in Algorithm 4. In this algorithm, we first
initialize Ω as follows

ωv =

{
1

H(Φ) if v = Root(Ψ)
ωt

|Ct| if v ∈ Ct
(25)

and S =
∑

v∈N(φ) ωvA(v). Then F , Ω and S in (12) are iteratively solved until
the algorithm converges. The clustering assignment is obtained from the graph
constructed from S.

Algorithm 3. Algorithm to solve problem (17)

1: Input: A set of node-based affinity matrices A(1), . . . ,A(
∑H(Φ)

l=1 |Nl(Φ)|}, S, 1 < ρ < 2.
2: Initialize μ > 0, Λ.

3: Set ωRoot = 1
H(Φ)

, initialize an empty stack Q and add root node into Q.

4: repeat
5: Pop a node t from Q.

6: repeat
7: Update βt+1 by solving problem (23).

8: Update γt+1 by solving problem (24).
9: Update Λ, which Λ = Λ + μ(βt+1 − γt+1).
10: Update μ, which μ = ρμ.

11: until problem (22) converges

12: Assign β to {ωv |v ∈ Ct}.
13: for Each node s ∈ Ct do
14: Add s into Q if s is an internal node.

15: end for
16: until Q is empty
17: Output: Ω.

Algorithm 4. Structured PurTree Spectral Clustering algorithm to solve
problem (12)
1: Input: A set of n purchase trees Φ = {ϕ1, . . . , ϕn}, the number of nearest neighbors

k, the number of clusters c.
2: Compute the similarity matrices {A(1), · · · ,A(|N(Φ)|)} according to Eq. (7), where

Algorithm 2 is used to find the k-nearest neighborhoods of any object.
3: Initialize Ω according to Eq. (25) and randomly initialize S.
4: repeat

5: Update F by selecting c eigenvector of LS = DS − ST +S
2

which corresponds to
its c smallest eigenvalues.

6: Update S by solving problem (16).
7: Update Ω by calling Algorithm 3.
8: until (converges)
9: Output: Find the connected components in the graph constructed from S, and

assign the objects in the same connected component to the same cluster.
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Since each of three variables F, S and Ω are alternatively optimized, Algo-
rithm 4 will decrease problem (12) in each iteration. Note that although Algo-
rithm 3 does not monotonically decrease problem (17), the converged Ω will
decrease problem (17). Therefore, the convergency of Algorithm 4 is ensured. If
the algorithm needs r iterations to converge, the complexity of SPSS algorithm
is O(r(kn2 + N(Φ))), where the eigendecomposition of LS takes O(kn2) time
because S is a k-NN affinity matrix.

6 Experimental Results and Analysis

10 real-world transaction data sets, shown in Table 1, were used to investigate
the new proposed method. D1 was built from a superstore’s transactional data
set1, which consists of 8, 399 transaction records from 796 customers. D2 ∼
D6 were built from five subsets of a super market’s transactional data, which
contains up to 25 million newest transaction records. D7 ∼ D10 were built from
four subsets of one year’s purchase history transaction data from the kaggle
competition2, which contains more than 349 million transaction records.

Table 1. Characteristics of 10 customer transaction data sets.

Data sets (D) Size |N2(D)| |N3(D)| |N4(D)| |N5(D)|
D1 795 3 17 1264

D2 208 84 501 1198 9760

D3 416 90 552 1339 14274

D4 832 90 606 1457 18137

D5 1665 91 651 1584 22822

D6 3330 91 697 1714 28065

D7 608 821 73164 89665

D8 1216 826 74500 91785

D9 2433 825 75737 93731

D10 4867 827 77424 96538

Since the 10 data sets in Table 1 contain no labels, we use the normalized
log(Wk) to evaluate the clustering results [4], which is computed as

NLW(C) = log{
c∑

l=1

1

2|Cl|
∑

i,j∈Cl

d(ϕi, ϕj)} − log(
n∑

i,j=1

d(ϕi, ϕj)) (26)

where C consists of c clusters. The lower the NLW(C), the better the clustering
result. To compute NLW(C) for SPSS, we compute the distance d(ϕi, ϕj) =
1 − aij where aij is the PurTree subspace similarity between ϕi and ϕj .
1 https://community.tableau.com/docs/DOC-1236.
2 http://www.kaggle.com/c/acquire-valued-shoppers-challenge/data.

https://community.tableau.com/docs/DOC-1236
http://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
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(a) No. of tree levels versus α. (b) Time cost of building cover
tree versus α.

(c) Time cost of k-NN search
versus α.

Fig. 2. Experimental results of k-NN search on D7, D8 and D9.

6.1 Experimental Results on k-NN Search

In this experiment, we analyse the impact of α to Algorithm 2. We set α
to {1.62, 1.7, 1.8, 2.0, 2.5, 3, 5, 10, 50, 100} to build a set of cover trees based
on the distance of level L1 on D7, D8 and D9. Then we performed k-NN
search with these built cover trees, by setting the number of nearest neighbors
k to {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The experimental results are drawn
in Fig. 2. Figure 2(a) indicates that the number of tree levels decreases as α
increases, as a result of rapid increasing of the time cost of building cover trees
as shown in Fig. 2(b). Figure 2(c) indicates that the time cost of k-NN search
does not change too much as α increases. This may because that the number of
tree levels does not change too much in the three datasets. In real applications,
we can simply set α to 1.62.

Table 2. Comparison of NLW (Mean ± Standard Deviation) of seven clustering
algorithms on 10 benchmark data sets (The best result on each data set is highlighted
in bold).

Data DBSCAN HAC NCut RCut PurTreeClust LPS SPSS

D1 −7.47 ± 1.23 −7.75 ± 1.24 −7.41 ± 0.24 −7.41 ± 0.24 −7.83 ± 0.80 −7.60±0.36 −9.90± 0.80

D2 −6.03 ± 0.04 −6.34 ± 0.90 −6.17 ± 0.40 −6.19 ± 0.40 −6.31 ± 0.80 −6.32±0.35 −6.58± 0.21

D3 −6.73 ± 0.04 −6.94 ± 0.64 −6.81 ± 0.20 −6.81 ± 0.20 −6.91 ± 0.64 −7.02±0.32 −7.12± 0.21

D4 −7.42 ± 0.04 −7.59 ± 0.63 −7.48 ± 0.18 −7.48 ± 0.24 −7.62 ± 0.52 −7.58±0.36 −7.72 ± 0.2

D5 −8.11 ± 0.08 −8.26 ± 0.45 −8.16 ± 0.15 −8.15 ± 0.15 −8.34 ± 0.38 −8.38±0.33 −8.88± 0.25

D6 −8.80 ± 0.08 −8.92 ± 0.58 −8.84 ± 0.12 −8.84 ± 0.12 −8.89 ± 0.41 −9.02±0.34 −9.76± 0.34

D7 −7.10 ± 0.08 −7.19 ± 0.16 −7.17 ± 0.12 −7.16 ± 0.12 −7.40 ± 0.49 −7.62±0.35 −8.12± 0.46

D8 −7.80 ± 0.08 −7.85 ± 0.14 −7.83 ± 0.12 −7.83 ± 0.12 −7.90 ± 0.47 −8.08±0.34 −8.79± 0.49

D9 −8.49 ± 0.08 −8.53 ± 0.13 −8.52 ± 0.12 −8.51 ± 0.12 −8.58 ± 0.49 −8.58±0.38 −9.37± 0.48

D10 −9.18 ± 0.08 −9.21 ± 0.12 −9.20 ± 0.08 −9.20 ± 0.08 −9.30 ± 0.50 −9.4 ± 0.35 −9.92± 0.45
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6.2 Results and Analysis

We used all ten data sets to compare the effectiveness of the SPSS algorithm
with six clustering algorithms, i.e., DBSCAN, HAC, Ncut [8], RCut [5] and
PurTreeClust [2] and LPS [4]. In this experiment, α was set to 1.62 and we
selected 96 integers from 5 to 100 for c. The PurTree subspace similarity is
used for DBSCAN, HAC, Ncut, RCut and SPSS, and the PurTree distance
is used for PurTreeClust in which γ was set as the same values used in [2],
i.e., γ = {0, 0.2, 0.8, 1, 2, 1000}. 20 integers from 5 to 100 were used for k in
DBSCAN, PurTreeClust and SPSS. On each data set, η in SPSS was set to
{1
4 , 1

2 , 1, 2, 3} times of the number of objects in the data set. The other param-
eters of all methods were set with the same strategy to make fair comparison,
i.e., {10−3, 10−2, · · · , 103}. For DBSCAN, we also set eps as 95 values from 0.25
to 0.5 and minPts as 95 values from 1% to 10% of the number of objects. For
each clustering algorithm, we computed the average NLW and show the results
in Table 2 which show that SPSS outperformed all the other methods on all sets.
For example, on D7, D8, D9 and D10 which consist of more than 80 thousands
of products, SPSS achieves a greater than 7% improvement compared to the
second-best method LPS. On D1, SPSS even achieves a nearly 30% improve-
ment compared to the second-best method PurTreeClust. Besides SPSS, LPS
produced better results than the other methods.

(a) {ωv |v ∈ N2(Φ)} versus η. (b) {ωv|v ∈ N3(Φ)} versus η. (c) {ωv|v ∈ N4(Φ)} versus η.

(d) {ωv|v ∈ N2(Φ)} versus k. (e) {ωv|v ∈ N3(Φ)} versus k. (f) {ωv|v ∈ N4(Φ)} versus k.

Fig. 3. Node weights Ω = {ωv} versus η and k on D4.



Structured Spectral Clustering of PurTree Data 499

6.3 Parameter Sensitivity Study

Figures 3(a), (b) and (c) show the weights of the second, third and fourth levels
of nodes versus η, and Figs. 3(d), (e) and (f) show the weights of the second,
third and fourth levels of nodes versus k, respectively.

For each η and k, we computed the average node weights on D4 and draw
them in Fig. 3. These figures show that the node weights are nearly stable as η
and k increase. We also observe that the node weight distributions in different
levels are highly correlated. Specifically, the average weight decreases level by
level. This can be verified according to Theorem 4 which indicates that the sum
of weights for nodes in different levels are equal, and the fact that the high level
contains more nodes than low level.

We compute the ratio of positive weights versus η and k, and draw the results
in Fig. 4. From these figures, we can see that the number of positive weights is
sensitive to η, but insensitive to k. With the increase of the tree level, the number
of positive weights decreases rapidly.

Finally, we show the relationship between NLW and the two parameters η
and k on D4 in Fig. 5. From this figure, we can observe that NLW increases as

(a) Ratio of positive weights
for nodes in L2.

(b) Ratio of positive weights
for nodes in L3.

(c) Ratio of positive weights
for nodes in L4.

Fig. 4. Ratio of positive weights versus η and k.

(a) NLW versus η. (b) NLW versus k.

Fig. 5. NLW versus η and k on D4.
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both η and k increase. In real applications, we can perform hierarchy grid search
to select the proper m and k for better results.

7 Conclusion

We have presented SPSS, a Structured PurTree Subspace Spectral clustering
algorithm for customer transaction data. In the new method, a PurTree sub-
space similarity is proposed to compute the similarity between two purchase
trees. A new clustering model is proposed to learn a structured graph that best
approximating the input similarity, and a set of sparse and structured node
weights are learned to better recover the cluster structure. An iterative optimiza-
tion algorithm is proposed to simultaneously learn the graph and node weights.
Experimental results on 10 real-world data sets have demonstrated the superior
performance of the new method. In future work, we will improve our method for
transaction data which contains a large number of customers.
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14. Wang, W., Carreira-Perpián, M.Á.: Projection onto the probability simplex: an
efficient algorithm with a simple proof, and an application. Mathematics (2013)

15. Xiao, Y., Dunham, M.H.: Interactive clustering for transaction data. In: Kam-
bayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114,
pp. 121–130. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44801-
2 13

16. Xiong, T., Wang, S., Mayers, A., Monga, E.: DHCC: Divisive hierarchical clustering
of categorical data. Data Mining Knowl. Discovery 24(1), 103–135 (2012)

https://doi.org/10.1007/3-540-44801-2_13
https://doi.org/10.1007/3-540-44801-2_13


Dynamic Stochastic Block Model
with Scale-Free Characteristic

for Temporal Complex Networks

Xunxun Wu1, Pengfei Jiao2(B), Yaping Wang1, Tianpeng Li1, Wenjun Wang1,
and Bo Wang1

1 College of Intelligence and Computing, Tianjin University, Tianjin, China
{xxwu,yapingwang,ltpnimeia,wjwang,bo wang}@tju.edu.cn

2 Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
pjiao@tju.edu.cn

Abstract. Complex network analysis has been widely applied in various
fields such as social system, information system, and biological system.
As the most popular model for analyzing complex network, Stochastic
Block Model can perform network reconstruction, community detection,
link prediction, anomaly detection, and other tasks. However, for the
dynamic complex networks which are always modeling as a series of snap-
shot networks, the existing works for dynamic networks analysis which
are based on the stochastic block model always analyze the evolution
of dynamic networks by introducing probability transition matrix, then,
the scale-free characteristic (power law of the degree distribution) of the
network, is ignoring. So in order to overcome this limitation, we propose
a fully Bayesian generation model, which incorporates the heterogeneity
of the degree of nodes to model dynamic complex networks. Then we
present a new dynamic stochastic block model for community detection
and evolution tracking under a unified framework. We also propose an
effective variational inference algorithm to solve the proposed model. The
model is tested on the simulated datasets and the real-world datasets,
and the experimental results show that the performance of it is superior
to the baselines of community detection in dynamic networks.

Keywords: Dynamic community detection ·
Scale-free characteristics · Stochastic block models · Bayesian inference

1 Introduction

With the advent of the big data era, network data has been widely developed in
various fields such as human social interaction, academic cooperation, and bio-
logical information, and occupies an increasing role. How to mine useful infor-
mation from the network data has become the focus of our attention. Anal-
ysis and modeling of the complex network can help us better understand the
structure and properties and mining important information in network data.
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Community detection is an important research direction in complex networks
analysis, which has important applications in various networks, such as social
and biological networks. For example, in social networks, individuals with more
active and frequent connections tend to have more similar interests and prefer-
ences [16]. In a citation network, the authors with more closer cooperation are
likely belonging to the same research direction, which can help us to analyze the
future research direction. In criminal networks, detecting potential crime gangs
or terrorist organizations plays an important role in national security.

Due to the wide applications of community detection, lots of methods have
been proposed, such as modularity-based method, clique-based method, spectral
method and so on [20]. However, these studies ignore that the real network is
dynamic, and the community structure will change over time. For example, in
a criminal network, the members of criminal gangs are likely to change after a
criminal act. In a citation network, researchers may also change their research
direction due to the change of personal research interest or the influence of influ-
ential authors. The above static methods cannot capture the dynamic changes
of the community and are not applicable to the temporal complex network.

In fact, the changes of nodes and structures of the dynamic network bring
many challenges. Recently, many researchers turn their attention to the field
of dynamic network community detection and put forward a series of dynamic
community detection methods, such as heuristic methods, two-stage methods,
evolutionary clustering, incremental clustering and so on.

Among all the methods, whether for dynamic or static networks, the most
important one is the statistical network model. The statistical models deal with
uncertainty through statistical inference and are an important tool in commu-
nity detection. Stochastic Block Model (SBM) [6] plays an important role in
both static and dynamic community detection [5,9]. It is a universal and popu-
lar method with strong theoretical explanatory power, has received great atten-
tion from researchers, and has been developed with various extensions [1,8]. The
assumption of SBM is that the nodes in the network are divided into differ-
ent communities, and the existence of the connection between pairwise nodes
depends only on the communities the nodes belonging to. As a result of this
assumption, the nodes within the community are considered to be indistinguish-
able, and the heterogeneity of node degree in the network is not considered.
Therefore, the SBM cannot depict the scale-free characteristics in the real net-
work, so it will cause significant bias when it is applied to the community detec-
tion. Considering this limitation, many degree retention methods in the static
network are proposed, some of which use the degree retention within the commu-
nity and only consider local information [11], other methods directly make use
of the degree of nodes, so it is necessary to know the degree of nodes in advance,
which leads to a consequence that the proposed method is not a complete genera-
tion model. However, to our best knowledge, there is no work proposed based on
SBM to model the heterogeneity of nodes for community detection in dynamic
networks.
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Considering the limitations of existing community detection methods, we
propose a dynamic network community detection model, called DPSBM, which
combine with the popularity of nodes to detect and track the community struc-
ture in the dynamic network. The main contribution of our work includes

1. As we know, we are the first to consider the heterogeneity of node degree to
model the generation process of dynamic networks for community detection.

2. The proposed DPSBM can simultaneously solve community detection, evo-
lution tracking and the popularity of nodes simultaneously.

3. We propose an effective variational EM algorithm to optimize the objective
function, and the experiments show that our model has better performance
compared with baselines on community detection and evolution.

2 Related Work

Here we introduce some widely used methods for community detection in
dynamic networks, the development of the SBM and the recent works of dynamic
networks analysis based on dynamic Stochastic Block Model.

Community Detection in Dynamic Networks: In the traditional two-stage
method [7], community detection and evolution tracking are two separate stages.
Because real-world data is often noisy, the two-step approach can lead to unsta-
ble community structures and unexplained community evolution. Lee et al. [12]
proposed an incremental tracking framework for cluster evolution over highly
dynamic networks. Lin et al. [13] proposed FacetNet, on the basis of non-negative
matrix decomposition, communities are regularized by the temporal smoothness
of evolutions so that the community detection results not only conform to the
current snapshot structure but also remain stable with the community detec-
tion of previous network snapshot. Folino et al. [2] proposed a detection method
based on evolutionary clustering, DYNMOGA, which builds a multiobjective
problem based on genetic algorithms and controls the preference degree of a
user towards either the snapshot quality or the temporal quality by controlling
an input parameter, so as to optimize the two competing objectives.

Stochastic Block Model: It was initially proposed by Holland et al. [6], and
has been well applied in various fields such as social network and biological
information. But SBM doesn’t consider node’s heterogeneity. Some scholars have
noticed the problem of node heterogeneity, which has been continuously extended
on the basis of SBM. Karrer and Newman et al. [11] considered the degree change
of nodes and proposed a community detection method based on degree correc-
tion. However, only the degree of nodes within the community is considered,
while the degree information on the whole network level is not considered, so
this method is not comprehensive.

Dynamic Stochastic Block Model: Yang et al. [19] first proposed the
Dynamic Stochastic Block Model (DSBM) based on SBM, built the probabilistic
transfer matrix of nodes on the stochastic block model to simulate the transfer
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probability of nodes between communities, and detected community and tracked
community evolution, at the same time, proposed a combined solution algorithm
based on Gibbs sampling and simulated annealing algorithm. Tang et al. [15]
proposed the Dynamic Stochastic Blockmodel with Temporal Dirichlet Process
(DBTDP), which extends the Stochastic Blockmodel by introducing Dirichlet
processes and Chinese restaurant processes, in addition, this model enables the
number of communities to be determined automatically at each time snapshot.
These methods focus on the evolution of community structures in dynamic net-
works, but ignore the heterogeneity of nodes degree and cannot deal with the
scale-free properties of networks in the real world.

3 Method

Before discussing the proposed model, we first introduce the notations. We use
W = {W (1), ...,W (T )} to denote the set of snapshot network for a given network
over T discrete time steps, where each element of W (t) is the connection weights
between nodes in time step t, and n is the number of nodes in the snapshot of
the dynamic network. Without loss of generality, we consider an undirected and
unweighted network, which can also be easily extended to a directional weighted
network. If w

(t)
ij = 1, there exists a connection between node i and node j, if

w
(t)
ij = 0, there is not a connection between node i and node j.

We use Z = {Z(1), ..., Z(T )} to denote the community ownership of all nodes
in all snapshots. In each time step, we use zi ∈ {1, ...,K} to denote the commu-
nity ownership of node i, where K is the number of communities in the network.
In other words, zi = k means that node i belongs to the kth community.

3.1 SBM

We start with a brief introduction to SBM. SBM is a classic stochastic block
model suitable for static networks, which has been successfully applied in var-
ious fields. The generation mechanism of the SBM model obeys the following
rules. First, we assign each node in the network to the community by the multi-
nomial distribution with the parameter of π, where π = {π1, ..., πK}. Then, the
generation of the connection between node i and node j follows a Bernoulli dis-
tribution with a parameter of bkl (here let zi = k, zj = l), where B ∈ [0, 1]K×K

is the block matrix, where bkl is the probability of the connection between the
node in the community k and the node in the community l. When k = l, bkl

is the probability of connection between nodes within the community. When
k �= l, bkl is the probability of connection between nodes belonging to different
communities. This is an important assumption of the SBM, that the generation
of links between nodes is only related to the community of nodes.

3.2 DPSBM

Because the traditional stochastic block model is only applicable to the static
network, it does not conform to the dynamic evolution of networks. At the
same time, SBM regards the nodes within the community as undifferentiated
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and ignores the information of nodes. In the real world, the network has many
characteristics, such as power-law distribution. In order to make the model more
in line with the network in the real world, we proposed a model, which carries
out community detection and evolution tracking in a unified framework.

On the basis of SBM, we propose a dynamic community detection method
that integrates node information, called DPSBM. We first introduce the transfer
matrix A ∈ [0, 1]K×K to simulate the transfer of nodes, where Akl is the proba-
bility that the node i in the community k at time step t − 1 will be transferred
to the community l at time step t. For node i, if it belongs to community k at
time step t − 1, then there are only two states for it at time step t: either stay
in the original community k or move to another community, so

∑
l Akl = 1. In

our model, the way of community assignment at time t = 1 is the same as that
of SBM. When t ≥ 2, the community assignment of nodes z(t) is determined by
the community assignment z(t−1) at time t− 1 and the transfer matrix A.

In order to better simulate scale-free attributes of the real world, we added
the latent variable δ

(t)
i to capture the degree heterogeneity of nodes, which we

called popularity. Since the degree of nodes in the real world presents power-
law distribution, the exponent distribution with continuity and non-negativity
is suitable for the description of popularity. The popularity changes in different
time snapshots of dynamic networks, which we think should be characterized by
Stochastic Process. Without loss of generality, we choose Gaussian Process to
simulate this change.

Fig. 1. Graphical model for DPSBM

Before calculating the joint probability of the model, we first describe three
assumptions about the model.

1. The generation of link wij between node i and j is independent of other nodes
and links and depends on two factors: community assignment zi and zj , and
popularity of nodes δi.
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2. The community assignment z
(t)
i of node i in time step t is independent of

other nodes and links, and depends on the community assignment z
(t−1)
i in

time step t − 1.
3. The popularity δ

(t)
i of node i in time step t is independent of other nodes,

and depends on the popularity δ
(t−1)
i of node i in time step t − 1.

Table 1. Notations

Type Symbol Description

scalars n number of nodes

K number of communities

T number of time steps

observation variable w
(t)
ij connection between nodes i

and j in time step t

latent variables z
(t)
i community that node i

belongs to in time step t

δ
(t)
i the popularity of node i in

time step t

parameter variables bkl probabilities of connection
between communities k and l

Akl transfer probabilities of node
in adjacent time step

πk probability that a node is
assigned to community k

hyperparameters λ the parameter of the
distribution of node
popularity

Σ the variance of Gauss Process

According to the above three assumptions, the generative process of edges
is summarized as follows, where the graphical model of DPSBM is shown in
Fig. 1, and the notation representation is illustrated in Table 1 (including five
types of scalars, observation variables, latent variables, parameter variables and
hyperparameters).

1. For time step t = 1:
(a) For each node i ∈ N = {1, 2, ..., N}:

i. sample the cluster index z
(1)
i ∼ Multi(π);

ii. sample the popularity δ
(1)
i ∼ Exp(λ);

(b) For each node-pair (i, j) ∈ N × N :

i. sample the link w
(1)
ij ∼ Bern(b

1+δ
(1)
i +δ

(1)
j

z
(1)
i z

(1)
j

);
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2. For each time step t > 1:
(a) For each node i ∈ N = {1, 2, ..., N}:

i. sample the cluster index z
(t)
i ∼ p(z(t)i |z(t−1)

i , A);
ii. sample the popularity δ

(t)
i ∼ N(δ(t−1)

i , Σ);
(b) For each node-pair (i, j) ∈ N × N :

i. sample the link w
(t)
ij ∼ Bern(b

1+δ
(t)
i +δ

(t)
j

z
(t)
i z

(t)
j

)

The joint probability distribution of the observable variables W and latent
variables Z and δ in our model is as follows:

Pr(W,Z, δ|π,B,A, λ)

=
T∏

t=1

Pr(W (t)|Z(t), B, δ(t))
T∏

t=2

Pr(Z(t)|Z(t−1), A)

Pr(Z(1)|π)Pr(δ(1)|λ)
T∏

t=2

Pr(δ(t)|δ(t−1), Σ)

(1)

4 Inference

In this section, we propose a variational EM algorithm to infer DPSBM.
We use the lower bound (ELBO) L (Z, δ;π,B,A, λ) to approximate the log

marginal probability log Pr(W |π,B,A, λ), and we use the mean-field method to
decompose q(Z, δ) into:

q(Z, δ) =
∏

t

[
∏

i

q(z(t)i )
∏

i

q(δ(t)i )

]

(2)

where q(z(t)i ) = Multi(φ(t)
i ), and q(δ(t)i ) = 1(δ̄(t)i ). q(z(t)i ) is a multinomial dis-

tribution with the parameter φ
(t)
i , and q(δ(t)i ) is a degenerated distribution with

the parameter δ̄
(t)
i .

Since most of the networks we focus on are sparse and scale-free, in other
words, bkl and most of δi are not large. By using Taylor’s approximation, the
ELBO is given by:

L (Z, δ; π, B, A, λ)

= Eq log Pr(W, Z, δ|π, B, A, λ) − Eq log q(Z, δ)

≈
T∑

t=1

∑

w
(t)
ij

=1

(1 + δ̄
(t)
i + δ̄

(t)
j )

∑

k

∑

l

φ
(t)
ik

φ
(t)
jl

log bkl −
T∑

t=1

∑

w
(t)
ij

=0

∑

k

∑

l

φ
(t)
ik

φ
(t)
jl

b
1+δ̄

(t)
i

+δ̄
(t)
j

kl

+
T∑

t=2

∑

i

∑

l

∑

k

φ
(t−1)
il

φ
(t)
ik

log Alk +
∑

i

∑

k

φ
(1)
ik

log πk + N log λ − λ
∑

i

δ̄
(1)
i

−
T∑

t=2

[
1

2
N log 2πΣ +

1

2Σ

∑

i

(δ̄
(t)
i − δ̄

(t−1)
i )

2
]

− Eq log q

(3)
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In the following two sections, we maximize the lower bound (ELBO) to obtain
the variational parameters (φ, δ) and model parameters (π,B,A).

4.1 E-Step

We fixed the model parameters (π,B,A) and maximized ELBO to obtain the
variational parameters (φ, δ).

For t = 1, the updating equation for optimal φ
(1)
ik is given by,

φ
(1)
ik ∝ πk exp{

∑

w
(1)
ij =1

(1 + δ̄
(1)
i + δ̄

(1)
j )

∑

l

φ
(1)
jl log bkl

−
∑

w
(1)
ij =0

∑

l

φ
(1)
jl b

1+δ̄
(1)
i +δ̄

(1)
j

kl +
∑

l

φ
(2)
il log Akl}

(4)

For δ̄
(1)
i , we use gradient ascend to obtain its optimal solution. The gradient

is derived as:

∂O(δ̄(1)i )

∂δ̄
(1)
i

=
∑

w
(1)
ij =1

∑

k

∑

l

φ
(1)
ik φ

(1)
jl log bkl

−
∑

w
(1)
ij =0

∑

k

∑

l

φ
(1)
ik φ

(1)
jl b

1+δ̄
(1)
i +δ̄

(1)
j

kl log bkl − λ +
1
Σ

(δ̄(2)i − δ̄
(1)
i )

(5)

Similarly, the updated formula of other time steps can be obtained: t ∈
[2, T − 1]:

φ
(t)
ik ∝ exp{

∑

w
(t)
ij =1

(1 + δ̄
(t)
i + δ̄

(t)
j )

∑

l

φ
(t)
jl log bkl −

∑

w
(t)
ij =0

∑

l

φ
(t)
jl b

1+δ̄
(t)
i +δ̄

(t)
j

kl

+
∑

l

φ
(t−1)
il log Alk +

∑

l

φ
(t+1)
il log Akl}

(6)

∂O(δ̄(t)i )

∂δ̄
(t)
i

=
∑

w
(t)
ij =1

∑

k

∑

l

φ
(t)
ik φ

(t)
jl log bkl −

∑

w
(t)
ij =0

∑

k

∑

l

φ
(t)
ik φ

(t)
jl b

1+δ̄
(t)
i +δ̄

(t)
j

kl log bkl

− 1
Σ

(δ̄(t)i − δ̄
(t−1)
i ) +

1
Σ

(δ̄(t+1)
i − δ̄

(t)
i )

(7)
t = T :

φ
(T )
ik ∝ exp{

∑

w
(T )
ij =1

(1 + δ̄
(T )
i + δ̄

(T )
j )

∑

l

φ
(T )
jl log bkl

−
∑

w
(T )
ij =0

∑

l

φ
(T )
jl b

1+δ̄
(T )
i +δ̄

(T )
j

kl +
∑

l

φ
(T−1)
il log Alk}

(8)
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∂O(δ̄
(T )
i )

∂δ̄
(T )
i

=
∑

w
(T )
ij =1

∑

k

∑

l

φ
(T )
ik φ

(T )
jl log bkl

−
∑

w
(T )
ij =0

∑

k

∑

l

φ
(T )
ik φ

(T )
jl b

1+δ̄
(T )
i +δ̄

(T )
j

kl log bkl − 1

Σ
(δ̄

(T )
i − δ̄

(T−1)
i )

(9)

Algorithm 1. Inference for DPSBM
Input: Initialization for model parameters π, B, A and variational parameters φ(t), δ̄(t)

for t ∈ [1, T ]; the number of communities K; stop criterion ε .
Output: δ̄(t)∗, π∗, B∗, A∗ and z∗

1: Compute variational likelihood Lnew by (3).
2: repeat
3: Lold = Lnew.
4: for every time t do
5: E-step
6: update φ via (4)(6)(8).
7: update δ̄ by coordinate gradient ascend and gradient is given by (5)(7)(9).
8: M-step
9: update π via (10).

10: update A via (11).
11: update B by coordinate gradient ascend and gradient is given by (12).
12: Compute variational likelihood Lnew with updated parameters by (3).
13: end for
14: until |Lnew − Lold| < ε
15: for every time t do
16: predict the cluster z

(t)
i of each node via (2).

17: end for

4.2 M-Step

We fixed the variational parameters (φ, δ) and maximized ELBO to obtain the
model parameters (π,B,A).

The optimal π is given by:

πk ∝
∑

i

φ
(1)
ik (10)

and the optimal A is given by:

Alk ∝
T∑

t=2

∑

i

φ
(t−1)
il φ

(t)
ik (11)
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The optimal B is obtained by gradient ascend, and the gradient is computed
by

∂O(bkl)
∂bkl

=

∑T
t=1

∑
w

(t)
ij =1

(1 + δ̄
(t)
i + δ̄

(t)
j )φ(t)

ik φ
(t)
jl

bkl

−
T∑

t=1

∑

w
(t)
ij =0

(1 + δ̄
(t)
i + δ̄

(t)
j )φ(t)

ik φ
(t)
jl b

δ̄
(t)
i +δ̄

(t)
j

kl

(12)

The pseudocode for algorithm is summarized as shown in Algorithm 1.

4.3 Complexity Analysis

In this section, we analysis roughly the complexity of Algorithm 1. The com-
plexity of the inference algorithm depends on the following three steps. The
complexity of the step which updates φ is (TK2n2), where T is the number
of snapshots, n is the number of nodes in the network, and K is the number
of communities. The complexity of the step which updates δ is O(TK2Cn2),
where C is the number of iterations for gradient ascend. The complexity of the
step which calculates the ELBO is O(TK2n2). As a result, The complexity of the
inference algorithm is O(TK2n2). In theory, the complexity is O(n2). Since most
real networks are sparse, we can improve efficiency and reduce running time and
complexity by using negative sampling and parallelism in actual operation.

5 Experiments

In this section, we conduct several experiments to evaluate our proposed model.
Firstly, we compare our model with four dynamic community detection meth-
ods in simulated datasets with homogeneous degree distribution, and prove that
our method performed well in datasets with homogeneous degree distribution.
Secondly, we test our model in simulated and real-world datasets with heteroge-
neous degree distribution, proving that our method is superior to the benchmark
method in terms of community detection and evolution tracking, and verifying
the interpretability and effectiveness of the popularity in our model. Thirdly,
we analyze the hyperparameters sensitivity of the model. Finally, we apply the
model to DBLP dataset and analyze the effect of community detection and evo-
lution tracking. The experimental results verify the effectiveness of the model
in the real dataset. At the same time, our method can reveal some meaningful
insights that cannot be explained by other methods.

5.1 Performance Metrics

The performance metrics we use is the normalized mutual information (NMI),
which is widely used in various fields [3,18]. NMI is used when there exists
ground truth, and measures the similarity between a given community partition
and the ground truth. We use C = {C1, ..., CK} to represent the true community
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partition, and C ′ = {C ′
1, ..., C

′
K} to represent the community partition to be

evaluated, where Ck or C ′
k is the collection of all nodes of the kth true community

or the community to be evaluated. NMI is defined as:

NMI(C,C ′) =

∑
C,C′ p(C,C ′) log p(C,C′)

p(C)p(C′)

max(H(C)H(C ′))
(13)

Where, H(C) and H(C ′) are the entropies of the community C and C ′. The
value of NMI is between 0 and 1. The higher the value of NMI is, the more
similar the given community partition is to the true community partition, which
indicates that the method is better.

5.2 Experiments on Simulated Datasets with Homogeneous Degree
Distribution

The dataset we use is Facetnet, the benchmark adopted by Lin et al. [13], which
was extended by the dataset proposed by Girvan and Newman. The dataset
contains 10 snapshots and 128 nodes, which are divided into 4 communities with
32 nodes for each community. The average degree of nodes is avgDegree, and
the degrees of nodes are almost uniformly distributed. Each node generates a
number z of connections with nodes in other communities. With the increase
of z, the noise level of the network also increases. In each time step from 2 to
10, several nodes in each community are randomly selected to leave the original
community and to join the other three communities, and the number of nodes
to leave is represented by nC.

We test our method using simulated datasets generated with 4 different sets
of parameters, and use NMI to compare our method with DSBM [19], DYN-
MOGA [2], GenLouvain [10] and PisCES [14]. The results show that our method
is superior to the other four methods in the detection of community structure
in the dynamic network with different noise level, different average degree and
different transfer probability (see Fig. 2).

(a) (b) (c) (d)

Fig. 2. The NMI on Facetnet simulated dataset: (a) z = 4, nC = 9, aD = 16; (b)
z = 4, nC = 9, aD = 20; (c) z = 5, nC = 3, aD = 20; (d) z = 5, nC = 9, aD = 20. The
red line represents DPSBM, and the yellow, blue, green and turquoise lines represent
DSBM, DYNMOGA, GenLouvain and PisCES respectively. (Color figure online)
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5.3 Experiments on Simulated Datasets with Heterogeneous Degree
Distribution

The simulated dataset with heterogeneous degree distribution we use is
ASONAM, that is the benchmark dataset proposed by Green et al. in 2010 [4].
Several basic events in the dynamic process are introduced to make the simu-
lated datasets more similar to the real-world datasets. We select two events to
generate the networks. Each network contains 4 snapshots and 1000 nodes, with
an average degree of 15 and a maximum degree of 50. The number of communi-
ties ranges from 20 to 50, and the probability of edges between communities is
0.2. The node degree of this dataset obeys the power-law distribution.

(a) (b)

Fig. 3. The NMI on ASONAM dataset: (a) expansion and contraction; (b) swith. The
red line represents DPSBM, and the yellow, blue, green and turquoise lines represent
DSBM, DYNMOGA, GenLouvain and PisCES respectively. (Color figure online)

As can be seen from Fig. 3, our method has a good effect on the network
with heterogeneous degree distribution, superior to the baseline method. At the
same time, the line of our results is relatively smoother, which indicates that our
detection results are more stable.

Figure 4(a) shows the degree distribution of the network, which indicates that
the network has an important power-law distribution and scale-free property.
Figure 4(b) shows the distribution of popularity, when popularity is relatively
large, the probability is smaller, but we notice that when popularity is lower
than about 0.2, the situation is somewhat different, which is the probability is
relatively stable and even has a decline. Figure 4(c) and (d) show that there is
a general negative correlation between degree and popularity. When the degree
of nodes becomes large enough, the popularity value tends to a relatively small
stable value. It is worth noting that in the current generation model with popu-
larity [11,14,17], popularity always increases with the increase of degree. Thus,
when there exists a node with a very large degree, even if there is a node with
a very small degree in the network, the probability of connection between them
will be abnormally high. This is not consistent with the actual situation. The
popularity in our method has a small influence on the probability of node con-
nection, when the degree of nodes is relatively large, while the effect on it is
larger, when the degree is smaller, which indicates that our model can correct
the deviation of connection.
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(a) (b) (c) (d)

Fig. 4. Degree, popularity and correlation analysis of a simulated network. (a) degree
distribution; (b) popularity distribution; (c) the relationship between the mean of the
popularity and the degree; (d) correlation analysis of degree and popularity.

5.4 Experiments on Real-World Datasets

The real-world dataset we use is KIT-email data, which is an email network
where nodes represent senders and recipients, and edges represent the connec-
tions between them. We assume that this network is undirected and unweighted.
The data are divided into several time snapshots at intervals of 2, 3, 4, 6 months.
The number of nodes in the network is between 138 and 231, and the number
of communities is between 23 and 27.

(a) (b) (c) (d)

Fig. 5. The NMI on the email networks: (a) the interval is 2 months and T = 16; (b)
the interval is 3 months and T = 16; (c) the interval is 4 months and T = 12; (d)
the interval is 6 months and T = 8. The red, yellow, blue, green and turquoise lines
represent DPSBM, DSBM, DYNMOGA, GenLouvain and PisCES respectively. (Color
figure online)

We use NMI to evaluate the performance of the different methods and com-
pare the proposed method with the results of DSBM, DYNMOGA, GenLouvain
and PisCES. As we can see, our method is superior to the other four methods
in all four sets of data. We attribute this advantage to popularity and a more
detailed characterization of scale-free properties in real networks. At the same
time, our result curve is relatively smooth and there is no abrupt change in the
adjacent snapshots, which indicates that our method can not only better discover
the real community structure but also have a very stable effect (see Fig. 5).

5.5 Hyperparameters Sensitivity Analysis

We study the effect of hyperparameters on the model. Figure 6 shows the per-
formance of DPSBM at different values of λ and Σ. The value of NMI is the
mean of the NMI of all the snapshots. We can see that the values of λ and Σ
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have little impact on the results, which proves the robustness of DPSBM. We
only show the results on the network with 2-month interval, and other networks
have similar results, so are not shown here.

(a) (b)

Fig. 6. The NMI value of our method under different values of λ and Σ. (a) λ =
0.01, 0.05, 0.1, 0.2, 0.5, 1; (b) Σ = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5.

5.6 Case Study

We use the public DBLP dataset to verify the validity of DPSBM in practical
applications. We select data from three major fields in the dataset—data Ming
(DM), database (DB), and artificial intelligence (AI), which contains 1, 163 nodes
and 3 communities. We divided this dynamic network into 4 time snapshots.

Figure 7 shows the clustering results of DPSBM and DSBM on the DBLP
network. DSBM tends to put nodes with similar sizes in the same community,
DPSBM corrects this deviation by introducing popularity, and thus brings the
result closer to the ground truth. There are some differences between DPSBM
and the ground truth, because the cooperative relationship in DBLP data not
only depends on the author field but also has some irregular or personal factors.

We use Fig. 8 to show the community evolution in the DBLP network in four
snapshots. It can be seen that most of the transfers occur from DB to DM and AI,
and from DM to AI. As time goes by, the size of DB is decreasing while the size of
AI is increasing, which is consistent with the development trend of the research
field in reality. In addition to the study of community evolution, we also focus on
some meaningful transfer individuals. We found that some of the authors with
a higher degree also transferred, which also led to the partial transfer of other
cooperative members. This result has certain practical significance, because, the
transfer of influential authors, to some extent, indicates the research trend, and
will have an impact on the research direction of other authors. We have verified
the existence of these transfers by referring to the relevant data of the authors.

We accurately identified the community structures and the transfer of
researchers without any labels or additional information, just through the collab-
oration between researchers, which shows that DPSBM can only use the network
structure to find meaningful structures and changes. In the real world, it is often
difficult to obtain attribute information other than structure information. For
such imperfect data, DPSBM has important application value in the real world.
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(a) (b) (c)

Fig. 7. Clustering results on DBLP network. (a) Ground truth. (b) DPSBM. (c) DSBM.
Where, the node size represents the degree of the node, and the color represents the
community, green for data mining, orange for database and blue for AI. (Color figure
online)
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Fig. 8. Community evolution for DBLP dataset

6 Conclusion

This paper proposes a unified probabilistic generation model to detect the com-
munity structure and track the community evolution in temporal complex net-
works. The framework integrates the heterogeneity of node degree to model the
dynamic complex network and describes the scale-free characteristics in the real
world, so as to correct the deviation of existing methods; an effective varia-
tional EM algorithm is proposed to optimize the objective function; the pro-
posed algorithm can be well applied in practice. Extensive experiments show
that our method outperforms the baseline algorithms of community detection in
dynamic networks both in simulated and real-world datasets, and can explain
some phenomena of real-world networks well. In the future, we will optimize the
variational EM algorithm to make it more suitable for large-scale data.
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Abstract. The proliferation of event-based social networking (ESBN)
motivates a range of studies on topics such as event, venue, and friend
recommendation and event creation and organization. In this setting, the
notion of event-partner recommendation has recently attracted atten-
tion. When recommending an event to a user, this functionality allows
recommendation of partner with whom to attend the event. How-
ever, existing proposals are push-based: recommendations are pushed
to users at the system’s initiative. In contrast, EBSNs provide users
with keyword-based search functionality. This way, users may retrieve
information in pull mode. We propose a new way of accessing infor-
mation in EBSNs that combines push and pull, thus allowing users to
not only conduct ad-hoc searches for events, but also to receive partner
recommendations for retrieved events. Specifically, we define and study
the top-k event-partner (kEP) pair retrieval query that integrates event-
partner recommendation and keyword-based search for events. The query
retrieves event-partner pairs, taking into account the relevance of events
to user-supplied keywords and so-called together preferences that indi-
cate the extent of a user’s preference to attend an event with a given part-
ner. In order to compute kEP queries efficiently, we propose a rank-join
based framework with three optimizations. Results of empirical studies
with implementations of the proposed techniques demonstrate that the
proposed techniques are capable of excellent performance.

1 Introduction

The recent proliferation of the event-based social networking (EBSN), as exem-
plified by Meetup1 and Eventbrite2, has not gone unnoticed in the research com-
munity, where substantial efforts have been devoted to the recommendation of
events [5,12,23,24,33], venues [2,14–16,20], and friends [17,28,31]. Unlike previ-
ous recommendation techniques that each focus on recommending only one type
1 http://www.meetup.com.
2 http://www.eventbrite.com.

c© Springer Nature Switzerland AG 2019
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of items (either events or friends), event-partner recommendation [27] aims to
recommend events together with partners to users. The rationale is that attend-
ing an event with a partner may be more attractive to a user than attending the
event alone. Our put differently, a user may not attend an event if the user has
to do so alone. However, no matter which recommendation technique is used,
users receive information in a push mode, and the provided information is only
related to the users’ historical data. Yes, EBSNs also provide search services
that allow users to retrieve event information in response to query keywords.
This way users retrieve information in pull mode according to specified query
keywords.

We propose a new way of accessing information in the EBSNs that combines
push and pull modes, thus allowing users not only to conduct ad-hoc event
search, but also to receive recommended partners for retrieved events. To achieve
this goal, one may consider extending existing methods by first recommending
events to a user and then filter out irrelevant events according to given keywords.
However, this approach may produce empty results, since recommended events
are usually based on a user’s historical information while given keywords are ad
hoc and may not align with the historical data. We adopt a different tack: we
first retrieve relevant events w.r.t. given keywords, and then, for each relevant
event, we find an appropriate partner.

Hence, we propose a new kind of EBSN query that takes advantage of both
recommendation and search techniques. Taking into account user-specified key-
words and a user’s historical data, it retrieves event-partner pairs, such that the
events are relevant to the keywords and such that the query user is willing to
attend the events with the suggested partners. For instance, user “Mary” wants
to attend a “rock concert”. The query we propose retrieves k events relevant to
“rock concert” and suggests a partner for each event. This of query is called the
top-k event-partner (kEP) pair retrieval query. It differs from keyword queries
that retrieve relevant events without partners, and is also differs from event-
partner recommendation based on only the historical data, where ad-hoc query
keywords are not taken into consideration.

The kEP query can be modeled as a top-k join query that returns the k join
results (pairs of events and users) with the highest scores. A straightforward
method to process the kEP query is to first join events and the users and then, for
each event e, choose the pair (e, ui) with the highest so-called together preference
as a result candidate. Next, all the candidates are ranked according to a scoring
function, and the k candidates that score the highest are returned as the results.
However, this method is inefficient, since all possible combinations of events
and users are considered in the join process. One may consider to extend the
rank-join algorithm [10] to answer the kEP queries, yielding a method that is
more efficient than the straightforward method just described. The idea is to
scan input events and users ordered according to their scoring predicates. While
a scoring function might use textual relevance of descriptions of events to the
query keywords, there is no obvious scoring predicate for the partners with which
to attend events.
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We propose a rank-join based framework for computing kEP queries where
the scoring predicate for the partners (users) is the number of events that they
attended. Intuitively, users who have attended many events tend to have high
so-called together preferences, to be detailed in the next section. Two repre-
sentative join strategies, nested loop join and ripple join [7], are studied within
the framework. An empirical study offers evidence that the ripple join is better
than the nested loop join. To further improve the performance of the framework,
three optimizations are proposed: (1) an unpromising-event pruning technique
that removes encountered events that cannot enter the result, (2) a key partner
technique that quickly identifies results by exploiting a property of the scoring
function, and (3) an efficient partner computation technique that reduces the
computational cost of finding the partner with the highest together preference
for an event. To evaluate the proposed framework and optimizations, we con-
duct experiments with prototype implementations of the proposed techniques
using real data. The results offer insight into the properties of the techniques
and indicate that the paper’s proposal is useful in practice.

The rest of this paper is organized as follows. Section 2 formally defines the
top-k event-partner retrieval problem. Section 3 presents the framework. The
three optimizations are detailed in Sect. 4. We report on a performance evalu-
ation in Sect. 5. Finally, we cover related work in Sect. 6 and offer conclusions
and research directions in Sect. 7.

2 Problem Definition

An event-based social network (EBSN) can be modeled as a bipartite graph
G = (U,E,R), where U represents a set of users, E models a set of events
posted by the users, and R ⊆ U ×E is set of participation-relationships between
users and events, i.e., r = (u, e) ∈ R, u ∈ U, e ∈ E. Each event e ∈ E is associated
with a text document e.ψ that describes the content and features of the event.
Specifically, we will assume that a document is represented by a term vector [25].
The members of an event e are the users u who have joined e : {u|(u, e) ∈ R}.

The together preference [27] p(u∗, e, u) measures the probability that user
u∗ is willing to attend event e with user u, u∗ �= u, i.e., user u is willing to be
a partner of u∗ at event e. Its definition is given in Eq. 1, and it is motivated
by two observations. First, a user may wish to attend an event that is similar
to events that the user has previously participated in. Second, people tend to
join an event with a partner with whom they share common interests. In our
scenario, the common interests are captured by the common events that two
people have participated in.

p(u∗, e, u) =

∑
ei∈N(u∗,e) s(e, ei) · b(u∗, ei, u)

∑
ei∈N(u∗,e) s(e, ei)

(1)

Function p(u∗, e, u) takes three arguments, i.e., a target user u∗, an event e,
and a partner user u. The range of p(u∗, e, u) is [0, 1]. Large values of p(u∗, e, u)
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indicate that target user u∗ is very likely to attend event e with partner user u.
In the definition, N(u∗, e) is the neighborhood of a pair of a user and an event
(u∗, e), which is the set of events ei that satisfy the following two conditions:
(1) user u∗ has attended event ei, and (2) the similarity s(e, ei) between the
documents of events e and ei is no less than a threshold τ . We define the similarity
s(e, ei) as the cosine similarity. However, the proposed method is independent
of the choice of the similarity measure. Any reasonable similarity function can
be adopted easily. Given a partner user u, a target user u∗, and an event ei,
b(u∗, ei, u) = 1 if u∗ and u have participated in event ei, i.e., (u∗, ei) ∈ R
and (u, ei) ∈ R; otherwise, b(u∗, ei, u) = 0. The denominator is the sum of the
similarities between event e and each event ei in the neighborhood N(u∗, e).
The numerator sums up the similarities between event e and the event ei in
neighborhood N(u∗, e) that u has participated in. The together preference is not
symmetric, i.e., p(u∗, e, u) �= p(u, e, u∗). If N(u∗, e) = ∅, the together preference
p(u∗, e, u) is undefined, which means that no partner can be recommended for
u∗ for participating in event e. The together preference can be interpreted in
two phases. First, an event e is taken as a candidate event for user u∗ if some
of u∗’s previously attended events are similar to e, i.e, N(u∗, e) �= ∅. Second, a
user u is considered a candidate partner w.r.t. u∗ and e if u has participated in
events in neighborhood N(u∗, e).

Example 1. Consider the EBSN in Fig. 1, where there are five users U =
{u1, u2, · · · , u5} and five events E = {e1, e2, · · · , e5}. The participation rela-
tionship R between users and events is given by the edges. Table 1 shows
the term vectors of the documents of the events, and Table 2 shows the sim-
ilarities between the documents of the events. Given τ = 0.3, the neighbor-
hood of user-event pair (u4, e3), N(u4, e3) is {e2, e4, e5} because (i) user u4

has attended events e1, e2, e3, e4, and e5, and (ii) the similar (having similar-
ity no less than 0.3) events of e3 are e2, e4, and e5. The together preference
p(u4, e3, u3) = (0.5 + 0.6)/(0.5 + 0.3 + 0.6) = 0.79, since u3 has attended events
e2 and e5 in neighborhood N(u4, e3).

Fig. 1. Example EBSN

Table 1. Term vectors

Event Term vector

e1 t2 t3 t4 t9

e2 t1 t3 t7 t8

e3 t1 t3 t5

e4 t2 t3 t6 t9

e5 t1 t3 t4 t5 t6

Table 2. Similarities

e1 e2 e3 e4 e5

e1 1 0.2 0.2 0.7 0.3

e2 0.2 1 0.5 0.2 0.3

e3 0.2 0.5 1 0.3 0.6

e4 0.7 0.2 0.3 1 0.3

e5 0.3 0.3 0.6 0.3 1

A top-k most relevant Event-Partner pair retrieval (kEP) query Q =
(k, uq, ψq) takes three arguments: (i) a number k of requested event-partner
pairs, (ii) a query user uq, and (iii) a set of query keywords ψq. Let t(ψq, e.ψ)
be the textual relevance (e.g., defined using language models [22]) of event e
w.r.t. the query keywords ψq. For each e ∈ E, let ue be the user who maximizes
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p(uq, e, u), i.e., ue = arg maxu∈U p(uq, e, u). The result of a kEP query contains
k event-partner pairs (e, u) with the highest score f(uq, ψq, e, u

e) (Eq. 2). The
events in the result are distinct, but the same partner user may be paired with
multiple events. The scoring function considers both textual relevance and the
together preference. Ties are broken arbitrarily.

The scoring function used in the paper takes the form of a weighted sum of
the textual relevance and the together preference. The techniques we propose
are, however, applicable to any scoring function that is monotone in terms of
both the textual relevance and the together preference. The kEP query tries
to find event-partner pairs (e, u) such that the events are relevant to the query
keywords and the query user is likely to participate in the events with partners.

f(uq, ψq, e, u
e) = α · t(ψq, e.ψ) + (1 − α) · p(uq, e, u

e)
s.t. t(ψq, e) ∈ [0, 1] ∧ p(uq, e, u

e) ∈ [0, 1] (2)

In the EBSN, some events may occur periodically, e.g., weekly or monthly. A
user may attend same such event multiple times. Hence, in the result of a kEP
query, events may exist that have been attended previously by the query user.
We do not exclude those events, since the query user is probably interested in
them and may attend them again.

Example 2. Continuing Example 1, given a kEP query Q with k = 2, uq = u4,
and ψq = {t1, t3}, the textual relevance of each event w.r.t. the query keywords
is shown in Table 3, and the neighborhoods of user-event pairs are shown in
Table 4 (given τ = 0.3). Given the query user u4, for each event e, we choose
user ue as the partner, given that the together preference p(u4, e, u

e) exceeds the
together preference of choosing any other user. Table 4 shows the partner user
for each event and the corresponding together preference. Given α = 0.5, the
top-2 event-user pairs of query Q are (e2, u3) and (e3, u3) with score 0.85 and
0.8, respectively.

Table 3. Textual relevance

Event t(ψq , e.ψ)

e1 0.4

e2 0.7

e3 0.8

e4 0.3

e5 0.6

Table 4. Neighborhood

Event N(u4, e) ue p(u4, e, ue)

e1 e4, e5 u5 0.7

e2 e3, e5 u3 1

e3 e2, e4, e5 u3 0.79

e4 e1, e3, e5 u3 1

e5 e1, e2, e3, e4 u3 0.8

3 Rank-Join Based Framework

We proceed to present the rank-join based framework for the processing of kEP
queries. Section 3.1 presents the main data structures used in the framework.
Section 3.2 explains the query processing algorithm, and Sect. 3.3 covers two
join strategies in the framework.
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3.1 Data Structures

The rank-join based framework includes two main data structures. One is a
representation of the event-user graph G that is stored in the main memory.
The other one is a disk-resident inverted index II d that indexes the documents
of all events in the EBSN. The inverted index consists of two main components:
(1) a vocabulary of all distinct terms in the collection of documents and (2) a
posting list for each term t in the vocabulary. Each posting list is a sequence of
pairs (id , w), where id identifies an event e whose document e.ψ contains term
t and w is the weight of term t in document e.ψ.

3.2 Algorithm

Following the idea of the rank-join algorithm [10], the framework conducts a join
operation on the ranked input events and users. The ranked input events are
obtained by issuing a keyword query using the inverted index II d. The relevant
events are retrieved in descending order of their textual relevance. In contrast,
there is no straightforward way to obtain the ranked input users. Following the
definition of the together preference (Eq. 1), the framework uses a heuristic scor-
ing predicate of the users, namely the number of events the users have attended.
The motivation is that the users who have attended many events can be expected
to have high together preferences w.r.t. query user uq and event e. However, this
heuristic falls short when a user has attended many events outside neighborhood
N(uq, e). To avoid this situation, the framework retrieves the users based on two
constraints, i.e., (1) the retrieved users should have attended at least one event in
neighborhood N(uq, e), and (2) the users are retrieved in descending order of the
number of events they have attended. Specifically, the set of users U(uq, e) that is
fed into the join process is constructed as follows. For each retrieved event e, its
neighborhood N(uq, e) is computed. Then, for each event in the neighborhood,
its participants are obtained from the event-user graph. The user set U(uq, e)
is the union of the members of all the events in neighborhood N(uq, e). Next,
the users in U(uq, e) are sorted descendingly on the number of events they have
attended.

The query processing algorithm in the framework borrows the idea of the TA
(Threshold Algorithm) [3] and consumes the input events and users to generate
candidate event-user pairs. A threshold T is maintained that is calculated by
setting the textual relevance to that of the upcoming event and the together
preference to 1 in the scoring function (Eq. 2). When the score of the kth largest
candidate pair is no less than T , the algorithm reports the obtained top-k pairs.
It is not difficult to prove that threshold T serves as an upper bound on the
scores of the event-partner pairs that have not yet been considered, since the
events are retrieved in descending order of the textual relevance and because the
maximum value of the together preference is set to 1. Different join strategies
can be adopted for the join in the algorithm.
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3.3 Join Strategies

We consider two state-of-the-art join strategies in the framework, namely nested
loop join and ripple join [7]. The nested loop join consists of two nested loops,
where the outer loop consumes events in descending order of the textual rele-
vance and the inner loop, executed for each (outer) event, consumes the users
in U(uq, e). When the inner loop for an event finishes, the partner for the event
with the highest together preference has been identified and this event-partner
pair is output as a candidate.

In the ripple join, e.g., the “square” version, one previously unseen tuple (user
or event) is retrieved from each of the two input lists in each step; these new
tuples are joined with the previously seen tuples and with each other. As in the
nested loop join, the events are retrieved in the descending order of the textual
relevance. Unlike in the nested loop join, the users to be retrieved are organized in
a priority queue sorted descendingly on the number of events they have attended.
For each upcoming event e, the priority queue is updated dynamically by adding
its user set U(uq, e). The square version consumes one event and one user at a
time. In the empirical study, we also evaluate the performance of the rectangular
version that consumes different numbers of events and users at a time.

4 Optimizations

Although the rank-join based framework take advantage of both the rank-join
and the TA algorithm, it is still inefficient in some cases. For instances, it may
take a long time to find the partner for an event if the number of users consid-
ered in the join process is large. In addition, before returning the top-k pairs,
unnecessarily many candidate pairs may have been produced, which incurs high
computational cost. We develop three optimizations with the goal of improving
the performance of the framework.

4.1 Unpromising-Event Pruning

This optimization reduces the computational cost by pruning events that will
definitely not contribute to top-k pairs. We derive a worst allowed together
preference pw(e) (Definition 1) for a newly retrieved event, which is a necessary
condition of the event being able to contribute to the top-k result. This value
is a lower bound on the together preference of the events in the final result. We
also derive a best possible together preference pub(e) (Definition 2) for a newly
retrieved event, which estimates the highest possible together preference of the
event with its partner.

Definition 1. Worst Allowed Together Preference pw(e): Given a query
user uq and query keywords ψq, let fk be the score of the current kth candidate
event-partner pair. The worst allowed together preference pw(e) of e is defined
as pw(e) = (fk − α · t(ψq, e))/(1 − α).
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Lemma 1. If ∀u ∈ (U \ {uq})(p(uq, e, u) ≤ pw(e)), event e cannot belong to the
result.

Definition 2. Best Possible Together Preference pub(e): Let N(uq, e) be
the neighborhood of uq and e, and define m = maxu∈(U\{uq}){|Ec| | Ec =
N(uq, e) ∩ Eu}, where Eu is the set of events that user u have attended. The
best possible together preference pub(e) of e is given as follows.

pub(e) =

∑
ei∈TopM (uq,e)

s(e, ei)
∑

ei∈N(uq,e)
s(e, ei)

, (3)

where |TopM (uq, e)| = m, TopM (uq, e) ⊆ N(uq, e), and ∀ei ∈
TopM (uq, e) ∀ej ∈ (N(uq, e) \ TopM (uq, e)) (s(e, ei) ≥ s(e, ej)).

Lemma 2. The best possible together preference pub(e) of e is an upper bound
on the together preference of e with its partner.

Proof. According to Eq. 1, the numerator of the together preference sums up
the similarities between the events ei that user u has attended in neighbor-
hood N(uq, e). This can be rewritten as follows:

∑
ei∈N(uq,e)∩Eu

s(e, ei). Set
TopM (uq, e) contains the top-m similar events in neighborhood N(uq, e). Since
m = maxu∈(U\{uq}){|Ec| | Ec = N(uq, e) ∩ Eu} is the maximum number of
events attended by a user in N(uq, e), we have ∀u ∈ (U \ {uq})(|TopM (uq, e)| ≥
|N(uq, e)∩Eu|). It is easy to derive that ∀u ∈ (U\{uq})(

∑
ei∈N(uq,e)∩Eu

s(e, ei) ≤
∑

ei∈TopM (uq,e)
s(e, ei)). The denominators of pub(e) and the together preference

are the same. Hence, we have proven that ∀u ∈ (U \ {uq})(pub(e) ≥ p(uq, e, u)).

Example 3. Given query user u4, we illustrate how to compute the best possible
together preference of event e3. Neighborhood N(u4, e3) = {e2, e4, e5} and m =
2. Then we have TopM (u4, e3) = {e2, e5}. The best possible together preference
is calculated as pub(e3) = (0.5 + 0.6)/(0.5 + 0.3 + 0.6) = 0.79.

Lemmas 1 and 2 present the properties of pw(e) and pub(e), respectively.
Pruning Rule 1 below is based on Lemmas 1 and 2 and is able to prune unpromis-
ing events (that cannot contribute to pairs in the top-k result). Thus it enables
reducing the computational cost.

Pruning Rule 1. Given query user uq and query keywords ψq, for event e, if
pw(e) > pub(e), event e cannot contribute to a result pair and can be pruned.

4.2 Key Partner

It follows from the definition of the together preference (Eq. 1) that if a user
u exists who has attended all events in neighborhood N(uq, e), the together
preference p(uq, e, u) equals 1, the maximum value. Thus, user u is the partner for
event e. Based on this observation, we introduce the key partner set (Definition 3)
of a user u. If a query user uq has a key partner, any candidate event for uq will
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be paired with the key partner, and the together preference is 1 (Lemma 3).
In other words, computing the top-k event-partner pairs for a query user who
has a key partner is efficient: the k events with the highest textual relevance are
retrieved and paired with the key partner.

Definition 3. Key Partner Set KP(u): Let Eu and Eu′ be the sets of events
attended by users u and u′, respectively. If Eu ⊆ Eu′ , user u′ is a key partner of
user u. The key partner set is defined as KP(u) = {ui|∀ui ∈ U \{u}(Eu ⊆ Eui

)}.
Lemma 3. Given a query user uq, ∀e ∈ E ∀u ∈ KP(uq) ∀u′ ∈ U \ (KP(uq) ∪
{uq}) (p(uq, e, u) = 1 ≥ p(uq, e, u

′)).

Proof. Since ∀u ∈ KP(uq)(Eu ⊇ Euq
) and ∀e ∈ E(Euq

⊇ N(uq, e)), we have
∀u ∈ KP(uq)∀e ∈ E(Eu ⊇ N(uq, e)) and derive that p(uq, e, u) = 1. Straightfor-
wardly, ∀u′ ∈ U \ (KP(uq) ∪ {uq})(p(uq, e, u) = 1 ≥ p(uq, e, u

′)).

The key partner set of a query user may contain multiple users. According
to the definition of the kEP query, the events in the result are distinct. Thus,
we arbitrarily select one user from the key partner set for each event.

4.3 Efficient Partner Computation

In the framework, the operation of finding a partner for an event is expensive. In
particular, the cost is high when user set U(uq, e) considered in the join is large.
The following optimization provides a way of finding the partner for an event
without examining each user in set U(uq, e). The optimization uses an event-
member list for each event that consists of pairs (u,num) sorted descendingly
on num, which is the number of events attended by user u.

Table 5 shows the event-member lists of the five events in Fig. 1. For instance,
event e4 has members u4 and u5. User u4 has attended five events, and user u5

has attended three events.

Table 5. Event-member lists

Event Member list

e1 (u4, 5), (u3, 4), (u5, 3)

e2 (u4, 5), (u3, 4), (u5, 3)

e3 (u4, 5), (u3, 4), (u2, 1)

e4 (u4, 5), (u5, 3)

e5 (u4, 5), (u3, 4), (u1, 1)

Algorithm 1 shows the pseudo code of the efficient partner computation. It
takes a query user uq, an event e, and a neighborhood N(uq, e) as arguments, and
it returns the partner user u who maximizes the together preference p(uq, e, u).
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Given neighborhood N(uq, e), the member lists of the events in the neighborhood
are fetched (line 4). Function GetNextPair() chooses the pair (u,num), u �= uq

with the largest num from the first elements of all fetched member lists. If
multiple pairs have the same largest num, the pair from the member list of event
ei with the largest similarity s(e, ei) is selected (line 6). The together preference
p(uq, e, u) is computed, and pair (u,num) is removed from each member list that
contains it. If p(uq, e, u) is larger than the together preference p1 of the current
candidate partner up, user u is taken as the candidate partner (lines 7–10). Then
function GetNextPair() is called again to obtain the next pair (u,num) that
is used to compute an upper bound pr (Lemma 4) on the together preference
of the rest of the users in the fetched member lists (lines 12–14). If the together
preference p1 of the current candidate partner up is no less than pr, user up is the
partner who maximizes p(uq, e, u) and is returned (Pruning Rule 2). Otherwise,
the algorithm repeats the above process.

Algorithm 1. ComputePartner(N(uq, e), uq, e)
1: p1 ← −1
2: pr ← +∞
3: up ← null
4: Fetch the member list ml(ei) of each event in N(uq, e)
5: while p1 < pr do � Pruning Rule 2
6: (u,num) ← GetNextPair()
7: if p1 < p(uq, e, u) then
8: p1 ← p(uq, e, u)
9: up ← u

10: end if
11: Remove (u,num) from the member list
12: (u,num) ← GetNextPair()
13: x ← min{num, |N(uq, e)|}
14: pr ← (

∑
ei∈TopX (uq,e)

s(e, ei))/(
∑

ei∈N(uq,e)
s(e, ei))

15: end while
16: return up

Lemma 4. Given a query user uq and an event e, let (u,num) be the pair
returned by function GetNextPair() and define x = min{num, |N(uq, e)|}.
Then set TopX (uq, e) contains the top-x events {ei} in neighborhood N(uq, e)
with the largest similarity s(e, ei). An upper bound on the together preference of
the users in the member lists of the events in N(uq, e) is

pr =

∑
ei∈TopX (uq,e)

s(e, ei)
∑

ei∈N(uq,e)
s(e, ei)

(4)

Proof. Recall that (i) the pairs (u,num) in the member list are sorted descend-
ingly on num and that (ii) function GetNextPair() returns the pair with the
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largest num from the first elements in all member lists of the events in N(uq, e).
This means that no user in the member lists of the events in N(uq, e) can have
attended more events than the returned num. Since x = min{num, |N(uq, e)|},
no user in the member lists of the events in N(uq, e) has attended more than x
events in N(uq, e). Given that set TopX (uq, e) contains the top-x events {ei} in
neighborhood N(uq, e) with the largest similarity s(e, ei), then, for any user ui

in the member lists of the events in N(uq, e), we have pr ≥ p(uq, e, ui).

