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Abstract. Multi-stream data with high variation is ubiquitous in the
modern network systems. With the development of telecommunication
technologies, robust data compression techniques are urged to be devel-
oped. In this paper, we humbly introduce a novel technique specifically
for high variation signal data: SIRCS, which applies linear regression
model for slope, intercept and residual decomposition of the multi data
stream and combines the advanced tree mapping techniques. SIRCS
inherits the advantages from the existing grouping compression algo-
rithms, like GAMPS. With the newly invented correlation sorting tech-
niques: the correlation tree mapping, SIRCS can practically improve
the compression ratio by 13% from the traditional clustering mapping
scheme. The application of the linear model decomposition can further
facilitate the improvement of the algorithm performance from the state-
of-art algorithms, with the RMSE decrease 4% and the compression time
dramatically drop compared to the GAMPS. With the wide range of the
error tolerance from 1% to 27%, SIRCS performs consistently better than
all evaluated state-of-art algorithms regarding compression efficiency and
accuracy.

Keywords: High variation data · Multi-signal compression ·
Correlation mapping · Linear regression model · Error detection

1 Introduction

Multi-stream data is ubiquitous in the modern network systems [13]. With the
development of telecommunication technologies, information is usually gener-
ated as a collective and multi-dimensional data stream from different sources.
As the popularisation of the Internet of Things [17], the time-series group data
compression is becoming more popular and important than ever before in both
industry and academia. Meanwhile, in today’s critical network systems, infor-
mation with high variation is also frequently generated, such as in the stock
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trade, traffic systems, massively distributed solar systems, etc. Such data usu-
ally preserves ambiguous variation pattern, big data range and high variance,
and hence becomes a challenging data type to compress in the communication
network. Therefore, current research needs to be widely extended to optimally
encode and reconstruct the high variation data in a highly correlated multi-signal
network system.

Previous work has been conducted for single-stream time-series data compres-
sion, such as APCA [2] and SF [6], to name a few. In a multi-signal environment,
however, if we apply these methods directly to compress each single stream one
by one without considering their correlation, it is highly possible to result in a
small compression ratio.

To simultaneously handle all streaming data, multi-signal compression algo-
rithms, such as GAMPS [7], are developed based on the data correlation infor-
mation. Particularly, GAMPS first groups signals within spatial proximity into
a cluster, and determines the best base signal in the cluster by iteratively check-
ing the compression performance of using each stream as the base signal. For
each data other than the base signal, it then constructs a ratio signal based on
its difference with the base signal, called “cluster mapping”. Finally, it applies
APCA to compress both base signal and ratio signals. However, such methods
still have some drawbacks especially when dealing with high variation data: (1)
The brute-force search for the base signal is extremely time-consuming; (2) The
correlation information is never fully utilised when we transform each signal
only according to the base signal in the cluster mapping; (3) Ratio signal can-
not comprehensively capture complex patterns in high variation data, leading to
relatively large reconstruction error.

To address the above issues, we propose a novel algorithm, SIRCS (Slope-
Intercept-Residual compression by Correlation Sequencing), for multi-stream
compression with high variation data. We introduce decomposition-based com-
pression and tree mapping techniques in this work, and SIRCS is a condign
combination of these techniques, which demonstrates an overall improvement
over current state-of-the-art compression methods in both efficiency and preci-
sion. Our major contributions can be summarised as follows:

1. We study the problem of multi-signal compression which has important appli-
cations in modern network systems. The problem is challenging due to various
correlation levels, and variation patterns existed in the streaming signals.

2. We introduce the correlation tree mapping technique for data grouping to
fully utilise the correlation information between signals efficiently. The map-
ping can efficiently configure a tree index with a selected base signal, and
meanwhile, maximise the preservation of the highest correlation information
in the index. We theoretically prove the improvability of the tree mapping
technique over traditional cluster mapping.

