
Efficient Mining of Event Periodicity
in Data Series

Hua Yuan(B), Yu Qian, and Mengna Bai

School of Management and Economics,
University of Electronic Science and Technology of China,

Chengdu 611731, China
{yuanhua,qiany}@uestc.edu.cn, mengnabai@163.com

Abstract. This paper investigates the problem of efficiently discovering
periodicity of a certain event in data series. To that end, the current
work argues firstly that the periodicity of an event in data series may
be formalized as the distribution period, the structure period, or the
both. Along this line, a partition method, π(n), is proposed to divide the
data series into length-equal and position-continuous segments. Based
on the results of implementing π(n) on a data series, we propose two
new concepts of distribution periodicity and structure periodicity. Then,
a cross-entropy-based method, namely CEPD, is proposed to mine the
periodicity of data series. The experimental results show that CEPD can
be used to mine feasible event periodicity in data series, especially, with
very low level of time consumption and high capability of noise resilience.

Keywords: Data series · Cross entropy · Distribution periodicity ·
Structure periodicity

1 Introduction

Data series is commonly used in presentation of the events sequentially happened
in real world, such as the weather data for a location [22], the gene expression
data [12], the finance fluctuation data [20,32], the web site visiting traffic [5,29],
and the consumption sequence of a user [1]. Data series is mostly characterized
by being composed of repeating cycles [19], especially, for those data series gen-
erated by user behaviors [30]. For instance, “The vendors purchase twice a month
from the suppliers,” “Bob visits gym every Tuesday,” and so on. Basically, such
repeating patterns could reveal important observations about the behavior and
future trends of the events represented by the data series, and hence would lead
to more effective decision making [16]. These gave rise to an important process
for mining regular patterns within a data series.

In general, event(s) may show three types of periodicity in a data series: the
symbol periodicity, the partial (sequence) periodicity, and the full-cycle (seg-
ment) periodicity [19]. Given a periodicity mining task, the methods proposed
in the literature would like to treat the task of periodicity detection as a process
c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11446, pp. 124–139, 2019.
https://doi.org/10.1007/978-3-030-18576-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18576-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-18576-3_8

Efficient Mining of Event Periodicity in Data Series 125

of finding temporal regularities within the data series [8,13,19,28,30]. Although
these methods had performed well for event periodicity mining in certain situa-
tions, nevertheless, they also face some technical challenges:

– First, the common problem for these approaches is their computational per-
formance, especially in a big data environments. To address this issue, they
would assume previously that users either know the value of the period before-
hand or are willing to try various period values until satisfactory periodic
patterns emerge [7]. However, if there are multiple events embedded in a data
series, then more prior information is needed for event periodicity mining
task, or it will make the mining methods present relative poor performance,
both on efficiency and completeness [31].

– Second, these methods mainly identify the structural periodicity of the events
over a set of periods (time intervals), i.e., those events which occurred at a
fixed position in each period may be considered as having periodicity [13].

– Third, data collected from the real-world, which is the input of mining
algorithms, are affected by several components; among them, noise is an
unavoidable problem [25]. Therefore, the event periodicity mining methods
are expected to provide better robustness to noise [11,18].

In this work, we will introduce the distribution periodicity and structure peri-
odicity to measure the periodic information of an event in a data series. The main
contributions of this paper lie in two aspects: first, to the best of our knowledge,
it is the first time to distinguish the idea of distribution periodicity and structure
periodicity; second, based on the minimum cross entropy principle, an efficient
method is proposed to mine the periodicity of an event in data series, which also
has a better performance on noise resilience.

2 Related Work

There are lots of studies proposed in the literature of data stream mining. In
summary, they can be categorized into types of signal-processing-based, data-
structure-based, and statistics-based method.

Signal-Processing-Based Method. The signal processing method in periodic
pattern mining is mainly reflected in the data processing and transformation. [6]
used the Haar Wavelet Transform and discrete fourier transform (DFT) for time
series indexing. The algorithm presented by [24] is the first one that exploits the
information in both periodogram and autocorrelation to provide accurate peri-
odic estimates without upsampling. In this work, both DFT and power spectral
density (PSD) estimation method are introduced to deal the time series data.
A convolution-based algorithm is proposed for segment periodicity and symbol
periodicity, and the periodic patterns of unknown periods are also discovered
without affecting the time complexity [7]. As pointed out in [18] and [13], the
fast Fourier transform (FFT) [3] can also be used to identify periodicity. How-
ever, there are two problems in the FFT method. First, it does not cope well with

126 H. Yuan et al.

random off-segments in periodic patterns. Further, the computational efficiency
is very complicate when events in data series are sparse [30].

Data-Structure-Based Method. In earlier studies, the work in [10] use a slid-
ing window over the data sequence and extract its features, then [26] presented
mining technology from a time series database based on a moving-window. Also,
by using an expanding sliding windows, [9] improved the accuracy of the discov-
ered periodicity rates. In recent, a pattern-growth approach which is based on
a tree structure, called Periodic Frequent-tree (PF-tree) has been discussed for
mining periodic patterns [23]. In the paper of [23], the authors use a so called
Periodic-frequent pattern tree to capture the database contents and generate the
complete set of periodic-frequent patterns.

