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Abstract. Real-world time series classification applications often
involve positive unlabeled (PU) training data, where there are only a
small set PL of positive labeled examples and a large set U of unla-
beled ones. Most existing time series PU classification methods utilize all
readings in the time series, making them sensitive to non-characteristic
readings. Characteristic patterns named shapelets present a promising
solution to this problem, yet discovering shapelets under PU settings is
not easy. In this paper, we take on the challenging task of shapelet dis-
covery with PU data. We propose a novel pattern ensemble technique
utilizing both characteristic and non-characteristic patterns to rank U
examples by their possibilities of being positive. We also present a novel
stopping criterion to estimate the number of positive examples in U .
These enable us to effectively label all U training examples and conduct
supervised shapelet discovery. The shapelets are then used to build a
one-nearest-neighbor classifier for online classification. Extensive exper-
iments demonstrate the effectiveness of our method.
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1 Introduction

Time series classification (TSC) is an important research topic with applications
to medicine [3,9], biology [4], electronics [17], etc. Conventional TSC [2] tasks are
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fully supervised. However, real-world TSC problems often fall into the category
of positive unlabeled (PU) classification [8]. In such cases, only a small set
PL of positive and labeled training examples and a large set U of unlabeled
ones are available to help distinguish between two classes1. For example, in
heartbeat classification for medical care, we may need to train a classifier based
on a limited number of abnormal heartbeats and a large number of unlabeled
(normal or abnormal) ones [3]. To the best of our knowledge, no conventional
supervised TSC methods can be applied to such cases where only one class is
labeled, thus specialized PU classification methods are required.

Most existing PU classification methods for time series [3,4,6,13,16,17] are
whole-stream based, utilizing all readings in the training examples. This makes
them sensitive to non-characteristic readings [15,19]. One effective solution to
this problem is time series shapelets [7,10,15,18,19], which are character-
istic patterns2 that can effectively distinguish between different classes. For
instance, consider three electrocardiography time series from the TwoLeadECG
dataset [5]. Under whole-stream matching (Fig. 1 left) with the highly effec-
tive [4] DTW distance [6,13,16], ts2 is incorrectly deemed to be more similar to
ts3 than ts1. In contrast, with a shapelet (Fig. 1 right), we can obtain its best
matching subsequence in each time series, and uncover the correct link.

Fig. 1. A comparison of whole-stream based and shapelet-based methods. While the
former incorrectly links ts2 with ts3 (left), the latter uncovers the correct link (right).

In this paper, we undertake the task of shapelet discovery with PU data. To
the best of our knowledge, no previous work deals with this problem. Exist-
ing shapelet discovery methods are either supervised [7,10,18] or unsuper-
vised [15,19]. Concretely, a classic framework [18,19] of shapelet discovery is
to extract a pool of subsequences as shapelet candidates, rank them with an
evaluation metric, and select the top-ranking ones as shapelets. For the choice of
the evaluation metric, supervised metrics [7,10,18] can effectively discover high-
quality shapelets. However, they need labeled examples from both classes, while
1 The term positive unlabeled can be confusing, where positive actually means positive
labeled. In this paper, we still use positive unlabeled (PU) to refer to what is actually
positive-labeled unlabeled. However, in other cases, we use positive/negative to refer
to all positive/negative examples, regardless of whether they are labeled or not.
Positive examples that are labeled will be explicitly referred to as being positive
labeled (PL).

2 In this paper, we use the terms subsequence and pattern interchangeably.
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under PU settings, only one class is (partly) labeled. An unsupervised evaluation
metric [15,19] aims to maximize the inter-class gap and minimize the intra-class
variance, yet this rationale often fails to hold, which is likely due to the typi-
cally noisy and high-dimensional nature of time series, and the sparsity of small
datasets.