Pruning Rule 2 In the context of Algorithm 1, let p1 be the together preference
of the current candidate partner up. If p1 ≥ pr, user up is returned as the partner
of event e, and no other user in the fetched member lists can be the partner and
are pruned.

Example 4. Given query user u4 and event e2, according to Table 4, neighbor-
hood N(u4, e2) = {e3, e5}. According to Table 5, the pair returned by function
GetNextPair() is (u3, 4). The together preference p(u4, e2, u3) = 1. Pair (u3, 4)
is removed from the member list of each event in N(u4, e2). User u3 is taken as
the candidate partner. Next, GetNextPair() returns (u2, 1). We have x = 1
and pr = 0.5/(0.5 + 0.3) = 0.63. Since p(u4, e2, u3) ≥ pr, no other user can have
higher together preference than does user u3. Finally, user u3 is returned as the
partner for u4 at e2.

5 Empirical Study

We proceed to cover a study of the performance of the proposed framework and
its three optimizations. In the experiments, F-NLJ and F-NLJ* denote the frame-
work adopting the nested loop join without and with optimizations, respectively.
F-RJ* denotes the framework adopting the ripple join with optimizations.

5.1 Data and Queries

We have crawled a data set from Meetup3 that contains 224,238 events and
7,822,965 users. The average number of members per event is 116. We have
also downloaded the text descriptions (documents) of the events. The number
of unique terms in the document collection is 519,885, and the average number
of tokens per document is 72.

We generated 5 query sets, in which the number of keywords is 1, 2, 3, 4, and
5, respectively, taken from the data set. Each query set comprises 100 queries.
Specifically, to generate a query, we randomly pick a user in the data set as the
query user, and we randomly choose words from the document of a randomly
selected event as the query keywords. We ensure that no query has an empty
result.

3 http://www.meetup.com.

http://www.meetup.com
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5.2 Setup

All algorithms were implemented in Java, and a machine with an Intel(R)
Xeon(R) CPU E5-2630 v2@2.60GHz and 128 GB main memory was used for
the experiments. The document inverted index is implemented by Lucene4 and
is disk resident. The key partner sets of all users are kept in main memory. In
the data set, 68% of all users have key partner sets. The user-event graph G is
represented by adjacency lists and is stored in main memory. Since the structure
of the member lists of the events is similar to the adjacency lists of the user-
event graph, we extend the adjacency lists of the event nodes in G to include the
number of events attended by each user, so that the member list of any event
can be obtained from the user-event graph.

We study the effects of different parameters and set parameter default values
as follows: the number k of requested event-partner pairs is 10; the number of
query keywords is 3; parameter α in the scoring function (Eq. 2) is 0.5. Some
queries take long time to compute using the framework without optimizations.
We set 20 s as a time limit. If the processing of any query exceeds 20 s, we stop
the processing.

5.3 Performance Evaluation

Tuning the Number of Retrieved Events and Users in the Ripple Join.
When using the ripple join, the numbers of retrieved events and users at a time
affects the performance. We thus evaluate the framework using the ripple join
when varying the numbers of retrieved events and users. It is observed that
varying the number of retrieved events does not affect the performance, while
varying the number of retrieved users does, as shown in Fig. 2. The runtime
improves as the number of retrieved users is increased from 10 to 100, and it
gets slightly worse when the number of retrieved users is increased from 100 to
150. The number of events and users involved in the computation and the number
of pruned events exhibit similar behavior. Thus, in the following experiment, the
number of retrieved users in the ripple join is set to 100.

10 15020 50 100 

number of retrieved 

ru
nt

im
e(

M
illi

se
co

nd
)

0

500

1000

1500

2000

(a) Runtime

10 15020 50 100 

number of retrieved 

nu
m

be
r o

f e
ve

nt
s

0

20

40

60

80

(b) Events

10 15020 50 100 

number of retrieved 

nu
m

be
r o

f p
ru

ne
d 

ev
en

ts

0

10

20

30

40

50

60

(c) Pruned Events

10 150 20       50       100 

number of retrieved 

nu
m

be
r o

f r
et

rie
ve

d 
us

er
s

0

50

100

150

200

250

300

(d) Users Per Event

Fig. 2. Varying the number of retrieved users in ripple join

4 https://lucene.apache.org.

https://lucene.apache.org
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Varying the Number k of Requested Event-Partner Pairs. Figure 3 shows
the average runtime, the average number of retrieved events per query, the aver-
age number of pruned events, and the average number of retrieved users per
event when varying k. The average runtime of the three approaches increases
as k increases, since more and more relevant events are retrieved and more and
more users are involved as k increases. The unpromising event pruning opti-
mization prunes many events, as shown in Fig. 3(c). The efficient partner com-
putation optimization reduces the number of retrieved users per event, as shown
in Fig. 3(d). F-NLJ has almost the same number of retrieved events as each of
F-NLJ* and F-RJ* (Fig. 3(b)). This is because F-NLJ has significantly more
retrieved users per event than do F-NLJ* and F-RJ*, so that the processing
time of some of the queries exceeds the 20 s time limit, forcing those queries to
stop. Thus, the framework with optimizations outperforms F-NLJ significantly
in terms of runtime. F-RJ* has slightly fewer pruned events than does F-NLJ*,
but it also has significantly fewer retrieved users per event than does F-NLJ*,
which means that the ripple join is better than the nested loop join. Hence,
F-RJ* outperforms F-NLJ* in terms of runtime.

Fig. 3. Varying the number of requested event-partner pairs k

Varying the Number of Query Keywords. Figure 4 shows the average run-
time, the average number of retrieved events per query, the average number of
pruned events, and the average number of retrieved users per event when vary-
ing the number of query keywords. It can also be seen that the unpromising
event pruning and efficient partner computation optimizations are effective, cf.
Figure 4(c) and (d). The number of events retrieved by F-NLJ is slightly lower
than those of both F-NLJ* and F-RJ* (Fig. 4(b)). This occurs because the pro-
cessing of some of the queries using F-NLJ take too long and are forced to stop.
Overall, F-NLJ* and F-RJ* outperform F-NLJ significantly in terms of runtime.

Varying α. Figure 5 reports on the finding when varying α that specifies the
weight of the textual relevance in the scoring function. The performance of the
three approaches get better (shorter runtime, fewer retrieved events and users)
as α increases. The reason is that a large α gives high weight to the textual
relevance, so that the ranking of the event-partner pairs is affected more by the
textual relevance of the events than the together preference. Since events are
retrieved in descending order of the textual relevance in the three approaches,
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Fig. 4. Varying the number of keywords

the top-k event-partner pairs are determined faster when α is large. Consistent
with the previous results, this experiment also shows the effectiveness of the
propose optimizations, i.e, many unpromising events are pruned, and the number
of retrieved users per event is reduced.

Fig. 5. Varying α

Summary. Overall, for a broad range of parameter settings, the proposed opti-
mizations improve the performance of the framework substantially. Unpromising
events are pruned. The numbers of users needed for finding partners for events
are reduced. In most cases, the ripple join is better than the nested loop join.

6 Related Work

Recommender Systems. Friend recommendation systems [8] predict user-
user relationships (i.e., friendships). They estimates the likelihood that two non-
friends will become friends in the future [17,28,31]. Group recommendation [6,
32] explores the preference of a group of users in relation to individual items. In
location-based social networks, new locations are recommended to users [29] by
taking into account previous user check-ins, the distances of proposed locations
to users’ neighborhoods [1], and geographical and social information [16]. In
event-based social networks, event recommendation offers a user a set of events
by giving consideration to both personal interests and local preferences [30],
heterogeneous social relations and implicit feedback [24], social group influences
and individual preferences [5], and several contextual signals [18].
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All these recommendation techniques only recommend one type of items. The
problem studied in this paper adopts a recent recommendation technique [27]
that suggests event-partner pairs as a component.
Rank-Join Algorithms. Based on the A* optimization strategy, the J∗ algo-
rithm [21] enables querying of ordered data sets by means of user-defined join
predicates. NRA-RJ [9] is a pipelined query operator that produces a global rank
from ranked input streams based on a scoring function. Ilyas et al. [10] rank join
results progressively during join operations, making use of the individual orders
of the inputs.

Ranking (top-k) queries have also been integrated into relational database
systems [11,13]. Mamoulis et al. [19] identify two phases that any (no random
access) NRA algorithm should go through: a growing phase and a shrinking
phase. Their LARA algorithm employs a lattice to minimize the computational
cost during the shrinking phase. The FRPA rank join operator [4] allows effi-
cient computation of score bounds on unseen join results and prioritizes the
I/O requests of the rank join operator based on the potential of each input to
generate results with high scores. The Pull/Bound Rank Join (PBRJ) [26] is
an algorithm template that generalizes previous rank join algorithms. The idea
is to alternate between pulling tuples from input relations and upper bounding
the score of join results that use the unread part of the input. The join results
collected as tuples are pulled, and the algorithm stops once the top-k buffered
results have a score at least equal to the upper bound.

We extend the state-of-the-art rank-join algorithm [10] and propose a frame-
work with optimizations that supports the efficiently processing of kEP queries.

7 Conclusion

This paper introduces the top-k event-partner (kEP) pair retrieval query that
takes the advantages of both event-partner recommendation and keyword-based
search. Given a query user, keywords, and a value k, the query retrieves event-
partner pairs from a bipartite event-user graph where events have text descrip-
tions, taking into account both the text relevance of events and the together
preference that captures how much the query user prefers to attend an event
with a particular partner. For the sake of efficiency, the proposed rank-join based
framework comes with three optimizations. The paper’s empirical study offers
insight into the proposed techniques, indicating that they are effective and that
the framework is practical.

This work opens to a number of promising directions for future work. First,
it is worth adapting other existing recommendation techniques developed for
events and users to the paper’s setting. Second, it is of interest to consider social
relationships between users when processing kEP queries. Third, it is of interest
to understand how the kEP queries considered can be best processed if the query
user’s current location is taken into account.
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Abstract. The local experts finding, which aims to identify a set of
k people with specialized knowledge around a particular location, has
become a hot topic along with the popularity of social networks, such as
Twitter, Facebook. Local experts are important for many applications,
such as answering local information queries, personalized recommenda-
tion. In many real-world applications, complete social information should
be collected from multiple social networks, in which people usually par-
ticipate in and active. However, previous approaches of local experts
finding mostly focus on a single social network. In this paper, as far as
we know, we are the first to study the local experts finding problem
across multiple large social networks. Specifically, we want to identify a
set of k people with the highest score, where the score of a person is a
combination of local authority and topic knowledge of the person. To
efficiently tackle this problem, we propose a novel framework, KTMSNs
(knowledge transfer across multiple social networks). KTMSNs consists
of two steps. Firstly, given a person over multiple social networks, we
calculate the local authority and the topic knowledge, respectively. We
propose a social topology-aware inverted index to speed up the calcula-
tion of the two values. Secondly, we propose a skyline-based strategy to
combine the two values for obtaining the score of a person. Experimen-
tal studies on real social network datasets demonstrate the efficiency and
effectiveness of our proposed approach.

Keywords: Local experts · Multiple social networks · Multiple graphs

1 Introduction

Local expert differs from general topic expert in the sense that local expertise
is very limited to a geographical location. Local experts can play an important
role in many applications, such as addressing local information queries, social
event arrangement [5,18], and spatial crowdsourcing [19]. For instance, local
information queries, like “where can I find the best pub in the Dongcheng District
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of Beijing?”, “who is a good dentist in Chinatown of Singapore?”. Indeed, a
recent survey by Yahoo! Research finds that people prefer to learning from local
experts who know the neighborhood well and have first hand experience [1].

Recently, the local experts finding problem has gained increasing attention
in social media [6,14,15]. Previous works mostly focus on single source social
network. However, witnessing the rapid growth of online social networks, people
are usually getting involved in multiple social networks simultaneously to enjoy
more online social services [12,25,26]. For example, people may use Foursquare
to share their footprints at different locations or venues with their friends. Mean-
while, they may use Facebook to record something interesting, and turn to Twit-
ter to post comments on the latest news. These social networks sharing common
users are formally defined as multiple aligned networks, which is firstly pro-
posed in [12]. Finding local experts from one single source social network may
miss some important information, which will cause the inaccuracy of identified
experts. For instance, user Alice (or Bob) usually uses Twitter (or Foursquare)
to record her (or his) beautiful life, while user Cindy uses both. If we find local
experts only in Twitter or Foursquare, Cindy never will be the answer. But
Cindy can be the answer if we consider the both social networks, Twitter and
Foursquare. Therefore, in this paper, we study the local experts finding problem
across multiple heterogeneous social networks.

Challenges. Given a social network G, a local expert is evaluated by a score
(local expertise) that is related to the information of the local community of
G. The local expertise consists of two values: the local authority, and the topic
knowledge. The value of local authority of a person indicates how well does
the local community recognize this person. The value of topic knowledge of a
person reflects how much does this person know about this topic. Nevertheless,
conventional works on a single social network can not be applied to local experts
finding over multiple social networks, due to the following challenges:

1. How to evaluate the two types of value, that is, the local authority and the
topic knowledge, over multiple heterogeneous social networks.

2. How to fuse the two types of value and make a trade-off for returning a
high-accuracy of identified experts.

3. Due to the redundancy of the social information over multiple heterogeneous
social networks, how to tackle local experts finding problem efficiently is an
urgent requirement.

Our Contributions. To address the above challenges in this paper, we pro-
pose a new framework, KTMSNs (knowledge transfer across multiple social net-
works). Two heterogeneous social networks usual have common users, that is,
two accounts located on these two social networks correspond to the same per-
son in real life. We call these common users as anchor users. The intuition of
KTMSNs is that the anchor users can be regard as the “bridges” between two
heterogeneous social networks, which can be leveraged to transfer knowledge.
Therefore, KTMSNs consists of two main steps.
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Firstly, given a person over multiple social networks, we calculate the local
authority and the topic knowledge, respectively. We divide the local experts find-
ing problem over multiple social networks (suppose the number of social networks
is m) into (m − 1) sub-problems to find local experts across two heterogeneous
social networks. For each sub-problem, we propose a social distance based knowl-
edge decay approach to evaluate the local authority and topic authority for all
the users across the two heterogeneous social networks.

We also propose a social topology-aware inverted index, STAI, to speed up the
calculation of the two values. The STAI index integrates a social distance oracle
index and a topic category-aware inverted index. The former is used to calculate
the social distance from any user to an anchor user, which can accelerate the
social distance based knowledge decay procedure. The latter can be leveraged to
achieve high efficiency.

Secondly, we propose a skyline-based strategy to combine the two value for
obtaining the score of a person. Usually, someone with a high topic authority
may be in a location that is far from the query location, thus the local authority
may be relatively low. On the other hand, someone with a high local authority
may have a lower topical authority. Skyline-based strategy is suitable to tackle
the trade-off obstacle.

Finally, we conduct an extensive experimental evaluation with real datasets
to offer insight onto the efficiency of the proposed index and the effectiveness of
our proposed algorithms.

The remaining parts of this paper are organized as follows. We formulate our
problem in Sect. 2. We give the details of our proposed approaches in Sect. 3.
We conduct extensive performance studies and report the results in Sect. 4. We
discuss the related work in Sect. 5. Finally, we conclude this paper in Sect. 6.

2 Preliminaries and Problem Formulation

In this section, we first describe the terms and notations that we use through-
out the paper, and then formally define the local experts finding problem over
multiple heterogeneous social networks.

2.1 Preliminaries

We model an online social network as an undirected graph G = (V,E), where
V is a set of users and E is a set of social edges. Each vertex v ∈ V has a
geographical location (x, y) with longitude x and latitude y.

The rise of online social networks (OSNs) and the advances in wireless com-
munication technologies enable Internet users to share life experiences in the
physical world via multiple kinds of OSNs. OSNs are mostly heterogeneous, for
example, the main element of Instagram is photo, the main element of Foursquare
is venue (point-of-interest), whereas short-text is the main element of Twitter.
Following the existing work [27], we have some basic concepts with respect to
aligned heterogeneous social networks.
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Definition 1. (Binary Aligned Heterogeneous Social Networks (Bi-AHSNs)).
If two different social networks share some common users, then these two
networks are called aligned networks. We name two aligned social networks
as binary aligned heterogeneous social networks, which can be formulated as
G = ((G1, G2),A1,2), where G1 and G2 are the two different social networks
respectively and A1,2 �= ∅ is the set of undirected anchor links (see Definition 2)
between G1 and G2.

The definition of Bi-AHSNs can be easily extended to multiple aligned hetero-
geneous social networks (denoted as Multi-AHSNs), which can be formulated
as G = ((G1, G2, · · · , Gm),A1,2,A1,3, · · · ,A1,m,A2,3, · · · ,A(m−1),m), where
G1, G2, · · · , Gn are different social networks and Ai,j �= ∅, i, j ∈ {1, 2, · · · , n} is
a set of undirected anchor links between Gi and Gj .

Fig. 1. Example of PAHLEF problem. (Color figure online)

Definition 2. (Anchor links). Let Vi and Vj be user sets of Gi and Gj respec-
tively. If vh

i ∈ Vi and vk
j ∈ Vj are the accounts of a same user in Gi and Gj

respectively, we call (vh
i , vk

j ) as an undirected anchor link between Gi and Gj.
The collection of such links is denoted as Ai,j.

Definition 3. (Anchor users). User vh
i ∈ Vi is an anchor user in Gi between

Gi and Gj iff ∃vk
j ∈ Vj, (vh

i , vk
j ) ∈ Ai,j. The set of anchor users in Gi between

Gi and Gj is denoted as Vi(Ai,j) = {vh
i | vh

i ∈ Vi,∃vk
j ∈ Vj, (vh

i , vk
j ) ∈ Ai,j}.

Following Definition 3, we denote the set of non-anchor users in Gi between
Gi and Gj as Vi(−Ai,j) = Vi − Vi(Ai,j).

Definition 4. (Full alignment). Social networks Gi and Gj are fully aligned if
users in Gi are all anchor users or users in Gj are all anchor users, that is, Gi

and Gj are fully aligned iff (Vi(Ai,j) = Vi) ∨ (Vj(Ai,j) = Vj).

Definition 5. (Partial alignment). Social networks Gi and Gj are partially
aligned if there exist users in Gi(Gj) which are non-anchor users. That is, Gi

and Gj are partially aligned iff (Vi(−Ai,j) �= ∅) ∧ (Vj(−Ai,j) �= ∅) ∧ (Ai,j �= ∅).
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2.2 Problem Formulation

As mentioned above, a local expert is evaluated by local expertise, which is
related to two kinds of authority values, i.e., local authority and topic knowl-
edge authority. The value of local authority indicates the popularity in the local
community. The value of topic knowledge with respect to a person reflects how
well dose this person know about a given topic. How to integrate the two values
to evaluate one’s local expertise will be discussed in Sect. 3.4. Now we formally
define the local experts finding problem over multiple heterogeneous networks.

Definition 6. (Local Experts Finding over Partially Aligned Heterogeneous
networks, PAHLEF). Given partially aligned heterogeneous social networks G =
((G1, G2, · · · , Gm),A1,2,A1,3, · · · ,A1,m,A2,3, · · · ,A(m−1),m), and given a query
q = 〈t(q), l(q), k〉, PAHLEF aims to find a set of k candidates C with the
highest local expertise with respect to query topic t(q) and location l(q), where
C ⊆ (V1 ∪ V2 ∪ · · · ∪ Vm).

Example 1. As shown in Fig. 1, there are two different social networks, Twit-
ter (T ) and Foursquare (F ), and they are partially aligned. The double
loop nodes are the anchor users, the single loop hollow nodes are the non-
anchor users, and the red dashed arrows are anchor links. That is, AT,F =
{(t2, f2), (t4, f4), (t5, f5), (t8, f8)}, and the set of anchor users in T between T
and F is VT (AT,F ) = {t2, t4, t5, t8}. Besides, we record each user’s geographical
location and activity history in his/her respective social networks. Given a query
q = 〈music, l(q), 4〉, we aim to find a set of 4 users in VT ∪ VF with the highest
local expertise with respect to music and the query location l(q).

3 Approach

3.1 Overview

In this section, we detail our proposed approach, KTMSNs, whose framework is
shown in Fig. 2. KTMSNs consists of data preparation stage, social topology aware
inverted index construction, knowledge decay transfer, and trade-off discussion.

We convert different types of social network data into a unified indication. For
location-based platforms (such as Foursquare, Yelp, etc.), common user behav-
ior is check-in at different venues. The venues have their topic categories. We
can describe user behavior as topic-category frequency via statistical analysis.
We leverage LDA model [3] and TF-IDF based approach [29] to extract topic
information. In this paper, we focus on the local experts finding problem over
multiple heterogeneous social networks. Based on this intuition, we regard the
topic-category frequency description as a part of data preparation. We will not
elaborate in detail in the rest of this paper.
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Fig. 2. Framework.

3.2 Index Construction

Social Distance Oracle. Given partially aligned heterogeneous social net-
works G = {G1, G2, · · · , Gm,A1,2, · · · }, we construct a BFS tree for each anchor
user in its social network. It is consumptive to build a full BFS tree for each
anchor user, since there are more than one anchor user in each social network
Gi. We have Theorem 1 to reduce the scale of the constructed trees.

Theorem 1. Each branch of a BFS-tree rooted at any anchor user can be
stopped to do more extensions, if there is another anchor user in this branch.

Proof. As mentioned in Sect. 1, we utilize an exponential decay model based on
social distance to transfer knowledge over multiple social networks. Therefore, we
only need to compute the social distance between non-anchor user and anchor
user. For any BFS-tree rooted at an anchor user, we should stop to do more
extension for this branch, if there is another anchor user in one of the BFS-tree
branch. The social distance component of our index consists of all the BFS-tree
rooted at all the anchor users in their social networks. For a stopped branch
by an anchor user, the rest information can be retrieved from another BFS-tree
rooted at that anchor user.

The social distance oracle index comprises incomplete BFS-trees rooted at
different anchor users. Thus, we can query the social distance between any non-
anchor user u and any anchor user v efficiently. We denote the social distance
as dist(u, v). We first traverse the BFS-tree Tv rooted at the anchor user v, if
the non-anchor user u lies in this BFS-tree Tv, we can get the social distance
easily. Otherwise, we get an anchor user set A(Tv), in which all the vertices are
anchor users appearing in Tv (except v itself). We traverse the BFS-trees rooted
at the anchor users belonging to A(Tv). Once we find the non-anchor user u at
any BFS-tree (suppose this BFS-tree is rooted at an anchor user w), we update
the social distance between u and v as the sum of dist(v, w) and dist(w, u).
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Fig. 3. BFS-tree rooted at anchor users.

Fig. 4. Example of topic-category and spatial of social users.

Example 2. Take the partially aligned heterogeneous social networks in Fig. 1 as
an example. In order to simplify the description, we only give one quick example
in terms of Twitter social network. As shown in Fig. 1, there are four anchor
users in Twitter social network, i.e., A1,2 = {t2, t4, t5, t8}. We construct BFS-
tree rooted at each vertex in A1,2, which is shown in Fig. 3. The double loop
nodes are the anchor users, and the single loop hollow nodes are the non-anchor
users.

We take t3 and t8 as example to present how to calculate the social distance
between a non-anchor user and an anchor user leveraging the social distance
oracle. We first traverse the BFS-tree rooted at t8 to check whether t3 is in this
tree. As a consequence, t3 is not lain in T (t8), Thus, we can get the anchor
user set A(T ) = {t4, t5}. Next, we traverse the BFS-tree rooted at the anchor
user in A(T (t8)). After traversing the BFS-tree rooted at t4, the anchor user set
A(T ) is updated as {t5, t2}. We update the social distance between t3 and t8 as
dist(t8, t5) + dist(t5, t3) = 2 + 1 = 3. The social distance from another social
path, t8 → t4 → t2 → t3, is large than 3. Finally, the social distance between t3
and t8 is 3.

Topic Category-Aware Inverted Index. Another component of our index
is topic-category-aware inverted index. For each social network platform Gi in
G = {G1, G2, · · · , Gm}, we construct an IR-tree [4,8,22] to index the spa-
tial information and the topic-category frequencies with respect to social users.
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Topic-category frequency reflects the activity experience of a user, which indi-
cates the knowledge grasped by the user. A topic category hierarchical tree can
be extracted from the Wikipedia1.

The IR-tree is essentially an R-tree [11] extended with inverted files [29]. In
this paper, each leaf node in the IR-tree contains entries with a form (u, u.λ, u.di),
where u refers to a user in the social network, u.λ is the bounding rectangle of
u, and u.di is an identifier of the description of u. Each leaf node also contains a
pointer to an inverted file with the topic-category knowledge of the users stored
in the node.

An inverted file index has two main components, (1) a vocabulary of all
distinct topic categories; (2) a posting list for each topic category c that is
a sequence of key-value pairs of those users whose experiences contain c and
corresponding topic category frequency.

Each non-leaf node R in the IR-tree contains a number of entries of the
form (cp, cp.λ, cp.di), where cp is the address of a child node of R, cp.λ is the
minimum bounding rectangle (MBR) of all rectangles in entries of the child
node, and cp.di is an identifier of a pseudo text description that is the union of
all text descriptions in the entries of the child node. Moreover, the inverted file
of the non-leaf node is a summarization of its subtree. Specifically, we record
the maximum knowledge score associated with the same topic category in one
MBR.

Take the Twitter social network in Fig. 1 as an example, we suppose that
the spatial distribution of users are shown in Fig. 4(a). Figure 4(b) presents the
descriptions of users, in which the first column is user list, and the second column
includes the topic categories and frequencies.

Figure 5 shows the corresponding IR-tree. Table 1 illustrates the content of
the inverted files associated with the nodes. It is worth to note that we construct
an IR-tree index for each social platform rather than build an overall IR-tree
index. The intuition is to evaluate the local authority and the topical authority
of each social user in the all online social networks. It is beneficial to build
an overall IR-tree index for the two authorities calculation for anchor users.
However, it is not suitable for non-anchor users. Thus, we propose a knowledge
decay approach based on social distance to estimate the two authorities for
all the users across multiple heterogeneous social networks. An overall IR-tree
index is inconsiderable for the knowledge transfer from one social network to
another social platform. We will give a detailed elaboration of the knowledge
decay method in Sect. 3.3.

3.3 Knowledge Decay Across Social Networks

We divide the local experts finding problem over multiple social networks (sup-
pose the number of social networks is m) into (m − 1) sub-problems to find
local experts across two partially alignment heterogeneous social networks. The
authority can be transferred from one social network to another social network

1 https://en.wikipedia.org/wiki/Portal:Contents/Portals.

https://en.wikipedia.org/wiki/Portal:Contents/Portals
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and merged into a new social network with the total authority score. Therefore,
the (m−1) sub-problems can be merged into the original problem. Without los-
ing generality, we analyze the details of our proposed approach with respect to
the local experts finding problem across two partially alignment heterogeneous
social networks. We first introduce how to calculate the two authorities value,
and then elaborate the authority transfer process between two heterogeneous
social networks.

Fig. 5. IR-tree of Fig. 4

Table 1. Partial posting lists of inverted files of the IR-tree

Food Music Sport Technology

InvFile 0 (R1, 0.85),(R2, 0.69) (R1, 0.45),(R2, 0.71) (R1, 0.63),(R2, 0.65) (R1, 0.63),(R2, 0.76)

InvFile 1 (R3, 0.85) (R3, 0.45) (R3, 0.63),(R4, 0.58) (R4, 0.63)

InvFile 2 (R5, 0.69) (R6, 0.71) (R6, 0.65) (R6, 0.76)

InvFile 3 (t1, 0.65),(t3, 0.85) (t1, 0.45) (t3, 0.63)

InvFile 4 (t2, 0.58),(t4, 0.39) (t2, 0.63)

InvFile 5 (t6, 0.69)

InvFile 6 (t5, 0.46),(t7, 0.71) (t5, 0.65) (t7, 0.76)

Local Authority. When a local experts finding query q = 〈t(q), l(q), k〉 is pro-
posed, we begin with the focus-based proximity approach to estimate local
authority. The intuition is that the more “followers” near location l(q), the
higher the local authority of a candidate is, which has been demonstrated in
[6]. The computation can be formed as:

sl(u, l(q)) =
|{vi|vi ∈ V (u), d(l(vi), l(q)) ≤ r(l(q))}|

|V (u)| , (1)

where sl(u, l(q)) denotes the local authority score of a social user u, vi is one
of the “followers” V (u) associated with u, d(l(vi), l(q)) represents the spatial
distance between vi and l(q), and r(l(q)) indicates a radius around the query
location l(q).
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We utilize R-tree structure to accelerate the local authority precessing. As
shown in Fig. 4(a), the star is query location, and the gray dashed circle is the
region constrained by radius r(l(q)). The lower bound of spatial distance with
respect to a user in a MBR can be easily obtained by computing the distance
from l(q) to the bounding rectangle. The distance of each user in a MBR to l(q)
is larger that r(l(q)), if the lower bound is lager that r(l(q)). Thus, the users
lying in such MBR can not contribute the count of numerator in Eq. 1 without
any distance computation.

Topical Authority. In order to evaluate the topical authority, we first lever-
age the topic category-aware inverted index to generate a candidate set C by
mapping the query topic t(q) to the topic category hierarchical tree. If the
mapped node in the tree is a non-leaf node, we regard the sub-tree of this
non-leaf node as the query topic extension. For instance, t(q) = {food} is
non-leaf in the topic category hierarchical tree, we extend the query topic to
t∗(q) = {food,Chinese food, Indian restaurant, · · · }, in which each element
is one node of the sub-tree. We retrieve these elements from the vocabulary of
the inverted index, each user with non-vanishing experience of any elements in
t∗(q) is contained into the candidate set C. Whereafter, we need to calculate the
authorities of anchor users in the two social networks respectively. Consequently,
we put the anchor users into the candidate set C, since all of them are required
to calculate the two authorities score.

User topical authority Ta and the activity experience E have a mutual rein-
forcement relationship. A user with high authority in a topic area would be active
in the topic area. Activities of a topic area would enhance the corresponding top-
ical authority. More specifically, a user’s topical authority can be calculated by
integrating the activity experiences generated by the user. The activity experi-
ences associated with a topic area can be counted via statistic topic category
frequencies.

Given an activity record (i.e., user posting history, check-in history, etc.),
we can build an adjacent matrix R between user and topic category. In
this matrix, an item rij represents the topic category frequency, 0 ≤ i <
|U |, 0 ≤ j < |T |. For instance, the matrix specified by Fig. 4(b) can
be represented as follows (suppose the topic category set denoted as T =
{food,music, sport, technology, history,medicine} = {t0, t1, · · · , t5}).

r0 r1 r2 r3 r4 r5

R =

u0

u1

u2

u3

u4

u5

u6

u7

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.65 0.45 0 0 0 0
0 0 0.58 0.63 0 0

0.85 0 0.63 0 0 0
0 0 0.39 0 0.72 0
0 0.46 0.65 0 0 0

0.69 0 0 0 0 0.73
0 0.71 0 0.73 0 0
0 0 0 0 0.51 0.65

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Therefore, the mutual reinforcement relationship of user topical authority
Ta = (ta0, ta1, · · · , tam) and activity experience E = (e0, e1, · · · , en) are repre-
sented as follows:

tai = Σuj∈Urij × ej , (2)

ej = Σri∈Rrji × tai, (3)

where tai denotes the authority of topic category tai, and ej indicates the activity
experience of user uj . Thus, the matrix form can be represented

Ta = R · E, (4)

E = RT · Ta, (5)

If we use Tak and Ek to denote topic authority and activity experience at the
kth iteration, the iterative processes for generating the topical authority results
are

Tak = RT · R · Ek−1, (6)

Ek = R · RT · Tak−1, (7)

Starting with Ta0 = E0 = (1, 1, · · · , 1), we can evaluate the topical authority
via the power iteration method.

Authorities Transfer. After the two authorities can be calculated efficiently
over a single social network, we are ready to evaluate the two types of authorities
with respect to each candidate c ∈ C over Bi-AHSNs. If c is an anchor user, we
sum the two types of authorities respectively. In contrast, if c is a non-anchor
user, we propose an exponential decay model based on social distance to estimate
the two kinds of authorities.

Fig. 6. Knowledge transfer via anchor users

The main idea of the exponential decay model is that knowledge can be
transferred from one social platform to another social platform through anchor
links. As a consequence, the anchor users are the knowledge transfer interme-
diaries. As shown in Fig. 6, there are two social platforms A and B. In order
to evaluate the authorities of a non-anchor candidate user (suppose c) over two
partially aligned heterogeneous social networks, we first find the shortest social
distance between c and all anchor users in the platform where c lies in, which
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can be obtained via the BFS-tree index presented in Subsect. 3.2. Assume the
anchor user set between two social platforms is denoted as AAB (abbreviated as
A). Thus, the authorities score can be estimated as follow:

Sl(c, l(q)) = slB(c, l(q)) +
∑
ai∈A

2−dist(ai,c) · slA(ai, l(q)), (8)

where Sl(c, l(q)) represents the local authority of non-anchor candidate user c
belongs to platform A over the two partially aligned heterogeneous social plat-
forms, slB(c, l(q)) denotes local authority of c over one single social platform
B, and dist(ai, c) indicates the shortest social distance between an anchor user
ai ∈ A and c. The topical authority is transferred similarly to the local authority.

3.4 Trade-Off Discussion

Albeit we can evaluate the two types of authorities over multiple partially aligned
heterogeneous networks, there is still an obstacle. In order to satisfy the diversity
of query results, we need to return a collection of k candidates with the highest
local expertise associated with query topic t(q) and location l(q). How to make
a trade-off the topical authority and the local authority is a challenge. In this
paper, we regard the two authorities as two dimensions of local experts, and
the well-known skyline [2,17] strategy is suitable tackle two dimensions trade-off
problem.

Fig. 7. Example of two authorities trade-off (Color figure online)

The skyline strategy is important for several applications involving multi-
criteria decision making. Given a set of objects {o1, o2, · · · , oN}, the strategy
returns k objects as the answer of top-k query such that any object oi in the
returned result is not dominated by another object oj . In this paper, the multi-
criteria are the topical authority and the local authority. We have the definition
of domination as follow.
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Definition 7 (Domination). Given a set of users {u0, u1, · · · , um}, we regard
the two types of authorities as two orthogonal dimensions. A user ui in the two-
dimensional space can dominate the users lying in the lower-left subspace. And
we denote such a subspace as the domination region of ui.

The domination number of user ui is the number of users lying in ui’s domi-
nation region. As a consequence, we rank the users in the candidate set C by the
descending order of domination number. Finally, the top-k users are returned as
answer of the local experts finding problem.

Example 3. Take Fig. 7 as an example, suppose there are eight users in a candi-
date set C, the sl-axis demotes the local authority score, and the st-axis denotes
the topical authority score. As shown in Fig. 7(a), the rectangular region formed
by the red dot line and the two axes is the domination region of u1. The users u0

and u2 are both dominated by u1, since they are lying in the domination region
of u1. The domination number of u1 is two. If k = 4, we can obtain a skyline
shown in Fig. 7(b) by ranking the users’ domination number.

4 Experiments

4.1 Experimental Setting

Datasets. We use two real-world datasets in our experiments.

– Foursquare. We crawled the Foursquare datasets via Foursquare API2 from
Nov. 2014 to Jan. 2016, which is comprised of 76,503 users and 1,531,357
social ties. For each user, we collected the check-ins in this period of time
and the geographical location. Each check-in is a pair of user and venue (i.e.,
point-of-interest). Totally, we crawled 299,995 venues located in Singapore
and 969,549 check-ins. Each venue has its category type description, such as
museum, Chinese Restaurant.

– Twitter. We gathered the Twitter datasets via Twitter API3 from Nov. 2014
to Jan. 2016, which contains 160,338 users and 2,405,628 social ties. For each
user, we collected a set of the most recent (≤ 1000) user-generated tweets
and the geographical location.

There are 15,281 common users in the two datasets, that is, these users have
both Foursquare account and Twitter account, and the corresponding account
pair has already been matched by some strong evidence, like that they are reg-
istered via a same email. Meanwhile, we utilize the method depicted in the data
preparation stage to discovery users’ topic-category frequencies. A simple exam-
ple is described in Fig. 4(b).

Queries. As our query model is defined as triple q =< t(q), l(q), k >, we ran-
domly choose 50 query keyword (belongs to topic category hierarchical tree) and
2 https://developer.foursquare.com/.
3 https://dev.twitter.com/.

https://developer.foursquare.com/
https://dev.twitter.com/
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query location (lying at Singapore) pairs, and set k = 10 as default value to eval-
uate the algorithm performance. These query combinations consist of 20 general
topic queries like “technology” and 30 specific topic queries like “Sichuan cui-
sine foodies”. We allocated the query location set as {the West of Singapore, the
East of Singapore, the South of Singapore, the North of Singapore, the Whole
Singapore}, which means we have four general query topics and six specific
query topics under each general query topic.

Compared Algorithms. Since we are the first work to tackle the local experts
finding problem over multiple partially aligned heterogeneous social networks,
we take our proposed method, KTMSNs, with one single social network as the
baseline algorithm. We implement our algorithm without the knowledge transfer
procedure over Twitter datasets. Consequentially, the comparison algorithms
implemented in this paper are elaborated as follows:

Naive: We utilized the state-of-the-art local experts finding algorithm proposed
in [20] on Twitter uniquely as the baseline algorithm. Obviously, the naive solu-
tion may reduce the accuracy of identified experts. The naive solution separates
the multiple networks to evaluate local expertise, which will miss some impor-
tant information. People are usually getting involved in multiple social networks
simultaneously.

LEF+T: We implemented our proposed approach on Twitter datasets without
the knowledge transfer procedure.

KTMSNs: Our proposed approach implemented over the partially aligned mul-
tiple social networks, i.e, the partially aligned Twitter and Foursquare datasets.

Besides, we implement another version of KTMSNs algorithm without the
index, denoted as KTMSNs-Index, to evaluate the performance of our con-
structed index.

4.2 Experimental Results and Analysis

Performance Comparison. In this set of experiments, we study the perfor-
mance with respect to accuracy, precision, recall and F1-Score over the above
three algorithms (Naive, LEF+T, and KTMSNs). The results are shown in Fig. 8.

From Fig. 8, we can clearly see that KTMSNs algorithm consistently out-
performs the baselines in local experts finding. The results on different metrics
shows that the performance improvement of KTMSNs over baselines is about
10%–15%. This observation validates that it is significative to consider hetero-
geneous networks for finding local experts. As shown in Fig. 8(a), the accuracy
of local experts finding by KTMSNs algorithm is about 15% higher than the
results of baselines. The reason is that people are usually activity on multi-
ple different social networks simultaneously. Finding local experts over a single
social network will miss some important information, which will reduce the accu-
racy. Figures 8(b), (c) and (d) show the results of precision, recall and F1-score,
respectively. The reason of the results of the other metrics is analogical.
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Fig. 8. Performance comparison

From the results shown in Fig. 8, we can find that the performance of the
Naive algorithm outperforms the LEF+T approach. The reason is that Naive is
implemented over two social networks. In contrast, LEF+T only leverages the
information obtained from one single social network, i.e., Twitter.

Efficiency Evaluation. In this set of experiments, we study the efficiency of
different algorithms to find local experts on real datasets. Figure 9 shows the
comparison on overall running time of LEF+T, LEF+F (our proposed approach
implemented on Foursquare datasets), KTMSNs-Index, and KTMSNs. Although
the baselines run faster than KTMSNs algorithm, the efficiency of KTMSNs is
accredited.

As shown in Fig. 9, we can see that the runtime of KTMSNs algorithm is
far less than that of KTMSNs-Index algorithm, which reflects that our proposed
index is can largely improve the query efficiency.

The Effect of k . In this set of experiments, we study the impact of query
parameter k on the accuracy and the overall running time of KTMSNs algorithm.

Figure 9 shows the comparison on overall runtime of LEF+T, LEF+F,
KTMSNs-Index, and KTMSNs for varying query parameter k. These algorithms
run slower with k increasing. The runtime of all algorithms increase slow, since
all the three algorithms have index mechanism to accelerate query processing.
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Figure 10 shows the accuracy of KTMSNs algorithm for varying query param-
eter k. We can see that KTMSNs can generate results with high quality and
effectiveness with k increasing.

5 Related Work

Experts finding [9,28], which aims at identifying people with the relevant exper-
tise on a given query topic, has attracted intensive attention in past years
[7,13,21]. Previously, most work focuses on expert finding problem with con-
sidering spatial information. For example, Pal and Counts [16] proposed a prob-
abilistic clustering framework-based approach to identify authority experts in a
query topic using both nodal and topical features. Ghosh et al. [10] built the
Cognos system, which leveraged Twitter lists to identify the user’s expertise,
and they reported that their system works as well as Twitter’s official system to
identify top users in a query topic. A further study [20] utilized multiple types
of relations in Twitter to identify experts with respect to a query topic.

Local experts finding problem aims at search experts with the highest local
expertise in query topic and a given query location, which differs from the tra-
ditional expert finding problem. Cheng et al. [6] proposed a geo-spatial-driven
approach for identifying local experts that leveraged the fine-grained GPS coor-
dinates of Twitter users. Besides, they gave a local expertise framework that
integrated both users’ topical expertise and users’ local authority. Li et al. [14]
proposed a range of probabilistic models of local expertise based on geo-tagged
social network streams. They assume that frequent visits result in greater famil-
iarity with the location in question and exploited the spatio-temporal infor-
mation from users’ online check-in profiles. Niu et al. [15] explored a geo-spatial
learning-to-rank framework for identifying local experts. While those works tack-
ling local experts finding problem focused on one single platform, which differs
from our problem. We are the first work to study local experts finding problem
over multiple partially aligned social networks.

In the context of multiple partially align social networks, previous works
mostly focused on anchor links prediction [12,23], which aimed at finding that
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different accounts registered on different platforms belong to the same natural
person. Another kind of research topic over multiple partially aligned social net-
works is user link prediction leveraging transfer learning method [25,27]. Besides,
there are some other kinds of previous works over multiple partially aligned social
networks, such as [24].

6 Conclusion

In this paper, we studied a novel problem of local experts finding in multiple
partially aligned heterogeneous social networks. We precisely defined this prob-
lem as partially aligned heterogeneous networks local experts finding (PAHLEF
for short). In order to tackle the PAHLEF problem, we proposed a novel model,
knowledge transfer across multiple social networks (KTMSNs for short). Firstly,
we constructed a social topology aware inverted index to accelerate query
processing. Then, we divided the local experts finding problem over multiple
social networks into some sub-problems. For each sub-problem, we proposed
a social distance based knowledge decay approach to evaluate local authority
and topic authority. Finally, a skyline-based strategy is elaborated for trade-off
with respect to the two authority criteria. Experiment results show that our
algorithm has high efficiency and effectiveness to find local experts in multiple
partially aligned heterogeneous networks.
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recommendation and behavior (i.e. item) recommendation are two types
of popular services in social media applications. Despite the extensive
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and Behavior Recommendations with Network Embedding (SBRNE for
short). With modeling social and behavior information simultaneously,
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social and behavior information is modeled effectively to improve perfor-
mance of social and behavior recommendations all together. In addition,
an efficient network embedding procedure is introduced as a pre-training
step for users’ latent representations to improve effectiveness and effi-
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datasets demonstrate the effectiveness of SBRNE.
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1 Introduction

With the rapid development of information technology, the amount of infor-
mation available on social media becomes larger and larger. Effective tools are
in great demand to help users for discovering their interested information. To
meet the increasing demand, many recommender systems have emerged, e.g.
recommender systems for movies, books, friends, collaborators, etc.

Generally, there are two types of popular recommendation tasks: social (user)
recommendation and behavior (item) recommendation. The goal of social rec-
ommendation (a.k.a. link prediction) [3,10,29] is to derive a list of social links or
friends for users, with whom most probably users would like to construct associa-
tions, while the goal of behavior recommendation [4,6–9,15,17,30], is to derive a
list of items, on which users might conduct an appropriate behavior (e.g. rate or
purchase). To date, either social or item recommendation is extensively explored
by current research according to different strategies [12–14,16,18,19,21]. How-
ever, exploiting social and behavior information simultaneously to improve the
performance of recommendations is still in an urgent demand.

Although there are several approaches that can model social and behavior
information contemporaneously, we argue that they suffer from, still, the fol-
lowing shortcomings. The primary one is that behavior information is usually
regarded as a fixed auxiliary source for improving social recommendation and
vice versa. For instance, Wang et al. [24] adopted the behavior associations
between users and items as a kind of auxiliary information for link prediction
on social network. Liu et al. [14] learned the dependencies between users to
facilitate item recommendations. Among these methods, the auxiliary modal-
ity is usually predefined and remains unchanged during the learning processing.
However, social and behavior information could make both social and behavior
recommendations enhance their performance mutually because of their coherent
correlations. Hence it is desirable for an effective and efficient unified framework
to simultaneously perform social and behavior recommendation by exploiting
the clear duality between them. Second, most approaches [1,16,18,19,22,25,26]
models users’ latent profiles with more than one random variables, providing
more expressiveness at the price of introducing more noise which may lead to
undesirable recommendation performance.

Network embedding is a family of network representation methods which
learn distributed low-dimensional vector representations for vertices with pre-
serving the sparse structural information of the network. The representative
approaches include DeepWalk [20], LINE [23]. Network embedding is typically
used as a preprocessing/pre-training step to boost the performance of subse-
quent network analysis tasks [2], such as vertex classification, vertex clustering,
network visualization and link prediction.

Motivated by above observations, in this paper, we propose a framework
called SBRNE, which models both social and behavior information simulta-
neously via a probabilistic matrix factorization based approach. More specifi-
cally, by utilizing users’ profiles as a bridge, social and behavior information
is employed to make social and behavior recommendations to enhance their
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performance mutually. In addition, a simple but effective network embedding
method is designed as a pre-training procedure for users’ profiles to improve the
performance of recommendation tasks. With SBRNE in hand, two tasks of social
and behavior recommendations are addressed effectively under a unified model.
Generally, our contributions are summarized as follows.

– We propose a unified probabilistic matrix factorization based framework
SBRNE for social and behavior recommendation. With the single framework,
performance of social recommendation and behavior recommendation can be
improved simultaneously.

– An effective and efficient network embedding approach is proposed as a pre-
training procedure for users’ latent variables to boost the performance of the
proposed framework on recommendation tasks.

– Comprehensive experiments are conducted on three real-world datasets, and
evaluation results show that SBRNE performs better than the state-of-the-art
approaches.

Note that in the whole paper, we use interchangeably social recommendation
and user recommendation, behavior recommendation and item recommendation,
respectively.

2 SBRNE: An Improved Unified Framework for Social
and Behavior Recommendations with Network
Embedding

Assume we have N users U = {u1, . . . , uN} and M items V = {v1, . . . , vM}.
The input of SBRNE consists of social associations between users S ∈ R

N×N ,
behavior information between users and items R ∈ R

N×M . Sik = 1 if ui has a
social connection with uk; otherwise Sik = 0. R may have different meanings
under different scenarios. For example, Rij denotes the rating of user ui on the
item vj , if the item is a movie or other product. If the item is a tag of users,
Rij = 1 denotes user ui has the tag vj ; otherwise Rij = 0.

To formulate the framework conveniently, we assume the social associations
S is a symmetric matrix, and R is a matrix of ratings made by users on items.
More specifically, Sik ∈ {0, 1}, and Rij ∈ {1, 2, 3, 4, 5}. Note however that all of
the following derivations can be readily generalized to other situations.

2.1 Network Embedding as Pre-training for Users’ Latent Profiles

Before training the whole framework, we propose a network embedding approach
as a pre-training procedure for users’ latent variables U ∈ R

D×N where D is the
dimension of representations. Given the social network S ∈ R

N×N , for each edge
Sik, the structural similarity (SS) [27] between users i and k is calculated as
follows:

SSik =
|Γ (i) ∩ Γ (k)|

√|Γ (i)| · |Γ (k)| (1)
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where for each vertex i, Γ (i) = {v ∈ V |Siv = 1} ∪ {i}. In the right-hand side of
Eq. (1), the numerator is the number of shared neighbors (including themselves)
of users i and k, and the denominator is the normalization item. From Eq. (1),
it’s known that the definition of structure similarity takes into account implicitly
not only the first-order proximity (vertices adjacent to each edge) but also the
second-order proximity (shared neighbors) between pairs of vertices.

Given each edge Sik, the compatibility between vertices i and k is defined by
a sigmoid function as follows:

Cik =
1

1 + exp(−UT
i · Uk)

(2)

where Ui ∈ RD is the low-dimensional vector representation of vertex i. To pre-
serve the structure information in the social network, the optimization objective
of our network embedding method is defined as follows:

O =
1
2

∑

(i,k)∈E

(Cik − SSik)2 +
1
2
ρ

N∑

i=1

||Ui||22 (3)

in which the first term in the right-hand side is the squared error between the
compatibility and structure similarity of all edges in the network, the second
term is the l2-norm regularizer multiply a trade-off coefficient ρ. The gradient
of the objective w.r.t. Ui is derived readily as:

∂O

∂Ui
=

∑

j∈N(i)

((Cij − SSij) · Cij · (1 − Cij) · Uj) + ρ · Ui (4)

where N(i) is the set of neighbors of user i.
To minimize the objective in Eq. (3), a coordinate gradient descent approach

is applied due to the coupling of latent profiles of different vertices in Eq. (4).
Specifically, for each user i ∈ V , the low-dimensional representation is updated
alternatively by:

Ui = Uold
i − τ · ∂O

∂Ui
(5)

where τ is a learning rate.
Note that the reason we choose the reconstruction error term and regular-

ization term in Eq. (3) for network embedding is just the efficiency, since the
network embedding is only utilized as a pre-training (i.e. initialization) pro-
cedure for users’ latent profiles before optimizing SBRNE. The experimental
results demonstrate that the network embedding procedure is effective enough
for advancing the recommendation performance.

2.2 SBRNE Framework

The fundamental idea of SBRNE is based on the commonly accepted assumption
that users have certain latent interests and items have certain latent features.
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Moreover, network embedding can be used effectively as a low-dimensional vector
representations of users to boost the subsequent social network analysis. We
assume the dimensions of latent interests of users and latent features of items
are the same, which is denoted by D.

SBRNE is built on two observations as follows: (1) Users with more common
hidden interests are more probably having a social association between each
other; (2) Users with more common hidden interests are more probably giving
similar ratings on items with similar hidden features.

We assume that users’ latent interests U ∈ R
D×N and items’ latent features

V ∈ R
D×M follow two zero-mean spherical Gaussian distributions with hyper-

parameters σ2
U and σ2

V , respectively. Formally,

p(U |σ2
U ) =

N∏

i=1

N (Ui|0, σ2
UI) (6)

p(V |σ2
V ) =

M∏

j=1

N (Vj |0, σ2
V I) (7)

where Ui and Vj represent the latent variable for user i and the latent variable
for item j, respectively.

The social information S is determined by users’ latent interests U with
adding a Gaussian noise with variance σ2

S , as follows:

p(S|U, σ2
S) =

N∏

i=1

N∏

k=1

[N (Sik|g(UT
i Uk), σ2

S)]I
S
ik (8)

where IS denotes the indication function of social association. ISik = 1 if there
is an edge between user i and user k, and ISik = 0 otherwise. In addition, we use
the sigmoid function, g(x) = 1

1+e−x , to bound the range of UT
i Uk within [0, 1].

The behavior information R between users and items is determined by latent
variables U and V with adding a Gaussian noise with variance σ2

R. Formally,

p(R|U, V, σ2
R) =

N∏

i=1

M∏

j=1

[N (Rij |g(UT
i Vj), σ2

R)]I
R
ij (9)

where IR is the indication function of behavior information. IRij = 1 if there is a
rating made by user i on item j, and IRij = 0 otherwise. Like modeling the social
connections, sigmoid function g(x) is also utilized to bound the ranges UT

i Vj

within [0, 1]. Accordingly, the range of rating scores 1, . . . , K is also transformed
into [0, 1] by using the function t(x) = (x − 1)/(K − 1).
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2.3 Optimization Algorithm

To solve the model conveniently, we use the log-likelihood of the complete-data
probability of observed and latent variables as follows.

lnp(R,S, U, V |σ2
U , σ2

V , σ2
S , σ2

R)

= lnp(S|U, σ2
S) + lnp(R|U, V, σ2

R) + lnp(U |σ2
U ) + lnp(V |σ2

V )
(10)

An alternative updating procedure is utilized to compute the model: (i) a
point estimation of latent variables U and V is updated with keeping hyper-
parameters fixed; (ii) updates of hyper-parameters are derived with keeping
latent variables U and V as constants. The two steps are alternated until a
termination condition is met.

For briefness, we use LL as a surrogate of Eq. (10) in the following analysis.

Point-Estimation of Latent Variables. To derive the updates of latent vari-
ables, we calculate the partial derivatives of LL w.r.t. U and V with keeping
hyper-parameters fixed.

For each i ∈ {1, . . . , N}, the partial derivative of Ui is derived as follows.

∂LL

∂Ui
=

1
σ2
S

N∑

k=1

ISik(Sik − g(UT
i Uk))g

′
(UT

i Uk)Uk

+
1

σ2
R

M∑

j=1

IRij (Rij − g(UT
i Vj))g

′
(UT

i Vj)Vj − 1
σ2
U

Ui

(11)

where g′(·) is the derivative of sigmoid function g(·), and the same hereinafter.
Likewise, the partial derivative of Vj for j ∈ {1, . . . , M} is derived as follows.

∂LL

∂Vj
=

1
σ2
R

N∑

i=1

IRij (Rij − g(UT
i Vj))g

′
(UT

i Vj)Ui − 1
σ2
V

Vj (12)

Since the coupling of latent variables for different users and items in Eqs. (11)
and (12), we know that we can’t obtain a closed form of updates of U and V .
The iterative updates of the latent variables are used as follows.

Unew
i = Uold

i + ρ1
∂LL

∂Ui
(13)

V new
j = V old

j + ρ2
∂LL

∂Vj
(14)

where Uold and V old are latent variables derived in the last iteration, and ρ1 and
ρ2 are the learning rates for latent variable U and V , respectively.
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Updates of Hyper-Parameters. To obtain the updates of hyper-parameters,
we calculate the partial derivatives of LL w.r.t. hyper-parameters with treating
U and V as constants. It’s worth noting that the updates of hyper-parameters
can be obtained as a closed-form by making the corresponding partial derivatives
as zero. Specifically, the updates of hyper-parameters are derived as follows.

σ2
S =

∑N
i=1

∑N
k=1 ISik(Sik − g(UT

i Uk))2
∑N

i=1

∑N
k=1 ISik

(15)

σ2
R =

∑N
i=1

∑M
j=1 IRij (Rij − g(UT

i Vj))2
∑N

i=1

∑M
j=1 IRij

(16)

σ2
U =

∑N
i=1 UT

i Ui

DN
(17)

σ2
V =

∑M
j=1 V T

j Vj

DM
(18)

2.4 Time Complexity Analysis

To analyze the time complexity of SBRNE, we denote numbers of non-zero
entries of S and R as n and m, respectively. Denote also the dimension of users’
interests and item features as D, the number of iterations as t in network embed-
ding procedure, and the number of iterations as l in optimization procedure. The
whole algorithm consists of two parts: network embedding procedure and opti-
mization procedure.

Network Embedding. In network embedding, the structural similarity of n
edges in the social network is calculated via Eq. (1), with the time complexity
O(ndave) where dave is the average degree of nodes in the social network. For a
real-world network, the node degree distribution follows the power-law distribu-
tion, which means the average degree of nodes is much less than the number of
nodes.

In each iteration of updating the low-dimensional representations of users, the
main computation is to calculate the gradient of the objective w.r.t. U via Eq. (4).
For each edge, the two adjacent nodes will both occur once in summation of right-
hand side of Eq. (4). Therefore, the total number of items in summation of right-
hand side of Eq. (4) is 2n, and for each item, the time complexity of calculation
is O(D) (for the multiplication of a scalar by a D-dimensional vector). For the
whole network, the time complexity of each iteration is O(Dn). Therefore, the
time complexity of network embedding is O(tDn+daven), which is linear to the
number of edges in social network. We usually set D as the same magnitude
with dave, and the time complexity can be denoted compactly as O(tDn).

For the optimization procedure, the main operations in each iteration include
updates of latent variables and hyper-parameters via Eqs. (13)–(18).
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Optimization of Latent Variables. To compute derivatives of latent vari-
ables U by Eq. (11), the main operations consist of n times of inner product of
two latent variables Ui and Uk (for each non-zero entry of S), and m times of
inner product of two latent variables Ui and Vj (for each non-zero entry of R).
Therefore, the time complexity in update of U is O((n + m)D).

To compute derivatives of latent variables V by Eq. (12), the main operations
consist of m times of inner product of two latent variables Ui and Vj (for each
non-zero entry of R) with the time complexity in update of V is O(mD).

Optimization of Hyper-Parameters. In Eq. (15), the denominator is n triv-
ially. Hence, it takes n times of inner product of two latent variables Ui and
Uk (for numerator of right-hand side in Eq. (15)) with time complexity O(nD),
to update of hyper-parameter σ2

S . Likewise, the time complexity of update of
hyper-parameter σ2

R is O(mD).
To update hyper-parameter σ2

U , it takes N times of inner product of Ui

(i ∈ {1, . . . , N}) and itself with time complexity O(ND). Likewise, the time
complexity of update of hyper-parameter σ2

V is O(MD).
Based on above analyses for network embedding, latent variables and hyper-

parameters, the time complexity of our algorithm is O(tDn+lD(n+m+N+M)).
Usually, n > N and m > M , which means in average each user has at least one
social connection and each item has at least one rating. The time complexity can
be expressed compactly as O(tDn+lD(n+m)), i.e., it’s linear in the summation
of numbers of non-zero entries in S and R.

3 Experiments

3.1 Experimental Setup

Our experiments consist of two parts. Firstly, we evaluate SBRNE on social and
behavior recommendation tasks on three real-world datasets, Epinions1, Ciao2,
and DBLP3. Secondly, we evaluate the recommendation performance of SBRNE
on cold-start users, i.e. users with very few social links or ratings.

Real-World Datasets and Preprocessing. Originally two datasets, Epinions
and Ciao, consist of social relationships among users and users’ rating on prod-
ucts with scores from 1 to 5. In the preprocessing procedure, we remove items
with less than 3 ratings. Social connections between pairs of users are treated
as undirected unweighted edges, i.e. directions of original social connections are
ignored, and if two users have a connection, the social weight is 1; otherwise, the
social weight is 0. Finally, for Epinions, there are 285,788 social edges among

1 http://www.epinions.com.
2 http://www.ciao.co.uk.
3 https://dblp.uni-trier.de.

http://www.epinions.com
http://www.ciao.co.uk
https://dblp.uni-trier.de
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18,062 users, and 525,053 ratings on 58,995 items. For Ciao, there are 85,011
social edges among 7,282 users, and 183,332 ratings on 21,881 items.

For DBLP, authors are viewed as users and extracted meaningful words (by
a common NLP preprocessing procedure) in titles are treated as items. The orig-
inal social network (i.e. co-author network) and behavior information (bipartite
network between authors and words) are all weighted networks, having weights
representing the number of co-authorized papers between author pairs and the
times of the word used by the author in titles of her/his authorized papers.
Authors with less than 20 publications and words with less than 50 occurrences
are removed from original dataset. To bound the social and behavior informa-
tion in the same range as that of other two datasets, we utilize a normalization
procedure and a discretization procedure on social and behavior information,
respectively.

We normalize the social information by cosine similarity. Assume the
weighted co-author network be denoted by a matrix W ∈ R

N×N , where N
denotes the number of users, and Wik is the number of co-authorized papers by
authors i and k. For each i ∈ {1, . . . , N}, Wii is defined as 0. For each pair of
authors i and k, the final social weight is normalized as follows.

Sik =
Wik√∑N

t=1 Wit · ∑N
t=1 Wkt

(19)

For each pair of an author and a word, the number of occurrences of the word
used by the author is mapped into {1, 2, 3, 4, 5} by a discretization procedure.
Based on our preliminary results, intervals of occurrences [1, 5], (5, 10], (10, 20],
(20, 30], and (30,+∞) are mapped into 1, 2, 3, 4, and 5, respectively. Finally,
the statistics of three datasets are listed in Table 1.

Table 1. Real-world datasets

Dataset Epinions Ciao DBLP

#Users 18,062 7,282 98,692

#Items 58,995 21,881 11,678

#Ratings 525,053 183,332 16,422,690

Rating density 0.0005 0.0012 0.0142

#Social 285,788 85,011 1,407,256

Social density 0.0018 0.0032 0.0003

For each dataset, we choose randomly 80% of it (both social and behavior
information) as a training set, leaving the remainder as the hold-out testing set.
We split further the training data into four equal-sized subsets for 4-fold cross
validation. The parameters deriving the best performance on the hold-out testing
set are used for performance evaluation. Finally, the dimension of latent variables
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D = 10, learning rate ρ = 10−4 and number of iterations t = 20 (for network
embedding), learning rates ρ1 = ρ2 = 10−4 and number of iterations l = 30
(for optimization procedure). For each experiment, the 4-fold cross-validation is
repeated 20 times, with each time the order of the instances in each dataset being
randomized. The average measurement and standard deviation are calculated for
recommendation performance evaluation.

Baselines. Due to few previous work (as far as we know, only GFBM [1])
addresses user and item recommendations simultaneously, we compare SBRNE
with two groups of baselines in user recommendation and item recommendation
respectively to show the performance improvement. To evaluate the effectiveness
of network embedding, we also implement a model (denoted by SBR Rand)
which replaces the network embedding procedure with a random initialization
of latent variables U in SBRNE.

For user recommendation, baselines are listed as follows:

– Cosine and Jaccard only take into account the common neighbors to eval-
uate the probability of having a social connections between user pairs.

– COP [24] considers both social and behavior information to evaluate the
co-occurrence probability of the corresponding pair of users.

– PropF low [11] considers paths between user pairs to evaluates the proba-
bility of the potential links between them.

– GFBM [1] is a generative framework for both user and item recommenda-
tions based on a Bayesian model.

For item recommendation, selected baselines include4:

– PMF [21] is the seminal probabilistic latent factor model for item recom-
mendation, which only considers the behavior information.

– SoRec [18] employs both social network and rating records, which models
users’ profiles with two latent random variables.

– LOCABAL [22] exploits local and global social information for item rec-
ommendation.

– GFBM [1] is a generative framework for both user and item recommenda-
tions based on a Bayesian model.

– PRMF [14] learns the dependencies between users to improve the perfor-
mance on item recommendation.

– PTPMF [26] exploits the strong and weak ties between users to improve
the performance on item recommendation.

We use two commonly used metrics, Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE) [22,26], to evaluate the recommendation perfor-
mance of SBRNE and the selected baselines. A smaller RMSE or MAE value
indicates a better recommendation performance.

4 We didn’t compare SBRNE with SREPS [13], since we failed to find an implemen-
tation of it.
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3.2 Evaluation of Social Recommendation

Table 2 provides the following observations:

– Cosine and Jaccard exhibit similar and the worst performance on user rec-
ommendation among all of the three datasets. It makes sense that both two
methods exploit only the one-step topological structure of network (i.e. neigh-
bors of users) for user recommendation.

– PropFlow derives better results than those of Cosine and Jaccard. The reason
is that PropFlow defines similarity between pairs of users by considering
multiple-steps topological structure of network (i.e. paths between users),
which may provide more information than neighbors of users.

– COP, GFBM, SBR Rand, and SBRNE which all consider both social and
behavior information, performs better than other methods on all of three
datasets, indicating the importance of users’ behavior information for improv-
ing the performance of user recommendation. Moreover, COP, GFBM and
SBR Rand derive comparable performance, which is worse than that of

Table 2. Comparisons on social recommendation (boldface font denotes the best
performance)

Datasets Method RMSE MAE

Epinions Cosine 0.2985 ± 0.0022 0.3119 ± 0.0021

Jaccard 0.3001 ± 0.0019 0.3210 ± 0.0022

COP 0.1804 ± 0.0023 0.2237 ± 0.0021

PropFlow 0.2011 ± 0.0019 0.2416 ± 0.0018

GFBM 0.1787 ± 0.0023 0.2207 ± 0.0023

SBR Rand 0.1803 ± 0.0027 0.2327 ± 0.0023

SBRNE 0.1716± 0.0021 0.2113± 0.0021

Ciao Cosine 0.2815 ± 0.0019 0.3011 ± 0.0018

Jaccard 0.2922 ± 0.0022 0.3087 ± 0.0023

COP 0.1623 ± 0.0022 0.1977 ± 0.0022

PropFlow 0.1802 ± 0.0023 0.2103 ± 0.0022

GFBM 0.1603 ± 0.0023 0.1949 ± 0.0021

SBR Rand 0.1737 ± 0.0024 0.1975 ± 0.0023

SBRNE 0.1577± 0.0021 0.1800± 0.0021

DBLP Cosine 0.3122 ± 0.0022 0.3600 ± 0.0018

Jaccard 0.3345 ± 0.0021 0.3619 ± 0.0022

COP 0.2225 ± 0.0021 0.2466 ± 0.0021

PropFlow 0.2389 ± 0.0018 0.2601 ± 0.0024

GFBM 0.2373 ± 0.0022 0.2473 ± 0.0024

SBR Rand 0.2253 ± 0.0022 0.2478 ± 0.0024

SBRNE 0.2213± 0.0019 0.2459± 0.0022
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Fig. 1. Comparisons of social recommendation on cold-start users

SBRNE. The reason is that network embedding is able to make full use of
social information to derive a better users’ latent profiles which can improve
the user recommendation performance.

– The performance difference on DBLP between of SBR Rand and SBRNE
is smaller than those on other two datasets. One possible reason is that the
normalization procedure of DBLP by cosine similarity plays a similar role with
network embedding in SBRNE. The other reason lies in that the extremely
sparse social connections (with social density about 0.0003 on DBLP) may
affect the effectiveness of network embedding.