Since partial periodicity is very common in practice, [13] studied an interest-
ing data mining problem of searching for partial periodic patterns in time-series
databases, their algorithm based on a max-subpattern tree offers excellent perfor-
mance. Promoted by this research, [4] proposed a new structure, the abbreviated
list table (ALT), and several efficient algorithms to compute the partial periods.
Sheng et al. [21] developed an algorithm to utilize optimization steps to find
dense periodic areas in the time series.

Statistics-Based Method. Some basic static methods such as autocorrelation
and ranking are commonly used. [2] proposed an algorithm for finding approx-
imate periodicities in large time series data, utilizing autocorrelation function
and FFT. And it can discover weak periodic signals in time series databases. [14]
investigated an interesting type of periodic pattern, called partial periodic (PP)
correlation. Especially, a more suitable measurement, information, is introduced
in [27] to naturally value the degree of surprise of the pattern within a data
sequence. In [30], the authors presented a variance-based approach to model
periodicity, which is to detect event periodicity basing on the statistical variance
of the gaps at which a pattern occurs in data series (i.e., the variance of the
interarrival times of the pattern). Ghosh et al. [11] have demonstrated the use
of a sequential Monte Carlo method to detect and track the periodicity in dis-
crete event streams. Unlike other methods, this technique does not rely on the
underlying process sticking to a constant phase.

3 Concepts and Model Formulation

3.1 Data Series and Event Periodicity

A data series S is an ordered sequence of |S| feature values:

S = (s1s2...st...s|S|), st ∈ R, (1)

where st is the value of the feature at position t, for example, the feature might
be the daily average stock price of a company.

Efficient Mining of Event Periodicity in Data Series 127

In order to facilitate the calculation, we usually transfer S into a more easy-
to-compute formation. If we discretize the feature values in S into nominal dis-
crete events (e.g, stock price goes “up”, “down” or “flat”), then the set of feature
values can be denoted as Σ = {a, b, c, ...}[7] by representing each event as a sym-
bol (i.e., a = “goes up”, b = “goes down”, c = “goes flat”, etc.). As a result, S can
be viewed as a sequence of |S| events (symbols) drawn from a finite event set of
ΣS . Further more, let et be any event occurred at position t in S, then a set of
events happened sequentially over continuous position space of [1, |S|] can
be specified as follows:

S = (e1e2...et...e|S|), et ∈ ΣS . (2)

Using x to denote the focal event in ΣS , and x̃ denotes any event type in
ΣS \ {x}, if et = x, then we said that event x appears at position t in S.
Especially, when we only concern about whether event x occurred at position t,
BSx is then can be encoded as a binary data series,

BSx = (b1b2...bt...b|S|), bt ∈ {0, 1}. (3)

where bt is specified as follows:

bt =

{
1 if et = x (i.e., x appears at position t);
0 otherwise (i.e., x̃ appears at position t).

Definition 1. An event x ∈ ΣS is said to have periodicity (or x is a periodic
event) in data series S, if its appearances are shown repeated periodically in S.

Apparently, if event x appears periodically in data series S, we can expect
that the appearances of code “bt” in BSx are also periodically.

3.2 Data Series Partitioning

To mine the periodicity of event x in data series S, a feasible way is to divide S
into segments [17].

Given a set of partition methods
∏

defined over S, if there always exists a
partitioning scheme π(n) ∈ ∏

(where n < |S|) such that n is the (distribution or
structure) period of event x, then

∏
is called a complete partition set with

respect to the periodicity of x in S. Moreover, π(n) is then called a “good”
partition for detecting the periodicity of x in S.

Accordingly, we propose a simple and complete partitioning method, i.e.,
π(n), n ∈ [1, |S|], to divide the data series S into segments iteratively as follows:

Step 1: Begin with the first position t = 1;
Step 2: Every n position-continuous elements are partitioned into a same seg-
ment P , i.e., the first n events are in P1, the second n events are in P2, and so
on. As a result, π(n) = {P1|P2| · · · |P� |S|

n �} partitions S into � |S|
n � length-equal1

segments, and Pj =
(
e(j−1)∗n+1, · · · , ej∗n

)
, where j ∈ [1, � |S|

n �].
1 |P� |S|

n
�| ≤ n is allowed.

128 H. Yuan et al.

For example, BS = (00111000100110001000), then method π(4) will parti-
tion BS into five segments as follows:

π(4) = {0011︸︷︷︸
P1

|1000︸︷︷︸
P2

|1001︸︷︷︸
P3

|1000︸︷︷︸
P4

|1000︸︷︷︸
P5

}.

By implementing π(n) = {P1|P2| · · · |P� |S|
n �} on a binary time-series BS, we

can obtain a partition matrix by rearranging all the segments Pj as follows:

P1 b1 ... bn

P2 bn+1 ... b2n

...
... ...

...
Pj = b(j−1)∗n+1 ... bj∗n

...
... ...

...
P� |S|

n � b
(� |S|

n �−1)∗n+1
... b

(� |S|
n �)∗n

.

