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Abstract. Network embedding learns low-dimensional features for
nodes in a network, which benefits the downstream tasks like link pre-
diction and node classification. Real-world networks are often accom-
panied with rich side information, such as attributes and labels, while
most of the efforts on network embedding are devoted to preserving the
pure network structure. Integrating side information is a challenging task
since the effects of different attributes vary with nodes and the unla-
beled nodes can be influenced by diverse labels from neighbors, not to
mention the heterogeneity and incompleteness. To overcome this issue,
we propose Side Information Network Embedding (SINE), a novel and
flexible framework using multiple side information to learn a node repre-
sentation. SINE defines a flexible and semantical neighborhood to model
the inscape of each node and designs a random walk scheme to explore
this neighborhood. It can incorporate different attributes information
with particular emphasis depending on the characteristics of each node.
And label information can be both explicitly and potentially integrated
into the representation. We evaluate our method and existing state-of-
the-art methods on the tasks of multi-class classification. The experi-
mental results on 5 real-world datasets demonstrate that our method
outperforms other methods on the networks with side information.

Keywords: Network embedding · Random walk · Multilayer network

1 Introduction

Network data are ubiquitous in the real world, ranging from social networks
like Wechat and Facebook, marketing networks, airline transportation networks
to academic citation networks, to name a few. Abundant useful knowledge is
concealed in these networks which can benefit network analysis and applications
in reality. For instance, in social networks, link prediction analysis could lower
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the cost and difficulty for users to seek friends online as well as offer a chance for
service providers to improve their user experience. As the size of networks grows,
opportunities come with challenges. On the one hand, it enriches the network
treasure house and provides ample materials for network researchers. On the
other hand, more complex relationships coupled in the networks are increasing
the challenges dramatically in the analysis tasks.

Recently, as a novel dimensional reduction technique in analyzing large-scale
networks, network embedding is proposed and has attracted a surge of research
attention in many researches ranging from data mining, machine learning to
mathematics. The main target of network embedding is to preserve as much
information as possible from the network with a low dimension representation
for each node. To achieve this goal, multiple approaches have been proposed, such
as GraRep [2], DeepWalk [14], LINE [17] and SDNE [20]. More importantly, a
lot of real-world applications have demonstrated their value in the downstream
learning tasks, such as node classification, link prediction and data visualization.

Despite the improvement it gains, current works of network embedding
mostly concentrate on preserving the structure of pure networks. In the real
world, nodes in a network are usually accompanied with rich side information,
such as attributes and labels. The attribute homophily theories [9,10] show
the strong connection between node attributes and topological structure. They
depend on and influence each other in the network. For instance, articles in
Wikipedia might not only cite or be cited by other related articles, but also
contain a detailed explanation of the specific object, which helps in link pre-
diction tasks to precisely provide editors with highly related articles. Moreover,
labels such as group or community categories also provide useful information to
assist in network learning. Even a limited number of labeled nodes can conduct
a discriminative embedding. Taking Wechat as an example, users in the same
group chat tend to share posts or links of related themes which is informative
in precise advertisement targeting. Thus, the importance of side information is
self-evident, whilst network embeddings ignoring the side information not only
weaken the ability of expression but also blur the representations.

However, it is not easy for the pure network embedding methods like Deep-
Walk to incorporate additional information during its random walk in the origi-
nal network since the heterogeneity and incompleteness complicate the situation.
Thus, applying the pure network embedding methods directly is problematic. In
contrast to the pure network embedding, side information network embedding
targets at leveraging the discrepancy of the heterogeneous data sources and dis-
tilling the complementary information. What’s more, attributes and labels might
be sparse, noisy and incomplete. Hence, it is nontrivial to study the problem of
fusing labels and attributes into network structure and learning discriminative
representations for network nodes. Some recent works have scratched the surface
of this topic, yet various problems exist. They either lack careful and specific con-
sideration of side information or are trapped in time-consuming learning models.
Exhaustive discussions are given in Sect. 2.
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In this paper, we investigate the side information network embedding deeply.
Inspired by the groundbreaking work DeepWalk and the constructive follow up
work Node2vec on the pure network, we propose an innovative random walk
scheme to integrate multiple knowledge on side information network. We aim at
answering the following questions: (1) How to incorporate topological structure,
attribute information and node labels into a unified representation meanwhile
tackling the incomplete, sparse and noisy problem accompanied; (2) How much
does this random walk scheme contribute to downstream learning tasks like node
classification.

