
Incremental Discovery of Order
Dependencies on Tuple Insertions

Lin Zhu1,2, Xu Sun1,2, Zijing Tan1,2(B), Kejia Yang3, Weidong Yang1,2,
Xiangdong Zhou1,2, and Yingjie Tian4

1 School of Computer Science, Fudan University, Shanghai, China
zjtan@fudan.edu.cn

2 Shanghai Key Laboratory of Data Science, Shanghai, China
3 Ann Arbor EECS Department, University of Michigan, Ann Arbor, USA
4 State Grid Shanghai Municipal Electric Power Company, Shanghai, China

Abstract. Order dependencies (ODs) are recently proposed to describe
a relationship of ordering between lists of attributes. It is typically too
costly to design ODs manually, since the number of possible ODs is of
a factorial complexity in the number of attributes. To this end, auto-
matic discovery techniques for ODs are developed. In practice, data is
frequently updated, especially with tuple insertions. Existing techniques
do not lend themselves well to these situations, since it is prohibitively
expensive to recompute all ODs from scratch after every update. In this
paper, we make a first effort to investigate incremental OD discovery
techniques in response to tuple insertions. Given a relation D, a set Σ of
valid and minimal ODs on D, and a set �D of tuple insertions to D, it is
to find, changes �Σ to Σ that makes Σ ⊕�Σ a set of valid and minimal
ODs on D + �D. Note that �Σ contains both new ODs to be added
to Σ and outdated ODs to be removed from Σ. Specifically, (1) We for-
malize the incremental OD discovery problem. Although the incremental
discovery problem has a same complexity as its batch (non-incremental)
counterpart in terms of traditional complexity, we show that it has good
data locality. It is linear in the size of �D to validate on D+�D any OD
ϕ that is valid on D. (2) We present effective incremental OD discovery
techniques, leveraging an intelligent traversal strategy for finding �Σ
and chosen indexes to minimize access to D. Our approach computes
�Σ based on ODs in Σ, and is independent of the size of D. (3) Using
real-life data, we experimentally verify that our approach substantially
outperforms its batch counterpart by orders of magnitude.

1 Introduction

Data dependencies, a.k.a. integrity constraints, specify data semantics and inher-
ent attribute relationships. They are widely employed in schema design, query
optimization [15] and data cleaning [3,5,10,11], among other things. Recently,
order dependencies (ODs) [15,18] are proposed to describe the relationship
between two lexicographical ordering specifications on lists of attributes. ODs

c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11446, pp. 157–174, 2019.
https://doi.org/10.1007/978-3-030-18576-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18576-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-18576-3_10

158 L. Zhu et al.

properly subsume functional dependencies (FDs), and can define lexicographic
orders used in the SQL order-by clause. Hence, ODs are proved to be useful in
query optimizations concerning sorting [15,18]. Compared to traditional depen-
dencies based on sets, e.g., FDs, denial constraints (DCs) [5] and differential
dependencies (DDs) [14], ODs are defined on lists, and are hence quite different.
We will review formal definitions of OD in Sect. 2, and first provide an illustrative
example to highlight features of OD.

A B C D E F G

D

t1: 1 2 3 4 1 1 1
t2: 1 2 3 4 2 1 2
t3: 2 1 4 2 4 1 3
t4: 2 4 5 1 4 1 4

D t : 1 2 3 5 4 2 5
t : 1 2 4 3 5 6 7

Fig. 1. An instance D, and �D of tuple insertions to D.

Example 1: Figure 1 shows an instance D with four tuples {t1, t2, t3, t4}. If we
sort tuples by attribute A, and then break ties by attribute B, these tuples are
also sorted by attribute C first and then by attribute D. This sorting specification
is in accordance with the SQL order by clauses. With the notation of OD, this is
written as AB �→ CD, i.e., AB orders CD. Here AB and CD are lists of attributes.
Leveraging this example, we illustrate several unique features of ODs.

(1) OD AB �→ CD states that values on CD are monotonically non-decreasing
with respect to values on AB [15]. Specifically, (a) AB �→ CD implies an
FD AB → CD. Here set AB (resp. CD) denotes the set of elements in list
AB (resp. CD). To guarantee that when tuples are sorted by AB, they are
also sorted by CD, tuples with a same value on AB must have a same value
on CD, e.g., t1 and t2. (b) ODs also impose order semantics on tuples with
different values on AB. For example, t3 has a larger AB’s value than t2, the
CD’s value of t3 cannot be less than that of t2, to satisfy AB �→ CD.

(2) Unlike other constraints, e.g., FDs and DCs, ODs are specified on lists of
attributes, and the order of attributes on the left-hand side (LHS) and right-
hand side (RHS) matters. For example, neither BA �→ CD nor AB �→ DC
holds.

(3) FDs can be always converted into the form with a single RHS attribute. For
example, AB → CD can be expressed as AB → C and AB → D. This sim-
plifies FD discovery [9,13]. In contrast, RHS attributes of an OD are taken
as a whole and may not be splitted. As an example, AB �→ D does not
hold. ��

Incremental Discovery of Order Dependencies on Tuple Insertions 159

No matter how desirable, it is prohibitively time-consuming to design ODs

manually, even by domain experts. Automatic discovery techniques for ODs [12,
16,17] are hence studied, just like those for FDs [9,13], DCs [2,4] and DDs [14],
among others. The need for automatic OD discovery is even more evident, since
the number of possible list-based ODs is of a factorial complexity in the number
of attributes [12], much larger than that of FDs.

Discovering ODs is already shown to be a hard problem. Worse, Data in
practice is typically dynamic, i.e., frequently updated. Even if tuple deletions
are not allowed, tuple insertions are generally supported on most data. It is too
expensive to recompute all ODs, especially when data grow with tuple insertions.
This highlights the quest for incremental OD discovery techniques, to update the
set Σ of discovered (valid and minimal) ODs on an instance D as a set �D of
tuple insertions is applied to D. Intuitively, when �D is small compared to D, it
is more efficient to find update �Σ to Σ than the entire set of ODs on D + �D
from scratch. However, the incremental OD discovery problem is very intricate,
as illustrated by the example below.

Example 2: We illustrate two ways to find ODs in �Σ. In Fig. 1, suppose �D
with a single tuple t′ is applied to D (neglecting t′′ at this time).
(1) In instance D, the algorithm for OD discovery, e.g., [12], finds AB �→ CD

and adds it into Σ. It can be verified that AB �→ CD is no longer valid
(holds) on D + �D. As a violation, tuples t1, t

′ agree on their AB’s value,
but have different CD’s values. An incremental OD discovery algorithm then
has to compute updates �Σ to Σ. It finds that ABE �→ CD, ABF �→ CD,
ABG �→ CD and AB �→ C are all valid on D+�D. Therefore, it adds all these
ODs into �Σ+, the set of ODs to be added into Σ, and adds AB �→ CD into
�Σ−, the set of ODs to be removed from Σ. Note that none of ABE �→ CD,
ABF �→ CD, ABG �→ CD or AB �→ C is in Σ, since they are not minimal
(formalized in Sect. 2). Theoretically, they are not in Σ because AB �→ CD is
in Σ and AB �→ CD logically implies them [12,15]: any instance that satisfies
AB �→ CD also satisfies them. However, when AB �→ CD no longer holds, our
incremental method has to discover them, since they are valid on D + �D,
and are minimal now.

