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Abstract. Task appearance prediction has great potential to improve
task assignment in spatial crowdsourcing platforms. The main challenge
of this prediction problem is to model the spatial dependency among
neighboring regions and the temporal dependency at different time scales
(e.g., hourly, daily, and weekly). A recent model ST-ResNet predicts traf-
fic flow by capturing the spatial and temporal dependencies in historical
data. However, the data fragments are concatenated as one tensor fed
to the deep neural networks, rather than learning the temporal depen-
dencies in a sequential manner. We propose a novel deep learning model,
called SeqST-ResNet, which well captures the temporal dependencies
of historical task appearance in sequences at several time scales. We
validate the effectiveness of our model via experiments on a real-world
dataset. The experimental results show that our SeqST-ResNet model
significantly outperforms ST-ResNet when predicting tasks at hourly
intervals and also during weekday and weekends, more importantly, in
regions with intensive task requests.

Keywords: Task prediction · Spatial crowdsourcing ·
Deep neural network

1 Introduction

Spatial Crowdsourcing (SC) [20] has attracted lots of attentions in recent years.
A typical SC system consists of a platform that is responsible for releasing
location-based tasks and a crowd of workers that can physically move to specified
locations to perform tasks. Emerging SC applications include taxi-hailing ser-
vice such as Didi and Uber, meal order and delivery service such as Eleme, and
dynamic information collection service such as Gigwalk. In practice, hundreds
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Fig. 1. Task assignment with/without task prediction in spatial crowdsourcing. With-
out task prediction, idle workers at T1 in (a) make aimless movement, then at T2 in
(b) only one task-worker pair can be matched. With the guidance of task prediction,
idle workers at T1 in (c) move to g4 which is predicted to have several task requests.
Then at time T2 in (d), three task-worker pairs are matched.

or thousands of workers and tasks could be online simultaneously, so an impor-
tant problem in SC is to assign tasks to workers with the aim to maximize the
number of total assigned task-worker pairs. In previous studies the online task
assignment problem is usually decomposed into a series of offline task assignment
problems, each of which is further reduced to be a maximum matching problem
in a weighted bipartite graph [13,22]. While this reduction can generate feasible
solutions, it does not consider the dynamic feature of workers and tasks. After
one round of offline task assignment, idle workers are assumed to stay in place or
just move around aimlessly, waiting for the next round of offline task assignment
with new coming tasks. In fact, these idle workers can move towards some places
or areas where new tasks are likely to arrive, so that more task-worker pairs can
be assigned. This motivation can be further illustrated by the following example.

Figure 1 demonstrates a real time taxi-hailing service where tasks are pas-
sengers and workers are taxis. To facilitate later discussion, the whole area is
divided into 4 grids and each taxi has a service range shown by dotted circles.
At current time T1, the platform can generate three task-worker pairs as three
passengers are just in the service range of three taxis in g1, as shown in Fig. 1(a).
For taxis in other grids, if they stay at place (e.g., the taxi in g3) or move around
aimlessly (e.g., the taxis in g2 and g4), at next time T2 shown in Fig. 1(b), only
one task-worker pair can be made as most new tasks are appeared in g4 but no
workers are there. However, if the platform can guide idle workers to move to
grid g4 as shown in Fig. 1(c), then at time T2 in Fig. 1(d), three task-worker pairs
can be matched. From this toy example, we observe that it is beneficial to let
idle workers move to areas that new tasks may appear, but the challenge here is
how to predict accurately the time and the location of new coming tasks.

However, since tasks are always published individually, it is challenging to
predict the specific position and time of the new coming tasks. This important
problem recently has caused increasing attention. Several studies relax the prob-
lem to predict the future distribution of the new coming tasks using grid-based
methods. Cheng et al. [4] used linear regression to predict the future number
of workers/tasks of each grid cell. Tong et al. [23] compared the performance of
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several traditional statistical methods (e.g., ARIMA [3]) and traditional machine
learning methods (e.g., GBRT [7]) on this problem. However, these methods are
too simple and not good enough to model both spatial and temporal dependen-
cies in task prediction problem, and the experimental results in this paper show
that these methods have close performance and it is difficult to improve one over
another.

Our study in this paper, for the first time, attempts to apply deep neural
networks on addressing the task prediction problem. Deep neural networks have
shown its success on diverse applications fields, and outperform traditional meth-
ods on modeling complex temporal and spatial feature dependency. For example,
deep spatio-temporal residual network (ST-ResNet) in [29] is proposed to predict
inflow and outflow of crowds in grid regions of a city by using convolution-based
residual networks to model nearby and distant spatial dependencies between any
two regions in a city, and the temporal properties of flows regarding temporal
closeness, period, and trend.