Our main contribution is a flexible framework for learning latent represen-
tations for the attributed network with a limited number of labels, called Side
Information Network Embedding (SINE). The key ideas of SINE are:

– Measure the node relationships with others on attributes information and
then evaluate the importance of attributes and geometric structure for each
node individually. In contrast to treating information of each node unani-
mously, learning on a discriminative data makes the delicate embedding pos-
sible.

– Establish label hubs and label hyperlinks for the labeled nodes to communicate
with each other explicitly. And we design a label biased random walk scheme
to integrate label information potentially.

– Generate sampled contexts (neighborhoods) for nodes, which contain imme-
diate geometric neighbors, similar nodes in the aspect of attributes and nodes
explicitly or latently sharing the same label. Thus, in such all-side neighbor-
hood built with nodes in a heterogeneous relationship, nodes can be modeled
with more precise representation. The more frequently two nodes appear in
the similar neighborhoods, the more likely they possess similar information.

The rest of this paper is organized as follows: First a brief overview of pure
network and side information network embedding is provided, followed by the
proposed SINE framework. Then sound experiments are presented. Finally, con-
clusion and future works are discussed.

2 Related Work

Network embedding can be traced back to the manifold learning, which aims to
analyze the structure of manifold and map it into a low dimension Euclidean
space to facilitate the machine learning algorithms. However, these meth-
ods, such as IsoMap [18], LLE [16], LE [1] and LPP [5], are trapped in the
time-consuming eigen-decomposition and not applicable for large scale network
embedding.

Recently, inspired by the Skip-Gram [11] learning word representation from
its context, [14] propose DeepWalk that generates node neighborhoods with a
truncated random walk to simulate the relationship between words and sen-
tences, and bring prosperity to the embedding community. In Node2vec [4], a
follow up work of DeepWalk, authors propose a biased random walk which can
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explore neighborhood under control of extra parameters. To preserve the struc-
ture similarity, Struc2vec [15] generates node contexts on the graph which is
newly constructed based on structure similarity. On the other line of pure net-
work embedding, a variety of methods [2,15,17,20] are proposed. For example, to
preserve first- and second-order proximity, LINE [17] proposes a joint probabil-
ity and conditional probability model while SDNE [20] adopts an autoencoder
model. However, losing sight of labels and attributes may set a limit on the
performance of all these topological structure based methods.

Some recent efforts have explored the possibility of integrating side informa-
tion of the node to learn a better representation. TADW [21] employs an induc-
tive matrix factorization to integrate attributes. SNE [8] proposes a multi-layer
perceptron to model the reconstruction error by concatenating attribute record
as an input. While they don’t model the attribute affinity, which is essential
for network analysis. TriDNR [13] learns three kinds of relation node-attribute,
inter-node and attribute-label in a coupled deep model. Label information is
not used for inter-node relationship modeling, which might weaken its represen-
tation power. LANE [7] learns a smooth representation from three individual
representations of structure, attribute and label. AANE [6] accelerates the joint
learning process of attribute and network structure. However, they equally treat
the effect of attribute information on each node, which is too coarse in learning
the representations. MMDW [19] only integrates label information by a semi-
supervised model, which jointly optimizes the matrix factorization of adjacency
matrix and the max-margin classifier of SVM. DANE [3] learns a consistency
from the structure and attribute representation which captures the nonlinearity
encoded by two autoencoders. However, it suffers from the high computational
drawbacks. All in all, the existing methods come across various deficiency. To
overcome the problems they meet, we propose a new model with strong perti-
nence.

3 Framework of SINE

In this section, the problem formulation is firstly given. Then we present the fea-
ture learning framework in our method. Next, we introduce attribute embedding
module followed by the label embedding module.

3.1 Problem Formulation

We consider the problem of learning node representations in three aspects: struc-
ture, attributes and labels. Let G = {V,E,W} be a pure network, where V rep-
resents the nodes of the network, E ⊆ (V × V ) are the topological connections
and W are edge weights (one for unweighted network). With side information,
network is further denoted as GS = {V,E,W,X, Y }, with multiple attributes
X = {X(i)}mi=1, X(i) ∈ R

|V |×si where m is the number of attributes and si is
the size of the ith feature space, and Y ∈ R

|V |×|Y| where Y is the set of labels.
We define a function L : V → Y, and L(u) = i if node u is labeled with i.
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Formally, we aim to learn the low-dimensional representation H ∈ R
|V |×d which

can incorporate information from three sources of data. As a result, H could
achieve better performance in the downstream tasks such as node classification.
We denote hu, a column of HT , as the representation of node u.