3.3 Evaluation of Behavior Recommendation

The comparison results of behavior recommendation are presented in Table 3. It’s
worth to point out that, due to the randomness in data splitting and model ini-
tialization as well as possible differences in preprocessing procedures, our results
derived from some baselines are slightly different from the results reported in
original papers.

– PMF performs worse than all of the remainders which utilize both social and
behavior information for item recommendation. This observation verifies our
assumption that social information indeed helps for improving performance
on item recommendation.
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Fig. 2. Comparisons of behavior recommendation on cold-start users
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– Through drilling down further the results, we observe that SoRec, LOCA-
BAL, GFBM, PRMF and SBR Rand derive comparable results on all of three
datasets, and all of them perform a little bit worse than PTPMF. However,
Table 3 shows also that PTPMF exhibits relatively higher standard deviation
on performance over three datasets, which means PTPMF performs not stable
on item recommendation. The possible reason is that it’s not trivial to learn
a reasonable threshold for classifying strong and weak ties in PTPMF, and
an inappropriate threshold might lead to a sub-optimal item recommendation
result.

– SBRNE performs best on almost all of three datasets. One reason is that it
models social and behavior information in a unified framework, which makes
full use of all available information in a reasonable way. Actually, from the
objective in Eq. (10), we can find that social recommendation related term
lnp(S|U, σ2

S) can be viewed as a regularization term for behavior recommen-
dation related terms (the remaining parts in Eq. (10)), i.e. results from social
recommendation can help to improve the performance on item recommenda-
tion. Likewise, results from item recommendation can also help to improve
the performance on social recommendation. The other reason is that the net-
work embedding helps to learn a more meaningful latent users’ profiles which
can improve the item recommendation performance.

3.4 Evaluation on Cold-Start Users

In this section, we investigate the recommendation performance of SBRNE on
cold-start users, i.e. users with relatively few social links or ratings. More specif-
ically, we compare social and behavior recommendation performance of SBRNE
with selected baselines on users with ≤ 10 social links/ratings. We evaluate
the average recommendation performance of all methods on users with different
number of social links/ratings, and the results are presented in Figs. 1 and 2. We
want to note that comparison results exhibit similar patterns according to both
RMSE and MAE, and we only presents the comparison result on RMSE due to
the limit of space.

Results demonstrate that SBRNE outperforms the baselines on both social
recommendation and behavior recommendation for cold-start users. More specif-
ically, SBRNE is able to derive an acceptable recommendation performance on
users with extremely few (≤ 5) social links/ratings. We believe that the stable
performance is mainly due to the integration of social information and behav-
ior information into a unified framework. Comparing with SBR Rand show that
the proposed network embedding method can improve the recommendation per-
formance on cold-start users. In addition, the recommendation performance of
SBRNE becomes stable on users with about more than 5 social links/ratings.
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Table 3. Comparisons of Behavior Recommendation (boldface font denotes the best
performance)

Datasets Method RMSE MAE

Epinions PMF 1.1352 ± 0.0033 0.9513 ± 0.0021

SoRec 1.1273 ± 0.0027 0.9223 ± 0.0022

LOCABAL 1.1279 ± 0.0025 0.9222 ± 0.0019

GFBM 1.1253 ± 0.0031 0.9205 ± 0.0025

PRMF 1.1097 ± 0.0032 0.8913 ± 0.0022

PTPMF 1.0907 ± 0.0038 0.8812 ± 0.0027

SBR Rand 1.1175 ± 0.0025 0.9057 ± 0.0021

SBRNE 1.0713± 0.0025 0.8593± 0.0017

Ciao PMF 1.1009 ± 0.0026 0.8836 ± 0.0022

SoRec 1.0789 ± 0.0027 0.8202 ± 0.0023

LOCABAL 1.0784 ± 0.0029 0.8165 ± 0.0019

GFBM 1.0777 ± 0.0031 0.8163 ± 0.0021

PRMF 1.0631 ± 0.0028 0.7984 ± 0.0023

PTPMF 1.0577 ± 0.0030 0.7982 ± 0.0025

SBR Rand 1.0712 ± 0.0025 0.8016 ± 0.0020

SBRNE 1.0312± 0.0026 0.7913± 0.0019

DBLP PMF 1.3437 ± 0.0032 1.2313 ± 0.0028

SoRec 1.3337 ± 0.0033 1.2174 ± 0.0028

LOCABAL 1.3211 ± 0.0032 1.2122 ± 0.0025

GFBM 1.3137 ± 0.0031 1.2124 ± 0.0029

PRMF 1.2988 ± 0.0033 1.0912 ± 0.0031

PTPMF 1.2861± 0.0035 1.0369± 0.0033

SBR Rand 1.3141 ± 0.0032 1.2172 ± 0.0025

SBRNE 1.2861± 0.0031 1.0377 ± 0.0023

4 Related Work

Social recommendation, a.k.a. link prediction, is to compute a similarity between
each pair of users to derive a ranking list of links or users for recommenda-
tion. Some methods only take into account one-step social information of net-
work, including Cosine similarity [27] and Jaccard similarity [5]. A few meth-
ods consider multiple-steps social information or paths between nodes, among
which PropFlow [11] is a representative one. Some methods consider both social
and behavior information for link prediction, e.g. Co-Occurrence Probability
(COP) [24].

In recent years, quite a lot of studies investigate the item recommendation
problem [28]. The Probabilistic Matrix Factorization (PMF) [21] is the first
probabilistic latent factor model to model users’ ratings on items, which only
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considers the behavior information for item recommendation. After the semi-
nal work, many different extensions of PMF have been proposed, considering
not only the behavior information but also the social information, including
SoRec model [18], Social Regularization model [19], LOCABAL [22], PRMF [14],
PTPMF [26], SREPS [13], etc. Most of the extended models utilize more than
one random variables to describe users’ latent profiles, leading to a more complex
model which may affect the performance of item recommendation.

GFBM [1] is the most related work to our proposed model, which addresses
both user and item recommendations under a unified model. GFBM models each
user with two notions, susceptibility and expertise, advancing the expressiveness
of users at the cost of introducing more noises which may lead to undesirable
recommendation results.

Compared with previous studies, SBRNE is able to address both user and
item recommendations under a unified, simple but effective model, which takes
network embedding as a pre-training procedure for users’ representations. With
SBRNE, performance of social recommendation and behavior recommendation
can be improved mutually, which has been demonstrated in the experimental
section.

5 Conclusions and Future Work

In this paper, we have proposed a unified framework SBRNE which models social
and behavior information simultaneously and utilizes network embedding as a
pre-training step for users’ profiles, leading to a performance improvement both
on social and behavior recommendation tasks. In SBRNE, social information is
determined by users’ latent profiles with adding a Gaussian noise, while behavior
information is determined by users’ latent profiles and items’ latent features with
adding also a Gaussian noise. Through using users’ latent profiles as a bridge,
both tasks of social and behavior recommendation can be improved mutually
under the unified framework. In addition, we have devised a network embedding
procedure to pre-train users’ profiles to advance the model fitness. The compre-
hensive experiments on real-world datasets show that: (1) SBRNE outperforms
the selected baselines on both social and behavior recommendation tasks; (2)
SBRNE performs stable on recommendation tasks for cold-start users; (3) The
network embedding procedure can improve the recommendation performance of
the proposed framework.

There are two directions to investigate in the future. First, we are interested
in extending the framework to treat the evolving of social network, i.e. the
social network may change itself dynamically. Second, we would like to extend
the framework to a full Bayesian model, which estimates a distribution for each
hyper-parameter and might derive a more stable performance.
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Abstract. Automatic extraction-based document summarization is a
difficult Natural Language Processing task. Previous approaches have
usually generated the summary by extracting the top K salient sentences
on graph-based ranking algorithms, but sentence feature representation
only captures the surface relationship between the objects, hence the
results may not accurately reflect the user’s intentions. Therefore, we pro-
pose a method to address this challenge, and: (1) obtain deeper semantic
concepts among candidate sentences using meaningful sentence vectors
combining word vectors and TF-IDF; (2) rank the sentences considering
both relationships between sentences and the user’s intention for each
sentence to identify significant sentences, and apply these to a hetero-
geneous graph; (3) generate the result sentence by sentence to ensure
summary semantics are properly related to the original document. We
verified the proposed approach experimentally using English summa-
rization benchmark datasets DUC2001 and DUC2002; the large Chinese
summarization data set, LCSTS. We also collected news data and pro-
duced a reference summary using a group of bank auditor experts that
we compared to the proposed approach using ROUGE evaluation.

Keywords: Document summarization ·
Heterogeneous sentence networks ·
TF-IDF based deep word representation

1 Introduction

Text summarization in opinion mining, also called opinion summarization, can
assist people in decision making [11]. Opinion summarization can capture the
opinion-oriented information from people’s opinions on various subjects in the
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massive amounts of textual data [6], and then which helps people reduce efforts
and make the work more efficient. Therefore, text summarization considering
the user intention by user’s keyword can provide more useful and valuable appli-
cations. In essence, opinion summarization is one of the summary types, thus
which is very depending on the text summarization methods [1]. The main task
of text summarization methods is to determine the important information and
eliminate the redundant information.

Many unsupervised summarization methods used the concept of graph-based
ranking, such as PageRank [15]. For example, LexRank [4], TextRank [13] and
DivRank [12] depend on the ranking concept and consider the prestige and
semantic diversity of sentences. However, these methods generate an objective
summary rather than a summary based on user intention. That is, the summary
may not include the interesting sentences by users if the users’ keywords are not
important to the original texts. For instance, the bank auditor needs a credit risk
summary of a certain company from the news. The summaries of these methods
may not include the sentences that related to the credit risk events, even though
their summaries can represent the objective description of the news.

Therefore, we aim to develop a keyword-based summarization algorithm
using the heterogeneous networks which include the sentences from a document
and the given keywords from the user. The proposed algorithm can extract the
textual units which have highly related to the given keywords and automatically
generate a summary based on the user intention.

2 Graph-Based Summarization Methods

The graph-based summarization methods have two phases [7], textual unit rank-
ing and textual unit selection. For textual unit selection, how to choose the salient
and non-redundant unit to generate a salience summary. Graph-based ranking
models are popularly used in summarization task. Many related approaches are
inspired by PageRank. For example, LexRank [4] is a famous stochastic graph-
based approach, which uses PageRank to measure the importance of sentence and
extracts the most important ones to include in the summarization. LexRank also
adopts the cross-sentence information subsumption as the redundancy removal
method. Thus, it can both balance the low redundancy and high prestige of
sentences to avoid selecting too many similar sentences into the summary. In
addition, DivRank [12] using a time-variant random walk aims to balance the
prestige and diversity of sentences in ranking. For improving the semantic rep-
resentation, DivSelect+CNNLM [16] developed an unsupervised convolutional
neural network (CNN) to learn sentence representations, and which proposed a
new sentence selection algorithm to balance sentence prestige and diversity.

To extract sentence which related to user intention, we can add different
intention unit into the original homogeneous graph to optimize important sen-
tences. However, the graph-based ranking methods mention above cannot solve
the problem when we have various type objects and relations in the heteroge-
neous graph. Therefore, we propose HeteroRank to produce Top K important
sentences with diversified intention unit and relationship.
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3 Methods of Semantic Representation

Word representation also be called word embedding, is a type of mapping
that use vectors to represent words and allows to capture semantic relation-
ship between the words. In 2013, the more popular of the word embedding
model CBOW (Continuous Bag-of-Words Model) and Skip-gram was proposed
by Mikolov, Tomas [14]. The method will train the model by computing the
continuous distributed representation for the word. Besides, after training of the
model, we can get the word vectors as word representation and obtain significant
information by project word vectors into vector space.

We can understand how to train and learn the word vector by Eq. 1. Word2vec
is a single hidden layer and fully connected neural network. One-hot vectors of
context words wcontext = w1, w2, ..., wn will be the input of training words and
the objective function is to maximize probabilities of target words wtarget in the
output layer.

The equation is as below:

minW,W ′ −
n−1∑

t=1

logP (wt+1|wt) (1)

where:
Pr(wtarget|wcontext) =

eywtarget

∑n
i=1 eyi

(2)

y = W ′T h, h = WT x (3)

For CBOW, model predicting the upcoming target word in current con-
text words. For instance, we can use “monkey” and “tree” as context words
for “climb” as the target word. Given wi−1, wi−2, wi+1, wi+2 as input, the out-
put of model will be word wi. However, Skip-gram model reverses the use of
target and context words. In this case, the target word is fed at the input to
predict the context words. Taking the example of “monkey” and “tree” as target
words and “climb” as the context word. Given wi as input, the output of model
will be word wi−1, wi−2, wi+1, wi+2.

4 Methodology

4.1 Feature Extraction

We want to get the important sentences in a document where the sentence can
also seem as a combination of a series of words. Therefore, based on the concept
of word2vec model, our propose method uses pre-train CBOW model to obtain
word vector in the document. Each word in the document will be mapped into
a unique vector. Then average the word vectors in the sentence can represent as
the sentence vector.

Beside the assumption above, in order to capture the important sentences,
the model not only use average word vectors to represent sentence vectors but
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also include the TF-IDF feature. We can recognize the important words by TF-
IDF weight with some limitation and multiply to word’s representation which
show in Eq. 4. In this way, it will be accurately for us to get the significant
sentence.

Embs(S) =

∑
wi∈S

tfidf(wi, S,D) ∗ Embw(wi)∑
wi∈S

tfidf(wi, S,D)
(4)

where

tfidf(w,S,D) = tfw,S ∗ idfw,D (5)

tfw,S =
nw,S∑
i ni,S

(6)

idfw,D = log
|D|

|{S ∈ D : w ∈ S}| (7)

4.2 HeteroRank

After feature extraction, we apply the representation of sentence on heteroge-
neous graph. Unlike the previous work which build in original homogeneous
graph in Fig. 1(a). In our task, we want to know the relation between original
document and user intention like company name and negative keyword. In other
words, our goal is to weighted the sentences prestige which have these two tex-
tual terms we concentrate. For instance, the sentence consist of company name
and negative keyword may have higher priority be chosen in summary for the
bank auditor who want to know the company reputation. Therefore, these two
textual terms will be added into graph and the graph turns into heterogeneous
graph which with different type nodes and edges. In Fig. 1(b), node with Si is
sentence; node with C means company name and node with K represent nega-
tive keyword. If company name or negative keyword occur in sentence Si, add an
edge to represent the relation between them. For instance, dashed edge is com-
pany word C appear in sentence S3 and S4; dash-dotted edge means negative
word K write in sentence S2 and S3 in Fig. 1(b).

Therefore, rather than still use original TextRank to deal heterogeneous
graph, first thing we need to do is to divide meta-graph and generate meta-path.
The concept of meta-path is to explore the semantic and accurately capture the
relationships between multiple types of objects in heterogeneous graph. So meta-
path with different type object will have distinct semantic meaning. Moreover,
the pattern of meta-path is based on user’s intention. Under this framework, we
can get the best meta-path with pre-define guidance in structure.

Heterogeneous graph in Fig. 1(b) which build by our task can be divided
into three meta-graphs. For instance, nodes in the first meta-graph all stand for
sentence. However, in second and third meta-graphs, type of the nodes are not
the same. The former have sentence and negative keyword node while the latter
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(a) edges all present the similarity
between sentences

(b) edges represent multiple rela-
tions between multiple nodes

Fig. 1. Left is homogeneous graph and right one is heterogeneous graph which build
by our model

have sentence and company name node. After building the meta-graphs, each
graph will be defined as a unique meta-path over the structure. The semantic
meaning of each meta-path is as below:

– SS . . . S: Extract the sentence which is similar to other sentences.
– KSS: Filter the sentence which is similar to sentence with company name.
– CSS: Find out the sentence which is similar to sentence with negative key-

word.

Each vertex Si in each meta-path will have a value after random walk itera-
tion. Therefore, vertex Si in our task will have three value from three meta-paths
separately which show in Fig. 2. For meta-path SS . . . S, each Si will implement
by infinite random walk until convergence because the meta-graph based on
homogeneous graph. However, for meta-path KSS and CSS which in hetero-
geneous graph, we need to use limit iterations to get Si value. And then we
can define value of Si as the summation of value which generated from each
meta-path as Eq. 9. Then we derive the equations by following steps. Assume
the length of document D is n that means there are n sentences in the document
and can be represent as D = (s1, s2, . . . , sn). Then each sentence si will have a
significant value which stands for their importance based on previous definitions.
Therefore, our goal is ranking the value of si in the graph and choose Top K
important sentences as our output in Eq. 8.

important sentence = TopK(V (si)) (8)
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Fig. 2. Flow of sentence selection steps

where

V (si) =
M∑

l=1

αl · PCRW (si|Π1∼|Πl|
l )

= α1 · PCRW (si|Π1) +
M∑

l=2

αl · PCRW (si|Π1∼|Πl|
l )

(9)

The former of Eq. 9 is infinite random walk implement on meta-path SS . . . S.
We can seem it as a kind of ranking method which based on modified Tex-
tRank algorithm and show in Eq. 10. In original TextRank, the weight of edge
is presented by numbers of co-occurrence words in two sentences. However, this
concept only capture the surface feature between two sentence. Therefore, our
task proposed a more meaningful weight which not only consider the semantic
similarity between sentence but also apply position feature of each sentence.

Because the position information has been proved to be effective in document
summarization task [9,17]. Therefore, we define the sentence which in the front
position will be more important and more related to document. Besides, in order
to avoid the weight Wi,j prefer to position feature, we use log function to smooth
position score (Table 1).

PCRW (si|Π1) = (1 − d) + d ·
∑

sj∈N(si)

Wij · PCRW (Πsj
)∑

sk∈N(sj)
Wjk

(10)

where
Wij = Cos(si, sj) + P (si, sj)

=
∑m

k=1 V ec(si)kV ec(sj)k√∑m
k=1 V ec(si)2k

√∑m
k=1 V ec(sj)2k

+ log
1

pos(si)
n + pos(sj)

n

(11)

The latter of Eq. 9 is limit iteration implement on meta-paths KSS and CSS.
Unlike the infinite iteration of random walk on meta-path SS . . . S, the number
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Table 1. The notations in Eq. 11

Notation Description

d damping factor, d ∈ [0, 1], usually set to 0.85

N(si) nearby sentences which next to sentence si

Cos(si, sj) cosine similarity value between sentence si and sj

m number of dimension in sentence vector

V ec(si)k element in sentence vector si

pos(si) position of sentence si in document D

n total # of sentences in document D

of PCRW iteration is based on the length of meta-path. In our task, PCRW
of two meta-paths KSS and CSS will iterate two times. In Eq. 12, the PCRW
value of sentence vi is summation of value vj where vj is not only the neighbor of
vi but also the next step of vi. Therefore, we can figure out that the importance
of a node is gather from its nearby nodes.

PCRW (vi|Πm∼|Πl|
l ) =

∑

vj∈N(vi)
∧

vj∈Tm+1

PCRW (vj |Π(m+1)∼|Πl|
l ) (12)

where
PCRW (vi|Π |Πl|∼|Πl|

l ) = 1 (13)

and
Π1∼n

x = T1
r1−→ T2

r2−→ . . .
rn−1−→ Tn (14)

4.3 BeamSelect

Single Document Summarization. After ranking by multiple random walk algo-
rithm, we pick out Top K important sentences as heading in the summary and
generate complete summary sentence by sentence. In order to reduce the space
and time occupied by the sentence selection in each iteration, we uses a heuristic
method, Beam Search, to estimate the Top K beam paths. Beam Search is an
optimization of best-first search that explores a graph by expanding the most
promising node in a limited set and usually used when the solution space of the
graph is large. At the beginning, we start with the Top K significant sentences
in the document rather the random states. Only the most promising sentences
at each iteration of the search tree are selected for further branching, while the
remaining sentences will be pruned off. Where K is parameter defined by users
and control the number of the output beam paths.

In our task, the most promising sentences choose by the ranking of similarity
score between candidate summary and reference document. Therefore, we can
control the sentence selection in each iteration to make sure end summary have
capture the semantic from original text until limit length K of summary.
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Algorithm 1. BeamSelect Algorithm
Input:

• V ec(title) : vector representation of document title
• V ec(si|si ∈ S = {s1, s2, . . . , sn}) : sentence representation of each sentence in
document
• beam size k : limit length of summary
• TopK(si) : heading sentence in summary

Output:
• Max beam path : beam path with highest similarity value

1: BeamPath[0] = {TopK(si)}
2: for i = 0 to k − 1 do
3: N ← {[y, yi+1]|y ∈ BeamPath[i], yi+1 ∈ S}
4: BeamPath[i + 1] ← {TopK(Cos(V ec(title), V ec(y)))|y ∈ N}
5: end for
6: Return MAX(V (y)|y ∈ BeamPath[k])

Multi-Documents Summarization. For multi-documents, we will face the prob-
lem that how to generate the summary with diversified sentences. Because multi-
documents will have the sentence which contain similar meaning. Therefore, first
we implement BeamSelect of each document in the same topic. Then cluster the
similar sentence into same group. The amount of cluster is based on the length
of longest single document summary in the topic. Second, we implement classic
diversity-based reordering algorithm, MMR (Maximal Margin Relevance) [2] to
solve the problem of diversity. MMR is a greedy algorithm that it will add the
candidate object into randing set in each step. The candidate object is the one
have the highest MMR score and the score function define as below:

MMR(si) = arg max
si∈R\S

(λSim(Q, si) − (1 − λ)max
sj∈S

Sim(si, sj)) (15)

where R is the initial ranking order when ranking set S is empty. In the Eq. 15,
the former decide the similarity between candidate object si and query Q, the
latter control the different from the objects ranked above. Therefore, based on
assumptions above, we can know that the first step can retain the prestige in
single document summarization and the second step can keep diversity in multi-
documents summarization.

5 Experiment

5.1 Data Set and Setup

In this study, we conduct experiments on benchmark data sets DUC20011 and
DUC20022 which published by the Document Understanding Conference(DUC)

1 https://www-nlpir.nist.gov/projects/duc/guidelines/2001.html.
2 https://www-nlpir.nist.gov/projects/duc/guidelines/2002.html.

https://www-nlpir.nist.gov/projects/duc/guidelines/2001.html
https://www-nlpir.nist.gov/projects/duc/guidelines/2002.html
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to evaluate the effectiveness of system. We can use the two data sets to evalu-
ate automatic extractive-based summarization of a single document and multi-
documents. Table 2 shows the size and summary length of each data set above. In
addition, we implement in Chinese data sets as below. The first one is LCSTS3

[5] which stands for Large-scale Chinese Short Text Summarization dataset con-
structed from the Chinese microblogging website SinaWeibo4. We use Part III
which contains 1,106 human labeled pairs (short text, summary).

Because our task focuses on financial issue, so negative events to a company
may be the target of users intention. Therefore, the second Chinese data set
is crawling news from multiple news sites by ourselves. The negative keywords
which provided by the experts of bank auditor will be the query word in crawling
step. The amount of negative keywords is 108 in 5 categories. We randomly select
20 keywords according to their proportions from 5 categories show in Table 4.
For each keyword, we crawl news based on different categories in Table 3 and the
total number of data set is 200. Then the reference summary of each news and
the quality score of candidate summary are provided by bank auditor experts.
Therefore, we can say that our collecting data set is meaningful.

Word Model Setup. For feature extraction in English data set, pre-trained
word representation5 [14] are used to initialize sentence representation. However,
we need to train word model for Chinese data sets. In addition, the more con-
sistent the data used for training, the more accurate the word model. Therefore,
based on our financial task, we use query word not only contain negative key-
word but also public company name which got from TEJ6 (Taiwan Economic
Journal). Table 4 show the keyword amount and news amount in each category.
However, we don’t list the news amount in each company here because the space
limitations. Then we use total 797 thousands news data to train our model by
CBOW model which contains 300-dimension vector.

Table 2. Statistics of DUC datasets

Statistic Dataset

DUC2001 DUC2002

Cluster # 30 59

Document # 309 567

Task1 Limitation 100 words 100 words

Task2 Limitation 100 words 100 words

Table 3. Description of each feature

Category Statistic

Document #Words #

Single Short doc 2 > 600

Single Long doc 2 < 400

Single Medium doc2 400–600

Multi doc 4

3 http://icrc.hitsz.edu.cn/Article/show/139.html.
4 http://www.sina.com.cn/.
5 https://code.google.com/archive/p/word2vec/.
6 https://www.tej.com.tw/twsite/.

http://icrc.hitsz.edu.cn/Article/show/139.html
http://www.sina.com.cn/
https://code.google.com/archive/p/word2vec/
https://www.tej.com.tw/twsite/
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Table 4. The amount of negative keywords and news in each category

Keyword category Statistic

Keyword # News #

Exp Total

Credit History 3 13 59497

Operate Condition 10 61 292096

Business Prospect 1 8 26185

Penalization Record 3 12 147016

Operator Background 3 14 17141

5.2 Evaluation Metric

We use ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [8] toolkit
(version 1.5.5) as our measurement. It has been widely used in DUC task for
evaluating automatic summarization in Natural Language Processing. ROUGE
measures summary quality through counting overlapping units such as N -gram,
word sequences and word pairs between the system generated summary (candi-
date summary) and gold standard (human label reference summary). Here we
provide the average F-measure scores of three evaluation methods ROUGE-1,
ROUGE-2 and ROUGE-L. The first two metrics based on uni-gram match and
bi-gram match respectively and the third one use LCS (Longest Common Subse-
quence) matric. Formally, ROUGE-1 and ROUGE-2 can represent as ROUGE-N
show as below:

ROUGE − N =

∑

S∈{RefSum}

∑

gramn∈S

Countmatch(gramn)

∑

S∈{RefSum}

∑

gramn∈S

Count(gramn)
(16)

Where n stands for the length of the n-gram, gramn, and Countmatch(gramnn)

is the maximum number of n-grams co-occurring in a candidate summary and
reference summaries.

Similar to ROUGE-N, LCS-based F-measure computed the similarity
between reference summary X of length m and candidate summary Y of length
n as follow:

ROUGE − L =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs
(17)

where

Rlcs =
LCS(X,Y )

m
,Plcs =

LCS(X,Y )
n

(18)

LCS(X,Y ) is the length of a longest common subsequence of X and Y .
Based on assumption above, we can figure and notice that ROUGE-L is 1 if X
as same as Y and ROUGE-L is 0 when there is no common between X and Y .
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The intuition is that the longer the LCS of two summary sentences is, the more
similar the two summaries are. It can also seem as a more severe standard of
ROUGE-N.

5.3 Compared Methods

We compare our summarization system with following representative approaches
which briefly describe as below:

– Random: randomly select sentences which in the original document to com-
pose summaries, can seem as the baseline.

– LexRank [4]: a famous stochastic graph-based approach which use PageR-
ank to measure importance of sentence and exploited with MMR greedy algo-
rithm. Therefore, it can both balance the low redundancy and high prestige
of sentence.

– DivRank [12]: apply the rich−gets−richer mechanism to increase transition
probability of vertex-reinforced random walk in each step to balance the score
for prestige and diversity properties of sentences

– DivSelect+CNNLM [16]: developed an unsupervised CNN scheme to learn
sentence representations, and proposed a new sentence selection algorithm
DivSelect which based on PageRank to balance sentence prestige and diver-
sity like LexRank. In the following sections, we use DS − CNN to present
DivSelect + CNNLM .

– EV [3]: a novel unsupervised paragraph embedding model, which aims at not
only distilling the most representative information from a paragraph but also
excluding the general background information to produce a more informative
low-dimensional vector representation for the paragraph of interest.

5.4 Experiment Results and Analysis

ROUGE Score Results. ROUGE toolkit can generate three scores (recall, pre-
cision and F-measure) for each evaluation. In our study, we use F-measure to
evaluate different methods. The single document summarization results perform
on DUC2001 and DUC2002 data sets are concluded in Tables 5 and 6.

Table 5. F-measure: DUC2001 Task 1

Algorithm Rouge-1 Rouge-2 Rouge-L

Random 0.37772 0.12511 0.22197

LexRank 0.40217 0.14962 0.22506

DivRank 0.38352 0.13613 0.22210

DS-CNN 0.39577 0.20060 0.28619

EV 0.39505 0.14707 0.23888

MY 0.41299 0.15315 0.24431

Table 6. F-measure: DUC2002 Task 1

Algorithm Rouge-1 Rouge-2 Rouge-L

Random 0.38921 0.14645 0.23504

LexRank 0.42573 0.17833 0.23983

DivRank 0.40633 0.15912 0.23109

DS-CNN 0.41272 0.16903 0.24576

EV 0.4208 0.1751 0.26386

MY 0.43979 0.18039 0.26814
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Table 7. F-measure on LCSTS

Algorithm Rouge-1 Rouge-2 Rouge-L

Random 0.13596 0.03704 0.11833

LexRank 0.12083 0.03203 0.10662

DivRank 0.14210 0.03807 0.12262

DS-CNN 0.16056 0.04801 0.13669

EV 0.1687 0.05606 0.13399

MY 0.18846 0.05675 0.16297

Table 8. F-measure on financial data

Algorithm Rouge-1 Rouge-2 Rouge-L

Random 0.42285 0.21218 0.27901

LexRank 0.41647 0.20567 0.23072

DivRank 0.44035 0.22836 0.24523

DS-CNN 0.47566 0.24223 0.2471

EV 0.547252 0.380844 0.445388

MY 0.59022 0.50477 0.56122

Single Document Summarization. The result clearly shown that randomly
choose have poorest performance because it did not consider any ranking and
diversity features. Note that the graph-based method LexRank and DivRank,
both based on concept of discover truly prestigious and no redundancy sentence.
DivRank use rich−get−richer mechanism however this mechanism may deviate
from the centroid meaning of summary when choose the wrong seeds node in
the initial. Therefore, simple classic LexRank performs better than DivRank.
Apparently, our method perform the best in ROUGE-1 followed by EV and
DS − CNN . Where DS − CNN have the highest ROUGE-2 and ROUGE-L in
DUC2001, however, based the opinion proposed from [10], we can know uni-gram
match score (ROUGE-1) has been proved that is most agree to human judgment.
Because uni-gram co-occurrence statistics consistently correlated highly with
human assessments and had high recall and precision in significance test with
manual evaluation results. Therefore, we can say our approach is more convincing
than DS − CNN . Besides, DS − CNN and EV are similar and competitive
to our work. The former add new sentence which could improve the value of
objective function in each step, the latter both consider density and divergence
of each sentence. Whereas, our method keep the relation between sentence and
user intention rather than the prestige of the original sentences only. Under this
framework, we apply the title of news as user intention in experiment and show
the promising result compared to others.

The result of experiment in third and fourth data sets are list in Tables 7
and 8. For experiment in LCSTS data set, the feature of user intention use the
head sentence in the document to express. Because the data set didn’t offer
document title or other keyword. As shown by the highest ROUGE score, we
can prove that the feature of sentence position will affect the quality of summary
result indeed. Because our task based on financial issue, so we collect relevant
news which is meaningful to bank auditor experts and experiment with different
document category which show in Table 3. Therefore, please notice that the value
list in Table 8 is the average score of four categories. Both company name and
negative keywords which correspond with news be used as user intention in the
experiment. Obviously, we can conclude that our system achieve the considerable
progress than other methods.
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(a) Expert A

(b) Expert B

(c) Expert C

(d) Expert D

(e) Expert E

(f) All

Fig. 3. Score distribution of financial data set by experts.

Multi-documents Summarization. In this section, Table 9 show the result
on DUC2001 and Table 10 present the outcome on DUC2002. Based on these
experiment above, we can observe that our HeteroRank have higher ROUGE
score than other methods. Because we not only retain the prestige in single
document but also keep diversity in multi-documents.

Table 9. F-measure: DUC2001 Task 2

Algorithm Rouge-1 Rouge-2 Rouge-L

Random 0.29749 0.07595 0.17621

LexRank 0.34684 0.07425 0.17618

DivRank 0.3553 0.08083 0.1832

DS-CNN 0.38245 0.11808 0.215

EV 0.33269 0.0713 0.17017

MY 0.38598 0.12026 0.216

Table 10. F-measure: DUC2002 Task 2

Algorithm Rouge-1 Rouge-2 Rouge-L

Random 0.29914 0.05032 0.15337

LexRank 0.35803 0.08152 0.18099

DivRank 0.37335 0.08336 0.17571

DS-CNN 0.38213 0.09817 0.18941

EV 0.36325 0.09151 0.18951

MY 0.38446 0.10175 0.19234

Summary Quality Score Result. Then we compare summary quality between
HeteroRank, EV and DS − CNN in financial data set. We ask for five bank
auditor experts to evaluate each summary which generate by three methods
mention above. The range of evaluate score between 1 to 5 (the higher score
the better quality). Before use collecting score, we need to normalize it first.
Removing the limit of data and converting it into a pure value can facilitate the
comparison and weighting of indicators of different units or magnitudes. The
most typical normalization is to map the data into [0,1] interval.
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In Fig. 3, we can know our summary quality score concentrate in range 0.25
to 0.75 by every experts and present the normal distribution. In contrast to
HeteroRank, EV and DS − CNN method have low quality because the score
almost centralize in 0 and the amount decrease with the score increase. Besides,
the average score of HeteroRank is 0.4903 which higher than EV 0.4078 and
DS − CNN 0.25155. It means our method is more promising and meet require-
ments. Furthermore, we also compare the summary quality in different document
category and different keyword category. Please notice that we will generate one
summary by two documents in multiple summarization in our work. The sum-
mary amount and average quality score of different document category show in
Table 11. Based on well perform of quality score, we can say that our method
is suit for every different type document. Moreover, our quality score is even 1
more than another competitor. Table 12 illustrate the viewpoint of different key-
word category, we can found that the summary in Credit History category has
outstanding performance score. According to observation, we found that average
amount of training news in category Operate Condition, Penalization Record
and Operator Background is less than Credit History. However, the average
amount of Business Prospect is much more than Credit History. Therefore,
we can know data amount is a significant feature in training progress based on
this situation. In the comparison between HeteroRank and DS − CNN , it is
distinctly that our method still have the higher quality than competitor.

Table 11. Average quality score of different document categories.

Category Statistic

Sum # Average score

HR EV DS-CNN

Single Short sum 40 0.4875 0.42125 0.2875

Single Long sum 40 0.55625 0.5275 0.32875

Single Medium sum 40 0.45125 0.36125 0.21375

Multi sum 40 0.46625 0.32125 0.205

Table 12. Average quality score of different keyword categories.

Category Statistic

Sum # Average score

HR EV DS-CNN

Credit History 24 0.6375 0.42708 0.35208

Operate Condition 80 0.48875 0.41125 0.2175

Business Prospect 8 0.43125 0.36875 0.2125

Penalization Record 24 0.4584 0.37917 0.28125

Operator Background 24 0.4 0.41875 0.24792
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6 Conclusions

With our proposed methods HeteroRank which used to deal textual unit ranking,
and BeamSelect which used to optimize textual unit selection, we can generate
summary based on user intention and still keep semantic meaning from original
document. The experiment results of our model in ROUGE score show the major
improvement on multiple data sets. Besides, the summary quality score also
perform better than competitor. Therefore, we can say HeteroRank is promising
and dependable in document summarization task.

Acknowledgments. The authors are grateful to SinoPac Financial Holdings Com-
pany Limited for providing the financial insights and testing data set used in this
study.
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Abstract. Location-based services have become widely available on a
variety of devices. Due to the errors in user input as well as geo-textual
databases, supporting error-tolerant spatio-textual search becomes an
important problem in the field of spatial keyword search. Edit distance
is the most widely used metrics to capture typographical errors. However,
existing techniques for spatio-textual similarity query mainly focused on
the set based textual relevance, but they cannot work well for edit dis-
tance due to the lack of filter power, which would involve larger overhead
of computing edit distance. In this paper, we propose a novel framework
to solve the region aware top-k similarity search problem with edit dis-
tance constraint. We first propose a hierarchical index structure to cap-
ture signatures of both spatial and textual relevance. We then utilize the
prefix filter techniques to support top-k similarity search on the index.
We further propose an estimation based method and a greedy search
algorithm to make full use of the filter power of the hierarchical index.
Experimental results on real world POI datasets show that our method
outperforms state-of-the-art methods by up to two orders of magnitude.

1 Introduction

With the growing popularity of mobile devices, location-based services have been
widely deployed and well accepted. The user generated data (UGD) of such
services can actively contribute to the location based social media. However, it
is not easy to retrieve them by simply matching especially when they are not
fully cleaned and standardized. Error-tolerant search is a technique to reduce
the gap between user intention behind its query and their required data, it is
very necessary for spatio-textual query over UGD with two-fold reasons: on the
one hand, there exist lots of misspellings. Typos appear frequently in both UGD
and user’s typing queries when users are utilizing smartphones for input. On
the other hand, users may use different spelling variants for the same object. For
instance, both of “harbour” and “harbor” are acceptable to users due to different
c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11447, pp. 591–608, 2019.
https://doi.org/10.1007/978-3-030-18579-4_35
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spelling habits. Supporting error-tolerant search allows us to better overcome the
limitation of data description and make spatio-textual query more user friendly.

In this paper, we study the problem of error-tolerant spatio-textual search.
For the ease of user’s query, we support boolean range query [4], which allow
users to use “zoom in”, “zoom out” or “shift” in map application to adjust their
interesting locations. To this end, we need to let users specify a region they are
interested in. As edit distance is the most widely used metrics to capture typo-
graphical errors [13], we target at the problem of region-aware top-k similarity
search with edit distance constraint. Given a spatial region and a textual descrip-
tion, it finds the k most related spatio-textual objects contained in the region
with minimum edit distances. For example, when the textual input is “restau-
rent”, the user probably aims at finding some nearby restaurants. No matter
what the selected region is, the query always display the k objects within the
region that have smallest edit distances with “restaurent”, which including both
objects named correctly with “restaurants” and objects that have misspelling
(e.g. “resturant”) within the dataset.

Many studies have investigated top-k string similarity search problem
with edit distance constraint, which have yielded a batch of effective tech-
niques [15,17,19]. But they do not involve any spatial information of data and
query. Therefore they cannot support our problem. On the other hand, spatio-
textual similarity search have attracted significant attentions from recent work.
Many studies [4,10,11,21] follow Cong et al. [6], a pioneering study of top-k
spatio-textual query, which joint measures spatial and textual similarity. But
they mainly focus on set-based textual relevance, i.e. the text of an object is
represented as a set of tokens and some similarity functions (e.g. Jaccard simi-
larity [3]) are used to measure the relevance. However, none of current solutions
can efficiently satisfy the region query with top-k edit distance. Compared with
set-based textual relevance which costs O(n) time for verification, computing
edit distance is prohibitively expensive for large databases since the price of ver-
ification is O(n2). As the previous studies measure textual relevance based on
either exact keyword matching or set-based metrics, they cannot perform well
for edit distance due to the limited filter power. There is a need for more pow-
erful pruning techniques to avoid the expensive verification. Besides, another
challenging problem is how to smartly combine spatial and textual filters so as
to minimize the number of verifications without heavy space and time overhead.

To address this problem, we firstly try to combine the spatial index (e.g.
R-Tree) with the prefix filtering technique in string similarity query and devise
a hierarchical index, where inverted lists of q-grams are attached into the nodes
of spatial index. We have the observation that grams with different length have
different filtering power [8]. Thus we utilize variable lengths of q-grams in differ-
ent levels of the index to facilitate pruning for top-k query and avoid duplicate
verifications. To this end, we introduce the concept of filter power and filter
ability. With respect to the variable lengths of grams and prefix filtering, strong
filter power enables us to find the most relevant results efficiently within given
threshold. However, it also limits the filter ability if we cannot find the exact
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top-k results within the threshold. In this case, we have to verify all the rest
objects one by one, which in turn involves many verifications. With the help of
hierarchical index, we can avoid such computation using the spatial information.
The proposed top-k algorithm takes full advantage of spatial and textual pruning
to generate small set of candidates. Further more, we propose two optimizations
to make further use of the filter power of the hierarchical index. In summary,
the main contributions of the paper are as follows:

– We propose a hierarchical index to solve the region-aware top-k error-tolerant
search problem with edit distance constraint. To the best of our knowledge,
this is the first study on this problem.

– We design an efficient top-k searching algorithm that takes advantage of both
spatial and textual filtering based on the index.

– We further propose an estimation based method and a greedy search algo-
rithm to improve the efficiency.

– We conduct experiments on real world datasets. Experimental results show
our method outperforms state-of-the-art methods by up to two orders of
magnitude.

The rest of the paper is organized as follows. We formulate the problem and
review the related works in Sect. 2. The hierarchical index and its construction
are proposed in Sect. 3. We propose the top-k searching algorithm in Sect. 4
and its optimizations in Sect. 5. Experimental results are reported in Sect. 6.
Conclusions are made in Sect. 7.

2 Preliminary

2.1 Problem Definition

Let S be a collection of geo-textual data. Each object o ∈ S is defined as a pair
(o.pos, o.text). Here pos is a location descriptor in multidimensional space and
text is a string that describes the object. Given two strings r and s, the edit
distance between r and s, denoted as ED(r, s), is the minimum number of edit
operations (including substitution, insertion, and deletion) needed to transform
r to s. Next we formulate the problem of top-k region aware similarity search
with edit distance constraint.

Definition 1 (Top-k Region-aware Similarity Search). Given a collection of
geo-textual objects S, a region M, a query string s and a number k, the region
aware top-k similarity search problem aims at finding a subset of the geo-textual
objects H s.t. |H| = k, and for any o ∈ H, o.pos ∈ M and o′ ∈ S − H,
o′.pos ∈ M, we have ED(o.text, s) ≤ ED(o′.text, s).

Example 1. Figure 1 shows 10 geo-textual objects. Given a query string s =
“harbuor”, a region M = {(7, 8), (29, 26)} and k = 2, the edit distances between
query string and ten objects are: 1, 3, 2, 3, 3, 3, 3, 2, 3, 3, respectively. Because
o6, o8, o9 and o10 are not located in the M, they will not be the answers.
ED(o1, s) = 1 and ED(o3, s) = 2 are two smallest ones among all other 7
objects, thus the final answer is {o1, o3}.
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Fig. 1. A running example

2.2 Related Work

To the best of our knowledge, we are the first study on the spatio-textual query
for top-k requirement of edit distance. The only work that supports spatio-
textual similarity search with constraint on edit distance is Yao et al. [20], which
studies the problem of approximate string search in spatial database. They find
similar results where the edit distance between the string query and object must
be within a pre-defined threshold. However, they can only approximately answer
matched results, where false negatives may exist. Besides, they only support
threshold based similarity search. The problem is different from ours as we try
to answer exact top-k query without false negatives.

Geo-Text Query Processing. There are many studies on spatio-textual query
processing [4,6,7,11]. Cong et al. [5] has provided a comprehensive field intro-
duction of current works. Also Chen et al. [4] give an all-around experimental
survey of 12 state-of-the-art geo-textual indices with compared spatio-textual
queries. A spatio-textual query usually includes information for both spatial
and textual requirement. For the spatial dimension, region query (which finds
all objects within a given region) and distance based query (which measures
query and object by euclidean distance) are two common queries. For the tex-
tual dimension, the texts of objects are usually represented as a set of tokens
and the set based query semantics are commonly adopted. For examples, Chen
et al. [3] focus on the “AND” and “OR” semantics on token sets to evaluate
textual relevancy. Li et al. [10] only return objects that all the tokens of the
query are included in the token set of the object. A general solution to answer
those geo-text query is to integrate textual information into some spatial indexes
(e.g. R-Tree, quadtree) and then leverage the hybrid index to filter out irrele-
vant objects. Instead of modeling text as a set of tokens, we focus on region
query and edit distance where the textual relevance is different and more com-
plicated. We also provided how to address the problem by integrating techniques
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of string similarity search into spatial indexes and developing efficient querying
algorithms on them.

Top-k Spatio-Textual Search. One typical geo-text query is to find top-k
objects with maximum spatio-textual proximity. It has received significant atten-
tion and some studies focused on the top-k spatio-textual search [6,11,14,21,22].
They try to find top-k most relevant objects by considering a normalized similar-
ity function containing both spatial proximity and textual relevancy, where the
textual relevance are still set based similarity functions. To address the problem,
Cong et al. [6] combine the inverted lists with R-Trees and proposed the IR-Tree
to compute top-k answers. Zhang et al. [21] combine inverted index and Quadtree.

String Similarity Search. String similarity search algorithms aim to find all
the similar strings within a given threshold [9,16,18,23]. There are also many
previous studies for top-k string similarity query, such as [15,17,19,24]. However,
Those above works only consider textual queries while we need to consider both
spatial and textual requirements.

3 The Hierarchical Tree Index

In this section, we propose a hierarchical index structure to joint index the
spatial and text information. We first discuss how to extend the prefix filtering
technique to support top-k string similarity search in Sect. 3.1. Then we propose
the algorithm for index construction in Sect. 3.2.

3.1 Support Top-k Similarity Search with Prefix Filter

Prefix Filter [2] is a state-of-the-art technique for threshold-based string similar-
ity search. Let |r| denote the length of r, Q(r) denote the set of q-grams of string
r and gr

i is the ith gram in Q(r). The basic idea is to first fix a global ordering on
the q-grams of all the strings. Then we sort all the q-grams according to a global
order and use Pτ

q (r) to denote the τ -prefix of string Q(r). Specifically, as one
edit operation can destroy at most q grams, given a edit distance threshold τ we
have |Pτ

q (r)| = qτ + 1. Then we can filter out dissimilar strings using Lemma 1.

Lemma 1 (Prefix Filter [2]). Given two strings s, r and an edit distance thresh-
old τ , if |Pτ

q (r) ∩ Pτ
q (s)| = ∅, then we have ED(r, s) > τ .

Then the problem becomes how to extend the prefix filter to support top-k
similarity search. The question here is before answering top-k search, we have
no idea of which threshold to be specified. So the index should be able to deal
with any threshold. Nevertheless, we have the following observations of prefix
filter which can help us construct such an index:

– Strings with the same length have the τ -prefix with same length i.e. qτ + 1.
– For any given string r, we have Pq

τ−1(r) ⊆ Pq
τ (r).
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Thus we can group strings by length and construct inverted index for each
group. Let us denote the group with length l as Dl. For every string r, we add
Q(r) into the corresponding inverted lists in D|r|. The entry of each inverted list
is a q-gram and each item in the inverted list is in the format of < id, pos >,
where id is the id of object and pos is the position among all tokens in that object
according to the global ordering. Given a query s, we enumerate τ incrementally
from 0 and look at the τ -prefix of s. Given a threshold τ , for all strings r ∈ Dl,
we can just look at whether there are overlapping between the τ -prefix of s and
that of r by traversing the inverted lists.

3.2 Index Construction

The top-k region aware similarity search calls for the query processing of both
the text relevance and the spatial constraint. As is known to all, R-Tree is the
dominant spatial index structure which can efficiently support boolean region
search. For string similarity search, we slice the string collection into q-grams
and construct inverted list for them.

Despite the efficiency of R-Tree and inverted list, the implementation needs
further optimization. The intuition is based on the search order: for boolean
range query, we need to traverse the R-Tree in a top-down manner from root
to leaf nodes; for top-k string search, we need to enumerate from small to large
thresholds. Then a chance for improvement is that we can filter out dissimilar
objects in the process of boolean region query. Thus, it calls for a hierarchical
index with which we can do pruning with the text similarity while traversing
the non-leaf nodes of the R-Tree. To this end, we propose a hierarchical index
that has inverted lists attached to every node.

This hierarchical index is essentially a variant of R-Tree. It can be constructed
iteratively in a top down manner by attaching inverted lists to each node for the
objects contained in the sub-tree rooted at the it. But here comes the problem
about how to allocate the inverted lists to different levels of nodes. A simple idea
is to just build the inverted lists for the objects in each node. However, as objects
in a non-leaf node can be obtained from all of its children, this method could
lead to large space overhead. We have an observation that for a given collection
of strings, larger value of q would result in smaller size of inverted lists. Inspired
by this, we use large value of q in higher levels and small value of q in lower
levels as nodes in higher levels contain more objects. Besides, we can also take
advantage of such index structure to improve the performance of top-k search.
The details will be discussed later in Sect. 4.

Algorithm 1 shows the process of constructing the hierarchical index. We
first initialize HT by constructing the R-Tree with spatial information of all the
geo-textual objects (line 2). We then traverse the R-Tree in a top down manner
to construct inverted lists for each node. We select the size of q i.e. the length of
grams for each level empirically: suppose the leaf nodes are in level 1, the value
of q in level i will be set as i + 1 (line 4). In each node N , we first group all
the strings by length (line 5). Then we construct the inverted lists LN

l for each
group Dl in a node N (line 7). Figure 2 illustrates the index structure.
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Fig. 2. The hierarchical index

4 The Basic Top-k Search Algorithm

In this section, we discuss how to perform region aware top-k error-tolerant
search on the hierarchical index proposed in Sect. 3. The basic idea is as following:
we maintain a priority queue H to keep the current k promising results. Let UBH

denote the largest edit distance between the strings in H to the query s. Obvious
UBH is an upper bound of the edit distances of top-k results to the query. In
other words, we can prune an object if its edit distance to the query is no smaller
than UBH, which can be estimated with the prefix filter.

Algorithm 1. Index Construction Algorithm(S)
Input: S: The collection of geo-textual objects
Output: HT : The Hierarchical Index of geo-textual objects
begin1

Initialize HT by constructing an R-Tree with only spatial information;2

foreach node N ∈ HT do3

qi = N.level + 1;4

Group objects within N by string length l into Dl;5

foreach group Dl do6

Construct the inverted lists LN
l with qi-grams;7

return HT ;8

end9

Unlike threshold based similarity search, the top-k search problem concen-
trates on not only filter power, but also filter ability. Given two strings, the filter
ability is the maximum threshold that a filter can support. Suppose the gram
length is q, the length of two strings are a and b respectively, we denote the filter
ability as Fq(a, b). Given two strings s and r, the filter ability is calculated as
following.

Lemma 2. Given two strings s and r, the filter ability of prefix filter is
Fq(|s|, |r|) = �min(|r|,|s|)−q

q �, where q is the length of q-grams.
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For instance, we have |s| = 7, |r| = 8 and q = 3, then the filter ability will be
� 7−3

3 � = 1. It means that we can only compute candidates for τ = 0, 1. If we
want to compute candidates for τ ≥ 2, we need to use a smaller q.

Then we talk about how to perform top-k algorithm for a given query string s
and region constraint M on the hierarchical index. Since in boolean region query,
we search the R-Tree from root to leaf nodes while in the process of top-k search
we enumerate the threshold in ascending order. The most crucial problem is how
to minimize the number of verifications. We observed that different q-grams make
different contributions to the prefix filter. In top-k search, we need to enumerate
the threshold from 0 incrementally. When the threshold becomes larger than the
filter ability, no string can be pruned. In this case, we need to regard every string
as candidate and verify all of them with a linear scan. Here there is a trade-off
between filter power and filter ability. Using the q-grams with larger value, we
can leverage the strong filter power to find the most similar results at once and
to reduce the value of upper bound UBH quickly. But at the same time, the filter
ability will be lower, which means it will leaves most of the objects to be verified
for linear scan if the algorithm is not terminated. Thanks to the hierarchical
index structure, we can postpone this step by leveraging the spatial constraint
to further prune more out-of-region objects.

Following the above route, we treat the nodes differently according to their
relation with the given region M. There are three situations: (1) If a node N
has no overlap with M, we can prune the subtree rooted by N . (2) If a non-leaf
node N has overlapping with M but not contained by M, that means we can
further utilize the region constraint to avoid linear scan in this node. Thus for
each group Dl in this node, we perform prefix filter to generate several candidate
for the thresholds from 0 to min(UBH,Fqi(l, |s|)). For the thresholds that are
beyond the filter ability, we leave them to the children of N . (3) If a node N that
is fully contained by M or N is a leaf node, that means we can no longer take
advantage of the region constraint to avoid scanning the strings beyond filter
ability. Thus we stop looking at its children. Instead, we first perform prefix
filter for all strings in N and then do linear scan on all groups beyond the filter
ability.

Algorithm 2. Hierarchical Top-k Search Algorithm(HT , M, s, k)
Input: HT : The Hierarchical Index of geo-textual objects, M: The given

region, s: The query text, k: The number of results
Output: H: The top-k results
begin1

Initialize the heap H and UBH;2

Traverse(HT .height, M, s, k, H);3

return H;4

end5

We still use the query in Example 1 to show how the Algorithm 2 works.
Suppose after the initialization, H = {o5, o7}, so the upper bound UBH is 3. We
first visit node R0 and start from l = 5, because the group for l = |s|−UBH = 4,
i.e., D4, is empty. Note that the q of R0 is 5, so τ ∈ [0,min(UBH,Fq(l, |s|))] =
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Algorithm 3. Traverse(i, M, s, k, H)
begin1

if i is 1 then2

foreach node N in level i, N.region ∩ M �= ∅ do3

for l ∈ [|s| − UBH, |s| + UBH] do4

Cl := candidates from Dl for threshold from 0 to5

min(UBH, Fqi(l, |s|));
foreach c ∈ Cl do6

Verify(c, M, s, H);7

foreach c ∈ N and c is beyond the filter ability do8

Verify(c, M, s, H);9

else10

foreach node N in level i, N.region ∩ M �= ∅ do11

if N.region is contained by M then12

The same with line 4 to line 9;13

else if N.region has overlapping with M then14

The same with line 4 to line 7;15

foreach child node Nc of N that overlaps M do16

Traverse(i − 1, Nc, M, s);17

end18

{0}. In D5,D6 and D7, there is no string that has common 5-gram with the prefix
of s, thus we don’t get any candidate in this node. Then we come to R1(q = 4).
For l = 5, τ = 0, the string in D5 = {o5} has no common 4-gram with s, so
C5 = ∅. For l = 6, τ = 0 and l = 7, τ = 0, we get two non-empty candidates
set C6 = {o1, o4, o6} and C7 = {o3}. After verification process, the UBH is 2.
Similarly, we visit R3, R4, R8 and R9, but H does not change. And we will not
visit R2 because it doesn’t overlap with M. Finally, the algorithm terminates
with H = {o1, o3}.

5 Query Optimization for Internal Nodes

As inverted lists in different levels have q-grams with different length, we can
take advantage of the varied filter power and ability of such levels to further
improve the performance. To this end, in this section we proposed an estimation
based method to decide the nodes we need to search in Sect. 5.1 and designed a
light-weighted greedy algorithm to fulfill this task with minor extra overhead in
Sect. 5.2.

5.1 Estimation Based Node Selection

Given an internal node N0 that is fully contained in the region, the intuition of
estimation based method is to select nodes in the subtree rooted by N0 that have
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the least cost. First of all, we need to guarantee that there is no false negative.
Based on the property of R-Tree, we have an observation about the correctness
as in Lemma 3.

Lemma 3. Given a non-leaf node N0 in HT contained by M, any combination
of N0’s children that covers the region of N0 will include all the possible results
of top-k string similarity search.

As the dominant cost of top-k string similarity search is verification, espe-
cially verifying the strings beyond filter ability, we use the number of estimated
candidates to denote the cost in this process. To this end, we adopted min-
wise hash technique [1] to estimate the number of verifications that we need to
perform for each node in the subtree rooted by N0. The intuition is that each
inverted list can be represented by a min-hash signature. And we can estimate
the number of candidates for a given threshold τ without expensive scanning on
the inverted lists. The way to generate a min-hash signature is to use a uniformly
distribution U to assign a random value in the range [0, 1] for each object in the
list. For each inverted list L[ti] we generate K signatures1 and form a feature
vector denoted as Yi. We can formulate it as below:

Y j
i = min{U j(o), o ∈ L[gi]} (1)

where Y j
i is the jth value of Yi and gi is the corresponding q-gram. Then the

signature vector of inverted list L[gi] is correspondingly Yi =
(
Y 1

i , ..., Y K
i

)
.

With such definition, given the node N0 and query string s, we can estimate
the number of candidates within τ edit distance from s in N by leveraging the
VSol estimator [12]. The idea is as following:

Suppose
(
Z1, ..., ZK

)
=

(
min

i=1,...,M
Y 1

i , ..., min
i=1,...,M

Y K
i

)
(2)

is the signature vector of the union
⋃

i L[gs
i ], where

⋃
gs

i = Q(s) and M is the
number of inverted lists. Let

ρ̂ =
1
K

K∑

j=1

1{∃i1, ..., iL : Y j
i1

= ... = Y j
iL

= Zj} (3)

be the estimator of ρ, where L = |s| − 1 − (τ − 1) · q. And the size of
⋃

i L[gs
i ]

can be estimated as follows:
∣
∣
∣
∣
∣

⋃

i

L[gs
i ]

∣
∣
∣
∣
∣
=

K
∑K

j=1(Zj)
− 1 (4)

Finally the number of candidates can be estimated as

̂|Cτ (s)| = ρ̂ ×
(

K
∑K

j=1(Zj)
− 1

)

(5)

1 The uniformly distribution used in the ith time is U i where i ∈ [1, K].
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As the VSol estimator can only support estimating the cardinality for a given
threshold, we extend it to the scenario of top-k search in the following way.
Suppose when we reach the node N0, the lowest edit distance between elements
in H and s is LBH, we will increase τ from LBH to UBH or until we find a
threshold that have k

ε estimated candidates. Here ε is a tunable parameter which
denote the ratio of candidates that can result in updating of H. We set its value
as 0.1 empirically. The detailed process is shown in Algorithm 4.

Algorithm 4. Candidates Estimation Algorithm(N , s, H)
Input: N : The node, s: The geo-textual query
Output: The estimated number of candidates
begin1

for τ ∈ [LBH,UBH] do2

Estimate the value of ̂|Cτ (s)| on node N using Equation 2 to 5;3

if τ = UBH or ̂|Cτ (s)| ≥ k
ε
then4

return ̂|Cτ (s)|;5

end6

With Algorithm 4 we are able to obtain the cost of visiting each node. Note
that although the VSol estimator could result in false negative by leveraging
the min-hash technique, our estimation based method can still find correct top-
k results. The reason is that VSol estimator utilize the min-hash technique to
directly obtain the candidates, while we only use it to decide which nodes we
need to traverse. According to Lemma 3, as long as selected nodes cover the
region of N0, there would be no false negative in our method.

Then the next problem becomes how to select the combination of nodes and
perform filtering and verification on them. The goal is to find the nodes with
minimum weight on the basis of satisfying Lemma 3. Given a subtree in which
each node N has a weight ω(N) calculated by Algorithm 4, we can reach this
goal with a greedy strategy. Algorithm 5 describes the detailed process. We first
traverse all the internal nodes of the subtree rooted by N0 in a bottom-up manner
and decide the minimum weight each node can have (line 3–9). In this process,
we calculate all children’s weight of a node (line 5) and compare the sum with
its weight. Then select the smaller one as the node’s weight (line 7 and 9). Then
we perform a level traverse on the subtree and obtain all the selected node in
the previous step (line 10–16).

Example 2. Figure 3 shows an example of the nodes selection process. At first,
each node has a black number, i.e., ω(N). And each node’s red bold number
is empty, which represents the updated value of ω(N), denoted as ω′(N). For
each leaf node N , ω′(N) = ω(N). Next we go from bottom to up. For R3,
3 + 4 = 7 > 5, thus ω(R3) = 5 and we mark it with selected, denoted with red
color. For R4, 2 + 1 = 3 < 5, thus ω(R3) = 3 and we mark its children with
selected. Similarly, we update the weight for R5, R1, R2 and R0. Then we have
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Algorithm 5. Nodes Selection Algorithm(N0, s)
Input: N0: Root of a subtree, s: The geo-textual query
Output: N : The selected nodes
begin1

Let i0 be the level of N0;2

for i = 2 to i0 do3

foreach node N in level i do4

W =
∑

n∈ children of N ω(n);5

if W < ω(N) then6

mark all children of N as selected, set ω(N) = W ;7

else8

mark N as selected;9

Initialize N = ∅and Q = N0 ;10

while Q �= ∅ do11

Deque the front node Nf from Q;12

if Nf is selected then13

Insert Nf into N ;14

else15

Q = Q ∪ {children of Nf};16

return N ;17

end18

R2

R7 R8 R9 R10 R11

R5

R1

R0

R63 3 4 4 2 2 1 1 2 2 3 3

44

7 7 3 3

15 10

R35 5 R45 3

R SelectedNode

Fig. 3. The selection of tree nodes (Color figure online)

the minimum weight 10 and 5 marked nodes. Finally we use breadth-first search
to traverse the tree and push marked nodes into result. Note that if a node and
its child are both marked, such as R1, we only need add the parent to the results
and prune the traversal of it. So the result is N = {R1, R2}.

Finally, we talk about how to integrate the estimation based method into the
top-k search algorithm. This technique is applied to the scenario when a non-leaf
node N0 is contained by the region. We first adopt Algorithm 4 to estimate the
number of candidates for each node in the subtree rooted by N0. We then use
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Algorithm 5 to select the set N of nodes to be searched. Instead of stopping at
N0, for each node N ∈ N we perform prefix filter and then linear scan to verify
all the candidates.

5.2 Fine-Grained Greedy Approximation

Although the estimation based method can fully utilize the varied filter power
and ability in different level, it involves heavy overhead. Firstly, we need to create
signatures for inverted lists in each node. Secondly, given a non-leaf node N0,
we need to compute the cost for all nodes in the subtree, which leads to a large
amount of overhead.

To avoid this problem as well as take advantage of different filter power and
ability, we propose a greedy approximation rather than calculate the accurate
weight for each node. The intuition is that we should make full use of the filter
power of inverted lists in all levels. Then we traverse the subtree in a greedy
manner: for all the non-leaf nodes in the subtree, we perform prefix filter and
avoid linear scan. In the leaf nodes, we first perform prefix filter and then verify
all the remaining strings. In this case, as we can utilize prefix filter from all
upper levels, we can avoid linear scan on as many strings beyond filter ability as
possible. Based on such idea, we propose a greedy search algorithm as is shown
in Algorithm 6.

6 Evaluation

6.1 Experiment Setup

We use two real world POI datasets in our experiments: Texas (TX) and California
(CA) road network and streets data. They are from the open street map project2.
Each point has the information of longitude and latitude coordinates as the spatial
information and some strings as the textual information. We combine all the words
as its associated string. Two datasets both have 1 million points. The real datasets
are in two dimensions. Details of the datasets are shown in Table 1. The default
value for k is 6 and default value for θ is 1%. All the algorithms were implemented
using C++ and compiled using GCC 4.9.4 with -O3 flag. All the experiments were
run on a Ubuntu server machine with 2.40 GHz Intel(R) Xeon E5620 CPU with 4
cores and 64 GB memory.

Table 1. Datasets

Datasets Cardinality Avg Len Max Len Min Len

CA 1,000,000 12 56 1

TX 1,000,000 11 47 1

2 http://www.openstreetmap.org/.

http://www.openstreetmap.org/
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Algorithm 6. GreedySearch(N , M, s)
Input: N : The node to be searched, M: The given region
s: The geo-textual query
begin1

// Replace line 13 in Algorithm 3 with this algorithm;2

if N is leaf node then3

Perform prefix filter with Algorithm 3 on N to find all the candidates;4

for each c ∈ N and c is beyond the filter ability do5

verify(c, M, s, H);6

else7

for each node Nc ∈ {children of N} do8

Perform prefix filter with Algorithm 3 on N to find all the9

candidates;
GreedySearch(Nc, M, s);10

end11

As there is no previous study on the top-k Region Aware Similarity Search
problem, we extend two most relevant state-of-the-art methods to serve as the
baseline: RT-Tree [10] and MHR-Tree [20]. We obtain the code of RT-Tree and
MHR-Tree from the authors and make the extension based on the original code.
As RT-Tree only supports keywords search, we extend it as follows: we generate
prefix q-grams for each string and regard them as keywords to construct the
index. When searching for a given query, we first generate its q-grams as well.
Then we visit the corresponding inverted lists from top to bottom of the tree.
For MHR-Tree, we first randomly verify k objects in the region and put them in
the result set H. Then we enumerate the threshold τ incrementally from 0 to
search for candidates until τ ≤ UBH.

6.2 Results

To evaluate the effect of proposed techniques, we implement three methods: Sim-
ple, Estimation and Greedy. Simple uses the straightforward spatial first strategy;
Estimation is the estimation based selection strategy; and Greedy is the Greedy
Search method that only perform linear scan on leaf nodes. The metric for eval-
uation is the number of candidates and query time.

Firstly, we evaluate the candidate number of each method to judge the fil-
tering power. The result is shown in Fig. 4. It is clear Estimation and Greedy
can prune more candidates than Simple because they can avoid visit redundant
inverted lists. As Estimation can find the optimal combination of nodes to ver-
ify, the top-k algorithm could be convergent quickly without much linear scan.
Thus it involves the least number of candidates. Greedy also shows a strong filter
power because it takes full advantage of the filter power from different levels.
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Fig. 4. Effect of proposed techniques: number of candidates

Fig. 5. Effect of proposed techniques: query time

Fig. 6. Comparison with state-of-the-art methods

We then evaluate the average search time. As shown in Fig. 5, the average
search times of Estimation and Greedy are much better than that of Simple
because they can reduce the candidate number by performing further filtering
on lower tree levels. Although Estimation shows better filter power, but it also
involves relatively heavy estimating cost, so Estimation does not perform better
than Greedy.

We compare our Greedy algorithm with the extended state-of-the-art meth-
ods RT-Tree-k and MHR-Tree-k. We evaluate the performance on the same two
datasets. For each experiment, we randomly select 10,000 queries from the
dataset and report the average search time. The results are shown in Fig. 6.
We first fix the region size and varied the value of k, and have the following
observations. MHR-Tree-k outperforms RT-Tree-k a little except on CA dataset,
varying θ. This is because MHR-Tree-k is an approximate search algorithm, which
trades accuracy for improving query performance. Our method outperforms the
other two methods by one or two orders of magnitude because we propose spec-
ified filter techniques for edit distance and utilize the hierarchical index to avoid
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Fig. 7. Scalability

large numbers of verifications in top-k search. Although the extended RT-Tree-k
method can also take advantage of prefix filtering, it fails to make full use of
the filter power since it uses only one gram length. Thus there will be a large
number of linear scan when the threshold increases beyond the filter ability. We
then fix the value of k and vary the region size from 1% to 20% of the whole
space. We find similar trend with the above experiments. The reason is that as
we adopt spatial first strategy, it will not involve many verifications on upper
levels. And we can prune a significant number of dissimilar strings with the
region constraint.