Faced with the difficulties of directly applying existing shapelet discovery
methods, we propose our novel PU-Shapelets (PUSh) algorithm. To be specific,
we opt to first label the unlabeled (U) examples, thus obtaining a fully labeled
training set. This enables us to conduct supervised shapelet discovery. To label
the U examples, we present a novel Pattern Ensemble (PE) technique that
iteratively ranks all U examples by their possibilities of being positive. PE uti-
lizes both potentially characteristic and potentially non-characteristic shapelet
candidates, without the need to know their actual quality. We then develop a
novel Average Shapelet Precision Maximization (ASPM) stopping cri-
terion. Based on a novel concept called shapelet precision, ASPM determines
the point where the PE iterations should stop [3,4,6,13,16,17]. All U examples
ranked before and at this point are labeled as being positive and the rest are
considered negative. ASPM is essentially an estimation of the number of positive
examples in U . Having labeled the entire training set, we select the shapelets
with the supervised evaluation metric of information gain [10,18]. The discovered
shapelets are used to build a nearest-neighbor classifier for online classification.
The complete workflow of PUSh is shown in Fig. 2.

Fig. 2. The workflow of our PU-Shapelets (PUSh) algorithm.

Our main contributions in the paper are as follows.

– We present PU-Shapelets (PUSh), which addresses the challenging task of
discovering time series shapelets [7,10,15,18,19] with positive unlabeled (PU)
data. As far as we know, this is the first time this task has been undertaken.

– We develop a novel Pattern Ensemble (PE) technique to iteratively
rank the unlabeled (U) examples by their possibilities of being positive.
PE effectively utilizes both potentially characteristic and potentially non-
characteristic patterns, without the need to know their actual quality.

– We present a novel Average Shapelet Precision Maximization
(ASPM) stopping criterion. Based on a novel concept called shapelet preci-
sion, ASPM can effectively estimate the number of positive examples in U
and determine when to stop the PE iterations. We combine PE and ASPM
to label all U examples. We then conduct supervised shapelet selection and
build a nearest-neighbor classifier for online classification.
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– We conduct extensive experiments to demonstrate the effectiveness of our
PUSh method.

The rest of the paper is organized as follows. Section 2 introduces the prelimi-
naries. Section 3 presents our PUSh algorithm. Section 4 reports the experimental
results. Section 5 reviews the related work. Section 6 concludes the paper.

2 Preliminaries

We now formally define several important concepts used in this paper. We begin
with the concept of positive unlabeled classification [8].

Definition 1 Positive unlabeled (PU) classification. Given a training set
with a (small) set PL of positive labeled examples and a (large) set U of unlabeled
examples, the task of positive unlabeled (PU) classification is to train a classifier
with P and U and apply it to predicting the class of future examples.

We move on to the definitions of time series and subsequence.

Definition 2 Time series and subsequence. A time series is a sequence
of real values in timestamp ascending order. For a length-L time series T =
t1, . . . , tL, a subsequence S of T is a sequence of contiguous data points in T.
The length-l (l ≤ L) subsequence that begins with the p-th data point in T is
written as S = tp, . . . , tp+l−1.

We then introduce the concept of subsequence matching distance (SMD).

Definition 3 Subsequence matching distance (SMD). For a length-l sub-
sequence Q = q1, . . . , ql and a length-L time series T = t1, . . . , tL, the subse-
quence matching distance (SMD) between Q and T is the minimum distance
between Q and all length-l subsequences of T under some distance measure D,
i.e. SMD(Q,T ) = min{D(Q,S)|S = tp, . . . , tp+l−1,∀p, 1 ≤ p ≤ L − l + 1}.

For the choice of the distance measure, we apply the length-normalized
Euclidean distance [10], which is the Euclidean distance between two equal-
length subsequences divided by the square root of the length of the subsequences.

We now formally define the concept of orderline [10,15,18,19].

Definition 4 Orderline. Given a subsequence S and a time series dataset DS,
the corresponding orderline OS is a sorted vector of SMDs between S and all time
series in DS.

We conclude with the definition of time series shapelets.

