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Abstract. The modern In-Memory Database (IMDB) can support
highly concurrent OLTP workloads and generate massive transactional
logs per second. Quorum based replication protocols such as Paxos or
Raft have been widely used in distributed databases. However, it’s non-
trivial to replicate IMDB because high transaction rate has brought
new challenges. First, the leader node in quorum replication should have
adaptivity by considering various transaction arrival rates and the pro-
cessing capability of follower nodes. Second, followers are required to
replay logs to catch up the state of the leader in the highly concurrent
setting to reduce visibility gap. To this end, we built QuorumX, an effi-
cient quorum-based replication framework for IMDB under heavy OLTP
workloads. QuorumX combines critical path based batching and pipeline
batching to provide an adaptive log propagation scheme to obtain a sta-
ble and high performance at various settings. Further, we propose a safe
and coordination-free log replay scheme to minimize the visibility gap
between the leader and follower IMDBs. Our evaluation results with the
YCSB and TPC-C benchmarks demonstrate that QuorumX achieves the
performance close to asynchronous primary-backup replication without
sacrificing the data consistency and availability.
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1 Introduction

Replication is the technique used for a traditional DBMS or fast, multi-core
scalable In-Memory Database (IMDB) to support high-availability. In this work,
we assume a full database copy is held on a single IMDB node, and each backup
node has the full replication. In replicated IMDBs, the execution of a transaction
is completely in the primary IMDB. Primary-backup replication is the well-
known replication method in database community. The asynchronous primary-
backup replication used in traditional database systems [3,4] trades consistency
for performance and availability. The synchronous primary-backup replication
trades performance and availability for consistency.
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Today’s mission-critical enterprise applications in Banking or E-commerce
require the back-end database system to provide high-performance and high-
availability without sacrificing consistency. Compared with primary-backup
replication, the quorum-based replication (e.g. Multi-Paxos [9], Raft [19], etc.)
can guarantee strong consistency, tolerate up to F out of 2F+1 fail-stop failures,
and achieve good performance because it only requires the majority of repli-
cas to response to the leader. The quorum-based replication adopts consensus
protocols to take more reasonable trade-off among performance, availability and
consistency, and thus it has been regarded as a practical and efficient replication
protocol for large scale datastores [14,22,23].

Quorum-based replication protocols are the natural choice for replicating
IMDB as a highly available and strongly consistent OLTP datastore. However,
it’s non-trivial to translate the quorum-based replication protocol into a prag-
matic implementation for industrial use. The basic principle of various quorum-
based protocols is that committing a transaction requires its log to be replicated
and flushed on non-volatile storage on the majority of follower replicas. A trans-
action may take extremely short time to complete its execution in the leader
IMDB. But, committing this transaction may take more time to wait its log
replicated to the majority of followers. As a result, the performance of repli-
cated IMDBs significantly depends on the quorum-based log replication which
is influenced by many factors.

To achieve read scalability, the followers need to replay committed logs at a
fast speed to keep up with the leader’s state. The classic quorum-based repli-
cation needs the leader to send followers the maximal committed log sequence
number (MaxComLSN), and then follower can commit and replay these logs
with LSN smaller or equal to MaxComLSN. Replaying logs after receiving the
specified MaxComLSN leads to that the committed data on followers are visi-
ble at a later time than that on the leader, referred to as visibility gap (VGap).
Without careful design, VGap would be larger when the leader IMDB is running
under a heavy OLTP workload, and generates transactional logs at a high rate.

In this paper, we present an efficient quorum-based replication framework,
called as QuorumX, to optimize log replication and replay for IMDB under highly
concurrent OLTP workloads. Main contributions are summarized as follows:

– QuorumX combines critical path based batching and pipeline based batching
to adaptively replicate transactional logs, which takes into account various
factors including the characteristics of transactional workloads and the pro-
cessing capability of follower.

– We introduce a fast and coordination-free log replay scheme without waiting
for the MaxComLSN, which applies logs to memory ahead of time in parallel
to reduce the risk of increased VGap.