In general, the matrix has a total of � |S|
n � rows and n columns. Row j ∈

[1, · · · , � |S|
n �] is just the contents of j-th segment, i.e., Pj . Column τ ∈ [1, · · · , n]

is corresponding to the appearances of event x at the τ -th position, which is

referred to as Cτ =
(
bτ , ..., b(j−1)∗n+τ , ..., b

(� |S|
n �−1)∗n+τ

)T

.

Definition 2. The total appearances of event x in segment Pj (j ∈ [1, · · · ,

� |S|
n �]) is called the support of x in Pj, it is defined as

supp(x|Pj) =
∑

bt∈Pj

bt. (4)

Lemma 1. supp(x|Pj) + supp(x̃|Pj) = n, j ∈ [1, ..., � |S|
n � − 1]2.

Definition 3. The total appearances of event x in Cτ (τ ∈ [1, · · · , n]) is called
the support of x at position τ , which is represented by:

supp(x|Cτ) =
∑

bt∈Cτ

bt. (5)

Lemma 2. supp(x|Cτ) + supp(x̃|Cτ) = � |S|
n �, τ = 1, ..., n.

Further more, we can define that the total appearances of event x in S is
called the support of x, which is defined as

supp(x) =
∑

bt∈BSx

bt. (6)

2 supp(x|P� |S|
n

�)+supp(x̃|P� |S|
n

�) may less than n while incomplete partition happened

in the last segment.

Efficient Mining of Event Periodicity in Data Series 129

Accordingly, the distribution of x in Pj , i.e., p(Pj), and the distribution of x
in Cτ , i.e., q(Cτ), are defined as following respectively,

p(Pj) =
supp(x|Pj)

supp(x)
, and q(Cτ) =

supp(x|Cτ)
supp(x)

. (7)

3.3 Distribution Periodicity and Structure Periodicity

An event x is said to have distribution periodicity in S with respect to
“good” partition π(n), if its support (appearance) in each segment is equal. For
the distribution periodicity, we have the following theorem:

Theorem 1. If event x has a distribution period of n in S, then the ideal dis-
tribution of x in � |S|

n � segments is as

pn =

{
1

� |S|
n �

, ...,
1

� |S|
n �

, ...,
1

� |S|
n �

}
. (8)

Proof. The good partition π(n) = {P1|P2| · · · |P� |S|
n �} divides S into � |S|

n � equal
length segments. Since x shows distribution periodicity with respect to partition
π(n), we can expect that supp(x|Pi) ≈ supp(x|Pj) for any i �= j, where i, j =
{1, .., � |S|

n �}. Moreover, with Lemma 1, we obtain:

supp(x) =
� |S|

n �∑
j=1

supp(x|Pj) ≈ �|S|
n

� × supp(x|Pj).

That is, the distributions of x in {Pj}, i.e., supp(x|Pj)
supp(x) , are equally to 1/� |S|

n �.

Definition 4. An event x is said to have structure periodicity in S with
respect to “good” partition π(n), if its position (time point) in each segment is
the same.

For the structure periodicity, we have the following theorem:

Theorem 2. If event x has a structure period n in S at position τ# ∈ [1, ..., n],
then the ideal distribution of x on the n positions is as

qn = {q(C1), ..., q(Cτ#), ..., q(Cn)} = {0, ..., 1, ..., 0}. (9)

Proof. If event x has structure periodicity in data series BSx with respect to
“good” partition π(n), then

– bi∗n+τ = bj∗n+τ , here i, j ∈ [0, · · · , � |S|
n � − 1] and τ ∈ [1, ..., n]; and

– ∃ τ# ∈ [1, ..., n] such that bτ# = 1 and bτ = 0 (τ �= τ#).

130 H. Yuan et al.

We obtain ∀ j ∈ [0, · · · , � |S|
n � − 1], bj∗n+τ# = 1 and bj∗n+τ = 0 holds. Then,

supp(x|Cτ#) =
� |S|

n �−1∑
j=0

bj∗n+τ# = � |S|
n

�,

and supp(x|Cτ)τ �=τ# = 0. Based on Lemma 2, we know that q(Cτ#) = 1, and
{q(Cτ)}τ �=τ# are all 0.

If π(n) is the “good” partition for the distribution periodicity of x in S, and
π(n) is also the “good” partition for the structure periodicity of x in S, then x
is said to have a perfect periodicity in S.

3.4 Research Problem

Implementing partition method π(n) ∈ Π on a binary time-series BSx, it would
generate two distributions for the appearances of x in data series, i.e.,

p̂n = {p̂(Pj)}1≤j≤� |S|
n �] and q̂n = {q̂(Cτ)}1≤τ≤n. (10)

If there exists a feasible measurement of d(·) that can be used to evaluate the
distance between two distributions in (10), then d(p̂n, pn) and d(q̂n, qn) would
show how close a real probability distribution p̂n (q̂n) is to a candidate distri-
bution of pn (qn). Without losing generality, it can be assumed that the more
closer p̂n (q̂n) to pn (qn), the more smaller the value of d(p̂n, pn) and d(q̂n, qn)
would be. Along this line, the event periodicity detection is changed to find an
optimal partition π(n) on S to minimize the distance between the generated two
distributions with two distributions respectively:

minπ(n)∈∏{d(p̂n, pn)} and minπ(n)∈∏{d(q̂n, qn)}
st. 2 � n � � |S|

2 �. (11)

4 Mining Event Periodicity

4.1 Cross Entropy

In this work, we introduce the cross entropy [15] to measure the similarity
between two distributions. Given two distributions of p̂n and pn, the cross
entropy or the Kullback-Leibler (KL) divergence between p̂n and pn is defined
by

KL(p̂||p)n =
∑

n

p̂n log
p̂n

pn
. (12)

The cross entropy determines the ability to discriminate between two states
of the world, yielding sample distributions p̂n and ideal distribution pn.