Our problem of task appearance prediction shares similar challenges in traffic
flow prediction on modeling the spatial dependency among regions and tempo-
ral dependency on dates and trend. However, the ST-ResNet model has a major
limitation on learning the temporal dependency in historical sequences. It con-
catenates data in one sequence as one tensor, which weakens the sequential
dependency in successive time units. Thus, we design a spatial-temporal resid-
ual network that learns from the sequential historical data, in a manner like
Recurrent neural networks (RNN) and Long-short term memory (LSTM) learn
from time series and word sequence.

The main contributions in this paper are summarized as follows:

– We analyze the spatial dependencies and temporal dependencies in task pre-
diction problem, and targets on modeling the temporal dependencies in the
sequences of historical task appearances at different scales, e.g., on the time
interval level (e.g., half-hour) from t − 2 to t − 1 to t, on the daily level from
one day to another, and on the weekly level from one week to another.

– We proposed a model called SeqST-ResNet, which well captures the temporal
dependencies of historical task appearance in sequences, and the spatial
dependencies among neighboring regions.

– We validate the effectiveness of our model on a real-world dataset. The exper-
imental results show that our SeqST-ResNet model significantly outperforms
the most competitive baseline ST-ResNet when predicting tasks at different
time scales, and more importantly, in regions with intensive task requests.

The remainder of this paper is organized as follows. We give the definitions of
task prediction problem and then analyze the spatial and temporal dependencies
in Sect. 2. Section 3 presents the details of the proposed model. Experimental
results are presented in Sect. 4 to demonstrate the performance of our methods.
Related work and conclusion are discussed in Sects. 5 and 6, respectively.
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2 Problem Definition and Analysis

2.1 Problem Definition

Following the previous work in [4,23], we address the task prediction problem
by relaxing it to predict the number of task appearances in a specific spatio-
temporal scope. In a city or region of interest, we divide its map into M×N grids,
by partitioning along the longitude and latitude. The resolution of grid partition
is controlled by M and N according to the application need. This practical grid-
based map partition has been widely used in many spatio-temporal problems
[4,23,29–31].

Based on the grid partition, at each time moment t, the task distribution can
be considered as an image. We formally define it as:

Definition 1. (Task image at time t) Task image of the whole area (M × N
grids) at interval t can be defined as:

Xt =

⎡
⎢⎢⎢⎢⎣

X
(0,0)
t X

(0,1)
t · · · X

(0,N)
t

X
(1,0)
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t · · · X

(1,N)
t

...
...

. . .
...

X
(M,0)
t X

(M,1)
t · · · X
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t

⎤
⎥⎥⎥⎥⎦

(1)

The element of task image matrix at the i-th row and the j-th column is

X
(i,j)
t =

∑
P∈IP

|{Ploc ∈ grid(i, j) ∧ Ppt = t}| (2)

which is the count of tasks P published at time Ppt at location Ploc belonging
to grid cell grid(i, j). Here, IP denotes the task set in the spatial crowdsourcing
system.

Then, our task appearance prediction problem is defined as

Definition 2. (Task Prediction Problem) Given the sequence of historical task
images {X0,X1, . . . ,Xt−1}, the goal is to predict Xt at next time t.

2.2 Temporal and Spatial Dependency Analysis

To address the task appearance prediction problem, we discuss two important
types of dependencies that should be included in prediction model design.

– Temporal Dependencies: at a given location, the task image value at a
time t depends on the values before t. Such dependencies are often observed
due to the time dependent properties of tasks. For example, at a central
business district (CBD), the number of lunch orders on Grubhub or Eleme
will have little differences between 11:30am–12:00pm and 12:00pm–12:30pm
because these time intervals are both in lunch time. And the orders quantity
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will be similar from Monday to Friday as they are workdays. Also, similar
order numbers can be found from one weekend to another. More importantly,
the dependency between t and t−1 is stronger than that between t and t−2.
Therefore, the temporal dependencies should be modeled in the sequence
of task images at different scales, e.g., on the time interval level (e.g.,
hourly or half-hourly) from t − 2 to t − 1 to t, on the daily level from day1 to
day2 to day3, and on the weekly level from 1-st Monday to 2-nd Monday to
3-rd Monday and so on.