(2) Both E �→ F and EB �→ G are in Σ. EFB �→ G is not in Σ; it is valid but
not minimal. Theoretically, EFB �→ G is an “embedded” OD w.r.t. EB �→ G
according to E �→ F [12,15]. Since the order of E determines that of F,
adding F after E in a list does not impose any new order restrictions and is
regarded as redundancy (formalized in Sect. 2). However, E �→ F is not valid
after t′ is inserted. Our incremental algorithm has to check the validity of
EFB �→ G. Indeed, although EB �→ G is not valid on D + �D, EFB �→ G is
valid. EFB �→ G is hence put into �Σ+: it is both valid and minimal now.
Note that even when EB �→ G is valid on D + �D and is not removed from
Σ, EFB �→ G is still minimal. This is because EB is not a prefix of EFB. Also
note that EFB �→ G cannot be discovered following the strategy in (1), i.e.,
adding attributes to the tail of LHS attribute list, or removing attributes
from the tail of RHS attribute list. ��

160 L. Zhu et al.

Contributions. We make a first effort to investigate incremental OD discovery.

(1) We formalize the incremental OD discovery problem (Sect. 3). We show that
this problem has a same complexity as its batch (non-incremental) counter-
part, in terms of the traditional complexity analysis. Nevertheless, we prove
that the incremental problem has a good data locality. Specifically, given an
OD ϕ valid on D and a set �D of tuple insertions to D, it is linear in the
size of �D to check the validity of ϕ on D + �D.

(2) We present efficient methods for incremental OD discovery (Sect. 4). We
present an intelligent traversal strategy for finding new valid and minimal
ODs on D + �D, based on those already discovered ODs in Σ. We study
techniques for choosing indexes, such that the access to D is minimized, and
hence the required local data can be effectively fetched. Our approach has a
desirable property that it is independent of the size of D.

(3) Using real-life data, we experimentally verify that our incremental algorithm
outperforms the batch counterpart by orders of magnitude (Sect. 5).

Related Work. Dependency discovery is one of the most important aspects of
data profiling. To alleviate the burden of users, automatic dependency discoveries
are conducted for a host of different constraints; see e.g., FDs [9,13], conditional
FDs (CFDs) [6,8], DCs [2,4] and DDs [14].

Order dependencies (ODs) [15,18] state a relationship of order between lists
of attributes. Theoretical foundations of ODs are well discussed in [15,18]. ODs

properly subsume FDs, and are well employed in query optimizations concerning
order. [12] presents the first approach for discovering ODs, with a level-wise
bottom-up traversal of the lattice of permutations of attributes, an efficient OD

validation method and some pruning rules to reduce the search space. Since ODs

are defined on lists, the search space (the number of possible ODs) is factorial in
the number of attributes. [16,17] present a polynomial mapping form ODs defined
in lists to a canonical form of ODs in sets; this canonical form of ODs in sets has
an advantage that the search space is exponential in the number of attributes.
[16,17] then present discovery techniques for ODs via set-based axioms. In this
paper, we follow the notation of list-based ODs. This is because (1) ODs defined in
lists are preferable, since they naturally model the lexicographic orders employed
in the SQL order-by clause; (2) each list-based OD of the form X �→Y has to
be expressed in |X|·|Y| set-based ODs, where |X| (resp. |Y|) is the number of
attributes in list X (resp. Y). Therefore, the discovery of set-based ODs does not
lead to the discovery of list-based ODs; and (3) we address the incremental OD

discovery problem, to improve the efficiency from another perspective.
Incremental techniques are developed in different aspects of data quality. [3]

discusses incremental data repairing for CFDs. Taking a clean relation D w.r.t.
a set Σ of CFDs and a set �D of tuple insertions, [3] presents methods to repair
tuples in �D such that Σ is satisfied. [7] investigates incremental detection of
CFD violations in distributed data. Given a set V of violations w.r.t. a set Σ
of CFDs on a distributed database D and updates �D to D, [7] aims to find
changes �V to V , with minimum data shipment among sites. Our work considers
incremental constraint discovery for ODs, and significantly differs from [3,7].

Incremental Discovery of Order Dependencies on Tuple Insertions 161

To our best knowledge, the only incremental algorithm for constraint discov-
ery on dynamic data is [1], concerning unique column combinations (Uccs), a.k.a.
candidate keys. [1] employs indexes on attributes to reduce access to old data,
and expands attributes in old Uccs for new Uccs when old Uccs no longer hold.
Note that OD subsumes FD, and FD subsumes Ucc. We consider ODs with multi-
ple LHS and RHS attributes in lists. This makes the traversal for OD candidates,
OD validations and index choice far more complicated, compared to [1].

2 Preliminaries

We review basic notations and formal definitions of ODs [12,15–18].

Relation. R(A1, . . . , Am) denotes a relation schema, where each Aj(j ∈ [1,m])
denotes a single attribute. D denotes a specific instance, and t, s denote tuples.
For an attribute Aj , tAj

denotes the value of attribute Aj in a tuple t.

Sets and Lists. X and Y denote sets of attributes, while X and Y denote lists
of attributes. Specifically, {} (resp. []) denotes the empty set (resp. empty list).
XY is a shorthand for X ∪ Y, and XY is a shorthand for the concatenation of
X and Y. For a list X, set X denotes the set of elements in X.

For an attribute list X = [A1,. . . ,Ak], we say X contains another list Y, when
there exists some 1 ≤ i ≤ j ≤ k such that Y = [Ai,. . . ,Aj]. We use prefixes(X)
to denote the set of all possible prefixes of X, i.e., [A1,. . . ,Ai] for any i ≤ k.

Order on Lists. For a tuple t and an attribute list X = [A1,. . . ,Ak], we use tX
to denote the projection of tuple t on X, i.e., [tA1 ,. . . ,tAk

]. For two tuples t, s,

(1) t ≺X s if there exists some i ≤ k such that tAi
< sAi

and for all j < i,
tAi

= sAi
.

(2) t =X s when tAi
= sAi

for all i ∈ [1, k].
(3) t �X s if t ≺X s or t =X s.

Order Dependency [12,15–18]. For attributes lists X, Y on schema R, X �→Y
denotes an order dependency. An instance D of R satisfies an OD ϕ =X �→Y, if
for any two tuples t, s ∈ D, when t �X s, t �Y s. We say ϕ is valid on D and ϕ
holds on D interchangeably. If X �→Y is not valid on D, we write X ��→Y.

