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Abstract. In recent years, multi-view clustering has been widely used
in many areas. As an important category of multi-view clustering, multi-
view spectral clustering has recently shown promising advantages in par-
titioning clusters of arbitrary shapes. Despite significant success, there
are still two challenging issues in multi-view spectral clustering, i.e., (i)
how to learn a similarity matrix for multiple weighted views and (ii) how
to learn a robust discrete clustering result from the (continuous) eigen-
vector domain. To simultaneously tackle these two issues, this paper pro-
poses a unified spectral clustering approach based on multi-view weighted
consensus and matrix-decomposition based discretization. In particular,
a multi-view consensus similarity matrix is first learned with the differ-
ent views weighted w.r.t. their confidence. Then the eigen-decomposition
is performed on the similarity matrix and a set of c eigenvectors are
obtained. From the eigenvectors, we first learn a continuous cluster label
and then discretize it to build the final clustering label, which avoids the
potential instability of the conventional k-means discretization. Exten-
sive experiments have been conducted on multiple multi-view datasets
to validate the superiority of our proposed approach.

Keywords: Multi-view spectral clustering · Weighted consensus ·
Matrix-decomposition · Discretization

1 Introduction

With the development of the information technology [1], a huge amount of multi-
view data have emerged from various kinds of real-world applications [2–12].
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Multi-view data can be captured from heterogenous views or sources, and these
different views or sources reveal the distinct information of the same object. For
instance, a YouTube video consists of text features, auditory features and visual
features. A text news can be translated into different languages. In traditional
multi-view clustering, a straightforward idea to deal with multi-view data is to
concatenate all the features into a new feature vector, and then perform single-
view clustering method on the new feature vector to obtain the clustering result.
However, this simple strategy ignores the different characteristics as well as the
correlation among multiple views. The features for multiple views are able to
provide complementary information between views. To capture the diversity and
correlation in multi-view data, many multi-view clustering algorithms have been
developed to improve the robustness of the clustering by making full use of the
information from multiple views [13–18].

In the past few years, many multi-view clustering algorithms have been pro-
posed by considering the rich information of multiple views [19–24]. For example,
Cai et al. [22] developed a multi-view spectral clustering framework to integrate
heterogeneous image features. Kumar et al. [21] introduced the co-regularization
technique in multi-view spectral clustering. These methods, however, may be
affected by weak or poor views, and thereby result in degraded clustering perfor-
mances. In multi-view clustering, different views may be associated with very dif-
ferent reliability and should be weighted accordingly. Inspired by the co-training
technique [19], Kumar and Daumé III [20] exploited prior knowledge to decide
the view weights, and designed a consensus cluster label matrix for multi-view
spectral clustering. However, besides the view-weighting issue, another limita-
tion to these existing multi-view spectral clustering methods [21,25,26] is that
they mostly rely on the k-means algorithm to perform discretization on the
continuous eigenvector domain, where the inherent instability of k-means may
significantly affect the final clustering result after discretization.

To simultaneously deal with the issue of view weighting and the issue of
potentially unstable discretization of k-means, in this paper, we propose a uni-
fied multi-view spectral clustering framework based on multi-view weighted con-
sensus similarity and matrix-decomposition based discretization. Specifically, a
consensus similarity matrix is first built with the multiple views evaluated and
weighted. Then, a continuous cluster label is learned, from which the final dis-
crete clustering label can be obtained in an optimization model. In the optimiza-
tion model, we exploit an alternative iteration scheme to achieve an approximate
solution. Extensive experiments have been conducted on multiple multi-view
datasets, which demonstrate the superiority of our proposed method.

The following sections are organized as follows. In Sect. 2 we describe the
proposed model in detail, and present an optimization algorithm to solve the
model. Next in Sect. 3, extensive experiments are conducted on four real-world
datasets to show the superiority of our method. Finally in Sect. 4, we conclude
the whole paper.
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Notations. In this paper, uppercase letters are used to represent the matrices.
For a matrix M , its i-th row can be written as mi whose j-th entry is denoted as
mij . Tr(M) stands for the trace of the matrix M . The v-th view of the matrix
M is expressed as M (v). We use ‖M‖2 and ‖M‖F to respectively represent the
l2-norm and the Frobenius norm of the matrix M . In addition, 1n means the
column vector whose length is n and the entries are all one.

