
Truthful Crowdsensed Data Trading
Based on Reverse Auction and Blockchain

Baoyi An1, Mingjun Xiao1(B), An Liu2, Guoju Gao1, and Hui Zhao1

1 School of Computer Science and Technology, Suzhou Institute for Advanced Study,
University of Science and Technology of China, Hefei, China

xiaomj@ustc.edu.cn
2 School of Computer Science and Technology, Soochow University, Suzhou, China

Abstract. Crowdsensed Data Trading (CDT) is a novel data trading
paradigm, in which each data consumer can publicize its demand as some
crowdsensing tasks, and some mobile users can compete for these tasks,
collect the corresponding data, and sell the results to the consumers.
Existing CDT systems either depend on a trusted data trading broker or
cannot ensure sellers to report costs honestly. To address this problem,
we propose a Reverse-Auction-and-blockchain-based crowdsensed Data
Trading (RADT) system, mainly containing a smart contract, called
RADToken. We adopt a greedy strategy to determine winners, and prove
the truthfulness and individual rationality of the whole reverse auction
process. Moreover, we exploit the smart contract with a series of devises
to enforce mutually untrusted parties to participate in the data trading
honestly. Additionally, we also deploy RADToken on an Ethereum test
network to demonstrate its significant performances. To the best of our
knowledge, this is the first CDT work that exploits both auction and
blockchain to ensure the truthfulness of the whole data trading process.

1 Introduction

Owing to the huge potential economic value of data resources, many online
data trading systems [12] have emerged in recent years, such as CitizenMe,
DataExchange, Datacoup, Factual, and Terbine, etc., whereby data consumers
can search and purchase their interested data. However, most data in the real
world are preserved by few research institutions or companies only for their own
analysis purposes rather than sharing them with others who have data needs but
cannot afford to collect data by themselves, which causes trouble to the availabil-
ity of data. Consequently, the volumes of data in trading systems are still very
limited, which has significantly suppressed the increasing market demand for
data [24]. To tackle this problem, a novel data trading paradigm, called Crowd-
sensed Data Trading (CDT), is proposed, in which the mobile crowdsensing
technology is adopted to provide data resources for trading, i.e., a large crowd
of mobile users are leveraged to collect data with their smart phones [17,24].

c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11446, pp. 292–309, 2019.
https://doi.org/10.1007/978-3-030-18576-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18576-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-18576-3_18

Truthful CDT Based on Reverse Auction and Blockchain 293

In general, a typical CDT system (e.g., Thingful [1], Thingspeak [2]) includes
a data trading broker, some data consumers, and data sellers (a.k.a., crowdsens-
ing workers). The broker employs a large amount of sellers to collect data accord-
ing to some requirements, and then sells the sensed data to the consumers who
are interested in. So far, there have been a few works focusing on the CDT sys-
tem design. For example, [24] proposes a profit-driven data collection framework
for crowd-sensed data markets, called VENUS, in which a data procurement
auction is adopted to determine the minimum payment for each data collection.
A data sharing market is introduced in [11], where the sensed data is saved
and processed in user devices locally and shared among users in a P2P man-
ner. A brokerage-based market is launched in [23], where sellers and consumers
propose their selling and buying quantities, respectively, to match the market
supply and demand in the trading platform. However, these CDT systems have
to depend on a data trading broker, making those data consumers worry about
the truthfulness and even unwilling to use the systems.

On the other hand, blockchain [16], a newly-emerging decentralized transac-
tion recording technology, shows a glimpse of solutions to fairness and trans-
parency issues which is resistant to modification of the data. In addition,
blockchains allow mutually distrusted users to complete data exchange or trans-
action securely without a centralized truthful intermediary, avoiding high legal
and transactional costs [13]. Smart contracts [5] are some complex programs
deployed on blockchains which can automatically execute operations according
to treaty conditions. An important advantage of smart contracts is that they
can enforce the participants, who might not trust each other, to fulfill their obli-
gations. Due to this characteristic, smart contracts are introduced into CDT
systems as a truthful broker to conduct the data trading between sellers and
consumers. For instance, [6] proposes a CDT framework which enables efficient
truth discovery over encrypted crowdsensed data streams and knowledge moneti-
zation on smart contract. A reliable mechanism that allows consumers to search
directly over encrypted data is also implemented on blockchain [10].

Although blockchain-based CDT systems can create trust between sellers and
consumers of data trading, they cannot guarantee the truthfulness of individuals,
i.e., sellers might report fake data collection costs to achieve more rewards. As
we know, auction mechanisms can ensure the participants to report their bids
honestly, which have been widely used in crowdsensing systems [8,21]. Hence,
to construct fully truthful data trading systems on blockchain, we propose a
Reverse-Auction-and-blockchain-based crowdsensed Data Trading (RADT) sys-
tem in this paper, which mainly contains a smart contract, called RADToken.
Each consumer can start a RADT by issuing the data demand via RADTo-
ken (e.g., report traffic conditions of multiple locations), and sellers who have
registered in RADToken can bid for their interested tasks. RADToken will auto-
matically execute to determine the winners and payments. After sellers complete
the data collection and submit the results, the consumer will pay some rewards
to sellers via RADToken. Since bids on blockchain is transparent and public visi-
ble, RADToken takes a two-stage bidding strategy to ensure the security of bids.