Theorem 3. KL(p̂||p)n ≥ 0, and it is minimized if the distributions match
exactly, i.e., KL(p̂||p)n = 0 if p̂n = pn.

Theorem 3 provides theoretical clues for finding a feasible n in task of event
periodicity detection.

Efficient Mining of Event Periodicity in Data Series 131

4.2 Identifying Distribution Periodicity

According to the definition of Theorem1, if event x has distribution periodicity
in S with respect to the “good” partition π(n), then

pn =

{
1

� |S|
n �

, · · · ,
1

� |S|
n �

}
.

The appearances of x in each segment Pj is supp(x|Pj) with respect to π(n).
Accordingly, the posterior probability distribution of p̂n is calculated as:

p̂n =

{
supp(x|P1)

supp(x)
, · · · ,

supp(x|P� |S|
n �)

supp(x)

}
.

Known from Theorem 3, a smaller value of KL(p̂||p)n means the poste-
rior distribution pn is more close to qn, which indicates that pn ∼ qn means
KL(p̂||p)n ∼ 0 and then π(n) may be a “good” partition for detecting the peri-
odicity of event x. Thus, the task of detecting distribution periodicity of event
x in S is equal to find a “good” partition π(n∗) to minimizes the KL distance:

n∗ = arg min
π(n)∈∏{KL(p̂||p)n} st. 2 � n � � |S|

2
�. (13)

We propose an Algorithm 1 to calculate the minimized KL(p̂||p)n.

Algorithm 1. Calculate KL(p̂||p)n

1: Input: Binary data series BSx;
2: Output: KL;
3: KL = φ;
4: for n = 2 to � |S|

2
� do

5: KLn = 0;
6: for j = 1 to � |S|

n
� do

7: Pj = {b(j−1)∗n+1, ..., bj∗n};

8: pj =
supp(x|Pj)

supp(x)
;

9: KLn = KLn + pj log
(
pj ∗ � |S|

n
�
)
;

10: end for
11: KL ← KLn;
12: end for
13: return KL;

The proposed method traverses all the n in [2, � |S|
2 �] to find the most

feasible π(n) such that the value of KL(p̂||p)n can be minimized. Based on
the partition results provided by π(n), we have to calculate � |S|

n � values, i.e.,
supp(x|Pj)j={1,...,� |S|

n �}, which can be obtained in O(1) time. Therefore, the over-

all complexity of Algorithm 1 is very efficient of
∑� |S|

2 �
2 � |S|

n � = O(|S| ln |S|).

132 H. Yuan et al.

4.3 Identifying Structure Periodicity

We consider the opposite side of the above mentioned “good” partition, that
is, the “worst” partition for showing the structure periodicity of event x. In
such a poor case, the distribution of x would not obey the rule of Theorem2,
which means the distributions of x in Ct, (t = 1, ..., n) are the same instead of a
distribution shown in relation (9). Such a distributions of x can be referred as:

qn =
{

1
n

, · · · ,
1
n

}
.

In real, the posterior probability distribution of x in Cτ is:

q̂n =
{

supp(x|C1)
supp(x)

, · · · ,
supp(x|Cn)

supp(x)

}
.

Using KL(q̂||q)n to measure the difference between two distributions of q̂n

and qn, a bigger value of KL(q̂||q)n indicates that the posterior distribution q̂n is
deviated much from the route of qn, and thus π(n) may be a “good” partition for
detecting the structure periodicity of event x. Detecting structure periodicity of
event x is thus equal to find a π(n) ∈ Π to minimizes the value of −KL(q̂||q)n.

n# = arg min
π(n)∈∏{−KL(q̂||q)n} st. 2 � n � � |S|

2
�. (14)

Algorithm 2 is used to calculate all the value of −KL(q̂||q)n for x.

Algorithm 2. Compute −KL(q̂||q)
1: Input: Binary data series BSx;
2: Output: KL;
3: KL = φ;
4: for n = 2 to � |S|

2
� do

5: KLn = 0;
6: for k = 1 to n do
7: Ck = {bk, bn+k, ..., b

(� |S|
n

�−1)∗n+k
};

8: qk = supp(x|Ck)
supp(x)

;

9: KLn = KLn + qk ∗ log(qk ∗ n);
10: end for
11: KL ← −KLn;
12: end for
13: return KL;

There are totally supp(x) appearances of x in S and � |S|
2 � partition results,

we then can calculate supp(x|Cτ) for all the partition results by traversing all
the appearance of x in S. Along this way, the complexity of Algorithm2 is
O(supp(x)|S|) and the operation time can be optimized, especially, when x is
sparsely distributed in S. Note that, the basic operation for this method is to
calculate supp(x|Cτ) with (5) for all the � |S|

2 � partition results. Therefore, the
complexity of Algorithm2 is characterized by max{O(|S| ln |S|), O(supp(x)|S|)}.