Table 2. Index

Dataset Method Size (MB) Construction time (s)

CA Greedy 189 17.8

RT-Tree-k 75 18.1

MHR-Tree-k 1968 884

TX Greedy 164 16.2

RT-Tree-k 70 19.6

MHR-Tree-k 1878 859

Table 2 shows the index size and index time of each algorithm. We can see that
Greedy involves least index construction time among all the methods. Moreover,
the index size of our method is much smaller than that of MHR-Tree-k and
comparable to RT-Tree-k.

We evaluate the scalability of our algorithm. We vary the size of each datasets
and test the average query time for our Greedy algorithm. As shown in Fig. 7, our
method scales very well with different k values and region sizes and can support
large-scale data. Our method also scales very well with different θ values. The
average search time of our method increased almost linearly with the increase
of the dataset size.
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7 Conclusion

In this paper, we solve the problem of region-aware error-tolerate search. We
propose a hierarchical index for the geo-textual objects. Based on the index
structure, we design a basic top-k algorithm and make optimization with the
idea of incremental prefix. We further improve the filter power by leveraging
estimation based methods and greedy approximation. The experimental results
on real world POI datasets show that our method outperforms state-of-the-art
methods by 1–2 orders of magnitude.
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Abstract. Point-of-interest (POI) querying, which searches and rec-
ommends visiting places for individuals with context constraints, has
recently become a very popular location-based service. The existing
approaches, however, mainly focus on finding a single POI instead of a
group of POIs that are neibouring with each other. Some few approaches
do handle the querying of collective POIs, but fail to consider users’ pref-
erence. In this paper, we devise a novel approach which aims to retrieve
collective POIs based on multiple keywords given by a user as well as
user preference, POI popularity and congestion. In addition, we design
a cost function to calculate the visit cost of the candidate POIs. We also
propose an efficient algorithm based on IR-tree which finds the optimal
solution to achieve the balance between multiple optimization targets.
The extensive experiments based on the real data from Toronto Canada
demonstrate the effectiveness and efficiency of our approach.

Keywords: Spatial keyword query · User preference ·
Congestion avoidance · Popularity · Collective point-of-interest ·
Location-based service

1 Introduction

During the past decade, location-based service (LBS), such as Yelp and FourSqu-
are, has witnessed an unprecedented development with the continuous progress
of location technology, as well as the popularity of mobile phones. Meanwhile,
the spatial keyword query, which retrieves a set of spatial spaces that satisfy
specific constraints, has attracted widespread attention both in academia and
industry recently. In [1,3,9], a Collective Spatial Keywords Querying (CSKQ)
problem is proposed, which can be illustrated as follows. Given a set of POIs
P = {p1, p2, · · · , pn} and a query q, CSKQ is used to retrieve a set of adjacent
POIs that not only are close to the query location but also contain all the query
keywords. Different from the existing CSKQ query research, this paper considers
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two new issues: (1) When querying a set of POIs that contain all query keywords,
the traditional CSKQ research usually considers only text matching between
spatial POIs and query keywords, but ignores the user’s preference for these
POIs. For example, when Lisa wants to find a POI with the keyword “Chinese
restaurant”, and there are a couple of candidate POIs around her. Obviously
she prefers the POI with a higher preference score. (2) The traditional CSKQ
research only retrieves the related POIs which are close to the query location, but
does not consider the optimal time required to visit the POIs. In fact, popular
POIs are usually overcrowded during peak hours, resulting in long queues and
poor service, which reduces user interest.

Example 1. Figure 1 shows three candidate POIs, and the degree of crowdedness
of these POIs during a whole day, with a larger ordinate value indicating that the
POI is more crowded at that time. The shopping mall, cinema and restaurant
suffer the peak flow at around 13:00, 18:00, and 18:00 respectively. Assuming
Mark departs from a location close to these POIs at 12:00 and wants to visit these
three POIs. He enjoys lunch and sightseeing at the shopping mall between 12:00
and 15:00, watches the recently released movie at the cinema between 15:00 and
18:00, and enjoys a Mexican meal at the restaurant from 18:00 to 20:00. However,
this visit sequence suffers a severe congestion according to Fig. 1. In contrast, a
better choice could be: having lunch at the restaurant between 12:00 and 14:00,
watching movie at the cinema between 14:00 and 17:00, having dinner and going
shopping at the shopping mall between 17:00 and 20:00. As we can see, adjusting
the visit order appropriately avoids visiting POIs during the crowded periods,
resulting in shorter waiting time and better services during the off-peak hours.

Fig. 1. The degree of congestion of three POIs.

In order to solve the above problems, we propose a new personalized query
called Collective Keywords Preference Query (CKPQ). CKPQ finds a group of
POIs that satisfy the following conditions: (1) The size of the group does not
exceed the number of the query keywords. (2) The group of POIs contains all
query keywords. (3) The POIs are close to the query location. (4) The POIs in
the group are close to each other. In other words, the farthest distance between
any two POIs should be as close as possible. (5) The POIs satisfy the user’s
preference. (6) The group of POIs is combined with a visiting order, which can
avoid visiting popular POI during peak hours.
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In this paper, we firstly establish a user preference model based on historical
visit records of the user and the potential topics of POIs. Then we construct
a cost function to measure the visit cost of the candidate group according to
the distance within the group, the distance to the query location, the user’s
preference for the POIs and the accessibility of the POIs. Based on the cost
function, we propose an algorithm based on IR-tree, which can efficiently find
a group of POIs to answer the CKPQ problem. The contributions of this paper
are summarized as follows:

– We propose a novel approach to the personalized collective spatial keyword
query based on user preference, named Collective Keywords Preference Query
(CKPQ), and design a cost function to measure the visit cost of the candidate
result of CKPQ.

– We propose an efficient retrieve algorithm based on IR-tree, which can find
a solution of CKPQ to achieve the balance between multiple optimization
targets.

– We conduct extensive experiments based on the real data from Toronto
Canada to evaluate the efficiency and effectiveness of our approach.

The rest of the paper is organized as follows. Section 2 describes the related
definitions and the problem statement. Section 3 introduces the proposed app-
roach in detail. The experimental results based on real data are presented and
analyzed in Sect. 4. In Sect. 5 we show the related work, while in Sect. 6 we
conclude the paper.

2 User Preference Model and Problem Definition

To achieve an adaptive personalized search, we present a user preference model
in Sect. 2.1 to obtain a user’s preference topic distribution which is composed
of a set of feature words representing the preference and corresponding scores.
Afterwards, in Sect. 2.2, we state some definitions and formalize the problem of
CKPQ.

2.1 User Preference Model

The user’s preference is constantly changing over time. Intuitively, we should
be concerned with a user’s recent visit behaviour, which represents the user’s
current preference. As time goes on, if the preference is not strengthened again,
it will gradually be weakened. Therefore, we define a monotonically decreasing
function f(t) with time t to assign the weights of visit behaviour in the user
preference model. In other words, although all historical visit behaviours of a
user will have an impact on the user’s final preference model, the closer the
visiting time is, the greater its impact would be.

We use a damping function to achieve the goal of monotonically decreasing
time function f(t) given in Eq. (1):

f (t) = (1 +
t

T0
)e− t

T0 (1)
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We define a user preference vector PVu which consists of the topic labels and
their corresponding weights to represent the preference model of user u. Each
visit behaviour of the user can be represented by a vector PVtk , which contains
the POI potential topic set shown in Definition 1 and the user’s explicit rating
of the visit behaviour. The user preference model is as follows:

PVu = f(t0)PVt0 + f(t1)PVt1 + · · · + f(tk)PVtk (2)

where f(tk) is the time weight at time tk and PVtk is the preference vector of
the visit POI at time tk. After obtaining the user’s preference model PVu, we
save PVu as the user preference topic set and the corresponding preference topic
score set shown in Definition 2.

Definition 1 (POI Potential Topic Set). A POI potential topic set consists of a
set of words that represent the potential topics of a certain POI. Given a POI p,
its potential topic set is represented as TSp = {ts1, ts2, · · · , tsj , · · · , tss}, where
tsj represents the jth potential topic label where 1 ≤ j ≤ s.

Definition 2 (User Preference Topic Set and User Preference Topic Score Set).
A user preference topic set contains of a set of words that represent individual’s
potential topics of preference. Given a user u, its preference topic set is repre-
sented as TSu = {ts1, ts2, · · · , tsj , · · · , tsk}, where tsj represents the jth pref-
erence topic label (1 ≤ j ≤ k). Correspondingly, the user preference topic score
set is denoted as UPSu = {UPSu,ts1 , UPSu,ts2 , · · · , UPSu,tsj

, · · · , UPSu,tsk
},

where UPSu,tsj
represents the score of user u on the preference topic label tsj

(1 ≤ j ≤ k).

Definition 3 (POI Preference Score). A POI preference score refers to the score
of user u on POI p, which is calculated by the POI potential topic set TSp, the
user preference topic set TSu and the user preference topic score set UPSu,
given as:

Pre (u, p) =
∑

tsj∈TSu∩TSp

UPSu,tsj
× sc(p) (3)

Here, sc(p) is the average rating of POI p by all visitors, tsj is the co-occurring
topic label in both the user potential topic set TSu and the POI potential topic
set TSp.

Example 2. Suppose there are two restaurants with the average rating sc(p1) =
3.5 and sc(p2) = 4.0 respectively. Their POI potential topic sets are
TSp1 = {chinese food,wifi-free, ambience-upscale} and TSp2 = {fast
food, wifi-no, ambience-casual} respectively. Suppose there is a user u, whose
preference topic set is TSu = {chinese food,wifi-free, ambience-casual} with
the corresponding preference topic score set UPSu = {0.4, 0.5, 0.6}. Then
Pre (u, p1) = 3.15 and Pre(u, p2) = 2.40.
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2.2 Problem Definition

Definition 4 (Collective Keywords Preference Query (CKPQ)). Given a user
q.u with a query location q.λ, a query time q.τ and a set of keywords q.ψ, the
CKPQ can be represented by q = (u, λ, τ, ψ), indicating a query for a set of POIs
that have the minimum cost.

Definition 5 (Maximum Query Euclidean Distance). Given a CKPQ query q
and a set of POIs χ, the maximum Euclidean distance corresponds to the maxi-
mum distance among the Euclidean distances between q.λ and any POI in χ, as
well as the Euclidean distance between any two POIs in χ, given as:

Dists (q.λ, χ) = γ ∗ max
j∈χ

Dist(q.λ, j) + (1 − γ) ∗ max
i,j∈χ

Dist(i, j) (4)

Definition 6 (POI Popularity). The POI popularity shows how much a POI is
popular, indicated by the count of visits of all visitors, given as:

Popularity (p) =
count(p)

max(count(i), i ∈ P )
(5)

Here, count(p) is the visiting count of all users of POI p and P is the set of all
POIs. For example, P = {p1, p2, p3}, count(p1) = 50, count(p2) = 30, count(p3)
= 20, then Popularity (p1) = 1, Popularity (p2) = 0.6, Popularity (p3) = 0.4.

Definition 7 (POI Congestion). We obtain the POI congestion of a POI by
counting the occurrence Ocr(p, t) per time period for each POI of all users,
given as:

Congestion(p, t) = log(
count(p)
Ocr(p, t)

) (6)

Here, Ocr(p, t) is the visit count of POI p at time period t. For example,
there is a POI with the visit count {100, 200, 300, 400} at 9:00, 10:00, 11:00
and 12:00. Thus, totally there are 1000 visits to this POI and the maximum
visit count for this POI reaches 400 at 12:00. Then the congestion during these
four hours is {2.30, 1.61, 1.20, 0.92}. The smaller the value of congestion, so
the least suitable visit time is 12:00, while the most suitable visit time is 9:00.
Consequently, it is suggested to visit it at 9:00.

Definition 8 (POI Accessibility). We obtain accessibility of POI p at time t
based on popularity and congestion of the POI according to Eq. (7):

Access (p, t) = Popularity(p) × Congestion(p, t) (7)

Definition 9 (Preference Distance). Given a set of POIs χ, the preference dis-
tance is used to represent the accessibility and the user’s overall preference of
POIs χ, given as:

Distp(q, χ) =
|χ|∑

j∈χ (β ∗ Access (j, q.τ) + (1 − β) ∗ Pre (q.u, j))
(8)
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Here, β ∈ [0, 1] is a weight parameter to balance accessibility and user
preference.

Definition 10 (Cost Function). Given a set of POIs χ, the cost function
involves two parts: maximum query Euclidean distance and preference distance,
calculated as:

Cost(q, χ) = α ∗ Dists(q, χ) + (1 − α) ∗ Distp(q, χ) (9)

Here, α ∈ [0, 1] is a weight parameter to balance the maximum Euclidean
distance and the preference distance. The larger the value of α, the higher the
weight of the maximum Euclidean distance. When α equals to 1, the CKPQ
problem becomes a CSKQ problem.

Problem Statement: Given a set of POIs P = {p1, p2, · · · , pn} and a Collective
Keywords Preference Query (CKPQ) q = (u, λ, τ, ψ), our problem is to find a
group of POIs χ, where χ ⊆ P and χ contains all keywords in q.ψ, such that χ
is argminχ′ {cost(q, χ

′
) | χ

′ ⊆ P}.

3 Approaches

For spatial keyword query, building spatial index is an effective way to solve a
high-dimensional space search problem. In this section, we first introduce the
IR-tree index in Sect. 3.1, we can easily change the scope of the query through
IR-tree. Based on IR-tree, we then present a baseline algorithm to answer CKPQ
in Sect. 3.2. Finally, we devise several pruning strategies to improve the query
efficiency of the baseline algorithm and give the improved algorithm based on
the pruning strategies in Sect. 3.3.

3.1 IR-Tree

The IR-tree is essentially an R-tree, with a corresponding inverted file attached
to each of its nodes. The inverted file stores the keyword information of the
POIs in the node, which mainly includes two parts: a keyword directory and a
POI list. The former stores all the keywords contained in the node, whereas the
latter stores the POIs contained in each keyword. Each leaf node in the IR-tree
contains an POI represented by (p, p.λ, p.di), where p represents the POI, p.λ
represents the location of POI p, and p.di represents the keyword information
of POI p. Each non-leaf node in the IR-tree contains some nodes represented by
(cp, rect, cp.di), where cp represents a pointer to the child node of the non-leaf
node, rect represents the minimum boundary rectangle (MBR) of the child node,
and cp.di is the pseudo-text description that is a union of all keyword information
in the entries of the child nodes. Figure 2(a) shows eight spatial POIs and its
keywords, and Fig. 2(b) illustrates the IR-tree index structure corresponding to
Fig. 2(a).

Given a CKPQ query q, we adopt an IR-tree to find the candidate solution
within the query region. We initialize a min-priority queue to maintain the inter-
mediate results and add the root of IR-tree to the queue. The node is sequentially
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taken out from the queue when querying, and the child nodes including the query
keywords are added to the priority queue according to the inverted file of the
node, the priority value of min-priority queue is minimum distance from query
location to the node. When the priority value of the fetched node from priority
queue exceeds the query region, the query stops.

3.2 Baseline Approach

In this section, we propose a baseline approach, called Enum-Search, which enu-
merates all groups of POIs covering the query keywords within query region,
calculates the cost of each group, and selects the group with the lowest cost as
the query result.

Enum-Search finds all subsets of the POIs which contains all keywords from
the query region where the center is q.λ and the radius is r. If needed, we can
expand the search radius r = r + Δr and search the result again within the new
search radius.

Fig. 2. An IR-tree example.

Algorithm 1. findBestOrder
Input: a candidate group G containing all query keywords, visit time t
Output: The best visit order O of G

1: O ← ∅; congestCost ← 0;
2: for each permutation χ of G do
3: fesibleCost ← 0; index ← 0;
4: for each POI j in χ do
5: fesibleCost ← fesibleCost + congestion(j, t + index ∗ Δt);
6: index ← index + 1;

7: if fesibleCost > congestCost then
8: O ← χ; congestCost ← fesibleCost;

9: return O;
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Given a set of candidate POIs that contain all the query keywords, since
all permutations have the same maximum query Euclidean distance, popular-
ity, and user preferences, we only need to calculate the POI congestion of each
permutation to obtain the best visit order according Definition 7. The pseudo
code is shown in Algorithm 1. We use Δt to indicate the time difference between
visiting two adjacent POIs (Line 5).

Algorithm 2 shows the pseudo code of Enum-Search. We use a POI set
C = {C1, C2, · · · , Cz} , where Cz represents the set to save all POIs containing
keyword z (Line 6). In addition, we use minDist(q, e) to calculate the minimum
distance between node e in IR-tree and the query location, minDist(q, e) repre-
sents the distance between POI e and query location when e is a leaf node, while
e is a non-leaf node, minDist(q, e) represents the shortest distance between the
rect of node e and query location. If minDist(q, e) > r, node e will not be
considered during retrieval (Line 9).

Algorithm 2. Enum-Search
Input: a CKPQ query q , an irTree containing all POIs
Output: a query result R and its corresponding result cost RC

1: U ← new queue; U.add(irTree.root, 0);
2: feasibleCost ← 0; C ← ∅;
3: while U is not empty do
4: e ← U.poll();
5: if e is an object and e.ψ ∩ q.ψ �= ∅ then
6: Cti ← Cti ∪ e, ti = e.ψ ∩ q.ψ;
7: else if e is a non-leaf node then
8: for each e

′
in node e do

9: if e
′
.ψ ∩ q.ψ �= ∅ and minDist(q, e

′
) < r then U.add(e

′
);

10: groupList ← {p1, p2, · · · , pZ | p1 ∈ Ct1 , p2 ∈ Ct2 , · · · , pZ ∈ CtZ};
11: R ← ∅ ; RC ← +∞;
12: for each group in groupList do
13: χ ← findBestOrder(group, q.τ);
14: feasibleCost ← Cost (q, χ) ;
15: if feasibleCost < RC then
16: RC ← feasibleCost; R ← χ;

17: return R and RC;

Since the enumeration approach needs to query all POIs that contain the
query keywords in the space, and randomly combines these POIs and calculates
their visit costs, its poor query efficiency makes it difficult for users to accept.

3.3 A Nearest-Distance-First Approach with Pruning

Although the query result and visit cost obtained by Enum-Search is optimal,
its running time is difficult to be accepted especially when searching among a
large group of POIs. Therefore, we employ a pruning based algorithm, called
RKD-Search, which considers the rare keyword and distances. We first employ
a simple nearest distance search algorithm called ND-Search to find a feasible
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result as the current best result, then use two kinds of pruning strategies to
improve the query efficiency of the search algorithm.

ND-Search finds the POIs closest to the query location q.λ for each keyword
ti in q.ψ from the query region, then combines these POIs to constitute the
query results. The pseudo code is shown in Algorithm 3.

We use keySet to save the keywords that have not yet been queried. At each
iteration, we take the head element e from U , if e is a leaf node, add it to the result
set, and remove the keyword contained in the keySet (Lines 5–7). If e is a non-
leaf node in the IR-tree, judge whether the node contains the keyword contained
in keySet, and inserts all child nodes which contain the keyword contained in
keySet into U (Lines 9–11).

Algorithm 3. ND-Search
Input: a CKPQ query q , an irTree containing all POIs
Output: a query result R and its corresponding result cost RC

1: U ← new priority queue; U.add(irTree.root, 0)
2: R ← ∅; RC ← 0; keySet ← q.ψ;
3: while U is not empty do
4: e ← U.poll();
5: if e is an object and e.ψ ∩ q.ψ �= ∅ then
6: R.add(e);
7: keySet.remove(e.ψ);
8: else if e is a non-leaf node then
9: for each e

′
in node e do

10: if e
′
.ψ ∩ q.ψ �= ∅ and minDist(q, e

′
) < r then

11: U.add(e
′
, minDist(q, e

′
));

12: if keySet = ∅ then break;

13: RC ← Cost (q, R) ;
14: return R and RC

After we have obtained the current best visit cost, we use two pruning strate-
gies to improve the query efficiency of the algorithm. Two pruning strategies are
as follows:

Lemma 1 (Pruning Strategy 1). Given a CKPQ query q and the current best
visit cost curCost, any POI or node whose distance to query location q.λ exceeds
curCost/(α ∗ γ) can be pruned, where α is the weight parameter in Definition
10 and γ is the weight parameter in Definition 5.

Proof. (1) Assuming node e is a POI containing a query keyword, and its distance
to q.λ is Dist(q.λ, e), if Dist(q.λ, e) > curCost/(α∗γ), according to Definition 5:
max
j∈χ

Dist(q.λ, j) ≥ Dist(q.λ, e) > curCost/(α∗γ), we obtain that Dists(q, χ) =

γ ∗ max
j∈χ

Dist(q.λ, j) + (1 − γ) ∗ max
i,j∈χ

Dist(i, j) > curCost/α. Further, according

to Definition 10, we obtain: Cost(q, χ) = α∗Dists(q, χ)+(1−α)∗Distp(q, χ) >
curCost+(1−α)∗Distp(q, χ). Therefore, the candidate group of POIs containing
POI e must be higher than the current best visit cost curCost. In other words,
e can be pruned.



618 D. Yu et al.

(2) Assuming node e is a non-leaf with a query keyword, with the shortest
distance of minDist(q, e) = curCost/(α∗γ) between all POIs in e and the query
location q.λ, if e contains a candidate POI, then the distance between the POI
and the query location must exceed curCost/(α∗γ). Then we use the same proof
method in PROOF (1) when node e is a POI containing a query keyword.

Secondly, since the query result of the CKPQ problem must contain all the
keywords provided, we choose to prioritize the rare keyword when querying. For
each keyword, we pre-calculate the number of POIs that contain this keyword,
and sort the query keywords in the ascending order of the number of containing
POIs. The rare keyword is the keyword with the least number of containing POIs
in query keywords.

Considering that a query result must contain all keywords, and the distance
between each pair of POIs in the result must be within a certain range, the
other POIs must be located near the POI with the rare keyword. Therefore, we
consider preferentially finding the POI with the rare keyword in spatial data.
When querying, we first find the POIs with rare keyword, then we find the
remaining keywords within a query region according to Lemma 2 based on the
current best visit cost and distance between the query location and the POI with
the rare keyword.

Lemma 2 (Pruning Strategy 2). Given a CKPQ query q, the current best visit
cost curCost, and a POI e containing the rare keyword, the query circular region
S with its center of e.λ and its radius of curCost/(α∗(1−γ))−γ∗Dist(q.λ, e)/(1−
γ), then all nodes outside S can be pruned.

Proof. Given a CKPQ query q, the current best visit cost curCost and a POI e
containing the rare keyword, if there is a POI p with the distance to e exceeds
curCost/(α ∗ (1 − γ)) − γ ∗ Dist(q.λ, e)/(1 − γ), then according to Definition 5:
max
j∈χ

Dist(q.λ, j) ≥ Dist(q.λ, e), max
i,j∈χ

Dist(i, j) ≥ Dist(e, p) ≥ curCost/(α ∗
(1 − γ)) − γ ∗ Dist(q.λ, e)/(1 − γ), and Dists(q, χ) = γ ∗ max

j∈χ
Dist(q.λ, j) +

(1 − γ) ∗ max
i,j∈χ

Dist(i, j) ≥ γ ∗ Dist(q.λ, e) + (1 − γ) ∗ (curCost/(α ∗ (1 − γ)) −
γ ∗ Dist(q.λ, e)/(1 − γ)) = curCost/α. Further, according to Definition 10, we
obtain Cost(q, χ) = α ∗ Dists(q, χ) + (1 − α) ∗ Distp(q, χ) ≥ curCost. In other
words, the visit cost of the feasible group including POI p and POI e with the
rare keyword exceeds the current best cost curCost, p can be pruned.

We use IR-tree to find the POI containing the rare keyword, and find the
remaining keywords in the region S around the POIs with the rare keyword
according to the above two lemmas. The pseudo code is shown in Algorithm 4.

We insert the node from IR-tree into the priority queue U in turn, and take
the header element e from U at each iteration. We prune the element e with
a query distance greater than curCost/(α ∗ γ) according to Lemma 1 (Line 6).
If e is a POI, we search the remaining keywords in the region S according to
Lemma 2. It is worth mentioning that all nodes whose distance to e.λ exceeds
curCost/(α∗(1−γ))−γ∗Dist(q, e)/(1−γ) will be pruned (Line 15 and Line 24).
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4 Experiment

4.1 Data Preparation and Experimental Setting

Data Preparation. In order to evaluate the effectiveness and efficiency of our
approach, we conduct extensive experiments on real datasets of Toronto collected
from Yelp Dataset Challenge1, which covers 26,520 POIs between −80.12E–
−78.89E and 42.98N−44.19N . As shown in Table 1, each POI includes attributes
such as id, name, coordinate (latitude and longitude) and categories. In addition,
each POI is also attached with a feature attribute. For example, the POI with
POI ID = 00001 in Table 1 is attached with {GoodforMeal: dinner, NoiseLevel:
quiet, Ambience: intimate, Price Range: 3}. For this experiment, we investigated

Algorithm 4. RKD-Search
Input: a CKPQ query q , an irTree containing all POIs
Output: a query result R and its corresponding result cost RC
1: U ← new priority queue; U.add(irTree.root, 0)
2: R, RC ← ND-Search(q, irTree);
3: Keywordrare ← rare keyword in q.ψ;
4: while U is not empty do
5: e ← U.poll(); keywords ← q.ψ;
6: if minDist(q, e) ≥ curCost/(α ∗ γ) or minDist(q, e)≥r then break;
7: if e is not an object then
8: for each e

′
in node e do

9: if e
′
.ψ ∩ Keywordrare �= ∅ then U.add(e

′
, minDist(q, e

′
));

10: else
11: keySet ← keywords.remove(e.ψ); C ← ∅;
12: U2 ← new priority queue; U2.add(irTree.root, 0);
13: while U2 is not empty do
14: v ← U2.poll();
15: if minDist(e, v) ≥ (curCost/(α ∗ (1 − γ)) − γ ∗ Dist(q, e)/(1 −

γ)) or minDist(q, v) ≥ r then break;
16: if v is not an object then
17: for each v

′
in node v do

18: if v
′
.ψ ∩ keySet �= ∅ then U2.add(v

′
, minDist(e, v

′
));

19: else Cti ← Cti ∪ v, ti = v.ψ ∩ q.ψ;

20: groupList ← {p1, p2, · · · , pZ | p1 ∈ Ct1 , p2 ∈ Ct2 , · · · , pZ ∈ CtZ};
21: feasibleCost ← +∞;
22: for each group in groupList do
23: χ ← findBestOrder(group, q.τ);
24: if minDist(e, χ)<(curCost/(α ∗ (1 − γ)) − γ ∗ Dist(q, e)/(1 − γ)) then
25: feasibleCost ← Cost (q, χ) ;
26: if feasibleCost < RC then
27: RC ← feasibleCost; R ← χ;

28: return R and RC

1 https://www.yelp.com/dataset.

https://www.yelp.com/dataset
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1,638,087 real visit records of 22,389 users from July 26, 2015 to July 26, 2017,
with 307,985 records in 2015, 808,740 records in 2016, and 521,362 records in
2017, respectively.

Parameters Setting. The parameters and their corresponding values in our
experiment are summarized in Table 2, while the default values are indicated in
bold.

Table 1. Example of POIs.

POI ID Name Latitude Longitude Categories

00001 Segovia 43.6651 −79.3856 restaurants, tapas bars

00002 Titika 43.6494 −79.3928 shopping, sports wear

00003 Camp 4 43.6494 −79.4218 nightlife, dive bars

· · · · · · · · · · · · · · ·

Table 2. Parameter setting.

Parameter Values (default in bold)

the number of keywords (|q.χ|) 2, 3, 4, 5, 6

the query radius r 1, 2, 3, 4, 5, 6, 7, 8

the weight parameter γ 0.5

the weight parameter β 0.5

the weight parameter α 0.5

the half-life parameter T0 30

the time difference Δt 1

Query Generation. In the query generation process, we generated five spatial
keyword query sets according to the number of keywords, namely 2, 3, 4, 5
and 6. More specifically, we first randomly selected a POI from the dataset and
used its location as the query location. Afterwards, we sorted all keywords in
descending order by their frequency in the spatial POI, and randomly selected
top-k keywords. The percentage of at least one keyword in each set of queries
ranges from 40% to 70%, while the percentage of other keywords is less than 40%.

All algorithms were implemented in Java on Windows 10, and run on an
Intel(R) CPU i5-6500 @3.19 GHz with 8 GB RAM.

4.2 Experimental Results

Effect of the Number of Keywords. We generated 5 types of queries with
different values of |q.ψ|, i.e., with the number of query keywords of 2, 3, 4, 5 and
6 respectively. Figure 3 shows the running time of RKD and ENUM when the
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number of keywords increases from 2 to 6. As it indicates, since ENUM needs
to find all POIs containing the query keywords and randomly combines these
POIs, the running time of ENUM increases rapidly as the number of keywords
increases. RKD demonstrates the similar variation trend. However, since RKD
employs some pruning strategies to reduce the scope of the query, its running
time is much lower than ENUM, and the gap between the two approach widens
as the number of keywords increases.

Effect of Query Scope. This test demonstrates the impact of query radius
r to the performance, which limits the scope of the query. Table 3 illustrate
the running time and the results of ENUM and RKD with 3 keywords, when
r increases from 1 (Km) to 8 (Km). As it indicates, with the increase of r, the
time consumed by ENUM increases dramatically. In contrast, although the time
spent by RKD also becomes longer, it stops when r hits 5 km. The reason is
that RKD employs some pruning strategies to reduce the scope of the query.
Therefore, it stops the query when no better solution is found within the scope.
More importantly, RKD obtains consistent solutions with ENUM.
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Fig. 3. Impact of parameter |q.χ|. Fig. 4. Impact of the number of POIs.

Table 3. Impact of parameter r on query result.

r (km) Search algorithm

Enum RKD

Time (ms) Cost Time (ms) Cost

1 67 0.617 47 0.617

2 139 0.502 81 0.502

3 809 0.478 93 0.478

4 3630 0.472 95 0.472

5 9781 0.472 96 0.472

6 13168 0.472 96 0.472

7 15238 0.472 96 0.472

8 16847 0.472 96 0.472
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Effect of the Number of POIs in P . Figure 4 shows the running time of
RKD when the number of POIs increases from 5000 to 25000. As it indicates,
as the number of the POIs increases, the running time of RKD also increases
gradually. Even if the number of POIs reaches 25000, the running time keeps
within a reasonable range.

Comparison Between CSKQ and CKPQ. In order to verify the effective-
ness of CKPQ, we compare the maximum query Euclidean distances of exact
results between CKPQ and CSKQ. CSKQ employs the maximum Euclidean dis-
tance cost function given in Definition 5 which is the same as CKPQ. Figure 5
illustrates the change of maximum Euclidean distance in which the number of
query keywords is set to 3 and the query radius is set to 3 km for both CKPQ
and CSKQ.

Fig. 5. Maximum query Euclidean distance of result of CKPQ and CSKQ.

It can be clearly concluded from Fig. 5 that the maximum query Euclidean
distance of the exact result increases gradually with more number of query key-
words for either CSKQ or CKPQ. In addition, the maximum query Euclidean
distance of the POIs obtained by CKPQ is slightly larger than that of POIs
obtained by CSKQ. It is because CKPQ aims to not only find a set of adja-
cent POIs that are close to the user, but also consider the user’s preference, the
popularity and congestion of these POIs.

To further verify the effectiveness of CKPQ, we handled the following exper-
iment among 30 students. We randomly generated 10 queries, and obtained the
exact results of CSKQ and CKPQ of these 10 queries. Then, we gave the scenario
information of these queries such as user preference topic set, POIs potential
topic set, popularity and congestion of these POIs, and let all students compare
the POIs obtained by CSKQ and CKPQ. The effectiveness of the CKPQ query
results is measured by the satisfaction of these 30 students. We finally obtained
300 comparison results, of which CKPQ received 294 satisfactory votes. In other
words, more than 98% of students prefer the POIs obtained by CKPQ. Therefore,
although the POIs obtained by CSKQ have shorter maximum query Euclidean
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distance, the POIs obtained by CKPQ are more popular and more in line with
the user’s taste. Meanwhile, CKPQ also recommends the visit order of POIs
according to the congestion of the POIs, which avoids visiting popular POIs
during peak hours.

5 Related Work

A popular research in spatial keyword query is to find Top-k objects in space
based on a ranking function which considers both spatial position and text rel-
evance called top-k kNN query. In [5,8,11], top-k kNN query was studied in
the Euclidean space, the method to handle the queries is to use IR-tree for
spatial proximity querying [5,8], whereas a novel index was proposed in [11]
to improve the performance of top-k spatial keyword queries named Spatial
Inverted Index (S2I). Besides, [4,10,12,15] applied top-k kNN query into road
network. Cho et al. proposed a novel algorithm called ALPS to minimize the
number of data objects, their methodology groups objects in a road segment
and converts grouped objects into a data segment [4]. In addition, Rocha-Junior
et al. proposed a novel algorithm that improves query processing performance by
avoiding examining the spatial neighborhood of the data objects during query
execution [12]. Meanwhile, Yuan et al. presented a new problem: kNN search on
road networks by incorporating social influence (RSkNN) [15], whereas Luo et
al. proposed a new distributed index scheme called NPD-index to answer two
types of spatial-keyword queries in a distributed setting [10].

Some other studies on spatial keywords query focus on finding a set of objects
as a solution to meet the user’s needs. In [16,17], Zhang et al. proposed a novel
spatial keywords query called the m-closest keywords (mCK) query that aims to
find the spatially closest tuples which match m user-specified keywords. Cao et
al. proposed the collective spatial keyword query problem (CoSKQ) to retrieve
a group of objects that the keywords contained in all objects collectively cover
the query keyword [1,2]. It is worth mentioning that previous works only focus
on the CoSKQ problem in the Euclidean space, Guo et al. studied the problem
of collective spatial keywords query processing on road networks [6]. Besides, in
[13], Sun et al. investigated the spatial keywords query with semantics which
targets to find objects that is optimum regarding to both spatial proximity and
semantic relevance. There are also some indexes to support efficient processing
on CoSKQ and top-k kNN, such as quadtree [7], bR*-tree [16], IR-tree [5] and
AP-Tree [14].

As far as we know, most of the existing methods only consider the spatial
distance in spatial keywords query, but fail to consider users’ preference and the
accessibility of POIs. Therefore, in this paper, we propose a new personalized
collective spatial keywords query problem named Collective Keywords Prefer-
ence Query (CKPQ) that can determine the group of POIs according to the
distance within the group, the distance to the query location, user’s potential
preference and the accessibility of the POIs. Meanwhile, we propose an IR-tree
based pruning algorithm to answer the CKPQ problem.
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6 Conclusion

In this paper, we propose a novel personalized collective spatial keywords query
problem named Collective Keywords Preference Query (CKPQ), and present
two pruning strategies based on IR-tree to answer CKPQ. We first devise a user
preference model based on visit history and the potential topic of POIs. A cost
function is then constructed to calculate the cost of the candidate group based
on the model. Thirdly, we develop an efficient algorithm based on IR-tree and
the pruning strategies. Finally, we conduct extensive experiments based on the
real data from Toronto Canada, which proves the effectiveness and efficiency of
our approach.

In the future, we will improve our proposed approach in the following aspects.
(1) To speed up the query efficiency, we will consider some approximate algo-
rithms to solve CKPQ especially when handling large-scale data sets. (2) To
more intuitively demonstrate the effectiveness of CKPQ, we will conduct the
comparative study on some specific query instances. (3) To enrich the solution
of CKPQ, we will investigate and employ some well-established approaches to
route search/recommendation problems.
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Abstract. Structural graph clustering is one of the fundamental prob-
lems in managing and analyzing graph data. The structural clustering
algorithm SCAN is successfully used in many applications because it
obtains not only clusters but also hubs and outliers. However, the results
of SCAN heavily depend on two sensitive parameters, ε and μ, which
may result in loss of accuracy and efficiency. In this paper, we propose a
novel Density Peak-based Structural Clustering Algorithm for Networks
(DPSCAN). Specifically, DPSCAN clusters vertices based on the struc-
tural similarity and the structural dependency between vertices and their
neighbors, without tuning parameters. Through theoretical analysis, we
prove that DPSCAN can detect meaningful clusters, hubs and outliers.
In addition, to improve the efficiency of DPSCAN, we propose a new
index structure named DP-Index, so that each vertex needs to be vis-
ited only once. Finally, we conduct comprehensive experimental studies
on real and synthetic graphs, which demonstrate that our new approach
outperforms the state-of-the-art approaches.

1 Introduction

In recent years, graph clustering has emerged as an important primitive in a wide
range of data analysis tasks. Many types of graph clustering methods have been
proposed, including graph partitioning [18], propagation-based methods [4,13]
and modularity-based methods [3,11]. While most of the existing methods suc-
cessfully find clusters, they are generally unable to detect hubs and outliers.
To distinguish the different roles of the vertices, a structural graph clustering
algorithm named SCAN is proposed in [23]. The main concept of SCAN is that
two vertices belong to the same cluster if they are similar enough. If a vertex
does not belong to any cluster, it is a hub if its neighbors belong to more than
one cluster, and an outlier otherwise. Due to the high time complexity of com-
puting the structural similarities, SCAN is not scalable to large graphs. Many
literatures [2,10,19] have been proposed to overcome the drawback of SCAN.

However, most of structural graph clustering algorithms depend on two sen-
sitive parameters, namely ε and μ, and the change of input parameter values
may heavily influence the clustering result [22]. To obtain relatively reasonable
clusters, users need to run the algorithm many times to tune the parameters.
c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11447, pp. 626–641, 2019.
https://doi.org/10.1007/978-3-030-18579-4_37
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In this paper, we propose a novel structural graph clustering algorithm based
on density peaks (DPSCAN) without parameters to be tuned. Our proposal is
to identify the sets of clusters, hub vertices and outlier vertices. The basic idea
of DPSCAN is that a vertex and its structure-dependent neighbor belong to
the same cluster. Based on Density Peak Clustering [16], we firstly define three
metrics for each vertex and generate the decision graph. Through the decision
graph, we find all the density peaks and noise vertices, and then get the clusters
grown from the density peaks. Finally, we identify the noise vertices as hubs or
outliers. As illustrated in Table 1, compared with GS*-Query, LPA, Modularity
and GN, DPSCAN is the fastest graph clustering algorithm, which can detect
not only clusters but also hubs and outliers.

Our main contributions can be summarized as follows:

1. The first DP − based algorithm for structural graph clustering. We pro-
pose a DP-based structural graph clustering algorithm, named DPSCAN,
which can detect clusters, hubs, and outliers without tuning parameters. To
the best of our knowledge, this is the first DP-based algorithm for structural
graph clustering. Through theoretical analysis and experimental evaluation,
we demonstrate that DPSCAN can find meaningful clusters and identify hubs
and outliers.

2. Flexible clustering. Three new metrics, the local density, the dependent sim-
ilarity and the dependent vertex, are first defined for each vertex in the graph.
Based on the metrics, a new user-friendly decision graph is proposed specif-
ically for graphs. Through the decision graph, DPSCAN can identify a vari-
able number of clusters or automatically detect clusters according to user’s
requirements.

3. Efficiency. We propose a new index structure named DP-Index. Based on
DP-Index, DPSCAN can online-compute reasonable clusters efficiently, and
the time complexity is only linear to the number of vertices. In addition, we
further propose two optimization techniques for DP-Index. The experimen-
tal results demonstrate that our algorithm can achieve significant speedup
compared to the state-of-the-art algorithms.

2 Related Work

Density Peak Clustering. Density Peak Clustering (DPC) [16] is a novel clus-
tering algorithm recently proposed by Rodriguez and Laio in Science. As an effec-
tive and powerful tool for the task of clustering, DPC has been widely applied
to many clustering problems. OCDDP, proposed in [1], utilizes a similarity-
based method to set distances among nodes to find overlapping communities.
An evidential community detection algorithm is explored in [25], which detects
community centers based on [16] and assigns remaining nodes through a label
propagation strategy [24]. However, due to inherently different problem defini-
tions, these methods cannot be applied to structural graph clustering.
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Structural Graph Clustering. To distinguish the different roles of the ver-
tices, a structural graph clustering method named SCAN is proposed in [23].
SCAN successfully identifies clusters, hubs and outliers. Due to the high time
complexity of computing the structural similarities, it is not scalable to large
graphs. To improve the efficiency of SCAN, LinkSCAN*, proposed in [10], adopts
approximation techniques by sampling edges to reduce the number of similarity
computations. SCAN++ [19] is proposed to avoid computing similarity between
vertices that are shared between the neighbors of a vertex and its two-hop-away
vertices. In addition, [2] proposes an algorithm named pSCAN. It avoids simi-
larity computations by maintaining an upper bound and a lower bound for the
number of similar neighbors of each vertex. However, these methods heavily
depend on two sensitive parameters, namely ε and μ. To solve the problem of
frequently parameters tuning, SHRINK, proposed in [8], combines modularity-
based methods and structural similarity to compute clusters. [21] proposes the
algorithm gSkeletonClu, which finds the optimal ε and clusters vertices based
on a tree-decomposition-based method. [22] proposes an index-based method. It
provides an efficient algorithm GS*-Query based on GS*-Index to answer the
query for any possible ε and μ, which is significantly faster than previous meth-
ods. In this paper, our work tries to extend DPC [16] and develop an efficient
structural graph clustering algorithm without tuning parameters.

Other Graph Clustering Models. Other graph clustering methods have also
been studied in the literature, which include the betweenness-based method [6],
the modularity-based method [3,11], the propagation-based method [4,13,14]
and graph partitioning [12,18]. [13] is a recently proposed graph clustering app-
roach named FluidC, which outperforms most of the existing methods. It is
based on the idea of fluids interacting by expanding and pushing each other.
While all these graph clustering methods successfully find clusters, they do not
distinguish hubs and outliers in a graph.

3 DP-Based Structural Graph Clustering

3.1 The Notion of Structure-Dependent Clusters

In this paper, we focus on an unweighted undirected graph G = (V,E) [2], where
V is the set of vertices and E is the set of edges. We denote the number of vertices
|V | and the number of edges |E| by n and m respectively.

Definition 1 (Structural Neighborhood). The structural neighborhood of
vertex u, denoted by N [u], is defined as N [u] = {v ∈ V |(u, v) ∈ E} ∪ {u}.
Note that, the degree of u, denoted by deg[u], is the cardinality of N [u] (i.e.,
deg[u] = |N [u]|). The open neighborhood of u, denoted by N(u), is the set of
neighbors of u (i.e., N(u) = {v ∈ V |(u, v) ∈ E}).
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Definition 2 (Structural Similarity). The structural similarity between two
vertices u and v, denoted by σ(u, v), is defined as the number of common struc-
tural neighbors between u and v, normalized by the geometric mean of their
cardinalities of the structural neighborhood. That is

σ(u, v) =
|N [u] ∩ N [v]|

√
deg[u] · deg[v]

(1)

Intuitively, we can see that the structural similarity between two vertices
becomes large when they share many common structural neighbors.

In this paper, we take the neighborhood of vertices as the clustering criterion.
We define three metrics for each vertex: the local density, the dependent simi-
larity and the dependent vertex. Through these metrics, we can get the density
peaks, noise vertices and clusters.

Definition 3 (Local Density). Given μuv = σt

σ(u,v) , the local density of u,
denoted by ρu, is defined as the sum of the normal distribution values of μuv,
where σt is a default parameter called similarity threshold and v is the structural
neighbor of u. That is

ρu =
∑

v∈N [u]

1√
2π

exp(−μ2
uv

2
) (2)

As a rule of thumb, the value of σt is around 20% of the structural similarities in
descending order. Intuitively, the local density becomes smaller with the decrease
of σ(u, v), which conforms to the general law.

Definition 4 (Dependent Similarity). The dependent similarity of u, denoted
by δu, is defined as the maximum structural similarity between u and the neighbor
with higher density. That is

δu = max
v:ρv>ρu,v∈N(u)

(σ(u, v)) (3)

Note that, the open neighborhood of u doesn’t include u itself. If there is no
vertex with higher density in the neighborhood of u, we set δu = 0.

Definition 5 (Dependent Vertex). The dependent vertex of u, denoted by
ϕu, is defined as u’s the most similar neighbor with higher density. That is

ϕu = argmaxv:ρv>ρu,v∈N(u)(σ(u, v)) (4)

According to Definitions 4 and 5, we know that δu is the structural similarity
between u and ϕu. If there are two or more dependent vertices of u, we randomly
pick one among them.

A vertex u with a small ρu is called a noise vertex [7], whose density is not
bigger than a predefined value ξ (i.e., ρu ≤ ξ). For a vertex with a large ρ, a
relatively small δ implies that vertex u is the density peak of its own structural
neighborhood, since it is dissimilar with higher density neighbors, or it has no
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higher density neighbors (i.e., δ = 0). Thus, in a graph, density peaks are the
vertices with large ρ as well as small δ. Note that, the non-noise vertices with
δ = 0 must be density peaks since it has no higher density neighbors.

If ϕu = v, it is highly possible that u and v belong to the same cluster [16].
Inspired by [7], we say that vertex u is structure − dependent on v. For a set of
vertices {v1, v2, . . . , vn}, if there exists a dependent chain, such that vi (1 ≤ i ≤
n−1) is structure-dependent on vi+1 and the end vertex vn is not dependent on
any other vertex, we say that vn is vi’s dependent root and vi (1 ≤ i ≤ j − 1)
is dependency − reachable to vj (i + 1 ≤ j ≤ n), denoted by vi → vj . Now, we
define a cluster as structure-dependent vertices.

Definition 6 (Structure-Dependent Cluster). A non-empty subset C ⊆ V
is called a structure-dependent cluster such that:

– (Maximality) If a vertex u ∈ C, any non-noise vertex v that is dependency-
reachable to u also belongs to C.

– (Traceability) For any vertices v1, v2, . . . ∈ C, they have the same dependent
root, which is the density peak in C.

For a vertex, it is either a member of a cluster, or it is a noise vertex. If a noise
vertex u has neighbors belonging to two or more different clusters, u is a hub.
Otherwise, u is an outlier.

The following theorem validates the correctness of our proposed algorithm.
Given a graph G = (V,E), we can find structure-dependent clusters in a two-
step approach. First, a density peak is chosen from V . Second, we retrieve all
the vertices that are dependency-reachable to the density peak to obtain the
cluster.

Theorem 1. Given u ∈ V , if u is a density peak, then the set of vertices,
which consists of u and the non-noise vertices dependency-reachable to u, is a
structure-dependent cluster.

Proof. (C 	= ∅) Given C ⊆ V , u is a density peak and u ∈ C. Thus, C 	= ∅.
(Maximality) Given vertex p ∈ C, non-noise vertex q ∈ V and q → p, if

p = u, q → u. If p 	= u, q → p and p → u. Since dependency reachability is
transitive, q → u. Thus, q ∈ C.

(Traceability) Let v1, v2, . . . , vn ∈ C and the corresponding dependent roots
are u1, u2, . . . , un. By means of reduction to absurdity, we can assume that
∃w1, w2 ∈ {u1, u2, . . . , un} and w1 	= w2. Since w1 	= w2, ∃p ∈ {w1, w2} and
p 	= u. By assumption, p → u. Since p is the dependent root and not dependent
on any other vertex, u1 = u2 . . . = un = u. Thus, any vertices in C have the
same dependent root, which is the density peak.

3.2 DPSCAN

In this section, we describe the algorithm DPSCAN which can detect clusters,
hubs and outliers. As mentioned in Subsect. 3.1, we first find all the density peaks



DPSCAN: Structural Graph Clustering Based on Density Peaks 631

Table 1. Advantages of DPSCAN when compared with GS*-Query, LPA, Modularity
and GN.

Algorithms � of clusters Parameter
tuning

Noise
detection

Time complexity

DPSCAN Flexible No Yes O(
∑

c∈C
|VC |)

GS*-Query [22] Automatic Yes Yes O(
∑

c∈C
|EC |)

LPA [14] Automatic No No O(|V | + |E|)
Modularity [3] Automatic No No O(|E| + |V | log2 |V |)
GN [6] Manual No No O(|V ||E|2)

Fig. 1. An example of DPSCAN

and noise vertices. Then, we obtain the clusters grown from the density peaks.
Finally we identify the noise vertices as bridges or outliers.

According to Definitions 3 and 4, we can generate a decision graph by taking
ρ as x axis and δ as y axis. The identification of noise vertices and density
peaks is accomplished through interaction with the decision graph [16]. Based
on the decision graph, the selection of density peaks is flexible. According to
Definition 6, the number of density peaks determines the number of clusters.
Thus, users can select the number of clusters according to the requirements (e.g.
[13]). If users need to automatically get clusters (e.g. [4]), they only need to
select all density peaks.

To illustrate the process of DPSCAN algorithm, we use the graph G in
Fig. 1(a) to give the example. Figure 1(b) shows the decision graph of the graph
G. By observing the decision graph, the noise vertices can be identified in
the left region with ρ ≤ ξ. There are three noise vertices: Vn = {v5, v7, v11}.
Then, the vertices v6 and v10 with large ρ as well as small δ in the bottom
right region are identified as density peaks. Then, we explore remaining ver-
tices in non-increasing order of their local densities, and assign each remain-
ing vertex and its dependent vertex to the same cluster. We get the clusters:
C = {{v1, v2, v3, v4, v6}, {v8, v9, v10}}. Finally, for the vertices in Vn, v7 is iden-
tified as a hub vertex since its neighbors v6 and v8 belong to different clusters,
and v5 and v11 are outliers since they have only one neighbor.
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Algorithm 1. DPSCAN
Input: a graph G(V, E)
Output: the clusters, hubs and outliers in G
1: Vp ←density peaks selected from decision graph;
2: Vn ←noise vertices selected from decision graph;
3: Set ∀u ∈ V as unexplored (u.explored = false);
4: for u ∈ Vn do
5: u.label = noise;
6: u.explored = true;
7: end for
8: for u ∈ Vp do
9: generate a new clusterID i;

10: u.clusterID = i;
11: u.explored = true;
12: end for
13: for each unexplored vertices u ∈ V in non − increasing order w.r.t. ρu do
14: u.clusterID = ϕu.clusterID;
15: u.explored = true;
16: end for
17: for u ∈ Vn do
18: if u’neighbors belong to two or more different clusters then
19: u.label = hub;
20: else
21: u.label = outlier;
22: end if
23: end for

The pseudocode of DPSCAN is shown in Algorithm 1. Firstly, we select
density peaks and noise vertices from the decision graph and initialize the clusters
(lines 1–12). Then, the unexplored vertices and their dependent vertices are
assigned to the same clusters (lines 13–16). We retrieve unexplored vertices in
non-increasing order of their local densities, since the dependent vertex of each
vertex should have been clustered in advance. Finally, the noise vertices are
further labeled with hubs and outliers (lines 17–23).

The time complexity for calculating all structural similarities is O(α(G) ·m),
which has been discussed in [2]. α(G) is the arboricity of G and m is the number
of edges. It costs O(m log(m)) time to sort similarities and get the similarity
threshold. Then, it costs O(m) time calculating local densities, dependent ver-
tices and dependent similarities, since they entail the retrieval of all the neigh-
bors of vertices. Thus time complexity of initialization phase of DPSCAN is
O(m · (α(G) + log(m))). For Algorithm 1, ignoring the time of interaction with
the decision graph, it costs O(n) time to explore noise vertices and density peaks
in lines 4–12. Here, n is the number of vertices. It costs O(n log(n)) time to sort
vertices, and the time complexity for exploring unexplored vertices (lines 13–16)
is O(n). Thus, the total time complexity of Algorithm 1 is O(n log(n)).
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4 DP-Index

DPSCAN is flexible, which can online-compute any number of reasonable clus-
ters. Sometimes, users may need to run an algorithm several times according
to different requirements. However, for any vertex u ∈ V , the local density, the
dependent vertex and the dependent similarity of u are fixed. For big graphs,
this may consume considerable time.

Algorithm 2. DP-Index
Input: a graph G(V, E)
Output: DP-Index of G
1: for each edge (u, v) ∈ E do
2: if σ(u, v) = ∅ then
3: compute σ(u, v) based on Eq. 1;
4: σ(v, u) ← σ(u, v);
5: end if
6: end for
7: � ← ∅;
8: for each u ∈ V do
9: compute ρu based on Eq. 5;

10: compute δu, ϕu based on Eq. 3 and Eq. 4, respectively;
11: �u ← {ρu, δu, ϕu};
12: � ← � ∪ {�u};
13: end for
14: sort vertices in � in non-increasing order of their local densities;
15: return �;

To solve this problem, we propose a novel index named DP-Index to solve
this problem. The main idea for our index structure is the maintenance of the
three metrics for each vertex, which are the local density, the dependent vertex
and the dependent similarity. Based on the index, we can online-compute reason-
able clusters efficiently. Given the three metrics of each vertex, the result is easily
obtained by scanning the vertices following the same procedures as detailed in
Algorithm 1.

DP-Index contains the vertices in G in addition to the three metrics of each
vertex. To speed up the construction of DP-Index, we further propose two opti-
mization techniques.

Optimization of Local Density. In Definition 3, we take the Standard nor-
mal distribution as the weight of μuv. Therefore, it follows Pauta criterion. For
N(μ, σ2), the probability of μuv distributed in (μ−2σ, μ+2σ) is 0.9545. Thus, in
this paper, we set 0 < μuv ≤ 2 to filter the small structural similarities between
u and its structural neighbors. Since DPSCAN is only sensitive to the relative
magnitude of local density in different vertices, we simplify the local density
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formula and take the kernel of the Normal distribution. Consequently, the local
density of a vertex u is

ρu =
∑

v∈N [u],0<μuv≤2

exp(−μ2
uv

2
) (5)

Optimization of Structural Similarity Computation. In the initialization
phase of DPSCAN, the structural similarity between vertices u and v is computed
twice: one in the direction σ(u, v) when exploring edge (u, v) and the other in
the direction σ(v, u) when exploring edge (v, u). Thus, we propose a pruning rule
to speed up the structural similarity computation. When exploring edge (u, v),
we assign the similarity σ(u, v) to σ(v, u), which can directly reduce structural
similarity computations by half.

The pseudocode for the construction of DP-Index based on two optimization
techniques is shown in Algorithm 2. We first compute the similarities for every
pair of adjacent vertices in lines 1–6. Then we compute the three metrics and con-
struct DP-Index in lines 7–13. Finally, the vertices are sorted in non-increasing
order of their local densities (line 14).

The space cost of DP-Index is O(n). The time complexity of Algorithm 2 is
O(m·(α(G)+log(m))+n log(n)), which has been discussed in Subsect. 3.2. Since
the vertices have been sorted in DP-Index, the time complexity of Algorithm 1
based on DP-Index is O(n), which is only proportional to the size of vertices.

Computing All Clusters. Based on DP-Index, DPSCAN can be naturally
extended to compute the set C of all clusters. The noise vertices whose local
densities are not bigger than ξ (ξ ≥ 0) are firstly filtered during the construction
of DP-Index in Algorithm 2. Then, after obtaining the density peaks through
the decision graph, the execution procedure is the same as that in lines 8–16
of Algorithm 1. To compute the set C of all clusters, the time complexity is
O(

∑
c∈C

|VC |), which is only dependent on the result size of vertices excluding
outliers and hubs. Here, C is the result set of all clusters and |VC | is the number
of vertices in a specific cluster C.

5 Experiments

In this section, we evaluate our proposed algorithm DPSCAN on synthetic as
well as real-world networks to demonstrate its benefits.

Selection of Comparison Methods. To evaluate the performance of
DPSCAN, we compare it to the state-of-the-art structural graph clustering algo-
rithm. In addition, to sufficiently verify the effectiveness of our method, we com-
pare with four representatives of other graph clustering algorithms.

– GS*-Query [22] is the state-of-the-art algorithm for structural graph clus-
tering, which is an index-based approach of SCAN [23].
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– FluidC [13] is a recently proposed graph clustering approach, which is based
on the idea of fluids interacting in an environment.

– SSLPA [4] is a very fast parallel propagation-based graph clustering app-
roach for large networks. This method combines the advantages of both the
synchronous and asynchronous models of LPA [14].

– Modularity [3] is a popular graph clustering algorithm based on the modu-
larity measure, which begins with each node in its own cluster and joins the
pair of clusters that can increase the modularity most.

– Girvan-Newman [6] (in the following named GN) is a well-known graph
clustering algorithm based on the betweenness of the edges in the network.
The algorithm finds the optimal partitions by gradually removing the edge
with the highest betweenness from the network.

For all experiments, without further statement, FluidC and GN specify the clus-
ter number K = |C|, where |C| is the true number of clusters of the network.
GS*-Query takes the parameters of the best performance in experiments. All
experiments have been performed on a workstation with 2.9 GHz CPU and
8.0 GB RAM.

Evaluation Measures. To extensively compare the effectiveness of differ-
ent graph clustering algorithms, the clustering performance is directly mea-
sured by two widely used evaluation measures: Normalized Mutual Information
(NMI) [20] and Adjusted Rand Index (ARI) [15].

5.1 Synthetic Networks

In this section, we generate several synthetic networks to compare the perfor-
mance of various graph clustering algorithms. The LFR benchmark network [9] is
applied, where the degree distribution and the cluster size can be easily adjusted.
Due to the high time complexity of GN, we limit the comparison to the clustering
algorithms DPSCAN, GS*-Query, SSLPA, FluidC and Modularity.

Inter-Cluster Edge: First, we evaluate how the algorithms respond to the
networks by varying the inter-cluster edges. We fix the node average degree and
change the mixing parameter λ from 0.1 to 0.6 to generate networks with dif-
ferent inter-cluster edges. All networks consist of 5000 nodes with the average
degree k = 15. With the increase of the mixing parameter, the performance of
all five approaches measured by NMI is shown in Fig. 2(a). In Fig. 2(a), we can
see Modularity is more sensitive to inter-edges, and the performance is not com-
parable with the other four algorithms. Regarding the SSLPA, its performance
is satisfactory at the beginning and starts to decrease dramatically as soon as
more inter-edges are added (with λ = 0.4). For structural clustering algorithms,
DPSCAN and GS*-Query show a similar trend. DPSCAN, GS*-Query and Flu-
idC almost achieve the perfect clusterings with the mixing parameter up to
0.4, and begin to decrease with adding more noise edges into the graph data.
DPSCAN achieves relatively better results than that of FluidC and GS*-Query.
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Fig. 2. Performance of different algorithms on the LFR benchmark networks.

Table 2. Performance of different graph clustering algorithms on real-world data sets.

Karate Polbooks Football Email

ARI NMI ARI NMI ARI NMI ARI NMI

DPSCAN 0.882 0.837 0.695 0.593 0.888 0.942 0.500 0.709

GS*-Query 0.725 0.684 0.673 0.581 0.861 0.929 0.218 0.708

FluidC 0.882 0.837 0.635 0.547 0.806 0.908 - -

SSLPA 0.473 0.450 0.594 0.534 0.757 0.882 0.011 0.258

Modularity 0.680 0.707 0.638 0.531 0.476 0.720 0.172 0.503

GN 0.882 0.837 0.680 0.576 0.880 0.937 0.001 0.131

Cluster Density: Furthermore, we evaluate the algorithms on LFR benchmark
graphs with different average degrees, which is called cluster density [17]. Here we
fix λ = 0.1, and change the average degree k from 5 to 25. All networks consist
of 5000 nodes. In Fig. 2(b), we can see that DPSCAN, FluidC, SSLPA and
GS*-Query achieve prefect clusterings for all graphs. DPSCAN and GS*-Query
perform a bit better than FluidC and SSLPA. For Modularity, the performance is
better than the other algorithms with a low cluster density (k = 5) and becomes
worse with the increase of the average degree.

5.2 Real World Data

We use four publicly available real-world networks to evaluate different graph
clustering algorithms. All networks and corresponding detailed descriptions
can be found in UCI network data repository (https://networkdata.ics.uci.edu/
index.php) and Stanford large network dataset collection (https://snap.stanford.
edu/data/index.html).

https://networkdata.ics.uci.edu/index.php
https://networkdata.ics.uci.edu/index.php
https://snap.stanford.edu/data/index.html
https://snap.stanford.edu/data/index.html
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Fig. 3. Performance of DPSCAN on real world networks.

Zachary’s Karate Club Network: The famous social network reflects the
friendships between 34 members of a karate club at a US university in the 1970s.
The network could be divided into two clusters, which reflects the disagreement
between the administrator and the instructor.

The performance of the different graph clustering algorithms is summarized
in Table 2. For DPSCAN, FluidC and GN, they yield comparable results and
identify the clusters with a high degree of success. For GS*-Query, SSLPA and
Modularity, they yield relatively low-quality results.

Books About US Politics: This network of books is about US politics pub-
lished around the time of the 2004 presidential election. Nodes represent books
sold by the online bookseller Amazon.com. Edges between books represent fre-
quent co-purchasing of books by the same buyers. This network consists of 105
nodes and 441 edges. Mark Newman divides these books into three categories,
which are “liberal”, “neutral”, and “conservative”.

Most books can be correctly clustered by DPSCAN with the highest quality
(Table 2). However, DPSCAN divides these books into four clusters (Fig. 3(a)).
The “neutral” books are divided into two clusters, since the density-based notion
of clusters tends to find smaller clusters that are more closely connected [5]. For
algorithms of GS*-Query, FluidC, SSLPA, Modularity and GN, they produce
comparable groupings on this network.

American College Football: The network derived from the American football
games of the schedule of Division IA colleges during regular season Fall 2000,
where vertices in the graph represent teams, and edges represent regular-season
games between the two teams they connect. This network consists of 115 nodes
and 613 edges. The teams are divided into 11 conferences. In addition, there are
five independent teams (labeled with ‘ID’ in Fig. 3(b)), which play against other
teams in many conferences but belong to none.

http://www.Amazon.com
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Fig. 4. The runtime of the different graph clustering algorithms.

DBSCAN identifies the clusters and noise vertices with the highest cluster
quality compared to the other five approaches (ARI = 0.888, NMI = 0.942). Most
of the teams are correctly grouped into corresponding clusters, and four correct
independent teams are identified (Fig. 3(b)). The independent teams show strong
properties as hubs, since they have edges that connect them to a large number
of clusters. GS*-Query takes the parameters as suggested by authors [23]. GS*-
Query also finds the similar cluster structure as DPSCAN and identifies three
correct independent teams. FluidC, SSLPA and GN also perform well, but they
cannot identify hubs. For Modularity, it is difficult to discover the natural clusters
(Table 2).

Email-Eu-core: This network consists of 1005 nodes and 25571 edges, which
is generated using email data from a large European research institution. Each
node represents an individual, which belongs to exactly one of 42 departments
at the research institute. There is an edge (u, v) in the network if person u sent
person v at least one email.

Since FluidC is designed to run on connected graphs, it cannot handle this
network. DPSCAN obtains the highest cluster quality compared to the other
four approaches (ARI = 0.500, NMI = 0.709). GS*-Query and Modularity also
perform well (Table 2). However, for SSLPA and GN, they fail to discover the
clusters.

5.3 Runtime

To assess the scalability of DPSCAN with respect to network size, we generate
several benchmark networks [9] with different node sizes ranging from 103 to 105

(corresponding edge sizes ranging from 104 to 106), by fixing the average node
degree k = 15 and the mixing parameter λ = 0.1. Due to the time complexity of
GN, we limit the comparison to the clustering algorithms DPSCAN, GS*-Query,
SSLPA, FluidC and Modularity. To obtain more accurate runtime results, each
method is executed 10 times and the averaged time is calculated. Figure 4 shows
the running time for different graph clustering algorithms.
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Fig. 5. Index size and time cost for dif-
ferent graphs.

Fig. 6. The performance of DPSCAN
on the LFR benchmark networks by
varying similarity threshold σt.

For the structural clustering algorithm, DPSCAN is faster than GS*-Query
in our evaluation. In theory, to compute the set C of all clusters in G, the time
complexity of GS*-Query based on GS*-Index is O(

∑
c∈C

|EC |) [22], which is on
the result size of edges. The time complexity of DPSCAN based on DP-Index is
O(

∑
c∈C

|VC |), which is on the result size of vertices. Normally, the number of
edges is much greater than the number of nodes, especially for big graphs. Thus,
it is demonstrated experimentally and theoretically that DPSCAN is faster than
the state-of-the-art approach.

For other clustering algorithms, we can observe that DPSCAN is faster than
Modularity and FluidC. Besides, DPSCAN is competitive with scalable par-
allel graph clustering algorithm SSLPA. Although SSLPA is a bit faster than
DPSCAN, SSLPA suffers in the quality of resulting clusters.

5.4 Performance of DP-Index Construction

In this section, we evaluate the performance of DP-Index construction. We gen-
erate ten LFR graphs, LFR1, . . ., LFR10, with node sizes ranging from 104 to
105. To evaluate the effect of our two optimization techniques, we compare DP*-
Index with DP-Index and DP-Index-LD (Fig. 5). DP-Index-LD is obtained from
DP-Index by adding the optimization of local density, while DP*-Index inte-
grates both two optimizations. In Fig. 5, the time cost of DP-Index gradually
grows when the node number increases. We can see that each of the two opti-
mization techniques in Sect. 4 can speed up the construction of the DP-Index
for different graphs. The size of DP-Index for different graphs is also reported
in Fig. 5. We can see that the size of DP-Index is proportional to the number of
vertices. The space usage of DP-Index can be well bounded, and the DP-Index
only costs 4MB in LFR10 with 105 vertices.

5.5 Analysis of Similarity Threshold

To evaluate the influence of similarity threshold σt on clustering results, we gen-
erate several benchmark networks [9] with different mixing parameters ranging
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from 0.1 to 0.5, by fixing the average node degree k = 15. Assuming that the
value of σt is around m% of the structural similarities in descending order, Fig. 6
shows the performance of DPSCAN on the LFR benchmark networks by varying
similarity threshold σt. In Fig. 6, we can observe that the results of DPSCAN
are robust with respect to the choice of σt. The value of σt with small m% will
slightly affect the performance, since small structural similarities are filtered in
Eq. 5. For λ = 0.5, with the increase of m%, NMI slowly reaches the maximum
value when m% ≈ 20%. Then, the performance tends to stabilize. However, the
density peaks are more difficult to be distinguished in the decision graph with
the increase of m%. Thus, the reasonable interval of m% is from 20% to 40%.
In this paper, we take 20% as the default value.