2 The Proposed Algorithm

In this section, we introduce in detail the proposed Multi-view Spectral Cluster-
ing via Multi-view Weighted Consensus and Matrix-decomposition based Dis-
cretization (MvWCMD) algorithm. First of all, we will briefly introduce the
preliminary knowledge. And then we will describe in detail the proposed model,
the optimization problem of which will be solved by the alternative iteration
scheme. Finally, we will summarize the entire algorithm and provide time com-
plexity analysis.

2.1 Preliminary Knowledge

Graph-Based Clustering Description. Suppose there are n samples which
can be partitioned into c categories. To well represent the affinities between
these samples, a similarity matrix is supposed to be constructed in a graph-
based clustering method. A decent graph plays a vital role therein, therefore
it has been studied in many works [27]. When a similarity matrix is ideal, the
number of its connected components must be c the same as the number of the
final clusters, and it can be directly applied for clustering. Inspired by the idea
above, Nie et al. [28] proposed a Constraint Laplacian Rank (CLR) method
which aims to learn an ideal graph from the given similarity matrix. Given an
arbitrary similarity matrix A ∈ R

n×n, the target graph can be solved by the
following model

min
si1n=1,sij≥0,S∈C

‖S − A‖2F , (1)

where S is non-negative, and the entries of each row sum up to 1. C indicates
a set of n by n square matrices whose connected components are c. In the light
of the graph theory in [29], the connectivity constraint can be substituted for a
rank constraint, and thus the problem (1) can be rewritten as

min
si1n=1,sij≥0,rank(L)=n−c

‖S − A‖2F , (2)

where rank(L) stands for the rank of the Laplacian matrix L, and L =

D − (ST+S)
2 . The n by n degree matrix D is a diagonal matrix, and D (ii) =

∑
j(sij+sji)

2 . In this way, the ideal similarity matrix S can be obtained, and thus
it can be directly used in clustering. However, the CLR method is just applicable
for single-view clustering.
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Spectral Clustering Revisit. Looking back on the spectral clustering method
[30], data points can be partitioned into different groups according to their simi-
larities. Not requiring data is linearly separable, the method can explore the non-
convex pattern. For spectral clustering, Laplacian matrix L ∈ R

n×n is required
as an input. To obtain the Laplacian matrix L, the similarity matrix S ∈ R

n×n

is firstly needed to be constructed in traditional spectral clustering methods by
one of the three common strategies, such as the k-nearest-neighborhood (knn).
Suppose in data X there are c clusters, the spectral clustering problem can be
written as

min
Y

Tr
(
Y T LY

)
, s.t. Y ∈ Ind, (3)

where Y = [y1, y2, ..., yn]T ∈ R
n×c is the cluster indicator matrix whose labels

are discrete, and Y ∈ Ind indicates that the cluster label vector of each point
yi ∈ {0, 1}c×1 only comprises one and only one element “1” to reveal the cluster
membership of xi. Actually, the problem (3) is an NP-hard problem according
to the discrete constraint on Y . Thus, the matrix Y is usually relaxed to allow
continuous values, and finally the problem becomes

min
F

Tr
(
FT LF

)
, s.t. FT F = I, (4)

where F ∈ R
n×c is the relaxed continuous cluster label matrix, and the triv-

ial solution can be avoided by the orthogonal constraint therein. And then the
approximate solution of F can be achieved by the c eigenvectors of L correspond-
ing to the c smallest eigenvalues. Subsequently, traditional clustering method
such as k-means is applied to compute on F to get the final discrete cluster
labels [31]. Nevertheless, there still exists potential instability. Due to the uncer-
tainty of the post-processing step, the final solution may deviate from the real
discrete labels unpredictably [32].

2.2 The Proposed Model

Motivated by the idea that the spectral embedding matrix F is spanned by the
column vectors of the cluster indicator matrix Y ∈ Ind [31] when the similarity
matrix is ideal, we extend the CLR method mentioned above to the multi-view
clustering. Despite of this idea, the spectral embedding matrix F is actually not
equal to the cluster indicator matrix Y ∈ Ind. Thus, in this paper, not only
the spectral embedding matrix can be focused on, but also the cluster indicator
matrix can be solved finally without k-means discretization.