Efficient Mining of Event Periodicity in Data Series 133

5 Experimental Results

5.1 Experimental Setup

We conduct a series of experiments to evaluate the performance of the proposed
method, namely Cross-Entropy based Periodicity Detection (CEPD). To that
end, three algorithms of WARP [8], CONV [7] and VAR [30] are selected for
comparisive purpose. Given that the performance of VAR are affected heavily by
a user-specified parameter of va, i.e., a bigger threshold value of va will result in
an increased time consumption [30], the VAR method will be conducted 3 times
with different parameter settings of va = 0.01, 0.1, and 0.2 respectively.

All these algorithms suffer from the poor performance to big data and poor
resilience to noise. To support this claim and make the experimental results more
clear, we conduct a series of experiments using synthetic data. The synthetic data
have been generated by controlling parameters of data distribution (uniform or
normal), alphabet size (number of unique symbols in the data), size of the data
series (total number of symbols), period length, and the amount of noise in the
data, which is the same way as done in [7,19]. In addition, each algorithm will
be run 10 times, and then take the averaged value of these experimental results
as the final result to avoid potential bias.

The confidence of a periodic event x occurring in data series S is the ratio
of its actual periodicity to its expected periodicity. Formally, the periodicity
confidence of x in S under partition π(n) is defined as [13,19]:

conf(x)n =
Actual Periodicity(x)

� |S|
n �

, (15)

where Actual Periodicity(x) is computed by counting the number of segments
in which x is appearanced.

5.2 Efficiency of the Method

In the efficiency experiments, we test the time consumption of the four algorithms
of CEPD, WARP, CONV and VAR under the impacts of following circumstance:
the total data size |S|, the period length n, the alphabet size |ΣS | and the
(replacement) noise ratio in S.

The first set of experiments is about the effect of data series size, |S|, on
the efficiency of algorithms, all the methods will be conducted on a set of syn-
thetic data series by varying data size from 100 to 500. These synthetic data
series have been generated by following uniform distribution with alphabet size
of 4 and embedded identical period of 5. The results are presented in Fig. 1(a)
and (b). Obviously, the running time of all the four methods will go increas-
ing dramatically while |S| becomes bigger. WARP has the highest complexity
(Fig. 1(a))3. Figure 1(b) is a locally magnified image of Fig. 1(a), which shows
that both the efficiency of CEPD and CONV are better than that of VAR,
3 In Fig. 1, symbol † means the experimental results without WARP.

134 H. Yuan et al.

this advantage becomes more obvious with the decrease of va. The experiments
indicate that the efficiency of CEPD is superior to the others when data series
becomes very large.

0 100 200 300 400 500
0

10

20

30

40

50

60

70

Length of data series, |S|

T
im

e
(s

ec
)

CONV
CEPD
WARP
VAR

(a) Effect of |S|
0 100 200 300 400 500

0

0.5

1

1.5

2

2.5

Length of data series, |S|

T
im

e
(s

ec
)

CONV
CEPD
VAR (va=0.01)
VAR (va=0.1)
VAR (va=0.2)

(b) Effect of |S|†
0 4 8 12 16 20

0

5

10

15

20

25

30

35

Length of period

T
im

e
(s

ec
)

CONV
CEPD
WARP
VAR

(c) Effect of n
0 4 8 12 16 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Length of period

T
im

e
(s

ec
)

CONV
CEPD
VAR (va=0.01)
VAR (va=0.1)
VAR (va=0.2)

(d) Effect of n†

5 10 15 20
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Length of alphabet size |Σ|

T
im

e
(s

ec
)

CONV
CEPD
WARP
VAR

(e) Effect of |ΣS |
0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

Length of alphabet size |Σ|

T
im

e
(s

ec
)

CONV
CEPD
VAR (va=0.01)
VAR (va=0.1)
VAR (va=0.2)

(f) Effect of |ΣS |†
0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

Noise ratio

T
im

e
(s

ec
)

CONV
CEPD
WARP
VAR

(g) Effect of noise

0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

Noise ratio

T
im

e
(s

ec
)

CONV
CEPD
VAR (va=0.01)
VAR (va=0.1)
VAR (va=0.2)

(h) Effect of noise†

Fig. 1. Efficiency experiments

The next set of experiments are intended to show the efficiency of the algo-
rithms by varying the embedded period size. In the experiment, we fixed the
number of alphabets as 4, and embedded period are varied from 4 to 20. The
curves of running time taken by CEPD, WARP, CONV and VAR have been plot-
ted in Fig. 1(c), and an amplification version for the comaprison among CEPD,
CONV and VAR is shown in Fig. 1(d). The results show that the time consump-
tion of all the four algorithms are increased while the period length becomes
longer. Again, WARP has the highest complexity which is followed by VAR,
CONV and then CEPD.