3. We propose a regression-based decomposition technique for data-variation
reduction, which results in smaller fluctuation in the residual signals and
hence better compression performance.
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4. We propose a new idea of residual compression with the guarantee of the
worst-case maximum L∞ error derived from the base signal error bound.
This assures all signals to be perfectly reconstructed with a maximum error
guarantee.

5. We empirically compare SIRCS with several state-of-the-art compression
algorithms on a real-world dataset, and the experimental result demonstrates
better performance achieved by SIRCS regarding compression ratio, recon-
struction precision, and compression speed.

For the rest of the paper, we review the work of data compression in Sect. 2,
then formulate the problem of multi-stream high variation data compression
in Sect. 3. In Sect. 4, the SIRCS algorithm is introduced to solve the problem
in Sect. 3 by integrating the tree mapping, regression-based decomposition, and
residual compression. We report our empirical results in Sect. 5, followed by a
brief conclusion in Sect. 6.

2 Related Work

Numerous state-of-art algorithms exist in the computing systems, usually clas-
sified into lossless and lossy compression schemes. Prevalent application of the
lossless algorithms, such as Adaptive and Non-adaptive Huffman Coding [19],
LZ77 [22], LZ78 [23], LZW [16], BWT [14] and PPM [4], remain robust and func-
tional even in most of the modern operating systems. BWT-based compression
reaches the optimised performance at O( log(n)

n ), improving from O( log(log(n))
log(n) )

from LZ77 [21] and O( 1
log(n) ) from LZ78 [12]. However, the compression ratio

cannot be dramatically increased from a lossless algorithm, therefore, lossy com-
pression is introduced for a better trade-off of the compression efficiency.

In lossy compression for single data, the piecewise approximation algorithms,
in particular, are the most fundamental and can be furthermore classified into:
piecewise constant approximation (eg., PCA [11], APCA [2], PAA [8], etc.), linear
approximation (eg., SF [6], PWLH [1], PLA [3], etc.), and polynomial approxima-
tion (eg., CHEB [20], etc.). Another lossy compression type is the decomposition
based algorithms, such as DWT [15], DCT [9], DFT [10], etc. Those compres-
sion algorithms usually preserves high compression ratio but longer compression
time. However, in modern network systems, the correlation between multiple
signals should also be considered to improve compression performance further.

Group data compression algorithms are introduced in the lossy compression
domain. GAMPS is the first application using the data correlation. In GAMPS,
ratio signals are introduced by dividing one signal value with the selected base
signal value. Due to the signals similarity, the ratio signal from two highly cor-
related signals is much flatter than its original data, thus largely reducing the
variation level. Compressing the low variation data by APCA, in turn, increases
the total compression ratio. To select the proper base signal, GAMPS computes
the compression ratio in every scenario with different signals as the base signal.
Thorough iteration occurs to estimate the consumptions by summing the size



194 Z. Ye et al.

of all compressed signals. The algorithm then picks the base signal leading to
the smallest compressed file size. Consequently, GAMPS can lead to an excellent
compression ratio but relatively large precision error and long compression time.
Our work, on the contrary, aims to optimise all the three performance criteria
in multi-stream compression.

3 Problem Definition

Definition 1. (High Variation Time Series Data) The time-series data with
high variation D is defined as a stream of data points (ti, vi) with a consecutive
time index ti (i.e., D = [(t1, v1), (t2, v2), . . . , (tn, vn)]), where the standard devi-
ation σD and the range Dmax − Dmin are much higher than regular time-series
data. The time index follows monotonicity: ∀i < j, ti < tj.

We use S = {D1,D2, . . . , Dn} to denote a multi-signal time series dataset,
i.e., a set of time-series data D which share the same time index with the length
n (i.e., Di = [(t1, vi

1), (t2, v
i
2), . . . , (tn, vi

n)]). The problem studied in this paper
can be formulated as follows.