Remark. As stated in [15,18], ODs strictly generalize FDs. Specifically, each
OD X �→Y has an “embedded FD” X →Y; if X �→Y holds, X →Y holds.

Violations of Order Dependency [15,18]. For an OD ϕ = X �→Y, two sources
of OD violations exist:

(1) A split w.r.t. ϕ is a pair of tuples t and s such that t =X s, but t �=Y s.
(2) A swap w.r.t. ϕ is a pair of tuples t and s such that t ≺X s but s ≺Y t.

Example 3: (1) A split is actually a violation of the “embedded” FD. In Fig. 1,
t1 and t2 lead to a split w.r.t. F �→G. t1 =F t2, but t1 �=G t2. (2) t1 and t3 cause
a swap w.r.t. A �→B. t1 ≺A t3, but t3 ≺B t1. ��

162 L. Zhu et al.

The number of ODs valid on an instance can be very large. Similar to discov-
ery techniques for other constraints, it is more instructive to find minimal valid
ODs than to find all valid ODs. List-based ODs lead to an intricate definition of
minimality. We follow similar criteria as [12,15], formalized as follows.

Minimality of an Attribute List. An attribute list X is minimal, iff for any
disjoint sub-lists Y and W in X: if W follows (maybe not directly) Y,Y ��→ W.

Intuitively, when the order of Y determines that of W, adding W after Y in a
list does not impose any new order restrictions. It is easy to see that an attribute
Ai occurs at most once in any minimal attribute list X.

Minimality of ODs. An OD X �→Y is minimal, iff

(1) � ∃ X′ �→YY′, such that X′ ∈prefixes(X) and X′ �→YY′ is valid (if X′ = X, Y′

is not empty; otherwise Y′ can be empty); and
(2) both X and Y are minimal.

Example 4: Recall the instance D presented in Fig. 1. (1) AB �→ CD is minimal,
but ABE �→ CD is not minimal. (2) Because E �→ F, EFB is not a minimal
attribute list and hence EFB �→ G is not a minimal OD. ��

3 Data Locality for Incremental OD Discovery

We formalize the incremental OD discovery problem and show its complexity. We
then justify that the incremental OD discovery problem has good data locality.

Incremental OD Discovery. Given a relation D of schema R, a set Σ of valid
and minimal ODs on D, and a set �D of tuple insertions to D, incremental OD

discovery is to find, changes �Σ to Σ that makes Σ ⊕ �Σ a set of valid and
minimal ODs on D + �D; �Σ contains both new ODs to be added to Σ and
outdated ODs to be removed from Σ.

Note that each batch (non-incremental) OD discovery problem on D can
be directly modeled as an incremental OD discovery problem with inputs D′,
�D′ and Σ, by setting D′ = φ, �D′ = D and Σ = φ. Since the incremental
OD discovery includes the batch counterpart as a special case, the incremental
problem at least has a same complexity as the batch one in terms of traditional
complexity. In practice, �D is typically (much) smaller than D. In contrast
to batch algorithms that recompute the output from scratch, an incremental
algorithm can greatly improve efficiency if its cost is independent of D.

In light of this, we classify local data for an inserted tuple t′ and an OD ϕ
that is already valid on D, followed by computations concerning only local data.

Local Data of a Single Tuple Insertion. Given an OD X �→Y valid on D
and a tuple t′ inserted into D, we can find the following three sets of tuples on
D, as local data of t′ w.r.t. X �→Y :

equ(X, t′): tuple s ∈equ(X, t′), if s =X t′;
low(X, t′): tuple s ∈low(X, t′), if (1) s ≺X t′; and (2) there exists no s′ such

that s ≺X s′ ≺X t′;

Incremental Discovery of Order Dependencies on Tuple Insertions 163

high(X, t′): tuple s ∈high(X, t′), if (1) t′ ≺X s; and (2) there exists no s′ such
that t′ ≺X s′ ≺X s;

Note that equ(X, t′) (resp. low(X, t′), high(X, t′)) may be empty. Incremental
OD discovery takes as inputs D and the set Σ of ODs valid on D. Hence, some
auxiliary data structure can be built to effectively obtain required local data.

Example 5: In Fig. 2(a), we show a simplified B+ tree built on D (Fig. 1) with
AB as the key. For each key value in a leaf node, we store the set of tuple ids.
In addition, we build a doubly linked list between successive leaf nodes. For t′,
equ(AB, t′) ={t1, t2}, high(AB, t′) ={t3} and low(AB, t′) = { }. With the B+
tree, it takes O(log |D|) to fetch equ(AB, t′), and then O(1) to fetch (non-empty)
low(AB, t′) (resp. high(AB, t′)), where |D| is the number of tuples in D. ��

…
…

equ(AB,)

(2,1)
t3

(2,4)
t4

(1,2)
t1t2

high(AB,)
(a)

…
…

equ(AB,)

(2,1)
t3

(2,4)
t4

high(AB,)
(b)

equ(AB,)

(1,2)

t1t2

Fig. 2. Example local data

Note that ∀s, t ∈ equ(X, t′) (resp. low(X, t′), high(X, t′)), t =Y s on instance
D, since X �→Y is valid on D. We choose an arbitrary tuple from equ(X, t′) (resp.
low(X, t′), high(X, t′)), denoted as t

′X
e (resp. t

′X
l , t

′X
h), when the set is not empty.

The following theorem states that whether X �→Y is valid on D + {t′} concerns
computations only on t′ and t

′X
e , t

′X
l , t

′X
h .

Theorem 1: ϕ=X �→Y is valid on D + {t′}, when (1) there is no split between
t′ and t

′X
e ; and (2) there is no swap between t′ and t

′X
l (resp. t

′X
h). ��

Local Data of �D. We then consider �D with multiple tuple insertions. For
a tuple t′ in �D, we still denote by equ(X, t′), low(X, t′) and high(X, t′) local
data on D, while denote by equ′(X, t′), low′(X, t′) and high′(X, t′) local data
on D + �D. equ′(X, t′) = equ(X, t′) ∪ �equ(X, t′), where �equ(X, t′) is the set
of tuples t ∈ �D such that t =X t′. Obviously, t′ ∈ �equ(X, t′); equ′(X, t′) =
equ′(X, t′′) if t′′ =X t′. Similarly for low′(X, t′) and high′(X, t′).

Leveraging the auxiliary structure to effectively obtain required data, Theo-
rem 2 shows the good data locality of incremental OD validation, as an important
building block of incremental OD discovery.

Theorem 2: For any OD ϕ that is valid on D, it is linear in |�D| to check the
validity of ϕ on D + �D, where |�D| is the number of tuples in �D. ��

164 L. Zhu et al.

Algorithm. We prove Theorem 2 by providing algorithm �Check(ϕ) with the
required property, for checking the validity of ϕ =X �→Y on D+�D. �Check(ϕ)
divides �D into k disjoint sets = {�D1, . . . ,�Dk} with hashing, such that
∀t′, t′′ ∈ �Di (i ∈ [1, k]), t′ =X t′′. It then selects an arbitrary t′i in each �Di.