The third set of experiments are intended to show the performances of all
the four methods under effects of different alphabet size |Σ| in a data series. The
synthetic data series used in the experiments are embedded with a period of 32
and the number of alphabets are varied from 1 to 20 (smaller than the period
value). The experimental results show that, along with the increasing of the
alphabet size |Σ|, the running time of WARP is stable and significantly higher
than the other methods. Interestingly, the running time of VAR and CONV
increase dramatically when |Σ| is relative small, and then fall down when |Σ|
goes bigger (Fig. 1(e) and (f)). The running time of CEPD increases slowly and
lower than that of the other methods.

The fourth experiments are conducted to measure the impact of noise ratio
on the time performance of the four methods. To that end, we fixed the length
of the time series as 500, and replaced some regular symbols with noise symbols
in the experiments. The noise ratio is varied from 0 to 0.5. As we can see, the

Efficient Mining of Event Periodicity in Data Series 135

running efficiency of CEPD, WARP and CONV perform stably under different
noise ratio. In other words, the performance of these algorithms are not sensitive
to replacement noise (Fig. 1(g) and (h)). This is similar to the results presented
in [19]. As for VAR, it performs worse as the ratio noise increasing (Fig. 1(h)).

5.3 Accuracy of the Method

Two different ways are conducted to study the accuracy of the algorithms. The
first compares the value of confidence for each method assuming that the period
can be identified by all the methods. Whereas, the second compares the period
identified by each method when the confidence is maximized. Five synthetic
data sets are generated for the experiments (Table 1). In the experiments, the
potential period length is set as 10, and the data series is generated by repeating
the period 100 times.

Table 1. The generation of synthetic data set (denoted by D).

D Generation rules Sample data series

1 1 periodic event 1000 1000 1000 1000

2 1 random event 1000 0010 0001 0100

3 2 periodic events 1010 1010 1010 1010

4 1 periodic and 1 random event 1001 1100 1010 1010

5 2 random events 0101 1001 1010 0011

For the experiments of confidence comparison, the results are listed in Table 2.
As we can see, the CEPD can identify all the events with confidence 100% since
all the events in the data series are uniformed distributed with respect to the
period. WARP also show a better performance on accuracy (close to 100%) than
CONV and VAR. However, CONV performs good on data set 1, 3 and 4, and
bad on data set 2 and 5 (the events are randomly distributed). That is to say,
CONV prefers to structure period. The VARs show good efficiency on the data
series having only 1 event embedded (data set 1 and 2).

5.4 Noise Resilience

In data series, there are three types of noise: replacement, insertion, and deletion
noise [8]. Accordingly, the purpose of the following experiments are to study the
behavior of the different methods in periodicity detection with respect to toward
these noise as well as some mixtures of them. In the experiments, we used a
synthetic time series containing 4 symbols and period size of 10. The noise ratio
increased gradually from 0.0 to 0.5. Finally, we report the averaged confidence
level of all the symbols at which the actual period of 10 is detected.

136 H. Yuan et al.

Table 2. The comparison of confidence (the period is fixed).

Data Set CEPD CONV WARP VAR VAR VAR

(va = 0.2) (va = 0.1) (va = 0.01)

1 1 1 1 1 1 1

2 1 0 0.9959 1 1 -

3 1 1 1 - - -

4 1 1 0.9989 - - -

5 1 0.0813 0.9975 - - -

In general, along with the increase of noise ratio, the accuracy of all the algo-
rithms are in decline; especially when considering insertion, deletion or hybrid
noise increasing, the accuracy of these algorithms will fall shapely (Figs. 2 and
3). In case that the noises are uniformly distributed in data series, CEPD has
the best performance for the replacement noise (Fig. 2(a)). When the insertion,
deletion and hybrid noises are embedded uniformly into a data series, WARP
shows the best performance on noise resilience, followed by CEPD (Fig. 2(b), (c)
and (d)). In case that the noises are normally distributed in data series, simi-
larly, CEPD performances best under the situation that the replacement noises
are embedded (Fig. 3(a)). However, for the situations of insertion, deletion and
hybrid noises, the comparative results are mixed and no method has a significant
advantage over the others in noise resilience (Fig. 3(b), (c) and (d)).

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Noise ratio

C
on

fi
de

nc
e

CONV(|S|=500)
CEPD(|S|=500)
WARP(|S|=500)
VAR(|S|=500)

(a) Replace noise.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Noise ratio

C
on

fi
de

nc
e

CONV(|S|=500)
CEPD(|S|=500)
WARP(|S|=500)
VAR(|S|=500)

(b) Insertion noise.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Noise ratio

C
on

fi
de

nc
e

CONV(|S|=500)
CEPD(|S|=500)
WARP(|S|=500)
VAR(|S|=500)

(c) Deletion noise.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Noise ratio

C
on

fi
de

nc
e

CONV(|S|=500)
CEPD(|S|=500)
WARP(|S|=500)
VAR(|S|=500)

(d) RID noise.

Fig. 2. Accuracy (uniformly distributed noise).