Definition 2. (Group Compression of High Correlation Data with Max-error
Precision) A dataset S formed by the high variation time-series data Di, where
i ∈ [1, n], and an error bound ε are given. The problem is to compress all Di

in the dataset S so that the reconstructed signal D′
i suffice the equation: ∀Di ∈

S, (D′
i(t)) − Di(t)) ≤ ε.

Intuitively, the hypothesis can be made that the higher the correlation, the
higher the compression ratio will be obtained. We conduct an empirical evalua-
tion to test the relationship between the correlation of a paired signal and their
compression ratio, along with the precision. Assume two randomly picked sig-
nals from the signal network are Di,Dj , and their correlation is R2

i,j . In this two
signals compression, we link the R2 values to the CR and NRMSE from the
compression between Di,Dj . The result of the evaluation shows the statistical
significance in the positively associated relationship between the correlation and
the compression ratio. The detailed information of the empirical evaluation will
be reported in Sect. 5. This result validates the hypothesis that a high correla-
tion between two signals can improve the compression performance. Therefore,
we focus our study of multi-stream data compression in a highly correlated net-
work system as defined below.

Definition 3. (Correlated Multi-signal Network) The correlated multi-signal
network is a system where any two randomly selected signals, Di(t) and Dj(t),
are correlated, thus similar in variation pattern, with a mathematical relation as
a function of F , denoted as Di(t) = F (Dj(t)) + δj(t).
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4 SIRCS: Slope-intercept-residual Compression by
Correlation Sequencing

4.1 Overview

The algorithm consists of three main components: correlation tree sequencing,
regression-based decomposition and the residual data compression. First, given
the time-series dataset S = {D1,D2, . . . , Dn}, the correlation tree sequencing
is to create a compressing index Itree and select the base signal Dbase. Second,
following Itree and Dbase, the regression-based decomposition dissemble Di into
its residual Ri and the regression coefficients. Finally, the residual data is com-
pressed with a newly estimated error bound. This residual error bound assures
that the recovered residuals and the regression coefficients can reconstruct the
raw signal under the original maximum error guarantee. We will elaborate on the
technical details of these three components in the following sections, respectively.

4.2 Correlation Sequencing Mechanism

According to our hypothesis, data correlation can effectively minimise the mem-
ory consumption of multi-stream data. In this section, we will introduce our
method of correlation tree mapping and meanwhile theoretically prove the
improvability of the tree mapping over the cluster mapping.

Technique 1. (Correlation Tree Mapping) The cluster mapping is based on a
unique base signal, so its information index, Icluster, processes only one pass
to each of the child signal (Dbase → Di, where 0 ≤ i ≤ n − 1). Replacing the
cluster to tree mapping, whose information index, Itree, processes multiple passes
from one child signal to another child signal (Dbase → Di → · · · → Dj , where
0 ≤ i, j ≤ n − 1), we always have the compression ratio compared as

(CR)tree(
n∑

i=0

Di(t)) ≥ (CR)cluster(
n∑

i=0

Di(t)). (1)

Tree Components Formation

Definition 4. Correlation pairs are the signal link between two signals; corre-
lation branches are the signal link with multiple signals sharing one head node
and; correlation twigs are the branch components which are different in length
but share the same head node with their branch.

Tree components formation aims to extract the high correlation pairs from
signals m and n and arrange them in an ordered sequence. Considering the non-
repetitive collection: if r(m,n) is chosen, the system will check if either m and n
is already collected, and if not, the system will register r(m,n). Such correlation
collection will not end until all signals are contained. During the signal collection,
there will be three scenarios:
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1. r(m,n) where m is in the list, and n is in the list. In this case, there will be no
collecting operation occurred.

2. r(m,n) where m is in the list, but n is not in the list. In this case, only
the signal n is collected. It further implies the node m is an intermediate
connection between a collected signal and n.

3. r(m,n) where both m and n are not in the list. In this case, both signal ID
m and n will be collected. It implies that the connecting pair m and n are
isolated from the other signal nodes.