(1) To check swap w.r.t. t′i, it finds t
′max
e = argmaxt(tY) and t

′min
e =

argmint(tY) in all t ∈ equ′(X, t′i) (ties broken by an arbitrary one). It then
finds t

′max
l (resp. t

′min
h) in low′(X, t′i) (resp. high′(X, t′i)) similarly. There is

no swap iff t
′max
e �Y t

′min
h and t

′max
l �Y t

′min
e .

(2) To check split w.r.t. t′i, it suffices to check whether t
′max
e =Y t

′min
e .

Example 6: Consider �D with two tuples t′, t′′ (Fig. 1) and ϕ =AB �→CD.
As shown in Fig. 2(b), equ′(AB, t′) = equ′(AB, t′′) ={t1, t2, t

′, t′′}: equ(AB, t′)
={t1, t2}, �equ(AB, t′) ={t′, t′′}. high′(AB, t′) =high(AB, t′) ={t3}.

t
′max
e = t′′, t

′min
e = t1 and t

′min
h = t3. split exists since t1 �=CD t′′, and swap

exists since t3 ≺CD t′′. ��

Complexity. It is easy to see the correctness of �Check(ϕ). We then prove
�Check(ϕ) is linear in |�D|. Observe that the total number of required
equ′(X, t′i), low′(X, t′i) and high′(X, t′i) for all t′i is at most 3×|�D|. In equ′(X, t′i),
it takes O(1 + |�equ(X, t′i)|) to find t

′max
e and t

′min
e , where |�equ(X, t′i)| is the

number of tuples in �equ(X, t′i). This is because all tuples in equ(X, t′i) agree on
values of Y. Note that the sum of |�equ(X, t′i)| for all t′i equals |�D|.

If �low(X, t′i) is not empty for some t′i, low′(X, t′i) = equ′(X, s′) for any s′ ∈
�low(X, t′i). In this case, no additional computation on low′(X, t′i) is required. If
�low(X, t′i) is empty, it takes O(1) to find t

′max
l in low′(X, t′i) because all tuples

in low(X, t′i) have a same value on Y. Similarly for high′(X, t′i).
To sum up, �Check(ϕ) is linear in |�D|.

4 Incremental OD Discovery

We first discuss methods for finding �Σ on D+�D, based on Σ. We then study
techniques for choosing indexes, to minimize access to the original data.

4.1 Finding ODs in �Σ

Note that �Σ consists of two disjoint sets �Σ+ and �Σ−; �Σ+ contains new
valid and minimal ODs as additions to Σ, while �Σ− contains non-valid ODs

that should be removed from Σ. Taking as input the set Σ of minimal and valid
ODs on D, it is relatively easy to compute �Σ−. As stated in Theorem 2, we
can effectively check the validity of any OD ϕ in Σ on D + �D by �Check(ϕ).
If ϕ no longer holds on D + �D, we add it to �Σ−.

It is, however, much more intricate to compute �Σ+ as shown in Example 2.
To fully take advantage of incremental computations, we should always leverage
�Check(ϕ) in the validation of any OD ϕ; a prerequisite is that ϕ must hold on
D. This is possible since any OD valid on D+�D must be valid on D, and hence

Incremental Discovery of Order Dependencies on Tuple Insertions 165

ODs in �Σ+ can be computed based on ODs in Σ. We present two ways to find
ODs (candidates) in �Σ+, referred to as enrichment and expansion, respectively.

Enrichment of an Attribute List. Given an OD ϕ =X �→ Y ∈ Σ, but invalid
on D + �D, and an attribute list Z, when (1) Z contains X, and (2) Z and Y
are disjoint, we “enrich” Z by ϕ, to generate a set of attribute lists, denoted by
enrich(Z, ϕ). W.l.o.g., let Z = X′XA1′ . . .Ak′ . enrich(Z, ϕ) = { Z, X′XYA′

1 . . .A′
k,

. . . , X′XA′
1 . . .A′

kY }. If either condition (1) or (2) is false, enrich(Z, ϕ) = { Z }.
Intuitively, enrich(Z, ϕ) (excluding Z) is a set of non-minimal attribute lists

due to the validity of X �→ Y on D. When X �→ Y no longer holds on D + �D,
these attribute lists become minimal. We then present our first way to generate
candidates in �Σ+, referred to as enrichment.

Enrichment of an OD. Given an OD ϕ = X �→ Y in Σ and a set Υ of ODs

{ϕ1, . . . , ϕm}, where each ϕi (i ∈ [1,m]) is in Σ, but is invalid on D + �D,
enrichment of ϕ by Υ , denoted by Enrich(ϕ, Υ) is to generate a set of ODs = {U
�→ V }, where U ∈ enrich(X, ϕi), V ∈ enrich(Y, ϕj), ∀ϕi, ϕj ∈ Υ .

Example 7: Suppose ϕ = AB �→ CD and Υ ={B �→ E, C �→ F }, enrichment of
ϕ by Υ is {AB �→ CD, AB �→ CFD, AB �→ CDF, ABE �→ CD, ABE �→ CFD, ABE
�→ CDF }. ��
Complexity. Observe that enrichment is conducted based on attributes in ODs.
Its complexity is irrelevant of |R|, the number of attributes of the schema R,
and it requires no data access to D.

Intuitively, enrichment of ϕ by Υ is to enrich the LHS and RHS attribute
lists of ϕ by ODs in Υ respectively. It is easy to prove the following results. (1)
Any OD in Enrich(ϕ, Υ) is valid on D; and (2) none of ODs in Enrich(ϕ, Υ) is
minimal on D (excluding ϕ = X �→ Y). ODs generated by enrichment are only
candidates in �Σ+, since some of them are invalid on D + �D. Based on those
invalid candidates and ODs in �Σ−, we provide another approach to computing
ODs in �Σ+, referred to as expansion.

Algorithm. Algorithm Expand is presented to apply expansion to an OD ϕ =
X �→Y valid on D but invalid on D + �D. It produces a set Υ of ODs valid on
D + �D. Each OD ∈ Υ is of the form XZ �→Y′, where Y′ ∈ prefixes(Y). It is
easy to see that these ODs are valid but not minimal on D.

(1) Expand first eliminates possible swap by removing attributes from the tail
of Y one by one, until no swap exists or Y is empty (lines 2–4). Note that
adding attributes to the tail of X does not help remove swap. If swap cannot
be removed, Expand returns an empty set; no valid ODs can be generated
based on X �→Y.