– Spatial Dependencies: the task image value at one location depends on the
values at neighboring locations, because the neighboring grid cells may cover
a same urban functional region. For example, at different grid cells around
a commercial center. there will be similar number of taxi orders. Moreover,
similar task appearance can even exist in distant grid cells when they cover
the same type of functional region, e.g., train stations distributed in a big city.

3 The Proposed Approach, SeqST-ResNet

In this section, we will introduce our proposed model, SeqST-ResNet, which
is a deep neural network model capturing the sequential dependencies in
temporal features and spatial features of task appearance predication problem.
We first present the network architecture and then discuss the network learning
process, and its relevance to the ST-ResNet in [29].

3.1 SeqST-ResNet Architecture

As we discussed in the previous section, the sequential dependency on time-line
is important for making correct prediction. Like in language models, video pro-
cessing models and time-series models, the historical sequence is memorized for
making predicting at the next time moment. Recurrent neural networks (RNN),
Long-short term memory (LSTM), and all their variants have been widely used
for this purpose. To incorporate the temporal dependency on different levels, we
learn from the three types of historical sequences of task images:

{Xt−n,Xt−n+1, . . . ,Xt−2,Xt−1} interval-level
{Xt−n∗p,Xt−(n−1)∗p, . . . ,Xt−2∗p,Xt−p} day-level when p = one day
{Xt−n∗q,Xt−(n−1)∗q, . . . ,Xt−2∗q,Xt−q} week-level when q = one week

where p and q are parameters controlling the different level of temporal depen-
dency to be modeled.

The architecture of our model, SeqST-ResNet, is shown in Fig. 2. The time
axis on the top indicates the three types of dependency we modeled, denot-
ing recent time (interval-level, in color red), near history (day-level, in color
green) and distant history (week-level, in color blue). The sequence of each level
(task images in the same color) goes through the same multi-layer deep network,
including a convolution layer followed by several ResUnits, which are designed
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Fig. 2. SeqST-ResNet Architecture. The time axis on the top indicates three types of
dependency, denoting recent time (interval-level, in color red), near history (day-level,
in color green) and distant history (week-level, in color blue). The sequence of each
level (task images in the same color) goes through the same multi-layer deep network,
including a convolution layer followed by several ResUnits. The outputs from each
sequence learning component are then combined by a fusion layer and followed by a
final activation layer, as shown in bottom. (Color figure online)

following the Residual Network (ResNet) [9]. ResNet has been a great achieve-
ment in deep learning for addressing the gradients vanish problem and makes the
deep network trainable even with over 1000 layers [10]. The outputs from each
sequence learning component are then combined by a fusion layer and followed
by a final activation layer, as shown in bottom of Fig. 2.

We next discuss the details of each sequence learning component, which con-
sists of four parts: inputs, convolution layers, residual units, and addition layers.
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Inputs. The input sequence of task images can be an interval-
level sequence {Xt−n,Xt−n+1, . . . ,Xt−1}, or a day-level sequence {Xt−n∗p,
Xt−(n−1)∗p, . . . ,Xt−p}, or a week-level sequence {Xt−n∗q,Xt−(n−1)∗q, . . . ,
Xt−q}, as we discussed previously.

Convolution Layers. The convolution operation captures the spatial depen-
dency. Taking a task image, it outputs1:

X
(1)
t−n = f(W (1) ∗ X

(0)
t−n + b(1)) (3)

where * denote the convolution operation and f is an activation function (e.g.,
ReLu, Tanh, or Sigmoid), W (1) and b(1) are the learnable network parameters.
With the increase of the number of the convolution layers, each unit of the
feature map in the output of the component can cover more grids in input (task
images). We use a 3 × 3 kernel as the filter. After one convolution layer, each
unit of the output feature map can catch 9 pixels’ information of the input.
After two convolution layers, each unit can catch 27 pixels’ information as the
image is big enough. Thus, to capture the whole task image’s information we
use several convolution layers. To reduce training time, most convolution layers
are contained in residual unit.

Residual Unit. The residual unit we use is shown in Fig. 3. Formally, a residual
unit is defined as:

Xl = Xl−1 + F (X) (4)

where Xl and Xl−1 denote the input and output of a residual unit, respectively.
Function F is a residual function which consists of multiple convolution layers
and Batch Normalization [12] layers also with several ReLu transition function
[17]. Batch Normalization is known by a lot of advantages, such as faster training,
allowing, higher learning rate, easy to initialize network weights, regularization
and improvement of network performance.