These three possibilities will impact on the branch creation in the later pro-
cedure: if there’s a node acting as an intermediate connection with two other
nodes, a branch will be created. Then the high correlation pairs obtained pre-
viously will be connected to several branches with longer connections in each
segment. The connection starts with connecting one pair’s head with the other
pair’s tail if the head and tail have the same signal index. To achieve the repeti-
tive seeking for the same heads and tails, the recursion algorithm is implemented
to keep connecting the previously and newly generated segments until no same
heads and tails occur in the segments. As a special case of the branch, several
twigs may be included in one branch. In this case, they will be encapsulated in
one branch.

Example 1. In Fig. 1, r11,12 → r11,0 → r1,2 → . . . → r7,6 is sorted and there
are 14 elements in total. All the 18 signals are just recovered from those 14
paired segments, where the signal 6 is the last selected element. The rest of the
correlation pairs after r7,6 will be ignored. In the left figure of Fig. 2, we find
the repetition of the signals in the parental and child node position, such as the
pairs 3 ↔ 15 against 15 ↔ 17 and 15 ↔ 7. The connection will be ended with
the segment 3 ↔ 15 ↔ 17 and 3 ↔ 15 ↔ 7 ↔ 6. After the connections, the
branch with only one twig is 1 : [[2, 0]], and the branch with multiple twigs is
11 : [[0, 8], [12]], 3 : [[15, 7, 6], [15, 17], [9]], and 5 : [[13], [4, 16], [14]].

Base Signal Selection. In this step, we aim to find a common based signal for
all branches by seeking the highest correlation pair between one branch’s head
node and any elements in the other branches. To assure the result of iteration
is the highest correlation among all possibilities, the connecting candidates will
not be defined until all the head nodes of the branches go through every element
of the other branches and estimate their correlation level. The highest pair will
be given the priority to connect and for each loop. As the plantation of branches
is accomplished, there will be only one head node in the tree, which will be
nominated as the base signal Dbase(t).

Example 2. Right figure in Fig. 2(a) demonstrates four branches with the head-
node 3, 5, 1, and 11. The first highest correlation searching ends up with con-
necting the signal 12 with the head node 3 at R2 = 0.88. The second searching
follows up with the connection between signals 5 and 7 at R2 = 0.81. The last
searching ends up with connecting signals 1 and 10 at R2 = 0.78. Finally, the
tree index is constructed and Dbase(t) is D11(t), shown in Fig. 2(b).
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Fig. 1. (a) Shows the example of the correlation sequencing: the system will
arrange those collected signal pair into a structure similar to: Dr2 = r11,12 :
[11, 12], r11,0 : [11, 0], . . . , r7,6 : [7, 6]. (b) demonstrates the example of connecting same
ID of different pairs to branches.

Fig. 2. (a) Demonstrates searching for the highest correlated pair: the searching pro-
cess iterates three times in total, indicating the optimal connecting index among the
branches, after which the correlation tree is eventually created. The whole steps guar-
antee that for each connection, the chosen correlation level remains the highest from
the rest. (b) shows the result of the correlation tree mapping, the index of the signals
is encoded in digital numbers as the header of the compressed file.

Proof of Improvability. The following theorem highlights the superiority of
our proposed tree mapping over traditional cluster mapping.

Theorem 1. If the information of the total correlation level from an index
is given by I, the sum of correlation level from the cluster mapping is always
less equal than the sum of correlation level from the tree mapping, denoted as
Icluster ≤ Itree.
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Proof. Assume the branch number of the index is m, and within a branch, if the
connecting nodes number is greater than 2, assume the node connection number
as n. The formulas of the total correlation level from both cluster index mapping
and tree index mapping can be written as

Icluster =
m∑

i=1

Cor(Dbase,0(t),Di,1(t)), (2)

Itree =
m∑

i=1

n∑

j=1

Cor(Di,j(t),Di,j+1(t)). (3)