– QuorumX has been implemented in Solar [10], an in-memory NewSQL
database system that has been successfully deployed on Bank of Communica-
tions, one of the biggest commercial banks in China. Extensive experiments
are conducted to evaluate QuorumX under different benchmarks.
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2 Preliminary

Overview of Quorum-Based Log Replication. Figure 1 shows the overall
architecture of replicating an IMDB. The replicated IMDB cluster contains one
primary IMDB as a leader and more than two replica IMDBs as followers. All
requests of read/write transactions are routed to the leader IMDB. Transac-
tions are concurrently executed on the leader. When a transaction completes all
transactional logics and starts to execute the COMMIT statement, the leader
generates its transactional logs and appends them to log buffer (at steps 1 and 2
in the left side of Fig. 1). Then this transaction enters the commit phase, waits
to be committed (at step 3) and finally responses to the client (at step 6). The
single commit thread in the leader sends these logs to all followers and flush them
to local disks (at steps 4 and 5). A transaction can be committed only after the
leader receives more than half responses from followers. After that, leader will
asynchronously send the latest committed log sequence number (MaxComLSN)
to followers. Follower replicas then replay committed logs less than the latest
received MaxComLSN. It should be noted that the execution worker is multi-
threaded. The new arrived transaction requests from clients can be processed
in parallel although previous transactions have not been committed. The new
transactions cannot be committed until the previous ones have been committed.
That means the commit order is sequential.

Worker threads Commit thread

Commit queue

Log buffer

Log file
Log file

Replay workerMultilevel pipeline Replay buffer
I

II

III

Leader IMDB Follower IMDB

memtable memtableresponse to client

Fig. 1. Overall architecture of replicating an IMDB.

The follower replica who receives logs will first parse it into entries with log
format and check the integrity, then write it to non-volatile storages and send
a response message to leader. Under a heavy OLTP workload, if followers use
a single thread to process received logs in a sequential manner, the replication
latency would be unacceptable in practical settings. Pipeline and batching are
general methods used to improve the performance of log replication.

– Pipeline parallelism in a follower replica. The basic steps for processing
a received log by replica can be divided into three relatively independent
stages: parsing logs, flushing logs and sending response to leader. The pipeline
of processing logs in follower is that: the parsing thread gets network packets,
parses them to log entries and appends these logs to the replay buffer (at steps
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I in the right side of Fig. 1). At the back-end, the single persistence thread
reads logs from the replay buffer and flushes them to log files (at step II).
When finishing writing a batch of logs, the persistence thread notifies the reply
thread to send a response to the leader (at step III). The replication latency
introduced by follower replicas is hidden through pipelined log processing.

– Batching logs in the leader. Pipeline and batching are often used together
[22,25]. Without batching, the pipeline will be hard to work effectively. Basi-
cally, batching several requests into a single instance allows the overhead to
be amortized over per-request. The systems built over quorum-based replica-
tion can adopt the batching method to boost the throughput. However, the
parameters such as batch size have greater impacts on the performance of
batching method. The manual configurations for these parameters are proved
to be time consuming and can not adapt to different settings. Existing works
on automatic batching are limited in replicated IMDBs. For example, the
factor on processing capability of follower has not been fully considered in
the log replication.

In this work, we investigated several batching methods and found that they
were not always effective under the context of replicating a fast IMDB. Quorum-
based replication needs an adaptively self-tuning batching mechanism that is not
only parameter-free but also considers: (1) the capacity of follower; and (2) the
workload characteristics (e.g. the arrival rate).

Log Replay. To avoid the follower lagging behind the leader too much, fol-
lower requires a fast mechanism of replaying committed logs. On the back-end,
follower IMDBs replay logs to memtables (which is often implemented by B+
Tree or SkipList in IMDB) to provide read-only transaction requests. The max-
imal committed log sequence number (MaxComLSN) is piggybacked on logs to
notify the follower the latest committed point. Conventional quorum replication
schemes only allows logs with LSN less than MaxComLSN to be replayed. In the
case of highly concurrent workloads, this principle of relaying logs by follower
causes a challenge in visibility gap. In this paper, visibility gap is defined as the
time difference between leader and follower for making the committed data be
visible. Real Applications such as HTAP often take real-time OLAP analysis
over follower nodes [20], and it’s expected that there is a as small as possible
VGap between leader and followers.