294 B. An et al.

Moreover, both consumer and sellers are asked for a deposit which keeps them
comply with the prescribed rules. Once they finish their obligations, RADToken
will automatically and transparently transfer their deposits and payments. We
summarize the contributions of this paper as follows:

1. We propose a CDT system based on reverse auction and blockchain, i.e.,
RADT. It does not need any truthful broker but can provide truthful data
trading between mutually untrusted consumers and sellers. To the best of our
knowledge, this is the first CDT system that exploits both auction theory and
blockchain technology to ensure the truthfulness of the whole data trading.

2. We design a reverse-auction-based smart contract for the RADT system, i.e.,
RADToken, where the reliability of each seller is taken into consideration
and a greedy strategy is used to determine winners. Moreover, we prove the
truthfulness and individual rationality of the whole auction process, which
implies that all sellers will report their data collection costs honestly.

3. To ensure the truthfulness of the data trading process, we devise some modi-
fiers and set life span limitations for each procedure to filter the illegal invokes
which can resist certificate forgery and tamper attacks effectively. Meanwhile,
we adopt a two-stage bid strategy to protect bid privacy in auction procedure
and use symmetric and asymmetric encryptions for data delivery procedure
which can protect the confidentiality of the sensed data.

4. We implement a prototype of the RADT system and deploy RADToken to an
Ethereum test network. Extensive simulations are conducted to demonstrate
the significant performances and the practicability of RADToken.

The paper is organized as follows. In Sect. 3, we present a system model for
RADT and analyze the security in Sect. 4. The reverse auction is elaborated
in Sect. 5. We carry on the theoretical analysis in Sect. 6. We present simula-
tions and evaluations in Sect. 7 and review related works in Sect. 8. Finally, we
conclude in Sect. 9.

2 Preliminaries

We first introduce the background of Ethereum before the system overview.

2.1 Account Types

– Externally Owned Accounts (EOAs). An EOA only has a balance which
can send transactions either to transfer ether or to trigger contract code.

– Smart Contract Accounts. A smart contract has a balance and associated
code. Code execution is triggered by transactions from EOAs.

A contract is invoked by a transaction and is run by Ethereum Virtual
Machine on each node participating in the network as part of their verifica-
tion of new blocks. Contracts like autonomous agents have direct control over
their balances and dictionary (key/value-datatype) storage.

Truthful CDT Based on Reverse Auction and Blockchain 295

2.2 Transaction

The term transaction is used in Ethereum to refer to the signed data package.
Its VALUE field is the amount of wei to be transferred from the sender to the
recipient. All values are denominated in units of wei: 1 ether is 1018 wei. Once
a smart contract receives a transaction (msg), it can obtain two parameters:

– msg.sender is sender’s account.
– msg.value is the amount of ether that sender transfer to it.

2.3 Gas System

Ethereum charges a fee (gas) per computational step to prevent deliberate
attacks and abuse on Ethereum. Each transaction is required to include a gas
limit and a fee that it is willing to pay per gas. If the total gas used for the com-
putational steps spawned by the transaction is not greater than the gas limit,
the transaction will be processed. Otherwise, all modifications are reverted. The
excess gas is reimbursed to the sender. The total cost involves two aspects:

– gasUsed is the total gas which is consumed by the transaction.
– gasPrice is the price of one unit gas that is specified in the transaction.

Hence, the total cost = gasUsed × gasPrice.

3 System Overview

3.1 The RADT System

Figure 1 illustrates the RADT system including 4 major entities, i.e., consumer,
RADToken, Secure Cloud Server (SCS) and seller. The consumer sends data
collection job requirements to RADToken, a smart contract on Ethereum. The
job includes a set of Points of Interest (PoIs) which correspond to the location-
sensitive sensing tasks, denoted as T = {t1, t2, · · · , tl}. Sellers who participate in
the job, denoted by W = {w1, w2, · · · , wn}. Each seller wi can submit a bid βi for
their interested tasks Ti (⊆T). Moreover, we denote the sellers who can execute
tj by Wj (⊆W). RADToken as a broker then executes a reverse auction to select
winners S(⊆W) and determine payments P = {pi|si ∈ S} for the winners. The
winners upload the encrypted sensed data (EnData) to SCS where the consumer
can download and decrypt EnData to obtain the real sensed data (Data). The
consumer and sellers can get the refund and payments respectively after the job
ends. We specify two key features of a smart contract [13]:

– Timing. A smart contract has a time clock which is modeled as a continuously
increasing variable now. now is an alias for a timestamp of the blockchain.

– Function Modifier. Modifiers are inheritable properties of contracts which are
used to automatically check a condition prior to executing the function.

296 B. An et al.

Fig. 1. The RADT system

3.2 The Workflow of the RADT System

Sellers register in RADToken to be informed once a data collection job appears.
RADToken maintains Registry which contains a dictionary R to record sellers’
reliabilities and R(wi) = ri. The system works as follows:

Initiate(T , τbid, τreveal, τexec, kp
0):

1. require $deposit(msg.value) ≥ guaranty.
2. set Q = msg.sender and store kp

0 .
3. set T = T , tbid = now + τbid, treveal = tbid + τreveal, texec = treveal + τexec.
4. trigger Notify event to inform the registered data sellers.

