
Towards Efficient k-TriPeak
Decomposition on Large Graphs

Xudong Wu1, Long Yuan2(B), Xuemin Lin3, Shiyu Yang1, and Wenjie Zhang3

1 East China Normal University, Shanghai, China
xdwu@stu.ecnu.edu.cn, syyang@sei.ecnu.edu.cn

2 Nanjing University of Science and Technology, Nanjing, China
longyuan@njust.edu.cn

3 The University of New South Wales, Sydney, Australia
lxue@cse.unsw.edu.au, wenjie.zhang@unsw.edu.au

Abstract. Analyzing the structure of real-world networks has attracted
much attention over years and cohesive subgraph models are commonly
used to characterize the structure of a network. Recently, a model named
k-Peak is proposed to address the issue failing to detect sparser regions if
the network contains distinct regions of different densities in the cohesive
subgraph models. However, k-Peak only considers the edge connection
(i.e., degree) in the network and the loose structure restricts the effective-
ness of the k-Peak. On the other hand, triangles are fundamental building
blocks of a network and are widely used in the literature. Motivated by
this, in this paper, we propose the k-TriPeak model based on the trian-
gles and study the problem of k-TriPeak decomposition that computes
the k-TriPeak for all possible k values to understand the structure of a
network. Through investigating the drawbacks of the baseline algorithm
following the idea of k-Peak decomposition, we devise a new efficient
algorithm to perform the k-TriPeak decomposition. Our new algorithm
adopts a top-down decomposition paradigm and integrates two novel
upper bounds with which large unnecessary computation can be pruned.
We conduct extensive experiments on several large real-world datasets
and the experimental results demonstrate the efficiency and effectiveness
of our proposed algorithm.

1 Introduction

Due to the rapid development of information technology, we are witnessing the
proliferation of graph data based applications over recent years. This has led to
huge research efforts devoted to real-world network analytics [2,4–6,10,16,23,
27]. Among them, identifying cohesive subgraphs to characterize the structure
of real-world networks has been extensively studied. Observing that the cohesive
subgraph models are often computed globally and fail to detect sparser regions
if the network contains distinct regions of different densities, Govindan et al.
proposed a new model named k-Peak recently [7]. By conducting the k-Peak
decomposition (compute the k-Peak for all possible k values in the graph), [7]
c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11446, pp. 604–621, 2019.
https://doi.org/10.1007/978-3-030-18576-3_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18576-3_36&domain=pdf
https://doi.org/10.1007/978-3-030-18576-3_36

Towards Efficient k-TriPeak Decomposition on Large Graphs 605

can divide the graph into separate ’mountains’ and can find the centers of distinct
regions in the graph.

Motivation. The k-Peak decomposition addresses the issue of neglecting sparser
regions in the existing cohesive subgraph model [7], however, since k-Peak only
considers the edge connection (i.e., degree) between nodes in the subgraph,
the returned results are often not that cohesive [5,14,28]. The returned loose
structure restricts the effectiveness of the k-Peak decomposition. On the other
hand, triangles are higher-order connectivity structure than degree [3,19] and
are known as fundamental building blocks of a network [12,17,18]. Therefore,
triangles are commonly treated as the building blocks for the cohesive subgraph
model in the literature [5,8,16,27]. Motivated by this, in this paper, we propose
a new model named k-TriPeak based on the triangles and study the k-TriPeak
decomposition problem. The model inherits the ability to find the centers of
distinct regions of k-Peak model and avoids the problem of incohesiveness for
the returned result. Formally, given a graph G, the support of an edge is the
number of triangles containing it. A k-TriContour of G is the largest subgraph of
G such that (i) the support of edges in it is at least k − 2; (ii) the k-TriContour
does not include edges from a higher TriContour. The k-TriPeak of G is the
union of j-TriContours, where j ≥ k. And k-TriPeak decomposition computes
the k-TriPeak for all possible k values.

Fig. 1. k-Peak vs k-TriPeak

Example 1. Consider the graph in Fig. 1, we show the 3-Peak and 5-TriPeak of
G (The counterpart of 3-Peak is 5-TriPeak since the support of edges is at least
k − 2 in the definition of k-TriContour). As shown in Fig. 1, since 3-Peak only
considers the edge connection between nodes, the incohesive subgraph induced by
v11, . . . , v15 is also returned. On the contrary, this incohesive subgraph is filtered
out by the 5-TriPeak. In the literature, another similar cohesive subgraph model
defined based triangles, k-truss, is also studied [5]. It is defined as the largest

606 X. Wu et al.

subgraph of G in which every edge is contained in at least (k−2) triangles within
the subgraph. The problem of k-truss is that it is unable to find the centers of
distinct regions in the graph. As shown in Fig. 1, two centers of regions exist in
G, namely {v1, . . . , v5}, {v5, . . . , v10}. For k-truss model, if we return the 6-truss,
the center {v1, . . . , v5} will be missed; if we return 5-truss, the two centers are
returned but the returned result also contains node v11 and v16 and these two
nodes are loosely connected with each other and are not what we want. On the
contrary, 5-TriPeak can find these two centers.