Recently proposed solutions to VGap aim at resolving the problem in the
asynchronous primary-backup replication, which can not be applied to the
quorum-based replication [16,21]. In the asynchronous primary-backup repli-
cation, follower could replay the received logs immediately without any coordi-
nation with leader. However, in the quorum-based replication, it is leader that
notifies followers the consensus decision of committing transactions by send-
ing the current MaxComLSN. After receiving MaxComLSN, follower nodes are
agreed to replay logs with LSN no larger than MaxComLSN. Since it’s expensive
to read logs from disk for replay, the replicated and uncommitted logs need to
reside in the memory for a period of time before being replayed. The structure
holding un-replayed logs is the replay buffer. However, in the case where the
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leader generates logs at a high speed, e.g SiloR could produce logs at gigabytes-
per-second rates [27], un-replayed logs in the buffer can be soon erased by the
new arrivals if the size of replay buffer is insufficient. Followers still needs to read
flushed logs from disk for replay, and would definitely lag behind the leader and
produces larger and larger VGap. Therefore, to achieve read scalability for IMDB
replicated by quorum based protocols, VGap of a follower should be minimized
in order to keep up with the state of leader.

3 Adaptively Self-tuning Batching Scheme

The design objectives of batching scheme have three aspects. First, no parame-
ters are required to be calculated offline and then manfully tune system config-
urations. Because once the environment settings are changed, these parameters
need to be calculated again. It should be totally automatic to cope with uncer-
tainty without manual intervention. Second, workloads in real setting are often
dynamically changed and have an important effect on the performance of batch-
ing scheme. For instance, if the transaction arrival rate becomes low, a batch
should be constructed by a small number of transactional logs. Last but not
least, considering the processing capacity of follower is essential for adaptively
tuning algorithm, especially in the case where the whole performance relies on
the processing speed of followers under heavy workloads. Follower replicas may
be overloaded if logs are replicated with a wrong batch size (Table 1).

Table 1. Features of batching algorithms.

Batching scheme Parameter-free Workload-adaptive Replica-friendly

JPaxos [13] × � ×
Nuno Santos [25] × � ×
Paolo Romano [24] × � ×
AB [11] � × ×
TAB [11] × � ×
QumrumX � � �

3.1 Batching Scheme

Based on the above design objectives, we propose to combine critical-path-based
batching (CB) [11] and pipeline-based batching (PB). CB automatically adjusts
the batch size according to workload characteristics. PB is complementary to
CB by considering the processing capability of follower, which can adaptively
tune the frequency of sending logs to avoid followers being overloaded in highly
concurrent workloads.

The CB mechanism operates as following: as shown in Fig. 2, after finishing
processing transaction logics, each worker thread will enter a global common code
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Fig. 3. Pipeline-based batching (PB).

fragment, that is commitTxn. The entry code is used for registering the commit
queue as the task is inside. Similarly, the exit code deregisters the task and
appends it to the sending batch. The intuition behind CB is that multiple tasks
should be included in the same batch only if they arrive “close together” to the
sendBatch. When implementing CB, we treat the commit queue as a doorway.
A batch is complete and sent to follower when the commit queue is empty, since
the next task is too far behind to join into the current batch. Compared with
batching with a fixed time or a fixed size, CB could adjust sending frequency
according to the arrival rate. When the arriving rate is high, CB gathers a lot
of close tasks and achieves good throughput. And if the arrival rate is low, CB
will not waste a long time for waiting for more tasks. The disadvantage of CB
is that when the arrival rate stays constantly high, CB will continue to gather
too many tasks without sending a batch in a proper size. We combine PB with
CB mechanisms to resolve this issue.

PB takes a full consideration of the pipelined replication scheme in follower.
As described above, pipelined replication scheme in follower consists of three
stages (s1, s2, s3). It should be noted that an optimal performance can be achieved
if the slowest pipeline stage handles tasks all the time and has no idle time. Tak-
ing Fig. 3(a) for example, suppose that s2 is the most time-consuming stage,
and the optimal send interval for a batch should be ts2. Upon this sending rate,
every batch could get a smallest replication latency and next batches would
not be blocked by the previous ones. As a result, during the pipeline replica-
tion, QuorumX collects the consumed time of each stage by followers for each
batch, and embedded them into the response to be sent to the leader. QuorumX
requires the time interval of sending two batches should not to be less than it.
If logs are sent with a interval larger than that value, the resources cannot be
utilized sufficiently. On the contrary, if the sending interval is less than that
value, congestion should happen during replication.
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3.2 Discussion

We demonstrate that network latency between leader and follower has no effect
to set sending frequency with Fig. 3(a) and (b). No matter how the network
latency changes, the optimal frequency is always restricted by the most time-
consuming stage of follower. However, we need to point out that network band-
width can affect the sending frequency. Under complicated network environment
especially the wide area network, bandwidth is often limited and may be occu-
pied by some unknown applications. Here, log replication is constrained by the
limited network bandwidth of the leader. As a result, the sending frequency
should be lowered properly. How to automatically adjust the frequency of send-
ing logs over complicated, unreliable networks is still an open question, and we
will study this problem in our future work.