Convolu on Batch 
Normal ReLu Convolu on Batch 

Normal
ReLu OutputInput

Residual Unit

Fig. 3. Residual unit

Addition Layer. The addition layer, denoted by
⊕

serves for absorbing the
task image into the sequence modeling component. Taking the first addition
layer as an example, it operates

X
(1)
t−n+1 : X(1)

t−n+1 + X
(l+1)
t−n (5)

1 We show conv1 as an example. Other convolution layers follow the same function.
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where X
(1)
t−n+1 on the right is the output of conv2, and the second term X

(l+1)
t−n

is the output of ResUnit 1 L. After merging X
(l+1)
t−n , X(1)

t−n+1 is sent forward to
next layers.

To demonstrate the end-to-end SeqST-ResNet model, we take a simple
sequence of two task images, {X0,X1}, as input to one sequence modeling com-
ponent (e.g., the interval-level model). The feed-forward procedure will be:

X
(1)
0 = f0(W

(1)
0 ∗ X

(0)
0 + b

(1)
0 )

X
(1)
1 = f1(W

(1)
1 ∗ X

(0)
1 + b

(1)
1 )

X
(l+1)
0 = X l

0 + F
(l)
0 (X(l)

0 ) (for l from 1 to L)

X
(1)
1 = X

(1)
1 + X

(l+1)
0

X
(l+1)
1 = X l

1 + F
(l)
1 (X(l)

1 ) (for l from 1 to L)

The fusion layer will coalesce the output of three components with a simple
parameter-matrix-based method. Suppose Xc, Xp, Xq are the output of each
component respectively, the output of the fusion layer is:

Xout = Wc ∗ Xc + Wp ∗ Xp + Wq ∗ Xq (6)

where the symbol ∗ is the hadamard product. The final activation function is
Sigmoid, which predicts the output X̂t = sigmoid(Xout). The loss function MSE
(Mean Square Error) is defined to measure the difference between the predicted
task image at t and the ground truth Xt:

loss = ||Xt − X̂t||22 (7)

3.2 Network Training

We use Adam algorithm as the optimizer. The learning rate is set as 0.003, and
batch size is set as 16. The convolution kernels are with size of 3 × 3 both in
convolution layers and residual blocks.

To reduce the influence of anomalies in training task image sequences, we
apply moving average (e.g., with window length 3) on the input sequences. Min-
max normalization is used for data pre-processing. The length of the interval-
level and day-level sequences is set as 3, and the length of the week-level
sequences is set to be 1 unless specified differently. The influence of these length
parameters will be analyzed in the experimental result section.

3.3 Discussion

Our proposed model SeqST-ResNet shares the similar architecture of using three
components of ResNet in ST-ResNet [29]. Our interval-level component corre-
sponds to the closeness component in ST-ResNet, while day-level and week-
level component corresponds to the period and trend component in ST-ResNet,
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respectively. The key difference lies in how to model the historical sequences.
In each component of ST-ResNet, the fragments in one sequence are concate-
nated as one tensor, and then modeled by convolution layer and residual units.
In our proposed SeqST-ResNet, the task images in a sequence are mod-
eled by considering their time order, and thus captures the temporal
dependency in a more reasonable way than taking concatenation as
a tensor. The evaluation results in next section also verify that our sequential
deep network architecture can better model the temporal dependency in task
image sequences and achieves better prediction results than ST-ResNet in [29].

4 Experiments

In this section, we evaluate our proposed model SeqST-ResNet on a real-world
dataset and compare it with the state-of-the-art models.

4.1 Dataset

The dataset we use is the taxi request data in Chengdu, China, provided by
Didi GAIA Open Dataset [1]. The detail information of this dataset is shown
in Table 1. The whole area covered by the dataset in Chengdu is divided by a
10 × 10 grid-based map partition. We set time interval as 30 min, and then get
2928 intervals totally from Oct. 1st to Nov. 30th, 2016.

Table 1. Dataset information

City Chengdu, China

Time span 10/1/2016–11/30/2016

# taxi orders 11779076

Time interval 30 min

# intervals 2928

Grid-based map partition 10× 10

Area of each grid Nearly 800× 800 m2

4.2 Baselines and Settings

We compare our method with the following baselines including both traditional
methods and deep learning methods:

– HA: Historical Average. This naive approach uses the historical average value
in the same interval and same grid as the prediction.