Fig. 2. The initiate function

Step 1: Job Initialization. The consumer describes a data collection job with
requirements: T , bid commitment duration τbid, bid reveal duration τreveal and
job execution duration τexec. The consumer generates a pair of keys k0 = (kp

0 , k
s
0),

where kp
0 is his public key and ks

0 is his private key. Then, he sends a transaction
which contains the job description and the public key kp

0 to RADToken. The
detailed function is given in Fig. 2.
Step 2: Notify Data Providers. Initiate() notifies all registered sellers of the
new job. A seller provides a deposit ($depositi) for participating in the job.
To prevent the bids from being intercepted, a two-stage bidding strategy is
adopted in Sect. 4.2. Each seller has an encrypted bid enBi = (Ti, enβi) and a real

Truthful CDT Based on Reverse Auction and Blockchain 297

bid Bi = (Ti, βi). RADToken uses two dictionaries EnBids and Bids to record
them respectively, where EnBids(wi) = enβi and Bids(wi) = (Ti, βi, $depositi).

CommitBid(Ti, enβi) payable:
1. require now ≤ tbid and msg.value ≥ guaranty.
2. add (msg.sender, Ti, msg.value) to Bids. i = msg.sender, depositi = msg.value
3. add (msg.sender, enβi) to EnBids.

RevealBid(Ti, βi, noncei):
1. require tbid ≤ now ≤ treveal.
2. require EnBids(msg.sender)=sha3(Ti, βi, noncei).
3. require Bids(msg.sender).T = Ti.
4. add βi to Bids(msg.sender).

Fig. 3. The two-stage bidding procedure

Step 3: Commit Encrypted Bid. A seller computes his encrypted bid enβi

using Secure Hash Algorithm-3 (SHA-3) [4]. SHA-3 takes as input his account
wi, his bid βi and a randomly selected noncei, i.e., enβi = sha3(wi, βi, noncei).
CommitBid() in RADToken takes as input a binary tuple enBi and records it.
Step 4: Reveal Real Bid. RADToken is invoked by a seller wi to send Ti, βi

and noncei. RevealBid() will check the bid’s authenticity and record the legal
bid. If wi sends illegal bid, he is untruthful and his $depositi will be forfeited.
The detailed functions of CommitBid() and RevealBid() are given in Fig. 3.

WinnerSelection():
1. require now ≥ treveal and msg.sender = consumer.
2. compute (S, C) according to Winner Selection algorithm in Fig. 9.

Pricing(si):
1. require msg.sender = consumer.
2. compute P(si) according to Pricing algorithm in Fig. 10.
3. trigger AuctionEnd event to inform all winners(S) and send them kp

0 .

Fig. 4. The reverse auction procedure

Step 5: Inform Winners. RADToken executes a reverse auction in Fig. 4 to
select winners S and determine payments for all winners. All winners will get
informed the auction results and public key kp

0 . The detailed reverse auction
process is in Sect. 5.
Step 6: Send Keys. To ensure the confidentiality of the sensed data, wi gen-
erates a symmetric key kdata,i and encrypts Datai with kdata,i. After upload-
ing the encrypted data (Endatai) to SCS, wi generates a pair of asymmetric
keys k1,i = (kp

1,i, k
s
1,i). And he obtains keydata,i and key1,i by encrypting kdata,i

and kp
1,i as described in Sect. 4.3. Then the seller invokes SetKey() to delivery

298 B. An et al.

keydata,i and key1,i. RADToken maintains two dictionaries KDs and K1s to
store keydata,i and key1,i respectively, as shown in Fig. 5.

SetKey(keydata,i, key1,i):

1. add (msg.sender, keydata,i) to KDs.
2. add (msg.sender, key1,i) to K1s.

GetKey(si):
1. require msg.sender = consumer.
2. require $rewards ≥ si∈S P(si). consumer transferred $rewards before
3. send (KDs(si), K1s(si), R(si)) to consumer.

Fig. 5. The key exchange procedure

Step 7: Download EnData. The consumer downloads EnData from SCS.
Step 8: Get Keys. In Fig. 5, the consumer can invoke GetKey() to get keys
for decrypting EnData. Before the invocation, he should transfer some ethers
($rewards) to RADToken which are no less than the total payments.

Refund():
1. require now ≥ texec.
2. compute untruthful sellers’ total deposits which is $fines.
3. compute the remaining rewards $rewards = $rewards − si∈S P(si).
4. transfer $deposit+$fines+$rewards to consumer.

Payment():
1. require Bids(msg.sender).β = 0. untruthful according to step 4 in Fig. 3
2. if msg.sender ∈ S, require KDs(msg.sender)= 0 and K1s(msg.sender)= 0.
3. transfer the final payment $P = P(msg.sender) + $depositi+$fine to msg.sender

Fig. 6. The refund and payment procedure

Step 9: Payment and Refund. Upon receiving the total rewards, RADToken
will return the deposit to the consumer. Each winner can get his payment only
when he had sent his keys. The functions are detailed in Fig. 6.

4 Security Analysis

4.1 Robustness of RADToken

We use some modifiers introduced at the beginning of Sect. 4 in Fig. 7 to ensure
that RADToken can run steadily. The keyword require can roll back all states
without deducting gas when encountering some invalid codes. The robustness of
RADT is guaranteed by the following points:

Truthful CDT Based on Reverse Auction and Blockchain 299

Modifiers:
1. modifier onlyBefore(uint time) require(now < time);
2. modifier onlyAfter (uint time) require(now > time);
3. modifier onlyTrue (uint flag) require(flag == true);
4. modifier onlyFalse (uint flag) require(flag == false);

Fig. 7. Some modifiers

1. Only one job in one round. Once a consumer invokes RADToken to launch
a job like in Fig. 2, others cannot invoke it until the job ends. If there exists an
active job, the value of flag jobEnded whose default is true would be false,
which cannot pass the check of onlyTrue(jobEnded) in Initiate, so that other
consumers will be rejected.