Applications. k-TriPeak decomposition can be used in many applications. For
example, in the community detection, since k-TriPeak model can find central
regions with different densities, those sparser communities in the graph will not
be missed if the k-TriPeak model is adopted [8,14]. Similar to k-Peak decompo-
sition, k-TriPeak decomposition can also be used to visualize the graph through
the mountain plot technique presented in [7]. Moreover, understanding the hier-
archical structure facilitates graph-topology analysis [1,22]. The k-TriPeaks of
a graph for all k values form a hierarchical structure. It is clear that k-TriPeak
decomposition is helpful for understanding the hierarchical structure in a graph.

Our Approach. To perform the k-TriPeak decomposition, a direct approach
is following the idea of k-Peak decomposition in [7]. In [7], the k-Peak decom-
position is achieved by iteratively computing the k-core with maximum k value
in the graph through the k-core decomposition algorithm [2] and removing the
computed k-core until the graph is empty. Following the idea, we can implement
the k-TriPeak decomposition through k-truss decomposition algorithm [15] in
a similar way. However, as analysed in Sect. 3, lots of unnecessary edges will
involve in the expensive k-truss decomposition procedure, which leads to the
inefficiency of this direct approach. To address the drawback of this approach,
in this paper, we propose a new algorithm for the k-TriPeak decomposition.
Our new algorithm adopts a top-down decomposition paradigm in which k is
explored in decreasing order. Based on this top-down decomposition paradigm,
we design two effective but lightweight upper bounding techniques. Using these
two upper bounding techniques, we can prune the unpromising edges involving
in the expensive k-truss decomposition procedure and the unnecessary compu-
tation in the direct approach can be significantly reduced.

Contribution. In this paper, we make the following contributions:

(1) The k-TriPeak model to find the centers of distinct regions in the graph. We
investigate the drawbacks of existing k-Peak model and propose a new model,
namely k-TriPeak. Based on the k-TriPeak model, we study the problem of
k-TriPeak decomposition. To the best of our knowledge, this is the first work
to study the problem of efficient k-TriPeak decomposition.

(2) An efficient algorithm for k-TriPeak decomposition. We present an efficient
algorithm to perform the k-TriPeak decomposition. In our algorithm, we
adopt a top-down decomposition paradigm and devise a static upper bound

Towards Efficient k-TriPeak Decomposition on Large Graphs 607

and a dynamic upper bound to reduce the unnecessary computation. More-
over, we also explore efficient techniques with which we can maintain the
dynamic upper bound in O(1) time for each update during the decomposi-
tion process.

(3) Extensive performance studies on large real-world datasets. We conduct
extensive performance studies using large real-world datasets. The experi-
mental results demonstrate the effectiveness of our proposed model and the
efficiency and scalability of the devised decomposition algorithm.

2 Preliminaries

We model a undirected graph as G(V,E), where V (G) represents the set of nodes
and E(G) represents the set of edges in G. We denote the number of nodes as n
and the number of edges as m, i.e., n = |V (G)| and m = |E(G)|. We define the
size of G, denoted by |G|, as |G| = m+n. For a node u ∈ V (G), we use nbr(u,G)
to denote the neighbor set of u in G, i.e., nbr(u,G) = {v ∈ V (G)|(u, v) ∈ E(G)}.
The degree of a node u ∈ V (G), denoted by deg(u,G), is the number of neighbors
of u, i.e., deg(u,G) = |nbr(u,G)|. A triangle in G is a cycle of length 3. In this
paper, we omit G in the notations when it is explicit in context.

Definition 1 (Support). Given a graph G, the support of an edge e ∈ E(G),
denoted by sup(e,G), is the number of triangles that contain e in G.

Definition 2 (k-TriContour). Given a graph G, a subgraph S is the k-
TriContour of G, denoted by Ck(G), if (i) sup(e, S) ≥ k − 2 for every edge
e ∈ S; (ii) the k-TriContour does not include edges from a higher TriContour;
(iii) S is maximal, i.e., any subgraph S′ ⊃ S is not a k-TriContour.

Definition 3 (k-TriPeak). Given a graph G, a k-TriPeak, denoted by Pk(G),
is the union of j-TriContours, where j ≥ k.

Definition 4 (TriPeak Number). The TriPeak number of an edge e in G,
denoted by κ(e,G), is the value k such that e is contained in the k-TriContour.

Problem Statement. In this paper, we study the problem of k-TriPeak decom-
position that computes the k-TriPeak for all possible k values in the given graph.
Since the k-TriPeak consists of the edges with TriPeak number at least k. The k-
TriPeak decomposition problem equals to compute the TriPeak number for each
edge in the given graph. Therefore, in this paper, we aim to design an efficient
algorithm to perform the assignment of TriPeak number to each edge.

Example 2. Consider the graph G illustrated in Fig. 2, we also show its cor-
responding k-TriContour and k-TriPeak in Fig. 2. For example, for the edge
(v8, v9), its support is 3 since it is contained in triangles {v8, v9, v6}, {v8, v9,
v10}, {v8, v9, v11}. The 5-TriContour of G is the subgraph induced by nodes
{v5, v6, v8 . . . v15} except edge (v5, v6) and (v10, v13) as this is the maximal sub-
graph such that the support for each edge in it is 3 and it does not contain any

608 X. Wu et al.

Fig. 2. An example graph G

edges from a k-TriContour with k > 5. Note that although (v1, v7) has support
3, it is not in the 5-TriContour of G. This is because (v1, v7) is contained in
{v1, v7, v2}, {v1, v7, v3}, {v1, v7, v4} but edges (v7, v2), (v7, v3) and (v7, v4) are in
the 6-TriContour of G. After the TriPeak decomposition, all the TriPeak number
of edge can be obtained. For example, κ((v6, v7)) = 6 as it is in the 6-TriContour
and κ((v10, v13)) is 3 as it is in the 3-TriContour.