In the cluster mapping formula, it is known there are only two signals in one
branch: the base signal as Dbase,0(t) and child signal as Di,1(t), where the base
signal is fixed once the index is created. Suppose the first component in the
correlation calculation is a set of the possible parental signals, denoted as P ,
the set of the parental signals in the cluster mapping will then be Pcluster =
Dbase,0(t). It can be observed that the total number of elements in the cluster
mapping is unique, while in the tree mapping, multiple parental signals including
that in the cluster mapping case can concurrently exist, denoted as Dbase,0(t) ∈
Ptree. Therefore, the relation between the parental set from cluster and tree
mapping will be Pcluster ⊂ Ptree. Since the parental-signal selection in the tree
mapping has greater flexibility, a wider range of the correlation selection exists
in the tree mapping than the cluster mapping, denoted as

Set(Cor(Dbase,0(t),Di,1(t))) ⊂ Set(Cor(Di,j(t),Di,j+1(t))). (4)

More correlation selection in the tree mapping further implies the tree index can
cover higher correlation information. After all, cluster mapping only manifests
the correlation between the base signal and its child signals, while the in tree
mapping, both correlation between two child signals are also free to choose. With
a wider range of selection, total correlation from tree mapping is no less than
that from cluster mapping, denoted as Itree ≥ Icluster.

4.3 Regression-Based Decomposition Mechanism

The essential reason for using regression-based decomposition is to reduce the
data variation from raw to residual signal compression. With one base signal
Dbase selected from the dataset S, other signals can be decomposed via the base
signal and the correlation coefficients into another signal with a much smaller
size D̂. In this paper, D̂ is the residual data D̂i = Ri, whose validity will be
affirmed by proving σ(Ri) < σ(D) in this section. Reversely, based on Dbase,
correlation coefficients and D̂i, the signals can be reconstructed with a given
normalised error tolerance of ε. The problem can be formulated as follow.

Technique 2. (Reduction of Data Variation) Based on the preceding assump-
tions, if a child signal is given by Di(t) and its residual signal is denoted as Ri(t),
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for the variation level represented by standard deviation of σ, they are always
satisfying the following relation: σ(Ri(t)) < σ(Di(t)).

We recall the definition of the correlated signal network that Di(t) =
F (Dj(t)) + δj(t), while we also assume the time lag between two randomly
selected signals in the network cannot be too large compared to the signal
period: Δi 	 T . Then we configure the linear model (LM) as ŷ = β0x̂ + β1.
To minimise the mean square error of the regression line from the real data:
Ek

i =
∑n

i=0(y − ŷ)2, the coefficients are adjusted to the least square estimates
[18] as

β0 =
∑N

i=0(yi − ŷi)(xi − x̂i)∑N
i=0(xi − x̂i)2

, (5)

β1 =
∑N

i=0(yi − ȳ)(xi − x̄)
∑N

i=0(xi − x̄)2
. (6)

Such regression model can extract the coefficient of slope, intercept, and the
residual data with zero mean and lower variation level. This theorem of data
variation reduction can be proved bellow and visually shown in Fig. 3.

Fig. 3. (a) Shows an example of three raw signals from the solar panel in St Lucia Cam-
pus. (b) Indicates the residual signals from the left figure have been visually reduced
in data variation.

Theorem 2. Assume the original data has high range and standard deviation,
while their variation patterns are also similar. Given the child signal Si(t) and
its parental signal Sj(t) = β0Si(t + Δ) + β1 + δi(t) where Si(t), Sj(t) ≥ 0 , we
define SΔ(t) = Si(t)−Sj(t). If σ represent the standard deviation, we can always
have σ(SΔ(t)) ≤ σ(Si(t)).