4 Coordination-Free Log Replay

4.1 Design Choices for Replay Buffer

The replay buffer in follower is an important structure which is responsible for
caching the received logs from the leader. The persistence thread can flush a
batch of buffered logs at one time, and the replay thread can directly replay the
buffered log to keep in sync with the primary. The design of replay buffer should
guarantee replicated logs are replayed from memory most of the time and avoid
re-loading them from HDD/SDD.

The size of the replay buffer is a key design consideration. IMDB such as
SiloR could generate logs at gigabytes-per-second rates. Caching all logs in the
replay buffer leads to excessive memory consumption. If the size is set to a small
value, the buffered and non-replayed logs would be covered by the new arrivals
under heavy workload. Reading the received yet covered logs from disk for log
replay would introduce extra disk I/O latency. This causes the risk of cascading
latency as more non-replayed logs continue to be covered by newly arrived logs.
Finally, it will make the follower nodes never catch up with the leader. The basic
idea of determining the buffer size is that it should be greater than the rate of
log generation on the leader.

In order to provide read services on fresh data by followers, they need to
replay received logs to memory as soon as possible. However, as discussed
above, different from asynchronous replication, the time to replay a log entry
is restricted by the quorum-based replication scheme. A follower is only allowed
to replay logs with LSN not larger than MaxComLSN for guaranteeing consis-
tency. However, wait-for-replay logs residing in the memory may cause the replay
buffer overwhelmed. To this end, we design a coordination-free log replay (CLR)
scheme which directly applies the received logs to the memtable without waiting
for the MaxComLSN. CLR ensures consistency by separating the replay proce-
dure into two phases. The first phase converts logs into uncommitted cell lists
of memtable in parallel, where the applied data are invisible. The second phase
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sequentially installs them into memtable according their LSNs, where the consis-
tency is guaranteed. It’s should be emphasized that the second phase is extremely
lightweight without introducing overhead as the installation only contains a few
pointer manipulations.

4.2 Mechanism of Coordination-Free Log Replay

Basically, different from transaction execution in the leader, there has NO roll-
back when replaying logs in follower. That means all of the logs must be replayed
successfully in order. We choose to replicate value logs instead of operation logs,
which could promise a lock-free replay strategy. When CLR begins to replay
a batch of logs, in the first phase, multiple threads (replay workers) works in
parallel. Replay worker first starts a transaction for each log entry. Then it looks
up the memtable to find the node that the transaction wants to modify. After
that, logs are translated into several uncommitted cell informations in which
each cell has a pointer pointing to the actual node in the memtable. Translating
won’t directly installed modifications into the memtable and therefore has no
need to acquire any locks. The uncommitted cell informations are stored in the
transaction context.

Algorithm 1. QuorumX commit algorithm of replaying
/* Commit transactions according to log sequence */

Input: MaxComLSN
1 while !thread .stop() do

/* Get a transaction from commit queue sequentially. */

2 log id = commit queue.seq ;
3 while true do
4 if log id > MaxComLSN then
5 wait(wait time ms);
6 continue;

7 txn ctx = commit queue.get(log id);
8 if NULL == txn ctx then
9 wait(wait time ms);

10 continue;

11 sync bool compare and swap(&commit queue.seq , log id, log id + 1);
12 break;

/* Install the modification into memtable. */

13 for cell info in txn ctx.uc info do
14 memnode = cell info → node;
15 exclusive lock(memnode.rowlock);
16 memnode.value list.append(cell info);
17 exclusive unlock(memnode.rowlock);
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After completing the above procedures, transaction will be pushed into the
commit queue of a single commit thread. It was the single commit thread that
ensures the safety and consistency of quorum-based replication. In the second
phase of CLR, commit thread sequentially pops transaction whose log id is
smaller than the MaxComLSN, and does the commit transaction operation. As
shown in the Algorithm1, transactions with log id less than MaxComLSN will
be committed and their uncommitted cell informations will be directly append
to the value list in the memtable. Locks are necessary in this part, but as we can
see, the duration is short (lines 13–17).