6 Conclusions

In this paper, we introduce DPSCAN, a novel structural graph clustering algo-
rithm based on density peaks. Firstly, we propose three new metrics and the
notion of structure-dependent cluster. Through theoretical analysis, we validate
the correctness of our proposed algorithm. Then, a flexible graph clustering algo-
rithm DPSCAN is proposed, which can identify clusters, hubs and outliers. To
improve the performance of our approach, we further propose DP-Index and two
optimization techniques. By using the DP-Index structure, the cluster results can
be computed very quickly, which is only proportional to the size of vertices. Our
extensive experiments demonstrate that DPSCAN outperforms the state-of-the-
art structural graph clustering methods.

Acknowledgements. This work is supported by the National Key R&D Program
of China (2018YFB1003404), the National Nature Science Foundation of China
(61872070, U1435216, U1811261 and 61602103) and the Fundamental Research Funds
for the Central Universities (N171605001).

References

1. Bai, X., Yang, P., Shi, X.: An overlapping community detection algorithm based
on density peaks. Neurocomputing 226, 7–15 (2017)

2. Chang, L., Li, W., Qin, L., Zhang, W., Yang, S.: pSCAN: fast and exact structural
graph clustering. IEEE Trans. Knowl. Data Eng. 29(2), 387–401 (2017)

3. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large
networks. Phys. Rev. E 70(6), 066111 (2004)

4. Cordasco, G., Gargano, L.: Community detection via semi-synchronous label prop-
agation algorithms. In: 2010 IEEE International Workshop on Business Applica-
tions of Social Network Analysis (BASNA), pp. 1–8. IEEE (2010)

5. Falkowski, T., Barth, A., Spiliopoulou, M.: Studying community dynamics with an
incremental graph mining algorithm. In: AMCIS 2008 Proceedings, p. 29 (2008)

6. Girvan, M., Newman, M.E.: Community structure in social and biological networks.
Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

7. Gong, S., Zhang, Y., Yu, G.: Clustering stream data by exploring the evolution of
density mountain. Proc. VLDB Endowment 11(4), 393–405 (2017)



DPSCAN: Structural Graph Clustering Based on Density Peaks 641

8. Huang, J., Sun, H., Han, J., Deng, H., Sun, Y., Liu, Y.: Shrink: a structural cluster-
ing algorithm for detecting hierarchical communities in networks. In: Proceedings
of the 19th ACM International Conference on Information and Knowledge Man-
agement, pp. 219–228. ACM (2010)

9. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

10. Lim, S., Ryu, S., Kwon, S., Jung, K., Lee, J.G.: LinkSCAN*: overlapping commu-
nity detection using the link-space transformation. In: 2014 IEEE 30th Interna-
tional Conference on Data Engineering (ICDE), pp. 292–303. IEEE (2014)

11. Newman, M.E.: Finding community structure in networks using the eigenvectors
of matrices. Phys. Rev. E 74(3), 036104 (2006)

12. Onizuka, M., Fujimori, T., Shiokawa, H.: Graph partitioning for distributed graph
processing. Data Sci. Eng. 2(1), 94–105 (2017)

13. Parés, F., et al.: Fluid communities: a competitive, scalable and diverse community
detection algorithm. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds.)
COMPLEX NETWORKS 2017. SCI, vol. 689, pp. 229–240. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-72150-7 19

14. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)

15. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am.
Stat. Assoc. 66(336), 846–850 (1971)

16. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science
344(6191), 1492–1496 (2014)

17. Shao, J., Han, Z., Yang, Q., Zhou, T.: Community detection based on distance
dynamics. In: Proceedings of the 21st ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1075–1084. ACM (2015)

18. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 22(8), 888–905 (2000)

19. Shiokawa, H., Fujiwara, Y., Onizuka, M.: SCAN++: efficient algorithm for finding
clusters, hubs and outliers on large-scale graphs. Proc. VLDB Endowment 8(11),
1178–1189 (2015)

20. Strehl, A., Ghosh, J.: Cluster ensembles-a knowledge reuse framework for combin-
ing multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

21. Sun, H., Huang, J., Han, J., Deng, H., Zhao, P., Feng, B.: gSkeletonClu: density-
based network clustering via structure-connected tree division or agglomeration.
In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 481–
490. IEEE (2010)

22. Wen, D., Qin, L., Zhang, Y., Chang, L., Lin, X.: Efficient structural graph cluster-
ing: an index-based approach. Proc. VLDB Endowment 11(3), 243–255 (2017)

23. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.: SCAN: a structural clustering algo-
rithm for networks. In: Proceedings of the 13th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 824–833. ACM (2007)

24. Zhou, K., Martin, A., Pan, Q., Liu, Z.: SELP: semi-supervised evidential label
propagation algorithm for graph data clustering. Int. J. Approximate Reasoning
92, 139–154 (2018)

25. Zhou, K., Pan, Q., Martin, A.: Evidential community detection based on density
peaks. In: Destercke, S., Denoeux, T., Cuzzolin, F., Martin, A. (eds.) BELIEF
2018. LNCS (LNAI), vol. 11069, pp. 269–277. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99383-6 33

https://doi.org/10.1007/978-3-319-72150-7_19
https://doi.org/10.1007/978-3-319-99383-6_33
https://doi.org/10.1007/978-3-319-99383-6_33


Efficient Processing of Spatial Group
Preference Queries

Zhou Zhang1, Peiquan Jin1,2(&), Yuan Tian1, Shouhong Wan1,2,
and Lihua Yue1,2

1 University of Science and Technology of China, Hefei, China
jpq@ustc.edu.cn

2 Key Laboratory of Electromagnetic Space Information,
Chinese Academy of Sciences, Hefei, China

Abstract. POIs (points of interest) as well as users’ check-in information and
their ratings on POIs have been widely studies in systems providing location-
based services. We note that users usually have their own preferences for POI
categories and their own network of friends. Therefore, we aim to provide for a
group of users a new kind of POI-finding query that considers not only POI
preferences of each user but also other aspects of location-based social networks
such as users’ locations and POI ratings. We name such a new query as Spatial
Group Preference (SGP) query. For a group of users, an SGP query returns top-k
POIs that are much likely to satisfy the needs of users. Specially, we propose a
new evaluation model that considers user preferences for user preferences for
POI categories. Based on this model, we develop basic algorithms based on R-
tree to evaluate SGP queries. Further, we design a new index structure called
CR-tree to accelerate the query performance. We prove that CR-tree has better
pruning efficiency than the traditional R-tree. We conduct experiments on a
simulation dataset as well as two real datasets with respect to various configu-
rations. The results suggest the efficiency of our proposal.

Keywords: Location-based service � Group preference � CR-tree

1 Introduction

Recently, with the popularity of GPS-enabled smart phones, location-based social
network becomes a hot topic. Location-based social networks allow a group of users
(circle of friends) to share their location information each other. Together with other
information about POIs (points of interest) such as POI locations, POI categories (e.g.,
restaurant), and POI ratings, we can provide a variety of services for people.

This paper studies an interesting type of query called Spatial Group Preference
(SGP) query. Given a set of POIs and a group of users, an SGP query retrieves k POIs that
are expected to satisfy the overall need of the group of users. We assume that each user in
a group has his or her current location and a preference list for POI categories, e.g.,
restaurant, theater, and shoppingmall. Figure 1 shows an example of SGP queries, where
Tony, Jack and Cindy want to find a restaurant for dinner and have some other activities
around the restaurant after dinner. This query is actually an SGP query where k = 1.
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Suppose that Tony’s preference list is restaurant 0:3ð Þ;moive theater 0:6ð Þ; caf�e 0:1ð Þf g;
where each element in the list indicates a POI category and its weight according to Tony’s
decision. Similarly, Jack’s preference list is restaurant 0:2ð Þ; cafe 0:4ð Þ; bar 0:4ð Þf g and
Cindy’s is restaurant 0:6ð Þ; cafe 0:4ð Þf g. Here, the problem is how to determine the best
candidate for the SGP query. The table embedded in Fig. 1 shows three possible answers
to the query. If we simply sum theweights of each category in the preference lists of Tony,
Jack and Cindy, we will select r1 as the candidate. If we only consider distance, the best
answer is r2. If we consider both weights and distances, the best candidate is r3.

To the best of our knowledge, so far there are no previous works that can directly
answer SGP queries. In this paper, we present a framework for processing SGP queries.
We first give the formal definition for SGP queries and then present several basic R-
tree-based algorithms for answering a SGP query. Further, we propose a new index
structure called CR-tree and develop the CR-tree-based efficient algorithm for SGP
queries. We theoretically analyze the pruning efficiency of the CR-tree, and experi-
mentally demonstrate its efficiency. Briefly, we make the following contributions in
this paper:

(1) We define a new kind of query called SGP query for location-based social net-
works, and propose a new evaluation model that considers user preferences for
POI categories, including locations and ratings, and the mutual influence between
POIs. Compared with existing approaches, this model is user-aware and can
provide more reasonable ranking for POIs.

(2) We propose a new index structure called CR-tree and the corresponding pruning
strategy to improve the query performance of SGP queries. We theoretically prove
the upper bound of the pruning strategy, and demonstrate that it is more efficient
than the traditional R-tree.

m1(0.7)

r1(0.9)

b1(0.5)

c1(0.4)

b2(0.3)

r2(0.5)

m2(0.1)

c2(0.3)r3(0.8)

b3(0.8)

m3(0.7)

restaurant

café

moive theater

bar

Cindy

Tony

Jack

Fig. 1. An example of SGP queries (“Finding the best-fit restaurant for Tony, Jack and Cindy”)
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(3) We conduct experiments on a simulation dataset as well as on two real datasets
with respect to various configurations. A number of competitor algorithms are
compared with the proposed CR-tree-based algorithm. The results suggest the
efficiency of our proposal.

2 Problem Definition and Related Work

We assume that there are m categories of POIs, which are represented as
C ¼ c1; c2; c3; c4; . . .; cmf g. Each ci 1� i�mð Þ represents a category. A set of POIs is
represented by P ¼ p1; p2; p3; p4; . . .; plf g. Each pi 1 � i � lð Þ is represented by a
triple pi:loc; pi:t; sðpiÞh i. Here, pi:loc is the location of pi; pi:t is the category associ-
ated with pi and sðpiÞ is the rating of pi, which is a value between 0 and 1 and can be
obtained from social network platforms.

Definition 1 (SGP query). Given a set of POIs P, a group of querying users
Q ¼ u1; u2; u3; . . .; unf g, a targeted category c, and an integer k, a Spatial Group
Preference (SGP) query retrieves a set S � P that consists of k POIs, such that:

(1) 8xð Þ x 2 Sð Þ ! x:t ¼ c
(2) 8xð Þ 8yð Þ x 2 S ^ y 2 P� S ^ y:t ¼ cð Þ ! sd x;Qð Þ� sd y;Qð Þ

Here, sd(x, Q) returns the satisfaction degree between x and Q. ■
Q ¼ u1; u2; u3; . . .; unf g represents a set of users and each user ui is denoted as a

tuple ui:loc; ui:CWh i, where ui:loc is the current location of user ui and ui:CW rep-
resents the preferences for POI categories of the user. To quantify the preferences, we
assign a weight to each preferred POI category for each user. Consequently, we have
ui:CW ¼ ui:c1; ui:w1h i; ui:c2; ui:w2h i; . . .; ui:cm0 ; ui:wm0h if g. Each tuple in ui:CW , e.g.,
ui:c1; ui:w1h i, means that the category c1 has a weight of w1. We assume that

0� ui:wj � 1, yielding
Pm0

j¼1 ui:wj ¼ 1. In addition, we use Crad
Q to represent all the

categories contained in Q, i.e., Crad
Q ¼ Sn

i¼1

Sm0
j¼1 ui:cj.

The key issue of answering an SGP query is how to define the satisfaction degree
model sd(x, Q). We define two metrics, namely distance relevance and preference
relevance, to measure the satisfaction degree.

Definition 2 (Distance Relevance) [17]. Given a candidate POI p and an SGP query
Q, the distance relevance between p and Q is defined by (1):

d p;Qð Þ ¼ 1� d Q; pð Þ
Dmax � Qj j ð1Þ

Here, d Q; pð Þ represents the sum of the distances of each user to p. Dmax is the
diagonal length of the MBR covered by all the involved POIs. ■

644 Z. Zhang et al.



Definition 3 (Preference Relevance). Given a candidate POI p and an SGP query Q,
the preference relevance between p and Q is defined by (2):

s p;Qð Þ ¼
X

ci2Crad
Q

1
Qj j �

W cið Þ � rradci pð Þ
1þ d p; p0radci

pð Þð Þ
rad

ð2Þ

Here, p0radci pð Þ is a POI with category ci and it falls within the circle centered by p

and the radius is rad: rradci pð Þ is the rating of p0radci pð Þ. W cið Þ ¼ P Qj j
j¼1 uj:wi is the sum of

the weights assigned by all the users in the group to category d p; p0radci pð Þ
� �

is the

distance between p and p0radci pð Þ. ■
The definition of preference relevance aims to balance the preference weights and

network proximity of POIs. Such balancing strategy can be found in various areas. For
example, a previous study [18] proposed to balance the textual relevance and network
proximity when answering spatial keyword queries on road networks.

Definition 4 (Satisfaction Degree). Given a candidate POI p and an SGP query Q,
the satisfaction degree of p with respect to is Q is measured by (3):

sd p;Qð Þ ¼ a � d p;Qð Þþ 1� að Þ � s p;Qð Þ ð3Þ

Here, a is a smoothing parameter that is used to balance distance relevance and
preference relevance. ■

Note that when a is set to 1, we only consider the distance relevance, which is
similar to the approach to the GNN query [2, 3, 20]. When a is set to 0, we only
consider the preference relevance, which can be regarded as a variant of the top-
k spatial preference query [11]. Thus, by setting a specific value for a, our satisfaction
model can be adjusted to different scenarios.

There are some related works that are closely related with SGP query. In 2004,
Papadias et al. first proposed the concept of group nearest neighbor (GNN) query [2] in
spatial databases, which is to find a suitable gathering place for a group of users
scattered throughout the Euclidean distance space. They established the R-tree index to
organize candidate gathering points and further extended this approach to Aggregate
Nearest Neighbor (ANN) query [3]. Both of them studied the group nearest neighbor
query in Euclidean distance space, which is not suitable for road networks [4, 5] due to
the differences between road networks and the Euclidean distance space. There are
other researches [6–10] paying attention to improve the efficiency and to reduce the I/O
cost of queries in Euclidean distance space or road network. However, all the above
works do not consider group preferences.

In 2007, Yiu et al. proposed a new kind of query called top-k spatial preference
query [11], where a new index called aR-tree was presented to accelerate the query.
This query returns top-k candidate objects whose rankings are defined by the quality of
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other objects around them. Further, the work in [12] proposed an improved scoring
method based on textual similarity for getting candidate objects. The idea of consid-
ering the influence of near objects was also applied to road networks [13–16]. For
example, in [16] the authors mapped distances and the scores of other kinds of objects
surrounding the candidate object into a two-dimensional space based on distance and
score, and then used the dynamic skyline method to reduce the number of candidate
objects. However, existing works on spatial preference queries are not user-aware,
meaning that they do not consider the user preferences for POIs.

In 2016, Miao Li et al. studied location-aware group preference queries [17] that are
a combination of GNN query and group preference. They return top-k sites that consist
of those sites having the minimum distance to the locations of scattered uses in a group
and the sites matching the group preference. However, this approach only uses distance
to evaluate the group preference queries. It is not suitable for location-based social
networks where POI ratings need to be considered in query evaluation.

All of the above spatial preference query correlations do not consider the spatial
attributes of the user group. In our previous work [19], we presented the basic concept
and developed basic algorithms for SGP queries, which will be briefly discussed in
Sect. 3, while in this paper we made further improvements including the CR-tree index
and associated query processing algorithms. In addition, we provided theoretical
analysis and extended experiments in this paper.

3 Basic Algorithms for SGP Query Processing

3.1 The Baseline Algorithm (BA)

We first propose a baseline algorithm (BA) for SGP queries. In this algorithm, we build
an R-tree for the POIs in each category. R-tree [1] is one of the most popular and
widely used data structures for indexing spatial objects. In this algorithm, we first
traverse the R-tree for category c (denoted as Rc) starting from the root. If the current
visited node is a non-leaf node, we execute a recursive call to all of its child nodes.
Otherwise (it is a leaf node), for each POI in the leaf node, we traverse each Rci

ci 2 Crad
Q

� �
and compute the satisfaction degree of the POI. Finally, we return the top-

k POIs that are within category c and have the highest k satisfaction-degree values.

3.2 The aR-Tree Based Pruning Algorithm (PA)

In this algorithm, we use the aR-tree [11] to index the POIs in each category. The aR-
tree is similar to R-tree, except that it puts extra aggregation information in each node.
Differing from [11] that appends to each node the sum of the ratings of each sub-node,
in this paper we add to each node the maximal rating of POIs among the entire sub-tree
rooted by the node.
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Algorithm 1 shows the details of the PA algorithm. Note that the max rating of
POIs are stored in each node in the tree. sd þ N;Qð Þ(Line 1) is the upper bound of
sd p;Qð Þ, and kth bestvalue is a global variable indicating the kth highest satisfaction
degree. The routine of Score compute e;N;Rci :Rootð Þ is to traverse each Rci

ci 2 Cr
Q ^ ci 6¼ c

� �
and compute the preference relevance of s p;Qð Þ for ci. H is a max

heap that always maintains the k POIs with category c to be returned.
Compared with the BA algorithm, the PA algorithm reduces the number of can-

didate POIs by using two pruning conditions. However, as it builds an aR-tree for each
category, it has to repeatedly traverse the aR-trees for different categories. To this end,
it should be more efficient if we can build one index structure for the POIs with
different categories. This motivates the CR-tree that we propose in Sect. 4.

3.3 The Optimized PA Algorithm (OPA)

In the original PA algorithm, we check all the candidate POIs in the leaf node of the
aR-tree corresponding to the target aggregation type c, and sequentially traverse each
semantic of the group position semantic preference list for each of the POIs. Corre-
sponding POIs in the range, and calculate the user’s satisfaction value according to (2).
Assuming that there are h candidate POIs in the leaf node and f position semantic
categories are involved in the preference list, the leaf nodes need to traverse f * h times
in the aR-tree, which is computationally expensive. In fact, multiple candidate POIs in
the same leaf node are similar in space, and their corresponding rad ranges often
overlap. Therefore, we consider a leaf node as a whole unit, and perform one traversing
in the preference list to obtain the POIs of each category in the range around the leaf
node. At the same time, we calculate the user satisfaction value for each candidate POI
in the node. This optimized PA algorithm is named OPA in the following texts.

Compared with the BA algorithm, the PA and OPA algorithms can greatly reduce
the searching costs to reduce the number of the candidate POIs within the given
category and the number of preferred POIs around the candidate POIs. However, since
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the two algorithms respectively establish the corresponding aR-tree according to the
POI category, the same query needs to traverse the location category index involved in
the preference list in order to further improve the query efficiency.

4 CR-Tree-Based SGP Query Processing

4.1 Category R-Tree (CR-Tree)

In this section, we propose an efficient R-tree based index called CR-tree (Category R-
tree) for SGP query acceleration. The CR-tree is an extension of the R-tree. Specially,
we add additional information in the node of R-tree, including category MBRs and the
max rating of POIs in each category MBR, which forms one index structure for all POIs
with multiple categories. In CR-tree, both leaf and non-leaf nodes store their category
and range information. Figure 2 shows an example of a leaf node in CR-tree. In this
example, there are 9 POIs (a1, a2, a3, b1, b2, b3, c1, c2, c3) labeled with three categories
(white circle, black circle, white triangle). Three category MBRs record the scopes and
the max ratings of surrounding POIs labeled with corresponding categories. For
example, for C1, it records a range of \ 0; 53ð Þ; 23; 70ð Þ[ and the max rating is 0.8.
The non-leaf nodes of the CR-tree contain entries of (ptrs, cmbr, max rating), where ptr
is a pointer to the child nodes; cmbr is the node category MBR that covers all the
category MBRs in the child nodes; max rating is the max rating of all the POIs in cmbr.

Similar to the non-leaf nodes in R-tree, CR-tree’s non-leaf nodes also store pointers
to individual child nodes and MBRs that cover the MBRs of all child nodes. In
addition, to ensure the hierarchy of Category MBR The Category MBR that covers the
Category MBR of all child nodes in the same category is also included in each internal
node, and the corresponding maximum score value is also stored in the hierarchy.

The indexing of spatial objects in CR-tree and R-tree is consistent, and it still
maintains the R-tree hierarchy. Therefore, operations on the CR-tree, such as POI
insertion and deletion are similar to R-tree operations, except that we add the operations
of updating category MBRs and the max rating of POIs when adjusting the tree.

Fig. 2. Structure of a leaf node in the CR-tree
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4.2 Pruning Principles of CR-Tree

The pruning strategy of CR-tree is based on two theorems.

Lemma 1. Let p be a POI as an entry in the leaf node (or the child node of a non-leaf
node) N of CR-tree, for a user group Q, we have mindist Q;Nð Þ� d Q; pð Þ: ■

Proof. Whenever N is a leaf node or a non-leaf node, p is inside node N. We can know
that mindist qi;Nð Þ� dist qi; pð Þ is true for each qi 2 Q. Then, for all the users in Q, we
have mindist Q;Nð Þ ¼ P

qi2Q mindist N; qið Þ� P
qi2Q d qi; pð Þ ¼ d Q; pð Þ. Therefore,

mindist Q;Nð Þ is the lower bound of the distance between group-user locations and p. ■
Theorem 1. Let N be a CR-tree node and p be a candidate POI inside the tree. In the

best case, each rradci pð Þ ci 2 Crad
Q ^ ci 6¼ c

� �
has a maximum value of 1 and the mini-

mum distance between p and p0radci pð Þ is 0. Thus, the upper bound of the satisfaction
degree of N over Q, denoted as sdþ N;Qð Þ, is determined by (4).

sd þ N;Qð Þ ¼ a � 1� mindist Q;Nð Þ
Dmax � Qj j

� �
þ 1� að Þ �W cð Þ � rradc Nð Þþ Qj j � w cð Þ

Qj j ð4Þ

Here, rradc Nð Þ represents the maximum value of comprehensive score of category
MBR c stored in N. For any POI p in N, we have sdþ N;Qð Þ� sd p;Qð Þ. ■

Proof. According to Lemma 1, we know that mindist Q;Nð Þ� d Q; pð Þ. Then, we can
know:

a � 1� mindist Q;Nð Þ
Dmax � Qj j

� �
� a � 1� d Q; pð Þ

Dmax � Qj j
� �

¼ a � d p;Qð Þ

Since d p; p0radci pð Þ
� �

� dmin p; p0radci pð Þ
� �

¼ 0, we have:

1� að Þ � s p;Qð Þ� 1� að Þ �
X

ci2Crad
Q

1
Qj j �

W cið Þ � rradci pð Þ
1þ dmin p;p0radci

pð Þð Þ
rad

¼ 1� að Þ � 1
Qj j

X
ci2Crad

Q

W cið Þ � rradci pð Þ

In addition, rradci pð Þ� rradci max pð Þ ¼ 1 ci 2 Crad
Q ^ ci 6¼ c

� �
. Since for node N in

aRc; rradc max pð Þ ¼ rradc Nð Þ: Thus, we have:
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1� að Þ � s p;Qð Þ� 1� að Þ � 1
Qj j

X
ci2Cr

Q

W cið Þ � rradci pð Þ

� 1� að Þ � 1
Qj j

X
ci2Crad

Q

W cið Þ � rradci max pð Þ

¼ 1� að Þ �
W cð Þ � rradc Nð Þþ P

ci2Crad
Q ^ci 6¼c W cið Þ

Qj j

As
P

ci2Cr
Q
W cið Þ ¼ Qj j, we have 1� að Þ � s p;Qð Þ� 1� að Þ � W cð Þ�rradc Nð Þ þ Qj j �W cð Þ

Qj j .

Combined the above formulas, we have:

a � 1� mindist Q;Nð Þ
Dmax � Qj j

� �
þ 1� að Þ � w cð Þ � rradc Nð Þþ Qj j � w cð Þ

Qj j
� a � d p;Qð Þþ 1� að Þ � s p;Qð Þ

The left part of the in equation is sdþ N;Qð Þ and the right is sd p;Qð Þ. Thus, we
have proven sd þ N;Qð Þ� sd p;Qð Þ. ■

Theorem 2. Let N:MBRc and N 0:MBRci be the corresponding category MBRs in nodes
N and N 0 of CR-tree, and p and p0radci pð Þ be any POIs inside N:MBRc and N 0:MBRci . In
the best case, rradc pð Þ in CR-tree has a maximum value of the ratings of the category
MBR c in N and each rradci pð Þ has a maximum value of the ratings of the category MBR
ci in N 0. Suppose that mindist N;N 0ð Þ denotes the minimum distance between p and
p0radci pð Þ in N 0. Then, we define the satisfaction degree of N and N 0 over Q by (5).

sd
0 þ N;N 0;Qð Þ ¼ a � 1� mindist Q;Nð Þ

Dmax � Qj j
� �

þ

1� að Þ �
w cð Þ � rradc N:MBRcð Þþ P

ci2Crad
Q ^ci 6¼c w cið Þ � rradci N 0:MBRcið Þ

Qj j � 1þ mindist N;N 0ð Þ
rad

h i ð5Þ

Here, rradc N:MBRcð Þ and rradci N 0:MBRcið Þ represent the max ratings stored in
N:MBRc and N 0:MBRci . For any POI p in N and p0radci pð Þ in N 0, the satisfaction degree

sd p;Qð Þ must satisfy: sd
0 þ N;N 0;Qð Þ� sd p;Qð Þ. ■

Proof. According to Lemma 1, we have a � 1� mindist Q;Nð Þ
Dmax� Qj j

� �
� a � d p;Qð Þ. As the

distance between any two points within two rectangle is larger than the minimum

distance between two rectangles, we get d p; p0radci pð Þ
� �

� dmin p; p0radci pð Þ
� �

¼
mindist N;N 0ð Þ. Thus,
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1� að Þ � s p;Qð Þ� 1� að Þ �
X

ci2Crad
Q

1
Qj j �

W cið Þ � rradci pð Þ
1þ dmin p;p0radci

pð Þð Þ
rad

¼ 1� að Þ �
X

ci2Crad
Q

1
Qj j �

W cið Þ � rradci pð Þ
1þ mindist N;N 0ð Þ

rad

In addition, as rradci pð Þ� rradci max pð Þ ¼ rradci N 0:MBRcið Þ and rradc max pð Þ ¼ rradc N:ð
MBRcÞ, we have

1� að Þ � s p;Qð Þ� 1� að Þ �
X

ci2Crad
Q

1
Qj j �

W cið Þ � rradci max pð Þ
1þ mindist N;N 0ð Þ

rad

¼ 1� að Þ �
w cð Þ � rradc N:MBRcð Þþ P

ci2Crad
Q ^ci 6¼c w cið Þ � rradci N 0:MBRcið Þ

Qj j � 1þ mindist N;N 0ð Þ
rad

h i

Based on all the above formulas, we have proven sd þ N;N 0;Qð Þ� sd p;Qð Þ. ■
According to Theorems 1 and 2, we can design the pruning strategies for CR-tree.

The key idea is that if the upper bound of the satisfaction degree of a node is less than
the current top-kth highest value, the POIs in the node are not possible to be included in
the returned results. Thus, we can skip these POIs and improve the query performance.

4.3 CR-Tree-Based Pruning of POI Candidates (OPC)

Based on the theorems in Sect. 4.2, we propose the CR-tree-based pruning algorithm
for selecting POI candidates in CR-tree. This algorithm is called OPC (Optimized
Pruning of POI Candidates), as shown in Algorithm 2.

First, we use the root node of the CR-tree as the entry parameter of the OPC query
algorithm, and make a top-down recursive call to the tree structure. In this process, the
pruning operation based on Theorem 1 is performed at each node. If the first pruning
condition is not met, and the currently traversed node N is a non-leaf node, its child
node is added to the queue Qe, which is descended according to (3). We check the
queue to get the node recursively until the queue is empty; otherwise, we perform the
routine Score_computing as shown in Algorithm 3 and update the global variables
H and kth_bestvalue in time, where H represents the largest heap of k candidate POIs
with the highest satisfaction value and kth_bestvalue represents the current kth largest
satisfaction value.

The routine Score_computing is actually a method for querying the corresponding
POI combination of the location semantic category around the candidate POI according
to the preference list, and the method simultaneously performs pruning according to
Theorem 2. Algorithm 3 shows the Score_computing that is invoked by Algorithm 2.
Here, e represents a POI, N represents the root of a sub-tree in the CR-tree, and Nc is
the root of the CR-tree. In this algorithm, we traverse the CR-tree from the root Nc,
delete non-relevant nodes according to Theorem 2, and compute the scores for each
leaf node.
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4.4 Further Optimization (CR-Tree* and the OPC* Algorithm)

In real applications, assume that a group of users are looking for a certain restaurant to
have dinner together. If they want to visit other kinds of POIs, e.g., theaters, it is very
likely for them to look around the POIs within the certain range of the restaurant, such
as a range of 1 km around the restaurant. Based on this observation, we propose CR-
tree*, which is an optimized CR-tree that pre-stores the lists of category MBRs in a
given range and the corresponding max ratings in different categories.

As shown in Fig. 3, a leaf node of CR-tree is represented by a big rectangle and
category MBRs are described by small rectangles inside the node. Some other category
MBRs outside the big rectangle belong to other leaf nodes. Then, for category
MBR CN, we pre-store the max rating (such as 0.7 for category c1) of every category
within range r of CN in an array. In addition, a set of lists is pre-stored along with the
score array. If we need to find POIs labeled with c1, c2 and c3, we just load the pre-
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stored information of CN rather than traverse the entire CR-tree. The processing of
non-leaf nodes is similar to that of leaf nodes, except that but there are no lists for non-
leaf nodes. This optimization can improve the query efficiency compared with the OPC
algorithm, and the experimental results in Sect. 5 will demonstrate this.

5 Performance Evaluation

5.1 Datasets and Settings

The experimental datasets consist of two real datasets and one simulated dataset. The
two real datasets are the POI datasets of Beijing and Guangzhou respectively, including
POIs of several cafes, supermarkets, and restaurants. Each record in the dataset con-
tains the latitude and longitude coordinate information of a certain location, and the
location category information. In order to indicate users’ need for location preference,
we randomly assign a float value between 0 and 1 for each POI in the dataset. The
properties of the two real datasets are shown in Table 1.

In addition, we construct a simulation dataset to measure the impact of parameters
such as the number of categories, because it is stable in the real datasets. In the
simulation dataset, we generate POI sets of sizes 100k, 500k, 1M, 1.5M to 2M.
These POI sets are randomly distributed in a two-dimensional space of 10000 * 10000,

Fig. 3. CR-tree*: storing additional information in the leaf nodes of CR-tree

Table 1. Properties of the real datasets

Attribute Beijing Data Guangzhou Data

Number of POIs 607307 551595
Number of location categories 14 16
Data size 16.11 MB 14.99 MB
Spatial range 12471 * 10000 13861 * 10000
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and the corresponding score values are also randomly taken between 0 and 1. There are
8 categories of POIs by default, and each category is the same number.

All algorithms are implemented in Java on a computer with an Intel(R) Core(TM)
i3-4210M CPU @2.60 GHz with 8 GB RAM. The index structure is maintained in
memory, and the maximum number entries for a node are set to 100. We mainly
measure the pruning rate, query time, and index size for all the algorithms or indexes
compared. The pruning rate is defined as the ratio of the pruned POIs to all the POIs in
the query range. A higher pruning rate is more efficient because it can reduce the search
cost. For each query, we run 100 times and use the average response time as the query
time.

5.2 Impact of the Number of POIs

In this experiment, we test the impact of the number of POIs on query time, pruning
rate, index settling time, and index space cost. It can be seen from Fig. 4(a) that the
query time of all algorithms increases gradually with the number of POIs. The BA
algorithm is inefficient over large POI datasets. The query time of the OPC algorithm
increases with the increase of the number of POIs, but the growth is very slow.
Specially, the optimized OPC* algorithm has relatively stable time performance,
because it pre-stores necessary information related to the query so that it does not need
to spend time to retrieve the POI set.

Fig. 4. Results for varying the number of POIs indexed l
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Figure 4(b) shows that the pruning rate of all algorithms increases as the number of
POIs in the dataset increases. This is mainly because more POIs generated in a plane
with a fixed area indicates higher POI density, which has a big impact on the pruning
rate. The figure shows that the pruning rate of OPC is higher than that of PA and OPA,
which is mainly due to the CR-tree index structure.

Through Fig. 4(a) and (b), we can see that the OPC and OPC* algorithms are more
effective than other methods in terms of pruning rate and query time. Figure 4(c) and
(d) show the time when the aR-tree, CR-tree, and CR-tree* indexes are established and
the space occupied by each index. Overall, as the number of indexed POIs increases,
the time and space cost for establishing various types of indexes increases. The reason
why the growth rate of CR-tree* is much larger than the other two indexes is that it
stores additional information for POIs. As the number of POIs increases, the size
needed for pre-stored information increases accordingly. Combined with Fig. 4(a) and
(b), it can be concluded that the CR-tree and aR-tree indexes have small gaps in index
establishment time and space overhead, but the query efficiency based on the CR-tree
index is much higher than that based on the aR-tree index.

5.3 Impact of the Number of POI Categories

As the location categories in the real datasets are fixed, we construct a simulated dataset
to study the influence of the number of POI categories on the query efficiency. Figure 5
(a) shows that when the category number of POIs changes from 4, 8, 16 to 32, the
query time of each query algorithm is gradually reduced. This is because that the
number of POIs corresponding to each category is reduced with the increasing of the
category number. Figure 5(b) shows that the corresponding query pruning rate
increases slowly as the number of POI category increases. We can conclude from
Fig. 5 that the OPC and OPC* algorithms are insensitive to the number of POI cate-
gory compared with other algorithms.

Fig. 5. Results for varying the number of POI categories
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5.4 Impact of the Number of Preferred Categories in User Groups

Figure 6 shows the change in the query time and pruning rate on the two real datasets
as the number of user-preferred query categories increases. Overall, the query time of
each algorithm increases as the number of query categories increases and the pruning
rate decreases as the number of query categories increases. With the increasing of the
number of query categories, the number of POIs that need to be retrieved increases, so
does the calculation cost and the query time. However, the OPC* algorithm is less
sensitive to the number of query categories, mainly because its pre-stored information
eliminates the need for a large number of traversal index searches for POIs. In addition,
different datasets have different POI distributions corresponding to their location cat-
egories, so the curve trend of query time and pruning rate varies slightly with query
categories.

5.5 Impact of Other Parameters

In this section, we report additional experimental results on the impact of other
parameters. The Beijing dataset is used as the default dataset in the following
experiments.

Impact of the number of users in group. The running time increases in PA, OPA
and OPC algorithms when the number of users in group, i.e., n, increases from 2 to 32
in Fig. 7(a). This is because that more users in group may produce more distance
calculation. And a big group may need more preference categories to meet the demands
of each one.

Impact of the range of candidate POI. To evaluate the effect of range r of
candidate POI, we vary r from 50 to 200 and the results are shown in Fig. 7(b). It
shows that the increase of the range r mainly leads to the increase of running time for
PA, OPA and OPC algorithms. But the running time of OPC increases slowly, com-
paring with the PA and OPA algorithms. And the OPC* algorithm is almost not
effected by the increasing of r, which benefits from its pre-stored information.

Fig. 6. Results for varying the number of preferred categories in user groups
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Impact of the Number of POIs in the Result. Figure 7(c) shows that the running
time of all algorithms, except OPC*, increases with the increasing of k. When k
becomes larger, all algorithms may retrieve more POIs to return the results. This leads
to more computations. At the same time, a greater k value represents the more relaxed
constraints of pruning strategies, which is another reason for inefficiency.

Impact of the Smoothing Parameter. With the increasing of the smoothing
parameter a, the running time decreases in all algorithms, as shown in Fig. 7(d). The
running time of the OPC, OPA and PA algorithms are always in descending order but
the OPC* algorithm shows relatively stable time. When a is close to 0, the SGP query
is similar to a variant top-k spatial preference query. In this case, the algorithm will
have low efficiency because of the high cost of complex calculation on s p; qð Þ. When a
is close to 1, the problem is similar to a group nearest neighbor (GNN) preference
query [2].

In general, the OPC* algorithm is far more efficient than other algorithms and is not
sensitive to most parameters. It can be used for small datasets such as datasets within a
city range. In addition, we can see that the CR-tree is also efficient for indexing large
datasets, such as datasets within a country range.

Fig. 7. Results for varying n, r, k and a
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6 Conclusions

In this paper, we propose a new type of spatial queries named SGP queries in social
networks. A satisfaction degree model is proposed to measure whether the candidate
POI meets the group’s needs. Then pruning strategies and a new index structure called
CR-tree are proposed to process SGP queries. Experimental results on simulation and
real datasets demonstrate the efficiency of our proposal. Our future work will focus on
automatically setting the group preference and its weight according to the historical
information of each user in the group.
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Abstract. Mobile Taxi-Hailing (MTH) is one of the most attractive
smartphone applications, through which passengers can reserve taxis
ahead for their travels so that the taxi service’s efficiency can improve
significantly. The taxi-hailing order assignment is an important com-
ponent of MTH systems. Current MTH order assignment mechanisms
fall short in flexibility and personalized pricing, resulting in an unsat-
isfactory service experience. To address this problem, we introduce a
Competitive Order Assignment (COA) framework for the MTH systems.
The COA framework mainly consists of the Multi-armed-bandit Auto-
matic Valuation (MAV) mechanism and the Reverse-auction-based Order
Assignment (ROA) mechanism. The taxis apply the MAV mechanism to
automatically generate the transport service valuations for orders. The
platform applies the ROA mechanism to complete each round of order
assignment. Then, we analyze the online performance of MAV, and prove
that ROA satisfies the properties of truthfulness and individual rational-
ity. Finally, we also demonstrate the significant performances of MAV
and ROA through extensive simulations on a real trace.

1 Introduction

With the explosive popularity of smartphones, various mobile applications have
been developed to make people’s lives more convenient. One of the most appeal-
ing applications is the Mobile Taxi-Hailing (MTH) system, such as Uber, Didi
Chuxing, Lyft, Ola, etc. By using these MTH systems, passengers need not wait
for a long time before hailing a taxi, and taxis also will not spend lots of time
searching for passengers. Consequently, more and more passengers are willing to
use these systems to hail taxis. Statistics show that there have been more than
5 billion Uber trips in 2017 and 15 million daily active riders on average [2].

A typical MTH system consists of a platform residing on the cloud and a
collection of passengers and taxi drivers, who have installed the MTH application
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in their smartphones, as shown in Fig. 1. If a passenger wants to hail a taxi,
he/she would generate a taxi-hailing order and send it to the platform via his/her
smartphone. The order includes the start position, destination, and so on. On
the other hand, each taxi driver would periodically report its state information
to the platform, including the taxi’s location, whether the taxi is vacant, etc.
After receiving orders from the passengers, the platform would assign each order
to a vacant taxi. The order assignment is a vital component of the MTH system.

Fig. 1. A typical MTH system

Current MTH systems mainly adopt two types of order assignment strategies.
The first is that taxi drivers manually grab the orders publicized by the plat-
form. However, many drivers often complain that they cannot grab any orders
most of time, since other drivers might manipulate by using third-party soft-
wares. Another strategy is that the platform directly assigns a vacant taxi to
each order according to the distance between them, the reputation of the taxi,
etc. However, taxi drivers might be assigned many orders that they do not pre-
fer. In addition, some drivers might wish to compete for their preferred orders
by reducing their prices. Nevertheless, this direct assignment strategy has not
considered the order competition among taxis and falls short in the personalized
pricing requirement. So far, there have been some mechanisms designed for the
taxi-hailing order assignment or the taxi dispatch problem, such as [9,10,23].
However, although these mechanisms adopt some complex assignment strategies
that aim at different optimization objectives, they have still not involved the
personalized pricing and competitive order assignment issues.

To enable taxis to flexibly compete for their preferred taxi-hailing orders
with personalized prices, we propose a Competitive Order Assignment (COA)
framework for MTH systems. The COA framework mainly includes a Multi-
armed-bandit Automatic Valuation (MAV) mechanism and a Reverse-auction-
based Order Assignment (ROA) mechanism. On the taxi’s side, COA allows each
taxi to flexibly set valuations for different taxi-hailing orders. First, each taxi uses
some pre-defined rules to determine its preferences for different orders, and then
determine multiple candidate mark-up pricing strategies as its service charges
based on the preferences. For example, an order whose start position is near or
destination is located in familiar areas is a preferred order, for which the taxi may
ask a lower service charge. Then, once receiving orders from the platform, each
taxi can automatically select a strategy to generate its valuation for each order.
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Note that different mark-up strategies mean different rewards. Even the same
strategy might lead to different rewards in different spatio-temporal scenarios.
Thus, the automatic valuation is a complex issue. To solve this problem, we
see the automatic valuation as a multi-armed bandit process and design the
MAV mechanism, by which each taxi can learn to select appropriate strategies
maximizing the cumulative rewards. On the platform side, the order assignment
is conducted periodically. We treat each round of order assignment as a reverse
auction process and design the ROA mechanism. In this way, each taxi can
rationally compete for its preferred orders via bidding their truthful valuations.
More specifically, our major contributions include:

1. We design a competitive order assignment (COA) framework for MTH sys-
tems, in which taxis can automatically generate valuations to compete for the
taxi-hailing orders.

2. We see the automatic valuation in COA as a multi-armed bandit process,
and propose the MAV mechanism. MAV let each taxi automatically select
appropriate mark-up pricing strategies for arriving orders to maximize the
cumulative rewards. Further, we analyze the online performance of MAV.

3. We model the competitive order assignment in COA as a series of reverse
auction processes, and propose the ROA mechanism, including the winner
selection and the payment computation. Moreover, we prove that the ROA
mechanism is truthful and individually rational.

4. We conduct extensive simulations on a real trace to verify the significant
performances of the proposed ROA and MAV mechanisms.

The remainder of the paper is organized as follows. we introduce the COA
framework and problem formalization in Sect. 2. The ROA and MAV mechanisms
are proposed in Sect. 3. The theoretical analyses are presented in Sect. 4. In
Sect. 5, we evaluate the performances of MAV and ROA. After reviewing the
related works in Sect. 6, we conclude the paper in Sect. 7.

2 Framework and Problem Formalization

2.1 The COA Framework

We consider a typical MTH system, including a platform in a cloud, a set of
taxis registered in the platform and lots of passengers.

Definition 1 (Taxi-hailing Order). A taxi-hailing order is defined as oi =
〈startT ime, startLoc,Des〉, where startT ime, startLoc, and Des are the start
time, start location, and destination of the corresponding trip, respectively.
Moreover, all orders have a common Time-to-Live (TTL). If an order has not
been assigned to a taxi during its TTL, it will become invalid.

Definition 2 (Taxi Driver). A taxi vj is described by its state information:
sj = 〈isV acant, startLoc, startT ime〉, where isV acant is a boolean indicating
whether the taxi is vacant. If isV acant is true, it means that the taxi can
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provide the transport service immediately. Then, startLoc and startT ime are
the current location and time of the taxi, respectively. Otherwise, the taxi is
carrying passengers. In this case, startLoc and startT ime are the destination and
arrival time of the current trip, respectively. In addition, to achieve personalized
pricing, each taxi vj determines its preferences on providing transport services
by using some simple pre-defined rules, and then determines multiple candidate
mark-up pricing strategies Kj ={1j , · · · ,Kj} according to the preferences.

The platform continuously receives the taxi-hailing orders from passengers
to form an order list O, and receives the real-time state information from taxis
to form a taxi state list S. Then, by comparing the startT ime and startLoc
values of sj ∈S and oi ∈O, the platform will know whether taxi vj can arrive at
the start location of order oi in time. Therefore, the platform can determine the
taxis that can provide the transport service to order oi, denoted by Vi.

∈

∈

∈

Fig. 2. The automatic valuation process. Fig. 3. The reverse auction process.

Based on the above descriptions, we design a Competitive Order Assignment
(COA) framework for the MTH system. In the COA framework, taxis set their
valuations for arriving taxi-hailing orders based on an automatic valuation mech-
anism. The platform completes the order assignment via a reverse auction mech-
anism. The order assignment is conducted periodically, and the period equals to
the TTL of orders. At the beginning of each period, the platform conducts a
round of assignment for the orders that it has received.

2.2 Automatic Valuation Problem Formalization

After receiving taxi-hailing orders from the platform, each taxi selects the mark-
up pricing strategy and further generates the valuation for each order automat-
ically. Since different mark-up strategies mean different rewards over different
spatio-temporal scenarios, to select appropriate strategies is a complex issue.
Therefore, we formalize the automatic valuation as a multi-armed bandit pro-
cess. A typical multi-armed bandit process consists of a slot machine with mul-
tiple arms, each of which is associated with a reward drawn from an initially
unknown distribution. A player needs to sequentially select the arms via some
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policies, called bandit policies, so as to maximize the cumulative reward [3,13].
Then, the formalization is as follows, which is also illustrated in Fig. 2.

First, we see each taxi vj as a player, and its mark-up pricing strategies
Kj are the arms to be selected. Each arm kj ∈ Kj is associated with a reward
Xkj

(t). The reward Xkj
(t) is a random variable that is i.i.d. and has unknown

probability distribution with a bounded support. Without loss of generality, we
assume that Xkj

(t) lies within the range [0, 1] with a mean μkj
.

Second, the objective of the automatic valuation is to seek a bandit policy
to maximize the cumulative reward. Denote the arm selected in the t-th round
as aj(t)∈Kj . The historical records are Hj(t)= {Xaj(1)(1), · · · ,Xaj(t)(t)} with
Hj(0)=∅. Then, a bandit policy πj =(πj(t)∞

t=1) is defined as a sequence of maps
πj(t) : Hj(t−1) → Kj , which specifies the arm that will be selected under the
historical records. Based on this, we define the cumulative reward that taxi vj

has received up to the t-th round under the policy πj as

mj(t)=
∑Kj

kj=1
μkj

E[Nkj
(t)]

∣∣∣
πj

. (1)

Here, Nkj
(t) is the total number of times that the kj-th arm has been selected

up to the t-th round, i.e., Nkj
(t)=

∑t
τ=1 1(aj(τ)=kj), where 1(·) is an indicator

function which is 1 if (·) is true; otherwise, it equals to 0.
Finally, once selecting an arm aj(t), the valuation, denoted by c

aj(t)
i,j , is deter-

mined as the sum of a base price and the mark-up strategy aj(t), in which the
base price is the inherent transport cost of the taxi vj serving order oi. Then,
taxis can keep their valuations to participate in the order assignment process.
Meanwhile, the taxi will receive a reward Xaj(t)(t). Specially, when taxi vj loses
the order oi which the arm aj(t), the reward Xaj(t)(t) will be 0.

For ease of description, we assume that each taxi deals with one order and
selects the arms once in each round. If there are multiple orders for taxi vj in a
round, we can construct multiple virtual taxis and let each of which deal with one
order. In addition, since the valuation for each order is the private information
of each taxi, the bandit process of each taxi is also independent of others.

2.3 Reverse Auction Problem Formalization

Along with the continuous arrival of taxi-hailing orders, the platform conducts
the order assignment based on a reverse auction model. In this model, taxis are
seen as the sellers of transport services and the platform holding orders is the
buyer. Then, the interactions between passengers and taxis via the platform are
described as follows, which is also depicted in Fig. 3.

First, when a passenger wants to start a trip, it submits a taxi-hailing order
to the platform. Meanwhile, the passenger will also submit a taxi fare that it is
willing to pay for the transport service. Second, the platform receives orders from
passengers and publicizes them to taxis. Each order will only be publicized to
the taxis that can provide the transport service to it. Third, each taxi receives
the orders from the platform. For each received order, taxis determine their
true valuations and bids, and then submit all of their bids to the platform.
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Here, each bid is not necessarily equal to the corresponding valuation, since each
taxi might manipulate the claimed charge. Finally, the platform determines the
winners of the auction, computes the payment for each winner, and assigns the
corresponding orders.

Consider an arbitrary t-th round of auction, where the set of orders is O,
the taxis that can provide the transport service for order oi ∈ O is Vi, and the
taxis’ valuations and bids are {c

aj(t)
i,j |oi ∈ O, vi ∈ Vi} and {bi,j |oi ∈ O, vi ∈ Vi},

respectively. The auction process involves the Winner Selection (WS) problem
and the Payment Computation (PC) problem, which are formulated as follows.

First, we consider the optimization objective in each round of order assign-
ment is to maximize the social welfare, defined as follows.

Definition 3. The social welfare is the total taxi fares of the orders that are
assigned to some taxis minus the total valuations of these selected taxis.

Then, we can formalize the WS problem as follows.

Definition 4. The Winner Selection (WS) problem:

Maximize :
∑

oi∈O,vj∈Vi
φi,jzi,j (2)

Subject to :
∑

oi∈O zi,j ≤ 1, zi,j ∈{0, 1} (3)
∑

vj∈V zi,j ≤ 1, zi,j ∈{0, 1} (4)

Table 1. Description of major notations

Variable Description

aj(t) the arm that taxi vj selects in the t-th round of auction

c
aj(t)

i,j , bi,j the true valuation and bid of taxi vj for serving order oi

ri the taxi fare of the order oi

Nkj (t) the number of times that the kj-th arm has been selected by taxi vj

up to the t-th round

Xkj (t), μkj the reward that taxi vj receives from the kj-th arm in the t-th round,
and the mean of its probability distribution

mj(t) the cumulative reward that taxi vj receives up to the t-th round

μ̂kj (t) the average reward that taxi vj receives from the kj-th arm up to the
t-th round, i.e., the estimated value of μkj

μ∗
j the mean reward associated with the optimal arm

φi,j the value of ri−bi,j

Here, zi,j = 1 indicates that taxi vj is selected as the winner to provide the
transport service to order oi; otherwise, if zi,j =0, order oi will not be assigned
to taxi vj . Moreover, we define φi,j = ri − bi,j . Note that our reverse auction
mechanism is truthful, which means that all taxis will always submit the true
valuations as their bids. Hence, we can directly assume bi,j = c

aj(t)
i,j . Then

∑
oi∈O,vj∈Vi

φi,jzi,j =
∑

oi∈O,vj∈Vi
(ri −c

aj(t)
i,j )zi,j is the social welfare. We will

prove the truthfulness in Sect. 4, which implies that this assumption holds.
Finally, the PC problem is defined as follows:
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Definition 5. The Payment Computation (PC) problem is how to deter-
mine the payment for each winner so that the whole auction mechanism satisfies
the truthfulness and the individual rationality.

Definition 6 (Truthfulness). Let bi,j be an arbitrary bid for taxi vj that
wins the order oi, and pi,j(bi,j) is the corresponding payment determined by the
payment computation algorithm of an auction mechanism. Then, if pi,j(bi,j)−
c
aj(t)
i,j ≤ pi,j(c

aj(t)
i,j )−c

aj(t)
i,j , we say that the auction mechanism is truthful.

Definition 7 (Individual Rationality). For each winning bid bi,j , the corre-
sponding payoff is nonnegative, i.e., pi,j(bi,j)−c

aj(t)
i,j ≥0.

Definition 6 can guarantee that each taxi claims its valuation truthfully, since
an untruthful bid will lead to a worse payoff. Definition 7 shows that each taxi
can receive a nonnegative payoff if it participates in the auction. In addition,
both the reverse auction mechanism and the automatic valuation mechanism
need to achieve computational efficiency, defined as follows:

Definition 8 (Computational Efficiency). Each round of automatic valua-
tion process and reverse auction process can terminate in a polynomial time.

For ease of reference, we list the main notations of this paper in Table 1.

3 The MAV and ROA Mechanisms

3.1 MAV: Automatic Valuation

We have formulated the automatic valuation as a multi-armed bandit process,
in which the key is to seek a bandit policy maximizing the cumulative reward of
each taxi. Since the distribution of the reward of each arm is unknown a prior,
the fundamental challenge in the multi-armed bandit process is to balance the
tradeoff between the exploration and exploitation. On the one hand, taxis have
to explore the rewards by randomly selecting the arms. On the other hand, taxis
also need to exploit the current knowledge of the rewards to select a best arm.

To solve this bandit dilemma, the Upper Confidence Bound (UCB) policy
has been widely used [6,13]. However, this policy needs to select each arm once
a time initially, which is impractical to be applied to our system. The ε-Greedy
policy is another classical policy [20]. This policy selects a random arm with
ε-frequency, and otherwise selects the arm with the current highest estimated
expected reward. However, after enough explorations, the estimated rewards will
be increasingly close to the true values. The constant factor ε ∈ [0, 1] prevents
the policy from getting arbitrarily close to the optimal arm. Therefore, in this
paper, we first let taxis explore in the first t0 rounds, where t0 > 0. Then, each
taxi explores with probability t0/t, and exploits with probability 1−t0/t. More
specifically, in the t-th round, taxi vj selects an arm aj(t)∈Kj according to the
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Algorithm 1. MAV: Automatic Valuation
Input: vj , Kj , t0 >0
Output: mj(t)
1: t←0, mj(0)←0;
2: if t≤ t0 then
3: aj(t)←a random arm selected from K;
4: else if rand()< t0/t then
5: aj(t)←a random arm selected from K;
6: else
7: aj(t)←argmaxkj∈Kj

μ̂kj (t−1);

8: ∀kj ∈Kj , update Nkj (t) and μ̂kj (t) according to Eq. 8 and Eq. 7, respectively;
9: mj(t)←mj(t−1)+Xaj(t)(t);

10: t← t+1;

following rule: when t ≤ t0, aj(t) is an arm randomly chosen from the set Kj ;
when t≥ t0,

aj(t)=
{

argmaxkj∈Kj
μ̂kj

(t−1), with probability 1− t0
t ,

a random arm in Kj , with probability t0
t .

(5)

Here, μ̂kj
(t) is the estimated value of μkj

. Moreover, we estimate each expected
reward value μkj

by averaging the rewards actually received, i.e.,

μ̂kj
(t)=

∑t
τ=1 Xkj

(τ) · 1(aj(τ)=kj)
Nkj

(t)
, (6)

which is equivalent to the following recursive formulas:

μ̂kj
(t)=

{
μ̂kj

(t−1), if aj(t) 	=kj ,
μ̂kj

(t−1)·Nkj
(t−1)+Xkj

(t)

Nkj
(t) , if aj(t)=kj ,

(7)

and,

Nkj
(t)=

{
Nkj

(t−1), if aj(t) 	=kj ,
Nkj

(t−1)+1, if aj(t)=kj .
(8)

Based on the above policy, the MAV mechanism automatically selects the
mark-up pricing strategies for each taxi in the order assignment process. Then,
the taxis can efficiently determine their valuations for each order. The detailed
automatic valuation algorithm is shown in Algorithm 1. Since the automatic
valuation algorithm is distributed and conducted on each taxi’s side, we only
display the automatic valuation process of taxi vj in Algorithm 1. In Steps 2–7,
taxi vj selects an arm aj(t). In Steps 8–9, the number of times of each arm that
has been selected and the corresponding estimated reward are updated, followed
by the computation of cumulative reward.



668 H. Zhao et al.

Algorithm 2. ROA: Payment Computation (PC)

Input: G={O, V ′, Φ}, Ψ
Output: {pi,j(bi,j)|〈oi, vj〉∈Ψ}
1: Calculate the total social welfare

∑
Ψ φi,j on the matching Ψ ;

2: for each 〈oi, vj〉∈Ψ do
3: Φ−i,j ←Φ−{φi,j}; G−i,j ←{O, V ′, Φ−i,j};
4: Finding a maximum weighted matching Ψ−i,j in graph G−i,j ;
5: Calculate the total social welfare

∑
Ψ−i,j

φi,j on the matching Ψ−i,j ;

6: pi,j(bi,j)←∑
Ψ φi,j −∑

Ψ−i,j
φi,j +bi,j ;

3.2 ROA: Optimal Winner Selection and Payment Computation

To select the winners of the auction and determine the order assignment results,
we transform the winner selection problem into finding the maximum weighted
bipartite matching problem. Consider the t-th round of order assignment where
the set of orders is O, the set of taxis is {Vi|oi ∈O}, and their bids are {bi,j |oi ∈
O, vj ∈ Vi}. We construct a weighted bipartite graph G = {O,V ′, Φ}, where
V ′ = ∪oi∈OVi and Φ = {φi,j |oi ∈ O, vj ∈ Vi ⊆ V ′}. Here, the order set O and the
taxi set V ′ are two separate vertex sets. Set Φ indicates the edges across O and V ′,
and φi,j =ri−bi,j is the weight of edge 〈oi, vj〉. With the graph G, we can apply
an existing maximum weighted matching algorithm, which has polynomial-time
computational complexity, such as the famous Kuhn-Munkres algorithm [12,16],
to get the optimal matching results. Let Ψ ={〈oi, vj〉} be the optimal matching
with maximum weight in graph G. Then, we can get the winners and the order
assignment results. We set zi,j =1 if 〈oi, vj〉∈Ψ ; otherwise, zi,j =0.

In order to ensure that each taxi truthfully reports its true valuation, we
compute the payment to each winning taxi based on the VCG auction [17]. The
VCG auction can guarantee the truthfulness when the optimal assignment can
be achieved. In VCG auction, the winner will be paid with the “externalities”
that its presence incurs to others. More specifically, for a given weighted bipartite
graph G={O,V ′, Φ} and the optimal matching Ψ ={〈oi, vj〉}, the payment of a
winning bid bi,j can be determined as follows.

First, we consider a winner selection with the bid bi,j , and the matching
solution is Ψ . Then,

∑
Ψ φi,j −φi,j denotes the total social welfare produced by

the matching Ψ except for the single social welfare φi,j . Second, we consider a
winner selection without the bid bi,j . We remove edge 〈oi, vj〉 from G to get
the corresponding weighted bipartite graph without bi,j , denoted by G−i,j , i.e.,
G−i,j = {O,V ′, Φ−i,j}, where Φ−i,j = Φ−{φi,j}. Then, we conduct the same
maximum weighted matching algorithm over G−i,j to get a matching solution,
denoted by Ψ−i,j . Then,

∑
Ψ−i,j

φi,j denotes the total social welfare without the
presence of bid bi,j . Finally, the payment pi,j(bi,j) satisfies:

ri−pi,j(bi,j)=
∑

Ψ−i,j

φi,j −( ∑
Ψ

φi,j −φi,j

)
, (9)

which implies
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pi,j(bi,j)=
∑

Ψ
φi,j −

∑
Ψ−i,j

φi,j +bi,j . (10)

The detailed payment computation algorithm is shown in Algorithm 2. The
total social welfare on the matching Ψ is calculated in Step 1. For each winning
bid bi,j , the weighted bipartite graph G−i,j is constructed in Step 3. In Steps
4–5, the maximum weighted matching algorithm is conducted over G−i,j and the
total social welfare on the new matching Ψ−i,j is calculated. Then, the payment
pi,j(bi,j) is computed in Step 6.

4 Theoretical Analysis

4.1 Online Performance of MAV

To analyze the online performance of the MAV mechanism, we derive the
expected regret of an arbitrary taxi vj . First, we consider an Oracle policy,
which knows the value of μkj

and can select the optimal arm in each round. Let
μ∗

j be the mean value associated with the optimal arm, i.e., μ∗
j =maxkj∈Kj

μkj
.

Next, we define the loss of selecting the kj-th arm as Δkj
= μ∗

j −μkj
. Then,

the expected regret, denoted by Rj(t), can be defined as the loss in cumulative
reward compared with the Oracle policy, i.e.,

Rj(t)=μ∗
j ·t−mj(t)=μ∗

j ·t−
∑Kj

kj=1
μkj

E[Nkj
(t)]=

∑
kj :μkj

<μ∗
j

E[Nkj
(t)]Δkj

. (11)

Based on this, we can derive the following theorem.

Theorem 1. For any ρ>1, t≥ t0, the probability that taxi vj selects a subop-
timal arm lj under Algorithm 1 is at most

P[aj(t)= lj ]≤ t0
tKj

+
(
1− t0

tKj

)
(α+β), (12)

where α= 4
Δ2

lj

exp(
Δ2

lj

2 )
(

t0
t

) t0Δ2
lj

2ρKj , β= 2t0
ρKj

(
t0
t

) qt0
ρKj ln( e2t

t0
), q= 3(ρ−1)2

8ρ−2 .

To prove this theorem, we will make use of the following two inequalities for
bounded random variables.

Lemma 1 (Chernoff-Hoeffding bound). Suppose that X1,X2, · · · ,Xn are
n random variables with common range [0, 1], satisfying E[Xt|X1, · · · ,Xt−1]=μ
for ∀t∈ [1, n]. Let Sn =X1+· · ·+Xn. Then, for any a≥0, we have:

P[Sn ≥nμ+a]≤exp(−2a2/n),P[Sn ≤nμ−a]≤exp(−2a2/n).

Lemma 2 (Bernstein inequality). Suppose that X1,X2, · · · ,Xn are n ran-
dom variables with common range [0, 1], and

∑n
t=1 V ar[Xt|X1, · · · ,Xt−1]=σ2.

Let Sn =X1+· · ·+Xn. Then, for any a≥0, we have:

P [Sn ≥E [Sn]+a]≤exp
(−3a

2
/(6σ

2
+2a)

)
, P [Sn ≤E [Sn]−a]≤exp

(−3a
2
/(6σ

2
+2a)

)
.



670 H. Zhao et al.

Proof: For some ρ>1, let x0 = 1
ρKj

(
t0+

∑t
τ=t0+1

t0
τ

)
. The probability that taxi

vj selects the lj-th arm in the t-th round is

P [aj(t)= lj ]≤ t0
tKj

+
(
1− t0

t

)
P[μ̂lj (t) ≥ μ̂∗

j (t)], (13)

in which

P[μ̂lj (t)≥ μ̂∗
j (t)]≤P

[
μ̂lj (t)≥μlj +

Δlj

2
]
+P

[
μ̂∗

j (t)≤μ∗
j − Δlj

2
]
. (14)

The analyses of both the terms in the right hand side of Eq. 14 are the same.
Let N

(R)
lj

(t) be the number of times that the lj-th arm has been selected in the
exploration stage up to the t-th round. Then we have,

P
[
μ̂lj (t)≥μlj +

Δlj

2
]
=

∑t

τ=1
P
[
Nlj (t)=τ ; μ̂lj (τ)≥μlj +

Δlj

2
]

=
∑t

τ=1
P
[
Nlj (t)=τ |μ̂lj (τ)≥μlj +

Δlj

2
]·P[

μ̂lj (τ)≥μlj +
Δlj

2
]

≤
∑t

τ=1
P
[
Nlj (t)=τ |μ̂lj (τ)≥μlj +

Δlj

2
]·exp(−

Δ2
lj

τ

2
)

(according to the Chernoff-Hoeffding bound in Lemma 1)

≤
∑	x0


τ=1
P
[
Nlj (t)=τ |μ̂lj (τ)≥μlj +

Δlj

2
]
+

2
Δ2

lj

exp(−
Δ2

lj
x0�
2

)

≤ x0 ·P
[
N

(R)
lj

(t)≤x0

]
+

2
Δ2

lj

exp(−
Δ2

lj
x0�
2

).

(15)

Since E[N (R)
lj

(t)]= t0
Kj

+
∑t

τ=t0+1
t0

τKj
=ρx0, and var[N (R)

lj
(t)]=

∑t
τ=t0+1

(
( t0

Kj
+

t0
tKj

)− ( t0
Kj

+ t0
tK )2

) ≤ E[N (R)
lj

(t)] = ρx0, according to the Bernstein inequality
given in Lemma 2, we have,

P[N (R)
lj

(t)≤x0]=P[N (R)
lj

(t)≤ρx0−(ρ−1)x0]≤exp(−qx0), (16)

where q= 3(ρ−1)2

8ρ−2 .
Next, we derive the upper and lower bounds on x0. Since x0 = 1

ρKj

(
t0 +

∑t
τ=t0+1

t0
τ

)
= t0

ρKj

(
1+

∑t
τ=t0+1

1
τ

)
, and ln( t

et0
)≤∑τ

τ=t0+1
1
t ≤ ln( e2t

t0
), we have

t0
ρKj

ln(
t

t0
)≤x0≤ t0

ρKj
ln(

e2t

t0
). (17)

Combining Eqs. 15–17, we have

P

[
μ̂lj (t)≥μlj +

Δlj

2

]
≤ t0

ρKj

( t0
t

) qt0
ρKj ln(

e2t

t0
)+

2
Δ2

lj

( t0
t

) t0Δ2
lj

2ρKj exp(
Δ2

lj

2
).
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In the same way, we can obtain

P

[
μ̂∗

j (t)≤μ∗
j − Δlj

2

]
≤ t0

ρKj

( t0
t

) qt0
ρKj ln(

e2t

t0
)+

2
Δ2

lj

( t0
t

) t0Δ2
lj

2ρKj exp(
Δ2

lj

2
).

Therefore, according to Eq. 13, the probability P[aj(t)= lj ] is as most

t0
tKj

+
(
1− t0

t

)( 4
Δ2

lj

( t0
t

) t0Δ2
lj

2ρKj exp(
Δ2

lj

2
)
)
+

(
1− t0

t

)( 2t0
ρKj

( t0
t

) qt0
ρKj ln(

e2t

t0
)
)
.

The theorem holds. �
Finally, based on the above theorem, we obtain the following theorem which

bounds the expected regret of our bandit policy.

Theorem 2. For any ρ>1, given parameter t0 such that t0≥max{ 2ρKj

Δ2
minj

,
ρKj

q },

where Δminj
= min

lj :μlj
<μ∗

j

Δlj and q= 3(ρ−1)2
8ρ−2 . Then, in each t-th round of auction

where t>t0, for an arbitrary taxi vj , the expected regret produced by the bandit

policy described in Algorithm 1 is at most
(∑

lj :μlj
<μ∗

j
Δlj

)
t0
Kj

ln t+O( 1t ).

4.2 Truthfulness, Individual Rationality and Efficiency

Theorem 3. The ROA mechanism satisfies the property of truthfulness.