Proof. If the coefficient of variation is defined as σ(S(t)) =
√∑n

i=0(S(t)−S̄)2

n−1 .
Taking SΔ(t), we have

σ(SΔ(t)) =

√∑n
i=0(SΔ(t) − S̄Δ)2

n − 1
. (7)
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Since SΔ(t) = Si(t) − Sj(t), we can deduce

σ(SΔ(t)) =

√∑n
i=0((Si(t) − (β0Si(t + Δ) + β1 + δi(t))) − S̄Δ)2

n − 1
. (8)

As Si(t) is periodic, and apparently β0Si(t+Δ)+β1 is also periodic, according to
the linearity of Fourier Transform, ST (t) = Si(t)−(β0Si(t+Δ)+β1) is a periodic
signal. Since S̄Δ = E(ST (t))+E(δi(t)) and from the linear regression model, we
know E(δi(t)) = 0, then S̄Δ = E(ST (t)). The formula can be rewritten as

σ(SΔ(t)) =

√∑n
i=0(ST (t) − δi(t) − S̄T )2

n − 1
. (9)

Since the assumption of the distributed signals network is geographically closed,
while the time latency Δ should be small enough for the similarity detection,
which is formulated as Si(t) ≈ Si(t + Δ).

We assume that the order of magnitude in delta signal and the error sig-
nal is much smaller than that of the original signal. This is normal to expect
since Power(Si(t)) ≈ β0Si(t + Δ) + β1 and, without bad leverages and outliers,
Power(δi(t)) 	 Si(t). Therefore, we have ST (t), δi(t) 	 Si(t)).

Now that we want to compare the between σ(Si(t)) and sigma(SΔ(t)). In
the course, we can rely on the aforementioned assumptions to approximate∑n

i=0(ST (t) − S̄T )2 ≈ 0, compared to the much larger value of Si(t). There-
fore we have

σ(SΔ(t)) ≈
√∑n

i=0(δi(t))2

n − 1
. (10)

As one of the assumptions, V ar(Si(t)) = σ2(Si(t)) � σ2(SΔ(t)), we can deduce

σ(Si(t)) ≥
√∑n

i=0(δi(t))2

n − 1
= σ(SΔ(t)). (11)

4.4 Residual Data Compression

This section is proposed to compressed the Ri(t) decomposed from the signals
Di(t) based on the linear regression model with Dbase(t). The problem of the
residual compression is shown as follow.

Technique 3. (Error Bound of Residual Compression) If the error precision
of the raw signal is given by εraw and the corresponding error precision of the
residual signal is given by εres, the algorithm needs to assure for any signal
reconstruction from its residual data with εres, the precision of the reconstructed
signal should fall in the range of εraw.

The problem is solved by the theorem of the residual error bound, in which
the signals D(t) are divided into direct parent signal P (t) and its child signals
C(t). It implies that the error precision of the residual signal is equal to the
error precision of the child signal, which we assumed to be the maximum error
guarantee as εraw.
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Theorem 3. Suppose the error precision of the raw signal is given by εraw and
the reconstructed parental and child signal is denoted as Prec(t) and Crec(t). If
the linear regression model gives

Craw(t) = β0Prec(t) + β1, (12)

the maximum error tolerance of the residual signal will be equal to that of its raw
signal, denoted as εres = εraw.

Proof. The relationship between the raw signal data and the residual data can
be denoted as

Craw(t) = β0Praw(t) + β1 + Rraw(t). (13)

Symbol C means the child signal, P means the parental signal, and R means the
residual signal. We also recall the relation between the raw and reconstructed
signal as Rec(t) = Raw(t) + δ(t). We can deduce that the coefficients β0 and
β1 are from the raw child signal and raw parental signal. Let us redesign the
linear model between the raw child signal and the recovered parental signal. The
equation is reformatted:

Craw(t) = β0Prec(t) + β1 + Rraw(t). (14)

Let us assume that Prec(t) has high similarity with Praw(t). In decompression
side, what are known are the values of β0 and β1, two reconstructed signals
Prec(t) and Rraw(t). The reconstructed child signal will be

Crec(t) = β0Prec(t) + β1 + Rrec(t). (15)

Taking the residual signal to the linear model, we have

Crec(t) − Craw(t) = β0Prec(t) + β1 + Rrec(t) − β0Prec(t) − β1 − Rraw(t). (16)

Eventually, the formula can be rewritten as δR(t) = δC(t) ≤ εraw.