The main processing flow of CLR can be processed totally in parallel and
only the commit part is done sequentially in order to promise transaction modifi-
cations are installed into memtable by the LSN order. CLR immediately replays
the received logs without waiting for MaxComLSN. One advantage is to avoid
the risk of reading flushed logs from disk and the memory resources consumed
by the replay buffer has a minor risk of being excessive. Besides, since CLR
performs replaying ahead of time, the VGap can be minimized compared with
scheme waiting for MaxComLSN.

4.3 Discussion

Nevertheless, there are additional demands on fault handing introduced by our
proposed replay strategy. Suppose such a scenario in Fig. 4, five replicas (R1−R5)
form a cluster and R1 is the initial leader. Before crashed, R1 has generated
five log entries and committed four log entries. Log five has flushed to disk
and entered into the first phase of CLR in R2 while the other three followers
haven’t received log five. According to election algorithm, R4 is elected as the
new leader. It generates a different log five and replicates it, and there is growing
problem that R2 has began to replay a log five from the old leader. Although
the modification has not been installed in the memtable, the transaction context
with log five still reside in the memory (dirty contents). If R2 begins to replay
another log five, there may be some checksum errors. If similar situations arise
when we don’t adopt CLR, there are no dirty contents in R2’s memory, R2 only
needs to rewrite log five to its disk.

R1

R2

R3

R4

R5

R1

R2 R3

R4 R5

R1

R2 R3

R4 R5

R1 is leader, but crashes

R4 becomes new leader

replay point

replaying

replayed

Fig. 4. An example illustrates a fault caused by CLR.
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Based on above description and discussion, when introducing CLR, we also
refine the fault handing algorithm. More concretely, when role change happens,
each node will firstly perform replay-revoking operation before actually getting
into working. CLR ensures that dirty contents can be easily erased since it neither
modify any structure that stores data nor hold any locks. The commit thread
pops all tasks from its commit queue, cleaning uncommitted cell informations
and ending these transactions.

5 Evaluation

In this section, we evaluate the performance of QuorumX for answering the
following questions:

– The first question is whether QuorumX could support a high performance
replication for fast IMDB, and how much additional performance is sacrificed
by QuorumX through comparing it with the asynchronous primary-backup
replication and the single replica without replication.

– Another question is that whether QuorumX can be self-tuning to workloads.
We evaluate its performance under different concurrency by comparing batch-
ing methods include AB [11] and JPaxos [13]. Since the calculation of offline
models in [24,25] requires a lot of additional parameters which are difficult
to collect, we didn’t implement them in QumrunX.

– The final question is that how much VGap can be reduced by the CLR of
QuorumX in contrast with asynchronous primary-backup replication. Besides,
CLR replays logs without waiting for MaxComLSN in order to avoid reading
logs from disk and thus reduces the VGap. We also measured how much VGap
could be reduced by CLR even if QuorumX replays logs after receiving the
MaxComLSN.

Experiment Setup. We have implemented QuorumX in Solar [10], an open-
source, scalable IMDB. We implement QumrumX by adding or modifying 31282
lines of C++ code on the original base. Therefore, Solar is a completely func-
tional and high available in-memory database system. It has also been deployed
on Bank of Communications, one of the biggest commercial banks in China.
The default cluster consists of three replicas and the leader has the full-copy of
data. We also evaluate performance of different number of replicas. Each server
is equipped with two 2.3 GHz 20-core E5-2640 processors, 504 GB DRAM, and
connected by a 10 Gigabit Ethernet.

5.1 Workloads

In the following experiments, we use three benchmarks that allows us to measure
how QuorumX performs in specific aspects.

YCSB. The Yahoo! Cloud Serving Benchmark (YCSB) [6] is designed to
evaluate large-scale Internet applications. The scheme contains a single table
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(usertable) which has one primary key (INT64) and 9 columns (VARCHAR).
The usertable is initialized to consist of 10 million records. A transaction in
YCSB is simple and only includes one read/write operation. The record is
accessed according to an uniform distribution.