2. Each participant should offer deposit. We set Initiate() and Commit-
Bid() payable, a keyword of smart contract, which requires invokers to trans-
fer ethers to RADToken. We assume that the consumer will transfer rewards
and will not quit the RADT system midway. Otherwise his deposit offered
in Initiate() will be fined as a compensation for sellers and he even cannot
get keys to decrypt EnData. Each seller should invoke CommitBid() with his
deposit, which urges him to reveal his bid truthfully.

Fig. 8. The sequence diagram of RADT system

3. Each procedure only be executed orderly. Every function in our RAD-
Token is an independent entry through separate calls. We also set some time
modifiers to ensure the safety. We illustrate the sequence diagram of RADT
in Fig. 8. For example, RevealBid() should be invoked after tbid and before
treveal where the auction only can be executed after RevealBid().

4.2 Security and Truthfulness of Bid

Everything on blockchain is transparent, which enables a potential adversary to
reconstruct the entire transaction history and find out the meanings and logic

300 B. An et al.

behind it. That means the adversary can grab other bids and make a bid in his
favour. Thus, we should consider how to guarantee the security of each bid.

Security. Since smart contracts cannot handle complex encryption and decryp-
tion, we adopt a two-stage bidding strategy to protect bids. At the first stage, a
seller wi can encrypt his bid βi using SHA-3 as follows:

enβi = “0x” + ethereumjs.ABI. soliditySHA3([“address”, “uint256”, “uint256”],

[wi, βi, noncei]).toString(“hex”)

Then, he sends enBi to RADToken but other users can only read a hash
value enβi rather than the real bid βi. Moreover, a wise adversary will not try
to crack the hash value which is impossible to succeed. So βi is secure until tbid.

Truthfulness. Even though an adversary can obtain other bids which will be
revealed at the second stage, he cannot adjust his bid which will make him
untruthful for the bid check of RevelBid() in Fig. 3. First, it recomputes the
hash value sha3(msg.sender, βi, noncei) of wi and compares it with his recorded
enβi (step 2). RADToken also checks if his new submitted tasks are same with
Ti (step 3). wi will be accepted as a truthful seller only when he passes the check.

4.3 Confidentiality of Data

Symmetric encryption has more efficiency and less computation overhead. So we
use it to encrypt data and asymmetric encryption to protect keys as below:

1. A winner si encrypts his sensed data with a symmetric key kdata, i.e.,
EnDatai = ENC(Datai, kdata,i). Then he uploads the EnDatai to SCS.

2. si uses his private key to encrypt kdata and get keydata,i = ENC(ks
1,i, kdata,i).

3. si encrypts kp
1,i with kp

0 , i.e., key1,i = ENC(kp
0 , k

p
1,i).

4. si invokes SetKey() to send keydata,i and key1,i to RADToken.
5. The consumer downloads EnDatai and invokes GetKey() to get

(keydata,i, key1,i).
6. The consumer decrypts key1,i with ks

0 to get kp
1,i = DEC(key1,i, k

s
0).

7. The consumer then decrypts keydata with kp
1,i to get kdata,i = DEC

(keydata,i, k
p
1,i).

8. Finally, the consumer can obtain the real data Datai = DEC
(EnDatai, kdata,i).

5 The Reverse Auction Mechanism of RADT

5.1 Problem Formulation

As more sellers take part in the job, the actual sensed data would exceed the
reliability requirements ε = {εj |tj ∈ T }, whereas it also increases the total costs
C. Furthermore, we adopt σS

j to denote the overall reliability that all winners

Truthful CDT Based on Reverse Auction and Blockchain 301

contribute to tj ∈ T . In order to estimate σS
j , we compute the sum of the

reliabilities of the winners who process tj as follows:

σS
j =

∑
si∈S∩Wj

ri (1)

Due to the truthfulness of sellers, we regard a seller wi’s bid βi as his cost
(i.e., ci = βi). The goal of the auction is to find a subset of sellers that minimize
the overall cost while satisfying the reliability requirements of data. Hence, the
RADT problem can be formulated as follows:

Minimize : C(S) =
∑

si∈S βi, //ci = βi (2)
Subject to : S ⊆ W (3)

σS
j ≥ εj , 1 ≤ j ≤ l (4)

Here, Eq. 4 indicates that the total reliability of task tj is no less than εj .
The auction first selects winners who minimize the total costs under reliability

constraints. Then, it determines payments for winners so that the whole auction
satisfies truthfulness and individual rationality which are defined as follows:

Definition 1 (Truthfulness). Let Bi be the truthful bid and B′
i be the untruth-

ful bid where the payments are pi(Bi) and pi(B′
i) respectively. Then, if

pi(Bi) − ci ≥ pi(B′
i) − ci, (5)

we say that the auction mechanism is truthful.

Definition 2 (Individual Rationality). The payoff for Bi is non-negative,

pi(Bi) − ci ≥ 0. (6)

5.2 The Winner Selection Algorithm of RADT

WinnerSelection():

1. repeat until G(S) = l
j=1 j :

(a) for ∀Bi, compute ρi = vi(S)
βi

;
(b) record the index of the maximum ρi as i∗;
(c) add si∗ to S, set C = C + βi∗ ;

2. return (S, C).