(2) Expand then turns to eliminate split. In its loop (lines 6–11), Expand tries X
�→Y′ for each prefix Y′ of Y (line 11). (a) If no split exists, Expand returns
current results (line 8). This is because adding more attributes to the tail
of X and (or) removing attributes from the tail of Y cannot further produce
minimal ODs. (b) Otherwise, function ExpandL is called to remove split by

166 L. Zhu et al.

Algorithm 1: Expand
input : a relation D of schema R, an OD ϕ = X �→Y valid on D, and a set

�D of tuple insertions to D.
output: a set Υ of ODs valid on D + �D, where each OD ∈ Υ is of the form

XZ �→Y′, where Y′ ∈ prefixes(Y).
1 Υ := {}; LHSset := {}; Vset := {};
2 while Y is not empty do
3 if there is no swap detected by �Check(ϕ) then break;
4 Remove the last attribute from Y;

5 if Y is empty then return { };
6 while Y is not empty do
7 Check split by �Check(ϕ), and put violations into Vset;
8 if Vset is empty then return Υ∪{X �→Y };
9 foreach X′ ∈ ExpandL(Vset,X,Y, LHSset) do

10 Add X′ �→Y to Υ ; Add X′ to LHSset;
11 Remove the last attribute from Y;

12 return Υ ;

13 Function ExpandL(Vset,U,W, LHSset)
input : a set Vset of split violations; each violation is a set of tuples with a

same U’s value but different W’s values. LHSset is a set of attribute
lists: ∀ Z ∈ LHSset, Z �→WW′ is valid on D + �D for some list W′.

output: a set Ω of attribute lists, ∀U ′ ∈ Ω, U′ �→W is valid on D + �D.
14 Ω := {};
15 foreach attribute A ∈ R\U such that swap free(Vset, A), and there is no Z in

LHSset, where Z ∈ prefixes(UA) do
16 V ′

set := update(Vset, A);
17 if V ′

set is empty then Ω := Ω ∪ { UA };
18 else Ω := Ω ∪ ExpandL(V ′

set, UA, W, LHSset);

19 return Ω;

adding attributes to the tail of X, and its results are kept (lines 9–10). Recall
that �Check(ϕ) divides tuples in �D into {�D1, . . . ,�Dk} based on their
X’s values. It then detects split on equ′(X, t′i) for a tuple t′i in each �Di.
All equ′(X, t′i) with different Y’s values are collected in Vset (line 7), as a
parameter of ExpandL (line 9).

(3) Function ExpandL takes a set Vset of split violations, where each violation
is a set of tuples that have a same value on U but different values on W.
ExpandL returns a set Ω of attribute lists. Each U′ ∈ Ω is obtained from U
by adding attributes to its tail, and U′ �→W is valid on D + �D. Instead of
simply trying permutation of all attributes in R\U , ExpandL employs both
instance-based and schema-based strategies to effectively prune the search
space (line 15). (a) ExpandL only chooses attribute A that does not cause
swap among tuples in a same set in Vset (checked by swap free(Vset, A)).
Recall that in Vset, each set (violation) vio = {t1, . . . , tm}, contains tuples
that have a same value on U but different values on W. Adding A to the tail
of U does not cause swap if for any two tuples ti, tj in vio, when ti ≺A tj ,

Incremental Discovery of Order Dependencies on Tuple Insertions 167

ti �W tj . (b) ExpandL avoids UA when Z ∈ prefixes(UA) for some Z in
LHSset; if Z �→WW′ is valid, UA �→W is not minimal. Recall that LHSset

is maintained when new ODs are found (line 10).
(4) Vset is updated after A is added to the tail of U (update(Vset, A)) (line 16).

Specifically, (a) it further divides sets in Vset based on values on A; tuples
t′, t′′ are in a same set in V ′

set when t′ =UA t′′; and (b) it discards set vio
in V ′

set when vio contains only one tuple, or ∀t′, t′′ ∈ vio, t′ =W t′′. If V ′
set

is empty, no further attribute additions are required (line 17). Otherwise,
ExpandL is recursively called with updated violations and a lengthened LHS

attribute list (line 18).

Example 8: Recall D and �D with two tuples t′, t′′ (Fig. 1) and ϕ =AB �→CD.
(1) Expand first tries to eliminate swap by removing attributes from the RHS of
ϕ; this is done after removing D. (2) Expand detects split on equ′(AB, t′), and
hence the set {t1, t2, t

′, t′′} is put into Vset. (3) ExpandL tries to eliminate split
by adding attributes to the end of AB. For example, adding E does not cause a
swap. (4) After that, the only violation {t1, t2, t

′, t′′} in Vset is divided into four
singleton sets {t1},{t2},{t′},{t′′}. Therefore, no split exists now. ABE is collected
in Ω. There is no need for more attributes at the end of ABE, and step (3) is
repeated by trying other attributes at the end of AB. (5) After ExpandL returns,
all ODs of the form ABS �→C (resp. ABS) are collected in Υ (resp. LHSset). Since
no more attributes can be removed from the RHS of ϕ, Expand terminates. ��
Complexity. (1) In terms of data complexity, recall that �Check(ϕ) is linear in
|�D|. On Vset, function update(Vset, A) is linear in m on a set vio with m tuples
(line 16). The most expensive part is function swap free(Vset, A) (line 15). To
check whether adding attribute A causes swap w.r.t. W, it takes O(m · logm) to
sort tuples in vio based on values on A, followed by a linear scan to check values
on W between successive tuples in O(m). Vset is initialized with equ′(X, t′i) with
different Y’s values (line 7). Hence, Expand is irrelevant of |D|. (2) Removing
attributes from the tail of Y is linear in the size of Y, while adding attributes to
the tail of X has a worst-case factorial complexity in the number of attributes in
R\X . However, ExpandL is also bounded by the number of violations in Vset; the
size of each violation monotonously decreases and all violations are eventually
eliminated. Moreover, effective pruning rules are applied in lines 8, 15 and 17.

We are now ready to present the algorithm to compute �Σ, by combining
enrichment and expansion together.

Algorithm. Algorithm IncOD takes as inputs a relation D of schema R, a set
Σ of valid and minimal ODs on D, and a set �D of tuple insertions to D. It
computes �Σ such that Σ ⊕�Σ is a set of valid and minimal ODs on D +�D.

(1) It initializes three empty sets Σcand, Σvalid and Σpre, for OD candidates,
new valid ODs in D + �D, and ODs in Σ that are also valid on D + �D,
respectively. It validates every ϕ ∈ Σ on D + �D by �Check(ϕ), and puts
invalid (resp. valid) ϕ into �Σ− (resp. Σpre) (lines 2–4).