Proof: Suppose that taxi vj submits an untruthful bid b′
i,j for order oi, i.e.,

b′
i,j 	=c

aj(t)
i,j . The payment to the bid b′

i,j and order assignment result is denoted

as z′
i,j . Denote the order assignment result as zi,j under the case bi,j = c

aj(t)
i,j .

Then, there are two cases: (1) z′
i,j =zi,j ; (2) z′

i,j 	=zi,j .

Case 1 (z′
i,j = zi,j): If z′

i,j = zi,j = 0, it is obviously that the payoffs under the
truthful information and the untruthful information are the same and equal to
0. If z′

i,j = zi,j = 1, then the order oi is assigned to taxi vj with bid bi,j or b′
i,j .

This means that the presence of bid bi,j or b′
i,j incurs no effect to other assign-

ment results. Thus, we can obtain that pi,j(b′
i,j) =

∑
Ψ φi,j −∑

Ψ−i,j
φi,j +b′

i,j =∑
Ψ\{〈oi,vj〉} φi,j−

∑
Ψ−i,j

φi,j+ri. This indicates that the payment is independent
of the bid submitted by taxi vj . Therefore, in this case, pi,j(b′

i,j)=pi,j(bi,j), and
the payoffs are the same as well.

Case 2 (z′
i,j 	= zi,j): Consider the case z′

i,j = 0 and zi,j = 1. This implies that
taxi vj loses order oi when bidding untruthfully, and its payoff is 0. Therefore,
the misreporting leads to the less payoff than bidding truthfully. If z′

i,j =1 and
zi,j =0, which means that taxi vj wins order oi with the untruthful bid b′

i,j , then
the taxi must claim a lower bid, i.e., b′

i,j < bi,j , and b′
i,j ≤ pi,j(b′

i,j). Since taxi
vj loses order oi with bid bi,j , we have pi,j(bi,j) ≤ bi,j . Consequently, its payoff
satisfies: pi,j(b′

i,j)−c
aj(t)
i,j ≤ bi,j −c

aj(t)
i,j = c

aj(t)
i,j −c

aj(t)
i,j =0. Thus, in this case, the

payoff is negative.
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Therefore, each taxi cannot increase its payoffs by manipulating its real val-
uations, which proves the theorem. �

Theorem 4. The ROA mechanism meets the condition of individual rationality.

Proof: If a taxi vj does not win the order oi with the bid bi,j , the corresponding
payoff will be zero. Otherwise, if taxi vj wins the order oi with bid bi,j , the
corresponding payoff is pi,j(bi,j)− c

aj(t)
i,j . Here, according to Theorem 3, each

bid must be submitted truthfully to achieve the best payoff. Then, pi,j(bi,j) =
pi,j(c

aj(t)
i,j ), which implies pi,j(bi,j)−c

aj(t)
i,j =

∑
Ψ φi,j −∑

Ψ−i,j
φi,j . Since

∑
Ψ φi,j

is the optimal solution of the winner selection problem and
∑

Ψ−i,j
φi,j is only a

feasible solution where the bid bi,j is absent, we have
∑

Ψ φi,j −∑
Ψ−i,j

φi,j ≥ 0.
Hence, the payoff is no less than 0. The theorem holds. �

Next, we prove the computational efficiency of MAV and ROA.

Theorem 5. The ROA mechanism and the MAV mechanism both have a poly-
nomial time computation complexity in one round of order assignment.

Proof: The ROA mechanism is composed of the winner selection and the pay-
ment computation processes. As described in Sect. 3.2, each round of winner
selection can be optimally solved with an existing maximal weighted matching
algorithm, whose computation complexity is as most O(max{|O|, |V|}3). The
payment computation is completed in Algorithm 2, which is dominated by Step
4. Thus, the computation complexity is as most O(max{|O|, |V|}3·min{|O|, |V|}).
Therefore, the ROA mechanism can terminate in a polynomial time. The com-
putation overhead of Algorithm 1 of the MAV mechanism is dominated by Step
7, i.e., O(|Kj | ln(|Kj |)). Therefore, the MAV mechanism can terminate in a poly-
nomial time. Therefore, the theorem holds. �

Table 2. Simulation settings

Parameter name Values

the average number of orders per auction period |O| 50, 100, 150, 200

the average number of taxis per auction period |V| 300, 400, 500, 600

parameter t0 in the t0
t
-Greedy policy 100, 1000, 5000

parameter ε in the ε-Greedy policy 0.1, 0.01

5 Evaluation

5.1 Algorithms in Comparison

In order to evaluate the online performance of the MAV mechanism, we imple-
ment an automatic valuation algorithm based on the ε-Greedy policy for com-
parison [20]. Given a fixed parameter ε, the ε-Greedy policy selects the arm
kj =argmaxlj∈Kj

μ̂lj (t−1) with probability 1−ε; otherwise, the policy selects a
random arm with probability ε.
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In order to evaluate the order assignment performance of ROA, i.e., the social
welfare performance, we implement three other algorithms for comparison: the
Greedy (GRY) algorithm, the Nearest Taxi Selection (NTS) algorithm [9], and
the Immediate Selection (IS) algorithm. The GRY algorithm conducts the order
assignment under the same bipartite weighted graph as which is constructed in
the ROA mechanism. Different from the optimal winner selection algorithm, the
GRY algorithm always selects the edge with the largest weight until the taxi set
or the order set becomes empty. The taxis in the selected edges are the winners.
And the orders in the selected edges are assigned to the corresponding taxis.
It is noted that the VCG auction requires that the optimal assignment of the
orders must be guaranteed. Consequently, we apply the second price auction to
determine the winners’ payments in the GRY algorithm. The NTS algorithm
selects the nearest taxi for each order. The IS algorithm makes the assignment
decision immediately after each order arrives at the platform and each order will
be assigned to the taxi that has the maximum single social welfare currently.

5.2 Simulation Parameters and Settings

In the evaluation, we use a trace of New York City’s taxi trips on January, 2016
[1], which is also used in [23]. This trace consists of about 100,000 completed
trip records in 24 h (after discarding some obvious inaccurate records), which
is at most 100 trips per minute on average. Each trip record in the trace is
composed of the pick-up and drop-off locations (shown as latitude/longitude),
the pick-up and drop-off times, the trip distance, and the payment details. From
these records, we directly extract the startT ime, startLoc, and Des values of
each order and taxi. According to these values, we derive each round of orders
O and taxis V through determining the period TTL. For each order oi ∈O, we
also determine the set of serviceable taxis Vi.

Since the trace only contains successful transport records without involving
any auction mechanisms, there are no records about the taxis’ bids. To evaluate
MAV and ROA, we first let taxi fare of each order be equal to the payment
value in the trace. Next, we generate each valuation c

aj(t)
i,j as follows. First, we

set a base price basePricei for each order oi as the inherent transport cost and
let basePricei = ri

2 . Second, we set the number of service charging strategies
of Kj each taxi as 20, which are set as 20 values randomly chosen from [0, 1],
denoted as Ser1j , · · · , SerKj . Third, the rewards {Xkj

(t)|vj ∈V, kj ∈Kj} in each
round of order assignment are randomly sampled from a truncated Gaussian
distribution with mean μkj

∈ [0, 1], standard deviation σkj
∈ [0, 1], and support

[0, 1]. Finally, each taxi vj selects its service charging strategies by a policy to
obtain the maximal cumulative reward, i.e., the minimal cumulative regret. For
ease of description, we call the arm selection policy described in Algorithm 1 the
t0
t -Greedy policy. Then, if taxi vj selects the aj(t)-th strategy in the t-th round of
order assignment, its valuation for order oi will be c

aj(t)
i,j =basePricei(1+Seraj(t)),

meanwhile taxi vj will receive the corresponding reward Xaj(t)(t).
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In addition, we set different values for the parameter t0 in our t0
t -Greedy

policy, and set different values for the parameter ε in the ε-Greedy policy for
concrete comparison. The detailed parameter settings are listed in Table 2, where
the default values are in bold fonts.

5.3 Evaluation Metrics and Results

The major metrics in our simulations include the Online Performance w.r.t.
the MAV mechanism, the Social Welfare, Truthfulness, Individual Rationality,
Overpayment Ratio and Time Efficiency w.r.t. the ROA mechanism. Here, the
overpayment is the difference between the total payment to winners and the sum
of valuations of each winner. Then, the overpayment ratio is defined as:

λ=

∑
Ψ pi,j(bi,j)−

∑
Ψ c

aj(t)
i,j

∑
Ψ c

aj(t)
i,j

. (18)

It measures the payments paid by the platform to induce the truthfulness of all
taxis. The evaluation results are presented as follows.

Online Performance of MAV. To evaluate the online performance of the MAV
mechanism, we track two performance metrics: the cumulative regret and the
frequency of selecting the optimal arm (denoted as “% optimal arm”). The results
are shown in Figs. 4(a)–(b), in which each curve is the average output of 1000
times of repeated simulations. We can find that the regret generated by the
t0
t -Greedy policy grows logarithmically over time, which is consistent with the
theoretical analysis in Theorem 2. Moreover, when t0 is smaller, the regret grows
at a slower speed as shown in Fig. 4(b). This illuminates that the policy has
learnt well after a small number of pure exploration. We can also discover that
the ε=0.1 policy explores more than the ε=0.01 policy, and it finds the optimal
arm earlier. The ε = 0.01 policy learns more slowly, but it eventually performs
better than the ε=0.1 policy. Nevertheless, an optimally tuned t0

t -Greedy policy
(e.g., t0=100) performs almost best among other policies.

%

ε
ε

(a) % optimal arm

ε
ε

×103

(b) Regret

Fig. 4. Evaluation on online perfor-
mance of MAV.

×103

(a) |V|=600

×103

(b) |O|=100

Fig. 5. Evaluation on social welfare of
ROA.
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(a) Truthfulness (b) Individual ra-
tionality

Fig. 6. Evaluation on truthfulness and
individual rationality.

(a) Overpayment
ratio

(b) Run time

Fig. 7. Evaluation on overpayment
ratio and time efficiency.

Social Welfare of ROA. We evaluate the social welfare performance of the ROA
mechanism as follows. First, we set the average number of orders per auction
period at |O| = 50, 100, 150, and 200 by randomly selecting 50 orders in each
minute and letting the auction period TTL = 1, 2, 3, and 4 min. Meanwhile,
we fix the average number of taxis per auction period at |V| = 600. Second,
we change |V| from 300 to 600, while fixing |O| = 100. Finally, we conduct
the MAV mechanism with t0 = 100 to generate the valuations of each taxi.
Taxis report their true valuations as their bids to participate in the auction.
The results are shown in Figs. 5(a)–(b). On average, the social welfare of ROA
is about 79.38%, 61.66% and 52.05% larger than those of GRY, IS and NTS,
respectively. Moreover, the social welfare increases with the increasing numbers
of orders and taxis, but the increment of the latter is limited. This is because
only a few of increased taxis can win the auction.

Truthfulness and Individual Rationality of ROA. We verify the truthfulness and
individual rationality of ROA under the default settings. First, we randomly
select a bid and allow the corresponding taxi to claim a bid different from its
real valuation. The result, depicted in Fig. 6(a), shows that the payoff remains
unchanged when the taxi’s bid is smaller than its valuation. This means that
each taxi will still be winner when it claims a lower bid than its current winning
bid. However, the payoff is zero when the bid is larger than its payment. This
means that the payment paid to each taxi is a critical value ensuring to be a
winner. We can hence find that each taxi cannot improve its payoff by bidding
untruthfully. To verify the individual rationality, we randomly choose plenty of
taxis and orders, and compare the valuation of each taxi with the corresponding
payment. The result, plotted in Fig. 6(b), shows that each payment is larger than
the corresponding valuation. The individual rationality is also guaranteed.

Overpayment Ratio and Time Efficiency of ROA. To evaluate the overpayment
ratio performance, we make a comparison with the GRY algorithm. Figure 7(a)
shows that the overpayment ratio of ROA is smaller than that of GRY. This
implies that the GRY algorithm must pay more so as to induce cooperation
from selfish taxis. Moreover, the overpayment ratio of ROA decreases slightly
with the increasing number of taxis. This is because that the increasing number
of taxis means more taxis with low valuations can be winners, leading to the
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reduced overpayment ratio. Second, as shown in Fig. 7(b), when the number of
orders is 50, and the number of taxis is 300, the run time is less than 1 min,
which is smaller than the auction period. Moreover, when the numbers of orders
and taxis are both 300, the run time is no more than 3 min. Therefore, the ROA
mechanism can work efficiently in real applications.

6 Related Work

In recent years, much attention has been drawn to the study of the taxi-hailing
order assignment, taxi dispatch problem, and the task assignment problem in
vehicle-based crowdsourcing, such as [9,10,14,15,18,21–23]. However, most of
these works are based on the direct assignment strategy without involving any
auction and personalized pricing mechanisms. Also, many ride sharing services
have appeared along with various algorithms on how to match an order to a
taxi which can provide the ride sharing service [4,5,7,8], in which the most
related works are [4,5]. Different from our work, [4,5] do not consider the pro-
cess in which the taxis’ valuations for orders can be learnt or refined over time
by observing the historical assignment results. In view of this, we introduce the
multi-armed bandit model in our COA framework, by which taxis can automat-
ically price for the orders. Then, they participate in the order auction process.
The multi-armed bandit is an online learning model which is widely used in
crowdsourcing, cognitive radio networks, etc., [11,19]. For example, [19] models
the unknown expert recruitment problem in crowdsourcing as the multi-armed
bandit game, where the unknown experts are seen as arms.

7 Conclusion and Future Work

In this paper, we study the order assignment problem in the mobile taxi-hailing
systems and propose a competitive order assignment (COA) framework. In COA,
we let each taxi automatically set valuations for its preferred orders and design
the MAV mechanism. Then, we conduct the competitive order assignment based
on a reverse auction and design the ROA mechanism. Further, we analyze the
online performance of MAV, and proof that ROA is truthful and individually
rational. Moreover, the significance performances of ROA and MAV are also
verifies through extensive simulations on a real trace.
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Abstract. With the development of social media and GPS-enabled
devices, people can search for what they are interested in more easily.
There are many methods, such as spatial keyword query, proposed to help
people get useful information. However, most existing methods are based
on location and keywords query which neglect the semantic information.
In this paper, we propose a new approach named Top-K Spatio-Topic
Query (TKSTQ), which takes semantic information into consideration.
We use a topic model to obtain topics of texts and organize index based
on topic and location. In this way, the query results can satisfy people’s
requirements better. The experimental results on a real dataset validate
that our methods can significantly improve the relevance between result
and query.

1 Introduction

With the rapid development of social media like Twitter, the scale of User Gen-
erated Content (UGC) is increasing. There are about 300 million monthly active
users in Twitter, 100 million of which post tweets every day. Thereby, a variety
of techniques have been proposed to help users to get useful information from
these massive social media data.

In recent years, GPS-enabled mobile devices are widely used so that social
media can support location-based service. For example, when a user is posting
a tweet, he can choose to tag the location for the tweet. Thus, when something
interesting happens, users would like to know what neighboring people are talk-
ing about. In addition, new users might want to find some friends with similar
hobbies nearby. It is meaningful to find out an approach to recommend useful
information to users. Generally, the social media texts (e.g., tweets) are short
since the platforms limit the number of characters of a text and short texts are
commonly used in daily life, which makes it difficult to get useful information
from these texts without effective methods. Therefore, massive work focuses on
organizing and analyzing geo-tagged data [1,6,9,13,15], among which spatial
keyword query, a traditional and efficient method, is often adopted to process
location-based data.
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query

u1   

u2

u3

u4

u5

1

How do you like football?@john_Riggs

Can you recommend anyone for this #job?

Tired after playing basketball all the afternoon. .
Sprained my ankle while playing basketball

My baby growing up so fast

Fig. 1. Example of query

Figure 1 shows an example of spatial keyword query problem with several
users indicated as u1, u2, u3, u4 and u5 on the map. A user named Bob (i.e.,
query) likes Michael Jordan so much and he wants to find out the people who
like Michael Jordan too. Therefore he searches Michael Jordan on social media.
Unfortunately, nobody nearby talks about Michael Jordan so that he does not
get any useful information. However, there are several tweets posted by u3 and u4

talking about basketball, which is related to Michael Jordan. Obviously, u3 and
u4 are basketball fans and they are very likely to know Michael Jordan, which
means that u3 and u4 may be the people whom Bob is interested in. However,
traditional spatial keyword query fails to get them. In this example, Michael
Jordan, basketball and football belong to same topic (i.e., sports). Obviously, the
similarity between football and Jordan is not as high as basketball and Jordan.
Hence, u3 and u4 satisfy the query better than u1. In addition, u3 is closer to
the location of Bob, so u3 will be returned as the result.

Traditional spatial keyword query focuses on locations and keywords, and it
performs well in most cases. However, in the above example, spatial keyword
query fails to get a satisfactory result because it cannot capture the semantic
information, which is the goal of our proposed query. Compared with semantic
query, only querying keywords is rigid. Recently, due to the emergence of social
media and GPS-enabled mobile devices, the scale of short texts with geo-tagged
is getting larger. At the same time, there are many variants of Latent Dirichlet
Allocation (LDA) aiming to solve the problem of topic model for short texts, but
they do not consider location information, which is important for us to analyze
social media data.

In order to improve query effectiveness, we propose a new query named top-k
spatio-topic query, which aims to find out topic related objects. We take both
location and semantic information of tweets into consideration and design spatio-
topic index as well as corresponding query algorithm. To get the topics of tweets,
a topic model for short texts is applied to train social media data. Social media
texts are generally short and focus on very few topics. In practice, most of
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them contain only one topic, thus, we just take one topic from the topic vector.
However, traditional spatial keyword index can not deal with geo-tagged data
with topics. Therefore, we introduce spatio-topic index combining both location
and topic, which consists of two steps. The first step aims to classify all tweets
according to the topics and organize them in a quad-tree. In this way, we can
query efficiently based on location and topic. In the second step, we design several
methods to evaluate the relevance, which includes topic correlation and spatial
distance, to rank users. Finally, we conduct extensive experiments on a real data
set to demonstrate that our methods are effective.

We make the following contributions in this paper:

– We propose and formulate a novel method, namely Top-K Spatio-Topic Query
(TKSTQ). We try to query users on social media according to semantic infor-
mation and location rather than rigid keywords.

– We apply a topic model in social media data and try to find out the most
similar users. Besides, we take both location and topic into consideration and
develop a score function to rank users.

– We design spatio-topic index to organize tweets with topics and propose a cor-
responding efficient query algorithm. In addition, we set threshold to improve
the efficiency of query.

– Extensive experiments are conducted with a real-world dataset to evaluate
our proposals, in which the empirical results confirm the our solutions are
effective.

The remainder of the paper is organized as follows. Section 2 discusses related
work and research background. Section 3 formulates the Top-K Spatio-Topic
Query (TKSTQ) problem. In Sect. 4, we propose our methodologies, including
index organization and query algorithm. In Sect. 5, we show the results of exper-
iments to prove that our methods are efficient. Finally, we conclude our work in
Sect. 6.

2 Related Work

2.1 Social Media

Many efforts have been made to analyze social media and mine information
from it. In [17], the authors revealed that the information diffusion follows the
Stretched Exponential (SE) model. In [16], the authors took time into consid-
eration and proposed temporal distance metrics. Besides, in [13] and [9], the
authors tried to infer location from social media to solve the geo-tag sparseness
problem. In [1], the authors discussed the scenarios and uses of location-based
services. In [7], the authors proposed a model to analyze the social network and
structure. It is worth analyzing geo-tagged data from social media. In this paper,
we try to find out top-k spatio-topic results on Twitter.
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2.2 Spatial Keyword Query

Traditional methods of organizing the geo-tagged data are based on spatial key-
word index. In [6], the authors presented a method to find out top-k results by
building an IR2-tree based on R-tree. In [10], the authors proposed an effective
index IR-tree based on R-tree. In [19], the authors proposed preference-based
spatial keyword index AIR-tree and combined location and textual relevance to
improve queries result. In [15], the authors proposed a scalable spatio-temporal
index which can dynamically update with new tweets in. In [18], the authors pro-
posed TOPK-SK and BTOPK-SK based on IL-Quad-tree. In [14], the authors
tried to rank spatio-textual objects dynamically and presented STARI index
which can search recent results. Besides, in [3,4], the authors tried to solve some
problems in spatial keyword query and proposed new methods to improve the
query results.

All methods above are based on spatial keyword query, and in this paper
we propose a new method named Top-K Spatio-Topic Query (TKSTQ) which
queries according to topic rather than keyword. In this way, users can get results
which they really want instead of using the inflexible keywords query to get
results.

2.3 Topic Model

Topic model is an effective method to obtain semantic information of texts, i.e.,
topic. The original LDA topic model was proposed in [2]. Since then, a lot of
works have proved that LDA works very well. However, for short texts, LDA
does not work well because of sparseness of the word co-occurrence so many
novel topic models for short texts are proposed recently. In [12], the authors
tried to improve topic model with word feature representation. In [5], the authors
tried to classify short texts based on LDA and focused on semantic information
to reduce the sparseness. In [11], the authors focused on Twitter and proposed
Twitter-Network topic model which uses hash tags and followers network. In [22],
the authors generated long texts from short texts to improve the effect of topic
model. In [8], the authors also extended short texts to long texts, the difference is
that biterm is used based on word co-occurrence network. In [20,21], the authors
assumed that short texts focus on a few topics and proposed MetaLDA which
improves topic model with document tags and word features. In this paper, we
also assume that the number of topics of short texts is small, especially tweet
which limits the number of characters.

3 Problem Formulation

3.1 Tweet Modeling

A tweet is a 4-tuple t = (tid, uid, l,W ), where tid is the unique identifier of the
tweet, uid represents the user who posts the tweet, l is the location where the
user posts the tweet and W is a set of words extracted from the content of the
tweet.
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Here, we use W to represent a subset of W, which is a vocabulary of all
the words. In addition, we use set T = {(tid, uid, l,W )} to denote all tweets in
data set, U to denote all users and Tu to denote the tweets that user u posts.
Every tweet contains latent information (i.e., topic vector), which is usually a
probability distribution. It can be obtained by topic model for short texts.

The amount of social media texts is large but every single one is short. For
example, Twitter limits each tweet to 140 characters which can only contain
limited information. Besides, there are a lot of stop words in text which are
insignificant (e.g., the, this, etc.). Therefore, there are indeed few meaningful
words in each tweet so the size of t.W is always small.

3.2 Problem Definition

In the geo-enable social network, people may want to know what do people in
New York City think about machine learning? There are so many persons talking
about different things. In order to find out suitable results that users want, we
formalize it as following problem.

Problem Definition: Given a geo-tagged social network data set D = {T,U}, a
set of words W , a location l and a number k. The query q = (l,W, k) returns a
k-user set Uk ⊆ D.U which satisfies the condition:

∀u ∈ Uk,∀u′ ∈ D.U \ Uk, score(q, u) ≥ score(q, u′),

where score(·) is a function to evaluate the score of users according to distance
and topic correlation, and the details will be elaborated in next section.

3.3 Score Function

When analyzing the social network data, the most crucial point is semantic
information. In this case, topic vector is a good method to represent the semantic
information of documents. With the consideration of these aspects, we use topic
correlation and distance to measure the score of result.

Distance. We define the distance score function as follows.

μ(t, q) = σ(r − d(t.l, q.l)), (1)

where d(t.l, q.l) denotes the distance between the location that tweet t tags with
and the location of the query q, r is a constant number which represents the
query radius, σ is sigmoid function which is used to normalize distance score. In
sigmoid function, if the distance between two locations is less than r−5 km, the
score is close to 1 and the function flattens out. If d(t.l, q.l) is a large value, the
tweet gets very low score and vice versa. The tweets whose d(t.l, q.l) is smaller
than threshold r are all close to location of the query. In this case, the d(t.l, q.l)
of these tweets has little influence, so we will consider more about semantic score.
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On the contrary, if d(t.l, q.l) is much greater than the threshold r, their scores
are all close to zero because they are useless to the query. Consider the example
of Fig. 1, Bob would like to find users who are interested in basketball nearby.
Here users u1, u2, u3 and u4 are all close to the location of query. In this case, the
sigmoid function can reduce the impact of distance, so that the distance does
not affect a lot on final score and the key factor is semantic relevance.

Topic Correlation. As mentioned above, all tweets are trained with topic
model and each tweet can be represented as a topic vector. The query can be
inferred with the model and represented as a vector as well. Therefore, we rede-
fine a tweet as t = (tid, uid, l,v) and query as q = (l,v, k) where v denotes topic
vector. Based on topic vectors, topic correlation can be calculated with cosine
similarity easily, i.e.,

ν(t, q) =
t.v · q.v

‖ t.v ‖ × ‖ q.v ‖ , (2)

where t.v and q.v represent the topic vector of tweet and topic vector of query
respectively. Actually topic correlation of any two tweets can be calculated with
the equation. Because all the parameters in the topic vector are non-negative,
the range of ν(t, q) is [0, 1] as well.

User Score. Then we combine distance and topic correlation to define the score
of a tweet. Due to the same range of μ(t, q) and ν(t, q), they can be combined
linearly,

θ(t, q) = γ · μ(t, q) + (1 − γ) · ν(t, q), (3)

where γ is a hyper parameter with range of [0, 1]. User score which is used to
rank users is calculated as:

score(u, q) =

∑
t∈T ′

u
θ(t, q)

‖ T ′
u ‖ , (4)

where T ′
u is a set of tweets of user u which are filtered by distance and ‖ T ′

u ‖ is
the number of tweets in the set. In this paper, we calculate the average score of
user’s tweets. According to the score function, we can find out and sort all users
who talk about the relevant topics and are close to the query, then top q.k users
are returned in final result.

4 Methodology

4.1 Overview

Because spatial keyword query may fail to get results sometimes, we propose
top-k spatio-topic query, which can capture the semantic information. Figure 2
shows the architecture of the system. Firstly, external corpus are trained with
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Fig. 2. The architecture of system

word embedding to obtain word feature vectors. Then, the vectors are used as
prior knowledge in training of MetaLDA. When a query comes, the texts of
query firstly are inferred by topic model to get topics. According to topics and
location of query, we construct index therefore we can search for qualified tweets
in index and rank corresponding users to get top-k users.

Topic model is an effective way to extract semantic information of documents.
In [2], the authors proposed Latent Dirichlet Allocation (LDA) model to obtain
the topics of documents and it performs well in most cases. However, for short
texts, LDA does not work well due to sparsity of words and mess of content.
As mentioned in previous section, tweets are always short so word co-occurrence
information is not sufficient for LDA to train the model. Here we use word
embeddings to train and obtain word features.

In our system, external corpus such as wikipedia is trained for word embed-
dings. As mentioned before, word embeddings and preprocessed data are used
to train in MetaLDA topic model. Afterwards, each tweet can be represented as
a vector which implies the topic distribution.

The training process of MetaLDA topic model is similar to LDA. LDA
assumes that each document is a mixture of various topics and each word is also
the mixture of some latent topics. Topic distribution has the nature of Dirichlet
distribution which is a kind of prior distribution. So the problem is transformed
into finding an appropriate distribution to fit data set. The distribution is ini-
tialized randomly, then Gibbs sampling is used to train the parameters. After a
number of iterations, the distribution converges and topic model is obtained.

After this, spatio-topic index is organized according to the topic and location.
When a query is carried out, topics of the query are inferred with MetaLDA and
used to get lists of relevant tweets. Then, score function is invoked to calculate
score of each user and top-k users are returned.

4.2 Index Organization

Data Organization. Raw data of tweets consists of a tuple (tid, uid, lon,
lat, text) where they represent tweet id, user id, longitude, latitude, the con-
tent of tweet respectively. We split text into a set of words and stop-words are
removed at the same time.

But that is not enough in practice because there are still too many words
appearing in almost every text while these words are insignificant for extracting
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Fig. 3. Structure of index

topics. So we use TF-IDF to remove these words. TF-IDF (i.e., term frequency-
inverse document frequency) is a method which can reflect the importance of
a word in a collection. Since tweet is short and the set of words is small, term
frequency has little effect. So we only use IDF to filter words. We calculate IDF
of each word and remove very high and low frequency words to improve the
effect of topic model.

After that, the data is trained with MetaLDA using word embedding. Then
the topic with the highest probability is chosen to label the tweet. Thus, in
the same way, all tweets can be classified according to topic and each topic
has a corresponding list of tweets. Meanwhile, the information can be stored in
database or distributed file system if the scale of data is large.

Algorithm 1. Index Construction
Input: tweets set after training T and a rectangle area A
Output: a quad-tree index
1: if T.size > M and Box > R then
2: node = new node(count = T.size, box = A, isleaf = False)
3: divide T.A into 4 parts (A1, A2, A3, A4)
4: for i = 1; i ≤ 4; i + + do
5: find all tweets Ti in Ai

6: node.child[i] = index construction(Ti, Ai)
7: end for
8: else
9: node = new node(count = T.size, box = A, isleaf = True, tid list = tid list)

10: end if
11: return node

Spatio-Topic Index. Quad-tree is used to index location, as shown in Fig. 3.
The difference is that the leaf nodes store item lists of topics. They are much
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less than the keywords and it benefits efficiency. Threshold is used to avoid
too many items in each single node. We divide the whole area into four parts
recursively. Lists which contain topics and corresponding tweets are stored in
leaves. Algorithm 1 shows the construction of index.

Each node in the quad-tree stores following meta information: count, repre-
sents the number of tweets in corresponding area, box, represents the rectangle
area, isleaf , is a boolean value which denotes it is leaf or not, tid list, represents
lists of tweets id (if the node is leaf), and child, represents four children node.

In order to save memory and improve query efficiency, we set a threshold M
(line 1) to limit the number of tweets in an area. If the size of tweets is larger than
M , we divide the area and call construction recursively (lines 2–7). A denotes
the rectangle area which contains tweets T . Otherwise the box is a leaf node and
stores tweets list of each topic (line 9). Moreover, tid list keeps lists of tweets
id in each topic. It is unavoidable that there might be lots of tweets posted at
same place, so we set minimum area R to ensure the recursion can stop because
the rectangle area can not be divided anymore when the area is smaller than R.

4.3 Query Algorithm

We show the detail of the query algorithm TKSTQ in Algorithm 2.
Firstly, we input a query including location l, words W and k. A rectangle

box is returned by get range(l, r) (line 1). Function infer(W ) is invoked to infer
the topics of W with topic model and decides which topics to return (Line 2).
In function infer(W ), we first infer the topics of W with topic model, then a
topic vector which represents the probability of topics is obtained. Afterwards,
we decide which topic to return according to following equation:

λi−1 =
Pi

Pi−1
, (5)

where Pi denotes the i-th largest probability in the topic vector. According to
Eq. 5, we compute λi−1 in turn. We use a threshold ξ to decide whether the
query belongs to topic i or not. If λi−1>ξ, which means that these two topics
Pi and Pi−1 have a proximal probability. In this case, we consider that both the
topics which Pi and Pi−1 denote are target topics. Besides, we limit the max
number of topics to 3 because the query is also a short text which is impossible
to contain too many topics.

Assume that there is a query with topic probability 35:0.374,101:0.344,
0.141· · · . Then we can know that P1 = 0.374, and P2 = 0.344, thus λ1 =
0.344/0.374 = 0.92. Suppose that ξ = 0.9, so the topics for the query are 35 and
101. After that, we search for tweet ids in quad-tree according to the topics and
query area to get a list which contains all ids of tweets belonging to topic 35
or 101.

Hereafter we calculate the distance score and semantic score between each
tweet and the query. At the same time we will store scores of every user. Finally,
we calculate mean score of each user and sort them to return top-k users.
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Algorithm 2. Query for Top-k Users
Input: a set of words W , a location l, and a number of users to return k.
Output: a list of k users (u1, u2, · · · , uk)
1: search range = get range(l, r)
2: query topics = infer(W )
3: tweet list = get list(root, search range, query topics)
4: List users
5: for tid in tweet list do
6: t = get tweet(tid)
7: compute tweet score according to equation 1, 2, 3
8: if t.uid /∈ users then
9: users.append(t.uid, list(tweet score))

10: else
11: user.scores.append(tweet score)
12: end if
13: end for
14: for usr in users do
15: usr.score = mean(tweet scores)
16: end for
17: users.sort()
18: return top-k users

5 Experiment

In this section, we will show the effectiveness of the proposed method top-k
spatio-topic query. We conduct experiments on real data set which includes
about one million tweets with geo-tag. We crawl these geo-tagged tweets through
Twitter REST API and preprocess the data as mentioned above and remove
tweets including less than two non-stop words. For those without geo-tag, there
are some methods such as [13] and [9] to infer their locations. Here we just focus
on geo-tagged tweets. We set γ = 0.5, ξ = 0.9 and the upper bound of the
number of tweets in a box M = 1000.

5.1 Baseline

In our experiments, The advantages of our method can be presented by spatial
keyword index and spatio-topic index based on LDA. For the sake of fairness,
we implement all methods in the same way and same environment.

– Spatial keyword index based on keyword is a classic method in spatial
database. For spatial index, there are various indexes like R-tree, IR-tree, etc
and here same quad-tree is used to ensure fairness.

– Spatio-topic index based on LDA. LDA is an efficient topic model in nat-
ural language processing. Similarity, quad-tree and topic index are employed.

Both MetaLDA and LDA are trained with same hyper-parameters, where α
is 0.1, the number of iterations is 2000, β is 0.01 for LDA and β is computed with
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pre-trained word features from wikipedia for MetaLDA. In our experiments, we
train MetaLDA and LDA with 100, 150, 200 topics in advance.

5.2 Index Construction

At first, we evaluate the efficient of the index construction and the memory
cost. As shown in Table 1, for spatio-topic index, MetaLDA and LDA have no
difference in the time of index construction. So the construction time is mainly
influenced by the topics. With the number of topics increasing, the time of index
construction grows. The time of construction of spatial keyword index is much
larger because of the number of keywords is large. Likewise, large scale keywords
also lead to large memory cost.

As for memory cost, MetaLDA and LDA have almost same size of index
which contains all ids of tweets. The size of the index depends only on the size
of the dataset.

Table 1. Index construction

Methods Topics Time (s) Size (MB)

MetaLDA 100 31.20 62.54

150 34.15 63.50

200 36.21 64.26

LDA 100 32.35 62.56

150 33.01 63.48

200 38.73 64.20

Spatial keyword / 274.46 167.73

Then we evaluate the effect of M . Because MetaLDA and LDA have no
difference in this respect, we just show MetaLDA. As shown in Fig. 4, the larger
upper bound M , the shorter the construction time. The reason is that larger M
means less nodes in quad-tree so construction costs less time. For topics, 200
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(b) 150 Topics, M = 500
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(c) 200 Topics, M = 500
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(d) 100 Topics, M = 1000
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(e) 150 Topics, M = 1000
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(f) 200 Topics, M = 1000
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(g) 100 Topics, M = 2000
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(h) 150 Topics, M = 2000
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Fig. 6. Query efficiency with fixed M 500, 1000, 2000

topics need more time because more topics need more lists in each node (see
Fig. 3). From the figure, we can see that M affects the construction time a lot.
Moreover, it is clear that it will affect query efficiency too.

5.3 Query

To evaluate the efficiency of queries, we randomly select 100 tweets to construct
queries. According to the scale of the data set, we set k = 5 and r = 10 km to
50 km. For spatial keyword index, although the number of keywords influences
the query efficiency and result, we ignore it here and just use same queries for all
methods and parameters. Each experiment repeats 5 times to take the average.

Query Efficiency. For MetaLDA and LDA, the situation is different because
raw queries can not be used to conduct query in spatio-topic index. They need to
be transferred into corresponding format and inferred with topic model, which
means that the query time of spatio-topic index is not only related to the index
itself, but also related to the inference time. Hence, the total query time includes
two parts, inference time and query time in index. As shown in Fig. 5, MetaLDA
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costs more time in inference time because it needs more calculation with extra
information such as word embedding. While the inference does not need much
time (several milliseconds) so it is only a small part of total query time.

Through inference of topic model, all queries can be transformed into a few
topics and a location. It is efficient because the influence of the number of the
query words is small. We do not need to worry about that there are no match
results due to the small number of query words because no matter how many
words in query, the text of query always belongs to certain topics.

Figure 6 shows the results of the average query time. Note that in each group
of experiments we use same upper bond M to limit the number of tweets in a
rectangle area. As shown in Fig. 6(a), when the number of topics is fixed as 100
and M fixed as 500, the time two methods (i.e., MetaLDA and LDA) cost is close
while spatial keyword index is less efficient. With the number of topics increases,
the query time of spatio-topic index is much shorter, especially when the r is
large. For spatio-topic index based on MetaLDA and LDA, there is almost no
difference between them. Only difference between them is that topic vectors are
different but its impact on the effect is small so that their query time is almost
the same.

From Fig. 6 we can see that the number of topics affects query efficiency a
lot. Fewer topics mean that the classification is vague and there are more tweets
of per topic on average. For example, sports, if the number of topics is 5, then we
can divide the sport into basketball, football and so on. But if there is just 1 topic,
we can only take sports as topic. However, it does not mean that more topics
can always improve the efficiency. If there are too many topics, the semantics
between the topics will contain a lot of overlap which could cause chaos. Thus,
choosing a suitable number of topics can improve efficiency, usually we decide
number of topics from experience and training. As we can see in Fig. 6(d, f),
when the number of topics is 100, the query costs more time and performs worse
than 200 topics especially when r is large.

For the upper bound M , we fix it as 500, 1000 and 2000. When M is fixed
as 2000 and r is small such as 10 km, as shown in Fig. 6(g), query time is only
a little longer compared with M = 500 (see Fig. 6(a)). If r is small but M is
large, it means that the query might cover larger area and more tweets need
to be processed. With the increase of r, the impact of M becomes smaller. As
mentioned in previous section, M could affect the index construction and query
efficiency.
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Query Precision. Evaluating the query precision, mainly is to evaluate the
similarity between tweets of top-k users and query words. Most traditional eval-
uation methods only take the number of keywords into consideration but do not
fit our original purpose, i.e., trying to query according to semantic information
rather than keywords. In order to make our results more convincing. We invite
some students to estimate the results. In experiments, we select 22 meaningful
texts of tweets to query. For each method we propose, we choose top-5 results
in any of the 22 queries, we set r = 10 km. Clearly, for each method, we can
get 5 ∗ 22 results, we show all results to the students, and they decide whether
the result is related to the corresponding query or not. Finally, we take average
precision of each method as results.

Table 2. Similar content

Query words Result words

retail customer, service, store

semester, exam revised, professor, paper

music band, chorus, concert, dance

police officer, gunpoint, shooting

bitcoin btc, eth

Compared with spatial keyword index, the advantage of our method is that
different related words can be found in the result. Our experiment proves that
our method is effective because many related words that do not appear in query
appear in result. As shown in Table 2, the words related to the keywords of the
query appear in the result. For example, if a user searches music, however, there
may be no tweets nearby which mention music directly, but some tweets which
talk about band, concert and so on may relate to it. So these tweets can be
returned as results.

In our data set, spatio-topic index with 100 topics does not perform well
compared with spatial keyword index because of the scale of the data. If the
scale of the data set is smaller, the index with 100 topics might work better.
Fewer topics mean that lots of unrelated words might be divided into same
topics, which would reduce the precision of results. The index achieves the best
effect in this data set when the number of topics is around 200.

In addition, ξ can also affect the precision. Figure 7 shows the relation
between the precision and ξ. MetaLDA, which is trained with external infor-
mation (e.g., word embedding), gets higher precision than LDA and spatial key-
word query. Besides, when ξ decreases, the precision of both spatio-topic queries
decreases too.

For parameter ξ, it can decide what topics the query belongs to. Larger ξ
means that the query is more strict with topic, so some results that are less
related to the query will be neglected. For example, the query contains semester
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and exam, when ξ = 0.5, not only these two words but also other words such as
test and question appear in result, while when ξ = 0.9, the words test, question
disappear in result. From Fig. 7, we can see it clearly that when ξ = 0.9, the
precision is higher (i.e. the result is more related to the query). While it does not
mean that higher ξ is always better, if we want to get a larger range of results,
smaller ξ might be better.

In summary, top-k spatio-topic query is better in efficiency and precision on
Twitter data set. In addition, the experiments show that smaller M and larger
number of topics can improve query efficiency. In terms of precision, spatio-topic
query can effectively search for semantic related results.

6 Conclusion

In this paper, we develop a top-k spatio-topic index and corresponding query
(TKSTQ) algorithm on social media data, which can find out top-k users nearby
who talk about the relevance information. Different from traditional methods,
our method considering both semantic information and location into considera-
tion, utilizes MetaLDA to capture topics of texts, and organizes them efficiently
in index. Furthermore, we define a score function, which includes topic correla-
tion and distance score, to rank users, and design an efficient query algorithm. In
addition, our method can be used to recommend friends to users according to the
tweets. Our experiments on a real Twitter data set demonstrate the effectiveness
of our methods.

Our methods have some limitations. The training of topic model costs much
time, especially in large scale data. Besides, sometimes topic model may not work
very well in short texts. However, to some extent, we can use large scale data to
improve the effect of topic model because more words co-occurrence information
can be captured.
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Abstract. Predicting traffic flow is crucial for transportation manage-
ment and resource allocation, which has attracted more and more atten-
tion from researchers. The traffic flow in a city generally changes over
time periods but always exhibits certain periodicity. Previous works
focused on modeling spatial and temporal correlations using convolu-
tional and recurrent neural networks respectively. Typically, a method
that can effectively absorb more time-interval inputs and integrate more
periodic information will achieve better performance. In this paper,
we propose a Frequency-aware Spatio-temporal Network (FASTNet) for
traffic flow prediction. In addition to modeling the spatio-temporal cor-
relations, we dynamically filter the inputs to explicitly incorporate fre-
quency information for traffic prediction. By applying Discrete Fourier
Transform (DFT) on traffic flow, we obtain the spectrum of traffic flow
sequence which reflects certain travel patterns of passengers. We then
adopt a frequency-based filtering mechanism to filter the traffic flow
series based on the explored spectrum information. To utilize the filtered
tensor, a 3D convolutional network is designed to extract the spatio-
temporal features automatically. Inspired by the frequency spectrum
of traffic flows, this spatio-temporal convolutional network has various
kernels with different sizes on temporal dimension, which models the
temporal correlations with multi-scale frequencies. The final prediction
layer summarizes the spatio-temporal features extracted by the spatio-
temporal convolutional network. Our model outperforms the state-of-
the-art methods through extensive experiments on three real datasets
for citywide traffic flow prediction.

Keywords: Flow prediction · Filtering mechanism ·
Frequency spectrum analysis · Spatio-temporal correlation ·
Convolution

1 Introduction

Traffic flow prediction is inevitably important for various transportation services
such as route planning and resource allocation [21,24]. According to the recent
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report1 from Didi, the world’s leading mobile transportation platform, there
are more than 30 million taxi orders per month, with an average waiting time of
more than 7 min. Accurately predicting traffic flow in the near future is beneficial
for setting the tidal lanes to decrease congestion timely and rescheduling the
vehicles to achieve supply-demand balance. In many real-life applications, the
goal of traffic flow prediction is to provide short-term traffic flow-in and flow-out
information for city-wide regions, and this goal is achieved by learning spatio-
temporal regularities from massive traffic flow statistics in the past, and applying
the insights for future flow prediction.

Various approaches have been developed for improving traffic flow prediction
accuracy. A notable line of works [21–24] treat different regions separately and
predict the flow-in and flow-out of each region using univariate time series pre-
diction methods. However, it is well recognized that the traffic flows in nearby
regions are correlated with each other, which is also known as spatial dependen-
cies. To address the problem, some researches [4,20] encapsulate spatial informa-
tion as additional knowledge into the prediction model and thus achieve better
performance. The main limitation of these conventional prediction methods is
that they capture the spatio-temporal flow correlations using the simple linear
models, which is clearly contrary to the complex scenarios in reality.

Recently, inspired by the great success of deep learning, many works adopt
neural network based approaches to model complex spatio-temporal dependen-
cies for traffic flow prediction. They naturally organize the flow-ins and flow-outs
of regions during certain time period into a two-channel grid map. ST-ResNet [22]
applies residual convolutional operations over the grid map to extract deep spa-
tial features. In [21], DMVST attends to relevant temporal features extracted
from historical traffic grid maps using a hierarchical network containing CNN
and LSTMs [9]. All these approaches choose historical grid maps from previous
time periods in a rigid manner, such as previous a few days/hours or one-week
ahead maps.

To date, most of the existing methods underestimate the significance of
frequency-level information contained in the past traffic flows. An important
intuition is that: flow-in and flow-out sequences of a region typically involve
strong frequencies. For example, consider the taxi flow-ins and flow-outs of a
region in New York City over two weeks, as shown in Fig. 1. Both flow sequences
generally exhibit a 24-h frequency, i.e., the flow-in and flow-out numbers within
each time interval are close to those one day before. Apparently, incorporating
such frequency information into the prediction model will be beneficial and vital
for achieving more accurate results. However, to the best of our knowledge, none
of the existing techniques are able to explicitly exploit frequency-level informa-
tion for citywide traffic flow prediction.

There are two intrinsic technical challenges in developing a frequency-aware
method for traffic flow prediction. First, it is non-trivial to disclose the frequency
information due to the complicated nature of traffic flows. In particular, each
traffic flow process in a region can be viewed as a composition of traffic waves

1 https://sts.didiglobal.com/views/report.html.

https://sts.didiglobal.com/views/report.html
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Fig. 1. Traffic flow example. Left: a heat map of taxi traffic flow in a region of New
York City at certain time. Right: the flow-in and flow-out sequences in that region over
two weeks.

with different frequencies. If the traffic flow within a time interval is regarded as a
random variable, it will have a large variance due to the presence of complex real-
world mobility patterns. This can also be verified by sequences in Fig. 1, where
no strict frequency can be derived. Second, the frequency-level information is
usually time- and space-dependent : (i) a region at different time intervals may
involve different flow frequencies, and (ii) the flow frequency in different regions
can vary a lot. For example, as shown in Fig. 1, the flow frequency on Sundays
is about one week rather than 24 h. Besides, the traffic flow frequencies in city
centers can be quite different from those in remote areas.

To address these challenges, we have developed a novel frequency-aware
spatio-temporal neural method for traffic flow prediction. Our key insight is that
we can explicitly compute the frequency-level information for different regions
via frequency spectrum analysis [10], and the identified frequency dynamics is
useful to enhance the relevant historical flow data and suppress unrelated data
for future flow prediction. Following [22], we organize the traffic flow within each
time interval into a two-channel grid map, where the two channels correspond
to the flow-in and flow-out respectively, and the value in each grid cell is the
number of flow-ins/outs. Different from the works [21,22] that only consider a
small number of manually selected historical maps, we leverage a large num-
ber of traffic flow maps from previous time intervals as the input and perform
the frequency spectrum analysis over them. We then filter irrelevant flow infor-
mation according to their frequency information. Note that the filtering step is
dynamically performed for different time and regions. After that, we employ 3D
convolutional layers to extract the complex spatio-temporal features from the
filtered input, followed by a 2D convolutional map to produce the final traffic
flow in a city-wide manner.

To summarize, the major contributions of this paper are the following.

– To the best of our knowledge, this is the first attempt to explicitly explore
the frequency-level information for traffic flow prediction. We propose to per-
form frequency spectrum analysis over a larger number of historical traffic



700 S. Peng et al.

flow maps, and leverage the identified frequency dynamics to select the rel-
evant historical flow information for each region and time period on future
prediction.

– We develop a neural network based method named Frequency-aware Spatio-
Temporal Network for traffic flow prediction. Our model is equipped with
a novel frequency-based filtering mechanism to dynamically select the most
relevant traffic flow data according to frequency information. We employ a 3D
convolutional network to capture complex spatio-temporal correlations and
the extracted spatio-temporal features are further combined with frequency
features via 2D convolutions to derive the final prediction.

– We conduct extensive experiments on three real datasets. The results demon-
strate that our proposed method outperforms various baseline approaches,
and the frequency dynamics is useful in highlighting the relevant historical
flow data for improving prediction accuracy.

The remaining of this paper is organized as follows. We review the
related works in Sect. 2 and provide the preliminaries in Sect. 3. We present
our frequency-aware spatio-temporal network method in Sect. 4. Experimental
results are provided in Sect. 5 and we conclude this paper in Sect. 6.

2 Related Work

Traffic flow prediction has been studied for decades [14,22–24]. A number of
researches considered the traffic flow data in each region as a time sequence
and leveraged the time series prediction methods such as Vector Autoregres-
sive [13], Adaptive Autoregressive Integrated Moving Average [14], and logistic
regression [15] for traffic flow prediction. These approaches capture complex
temporal dependencies to enhance prediction accuracy, but ignore the effects
of spatial correlations among traffic flows in the surrounding areas. Some works
thus integrated spatio-temporal features into the prediction model. Ahn et al. [1]
employed Markov random field to model the traffic flows in both spatial and
temporal domains. Wu et al. [18] applied the dimension reduction technique to
eliminate redundant spatio-temporal features and accelerate the overall compu-
tation process. However, all these works adopted simple linear models to capture
spatio-temporal correlations, which are still insufficient to achieve high predic-
tion accuracy.

In recent years, deep learning has achieved great success in various fields
such as computer vision [7,8,11,16] and natural language processing [2], which
motivates many researchers to develop neural network based methods for traf-
fic flow prediction. Zhang et al. [23] used a 2D convolutional neural network
(CNN) to extract spatio-temporal features based on temporal closeness, period
and seasonal trend decomposed from the original traffic flow sequences. Further-
more, Zhang et al. [22] employed the residual learning and a parametric-matrix
based fusion mechanism to predict future flow more effectively. These 2D convo-
lutional models mainly capture the non-linear spatial correlations but ignore the
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temporal tendency of traffic flows. The long short-term memory (LSTM), a vari-
ant of Recurrent Neural Network (RNN), can learn long-term temporal tendency
from time series data. To capture the spatio-temporal correlations, convolutional
LSTM (convLSTM) [19] combines CNN with LSTM and achieves impressive
performance on spatial time series forecasting. Zhou et al. [24] predicted multi-
step citywide passenger demands using a novel attention based encoder-decoder
framework, where attention scores are assigned to the temporal features to dis-
criminate their importance for next step prediction. While the existing deep
learning methods achieve better performance in traffic flow prediction than con-
ventional machine learning methods, it is important to notice that traffic flow is
a special type of sequential data with strong frequency dynamics, as illustrated
in Fig. 1. The underlying frequency-level information involved in historical traffic
flows is beneficial to highlight relevant historical flow data for each region and
time period. Hence, in this paper, we propose to explicitly model the frequency
dynamics from historical traffic flow data and incorporate frequency features for
enhancing traffic flow prediction results.

3 Preliminaries

The goal of this paper is to predict citywide traffic flow, where the flow is caused
by vehicle trajectories. To do this, We split the whole city area into a map of
H × W grids, which has H rows and W columns. We denote each grid by Gi,j

where i ∈ [1,H], j ∈ [1,W ].

Definition 1 (City Grid Map). We represent the target city with a rectan-
gular area, which has (lonh, lath), (lonl, latl) for the upper left and lower right
corners. Given a grid length of λ, we divide the whole city area into H ×W grids
where

H = � (lath − latl)
λ

�, W = � (lonl − lonh)
λ

�

The city can thus be represented as a grid map M = {Gi,j |i ∈ [1,H], j ∈ [1,W ]}.

We represent each trajectory by Tr = (s, e, ts, te), where s, e are the start
and end points, and ts, te are the start and end time. The trajectories form the
traffic flow among city grids.

Definition 2 (Citywide Traffic Flow). Given a city map M , a set T of all
the trajectories in the city, the traffic flow for a grid Gi,j ∈ M within the k-th
time interval tk includes flow-in volume φI

k,i,j and flow-out volume φO
k,i,j, which

are defined as:

φI
k,i,j = |{Tr ∈ T | Tr.s ∈ Gi,j ∧ Tr.ts ∈ tk}| (1)

φO
k,i,j = |{Tr ∈ T | Tr.e ∈ Gi,j ∧ Tr.te ∈ tk}| (2)

Note that each grid involves two values for flow-in and flow-out volume,
respectively. Hence, we use a 3D tensor Φ ∈ R

H×W×2 to represent the city-
wide traffic flow during the k-th time interval, which is analogy to an image with
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two channels. Formally, we have:

Φk = {[φI
k,i,j , φ

O
k,i,j ] | 1 ≤ i ≤ H ∧ 1 ≤ j ≤ W} (3)

In this work, we take N citywide traffic flows for previous time periods k =
1, · · · , N as input, and try to predict the citywide traffic flow during the next
time interval k = T + 1.

Definition 3 (Traffic Flow Prediction). Given a H × W city map M and
a sequence of N citywide traffic flows Φ = {Φk | k = 1 · · · , N} during previous
N time intervals, we aim to predict the citywide traffic flow ΦN+1 for the next
time period.

k × w × h k × w × h 

time

Φ1
A

Conv3d

DFT 
Frequency feautues

B

Conv3d Conv3dConv3d

k × w × h 1 2 n

concat Conv2d Conv2d

T x W x H x C

W

H

T

1

multi conv3d layers 

flow-in

flow-out 
output

Φ2 Φ3 ΦN-2 ΦN-1ΦN

3D Kernel

1 x W x H x Cn      1 x W x H x C2      1 x W x H x C1      

C

σ

Fig. 2. Frequency-aware Spatio-temporal Network. (A) Frequency-based filtering mod-
ule. Given a series of traffic flow maps Φt1 , · · · , Φtk , we apply DFT to each grid in the
map and generate filtering weight tensor. (B) Spatio-temporal convolutional module
captures spatio-temporal correlation of filtered maps using multiscale 3D kernels. (C)
The final output module summarizes different components and predicts the traffic flow
for the next time period.

4 FASTNet: Frequency-Aware Spatio-Temporal Network

4.1 Overview

In this section, we describe our Frequency-aware Spatio-Temporal Network in
detail. The transformation between time domain and frequency domain and our
analysis in frequency domain will be presented at first. Then we introduce the
architecture of our model. FASTNet is dedicated to using the frequency domain
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(a) The flow-out of New York City taxi (b) The spectrum of NYC taxi
flow within a grid.

Fig. 3. The traffic flow curve and its frequency spectrum.

information and continuous long-term information to predict traffic flow for the
next time period. Figure 2 depicts the architecture of our proposed Frequency-
aware Spatio-temporal Network (FASTNet), which mainly contains three com-
ponents.

– The first part is the frequency-based filtering module. It obtains frequency
features F from traffic flow tensor Φ (Φ ∈ R

N×W×H×2) through Discrete
Fourier Transform. Frequency spectral information indicates potential peri-
odic characteristics. We apply the 3D convolutional neural network to extract
the filtering weight tensor from frequency features and then assign weights to
the input tensor to obtain filtered tensor Φ′. This filtering allows us to pay
more attention to important historical flow information and ignore the noise.

– The second component can extract the spatio-temporal relationship from the
filtered tensor Φ′. Inspired by the frequency analysis, we observe that the
traffic flows contain several main frequencies. And we use 3D convolutional
network to model the complex spatio-temporal correlations. Different sizes of
kernel in the time dimension will extract different temporal features. Finally,
this module concatenate all these feature maps together and output the fea-
ture tensor Ψ .

– Finally, we summarize spatio-temporal features and predict the traffic flow
Φ̂N+1 through a 2D convolutional network.

4.2 Frequency Spectrum Analysis

In the time-domain signal processing, we can transform it into the frequency
domain to obtain more information through Fourier Transform. For discrete time
domain signals, we use discrete-time Fourier Transform (DTFT). Supposing X
is a time series, the frequency-domain spectrum is

Fi,j(ω) =
∞∑

k=−∞
Xke−iωk (4)

where i =
√

−1. This transform needs long-term time series data and the spec-
trum is continuous. Specifically, for short-term time series data φi,j , we obtain
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its spectrum near time interval N by Discrete Fourier Transform (DFT). Then
we will get the discrete frequency domain information, as

Fi,j(ω) =
N∑

k=1

φk,i,je
−iωk (5)

where N is the number of the past discrete time intervals, ω = 2mπ
N (m =

0, 1, 2, · · · , N) is the frequency variable. And Fi,j(ω) is the spectrum near time
interval N at Gi,j . And F(ω) can be separated into real part Re(F(ω)) and
imaginary part Im(F(ω)). The amplitude of each frequency 2π

ω is formulated as:

|Fi,j(ω)| =
√

Re(Fi,j)2 + Im(Fi,j)2 (6)

To analysis this frequency spectrum, we transform the amplitude to decibel as
below

|Fi,j(ω)|dB = 20 ∗ log(|Fi,j(ω)|) (7)

Figure 3a shows the curve of the two-week flow-outs in New York City. The
traffic flow is very similar to signals with multiple frequencies and contains some
noise. We can map it into the frequency domain to analyze its components and
find its patterns. Obviously, the taxi traffic data shows a certain periodicity, such
as 24 h and a week, although not strictly consistent. From a signal point of view,
the traffic flow can be seen as a superposition of many sub-flows with different
frequencies. To predict the next traffic flow volume, we may use the frequency
domain information in the time dimension to make predictions.

Applying DFT to traffic flow volume data, we can obtain the spectrum at
each grid. We remove half spectrum of NYC taxi flow due to the symmetry
of DFT. As Fig. 3b shows, there are many reasonable periods that have higher
amplitudes than others, such as 24 h, 12 h, 8 h and etc. However, the amplitudes
of the main components within different girds can vary greatly, indicating that
different regions have different frequency characteristics. We need to capture
these differences in our model. Specifically, by leveraging these features, we can
infer which parts of historical data are more important to predict the next traffic
flow and enlighten more appropriate spatio-temporal network kernel sizes. In our
experiments, we aggregate all the traffic flow of each grid and apply DFT to these
series to obtain their frequency spectrum. In frequencies where the amplitude
exceeds the noise, we choose several peak frequencies as the main frequency
components.

4.3 Frequency-Based Filtering

Once we extract the frequency information from input historical data, we need to
determine which parts of data in the fragment are significantly important for the
prediction. We purpose a frequency-based filtering mechanism for this purpose.
Our frequency-based filtering mechanism generates vectors ai,j = {aI

i,j ,a
O
i,j} for

each grid and gives more importance to the most relevant historical data.
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traffic flow
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σ
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Frequency Feature

|F(ω)|

weight tensor A

Fig. 4. Frequency-based filtering mechanism

Filtering Mechanism: As shown in Fig. 4, our filtering mechanism consists
of three steps, which dynamically determines the most relevant flow to the
prediction of each grid. All the filtering weights are obtained from traffic flow
using DFT and convolutional layers. First, suppose we use the traffic flow data
of the nearest N time intervals to predict the traffic flow in the next time
period. For each gird Gi,j in the city map, we apply Eq. (5) to get the spectrum
|Fi,j(ω)|, ω = 2mπ

N ,m = 0, 1, · · · , N/2, which is a 4D tensor (2 × W × H × N/2)
including flow-in and flow-out frequency features. Second, we develop multiple
3D convolutional layers with kernel size 1 × s1 × s2 (s1 and s2 are the ker-
nel parameters), which summarize neighbors’ spectrum and extract the filtering
weight tensor from the spectrum. In this step, our model generates the input
importance of each time interval. Finally, after multiple convolution layers and
sigmod function, we obtain the filtering weight tensor A ∈ R

N×W×H×2. For flow-
in and flow-out at Gi,j , we have filtering vectors aI

i,j and aO
i,j , respectively. We

multiply the filtering tensor A with input tensor by hadamard product (denoted
by ◦). The key equations of our filtering mechanism are formulated as follows:

Fi,j(ω) =
N∑

k=1

φk,i,je
−iωk ω =

2πm

N
,m = 0, 1, · · · ,

N

2
(8)

A = σ(f(Wf2 ∗ f(Wf1 ∗ |F(ω)| + bf1) + bf2)) (9)

Ψ = A ◦ Φtk t = 1, 2, · · · , N (10)

where F ∈ R
2×W×H×(N/2+1), | · | is the module of each number in a matrix,

* denotes a convolution operation and f(·) represents a non-linear activation
function.
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4.4 Spatio-Temporal Convolutional Module

In addition to frequency filtering, traffic flow typically has strong spatio-temporal
dependency. Previous works [22,23] used residual convolutional networks or
LSTM [21] to capture spatio-temporal correlations, which underutilized the full
historical data or failed to capture longtime dependency. To overcome these
deficiencies, we extend the spatial CNN to spatio-temporal convolutional neural
network (ST-CNN), and employ 3D convolutional layers to model the spatio-
temporal correlations.

From the spectrum analysis we can know that there are many important
frequency components in the traffic flow. For each frequency component, we can
extract the features by setting the kernel size and convolution stride according
to its corresponding scale. For different frequency components, we set up mul-
tiple convolution kernels of different sizes to extract spatio-temporal features of
different scales. Our spatio-temporal convolutional component can leverage data
from hundreds of time intervals. Figure 2b shows the structure of this module.
We use multiple 3D convolution kernels, which have the same size with stride
in temporal dimension. The size of each kernel is k × w × h, which means that
we perform a convolution operation every k data points of inputs without over-
lapping. According to the frequency spectrum, there are several main frequency
components, which are used as the 3D kernel sizes in temporal dimension. That
is to say, our model uses some significant frequencies to set the kernel size in time
space. The input map Ψ is 4D tensor, Ψ ∈ R

T×W×H×2 and the output is hl for
layer l. Due to the excellent performance of our frequency domain filtering mech-
anism and the 3D convolutional network, we only need to use a few convolutional
layers to extract complex spatio-temporal features. Finally, we concatenate all
the features together. The first layer and output can be formulated as follows:

h1
k = f(Wk ∗ Ψ + bk) (11)

h = hL
1 ⊕ hL

2 ⊕ · · · ⊕ hL
n (12)

where h1
k is the output of first convolutional layer with k-th kernel. ⊕ donates

concatenate operation. n is the number of kernels. And h is the final output map
of this component.

4.5 Prediction Component

The final prediction component utilize the features h extracted by spatio-
temporal convolutional module to forecast the traffic flow Φ̂N+1 in next interval.
We employ two convolutional layers to compute the prediction results Φ̂N+1,
which are defined as follows:

Φ̂N+1 = f(W2 ∗ (f(W1 ∗ h) + b1) + b2) (13)

where W1, W2, b1 and b2 are parameters to be learned.
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Table 1. Datasets

Dataset Time span Time interval Grid map size

NYCTaxi 01/01/2014–06/30/2015 1 h 48 × 32

NYCBike 04/01/2014–09/30/2014 1 h 16 × 8

TaxiCD 11/01/2016–11/30/2016 15 min 48 × 48

4.6 Optimization

Our FASTNet model predicts the traffic flow in the next time interval with N
previous traffic flows. Our model can be trained by the following loss function.

L(θ) = ||ΦN+1 − Φ̂N+1||22 (14)

where θ denotes all the trainable parameters.

5 Experiments

In this section, we conduct extensive experiments on three traffic datasets to
evaluate the performance of our model. We also analyze the frequency-based
filtering mechanism and show the effect of the number of input time intervals.

5.1 Datasets and Settings

Datasets. We use three traffic datasets: TaxiNYC2, BikeNYC3 and TaxiCD4.
The details of all the datasets are presented in Table 1. Regarding people’s actual
travel distances, we set the grid size of each city as 1 km × 1 km. We set the time
interval to be 1 h for TaxiNYC and BikeNYC, and 15 min for TaxiCD. We remove
the records in abnormal positions and compute traffic flow volume during each
time interval in each map. Then we eliminate the outer grids that have few
records. After that, we get the predictable map segmentations of each dataset.
We choose the first 80% of the samples as training data, the following 10% for
validation, which is used for parameter tuning, and the remaining for test.

Experimental Settings. Our experiments are conducted on a server with
two NVIDIA Titan Xp GPUs. We implement our model and other baselines in
Python and the third-party library mainly including tensorflow [6], xgboost and
statsmodels. Specifically, time interval lengths of input(N) respectively are 168,
168 and 672 for TaxiNYC, BikeNYC and TaxiCD, respectively. We truncate the
half spectrum information from DFT as the input for filtering module. We use
two convolutional layers to generate filtering weight tensor. The kernel sizes are
2 http://www.nyc.gov/html/about/trip record data.shtml.
3 https://citibikenyc.com/system-data.
4 https://gaia.didichuxing.com.

http://www.nyc.gov/html/about/trip_record_data.shtml
https://citibikenyc.com/system-data
https://gaia.didichuxing.com
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Table 2. RMSE comparison with different baselines

Dataset HA VAR ARIMA RG XGBoost ST-ResNet Conv-LSTM FASTNet-N FASTNet

NYCTaxi 22.85 13.15 18.44 16.21 15.86 9.37 8.55 7.82 7.34

NYCBike 8.53 7.19 7.21 8.76 6.11 5.12 5.05 5.01 4.60

CDTaxi 1.62 1.66 1.76 1.85 1.58 1.57 1.50 1.39 1.31

both (1 × 3 × 3). We choose sigmoid function to transform the weights to (0, 1).
For 3D spatio-temporal CNN, we use two 3D convolutional layers to extract the
complex spatio-temporal correlation. The sizes of kernel in first convolutional
layer are (8, 3, 3), (12, 3, 3), (24, 3, 3) except for TaxiCD. For TaxiCD, the kernel
sizes are (16, 3, 3), (32, 3, 3), (48, 3, 3), (96, 3, 3). The number of each type kernel
is 64. The final prediction component consists of two convolutional layers. The
kernel sizes of predicting layers are both (3×3). We use RMSPropOptimizer [17]
as optimizer and set the learning rate to be 0.0002.

5.2 Measurement and Baseline Methods

We measure the performance of different methods by Root MeanSquare Error
(RMSE), which is defined as follows:

RMSE =
√

1
Q

∑

i

∑

j

∑

k

(φk,i,j − φ̂k,i,j)2 (15)

where Q = ξ × W × H × 2, and ξ is the number of samples.
We compare FASTNet with seven baseline methods, which are Histori-

cal Average (HA), Vector Auto Regression (VAR) [5], Auto-Regressive Inte-
grated Moving Average (ARIMA), Auto-Regressive Integrated Moving Average
(ARIMA), Ridge Regression, XGBoost [3], ST-ResNet [22], ConvLSTM [19].