Fig. 9. The reliability-aware winner selection algorithm

The RADT problem is NP-hard, because the minimum weight set cover problem
is to find a subset that minimize the total weight which can be polynomial-
time reducible to the RADT problem according to [8]. So we propose a greedy

302 B. An et al.

algorithm to solve RADT. A seller who has the largest reliability to execute the
most tasks with the least cost will be selected and added into the set S first.

To design an appropriate approximation algorithm, we first define a reliability
contribution function G(S). G(S) indicates the current total reliability of winners
who process T under the constraint of ε, defined as follows:

G(S) =
∑

l
j=1 min{σS

j , εj} (7)

Based on G(S), the marginal reliability contribution vi(S) is the marginal
reliability that wi ∈ W − S can contribute to the whole job, defined as follows:

vi(S) = G(S ∪ {wi}) − G(S) (8)

Based on Eq. 8, we illustrate the winner selection algorithm in Fig. 9. The
algorithm begins from an empty set S. In each iteration, it adds the winner who
has the maximum weight ρi = vi(S)

βi
into S. The algorithm terminates when

G(S) =
∑l

j=1 εj . The computation overhead of the algorithm is O(n2l), where
n is the number of sellers and l is the number of tasks.

5.3 The Critical Pricing Algorithm of RADT

Pricing(si):

1. create a empty winner set S .
2. record bid = Bids(si) and set Bids(si) = 0. remove Bi from B
3. repeat until G(S) = l

j=1 j :

(a) compute ρk = vi(S)
βk

, for ∀sk is not in S and satisfies Bids(sk) = 0;
(b) record the index of the maximum ρk as k∗;

(c) if P(si) <
βk∗ vi(S)

vk∗ (S) , set P(si) =
βk∗ vi(S)

vk∗ (S) ;

(d) add sk∗ to S .
4. set Bids(si) = bid, delete S .

Fig. 10. The reliability-aware pricing algorithm

The pricing algorithm in Fig. 10 is to determine payments for winners. We con-
sider that each winner is priced at pi for his winning bid Bi. Let B−i denote all
bids except Bi. Then, we conduct the greedy winner selection over B−i to get a
solution, denoted by S ′. We assume that the bid Bk is the winning bid in the kth

iteration, where G(S ′) is the utility before adding wk into S ′. So the payment of
Bi must be no more than βkvi(S′)

vk(S′) . Otherwise, the weight ρi is not the largest.
So the critical payment of winner si is the maximum critical value:

pi = max{βk vi(S ′)
vk(S ′)

|k = 1, 2, · · · } (9)

which terminates at G(S ′) =
∑l

j=1 εj . The total time complexity of pricing is
O(n3l), where n is the number of sellers and l is the number of tasks.

Truthful CDT Based on Reverse Auction and Blockchain 303

6 Theoretical Analysis

To prove the truthfulness of our RADT system, we should ensure some properties
of the RADT auction. First, we simply define a notation:

G(j|S) = min{σS
j , εj}.

Lemma 1. G(S) is an increasing function.

Proof. Considering two arbitrary winner sets S1 and S2, S1 ⊆ S2 ⊆ S. According
to Eq. 1, we have σS1

i ≤ σS2
i and G(j|S1) ≤ G(j|S2) for ∀tj ∈ T . Then G(S1) ≤

G(S2) when S1 ⊆ S2, which implies G(S) is increasing. �

Theorem 1. G(S) is submodular.

Proof. Without loss of generality, we assume that for two arbitrary winner sets
A,B ⊆ S. For ∀ti ∈ T , we have the conclusion that σA

j + σB
j = σA∩B

j + σA∪B
j

which indicates σS
j is submodular. Since G(j|S) is the cut-off function of σS

j , we
can prove that G(j|S) is submodular according to [8]. Hence, G(S) is submodular
because of the fact that G(S) =

∑l
j=1 G(j|S). �

Lemma 2 (Bid monotonicity). Each seller wi who wins by bidding (Ti, βi)
still wins by biding any β′

i < βi and any T ′
i ⊃ Ti given that other bids are fixed.

Proof. Let ρi, vi(S) denote the weight and marginal reliability of seller wi who
bids (Ti, βi), where ρi = vi(S)

βi
. Let ρ′

i, vi(S)′ denote the weight and marginal reli-
ability respectively if wi bids (T ′

i , βi) or (Ti, β
′
i). Either in (T ′

i , βi) or in (Ti, β
′
i),

it is clear that vi(S) ≥ vi(S)′ and ρi ≥ ρ′
i because of the submodularity of

G(S) according to Theorem 1. Moreover, if wi has not been selected by bidding
(Ti, βi), he will not be selected by bidding (Ti, β

′
i) or (T ′

i , βi). �

Lemma 3 (Critical payment). Each seller si is paid a critical value pi.

Proof. We assume si wins in the kth iteration, so the set S of winner selection
and S ′ of pricing is same from the 0th to the (k − 1)th iterations. If si reports a
bid β′

i instead of βi. We need to prove that β′
i will fail if β′

i > pi, otherwise he
still wins when β′

i ≤ pi. Then we consider these two cases in the kth iteration:

Case 1: β′
i > pi. According to Fig. 9, we can derive that vi(Sk−1)

β′
i

= vi(S′
k−1)

β′
i

<

vi(S′
k−1)

pi
≤ vi(S′

k−1)

βk
, where sk is a winner, so that S ′ = S ′ ∪ {sk}. The first

equation holds because Sk−1 = S ′
k−1. And the last inequation makes sense due

to pi ≥ βkvi(S′
k−1)

vk(S′
k−1)

according to Eq. 9. Hence, sk is selected as a winner instead of
si in the kth iteration. So, S ′

k = Sk−1 ∪ {sk} = Sk. Based on the above analysis,
we can conclude that si will fail in all iterations of the winner selection in Fig. 9.