In multi-view clustering, the same object represented in different views is
expected to be partitioned into the same group. Thus, the ground truth simi-
larity matrix of each view is supposed to be the same. That is to say, there is
a consensus similarity matrix among all the views. For multi-view data, sup-
pose that there are m views, and A(1), A(2), ..., A(m) corresponding to the
similarity matrix of each view, we aim to get the multi-view consensus simi-
larity matrix S that can well approximate the original input similarity matrix
A(v) ∈ R

n×n (1 ≤ v ≤ m). A straight-forward solution is to assign the same
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weight to every input similarity matrix and achieve an average similarity matrix
by the equation A = 1

m

∑m
v=1 A(v). However, this simple way ignores the different

contributions among views, leading to bad clustering performance when there
are poor quality views. Accordingly, a group of meaningful weights are needed
to be introduced to measure the importance of different views. In this paper, a
trick idea [24] is followed by our algorithm to adaptively measure the weights
of the views. Consequently, the target multi-view weighted consensus similarity
matrix S with rank constraint is learned to approximate the similarity matrix of
each view with different weights. To solve this problem, a linear combination of
the reconstruction error ‖S −A(v)‖2F for each view will be minimized [24]. Thus,
the problem can be written as

min
S

m∑

v=1

w(v)‖S − A(v)‖2F ,

s.t. si1n = 1, sij ≥ 0, rank(L) = n − c,

(5)

where the constant w(v) is the optimal target function value of the following
problem:

w(v) def
= min

S

1
‖S − A(v)‖F

. (6)

We can obviously find that w(v) depends on S. If the view v is good, the value
of ‖S − A(v)‖F should be small, and therefore w(v) is supposed to be large.
Otherwise, a small weight is required to be assigned to a weak view.

Problem (5) is not easy to be solved, due to the rank constraint where L =

D− (ST+S)
2 and D is an n by n diagonal matrix whose diagonal elements D (ii) =

∑
j(sij+sji)

2 also depend on the similarity matrix S. Here L is a positive semi-
definite matrix, and thus σi (L) ≥ 0, where σi (L) corresponds to the i-th smallest
eigenvalue of the Laplacian matrix L. Inspired by [29], rank(L) = n − c is
tantamount to

∑c
i=1 σi (L) = 0. To cope with the optimization question with

rank constraint whose complexity analysis is combinatorial, the rank constraint is
incorporated into the objective function as a regularizer term [28,33]. Therefore,
the constraint is relaxed and our model is reformulated as

min
S

m∑

v=1

w(v)‖S − A(v)‖2F + α

c∑

i=1

σi (L) ,

s.t. si1n = 1, sij ≥ 0.

(7)

If α is enough large, the minimization of Eq. (7) will make the regularizer term∑c
i=1 σi (L) → 0. And then the rank constraint rank(L) = n − c will be solved.
Despite all this, problem (7) still remains a challenging problem as a result

of the last term. Fortunately, the Ky Fan’s Theorem [34] can be applied to solve
the problem above, that is to say

c∑

i=1

σi (L) = min
FT F=I

Tr
(
FT LF

)
, (8)
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where F ∈ R
n×c is a spectral embedding matrix, and the spectral embedding

matrix F is actually not equal to the cluster indicator matrix Y ∈ Ind. To better
achieve our clustering task, our multi-view spectral clustering via multi-view
weighted consensus and matrix-decomposition based discretization (MvWCMD)
model is proposed as follows:

min
S,F,Y,Q

m∑

v=1

w(v)‖S − A(v)‖2F
︸ ︷︷ ︸

multi-view weighted consensus similarity learning

+

αTr
(
FT LF

)

︸ ︷︷ ︸
continuous cluster label learning

+ β‖Y − FQ‖2F︸ ︷︷ ︸
discrete cluster label learning

,

s.t. si1n = 1, sij ≥ 0, FT F = I,QT Q = I, Y ∈ Ind, (9)

where α and β are the penalty parameters, and Q is a rotation matrix. Due to
the invariance property of spectral solution [35], FQ is another solution for any
solution F [36]. The last term expects to find an appropriate orthogonal rotation
matrix Q so that the result of FQ is closely approaching to the ground truth
discrete cluster label matrix Y . From Eq. (9), the multi-view weighted consensus
similarity matrix S, the continuous cluster label matrix F and the final discrete
cluster label matrix Y can be automatically learned from the data. Ideally, we
must have sij = 0 if data point i and j belong to different groups and vice versa.
That is to say, if and only if data point i and j belong to different groups, we
have sij = 0 or fi �= fj . Therefore, the correlation between the learned similarity
matrix and the cluster labels can be exploited in our unified framework Eq. (9).
In fact, there is a self-taught property in our clustering model because of the
feedback of cluster labels to induce the ideal similarity matrix and vice versa.

2.3 Optimization

In this subsection, an alternative iteration scheme is utilized to solve the prob-
lem (9). When updating one variable, the remaining variables will be fixed in
the alternative iteration scheme.