3.2 Feature Learning Framework

We extend the Skip-Gram architecture [11] to the side information network.
Formally, in network GS we maximize the log-probability of observing a network
neighborhood NS(u) for node u conditioned on its representation hu:

max
H

∑

u∈V

log Pr(NS(u)|hu). (1)

With the assumption of conditional independence and symmetry effects from
neighbors, Eq. 1 simplifies to:

max
H

∑

u∈V

[
log λu +

∑

v∈NS(u)

hT
v · hu

]
, (2)

where λu =
∑

v∈V exp(hT
v ·hu). We can see that nodes in a more similar neighbor-

hood would have similar representations. And a semantically rich neighborhood
can more precisely describe the intrinsic correlation on the node. In the following
subsections, we will propose our method to integrate side information into the
neighborhood. As for the problem of the expensive computational cost on λu

in Eq. 2, negative sampling [12] is adopted. We optimize Eq. 2 using stochastic
gradient ascent over the model parameters defining the features h.

3.3 Measure the Attribute Importance

In contrast to assuming attribute information on different nodes is independent
like TADW and SNE, we measure the correlation between nodes with respect to
attributes. In detail, a kernel method K is taken to measure the attribute affinity
between any pair of nodes: K(u, v) = φ(Xu) · φ(Xv). We construct the attribute
network A that encodes the affinity between two nodes. The edge weight between
two nodes u and v is then given by:

Auv = K(u, v),∀u, v ∈ V. (3)

In GS , now we have a stack of information networks, 1 topological network G
and m weighted networks {A(i)}mi=1 built from diverse attributes.

Since the attributes information and topological knowledge are concealed
in different networks, we ought to learn the representation from each of the
networks. A straightforward way is to build different neighborhoods N

(i)
S (u)

(N (0)
S (u) denote the neighborhood of node u on G) for each node u on each

network of G ∪ {A(i)}mi=1 and then concatenate their representation learned
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from respective Skip-Gram models as the final representation. Although from an
information preserving view point concatenating different representations could
maintain characteristics in diverse networks, it neither alleviates the effect of
noise nor distills information hidden across representations from the perspective
of integrating information. Furthermore, any incomplete attribute information,
which is quite common in real-world datasets, can crash it down for the unob-
served node in one of the networks. Another way is to combine neighborhoods⋃

i N
(i)
S (u) extracted from different networks and then learn the representation

from a unique Skip-Gram model. Yet the combination that treats all the side
information equally without discrimination for the individual node is careless
and unacceptable in the analysis, not to mention the expensive computational
cost of building multiple neighborhoods for a node. All in all, how to discrim-
inatingly learn the side information and efficiently sample node neighborhood
matters.

Supported by the analysis above, we first propose a measurement on the
neighborhood of attribute affinity networks to evaluate the local property. Intu-
itively, the more similar neighbor is, the more attention should be paid to explor-
ing this neighbor. Exploring the neighborhood shares the same principle. To this
end, we define the local cohesion of node u on A(i) as follow:

ρ(i)u =
ā
(i)
u

ā(i)
=

avgt(A
(i)
ut )

avgs,t(A
(i)
st )

, (4)

where ā(i) is the average edge weight of the ith complete affinity network A(i)

and ā
(i)
u is the average weight of edges that associate with node u w.r.t. A(i).

Thus, the larger ρ
(i)
u is, the more informative immediate neighbors are provided.

Then, by comparing the strength of node’s local cohesion in different networks,
we can distinguish the importance of different attributes for a specific node. In
other words, if neighbors are more similar with node u in a certain network
than in others, this network should undertake more responsibility for exploring
neighbors. For the importance of topology, we can calculate in the same way.
We denote A(0) = G, A

(0)
uv = Wuv and ρ

(0)
u = 1 for unweighted network, which is

also included in Eq. 4.
Then we propose a multi-network random walk strategy to generate node

neighbors NS(u). Walking across {A(i)}mi=0 generates a semantically rich node
sequence that incorporates diverse node relationships (or similarities) from dif-
ferent networks. After that, we can construct a neighborhood with multi-relation
neighbors for each node. In the proposed random walk scheme, we first decide
“which network should be traversed” by ρ