5.5 A Case Study on Real Dataset

A real-world data set, i.e., Amazon access samples data set (AASDS)4, has been
used in the experiments which was created and donated by Amazon.com in 2011
and has been cited for many times. AASDS contains 17612 users’ access history
from 2005.8 to 2010.8. To study the periodicity of each Amazon user, we take
“Day” as the basic time unit, and all the accessing actions are then counted
by 24-hours-day, for example, if a user had accessed Amazon.com more than 0

4 http://archive.ics.uci.edu/ml/datasets/.

https://www.amazon.com/
https://www.amazon.com/
http://archive.ics.uci.edu/ml/datasets/

Efficient Mining of Event Periodicity in Data Series 137

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Noise ratio

C
on

fi
de

nc
e

CONV(|S|=500)
CEPD(|S|=500)
WARP(|S|=500)
VAR(|S|=500)

(a) Replace noise.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Noise ratio

C
on

fi
de

nc
e

CONV(|S|=500)
CEPD(|S|=500)
WARP(|S|=500)
VAR(|S|=500)

(b) Insertion noise.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Noise ratio

C
on

fi
de

nc
e

CONV(|S|=500)
CEPD(|S|=500)
WARP(|S|=500)
VAR(|S|=500)

(c) Deletion noise.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Noise ratio

C
on

fi
de

nc
e

CONV(|S|=500)
CEPD(|S|=500)
WARP(|S|=500)
VAR(|S|=500)

(d) RID noise.

Fig. 3. Accuracy (normally distributed noise).

times in Sep. 2, 2005, then we marked the value of et at the position of day Sep.
2, 2005 as “1” in SA, otherwise, “0” is marked. Finally, we can generate a data
series of SA for the targeted user.

Taking the No. #33400 user as an example, the results are shown in Fig. 4. As
we can see that, the minimized value of KL shows that the distribution period
of users #33400 accessing Amazon.com can be approximated as n∗ = 15 days
(two weeks). That is to say, the user trended to visit Amazon.com equal times
every 15 days. Although the event of user #33400 accessing Amazon.com has a
distribution of two weeks, but the multiple relationship between the positions of
local minimized −KL′ for data set AASDS is weak, which means the user has
no regular time point for visiting Amazon.com.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 n

 K
L

n

(a) KL of SA.

0 100 200 300 400 500 600 700 800 900 1000
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

 n

 K
L

’ n

(b) −KL′ of SA.

Fig. 4. KL and −KL′ in real data series.

6 Conclusion

Discovering the periodicity of event happened in sequential data series is a valu-
able work for data analyzing. In this paper, a novel and efficient method, namely
CEPD is proposed to address the event-based periodicity mining problem in data
series. The advantages of the proposed method are summarized as follows: first,
it is the first time to distinguish the idea of distribution periodicity and structure
periodicity. Second, a simple and complete partition method π(n) is proposed.
Third, basing on the minimum cross entropy principle and the property of peri-
odic function, we present an efficient method to measure and determine the
periodicity of an event. The experimental results show that CEPD has a best
performance of running efficiency due to its less complexity.

https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/

138 H. Yuan et al.

Acknowledgments. The authors would like to thank the supports of the National
Natural Science Foundation of China (71671027/91846105/71572029/71490723).

References

1. Benson, A.R., Kumar, R., Tomkins, A.: Modeling user consumption sequences. In:
Proceedings of the 25th International Conference on World Wide Web, WWW
2016, pp. 519–529 (2016)

2. Berberidis, C., Vlahavas, I., Aref, W.G., Atallah, M., Elmagarmid, A.K.: On the
discovery of weak periodicities in large time series. In: Elomaa, T., Mannila, H.,
Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 51–61. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45681-3 5

3. Brigham, E.: Fast Fourier Transform and Its Applications, 1st edn. Prentice Hall,
Englewood (1988)

4. Cao, H., Cheung, D.W., Mamoulis, N.: Discovering partial periodic patterns in
discrete data sequences. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004.
LNCS (LNAI), vol. 3056, pp. 653–658. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24775-3 77

5. Cetintas, S., Chen, D., Si, L., Shen, B., Datbayev, Z.: Forecasting counts of user
visits for online display advertising with probabilistic latent class models. In: Pro-
ceeding of the 34th International ACM SIGIR Conference, pp. 1217–1218 (2011)

6. Chan, K.P., Fu, A.W.C.: Efficient time series matching by wavelets. In: Proceedings
of the 15th International Conference on Data Engineering, ICDE 1999, pp. 126–133
(1999)

7. Elfeky, M.G., Aref, W.G., Elmagarmid, A.K.: Periodicity detection in time series
databases. IEEE Trans. Knowl. Data Eng. 17(7), 875–887 (2005)

8. Elfeky, M.G., Aref, W.G., Elmagarmid, A.K.: WARP: time warping for periodicity
detection. In: Proceedings of the Fifth IEEE International Conference on Data
Mining, ICDM 2005, pp. 138–145 (2005)

9. Elfeky, M.G., Aref, W.G., Elmagarmid, A.K.: Stagger: periodicity mining of data
streams using expanding sliding windows. In: Proceedings of the 6th IEEE Inter-
national Conference on Data Mining, pp. 188–199 (2006)

10. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in
time-series databases. In: Proceedings of the SIGMOD 1994, pp. 419–429. ACM
(1994)

11. Ghosh, A., Lucas, C., Sarkar, R.: Finding periodic discrete events in noisy streams.
Proc. CIKM 2017, 627–636 (2017)

12. Glynn, E.F., Chen, J., Mushegian, A.R.: Detecting periodic patterns in unevenly
spaced gene expression time series using lomb-scargle periodograms. Bioinformatics
22(3), 310–316 (2006)

13. Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time
series database. In: Proceedings of International Conference on Data Engineering,
pp. 106–115 (1999)

14. He, Z., Wang, X.S., Lee, B.S., Ling, A.C.H.: Mining partial periodic correlations
in time series. Knowl. Inf. Syst. 15, 31–54 (2008)

15. Kullback, S., Leibler, R.A.: On information and sufficienvy. Ann. Math. Stat. 22,
79–86 (1951)

16. Li, Z., Ding, B., Han, J., Nye, R.K.P.: Mining periodic behaviors for moving objects.
In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1099–1108 (2010)

https://doi.org/10.1007/3-540-45681-3_5
https://doi.org/10.1007/978-3-540-24775-3_77
https://doi.org/10.1007/978-3-540-24775-3_77

Efficient Mining of Event Periodicity in Data Series 139

17. Li, Z., Wang, J., Han, J.: Mining event periodicity from incomplete observations.
In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 444–452 (2012)

18. Ma, S., Hellerstein, J.L.: Mining partially periodic event patterns with unknown
periods. In: Proceedings of the 17th International Conference on Data Engineering,
pp. 205–214. IEEE (2001)

19. Rasheed, F., Alshalalfa, M., Alhajj, R.: Efficient periodicity mining in time series
databases using suffix trees. IEEE Trans. Knowl. Data Eng. 23(1), 79–94 (2011)

20. Ruiz, E.J., Hristidis, V., Castillo, C., Gionis, A., Jaimes, A.: Correlating financial
time series with micro-blogging activity. In: Proceedings of the Fifth ACM Inter-
national Conference on Web Search and Data Mining, WSDM 2012, pp. 513–522.
ACM (2012)

21. Sheng, C., Hsu, W., Lee, M.L.: Mining dense periodic patterns in time series data.
In: Proceedings of the 22nd International Conference on Data Engineering, ICDE
2006, p. 115. IEEE (2006)

22. Sripada, S.G., Reiter, E., Hunter, J., Yu, J.: Segmenting time series for weather
forecasting. In: Macintosh, A., Ellis, R., Coenen, F. (eds.) Applications and Inno-
vations in Intelligent Systems X, pp. 193–206. Springer, London (2003). https://
doi.org/10.1007/978-1-4471-0649-4 14

23. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-
frequent patterns in transactional databases. In: Theeramunkong, T., Kijsirikul,
B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 242–
253. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2 24

24. Vlachos, M., Yu, P.S., Castelli, V.: On periodicity detection and structural periodic
similarity. In: SDM 2005, pp. 449–460 (2005)

25. Wang, R.Y., Storey, V.C., Firth, C.P.: A framework for analysis of data quality
research. IEEE Trans. Knowl. Data Eng. 7(4), 623–640 (1995)

26. Wang, X., Zhang, H., Zhang, D., Xiao, Y.: A moving-window based partial peri-
odic patterns update technology in time series databases. In: 2008 International
Symposium on Computational Intelligence and Design, ISCID 2008, vol. 2, pp.
98–101, October 2008

27. Yang, J., Wang, W., Yu, P.S.: Infominer: mining surprising periodic patterns. In:
Proceedings of the seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2001, pp. 395–400. ACM (2001)

28. Yang, J., Wang, W., Yu, P.S.: Mining asynchronous periodic patterns in time series
data. IEEE Trans. Knowl. Data Eng. 15(3), 613–628 (2003)

29. Yang, Y., Pan, B., Song, H.: Predicting hotel demand using destination marketing
organization’s web traffic data. J. Travel Res. 53(4), 433–447 (2014)

30. Yang, Y.C., Padmanabhan, B., Liu, H., Wang, X.: Discovery of periodic patterns in
sequence data: a variance-based approach. INFORMS J. Comput. 24(3), 372–386
(2012)

31. Yuan, Q., Shang, J., Cao, X., Zhang, C., Geng, X., Han, J.: Detecting multiple
periods and periodic patterns in event time sequences. Proc. CIKM 2017, 617–626
(2017)

32. Ziegler, H., Jenny, M., Gruse, T., Keim, D.A.: Visual market sector analysis for
financial time series data. In: IEEE VAST, pp. 83–90. IEEE (2010)

https://doi.org/10.1007/978-1-4471-0649-4_14
https://doi.org/10.1007/978-1-4471-0649-4_14
https://doi.org/10.1007/978-3-642-01307-2_24

	Efficient Mining of Event Periodicity in Data Series
	1 Introduction
	2 Related Work
	3 Concepts and Model Formulation
	3.1 Data Series and Event Periodicity
	3.2 Data Series Partitioning
	3.3 Distribution Periodicity and Structure Periodicity
	3.4 Research Problem

	4 Mining Event Periodicity
	4.1 Cross Entropy
	4.2 Identifying Distribution Periodicity
	4.3 Identifying Structure Periodicity

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Efficiency of the Method
	5.3 Accuracy of the Method
	5.4 Noise Resilience
	5.5 A Case Study on Real Dataset

	6 Conclusion
	References