Computation of S. With F , Q and Y fixed, the problem is reduced to

min
S

m∑

v=1

w(v)‖S − A(v)‖2F + αTr
(
FT LF

)
,

s.t. si1n = 1, sij ≥ 0.

(10)

In particular, the problem (10) can be further written as

min
si1n=1,sij≥0

m∑

v=1

w(v)
n∑

i,j=1

(
sij − a

(v)
ij

)2

+ α

n∑

i,j=1

‖fi − fj‖22sij . (11)
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Due to the independence of the problem (11) for different i, it is equivalent to
separately solving the following problem for each i

min
si1n=1,sij≥0

n∑

j=1

m∑

v=1

w(v)
(
sij − a

(v)
ij

)2

+ α

n∑

j=1

‖fi − fj‖22sij . (12)

For briefness, vij = ‖fi − fj‖22 is used, and vi is a vector whose j-th entry is vij .
si and ai are in like manner. Thus, the problem (12) becomes

min
si1n=1,si≥0Tn

‖si −
∑m

v=1 w(v)a
(v)
i − α

2 vi∑m
v=1 w(v)

‖22. (13)

The problem above can be addressed by an efficient iterative algorithm pro-
posed in [37]. To rapidly obtain the totally sparse multi-view consensus similar-
ity matrix S, the neighbors of the i-th data can be chosen to be updated, and
exactly the neighbors can be set as a const, like 10 in our algorithm.

Computation of F . With S, Q and Y fixed, we have

min
F

αTr
(
FT LF

)
+ β‖Y − FQ‖2F , s.t. FT F = I. (14)

The problem (14) which is constrained by the orthogonal condition can be settled
efficiently by the algorithm proposed by [38].

Computation of Q. With S, F and Y fixed, the problem becomes

min
Q

‖Y − FQ‖2F , s.t. QT Q = I. (15)

This is an orthogonal Procrustes problem [39], which allows a closed-form solu-
tion, and the solution is as follows

Q = UV T , (16)

where U and V are the left and right components of the SVD decomposition of
Y T F .

Computation of Y . With S, F and Q fixed, it is equivalent to solving

min
Y

‖Y − FQ‖2F , s.t. Y ∈ Ind. (17)

Knowing that Tr
(
Y T Y

)
= n, the problem above can be reformulated as

max
Y

Tr
(
Y T FQ

)
, s.t. Y ∈ Ind. (18)

Consequently, the optimal solution can be achieved from the following equation

Yij =

⎧
⎨

⎩

1, j = arg max
k

(FQ)ik

0, otherwise.
(19)

The variables S, F , Q and Y are separately initialized at first. And then they
are updated iteratively in an interplay manner until convergence. In this way,
an overall optimal solution can be achieved.
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2.4 Algorithm Summary and Time Complexity Analysis

For clarity, the main procedure of the proposed MvWCMD method is sum-
marized in Algorithm 1. In what follows, we will provide the time computa-
tional complexity analysis. With our optimization strategy, the computation of
S requires O (

n3 + nv
)

complexity where v � n, since it needs to perform eigen-
value decomposition in every iterative step. SVD is involved in the updating of
Q, and its computational complexity is O (

nc2 + c3
)
. The complexity for F is

O (
nc2 + c3

)
. To update Y , O (

nc2
)

is needed. The number of clusters c is usu-
ally a small digit. Therefore, the main computational load of the model in Eq. (9)
relies on obtaining the multi-view consensus similarity matrix S.

Algorithm 1. Multi-view Spectral Clustering via Multi-view Weighted Con-
sensus and Matrix-decomposition based Discretization
Input: Similarity matrices for m views A(1), A(2), ..., A(m) and A(v) ∈ R

n×n, number
of clusters c, parameter α > 0, β > 0

1: Initialize the weight of each view w(v) = 1
m

, random matrices F ∈ R
n×c and

Q ∈ R
n×n, zero matrix Y ∈ R

n×c.
2: Let A =

∑m
v=1 w(v)A(v).

3: Compute F , which is spanned by the c eigenvectors of L = D−AT +A
2

corresponding
to the c smallest eigenvalues.

4: repeat
5: repeat
6: For each i, update the i-th row of S by solving the problem of Eq. (13).
7: until stopping criterion is met.
8: Update F according to Eq. (14).
9: Update Q by solving Eq. (16).