(i)
u , namely choose the more important

data source for node u. The probability is proportional to the importance, in
particular:

P (u,A(i)) =
ρ
(i)
u

∑m
i=0 ρ

(i)
u

. (5)
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And then we carry out the weighted random walk in the chosen network (e.g.
A(i)) with the probability as follow:

PA(u, v) =
A

(i)
uv

∑
x∈V A

(i)
ux

. (6)

3.4 Fuse the Label Information

Modeling label information is entirely different from attributes, the other kind
of side information. Labels are much more refined and scarce in networks. Own-
ing to the sparsity, if we treat labels like attributes to construct an independent
network, there would be two problems: Firstly, a great number of nodes without
labels will be absent in this network; Secondly, the linkage connecting nodes
sharing same the label will build information isolated island, which has no assis-
tance to other nodes. In network analysis, it is always assumed that the node’s
label is highly correlated to the topological structure and could be affected by its
labeled neighbors according to their similarity. We propose two ways to explic-
itly and potentially fuse labels information in the topological neighborhood as
shown in Fig. 1.

v

x1 x2

x3

ciτ(v, ci)
τ(x3, ci

)

u

α = 1/p
+ a2

(β = 1/p
)

α
=

1/q

(β
=

1)

α
=

1

(β
=

1/
q)

α = 1 + a2
(β = 1/q)

Fig. 1. Illustration of label incorporation way. The nodes colored in cyan are with
the same label and the others’ label are unknown. The explicit way: The label hub
ci is linked with label hyperlink (e.g. (v, ci) and (x3, ci)) presented in dashed line.
Nodes sharing the same label can walk to each other via their common label hub. The
potential way: The following example is given to show the influence of node sequence
and restrict the influence within 2nd order, which compatible with Node2vec. The walk
just transitioned from labeled node v to unlabeled node u and is now evaluating its
next step out of node v. Edge notations indicate search bias α for SINE and β for
Node2vec. α comprise of bias from topology and label.

To take advantage of label’s guidance in gathering node together, we first
introduce the notions of label hyperlink and label hub that help to explicitly learn
the label information in the random walk procedure. By building an imaginary
label hub ci, i ∈ Y for each label on network G, nodes with same label can
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connect to each other through the label hyperlink to the corresponding label hub.
In particular, the unnormalized probability of walking through label hyperlink is
defined as follow:

τ(u, ci) =
{

γ, if L(u) = i,
0, otherwise, (7)

where γ is a hyperparameter. This explicit method will directly bridge the gap
between labeled nodes which are not so close to each other in the topological
network. It is also reasonable that nodes with the same label are much closer
than those nodes with different labels. In this way, nodes in the neighborhood
containing the same label hub are more likely to have similar representations
than those who don’t.

However, the explicit label hub method restricts the influence of label within
the labeled nodes, and can not spread the labeled nodes’ information to affect the
unlabeled neighbors. Thus, we resort to the random walk sequence for a helping
hand. Intuitively, a node sequence would be more likely to walk to the related
labeled community where it came from. Since nodes in the same community
are similar both in topology and label and the node sequence can be regarded
as a sampling of the corresponding community, the alternative nodes that are
either immediate neighbors of sequence or sharing the same label in the sequence
would be more attractive. To measure the attraction of the alternative nodes, we
present the biased random walk with two additive parts: topological and labeled
parts. Consider a random walk that has a traversed node sequence T = {ui}ni=1

with length n and now resides at node un (Fig. 1). The walk now defines the
unnormalized transition probability of its neighbor x as follow: τ(un, x) = α ·
wun,x, where α = αtopo + αlabel,

αtopo =

⎧
⎨

⎩

1/p, if d({ui}n−1
n−m, x) = 0,

1/q, if d({ui}n−1
n−m, x) = 1,

1, otherwise,
(8)

αlabel =

⎧
⎪⎨

⎪⎩

m∑

i=0

I(L(un−i) = L(x))ai, if x is labeled,

0, otherwise,

(9)

and d(U, x) denotes the shortest distance between node x and nodes in set U , I is
the indicator function, m is the range of influence of T and {ai}mi=1 controls the
label influence of different distance. To make it clear, αtopo controls the sequence
to revisit T with bias 1/p and walk around T with bias 1/q. While the αlabel

controls the probability of traversing the neighbors with label that has been
visited in T . We perform the label biased random walk with the probability as
follow:

PG(u, v) =
τ(u, v)∑

x∈V ∪{ci}|Y|
i=1

τ(u, x)
. (10)

It occurs to us that when we restrict the influence of T within the last two
nodes (i.e. m = 1) when computing αtopo, it is similar to Node2vecWalk defined
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in [4] with exchanging parameters 1 and 1/q. We denote the bias as β and
explain in Fig. 1. The pseudocode for SINE Walk is given in Algorithm1. The
time complexity analysis of this algorithm is given in the experiment section.