Definition 5 Time series shapelets. Given a set DS of training time series,
time series shapelets are characteristic subsequences that can distinguish between
different classes in DS. Concretely, given a shapelet candidate set CS consisting
of subsequences extracted from time series in DS, let m be the desired number of
shapelets. Time series shapelets are the top-m ranking subsequences in CS under
some evaluation matric E. E indicates how well separated different classes are
on the orderline of a shapelet candidate.
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3 The PU-Shapelets Algorithm

We now present our PU-Shapelets (PUSh) algorithm. Following the workflow
shown in Fig. 2, we will first elaborate on how to label the unlabeled (U) set,
and then introduce the shapelet selection and classifier construction processes.

3.1 Labeling U Examples

We now introduce the process of labeling U examples. Our first step is to obtain
a pool of patterns as shapelet candidates, which will also be useful when labeling
the U set. Concretely, we set a range of possible shapelet lengths. For each length
l, we apply a length-l sliding window to each training time series (regardless of
whether it is labeled or not), extracting all length-l subsequences in the training
set and adding them to the candidate pool. The final pool of shapelet candidates
is obtained when all possible lengths are exhausted [7,10,15,18,19].

Having obtained all shapelet candidates, we now move on to labeling the U
set. This is typically achieved by first rank the U examples by their possibilities
of being positive, and then estimate the number npu of positive examples in
U [3,4,6,11–13,16,17], thus the top-ranking npu examples in U are labeled as
being positive and the rest are labeled as being negative. This workflow has been
illustrated in Fig. 2. We now separately discuss how to rank the U examples, and
how to estimate the number of positive examples.

Ranking U Examples with Pattern Ensemble (PE). We first discuss rank-
ing the U examples. Previous works [3,4,6,13,16,17] have adopted the propagat-
ing one-nearest-neighbor (P-1NN) algorithm [21]. P-1NN works in an iterative
fashion. In each iteration, the nearest neighbor of the positive labeled (PL) set
in the unlabeled (U) set is moved from U to PL. The nearest neighbor of PL in
U is defined as the U example with the minimum nearest neighbor distance to
PL, i.e.

NN(PL,U) = arg min{NNDist(u, PL) | u ∈ U} (1)

The iterations go on until U is exhausted. The order by which the U examples
are added into PL is their rankings.

The problem with previous works is that when obtaining the nearest neigh-
bors, they calculate the distances between entire time series, utilizing all the
readings. This makes them susceptible to non-characteristic readings. In con-
trast, we attempt to actively minimize the interference from non-characteristic
shapelet candidates. However, as was discussed in Sect. 1, no existing evaluation
metric can effectively estimate the qualities of the candidates under PU settings.
Without such prior knowledge, which candidates should we rely on? The answer
is surprisingly simple: All of them.

To be specific, we develop the following Pattern Ensemble (PE) tech-
nique, whose workflow is shown in Fig. 3. PE adopts a similar iterative process
as P-1NN. However, in each iteration of PE, we let each shapelet candidate
individually identify the nearest neighbor of PL in U on its orderline (Fig. 4),
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Fig. 3. The workflow of pattern ensemble (PE).

and vote for it. The U example receiving the most votes is moved to PL. The
iterations stop when U is exhausted, and the order by which U examples are
moved to PL is their rankings.

Fig. 4. An illustration of finding the nearest neighbor of PL in U on an orderline.

At first glance, PE seems highly unlikely to perform well, especially when the
number of non-characteristic patterns significantly exceeds that of characteristic
ones. However, note that in many cases, while the non-characteristic patterns
do not significantly favor the positive set, they are not significantly biased to the
negative set either. This is because non-characteristic readings exist not only in
negative examples, but also positive ones. As a result, various non-characteristic
patterns can vote for both negative and positive examples, thus cancelling out
the effect of each other. On the other hand, the characteristic patterns strongly
favor the positive class, ensuring that an actual positive example wins the vote.
This effect is illustrated in Fig. 5.