10: Y = 0.
11: Update Y by solving Eq. (19).
12: until stopping criterion is met.
Output: S ∈ R

n×n with exactly c components, spectral embedding matrix F ∈ R
n×c,

orthogonal rotation matrix Q ∈ R
n×n and indicator matrix Y ∈ Ind.

3 Experiment

In this section, extensive experiments are conducted to verify the superiority of
the proposed method on four real-world datasets. In our experiments, two com-
mon evaluation metrics, accuracy (ACC), and normalized mutual information
(NMI) are used to estimate the clustering performance of our proposed method
and baselines. For each measure, the value is higher, the clustering performance
is better [40]. Readers can refer to [41] for further details of the two measures. In
addition, parameter analysis, convergence analysis and comparison experiments
are separately conducted on the four real-world datasets.
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3.1 Real-World Datasets

In our experiment, the four benchmark datasets, UCI Handwritten digits,
MSRCv1, Caltech101-7 and Caltech101-20 are used. In the following, we will
introduce the details of these datasets.

1. Handwritten digits dataset
Coming from UCI machine learning repository, multiple features (Mfeat)
dataset is a handwritten digits dataset1. The dataset consists of 2000 samples
in which there are 10 classes. In our experiment, three kinds of features, 216
profile correlations, 76 Fourier coefficients and 47 Zernike moments are used
to represent images. Each type of features is considered as a view.

2. MSRCv1 dataset
MSRCv1 dataset is an image dataset [42]. The dataset consists of 210 objects
and 7 classes. In our experiment, four kinds of features, CM feature, GIST
feature, LBP feature and GENT feature are used to represent images, and
each type of features is regarded as a view.

3. Caltech101 datasets
Consisting of 101 categories of images, caltech101 [43] is an image dataset.
For experimental purpose, two subsets are chosen to represent two datasets
following the previous work [25]. The one dataset is named Caltech101-7, and
it has 1474 images and 7 widely used classes. The other dataset which is larger
is called Caltech101-20, and it is made up of 2386 images and 20 classes. Three
types of features, 1984-dimensional HOG feature, 512-dimensional GIST fea-
ture and 928-dimensional LBP feature from the images are selected to stand
for three views.

The summarization of the four real-world datasets is shown in Table 1.

Table 1. Statistic of the four real-world datasets.

Mfeat MSRCv1 Caltech101-7 Caltech101-20

View1 fac(216) cm(24) hog(1984) hog(1984)

View2 fou(76) gist(512) gist(512) gist(512)

View3 zer(47) lbp(256) lbp(928) lbp(928)

View4 - gent(254) - -

# Size 2000 210 1474 2386

# Class 10 7 7 20

3.2 Parameter Analysis

There are two parameters in our model: α and β. In the following, parame-
ter analysis is conducted to show the effect of the two parameters. There are
1 http://archive.ics.uci.edu/ml/index.php.

http://archive.ics.uci.edu/ml/index.php
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different properties of different datasets, and thus different ranges of α and β
are applied to different datasets. For example, the ranges of α and β are sepa-
rately 10, 30, 50, 70, 90 and 0.01, 0.03, 0.05, 0.07, 0.09 in Mfeat dataset, while the
ranges of α and β are separately 1, 3, 5, 7, 9 and 0.001, 0.003, 0.005, 0.007, 0.009
in Caltech101-7 dataset. The experimental results are respectively exhibited in
Figs. 1, 2, 3 and 4. According to the figures, best results in different datasets
can be obtained. For Mfeat dataset, there are the best results when α is 50 and
β is 0.01. Similarly, when α is 1 and β is 0.009, best results are achieved for
MSRCv1 dataset. In particular, when α is 7 and β is 0.003, the best ACC value
can be obtained in Caltech101-7, but the NMI value is lower at this time. To be
balanced, the comparatively better results are chosen when α is 9 and β is 0.007
for Caltech101-7. In Caltech101-20 dataset, α is 30 and β is 1 when there are
the best results.
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Fig. 1. Parameter analysis on α and β on Mfeat.
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Fig. 2. Parameter analysis on α and β on MSRCv1.
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Fig. 3. Parameter analysis on α and β on Caltech101-7.
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Fig. 4. Parameter analysis on α and β on Caltech101-20.

3.3 Convergence Analysis

To verify the convergence property of the proposed method, convergence analysis
is conducted. With the best results, the values of α and β from different datasets
are set according to the parameter analysis. The experimental results are showed
in Fig. 5. Obviously, we can generally conclude that the method will converge
during the 30 times of iterations from the subfigures.