TPC-C. This benchmark models a warehouse ordering processing which simu-
lates an industry OLTP application. We use a standard TPC-C workload and
populated 200 warehouses in the database by default. The transaction parame-
ters are generated according to the TPC-C specification.

Micro-benchmark. As a fully functional database, Solar requires to interact
with clients, interpret SQL statements and translate them into physical execu-
tion plans, so it could not achieve a similar performance like Silo. Therefore, we
build a write-intensive micro-benchmark, which originates from a realistic bank
application used for importing massive data into databases everyday. Instead
of sending the leader IMDB transaction requests coded by SQL statements,
this micro-benchmark directly issues raw write operations to the leader. As a
result, the micro-benchmark makes leader IMDB is running under extremely
high-concurrent, write-intensive workloads. By default, the micro-benchmark
contains 10 GB data modifications, which could produce gigabyte of logs per
second.

5.2 Replication Performance

We firstly measure the throughput and latency under the YCSB workload with
100% write operations and the complicated TPC-C workload. The comparing
methods include QuorumX with three replicas one of which servers as the leader
(abbr. QuorumX), asynchronous primary-backup replication (abbr. AsynR) with
three replicas and a single replica without replication (abbr. NR).
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Experimental results of YCSB are shown in Figs. 5 and 6. We can observe
that the throughput trend of all replication scheme is increasing firstly and then
remaining at a high level. In general, QuorumX sacrifices about 11% performance
compared with AsynR and 26% compared with NR to provide data consistency
and high availability. As for latency, QuorumX produces about 0.6 more mil-
liseconds than AsynR and 1.1 ms than NR in average. Figures 7 and 8 illustrates
the performance under the TPC-C workload. We find that the throughput gap
among QuorumX and AsynR and NR reaches to 2% and 8% respectively, which
is smaller than that in YCSB. The reason is that a transaction in TPC-C con-
tains more read/write operations than that in YCSB so the leader takes more
time to execute a TPC-C transaction. As a result, the percentage of replication
latency is relatively small in the whole transaction latency.

5.3 The Ability of Adaptive Self-tuning

To compare the performance of self-tuning batching scheme of QuorumX with
other batching algorithms, we implemented a parameter-free method—AB,
which adopts critical-path-based batching. We choose AB instead of TAB since
the batching method of AB is totally parameter-free. Besides, JPaxos, which
needs manually set the parameter of batch size, is also compared with Quo-
rumX to evaluate their effectiveness under various number of concurrent clients.
JPaxos is configured to two batchsize values: 32 and 256 respectively, referred to
as JPaxos-32 and JPaxos-256. Experiments are run over YCSB workloads with
100% write requests.

Figure 9 illustrates the experimental results on different client concurrency.
It is clear that QuorumX performs best under all concurrency. We can observe
that the performance of AB is close to that of QuorumX when the concurrency
is low. However, as the number of clients increases, AB could not achieve good
performance. Recall from Sect. 3, under a light workload, critical path based
batching works well. But, under a highly concurrent workload, the throughput of
the system would be determined by the slowest stage in the pipelined processing
on followers. In this case, the pipeline batching mechanism in QuorumX can
adaptively tune the interval of sending logs.
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The trend of JPaxos-32 increases firstly and could stay at a similar through-
put to QuorumX, but decreases sharply when the number of client exceeds 25.
This is because, when the client number is small, the arrival rate of transactions
is slow, and waiting 32 requests to generate a batch is relatively reasonable.
However, when the arrival rate rises, sending batches with size of 32 exceeds
the processing capacity of followers. Follower cannot process as many as batches
produced by JPaxos-32 in time and these received batches would be blocked. So
there is a sudden drop of the performance. On the contrary, JPaxos-256 performs
badly when the client concurrency is low and gradually close to QuorumX with
the increasing of the number of client. It is clear that, sending batches with size
of 256 is too slowly for followers when the arrival rate is low. The leader wastes
too much time on waiting for enough requests. Under the high concurrency, col-
lecting 256 requests for a batch becomes easier, and the sending frequency can
match the processing capacity of follower.