– ARIMA: Auto-Regressive Integrated Moving Average [3]. It is a well-known
time series prediction model.
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Table 2. Prediction errors of different models

Model RMSE

Baselines HA 22.99

ARIMA 17.40

LSTM-48 39.87

LSTM-96 39.97

DeepST 18.52

ST-ResNet 16.28

Our methods SeqST-ResNet-1AVG 14.00

SeqST-ResNet-3AVG 12.95

SeqST-ResNet-5AVG 12.97

SeqST-ResNet-7AVG 13.61

– LSTM: Long-Short-Term-Memory Network [11]. Its chain like neural net-
work structure is capable of learning long-term dependencies.

– ST-ResNet: Spatio-Temporal Residual Network [29]. The deep learning
model is designed for predicting traffic flow based on historical data.

– DeepST: Deep Spatio-Temporal Network [30]. It is similar to ST-ResNet,
but without using residual units.

For all methods, we select the data in the last 7 days (nearly 10%) for eval-
uating the prediction accuracy, while all data before that are used for training.
The parameters of deep learning models (DeepST, ST-ResNet and our SeqST-
ResNet) are set to the same values: p = 48 intervals (24 h) and q = 48 × 7
intervals (one week), such that day-level and week-level sequences are fed with
interval-level sequences to the corresponding components in the deep networks.
The parameter settings in other baselines methods are tuned for achieving their
best performance.

Evaluation Metrics. We use the most common metrics in this paper: Root
Mean Squared Error (RMSE) for evaluation:

RMSE =

√√√√ 1
n

n∑
i=1

(
Xi − X̂i

)
(8)

The results reported next are the average of 5 independent runs.

4.3 Results

Overall Prediction Performance. Table 2 presents the prediction results
of baseline methods and our proposed models with different smoothing win-
dow sizes (SeqST-ResNet-τAVG represents our model is trained by smoothed
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sequences with window size τ). The lower RMSE value indicates more accurate
prediction. We can see that our SeqST-ResNet models consistently outperform
the baseline methods. Especially SeqST-ResNet-3AVG shows the best perfor-
mance with RMSE of 12.95. Obviously, smoothing of sequences can improve
the results due to the elimination of anomalies (SeqST-ResNet-1AVG without
smoothing is not as good as other SeqST-ResNet settings). One interesting obser-
vation is that SeqST-ResNet-5AVG has the closest RMSE (12.97) to the best
result, and SeqST-ResNet-7AVG has higher RMSE (13.61). This is due to the
over-smoothing of the sequences with a large window (length of 7 intervals means
3.5 h). Over all, the results in Table 2 verify that our proposed SeqST-ResNet
model can capture well the sequential dependency in time order and among spa-
tial locations, and thus make more accurate prediction of future task appearance
than other models.

To demonstrate the model training and testing errors in the learning process,
the training error curve and test curve of epochs are shown in Figs. 4 and 5. We
can see clearly that SeqST-ResNet models always have lower error than DeepST
and ST-ResNet in both training and testing. Moreover, SeqST-ResNet-7AVG
is worse than SeqST-ResNet-5AVG and SeqST-ResNet-3AVG, but still better
than SeqST-ResNet-1AVG without using smoothing. The training error curve
and test error curve have the same tendency and similar value, which indicates
that the parameters we use in these models are suitable and do not result in
over-fitting or under-fitting issues.

Fig. 4. Training error Fig. 5. Test error

Prediction Performance with Respect to Time. To evaluate the predic-
tion accuracy at different time moments during a day, and on weekdays and
weekends, we compare our best model SeqST-ResNet-3AVG and the most com-
petitive baseline ST-ResNet. Figure 6(a) and (b) show that our model has lower
prediction errors at the half-hour resolution prediction during a day, and also
much lower prediction errors during weekends and weekdays. That is to say, our
model can predict the task appearance at different time scales more accurately
than ST-ResNet. This is mainly because our model learns from the sequences of
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task images at different time scales, rather than taking concatenation of tasks
images as done in ST-ResNet.

)b()a(

Fig. 6. Prediction at different time in one day (a) and at weekends and weekdays (b)

Prediction Performance on Regions with Different Request Intensity.
We are also interested in evaluating the prediction performance of our model
on regions with different true task frequency, e.g., request intensive regions vs
mild regions. We calculate the average of ground truth task appearance fre-
quency in each grids (10 × 10 grids), and then sort these grid cells by the aver-
age frequency with ascending order (from the most idle region to the most busy
region). Figure 7 shows the prediction performance on these grid cells ordered on
x-axis. In regions with intensive task requests, our SeqST-ResNet-3AVG model
has much lower error than the baseline ST-ResNet model, while they have simi-
lar performance in mild regions. This is an important advantage, because correct
prediction of tasks in request intensive regions (e.g., around commercial centers,
central transportation stations) will highly improve the task assignment efficacy
in spatial crowdsourcing platform.