To sum up, by generating the node sequences in the newly designed net-
work with the proposed random walk scheme, we can incorporate topology,
attributes and labels information into each node’s neighborhood NS(u). Then
we can learn the node representation hu by solving Eq. 2 with stochastic gradient
ascent method.

Algorithm 1. The SINE Walk
Input: Start node u, networks {A(i)}m

i=0, walk length l, label hub weight γ,
revisit p, look-around q, label influence φ(d)

Output: node sequence T
Initialize T to empty;
Append u to T ;
for iter = 1 to l do

Let curr be the last node of T ;

Sample Graph from {A(i)} with Eq. 5 ;
Vcurr = GetNeighbors(curr ∈ Graph);
if Graph is G then

VC = {ci}|Y|
i=1 ;

Sample node from Vcurr ∪ VC with Eq. 10;

else
Sample node from Vcurr with Eq. 6;

end
Append s to T ;

end
return T ;

4 Experiments

In this section, we conduct experiments to evaluate the effectiveness of our pro-
posed framework SINE. In particular, we want to answer the following questions.

(1) What are the impact of attributes information on network embedding and
how effective is the multi-network random walk strategy to incorporate
attributes?

(2) How effective is the guidance impact of the label in the label biased random
walk scheme?

(3) How effective are the node representations learned by SINE compared with
other state-of-the-art methods in the downstream tasks?
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Table 1. Statistics of the dataset

Dataset Node Edge Attribute Label

BC 5,196 171,743 8,189 6

Flickr 7,575 239,738 12,047 9

Cora 2,708 5,429 1,433 7

Citeseer 3,312 4,732 3,703 6

Wiki 2,405 17,981 4,973 19

4.1 Datasets

In our experiments, we employ 5 real-world datasets: BlogCatalog (BC),
Flicker, Cora, Citeseer and Wiki. All of them are publicly available, and
specially the first two have been used in [7]. BlogCatalog and Flickr are
social media networks. Each node is a user and links are the interaction between
them. We take their descriptions as the attributes and the groups or categories
they joined as labels. Cora, Citeseer and Wiki are citation networks. Each
node is a publication and the links are citation relationships between them. The
attribute of each node is the bag-of-words representation of the corresponding
paper. Statistics of the datasets are summarized in Table 1. Note that all these
datasets provide only one attribute feature.

4.2 Baseline Methods

We compare our method with 7 baseline methods. To evaluate the contri-
bution of the side information, two pure network embedding methods, four
attributed network embedding methods and a labeled attributed network embed-
ding method are used for comparison. The first category contains DeepWalk
[14] and Node2vec [4]. The second category includes AANE [6], TADW [21],
SNE [8] and DANE [3]. The last one contains LANE [7].

4.3 Metric and Parameter Settings

We perform the multi-class node classification task to evaluate the quality of
node representations learned by different methods. To be more specific, we ran-
domly select some portion of the nodes as training set and the remaining as a
test set. We train a one-vs-rest SVM classifier on the training set and evalu-
ate it on the test set. For each training ratio, we repeat the trial for 10 times
and report the average results. To measure the classification result, we employ
Micro-F1 and Macro-F1 scores as metrics.

In SINE, we compute the attribute affinity network with K(·, ·) defined as
cosine similarity of attributes. In experiments, we only preserve the top 20 similar
neighbors for each node, randomly sample 20 neighbors when performing label
biased random walk, and restrict the attraction of the sequence nodes within two
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step with a1 = r, a2 = s, which is the trade-off between the computational cost
and the accuracy. The default parameters of SINE are set as follows: window
size k = 5, walks per node t = 20, walk length l = 20, label biased random
walk parameters p = 4, q = 4, r = s = 4, label hub weight γ = 0.5. The
label ratio used for embedding is 10%. For fairness of comparison, the dimension
of embedding vectors d is set to 100 for all the methods. The parameters of
DeepWalk and Node2vec are kept the same with SINE. The rest parameters
for other algorithms are set following the suggestion in their original papers or
source codes.