3 Baseline k-TriPeak Decomposition Algorithm

Inspired by the solution proposed in [7] to perform the Peak decomposition, we
present a baseline solution for the TriPeak decomposition problem in this section.
In [7], to conduct the Peak decomposition, it iteratively computes the k-core with
maximum k value in the graph by the k-core decomposition algorithm [2] and
removing the computed k-core until the graph is empty. Following the same idea,
we can perform the TriPeak decomposition through the k-truss decomposition
[15] based on the following lemma:

Lemma 1. Given a graph G, let kmax be the maximum value such that the
corresponding k-truss in G, denoted by Tkmax

(G), is not empty, then Tkmax
(G) =

Pkmax
(G).

Proof. According to Definition 2, Ckmax
(G) = Tkmax

(G) since there doesn’t exist
Ck(G) with k > kmax, otherwise such Ck(G) is also a Tk(G) that k > kmax.
And by Definition 3, Pkmax

(G) is the union of Cj(G) where j ≥ kmax. Thus
Pkmax

(G) = Ckmax
(G) = Tkmax

(G).

Based on Lemma 1, for a given graph G, the kmax-truss and kmax-TriPeak in
G are the same, which means the TriPeak number of edges in Tkmax

(G) equals
to kmax exactly. Moreover, based on Definitions 2 and 4, the edges with TriPeak
number k have no impact on the TriPeak number of edges whose TriPeak number

Towards Efficient k-TriPeak Decomposition on Large Graphs 609

Algorithm 1. Baseline(Graph G)
1: while not all edges in G are removed do

2: Ckmax ← maxTruss(G);
3: for each edge e ∈ Ckmax do
4: κ(e) ← kmax;
5: remove e from G;

6: procedure maxTruss(Graph G)
7: compute sup(e) for each edge e ∈ E(G) using the triangle counting algorithm [9];

8: sort all edges in ascending order of their support;

9: kmax ← 2;
10: while not all edges in G are removed do

11: let e = (u, v) be the edge with the lowest support in G; (assume deg(u) ≤ deg(v))
12: k ← sup(e) + 2;

13: kmax ← max(kmax, k);
14: Φkmax ← Φkmax ∪ {e};
15: for each w ∈ nbr(u) do
16: if (v, w) ∈ Gk then

17: sup((u, w)) ← sup((u, w)) − 1;

18: sup((v, w)) ← sup((v, w)) − 1;
19: update the new positions of (u, w) and (v, w) in the sorted edge array;

20: remove e from G;

21: return Φkmax ;

is k′, where k′ < k. In other words, for a graph G, if we remove the edges with
TriPeak number k from G, the edges with TriPeak number k′ in G and the
new generated graph G′ after the edge removal are the same. Therefore, we can
conduct the TriPeak decomposition by iteratively computing the k-truss with
the maximum k value and removing the edges in the graph until the graph is
empty.

Algorithm. Based on the above analysis, the baseline algorithm, Baseline, is
shown in Algorithm 1. The baseline algorithm iteratively computes and removes
the k-truss with the maximum k value of G at each iteration (line 2–5). If an
edge is contained in k-truss with the maximum k value of G at current iteration,
the TriPeak number of it will be assigned (line 4) and it will be removed from G
then (line 5). This process is carried out until all edges in G are removed (line 1).

Procedure maxTruss computes the k-truss with the maximum k value in G. It
first computes the support of each edge in G by the triangle counting algorithm
[9] (line 7). Then it sorts all the edges in ascending order of their supports and
keep them in an array (line 8). After that, the algorithm iteratively removes
the edge e with the lowest support, which is the first edge in the sorted edge
array, and add e into the result set of Φkmax

(line 11–14). When removing e, the
supports of all other edges that form a triangle with e should be decreased, and
their new positions in the sorted edge array should be updated (line 15–20). This
algorithm terminates after all edges in G are removed (line 10) and returns the
k-truss with the maximum k value (line 21). [15] shows that the time complexity
of procedure maxTruss is O(m1.5).

610 X. Wu et al.

Drawbacks of the Baseline Solution. In the baseline algorithm, we conduct
the TriPeak decomposition through k-truss decomposition iteratively. In each
iteration, the edges with κ(e) = kmax are assigned by computing the k-truss of G
with the maximum k value in current iteration (line 4). For a specific iteration,
an ideal algorithm is that the computation in this iteration only involves the
edges with κ(e) = kmax. However, in the baseline algorithm, all the edges in the
remaining graph are taken as the input for the k-truss decomposition algorithm
(line 2). Assume that there is an edge e with a small TriPeak number k′ in
G, it will participate in all iterations computing k-truss where k ≥ k′ in the
baseline algorithm. Therefore, lots of redundant computation exist in the baseline
algorithm and it is inefficient to conduct TriPeak decomposition considering the
time complexity of k-truss decomposition is O(m1.5).