Influence of the Sequence Length. Our model learns from three types of
sequences. We also evaluate how the sequence length can affect the prediction
performance. Let li, ld, lw denote the length of interval-level sequence, day-
level sequence and week-level sequence, respectively. In Fig. 8(a), we show the
prediction error when changing li from 1 to 5, while fixing ld = 1, lw = 1. The
result shows that with li increasing, the RMSE decreases. This indicates longer
interval-level sequences can help on improving prediction accuracy, but also takes
more training time. An appropriate setting is li = 3 because the error decreases
slowly after li is larger than 3. Figure 8(b) shows the influence of ld when fixing
li = 3, lw = 1. The results show that the model performs best when ld = 3.
Neither too long nor too short day-level sequence is helpful. Then we set li = 3
and ld = 3, and show the impact of lw in Fig. 8(c) where we find lw = 1 is the
best setting.
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Fig. 7. Prediction on regions with different request intensity

Fig. 8. Impact of sequence length at different levels. In (a), the length of interval-level
sequence li varies when ld = 1, lw = 1. In (b), the length of day-level sequence ld varies
when li = 3, lw = 1. In (c) the length of week-level sequence lw varies when li = 3 and
ld = 3.

5 Related Work

In this section we briefly review some recent advances on task assignment in
spatial crowdsourcing and deep learning since the focus of this paper is to apply
deep neural networks on addressing the task prediction problem during task
assignment in spatial crowdsourcing.

In [13], Kazemi and Shahabi propose several heuristics to maximize the num-
ber of assigned tasks in a given time interval while meeting the constraints spec-
ified by workers. In practice, tasks often arrives dynamically. This kind of online
scenarios is more challenging and has been addressed in [20,21,23] where effi-
cient algorithms with provable competitive ratio are proposed. Song et al. in
[18] extend conventional task assignment from two objects matching problem to
trichromatic matching problem. In [15,16,25,27,28], privacy of user or platform
are considered when making the task assignment. In [4], spatial distribution of
workers and tasks are taken into account when maximizing a global assignment
quality score. In [14,24], travel time, as an important factor, the prediction of
which has drawn some attentions recently. [32] tackles the problem of assign-
ing tasks to workers such that mutual benefit are maximized. All these studies
fail to model the spatial dependency among regions and temporal dependency
on successive time units, which is the focus of our work in this paper. To the
best of our knowledge, there is no deep learning based method to solve the task
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prediction problem. Thus, it is necessary to design a deep neural network based
method.

On the other hand, recent years have witnessed the big success of deep learn-
ing in a variety of application domains. Specifically, there are lots of achievements
in catching spatial or temporal properties. For temporal property, recurrent neu-
ral networks (RNN) [6] is designed to make use of sequential information, and has
been shown great success in many NLP tasks [19]. However, vanishing gradient
problem causes it to be difficult to capture the long-term dependency [2]. Long
short term memory networks (LSTM) [11] improved RNN by using “gates” which
control what to forget or remember. Gated Recurrent Unit (GRU) [5] simplifies
LSTM by reducing the “gates” from 3 to 2. Bidirection LSTM (BiLSTM) [8] not
only considers the forward data flow but also backward. For spatial property,
convolution neural networks (CNN) can effectively capture the spatial property
from near to distant with the depth deeper. Residual Networks (ResNet) [9]
makes the deep network realize really “deep” even over 1000 layers. For com-
bination of spatial and temporal properties, convolution LSTM (ConvLSTM)
[26] and deep spatial temporal networks (DeepST) [29] are proposed to capture
the two properties. However none of them can model long dependency as the
training cost is really huge in practice.

6 Conclusion and Future Work

In this paper, we study the problem of predicting the task appearance in a spa-
tial crowdsourcing platform. To take advantage of the temporal dependency of
the historical sequential task request and the spatio-dependency in neighboring
regions, we proposed a novel deep network model that learns from the sequences
of task image data at different time scales. Experimental results on a real dataset
demonstrated that our methods can significantly improve the prediction accu-
racy when comparing with the baselines. In future, we will consider to add
the attention mechanism to further reduce the prediction error, and extend the
application to other spatial crowdsourcing data such as meal order data.
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