5.3 Performance Comparison

Table 2 shows the performance of our model compared to all the baselines on
three datasets. Result differences between three datasets are caused by dif-
ferent total traffic flow volumes. The rooted mean square values of the traf-
fic flow volume in three datasets are 91.46 (TaxiNYC), 20.89 (BikeNYC) and
6.06 (TaxiCD), respectively. FASTNet and FASTNet-N (without Filtering)
achieve best performance with the lowest RMSE than the other baseline meth-
ods. On three datasets, our model improves RMSE by 14.2%, 8.9% and 12.7%
than ST-ResNet. We can also observe that FASTNet performs better than
FASTNet-N, which does not have the filtering mechanism. We also notice
that the performance of HA method is not too bad on these datasets, which
reveals that the traffic flow data presents periodicity. The VAR and ARIMA
do not achieve impressive performance, because these models only use a small
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Table 3. Comparison with variants

Dataset FASTNet-K20-K16-K6 FASTNet-K24 FASTNet-K24-K12 FASTNet

NYCTaxi 7.71 7.73 7.41 7.34

NYCBike 4.87 4.75 4.64 4.60

amount of historical data and fail to model complex spatio-temporal correla-
tions. The regression methods (Ridge Regression and XGBoost) do not perform
well, because these linear models cannot model the non-linear spatio-temporal
correlations very well. ConvLSTM and ST-ResNet perform better than classi-
cal machine learning methods. But they all ignore the long-term (more than
one hundred time intervals) continuous dependency of the flow data. For ST-
ResNet, the historical data is split into pieces. And only part of these data is
used as input, which may lose some important information and break the period-
ical information. FASTNet not only assigns weights to the important historical
data, but also model spatio-temporal correlations with long sequences.

5.4 Influence of Different Kernel Sizes in ST-CNN

We analyze the influence of different kernel sizes in temporal dimension. It is
intuitive that frequency components of traffic flow come from the cycle of daily
life. The kernel size in temporal dimension is very important for prediction. The
first layer in our 3D ST-CNN extract long time features over multiple cycles
using different 3D kernels. We design several variants of FASTNet for NYCTaxi
and NYCBike datasets by setting the first layer of 3D ST-CNN with different
kernels according to the main frequency components:

– FASTNet-K24: Kernel is set to 24 × 3 × 3.
– FASTNet-K24-K12: Kernels are set to 24 × 3 × 3 and 12 × 3 × 3.
– FASTNet-K20-K16-K6: Kernels are set to 20×3×3, 16×3×3 and 6×3×3.
– FASTNet: Kernels are set to 24 × 3 × 3 and 12 × 3 × 3, 8 × 3 × 3.

As shown in Table 3, thanks to the frequency-based filtering mechanism and
spatio-temporal architecture, all the variants achieve lower RMSE than the base-
line methods. It is obvious that FASTNet performs consistently better than
other variants on NYCTaxi and NYCBike. FASTNet-K20-K16-K6’s kernel sizes
in time dimension are not fit for the main frequency components and there-
fore performs poorly. Compared to FASTNet-24K, FASTNet-24K-12K achieves
4.1% and 2.3% improvement. Furthermore, FASTNet with three relevant ker-
nels achieves 1% lower RMSE than FASTNet-K24-K12 on both NYCBike and
NYCTaxi. It shows that the 12-h periods and 8 h periods are both important
for prediction. In general, the more related kernels we add, the more prediction
accuracy we can gain.
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Fig. 5. Filtering weights of two grids
on NYCBike.

Fig. 6. RMSE of different input lengths
on NYCBike.

5.5 Filtering Weights Analysis

Our frequency-based filtering mechanism can enhance the most relevant part of
input and filter irrelevant frequency information. Here, we will explore the func-
tionality of the filtering mechanism by visualizing part of the filtering weights.
At different grids, the filtering mechanism can assign different importance to his-
torical data according to the frequency features. We select two girds in NYCBike
dataset. Grid 1 is closer to the city center and the daily traffic flow volume is
very large during a week. Grid 2 is remote from center and the traffic flow during
a week is very uneven. Figure 5 shows the comparison between these two girds
on NYCBike map. We extract the weights of 10 time intervals. Higher coefficient
means the data at this time interval is more important and we want to enhance
it. It can be seen that the Grid 1 gives more attention to the near data that in
a day such as 1 h, 4 h, 24 h. Also, Grid 1 takes the data 1 week ago as the most
important part. Obviously, the weights of Grid 2 is different from that of Grid 1,
which is more balanced. Compared with Grid 1, Grid 2 is interested in the data
for one-day basis. This is because Grid 1 is much far away from downtown than
Grid 2, and Grid 2 has more balanced traffic flow.

5.6 Influence of Sequence Length

We now study the effect of the input length. Our FASTNet can model spatio-
temporal correlations of very long sequence. It excels at discovering patterns
that have periodic variations over time. Previous deep-learning methods can only
handle short input lengths. With the increase of input length, the performance
of LSTM may decrease because of gradient vanishing. To analyze the influence
of sequence length, we set the input length to be one of {12, 24, 48, 72, 96, 120,
144, 168}. Figure 6 shows the influence of different input lengths on NYCBike
dataset. Our FASTNet model performs better as the sequence length increases.
ST-ResNet uses the incomplete data as input, which fail to extract the traffic
flow features in the distant past. ConvLSTM has much stable performance than
ST-ResNet, even though it does not have much performance gain with more
inputs. In FASTNet, the frequency-based filtering mechanism can filter the data
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over a long time and the 3D spatio-temporal convolutional module treats the
input data as small fragments, which share the parameters to extract features
from longer input sequences. Overall, our model can incorporate with hundreds
of time-interval inputs and achieve better performance.

6 Conclusion

In our paper, we analyze the frequency domain characteristics of traffic flow data
for traffic flow prediction. Based on the explored frequency characteristics, we
propose a frequency-aware spatio-temporal network (FASTNet), which leverages
frequency spectrum information to dynamically filter historical data and skill-
fully integrate 3D convolution to model spatio-temporal correlations. Our model
is able to take the advantages of historical data with longer lengths towards bet-
ter prediction performance. We also evaluate our method on three traffic flow
datasets, i.e., TaxiNYC, BikeNYC, CDTaxi. Extensive experiments demonstrate
the proposed method outperforms all the seven baseline methods in prediction
accuracy. The experiments on various input lengths verify that our model is able
to effectively extract long-term dependency features.
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Abstract. With the emergence of smart phones and the popularity of
GPS, the number of point of interest (POIs) is growing rapidly and
spatial keyword search based on POIs has attracted significant atten-
tion. In this paper, we study a more sophistic type of spatial keyword
searches that considers multiple query points and multiple query key-
words, namely Aggregate Keyword Routing (AKR). AKR looks for an
aggregate point m together with routes from each query point to m.
The aggregate point has to satisfy the aggregate keywords, the routes
from query points to the aggregate point have to pass POIs in order
to complete the tasks specified by the task keywords, and the result
route is expected to be the optimal one among all the potential results.
In order to process AKR queries efficiently, we propose effective search
algorithms, which support different aggregate functions. A comprehen-
sive evaluation has been conducted to evaluate the performance of these
algorithms with real datasets.

Keywords: Aggregate keyword query · Query processing ·
Route planning

1 Introduction

The emergence of smart phones and the popularity of GPS have spawned a
revolution in mobile location-based capabilities. Many users of mobile Apps are
voluntary information contributors. For example, many mobile Apps that pro-
vide location-based services allow users to upload and update the description of
locations, e.g., Foursquare1. With the help of these User Generated Contents, the
number of point of interest (POIs) is growing rapidly. Accordingly, the searches
conducted by users are no longer only about spatial features but also textual
contents. A spatial keyword query that aims at finding a POI which is closest
1 https://www.foursquare.com.
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Fig. 1. Example of aggregate keyword routing

to the query point and meanwhile is relevant to the requested keywords is one
example. Besides, Aggregate Nearest Neighbor (ANN) query [12], which finds the
aggregate point with the smallest aggregate distance for a given set of spatial
points and a given set of query points, is also a hot research topic.

In this paper, we study a more sophistic type of spatial keyword searches
that considers multiple query points and multiple query keywords. Before we
formally introduce the query, let’s consider the following scenario, as detailed in
Example 1. Function keyword(P ) takes in a set of POIs P as input and returns
the set of keywords associated with any POI p ∈ P , and function poi(R) takes
in a set of routes R as input and returns the set of POIs passed by any single
route r ∈ R.

Example 1. Alex, Bob, and Carol want to organize a barbecue in a park. On
their ways to the barbecue venue, they need to purchase beer, meat, and fruit for
the barbecue and magazines and cards to pastime during the barbecue. Assume
Fig. 1 plots all the POIs. In order to facilitate planing of the barbecue, they want
to conduct a search that takes in their home locations (i.e., q1, q2 and q3 in
Fig. 1), and two set of keywords, namely task keywords κt = {beer, meat, fruit,
magazine, card} and aggregate keywords κa = {park, barbecue}, as input, and
output a gathering point m and three routes r1, r2, r3 from their home locations
to m respectively. To be more specific, the query is expected to satisfy following
three conditions: (i) the gathering point m needs to satisfy the textual requirement
represented by κa such as m1 and m2 in Fig. 1, i.e., keyword({m}) ⊇ κa; (ii)
the set of POIs passed by three routes, denoted by poi(∪3

i=1ri), is able to satisfy
the textual requirement represented by κt, i.e., keyword(poi(∪3

i=1ri)) ⊇ κt; and
(iii) for any other answer set 〈m′,∪3

i=1r
′
i〉 that satisfies the above two conditions,

the aggregate distance (e.g., avg, max, sum) of ∪3
i=1ri does not exceed that of

∪3
i=1r

′
i in order to guarantee that the search returns the optimal solution. For

example, if maximum is the selected aggregate distance function, m2 and the
three solid-line routes form the solution.

The search conducted in Example 1 considers spatial condition represented
by the set of query points Q and textual conditions represented by the two sets
of keywords, denoted as κa and κt, and expects a single answer point, together
with routes from each individual query point to the answer point. The textual
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condition requires the answer point to satisfy one set of keywords κa, and the
POIs passed by the routes to cover the other set of keywords κt; while the
spatial condition requires the routes to provide the optimal solution for certain
given distance functions. Accordingly, this spatial keywords search is named as
Aggregate Keyword Routing (AKR).

AKR is challenging and time consuming. It expects an aggregate point m
and a set of routes ∪iri from each query point to m as the result, but there are
a great number of such possible routes. Consequently, the search space for the
qualified routes for a given aggregate point is very large. Not to mention that
the search space for the aggregate points could be large too. In fact, AKR query
is NP-Hard.

The exact and approximate algorithms to solve the AKR problem are avail-
able, i.e., Task Assignment and Routing (TAR) and Center Based Assignment
(CBA) proposed in [1]. Our solution outperforms TAR in terms of efficiency,
while it achieves a higher accuracy than CBA. Furthermore, we take into account
the average aggregate distance function, which was not discussed in [1], and
extend all algorithms to support the new function.

In summary, this paper makes following major contributions.

– We propose novel search algorithms to process AKR queries, namely Tree
Expansion (TE) and TE-ext, which are efficient and effective.

– Our algorithms support both maximum and average aggregate distance
functions, and we extend the existing algorithms proposed in [1] to support
the average aggregate distance function too.

– We conduct comprehensive experimental study to evaluate the performance
of our algorithms with real POI data in different scales. The results demon-
strate the efficiency and correctness of our algorithms in different aggregate
functions and data scales.

The remaining of this paper is organized as follows. Section 2 reviews the
related work. Section 3 formally defines the problem of Aggregate Keyword Rout-
ing. In Sect. 4, we present algorithm TE and its extension. For structural clarity,
we only consider maximum as the aggregate distance function in Sect. 4; while
we present the variances of algorithms to support AKR query using average as
the aggregate distance function in Sect. 5. In Sect. 6, we analyze the worst-case
time complexity of the algorithms. Section 7 reports our experimental evaluation
results. Finally, we conclude our paper in Sect. 8.

2 Related Work

AKR query combines aggregate nearest neighbor (ANN) with semantic similar-
ity. In the following, we mainly review existing works related to ANN query,
spatial keyword query and AKR query.

2.1 ANN Query and Spatial Keyword Query

Aggregate Nearest Neighbor (ANN) is a traditional problem. In the literature,
ANN and many of its variances have been studied. [12] proposes the ANN query,
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and analyzes the average function situation. [13] considers maximum, minimum,
and average aggregate distance functions under R-tree. [5] explores the ANN
query in high dimension. [10,11] solve the ANN query without indexing. [14]
incorporates Voronoi diagrams into R-tree to take advantages of the strength
from both structures. [15,19] study ANN query in road networks. [4] finds a
group from aggregate points and minimizes the total distance from query points
to group. [16,17] explore the merged aggregate nearest neighbor query. [23] con-
siders road network’s Voronoi graph and solves ANN problems for both sum
and maximum functions. [9] studies ANN in uncertain databases, and proposes
effective pruning methods to reduce the search space.

Spatial keyword queries have also been well studied recently. [3] proposes
IR2-tree, which integrates R-tree and signature files; and [21] proposes bR*-tree
that combines R*-tree with bitmap and keyword MBR. IR-tree [2,8] attaches
each MBR with inverted lists, and supports ranking queries in respect to both
spatial proximity and semantic similarity. [7] studies top-k aggregate neatest
keyword query. [22] studies aggregate keyword nearest neighbor query, which
finds the nearest neighbor with certain keywords. [6] considers direction-aware
spatial keyword search, which considers keyword’s direction. [20] proposes IL-
Quadtree, which is based on inverted index and the linear quadtree, and develops
an efficient algorithm to tackle top-k spatial keywords search. [18] considers the
multi-approximate keyword routing problem.

2.2 AKR Query

The AKR problem was first studied in [1]. The authors proposed an exact algo-
rithm and an approximate algorithm, namely Task Assignment and Routing
(TAR) and Center Based Assignment (CBA) respectively.

TAR is a two-phase algorithm, which consists of Search and Assignment
Phase and Task Finishing Phase. In Search and Assignment Phase, existing
ANN search algorithms are used to determine access order, i.e., the priority
of the potential aggregate points, where a technique called early termination
is applied to reduce the number of possible points. Then candidate POIs on
the routes from each query point to the aggregate point are determined. In Task
Finishing Phase, the algorithm searches for optimal routes and prunes the useless
routes, taking advantages of the heap data structure.

CBA, on the other hand, is an approximation algorithm. It first locates an
aggregate point m that is close to all query points. Afterwards, a nearest neighbor
search around m generates a set of POIs which need to be passed. Finally, the
result routes are computed through a heuristic approach, which starts from the
shortest path and then inserts a POI into the path.

3 Problem Formulation

In the context of this paper, a POI p is associated with its location and a set of
keywords κ(p) = {δ1, δ2, ..., δk} with k = |κ(p)|. An Aggregate Keyword Routing
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Table 1. Frequently used notations

Notation Explanation

P set of POIs

Q set of query points

rq,m a route 〈q, p1, ..., px, m〉 from point q to point m

RQ,m a route set {∪∀q∈Qrq,m} from query points in q to m

R0
Q,m the shortest route set from Q to m without passing any other point

L(r) length of route r

Lf (R) length of route set R with aggregate distance function f

Lmax(R) the maximum aggregate distance of R, i.e., max∀r∈RL(r)

Lavg(R) the average aggregate distance of R, i.e., 1
|R|

∑
∀r∈R L(r)

α the aggregate point set

κa the aggregate keyword set

κt the task keyword set

δ a single keyword

κ(R) set of task keywords covered by set R

m a candidate aggregate point

Query (AKR) takes in three parameters as input, i.e., a query point set Q, a
task keyword set κt, and an aggregate keyword set κa. For a given task keyword
set κt, a POI p is considered as a task POI iff κ(p) ∩ κt �= ∅. Table 1 lists the
notations that will be frequently used in the rest of this paper.

In the following, we first present the terms of route, route set, and the aggre-
gate distance of a route set in Definitions 1, 2, and 3 respectively. We then intro-
duce candidate result of an aggregate keywords routing query in Definition 4 and
present the formal definition of AKR in Definition 5.

Definition 1. A route rs,m = 〈s, p1, ..., px,m〉 is a point sequence that starts
from point s, goes sequentially through p1 to px and ends at point m. We denote
length of the route as L(rs,m) and the keyword set covered by the route as κ(rs,m),
i.e., κ(rs,m) = ∪∀pi∈rs,m

κ(pi).

Definition 2. Given a query point set Q = {q1, q2, · · · , qn}, we use notation
RQ,m to represent a route set {rq1,m, rq2,m, · · · , rqn,m} and notation κ(RQ,m)
to capture the keyword set covered by any route in RQ,m, i.e., κ(RQ,m) =
∪∀r∈RQ,m

κ(r).

Definition 3. The length of RQ,m is marked as Lf (RQ,m), dependent on the
given aggregate distance function f . For example, if maximum is the aggregate
distance function, we have Lmax(RQ,m) = maxrq,m∈RQ,m

L(rq,m); if average is
the aggregate distance function, we have Lavg(RQ,m) = 1

|Q|
∑

rq,m∈RQ,m
L(rq,m).

Definition 4. Given an Aggregate Keyword Routing (AKR) query 〈Q,κa, κt〉,
an aggregate point m and a route set RQ,m form a candidate AKR result
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〈m,RQ,m〉 if and only if κa ⊆ κ(m) and κt ⊆ κ(RQ,m). We denote the com-
plete set of candidate AKR results as AR. As the aggregate point m could be
derived from RQ,m, we use RQ,m to represent a candidate AKR result but skip
m for brevity.

Definition 5. Given an aggregate distance function f , an Aggregate Keyword
Routing (AKR) query 〈Q,κa, κt〉 is to locate the candidate result set Rresult with
the minimum Lf (Rresult) value, i.e., Rresult = arg minRQ,m∈AR

Lf (RQ,m).

As mentioned above, processing of AKR query is very time consuming. In
fact, it is NP-Hard, as presented in Theorem 1.

Theorem 1. The Aggregate Keyword Routing problem is NP-Hard.

Proof. The classical Euclidean Traveling Salesman Problem (Euclidean TSP)
can be reduced to AKR problem. Given an Euclidean TSP problem, it includes a
start point o, and a set of points S which the salesman should travel to, with all
the points in an Euclidean space. We can construct an AKR problem as follows.
We assign each point in S ∪ {o} unique keywords with its location unchanged.
Let the query point set Q = {o}, the aggregate keyword set κa = {κ(o)}, and
the task keyword set κt = {⋃

p∈S κ(p)}. Clearly, this AKR query solves the
Euclidean TSP problem. Thus, the AKR problem is NP-Hard. ��

4 Tree Expansion

As mentioned in Sect. 2, existing algorithm TAR finds the optimal solution of an
AKR query. However, the algorithm is time-consuming since its time complexity
grows exponentially as the size of input increases. On the other hand, CBA is
efficient, but usually results in inaccurate answers. In this section, we propose a
new algorithm, which is as efficient as CBA, but much more accurate than CBA.

We first find the aggregate point m, on the basis of the minimum cover circle,
i.e., a circle that covers all query points and has the smallest radius. Assuming
that the circle is centered at the point o, we search for the aggregate point m
within the neighborhood of o, because the points near o probably have small
maximum distance to the query points. Then, we look for suitable POIs during
the process of generating the routes. We consider the selected aggregate point
m as the root of a tree, and the query points are the leaves of the tree. Initially,
the tree only contains the direct path from all the leaves to the root, without
passing any of the task POI. We then expand the tree by adding suitable POIs
to the paths. As maximum is the aggregate distance function, among the |Q|
paths from q ∈ Q to the root, it strategically selects the shortest one to perform
the expansion to avoid the case where one of the path becomes very long, until
all the task keywords specified in κt have been covered. The algorithm is named
as Tree Expansion (TE) to reflect the nature of the search.

Before we present the detailed algorithm, we first introduce a min-heap where
each element of the heap is in the form of 〈(s, p, e), d〉. Here, (s, p, e) is a three
tuple vector and d indicates the detour caused if a route from s to e needs to take
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Fig. 2. Example of tree expansion

a detour at point p, i.e., d = |s, p| + |p, e| − |s, e|. The notation |a, b| represents
the Euclidean distance between two points a and b. All the elements in the heap
are sorted based on ascending order of d values. We maintain |Q| min-heaps to
facilitate the expansions of the paths from q ∈ Q to m.

Algorithm 1 lists the pseudo code of TE. It locates the minimum circle cov-
ering all the query points and uses the center of the circle to find an aggregate
point m (line 1), initializes the result set Rresult with R0

Q,m, and initializes min-
heap heap[i] and an index array leng[i] (lines 2–4). The index array is to record
the length L(rqi,m) for each route rqi,m in the current Rresult. Thereafter, for
each single query point qi ∈ Q, it pushes the potential expansion options to
the corresponding min-heap heap[i] to enable the tree expansion. To be more
specific, for each direct route 〈qi,m〉, it could be expanded by adding one POI
point. We locate all the POIs points p ∈ P that cover at least one queried task
keyword as the candidate points to enable the expansion, and add 〈(qi, p,m), d〉
to the heap heap[i] as a potential expansion option (lines 5–7). The real expan-
sion is guided by routes in Rresult and the elements in heap. Every time, we pick
the path rqi,m ∈ Rresult with the shortest distance for expansion, following the
top option in heap[i] with the smallest detour. Assume the path rqindex,m has
the shortest route distance value among all the routes in Rresult, and the top
element of heap[index] is e in the format of 〈(ps, pm, pe), d〉. The corresponding
expansion is to expand the direct link 〈ps, pe〉 to 〈ps, pm, pe〉. Note that ps and
pe might not be adjacent because other point(s) might have been added between
ps and pe. Meanwhile, we also check whether κ(pm) is still required by κ with
κ recording the task keywords not yet been covered by any route in Rresult. We
then perform the expansion if it is valid (line 12), update leng[index] to reflect
the extended length of the route rqindex,m ∈ Rresult and update κ to remove
the task keywords covered by new POI pm (line 13). In addition, the new link
between ps and pm and that between pm to pe provide new expansion options.
We update the heap heap[index] to reflect the new expansion options (lines 14–
16). The above expansion continues until all the queried task keywords have
been fully covered.

We plot one example in Fig. 2 to illustrate the search. The query points
Q = {q1, q2, q3}, the candidate aggregate point is m, and the task keywords
κt = {meat, beer,magazine}. Initially, the tree contains only three direct routes
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Algorithm 1. Tree Expansion (TE) Algorithm
Input: P , Q, κa, κt

Output: Rresult

1 o := getCenter(Q), α := {p ∈ P |κ(p) ⊇ κa}, m := NearestNeighbor(o, α)
2 Rresult := ∪∀qi∈Q〈qi, m〉, κ := κt

3 for each i ∈ |Q| do
4 heap[i] := ∅, leng[i] := |qi ∈ Q, m|
5 for each p ∈ P with κ(p) ∩ κt 	= ∅ do
6 for each qi ∈ Q do
7 d := |qi, p| + |p, m| − |qi, m|, push element 〈(qi, p, m), d〉 to heap[i]

8 while κ 	= ∅ do
9 index := argmini∈|Q|leng[i]

10 e〈(ps, pm, pe), d〉 := pop(heap[index])
11 if ps and pe are adjacent in a route in Rresult and κ ∩ κ(pm) 	= ∅ then
12 update rqindex,m ∈ Rresult by including pm in the middle of ps and pe

13 leng[index] := leng[index] + d; κ := κ − κ(pm)
14 for each p ∈ P with κ(p) ∩ κ 	= ∅ do
15 d1 := |ps, p| + |p, pm| − |ps, pm|, push 〈(ps, p, pm), d1〉 to heap[index]
16 d2 := |pm, p| + |p, pe| − |pm, pe|, push 〈(pm, p, pe), d2〉 to heap[index]

17 return Rresult

from query points to m, i.e., RQ,m = {〈q1,m〉, 〈q2,m〉, 〈q3,m〉}. At first, 〈q1,m〉
is the shortest route in RQ,m, so we expand 〈q1,m〉 to 〈q1, p1,m〉. Then, 〈q2,m〉
becomes the shortest route, and we expand it to 〈q2, p4,m〉. After expansion,
〈q2, p4,m〉 is still the shortest, and we further expand it to 〈q2, p5, p4,m〉 to
complete the search.

TE only considers one aggregate point and uses this point to compute the
route set. However, the aggregate point nearest to the center of the circle that
covers all the query points may not be the best choice. As a result, TE may suffer
from high error rate because of this not-ideal aggregate point. In order to reduce
the side effect of selecting a not-ideal aggregate point on the accuracy of the
approximate result, we can extend TE via evaluating multiple aggregate points.
That is, we can evaluate the aggregate points according to their proximity to the
center of the circle (supported by ANN algorithms). For each of the evaluated
aggregate points, we generate the result routes. Parameter Rcandidate maintains
the best result route found so far. The evaluation continues until we reach an
aggregate point m such that Lmax(R0

Q,m) is longer than Lmax(Rcandidate), or
all the aggregate points have been evaluated. To differentiate from the original
TE algorithm, we name the extended approximation algorithm that evaluate
multiple aggregate points as TE-ext. It is noted that TE-ext is able to find
a result set with higher accuracy, as compared with TE. However, it requires
longer running time in most, if not all, cases. We will report the performance
comparison between TE and TE-ext in the experimental study.

Following the same idea, we extend the CBA algorithm originally proposed
in [1] as well, and discover that the accuracy is improved after the extension.
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In the following, we use CBA-ext to represent the algorithm after extension for
convenience.

5 Average Aggregate Distance

In Sect. 4, we presented the TE algorithm, based on maximum aggregate dis-
tance function. In this section, we introduce average as another common and
useful aggregate distance function, and illustrate how TE algorithm and its
extension could be adapted to different distance functions.

First, we explain the necessary changes we have to make to TE in order
to support AKR queries when average is adopted as the aggregate distance
function. We need to change the routing approach in order to have the aver-
age distance of the answer route set as small as possible. The original routing
approach is to assign a new task POI to the shortest route so its impact on
the maximum distance of the route set could be minimized. When considering
average, we want to look for a route with the smallest increase in terms of its
distance after adding a new POI. Hence, we only need to maintain one heap
instead of |Q| heaps for supporting average aggregate distance function, and all
the elements 〈(qi, p,m), d〉 in the heap are still sorted based on ascending order
of the d values. When we perform the expansion, we pop out the top element
from the heap as the corresponding expansion incurs the smallest detour.

Next, we explain how we adjust the extension of TE to support AKR
under average aggregate distance function. The main idea behind the extension
remains valid regardless of the aggregate distance function adopted, as check-
ing multiple aggregate points will not bring any harm to the accuracy. How-
ever, we want to highlight that aggregate points m shall be evaluated based on
Lavg(R0

Q,m) but not Lmax(R0
Q,m).

We also adapt TAR and CBA to support average aggregate distance, and the
performance of all algorithms with respect to two distance functions is evaluated
in the following experimental study.

6 Complexity Evaluation

In this section, we will analyze the worst-case time complexity of our algo-
rithms, as well as TAR and CBA, with respect to two different aggregate distance
functions.

6.1 Maximum Aggregate Distance Function

For our algorithm TE, it takes O(|P |) to decide m and O(|Q||P |log(|P |)) to
initialize |Q| min-heap heap[i]. Then, it invokes the while-loop to perform the
expansion, up to |κt| times. For each execution of the loop, it takes |Q| to locate
the index of the route rqi,m ∈ Rresult with the shortest length, and it inserts
at most |P | elements to the heap. Therefore, the maximum size of the heap
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is |κt||P |, and the time complexity is O(|κt||P | log(|κt||P |)). The overall time
complexity is O(|κt|(|Q| + |P | log(|κt||P |))).

Next, we analyze the time complexity of TAR. In Search and Assignment
Phase, it takes O(|P |) to decide m and it checks at most |α| aggregate points. In
Task Finishing Phase, there are |Q| heaps, and most time is spent on pushing and
popping heap elements. It pushes elements into heap at most 2|κt||P | times, and
each push involves |P | elements. Hence, the time complexity is O(2|κt||P |2|κt|
log(|P |)). In total, the time complexity of TAR is O(|P | + |α|(2|κt||P |2|κt||Q|
log(|P |))).

For CBA, it takes O(|P |) to locate the aggregate point m, too. The time
complexity of every execution of the loop is O(|Q| + |κa|), while it is repeated
for |κt| times. Consequently, the total time complexity is O(|P |+ |κt|(|Q|+ |κt|)).

When we also consider extensions, we need to multiply the routing cost by |α|.
As the result, the time complexity of TE-ext is O(|α||κt|(|Q| + |P | log(|κt||P |)))
and the time complexity of CBA-ext is O(|P | + |α||κt|(|Q| + |κt|)).

6.2 Average Aggregate Distance Function

For TE, it only needs to use one heap during the search and the expansion
is guided by the top element of the heap. Accordingly, the time complexity is
changed to O(|κt||P | log(|κt||P |)). Based on the worst-case time complexity, TE
runs faster with average aggregate distance function.

For TAR, its time complexity remains unchanged when the aggregate dis-
tance function is changed from maximum to average. However, we want to
highlight that its real performance under maximum is better than that under
average, as some of its optimizations become less stronger under average.

For CBA, it needs to check all |Q| routes in order to find the one with the
smallest detour to accommodate a new POI, so its time complexity is changed
to O(|P | + |Q||κt|2), and it becomes slower when aggregate distance function is
changed from maximum to average.

We should point out that TAR and the extension version of approximate
algorithms use ANN algorithm to enumerate aggregate points. As ANN is not
the focus of our paper, we skip the time complexity of the ANN algorithms.

7 Experimental Evaluation

In this section, we evaluate the performance of all algorithms using real datasets.
In the following, we first introduce the experimental settings and then report
the experimental results. All the experiments are performed on a Windows 10
machine with an Intel Core i7-4790 CPU and 32 GB memory.

7.1 Experimental Setup

Dataset. We use two real POI datasets, namely Shanghai and New York,
with their main characteristics presented in Table 2. Shanghai dataset has in total



Efficient Algorithms for Solving Aggregate Keyword Routing Problems 723

Table 2. Characteristics of the dataset

Dataset # of POIs # of keywords # of distinct keywords

Shanghai from Amap 1,229,313 2,950,336 1,361

New York from FourSquare 132,263 249,918 711

Table 3. Query parameters

Parameter Range

Query Point Number (|Q|) 2, 4, 6, 8, 10, 12

Aggregate Point Number (|α|) 1, 10, 100, 1000, 10000

Task Keyword Number (|κt|) 2, 4, 6, 8, 10

Task Keyword Popularity (ρκt) 1, 10, 100, 1000, 10000

Area Size (AS) 0.3%, 0.9%, 3%, 9%, 30%, 90%

1, 229, 313 POIs, covering 2, 950, 336 keywords (i.e., 2.4 keywords per POI). The
number of distinct keywords is 1,361, so every keyword corresponds to 903 POIs
on average. New York dataset has in total 132, 263 POIs, covering 249, 918 key-
words (i.e., 1.89 keywords per POI). The number of distinct keywords w.r.t.
New York dataset is 711. The number of POIs corresponding to one keyword
wi could be very different from that of another keyword wj , e.g., the number of
convenience stores is much larger than the number of museums. In addition, the
number of keywords associated with one POI could be also very different from
that associated with another POI, e.g., a shopping mall POI could have a long
list of keywords such as shopping, dinning, bank, cinema, supermarket, while a
rail station could have only one keyword.

Queries and Parameters. We randomly generate queries with selected param-
eters to evaluate the performance of different algorithms on various settings.
Each AKR query has three input parameters, the query points Q, the aggregate
keyword set κa, and the task keyword set κt. Based on these three input param-
eters, we set five parameters to control query generation, as listed in Table 3.
The values with bold numbers represent the default settings. Parameter |Q|
determines the number of query points, ranging from 2 to 12; parameter |α|
specifies the qualified aggregate points which is dependent on κa; parameter |κt|
represents the number of queried task keywords; parameter ρκt

indicates the
popularity of a query task keyword with its value representing the total number
of POIs in P that cover this keyword; parameter AS determines a square-shaped
subarea Ssub within which query points are randomly generated, and it is rep-
resented as the ratio of the size of the subarea Ssub to that of the whole search
space. For simplicity, we assume all the query task keywords in κt share the same
popularity.

Algorithms. We implement our proposed TE and TE-ext algorithms, as well
as TAR, CBA and CBA-ext, which are proposed in [1], in total 5 algorithms.
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Fig. 3. Search performance vs. parameter |Q|

We test their performance for both maximum aggregate distance function and
average aggregate distance function.

7.2 Experimental Results

For every parameter setting, we randomly generate 100 queries for testing and
report their average performance. All the algorithms need to form the candidate
set α for the aggregate points. Therefore, we exclude the cost of forming α
from all the experimental figures. We adopt running time and error rate as
the main performance metrics with error rate set to Lf (Rappro)−Lf (Rexact)

Lf (Rexact)
. Rappro

refers to the result set returned by an approximate algorithm, while Rexact refers
to the exact search result. Let the error rate be E, the accuracy is 1

(1+E) . In other
words, a lower error rate is equivalent to a higher accuracy. When we investigate
the impacts of different parameters, we only report the results corresponding to
Shanghai dataset, as the observations made from New York datasets are similar.
We will briefly present the results of New York dataset at the end of this section.

Impact of |Q|. We first evaluate the impact of the size of the query point set on
the performance via changing |Q| from 2 to 12. Figure 3 depicts the result. The
performance gap in different algorithms is obvious and consistent across all the
testing cases. TAR’s running time grows exponentially when |Q| increases, and
we also observe that the running time of TAR grows even faster with average
function than maximum function. On the other hand, |Q| does not change the
running time of CBA, TE and their extensions much; while the increase of |Q|
does help to reduce the error rate of approximate algorithms and their extended
versions. This is because with more query points, the average number of POIs
passed by each route from a query point to the aggregate point decreases, which
makes it easier for the approximate algorithms to find a better answer. However,
there is not much room for further improvement in TE-ext, since the accuracy has
already been very high when |Q| is small. In general, the approximate algorithms
run much faster than their extended versions but their error rates are also higher.

Impact of |α|. Secondly, we change the parameter |α| from 1 to 10, 000 and
report the result in Fig. 4. For TAR, CBA-ext and TE-ext, |α| mainly affects the
number of aggregate points enumerated from α. On the other hand, both CBA
and TE only evaluate one aggregate point, so |α| only effects the time required
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Fig. 4. Search performance vs. parameter |α|
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Fig. 5. Search performance vs. parameter |κt|

to find the aggregate point nearest to the center of query points. We can observe
that when |α| values are small, an increase of |α| value does not necessarily
increase the running time, as many aggregate points could be filtered out. Note
that we select the query points within a small subarea while the aggregate points
are distributed across the entire search space. However, as |α| becomes much
larger (e.g., |α| = 1000), a further increase of |α| actually increases the number
of aggregate points that require evaluation and hence the running time. On the
other hand, unlike |Q|, the increase of |α| does not decrease but increase the
error rate.

Impact of |κt|. We now study the impact of parameter |κt|. The result is plotted
in Fig. 5. Compared with |Q|, |κt| has an even bigger impact on the performance
of TAR. However, its impact on CBA and TE is less significant. This is because
both algorithms only evaluate one route set, for the selected aggregate point,
without enumerating all the possible route sets. As |κt| becomes bigger, the route
set needs to pass by more POI points which increases the cost of generating one
route. In general, TE and TE-ext are able to achieve a much lower error rate.

Impact of ρκt
. Next, we study the impact of the popularity ρκt

of query task
keywords with the result plotted in Fig. 6. It is observed that ρκt

value affects the
performance of CBA and TE significantly. In addition, when ρκt

reaches very big
values, CBA and TE do not have much advantage over their extended versions
in terms of running time. Similarly, their extended versions do not demonstrate
much advantage over their original algorithms in terms of error rate. This is
because when the density of task POIs becomes very high, there are always task
POIs around a given aggregate point. In addition, we also observe that when
maximum is selected as the aggregate distance function, the increase of ρκt
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Fig. 6. Search performance vs. parameter ρκt
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Fig. 7. Search performance vs. parameter AS

value helps to reduce the error rate. This is because as the density of task POIs
increases, the position of aggregate point becomes less sensitive and the impact
of a wrong aggregate point becomes smaller. However, when average is selected
as the aggregate distance function, the error rate corresponding to very small
ρκt

values is low. The reason behind is that as the density of task POIs is very
low, the average length of the exact route is expected to be very large which
becomes less sensitive to the errors. As ρκt

increase its values, the length of the
result set decreases and the error rate increases. However, once ρκt

reaches a
large value, a further increase of its value helps to decrease the error rate.

Impact of AS. Last but not least, we analyze the impact of parameter AS,
which reflects the distance between query points. The results are plotted in
Fig. 7. We observe that the values of AS do not change the algorithms’ running
time much. As for the error rate, an increase of AS value helps to improve the
error rate performance when maximum is selected as the aggregate distance
function. This is because as points are further from each other, the aggregate
point that is nearest to the center of the query points is expected to have a
better accuracy.

Performance Evaluation on Different Datasets and Statistical Results.
We test all algorithms over two different datasets, Shanghai and New York
dataset. Note Shanghai dataset is around 10 times larger than New York dataset.
Table 4 reports the average performance of different algorithms under two dif-
ferent datasets. We report the results based on four metrics, including average
running time (ART), average error rate (AER), maximum running time rate
(MRTR), and maximum error rate (MER). Let QU be the set of queries in our
evaluation, and let ti and ei be the running time and error rate of each query
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Table 4. Statistical data in Shanghai and New York

Metrics ART (ms) AER MRTR MER

Aggregate function Max. Avg. Max. Avg. Max. Avg. Max. Avg.

Shanghai TAR 590.46 3153.53 - - 31.39 18.90 - -

CBA 0.29 0.30 0.50 0.22 2.91 3.03 2.32 1.31

CBA-ext 43.96 79.17 0.26 0.18 8.26 8.96 1.91 1.00

TE 3.09 3.57 0.28 0.07 2.99 3.21 1.71 0.74

TE-ext 27.13 191.93 0.05 0.02 2.71 7.03 0.56 0.19

New York TAR 34.44 181.76 - - 51.73 32.34 - -

CBA 0.01 0.01 0.62 0.29 8.33 5.81 2.25 1.22

CBA-ext 0.37 0.53 0.37 0.24 8.60 6.04 2.01 1.22

TE 0.19 0.18 0.35 0.09 5.69 7.27 1.88 0.77

TE-ext 0.76 3.25 0.09 0.03 6.89 5.33 1.07 0.52

qui ∈ QU respectively. ART is set to
∑

qui∈QU ti

|QU | ; AER is set to
∑

qui∈QU ei

|QU | ;
MRTR is set to maxqui∈QU ( ti

t̄ ), where t̄ denotes the ART of queries which have
same parameters as qui; and MER is set to maxqui∈QU (ei). In general, the algo-
rithms become efficient but inaccurate if maximum aggregate distance is used.
TAR is 15 times slower than TE-ext, and its MRTR is high so its performance
is not stable. CBA is the most efficient, but the least effective with the accuracy
far below that of TE-ext algorithm. Compared with TAR, TE-ext has high accu-
racy (ranging from 92% to 98%) too, with respect to all two aggregate distance
functions.

8 Conclusion

In this paper, we study the AKR problem, and propose novel approximate algo-
rithms to process AKR queries. The algorithms support both maximum and
average aggregate distance functions, two commonly used distance functions in
practice. Our TE-ext algorithm is efficient since it is 15 times faster than the
exact algorithm, whereas it is effective and achieves the accuracy of at least 91%.
In this paper, our AKR query only returns one result, while we plan to extend
the search to return top-k results in the near future. In addition, we are also
exploring AKR query on road networks.
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Abstract. Local topic detection is an important task for many applica-
tions such as local event discovery, activity recommendation and emer-
gency warning. Recent years have witnessed growing interest in leverag-
ing spatio-temporal social media (eg. Twitter) for local topic detection.
However, existing methods overlook the continuity of time and location,
which is quite important and useful for local topic detection. For exam-
ple, tweets posted at adjacent time and location should be considered
correlated instead of isolated. To address this challenge, we propose a
multi-layer heterogeneous network based embedding learner to preserve
vicinity correlation as well as co-occurrence correlation, and map all the
location, time, and keywords into a same latent space. Based on the het-
erogeneous network embedding, we develop a Bayesian mixture model
to find local topics without specifying the number of topics in advance.
Moreover, tweets are frequently updated, thus, we adopt an incremen-
tal update strategy to process continuous tweet stream in real time.
The extensive experiments on real-world data sets demonstrate that our
method outperforms the state-of-the-art existing methods.

1 Introduction

With the rapid development of social media like Twitter, more and more peo-
ple share all kinds of topics on these platforms. Recent years have witnessed
growing interest in leveraging such social media data for topic detection [12,23].
Topics on social media range from widely-known, global ones (such as the U.S.
election) to smaller-scale, local ones (such as a baseball game). The latter are cru-
cial for various tasks such as local event discovery [21], activity recommendation
[5] and emergency warning [19], among others. These local topics usually have
three properties: (a) Spatial locality. According to First Law of Geography, when
something happens in a certain place, people who are geographically close tend
c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11447, pp. 730–747, 2019.
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Fig. 1. Topic bubbles with corresponding time and location. The first refers to the
baseball game between Dodger and Angels; the second refers to the Yoga on beach;
the third refers to the pillow fight; the fourth refers to the Coachella Festival.

to discuss the same topic. (b) Temporal finiteness. Local topics have certain life-
cycles [18], after a certain period of time, they will fade away automatically. (c)
Semantic cohesion. Keywords in the same topic should be semantically related,
which means these words are grammatical and lexical connected [9]. We refer to
topics with above three properties as topic bubbles, as shown in Fig. 1.

The task of topic bubble detection was extremely difficult years ago due to the
lack of data sources, however, it has been made possible recently because of the
proliferation of spatio-temporal social media, such as Twitter. Some studies [8,
10,16] have already been done to leverage tweets with time and location for local
topic detection. Nevertheless, there are several unique challenges that largely
limit the performance of existing methods:

(1) Capturing vicinity correlation of spatio-temporal information. Tweets posted
at adjacent time and location are correlated instead of isolated, therefore,
it is essential to capture the continuity of time and location. Existing meth-
ods, however, only take co-occurrence correlation into account but overlook
vicinity correlation of spatio-temporal information [23,24].
• The co-occurrence correlations exist between two units when they co-

occur in the same tweet. For instance, a tweet contains a spatial unit
(40.57, −74.04), a temporal unit (2018-03-21 10:36:366) and some key-
words (snowstorm, blizzard), whose co-occurrences reflect they all have
similar semantics.

• The vicinity correlations are derived from the continuity of both location
and time. For example, when a Tax Protest Rally happens at Time Square
in the afternoon, tweets posted around Time Square and during that
afternoon should be considered correlated instead of isolated.

(2) Generating the number of topic bubbles automatically. To ensure high quality
of topic bubbles, it’s vital to generate the number of topics automatically.
However, due to the lack of prior knowledge, many existing methods need
to manually specify the number of topics in advance [2,22], which causes
the topic bubbles to be less accurate and pragmatic.

(3) Processing continuous tweet stream in real time. Tweet stream is a set of
continuous data generated in real time. Therefore, it is desirable to contin-
uously process the massive tweet stream to allow for timely actions. Such a
requirement renders existing batch-wise methods [11,20] inapplicable.
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To address above challenges, we propose a heterogeneous network embedding-
based method underpinned by two major modules, to detect topic bubbles in
spatio-temporal tweet stream. The first module is a multi-layer heterogeneous
network based embedding learner which jointly maps all the location, time, and
keywords into the same latent space with both their co-occurrence and vicin-
ity correlations preserved. If two units are highly correlated (eg. protest and
against, 5th Ave region and the keyword shoppping, or 8am and the keyword
traffic-jam), their representations in the latent space tend to be close. The het-
erogeneous network based embedding module can not only capture the subtle
semantic similarities among location, time and keywords, but also maintain the
correlations of adjacent location and continuous time. Based on the embedding
results, the second module is Bayesian mixture clustering which aims at finding
high-quality topic bubbles without specifying the number of topics in advance.
To be specific, we develop a novel Bayesian mixture model that can divide the
keywords of tweets into a number of topic bubbles. The model uses von-Mise
Fisher (vMF) distribution over the embedding results of words. Furthermore,
as the query window shifts continuously, we employ an incremental updating
strategy to ensure excellent efficiency, which means our method does not need
to detect topic bubbles in the new query window from scratch, but just needs
to update the previous results with little cost to ensure fast real-time detection.

Our main contributions are summarized as follows:

(1) We design a multi-layer heterogeneous network embedding learner that
jointly maps the location, time and keywords into the same latent space
with their co-occurrence and vicinity correlations preserved.

(2) We propose a Bayesian mixture clustering model to detect topic bubbles
efficiently based on the embeddings, which can find the number of topic
bubbles automatically.

(3) We adopt an incremental update strategy in our method, so that our method
can process continuous tweet stream in real time with little cost when the
query window shifts.

We evaluated our method on two real-world tweet data sets, each containing
millions of spatio-temporal tweets. The extensive experiments show that our
proposed method outperforms the existing methods significantly. Meanwhile, our
method is efficient to be deployed for processing large tweet streams in practice.

2 Related Work

Representation Learning. Representation learning is a vectorization tech-
nique designed to represent an object as a low-dimensional vector. This technol-
ogy solves the problem of data sparseness effectively, and improves the perfor-
mance of knowledge acquisition as well as knowledge fusion. Word2vec [14] is one
of the most influential methods created by Tomas Mikolov et al., reconstructing
linguistic contexts of words. Meanwhile, some work about network embedding
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has emerged in the past few years, such as DeepWalk [15] and node2vec [7]. How-
ever, these methods can only maintain the structure information of the network.
Some recent efforts have been devoted to leveraging additional information for
a better performance. SANRL [3] is a scalable joint NRL framework which pre-
serve both structural and attributed information in the unified representations
which not only learns representations of nodes, but also learns representations
of attributes in the same low dimensional vector space.

Topic Modeling. Conventional topic models such as LDA [2] are designed
to implicitly capture word co-occurrence patterns at document-level to reveal
topic structures. However, these conventional topic models suffer a lot from the
data sparsity problem in short texts, like tweets. Therefore, some methods are
proposed specifically for modeling short text, such as BTM [22] and Twitter-
LDA [25]. Recently, some work has been done to combine topic modeling with
representation learning. Das et al. [4] propose a topic model which uses a Gaus-
sian distribution over word embeddings. By performing inference over the vector
representations of the words, their model is encouraged to group words that are
semantically similar, leading to more coherent topics. Besides, as the emergence
of the documents with spatial and temporal information, some work has been
done in the area of spatio-temporal topic modeling. Sizov et al. [16] extend LDA
by assuming each latent topic has a multinomial distribution over text and two
Gaussians over latitudes and longitudes. Kawamae [10] propose a temporal topic
model, assuming the words of a document are drawn from the user specific topic
distribution and the timestamps are drawn from that topic. All the above work
models either consider time or location, while LTM [12] proposed by Liu et al.
takes both of them into account, but it can only detect topics in a city level.

Spatio-Temporal Social Media Mining. Lately, the appearance of spatio-
temporal social media data has enabled progresses in all kinds of tasks besides
topic modeling, such as event detection, activity recommendation and so on. Liu
et al. present a probabilistic graphical model [13] using both spatial and tem-
poral information to recommend location. Zhang et al. propose an embedding-
based method [23] for spatio-temporal event detection by capturing cross-model
correlations of spatio-temporal information. Nevertheless, this method only con-
siders the co-occurrence correlations, and the vicinity correlations of time and
location are not taken into consideration. Zhang et al. also propose a network-
based method [24] for activity recommendation by jointly modeling all spatial,
temporal and textual units into the same latent space. However, the network
constructed by this method is too complicated, and different types of informa-
tion are not distinguished from each other, so there exist certain limitations on
modeling semantic information and processing a large amount of data.
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3 Preliminaries

3.1 Problem Description

Definition 1 (Topic bubble). Topic bubble is defined as a set of keywords
{w1, w2, · · · , wn}, which satisfies the three properties: (a) spatial locality, (b)
temporal finiteness and (c) semantic cohesion.

Let TW be a corpus of tweets. Each tweet d ∈ TW is represented by a
tuple <td, ld,Wd>, where td is its post time, ld is its geo-coordinate represented
by (xd, yd), and Wd is a series of keywords of the tweet. Sort all tweet tuples
in chronological order as tweet stream {d1, d2, d3, · · · }. Q is the query window
defined as [ts, te], where ts and te are the start and end timestamps, satisfying
td1 ≤ ts < te ≤ tdn

. Our method aims at detecting all topic bubbles that occur
in the query window Q and updating the topic bubbles as Q shifts continuously.

3.2 Framework of Our Method

The emergence of a topic often leads to a large amount of related tweets posted
around its occurring location and during a certain period of time. For example,
suppose a Tax Protest Rally happens at Time Square in New York City, many
participants at Time Square will post tweets to share information during that
time, using the keywords such as protest, against, government and tax. These
keywords can form a keyword cluster as a topic bubble describing the protest
event, since such a keyword cluster satisfies three properties mentioned before.

Fig. 2. The framework of our method

On the foundation of above definitions and observations, we present a topic
bubble detection method with two major modules from spatio-temporal tweet
stream, shown in Fig. 2. The first module is a multi-layer heterogeneous network
embedding learner which can map all the location, time and keywords into a same
latent space. The second module is Bayesian mixture clustering to find topic
bubbles in the query window Q based on word embeddings without specifying
the number of topic bubbles in advance, and adopt Gibbs sampling to estimate
the parameters. Finally, by calculating the average embedding vector for each
topic bubble and then performing similarity query, we can obtain corresponding
time and location of each topic bubble. Furthermore, as the query window shifts



Local Topic Detection in Spatio-Temporal Tweet Stream 735

continuously, our method does not need to detect topic bubbles in the new query
window from scratch, but just needs to update the previous results with little
cost to ensure high efficiency.

4 Heterogeneous Network Embedding

4.1 Construct Heterogeneous Network

As shown in Fig. 3, we extract time, location coordinate and text message from
tweet stream to construct a multi-layer heterogeneous network (MHN) defined as
G = (TN, SN,KN, TL, SL,KL). Text message can be easily segmented, since
the keywords are natural textual units for embedding. However, post time and
location coordinate are continuous variables and there are no natural embedding
units. To address this issue, we break the geographical space into equal-size
regions (300 m * 300 m) and consider each region as a spatial unit. Similarly, we
break one day into 24 h and consider each hour as a basic temporal unit. The
explanations of all the elements in MHN are described as follows:

• TN is a set of temporal units, each representing a time unit.
• SN is a set of spatial units, each representing a certain region.
• KN is a set of text units, each representing a keyword.
• TL is a set of time-keyword links, each representing an co-occurrence corre-

lation between a temporal unit and a text unit.
• SL is a set of location-keyword links, each representing an co-occurrence

correlation between a spatial unit and a text unit.
• KL is a set of keyword links, each representing a co-occurrence correlation

between two keywords.

Fig. 3. Heterogeneous network embedding

All the links are undirected and weighted. The weight of links is defined as
co-occurrence times between two units.
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4.2 Network Embedding

Build upon the multi-layer heterogeneous network, we present a novel way to gen-
erate the low-dimensional vector for each unit, and preserve both co-occurrence
and vicinity correlations.

Loss Function for Texual Information. Inspired by the network embed-
ding algorithm [3], our method learns the representations of three types of units
based on the assumption that units which have similar neighborhoods will have
similar representations. Here, neighborhoods refer to both direct neighbors cor-
responding to first-order estimation and higher-order neighbors corresponding
to higher-order estimation [7].

Consider text layer separately. Given a keyword unit vk, we adopt weighted
random walk to generate many fixed-length keyword sequences. Repeat above
process for every keyword unit vk ∈ KN , we can get a set of keyword unit
sequences as training data Stext. By feeding shuffled Stext to skip-gram [14],
which is an scalable and efficient way to learn word representations, the following
objective loss function should be minimized:

O1 = − log P (Stext) = −
∑

vk∈KN

∑

1≤k≤n

log P (Svk

k )

= −
∑

vk∈KN

∑

1≤k≤n

∑

vi
k∈S

vk
k

log P (vi−w
2

k , ..., vi−1
k , vi+1

k , ..., v
i+w

2
k )

= −
∑

vk∈KN

∑

1≤k≤n

∑

vi
k∈S

vk
k

∑

i−w
2 ≤j≤i+w

2 ,j �=i

log P (vj |vi)

(1)

Where Svk

k = {v1
k, v

2
k, ..., v

m
k }, n is the fixed-length of sequence, and w is the size

of the sliding window.

Loss Function for Temporal Information. Consider a keyword unit co-
occurring at a certain time point, take the adjacent time points as a set T (vk).
We give the co-occurrence and vicinity patterns directly to model P (T (vk)):

log P (T (vk)) =
∑

ti∈T (vk)

{log P (ti|vk) + log P (vk|ti) +
∑

tj∈T (vk),j �=i

log P (tj |ti)}

(2)
The above three kinds of conditional probability can capture different simi-

larities between temporal layer and text layer. By maximizing P (ti|vk), P (vk|ti)
and P (tj |ti), the co-occurrence and vicinity correlations will be well preserved,
which means keywords co-occurring at adjacent time points tend to have close
representations and the adjacent time points are also inclined to have close rep-
resentations. Using Stext time to represent the time-keyword sequences acquired
in the preceding procedure, the objective loss function between temporal layer
and text layer is defined as follows:
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O2 = − log(Stext−time) = −
∑

vk∈KN

∑

1≤k≤n

logP (T (vk))

= −
∑

vk∈KN

∑

1≤k≤n

∑

ti∈T (vk)

{logP (ti|vk) + logP (vk|ti) +
∑

tj∈T (vk,j �=i)

logP (tj |ti)}

(3)

Loss Function for Spatial Information. We define loss function for spatial
information by analogy with loss function for temporal information. Consider
a keyword unit vk co-occurring at a location point, take the adjacent location
points as a set L(vk), we also use the co-occurrence and vicinity patterns to
model P (L(vk)). The definition of loss function for spatial information is given
directly as follows:

O3 = − log(Stext−location) = −
∑

vk∈KN

∑

1≤k≤n

logP (L(vk))

= −
∑

vk∈KN

∑

1≤k≤n

∑

li∈L(vk)

{logP (li|vk) + logP (vk|li) +
∑

lj∈T (vk,j �=i)

logP (lj |li)}

(4)

Loss Function. To integrate above three types of loss functions into a joint
representation learning framework, we adopt a weighted linear combination of
O1, O2 and O3 to formulate our final objective loss function of the heterogeneous
network embedding model:

Ojoint = O1 + aO2 + bO3 (5)

Where a and b are trade-off parameters to balance three different loss func-
tions. For example, if we focus on temporal similarity between keywords, a should
be a big number and b should be a small number; if we concentrate on spatial
similarity between keywords, a big a and a small b are suitable. By minimizing
Ojoint, we can get resulting vectors uv and u′

v for each unit v, Finally, uv of
keywords will be used in the subsequent clustering module.

4.3 Incremental Updating

When the query window shifts, it is undesirable to re-construct the multi-layer
heterogeneous network in the new query window from scratch. Therefore, we
employ an incremental updating strategy to construct the multi-layer heteroge-
neous network in the new query window. Assume the query window shifts from
Q to Q′, we use TW− = {d1 · · · , dk} to represent the outdated tweets, and use
TW+ = {dm, · · · , dn} to represent the new tweets. Instead of re-constructing
the multi-layer heterogeneous network for all the tweets in Q′, we simply remove
the units in TW− from the MHN and insert the units in TW+ into the MHN.
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In network embedding part, we delete the sequences generated by random walk
for old units and add new sequences of new units, and only initialize the new
units instead of all the units to accelerate network training process.

4.4 Complexity Analysis

In this subsection, we analyze the computational complexity of the heterogeneous
network embedding module. Our module uses hierarchical softmax technique to
speed up training process. Given an arbitrary training instance whose form is an
input-output pair, the computational complexity of computing P (output|input)
can be reduced to O(log(|TN | + |SN | + |KN |)).

Fig. 4. Bayesian mixture model

5 Bayesian Mixture Clustering

Based on the heterogeneous network embedding, we develop a Bayesian mixture
clustering model to divide the keywords of tweets in the query window Q into
a number of clusters. Unlike traditional media, tweets are quite short, which
contain a limited number of words. Therefore, we assume that each tweet is
represented by only one topic rather than a mixture of topics like the standard
LDA. The key idea behind our model is that every keyword cluster implies a
coherent topic around a certain place and during a certain period of time. The
notations used in this section are summarizes as follows:

X: the set of embeddings for all the words in D
Z: the set of cluster memberships for all the tweets in D
κκκ: the set of κ for all the clusters
κκκ¬k: the subset of κκκ excluding the one for cluster k
Z¬d: the subset of Z excluding tweet d
wk: the sum of the embeddings in cluster k
wk,¬m: the sum of the word embeddings in cluster k excluding word m
nk: the number of tweets in cluster k
nk,¬d: the number of tweets in cluster k excluding tweet d

We assume that there are at most K clusters in the query window Q. At the
end of the clustering process, some of these K clusters may become empty. As
a result, the appropriate number of clusters in any query window can be auto-
matically discovered. Figure 4 shows the generative process for all the words of
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tweets in the query window Q. Here, D is the set of tweets in the query window
Q, and wm is the d-dimensional embedding of word w generated from the het-
erogeneous network embedding learner. As shown, we first draw a multinomial
distribution θ from a Dirichlet prior Dirichlet(.|α); and for modeling the word
embeddings, we draw K von Mises-Fisher (vMF) distributions from its conju-
gate prior Φ(μ, κ|m0, R0, c). Our choice of the vMF distribution is motivated by
the effectiveness of the cosine similarity in quantifying the similarities between
embedding vectors [23]. For each tweet d, we first draw its cluster membership
zd from θ. Once the cluster membership is determined, we draw its embeddings
of the words in this tweet from its corresponding vMF distribution.

To summarize the above generative process, we have:

θ ∼ Dirichlet(.|α) {μk, κk} ∼ Φ(.|m0, R0, c)
zd ∼ Categorical(θ) wm ∼ vMF (.|μzd , κzd)

(6)

After obtaining the topic bubbles, we calculate the average embedding vector
for each topic bubble, and then perform similarity query to get corresponding
time and location for each topic bubble.

Gibbs Sampling. We introduce Gibbs sampling to estimate the parameters.
The key of Gibbs sampling is to obtain the posterior distribution for zd. Due to
the space limitation, we directly give the conditional probabilities for zd:

p(zd = k|X,Z¬d, α,m0, R0, c) ∝ p(zd = k|Z¬d, α)·
∏

wm∈d

p(wm|X¬m, Z¬d, zd = k, α,m0, R0, c) (7)

The two quantities in Eq. 7 are given by:

p(zd = k|.) ∝ (nk,¬d + α) p(wm|.) ∝ CD(κk)CD(‖κkR0m0 + wk,¬m‖2)
CD(‖κkR0m0 + wk,¬m + wm‖2)

(8)

Incremental Updating. We also use the incremental updating strategy to
ensure efficiency in the clustering module. Instead of performing Gibbs sampling
for all the tweets in Q′, we simply drop the tweets in TW− and sample the cluster
memberships for the tweets in TW+. Such an incremental updating strategy [23]
achieves excellent efficiency and yields high-quality topic bubbles in practice.

Complexity Analysis. We further analyze the time complexity of Bayesian
mixture clustering (BMC) module. For each iteration, BMC needs to re-sample
a cluster for the D tweets in turn. For each tweet d, it computes the conditional
probability p(zd = k|.) for each cluster k. The complexity of this conditional
probability is linear to the average length of documents, L̄. So the time com-
plexity for each iteration is O(KDL̄).
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6 Experiment

6.1 Experiment Settings

Data Sets. Our experiments are based on two real-world tweet data sets, both
are crawled using Twitter Streaming API from 2018.03.21 to 2018.04.27. The
first data set, referred to as NY, consists of 1.7 million spatio-temporal tweets
in New York. The second data set, referred to as LA, consists of 1.9 million
spatio-temporal tweets in Los Angeles.

Baselines. We compare our method with four existing topic detection methods
which are often used in Twitter. For simplicity, we use HNE to represent the het-
erogeneous network embedding learner of our method, and denote the Bayesian
mixture clustering module of our method by BMC.

• LDA [2] is a classic generative statistical topic model. It can find the top K
keywords of each topic based on the number of topics and prior distributions.

• BTM [22] is further improved on LDA model. It learns topics by directly
modeling the generation of word co-occurrence patterns in the corpus.

• Twitter-LDA [25] is a topic model proposed specifically for Twitter. It
addresses the noisy nature of tweets, since it captures background words in
tweets.

• LTM [12] is a spatio-temporal topic model proposed for local topic detection.
It captures both spatial and temporal aspects in a probabilistic model.

Besides, in order to demonstrate the effectiveness of HNE module, we replace
it with Multi-Modal Embedding (MME) presented in triovecevent [23] and
Cross-Modal Embedding (CME) proposed by Zhang et al. [24]. After obtain-
ing the embedding results from above three methods, we employ BMC to get
final topic bubbles. Besides, we also replace the BMC module with GLDA (Gaus-
sian LDA) [4] and sHDP (spherical HDP) [1] to demonstrate the effectiveness of
our clustering module. Furthermore, we use a simplified version HNE- based on

Fig. 5. An illustrative case of topic bubble detection. Detecting topic bubbles on two
real-world data sets by shifting a 7-day query window from 2018.03.26 to 2018.04.16.
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HNE to illustrate the importance of maintaining the vicinity correlation. HNE-
ignores the vicinity correlation of time and location continuities while processing
heterogeneous network embedding.

6.2 Illustrative Cases

Before comparing our method with baselines, we present an illustrative case in
Fig. 5. As shown, the topic bubbles generated by our method are of high quality,
and we can get an obvious topic from the keywords in each topic bubble, such
as conferences, big parties and some festivals. After a period of time, existing
topic bubbles will fade away while new topic bubbles will appear gradually; and
the location where some topics occurring will also have a certain degree of shifts
over time, like the location coordinate marked in bold in the figure. To further
understand why our method is capable of generating high-quality topic bubbles,
we perform similarity queries based on the embedding results of three types of
units in New York and Los Angeles. As shown in Fig. 6, given the query unit,
we list the top eight most similar units by computing the cosine similarity.

(a) Examples on NY (the second query
is the location of the Fifth Avenue).

(b) Examples on LA (the second query
is the location of the LAX Airport).

Fig. 6. Similarity queries based on the multi-layer heterogeneous network embeddings,
which are learned from the spatio-temporal tweets in New York City and Los Ange-
les. In each city, the first query retrieves regions relevant to the keyword ‘beach’; the
second retrieves keywords relevant to a certain location; the third retrieves keywords
related to a time unit ‘11pm’ and the last two retrieve relevant keywords for the given
query keywords. For each query, we use the learned embeddings to compute the cosine
similarities between different units, and retrieve the top eight most similar units.

6.3 Quantitative Results

Effectiveness Comparison. A good topic model will generate coherent topics.
Therefore, we calculate topic coherence for the topics generated by each method
respectively. Topic coherence [17] is a measure used to evaluate coherent degree
of topics, which is formally defined as:

C =
2

N · (N − 1)

N−1∑

i=1

N∑

j=i+1

PMI(wi, wj) PMI(wi, wj) = log
P (wi, wj) + ε

P (wi) · P (wj)

(9)
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Fig. 7. Average topic coherence of different query window size on two data sets

Figure 7 shows the average topic coherence of different methods in different
query window size on two tweet data sets. We observe that our method outper-
forms the baseline methods on both data sets. Figure 8 lists the results of top-3
topics sorted by topic coherence after performing above five methods to detect
the topics that took place in New York from 2018.04.16 to 2018.04.18.

It can be seen that the topics generated by LDA, BTM and twitter-LDA
can not get obvious topics with time and location, because above three methods
are all keyword-based methods, without using the spatio-temporal information.
Thus, they fall short in detecting topic bubbles. As for LTM, it incorporates the
spatio-temporal information into its model. Compared to above methods, the
topic coherence has been significantly improved, and we can also obtain obvious
topics from the keyword clusters with time and location. However, due to the
large granularity when processing spatio-temporal information and the overlook
of the vicinity correlation, the resulting topics can not reflect relatively accurate
time and location. On the contrary, our method can obtain topic bubbles with

Fig. 8. Top 3 topics generated by different methods in New York from 4.16 to 4.18
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exact time and location, because our method handles time and location more
granularly. And it can capture the semantic correlations between the keywords as
well as maintain correlations with continuous time and location, leading to more
coherent topics. However, when ignoring the vicinity correlation, the results of
our method decrease a lot as shown in Fig. 7, which demonstrates the significance
of capturing the vicinity correlation of spatio-temporal information.

(a) MME (b) CME (c) HNE

Fig. 9. Embeddings generated by three different models given the query word baseball

Next, we analyze the effectiveness of two major modules in our method.

(1) HNE module analysis. Given the query word baseball, Fig. 9 shows the most
similar embedding results from three different methods. Compared to MME
and CME, HNE can get better embedding results. Because MME only cap-
tures the co-occurrence relationship among location, time and keywords,
but ignores the vicinity correlation of spatio-temporal continuity, resulting
in the embedding results of adjacent time and location less compactly. In
Fig. 9(a), for example, 11pm and 12pm are close in temporal dimension, but
their embedding results are far from each other in the latent space. The same
problem occurs in embedding results of spatial dimensions, such as (40.93,
−73.18) and (40.91, −73.21). As for CME, it’s a further optimization based
on MME. It also captures the relationship among location, time and key-
words by constructing a heterogeneous network. However, this model does
not differentiate different types of units and diminishes the semantic cor-
relation between keywords. Thus, the keyword semantics can not be well
captured. As we can see in Fig. 9(b), the time and location units tend to
gather together, and it is relatively sparse between keywords. Clustering
these keywords often leads to semantically irrelevant keywords in the same
cluster. HNE of our method maintains both the co-occurrence correlation
and vicinity correlation by stratified random walk sampling and cross-layer
random walk sampling. As we can see in Fig. 9(c), the embedding results of
continue time and adjacent location are close to each other, like 11am and
12am, (40.91, −73.21) and (40.93, −73.18). And discontinuous time and
nonadjacent location are far away from each other, such as 4pm and 12am,
(40.91, −73.21) and (41.05, −73.87). In addition, the embedding results of
keywords, which are semantically similar and spatio-temporally close, tend
to be compact in the latent space.
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(2) BMC module analysis. As shown in Fig. 7, based on the same embedding
results of keywords generated from HNE module, BMC can obtain more
coherent topics than GLDA and sHDP. GLDA assumes that word vectors
are generated from Gaussian distribution, and sHDP presumes that word
vectors are generated from Von Mises-Fisher distribution. The superiority
of the vMF distribution over other alternatives for modeling textual embed-
dings has also been demonstrated in recent studies on clustering [6] and
topic modeling [1]. BMC is a further optimization on sHDP, specifically for
short text modeling. Unlike sHDP, we assume that each tweet is represented
by only one topic rather than a mixture of topics. Therefore, BMC has obvi-
ous advantages compared to sHDP when dealing with short text like tweets
and processing a large amount of data.