Fig. 5. An illustration of the rationale of pattern ensemble. Here PL contains only one
example. While the votes from non-characteristic patterns cancel each other out, the
characteristic patterns ensure the correct example is chosen.

Compared with previous works [3,4,6,13,16,17], our method also utilizes
potentially non-characteristic readings. The critical difference is that for each
time series, our method exploits multiple patterns. In contrast, previous works
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utilize only one pattern (i.e. the entire time series itself). This means the negative
effect of one non-characteristic pattern cannot be cancelled out by the positive
effect of another, making previous works less robust than our method.

Algorithm 1. PatternEnsemble(PL, U , CS)
Input : initial positive labeled examples PL, initial unlabeled examples U ,

shapelet candidate pool CS
Output: U example rankings R (by the U examples’ possibilities of being

positive)

1 np0 = |PL|;
2 while U �= ∅ do
3 votes = zeros(1, |PL| + |U |);
4 foreach S ∈ CS do
5 us = FindNN(PL,U ,S);
6 votes(us) + +;

7 nextP =argmax(votes);
8 PL = [PL, nextP ]; U = U \ {nextP};

9 R = PL(np0 + 1 : end);
10 return R;

The complete process of ranking U examples with PE is illustrated in Algo-
rithm1. To begin with, we cache the number of initial positive labeled examples
(line 1), then iteratively take the following steps until U is exhausted (line 2):
We first initiate a vote counter (line 3; note that among the |PL| + |U | indices,
only |U | are valid. The others are simply used to avoid index mapping.). Then,
we let every shapelet candidate S (line 4) identify the nearest neighbor us of PL
in U on its orderline (line 5) and vote for it (line 6). The U example receiving the
most votes (line 7) is moved to PL (line 8). The order by which the U examples
are added into PL is their rankings. (lines 9–10).

The Average Shapelet Precision Maximization (ASPM) Stopping Cri-
terion. With the U examples ranked, we can now move on to estimating the
number npu of positive examples in U . Note that for iterative algorithms such as
the aforementioned P-1NN [21] and our PE, estimating npu is essentially finding
a stopping criterion to decide when to stop the iterations. All examples ranked
before and at the stopping point is labeled as being positive, and the rest are con-
sidered negative. Previous works [3,6,13,16,17] have proposed several stopping
criteria for whole-stream based P-1NN algorithms. However, these methods are
susceptible to interference from non-characteristic readings, and some [6,13,17]
are incompatible with our PE technique.

In light of these drawbacks, we present a brand new stopping criterion tailored
to our PE technique. We first introduce the novel concept of shapelet precision.
In a certain iteration of PE, for the current PL set and a pattern S, let LS and



94 S. Liang et al.

RS be the sets of the leftmost and rightmost |PL| examples on the orderline of
S. The shapelet precision (SP) of S with respect to PL is

SPPL
S =

max(|PL ∩ LS|, |PL ∩ RS|)
|PL| (2)

For example, for the orderline in Fig. 4, we have |PL| = 2 in the current iteration.
One of the two leftmost examples is in PL, and none of the two rightmost
examples is in PL, thus the shapelet precision is max(1, 0)/2 = 0.5.

Note that SP is derived from the concept of precision in the classification
literature. Essentially, we “classify” the leftmost (or rightmost) |PL| examples
on the orderline as being positive, and evaluate the “classification” performance
with SP. Intuitively, at the best stopping point where PL is most similar to the
actual positive set (which is unknown for U), the average SP (ASP) value of
the top shapelet candidates should be the highest. Based on this intuition, we
develop the following Average Shapelet Precision Maximization (ASPM)
stopping criterion, whose workflow is illustrated in Fig. 6.

Fig. 6. The workflow of the Average Shapelet Precision Maximization (ASPM) stop-
ping criterion.