Fig. 3. A running example of Algorithm 1

Example 3. Figure 3 shows a running example of Algorithm 1 on the graph G
in Fig. 2. It first performs k-truss decomposition on the whole graph and finds
6-TriPeak. Then, it removes edges in the 6-TriPeak and performs k-truss decom-
position on all remaining edges to find the 5-TriContour on the remaining graph.
The procedure terminates when all the edges are removed. As shown in Fig. 3,
although the TriPeak number of edges incident to v1, v16, v17, v18 and (v10, v13)
is not 5, all of these edges involve the k-truss decomposition to compute 5-
TriContour on the remaining graph, which leads to the inefficiency of Algo-
rithm 1.

4 Our New Approach

To overcome the drawbacks of the baseline solution, we propose a new paradigm
for the TriPeak decomposition problem. In this section, we first present an
overview of the new paradigm in Sect. 4.1. Then, we show our concrete tech-
niques in Sects. 4.2 and 4.3, respectively.

Towards Efficient k-TriPeak Decomposition on Large Graphs 611

4.1 A New Top-Down Decomposition Paradigm

In the baseline algorithm (Algorithm 1), in a specific iteration, we compute the
TriPeak number for the edges with κ(e) = kmax, where kmax is the maximum
k value such that the corresponding k-truss exists in the remaining graph of
current iteration. Since the kmax for current iteration cannot be determined in
advance, it has to conduct the truss decomposition on the graphs consisting
of the edges with κ(e) ≤ kmax, which leads to the inefficiency of the baseline
algorithm for the TriPeak decomposition problem. On the other hand, based on
Lemma 1, we know the maximum TriPeak number for all edges in G equals to
the maximum k value such that the k-truss exists in the original input graph.
For brevity, we denote it as κmax. In other words, we know the TriPeak number
for all edges of G is in the range from 1 to κmax. According to the definition of
TriPeak decomposition, the essence of the problem is to determine the TriPeak
number for each edge. Therefore, to perform the TriPeak decomposition, we can
iterate all the possible TriPeak number of the graph in decreasing order based
on their values and compuate the edges whose TriPeak number equals to the
specific TriPeak number. The benefit of this paradigm is that it is possible to
prune the edge with κ(e) < k in a specific iteration as we know the TriPeak
number k to be handled in each iteration in advance. In this way, we can reduce
the redundant computation in the baseline algorithm caused by edges with small
TriPeak number involving truss decomposition many times.

Fig. 4. The new paradigm

Algorithm Framework. Following the above analysis, the new TriPeak decom-
position paradigm is illustrated in Fig. 4. Staring from κmax, the paradigm com-
putes the TriPeak number for the edges in decreasing order of k. For a specific
k, the edges with κ(e) = k are computed. As analysed above, we aim to limit the
edges involving the truss computation in this step to the edges with κ(e) = k.
However, this goal is hard to achieve. Therefore, we compute upper bounds of
TriPeak number for the edges and use these upper bounds to prune the useless
edges. Specifically, when processing a specific k (without loss of generality, we
denote the input graph regarding k as Gk), it first prunes the edges whose upper

612 X. Wu et al.

bound of TriPeak number is less than k, i.e., κ(e) < k. We denote the pruned
graph as G′

k. Then, we determine the edges with κ(e) = k by computing the
k-truss on G′

k. After that, the edges with κ(e) = k are removed from Gk and
the remaining graph are treated as the input graph for the next iteration. The
process terminates when Gk is empty.

4.2 Upper Bounding Techniques

As analysed in Sect. 4.1, the key point for the efficiency of the new paradigm is
tight upper bounds of κ(e). To achieve this goal, in this part, we will introduce
two kinds of upper bounding techniques for κ(e).

A Static Upper Bound. Based on the definition of TriPeak number, a direct
upper bound of the TriPeak number of the edges in G can be obtained by the
truss number:

Definition 5 (Truss Number). Given a graph G, the truss number of an edge
e in G, denoted by φ(e), is the maximal number of k such that e is contained in
a k-truss.

Lemma 2. Let e be an edge in G, φ(e) is the truss number of e, and κ(e) is the
TriPeak number of e, then φ(e) ≥ κ(e).

Proof. By the definition of k-TriContour, every edge in k-TriContour has no less
than k − 2 triangles inside k-TriContour, which indicates that the k-TriContour
is a part of k-truss. Thus if e is in k-TriContour, it must also be in k-truss. Hence
φ(e) ≥ κ(e) holds.

The truss number for each edge can be easily obtained through the k-truss
decomposition algorithm. However, since k-TriContour does not consider the
support from triangles in higher TriContours, as our decomposition paradigm
progresses, the pruning power of truss number weakens and the edges with
φ(e) > κ(e) accumulate more and more. Therefore, we propose another tight
but lightweight upper bound for κ(e). The upper bound is defined based on Gk

(the input graph of our paradigm when processing a specific k, i.e., the graph
after removing all the edges with κ(e) > k) and is dynamically maintained as
our decomposition paradigm progresses.

A Dynamic Upper Bound. Given an edge (u, v) ∈ E(Gk), sup((u, v), Gk) be
the support of e = (u, v) in Gk. For a node u ∈ V (Gk), let h(u,Gk) returns
the maximum value h such that there exist at least h neighbours v of u with
sup((u, v), Gk) ≥ h. We define λ(e,Gk) = min{sup(e,Gk), h(u,Gk), h(v,Gk)} +
2. And we can prove that for any arbitrary valid k in our paradigm, λ(e,Gk) is
an upper bound of κ(e,G), which is shown in the following lemma:

Lemma 3. Let e be an edge in G, then λ(e,Gk) ≥ κ(e,G).