Case 2: β′
i ≤ pi. Assume that the winner selection runs over B−i which is

the process for pricing si. According to Eq. 9, we assume that pi = βkvi(Sk′−1)

vk(Sk′−1)
,

where sk is the winner in the k′
th iteration. Now we run the winner selection

304 B. An et al.

again with the input set B. We discuss two subcases of this process: (1) si wins
before the k′

th iteration; (2) si does not win before the k′
th iteration. In the k′

th

iteration: vi(Sk′−1)

β′
i

≥ vi(Sk′−1)

pi
≥ vk(Sk′−1)

βk
. Therefore, si wins in this iteration.

In Summary, the payments for all winners are critical. �

Theorem 2. The RADT auction is truthful.

Proof. Lemmas 2 and 3 prove that the winner selection is monotonic and all the
payments are critical respectively. So the auction is truthful according to [15]. �

Theorem 3. The RADT auction is individually rational.

Proof. We consider that a seller wi probably encounters these two situations,
wi ∈ S and wi /∈ S. If wi /∈ S, his payment will be zero. Otherwise, he wins the
auction and his payment is pi. According to Lemma 3, wi will always be paid
with the critical value pi when he bids any βi < pi. Each seller bids his truthful
cost due to the truthfulness in Theorem 2. Apparently, pi − ci ≥ 0 holds. �

Theorem 4. The RADT system is truthful.

Proof. We guarantee the truthfulness of RADT from three aspects.

1. Deposit. The consumer and sellers are asked for deposits which enforce them
not to deviate from RADT, i.e., quit midway.

2. Truthful auction. The two-stage bidding strategy in Sect. 4.2 requires sellers
to reveal bids truthfully. And the reverse auction can make sellers bid their
truthful cost according to Theorem2.

3. Modifier. The consumer must offer rewards to sellers to get keys for decryp-
tion, guaranteed by the modifiers in GetKey(). Moreover, some time modifiers
are used to ensure that each procedure is invoked orderly.

Hence, the whole data trading process of RADT is truthful. �

7 Implementation and Evaluations

Fig. 11. Gas consumption of each pro-
cedure in Ganache Cli (with 20 sellers)

Fig. 12. Time consumption of each pro-
cedure in Ganache Cli (with 20 sellers)

Truthful CDT Based on Reverse Auction and Blockchain 305

We implement a prototype of RADT including the RADToken, the consumers
and sellers. RADToken is deployed to a local simulated network TestRPC using
Ethereum development tool Ganache Cli which is realized in the programming
language Solidity with JavaScript (JS) as the intermediate interactive language.
The consumer side is written in Python who needs to complete data decryption.
And seller side is written in JS and Python who should finish the bid encryption
and data encryption.

Due to difference of SHA-3 between JS and Solidity, we implement a custom
SHA-3 in JS to make enβi have the identical value with sha3 (wi, βi, noncei)
in Solidity. We employ the standard cryptographic toolkit in Python, where we
use AES for symmetric encryption and RSA for asymmetric encryption. Before
the evaluation, we set some major parameters of RADT. The number of tasks l
varies in [20, 30, 40, 50, 60] while the number of sellers n is fixed at 20. For each
seller, his reliability is randomly generated from 0.6 to 1 and his bid is from 10
to 20. The reliability requirements ranges from 1 to 2.

7.1 Evaluations on Simulated Network at System Level

Fig. 13. GCPI vs.
iterations

Fig. 14. GCPW vs. ID Fig. 15. NTPW vs. ID

To demonstrate the practicality of our system, we first use Ganache Cli to con-
struct a simulated network which is much like the real Ethereum environment
except for its automatically mining mechanism in the background. This allows
us to focus on the performance of RADToken, irrespective of time-consuming
mining process and complex network circumstances in Ethereum. Our RADTo-
ken consists of nine main functions which correspond to Procedures 1–9 that
reflect the functionalities of Initiate, CommitBid, RevealBid, WinnerSe-
lection, Pricing, SetKey, GetKey, Refund and Payment in Sect. 3.2.

To evaluate the unique performance of RADToken at the system level, we
use two metrics for each procedure: gas consumption and time consumption
which are depicted in Figs. 11 and 12 respectively. Since each computational
step will be charged some gas, the more complicated the procedure is, the more
gas and time it will consume. The operations to create and write storage data
are relatively expensive [20], as we can see, Procedure 2, 4 and 5 use more gas
and time. Procedure 4 need execute a nontrivial set of add, subtract, multiply,
divide, compare and write operations, and there is a positive correlation between

306 B. An et al.

the number of winners and gas consumption. Procedure 5 is roughly equivalent
to execute Procedure 4 |S| times. On the other hand, we may traverse more
iterations than the entire Procedure 4 to find the critical payment for a winner,
which uses more gas and time accordingly. Procedure 3 uses much gas because
each encrypted bid is a 32-bytes hash value which will take up more storage.
Other procedures use less gas due to their most read operations and smaller
data length. Notice that here we use gas in wei where 1 ether = 1018 wei.