(2) It applies enrichment to every ϕ ∈ Σ by �Σ−, and collects results in Σcand

(line 5). ODs in Σcand are then validated on D + �D. Those valid ones

168 L. Zhu et al.

Algorithm 2: IncOD
input : a relation D of schema R, a set Σ of valid and minimal ODs on D,

and a set �D of tuples insertions to D.
output: �Σ = �Σ+ ∪ �Σ−. �Σ+ contains new valid and minimal ODs as

additions to Σ, �Σ− contains non-valid ODs to be removed from Σ.
1 Σcand := {}; Σvalid := {}; Σpre := {};
2 foreach ϕ ∈ Σ do
3 if ϕ is invalid by �Check(ϕ) then add ϕ into �Σ−;
4 else add ϕ into Σpre;

5 foreach ϕ ∈ Σ do Σcand := Σcand ∪ Enrich(ϕ, �Σ−);
6 foreach ϕ ∈ Σcand do
7 if ϕ is valid by �Check(ϕ) then move ϕ from Σcand to Σvalid;
8 foreach ϕ ∈ Σcand ∪ �Σ− do Σvalid := Σvalid ∪ Expand(D, ϕ, �D);
9 �Σ+ := Prune(Σvalid, Σpre);

are moved from Σcand to Σvalid (lines 6–7). It applies expansion to ODs in
Σcand ∪�Σ−, i.e., ODs valid on D but invalid on D+�D, and adds results
to Σvalid (line 8).

(3) It finally prunes non-minimal ODs in Σvalid to get �Σ+ (line 9); Σpre

is required in this step. (a) For each OD X �→Y ∈ Σvalid, it requires to
check whether there exists some OD U �→V in Σvalid ∪ Σpre, such that U
∈prefixes(X) and Y ∈prefixes(V). It suffices to consider only those ODs U
�→V, whose |U| ≤ |X|, and whose |V| ≥ |Y| . (b) To verify whether X (resp.
Y) is minimal, it requires to check whether there exists some OD U �→V in
Σvalid ∪ Σpre, such that U is before V, both contained in X (resp. Y). It
suffices to consider only those ODs U �→V, whose |U| + |V| ≤ |X| (resp. |Y|).

Complexity. IncOD employs �Check(·), Enrich(·) and Expand(·) in OD val-
idations and computations of Σcand, Σvalid and Σpre. Pruning of non-minimal
ODs in Σvalid concerns attributes of ODs in Σvalid ∪ Σpre, and requires no visits
to D. To conclude, IncOD is irrelevant of |D|, and �Σ is computed based on
ODs in Σ via enrichment and expansion only.

We provide insights into the interaction between enrichment and expansion,
for developing optimization techniques.

Theorem 3: On D + �D, if W �→V does not cause a split, (1) when UWA1

. . .Ak �→Y is valid (resp. invalid), UWA1 . . .AiVAi+1 . . .Ak �→Y is valid (resp.
invalid); and (2) when UWA1 . . .AkZ �→Y′ is valid for some Z, and some Y′

∈prefixes(Y), UWA1 . . .AiVAi+1 . . .AkZ �→Y′ is valid. ��
Theorem 3 states that when an OD ϕ is invalid only due to swap (no split),

(1) the enrichment of any valid OD ξ by ϕ also generates valid ODs; and (2)
the enrichment of any invalid OD ξ by ϕ also generates invalid ODs, and any
expansion of ξ that results in valid ODs also works for those ODs. We leverage
these observations to avoid unnecessary expansion in our implementation. This
optimization is proved to be very effective in our experimental studies, since
expansion is the most expensive part of IncOD.

Incremental Discovery of Order Dependencies on Tuple Insertions 169

Algorithm 3: CoverIndex
input : a set Σ of ODs
output: a set of attribute lists on which indexes to be built

1 U := φ; output := φ;
2 foreach X �→Y ∈ Σ do
3 foreach X′ ∈ prefixes(X) do
4 if X′ 	∈ U then
5 add X′ to U ; X′.price := 0; X′.weight := assignweight(X′);
6 while there exists X �→Y such that ∀ X′ ∈ prefixes(X), X′.price < X′.weight do
7 Z := argmin

X′∈prefixes(X)

(X′.weight − X′.price);

8 foreach X′ ∈ prefixes(X) do X′.price := X′.price + Z.weight − Z.price;

9 foreach X′ ∈ U do if X′.weight = X′.price then put X′ into output;

4.2 Building Indexes

Only local data are required in IncOD. Our incremental OD discovery problem
takes as inputs D and the set Σ of ODs valid on D, and hence some auxiliary
structures can be built to help fetch those required data more efficiently.

We employ composite indexes (indexes on multiple attributes) as our aux-
iliary structure. In a composite index, tuples are sorted by concatenating val-
ues of the indexed attributes (see Example 5). Note that a composite index on
attributes [ABC . . .] can be used when values of A, or AB or ABC are provided.
We use memory-based B+ tree to implement composite indexes in this paper.
Since B+ tree is well adopted in most commercial DBMS, our approach can be
easily extended to handle data stored in DBMS as well.

To speed up data visits concerning X �→Y, a straightforward way is to build
a composite index indX on X. In practice when the number of ODs in Σ is large,
building composite indexes on all distinct LHS attribute lists for ODs may become
costly in terms of both computation and storage. We present another strategy
that aims to build a minimal set of composite indexes and guarantees that for
any OD at least one index is usable. We tackle this by relating the problem of
building indexes to techniques for weighted vertex cover problems [19].

More specifically, for all X �→Y in Σ, (1) for any X′ ∈prefixes(X), we treat
X′ as a vertex, to build a set of vertices; and (2) we treat X as a hyperedge, with
all X′ ∈prefixes(X) as its vertices. Then, our goal is to index at least one X′

∈prefixes(X) for any X �→Y in Σ, the same as the goal of vertex cover, to pick
at least one vertex for any hyperedge. We also assign a weight to each prefix
X′ = [A1, . . . , Ak], based on its selectivity. The weight of X′ is computed as (1 −
dist(A1)

|D|) · . . . ·(1− dist(Ak)
|D|), where dist(Ai) is the number of distinct values of Ai.

We use uniform random sampling to estimate dist(Ai) in our implementation.
If the weight of some X′ is zero, we assign a small number α as its weight.

Algorithm. Algorithm CoverIndex is to find a set of attribute lists on which
we build indexes. It is an adaption of the “pricing” method for weighted vertex
cover. It first initializes the set U of vertices (lines 2–5). It then continues to pick

170 L. Zhu et al.

X (hyperedge) when neither of its prefix X′ (vertex) is tight (line 6); a prefix X′ is
tight when X′.price = X′.weight. It then increases the price of all X′ as much as
possible, but guarantees that X′.price ≤ X′.weight (lines 7–8). Finally, all tight
prefixes are collected as the output (line 9).

Complexity. CoverIndex terminates when at least one prefix is tight for each X,
and all tight prefixes form a cover. CoverIndex is linear in the size of U , i.e., the
number of prefixes of all X �→Y ∈ Σ. CoverIndex is a d-approximation algorithm
where d = max(|X|) for all X �→Y ∈ Σ in our setting, following [19].

Remark. The index built on a prefix X′ of X can be used for new ODs based on
X �→Y by both expansion and enrichment. We denote by local′(X, t′) = equ′(X, t′)
∪ low′(X, t′) ∪ high′(X, t′). Observe that (1) in expansion, we generate ODs of the
form XZ �→prefixes(Y), local′(XZ, t′) ⊆ local′(X′, t′); and (2) in enrichment, we
generate ODs of the form X′′Z �→Y′, where X′′ ∈prefixes(X). (a) If X′ is a prefix
of X′′, local′(X′′Z, t′) ⊆ local′(X′, t′). (b) If X′′ is a prefix of X′, local′(X′′Z, t′) ⊆
local′(X′′, t′), and the index on X′ can be used when X′′ value is available.