(a) Time vs Tweets number (b) Time vs Query window (c) HNE module

(d) BMC module (e) Clustering convergence (f) Time vs #Update

Fig. 10. Efficiency study.

Efficiency Comparison. We proceed to analyze the efficiency of different meth-
ods. Figure 10(a) and (b) show the running time variation of the five methods
as the number of tweets and the query window size increases. We observe that
our method is a little bit slower than LDA, BTM and twitter-LDA, because in
addition to keywords, we also add spatio-temporal information into our method,
which brings extra time cost. Compared to LTM, our method is more efficient.
Although our method get topic bubbles by two modules, HNE module can obtain
word vectors very quickly, and BMC module only need to sample the embedding
vectors for every word. On the contrary, LTM needs to sample all the three types
of information, it’s time-consuming.
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Next, we analyze the efficiency of two major modules in our method. As we
can see from Fig. 10(c) and (d), in HNE module, the efficiency of HNE is slightly
lower than MME, but significantly higher than CME. Because MME ignores the
continuity of time and location, and only considers the co-occurrence correlation.
As for CME, the network construction is too complicated. Thus, the efficiency is
too low when processing a large amount of data. In BMC module, the efficiency
of BMC is much higher than both GLDA and sHDP, because BMC specifically
models short texts and assumes each tweet is represented by one topic, which
simplifies the sampling procedure.

Figure 10(e) shows the log-likelihood changing as the number of Gibbs sam-
pling iterations increases. We observe that the log-likelihood quickly converges
after a few iterations. Therefore, it is usually sufficient to set the number of iter-
ations to a relatively small value in practice for better efficiency. In Fig. 10(f),
we report the scalability of our method when the number of updates (the sum
of removed tweets and inserted tweets) varies. As shown, the running time is
linearly increasing as the number of updates changing. The results demonstrate
that our method has good scalability.

7 Conclusion

In this paper, we propose a novel method to detect topic bubbles in continu-
ous spatio-temporal tweet stream. With the multi-layer heterogeneous network
embedding learner which incorporates time and location into modeling, the key-
word embeddings can contain semantic information as well as spatio-temporal
information. Based on the keyword embeddings, we present a Bayesian mixture
model to obtain topic bubbles by clustering keywords into groups. The key-
words in the same group are temporally compact, geographically coherent and
semantically close. Experiments show that our method can improve the effec-
tiveness of the existing methods significantly and achieving good efficiency. For
future work, we will further take other features of tweets (eg. hashtags) into
consideration and evaluate our method on more real-world tweet data sets from
different regions. Moreover, we are interested in extending our method to other
downstream applications, such as event detection and activity recommendation.
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Abstract. To cater to the high travel demands in Beijing Capital Inter-
national Airport during 23:00–2:00, Beijing Traffic Management Bureau
(BTMB) intends to develop a new service named bus-booking platforms.
Compared to traditional airport shuttle buses, bus-booking platforms
can conduct flexible route planning and online order dispatch while pro-
vide much lower price than the common car-hailing platform, e.g., Didi
Chuxing. We conduct the real-time route planning by solving the stan-
dard Capacitated Vehicles Routing Problem based on the order predic-
tion. In addition, we focus on the design of the online order dispatch
algorithm for bus-booking platforms, which is novel and extremely dif-
ferent from the traditional taxi order dispatch in car-hailing platforms.
When an order is dispatched, multiple influence factors will be consid-
ered simultaneously, such as the bus capacity, the balanced distribution
of the accepted orders and the travel time of passengers, all of which
aim to provide a better user experience. Moreover, we prove that our
online algorithms can achieve the tight competitive ratio in this paper,
where the competitive ratio is the ratio between the solution of an online
algorithm and the offline optimal solution.

Keywords: Order dispatch · Online algorithm ·
Intelligent transportation system

1 Introduction

The rapid deployment of transportation in recent years speeds up the travel
between different cities and increases the travel frequency, which brings more
traffic in return. To cater to the increasing travel demands and relieve the traf-
fic pressure, some novel transportation concepts have been proposed and put
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Fig. 1. The framework of bus booking platforms

into the wide application, e.g., online car-hailing. However, some locations with
high travel demands are not fully satisfied yet. According to the official statistics
from Beijing Traffic Management Bureau (BTMB), the number of the passengers
arrived at Beijing Capital International Airport is about 18,000 during midnight
period (23:00–02:00). However, the local public transport capacity can only pro-
vide pick-up service for around 8,200 passengers, including 7,000 passengers by
taxi and online car-hailing, and 1,200 passengers by airport shuttle buses (less
than 7% of the total arrived passengers), leaving a large number of passengers
waiting at the airport for a long duration. In order to provide a higher-quality ser-
vice for passengers, BTMB intends to develop a new service named bus-booking
platforms. Unlike car-hailing platforms, bus-booking platforms can dispatch sev-
eral orders to one bus with much lower price. Compared to traditional airport
shuttle buses, bus-booking platforms can conduct the real-time route planning
and the flexible order dispatch, which contribute to a better user experience.

As is shown in Fig. 1, the general framework of bus-booking platforms consists
of two component: Real-Time Route Planning and Online Order Dispatch. When
a bus is available in the source station, bus-booking platforms compute the travel
line for this bus by solving the standard Capacitated Vehicle Routing Problem
(CVRP). Once a new order arrives, bus-booking platforms will reply to the
passenger whether the order is accepted and which bus the order is dispatched to
if it is accepted. Although CVRP has been studied for many years, the previous
works mainly concentrated on the offline cases where all the passengers and their
destinations have been determined, which cannot directly apply to the real-time
route planning [2,3,9]. In addition, the order dispatch problem for bus-booking
platforms is novel and extremely different from the traditional taxi or car-hailing
order dispatch problem, where the latter emphasizes on the matching of one order
and one bus.

In this paper, we provide a complete overview for the bus-booking platform,
from the framework design to the algorithm analysis. In order to overcome the
problem where the common CVRP algorithms need to be given the destinations
of passengers, we add the step of order prediction based on deep neural networks
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(DNN). According to the arrived orders and historical data, bus-booking plat-
forms will predict the basic attributes of new orders in next timeslot, containing
the destination, the number of orders, etc. Besides the difference in the match
pattern, most strategies for the order dispatch in car-hailing platforms are offline
and heuristic, which cannot provide performance guarantee, e.g., the greedy
mechanism in the early taxi-hailing platform [5], the offline Kuhn-Munkres (KM)
algorithm [7] and the hill-climbing method deployed in Didi Chuxing [12,13]. Dif-
ferent from them, we propose two effective online order dispatch algorithms for
bus-booking platforms. It has been proved that our online algorithms achieves
the tight competitive ratio, where the competitive ratio is the ratio between
the solution of an online algorithm and the offline optimal solution. When con-
ducting the order dispatch, bus-booking platforms will consider several influence
factors simultaneously, e.g., the bus capacity, the balanced distribution of the
accepted orders, etc. In order to improve the user experience, the travel time of
passengers is also involved in the bus-booking platforms. Notice that it is neces-
sary for passengers to wait some time for the reply in [12,13] since the platform
has to make decisions after aggregating all the arrived orders in one timeslot.
However, our online algorithms can reply to the passengers right now, which
does not depend on next arrived orders in the same timeslot.

2 Real-Time Route Planning

– Order Prediction. We divide the whole time period to many timeslot
〈t1, t2, . . . , tn〉. Suppose that d buses come to the source station in times-
lot tk. We predict the new orders which arrives in timeslot tk and compute
the route line of d buses based on them. In the early stage of bus-booking
platforms, the station set is given and passengers select a certain station as
their destination. Let V be the set of all the stations. Therefore, for each sta-
tion v ∈ V, we only need to predict the number of passengers who destined
to this station in timeslot tk in order to transform our problem to CVRP,
which is denoted by x̂tk,v. For convenience, we use the orders in the last h
timeslots, i.e.,

x̂tk,v = Fv(x̂tk−h,v, . . . , x̂tk−1,v), v ∈ V
Here a deep neural network is utilized to predict the function Fv.

– CVRP. Capacitated Vehicle Routing Problem (CVRP) is to compute the
travel lines for the vehicles with capacity so as to satisfy the requests of all the
passengers and minimize the travel cost of all the vehicles. When the number
of predicted orders is small, CVRP can be solved to compute a Capacitated
Minimum Spanning Tree (CMST) because all the passengers depart from the
same source station. Therefore, any ρ-approximation algorithm for CMST is
exactly an 2ρ-approximation algorithm for CVRP, where we transform each
subtree in CMST to a tour by using the similar method in Travelling Salesman
Problem [8]. If the number of orders is large, we have to reject some orders
due to the limited number of buses. In this case, it is called Selective Vehicle
Routing Problem and the genetic algorithms can be applied [2].



Real-Time Route Planning and Online Order Dispatch 751

3 Online Order Dispatch

3.1 Model and Problem Formulation

Suppose that the orders arrive one by one over time in the source station, e.g.,
Beijing Capital International Airport. Each order is a quadruple (i, di, ci, ti),
where i is the order number, di is the destination station, ci is the number of
passengers in this order and ti is the arriving time. When an order arrives, there
may be some available buses which are waiting to accept the orders again. Once
a bus finishes its tour, it will return to the source station and wait the new
orders. After an order arrives, we have to decide whether to accept this order
and how to allocate it if it is accepted. Let xij denote whether the i-th order is
dispatched to the j-th bus. Therefore, we have

∑

j∈Bi:di∈Sj

xij ≤ 1, ∀i ∈ I (1)

where Bi is the set of the available buses in time ti, Sj is the set of the stations
that the j-th bus passes and I is the set of the orders. The passengers in the
same order would like to take the same bus to the station. Let Kj be the number
of seats in the j-th bus. Hence, the number of passengers allocated to the same
bus should not exceed the capacity of this bus, i.e.,

∑

i∈Ij :di∈Sj

xijci ≤ Kj , ∀j ∈ B (2)

where Ij denotes the set of the orders which arrive when the j-th bus are waiting
in the source station and B is the set of all the available buses throughout the
time period. Due to the limited number of buses, we cannot provide the pick-
up service for all the passengers and have to reject some orders. Let V be the
set of all the stations. In order to achieve the fairness, for each station v ∈ V,
there should be some orders which takes v as the destination to be accepted. In
other words, the accepted orders should be balanced in all the stations instead of
being centralized in a certain one. Therefore, we achieve this objective by using
a bound Rv to limit the accepted orders or passengers destined to station v. The
bound Rv can be determined based on the historical orders, the hot degree of
each station, the total number of passengers which can be accepted by all the
buses throughout the serving period, etc. Thus, we have

∑

i∈I:di=v

∑

j∈Bi:v∈Sj

xijci ≤ Rv, ∀v ∈ V (3)

Generally, the passengers would like to arrive their destinations as fast as pos-
sible and the user experience is influenced by the travel time, which should be
considered in the allocation of orders. When an order arrives, there are several
buses that can take the passenger to the destination station with different travel
time. Let tij be the sum of the travel time of passengers in the i-th order by the
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j-th bus. In order to decrease the average travel time of all the passengers and
improve the user experience, we bound the sum of the travel time of passengers
for each bus and for each station, i.e.,

∑

i∈Ij :di∈Sj

xijtij ≤ Tj , ∀j ∈ B (4)

∑

i∈I:di=v

∑

j∈Bi:v∈Sj

xijtij ≤ Tv, ∀v ∈ V (5)

The bound Tj can be obtained according to the capacity of the bus Kj and the
travel time of its tour path, while the bound Tv can be determined based on Rv

and the average travel time from the source station to the destination station v.
Each order is usually assigned with a priority pi to represent its importance.
For example, the order that is generated by a VIP user has a higher priority
and should be accepted with higher probability. In addition, the rejected user is
allowed to send the order request again and waits the reply. Therefore, the higher
priority should be assigned to the order with longer waiting time. Our objective
is to maximize the sum of the priority of all the accepted orders. Notice that
if pi = 1 for ∀i ∈ I, the objective will be transformed to the maximization of
the number of the accepted orders. Hence, we formulate our problem as a linear
integer program as follows,

max
∑

i∈I

∑

j∈Bi:di∈Sj

xijpi, (6)

s.t. Constraint (1), (2), (3), (4), (5)
xij ∈ {0, 1}, ∀i ∈ I, j ∈ B

3.2 Online Algorithm Design

Online Fractional Solution. We first propose an online algorithm which pro-
duces a fractional solution and an integer solution can be obtained by using the
randomized rounding technology. Before the further discussion, we present the
dual of Program (6). We relax the integer constraint by replacing xij ∈ {0, 1}
with xij ≥ 0 and take the dual variables for Constraints (1)–(5). Therefore, the
dual objective is to minimize

∑

i∈I
yi +

∑

j∈B
(Kjzj + Tjuj) +

∑

v∈V
(Rvrv + Tvqv) (7)

which subjects to

yi + ci(zj + rv) + tij(uj + qv) ≥ pi, ∀i ∈ I, v = di, j ∈ Bi : di ∈ Sj (8)

The Fractional Primal-Dual (FPD) algorithm is presented in Algorithm1. All
the dual variables are initialized as 0 in the beginning (lines 1–3). In the whole
running process, Algorithm FPD ensures that the modified dual constraints

yi + ci(zj + rv) + tij(uj + qv) ≥ pi(1 − exp(−α)), ∀i ∈ I, v = di, j ∈ Bi : di ∈ Sj
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are always satisfied instead of Constraint (8), where α is an argument which
is used to help the proof of Theorem 1 and is determined by the competitive
ratio σ. Once an order arrives, Algorithm FPD finds a modified dual constraint
that is violated (line 7) and updates the dual variables based on xij until this
constraint is satisfied (lines 8–15). All the dual variables are some functions of
the primal variables xij and keep undiminished during the updates. Therefore,
the modified dual constraint always holds once it has been satisfied. Notice that
the coefficient in the update formula (lines 11–15) is not increasing, e.g., pi∗/ci∗ ,
pi�

/ci�
, pi /ti j , pi∼/ti∼j∼ . Hence, the value of all the dual variables will not

jump up during the updates, which will help our analysis for the competitive
ratio. The argument β is similar to α in Algorithm FPD (lines 11–15), which
will be determined by the competitive ratio. The loop will terminate when no
modified dual constraint is violated. Therefore, Algorithm FPD produces a fea-
sible fractional solution for the dual program with the modified dual constraints.
In addition, Algorithm FPD also provides a fractional solution for the primal
program, which is taken as the output (line 18).

Algorithm 1. Fractional Primal-Dual (FPD) Algorithm
Input: The bus set B and the station set V.
Output: The fractional solution {xij}i∈I,j∈B.
1: for i ∈ I, j ∈ B, v ∈ V do
2: xij ← 0, yi ← 0, zj ← 0, uj ← 0, rv ← 0, qv ← 0.
3: end for
4: Ia ← ∅. /* the set of orders which have arrived */
5: while order (i, di, ci, ti) arrives do
6: Ia ← Ia ∪ {i}.
7: while ∃j, yi + ci(zj + rv) + tij(uj + qv) < pi(1 − exp(−α)) do
8: increase xij continuously.

9: yi ← pi exp
[
α

(∑
j∈Bi:di∈Sj

xij − 1
)]

− pi exp(−α).

10: i∗ ← arg mini∈Ia∩Ij :di∈Sj

pi

ci
, i� ← arg mini∈Ia:di=v

pi

ci
.

11: zj ← max

(
pi∗
ci∗

[
exp

(
β

∑
i∈Ij :di∈Sj

xijci

2Kj

)
− 1

]
, zj

)
.

12: rv ← max

(
pi�

ci�

[
exp

(
β

∑
i∈I:di=v

∑
j∈Bi:di∈Sj

xijci

2Rv

)
− 1

]
, rv

)
.

13: i ← arg mini∈Ia∩Ij :di∈Sj

pi

tij
, (i∼, j∼) ← arg mini∈Ia,j∈Bi:di=v∈Sj

pi

tij
.

14: uj ← max

(
pi

ti j

[
exp

(
β

∑
i∈Ij :di∈Sj

xijtij

2Tj

)
− 1

]
, uj

)
.

15: qv ← max

(
pi∼

ti∼j∼

[
exp

(
β

∑
i∈I:di=v

∑
j∈Bi:di∈Sj

xijtij

2Tv

)
− 1

]
, qv

)
.

16: end while
17: end while
18: return {xij}i∈I,j∈B.
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Theorem 1. For any 0 < σ < 1, Algorithm FPD produces an online fractional
solution for the primal program, which achieves an σ-competitive ratio by setting
α = − ln σ and β = 1

8 ln2 σ, but violates Constraint (2) for the j-th bus by at
most O(log Γj/ log2 σ), Constraint (3) for station v by at most O(log Λv/ log2 σ),
Constraint (4) for the j-th bus by at most O(log Υj/ log2 σ) and Constraint (5)
for station v by at most O(log Ψv/ log2 σ), where

Γj = max
i∈Ij :di∈Sj

{pi

ci
} × max

i∈Ij :di∈Sj

{ ci

pi
}, Λv = max

i∈I:di=v
{pi

ci
} × max

i∈I:di=v
{ ci

pi
}

Υj = max
i∈Ij :di∈Sj

{ pi

tij
} × max

i∈Ij :di∈Sj

{ tij
pi

}

Ψv = max
i∈I,j∈Bi:di=v∈Sj

{ pi

tij
} × max

i∈I,j∈Bi:di=v∈Sj

{ tij
pi

}

Proof. See Appendix A for the detailed proof.

Fix σ to a constant, e.g., 1/2, and let Σ = maxj,v{Γj , Λv, Υj , Ψv}. After
Dividing Kj , Rv, Tj , Tv by log Γj , log Λv, log Υj , log Ψv for Constraints (2)–(5) in
the primal program and running Algorithm FPD again, we can obtain a fea-
sible fractional solution for the primal program which achieves an O(log Σ)-
competitive ratio and does not violate any constraint.

Improved Primal-Dual Algorithm. Although an online integer solution
can be obtained by using the randomized rounding technology for the frac-
tional solution computed by Algorithm FPD, it only achieves an O(log Σ log N)-
competitive ratio for the primal program, where N = |I| is the number of orders.
Next we propose an improved primal-dual algorithm, which always produces an
integer solution.

As is shown in Algorithm 2, all the dual variables are initialized as 0 in
the beginning (lines 1–3). Once a new order arrives, Algorithm IPD determines
whether to accept this order based on the dual constraints. If the dual constraints
for this order have been satisfied, Algorithm IPD directly rejects it and does not
update any dual variables (lines 5–7). Otherwise, Algorithm IPD finds the j′-
th bus that satisfies j′ = arg minj∈Bi:di∈Sj

cizj + tij(uj + qv) (line 5) and sets
yi ← 1 − ci(zj′ + rv) − tij∗(vj′ + qv) (line 10), where the latter ensures that all
the dual constraints for this order are satisfied again. Meanwhile, Algorithm IPD
dispatches this new order to the j′-th bus (line 9) and updates all the dual
variables based on the update formulas (lines 11–14). Similar to Algorithm FPD,
the argument ε in the update formulas is a constant that is determined by the
competitive ratio.

Theorem 2. For any constant ε > 0, Algorithm IPD produces an online inte-
ger solution for the primal program, which achieves a (1 − ε)-competitive ratio,
but violates Constraint (2) for the j-th bus by at most O(log Γj + log 1/ε), Con-
straint (3) for station v by at most O(log Λv + log 1/ε), Constraint (4) for the
j-th bus by at most O(log Υj + log 1/ε) and Constraint (5) for station v by at
most O(log Ψv + log 1/ε), where
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Algorithm 2. Improved Primal-Dual (IPD) Algorithm
Input: The bus set B and the station set V.
Output: The integer solution {xij}i∈I,j∈B.
1: for i ∈ I, j ∈ B, v ∈ V do
2: xij ← 0, yi ← 0, zj ← 0, uj ← 0, rv ← 0, qv ← 0.
3: end for
4: while order (i, di, ci, ti) arrives do
5: j′ ← arg minj∈Bi:di∈Sj cizj + tij(uj + qv).
6: if ci(zj′ + rv) + tij′(uj′ + qv) ≥ pi then
7: reject order (i, di, ci, ti).
8: else
9: xij′ ← 1.

10: yi ← pi − ci(zj′ + rv) − tij′(vj′ + qv).

11: zj′ ← zj′

(
1 +

ci

Kj′

)
+

piε

4Kj′
.

12: rv ← rv

(
1 +

ci

Rv

)
+

piε

4Rv
.

13: uj′ ← uj′

(
1 +

tij′

Tj′

)
+

piε

4Tj′
.

14: qv ← qv

(
1 +

tij′

Tv

)
+

piε

4Tv
.

15: end if
16: end while
17: return {xij}i∈I,j∈B.

Γj = max
i∈Ij :di∈Sj

{pi

ci
} × max

i∈Ij :di∈Sj

{ ci

pi
}, Λv = max

i∈I:di=v
{pi

ci
} × max

i∈I:di=v
{ ci

pi
}

Υj = max
i∈Ij :di∈Sj

{ pi

tij
} × max

i∈Ij :di∈Sj

{ tij
pi

}

Ψv = max
i∈I,j∈Bi:di=v∈Sj

{ pi

tij
} × max

i∈I,j∈Bi:di=v∈Sj

{ tij
pi

}

Proof. See Appendix B for the detailed proof.

3.3 The Lower Bound

Consider an extreme example where there are only one bus j and only one
station v, and all the passengers would like to go to station v. Suppose that the
number of passengers in each order and the travel time from the source station
to station v are both one unit, i.e., ci = tij = 1, ∀i ∈ I. In addition, we set Kj =
Rv = Tj = Tv = K in this example. Suppose the orders arrive in batches, where
each batch has K orders. For the i-th order, let pi = 1/(M −m + 1) where M is
a constant and this order locates in the m-th batch, i.e., (m − 1)K < i ≤ mK.
Based on the above assumptions, this example can be formulated as follows,
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max
∑

i∈I
xijpi, (9)

s.t.
∑

i∈I
xij ≤ K, (9a)

xij ∈ {0, 1}, ∀i ∈ I (9b)

Notice that Constraint (2)–(5) in the primal program (6) are transformed to
Constraint (9a) and Constraint (1) is equivalent to Constraint (9b) in this exam-
ple. Even for this simple example, we claim that any online algorithm cannot
provide a better performance guarantee.

Theorem 3. For any 0 < ρ ≤ 1, a ρ-competitive online algorithm must violate
Constraint (9a) by at least ρ ln M in this example.

Proof. Notice that the priority of an order is monotone increasing with the batch.
When the m-th batch of orders arrives, the optimal solution is to accept all the
orders in the m-th batch and reject all the former orders. Denote the optimal
solution by OPTIm

where Im is the first m batch of orders. Denote by Aρ
Im

the
solution of a ρ-competitive algorithm for Im. Therefore, we have

Aρ
Im

=
∑

i∈Im

xijpi ≥ ρ OPTIm
=

ρK

M − m + 1

Accumulate the above equality from m = 1 to M and let |I| = MK. We have

M∑

m=1

∑

i∈Im

xijpi ≥
M∑

m=1

ρK

M − m + 1
= ρK ln M

Notice that

M∑

m=1

∑

i∈Im

xijpi =
M∑

m=1

m∑

l=1

K∑

k=1

xij

M − l + 1
=

M∑

l=1

M∑

m=l

K∑

k=1

xij

M − l + 1

=
M∑

l=1

K∑

k=1

xij =
∑

i∈I
xij

Combining the above equalities, we finish the proof here.

According to Theorem 3, in order to obtain an online algorithm that does
not violate any constraint, its competitive ratio ρ has to satisfy ρ ln M ≤ 1,
i.e., ρ ≤ 1/ ln M . Notice that Γj = Λv = Υj = Ψv = M in this example.
Therefore, Algorithm IPD achieves the tight competitive ratio for the online
order dispatch problem. In addition, the integer constraint (9b) is not used in
the proof of Theorem 3, which means that the lower bound can also apply to
the fractional solution of Program (9). Hence, Algorithm FPD also provides the
tight performance guarantee in the competitive ratio for the fractional solution
of the online order dispatch problem.
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4 Experiment

4.1 Experimental Implementation

We conduct a comparative experiment to evaluate our online order dispatch algo-
rithm. Top 30 hot stations are selected and the travel time between the stations
are obtained according to their geographical distance. We randomly generate m
buses and n orders during midnight period (23:00–02:00). Each bus arrives at
Beijing Capital International Airport at random time point and departs from it
after ten-minute waiting. The capacity of each bus is a parameter in our exper-
iment. The travel line of each bus is computed by solving Capacitated Vehicle
Routing Problem based on the arrived and predicted orders. The priority of each
order is a random real number in (0, 1]. In order to provide a better user experi-
ence, four constraints have been considered in Program (6). The threshold value
of the number of the accepted orders in one station is calculated by multiplying
the total capacity of all the buses by the ratio between the number of orders
destined to this station and the total number of all the orders. The threshold
value of the travel time in one bus is calculated by multiplying the bus capacity
by the average travel time of all the stations in this bus line. The threshold value
of the travel time in one station is calculated based on the average travel time
from the source station.

Based on the above statement, we make a detailed description of four com-
pared algorithms involved in the experiment. Random: A random allocation
algorithm. When an order arrives, a bus is randomly assigned to accept this
order. We judge whether the above constraints can be satisfied after the bus
accepts the order. If they are satisfied, the bus accepts this order and the state
of the bus is updated, otherwise refuses. Greedy: A greedy algorithm based on
the maximum-remaining-seat-first principle. When an order arrives, we find one
bus with the most remaining seats that can take the passengers in this order to
their destination station. We judge whether the above constraints can be satis-
fied after the bus accepts the order. If they are satisfied, the bus accepts the order
and updates its state, otherwise refuses. IPD: The online order dispatch algo-
rithm in this paper. OPT: The offline optimal solution by using Groubi 8.1.0 [1]
to solve the linear integer program (6).

4.2 Experiment Result and Analysis

In the realistic situation, the total number of passengers included in the orders is
often greater than the total capacity of all the buses due to the limited number of
buses. Accordingly, we set different parameters and implement five experiments.
The parameters in each experiment are shown in Table 1.

As is shown in Figs. 2, 3 and 4, both Random and Greedy do not perform well
in the experiments. For the number of orders accepted, the number of passengers
served and the priority of orders accepted, Random and Greedy only achieve less
than 50% of the optimal solution compared with OPT. However, our online algo-
rithm IPD can increase the results by more than 20% compared with Random
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Table 1. Parameters in five experiments

Experiment #Buses Bus capacity #Orders

1 30 30 1200

2 50 30 1200

3 50 40 1200

4 50 30 900

5 50 30 1500

and Greedy. We only change the number of orders in Experiment 2, Experi-
ment 4 and Experiment 5. According to Figs. 5, 6 and 7, we can find that the
total number of orders during this period will not have a significant impact on
the number of orders accepted, the number of passengers served and the priority
of orders accepted if it is greater than the total bus capacity. Instead, the total
bus capacity and the travel time constraint are the major influence factors when
comparing the results in Figs. 2, 3, 4 and Figs. 5, 6, 7. Therefore, our online algo-
rithm can provide the service for more passengers with almost the same total
travel time compared with Random and Greedy. In other words, our algorithm
can achieve lower average travel time. Although OPT performs much better in
all the experiments, it requires too long running time and to be given all the
orders in advance, which cannot apply to online situations.
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5 Related Work

There are many works about the order dispatch problem for car-hailing plat-
forms. Based on global positioning systems (GPS), the greedy mechanism was
proposed for real-time taxi order dispatch where the order was matched with
the nearest driver [5]. Although the above greedy strategy could significantly
decrease the waiting time of passengers and improve the user experience, it did
not consider the global profits of platforms and taxies. The queueing strategy
based on the first-come-first-serve principle was also widely used in the early taxi
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platforms [4,10,14]. The offline Kuhn-Munkres (KM) algorithm [7] was deployed
in the Didi Chuxing platform, which collected all the arrived orders and the avail-
able cars in one timeslot and conducted the maximum bipartite matching [12]. In
order to increase the total acceptance rate of orders, another work attempted to
dispatch one order to several drivers, where the first one to accept the require-
ment obtained this order [13]. However, both of them focused on heuristic or
offline algorithms, which could not provide the global performance guarantee. In
addition, there were also some works that used the demand prediction to help
the order dispatch [6,11], but all of them concentrated on taxi or car-hailing
platforms.

6 Conclusion

In this paper, we presented a complete overview for a new service named bus-
booking platforms. Real-time route planning in bus-booking platforms can be
achieved by solving the standard CVRP based on the order prediction. In addi-
tion, we proposed two novel online order dispatch algorithms to satisfy the real-
time requirements from customers. We proved that our online algorithms can
provide solid theoretical guarantee and touch the tight competitive ratio, where
the competitive ratio is the ratio between the solution of an online algorithm
and the offline optimal solution.

A Proof of Theorem 1

Proof. Consider a modified primal program as follows and let OPT,OPTα be
the optimal objective value for the primal program (6) and the modified pro-
gram (10), respectively. Obviously, we have OPTα ≥ (1 − exp(−α))OPT.

max
∑

i∈I

∑

j∈Bi:di∈Sj

xijpi(1 − exp(−α)),

(10)

s.t. Constraint (1), (2), (3), (4), (5)
xij ≥ 0, ∀i ∈ I, j ∈ B
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Notice that Algorithm FPD exactly produces a feasible fractional solution for
the dual of Program (10), where denote by Dα its objective value. Let P be
the objective value computed by Algorithm FPD for the primal program (6).

Therefore, we have
∂P

∂xij
= pi and

∂Dα

∂xij
=

∂yi

∂xij
+ Kj

∂zj

∂xij
+ Tj

∂uj

∂xij
+ Rv

∂rv

∂xij
+ Tv

∂qv

∂xij
(Note: v = di)

From line 9 in Algorithm FPD, we get

∂yi

∂xij
= αpi exp α

⎛

⎝
∑

j∈Bi:di∈Sj

xij − 1

⎞

⎠

Since xij increases continuously and the condition in line 7 in Algorithm FPD is
satisfied, yi ≤ pi(1 − exp(−α)) is always guaranteed. Combining line 9, we have
∂yi

∂xij
≤ αpi. Similarly, we can get

∂zj

∂xij
≤ βci

2Kj

pi∗

ci∗
exp β

(∑
i∈Ij :di∈Sj

xijci

2Kj

)

Due to cizj ≤ pi(1 − exp(−α)) ≤ pi, we have

∂zj

∂xij
≤ βci

2Kj

(
pi

ci
+

pi∗

ci∗

)
≤ βci

2Kj
2
pi

ci
=

βpi

Kj

By the same way, we can get
∂rv

∂xij
≤ βpi

Rv
,

∂uj

∂xij
≤ βpi

Tj
,

∂qv

∂xij
≤ βpi

Tv
. Therefore,

we have
∂Dα

∂xij
≤ (α + 4β)pi = (α + 4β)

∂P

∂xij
. From the weak duality property,

we have OPTα ≤ Dα ≤ (α + 4β)P . Therefore, we further get

P ≥ OPTα

α + 4β
≥ 1 − exp(−α)

α + 4β
OPT

Let σ = (1 − exp(−α))/(α + 4β) and α = − ln σ. We can get

β =
1 − σ + σ ln σ

4σ

Let g(σ) = 1 − σ + σ lnσ − 1
2σ ln2 σ. Since g′(σ) = − 1

2 ln2 σ ≤ 0 and σ ∈ (0, 1],
we have g(σ) ≥ g(1) = 0. Therefore, we can get

β ≥
1
2σ ln2 σ

4σ
=

1
8

ln2 σ
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Now consider all the constraints in the primal program (6). First Constraint (1)
is always satisfied because yi ≤ pi(1 − exp(−α)) always holds. Let i∗ =
arg maxi∈Ij :di∈Sj

pi

ci
. Because zj is increased continuously and Algorithm FPD

will not increase zj if the condition in line 7 is not satisfied, we have zj ≤ pi∗

ci∗
,

i.e.,
pi∗

ci∗

[
exp

(
β

∑
i∈Ij :di∈Sj

xijci

2Kj

)
− 1

]
≤ pi∗

ci∗

Rearranging the above inequality, we have

∑
i∈Ij :di∈Sj

xijci

Kj
≤ 2

β
log

(
pi∗

ci∗

pi∗
ci∗

+ 1

)
≤ 16

ln2 σ
log

(
pi∗

ci∗

pi∗
ci∗

+ 1

)
= O

(
log Γj

log2 σ

)

By the same way, we finish the proof.

B Proof of Theorem 2

Proof. Let x and (y, z, r, u, q) be the primal and dual solution computed by
Algorithm IPD while P and D be the objective values, respectively. We finish
the proof of this theorem from the following two properties:

(1) The solution (y, z, r, u, q) is feasible for the dual program.
(2) When order (i, di, ci, ti) is accepted, the objective of the dual program

increases (1 + ε)pi.

For Property (1), if order (i, di, ci, ti) is rejected, we have ci(zj + rv) + tij(uj +
qv) ≥ pi for ∀j ∈ Bi : di ∈ Sj . Otherwise, we set yi ← pi −ci(zj′ +rv)− tij′(vj′ +
qv), which guarantees that yi + ci(zj + rv) + tij(uj + qv) ≥ pi for ∀j : di ∈ Sj

because j′ ← arg minj∈Bi:di∈Sj
cizj + tij(uj + qv).

For Property (2), when order (i, di, ci, ti) is accepted, all the dual variables will
be updated. Therefore, the objective of the dual program increases

ΔD = Δyi + ΔKj′zj′ + ΔRvrv + ΔTj′uj′ + ΔTvqv

= pi − ci(zj′ + rv) − tij′(vj′ + qv) + Kj′

(
zj′ci

Kj′
+

piε

4Kj′

)

+ Rv

(
rvci

Rv
+

piε

4Rv

)
+ Tj′

(
uj′tij′

Tj′
+

piε

4Tj′

)
+ Tv

(
qvtij′

Tv
+

piε

4Tv

)

= (1 + ε)pi

Based on Property (1) (2) and the weak duality, we get

P ≥ D

1 + ε
≥ OPT

1 + ε
≥ (1 − ε)OPT
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For the constraints, we consider the dual variables (z, r, u, q), respectively. Let
zt
j be the value of zj after the t-th update. Let i∗ = arg mini:di∈Sj

pi

ci
. Therefore,

we have

zt
j = zt−1

j

(
1 +

ci

Kj

)
+

piε

4Kj
≥ zt−1

j

(
1 +

ci

Kj

)
+

ciε

4Kj

pi∗

ci∗

Rearranging the above inequality, we can get

zt
j +

pi∗ε

4ci∗
≥

(
zt−1
j +

pi∗ε

4ci∗

) (
1 +

ci

Kj

)

Let γj satisfy (
1 +

ci

Kj

)
≥ γ

ci
Kj

j , ∀i : di ∈ Sj (11)

Therefore, we have

zt
j +

pi∗ε

4ci∗
≥

(
zt−1
j +

pi∗ε

4ci∗

)
γ

ci
Kj

j (12)

≥
(

z0j +
pi∗ε

4ci∗

)
γ

∑
i:di∈Sj

xijci

Kj

j

=
pi∗ε

4ci∗
γ

∑
i∈Ij :di∈Sj

xijci

Kj

j

According to Algorithm IPD (lines 6–7), before the last update of z̃j , we have

ci(zt−1
j + qt−1

v ) + tij(ut−1
j + qt−1

v ) < pi

Hence, zt−1
j <

pi

ci
. Let i∗ = arg maxi∈Bj :di∈Sj

pi

ci
. After the last update, we can

get

zt
j <

pi

ci

(
1 +

ci

Kj

)
+

piε

4Kj
=

pi

ci
+

(
1 +

ε

4

) pi

Kj
≤ pi

ci
+

(
1 +

ε

4

) pi

ci

≤ pi∗

ci∗

(
2 +

ε

4

)

Combining Inequality (12), we have

pi∗

ci∗

(
2 +

ε

4

)
≥ zt

j ≥ pi∗ε

4ci∗

(
γ

∑
i∈Ij :di∈Sj

xijci

Kj

j − 1

)

Therefore,
∑

i∈Ij :di∈Sj
xijci

Kj
≤ logγj

(
pi∗

ci∗

ci∗

pi∗

(
8
ε

+ 1
)

+ 1
)

≤ logγj

pi′

ci′

ci∗

pi∗

(
8
ε

+ 2
)
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Now consider γj . From Equality (11), we have

ln γj ≤ min
i∈Ij :di∈Sj

ln(1 + ci

Kj
)

ci

Kj

Because 0 ≤ ci

Kj
≤ 1 and f(x) = ln(1+x)

x is a monotone decreasing function,
Equality (11) is satisfied when γj = 2. Therefore,

∑
i∈Ij :di∈Sj

xijci

Kj
≤

(
log2

pi∗

ci∗

ci∗

pi∗

(
8
ε

+ 2
))

= O

(
log Γj + log

1
ε

)

By the same way, we finish this proof.
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Abstract. Aiming to promote the standardization of taxi services and
protect the interests of passengers, many methods have been proposed to
detect taxi trajectory anomaly based on collected large-scale taxi traces.
However, most existing methods usually employ a counting-based policy
to differentiate normal trajectories from anomalous ones, which may give
rise to high false positives. In this paper, we propose an online detection
method, named Spatial-Temporal Laws (STL). The basic idea of STL is
that, given the displacement from the source point to the current point of
a testing trajectory, if the current point is normal, either its driving dis-
tance or driving time should lie in a normal range. STL learns the two
ranges from historical trajectories by defining two spatial-temporal mod-
els: one characterizing the relationship between displacement and driv-
ing distance, and another depicting the relationship between displacement
and driving time. Consequently, STL is more precise compared with the
counting-based methods, greatly reducing the number of false positives.
Based on large-scale real-world taxi traces, STL is evaluated through a
series of experiments which demonstrate its effectiveness and performance.

Keywords: Anomaly detection · Taxi trajectory · Spatial-temporal

1 Introduction

In recent years, many novel methods have been proposed to detect taxi trajectory
anomaly [1–3,9,10,12–14], highlighting their practical value in terms of saving
passengers’ time and money. Most existing methods utilize a counting policy
to detect anomalous taxi trajectories [1–3,12–14]. The rationale underpinning
these methods is that trajectories that have been seldom traversed by taxis in
c© Springer Nature Switzerland AG 2019
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Fig. 1. Example of taxi trajectories between S and D.

the past are considered to be anomalous. Taking Fig. 1 as an example, where S
and D represent the source and the destination point respectively, of the seven
trajectories shown in the figure, counting-based methods identify T2, T6 and T7 as
normal trajectories since they are traversed by most taxis. As normal trajectories
appear a significantly greater number of times in the set of historical trajectories,
T1, T3, T4 and T5 are labelled anomalous, even though T4 is shorter than the
three common trajectories.

It is clear that counting-based detection methods have a major drawback in
that they result in a high number of false positives. Furthermore, when detect-
ing a testing trajectory starting from a source to a destination point, if there are
fewer historical trajectories with the same source and destination point, counting-
based methods may consider the trajectory as anomalous, which means that these
methods need a large number of historical trajectories to work properly.

In essence, a trajectory that costs passengers more in both driving time
and driving distance should be considered as anomalous. As shown in Fig. 1,
the driving distance of both T4 and T5 is not greater than the three normal
trajectories, and T3 may be the result of an experienced taxi driver choosing
an unusual detour to avoid congestion. In reality, T3, T4 and T5 should not be
considered to be anomalous since the cost (either driving distance or driving
time) is the same as T2, T6 and T7.

This paper proposes a novel taxi trajectory anomaly detection method, called
STL, based on the essential spatial-temporal laws of taxi transportation. The
basic idea of STL is that, for a displacement calculated from any point of a
normal trajectory to its source point, the costs paid, measured by driving dis-
tance and driving time, should lie within normal ranges. STL learns two spatial-
temporal models that define two normal ranges from historical taxi trajectories:
the D-S model characterizing the relationship between displacement (for short
D) and driving distance (S), and the D-T model characterizing the relationship
between displacement and driving time (T). Given the two normal ranges, for
any point of a testing trajectory, the driving distance and driving time incurred
for the displacement are compared to the normal ranges. If both costs are beyond
the normal range, it is more likely to be anomalous.

Compared with counting-based methods, STL has three main advantages:
(1) it can efficiently detect anomalies in a stream of trajectories online, which
means it can immediately respond to the updated taxi traces; (2) taking into
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consideration the relationships between spatial and temporal features, STL can
detect diverse but not malicious trajectories correctly, producing a low number
of false positives; and (3) STL is more general, because the transportation char-
acteristics of adjacent areas are similar so their historical trajectories can be
gathered to learn the D-S and D-T models, conquering the limitation of existing
methods that demand a large volume of historical trajectories to cover the road
network.

We evaluate STL on large-scale real-world taxi traces collected from three
different cities in one month. In the experiments, we evaluate the performance of
STL on different kinds of taxi trajectories in comparison with three other anoma-
lous taxi trajectory detection methods. The results show that STL achieves an
excellent performance with a high true positive rate and a low false positive rate
in different situations.

2 Problem Definition

On the two-dimensional plane (longitude and latitude), a taxi trajectory can be
represented as a collection of points in chronological order. For instance, Fig. 2
shows the trajectory of a taxi in a day, where the red and green points represent
the taxi’s status in terms of vacant or occupied, respectively. Since the fraud
behaviors of taxis always occur when taxis are occupied, in this paper, we only
consider the trajectories of the taxis that are occupied.

Definition 1 (Point). Given a record generated by a GPS device, let x, y be
the longitude and latitude of the location and ts be the timestamp of the record.
In this way, the spatial information and temporal information of a record can
be represented by a point in the form of a triple (x, y, ts).

Definition 2 (Trajectory). A trajectory T consists of a collection of points in
chronological order, T = <p1, p2, . . . , pn>. For any 1 ≤ i < j ≤ n, the timestamp
of pi is smaller than the one of pj and Ti→j denotes a sub-trajectory <pi, . . . , pj>
of T .

Definition 3 (Displacement, Driving-Distance, Driving Time). No matter
whether a trajectory is completed or not, the source point of the trajectory,
denoted as p1, is known in advance. For a point pi observed currently, the dis-
placement, denoted by di, from pi to the source point p1 is defined as

di = dist (pi, p1)

where dist (pi, p1) is a function that calculates the geographical distance between
the two points.

The driving distance of pi, denoted as si, is the summation of the geographical
distance of all the segments before pi, which is computed as

si =
i−1∑

j=1

dist (pj , pj+1)
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Also, we define the driving time, denoted by ti, from point pi to the source
point p1 as

ti = pi.ts − p1.ts

As shown in Fig. 3, the displacement of pi is the length of the black dashed
line and the driving-distance of pi is the length of the brown line.

Fig. 2. One taxi trajectory in a day.
(Color figure online)

Fig. 3. An illustrated example of d
and s. (Color figure online)

Definition 4 (Map function). When detecting a testing trajectory, it is neces-
sary to get all the historical trajectories with the same source and destination
point as the trajectory. With a huge number of trajectories, the search cost is
intolerable without any pre-processing. In order to retrieve historical trajecto-
ries more efficiently, we split the road network into equal-sized grid cells and
transform a point to a cell by a map function which is defined as

gi = map (pi) : R2 → G

By mapping the coordinates of a point to a grid, a point trajectory (consisting
of points) is transformed to a grid-cell trajectory (composed of grid cells). In this
way, it is more efficient to identify the trajectories which pass a specific point by
searching the trajectories that pass the corresponding grid cell with the help of
an inverted index.

Definition 5 (Problem Definition). We define the problem addressed in this
paper as follows: Given a set of historical trajectories S = {T1, T2, . . .} and a
testing trajectory T = {p1, p2, . . .} with the source point p1 and the destination
point pd, as passengers who use apps like Uber1 and Didi2 to call taxis input
their current location and destination, the problem of online trajectory anomaly
detection is to find the set of outlier points P = {pi|pi ∈ T} in T .

3 Related Work

In general, existing anomaly detection methods are roughly classified into two
categories: detection based on spatial features and detection based on temporal
features.
1 https://www.uber.com/.
2 https://www.didiglobal.com/.

https://www.uber.com/
https://www.didiglobal.com/
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3.1 Detection Based on Spatial Features

This type of detection makes use of spatial features to detect anomalies. More
specifically, according to the timeliness, this class can be further divided into
two sub-categories: offline detection and online detection.

Offline Detection. Lee et al. proposed a novel partition-and-detect framework
for trajectory outlier detection which first partitions a trajectory into a set of
line segments and then detects outlying segments by a hybrid of the distance-
based and density-based approaches [4]. Ge et al. developed a taxi driving fraud
detection system based on travel route evidence and driving distance evidence
[3]. Zhang et al. proposed an algorithm called iBAT based on the idea that
anomalous trajectory is easy to isolate by detecting the complete trajectories
offline [11]. Liu et al. proposed an abnormal behavior detection method that is
independent of map information and road networks by detecting inconsistencies
between the velocity of the vehicle and the speed information of the GPS [6].

Online Detection. Based on iBAT [11], Chen et al. proposed the iBOAT
detection method [2]. They considered a trajectory with lower support from
historical trajectories as anomalous. It has a higher detection accuracy compared
to iBAT and can be performed online. Zhou et al. proposed a detection method
named OnATrade [12], consisting of two steps: route recommendation and online
detection.

3.2 Detection Based on Temporal Features

The second class makes use of temporal features to detect trajectory. For
instance, Li et al. proposed a method for detecting temporal outliers with an
emphasis on historical similarity trends between data points [5]. Zhu et al.
proposed a time-dependent popular route-based algorithm [14] and designed
a time-dependent transfer graph from which the top-k most popular routes are
obtained as references in different time periods. Based on [14], Zhu et al. pre-
sented an upgraded version of TPRO, named TPRRO [13], which is a real-time
outlier detection method. They developed a time-dependent transfer index and
a hot time-dependent transfer graph cache which speed up the online detection
progress.

As discussed, most existing detection methods only separately consider the
spatial or temporal features of trajectories, producing high false positives. Fur-
thermore, the existing methods require a large number of historical trajectories
to work properly, and do not have the ability to deal with cases where trajec-
tories are sparse in some areas. In addition, there is scant research on online
detection especially in relation to taxis. Therefore, further research into online
taxi trajectory detection is urgently needed, which motivates our work.
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Fig. 4. Trajectory detection framework.

4 Detection Framework

This section provides the trajectory detection framework which is shown in
Fig. 4. The whole detection process is divided into two stages: offline pre-
processing and online detection. The role of each component in this framework
is described as follows:

– Taxi Traces: Taxi traces refer to the collection of GPS records uploaded
periodically to the server by all taxis.

– Grouping: Since the records of all taxis are mixed together in the traces, it is
necessary to group them according to the taxi IDs and sort the GPS records
by the timestamp in each group. After sorting the GPS points of each taxi,
the parts of trajectory when the taxi is occupied are extracted.

– Denoising: In order to reduce the noise in the set of extracted trajectories,
two adjacent points over 5 km away will be separated into two trajectories and
the point which causes the speed between it and the last point to be larger
than 120 km/h will be ignored. Furthermore, the map-matching technology
[7] is applied to project the trajectory points into the road network.

– Invert Indexing: The number of trajectories extracted from the taxi traces
is very large. To improve the performance for searching the trajectories that
pass a certain grid-cell, the inverted index which records the trajectories pass-
ing the grid-cell and the index in which the grid appears is constructed.

– Trajectory Database: This stores all the point trajectories extracted from
the traces and the corresponding grid-cell trajectories mapped from the point
ones. Each trajectory has a globally unique ID, and its driving distance and
driving time have been calculated.

– Index Database: This stores the previously mentioned inverted index.
– Model Cache: This stores the models that have been learned in the detection

phase. In this way, when the same model is needed next time, it can be
directly retrieved instead of being recalculated repeatedly. In addition, three-
day expired time will be set to ensure the freshness of the model. Beyond this
time, the model is retrained when the model is requested.
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(a) Historical trajectories. (b) D-S scatter plot. (c) D-T scatter plot.

Fig. 5. Displacement, driving distance and driving time scatter plot. (Color figure
online)

– Anomalous Detection (STL): For a testing trajectory, the historical tra-
jectories that have the same source and destination point can be easily
retrieved. Using the historical trajectories, our proposed anomalous detection
method STL is applied to detect whether the testing trajectory is anomalous
or not. The next section details the design of STL.

5 Design of STL

5.1 Basic Idea

Concerning transportation, driving distance and driving time are two important
metrics to measure driving efficacy. We use the combination of these two met-
rics to detect trajectory anomaly which is more accurate and more efficient than
the existing methods that separately utilize spatial or temporal features. When
detecting a trajectory, if it incurs a reasonable cost in terms of driving distance
or driving time to travel from the source to the destination, it should be con-
sidered as normal, no matter which routes it takes. Following this direction, we
explore the detection of trajectory anomaly using two models that reveal the crit-
ical spatial-temporal laws: the D-S model characterizes the relationship between
displacement (D) and driving distance (S) and the D-T model depicts the rela-
tionship between displacement and driving time (T). The basic idea behind STL
is that the set of historical trajectories implying both D-S and D-T laws can be
used to efficiently and precisely detect trajectory anomaly. By analyzing large
number of historical trajectories, it is found that there are distinctive differences
in both laws between anomalous trajectories and normal ones, as shown in Fig. 5.
In Fig. 5a, the cyan lines represent the normal trajectories and the red line is
an anomalous one. In Fig. 5b and c, the green points and the red points are
extracted from the normal and anomalous trajectories respectively. As we can
see, the D-S and D-T relationships are quite different after 10 km, so this part
of the trajectory should be considered as anomalous.

Therefore, it is practical to use the D-S and D-T relationships of normal
trajectories to train models that are, in turn, utilized to detect anomalous tra-
jectories. Given a testing trajectory, for each of its point pi, the displacement di,
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driving distance si and driving time ti are first calculated, and then the models
learned from the trajectories are utilized to predict the normal ranges for the
driving distance and driving time of pi. If both the real driving distance and
driving time are beyond the predicted ranges, pi is considered as anomalous,
otherwise normal.

Therefore, designing STL concerns the following questions: (1) How to choose
some trajectories from the taxi traces for training the two models? (2) How to
learn the D-S and D-T models from the chosen trajectories? (3) How to perform
trajectory detection based on the learned models? The following subsections
answer these questions.

5.2 Selecting the Training Set

Since the historical trajectories stored in the database are unlabeled, a selection
condition should be defined to retrieve some appropriate trajectories from the
database to train the D-S and D-T models when detecting a testing trajectory.
Therefore, an adaptive approach is firstly used to determine the appropriate
number of historical trajectories in order to efficiently learn D-S and D-T models,
and then a greedy strategy is applied to select the trajectories. Specifically,
we define the number of trajectories as a function related to displacement (d)
between the source and destination point and the time of the source point (t), i.e.,

m(d, t) = mbase · 21/(1+e−γ(d−dbase))+wt(t) (1)

where the mbase is the base number of trajectories, dbase is the base displacement,
and wt(t) is the indicator of working hours (return 1 when at working hours,
otherwise return 0). The intuition behind function (1) is that long-distance drives
or drives occurring at working hours need more historical trajectories to keep
the detection results stable.

To select the training set that has m(d, t) trajectories determined above,
the trajectories that passed from the grid-cell of source point to the grid-cell of
destination point are firstly extracted from the trajectory database. Since D-S
and D-T models are time-sensitive, the historical trajectories whose timestamps
of the source points are within a one-hour period either before or after the
timestamp of the testing trajectory’s source point and which have the same
wt(t) attribute are chosen. If the number of currently selected trajectories is less
than m(d, t), the trajectories passing the source and destination nearby will be
used as a supplement; otherwise, the m(d, t) trajectories closest to time t will
be selected. Ultimately, to prevent anomalous trajectories from being selected,
those trajectories whose driving distance or driving time are less than the median
of all trajectories are selected as the training dataset.



772 B. Cheng et al.

5.3 Learning Models

As shown in Fig. 5, the relationships of D-S and D-T are not hard to fit by the
linear model. The two models of STL are defined as follows:

si = f (di;ws) + εs, εs ∼ N (
0, σ2

s

)

ti = f (di;wt) + εt, εt ∼ N (
0, σ2

t

)

where di =
[
1, di, d

2
i , . . .

]T, si and ti represent the displacement vector, driving
distance and driving time, respectively, of the ith point in the training dataset,
and f (di;w) = w0 + w1di + w2d

2
i + w3d

3
i + . . ., w = [w0, w1, . . .]

T. εs and εt are
random variables obeying the normal distribution. Therefore, when using the
displacement dtest of a test point to predict the driving distance and the driving
time of this test point based on the learned models, we get two random variables
subject to N (

f (dtest;ws) , σ2
s

)
and N (

f (dtest;wt) , σ2
t

)
which are useful to

judge whether this point is anomalous or not. In the above models, ws, wt, σs

and σt are the unknown parameters that need to be determined. We use the
maximum likelihood estimation [8] to fit the models.

Applying this idea to STL, for each di in the training dataset, the probability
of si and ti in the corresponding training dataset should be maximized, namely
the following likelihood functions (2) and (3) should be maximized.

Ls = p
(
s1, . . . , sN

∣∣d1, . . . ,dN ,ws, σ
2
s

)
=

N∏

i=1

N (
ws

Tdi, σ
2
s

)
(2)

Lt = p
(
t1, . . . , tN

∣∣d1, . . . ,dN ,wt, σ
2
t

)
=

N∏

i=1

N (
wt

Tdi, σ
2
t

)
(3)

where N is the total amount of points in the training set.
In order to maximize the likelihood functions (2) and (3), the partial deriva-

tives of w and σ are respectively calculated for the log-likelihood function log L
as follows: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∂ log Ls

∂ws
=

1
σ2
s

(DTs − DTDws) = 0

∂ log Ls

∂σs
= − N

σd
+

1
σ3
d

N∑

i=1

(si − dTws)2 = 0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ log Lt

∂wt
=

1
σ2
t

(DTt − DTDwt) = 0

∂ log Lt

∂σt
= −N

σt
+

1
σ3
t

N∑

i=1

(ti − dTwt)2 = 0

By solving these equations, the results obtained are:
{

ws = (DTD)−1DTs

σ2
s =

1
N

(sTs − sTDws)
(4)
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(a) D-T on different time. (b) Selected location. (c) D-T at different location.

Fig. 6. Time-aware and location-aware.

{
wt = (DTD)−1DTt

σ2
t =

1
N

(tTt − tTDwt)
(5)

where D = [d1,d2, . . . ,dN ]T, s = [s1, s2, . . . , sN ]T and t = [t1, t2, . . . , tN ]T.
When applying STL to detect the trajectories, it is apparent that STL has

two main characteristics: time-aware and location-aware. Time-aware means the
D-T model is changing at different times. Taking the source and destination
shown in Fig. 5a for instance, the D-T model at different times is shown in
Fig. 6a. It is intuitive that D-T has a smaller slope in the early hours of the
morning (1:00–3:00) and a larger one during rush hour (17:00–19:00). With the
same displacement, the driving time at rush hour is about 1.5 to 2 times more
than that during the early hours of the morning, which proves that training
different models based on time is reasonable. For location-aware, two source-
destination pairs are picked from the urban and suburban area as shown in
Fig. 6b. Figure 6c illustrates that the D-T model may have obvious differences
at different locations, despite being at the same time.

5.4 Performing Anomaly Detection

For any test point ptest in a testing trajectory, the dtest, stest and ttest are firstly
calculated. Secondly, dtest is substituted into the D-S and D-T models that have
been trained and two random variables are obtained: one for driving distance
s subjected to N (

f (dtest;ws) , σ2
s

)
and another for driving time t subjected

to N (
f (dtest;wt) , σ2

t

)
. For each distribution N (μ, σ2) with probability density

function f(x), an anomaly probability function is defined as function (6):

anomaly(x) =

{
0 , x < μ

1 − f(x)/f(μ) , x ≥ μ
(6)

Therefore, two anomaly probabilities anomaly(stest) and anomaly(ttest) are
obtained. To combine these anomaly probabilities, the anomaly practicability of
point ptest is defined as function (7):

anomaly(ptest) = min(anomaly(stest), anomaly(ttest)) (7)
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Table 1. Detail of trace data

City SH SZ CD

Data size 594 GB 32 GB 84GB

# Taxis 13,585 9,475 14,424

# Trajectories 11,359,617 6,068,516 10,511,443

Sampling rate 10 s 10–30 s 10–30 s

where min(·, ·) is a function to return the smaller of two values. The principle
under the combining strategy is that a taxi that drives a longer distance and
spends more time is more likely to have detoured unnecessarily which corre-
sponds to both higher anomaly(stest) and anomaly(ttest).

Anomaly probability anomaly(ptest) represents the anomaly degree of one
point in the trajectory. To evaluate the anomaly of the whole trajectory T ,
anomaly score based on the anomaly probability is defined as function (8):

score(T ) =
N−1∑

i=1

dist(pi, pi+1) ∗ anomaly(pi) (8)

where N is the number of points in trajectory T . For a point, larger anomaly
probability with longer segment means higher anomaly in this trajectory.

6 Empirical Evaluation

6.1 Trace Data

The trace data used in the experiments were collected for a month in three cities
of China, namely Shanghai (SH), Shenzhen (SZ) and Chengdu (CD). The detail
of these data sets is summarized in Table 1, where the sampling rate means the
interval between two adjacent GPS records. Both trace data and implementation
of experiments are available at Github3.

To objectively and reasonably select the trajectory sets used for evaluation,
the top 10 popular sources and destinations are selected from each data set and
the source-destination pairs are identified. Each source-destination pair corre-
sponds to a trajectory set in which all the trajectories pass the source and the
destination. To make the performance more stable, those trajectory sets where
the source and the destination are too close or the number of trajectories is less
than 100 are ignored. The detail of the trajectory sets is listed in Table 2. In
each trajectory set, the trajectory is labeled as anomalous or normal according
to the taxi fare in this travel.

3 https://github.com/cbdog94/STL.

https://github.com/cbdog94/STL
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Table 2. Detail of trajectory set

City SH SZ CD

# Trajectory sets 62 48 65

Average # of trajectories 801.2 1051.1 3019.4

Min # of trajectories 112 151 236

Max # of trajectories 10,656 4,477 18,882

6.2 Evaluation Metrics

The TP rate (TPR) measures the proportion of anomalous trajectories that
are correctly labeled and is defined as TPR = TP/ (TP + FN). The FP rate
(FPR) measures the proportion of false alarms and is defined as FPR =
FP/ (FP + TN).

6.3 Compared Methods

In the experiments, STL is compared with three detection methods, namely
iBAT, iBOAT and OnATrade. iBAT [11] is an offline detection method based
on the cell trajectory mapped from the GPS trajectory. To detect a testing
trajectory, iBAT randomly picks a cell from the trajectory to split the trajectory
set into two parts, the cell and exclude the cell respectively. This process is
repeated until the testing trajectory is isolated or there are no more cells in
the testing trajectory. iBOAT [2] is an online detection method which maintains
an adaptive window containing the latest testing cells and compare the sub-
trajectory composed of the cells in the window with historical trajectories. As
long as the support ratio of the sub-trajectory is higher than a threshold θ,
the new cell will continue to be added to the window, otherwise, the adaptive
window is reduced to include only the cell most recently added and this point
is identified as anomalous. OnATrade [12] is an online detection method based
on the digital map. OnATrade consists of two steps: route recommendation and
online detection. If the maximum similarity between the testing trajectory and
all the recommended trajectories is less than a threshold θ, the testing point is
considered as anomalous.

6.4 Experiment Setup

To hard-classify the anomaly of point in experiment, a threshold of anomaly
probability calculated by function (7) is set up to 0.75. In addition, mbase, dbase
and γ in function (1) are set to 200, 20 km and 0.5 respectively. Similarly, the
thresholds and parameters of iBAT, iBOAT and OnATrade are optimally set
according to their proposed papers.
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Fig. 7. Effectiveness comparison.

6.5 Experiment Results

Effectiveness Evaluation. In each trajectory set, leave-one-out cross valida-
tion is applied for the evaluation. Specifically, one trajectory is selected to test
the detection methods and the rest in the set are used as historical trajectories.
The results of the experiments are shown in Fig. 7, where Fig. 7a and b repre-
sent the average TPR and FPR on different traces. Compared with the other
methods, the overall average of TPR of iBAT, iBOAT, OnATrade and STL are
85.4%, 89.9%, 85.3% and 92.5% respectively; and the overall average of FPR of
these methods are 9.9%, 10.2%, 10.1% and 5.7% respectively. Compared to the
other three methods, STL shows a sightly improvement over TPR and a sub-
stantial improvement over FPR by up to 43%. To evaluate the effectiveness on
different scales of trajectory sets, the trajectory sets are divided into three parts:
small (<300), medium (300–1000) and large (>1000) according to the number of
trajectories in each set. As shown in Fig. 7c and d, when the scale of the trajec-
tory set is small, STL still has good performance on FPR with 42.9%, 48.9% and
49.7% improvement over the other three methods, which demonstrates that STL
does not need a large number of historical trajectories to perform the detection.

Performance Evaluation. We analyze the time cost for these detection meth-
ods. The average detection time per trajectory on different trace datasets is
shown in Fig. 8. STL has the smallest time complexity while OnATrade has
bad performance on a long-distance trajectory because the time complexity of
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Fig. 8. Time cost comparison.

computing similarity is O
(
n2

)
(n is the number of points in the trajectory).

Since the GPS sampling rate on the data sets of Shenzhen and Chengdu is less
than the one of Shanghai, the time costs on the two datasets are lower than the
one on Shanghai on average. In addition, the space complexity of STL is O (1)
because it only stores basic information, such as the source point, the last point
and the driving distance of the last point. This is another advantage of STL over
the other three methods.

Online Detection Analysis. This part analyzes why the FPR of iBOAT
and OnATrade is higher than that of STL. To illustrate the difference between
iBOAT, OnATrade and STL, one trajectory set consisting of 1490 trajectories
from the Shanghai trace dataset is selected as an example as shown in Fig. 9a.
The thicker the lines, the more times the trajectories are passed. The median
of the driving distance and driving time of all trajectories are 13.56 km and
19.38 min, respectively. Since the number of trajectories covered by the rectan-
gle shown by the blue dashed line is small, the trajectories passing this part are
more likely to be classified as anomalous by iBOAT and OnATrade. We pick up a
trajectory T passing this covered area, and its driving distance and driving time
are 13.61 Km and 14.32 min, respectively. Since the driving time is less than the
median and the driving distance is close to the median, T should be detected as
normal.

Specifically, the visualization of the detection results for OnATrade and the
similarity trend of T are shown in Fig. 9b and e. In Fig. 9b, the green points
are labeled as normal and the red points are detected as anomalous. In Fig. 9e,
the blue line and the orange dashed line represent the similarity of T with the
recommended trajectories and the threshold θsim, respectively. Since there is
no trajectory in the recommended trajectories passing the covered area, it can
be assumed that this part will be detected as abnormal. The detection result
confirms this conjecture. The similarity drops from the 18th point and is below
the threshold at the 23rd point. Therefore, after that, the points of T will be
detected as anomalous.

For iBOAT, the visualization of the detection results is shown in Fig. 9c
and the trend of the support ratio of T is shown in Fig. 9f. In Fig. 9f, the blue
line and the orange dashed line represent the support ratio of each point in
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(a) All historical
trajectories.

(b) Detection result
of OnATrade.

(c) Detection result
of iBOAT.

(d) Detection result
of STL.

(e) Similarity trend of
OnATrade.

(f) Support trend of
iBOAT.

(g) Anomaly probability
trend of STL.

Fig. 9. Online detection comparison. (Color figure online)

T and the threshold θiBOAT , respectively. The support ratio drops at the 18th

point and rises at the 42nd point, so this part of T is detected as anomalous by
iBOAT, which corresponds to the area covered by the blue dashed line rectangle
in Fig. 9a.

For STL, the visualization of the detection results for STL is shown in Fig. 9d.
In Fig. 9g, the blue line, orange dotted line and green dashed line represent the
anomaly probability of driving time, driving distance and the threshold men-
tioned in Sect. 6.4, respectively. Since the two anomaly probabilities are always
below the threshold, the anomaly probability of points are apparently within the
normal range. Therefore, T is correctly detected as normal.

In addition, the anomaly scores of T are 0.59, 5422.90 and 37.08 for OnA-
Trade, iBOAT and STL respectively, where the range of anomaly score for OnA-
Trade is 0 to 1 and the range for iBOAT and STL is 0 to infinity. The anomaly
scores of T are ranked 80 (5.4%), 50 (3.4%) and 926 (62.1%) in 1490 trajectories,
which also reflects the different behavior between the three methods.

7 Conclusion

In this paper, we proposed a novel method called STL for the online detec-
tion of taxi trajectory anomaly. Rather than using spatial or temporal features
separately, STL combines spatial features and temporal features to solve the
problem of high false positives caused by most existing counting-based methods
and to demand sufficient historical trajectories to work properly. STL catches
the essence of transportation in terms of two critical models: D-S and D-T, which
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can be used to detect anomalous trajectories efficiently and precisely. Through
extensive experiments on real traces, we verify that STL can perform real-time
detection and identify the anomalous part of trajectories. Furthermore, STL has
excellent performance on both TPR and FPR with small time cost and memory
consumption.
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