5.4 VGap Results

We measure the VGap between the leader and followers to explore the effec-
tiveness of CLR under a continued, write-intensive micro-benchmark. Assuming
that the leader l and the follower f commit the same transaction at physical
time tl and tf , we use the value tf −tl to donate the VGap between the same
visible state of leader l and the follower f . We compare VGap of three methods:
QuorumX, QuorumX without CLR and AsynR.

Figure 10 shows the VGap results over 60 s. The number of client is fixed to
800. Results shows that QuorumX could gain the lowest and most stable VGap
among three methods. The VGap of AsynR exceeds 200 ms, which suggests that
follower in AsynR lags far behind the leader. And the VGap of QuorumX without
CLR remains about 100 ms at beginning, but it suddenly increases sharply at
time 45. By our analysis, the replica may perform disk-read operations for getting
logs to replay, and the trace log also proved that. QuorumX with CLR has a
stable VGap and most of it is under 60 ms. Using CLR could achieve a 3.3x
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lower VGap than AyncR and 1.67x than not using CLR. Therefore, in the case
of heavy workload, reading from follower under QuorumX with CLR could get
a fresher and more stable state.

5.5 The Number of Replicas

To investigate the scalability of QuorumX, we evaluate the performance over
different number of replicas under two YCSB workloads of different write/read
ratios: 100/0 and 50/50. Experimental results are shown in Fig. 11. The number
of clients is fixed to 125. We can see that under workload with 100% writes,
the performance decreased most significantly when the number of replicas is
changed from one to three, dropped about 26%. This is because transaction
processed under three-replica cluster has obviously longer latency than under
single server. When the number of replicas keeps increasing, the throughput
decline is not intense, performance under five replicas only decreases 9% than
three replicas. This is acceptable since logs have to be replicated to more replicas.
Under the workload with 50/50 write/read ratio, the performance decline is even
less obvious. As more replicas could provide scalable read service, we can see that
with the number of replicas increase, the performance could achieve a sustainable
growth. After all, QuorumX has a good scalability with more replicas.

6 Related Work

Replication is an important research topic across database and distributed sys-
tem communities for decades [15,18]. In this section, we review relevant works
mainly on two widely used replication schemes, i.e. primary-backup replication
and quorum based replication.

Primary-Backup Replication. Asynchronous primary-backup replica-
tion [26], proposed by Michael Stonebraker in 1979, has been implemented in
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many traditional database systems. In most typical deployment scenarios, asyn-
chronous primary-backup replication is used to transfer recovery logs from a
master database to a standby database. The standby database is usually set
up for fault tolerance, and not required to provide the query on the latest data.
The performance of log replication and replay have not received much attentions
in the last several decades. Recently, the researchers [12,16] suggest that serial
log replay in the primary-backup replication can cause the state of replica is
far behind that of the primary with modern hardware and under heavy work-
loads. KuaFu [12] constructs a dependency graph based on tracking write-write
dependency in transactional logs, and it enables logs to be replayed concur-
rently. The dependency tracking method works well for traditional databases
under normal workloads, and it might introduce overheads for IMDB under
highly-concurrent workloads. [16] proposed a parallel log replay scheme for SAP
HANA to speed up log replay in the scenario where logs are replicated from
an OLTP node to an OLAP node. Qin et al. [21] proposed to add the trans-
actional write-set into its log in SQL statement formats, which can reduce the
logging traffics. Log replay in classical quorum-based replication has different
logics to primary-backup replication. Followers using quorum-based replication
cannot replay received logs to memtable immediately, and they need to wait for
MaxComLSN from the primary. Due to this difference, these works that opti-
mize log replay for primary-backup replication can not be directly applied to the
quorum-based replication.

Despite the low transaction latency, the asynchronous primary-backup repli-
cation cannot guarantee high availability and causes data loss when the primary
is crashed. PacificA [17] resolves these problems by requiring the primary to
commit transactions only after receiving persistence responses from all replicas.
The introduced synchronous replication latency depends on the slowest server in
all replicas. Kafka [5] reduces replication latency by maintaining a set of in-sync
replicas (ISR) in the primary. Here ISR indicates the set of replicas that keep
the same states with the primary. A write request is committed until all replicas
in ISR reply. Kafka uses the high watermark (HW) to mark the offset of the
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last committed logs. The replicas in ISR need to keep the same HW with the
primary. When the offset of a replica is less than HW, it would be removed from
ISR. Through ISR, Kafka can reduce negative impact on performance caused by
the network dithering.