To be specific, after each iteration of PE (lines 3–10 of Algorithm1), we
select the top-k assumed shapelets (rather than actual shapelets, since we do
not know if they are actually the final shapelets yet) with the highest SP values
and calculate their ASP score. Each iteration with the highest ASP value is
considered to be a potential stopping iteration (PSI). Note that the ASP score
of the last iteration is always 1, since at this point all examples are labeled as
being positive and the SP scores of all shapelet candidates are 1. In response,
we disregard this trivial case.

To break the ties between multiple PSIs, we consider their gaps. Suppose
iterations i and j (i < j) are two consecutive PSIs (i.e. all iterations between
them, if any, are non-PSIs with lower ASP scores), their gap is defined as

gap(i, j) =
{

j − i − 1, if j − i − 1 > 1
0, otherwise (3)

Essentially, the gap between i and j is the number of non-PSIs between them.
If the gap is 1, we consider it accidental and reset the gap to 0.
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After getting all gaps, we set a gap threshold gTh that equals half the maxi-
mum gap between consecutive PSIs (except when the maximum gap is 0, where
gTh is set to a random positive value). We find the first “large” gap gap0 ≥ gTh.
Under the assumption that the positive class is relatively compact while the
negative class can be diverse [4], gap0 indicates a decision boundary between
the positive and negative classes. Later “large” gaps may indicate boundaries
between sub-classes of the negative class. At gap0, we select the final stopping
point in one of three cases (Fig. 7).

1. No gap0 exists (namely the maximum gap is 0). Here we select the last PSI
as the stopping point. The rationale is that on the orderlines of multiple
assumed shapelets, the rankings of the negative examples are too diverse to
yield a high ASP score, thus all PSIs correspond to the positive class.

2. Neither of the PSIs i before gap0 and j after gap0 is isolated (we say a PSI
is isolated if there are no PSIs before and after it within the range of gTh).
Here we select i as the stopping point. The rationale is that in the last few
iterations before i, the rankings of the remaining positive unlabeled examples
are relatively uniform on multiple orderlines, resulting in high ASPs before
and at i. Similarly, the rankings of the first few negative unlabeled examples
are relatively uniform, resulting in high ASPs at and after j.

3. At least one of i and j is isolated. Here we select j as the stopping point.
Empirically, if i is isolated, i being a PSI is more likely a coincidence. If j is
isolated, it is more likely that on multiple orderlines, the rankings are diverse
for both the last few positive unlabeled examples (between i and j) and the
first few negative unlabeled examples (after j), yet a clear decision boundary
between the positive and negative classes is at j, resulting in an isolated point
with a high ASP score.

Fig. 7. Different strategies of stopping point selection in the three cases of ASPM. Note
that we have left out the last iteration for its triviality.

To determine the number of assumed shapelets k, we set a largest allowed
value maxK and examine all k ∈ [1,maxK]. We find the stopping point for
each k and pick the one with the maximum gap0. Ties are broken by picking the
one with the latest stop. This reduces the risk of false negatives, which is more
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troublesome than false positives in applications such as anomaly detection in
medical care. Also, to prevent too early or too late a stop, we pre-set the lower
and upper bounds of the stopping point. Note that we usually only need loose
bounds to yield satisfactory performance, which are relatively easy to estimate
in real applications.

Our ASPM stopping criterion is illustrated in Algorithm2. After initiation
(line 1), we examine each possible number k of assumed shapelets (line 2). We
first calculate the ASP values for all iterations except the last (lines 3–6), and
then obtain the PSIs (line 7). Next, we obtain the gap threshold gTh (line 8)
and gap0 along with the two PSIs before and after it (line 9). We then select
the stopping point for the current k (lines 10–12), and update the best-so-far
stopping point if the current k is the better than previous ones (lines 13–14).
The best stopping point is obtained after examining all k values (line 15).