Towards Efficient k-TriPeak Decomposition on Large Graphs 613

Algorithm 2. TriPeakDecom(Graph G)
1: compute κmax and sup(e), φ(e) for all edges by maxTruss in Algorithm 1;
2: compute h(u) for each node u ∈ V (G);
3: for each e = (u, v) ∈ E(G) do
4: λ(e) ← min{sup(e), h(u), h(v)} + 2;
5: κ(e) ← min{λ(e), φ(e)};

6: k ← κmax; Gk ← G;
7: while Gk �= ∅ do
8: G′

k ← {e|e ∈ E(Gk), κ(e) ≥ k};
9: Ck′ ← maxTruss (G′

k)
10: if k′ = k then
11: S ← ∅;
12: for each edge e = (u, v) ∈ Ck′ (assume deg(u) ≤ deg(v)) do
13: κ(e) ← k; remove e from Gk;
14: update h(u), h(v);
15: add u (or v) into S if h(u) (or h(v)) is changed;
16: for each w ∈ nbr(u) do
17: if (v, w) ∈ Gk then
18: sup((u, w)) ← sup((u, w)) − 1; sup((v, w)) ← sup((v, w)) − 1;
19: update h(w), h(u), h(v) and λ((u, w)) and λ((v, w));
20: add u(v or w) into S if h(u) (h(v) or h(w)) is changed;

21: for each node w in S do
22: update κ(e) for each edge e incident to w as line 4-5;

23: Gk−1 ← Gk; k ← k − 1;

Proof. Since e = (u, v) is still remained in Gk, we know Cκ(e,G)(G) ⊆ Gk. And
within Cκ(e,G)(G), we know that sup(e, Cκ(e,G)(G)) + 2 ≥ κ(e,G), h(u,Cκ(e,G)

(G)) + 2 ≥ κ(e,G) and h(v, Cκ(e,G)(G)) + 2 ≥ κ(e,G). Thus λ(e,Gk) =
min{sup(e,Gk), h(u,Gk), h(v,Gk)} + 2 ≥ min{sup(e, Cκ(e,G)(G)), h(u,Cκ(e,G)

(G)), h(v, Cκ(e,G)(G))} + 2 ≥ κ(e,G).

4.3 Our k-TriPeak Decomposition Algorithm

In this part, we present our algorithm to conduct the TriPeak decomposition.
With the new decomposition paradigm and upper bounding techniques, the
only challenge is integrating the upper bounding techniques into decomposi-
tion paradigm efficiently, especially the maintenance of upper bound λ(e,Gk).
This part addresses this challenge.

Algorithm. Our algorithm, TriPeakDecom, is shown in Algorithm 2. It first
computes the κmax and initializes the auxiliary information for the upper bounds
(line 1–5). Then, it conduct the TriPeak decomposition following the new top-
down paradigm until the graph is empty (line 6–23).

Specifically, it first invokes procedure maxTruss in Algorithm 1 to compute
κmax, sup(e) and φ(e) for each edge e (φ(e) equals to kmax when e is removed
from G in line 20 of Algorithm 1). Then it computes h(u) for each node u based

614 X. Wu et al.

on the supports of edges incident to u (line 2). At last, λ(e) for each edge e
is assigned according to its definition and κ(e) of each edge e is initialized as
min{λ(e), φ(e)} (line 4–5).

Then, it conducts the TriPeak decomposition iteratively starting with k =
κmax and Gk = G (line 6) and the decomposition terminates when Gk is empty
(line 7). In a specific iteration processing k, it first extracts G′

k from Gk with
edges of which the upper bound κ(e) is no less than k (line 8). This step filters
out the unpromising edges. Then it computes the Ck′ of G′

k by the maxTruss
procedure (line 9). If k′ = k, for each edge e = (u, v) ∈ C ′

k, it assigns κ(e) = k
and removes the edge from Gk (line 13). The remaining work is to maintain
the incorrect κ(e) caused by the removal of edges. As φ(e) is fixed in the whole
process, we only need to find the edges whose λ(e) changes after the edge removal.
To achieve this goal, TriPeakDecom uses a set S to store the nodes u that h(u)
has changed in the iteration since this change may influence λ(e) of any edges
incident to u (line 11). Regarding a removed edge (u, v), for u, v and each
common neighbor w of u and v, it decreases the support of (u,w) and (v, w)
(line 18), updates h(u), h(v) and h(w) (line 14, 19) and λ((u,w)) and λ((v, w))
(line 19). If a node u whose h(u) is changed, adds u into S (line 15, 20). At the
end of iteration, for each node w ∈ S, it updates κ(e) for all edges incident to
w, since the change of h(w) may change κ(e) (line 21–22). When an iteration
finishes, k is decreased and the remaining edges are be taken as the input graph
for the next iteration (line 23).