The theorem finalises the estimation of the residual data error bound, there-
fore, the final design of the SIRCS algorithm can be integrated in Algorithm1.
Here we assume the group dataset as S, single data stream as D, lists for signal
collection as L, and encapsulate the tree index creation in the starting procedure
of pseudo code.

5 Experiment and Results

5.1 Experiment Setup

In the experiment, we use the real world dataset of the solar network system
of the University of Queensland. 26 historical solar data are used from three
different campuses: St Lucia Campus (18 signals), Gatton Campus (6 signals),
and Herston Campus (2 signals). The time range of the data is 20 days from 10th

to 29th in November in 2017, with the data sampling period of 60 s.
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Algorithm 1. SIRCS(S, ε)
1: procedure Tree(S) � Tree Configuration from S
2: Ipairs ← sort(S) � correlation sequencing
3: Ibranches ← sort(Ipairs) � R2 to branches
4: Itree ← sort(Ibranches) � Plantation of branches
5: end procedure
6: Itree ← Cor(S)
7: for b ← branch to last branch in tree do
8: for D ← b to last element in current branch do
9: if s ∈ compressedbucket then continue � skip shared-node signals

10: else � start compression
11: function get lm coefficient(last Drec, currentsignal)
12: β0 ← lmCoeff [0] � function’s returned list: lmCoeff
13: β1 ← lmCoeff [1]
14: residual ← lmCoeff [2]
15: end function
16: Lβ0 ← append(β0)
17: Lβ1 ← append(β1)
18: function residual compression(residual, ε)
19: Dcom ← compression algorithms � from single data compression
20: Drec ← recover algorithms � for finding next LM coefficient
21: end function
22: Lcom ← append(Dcom)
23: Lrec ← append(Drec)
24: end if
25: end for
26: end for

The performance evaluation is mainly based on traditional compression
benchmarks, including compression ratio, normalised root-mean-square error,
and computational time. They are formulated as follow:

CR =
Size(Fraw(t))

Size(Fcompressed(t))
(17)

NRMSE =
1

norm

√∑N
i=0(ŷ − y)2

N
(18)

Additional evaluation, nominated as the precision test, is introduced in RIDA [5].
The test demonstrates the compression precision in a given compression ratio,
regardless of the error tolerance selection.

State-of-art algorithms are realised under Python Environment (3.6.4) in the
operating system with a 2.2 GHz Intel Core i7 processor and a 16 GB 1600 MHz
DDR3 memory. Particularly, APCA, SF and GAMPS are selected for the per-
formance comparison against the SIRCS. Their algorithm realisation is slightly
customised in favour of the maximum performance: we adjust the floating pre-
cision to 5 digits and the coefficient c as 0.4 in GAMPS.
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5.2 Effect of Correlation Level

The linear model test shows that a positive association exists between compres-
sion ratio and the signal pairs correlation, with the p-value approaching zero.
From LM test in Fig. 4(a), p-value approaches to 0. For every unit increase of the
correlation, the compression ratio rises 1.42856. The linear model test also shows
that a positive association exists between NRMSE and the signal pairs correla-
tion, with the p-value approaching zero. From LM test in Fig. 4(b), p-value also
approaches to 0. The outcome implies the higher correlation grouping between
two data streams will statistically lead to a higher compression ratio, therefore
we validate the statement that picking high correlation signal pairs can improve
the total compression performance.