3.4 Comparison Experiment

To validate the superiority of the proposed MvWCMD method, we compare
our algorithm with the following methods: Constraint Laplacian Rank [28]
(CLR), Co-Regularized Spectral Clustering [21] (CoReg), Co-Training Multi-
view Clustering [20] (CoTrn), Self-weighted Multi-view Clustering [24] (SwMC),
Multi-View Spectral Clustering [22] (MVSC), Robust Multi-view Spectral Clus-
tering [26] (RMSC) and Multi-view Learning with Adaptive Neighbors [44]
(MLAN). Following the CLR method, an initial input similarity matrix A(v)
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Fig. 5. Convergence analysis of optimization.

can be constructed for each view. Only a parameter k that means the number
of neighbors is needed to be set in the construction method. For the proposed
method, the k is fixed as 10. With the advantage of this graph construction
method, the neat normalized similarity matrix of each view is achieved. For all
the compared methods, the corresponding parameters are tuned to achieve bet-
ter performance suggested by the authors. The number of clusters c is set to
be equal to the number of the ground truth cluster labels. At the same time,
all the methods are conducted for 20 times to avoid the randomness, and the
average performance and their standard deviation (std) are computed. The best
experimental results will be remarked in bold face.

Tables 2 and 3 show the ACC and NMI results of all algorithms on the four
real-world datasets. From the two tables, the proposed algorithm can be seen
to obtain the best results among all the state-of-the-art methods in compari-
son. Thus, our proposed method MvWCMD which jointly learn the multi-view
weighted consensus similarity matrix and the cluster label matrix in a unified
framework is preferred.
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Table 2. Clustering results in terms of ACC on all datasets.

Method Mfeat MSRCv1 Caltech101-7 Caltech101-20

CLR 0.7385(0.0000) 0.5524(0.0000) 0.6859(0.0000) 0.4933(0.0000)

CoTrn 0.8002(0.0128) 0.6898(0.0139) 0.4184(0.0082) 0.4283(0.0055)

CoReg 0.7387(0.0095) 0.6241(0.0078) 0.4101(0.0033) 0.3796(0.0033)

SwMC 0.8300(0.0000) 0.5619(0.0000) 0.6635(0.0000) 0.4434(0.0000)

MLAN 0.7640(0.0000) 0.7098(0.0066) 0.6255(0.0000) 0.5270(0.0223)

MVSC 0.8224(0.0511) 0.7205(0.0452) 0.6197(0.0159) 0.4316(0.0329)

RMSC 0.5789(0.0126) 0.3246(0.0098) 0.5369(0.0047) 0.4909(0.0066)

MvWCMD 0.8479(0.0092) 0.7243(0.0332) 0.7169(0.0633) 0.5585(0.0485)

Table 3. Clustering results in terms of NMI on all datasets.

Method Mfeat MSRCv1 Caltech101-7 Caltech101-20

CLR 0.7609(0.0000) 0.4857(0.0000) 0.5112(0.0000) 0.3795(0.0000)

CoTrn 0.7494(0.0051) 0.6142(0.0090) 0.4145(0.0022) 0.5380(0.0015)

CoReg 0.6949(0.0044) 0.5088(0.0058) 0.4026(0.0027) 0.4884(0.0023)

SwMC 0.8542(0.0000) 0.5639(0.0000) 0.5251(0.0000) 0.4123(0.0000)

MLAN 0.8110(0.0005) 0.6007(0.0134) 0.5482(0.0002) 0.5478(0.0295)

MVSC 0.8393(0.0270) 0.6162(0.0198) 0.5256(0.0206) 0.5505(0.0111)

RMSC 0.5759(0.0142) 0.3103(0.0077) 0.5333(0.0055) 0.5021(0.0064)

MvWCMD 0.8792(0.0124) 0.6868(0.0310) 0.5521(0.0178) 0.5569(0.0439)

4 Conclusion

In this work, to eliminate the potential instability from the conventional k-means
discretization, we have proposed a novel Multi-view Spectral Clustering via
Multi-view Weighted Consensus and Matrix-decomposition based Discretization
(MvWCMD) method aiming to jointly learn the multi-view weighted consen-
sus similarity matrix, the continuous cluster label matrix and the final discrete
cluster label matrix without k-means discretization. With the help of this frame-
work, variables are updated iteratively in an interplay manner until convergence,
so that an overall optimal solution can be achieved. Extensive experiments have
been conducted on several real-world datasets to show the superiority of our
proposed method.
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