5 Experimental Study

Experimental Setting. We used one machine with Intel Xeon CPU E5-2640
and 32GB RAM, ran each experiment 3 times and report the average here.

Data. We used two real datasets that have been used to evaluate OD discovery
algorithms [12,16,17]. FLI is about US flights information, with 500K tuples
and 20 attributes (www.transtats.bts.gov). NC contains data of registered voters
from North Carolina, with 1M tuples and 22 attributes (ncsbe.gov). To improve
efficiency and avoid uninteresting ODs, we replaced attribute values with integers
in a way that the ordering is preserved, and removed tuples with NULL values,
similar to [12,16,17].

Algorithms. We implemented our algorithms in Java: IncOD for incremental OD

discovery (with �Check(·), Enrich(·) and Expand(·)) and CoverIndex for choos-
ing attributes on which to build minimal indexes. For comparison, we obtained
a batch OD discovery implementation ORDER [12] from www.metanome.de. To
our best knowledge, this is the only algorithm for list-based OD discovery.

All experiments are controlled by 3 parameters: (1) |D|: the number of orig-
inal tuples; (2) |�D|: the number of tuples inserted into D; and (3) |R|: the
number of attributes. We vary |R| by taking random projections of the dataset.
We employ ORDER to compute Σ on D, as inputs of CoverIndex for index build-
ing. IncOD then computes �Σ with inputs D, �D and Σ, leveraging indexes.
The correctness of IncOD is verified by checking whether Σ ⊕ �Σ equals the
results of ORDER on D+�D. We report the time of ORDER on D+�D, against
the time of IncOD for updating indexes and computing �Σ on tuple insertions.

Exp-1. We compare IncOD against ORDER using FLI. We set |D| = 300K,|�D| =
90K and |R|= 8 by default, and vary one parameter in each of the experiments.

Incremental Discovery of Order Dependencies on Tuple Insertions 171

 1

 10

 100

 1000

 10000

 20 25 30 35 40

Ti
m

e(
Se

c.
)

Number of Tuples(10K)

ORDER
IncOD

(a) FLI: varying |D|

 1

 10

 100

 1000

 10000

 3 6 9 12 15

Ti
m

e(
Se

c.
)

Number of Incremental Tuples(10K)

ORDER
IncOD

(b) FLI: varying D|

 1
 10

 100
 1000

 10000
 100000

 5 6 7 8 9

Ti
m

e(
Se

c.
)

Number of Attributes

ORDER
IncOD

(c) FLI: varying |R|

 0

 10

 20

 30

 40

5 6 7 8 9

Ti
m

e(
Se

c.
)

Number of Attributes

Index
Validation

Expand

(d) FLI: time breakdown

 0
 20
 40
 60
 80

 100

5 6 7 8 9

N
um

be
r o

f O
D

s

Number of Attributes

ODs in Σ
OD Expansion

ODs in ΔΣ+

ODs in ΔΣ-

(e) FLI: # of ODs

 1

 10

 100

 1000

 10000

 20 25 30 35 40

Ti
m

e(
Se

c.
)

Number of Tuples(10K)

ORDER
IncOD

(f) NC: varying |D|

 1

 10

 100

 1000

 10000

 3 6 9 12 15

Ti
m

e(
Se

c.
)

Number of Incremental Tuples(10K)

ORDER
IncOD

(g) NC: varying D|

 1

 10

 100

 1000

 10000

 6 7 8 9 10

Ti
m

e(
Se

c.
)

Number of Attributes

ORDER
IncOD

(h) NC: varying |R|

 0
 10
 20
 30
 40
 50

6 7 8 9 10

Ti
m

e(
Se

c.
)

Number of Attributes

Index
Validation

Expand

(i) NC: time breakdown

 0
 10
 20
 30
 40
 50
 60

6 7 8 9 10

N
um

be
r o

f O
D

s

Number of Attributes

ODs in Σ
OD Expansion

ODs in ΔΣ+

ODs in ΔΣ-

(j) NC: # of ODs

 0

 20

 40

 60

 80

 100

(20,6,5,9) (40,6,5,9)(20,9,25,9) (40,9,25,9)

Ti
m

e
(S

ec
.)

(|D|(10K), |R|, |Σ|, |ΔD|(10K))

IncOD Index Time
IndexAll Index Time

IncOD Total Time
IndexAll Total time

(k) total and index

 0

 10

 20

 30

 40

(20,6,5,9) (40,6,5,9) (20,9,25,9) (40,9,25,9)

Ti
m

e
(S

ec
.)

(|D|(10K), |R|, |Σ|, |ΔD|(10K))

IncOD update index
IndexAll update index
IncOD fetch local data

IndexAll fetch local data

(l) index time breakdown

Fig. 3. Experimental results

Varying |D|. Fig. 3(a) shows results by varying |D| from 200K to 400K. ORDER

scales well with |D|, consistent with results in [12]. Times of IncOD increase
slightly, due to more local data w.r.t. |�D| as |D| increases. IncOD outperforms
ORDER by two orders of magnitude on all sizes of D. As an example, ORDER

takes more than 45 min when |D| is 400K, while IncOD takes only 22 s.
Varying |�D|. Fig. 3(b) shows results by varying |�D| from 30K to 150K. We
find IncOD scales very well with |�D|: the time increases from 12 s to 21 s, when
the ratio of |�D| to |D| increases from 10% to 50%. IncOD outperforms ORDER

by two orders of magnitude even when |�D| is half of |D|.
Varying |R|. We vary |R| from 5 to 9 in Fig. 3(c). |R| has the most effect on the
time of list-based OD discovery, since the number of possible list-based ODs is
of a factorial complexity in |R|. ORDER does not scale well with |R|, consistent
with results in [12]. The scalability of IncOD is far more better. As |R| increases
from 8 to 9, the time for ORDER increases from 33 min to more than 4 h, while
the time for IncOD only increases from 19 s to 46 s.

In Fig. 3(d) we decompose the overall time into times for (i) updating indexes
and obtaining local data via indexes for �D, (ii) OD validations by �Check(·),
and (iii) OD expansion; other times are marginal. The times for (i) and (ii) are
related to ODs in Σ, while time (iii) is related to ODs for expansion, whose
numbers are shown in Fig. 3(e). We also report in Fig. 3(e) the number of ODs in
�Σ. We find time (i) is short, due to the fact that almost all of ODs on FLI contain
a single LHS attribute, and hence local data w.r.t. �D can be directly fetched
via indexes built by CoverIndex. Time (ii) is also short; �Check(·) requires only

172 L. Zhu et al.

local data of �D and is linear in |�D| (Theorem 2). The time for expansion
(Time (iii)) governs the overall time. The search space of our approach is much
smaller than its batch counterpart since �Σ is computed based on Σ, fully
leveraging incremental computations. Moreover, instance-based pruning rules in
expansion and optimizations by Theorem 3 are proved to be quite effective.