Algorithm 2. ASPM(R, CS, lb, ub, maxK)
Input : the U example rankings R, the shapelet candidate pool CS, the lower

and upper bounds of the stopping point lb and ub, the maximum
number of assumed shapelets maxK

Output: the stopping point bestStop

1 bestStop = INF; maxGap0 = −INF;
2 for k = 1 : maxK do
3 aspList = [];
4 for iter = 1 : |R| − 1 do
5 asp = getAvgShapeletPrecision(CS, R, iter, k);
6 aspList = [aspList, asp];

7 psiList = getPotentialStopIter(aspList, lb, ub);
8 maxGap = getMaxGap(psiList); gTh = �maxGap/2�;
9 [gap0, i, j] = getGap0(psiList, gTh);

10 if gap0 == 0 then stop = psiList(end);
11 else if !(isIsolated(i) || isIsolated(j)) then stop = i;
12 else stop = j;

13 if maxGap0 < gap0 then maxGap0 = gap0; bestStop = stop;
14 else if maxGap0 == gap0 && bestStop < stop then bestStop = stop;

15 return bestStop;

Having obtained the stopping point, we label all U examples ranked before
and at it as being positive and the rest as being negative. The newly labeled U
examples and the initial PL examples make up a fully labeled training set.

3.2 Selecting the Shapelets and Building the Classifier

With a fully labeled training set, we can now select the shapelets using a super-
vised evaluation metric [7,10,18]. Concretely, we adopt the classic [18] informa-
tion gain metric [10,18] to rank and select the top-m shapelet candidates as the
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final shapelets. Next, we conduct feature extraction with the shapelets. To be
specific, we represent each training time series with an m-dimensional feature
vector in which each value is the SMD between the time series and one of the
shapelets. This representation is called shapelet transformed representation [7].
The feature vectors are used to train a one-nearest-neighbor classifier. To clas-
sify a future time series, we obtain its shapelet transformed representation and
assign to it the label of its nearest neighbor in the training set.

4 Experiments

For experiments, we use 21 datasets from [5]. For brevity, we omit further descrip-
tion of the datasets. The names of the datasets will be presented along with the
experimental results, and their detailed information can be found on [5].

All datasets have been separated into training and test sets by the original
contributors [5]. We designate examples with the label “1” in each dataset as
being positive, and all others as being negative. Let the number of positive train-
ing examples in each dataset be np, For datasets with np ≥ 10, we randomly
generate 10 initial PL sets for each dataset, each containing 10% of all posi-
tive training examples. For datasets with np < 10, we generate np initial PL
sets, each containing one positive training example. All experimental results are
averaged over the 10 (or np) runs.

Our baseline methods come from [3,4,6,13,17]. Like our PUSh method, they
also label the U examples by first ranking them, and then find a stopping cri-
terion. To rank the U examples, the baselines utilize the P-1NN algorithm [21]
(see Sect. 3.1) on the original time series with one of three distance measures:
Euclidean distance (ED) [3,4,17] DTW [6,13], and DTW-D [4]. As to stop-
ping criteria, our baselines utilize eight stopping criteria: W [17], R [13], B [3]
and G1–G5 [6] which are a family of five stopping criteria. The description
of criterion W in [17] is insufficient for us to accurately implement it. Luckily,
another criterion is implicitly used by [17], which is the one we use. To make
up for not testing the former, we first find a stopping point using the latter
and then examine all iterations before and at this point, reporting only the best
performance achieved. Also, criterion B [3] only supports initial PL sets with a
single example. For initial PL sets with multiple examples, we use each exam-
ple to individually find a stopping point and pick the one with the minimum
RDL value (RDL is a metric used in [3] to determine the stopping point). We
compare PUSh (i.e. PE+ASPM) against the combination of each of the three
U example ranking methods with each of the eight stopping criteria, resulting
in a total of 24 baseline methods. For all 25 methods being compared, we label
all U examples before and at the stopping point as being positive, and the rest
as being negative. The fully labeled training set is used for one-nearest-neighbor
classification.