Efficient Maintenance of λ(e,Gk). In Algorithm 2, we maintain λ(e,Gk)
dynamically as the decomposition processes (line 19, 22). Based on the definition
of λ(e,Gk), for an edge e = (u, v), the key to obtain λ(e,Gk) is to compute
h(u,Gk) and h(v,Gk). However, the time complexity to compute h(u,Gk) and
h(v,Gk) on the fly based on the edge support maintained in Algorithm 2 is at
least O(max{deg(u,Gk), deg(v,Gk)}). Since h(u,Gk) is recomputed frequently in
Algorithm 2 (line 14, 19), this approach is inefficient. To improve the efficiency
to maintain h(u), for each node u, besides h(u), we maintain the number of
edges incident to u with different support values, respectively, i.e., cntui , which
represents the number of edges incident to u with support equals i. Moreover, we
also maintain cntu≥h(u) that stores the number of edges incident to u with support
not less than h(u). During the decomposition, when the support of an edge
e = (u, v) decrease from i to j, we just decrease cntui and cntvi by 1 and increase
cntuj and cntvj by 1. And for the node u (the same as v), if i ≥ h(u), j < h(u)
and if cntu≥h(u) > h(u), we decrease cntu≥h(u) by 1; and if cntu≥h(u) = h(u), we
decrease h(u) by 1 and update cntu≥h(u) as cntu≥h(u) + cntuh(u) − 1. Otherwise, we
just keep h(u) and cntu≥h(u) unchanged. In this way, for the operation updating
h(u) regarding a node u in line 14 and 19 in Algorithm 2, we can finish it in
O(1) time. As a result, for each edge e, the λ(e,Gk) are maintained in O(1) in
the decomposition procedure.

Towards Efficient k-TriPeak Decomposition on Large Graphs 615

Fig. 5. A running example of Algorithm 2

Example 4. Figure 5 shows a running example of Algorithm 2 on the graph G
in Fig. 2. Similar to Algorithm 1, it first performs truss decomposition and finds
6-TriPeak. Then, it removes edges in the 6-TriPeak and performs truss decom-
position to find the 5-TriContour. Different from Algorithm 1, when performing
the k-truss decomposition to find 5-TriContour, it first prunes the edges with
κ(e) < 5. For example, the edge (v10, v13) is pruned by static upper bound as
φ((v10, v13)) < 5 though λ((v10, v13)) ≥ 5; edge (v1, v7) is pruned by dynamic
upper bound as λ((v1, v7)) < 5 though φ((v1, v7)) ≥ 5. As illustrated in Fig. 5,
Algorithm 2 significantly reduces the number of unnecessary edges involving the
procedure of truss decomposition compared with Algorithm 1.

Theorem 1. Given a graph G, the running time of Algorithm 2 can be bounded
by O(κmax · m1.5).

Proof. The whole algorithm can be divided into two stages, the initialization
stage (line 1–6) and the main iteration stage (line 7–23). Line 1 invokes maxTruss
procedure using O(m1.5) time. Line 2–5 can be done in O(m) time. In the main
iteration stage, line 9 takes O(m1.5) time. Line 13–15 and line 18–20 can be done
in constant time, and line 21–22 requires O(m) time. Now the only question left
is what is the number of loops in line 12 and 16. For a certain node u, line 16 is
bounded by deg(u), and line 12 is bounded by |nbr≥u|, which is the number of
neighbors of u whose degree is not smaller than u. Thus line 12–20 can be done in
O(

∑
u∈Gk

(deg(u) · |nbr≥u|)) time, which is bounded by O(m1.5). This is because
if deg(u) ≤ √

m, |nbr≥u| ≤ deg(u) ≤ √
m and

∑
u∈Gk

(deg(u) · |nbr≥u|) ≤ m1.5.
If deg(u) >

√
m, |nbr≥u| ≤ √

m as well for deg(u) · |nbr≥u| ≤ ∑
v∈|nbr≥u| deg(v) <

2m, and
∑

u∈Gk
(deg(u) · |nbr≥u|) ≤ m1.5. The number of iterations is bounded

by κmax. Thus, the the running time of Algorithm 2 can be bounded by O(κmax ·
m1.5).

616 X. Wu et al.

5 Performance Studies

In this section, we evaluate the effectiveness of our model and the efficiency
and scalability of our proposed algorithm. The experiments are conducted on a
machine with an Intel Xeon 2.20 GHz CPU and 128 GB memory running Red
Hat Linux 4.8.5, 64 bit.

Table 1. Datasets used in experiments

Datasets Type Number of nodes Number of edges Average degree κmax

DBLP Citation 317,080 1,049,866 6.62 114

Livemocha Social 104,103 2,193,083 42.13 27

Flickr Misc 105,938 2,316,948 43.74 574

Flixster Social 2,523,386 7,918,801 6.28 47

Skitter Computer 1,696,415 11,095,298 13.08 68

LiveJournal Social 3,997,962 34,681,189 17.35 352

Datasets. In our experiments, we evaluate the algorithms on six publicly avail-
able real-world datasets as listed in Table 1. Of these, DBLP and LiveJournal
are downloaded from SNAP1, and the others are downloaded from KONECT 2.

Algorithms. We implement and compare the following four algorithms:

• Baseline: Algorithm 1
• TriPeakDecoms: TriPeak decomposition algorithm with static upper bound

only.
• TriPeakDecomd: TriPeak decomposition algorithm with dynamic upper bound

only.
• TriPeakDecom: Algorithm 2

All algorithms are implemented in C++ and compiled with GNU GCC 4.8.5
using optimization level 2. The time cost of the algorithm is measured as the
amount of elapsed wall-clock time during the program execution.