Table 2. Micro-F1 score of classification

Datasets Ratio SINE LANE AANE TADW SNE DANE DW Node2vec

BC 10% 0.8459 0.5696 0.7036 0.7502 0.5714 0.7404 0.3561 0.5750

20% 0.8805 0.6543 0.7756 0.7623 0.6201 0.7907 0.4982 0.6317

30% 0.8959 0.6915 0.8103 0.7972 0.6515 0.8084 0.5295 0.6477

40% 0.8991 0.6987 0.8261 0.8053 0.6744 0.8171 0.5666 0.6524

50% 0.9055 0.7199 0.8353 0.8378 0.6773 0.8348 0.5836 0.6739

Flickr 10% 0.7897 0.6212 0.5663 0.2901 0.1164 0.4297 0.1563 0.3089

20% 0.8454 0.7043 0.6301 0.3674 0.1542 0.5655 0.2475 0.3772

30% 0.8617 0.7444 0.6583 0.4210 0.1938 0.6091 0.2760 0.3929

40% 0.8678 0.7664 0.6834 0.4429 0.2171 0.6354 0.2942 0.4171

50% 0.8780 0.7856 0.7034 0.4510 0.2402 0.6530 0.3098 0.4256

Cora 10% 0.7263 0.6966 0.3601 0.7166 0.5806 0.5099 0.7301 0.7098

20% 0.7987 0.7666 0.5539 0.7974 0.6631 0.6102 0.7819 0.7694

30% 0.8176 0.7836 0.6260 0.8225 0.7079 0.6529 0.7961 0.7928

40% 0.8290 0.8057 0.6728 0.8356 0.7350 0.6774 0.8191 0.8166

50% 0.8350 0.8173 0.7029 0.8471 0.7555 0.6978 0.8330 0.8291

Citeseer 10% 0.6651 0.4977 0.3575 0.5594 0.2138 0.5366 0.4722 0.4095

20% 0.7189 0.5655 0.5101 0.6316 0.3366 0.6210 0.5432 0.5110

30% 0.7282 0.6073 0.5566 0.6595 0.3937 0.6535 0.5846 0.5563

40% 0.7390 0.6281 0.5825 0.6690 0.4354 0.6541 0.6013 0.5925

50% 0.7476 0.6391 0.5915 0.6862 0.4617 0.6734 0.6139 0.5995

Wiki 10% 0.6601 0.5684 0.6159 0.4498 0.5624 0.6501 0.4269 0.4427

20% 0.7315 0.6382 0.7066 0.5664 0.6310 0.7087 0.5448 0.5505

30% 0.7647 0.6629 0.7414 0.6168 0.6612 0.7385 0.5780 0.5803

40% 0.7765 0.6832 0.7551 0.6518 0.6871 0.7471 0.6117 0.6190

50% 0.7879 0.6951 0.7698 0.6688 0.7062 0.7609 0.6311 0.6377

4.4 Performance Evaluation

In this section, we will answer the questions proposed in the beginning of Sect. 5
one by one.
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Effectiveness of Multi-network Random Walk Strategy. To answer the
first question, we evaluate the proposed multi-network random walk strategy
which performs random walk cross multiple networks (including topological net-
work and attribute affinity networks) by conducting a series of experiments. We
first perform random walk on the attribute affinity network (Attribute) and
topological network (Structure) respectively and feed the node sequences to
Skip-Gram model to get the embeddings for each network. Then we mix the
node sequences generated on these two networks and use this mixed corpus
to produce embeddings in the same way (Combine). Finally, we perform the
proposed multi-network random walk strategy without labels. The classification
results of these four methods on BlogCatalog dataset with different training
ratios are shown in Table 3.