Fig. 4. (a) Implies that higher the correlation level, smaller the file will be compressed
and (b) Implies that higher the correlation level, greater the compression error will be
generated. (c) Shows the box plot of the two-sample t-test of the one-day dataset, and
(d) shows that of twenty-day dataset, both of which manifests the improvement of the
residual data compression.

5.3 Effect of Regression-Based Decomposition

We conduct two-sample t-tests between using and not using residual data com-
pression for both the twenty days dataset and a one-day dataset on 21st of
January 2018. In Fig. 4(c), practically significant increase can be observed in
SIR algorithm with the corresponding state-of-art algorithms: SIR application
on Swing Filter has average 0.27 increase in compression ratio, while on APCA
also has average 0.42 increase. To consolidate the persuasiveness of the result,
Fig. 4(d) shows the outcome of the compression ratio comparison over a one-
day dataset and the improvement is similar to the twenty-day dataset scenario.
Two-sample t-tests imply a strong evidence that using SIR algorithm can sig-
nificantly improve the compression ratio based on the corresponding state-of-art
algorithms.

5.4 Effect of Tree Mapping

First, we demonstrate the difference between the cluster mapping and the tree
mapping in Fig. 5(a). The bar chart in Fig. 5 shows practical improvement, from
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0.04 to 0.18, for all eighteen tested signals in both APCA and Swing Filter. The
improvement in compression ratio in APCA is averagely 0.026 higher than the
improvement in Swing Filter. From this outcome, the improvement of the tree
mapping is practically significant. The increased level varies with the base signal
selection, but the improvement applies in all circumstances. Therefore, from
the empirical evaluation, the improvement from the tree mapping is practically
significant over the cluster mapping.

Fig. 5. Shows the compression ratio with or without the tree mapping in different base
signal selection. In all situations, tree mapping improves the compression efficiency in
various extent.

5.5 Effect of Error Tolerance

From the outcome of the evaluation, we estimate the percentage improvement
of SIRCS based on the state-of-art algorithms. In the compression ratio per-
formance, the SIRCS has averagely 15% of the increase from the compression
ratio of APCA, shown in Fig. 6 (a). It can shoot up to 30% of increase with
the error tolerance equal to 1% and also go up to 11% when the error toler-
ance is equal to 13%. The swing filter algorithm applying SIRCS can increase
its compression ratio up to 14%, and averagely increase 5% for any error level,
shown in Fig. 6(b). The compression time shows in the similar level except that of
GAMPS, which shoots up to 103.67 s to compress the whole datasets, according
to Fig. 6(c). The rest has similar computational time varying from 1.05 to 4.72 s.
In the precision test, SIRCS also has the noticeable improvement in reducing the
NRMSE-compression ratio trade-off, shown in Fig. 6(d). In the APCA scheme,
the SIRCS can decrease almost 75% of NRMSE when the compression ratio is
1.11, and it can also reduce 15% more in most of the compression ratio level. The
swing-filter-based algorithm can reduce its NRMSE by using SIRCS up to 50%.
Even though such improvement differs from applying different error tolerance,
the improvement is proved to be practically significant.
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Fig. 6. Comparison of the performance between SIRCS and the other three state-of-art
algorithms in terms of compression ratio in (a), NRMSE in (b), compression time in
(c), and the precision level against a given compression ratio in (d).

6 Conclusion

In this paper, we have demonstrated the impact of data correlation level on the
group compression performance. We proposed a new correlation grouping tech-
niques: correlation tree mapping and developed a novel compression technique
SIRCS for high variation data in the multi-signal network under a certain error
bound. Conspicuous features of SIRCS include: (i) For high variation data, it
improves the original algorithm’s performance in both compression ratio and
NRMSE. (ii) Tree index provides optimal solutions of preserving the highest
correlation level of the signal network, taking less compression time than the
traditional grouping techniques. In summary, SIRCS is the first algorithm pro-
viding maximum correlation preservation and effectively compressed the high
variation data. The evaluation of SIRCS from the real world dataset shows the
practical improvement from its existing counterparts.
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