Exp-1: Effectiveness. We evaluate the effectiveness of k-TriPeak and k-Peak
by examining the quality of detected subgraph via the clustering coefficient [18]
metric. Clustering coefficient (CC) indicates the tendency of nodes in a subgraph
to cluster together. Thus, high clustering coefficient means high probability that
the connections inside the detected subgraph are dense. In this experiment, we
find all k-TriPeaks and k-Peaks with different k values and compute the clus-
tering coefficient of them. Since the distributions of k in findings of k-TriPeak
and k-Peak are quite different, here we compare the clustering coefficient of k1-
TriPeak and k2-Peak of similar size even if k1 �= k2. The results are shown in
1 http://snap.stanford.edu/.
2 http://konect.uni-koblenz.de/.

http://snap.stanford.edu/
http://konect.uni-koblenz.de/

Towards Efficient k-TriPeak Decomposition on Large Graphs 617

Fig. 6. Effectiveness of k-TriPeak and k-Peak

Fig. 6. In Fig. 6, the horizontal coordinate denotes the size of k-TriPeak (k-Peak)
as a persentage of total graph.

As shown in Fig. 6, as the size of k-TriPeak (k-Peak) increases, the value of
clustering coefficient for both of them generally decreases. However, it can be
observed that, of similar size, the k-TriPeak is much denser than k-Peak. For
example, in Flixster dataset, the k-TriPeak of which the size is around 30% of the
total graph has clustering coefficient of 0.7, while the k-Peak of similar size only
have 0.1. This is because k-TriPeak takes a high-order connectivity structure as
the building blocks while k-Peak only considers degree. These results indicate
that compared with the k-Peak model, the returned result of k-TriPeak are
more cohesive and k-TriPeak is better cohesive subgraph model compared with
k-Peak.

618 X. Wu et al.

Table 2. Running time on real-world datasets

Alg Dataset

DBLP Livemocha Flickr Flixster Skitter LiveJournal

Baseline 81.85s 178.5 s 3538.5 s 1017.25 s 1993.32 s 29768.37 s

TriPeakDecoms 19.69 s 62.1 s 2020.35 s 194.41 s 545.78 s 5530.65 s

TriPeakDecomd 15.56 s 98.67 s 1228.3 s 285.02 s 615.49 s 5038.35 s

TriPeakDecom 14.75 s 58.29 s 834.79 s 150.9 s 471.26 s 2653.01 s

Exp-2: Efficiency. In this experiment, we compare the total processing time
of those four algorithms on six real-world datasets. The results are reported in
Table 2.

Generally, the processing time increases as the size of the graph increases.
Baseline takes the most time on all six datasets. It spends more than 8 hours
to perform the TriPeak decomposition on LiveJournal dataset. The reason for
Baseline’s long running time is that edges with small TriPeak number, which
make up a large portion of the whole graph, take participate in the k-truss
decomposition for the big TriPeak number many times. The algorithms solely
adopting static or dynamic upper bounding technique run much faster than
Baseline. TriPeakDecoms is faster than TriPeakDecomd on Livemocha, Flixster
and Skitter and the opposite on DBLP, Flickr and LiveJournal, for they play to
their strength on different stages in a decomposition. TriPeakDecom algorithm,
which adopts both upper bounding techniques, achieves the best performance on
all six datasets. For example, on LiveJournal, it achieves an order of magnitude
faster than Baseline.

Exp-3: Scalability. We study the scalability of the four algorithms in this
experiment. To test the scalability, we randomly sample the nodes and edges
respectively of two largest datasets Skitter and LiveJournal from 20% to 100%
and take the induced subgraph as the input graph. The results are shown in
Fig. 7.

As shown in Fig. 7, as the size of the graph increases, the processing times
of four algorithms increase due to the increasing of the number of iterations
and the number of involved edges in each iteration. Moreover, as the size of the
graph increases, the gap in processing times between Baseline and other three
algorithms increases. This is because the unnecessary computation on edges,
which are reduced by other three algorithms but remained in Baseline, make
up larger portion of computation when the size of the graph grows. The gap
in processing times between TriPeakDecoms and TriPeakDecomd remains small
on both datasets. The TriPeakDecom algorithm consumes the least time and its
processing time grows the most stably on all datasets. The results show the good
scalability of our proposed algorithm.

Towards Efficient k-TriPeak Decomposition on Large Graphs 619

Fig. 7. Scalability testing

6 Related Work

The most related works to k-TriPeak are k-Peak [7] and k-truss [5], which have
been introduced in Sect. 1. Since k-Peak is defined based on degree, the returned
results of k-Peak are often not that cohesive [5,14,28] compared with the k-
TriPeak [14]. The difference between k-TriPeak and k-truss is that in a k-truss,
triangles containing edges from the higher k-truss are taken into consideration
while in a k-TriPeak, all these edges are filtered out. This difference leads to
it that k-TriPeak is able to find the centers of distinct regions in a graph as
k-Peak [7].

Besides k-Peak and k-truss, there are many different models proposed in
the literature. One of the most intuitive cohesive subgraph models is the clique
model in which each node is adjacent to every other node [4]. More complex
models based on the clique model [20,21,25] are also studied in the literature.
However, clique is often too restrictive for many applications, thus, more clique
relaxation models have been proposed, such as the k-plex [13], n-clan and n-
club [11]. Nevertheless, these models always face the problem of computational
intractability. To address this problem, more polynomial time solvable cohe-
sive subgraph models are proposed recently, such as k-core [2], triangle k-core
[27], (k, s)-core [26], DN-Graph [16], k-edge connected component [22,24] and
k-mutual-friend subgraph model [28].