Exp-2. We then compare IncOD against ORDER using NC, with |D| = 300K,
|�D| = 90K and |R| = 9 by default. We vary |D| from 200K to 400K in Fig. 3(f),
vary |�D| from 30K to 150K in Fig. 3(g), and vary |R| from 6 to 10 in Fig. 3(h).
In the same setting as Fig. 3(h), we report the time breakdown and number of
related ODs in Figs. 3(i) and 3(j). The results confirm our observations on FLI.
(1) IncOD significantly outperforms ORDER: IncOD is on average 48 and 51 times
faster in Figs. 3(f) and 3(g), respectively. (2) IncOD scales much better with |R|.
As |R| increases from 6 to 10 in Fig. 3(h), the time for ORDER increases by more
than two orders of magnitude, while the time for IncOD increases by less than 7
times. (3) Fig. 3(i) shows that more time is required in the index processing phase
of NC. Most of ODs found on NC have multiple LHS attributes. Since CoverIndex
may choose to build indexes on prefixes of LHS attributes, some post-processing
after index visits is required to fetch local data of �D. Specifically, to fetch local
data local′(X, t′) with an index indX′ where X′ is a prefix of X, we need to sort
tuples in local′(X′, t′) on X \ X′; this incurs additional costs. Note that as |R|
increases from 8 to 10, the same number of ODs are found on D (Fig. 3(j)).

Exp-3. We evaluate different index strategies on NC. We denote by IndexAll when
indexes are built on all distinct LHS attribute lists of ODs in Σ, and compare it
against IncOD with CoverIndex. We denote by (|D|,|R|,|Σ|,|�D|) indexes with
different settings: index building depends on D and Σ; Σ is determined by D
and R; running times concern �D. We report in Fig. 3(k) total running time and
index processing time; index time is part of the running time and IndexAll differs
from IncOD only in this time. We also show in Fig. 3(l) index time breakdown.
We find IndexAll takes less time compared to IncOD, as expected. The total
time of IndexAll is about [68%, 88%] of that of IncOD in Fig. 3(k). The efficiency
of IndexAll comes at the cost of more indexes. For the case that |Σ| = 25 in
Fig. 3(k), IndexAll has to build 25 indexes since each OD has a distinct LHS

attribute list, while CoverIndex suffices to cover all ODs with 5 indexes. Hence,
IndexAll takes more time to update indexes, shown in Fig. 3(l). IncOD takes more
time for fetching local data of �D due to required post-processing, as illustrated
before. We contend that CoverIndex is a better choice when index space is a major
concern, e.g., for large |Σ| or |D|. IncOD already achieves very good performance.
In practice if we can afford more space, we can combine some extra indexes with
the indexes built by CoverIndex, to further improve the efficiency.

6 Conclusions

We have formalized the problem of incremental OD discovery, studied its com-
putational complexity, discussed its data locality property, presented algo-
rithms and optimizations, and experimentally demonstrated our approaches.

Incremental Discovery of Order Dependencies on Tuple Insertions 173

We are developing distributed techniques for incremental OD discovery to fur-
ther enhance the scalability, and studying incremental discoveries for other con-
straints.

Acknowledgements. This work is supported by NSFC 61572135, NSFC 61370157,
The Shanghai Innovation Action Project 17DZ1203600, China Grid (Shanghai)
52094017001x, Shanghai Science and Technology Project (No. 16DZ1110102), Airplane
Research Project, Industry Internet Innovation Development Project.

References

1. Abedjan, Z., Quian-Ruiz, J., Naumann, F.: Detecting unique column combinations
on dynamic data. In: ICDE (2014)

2. Bleifub, T., Kruse, S., Naumann, F.: Efficient denial constraint discovery with
hydra. PVLDB 11(3), 311–323 (2017)

3. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: consistency
and accuracy. In: VLDB (2007)

4. Chu, X., Ilyas, I., Papotti, P.: Discovering denial constraints. PVLDB 6(13), 1498–
1509 (2013)

5. Chu, X., Ilyas, I., Papotti, P.: Holistic data cleaning: putting violations into con-
text. In: ICDE (2013)

6. Fan, W., Geerts, F., Li, J., Xiong, M.: Discovering conditional functional depen-
dencies. TKDE 23(5), 683–698 (2011)

7. Fan, W., Li, J., Tang, N., Yu, W.: Incremental detection of inconsistencies in
distributed data. TKDE 26(6), 1367–1383 (2014)

8. Golab, L., Karloff, H., Korn, F., Srivastava, D., Yu, B.: On generating near-optimal
tableaux for conditional functional dependencies. PVLDB 1(1), 376–390 (2008)

9. Huhtala, Y., Karkkainen, J., Porkka, P., Toivonen, H.: TANE: an efficient algorithm
for discovering functional and approximate dependencies. Comput. J. 42(2), 100–
111 (1999)

10. Hao, S., Tang, N., Li, G., He, J., Ta, N., Feng, J.: A novel cost-based model for
data repairing. TKDE 29(4), 727–742 (2017)

11. Khayyat, Z., et al.: BigDansing: a system for big data cleansing. In: SIGMOD
(2015)

12. Langer, P., Naumann, F.: Efficient order dependency detection. VLDB J. 25(2),
223–241 (2016)

13. Papenbrock, T., Naumann, F.: A hybrid approach to functional dependency dis-
covery. In: SIGMOD (2016)

14. Song, S., Chen, L.: Differential dependencies: reasoning and discovery. TODS
36(3), 16:1–16:41 (2011)

15. Szlichta, J., Godfrey, P., Gryz, J.: Fundamentals of order dependencies. PVLDB
5(11), 1220–1231 (2012)

16. Szlichta, J., Godfrey, P., Golab, L., Kargar, M., Srivastava, D.: Effective and com-
plete discovery of order dependencies via set-based axiomatization. PVLDB 10(7),
721–732 (2017)

174 L. Zhu et al.

17. Szlichta, J., Godfrey, P., Golab, L., Kargar, M., Srivastava, D.: Effective and com-
plete discovery of bidirectional order dependencies via set-based axioms. VLDB J.
27(4), 573–591 (2018)

18. Szlichta, J., Godfrey, P., Gryz, J., Zuzarte, C.: Expressiveness and complexity of
order dependencies. PVLDB 6(14), 1858–1869 (2013)

19. Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-662-04565-7

https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7

	Incremental Discovery of Order Dependencies on Tuple Insertions
	1 Introduction
	2 Preliminaries
	3 Data Locality for Incremental OD Discovery
	4 Incremental OD Discovery
	4.1 Finding ODs in
	4.2 Building Indexes

	5 Experimental Study
	6 Conclusions
	References