Table 3. F1-score of classification on BlogCatalog

Training ratio 10% 30% 50% 70%

Micro Structure 0.3520 0.5317 0.5696 0.5987

Attribute 0.7677 0.8172 0.8360 0.8446

Combine 0.7866 0.8575 0.8691 0.8833

SINE 0.8183 0.8770 0.8909 0.9015

Macro Structure 0.3592 0.5428 0.5810 0.6101

Attribute 0.7797 0.8241 0.8426 0.8498

Combine 0.7946 0.8624 0.8735 0.8869

SINE 0.8251 0.8808 0.8946 0.9044

The results in Table 3 illustrate the improvement of our multi-network ran-
dom walk strategy. Specifically, compared to the first two methods which only
utilize either attribute information or network structure, the Combine and
SINE methods always achieve significantly better performance, showing that
attribute information is valuable on network embedding. More importantly, our
method outperforms other methods in all situations, which proves that our pro-
posed multi-network random walk strategy is effective. In contrast to treat-
ing attribute and structure separately, we consider the correlation and interac-
tion between them by a unified random walk sequence to effectively incorporate
attribute information, leading to much better node representations.

Effect of Label Information. To answer the second question, we investigate
the guidance effect of the label by varing the ratio of labeled nodes from 10% to
90% when performing labeled biased random walk. The training ratios of SVM
classifier is fixed to 50%. The result is presented in Fig. 2.

From Fig. 2, we can see that with the increase of label ratio, both metrics are
rising, which validates the guidance effect of label on embedding.
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(a) Micro-F1 score (b) Macro-F1 score

Fig. 2. Classification results of different label ratios

Effectiveness of SINE. To study the effectiveness of our SINE framework
which is mentioned in the third question, we compare its performance with all
baseline methods with varing the training ratio from 10% to 50%. The classifi-
cation results of eight methods on five datasets are shown in Table 2. Due to the
limitation of space, we only show the result of micro-F1 score and the result of
macro-F1 score is similar. From Table 2, we find that our method achieves better
performance in most situations with the following observations.

– First, by incorporating the attribute information, most attributed network
embedding methods achieve significant improvement compared to the pure
network embedding methods.

– Second, with the proposed framework, SINE outperforms other baseline meth-
ods in most situations. This is because SINE can effectively integrate the side
information and get much more valuable node representations, resulting in
better classification results.

– Third, our method performs fairly well when the training ratio is quite small
while other baseline methods degrade quickly as the training ratio decreases
due to that their representations are noisy and inconsistent in training set
and test set. Compared to other algorithms, SINE learns node representations
from three data sources, including network structure, attributes information
and node labels, which makes the representations more consistent and less
noisy.

4.5 Parameter Analysis

In this section, we investigate the effects of parameters, including embedding
dimension d, label hub weight γ, and labeled bias r and s. We fix the training
ratio to 50% and test the classification F1 scores with different parameters. For
dimension d, we vary it from 10 to 100 and conduct experiments on five datasets.
Figure 3 shows the variations of classification results with different d. The result
suggests that our method is stable when d within a reasonable range. As for label
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(a) Micro-F1 score (b) Macro-F1 score

Fig. 3. Classification results of different dimensions

(a) Results of different r (b) Results of different s

(c) Results of different γ (d) Average execution time

Fig. 4. Results of parameters analysis and scalability

related parameters γ, r, and s, we set the other two parameters to zeros when
analyzing one of them. We vary each of them in different range on the Citeseer
dataset and the result is presented in Fig. 4. We can find out that the influences
of these three parameters are similar. As they increase, the performance becomes
better due to the guidance effect of label. However, when they are larger than
a threshold, random walk method will always walk to labeled node without
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walking to its neighbors, losing the information of topological neighborhoods,
which reduces the quality of node representations.

4.6 Scalability

The time complexity of our random walk scheme is O(tle · |V |) where e is the
average number of edges. In practice, we set e = 20 as mentioned in parameter
settings so it can be regarded as a constant. The time complexity of Skip-Gram
is O(k(d + d · log |V |)) where the window size k and the embedding vector size
d are constants so the total complexity is still O(|V |). To test for scalability, we
learn node representations using SINE with default parameter values for Erdos-
Renyi graphs with node sizes increasing from 102 to 105. We compute the average
running time for 10 independent executions. The result of running time (in log
scale) is shown in Fig. 4d. We observe that SINE scales linearly with the size of
nodes, which is acceptable in practice. Thus, SINE can be applied to large-scale
networks.

5 Conclusion

In this paper, we propose a novel network embedding framework SINE, which
can learn high-quality node representations for networks with side information,
including attributes and labels. We design a flexible random walk scheme to
generate semantically rich neighborhoods for nodes, which contains the prox-
imity in topological structure, node attributes and node labels. The extensive
experiments on 5 real-world datasets validate its effectiveness and efficiency.
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