For parameter settings, we set the range of possible shapelet lengths to 10 :
(L − 10)/10 : L, where L is the time series length. For Algorithm 2, we set the
lower bound lb to 5 if the number of positive examples np ≥ 10. Otherwise, it is
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set to 1 which is essentially no lower bound at all. The upper bound ub is set to
n × 2/3 − np0, where n is the total number of training examples and np0 is the
size of the initial PL set. This means we assume that the positive class makes up
no more than two thirds of all training data. Again, we stress that these settings
are usually loose bounds than can be estimated relatively easily. For fairness, we
apply the same lower and upper bounds to our baselines. The maximum number
of assumed shapelets maxK is set to 200. The number of final shapelets m is
set to 10. As we will show later, our method is not sensitive to m. For DTW and
DTW-D, we set the warping constraints as the values provided on [5], including
the setting of no constraint if it yields better supervised performance. If this
setting is 0, DTW is reduced to ED and DTW-D is ineffective. In such cases,
we set the constraints to 1%, 2%, . . . , 10% of the time series length L, and only
report the best results. The parameters cardinality and β for criteria B [3] and
G1–G5 [6] are set to 16 and 0.3 as suggested by the original authors.

For reproducibility, our source code and all raw experimental results can be
found on [1]. All experiments were run on a laptop computer with Intel Core i7-
4710HQ @2.50 GHz CPU, NVIDIA GTX850M graphics card (GPU acceleration
was used to speed up DTW computation [14]), 12 GB memory and Windows 10
operating system.

4.1 Performance of Labeling the U Examples

We first look into the performance of labeling the U set. Note that this can
be seen as classifying the U set, thus we can apply an evaluation metric for
classification. Here we adopt the widely used [6,11–13,16] F1-score, which is
defined as F1 = 2 × precision × recall/(precision + recall).

Fig. 8. Performances of ranking the U examples (disregarding the stopping criteria).
(left) Precision-recall breakeven points. (right) Critical difference diagram for all four
methods. PE outperforms all baseline methods and significantly outperforms DTW.

We first evaluate the performance of PE. In this case, we need to disregard the
effect of the stopping criterion. Therefore, we assume the actual number of posi-
tive examples np is known, and the stopping point is where there are np examples
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in PL. At this point, precision, recall and F1-score share the same value, which is
called precision-recall (P-R) breakeven point [17]. The P-R breakeven points for
all methods are illustrated in Fig. 8. There are no significant differences among
the performances of the three baseline methods. Our PE outperforms all base-
lines and significantly outperforms DTW.

Fig. 9. Performances of labeling the U set (taking into account the stopping criteria).
(left) F1-scores. (right) Critical difference diagram for PUSh (PE+ASPM) and the
top-10 baselines. PUSh significantly outperforms the others.

We then take the stopping criteria into account. The F1-scores at the stop-
ping points are shown in Fig. 9. Among the top-10 baselines, no significant dif-
ference in performance is observed. Most top ranking baselines utilize one of
G1–G5. Their high performances is likely due to G1–G5’s abilities to take into
account long term trends in minimum nearest neighbor distances [6]. Our PUSh
(PE+ASPM) significantly outperforms the top-10 baselines.

4.2 Performance of Online Classification

We now move on to classification performance. Once again we use the F1-score
for evaluation. We need to first set the number of shapelets m for our PUSh. We
have set m = 10 : 10 : 50 and performed pairwise Wilcoxon signed rank test on
the performances of PUSh under these settings. The minimum p-value is 0.0766.
With 0.05 as the significance threshold, there are no significant differences among
these settings. We set m to 10 for shorter running time.

The classification performances are shown in Fig. 10. Not surprisingly, most of
the top ranking methods in the U example labeling process (Fig. 9) remain highly
competitive. This is because for online classification, the labels of the training
examples are the labels obtained from the U example labeling process, not the
actual labels (which are unknown for U). Therefore the performance of labeling
U directly affects the classification performance. While no significant difference
is observed among the top-10 baselines, our PUSh (PE+ASPM) significantly
outperforms nine of them and is as competitive as DTWD-R.
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Fig. 10. Online classification performances. (left) F1-scores. (right) critical difference
diagram for PUSh (PE+ASPM) and the top-10 baselines. PUSh is as competitive as
DTWD-R and significantly outperforms the others.