7.2 Evaluations of Auction Mechanism

Fig. 16. Overpayment
ratio

Fig. 17. Payoff of a bid Fig. 18. Payments vs. bids

Since the auction including WinnerSelection and Pricing is the core mech-
anism of RADToken, we explicitly evaluate the performance of WinnerSelec-
tion and Pricing respectively. To avoid exceeding gasLimit, we divide the
winner selection and pricing procedures into multiple iterations and repeatedly
send a transaction to RADToken to select a winner and price the winner.

WinnerSelection. We give an example in Fig. 13 to compare the gas consump-
tion per iteration (GCPI) under different number of tasks from 20 to 60. We
notice a gradual decline of GCPI. We explain that by the constant cost of load-
ing past mined blocks from storage into memory before each selection [10].

Pricing. We use gas consumption per winner (GCPW) and number of trans-
actions per winner (NTPW) as two metrics in Figs. 14 and 15 respectively. We
figure out that determining the payment for each winner will consume how much
gas and need how many transactions. Figure 14 shows that the total gas con-
sumption increases as the increasing number of tasks from an overall perspective.
The GCPW has nothing to do with the iteration sequence which is only related
to the number of PoIs and the number of traverse times to obtain its critical pay-
ment, which we can see in Fig. 15. The NTPW represents traverse times needed
to price a winner and the corresponding GCPW shows that more gas will be
used if more transactions are needed when the number of PoIs is 60.

Beyond valuating the performance on blockchain, we should ensure that the
properties of our auction mechanism holds. we use the following metrics: overpay
ratio, truthfulness and individual rationality. The overpay ratio is defined as:

λ = (P − C(S))/C(S) (10)

Truthful CDT Based on Reverse Auction and Blockchain 307

where P is the total payment and C(S) is the total cost. It measures the cost
paid by the consumer to induce the truthfulness overall. Ensuring truthfulness
means that no sellers can improve his payment by committing a different bid
from the real one. Individual rationality ensures that each payoff is non-negative.

Overpayment Ratio: Figure 16 plots the overpayment ratio λ when l changes
from 20 to 60. The results show that λ is always less than 0.6, which means that
the consumer does not have to pay much extra money to induce truthfulness.
λ increases monotonously with increasing l because more sellers will be selected
and the increments of the payments are greater than those of the costs.

Truthfulness: To verify the truthfulness, we randomly pick a winner and change
its claimed bid, then recalculate the payments as well as the payoffs. The results
illustrated in Fig. 17 show that when the truthful bid (real cost) is 13, the pay-
ment is 23 and the payoff is 10. The payoff remains unchanged when the bid is
no more than 23. However, if the bid is larger than the critical payment 23, the
payoff becomes zero which means that the winner loses the auction.

Individual Rationality: We demonstrate individual rationality in Fig. 18.
Each payment is greater than the related bid when l varies from 20 to 60.

8 Related Works

We review related works from the following two aspects:

Trading on Blockchain: Blockchain offers users new options for managing
their holdings and their trading intentions which can ensure the data integrity.
Due to the honest-but-curious property of secure third party, a few works resort
to blockchain to build trading systems. [3] implements a decentralized energy
trading system using blockchain to address the problem of providing transac-
tion security. [12] proposes AccountTrade for big data trading which can achieve
book-keeping ability and accountability against dishonest consumers. In addition
to P2P trading, blockchain is fit for the crowd trading. For instance, [14] con-
ceptualizes a blockchain-based decentralized framework named CrowdBC, which
does not depend on any central third party to accomplish crowdsourcing process.
However, the high storage requirement prevents the wide usage of blockchains on
mobile phones. A novel concept, Consensus Unit (CU) [22], organizes different
nodes into one unit and lets them to store at least one copy of blockchain data,
which can be applied in more application scenarios. Blockchains conduct trading
will consume resources, so BLOCKBENCH is designed in [7] to understand the
performance of blockchains against data processing workloads.

Incentive Data Trading Mechanism: In order to improve the repetitive use
rate of data, [18] designs a DataMart to determine the pricing and consumer-
seller matching in distributed fashion which is suited for highly dynamic and
heterogeneous market environment and ad-hoc setting. It adopts double auc-
tion for pricing to ensure the truthfulness. However this cannot satisfy some
consumers’ needs who want buy large volumes of data which is not easy to

308 B. An et al.

collect. [24] designs a practical data collection scheme leveraging mobile crowd-
sensing and proposes VENUS-PRO for profit maximization and VENUS-PAY
for payment minimization which is a data procurement auction in Bayesian set-
ting. The above incentive data trading which adopts auction is executed by a
third-party which may disclose privacy or data information. A novel distributed
agent-based privacy-preserving framework DADP proposed in [19] enables real-
time crowd-sourced statistical data publishing with strong privacy protection
under an untrusted server. [9] considers the introduction of homomorphic cryp-
tography to allow the auctions to be processed using only encrypted bids. More-
over, it uses the digital signature to ensure that data has not been manipulated
in transmission or by a compromised entity in network.

9 Conclusion

In this paper, we first propose a Reverse-Auction-and-blockchain-based crowd-
sensed Data Trading system. Different from the existing CDT, we use a metic-
ulous designed smart contract to replace a third-party data broker which can
ensure the truthfulness of data consumers and data sellers. In order to incen-
tivize more sellers to participate in the crowdsensing data collection, we propose
a reverse auction mechanism to prompt sellers to provide high quality sensing
data and claim truthful bids. Meanwhile, we protect sellers’ bids by leveraging
a two-stage bidding strategy which can blame untruthful sellers and ensure the
immutability of bids. The confidentiality of data is preserved by the introduction
of symmetric and asymmetric cryptography where the keys cannot be grabbed
in transmission. Finally, we implement a prototype on an Ethereum test network
and the evaluations demonstrate its practicability.