620 X. Wu et al.

7 Conclusion

Motivated by the recent proposed k-Peak model, in this paper, we propose a
new k-TriPeak model based on the triangles in the graph and study the k-
TriPeak decomposition problem. To perform the k-TriPeak decomposition, we
first present an approach following the idea of k-Peak decomposition. However,
this approach involves lots of unnecessary computation. Therefore, we propose
a new top-down paradigm to conduct the decomposition. Based on the new
paradigm, we devise two effective upper bounds to prune the unnecessary edges
involving computation in the baseline approach. Moreover, we explore efficient
techniques to maintain the upper bounds during the decomposition. We conduct
experiments on large real-world datasets and the experimental results demon-
strate the efficiency and effectiveness of our proposed algorithm.

References

1. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: K-core decompo-
sition of internet graphs: hierarchies, self-similarity and measurement biases. NHM
3(2), 371–393 (2008)

2. Batagelj, V., Zaveršnik, M.: An o(m) algorithm for cores decomposition of net-
works. Comput. Sci. 1(6), 34–37 (2003)

3. Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of complex
networks. Science 353(6295), 163–166 (2016)

4. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM 16(9), 575–576 (1973)

5. Cohen, J.: Trusses: cohesive subgraphs for social network analysis. National Secu-
rity Agency Technical Report (2008)

6. Feng, X., Chang, L., Lin, X., Qin, L., Zhang, W., Yuan, L.: Distributed computing
connected components with linear communication cost. Distrib. Parallel Databases
36(3), 555–592 (2018)

7. Govindan, P., Wang, C., Xu, C., Duan, H., Soundarajan, S.: The k-peak decom-
position: mapping the global structure of graphs. In: Proceedings of WWW, pp.
1441–1450 (2017)

8. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community
in large and dynamic graphs. In: Proceedinhs of SIGMOD, pp. 1311–1322 (2014)

9. Latapy, M.: Main-memory triangle computations for very large (sparse (power-
law)) graphs. Theor. Comput. Sci. 407(1), 458–473 (2008)

10. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psy-
chometrika 14(2), 95–116 (1949)

11. Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13(2), 161–173 (1979)
12. Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social

networks. PNAS 99, 2566–2572 (2002)
13. Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept.

J. Math. Sociol. 6(1), 139–154 (1978)
14. Shao, Y., Chen, L., Cui, B.: Efficient cohesive subgraphs detection in parallel. In:

Proceedings of SIGMOD, pp. 613–624 (2014)
15. Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–

823 (2012)

Towards Efficient k-TriPeak Decomposition on Large Graphs 621

16. Wang, N., Zhang, J., Tan, K., Tung, A.K.H.: On triangulation-based dense neigh-
borhood graphs discovery. PVLDB 4(2), 58–68 (2010)

17. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge (1994)

18. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393(6684), 440 (1998)

19. Yin, H., Benson, A.R., Leskovec, J., Gleich, D.F.: Local higher-order graph clus-
tering. In: Proceedings of SIGKDD, pp. 555–564 (2017)

20. Yuan, L., Qin, L., Lin, X., Chang, L., Zhang, W.: Diversified top-k clique search.
In: Proceedings of ICDE, pp. 387–398 (2015)

21. Yuan, L., Qin, L., Lin, X., Chang, L., Zhang, W.: Diversified top-k clique search.
VLDB J. 25(2), 171–196 (2016)

22. Yuan, L., Qin, L., Lin, X., Chang, L., Zhang, W.: I/O efficient ECC graph decom-
position via graph reduction. PVLDB 9(7), 516–527 (2016)

23. Yuan, L., Qin, L., Lin, X., Chang, L., Zhang, W.: Effective and efficient dynamic
graph coloring. PVLDB 11(3), 338–351 (2017)

24. Yuan, L., Qin, L., Lin, X., Chang, L., Zhang, W.: I/O efficient ECC graph decom-
position via graph reduction. VLDB J. 26(2), 275–300 (2017)

25. Yuan, L., Qin, L., Zhang, W., Chang, L., Yang, J.: Index-based densest clique
percolation community search in networks. IEEE TKDE 30(5), 922–935 (2018)

26. Zhang, F., Yuan, L., Zhang, Y., Qin, L., Lin, X., Zhou, A.: Discovering strong
communities with user engagement and tie strength. In: Pei, J., Manolopoulos, Y.,
Sadiq, S., Li, J. (eds.) DASFAA 2018. LNCS, vol. 10827, pp. 425–441. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-91452-7 28

27. Zhang, Y., Parthasarathy, S.: Extracting analyzing and visualizing triangle k-core
motifs within networks. In: Proceedings of ICDE (2012)

28. Zhao, F., Tung, A.K.: Large scale cohesive subgraphs discovery for social network
visual analysis. PVLDB 6(2), 85–96 (2012)

https://doi.org/10.1007/978-3-319-91452-7_28

	Towards Efficient k-TriPeak Decomposition on Large Graphs
	1 Introduction
	2 Preliminaries
	3 Baseline k-TriPeak Decomposition Algorithm
	4 Our New Approach
	4.1 A New Top-Down Decomposition Paradigm
	4.2 Upper Bounding Techniques
	4.3 Our k-TriPeak Decomposition Algorithm

	5 Performance Studies
	6 Related Work
	7 Conclusion
	References