4.3 Running Time

We now look into the efficiency aspect of PUSh. For the training step (from
labeling the U examples to building the classifier, see Fig. 2), the computational
bottlenecks are obtaining the orderlines and calculating the shapelet precisions.
Let the number of training examples be N and the length of the time series
be L, there are O(NL) shapelet candidates. For each candidate, the amortized
time to obtain its orderline is O(NL) using the fast algorithm proposed by [10],
and the time to calculate its SP values in all iterations is O(N2), thus the total
time is O(N2L2) + O(N3L). As is shown in Fig. 11 (left), despite the relatively
high time complexity, PUSh is able to achieve reasonable running time, with the
longest average running time less than 1100 s.

Fig. 11. Running time of PUSh. Note that all axes are in log scale. (left) Training
time. (right) Online classification time per example.
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For online classification, the bottleneck is to obtain the shapelet transformed
representation [7] (see Sect. 3.2), whose time is O(L2) per test example. As is
shown in Fig. 11 (right), for time series lengths in the order of 102 to 102.5

(which is typical in applications such as heartbeat classification [3] in medicine),
the average time is in the order of 10−3 to 10−2 s, which is sufficient for real-time
processing.

5 Related Work

PU classification of time series [3,4,6,11–13,16,17] is a relatively less well-studied
task in time series mining. Most existing works [3,4,6,13,16,17] are whole-stream
based propagating one-nearest-neighbor [21] algorithms which tend to be sensi-
tive to non-characteristic readings [15,19]. [11,12] selects local features from time
series. However, the selected features are discrete readings that do not necessarily
form continuous patterns, while the latter often contains valuable information on
the trend of the data. In this work, we explicitly discover characteristic patterns
called shapelets, which have been applied to supervised classification [7,10,18]
and clustering [15,19,20]. Previous works utilize supervised [7,10,18] and unsu-
pervised evaluation [15,19] metrics to assess shapelet candidates. However, both
are not directly suitable for PU settings. Therefore we opt to first label the U
set and then conduct supervised shapelet discovery.

Most previous works on PU classification of time series [3,4,6,13,16,17] iter-
atively rank the U examples by their possibilities of being positive. A stopping
criterion is needed to determine where to stop the iterations. Existing stopping
criteria can be divided into two types: Distance-based criteria [6,13,17] utilize
distances between PL and U to decide the stopping point. Minimum descrip-
tion length based criteria [3,16] utilize the initial PL to encode the training set.
The stopping point is where the encoding is most compact. Both types of criteria
suffer from the interference from non-characteristic readings, and distance-based
criteria are not compatible to our method. This has motivated us to develop our
novel ASPM stopping criterion.

6 Conclusions and Future Work

In this paper, we have taken on the challenging task of positive unlabeled [8]
discovery of time series shapelets [7,10,15,18,19]. To label the U set, we have
developed a novel pattern ensemble (PE) method that ranks U examples with
both potentially characteristic and potentially non-characteristic patterns, with
no need to know their actual qualities. We have also developed a novel ASPM
stopping criterion, which estimates the number of positive examples based on the
novel concept of shapelet precision. After labeling the entire training set, we have
conducted supervised shapelet selection and built a one-nearest-neighbor clas-
sifier. Extensive experiments have demonstrated the effectiveness and efficiency
of our method. Currently, our method utilizes the orderlines of all shapelet can-
didates, which is highly costly in terms of space and time efficiency. For future
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work, we plan to develop heuristics for more efficient selection of shapelet can-
didates for the PE subroutine. We also plan to apply GPU acceleration to our
method.
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