Acknowledgment. This research was supported in part by National Natural Science
Foundation of China (NSFC) (Grant No. 61872330, 61572336, 61572457, 61632016,
61379132, U1709217), Natural Science Foundation of Jiangsu Province in China (Grant
No. BK20131174, BK2009150), Anhui Initiative in Quantum Information Technologies
(Grant No. AHY150300), and Natural Science Research Project of Jiangsu Higher
Education Institution (No. 18KJA520010).

References

1. Thingful. https://www.thingful.net/
2. ThingSpeak. https://thingspeak.com/
3. Aitzhan, N.Z., Svetinovic, D.: Security and privacy in decentralized energy trading

through multi-signatures, blockchain and anonymous messaging streams. IEEE
Trans. Dependable Secure Comput. 15(5), 840–852 (2018)

4. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE.
Submission to NIST (2008)

5. Buterin, V.: A next-generation smart contract and decentralized application plat-
form. White paper (2014)

https://www.thingful.net/
https://thingspeak.com/

Truthful CDT Based on Reverse Auction and Blockchain 309

6. Cai, C., Zheng, Y., Wang, C.: Leveraging crowdsensed data streams to discover
and sell knowledge: a secure and efficient realization. In: IEEE ICDCS (2018)

7. Dinh, T.T.A., Liu, R., Zhang, M., Chen, G., Ooi, B.C., Wang, J.: Untangling
blockchain: a data processing view of blockchain systems. IEEE Trans. Knowl.
Data Eng. 30(7), 1366–1385 (2018)

8. Gao, G., Xiao, M., Wu, J., Huang, L., Hu, C.: Truthful incentive mechanism for
nondeterministic crowdsensing with vehicles. IEEE Trans. Mob. Comput. 17(12),
2982–2997 (2018)

9. Gao, W., Yu, W., Liang, F., Hatcher, W.G., Lu, C.: Privacy-preserving auction
for big data trading using homomorphic encryption. IEEE Trans. Netw. Sci. Eng.
(2018)

10. Hu, S., Cai, C., Wang, Q., Wang, C., Luo, X., Ren, K.: Searching an encrypted
cloud meets blockchain: a decentralized, reliable and fair realization. In: IEEE
INFOCOM (2018)

11. Jiang, C., Gao, L., Duan, L., Huang, J.: Scalable mobile crowdsensing via peer-to-
peer data sharing. IEEE Trans. Mob. Comput. 17(4), 898–912 (2018)

12. Jung, T., et al.: AccountTrade: accountable protocols for big data trading against
dishonest consumers. In: IEEE INFOCOM (2017)

13. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: IEEE S&P
(2016)

14. Li, M., et al.: CrowdBC: a blockchain-based decentralized framework for crowd-
sourcing. IEEE Trans. Parallel Distrib. Syst. (2018)

15. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)
16. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.org/

bitcoin.pdf
17. Niu, C., Zheng, Z., Wu, F., Gao, X., Chen, G.: Trading data in good faith: inte-

grating truthfulness and privacy preservation in data markets. In: ICDE (2017)
18. Susanto, H., Zhang, H., Ho, S., Liu, B.: Effective mobile data trading in secondary

ad-hoc market with heterogeneous and dynamic environment. In: IEEE ICDCS
(2017)

19. Wang, Z., et al.: Privacy-preserving crowd-sourced statistical data publishing with
an untrusted server. IEEE Trans. Mob. Comput. (2018)

20. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014).
https://gavwood.com/paper.pdf

21. Xiao, M., Wu, J., Huang, L., Cheng, R., Wang, Y.: Online task assignment for
crowdsensing in predictable mobile social networks. IEEE Trans. Mob. Comput.
16(8), 2306–2320 (2017)

22. Xu, Z., Han, S., Chen, L.: CUB, a consensus unit-based storage scheme for
blockchain system. In: ICDE (2018)

23. Yu, J., Cheung, M.H., Huang, J., Poor, H.V.: Mobile data trading: behavioral
economics analysis and algorithm design. IEEE J. Sel. Areas Commun. 35(4),
994–1005 (2017)

24. Zheng, Z., Peng, Y., Wu, F., Tang, S., Chen, G.: Trading data in the crowd: profit-
driven data acquisition for mobile crowdsensing. IEEE J. Sel. Areas Commun.
35(2), 486–501 (2017)

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://gavwood.com/paper.pdf

	Truthful Crowdsensed Data Trading Based on Reverse Auction and Blockchain
	1 Introduction
	2 Preliminaries
	2.1 Account Types
	2.2 Transaction
	2.3 Gas System

	3 System Overview
	3.1 The RADT System
	3.2 The Workflow of the RADT System

	4 Security Analysis
	4.1 Robustness of RADToken
	4.2 Security and Truthfulness of Bid
	4.3 Confidentiality of Data

	5 The Reverse Auction Mechanism of RADT
	5.1 Problem Formulation
	5.2 The Winner Selection Algorithm of RADT
	5.3 The Critical Pricing Algorithm of RADT

	6 Theoretical Analysis
	7 Implementation and Evaluations
	7.1 Evaluations on Simulated Network at System Level
	7.2 Evaluations of Auction Mechanism

	8 Related Works
	9 Conclusion
	References