Quorum-Based Replication. Replication based on consensus protocols is
referred to as quorum-based replication, which is also called as state machine
replication in the community of distributed system. Paxos based replication
ensures all replicas to execute operations in their state machines with the same
order [9]. Paxos variants such as Multi-Paxos used by Spanner [7] are designed to
improve the performance. Raft [19] is a consensus algorithm proposed in recent
years. One of its design goals is more understandable than Paxos. For this rea-
son, Raft separates log replication from the consensus protocol. Many systems
such as AliSQL [1] and etcd [2] adopt Raft to provide high availability. However,
these systems use Paxos or Raft to replicate meta data, where replication perfor-
mance is not a serious problem. Spanner as a geo-distributed database system
supports distributed transactions, and each partitioned database node is not
designed to handle highly concurrent OLTP workloads. AliSQL only uses Raft
to elect leader in the occurrence of system failures. Etcd is a distributed, reliable
key-value store that uses the Raft for log replication. Similar to Zookeeper [8],
these kinds of datastore are designed to provide high availability for meta data
management and are not suitable for highly concurrent OLTP workloads.

There are a few works on tuning replication performance of Paxos with batch-
ing and pipeline [13,25]. Nuno Santos et al. [25] provide an analytical model to
determine batch size and the pipeline size through gathering a lot of parame-
ters, like bandwidth and the application properties. [13] proposed to generate
batches and instances according to three input parameters: the maximum num-
ber of instances that can be executed in parallel, the maximum batch size, and
the batch timeout. These parameters need to be calculated offline and set man-
ually which can not adapt to various environments.

7 Conclusion and Future Work

In this paper, we built QuorumX, an efficient quorum-based replication frame-
work for replicating fast IMDB. We propose an adaptive batching scheme which
could self-tuning sending frequency and could adapt to both light and heavy
workloads. In order to produce a minimal and stable visibility gap between
leader and follower, we design a fast and coordinate-free log replay mechanism
to replay logs without waiting for MaxComLSN. Experimental results show that
QuorumX supports strong data consistency and high availability by sacrific-
ing only 8%–25% performance than single IMDB replica and has a 2%–11%
decline than asynchronous primary-backup replication. The batching scheme
always performs better than existing methods. Also, the visibility gap produced
by QuorumX can reach to a low level.

QuorumX is designed for fast IMDBs without harsh assumptions, so it is
also applicable to NoSQL systems. In our future work, we will erect a more
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general, pluggable quorum-based replication framework that not only provides
high replication performance for these high-throughput systems but also takes
many complicated factors like network bandwidth into consideration.

Acknowledgement. This work is partially supported by National Key R&D Program
of China (2018YFB1003404), NSFC under grant numbers 61432006, and Guangxi Key
Laboratory of Trusted Software (kx201602). We thank anonymous reviewers for their
very helpful comments.

References

1. AliSQL. https://github.com/alibaba/AliSQL
2. etcd. https://coreos.com/etcd/
3. IBM DB2. https://www.ibm.com
4. Oracle Corporation and/or its affiliates. MySQL Cluster (2017)
5. W. contributors. Apache kafka (2018). https://en.wikipedia.org/w/index.php?

title=Apache Kafka&oldid=831864654
6. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking

cloud serving systems with YCSB. In: SoCC (2010)
7. Corbett, J.C., Dean, J., Epstein, M., Fikes, A., et al.: Spanner: Google’s globally

distributed database. ACM Trans. Comput. Syst. 31(3), 8:1–8:22 (2013)
8. Hunt, P., et al.: ZooKeeper: wait-free coordination for internet-scale systems. In:

USENIX ATC (2010)
9. Chandra, T.D., et al.: Paxos made live: an engineering perspective. In: PODC

(2007)
10. Zhu, T., et al.: Towards a shared-everything database on distributed log-structured

storage. In: ATC (2018)
11. Friedman, R., Hadad, E.: Adaptive batching for replicated servers. In: 25th IEEE

Symposium on Reliable Distributed Systems, pp. 311–320 (2006)
12. Hong, C., Zhou, D., Yang, M., Kuo, C., Zhang, L., Zhou, L.: KuaFu: closing the

parallelism gap in database replication. In: ICDE (2013)
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